
AN AEROSTRUCTURAL 3D WING OPTIMIZATION USING PARALLEL
GENETIC ALGORITHMS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ANIL ARPACI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

AN AEROSTRUCTURAL 3D WING OPTIMIZATION USING PARALLEL
GENETIC ALGORITHMS

submitted by ANIL ARPACI in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Göktürk Üçoluk
Supervisor, Computer Engineering, METU

Dr. Onur Tolga Şehitoğlu
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Yusuf Sahillioğlu
Computer Engineering, METU

Prof. Dr. Göktürk Üçoluk
Computer Engineering, METU

Assoc. Prof. Dr. Tansel Dökeroğlu
Computer Engineering, TED University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Anıl Arpacı

Signature :

iv

ABSTRACT

AN AEROSTRUCTURAL 3D WING OPTIMIZATION USING PARALLEL
GENETIC ALGORITHMS

Arpacı, Anıl

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Göktürk Üçoluk

Co-Supervisor : Dr. Onur Tolga Şehitoğlu

September 2019, 82 pages

As a multi-disciplinary optimization problem, aerostructural shape optimization of

airplane wings requires both aerodynamic and structural analysis to meet an objec-

tive defined as the sum of parameters like drag to lift ratio and wing weight, subjected

to penalty of structural yield stress and geometrical sizing constraints to get aerody-

namically efficient and lightweight 3D wings.

In our study, genetic algorithms are utilized for optimization of 3D wing with its

internal structural components. In order to optimize an airplane wing with genetic

algorithms, parametric automated geometry and mesh generator is developed. Since

automation and aerostructural analysis increase the complexity of the fitness calcula-

tion, utilization of parallelism for genetic algorithms becomes crucial.

This thesis proposes an aerostructural 3D wing optimization tool using different mod-

els of parallel genetic algorithms. Moreover, the results of these models are discussed

in the scope of this study.

v

Keywords: Geometry Parameterization, Shape Optimization, Genetic Algorithms

vi

ÖZ

PARALEL GENETİK ALGORİTMALAR KULLANARAK 3B KANADIN
AERODİNAMİK VE YAPISAL OPTİMİZASYONU

Arpacı, Anıl

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Göktürk Üçoluk

Ortak Tez Yöneticisi : Dr. Onur Tolga Şehitoğlu

Eylül 2019 , 82 sayfa

Çok disiplinli bir optimizasyon problemi olan uçak kanatlarının aerodinamik ve ya-

pısal şekil optimizasyonu; çeşitli kırılma, gerilme, ağırlık ve geometrik kısıtlamalar

uygulanarak, sürtünme-kaldırma oranı ve kanat ağırlığı gibi parametrelerin toplamı

olarak tanımlanan bir amacı karşılamak için hem aerodinamik hem de yapısal ana-

liz gerektirir. İşbu analizler sonucunda aerodinamik açıdan verimli ve yapısal olarak

hafif 3B kanatlar elde edilebilir.

Genetik algoritmalar kullandığımız çalışmamızda, bir uçak kanadını eniyilemek için,

parametrik ve otomatik geometri ve çözümağı üreticisi geliştirilmiştir. Otomasyon

süreci ve ardından gelen aerodinamik ve yapısal analizler zindelik hesaplamasının

karmaşıklığını arttırdığından, genetik algoritmalar için paralelliğin kullanılması ha-

yati önem kazanmaktadır.

Farklı paralel genetik algoritma modelleri kullanan aerodinamik ve yapısal 3B kanat

optimizasyon aracı öneren bu tez kapsamında, uygulanan farklı modellerin sonuçları

da tartışılmıştır.

vii

Anahtar Kelimeler: Geometrik Parametrizasyon, Şekil Optimizasyonu, Genetik Al-

goritmalar

viii

To my family and the expected (r)evolution

ix

ACKNOWLEDGMENTS

First and foremost, I would like to express my most sincere gratitude to Dr. Onur

Tolga Şehitoğlu for his constant support, guidance and patience throughout the prepa-

ration of this study. I am deeply glad to have the chance to benefit from his invaluable

experiences and insights.

I would like to give my special thanks to Dr. Erdal Oktay and EDA Engineering

Design & Analysis Ltd. Co. for supporting and helping me, and allowing me to use

their proprietary software modules of CAEedaTM. I must also express my gratitude to

Prof. Dr. Hasan U. Akay for his suggestions and comments during this study.

Studies performed in this thesis comprise a part of The Scientific and Technologi-

cal Research Council of Turkey(TUBITAK) TEYDEB project (No: 3150095) named

“The Code Development for Aero-structural Shape optimization and Design Automa-

tion”, granted to EDA Engineering Design & Analysis Ltd. Co.

It is a pleasure to thank my past and present colleagues and friends Baler, Ramin,

Fateh, Kutay, Ertuğrul, Kourosh and Berke for their help and encouragement.

I would like to thank my high school friends for their support and invaluable friend-

ship. I always feel so lucky to have such great friends in my life. They supported(!)

me so much throughout this study.

I owe my deepest and warmest thanks to my family who give me strength and en-

couragement throughout my studies. I am so grateful to my mother Nesibe, my father

Cavit and my brother Erdem for their love and support through my whole life. And I

wish to express my sincere gratitude to my love İnci for her everlasting support, en-

couragement, understanding and patience. This study would not have been possible

without them.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Objective . 3

1.3 Problem Definition . 3

1.4 Scope of the Thesis . 4

2 LITERATURE REVIEW . 5

2.1 Parametric Geometry Generation 5

2.1.1 NURBS Method . 8

2.1.2 Bezier Curve Method . 9

2.1.3 Parametric Section Method 10

xi

2.1.4 Class-Shape-Transformation Method 11

2.2 Shape Optimization (Genetic Algorithm) 14

2.2.1 Selection . 17

2.2.2 Variation: Crossover & Mutation 19

2.2.3 Replacement . 22

2.2.4 Island Model . 24

2.2.5 Parallelism . 25

2.3 Data Transfer (Geometric Search and Interpolation) 26

2.3.1 Octree . 27

2.3.2 Alternating Digital Tree (ADT) 28

2.3.3 k-d tree . 29

2.4 Analysis Tools . 30

2.4.1 Aerodynamic Solver . 30

2.4.2 Structural Solver . 32

3 CONTRIBUTIONS . 33

3.1 Airfoil Parameterization with CST Method and Generation of 3D
Wing in NURBS Surface Form . 33

3.2 Mesh Automation for both Aerodynamic and Structural Solver 36

3.2.1 Mesh Automation for Aerodynamic Solver 37

3.2.2 Mesh Automation for Structural Solver 40

3.3 Shape Optimization via Parallel Genetic Algorithm (PGA) 44

3.4 Data Transfer from Quadrilateral Mesh to Triangular Mesh with ADT 46

4 EXPERIMENTS AND RESULTS . 51

xii

4.1 Environment Setup . 51

4.2 Design Process . 52

4.2.1 Genetic Encoding . 53

4.2.2 Objectives . 53

4.2.3 Parallelization . 56

4.3 Experiments . 58

4.4 Results and Discussion . 61

5 CONCLUSION AND FUTURE WORK 71

5.1 Conclusion . 71

5.2 Future Work . 73

REFERENCES . 75

xiii

LIST OF TABLES

TABLES

Table 2.1 Comparison of wing geometry parameterization methods 14

Table 4.1 Upper & lower bounds of the optimization parameters and their

meanings. 59

Table 4.2 Parameters of the genetic algorithm for both models. 60

Table 4.3 # of cores and execution time values of different PGA models 66

xiv

LIST OF FIGURES

FIGURES

Figure 2.1 Cross section of an airfoil. 6

Figure 2.2 Airfoil and aerodynamic forces acting on it. 6

Figure 2.3 Lofting from starting shape to ending shape to create 3D wing. . 7

Figure 2.4 NURBS method for airfoil parameterization. 9

Figure 2.5 PARSEC method for airfoil parameterization. Taken from “An

Implementation of Self-Organizing Maps for Airfoil Design Exploration

via Multi-Objective Optimization Technique,” by Jung, SungKi et al.,

2016, Journal of Aerospace Technology and Management, 8(2), 193-202. 11

Figure 2.6 The flow chart of the heuristic search with the GA. 16

Figure 2.7 Selection probabilities: a) in fitness proportionate selection. b)

in ranking selection . 18

Figure 2.8 One-point crossover operation 20

Figure 2.9 Two-point crossover operation 20

Figure 2.10 Mutation in the fifth gene of chromosome 21

Figure 2.11 (a) Three dimensional object; (b) its octree block representation;

and (c) its tree representation. Taken from [1]. 28

Figure 2.12 Degenerated ADT structures. 29

Figure 3.1 CST airfoils generated for different parameter values 35

xv

Figure 3.2 Top view of the wing. 36

Figure 3.3 Mesh automation for panel solver 38

Figure 3.4 Internal structural elements of the wing. (Spar in blue, ribs in red) 40

Figure 3.5 Classical rib area (0.0910314 m2) on airfoil that has 1 meter

chord length . 41

Figure 3.6 Generated offset rib area (0.0625454 m2) on airfoil that has 1

meter chord length . 41

Figure 3.7 Mesh automation for structural solver 42

Figure 3.8 Defined zones of internal parts of the wing. 43

Figure 3.9 Imaginary volumes of structural analysis. 44

Figure 3.10 Overlapped both mesh as an ADT input 48

Figure 3.11 Transferred pressure coefficient (CP) values between two differ-

ent mesh . 49

Figure 4.1 Genetic encoding . 53

Figure 4.2 The flow chart of the fitness calculation process. 54

Figure 4.3 The master-worker model for parallel genetic algorithm 57

Figure 4.4 Island model with four sub-populations in ring topology. 57

Figure 4.5 Fitness values of the best individuals for Single Population and

Island Models (Average values of 5 runs with different seeds) 62

Figure 4.6 Comparison of the best fitness values of a single experiment for

Single Population and Island Models 62

Figure 4.7 Fitness components of the single model GA of the sample ex-

periment . 63

xvi

Figure 4.8 Comparison of best fitness values from Single Population and

Island Model longer (500 generations) experiment for the best configu-

ration . 64

Figure 4.9 Fitness values of the generations 64

Figure 4.10 Fitness values of the non-migrated island model 65

Figure 4.11 Execution times of models . 66

Figure 4.12 Speedup of parallelism . 68

Figure 4.13 Parallel Efficiency . 69

xvii

LIST OF ABBREVIATIONS

AOA Angle of Attack

PARSEC Parametric Section

LE Leading Edge

TE Trailing Edge

CST Class-Shape-Transformation

TR Taper Ratio

GA Genetic Algorithm

PGA Parallel Genetic Algorithm

GPGA Global Parallel Genetic Algorithm

CPGA Coarse-grained Parallel Genetic Algorithm

FPGA Fine-grained Parallel Genetic Algorithm

NURBS Non-Uniform Rational B-Spline

CAE Computer Aided Engineering

CAD Computer Aided Design

CAM Computer Aided Manufacturing

EO Evolving Objects

FEM Finite Element Method

BC Boundary Condition

ADT Alternating Digital Tree

MPI Message Passing Interface

SIN Search and Interpolate

SAP Structural Analysis Program

W Weight

xviii

CHAPTER 1

INTRODUCTION

The aerostructural shape optimization is a crucial and challenging multi-disciplinary

problem that requires solutions of both aerodynamic and structural physics of the

object by meeting constraints and objectives like efficiency, strength and weight. In

this thesis we develop an aerostructural shape optimization tool that automatically

generate and evolve wing geometries in parallel using genetic algorithms. The tool

includes multiple methods of engineering and computer science like automated ge-

ometry generation, aerodynamics solution, structural solution, force transfer between

meshes, genetic algorithms and parallel computation.

1.1 Motivation

Over the years, numerous wing designs have been developed and it led industry to

concern more about efficiency of design and its process. Dealing with efficiency and

quality of a wing has many aspects, like less fuel consumption, lightness, strength,

longer lifetime, production cost, etc.

Researches on efficient wing design requires two main criteria which are aerodynam-

ics and structural qualities of the wing. Aerodynamic design concerns the physics

of the wing with air (or fluid) around its outer shape where the air flows. Structural

design deals with the internal shape of wing, which implies the stiffness of it. Each

of these aspects has different physical characteristics, thus two different solvers are

used in different stages of the design evaluation.

The conventional method in wing design is the trial-and-error method. Human ex-

1

perts use common design patterns and their experience to design an initial wing, then

run aerodynamic solver, analyze the result, if not satisfactory update it, when aerody-

namic design is complete, try to design interiors and make sure wing is structurally

correct by running structural solvers. This method has kind a heuristic approach, but it

is considerably slow and inefficient process. Because it starts from a sub-optimal ini-

tial point and number of iterations a human can do is limited. Also in human design,

aerodynamics and structure properties are designed as different stages. Genetic algo-

rithm (GA) is also a heuristic search algorithm, but since it is inspired by evolution

theory, it can find more efficient results than the human design. Although GA starts

from a random initial state, utilizes its search history to reach to an optimum target

according to its objective function. Our target in this thesis is the wing design with

good aerodynamic and structural scores given by solvers. In short, aerodynamic and

structural solvers are coupled with each other for using them in optimization process

with genetic algorithm to reach the optimal wing design.

In order to automatically generate a candidate wing design for optimization process,

we need to encode and represent it as a set of parameters. To put it simply, we can

say that parameterization is a conversion from engineering problem into mathemati-

cal problem. Therefore, our wing design process turns into mathematical equations.

In recent years, several parameterization methods have developed for wing design.

For this study, we enumerate these methods and choose the suitable parameteriza-

tion method depending of its flexibility, representational effectiveness, computational

cost, etc. As the choice of parameterization technique affects optimization process, it

also has an impact on the result.

When the parameterization method is decided, optimization process will be ready to

be started. As long as the parameters are in reasonable intervals, parameterization and

thereby optimization process will work correctly. Encoding that can generate feasible

designs, there will be a better design; however, more parameter means more com-

plexity. Also aerodynamic and structural solvers, geometry and mesh generations

need the computational power. Due to the high computational cost, a parallelized

optimization becomes almost a must. So, this thesis proposes a parallel aerostruc-

tural optimization with an easy and fast parameterization technique, which will be

discussed comprehensively in the following sections.

2

1.2 Objective

In order to design an efficient wing automatically, aerostructural shape optimization

has become inevitable and it includes crucial part, parametric geometry generation.

Since wings are different in many aspects, and optimization process needs to be fast

and accurate, parameterization technique becomes more important. There are lots of

ways to parameterize a wing. In this thesis, we try to discuss different parameteriza-

tion techniques and what advantages/disadvantages they have. Then, by introducing

and implementing a new hybrid parameterization technique, we try to develop multi-

disciplinary wing design optimization tool according to aerodynamic and structural

aspects with genetic algorithm. Moreover, as the fitness calculation including aerody-

namic and structural analysis is a time costly process, we try to utilize parallel genetic

algorithm with various parallelization models to shorten the total optimization time.

1.3 Problem Definition

As a whole, wing optimization process has many steps until the optimal wing design

and it starts with parametric geometry generation. As mentioned before, to design

wing easily and fast, easy and fast parameterization technique is inevitable for shape

optimization. Because it is the main and the base part of the shape optimization. In the

very first step of the parametric wing generation, we should parameterize and create

the section of wing, namely airfoil. Then, these airfoils are used to generate a whole

3D wing geometry. So parametric generation of airfoil means that we can create a

whole wing. Furthermore, we also need to generate a mesh on wing geometry, which

is created by parameterized airfoil, to be used by the aerodynamic solver to calculate

airflows on it. After the external shape of wing is known, we have to generate a mesh

on the interior part of the wing for computing stiffness by the structural solver. More-

over, to compute stiffness correctly, calculated external aerodynamic pressures must

be given to the mesh of structural solver. This mesh to mesh data transfer operation

have to be done by us, so that the two solvers are combined. Furthermore, it tries to

combine aerodynamic and structural approaches to optimize wing geometry with the

comparison of different parallel genetic algorithm models.

3

1.4 Scope of the Thesis

Chapter 2 starts with the terminology on aircraft wings. Then, background infor-

mation about parametric geometry, shape optimization and data transfer methods are

given and the previous studies on these topics are summarized. At the end of this

chapter, both aerodynamic and structural analyzes tools are presented.

Chapter 3 gives the details of developed hybrid parameterization method. Then, it

explains the steps of parametric geometry generation, mesh automation processes for

both analyzes and the data transfer algorithm.

Chapter 4 firstly illustrates the environment setup for the experiments conducted in

this thesis. Then, it explains the optimization process of 3D wing using parallel ge-

netic algorithms with the given details about objective function and genetic operators.

Lastly, results of several experiments are shown and discussed.

Chapter 5 concludes this thesis and discusses the results of the experiments. Lastly,

suggestions for the future work are given.

4

CHAPTER 2

LITERATURE REVIEW

In this chapter, historical background about parametric geometry generation, shape

optimization and mesh to mesh data transfer methods are explained. We briefly de-

scribe how an airfoil geometry can be parameterized and generated, also what prin-

ciples the shape optimization process has. Furthermore, mesh to mesh data transfer

operation is explained as a computational geometry problem, then some algorithms

that can solve this problem is presented. Latest researches on topics of each section

are also discussed.

2.1 Parametric Geometry Generation

As mentioned before, it is necessary to represent the wing cross-sectional profile,

namely airfoil, with the mathematical equation that has finite parameters. The term

of airfoil is used to describe the cross-sectional shape of an object that, when move

through a fluid such as air, creates an aerodynamic force. Airfoils are used on aircrafts

as the cross-section of a wing to produce lift, which is needed for climbing and flying.

Camber of an airfoil directly affects the lift force, since camber is a measure of the

curvature of an airfoil that lies from leading edge to trailing edge, which is shown in

Figure 2.1. Since camber allows to keep the air below of the airfoil, it has direct effect

in the lift force of the wing.

The lift force is generated by the wing which acts perpendicular to the incoming flow

and it allows an aircraft climb. The drag force is a consequence of the production of

lift and acts parallel to the airflow. An example airfoil and mentioned forces on it can

be seen in Figure 2.2. The straight line drawn from leading edge (front of the airfoil)

5

tra�l�ng edgelead�ng edge

camber l ne

Figure 2.1: Cross section of an airfoil.

to trailing edge (back of the airfoil) of airfoil is called chord line. Angle of attack

(AOA) is the angle between the oncoming air (flow direction) and a chord line of the

airfoil.

chord line

flow direction

Lift

Drag

angle of attack

A�rfo�l

Figure 2.2: Airfoil and aerodynamic forces acting on it.

Nowadays, an airfoil can be encoded with many different parameterization methods,

some of which have advantages over others. There are set of rules that have to be

satisfied by the method. Some of rules are:

• Mathematical equation should represent wide range of airfoils to ensure that it

covers all in the optimization process.

• It is better to have less parameters, since computational complexity and time

depend on parameter count.

6

• In order to minimize the search space and associated complexity, output geom-

etry should not generate invalid and/or unacceptable airfoil geometries.

While generating airfoil, XZ plane is used in the literature. X is the chord axis, Z is

the thickness axis of an airfoil. And Y axis is used for the span direction, which makes

2D airfoil into 3D wing. In chord axis (X) airfoil is placed from X = 0 to X = 1,

and leading side is in X = 0. This 0 to 1 generalization is used for non-dimensional

geometry generation for any purpose in computer aided engineering (CAE) systems.

The method of airfoil generation creates the airfoil curve that is the cross-section of

the wing. In order to get through from the section of wing to the whole 3D wing,

lofting operation can be used. Lofting is a modeling technique that transforms from a

starting section shape and orientation to an ending shape and orientation. It connects

a starting shape with an ending shape to create a 3D shape as it passes through an area

in space, which can be seen in Figure 2.3.

Starting Shape

Ending shape

Lo
ftin

g th
rough sp

an dire
cti

on

Z

Y

X

Figure 2.3: Lofting from starting shape to ending shape to create 3D wing.

There are several airfoil parameterization methods:

• Non-Uniform Rational B-Spline (NURBS) Curve,

• Bezier Curve,

• Parametric Section (PARSEC),

• Class-Shape-Transformation (CST).

7

2.1.1 NURBS Method

NURBS curve is the powerful extension of B-spline curve, which is used in several

areas like computer aided design and manufacturing (CAD/CAM), CAE software and

computer graphics [2, 3]. An airfoil can easily be represented with B-spline curve,

where b-spline function is defined as a linear combination of control points and basis

functions:

C(t) =
n∑

i=1

Bi,k(t)Pi (2.1)

where Pi are the control points (see Figure 2.4) and Bi,k(t) are scalar valued polyno-

mials described by the order k (degree k−1) [4]. Then spline function, C(t), forms a

piecewise polynomial function of degree k−1 in a variable t, where t is the parameter,

a ≤ t ≤ b; a and b are fixed, with 0 ≤ a < b. This non-deceasing sequence of param-

eters is called knot vector, tq|n+k
q=1 . The pieces of B-spline function meet at the places

called knots, so the parametric space is divided by the knots. Accordingly, the most

significant property of B-spline function is the secured continuity of the function at

the knots. Depending on whether the consecutive knots are distinct or not, derivatives

of the B-spline function can also be continuous. Furthermore, if the distance between

each knot is the same, then the B-spline is become uniform [5]. Rational B-splines

is firstly introduced by Versprille in 1975 [6]. It is defined with the use of homoge-

neous coordinates. 3D control point Pi = (x, y, z) becomes 4D homogeneous control

point P h
i = (hx, hy, hz, h), where h > 0. Then, after the projection of 4D B-spline

function into 3D space, reached rational B-Spline function is defined by

C(t) =

n∑
i=1

Bi,k(t)hiPi

n∑
i=1

Bi,k(t)hi

(2.2)

where hi is the homogeneous coordinate value. Since decreasing hi makes the curve

move away from the control point Pi and increasing hi makes the curve closer to the

control point Pi, homogeneous coordinates behave like the weighting coefficients [7].

Consequently, if any of B-spline curve is non-uniform and rational, then it is called

NURBS curve as a special B-spline type.

If the generated airfoil curve is in the form of basis spline (B-Spline) curve, then

the whole wing can be generated easily in the form of non-uniform rational B-Spline

8

a�rfo�l

control po�nts

Figure 2.4: NURBS method for airfoil parameterization.

(NURBS) surface. NURBS surface function is obtained from the tensor product of

two NURBS curves and is defined by

S(s, t) =

n∑
i=1

m∑
j=1

Bi,k(s)Bj,l(t)hijPij

n∑
i=1

m∑
j=1

Bi,k(s)Bj,l(t)hij

(2.3)

where Pij is n times m array of control points, hij is the homogeneous coordinate

value, and Bi,k(s) and Bj,l(t) are the basis polynomial functions with the knot vec-

tors of sp|n+k
p=1 and tq|m+l

q=1 [8]. With the NURBS surfaces, both standard analytic and

free-form surfaces can be handled efficiently. The general shape of the surface is

designated by the control points, the weights of control points are determined by the

homogeneous coordinates and the continuity level is set by knot vectors [9]. Since

it offers fast transformations (rotation, translation), flexible and large design space,

easy human interaction and less memory consumption when storing it; NURBS sur-

faces are commonly used by the most of modeling softwares (CAD, CAM, CAE) and

became the part of many industry wide standards.

2.1.2 Bezier Curve Method

Bezier curve is a polynomial function curve, based on Bernstein polynomial. The

significance and the difference of Bezier curve come from its control points, which

characterize an exact continuous geometric curve [10]. Original Bezier curve with its

control points Pi is defined as:

P (ψ) =
n∑

i=0

Bi,n(ψ)Pi (2.4)

9

whereBi,n(ψ) is a Bernstein polynomial with the degree of n. Bezier curve is defined

as continuous curve and it is ensured by the Bernstein polynomial term. More details

about Bernstein polynomial are discussed in this chapter and Section 2.1.4, where its

function is given in Equation 2.8.

One of the most common airfoil parameterization technique for generating airfoil ge-

ometry is Bezier curve method [11]. In Bezier curve method, there are two functions:

camber line and thickness distribution. To obtain upper and lower curves of airfoil

from Bezier curve method, thickness distribution is added and subtracted to and from

camber line function. Camber line function is generated by Equation 2.4. However,

the main difficulty and problem in this method is to secure continuity of leading edge

of airfoil. Also unknown positions of the control points may lead to irrational curves

in the aerodynamic optimization process.

2.1.3 Parametric Section Method

Another common technique for parametric airfoil generation is ’PARametric SEC-

tion’ (PARSEC) method [11]. As seen in Figure 2.5, this method uses 11 main pa-

rameters to design complete airfoil geometry and these parameters linearly combined

to construct a shape function, so it allows specific change in parameters. These pa-

rameters are the radius of leading edge (rle), upper peak point (Zup and Xup), upper

peak curvature (Zxxup), lower peak point (Zlo and Xlo), lower peak curvature (Zxxlo),

trailing edge direction angle (αTE), trailing edge wedge angle (βTE), trailing edge

thickness (∆ZTE) and trailing edge offset (ZTE).

PARSEC method is highly effective for designing curvature of the curve; however this

method does not have enough control to design trailing edge, which is a significant

deficiency for parametric airfoil geometry generation. Since escape of air flow is on

trailing edge of airfoil, it is very important to have fully control over the trailing edge

for the aerodynamic calculations, and consequently the optimization process.

10

Figure 2.5: PARSEC method for airfoil parameterization. Taken from “An Implemen-

tation of Self-Organizing Maps for Airfoil Design Exploration via Multi-Objective

Optimization Technique,” by Jung, SungKi et al., 2016, Journal of Aerospace Tech-

nology and Management, 8(2), 193-202.

2.1.4 Class-Shape-Transformation Method

The Class-Shape-Transformation (CST) method, which was relatively newly invented

by Kulfan, is allow us to design airfoil geometry with the few parameters, and it

produces smooth and continuous curves [12, 13]. With this method, it is really easy to

design an airfoil with leading edge continuity and to control whole structure of airfoil,

including trailing edge. Actually, since this method is very general, involves 3D

modeling and has a wide usage area; it becomes a milestone for designing, modeling

and generating geometries. Interested readers may refer to [12, 13, 14] for different

application areas of CST.

Generating airfoil geometry with CST method is the first step of this thesis. It gen-

erates airfoils with the help of polynomial functions and this advantageous feature

allows us to use least square fitting method for getting CST parameters of any airfoil

from literature. Since CST method guarantees the smoothness of the curve with the

few equations and the continuity of the leading edge, workload of the optimization

process is less than the other parameterization methods. As Lane and Marshall [14]

11

stated, it is similar to method of Bezier curves, but CST has added function term

which classifies geometric shape into a certain category. Furthermore, Marshall [15]

has also proved that a CST curve can be expressed as a Bezier curve. However, it is

still hard to control the continuity of leading edge, so it means that CST method has

nothing less than Bezier curve method.

General CST equation is composed of two main functions, called ’Class’ and ’Shape’

functions. These functions generate airfoils on XZ plane and they use x and z coor-

dinates as design variables. To generate airfoil, it is written down as follows:

ζ(ψ) = CN1
N2(ψ) · S(ψ) + ψ ·∆ζT (2.5)

where,

CN1
N2(ψ) = ψN1 · (1− ψ)N2 (2.6)

is a ’Class’ function and

Sψ =
n∑

i=1

AiBi,n(ψ) (2.7)

is a ’Shape’ function where,

Bi,n(ψ) = Ki,n · ψi · (1− ψ)(n−i) (2.8)

is the Bernstein polynomial and

Ki,n =
n!

i! · (n− i)!
(2.9)

is the binomial coefficient. To use CST method in general and in any dimension,

ψ =
x

c
(2.10)

is non-dimensional abscissa value and

ζ =
z

c
(2.11)

is non-dimensional ordinate value. Lastly from Equation 2.5,

∆ζT =
zTE

c
(2.12)

is non-dimensional trailing edge displacement in CST method [13, 16]. As seen from

Equations 2.7 and 2.8, shape function includes Bernstein polynomials to ensure that

designed airfoil is smooth. Also n in Equation 2.7 is the degree of curve detail and Ai

12

term is the main parameter for airfoil modeling with CST method. Parametric airfoil

generation with non-dimensional Equations 2.10 and 2.11 allows designer to scale

airfoil anytime easily. Detailed control over the trailing edge of airfoil is handled

with the Equation 2.12.

Class function generalizes Equation 2.5 to classify result into a particular category.

N1 and N2 are classification parameters and to design airfoil we need to use ’airfoil’

geometry class parameters. Kulfan [12, 13] stated that N1 = 0.5 and N2 = 1.0 are

the parameters to generate an airfoil. The geometry for different parts of a plane, for

example plane body can be generated by different class functions. Class function is

the most important difference and advantage over the other geometry parameteriza-

tion techniques.

Shape function of CST method allows designer to control the curve directly. Since

Bernstein polynomial ensures the smoothness of the curve, geometric parameters like

leading edge radius, maximum thickness, trailing edge angle can be controlled by the

designer without any concerns. Consequently, designing airfoil with direct geometric

parameters along the confidence on continuity and smoothness of the curve makes

optimization process more robust.

All mentioned parameterization methods are summarized and compared in Table 2.1.

As NURBS and Bezier methods are based on control point specifications, they be-

come unsatisfactory when the number of geometric constraints increase. Also PAR-

SEC method does not have fully control on trailing edge design, which is so impor-

tant for the aerodynamic calculations. On the other hand, CST method does not have

any design concerns like continuity, smoothness, control over curve, irrational curve

generation; but it might have many parameters if its polynomial degree is higher.

However, previous works [12, 17] say that 8 parameters can be enough for the repre-

sentation of a relatively large set of airfoils; so we decided to use CST method with 8

parameters for airfoil parameterization.

Additionally, we decided to combine NURBS surfaces alongside the airfoil param-

eterization with CST, in order to get more powerful 3D wing representation. So, a

hybrid CST-NURBS method was developed, because of the mentioned (in Section

2.1.1) features of NURBS on 3D modeling. Detailed information about parametric

13

Table 2.1: Comparison of wing geometry parameterization methods

Leading Edge

Continuity
Parameter Count

Non-realistic

Curve

Full Control

over Curve

NURBS OK
Depends on

control points
Possible Yes

Bezier May be fail
Depends on

control points
Possible Yes

PARSEC OK 11 No No

CST OK
Depends on

polynomial degree
No Yes

3D wing generation with hybrid CST-NURBS method and its usage in this thesis are

presented in Chapter 3.

2.2 Shape Optimization (Genetic Algorithm)

Shape optimization is usually a complex process that involves non-linear and non-

uniform functions with hard constraints. In case of this study, shape optimization

function can be evaluated as the computational result of two solver programs. As

a result, it is either impossible or yet unknown to solve such problems analytically.

Instead, evolutionary heuristic methods exploring the search space to reach an accept-

able sub-optimum are used. Genetic algorithms is one of such evolutionary methods.

GA was firstly introduced by Holland [18] as a theory, but Bagley’s work [19] was

the first using the Genetic Algorithm term. Computer science implementation of GA

also includes mutation, crossover and survival of fittest processes like evolution by

natural selection process [20].

Evolution is achieved by finding the best parameters for individuals with genetic op-

erators. GA determines the best individual with the calculation of the fitness score

for each individual according to the encoded solution. An individual having a higher

fitness score means it is better and also, better individual has more chance to transfer

its genes to the following generations. The priority of better individuals increases the

14

chance to reproduce high fit members in the following generations. Identically, low

fit members will become rare in the next generations, since they have less chance to

transfer their parameters.

A parameterization method converting real life object to a set of parameters is needed

to encode a solution. Set of parameters for representing that solution is called its

“genotype” and its real life counterpart is called “phenotype”. Each parameter from

genotype set is called a gene and the set of parameters is called a chromosome, a group

of genes. In GA, traditionally the chromosome of individual is a vector that has finite

number of parameters. For example, a solution can be encoded by 8 integer values

as parameters. From these parameters, a function, called fitness function, returns a

single value for evaluating the success of the individual. The selection process of GA

is carried out according to fitness function; therefore the survival of fittest rule of the

natural selection process is applied to GA.

As the initialization, GA starts with the population that has random individuals. In

the successive generations, latter population should be reproduced from former with

the help of the genetic operators: selection, variation (mutation and crossover) and re-

placement. Initially, individuals of starting generation are randomly created by using

given parameter intervals; then, fitness values of that generation is calculated. Better

individuals are chosen from the population based on their fitness values by selection

operator and fed to the variation operators. Without any alteration and variation, evo-

lution throughout next generations continues with the same genetic heritage, which

causes to stuck on the local optimum where all individuals are same with the best

individual of the initial population. In order to explore the search space while keep-

ing genetic heritage of the better individuals, we need to use variation operations

crossover and mutation. These operators are applied in the reproduction step with

the preassigned probability for individuals. The reproduction step is done by the re-

placement operator of GA, which is the borderline between the current and the next

generations. When all individuals are replaced with the new ones, transition between

the generations is completed. Then GA cycle continues with the calculation of the

fitness values of the new generation. The pseudo-code of the GA algorithm is stated

at 1 and the general flow of the GA process can be seen in Figure 2.6.

15

Algorithm 1 Pseudo-code of GA algorithm
1: procedure GENETICALGORITHM(Pop)

2: t = 0 . Generation number

3: InitializePopulation(Pop(t)) . Sets initial random population

4: EvaluatePopulation(Pop(t)) . Evaluates initial population

5: while !StopCriteria(t, Pop(t)) do . Reproduction loop

6: Parents = Selection(Pop(t)) . Selects individuals for reproduction

7: Children = Crossover(Parents)

8: Children = Mutation(Children)

9: EvaluatePopulation(Children)

10: Pop(t+ 1) = Replacement(Children, Pop(t)) . Moving to the next

generation

11: t = t+ 1

12: end while

13: end procedure

Start

Random Initialization

Population

Fitness evaluation

Satisfy stop

criterion?
Selection Crossover

Replacement Mutation

End

no

yes

Figure 2.6: The flow chart of the heuristic search with the GA.

The search process of GA has typical generation cycle:

• Individuals are selected according to their fitness value,

16

• Crossover is applied to chromosomes of the selected individuals,

• Mutation is applied to genes after crossover with some probability,

• Fitness values of the new population are calculated according to fitness func-

tion,

• New population takes the place of the old population by using replacement,

• Generation cycle starts from the beginning.

In every generation cycle, it is expected that newly generated populations get closer

to the optimum solution. If genetic operators are applied appropriately, better gene

characteristics are transferred to the next generations, so fitness values of individuals

get close to the optimum value. Generation cycle continues until the convergence

is reached. The convergence is decided with the given stopping criteria, like setting

the maximum generation number or defining a certain tolerance change between the

most optimum consecutive solutions throughout the generations. In most cases, max-

imum generation number is used for the stopping criteria, due to the difficulty in the

prediction of the tolerance change. Genetic algorithms do not guarantee the optimum

solution but converges to one of the acceptable sub-optimum.

2.2.1 Selection

As mentioned before, individuals are selected from the population to be the parents of

the next generation. To create better generations, GA needs to select better individu-

als, so that the best chromosomes can pass their lineage to their successors. Selection

operator forms a mating pool with the selected good individuals that take place in

the variation phase to create better individuals. There are different selection methods

in genetic algorithms literature like fitness proportionate selection, ranking selection,

steady state selection, tournament selection, etc.

In fitness proportionate selection (also known as roulette wheel selection) [21], calcu-

lated fitness of an individual is directly used in the probability value of the selection

17

operator. The selection probability of an individual i is calculated as follows:

pi =
fi

N∑
j=1

fj

(2.13)

where, f stands for the fitness values and N is the number of individuals in the pop-

ulation.

Probability of the selection gets relatively higher proportional to the fitness value

of an individual, so an individual with the higher fitness value is less likely to be

eliminated. However, if its fitness is extremely higher than the others, there is a

possibility of selection almost 100%. This selection operator gives individuals with

lower fitness far less chance to be selected and it may cause premature convergence,

because the fittest individual is highly dominant over the others [22]. This problem

is called selection pressure and can be controlled by adding ranking coefficient to

the fitness, which is called rank selection [23]. In ranking selection the selection

probability will depend on the rank instead of the pure fitness value. As a result,

probabilities will be more reasonable as depicted in Figure 2.7.

Even though all the individuals have a chance to be selected compared to the fitness

proportionate selection, rank selection may cause a slower convergence, due to the

minimal difference between the best and the worst individuals.

a) b)

Figure 2.7: Selection probabilities: a) in fitness proportionate selection. b) in ranking

selection

In another method, only nest n individuals are selected and it is called truncation se-

lection [24]. Population in descending order of fitness values is truncated with the

predefined proportion and retained individuals are duplicated to maintain the popu-

lation size. Truncation selection is a very simple selection method, but it may lead

premature convergence, because the diversity from weak individuals will decrease

18

over the generations. So this selection method is not frequently used in practice,

except some group of problems [25].

As the name suggests, tournament selection chooses individuals by running tourna-

ments among several random individuals. It was firstly studied in Brindle’s disserta-

tion [26] and there are many recent works using elimination design like tournament

selection [27, 28, 29]. Among randomly selected individuals, the winner of the tour-

naments is decided by their fitness values. In this selection method, tournament size is

one of the main design concern for controlling fitness pressure. If the tournament size

is chosen too large, less fit individuals are most likely eliminated and it causes loss

of diversity over generations. However, if the tournament size is chosen too small,

generations preserve the diversity with a decrease in convergence speed. So tourna-

ment size is really an important design choice and it is usually set depending on the

optimization problem. This selection method has many advantages over the other se-

lection methods: it can be parallelized for a certain architectures, tournament size can

be changed easily in the middle of optimization process, it has faster run-time [30]

and it is efficient to code.

2.2.2 Variation: Crossover & Mutation

Crossover is simply a recombination operator used for finding a better individual. It

gets different parts of two chromosomes from the previous population and recom-

bines them to variate species throughout the generations. It generates new individuals

by combining its ancestors’ chromosomes, so crossover makes individuals exchange

their genes among themselves [31]. The ancestor individuals are called parents and

the reproduced individuals are known as children.

It is clear that the crossover operator is used mainly for the search of the new indi-

viduals by using two individuals. This may cause worst gene recombination, still it

may increase the fitness of chromosome. Because in the next step, reproduced better

individuals transfer their genes more frequently to the next generation. Nevertheless,

it is predictable that crossover operator might be as detrimental as can be beneficial.

For this reason, it is not applied to all individuals and there is a probability factor (pc)

to decide whether to apply crossover or not [32].

19

As previously described, a mating pool is formed in the selection phase and it has

better individuals which are inserted by selection operator. However, there is no

newly created individuals in the selection phase and in the pool. As mentioned be-

fore, crossover operator makes use of that mating pool to create new individuals and

variation across the generations. It is done by exchanging chromosomes among the

individuals from the mating pool with the probability pc.

Figure 2.8: One-point crossover operation

Crossover can be applied in several ways. In one-point (single-point) crossover, two

different individuals are randomly taken. Then, their chromosomes are divided from

arbitrary one point and they are cut at that point. As seen in Figure 2.8, there are head

and tail parts of each chromosome and they exchange their tail parts to produce two

new individuals of new generation. In two-point crossover, two different individuals

are taken again. But their chromosomes are divided from arbitrary two points. As

represented in Figure 2.9, the parts between chosen two point are exchanged between

two chromosomes. Chromosomes can be cut more than two points, which is called

n-point crossover that might improve the efficiency of operator in some optimization

problems having too many parameters [33]. The crossover methods behave differ-

ently according to both population size and parameter size [34].

Figure 2.9: Two-point crossover operation

20

If the chromosomes contain non-binary genes, an arithmetic crossover operator can

be applied [35]. It linearly combines two parent chromosome vectors to produce two

new individuals that are weighted arithmetic mean of two parents, where the operator

is applied according to the following equations:

Individual1 = a · Parent1 + (1− a) · Parent2 (2.14)

Individual2 = (1− a) · Parent1 + a · Parent2 (2.15)

where a is a random coefficient between [0, 1] and it is chosen before each crossover

operation.

As an another genetic variation operator, mutation provides randomness to search

process of GA in the search space. While crossover generates individuals directly

from its parents, mutation operates at gene level, as depicted in Figure 2.10. It can

be said that crossover tries to find better ones by looking on the current solution,

where mutation explores the whole search space. If population sticks on local optima,

mutation helps GA to reach the global optima [31]. This effect may not be seen in the

next generation directly, but reaching beneficial genetic codes in the search process

supports following generations.

Figure 2.10: Mutation in the fifth gene of chromosome

Similar to crossover operator, mutation operator also has probability to decide whether

gene is mutated or not. It changes (mutates) an arbitrary gene with a preassigned

probability pm. In general, mutation probability is assigned quite small values, since

higher mutation probability may cause divergence in the search process [32]. A high

value of mutation probability turns heuristic search into random search; nonetheless,

21

the minor and random diversity (low mutation probability) can end up with better

solution, which is the main purpose of using mutation.

Since mutation operator allows GA to jump to another region on multidimensional

search space by avoiding concentration on local optima, evolution with GA can con-

tinue without any stuck or slowdown. For example, if individuals in the population

do not have any 0s in the left most bit positions, then without mutation it is impossi-

ble to create 0 in that position. Also global optima solution may require 0 there, but

neither crossover nor selection operator can create 0 in the left most bit position for

that example. Only mutation operator is capable of turning 1 into 0, and of course

with a probability pm.

In the literature, several mutation techniques are employed for the different represen-

tations of parameters [36]. If parameters are binary, then bit flipping is one of the

most used mutation operator. As it is shown in Figure 2.10, mutation operator flips

the fifth gene 0 to 1. If the parameters of chromosomes are float or integer, then

uniform mutation can be given as an example to mutate the non-binary parameters.

It changes the value of random gene with uniform random value between the given

upper and lower bounds for that gene. The bounds can be specified for each gene

separately.

Both genetic operators, crossover and mutation, have different missions in the search

process as a variation operators of genetic optimization process. Crossover just looks

on the local search space and mutation explores the other regions. Most of the time,

mutation is applied just after the application of crossover. Thus, combination of these

two genetic operators increases efficiency of reproduction of population while ad-

vancing through the generations.

2.2.3 Replacement

GA uses selection operator to choose individuals as an input for crossover operator

and then mutation is applied to enlarge the search space. After the selection and

variation operators, GA needs to evolve population continuously, so genetic inheri-

tance should be passed between the sequential generations. Therefore, replacement

22

operator stands for the transmission of the genetic material from one generation to the

next. When new generation is ready, replacement has to decide which of newly gener-

ated individuals would be replaced with which individual of current generation [31].

"Survival of the Fittest" principle of Darwin is the main idea behind the replacement

operator. According to this principle, more chances are given to better individuals to

survive and carry their better chromosomes to the next generations. There are sev-

eral types of replacement operators, such as generational replacement, steady state

replacement, elitism, etc.

Generational replacement replaces all population at each generation. Newly created

individuals continue to the next generation and they are replaced with all the cur-

rent individuals [37]. In this type of replacement operator, there is no overlapping

individuals between two consecutive generations.

In steady state replacement, replacement is done with predefined very small propor-

tion of the population. Newly created individuals are moved directly to the next

generation [38]. As a benefit of this type of replacement, better individuals can par-

ticipate in genetic search process, since creation of the whole generation would not be

waited by that better individual. So the participation of better individual also means

that the worst individual is removed on behalf of better one. Although there can be

a quick advancements in the fitness of the population, steady state replacement may

cause premature convergence due to the centralization of the fittest individual [22].

Whereas elitism might not be counted as a type of replacement operator directly, it

is mostly defined within the scope of the replacement operators in the literature. It is

kind of a private permission for an individual to proceed to the next generation without

passing through replacement operator and without any modification. Since variation

operators may ruin the chromosomes of the fittest member of the population, elitism

preserves one or few best individuals from the crossover and mutation. Therefore,

better genes can certainly be saved for future generations and there is no possibility

to lose them due to the stochastic errors. As a result of keeping the best one, GA does

not waste time to rediscover previously found partial solutions. In general, several

studies [39, 40, 41] show that elitism improves the performance of the GA.

23

2.2.4 Island Model

In a traditional GA, population of next generation is created by previous population

that has the same genetic information. In order to create divergence, mutation might

not be enough. After some generations, fitness distribution of generations becomes

similar and this may lead a convergence on the local minimal. To avoid this, Grosso

[42] subdivided one large population into interacting many sub-populations and it

improved the performance of the GA. In the island model, these sub-populations

are the individuals of the different islands. Besides mutation, genetic diversity is

also preserved in these sub-populations. Because each island can potentially search

around a different sub-area of the search space [43]. Furthermore, different genetic

operators and/or rates (mutation, crossover, selection etc.) can be used in different

islands, which allows varied exploration in one genetic run.

Interaction between the islands is determined with three new genetic parameters: mi-

gration interval, migration rate and migration topology [44, 45]. Migration interval is

the number of generation count for the next migration, and migration rate is the num-

ber of individuals to migrate to a selected island. And the migration, communication

between islands, is done through the selected topology [46]. One of the most com-

mon and basic migration topology is the ring topology. Each island interacts with

its left and right neighbors only: one for individual sending and one for individual

accepting. However, in a complete network topology, each island is connected to the

all other islands, where migration is done randomly. There are also different network

topologies like 2D/3D mesh, cube/hyper-cube, which can be used for the migration

topology.

Since one of the most important advantage of the island model is its natural structure

of heterogeneity, migration parameters must be set rationally to not ruin the diversity.

In the literature, studies [47, 48, 49] showed that using island model can improve the

search speed and accuracy. Moreover, in GA optimization with only one population,

it is showed that increasing population size causes negative consequences on search

time. However, creating sub-populations (islands) from one bigger population sus-

tains genetic diversity and these created islands exploit different search space with a

different genetic material. In order to combine different explorations and solutions,

24

migration should occur with the right timing. If it occurs too often, it proceeds like

it has single population. Nonetheless, migration interval needs to be set to migrate

often enough to internalize other search trajectories.

As all the sub-populations try to find global optima from the same heuristic search,

genetic information should be shared between the islands with the migration. So, GA

maintains some independence in islands, while sharing information between them.

For keeping the balance between diversity and information sharing, migration rate

-how many individuals are migrated- is also set carefully. If the rate is too big, the

genetic diversity is negatively affected. And if the rate is too small, genetic search

process cannot gain any advantage from the information sharing. In the literature, it

is said that the migration rate should be between 10% and 20% of sub-population, in

order to improve the convergence speed and solution quality [46].

2.2.5 Parallelism

GA can be applied to many real-world optimization problems. Since most of the

real-world applications of GA has time-intensive fitness function and large search

space, it needs to be executed on the high-performance computer. After the rapid

development of technology and science, researches and development of parallelism

on GA becomes inevitable. Due to its inner search mechanism, GA is naturally suit-

able for parallel processing. Also together with the high-performance cores, parallel

genetic algorithms (PGA) solve complicated real-world problems efficiently. Hence,

PGA has received much attention and a lot of methods for parallelism are developed

[45, 50, 20, 51, 52].

In global PGA (GPGA), parallelism is done with master and slaves; so it is also called

master-slave model. There are two different models for GPGA: synchronous and

asynchronous [52]. In synchronous model, only the fitness function is calculated in

slave processors; but other genetic operators (selection, crossover, mutation, replace-

ment) are done in the master processor. So, population is kept in master processor and

computational load is distributed among slaves. It is called synchronous, since slave

processors have to wait until all processing of current generation to be done to move

on to the next generation [20]. However, in asynchronous model, genetic operators

25

are also done in the slave processors, so a clustering is needed for that model. Master

is responsible for generating clusters and choosing optimum solution from end of the

slave calculations. As an optional method; migration between the slave clusters can

be applied. In a certain interval, a certain number of individuals from slaves can be

migrated to another one [53]. Asynchronous GPGA is the centralized version of the

island model.

Coarse-grained PGA (CPGA) is also called distributional model, where each proces-

sor has its own sub-population that includes more than one individual [50, 52]. In the

literature, this model is also known as island model, since each sub-population can be

considered as an island, of which model is described in the previous subsection. Ap-

plications and methods of CPGAs are the same as an island model, but island model

can also be executed sequentially.

On the other hand, each processor has only one individual in the fine-grained PGA

(FPGA) model, which is also called neighborhood model. Just as the importance of

island topology for the island model, neighborhood structure is critical for the search

process of FPGA. There is no guaranteed neighborhood structure for the success of

FPGA, since it usually varies according to problem type [52]. In FPGA model, popu-

lation is distributed over processors of a 2D mesh [53]. Each processor communicates

with the other processors within the neighborhood radius, where the smaller radius is

chosen for keeping the diversity and preventing the premature convergence [46].

2.3 Data Transfer (Geometric Search and Interpolation)

3D wing is solved with two different solvers and they use different meshes on the

one geometry. When aerodynamic solution is done, we need to transfer aerodynamic

pressures to structural solver. Meshes can be triangular/quadrilateral, fine/coarse; so

these two meshes can be completely different, but their geometry is same. So we need

to use 3D geometric search algorithms and then interpolate data from one to other. In

our case, to transfer data from aerodynamic mesh (source) to structural mesh (target),

nearest aerodynamic shell element should be found for each structural vertex. This is

more than just geometric searching, it is also a geometric intersection problem. For

26

this reason, interpolation can be done for every target vertex only after the intersected

source shell element is found for them.

In the literature, many spatial tree structures were used for similar search problems.

Most of them depends on space partitioning method [54]. It recursively divides the

whole scene into two or more parts until the partitioning is enough. k-d tree, Binary

Space Partitioning (BSP) tree, Alternating Digital Tree (ADT), quadtree, octree can

be given as examples of space partitioning trees. Some of them can only work in two

dimensional space, while some of them can work in three or more dimensional space.

All mentioned tree structures propose a good solution for geometric searching and

their average computational complexity is proportional to log(n). Nonetheless, if

the data distribution is not balanced, time complexity gets larger and tree becomes

inefficient. For our case, any tree structure that supports 3D space can be used to

solve our searching problem.

2.3.1 Octree

One of the most popular data structure for 3D space geometric searching is an octree.

It is used in many areas, such as image processing, computer graphics, computational

geometry, geographic information systems etc. First usage of octree was put through

in 1980 by Meagher [55, 56]. Octree divides its volume space into eight equal sub-

spaces, because the space is three dimensional. Decomposition of octree is done

recursively and level by level in a hierarchical way. In octree, there is only one root,

but each parent has at most eight child nodes, so it is not a binary tree structure. In

the same level of tree, every node, called octant, has same block volume [57, 1]. An

example of octree can be seen in Figure 2.11.

Using octree for geometric searching has O(log8(N)) average time complexity. But

unbalanced data distribution negatively affects the efficiency of tree. In the worst

case scenario, time complexity of searching becomes O(N), which is exactly equal to

linear search [58].

In searching process, while traversing from root to leaves, the search area is elimi-

nated. But the resulting leaf is not necessarily the nearest node. It is therefore nec-

27

Figure 2.11: (a) Three dimensional object; (b) its octree block representation; and (c)

its tree representation. Taken from [1].

essary to check the neighboring octants for any nearest node. Moreover, if there is

any, checking for another is required. This process is done recursively until there is

no any nearest node [59]. In literature, there are several methods to minimize the

cost of checking neighbor octants: hashing of octants [60], giving an identification

number to octants [61] etc. Consequently, the cost of geometric search process is still

proportional to log(N) in average.

2.3.2 Alternating Digital Tree (ADT)

ADT is a general data structure that can solve geometric searching problem in any

number of dimensions. It is found by Bonet in 1991 [62] to propose a solution both

for geometric searching and intersection. As Bonet expressed that, it is an enhanced

version of the digital tree search technique, which is applied to the one dimensional

problems by Knuth [63].

While decomposing 3D search space, ADT recursively alternates the axis in each

level of division, to create hierarchical tree structure. Due to the fact that ADT is a

binary tree, its parent nodes can have at most two child nodes, called left and right

sons. Each node in a tree divides its region into two equal subregions. First bisection

is done across the first axis of spatial coordinates, where the division is made from

the half of the maximum value of first axis. As a repetition, second division is done

across the second axis of spatial coordinates and third is done across the third axis.

28

Cyclic axis selection in alternating order continues repeatedly, until there are no more

nodes. After generating tree with the all given nodes, an association between the data

and 3D subregions is very similar to octree [64]. Since ADT is a binary tree and

always divides the space into two parts, its subregions are less, but the depth level of

tree is more than the depth of octree.

A

B

C

D

E

A

B

C

D

E

.
.
.

.
.
.

Figure 2.12: Degenerated ADT structures.

Another similarity between octree and ADT is computational complexity of search-

ing algorithms with the trees. Since their construction approach are similar, their

searching process is also analogous. So, average computational time complexity of

geometric searching with ADT is O(log(n)) [65]. However, efficiency of tree mainly

depends on spatial distribution of data, like octree. And if the data distribution is not

balanced, the corresponding tree structure might be degenerated as in Figure 2.12.

Elimination in geometric search process can not be done with degenerated trees and

thus, the cost of search process becomes equal to a linear search. By looking their

computational complexities and construction processes, it can be said that there is no

important difference between ADT and octree.

2.3.3 k-d tree

As a multidimensional binary search tree, k-d tree was presented by Bentley for as-

sociative searching [66]. With the help of its unique characteristics, the tree structure

can be used for any dimensional geometric search problems. But the implementation

of k-d tree is more complicated than previously explained tree structures.

29

The space is split by axis of nodes in an alternating order. Division axis is changed

one by one, as ADT does. Also the creation process of tree is same with the ADT.

Nevertheless, the difference is that ADT divides the space into two equal regions, but

k-d tree divides from nodes and it can divide from anywhere. Accordingly, balance

of the k-d tree is more likely to depend on data insertion order than data distribution.

Computational complexity of geometric search operation with k-d tree is O(log(n)) in

average, like octree and ADT. As the other trees, efficiency of k-d tree is also affected

by whether it is balanced or not. Nonetheless, data distribution is not the only variable

that can affect the balance of the tree; as mentioned before, data insertion order is an

another important variable. Regardless of the effect of that variable on balance, the

search process on tree is very similar with octree. Optimization applications can

be done to minimize the searching cost, just like octree. To summarize, k-d tree

is analogous with ADT in creation process, and is similar with octree in searching

process.

2.4 Analysis Tools

In the search process of better wing design, it needs to be decided whether the design

is better or not. As an analysis tool, solver calculates forces according to given model.

In this thesis, two solvers are used, aerodynamic and structural. While defining fitness

function of GA, results of these solvers are used. Thus, GA can choose which design

is better.

2.4.1 Aerodynamic Solver

Aerodynamic analysis is simply the calculation of forces and motion of air when the

solid object moves in the air. Since the solid object can be an aircraft or a wing,

it is a wing in our work. There are many aerodynamic analysis tools and methods

in the literature. PanAir is an aerodynamic solver released by NASA [67]. It uses

panel method to analyze subsonic and supersonic flows with solving linear partial

differential equations.

30

PanAir takes the input solid model as partitioned networks of surfaces. In the other

words, the input contains quadrilateral surface meshes of networks. User input in-

cludes these networks of model and their boundary conditions. The coordinates and

connectivities of mesh of networks, boundary conditions of each network and flow

characteristics must be supplied by the user in the input. Mach number and angle of

attack can be given as examples of flow characteristics.

From given inputs, PanAir calculates pressures, forces and moments. While doing

that, numerous flow quantities are calculated as an intermediate step. Skin pressure

coefficients, velocities and local mach number are some of flow quantities computed

at each network points. Then, combination of these results composes lift and induced

drag coefficients, axial forces and moments in the final output.

Basically, in addition to induced drag, total drag coefficient has also friction drag

component [68]. Induced drag is an inevitable result of the lift. But the friction drag

is the resistance force applied to the wing moving in an air and panel method can not

calculate friction drag [69]. In order to get more realistic drag coefficient, friction

drag must be calculated.

Friction drag can be calculated by solving boundary layer equations, which are the

equations to compute forces on the bounding surface of the object where the viscos-

ity is significant [70]. The aerodynamic analysis tool named XFOIL [71] can solve

boundary layer equations to calculate the friction drag. XFOIL takes mach number,

angle of attack, the points of airfoil with skin pressure coefficients as the input. As

XFOIL is a 2D solver, sample airfoils across the span are given to XFOIL to calculate

3D friction drag coefficient. Since 3D effects are so important for a realistic solution,

pressure coefficients calculated in PanAir are also given to XFOIL. By using these

inputs, calculated friction drags for each sample airfoil are combined to result total

friction drag for 3D wing. Then, the total friction drag is added to induced drag to

calculate total lift coefficient (CL) that include both PanAir and XFOIL drag results.

Drag and lift coefficients (CD, CL) are typical dimensionless values used in aircraft

design. Drag coefficient is a resistance of an object in the air while lift coefficient

is a lifting of an object through the air. Lower CD with higher CL directly means

the better fuel economy and climb performance. By looking the meaning of cD and

31

CL, it can be said that CL/CD is very useful ratio for understanding the performance

and efficiency of object. In the literature, this ratio is used very frequently to deter-

mine aerodynamic performance of an object, so in this thesis, the fitness function of

aerodynamic optimization process is formed from a ratio related with both CL and

CD.

2.4.2 Structural Solver

Internal analysis of the solid object is handled with structural analysis. The solid

object can be in moving or stable (non-moving) state. Analysis calculates internal

forces, stress and deflection of a physical object under applied load condition. Ac-

cording to computation method, there are many approaches and structural analysis

tools in the literature. One of the most common method is the finite element method

(FEM). SAPeda [72] is a structural solver that uses FEM. It is developed by Dr. Erdal

Oktay and Prof. Dr. Hasan U. Akay and used in EDA Co. for structural problems

and there are several published studies using it [73, 74].

The input of SAPeda contains triangular shell mesh of all of the solid including the

internal parts. Whole mesh information, node coordinates and connectivities, and

boundary conditions of all components of the model should be specified one by one

in the user input. Since the analysis is conducted according to structural aspect, user

must also define the thicknesses of all parts of the model. Furthermore, initial exter-

nal conditions, such as temperature, density, altitude, velocity etc. and any external

structural load have to be defined in the input by user.

Results of the SAPeda analysis includes computed displacements and von-Mises

stresses, which is a value used to determine whether the design will withstand a given

load or not [75]. These results are calculated for each shell element and also for

the whole model. Whereas these calculations are computed using FEM by defining

stiffness of each component as a matrix, the analysis includes matrix algebra that has

computation of partial differential equations. At the end of FEM calculations, result-

ing stresses and displacements are used for optimization processes in general [76].

Accordingly, output value of both stress and displacement are used to compose the

fitness function of structural optimization process in this thesis.

32

CHAPTER 3

CONTRIBUTIONS

3.1 Airfoil Parameterization with CST Method and Generation of 3D Wing in

NURBS Surface Form

As explained in the previous chapter, there are many existing methods to generate

parametric airfoil geometry. All of them satisfy the general rules and generate an air-

foil. But there are minor differences and some advantageous/disadvantageous cases

between them. In Bezier curve method, it is hard to assure the continuity of leading

edge of airfoil. Also in PARSEC method, the control on the trailing edge design is

less sufficient than the other airfoil parameterization methods. On the other hand,

CST method proposes full control over the airfoil curve with the help of Bernstein

polynomials and its hybrid structure that includes shape and class functions. So we

decided to implement CST method to generate airfoil in our work.

CST method is used to create 2D profile of a wing, an airfoil. But to pass from an

airfoil to 3D wing, an operation like lofting is required. The process of creation of the

designed wing has three main steps:

1. CST method generates the points of the airfoil curve from a set of parameters,

2. Generated points are used to create a NURBS curve.

3. NURBS curve of airfoil is lofted through the Y axis to create 3D wing in a

NURBS surface form by considering span length, taper ratio and sweep angle.

Lofting operation is simply to extend the curve with the same shape through the given

path. For a 2D airfoil aligned in X-Z axis, this will give a surface with all same points

33

of the airfoil but Y dimension changes. In 3D wing geometry creation, generated base

airfoil is lofted through spanwise direction to the tip airfoil. In the first step above,

our CST implementation produces an airfoil that has one unit chord length.

After CST implementation, use of NURBS curve and surface forms is handled with

the help of Open Cascade framework [77]. It allows us to create two NURBS curves

for upper and lower side of airfoil from points that are generated by CST. Lastly, these

curves are lofted to compose 3D wing in the NURBS surface form with the inputs of

desired span length, taper ratio and sweep angle.

In a NURBS surface form, the generated wing will be a well composed smooth and

continuous surface model. As expressed in the previous chapter, its mathematical

background allows us to design free-form surfaces flexibly without any concerns

about continuity of surface. It offers fast modeling with the needed precision in de-

sign and less memory consumption to keep the design. Furthermore, NURBS surface

form is derived with the philosophy of engineering concepts, and facilitates the mesh

generation process using the OpenCascade framework, which does not have CST

implementation. Thus, it is possible to model a surface with small patches to ease

modeling process and to enlarge the design space. Also the continuity of surface does

not make any trouble to the designer, although the surface is patched. However, the

designer has to choose the patch areas carefully, to be sure about the continuity of the

whole surface.

Since airfoil model that is generated by CST method, consists of two curves, one

upper and one lower, the resulting 3D wing geometry also consists of two NURBS

surfaces. These surfaces can be assumed as patches of wing, so it must be certain that

the continuity on the common edges of patches is maintained. Whereas two surfaces

is placed in upper and lower, there are two common edges, the leading and trailing

edges. In the leading edge of the wing, at least G1 (tangent continuity) must be en-

sured; but since airfoil shape has a corner at the trailing part, G0 (position continuity)

will be required.

Beside the two NURBS surfaces of the wing, there are also two planar surfaces: one

defines base and the second defines tip of the wing. These planar surfaces are in the

shape of parametrically designed airfoil. Furthermore, it needs to be ensured that

34

there is G0 continuity between the NURBS surfaces and these planar surfaces. So we

also define planar surfaces as the NURBS surfaces for the uniform representation of

the whole wing.

Our implementation has eight parameters to generate an airfoil with CST method.

Initial four parameters (P1, P2, P3, P4) are used to generate the upper curve and latter

fours (P5, P6, P7, P8) are used to generate lower curve of the airfoil. As easily pre-

dicted from its equation, parameters P1 and P5 are responsible for the leading edge of

airfoil. And also parameters P4 and P8 are responsible for the trailing edge. Effects

of parameters on airfoil shape can be observed in Figure 3.1.

Z

X

Z

X

a) P1 to P8 = 0.1 b) P1 = 0.2 and all others are 0.1

Z

X

Z

X

c) P6 = 0.2 and all others are 0.1 d) P3 = 0.2 and all others are 0.1

Z

X

Z

X

e) P8 = 0.2 and all others are 0.1 f) P1 to P4 = 0.4, P5 = 0.05 and all oth-

ers are −0.2

Figure 3.1: CST airfoils generated for different parameter values

As this thesis tries to optimize 3D wing geometry, we need three additional parame-

ters to advance from 2D airfoil to 3D wing: span length, taper ratio and sweep angle.

Taper ratio (TR) is defined as:

TR =
ChordT ip

ChordBase

(3.1)

35

where ChordT ip is the chord length of the tip airfoil and ChordBase is the chord

length of the base airfoil. All mentioned parameters can be seen in Figure 3.2.

Y

XBase Chord

Tip Chord

S
p
a
n
 L

e
n
g
th

S
w

e
e
p
 A

n
g
le

Figure 3.2: Top view of the wing.

3.2 Mesh Automation for both Aerodynamic and Structural Solver

Generated 3D wing cannot be recognized by solvers in its raw solid model. In order

to conduct an aerodynamic or a structural analysis, solid model has to be described

in such a way that solvers can identify and process it, so we need to create a mesh

of the whole solid model. By creating a mesh, the domain is broken up into pieces

and each piece represents an element. If the domain is surface, then pieces are shell

elements, which can be triangle and quadrilateral. If the domain is solid, then pieces

are volume elements that are formed by shell elements. In this thesis, shell elements

are used only. Although 3D wing is a solid model, both of our analysis tools only

36

work with the shell elements. Panel solver uses exterior surface of the wing and so

it only needs shell mesh of the exterior surfaces. Structural solver uses both exterior

and interior parts of the wing, but it uses shell elements with thicknesses. Thus, it

analyzes the wing with internally generated volumes.

As there are two different solvers (panel and structural) with different solution as-

pects (aerodynamic and structural) and different mesh inputs, it is not possible to use

the same mesh. Since each optimization step uses both aerodynamic and structure

solvers, these solvers explained in section 2.4 have to be run automatically. And since

each optimization step gets a different wing model, their mesh have to be generated

automatically too. So, two different mesh automation procedures are implemented:

one for panel solver and the other for structural solver.

After creating the mesh, all shell meshes should be grouped properly according to

their surface properties that are necessary for the analyzes. According to these prop-

erties, appropriate boundary conditions need to be assigned to each shell group. These

groups are also called as zones. Boundary conditions (BC) are constraints necessary

for the solution of the differential equations that are needed for aerodynamic and

structural analyzes. In more clear words, BCs are the definitions for solvers to give

them an information about surfaces. This information is used to treat differently to

meshes that have different BCs. Since BCs are vital for analyzes, BC assignments

must be done in the mesh automation process, just after the mesh generation.

3.2.1 Mesh Automation for Aerodynamic Solver

Aerodynamic solver used in this study has two parts: panel solver and boundary layer

solver. PanAir [69] is used as panel solver and XFOIL [71] is used as boundary layer

solver. As explained in the previous chapter, XFOIL is only used to complete drag

coefficient by solving boundary layer equations.

Generation of 3D wing geometry is done by using CST method as explained in the

first section of this chapter. Then, a mesh is generated for wing geometry according

to requirements of panel solver, namely PanAir [69]. It uses structured (quadrilateral)

shell mesh as an input for the aerodynamic solution. The generated solid of wing

37

consists of four surfaces on it. The two of them are the upper and lower surfaces and

the other two are the base and tip surfaces. Since the flow goes through leading edge

to trailing edge, we decided to place more elements along the chord axis of wing than

the span axis of wing. Also the base and the tip surfaces have minor effects on total

solution, so these surfaces have less elements than the upper and lower surfaces as it

can be seen in Figure 3.3.

Figure 3.3: Mesh automation for panel solver

As panel solver has exponential running time with respect to number of elements

[69] and it is executed for each individual in the evolution, we tend to keep the total

number of shell elements minimum. After the number of points along each of the

axes are decided, input file can be created according to division configuration. In our

configuration, we divide the chord axis of wing into 30 equal sized lines. And the

span axis of wing is divided into 20 equal sized lines. In summary, 600 shell elements

(30×20) are generated for the upper and the lower surfaces, and 30 shell elements

(30×1) are generated for the base and the tip surfaces.

There are different shell element zones for each faces of the 3D wing geometry. These

zones are defined as a network (of vertices) in the input of the panel solver. In panel

solver, we can assign different boundary conditions (BC) to each network to make

38

them behave differently. However, all networks have the same BCs in our case; so, we

do not need to split networks. But since geometric parameterization and 3D geometry

generation creates four NURBS surfaces (upper, lower, base and tip), we decided to

keep them as four networks.

In order to accelerate mesh generation process, we obtain coordinates from the points

on the NURBS surface of generated 3D wing. By that way, we can get points of

NURBS surface easily and accurately in order to generate shell elements. OpenCas-

cade [77] framework allows us to create, modify and play on NURBS surfaces.

Another important point in this mesh generation step is the normals of the shell ele-

ments. In panel solver, they must show the flow direction. So, we handle normals in

the shell creation process. If we order shell elements with nodes respecting the right

hand rule, we can control the normals of the generated shell elements. The solver

finds out the normals of shell elements from its input. The input contains grid points

of surfaces (nodes of shell elements), angle of attack and the velocity (mach num-

ber). Furthermore, reference positions (moment, area etc.) of input geometry must be

defined in the input of the solver.

We need to put wake on the trailing edge of the wing, so that boundary curves from

upper and lower sides meet on it. Wake is used in panel solver for the separation

of up and down flows, but they do not physically exist. So wakes have different

boundary conditions according to panel solver, since they need to treated differently.

In automation process, we also put wake on trailing edge of the wing as recommended

in manual of panel solver [69].

After mesh automation for PanAir, input file of XFOIL is also generated automati-

cally to get missing component of drag coefficient, which is explained in the previous

chapter. Since input file of XFOIL needs skin pressures from panel solution, its input

file has to be generated after the panel solver.

From the nodes provided from NURBS surface of the generated 3D wing geome-

try, the connectivities of the shell elements, the flow and geometry properties, in-

put file for both PanAir and XFOIL are automatically generated for each individ-

ual throughout the generations. For each of the individuals, combined aerodynamic

39

solver (PanAir+XFOIL) is run to get lift constant CL, drag constant CD, and skin

pressures, which are explained in subsection 2.4.1. Hence, these outputs can take part

in the optimization of the wing design, by using them in the objective function of the

genetic algorithm.

3.2.2 Mesh Automation for Structural Solver

The 3D wing geometry generated with CST method and lofting does not have any

inner structures to support exterior of the wing. In order to analyze a wing with struc-

tural solver, internal parts needs to be defined. These internal elements (spars and

ribs) of the wing are demonstrated in the Figure 3.4, where spar is shown in blue and

ribs are shown in red, provide particular resistance and strength to the wing so that it

stays intact and does not collapse. So, before the use of the structural solver, we have

to create spars and ribs inside of the parameterically generated wing geometry.

Figure 3.4: Internal structural elements of the wing. (Spar in blue, ribs in red)

Although spars and ribs are the main component for the resistance of the wing, they

are main sources that increase the weight of the wing too. In structural optimization

side of our work, we try to find durable design for the whole wing structure, but also

minimize the weight of the wing. A special 2-level offset method is developed and

40

it is applied to the ribs of the airfoil geometry in order to create empty zones in the

internal part of the wing. So that the 2-level offset operation is applied on ribs to

minimize the weight of the wing. As it can be seen in Figure 3.5 and 3.6, the offset

rib of the generated random airfoil (0.0625454 m2) has 31.3% less rib area than that

is not offset (0.0910314 m2), which provides particular minimization in the weight of

the wing, since ribs are duplicated along the span axis of the wing structure. Further-

more, developed 2-level offset method also helps the grouping operation, which will

be explained later.

Z

X

Figure 3.5: Classical rib area

(0.0910314 m2) on airfoil that has

1 meter chord length

Z

X

Figure 3.6: Generated offset rib area

(0.0625454 m2) on airfoil that has 1 me-

ter chord length

In contrast to the aerodynamic solver, the structural solver accepts both structured

(quadrilateral) and unstructured (triangular) shell meshes as input. Since some of

the faces of offset rib have different than four edges, it is really hard to generate

structured mesh on these faces. Therefore, unstructured shell mesh is generated auto-

matically on the all internal parts (spars and ribs) and the skin of the wing, which is

shown in Figure 3.7. As mentioned before, skin pressures from the structured mesh

of the aerodynamic analysis need to be given to the skin of the structure mesh of the

wing to conduct structural analysis. However, the skin mesh of both solvers are in

different types: panel solver uses structured shell meshes and structural solver uses

unstructured shell meshes. So the skin pressures on the structured shell mesh of the

aerodynamic solver need to be transferred to the unstructured shell mesh of the struc-

tural solver.

Unstructured shell mesh is created with the well-known triangulation algorithm called

Delaunay triangulation [78]. It is applied on all faces of the wing with a few con-

straints. Firstly, since there is a significant curvature on the leading edge of the wing,

41

Figure 3.7: Mesh automation for structural solver

we have to create a fine mesh around it. Secondly, there must be shared nodes on the

common edges of the faces to guarantee the continuity. Lastly, in order to get skin

pressures without any loss in the transfer process, skin mesh should be fine enough.

Generating meshes with the above constraints is done by using MESHeda [79], mesh

module of the CAEedaTM software [80]. MESHeda allows user to define constraints

(such as number of nodes on the edge, number of shells on the surface, etc.) on

the geometry and then generates a Delaunay triangulation mesh accordingly. In our

automation process, shell elements are automatically generated on all faces of the

wing geometry.

Unlike the aerodynamic solver, thicknesses of all parts of the wing must be given as

an input to the structural solver. So that it can calculate all forces on each part of the

wing. Nevertheless, each part of the wing may have different thicknesses. In order to

give different thicknesses to the different part of the wing, we need to group them in

zones. Then, each element zone gets different thickness values. As it is mentioned

before, the 2-level offset method is also used to group internal parts of the wing.

One of zones consists of all shell elements of the skin. Moreover, spars and ribs

are divided into five different zones: upper spar, lower spar, center spar, inner rib

and outer rib, which are represented in Figure 3.8. The grouping with zones allows

42

our optimization process work better, because whole spar or rib does not need to

have the same thickness. In total, there are six different shell element zones with the

different thicknesses. These six zones are automatically created by our automation

process. Then, in order to solve 3D wing geometry, structural solver internally creates

volumes by using given thicknesses on the mid-surfaces (given shell elements) of

these imaginary volumes, which can be seen in Figure 3.9.

Inner Rib

Outer Rib

First Level

O set

Second Level

O set

Upper Spar

Inner Spar

Lower Spar

Skin (airfoil curve)

Figure 3.8: Defined zones of internal parts of the wing.

In each individual from the genetic optimization process, the mesh automation starts

with the creation of spar and rib geometries inside of the wing, where ribs are offset.

Then unstructured shell mesh is generated on all faces of the wing geometry. After

the mesh generation, groups and their thickness assignments are set automatically.

Lastly, material of the wing is set; it is also important for the optimization process,

because deflection of wing is calculated with the help of material properties in the

structural analysis. Furthermore, the weight of the whole wing can be calculated by

using material properties.

Mesh nodes, connectivities of shell elements, zone information, material properties

and transferred skin pressures compose the input file of structural solver. Similar to

the input file of the aerodynamic solver, the input file for structural solver is also

generated automatically for each individual in the generations of the optimization

process. By using these inputs and the structural solver; deflection, Von Mises stresses

[75] and the weight of the total wing volume can be computed and used to optimize

the wing design.

43

Figure 3.9: Imaginary volumes of structural analysis.

3.3 Shape Optimization via Parallel Genetic Algorithm (PGA)

A wing can be better than the others in various aspects, such as aerodynamic, struc-

tural, thermodynamic, etc. In order to design an optimized wing, an objective must

be decided. Objective of this thesis is to reach better wing with respect to both aero-

dynamic and structural aspects. Hence, aerodynamic and structural solvers are used

to compute the performance and efficiency of the aerostructural shape design of the

wing.

For optimizing the wing model, ParadisEO [81, 82, 83], which is based on Evolv-

ing Objects (EO) framework [84], is adopted. It is an open source, object oriented

and a template based framework which is written in ANSI-C++. EO includes many

nature-inspired heuristic search paradigms like genetic algorithms, particle swarm

optimization and many kind of selection, replacement and variation operators. The

44

framework allows us to design our optimization algorithm by using these paradigms

and operators. Since it is an open source framework, algorithm designer (developer)

can define and code his/her own classes that inherit from the classes of the framework.

Thus, as a component based framework, EO can be used like Lego blocks according

to our specific needs in the evolutionary optimization algorithm. ParadisEO is an ex-

tension of hybrid, parallel and distributed heuristic search library on EO framework.

It also includes base classes for different parallel GA models like island model, so we

use it for both island model and global parallelism.

This thesis uses ParadisEO framework with parallel genetic algorithm paradigm, both

global parallelism and island model, to design an optimization algorithm. Its setup in-

cludes mutation and crossover operators for variation. Also tournament selection and

elitism are applied in the genetic optimization cycle. Furthermore, since the fitness

evaluation part is the most costly part of the genetic optimization used in this the-

sis, the fitness calculation process is parallelized by using the master-slave paradigm

which is called global parallelism in GA. Each parallel processor calculates fitness

value of a different individual of the same generation. Then master processor col-

lects fitnesses to apply selection, variation (crossover and mutation) and replacement

operators, in order to generate the individuals of the next generation.

In addition to global model, island model is also utilized to discuss its heuristic search

performance and compare it with the performance of non-island (single population)

model.

In the tournament selection technique, random n individuals are chosen to perform a

tournament between them. Best individuals (fittest) of tournaments are passed on to

the next generation. Elitism technique in the replacement operator saves best individ-

uals throughout generations from the possible degeneration caused by the variation

operators (crossover and mutation). In addition to generational replacement operator,

we implement a kind of an elitism method; so that we move the best individual of

the generation directly to the next generation without any use of variation operators.

Therefore, we can keep the best chromosomes until there is a better individual.

In order to generate external and internal shape of the wing, 15 design parameters

are used: 8 of these are Kulfan’s CST parameters, which correspond to the physical

45

airfoil shape; other 5 define sizes of spars and ribs; and last 2 are taper ratio and

sweep angle. All parameters encoded as floating point in chromosomes, which have

their own upper and lower limits. Genetic algorithm evolves repeatedly generated de-

sign candidates using mutation, crossover and selection throughout the whole design

process. Initial population is created from random individuals and at each generation,

high fit individuals are selected for crossover and mutation operations to transfer their

lineage to the next generation.

In our work, the fitness value is calculated by using flow coefficients from the panel

solver and the weight of the wing from the structural solver. The failure limit of the

wing is added as a constraint that affects as a penalty component in the fitness value to

get only strong individuals survive through generations. In our GA implementation,

the penalty component of fitness value has an adaptive penalty weight factor. In

order to set mentioned penalty weight factor, a variable keeping penalty adaptation

period is added to our implementation of elitist replacement operator. At each period

(generational interval), the penalty value of the best individual is checked and it is

decided whether the penalty weight will be updated or not as it is proposed in [85].

This adaptive penalty approach prevents GA from the genetic drift and premature

convergence. More details about this approach and its usage on this thesis will be

discussed in Chapter 4.

3.4 Data Transfer from Quadrilateral Mesh to Triangular Mesh with ADT

In order to connect aerodynamic analysis and structural analysis, aerodynamic pres-

sure data should be transferred from quadrilateral panel solver mesh to triangular

structure mesh. The surfaces these meshes represent intersect at the skin shell of the

wing but they are contain different set of vertices. After the aerodynamic analysis

ends, found pressure coefficient (CP) on skin nodes should be converted to pres-

sures. Then, these pressures should be sent to shell elements of structural analysis’

skin mesh as an input load, in order to predict whether the designed wing model will

break or not in the structural analysis. So, ADT is needed to search closest vertices

in the target mesh and transfer pressures efficiently. The algorithm is given at 2 is

implemented by using FORTRAN 90.

46

Algorithm 2 Alternating Digital Tree search algorithm
1: procedure SEARCHADT(T, p, S) . T : Tree, p: Query point, S: Set of returned

elements

2: if root(T) is a leaf then

3: for x ∈ root(T) do

4: Insert x in S

5: end for

6: else . Recursive call is done according to next alternating axis. left(T) and

right(T) is the left and right subtree links of T .

7: SearchADT(left(T), p, S)

8: SearchADT(right(T), p, S)

9: end if

10: end procedure

The ADT search algorithm was used in the work [86]. The developed interface utility

is named as Search and Interpolation (SINeda) [87] and used for fluid-solid interac-

tion problems in the scope of the work [86]. The old implementation of SINeda works

with file I/O operations, which takes much more time compared to working directly

in memory. In this thesis, we refine the code so that its data structures can be used

directly from C++. Therefore, time consuming file I/O operations are eliminated,

which makes SINeda faster.

In the aerodynamic analysis, pressure coefficients are computed. Then, giving that

skin pressures as loads to the structural model of same design makes the structural

optimization more accurate, since the structure of the wing will be analyzed under

more realistic loads. As a result the optimized design will be more realistic.

Since meshes of two analysis are different with each other, data cannot be used di-

rectly. The difference is not just type of elements (triangular vs quadrilateral), nodes

and connectivities are also completely different as shown in Figure 3.10. Thus, the

difference in meshes forces us to transfer data from one to other, where the devel-

oped SIN interface algorithm takes place. The algorithm is stated at 3 is implemented

by using FORTRAN 90. In our case, panel mesh (quadrilateral, structured) is the

source mesh that gives the pressures and structural mesh (triangular, unstructured) is

47

the target mesh that gets the interpolated pressures.

Algorithm 3 Search and INterpolate (SIN) algorithm
1: procedure SIN(Ns, Es, Nt, Et) . Ns: Nodes of source mesh, Es: Elements of

source mesh, Nt: Nodes of target mesh, Et: Elements of target mesh

2: Ts = ConstructADT(Ns, Es) . Ts: ADT of source mesh

3: for each n ∈ Nt do

4: SearchADT(Ts, n, S) . S: Set of returned elements

5: Interpolate the data on S[0] to n . S[0]: Closest element

6: end for

7: end procedure

Firstly, alternating digital tree is constructed with the structured mesh of aerodynamic

analysis. For each node in the unstructured mesh of structural analysis, search query

is processed on ADT and closest quad element is returned. Since both meshes are

created from the same solid model, each query node (from unstructured mesh) is

found on the closest quad element with some tolerance. Consequently, the data on

the structured mesh is interpolated to the query node of unstructured mesh.

Structured

Flow Mesh

Unstructured

Structure Mesh

Figure 3.10: Overlapped both mesh as an ADT input

An example of data transfer between our generated wings can be seen in Figure 3.11.

In this example, pressure coefficients (CP) are computed by panel flow solver and

these CP values are transferred to the unstructured mesh of FEM structure solver by

using ADT.

48

Figure 3.11: Transferred pressure coefficient (CP) values between two different mesh

49

50

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Environment Setup

Hardware, software and libraries used for the development of a parallel aerostructural

shape optimization platform are listed below:

• Processor: Intel Core i7-4790K 4.00GHz (4 Cores) (8 Nodes = 32 cores in

total)

• Network: 1 Gbps Ethernet

• Programming Languages: C++ is preferred mostly, since CAEeda (main soft-

ware of EDA Ltd.) has been developing with it. Other that C++; FORTRAN 90

for search and interpolate (SIN) library and Python for scripting purposes are

used.

• Parallel Genetic Algorithm Framework: ParadisEO, implements global and is-

land parallelism.

• Parallel middleware: MPICH, which is portable implementation of MPI (Mes-

sage Passing Interface).

• Geometry Framework: CADeda, which uses OpenCascade 6.9.1 framework.

All geometric automation implementation is done in CADeda by using Open-

Cascade.

• Mesh Library: MESHeda, which uses Delaunay triangulation.

51

• Development Environment: CAEeda has been developed by using Qt5 and

C++. Also all programming of mesh and geometry automation, SIN library

calls and parallel genetic algorithm implementation are done with using C++.

4.2 Design Process

In the context of this study, we developed an integrated and automated aerostructural

3D wing shape parallel optimization platform and it includes:

• An automated and parametric geometry generator based on a hybrid CST-NURBS

method.

• An automated mesh generator (both flow and structure).

• An automated input file creator for both solvers (flow and structure).

• A parallel genetic algorithm optimizer tool that uses output of solvers to opti-

mize 3D wing shape.

Our multidisciplinary optimization cycle starts with creation of an airfoil geometry

with Kulfan’s CST parameterization method coupled with NURBS curve, followed

by creation of a 3D wing geometry. This wing geometry can be considered as an

initial shape for mesh automation system. The generated 3D wing can directly be

used to generate the panel solver mesh (structured), but internal parts of the wing

need to be created before the generation of the structural solver mesh (unstructured).

So there are two different mesh: one for the aerodynamic panel solver (PanAir) and

another for the FEM structural solver (SAPeda).

For the panel solver, a structured surface shell mesh is generated on the skin of the

wing. For the structural solver, an unstructured surface shell mesh is generated both

on the skin and internal parts of the wing. Subsequently, pressure data transfer be-

tween mesh of both solvers is handled by the interface utility named SINeda. The

geometry of the surface and internal parts and the corresponding meshes are auto-

matically generated during the optimization process, which is the key novelty of this

thesis.

52

4.2.1 Genetic Encoding

Since all the geometry and mesh are generated automatically during the optimization

process, inputs for the geometry and mesh generation need to be parameterized. In

other words, searching for the best wing is a problem and we have to parameterize

the problem, so these parameters are the encoding for a proposed solution. It is also

called as chromosomes of the individuals for the GA. Each individual has its unique

parameter set, namely chromosomes. As shown in Figure 4.1, chromosomes of this

work are formed by airfoil shape (CST) parameters, thickness parameters for internal

parts of the wing, taper ratio and sweep angle.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

Kulfan

parameters

of upper

curve

Kulfan

parameters

of lower

curve

Rib

thicknesses
Spar

thicknesses

Taper

ratio

Sweep

angle

Figure 4.1: Genetic encoding

4.2.2 Objectives

Developed platform takes initial geometric data, flight, atmospheric and material data.

Moreover, for a genetic inputs, objective and penalty functions must be an input for

the genetic algorithm. As it can be seen in Figure 4.2, all these input data is used to

calculate different fitness values for each individual. At the start, there are genetic

encoding parameters but also some constant variables for a one genetic run. For

example, the shape of the airfoil is constructed by CST parameters, which are the

genetic chromosomes and they differ for each individual. However, material of the

wing does not change throughout the generations and it is constant variable for the

experiments.

53

Start

Aerodynamic Parameters

Aerodynamic Analysis (PanAir+XFOIL)

Output of Aerodynamic Analysis (CD, CL, pressures)

Data Transfer Between Meshes (using ADT)

Structural Parameters

Structural Analysis (SAPeda)

Output of Structural Analysis

End

Figure 4.2: The flow chart of the fitness calculation process.

From initial geometry parameterization data, two different geometry and mesh gen-

erated. In panel geometry, the only needed part is the skin of the wing, since panel

solver conducts an aerodynamic analysis. Nevertheless, structural analysis also needs

internal parts of the wing; so structural geometry differs from panel geometry. In the

first hand, automated panel mesh (structured mesh) is generated with panel geometry,

which is explained in Chapter 3. Then, together with the aerodynamic parameters (an-

gle of attack, mach number, etc.) and panel mesh, input file for aerodynamic analysis

(PanAir+XFOIL) is generated.

Coefficients CD, CL and aerodynamic skin pressures (CP) on the wing are calculated

by using the aerodynamic solvers. At the end of the aerodynamic analysis, we take

the aerodynamic pressures and transfer it to the structural analysis input. For the

structural analysis input, automated mesh (unstructured mesh) is generated from the

geometry with internal parts (ribs and spars), which is also explained in Chapter 3.

Using this mesh, transferred aerodynamic pressures and other structural parameters

54

(material properties, thicknesses), input file for structural analysis (SAPeda) is gener-

ated. Output of the structural analysis contains deflection and von-Misses stresses (σ)

of the wing. Additionally, weight of the wing (W) is calculated with the mesh area

and thickness parameters of different parts of the wing. Weight calculation is done as

follows:

W = tMesh · AMesh · ρ · g (4.1)

where t is thickness, A is the area, ρ is the density of material and g is the acceleration

of gravity. In this thesis, fitness (objective) function of the GA is defined as:

fobjective =
CD

CL

·W + ωpenalty · fpenalty (4.2)

where CD is drag coefficient, CL is lift coefficient, W is the weight of the wing and

fpenalty is a penalty function with its weight factor, ωpenalty. Lower CD/CL ratio is

one of the major goals in aerodynamic shape designs; as lift is needed to fly and

reaching that lift with lower drag directly leads to better climb performance and fuel

consumption. Moreover, since we try to minimize total weight of the wing, it tends

to be thin and fragile. So, we also define a penalty function to eliminate failed wings

throughout the generations, which is defined as:

fpenalty =

(σmax
vm − σyield

vm)2 if σmax
vm > σyield

vm

0 otherwise
(4.3)

where σmax
vm is the calculated maximum von-Mises stress on the wing and σyield

vm is

the material yield stress (von-Mises stress), which defines the failure limit of the

wing. The material yield stress is material property that defines the beginning point

of nonlinear deformation (failure of material).

Furthermore, in this thesis, we have implemented penalty weight factor ωpenalty as a

variable throughout generations, which is called adaptive penalty in evolution of prob-

lems with constraints [85]. It allows us to make sure that the penalty weight factor

is neither too small nor too large at any stage of the genetic optimization. If a single

ωpenalty is used for entire course of the optimization, it becomes difficult to find a so-

lution with any ωpenalty that is good for all stages of the optimization. A small weight

tend to result in unfeasible wings whereas large weight avoids searching search space

at the borders of feasibility. After the initialization, adaptation of penalty allows us

55

to sample adequately the search space and then gradually it pushes the optimization

process to converge to the good solution. Therefore, premature convergence and ge-

netic drift can be avoided and the possibility of finding the global optima rather than

local optima increases.

Initially, we set ωpenalty = 1.0 and we check it after every three generations. If the best

individual of last three generations is always feasible (no penalty component), then

we set ωpenalty = ωpenalty · 0.83. But if the best individual of last three generations is

never feasible, namely it has a penalty component for all three generations, then we

set ωpenalty = ωpenalty · 2.0. In other cases, ωpenalty remains same. Hence, our GA

can adapt itself to search properly the regions adjacent to constraint boundaries as the

global optima may lie there.

4.2.3 Parallelization

In the scope of this thesis, two different models of PGA are experimented: single

population model and island model. In the single population, there is only one initial

population to evolve. However, in the island model, there are many populations like

they are in different islands and they evolve separately. But in fact they are not to-

tally separated, migration is done at some generations for exchanging individuals to

exchange genes among the island.

As a first model, we use GPGA paradigm, which is also called as the master-worker

model, and the working scheme of this model is shown in Figure 4.3. For the single

population model, master processor controls the generation loops and passes individ-

uals to the slaves. Slave processors are responsible for only the calculation of the

fitness function and they send the fitness value of the individual back to the master

processor. After all fitnesses are calculated for the current generation, master proces-

sor applies genetic operators (selection, mutation, etc.) to the population to create the

next generation.

CPGA paradigm is the second model that we use, which is known as an island model.

In our implementation of an island model, master processors for each island are

needed to apply genetic operators, such as selection, replacement etc. Furthermore,

56

Generation loop

(Master) Slave 1
Slave 2

Slave 3
...

Slave N

new generation

fitness values

Slave i
Master parametersi

Panel

Solver

Structure

Solver

fitnessi

flow mesh structure mesh

D/L

loads

stress/deformation

individuali

Figure 4.3: The master-worker model for parallel genetic algorithm

the communication between the islands for migration is handled directly between

these master processors. As stated in Chapter 2, there are many individuals in sub-

populations for each processor to calculate their fitness values. When certain number

of generation passes, a few individuals from each island are migrated according to the

island topology. In this thesis, we construct a ring topology with the four islands and

the evolution cycle of these islands is shown in Figure 4.4. Sub-populations evolve

separately, however this evolution is only interrupted by the migration at the certain

periods of generations (migration interval).

Start

Isolated Evolution

Migration

Isolated Evolution

End

a) Flow chart b) Symbolic model

Figure 4.4: Island model with four sub-populations in ring topology.

57

4.3 Experiments

As it is stated in the previous sections, genetic encoding of our work has 15 param-

eters and the bounds of these parameters are shown in Table 4.1. These bounds are

determined based on common wing design practices. Due to the leading edge (LE)

radius and the continuity of LE, lower bounds of P1 and P5 are not set as 0.0, but

0.05. Since upper curve of an airfoil should provide the camber of the airfoil, lower

bounds of P2, P3 and P4 are set as 0.0. Likewise, P6, P7 and P8 are also respon-

sible for the camber of the airfoil, so they can pass through the upper side with the

negative lower bound, −0.2. All upper bounds of the CST parameters are set as 0.4

to cover most of the airfoils from the literature. Moreover, all bounds of thickness pa-

rameters are set by considering percentage of thickness of airfoils from the literature

and offsetting proportion on it. The significant point is that the upper bound of the

inner rib thickness cannot be higher than the lower bound of the outer rib thickness.

Relationship between the inner spar thickness and other spar thicknesses is the same

as the significant point of rib thicknesses mentioned in previous sentence. Bounds of

the other parameters (P14 and P15) are set by looking frequently used wings from

the literature.

Parameters of the GA is given in Table 4.2. In the island model implementation of our

work, we decided to use four islands with population size 15 of each, where we use

population size 60 for single population case. By doing this, we can easily compare

the island model and the single population model, since total fitness calculation count

will be same across generations.

Besides these genetic parameters, there are also some constant parameters, which are

set as the design choices:

• Mach number: 0.5,

• Angle of attack: 2 degrees,

• Span of the wing: 5 meters,

• Chord length of root: 1 meter,

• Skin thickness: 2 millimeters,

58

Lower

Bound

Upper

Bound
Stands for ...

P1 0.05 0.4 1st CST parameter of airfoil

P2 0.0 0.4 2nd CST parameter of airfoil

P3 0.0 0.4 3rd CST parameter of airfoil

P4 0.0 0.4 4th CST parameter of airfoil

P5 0.05 0.4 5th CST parameter of airfoil

P6 -0.2 0.4 6th CST parameter of airfoil

P7 -0.2 0.4 7th CST parameter of airfoil

P8 -0.2 0.4 8th CST parameter of airfoil

P9 0.015 0.022 Outer rib thickness (m)

P10 0.010 0.015 Inner rib thickness (m)

P11 0.015 0.022 Inner spar thickness (m)

P12 0.022 0.030 Upper spar thickness (m)

P13 0.022 0.030 Lower spar thickness (m)

P14 0.6 1.0 Taper ratio

P15 0.0 20.0 Sweep angle (deg)

Table 4.1: Upper & lower bounds of the optimization parameters and their meanings.

• Material: Polyamide.

Parallelization of GA has done by using ParadisEO framework, which allows us to

utilize several cores in parallel for the fitness evaluation. Parallelism with this frame-

work needs one scheduler core that organizes and maintains the jobs of other proces-

sors. Depending on which model we use, the framework may also need one master

processor. Hence, other than scheduler and master processors, all other processors

are used in fitness calculation, which is the most time and computational power con-

suming operation of this thesis.

Execution time of the fitness calculation takes approximately 27.5 seconds in average.

General fitness calculation consists several steps with given average execution times

in seconds:

59

Single Population Model Island Model (x4)

of Generations 100 100

Population Size 60 15 (x4)

Selection Type Tournament (size = 2) Tournament (size = 2)

Mutation Type / Rate Uniform / 0.2 Uniform / 0.2

Crossover Type / Rate Arithmetic / 0.7 Arithmetic / 0.7

Replacement Type Elitist Elitist

Migration Interval Not applicable 5

Migration Size Not applicable 2

Migration Topology Not applicable Ring

of Cores (Parallel) 1 to 32 2 to 32

Table 4.2: Parameters of the genetic algorithm for both models.

• Initialization of geometry & mesh data structures: 10.00

• Automated panel geometry & mesh generation: 0.50

• Panel solver analysis: 9.25

• Automated structural geometry & mesh generation: 5.25

• Data transfer with SIN: 0.50

• Structural solver analysis: 2.00

Even though fitness calculation takes nearly 27 seconds in total, it takes less execution

time when the individual fails at any step of the fitness calculation. For example, if the

panel solver outputs negative CL value, fitness function directly returns a very large

value without entering data transfer and structural analysis steps; since a wing with

negative CL cannot fly. Although the parameters for shape creation are in reasonable

interval, there might be irrational shapes with the "unlucky" parameter sequence, re-

sulting in geometry or mesh automation failure. If the case is that, fitness function

directly returns a very large fitness value. As mentioned in previous chapters, an in-

dividual with a very large fitness value has very small probability to transfer its genes

to the next generations.

60

4.4 Results and Discussion

It needs to be reminded that all of experiments are conducted with the population

size of 60 with the experimental setup defined in subsection 4.2. In the island model

population is divided into 4 equal sub-populations, which makes total number of fit-

ness calculations in the optimization process is the same in both models. So we can

compare the total optimization time and performance of two models.

Results of experimentation with single population model and island model of PGA

are presented in this section. In Figure 4.5, average fitness values of 5 different seeded

experiments are presented. Also, in Figure 4.6, fitness value (fitness function is de-

fined in subsection 4.2.2) changes of the best individuals of one experiment during

evolution are shown. As we can infer from the results, island model is able to show

better overall performance than single population model in 3D wing shape optimiza-

tion. However, it can be seen from the Figure 4.6 that single population model reached

better fitness value in the early 20s generations. Since the population sizes of each

island are smaller than the single population model’s, the diversity slowly affects on

fitness minimization in the island model. Still, one of the islands (Island #2) reached

better fitness value just a few generations later, and then genetic variety of Island #2

spread across the other islands. But the best individual of the single population model

sticks around the same local minimal that is found in the early 20s generations.

In order to evaluate our fitness function, components of it for the best individuals from

the single population model are demonstrated in Figure 4.7. As a reminder, fitness

function was composed from two components: CD/CL and weight (W) component.

The CD/CL component is affected directly from the parameters of the shape of the

airfoil, but the weight of the wing is affected by all parameters.

It can be observed that the CD/CL component is more dominant than the W com-

ponent. Genetic evolution firstly tends to minimize the CD/CL component, which

has relatively large numerical interval and so it becomes more dominant than the W

component. As a result of the dominance of CD/CL component, W component value

increased while total fitness value was decreased by the CD/CL component in the

early generations. After the decrease of the CD/CL component to some value, the

61

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

·10−4

Generations

B
es

tF
itn

es
s

Genetic Evolution Results

Single Population
Best Island

Figure 4.5: Fitness values of the best individuals for Single Population and Island

Models (Average values of 5 runs with different seeds)

0 10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

·10−4

Generations

Fi
tn

es
s

Genetic Evolution Results

Single Population
Island #1
Island #2
Island #3
Island #4

Figure 4.6: Comparison of the best fitness values of a single experiment for Single

Population and Island Models

W component also entered a downward trend. During this trend, it was observed

that thickness parameters were changed mostly. Nonetheless, it did not reach the

minimal value of the first generations, due to limits of the best individual’s fit shape

that evolved throughout the generations. In more clear words, while searching for a

62

better individual, GA initially optimized the shape of the airfoil, and then it tried to

minimize the weight of the wing.

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

3
·10−2

Generations

Fi
tn

es
s

C
om

po
ne

nt
s

Fitness Components in Genetic Evolution

CD/CL

Weight (W)

Figure 4.7: Fitness components of the single model GA of the sample experiment

As an another experiment, the evolution process was extended by increasing the num-

ber of generations. The result of this experiment is illustrated in Figure 4.8 and it can

be inferred that there will always be a better individual in the future. For single pop-

ulation model, the algorithm found the local optima before the 100th generation and

the fitness value converged on there prematurely. In the last 400 generations, just

minor differences can be observed in single population model. But in island model,

there were critical advances throughout the generations. The last better individual was

found before the 400th generation. After that point, GA only found better individu-

als with minor differences. Thus, it can be said that the island model and its genetic

diversity performs better when the maximum number of generations is increased.

In order to examine the adaptive penalty effects on the evolution, non-adaptive penalty

experiments were conducted and the result of these experiments is given in Figure 4.9.

In non-adaptive experiments, penalty weight (ωpenalty) that is defined in Equation 4.2

was kept constant as 1.

Similar to the adaptive penalty experiments, single population model behaved better

firstly and the island model reached better fitness value at the end. But in overall,

63

0 50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

·10−4

Generations

Fi
tn

es
s

Genetic Evolution Results

Single Population
Island #1
Island #2
Island #3
Island #4

Figure 4.8: Comparison of best fitness values from Single Population and Island

Model longer (500 generations) experiment for the best configuration

it can be clearly stated that GA with adaptive penalty performed better optimization

when compared to its non-adaptive version. Thus, it was shown that initially set

penalty constraint is so violent for defined fitness function and it blocked the evolution

to reach to the global optima.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

·10−4

Generations

Fi
tn

es
s

Genetic Evolution Results for Non-Adaptive Penalty

Single Population
Island #1
Island #2
Island #3
Island #4

Single Pop. from Adap. Pen.
Best Island from Adap. Pen.

Figure 4.9: Fitness values of the generations

Another genetic variable that has been examined is the migration effect on the island

64

model of GA. Figure 4.10 shows the fitness value changes throughout the generation

of non-migrated island model of GA. As we can see in the results of both migrated and

non-migrated genetic evolution results, migration effect in the optimization of island

model can be clearly seen. Since genetic diversity cannot be propagated without mi-

gration, each island behaved as the single population model with smaller population.

So, without variation and enough population size, non-migrated islands performed

far worse than the migrated ones. Additionally, it can be said that the increase in

population size of non-migrated islands would end up with the similar results of the

single population model that is also shown in the Figure 4.10.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

·10−4

Generations

Fi
tn

es
s

Genetic Evolution Results for Non-Migrated Islands

Non-migrated Island #1
Non-migrated Island #2
Non-migrated Island #3
Non-migrated Island #4

Best Island from Migrated
Best Single Population

Figure 4.10: Fitness values of the non-migrated island model

Results of average execution times of our parallel experiments are shown in Figure

4.11 and Table 4.3. These average times are calculated by using five experiments with

different seed values.

Execution time of single population model of PGA took almost 44 hours when it was

running in one core. Correspondingly, when core count was doubled, execution time

nearly halved. Since there are 60 fitness functions to be calculated in each genera-

tion, both cores are efficiently utilized. In two core experiments, each core calculates

roughly 30 fitness functions in one generation. So, core utilization depends on aver-

age work per core, while fitness calculation during one generation.

65

The bound for parallel execution time is determined by fitness calculation per gen-

eration, because every fitness value needs to be known for advancing through gen-

erations. In other words, each core calculated at most two fitness functions in the

experiments with 30 cores, since population size was 60 in our experiments. Addi-

tionally, using more than 60 cores would result in the nearly same execution time. So

the asymptote of the exponential curve in the Figure 4.11 would be reached with 60

cores.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

500

1,000

1,500

2,000

2,500

of Cores

E
xe

cu
tio

n
Ti

m
e

(m
in

)

Execution Time

Island model
Single population model

Figure 4.11: Execution times of models

Single Population Island Model

1 core 2648.22 mins Not Applicable

2 cores 1303.87 mins 1300.43 mins

6 cores 469.07 mins 450.90 mins

10 cores 295.33 mins 295.08 mins

14 cores 231.42 mins 219.57 mins

18 cores 191.03 mins 164.35 mins

22 cores 157.10 mins 136.72 mins

26 cores 144.78 mins 117.09 mins

30 cores 117.95 mins 102.35 mins

Table 4.3: # of cores and execution time values of different PGA models

66

Another parameter for parallelism is the communication cost which increases with

more cores. Without any communication cost, doubling the number of cores would

have halved the execution time. However, according to the results specified in Table

4.3, this is not the case and this brings us to the speedup and the parallel efficiency

terms. The speedup metric is calculated as follows:

S(p) =
Ts

Tp(p)
(4.4)

where Ts is the execution time of the sequential algorithm and Tp is the execution

time of the parallel algorithm with p cores, and

E(p) =
S(p)

p
(4.5)

is the parallel efficiency of the parallel algorithm. By looking to these metrics of the

PGA, we can discuss how efficient the parallel algorithm is. Any degradation in the

performance of parallel algorithm will result in E(p) being less than 1.

Performance of the parallel algorithm can be limited with a few factors, such as com-

munication time and idle time of some cores [88]. Without these factors, efficiency

would be 1 and speedup curve would be ideal linear, which are the cases for the ideal

parallelization.

Figure 4.12 shows the speedup results and Figure 4.13 shows the performance results

of our PGA experiments. Since communication cost increases when we increase the

number of cores; the speedup curves in Figure 4.12 became distant from the ideal

curve when executing PGA in our experiments with more cores. Also, population

size was not always the exact multiple of the number of cores, so there were some

idle cores during the execution of some experiments. Therefore, it can be clearly

stated that parallel execution times of experiments were affected both communication

time and idle time of some cores.

As a final result to discuss, we can compare parallel performances of both island

and single population models of PGA. Table 4.3, Figure 4.12 and 4.13 demonstrate

that the island model performed more efficiently than the single population model

in terms of execution time, especially when the number of cores exceeds 10. This

implies that at least one of the communication or the idle time was resulted better

in the island model. Actually, it is more likely that both communication and idle

67

time were shortened. Because the communication workload of one master core in

single population model was distributed in island model, which leads a decrease in

communication cost.

In addition to communication cost, in some of the experiments that the population

size was not the exact multiple of number of cores, the remaining idle cores were

relatively smaller in the island model, since its population size was one quarter of the

single population model. So the idle time of cores is also expected to decrease in the

island model, since the workload was distributed more fairly than the single popula-

tion model. Additionally, single population model with 26 cores has a solid decrease

in the efficiency, that can be seen in Figure 4.13, as there were roughly 18 idle cores

in the third fitness calculation step of each generation.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

5

10

15

20

25

30

of Cores

Sp
ee

du
p

Speedup

Island model
Single population model

Ideal

Figure 4.12: Speedup of parallelism

68

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.6

0.8

1

of Cores

E
ffi

ci
en

cy

Parallel Efficiency

Island model
Single population model

Ideal

Figure 4.13: Parallel Efficiency

69

70

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, a platform for automated aerostructural shape optimization of 3D wings

with GA is developed. The main focus of this thesis was the engineering designs and

applications in which the shape optimization problem arises, such as geometry and

mesh automation and multi-disciplinary parallel optimization.

The existing solutions for the multidisciplinary shape optimization [89, 90, 91, 92] do

not propose optimization together with full automation of geometry and mesh gener-

ation, due to the computational cost of it. Also, separately CST and NURBS parame-

terization methods are used in the literature [14, 17, 90], but there is no known hybrid

method yet. On the other hand, although genetic algorithm is one of the most com-

mon optimization techniques in the literature [92, 17], variations and parallelization

of GA have not been compared previously in multidisciplinary shape optimization

problems.

Development of an automated aerostructural shape optimization for 3D wings was

our main objective. The proposed optimization technique applied in this thesis uses

GA. However, since automation of geometry and mesh generation and aerostructural

analysis take too much time, a parallel GA is implemented. The parallel GA is applied

in both single population model and island model for fast optimization.

Firstly, we parameterize the 3D wing geometry to encode it for the optimization pro-

cess. Next, mesh has to be generated on this parameterized geometry, where two

different mesh is generated for both aerodynamic and structural solvers. Then, aero-

71

dynamic and structural analyzes are conducted to get how good the generated 3D

wing is. Lastly, all these parametric 3D wing geometry generation, mesh generation

from that geometry and aerostructural analyzes are automated.

Automation is achieved through the utilization of a Kulfan’s CST parametrization

method with NURBS surfaces. Developed hybrid method combines powerful design

capabilities of CST with perfect modelling properties of NURBS surfaces. After

designing with CST, 3D wing geometry is modelled with NURBS surface. By using

this 3D wing geometry of NURBS surfaces, one structural mesh for aerodynamic

analysis and one unstructured mesh for structural solver are generated automatically.

Automation allows us to create fast geometry and as a result fast mesh on it, which is

critically important because new geometry and mesh are generated for each individual

of GA.

In order to analyze the performance of the proposed parallel GA models, various

experiments were conducted. Initially, a single population model of GA was studied.

Next, the island model of GA was studied and the convergence rates of both models

were reported. We noticed that the island model performed better with our experiment

setup when compared to the single island model. However, it is also realized that the

migration is the key point of the convergence of the island model. Therefore, it can be

said that the genetic diversity takes an important place in the convergence rate, which

means that the diversity leads GA to find global best rather than local best.

Furthermore, the parallelization of the GA is bound to the population size of the gen-

eration, since fitness calculation of the each individual must be done before advancing

to the next generation. Nonetheless, our experiments didn’t reach the bound and thus,

we got almost linear speedup with parallelism below that bound. Moreover, it can be

said that developed parallel algorithm is scalable up to 60 cores, because the paral-

lel efficiency of our PGA is expected to remain horizontal until the population size

bound. Also by looking at the results of parallel experiments, it is shown that the

execution time can be reduced by nearly 26 times, where it is shortened from 2 days

to 100 minutes.

The main advantages and powerful aspects of the developed tool are that any objective

function with penalty constraint and parallel GA model can easily be applied, and

72

that it is based on new hybrid geometry parameterization technique which allows

fast, accurate and automated geometry and mesh generations. Experimental results

particularly indicate that the parameterization, automation and parallelism make a

strong impact for fast and better convergence on the 3D wing optimization process.

5.2 Future Work

We suggest that the parameter count of the proposed hybrid parameterization tech-

nique can be increased, and the convergence of the GA optimization can be discussed

with this increased complexity. As an another suggestion that increases the compu-

tational complexity, constant wing parameters (span length, rib and spar count, etc.)

can be added to chromosome as genes.

The parallel number of cores can be increased to the population size of GA, as it is

ideal parallelism for the GA. Another future direction is that the different evolutionary

optimization algorithms (particle swarm optimization, ant colony optimization, etc.)

can be applied for an aerostructural 3D wing optimization problem. These differ-

ent optimization methods can show different characteristics when reaching a better

individual, so they can widen the horizon for the upcoming studies on the multi-

disciplinary shape optimization problems.

73

74

REFERENCES

[1] H. Samet, “An overview of quadtrees, octrees, and related hierarchical data

structures,” in Theoretical Foundations of Computer Graphics and CAD (R. A.

Earnshaw, ed.), (Berlin, Heidelberg), pp. 51–68, Springer Berlin Heidelberg,

1988.

[2] G. E. Farin, NURBS: From Projective Geometry to Practical Use. Natick, MA,

USA: A. K. Peters, Ltd., 2nd ed., 1999.

[3] L. Piegl and W. Tiller, The NURBS book. Springer Science & Business Media,

2012.

[4] C. de Boor, A Practical Guide to Spline, vol. Volume 27. 01 1978.

[5] W. J. Gordon and R. F. Riesenfeld, “B-spline curves and surfaces,” in Computer

aided geometric design, pp. 95–126, Elsevier, 1974.

[6] K. J. Versprille, Computer-aided Design Applications of the Rational B-spline

Approximation Form. PhD thesis, Syracuse, NY, USA, 1975. AAI7607690.

[7] L. Piegl, “Modifying the shape of rational b-splines. part 2: surfaces,”

Computer-Aided Design, vol. 21, no. 9, pp. 538 – 546, 1989.

[8] W. Tiller, “Rational b-splines for curve and surface representation,” IEEE Com-

puter Graphics and Applications, vol. 3, no. 6, pp. 61–69, 1983.

[9] D. F. Rogers, An introduction to NURBS : with historical perspective. San Fran-

cisco ; London : Morgan Kaufmann, 2001.

[10] L. Yang and X.-M. Zeng, “Bézier curves and surfaces with shape parameters,”

International Journal of Computer Mathematics, vol. 86, no. 7, pp. 1253–1263,

2009.

75

[11] N. P. Salunke, J. A. R. A., and S. Channiwala, “Airfoil parameterization tech-

niques: A review,” American Journal of Mechanical Engineering, vol. 2, no. 4,

pp. 99–102, 2014.

[12] B. Kulfan and J. Bussoletti, “Fundamental parameteric geometry representa-

tions for aircraft component shapes,” 09 2006.

[13] B. M. Kulfan, “Universal parametric geometry representation method,” vol. 45,

pp. 142–158, 01 2008.

[14] K. Lane and D. Marshall, “A surface parameterization method for airfoil opti-

mization and high lift 2d geometries utilizing the cst methodology,” 01 2009.

[15] D. Marshall, “Creating exact bezier representations of cst shapes,” 06 2013.

[16] A. Sóbester and A. Forrester, Aircraft Aerodynamic Design: Geometry and Op-

timization. Aerospace Series, Wiley, 2014.

[17] E. Orman and G. Durmuş, “Comparison of shape optimization techniques cou-

pled with genetic algorithm for a wind turbine airfoil,” in 2016 IEEE Aerospace

Conference, pp. 1–7, March 2016.

[18] J. H. Holland, Adaptation in Natural and Artificial Systems. The University of

Michigan Press, 1975.

[19] J. D. Bagley, The behavior of adaptive systems which employ genetic and cor-

relation algorithms. PhD thesis, University of Michigan, 1967.

[20] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,

1st ed., 1989.

[21] K. A. De Jong, Analysis of the behavior of a class of genetic adaptive systems.

PhD thesis, University of Michigan, 1975.

[22] M. Mitchell, An Introduction to Genetic Algorithms. Complex Adaptive Sys-

tems, The MIT Press, first printing. ed., 1996.

[23] J. E. Baker, “Adaptive selection methods for genetic algorithms,” in Proceedings

of an International Conference on Genetic Algorithms and their applications,

pp. 101–111, Hillsdale, New Jersey, 1985.

76

[24] J. F. C. M. Kimura, An introduction to population genetics theory. New York,

Harper & Row [1970].

[25] D. Schlierkamp-Voosen and H. Mühlenbein, “Predictive models for the breeder

genetic algorithm,” Evolutionary Computation, vol. 1, no. 1, pp. 25–49, 1993.

[26] A. Brindle, Genetic algorithms for function optimization. PhD thesis, The Uni-

versity of Alberta, 1981.

[27] J. Y. Suh and D. Van Gucht, Distributed genetic algorithms. Computer Science

Department, Indiana Univ., 1987.

[28] H. Mühlenbein, “Parallel genetic algorithms, population genetics and combina-

torial optimization,” in Workshop on Parallel Processing: Logic, Organization,

and Technology, pp. 398–406, Springer, 1989.

[29] D. E. Goldberg, B. Korb, K. Deb, et al., “Messy genetic algorithms: Motivation,

analysis, and first results,” Complex systems, vol. 3, no. 5, pp. 493–530, 1989.

[30] D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes used

in genetic algorithms,” Urbana, vol. 51, pp. 61801–2996.

[31] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms.

Springer Publishing Company, Incorporated, 1st ed., 2007.

[32] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and muta-

tion in genetic algorithms,” IEEE Transactions on Systems, Man, and Cybernet-

ics, vol. 24, no. 4, pp. 656–667, 1994.

[33] W. M. Spears and K. A. De Jong, “An analysis of multi-point crossover,” in

Foundations of genetic algorithms, vol. 1, pp. 301–315, Elsevier, 1991.

[34] G. Syswerda, “Simulated crossover in genetic algorithms,” in Foundations of

genetic algorithms, vol. 2, pp. 239–255, Elsevier, 1993.

[35] Z. Michalewicz, T. Logan, and S. Swaminathan, “Evolutionary operators for

continuous convex parameter spaces,” in Proceedings of the 3rd Annual confer-

ence on Evolutionary Programming, pp. 84–97, World Scientific, 1994.

77

[36] N. Soni and T. Kumar, “Study of various mutation operators in genetic algo-

rithms,” 2014.

[37] D. FOGEL and I. N. N. Council, Evolutionary Computation: Toward a New Phi-

losophy of Machine Intelligence. IEEE transactions on neural networks, IEEE

Press, 1995.

[38] D. J. Cavicchio, Adaptive search using simulated evolution. PhD thesis, Uni-

versity of Michigan, 1970.

[39] M. J. Schutten and D. Torrey, “Genetic algorithms for control of power convert-

ers,” in Power Electronics Specialists Conference, 1995. PESC’95 Record., 26th

Annual IEEE, vol. 2, pp. 1321–1326, IEEE, 1995.

[40] L. J. Schmitt and M. M. Amini, “Performance characteristics of alternative ge-

netic algorithmic approaches to the traveling salesman problem using path rep-

resentation: An empirical study,” European Journal of Operational Research,

vol. 108, no. 3, pp. 551–570, 1998.

[41] S. Baluja and R. Caruana, “Removing the genetics from the standard genetic

algorithm,” in Machine Learning Proceedings 1995, pp. 38–46, Elsevier, 1995.

[42] P. Grosso, “Computer simulations of genetic adaptation: Parallel subcomponent

interaction in multilocus model,” Ph. D. Dissertation, University of Michigan,

1985.

[43] D. Whitley, S. Rana, and R. Heckendorn, “The island model genetic algorithm:

On separability, population size and convergence,” Journal of Computing and

Information Technology, vol. 7, 12 1998.

[44] R. Tanese, “Parallel genetic algorithm for a hypercube,” 01 1987.

[45] R. Tanese, “Distributed genetic algorithms,” in Proceedings of the 3rd Interna-

tional Conference on Genetic Algorithms, (San Francisco, CA, USA), pp. 434–

439, Morgan Kaufmann Publishers Inc., 1989.

[46] S. Xue, S. Guo, and D. Bai, “The analysis and research of parallel genetic al-

gorithm,” in 2008 4th International Conference on Wireless Communications,

Networking and Mobile Computing, pp. 1–4, Oct 2008.

78

[47] A. L. Corcoran and R. L. Wainwright, “A parallel island model genetic algo-

rithm for the multiprocessor scheduling problem,” in SAC, vol. 94, pp. 483–487,

Citeseer, 1994.

[48] M. Gorges-Schleuter, “Explicit parallelism of genetic algorithms through popu-

lation structures,” in PPSN, 1990.

[49] D. Whitley and T. Starkweather, “Genitor ii: a distributed genetic algorithm,”

Journal of Experimental & Theoretical Artificial Intelligence, vol. 2, no. 3,

pp. 189–214, 1990.

[50] T. Starkweather, D. Whitley, and K. Mathias, “Optimization using distributed

genetic algorithms,” in Parallel Problem Solving from Nature (H.-P. Schwefel

and R. Männer, eds.), (Berlin, Heidelberg), pp. 176–185, Springer Berlin Hei-

delberg, 1991.

[51] C. C. Pettey and M. R. Leuze, “A theoretical investigation of a parallel genetic

algorithm,” in ICGA, 1989.

[52] E. Cantú-Paz, “A survey of parallel genetic algorithms,” CALCULATEURS

PARALLELES, vol. 10, 1998.

[53] A. J. Chipperfield and P. Fleming, “Parallel genetic algorithms: A survey,” 1994.

[54] R. O. Winder, “Partitions of n-space by hyperplanes,” SIAM Journal on Applied

Mathematics, vol. 14, no. 4, pp. 811–818, 1966.

[55] R. P. I. I. P. Laboratory and D. Meagher, Octree Encoding: a New Technique

for the Representation, Manipulation and Display of Arbitrary 3-D Objects by

Computer. 1980.

[56] D. Meagher, “Geometric modeling using octree encoding,” Computer graphics

and image processing, vol. 19, no. 2, pp. 129–147, 1982.

[57] H. Samet, “The quadtree and related hierarchical data structures,” ACM Comput.

Surv., vol. 16, pp. 187–260, June 1984.

[58] R. Castro, T. Lewiner, H. Lopes, G. Tavares, and A. Bordignon, “Statistical op-

timization of octree searches,” in Computer Graphics Forum, vol. 27, pp. 1557–

1566, Wiley Online Library, 2008.

79

[59] S. Narasimhan, R.-P. Mundani, and H.-J. Bungartz, “An octree-and a graph-

based approach to support location aware navigation services.,” in PSC, pp. 24–

30, 2006.

[60] M. G. Choi, E. Ju, J.-W. Chang, J. Lee, and Y. J. Kim, “Linkless octree using

multi-level perfect hashing,” in Computer Graphics Forum, vol. 28, pp. 1773–

1780, Wiley Online Library, 2009.

[61] P. Bhattacharya, “Efficient neighbor finding algorithms in quadtree and octree,”

Master’s thesis, Indian Institute of Technology, Kanpur, 2001.

[62] J. Bonet and J. Peraire, “An alternating digital tree (adt) algorithm for 3d geo-

metric searching and intersection problems,” International Journal for Numeri-

cal Methods in Engineering, vol. 31, no. 1, pp. 1–17, 1991.

[63] D. Knuth, “The art of computer programming, sorting and searching, vol. 3.

1973.”

[64] U. Naumann and O. Schenk, Combinatorial Scientific Computing. Chapman &

Hall/CRC, 1st ed., 2012.

[65] M. Aftosmis, J. Melton, and M. Berger, “Adaptation and surface modeling for

cartesian mesh methods,” in 12th Computational Fluid Dynamics Conference,

p. 1725, 1995.

[66] J. L. Bentley, “Multidimensional binary search trees used for associative search-

ing,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[67] R. L. Carmichael and L. Erickson, “Pan air - a higher order panel method for

predicting subsonic or supersonic linear potential flows about arbitrary configu-

rations,” 06 1981.

[68] D. Chao and C. Van Dam, “Airfoil drag prediction and decomposition,” Journal

of Aircraft, vol. 36, no. 4, pp. 675–681, 1999.

[69] G. R. Saaris, A502I User’s Guide-PAN AIR Technology Program for Solving

Potential Flow about Arbitrary Configurations.

[70] A. D. Young, “Boundary layers,” NASA STI/Recon Technical Report A, vol. 91,

1989.

80

[71] M. Drela, “Xfoil: An analysis and design system for low reynolds number air-

foils,” in Low Reynolds Number Aerodynamics (T. J. Mueller, ed.), (Berlin, Hei-

delberg), pp. 1–12, Springer Berlin Heidelberg, 1989.

[72] “SAPeda..” http://www.caeeda.com/index.php/en/products/

sapeda. (online; accessed: 30.08.2019).

[73] E. Oktay, H. Akay, and O. Merttopcuoglu, “Parallelized structural topology op-

timization and cfd coupling for design of aircraft wing structures,” Computers

& Fluids, vol. 49, no. 1, pp. 141 – 145, 2011.

[74] E. Oktay, H. U. Akay, and O. T. Sehitoglu, “Three-dimensional structural topol-

ogy optimization of aerial vehicles under aerodynamic loads,” Computers &

Fluids, vol. 92, pp. 225 – 232, 2014.

[75] R. v. Mises, “Mechanik der festen körper im plastisch- deformablen zus-

tand,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,

Mathematisch-Physikalische Klasse, vol. 1913, pp. 582–592, 1913.

[76] E. Oktay, A. Arpacı, O. Şehitoğlu, and H. U. Akay, “A parallel aerostructural

shape optimization platform for airplane wings,” 05 2019.

[77] O. C. S.A.S., “Open cascade technology,” 2018.

https://www.opencascade.com/doc/occt-7.2.0/overview/html/index.html.

[78] L. P. Chew, “Constrained delaunay triangulations,” Algorithmica, vol. 4, no. 1-4,

pp. 97–108, 1989.

[79] “MESHeda..” http://www.caeeda.com/index.php/en/

products/mesheda. (online; accessed: 30.08.2019).

[80] “CAEeda..” http://www.caeeda.com. (online; accessed: 30.08.2019).

[81] E.-G. Talbi, Metaheuristics: from design to implementation, vol. 74. John Wiley

& Sons, 2009.

[82] J. Humeau, A. Liefooghe, E.-G. Talbi, and S. Verel, “Paradiseo-mo: From fit-

ness landscape analysis to efficient local search algorithms,” Journal of Heuris-

tics, vol. 19, no. 6, pp. 881–915, 2013.

81

http://www.caeeda.com/index.php/en/products/sapeda
http://www.caeeda.com/index.php/en/products/sapeda
http://www.caeeda.com/index.php/en/products/mesheda
http://www.caeeda.com/index.php/en/products/mesheda
http://www.caeeda.com

[83] A. Liefooghe, L. Jourdan, and E.-G. Talbi, “A unified model for evolutionary

multi-objective optimization and its implementation in a general purpose soft-

ware framework,” in 2009 IEEE Symposium on Computational Intelligence in

Multi-Criteria Decision-Making (MCDM), pp. 88–95, IEEE, 2009.

[84] M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer, “Evolving ob-

jects: A general purpose evolutionary computation library,” Artificial Evolution,

vol. 2310, pp. 829–888, 2002.

[85] K. Rasheed, “An adaptive penalty approach for constrained genetic-algorithm

optimization,” in Proceedings of the Third Annual Genetic Programming Con-

ference, pp. 584–590, Morgan Kaufmann Publishers, 1998.

[86] H. U. Akay, A. S. Baddi, and E. Oktay, “Large-scale parallel computation of

fluid-solid interaction problems for aeroelastic flutter prediction,” no. AIAC

2005-002, 2005.

[87] “SINeda..” http://www.caeeda.com/index.php/en/products/

sineda. (online; accessed: 30.08.2019).

[88] E. Cantú-Paz and D. E. Goldberg, “Efficient parallel genetic algorithms: the-

ory and practice,” Computer Methods in Applied Mechanics and Engineering,

vol. 186, no. 2, pp. 221 – 238, 2000.

[89] C. M. Boozer, “Multidisciplinary shape optimization of a composite blended

wing body aircraft,” Master’s thesis, University of South Carolina, 2017.

[90] J. Samareh, “Multidisciplinary aerodynamic-structural shape optimization using

deformation (massoud),” in 8th Symposium on Multidisciplinary Analysis and

Optimization, p. 4911, 2000.

[91] J. Mariens, “Wing shape multidisciplinary design optimization,” Master’s thesis,

Delft University of Technology, 2012.

[92] T. Kumano, S. Jeong, S. Obayashi, Y. Ito, K. Hatanaka, and H. Morino, “Mul-

tidisciplinary design optimization of wing shape for a small jet aircraft using

kriging model,” in 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 932,

2006.

82

http://www.caeeda.com/index.php/en/products/sineda
http://www.caeeda.com/index.php/en/products/sineda

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Objective
	Problem Definition
	Scope of the Thesis

	LITERATURE REVIEW
	Parametric Geometry Generation
	NURBS Method
	Bezier Curve Method
	Parametric Section Method
	Class-Shape-Transformation Method

	Shape Optimization (Genetic Algorithm)
	Selection
	Variation: Crossover & Mutation
	Replacement
	Island Model
	Parallelism

	Data Transfer (Geometric Search and Interpolation)
	Octree
	Alternating Digital Tree (ADT)
	k-d tree

	Analysis Tools
	Aerodynamic Solver
	Structural Solver

	CONTRIBUTIONS
	Airfoil Parameterization with CST Method and Generation of 3D Wing in NURBS Surface Form
	Mesh Automation for both Aerodynamic and Structural Solver
	Mesh Automation for Aerodynamic Solver
	Mesh Automation for Structural Solver

	Shape Optimization via Parallel Genetic Algorithm (PGA)
	Data Transfer from Quadrilateral Mesh to Triangular Mesh with ADT

	EXPERIMENTS AND RESULTS
	Environment Setup
	Design Process
	Genetic Encoding
	Objectives
	Parallelization

	Experiments
	Results and Discussion

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES

