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ABSTRACT

COMPUTATIONAL MODELLING OF ELECTRO-ACTIVE POLYMERS

Dal, Sinan Fırat

M.S., Department of Civil Engineering

Supervisor: Assoc. Prof. Dr. Serdar Göktepe

August 2019, 92 pages

This study is concerned with the stability of Electro-Active Polymers (EAPs) having

geometries with periodic microstructures subjected to coupled electromechanical ef-

fects. For this purpose, coupled electromechanical equations, which are nonlinear, are

discretized using the Finite Element Method (FEM) under the prescribed boundary

conditions.

EAPs are smart materials that may undergo large mechanical deformations when sub-

jected to an electric field. Unlike many other materials that show permanent deforma-

tions under the influence of the electric field, EAPs can return to their original shapes

when the electric field is deactivated. In addition, EAPs are used in many engineering

applications where robot and artificial muscle production are effective since they can

respond quickly to the electrical fields to which they are exposed. In order to study

the coupled electro-mechanical behavior of EAPs, two different but coupled differen-

tial equations must be solved. The governing equations of coupled electro-mechanics

are introduced by the Maxwell equations for electrostatics and the conservation of

linear momentum for elastostatics. These two differential equations are discretized
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in space by using FEM. Since the residual vector formed through discretization is

still non-linear, linearization must be performed. As a result, the equation system of

degrees of freedom is solved iteratively by using the Newton method. Different mate-

rial models are used to analyze the coupled problem. The efficiency of the models are

tested through numerical examples of benchmark problems borrowed from various

references.

Moreover, the developed computational model of coupled electro-mechanics is fur-

ther used to analyze the behavior of porous EAPs with periodic microstructures. The

effect of electro-mechanical coupling on the stability behavior of EAPs is investi-

gated through stability analyzes in the presence of an electric field for representative

geometries with periodic microstructures. It is shown that in the presence of an elec-

tric field not only the value of the critical load where the pattern transformation takes

place can be shifted but also the shape of the final pattern can be totally changed.

Keywords: Electro-Active Polymers (EAPs), Finite Element Method (FEM), Periodic

Microstructures, Pattern Transformation
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ÖZ

ELEKTRO-AKTİF POLİMERLERİN HESAPLAMALI MODELLENMESİ

Dal, Sinan Fırat

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Serdar Göktepe

Ağustos 2019 , 92 sayfa

Bu çalışma, bağlaşık elektromekanik etkilere maruz kalan periyodik mikro yapılı ge-

ometrilere sahip bulunan Elektro Aktif Polimerlerin (EAP) kararlılıklarını konu al-

maktadır. Bu amaçla, doğrusal olmayan bağlaşık elektromekanik denklemler, belirti-

len sınır koşulları altında Sonlu Elemanlar Yöntemi (SEY) ile ayrıklaştırılarak çözül-

mektedir.

EAP’ler, elektrik alana maruz kaldıklarında büyük mekanik deformasyonlar göste-

ren akıllı malzemelerdir. Elektrik alanın etkisi altında kalıcı deformasyonlar göste-

ren diğer birçok malzemeden farklı olarak, EAP’ler, elektrik alan devre dışı bıra-

kıldığında ilk şekillerine dönebilirler. Ek olarak, EAP’ler maruz kaldıkları elektrik

alanlarına hızlı bir şekilde tepki verebildiklerinden robot ve yapay kas üretiminin et-

kili olduğu birçok mühendislik uygulamasında kullanılmaktadır. EAP’lerin bağlaşık

elektro-mekanik davranışını incelemek için iki farklı fakat birbiri ile bağlaşık diferan-

siyel denklemin çözülmesi gerekir. Bağlaşık elektro-mekaniğin ana denge denklem-

leri, elektrostatik için Maxwell denklemleri iken elastostatik için doğrusal momen-

tumun korunumu yasasıdır. Bu iki diferansiyel denklem SEY kullanılarak konumsal
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uzayda ayrıklaştırılır. Ayrıklaştırma yoluyla elde edilen artık vektör hala doğrusal ol-

madığından, doğrusallaştırma yapılmalıdır. Sonuç olarak, serbestlik dereceleri için

oluşturulan denklem sistemi Newton metodu kullanılarak yinelemeli şekilde çözülür.

Bağlaşık problemi analiz etmek için farklı malzeme modelleri kullanılmıştır. Model-

lerin verimliliği, çeşitli kaynaklardan alınan kıyaslama problemlerinin sayısal örnek-

leri ile test edilmiştir.

Öbür yandan, bağlaşık elektro-mekaniğin gelişmiş hesaplamalı modeli, gözenekli pe-

riyodik mikroyapılı EAP’lerin davranışını analiz etmek için de kullanılmıştır. Bağ-

laşık elektro-mekaniğin EAP’lerin kararlılık davranışı üzerindeki etkisi, periyodik

mikro yapıları olan temsili geometriler için elektrik alanın varlığında kararlılık analiz-

leri yapılarak araştırılmıştır. Elektrik alanın varlığında, sadece malzemenin ilk örün-

tüsünü değiştiren kritik yük değerinin ötelenmediği, son örüntü şeklinin de tamamen

değiştiği gösterilmektedir.

Anahtar Kelimeler: Elektro-Aktif Polimerler (EAP), Sonlu Elemanlar Yöntemi (SEY),

Periyodik Mikroyapılar, Örüntü Dönüşümü
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Baranoğlu for their constructive comments and help.

I will not pass without adding Prof. Dr. Turhan Yaşar Erdoğan who was passed away
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CHAPTER 1

INTRODUCTION

Computational modelling of Electro-Active Polymers (EAPs) whose microstructure

possesses periodicity is investigated throughout this study. So as to examine the cou-

pled electro-mechanical behavior of EAPs, the electro-mechanical coupling is de-

scribed by the governing electrical and mechanical equations. Moreover, there are

some materials whose microstructure consist of periodic or non-periodic heteroge-

neous cells. These heterogeneities consist mainly of voids or inclusions. The ma-

terials which have periodic cellular microstructures undergo pattern transformations

under critical mechanical loads [6, 7]. However, there are limited, if any, number of

studies existing in literature on the effects of electro-mechanical interaction on peri-

odic microstructures when compared with the works about mechanical response of

materials whose microstructure is periodically produced. Hence, in this introductory

chapter, background information about the coupled electro-mechanical behavior of

materials affected by the presence of electrical field is introduced after the motivation

of this study is provided. Later, the overview on the deformation-induced transfor-

mations of periodic microstructures for entirely mechanical deformations is given. In

each subsection, relavent studies are cited in order to highlight the originality of the

current work.

1.1 Motivation and Problem Definition

After the industrial revolution in the late 18th or early 19th century, developments in

technology have accelerated. The transition from manual production to the machines

that fulfill the given tasks changed the lives of mankind. In this way, the problems
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arising from manual production have started to decrease gradually. However, the use

of these machines was still difficult at that time. Therefore, sensors and actuators

have been developed to control the operating machines in time. These machine parts

in charge of control should immediately check for errors in the production line and

report on appropriate measures. However, the production of the sensors and actuators

was expensive when compared with the other machine parts or tools. The materials

that are able to react quickly and cost less to manufacture are still of great impor-

tance, even for today’s technology. Luckily, today’s technology and advancements

in computer science allows us to produce computers with high computing power, al-

lowing for the efficient analyses of complex multi-scale and multi-physics problems.

The fact that complex problems can be solved has enabled researhers to conduct ro-

bust studies on the modeling of natural processes. One of the important problem type

arising from the natural processes is the investigation of coupled material behavior.

Some materials have been produced such that one of the properties can be controlled

by an externally applied stimulus. These materials are called as the smart materials.

There are numerous types of smart materials developed. Shape memory alloys, elec-

trostrictive elastomers, piezoelectric materials, ferroelectric materials, electro- and

magneto-active polymers are some of the examples of smart materials that exhibit

coupled material behavior [1, 2, 8, 9]. In these examples, electro- and magneto-active

polymers are of importance as their mechanical responses is activated very quickly

by electric and magnetic fields. These materials are relatively inexpensive, and return

to their former shape when they are no longer subjected to electric or magnetic fields

[2, 8, 9, 10, 11]. To make a more specific comparison, EAPs exhibit approximately

two-fold more strain than electrostrictive piezoelectric ceramics. In addition, EAPs

are said to have a faster response speed and less dense than shape memory alloys

[2, 8]. Therefore, for the remainder of this chapter, the behavior of EAPs under the

influence of an electric field will be examined and various important studies on EAPs

will be overviewed.

All matters formed in nature are made up of atoms and molecules. When a material is

examined at a molecular level, it is possible to see gaps or voids. When this is the case,

approaches that assume that the materials are homogeneous may not yield accurate

results. Therefore, the models that aim to describe the behavior of the material at the
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macro level should take into account the heterogeneity at the micro level. There are

many structures that show heterogeneity at the micro level in nature. These structures

can be seen in butterflies, flies, bird wings, fish fins, and feet of various lizards and

reptile species, as well as in various plant leaves such as water lily and lotus [3, 6]. For

example, in Figure 1.1, the microstructural view of iridescent setae from polychaete

worms at different length scales can be observed [3].
(a) (b)

(c) (d)

Figure 1.1: Scanning Electron Micrograph (SEM) views of iridescent setea from

Polychaete worm [3] with
(

a
)

2 µm,
(

b
)

5 µm,
(

c
)

1 µm, and
(

d
)

120 nm.

When these structures are examined at micro and lower levels, it is observed that they

have repetitive appearances. The materials whose microstructures possess repeated

units are called periodic cellular solids [6]. Such solids that can be synthetically

produced with inspiration from nature are used in various engineering fields such as

mechanical, optical, and thermal. There are numerous studies investigating the be-

havior of periodic materials under mechanical effects [6, 7, 12, 13]. The mechanical

effects are primarily compressive. Under compressive loads, the materials whose

microstructures are made up of the unit cells with voids or inclusions exhibit local

buckling between adjacent unit cells such that original periodicity may alter. How-
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ever, there is a limited number of studies that deals with the pattern transformation due

to coupled electro-mechanical effects. Consequently, the coupled electromechanical

behavior of periodic microstructured solids under the influence of the electric field is

a gap in the field to be filled.

1.2 Smart Material: Electro-Active Polymers

Electro-Active Polymers (EAPs) are electro-mechanically responsive polymeric or

elastomeric materials that may deform whensubjected to an electric field. Because

of their electrostrictive characteristic, EAPs are considered as smart materials, de-

fined as materials whose one or more properties can be controlled and manipulated

by an externally applied sources or stimuli. In the case of EAPs, external stimuli are

the electric field and the deformations in the presence of the electric field are large.

According to [1, 2, 8, 9, 14, 15, 16], EAPs as polymeric materials have many attrac-

tive properties such as mechanical flexibility, light weight, easy processing, fracture

toughness, and many others.

EAPs are categorized into two forms depending upon the activation mechanisms ei-

ther electronic (or field-ectivated) or ionic EAPs. The activation of electronic or field-

activated EAPs is Coulombic attraction inside the elastomer. Hence, the response of

this type of EAPs is fast. Moreover, the fact that electronic EAPs have a high energy

density results in large deformation capacity. In order to generate large deforma-

tion, however, they require high activation field, i.e. electric field (> 100 kV/µm)

[1, 2, 8, 9, 17, 18]. This is one of the drawbacks of these materials. There is a certain

number of electronic EAPs. Ferroelectric polymers, dielectric EAPs, and electrostric-

tive graft elastomers are the most known types of electronic EAPs. In ferroelectric

polymers, deformation occurs as a result of dipole vectors in polarized regions chang-

ing their sequence in the presence of electric field. However, this alignement is per-

manent. In other words, the polarized region remains aligned in the direction of the

electric field even if the electric field is removed. To restore the polarized area to

its previous configuration, an electric field must be applied in the reverse direction.

However, hysteresis occurs due to the formation of permanently polarized sections

[2, 19]. The dielectric elastomer or dielectric EAP, placed between two compliant
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electrodes, is subjected to stress due to the Coulomb forces on electric charges when

exposed to the electric field resulting from the given electrical potential differences

on the two parallel electrodes. This stress is called the Maxwell stress, which gener-

ates compression in the dielectric elastomer in the direction of the electric field, while

expansion occurs in the direction perpendicular to this field due to the Poisson effect

[2, 9, 16, 20]. Unlike ferroelectric polymers, dielectric elastomers can return to their

original position without exhibiting permanently polarized regions when the electric

field is removed [2, 9, 11, 17]. Electrostrictive graft elastomers are a type of EAPs

with more advanced properties produced at NASA Langley Research Center at 1999

[17]. Electrostrictive graft elastomers show a dispersed distribution within the poly-

mer network. An electrostrictive graft elastomer consists of two parts: flexible graft

chains and crystal graft units connected to two backbone chains. The crystal graft

unit has polarized semiparticles or moieties. The torque generated in the presence of

an electric field on the crystal graft units causes the flexible graft chains to rotate and

the backbone chains approach each other, causing a shortening in the direction of the

electric field and extending in the direction perpendicular to the electric field [2, 17].

Eventhough there are certain disadvantageous properties of electronic EAPs such as

relatively low efficiency, low robustness, and large electric potential demand, elec-

tronic EAPs are widely employed in the production of sensors, actuators, robotics,

biomimetics, and artificial muscles due to their fast response speed, exhibiting large

and reversible deformations, and ease of produce [1, 8, 9, 14, 17]. On the other hand,

in ionic EAPs, deformation of the material is determined by the diffusion of the ions

of EAPs. Therefore, electromechanical response of this type is slow and actuation

forces are lower than that of electronic EAPs. Moreover, they need an electrolytic

environment for deformation. However, ionic EAPs need low electric potential as

low as 1-2 V and the they deform more than electric EAPs [1, 2]. Ionic polymer gels

and carbon nanotubes are two major examples of ionic EAPs. In ionic polymer gels,

the gel changes the size and shape as a result of the electrical potential applied to the

electrodes placed in an aqueous solution [2]. While the electrode-contacting gels are

drawn near the anode, the gels expand near the anode if the electrode is not touched.

The volume change of the ionic polymer gels is provided in the pioneering work of

[21]. Moreover, experimental and theoretical study conducted by [22] focuses on

bending type deformations of polymer gel. The widely used examples of the two

5



different types of EAP are given in Table 1.1 and more detailed information of each

type can be found in [1, 2, 8, 9] and the references cited therein.

Table 1.1: The list of electronic and ionic EAPs [1, 2]

Electronic EAPs Ionic EAPs

Ferroelectric Polymers Ionic Polymer Gels

Dielectric EAPs Carbon Nanotubes

Electrostrictive Graft Elastomer Ionic Polymer Metal Composite

Electrostrictive Paper Conducting Polymer

Electro-viscoelestic Elastomer

The coupled electromechanical effects can be traced back to the Wilhelm Röntgen’s

experiments with rubber strips. As a result of the deformation of rubber strips ex-

posed to the electric field, studies on electromechanics have started. The theoretical

studies and the fundamental information on the coupled electromechanical behavior

of dielectric elastomers are based on the pioneering work [23, 24, 25]. In [23], funda-

mental information of electrostatics, electro-mechanical field equations, and bound-

ary conditions for dielectric elastomers, especially for isotropic dielectric elastomers,

are expressed to form a basis. Maxwell’s continuum theory of electricity and mag-

netism and free energy function related with the theory are investigated in [24]. In

addition, the nonlinear continuum theory of electromechanical and magnetomechan-

ical interactions are reviewed in [26]. Likewise, the electromechanical continuum

theory is examined in [9, 15]. Considering the incompressible nature of the dielec-

tric elastomers, the four-field FEM is used [9, 10, 27]. The four-field FEM, which

was previously investigated considering mechanical effects [28, 29], has been devel-

oped for the coupled electromechanical interactions. The work in [30] concentrates

on the numerical modelling of nonlinear behavior of continuum electro-mechanical

coupled system of equations. In order to solve the governing equations of nonlinear

electroelasticity, the finite element formulations for both Lagrangian (or reference)

and Eulerian (or current) configuration are proposed. To evaluate the robustness of

the model, the finite element model is compared with the analytic solutions obtained
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from differential equation’s solver. In many cases, surrounding environment affects

the deformation of the body. The effect of surronding environment on the deformation

of electronic EAPs is investigated by [31, 32]. They employ the coupled Boundary

Element Method and Finite Element Method (BEM-FEM) such that FEM is used

for the material body and BEM is used to simulate the finite or infinite free space

surrounding the body of interest. Furthermore, numerical results which are obtained

from BEM-FEM approach are compared with only FEM approach. Numerical in-

vestigations emphasize that surrounding environment has a significant effect on the

deformation of the body. One dimensional electromechanical constitutive equations

for electronic EAPs is extended to the three dimensional continuum setting by the

micro-sphere formulation in [33]. The phenomenological constitutive modelling of

electroviscoelastic coupling in electrostrictive polyurethane which is generally em-

ployed for actuators is evaluated in [18, 34]. The inverse motion problem is solved

for the coupled electromechanical equations to find a more suitable design of EAPs

in [35]. By this way, with the prescribed conditions, the optimal initial state can be

predicted. The four-field FEM is again used for the inverse motion problem due to

the incompressible nature of EAPs.

1.3 Pattern Transformation of Solids

Humankind have always aimed to simplify their lives by imitating what is in nature.

There are certain number of materials which exhibit periodic microstructures fre-

quently found in nature. In order to use these materials in engineering applications,

the structural and material stability analyses are combined. The mechanical instabil-

ity of periodic microstructures under mechanical deformations has been investigated

in the studies [6, 7, 13, 36, 37, 38]. In these studies, elastic instability, that is, local

buckling in the microstructure which consists of cellular solids with voids, occurs due

to compression. As a result of local buckling, the initial pattern transforms into a new

pattern such that initial periodicity is broken and a new pattern with different period-

icity occurance is establihed. The smallest cell of the microstructure that repeats itself

is called a unit cell. Furthermore, different cell types are examined numerically and

experimentally [6, 13, 36, 37, 39]. For experimental and numerical investigations,

7



square cells with circular voids, rectangular cells with elliptic voids, and oblique cells

with circular voids are employed in [6] and different void shapes with square cells

are analyzed in [37, 39]. In [6], the stability analysis of the model whose dimensions

are the same as the sample prepared for the experiment is performed in two ways.

These two methods are Refined Eigen Analysis (REA) and the Bloch-Floquet wave

analysis. Before any loading is applied onto the microstructure, periodicity is pro-

vided for a single cell. When the micrsoctructure is loaded, the initial periodicity

may change at some load level which is called as critical loading and the initial peri-

odicity consisting many unit cells may be formed. However, it is unknown how many

cells the new periodicity would involve. Hence, all possible configurations can be

numerically tested using REA and the configuration with the smallest critical load-

ing causes pattern transformation with a new periodicity. This procedure is called as

REA [6, 40]. The Bloch-Floquet method is the other approach to detect the critical

load that local instability (local buckling) starts. In this method, the Bloch-Floquet

periodic boundary conditions are applied on the unit cell [6, 27, 40, 41]. With these

boundary conditions, the information for enlarged unit cells is imposed on the unit

cell. Within the finite element framework, when the smallest eigenvalue of the consis-

tent tangent matrix becomes zero; that is, when the consistent tangent matrix becomes

singular, the critical load is found. Since the Bloch-Floquet wave analysis requires

complex numbers, FEM is designed to be compatible with the Bloch-Floquet wave

analysis. To do so, equilibrium equations are split into uncoupled real and imaginary

parts [6, 27, 40, 42]. Hence, the consistent tangent matrix and the residual vectors

are formed and manipulated with the Bloch-Floquet boundary conditions. It must

be stated that Bloch-Floquet wave analysis is applied to detect the critical compres-

sive loading. When the critical eigenvalue and associated eigenvector is found by the

Bloch-Floquet wave analysis, the finite and infinite sized specimens can be perturbed

by the eigen solutions to obtain the deformed shape.

Besides, to detect and solve structural instabilities for heterogeneous materials, com-

putational homogenization analysis should be performed. The computational proce-

dures for micro-macro transition of heterogeneous materials are provided for small

deformations in [43] and for finite deformations [44, 45].
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1.4 Challenges

Many analyses and investigations were tried during the preparation of the thesis. Nev-

ertheless, some of them were concluded. These are the four-field FEM with coupled

electromechanics, the FEM with coupled electromechanics, and the stability analy-

ses with the Refined Eigen Analysis (REA) for pattern transformations under only

mechanical effects. Moreover, these examples were combined to simulate the pattern

transformations of EAPs under coupled electromechanical loading scenarios. In order

to predict and obtain post-deformed shape of the periodically produced cellular struc-

ture, Bloch-Floquet wave analyses were tried along with the two-scale computational

homogenization algorithm at finite deformations. However, quadratic convergence of

the solution algorithm has not been fulfilled yet. Therefore, micro-macro transition

together with the Bloch-Floquet wave analysis will be investigated in the future work.

1.5 Contributions and Novelties

In this study, stability analyses of periodically structured EAPs under coupled elec-

tromechanical effects were performed. This study is a combination of two previously

mentioned sections. In order to perform stability analyzes under coupled electrome-

chanical effects, both the coupled electromechanical analysis of EAPs in the presence

of electric field, and the geometric stability analyzes of the structure consisting of pe-

riodic unit cells with circular voids were carried out separately. Although there are

studies in the literature on the effects of coupled electromechanical effects on compos-

ite materials, no studies exist on the stability of the microstructures that have periodic

unit cells with circular voids under electromechanically coupled effect.

1.6 The Outline of the Thesis

In Chapter 2, the fundamentals of non-linear continuum mechanics and the laws of

electrostatics are presented to obtain the coupled electro-mechanical equations for

EAPs. The governing differential equations are formulated at large strains since the

electro-mechanical interaction results in finite deformations. Hence, the chapter be-
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gins with the fundamentals of continuum mechanics. Next, it continues with the laws

of continuum electrostatics. The expressions are combined to obtain a coupled elec-

tromechanical equation system for EAPs.

In Chapter 3, three hyperelastic material models are presented, two of which is in-

troduced for the coupled electro-mechanical investigations and one for the pattern

transformation under purely mechanical effects. One of the electromechanical hyper-

elastic models is provided considering the incompressible nature of EAPs whereas

the other is a phenomenological model which is concerned with compressible behav-

ior of EAPs. In instablity analyses, two term I1-based Mooney-Rivlin material model

is employed.

Chapter 4 is devoted to the finite element discretization of the coupled electro-mechanical

equations. At first, the preliminary equations of electromechanical equations with

prescribed boundary conditions are recalled. Then, the weak form of electromechan-

ically coupled equations is discretized. Within the iterative solution procedure of the

Newton method, the non-linear residual vectors are linearized to obtain the electro-

mechanical solution vectors.

Chapter 5 is concerned with the respresentative numerical analyses where the con-

vergence analyzes are performed to ensure the validity of the generated models for

understanding the coupled electro-mechanical behavior of EAPs and assuring the sta-

bility analysis of periodic microstructural materials. Moreover, by combining these

models, which are assured for their accuracy, the effect of coupled electro-mechanical

effects on materials possessing periodic microstructure is investigated.

Finally, in Chapter 6, conclusion drawn from the validated and generated models for

EAPs with periodic microstructures are given.
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CHAPTER 2

FUNDAMENTALS OF CONTINUUM MECHANICS AND

ELECTROSTATICS

This chapter outlines the fundamental equations of non-linear continuum mechan-

ics and electrostatics in large deformations, which constitute the basis of coupled

electro-mechanical equations. Finite strain continuum mechanics provides mappings

between geometric settings, stress expressions for each settings, and transformations

between stress and deformation-related quantities. The balance equations of solids

undergoing finite deformations are also provided in this chapter. In addition to non-

linear continuum mechanics, continuum electrostatics is introduced. The fundamen-

tal laws of electrostatics, such as Coulomb’s law, Gauss’s law, Faraday’s law, and

Maxwell’s equations are presented in the forthcoming subsections. Furthermore, the

transformations of electrostatic equations between reference and current states are

established. Finally, electrical equations from electrostatics are combined with me-

chanical equations to form a system of coupled electro-mechanical equations.

2.1 Fundamentals of Continuum Mechanics

In this section, the fundamental equations of continuum mechanics that form the basis

for the rest of the thesis are given. For this purpose, various references are cited and

the information required for the mechanical part of the associated electro-mechanical

expressions is presented. For more detailed information, the reader is referred to

[9, 26, 29, 46, 47] and the references cited therein.
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2.1.1 The Motion of a Material Body and Deformation Measures

Being different from atomistic and molecular theories, a continuum or a material

body, denoted as B, possess infinitely many material points, one of which is denoted

as P ∈ B in Figure 2.1. The material point P is identified in the three dimensional

Euclidean space, R3. When a continuum body B moves, it occupies different regions

in Euclidean space R
3 at any instant of time t ∈ R+, which is defined as the configu-

ration of the material body and it is characterized by χt as

χ :











B → B ⊂ R
3 ,

P ∈ B 7→ X = χt0
(P ) ∈ B .

(2.1)

Reference state involves the placement of a solid body at a reference time t0, and it

generally refers to the stress-free configuration of a body. Hence, the reference state

can be defined as the configuration of the body at time t0 or B ≡ χt0
(B). Similarly,

S ≡ χt(B) is the configuration of the body at current time t > t0. The position vector

of a material point P at reference state can be denoted as X ∈ B. Likewise, at current

time t, spatial coordinates can be identified with the spatial position vector, x ∈ S ,

depicted in Figure 2.1. The position vectors at reference and spatial configuration can

be decomposed into components and their basis such that position vector at reference

state can be defined as X = XIEI for I = 1, 2, 3. As in the case of the position

vector at the reference state, the spatial position vector can also be decomposed as

x = xi ei for i = 1, 2, 3. It is important to note that upper case indices is employed for

Lagrangian state vectors or tensors in indicial notation, whereas lower case letters is

used for Eulerian counterparts. In addition, EI and ei are basis vectors for Lagrangian

and Eulerian configurations, respectively.

As one of the most fundamental representations in finite strain continuum mechanics,

the non-linear deformation map ϕt(X) describes the motion of a solid body from ini-

tial (reference, Lagrangian) configuration (χt0
(B)) to the current (spatial, Eulerian)

configuration (χt(B)).

ϕt(X) :











B → S = ϕt(B) ,

X 7→ x = ϕ(X, t) := χt ◦ χ−1
t0 (X) .

(2.2)

The non-linear deformation map ϕt(X) is one-to-one and bijective. Consequently,
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Figure 2.1: The motion of a solid body in time t ∈ R+.

the inverse of the deformation map can be obtained uniquely as

ϕ−1
t (x) :











S → B ,

x 7→ X = ϕ−1(x, t) := χt0
◦ χ−1

t (x) .
(2.3)

At any instant of time t ∈ R+, the non-linear deformation map states the correspond-

ing configuration of a material point. At that instant of time, the material velocity

V
(

X, t
)

∈ TxS , which is parametrized by the material point X , can be determined

by the time rate of change of its configuration.

V
(

X, t
)

:=
∂

∂t
ϕ
(

X, t
)

=
d

dt
ϕX

(

t
)

. (2.4)

Likewise, the material acceleration, A
(

X, t
)

∈ TxS can be determined by

A
(

X, t
)

:=
∂

∂t
V
(

X, t
)

=
d

dt
V X

(

t
)

. (2.5)

It should be emphasized that V
(

X, t
)

and A
(

X, t
)

are vector fields and they belong

to the tangent space of the current configuration TxS . When the material velocity and

acceleration are expressed in terms of spatial coordinates x, they are called the spatial

velocity, v
(

x, t
)

∈ TxS , and the spatial acceleration, a
(

x, t
)

∈ TxS , respectively.

They can be obtained as

v
(

x, t
)

:= V
(

ϕ−1
t

(

x
)

, t
)

= V t

(

X
)

◦ϕ−1
t

(

x
)

,

a
(

x, t
)

:= A
(

ϕ−1
t

(

x
)

, t
)

= At

(

X
)

◦ϕ−1
t

(

x
)

.
(2.6)
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The so-called deformation gradient F transforms or maps a tangent vector in the

reference configuration T ∈ TXB into the vector in the current configuration t ∈ TxS
as depicted in Figure 2.2.

F :











TXB → TxS ,

T 7→ t = FT ,
(2.7)

where TXB and TxS are the tangent spaces of the reference and current settings,

respectively.

B

X

X

F

x

S

dx

Figure 2.2: The deformation gradient, F , transforms tangential vector dX ∈ TXB
in reference configuration into its counterpart in current configuration dx ∈ TxS by

dx := F dX .

As a consequence, deformation gradient is called the tangent map that can also be

defined as the Fréchet derivative of the non-linear deformation map with respect to

material coordinates X .

F (X) = ∇Xϕ(X, t) . (2.8)

Deformation gradient tensor can be denoted as F i
I := ∂ϕi

∂XI in indicial notation with

ti = F i
I T

I .

One of the most important constraint in kinematics is the Jacobian, or volume map

such that J := det
[

F
]

> 0 to eliminate penetration of the material points. The

Jacobian can be found by the relation between the infinitesimal volume element in

the initial configuration dV and that in the current configuration dv. Infinitesimal

volume elements dV and dv can be defined as the scalar triple products of tangent

14



vectors dXI=1,2,3 ∈ TXB and dxi=1,2,3 ∈ TxS , i.e.

dV = dX1 ·
(

dX2 × dX3
)

,

dv = dx1 ·
(

dx2 × dx3
)

.
(2.9)

Employing relation (2.9), the Jacobian can be obtained as:

dv =
(

F dX1
)

·
(

(

F dX2
)

×
(

F dX3
)

)

= detF dV := JdV . (2.10)

The representation of volume map can be described as:

B

dV
detF

S

dvX x

Figure 2.3: The volume map (J := detF ) maps infinitesimal volume element dV in

reference configuration into the infinitesimal volume element in current configuration

dv by dv := JdV .

Therefore, the Jacobian maps the infinitesimal volume element in the reference con-

figuration into its counterpart in the current configuration.

J = detF :











R+ → R+ ,

dV 7→ dv = JdV .
(2.11)

While the deformation gradient, F maps the tangent vectors and the Jacobian J maps

the volume elements, the normal map transforms the area element in the reference

configuration into its counterpart in the spatial configuration employing Nanson’s

formula, i.e. n da := cof
[

F
]

N dA where cof
[

F
]

:= J F−T . This equivalance can

be found by using the geometrical meaning of the area element. Vector or cross prod-

uct of two infinitesimal vector elements presents an vectorial area which is spanned

15



by these vectors and its normal vector.

NdA = dX2 × dX3 ,

nda = dx2 × dx3 .
(2.12)

Since dx1 · nda = dv = JdV , the above equation becomes:
(

F dX1
)

· nda = JdX1 ·
(

dX2 × dX3
)

,
(

F dX1
)

· nda = JdX1 ·NdA ,
(

dX1F T
)

· nda = dX1 · JNdA for any dX1 6= 0 ,

F T · nda = JNdA ,

nda = JF−TNdA := cof
[

F
]

NdA .

(2.13)

Hence, the normal map, F−T , maps the normal of a surface in the reference configu-

ration into the surface normal in the current configuration. The normal map can then

be defined as:

F−T :











T ∗
XB → T ∗

xS ,

N 7→ n = F−TN ,
(2.14)

where T ∗
XB and T ∗

xS are the co-tangent (normal) spaces for reference and current

settings, respectively. Normal map can be portrayed as in Figure 2.4.

B X

NdA cof
[

F
]

S

nda

x

Figure 2.4: The normal map (cof
[

F
]

) transforms normal vector NdA ∈ T ∗
XB in

reference configuration into its counterpart in current configuration nda ∈ T ∗
xS by

nda := cof
[

F
]

NdA.

Moreover, inverse of the deformation gradient tensor can be represented as
(

F−1
)I

i
:=

∂XI

∂xi with ni =
(

F−1
)I

i
NI .
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All these tensors can be evaluated by using a curvilinear coordinate system rather

than using the Cartesian coordinate system. In that case, metric tensors must be

introduced such that G = GIJ and g = gij are the co-variant reference and spatial

metrics, respectively. The co-variant reference metric G maps a vector in the tangent

space into a normal in the co-tangent space as

T ♭ = GT , where TI = GIJT
J . (2.15)

In a similar manner, the co-variant metric in the current configuration, i.e. g, maps a

vector in the tangent space into a normal in the co-tangent space as

t♭ = gt, where ti = gijt
j . (2.16)

Thus, the co-variant reference metric G and the current metric g can be defined as

G : TXB → T ∗
XB ,

g : TxS → T ∗
xS .

(2.17)

Analogously, the inverse of the co-variant metric tensors can be defined as

T = G−1T ♭, where T I =
(

G−1
)IJ

TJ ,

t = g−1t♭, where ti =
(

g−1
)ij

tj .
(2.18)

Metric tensors become Kronecker’s delta, when they are used in the Cartesian coordi-

nate system such as GIJ = δIJ and gij = δij . In fact, Kronecker’s deltas are defined

as δIJ in the reference configuration and δij in the current configuration. However,

in order to satisfy either an index raising or lowering operation for metric tensors,

Kronecker’s deltas are defined as either a fully index raised case or a lowered case.

Additionally, it must be emphasized that metric tensors are both positive definite ten-

sors. In Cartesian coordinate system, they are defined as:

GIJ :











1, if I = J ,

0, if I 6= J .
gij :











1, if i = j ,

0, if i 6= j .
(2.19)

2.1.2 Cauchy-Green Tensors

For a given deformation, the Lagrangian vector T
(

X
)

∈ TXB, whose length can be

denoted as | T |G=
√
T ·GT becomes an Eulerian vector t = FT ∈ TxS , whose
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length can be determined by | t |g=
√
t · gt. If the length of the Lagrangian vector

T is taken as unity, | T |G= 1, the ratio of the length of the Eulerian vector to that its

the Lagrangian counterpart will give the stretch, λ. Using this definition, the stretch

can be found by

λ :=
| t |g
| T |G

=

√
t · gt√

T ·GT

=

√

(

FT
)

·
(

gFT
)

√
T ·GT

for | T |G= 1

=
√

T ·
(

F TgF
)

T

=
√
T ·CT

=:| T |C ,

(2.20)

where C is the right Cauchy-Green tensor and it is defined by

C := ϕ∗
(

g
)

= F TgF , (2.21)

The right Cauchy-Green tensor is the pull-back of the spatial metric tensor and pull-

back operation can be denoted by ϕ∗ operator. If the length of the Eulerian vector is

taken as unity, using the expression T = F−1t ∈ TXB inverse of the stretch can be

defined as:

λ−1 :=
| T |G
| t |G

=

√
T ·GT√
t · gt

=

√

(

F−1t
)

·G
(

F−1t
)

√
t · gt

=
√

t ·
(

F−TGF−1
)

t

=
√
t · ct

=:| t |c ,

(2.22)

where c is the inverse of the left Cauchy-Green tensor, b. The inverse of the left

Cauchy-Green tensor is the push-forward of the Lagrangian metric G and can be

defined as

c := ϕ∗

(

G
)

= F−TGF−1 , (2.23)

where ϕ∗ is the push-forward operator. Analogously, the Lagrangian normal vector

N
(

X
)

∈ T ∗
XB becomes the Eulerian normal vector n

(

x
)

∈ T ∗
XS by the normal map
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n := F−TN . Since stretch is defined as the ratio of the length of the Eulerian object

to its Lagrangian counterpart, the area stretch, which is defined as ν, is the ratio of

the area of an Eulerian object, | n |g−1 , to the area of a Lagrangian object, | N |G−1 .

If | N |G−1= 1, then area stretch can be found by:

ν :=
| n |g−1

| N |G−1

=

√

n · g−1n√
N ·G−1N

=

√

(

F−TN
)

· g−1
(

F−TN
)

√
N ·G−1N

=
√

N ·
(

F−1g−1F−T
)

N

=
√

N ·C−1N

=:| N |C−1 ,

(2.24)

where C−1 is the inverse of the right Cauchy-Green tensor. Moreover, it is the pull-

back of inverse of the Eulerian metric tensor; that is,

C−1 := ϕ∗
(

g−1
)

= F−1g−1F−T . (2.25)

In the spatial description, for the inverse of the area stretch, | n |g−1= 1 is specified

using N := F Tn ∈ T ∗
XB

ν−1 :=
| N |G−1

| n |g−1

=

√
N ·G−1N
√

n · g−1n

=

√

(

F Tn
)

·G−1
(

F Tn
)

√

n · g−1n

=
√

n ·
(

FG−1F T
)

n

=
√
n · bn

=:| n |b ,

(2.26)

where b is the left Cauchy-Green tensor, which is none other than the push-forward

of the inverse of the Lagrangian metric tensor, G−1

b := ϕ∗

(

G−1
)

= FG−1F T . (2.27)

The push-forward and pull-back operations can be carried out easily by using the

commutative diagram presented in Figure 2.5.
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G−1G c b

F−T

F

T ∗
XB T ∗

xS

TxS

TXB

X
x

xX

T ∗
XB

T ∗
xS

TxS

TXB

C−1C g g−1

F−T

F

X x

xX

Figure 2.5: Commutative Diagram for deformation tensors. Combination of the push-

forward and pull-back operations among the deformation tensors.

2.1.3 Material and Spatial Velocity Gradients

The time rate of change of a vector t ∈ TxS , which is the spatial form of the La-

grangian vector T ∈ TXB and can be found by the relation t = FT , is defined as

ṫ := Ḟ T =: LT , (2.28)

where the time rate of change of deformation gradient can be determined by:

L = Ḟ =
∂

∂t

(

∇Xϕ
(

X, t
)

)

= ∇X

( ∂

∂t
ϕ
(

X, t
)

)

= ∇XV
(

X, t
)

. (2.29)

Geometrically, the material velocity gradient L can be expressed as

L
(

X, t
)

:=











TXB → TxS ,

T 7→ ṫ = LT .
(2.30)

Hence, the time derivative of the deformation gradient can also be called as the ma-

terial velocity gradient. Employing that T = F−1t, spatial velocity gradient can be

defined as

ṫ := Ḟ F−1t =: lt , (2.31)

where

l := Ḟ F−1 = LF−1 = ∇X

(

V
(

X, t
)

)

· ∇xX = ∇x

(

v
(

x, t
)

)

. (2.32)
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2.1.4 The Lie Derivative of Spatial Objects

The Lie derivative is associated with the relative change of a spatial object in time.

The Lie derivative of a spatial object can be determined in three steps:

1. Pull-back of the spatial object to the reference configuration

2. Material time derivative of the pulled-back object

3. Push-forward of the material time derivative of the pulled-back object

In other words, the Lie derivative of the spatial object can be determined by

Lv

(

•
)

= ϕ∗

[ d

dt

{

ϕ∗
(

•
)}

]

. (2.33)

To illustrate, the Lie derivative of the Eulerian metric g can be determined by:

1. Pull-back operation

ϕ∗
(

g
)

= F TgF = C ,

2. Material time derivative of C

d

dt
C = Ċ = Ḟ

T
gF + F T ġF + F TgḞ ,

where ġ = 0,

3. Push-forward operation

ϕ∗

(

Ḟ
T
gF + F TgḞ

)

= F−T
[

Ḟ
T
gF + F TgḞ

]

F−1

=
(

Ḟ F−1
)T

g + g
(

Ḟ F−1
)

= lTg + gl ,

Hence, the Lie derivative of Eulerian metric tensor is found to be Lv

(

g
)

=

lTg + gl

It is important to note that the Lie derivative yields the basic class of objective time

derivatives of spatial tensors, since they are not affected from the superimposed rigid

body motions.
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2.1.5 The Cauchy’s Mechanical Stress Theorem

Consider a material body in its deformed configuration S . When an arbitrary sub-

domain PB ⊂ B is extracted from the whole body S , there exist a surface traction

t on the removed body according to the Euler’s cut principle. In a similar manner,

on a surface of the material subdomain PB ⊂ B, a traction force T̃ occurs due to

the rest of the body when the material is cut out off the whole material domain B in

the undeformed configuration. Here, t represents the Cauchy (true) surface traction

vector exerted on the surface of the particular subdomain ∂PS which is depicted in

Figure 2.35.

T̃
N

dA

X

∂PB

PB

B

F

F−T

nt

da
x

PS

∂PS

S

Figure 2.6: Euler’s Cut Principle. The undeformed PB and deformed PS parts, their

corresponding traction and normal vectors.

According to the Cauchy’s stress theorem, there exists a unique second-order tensor

called the Cauchy or true stress tensor and denoted as σ such that

t
(

x, t,n
)

:= σ
(

x, t
)

· n . (2.34)

Hence, the Cauchy stress tensor can be defined as an Eulerian object that maps normal

vectors n onto tangent vectors t and denoted as

σ :=











T ∗
xS → TxS ,

n 7→ t = σ n, where ti = σijnj .
(2.35)

The Cauchy stress tensor is symmetric, i.e. σ = σT . The symmetry condition for the

Cauchy stress tensor will be shown in the upcoming sections.
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There are other stress measures employed, one of which is called the Kirchhoff stress

tensor. The Kirchhoff stress tensor is also a spatial stress measure and is defined as

τ := Jσ. From the geometrical viewpoint, τ can be tought as

τ :=











T ∗
xS → TxS ,

n 7→ Jt = τ n, where Jti = τ ijnj ,
(2.36)

where J is the Jacobian defined in (2.10). Since the Cauchy stress tensor is symmet-

ric, the Kirchhoff stress tensor is also symmetric; that is, τ = τ T . There are also

Lagrangian counterparts of the Eulerian Cauchy’s theorem that transforms the La-

grangian normal vector N onto the Eulerian traction vector T ∈ TxS by introducing

the first Piola-Kirchhoff stress tensor P . Hence the Lagrangian counterpart of the

Cauchy’s theorem reads

T
(

x, t,N
)

= P
(

x, t
)

·N . (2.37)

The first Piola-Kirchhoff stress is defined as

P :=











T ∗
XB → TxS ,

N 7→ T = P N , where T i = P iJNJ .
(2.38)

It is important to emphasize that T is the traction vector associated with the deformed

surface on ∂PS and both t and T are parallel vectors. T is required to satisfy

T dA = tda , (2.39)

for force equality. Employing (2.13) and (2.39), the first Piola-Kirchhoff stress tensor

can be determined by

T dA = tda ,

P N dA = σ n da, where n da = J F−T N dA ,

P N dA = J σ F−T N dA .

(2.40)

Employing last part of (2.40), P = J σ F−T is obtained. As a result, the first Piola-

Kirchhoff stress tensor is the pull-back of the Kirchhoff stress tensor, or vice versa

P = ϕ∗
(

τ
)

. (2.41)

23



Another important point for the first Piola-Kirchhoff stress tensor is that it is a two-

point tensor such that it maps a Lagrangian normal to an Eulerian vector. In addition,

although the Cauchy and Kirchhoff stress tensors are symmetric, i.e. σ = σT and

τ = τ T , based on (2.40) the first Piola-Kirchhoff stress tensor is generally unsym-

metric as in the case of deformation gradient.

Another Cauchy type theorem in the Lagrangian configuration defines the second

Piola-Kirchhoff stress tensor that maps a Lagrangian normal vector N ∈ T ∗
XB to a

Lagrangian traction vector T̃ ∈ TXB such that

T̃
(

X, t,N
)

= S
(

X, t
)

·N , (2.42)

where

S :=











T ∗
XB → TXB ,

N 7→ T̃ = S N , where T̃ I = SIJNJ .
(2.43)

It is known that the nominal stress traction vector T ∈ TxS is the push-forward of

T̃ ∈ TXB. In other words, it can be written as follows:

T̃ = F−1 T . (2.44)

Combining (2.38), and (2.40-2.44), the second Piola-Kirchhoff stress tensor is found

to be the pull-back of the first Piola-Kirchhoff stress tensor and the Kirchhoff stress

tensor. To illustrate, employing (2.40), (2.43), and (2.44), the second Piola-Kirchhoff

stress tensor can be obtained by

T̃ = F−1 T = F−1 P N = S N = F−1 τ F−T N . (2.45)

Consequently, (2.45) can be denoted as

S = ϕ∗
(

P
)

= ϕ∗
(

τ
)

. (2.46)

Apperantly, all these push-forward and pull-back operations can be illustrated by us-

ing the commutative diagram described in Figure 2.7.
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S

F−T

gP

P

τ := Jσ

F

T ∗
XB

T ∗
xS

TxS

TXB

N

n

t

TT̃

Figure 2.7: Commutative Diagram for stress tensors. Combination of the push-

forward and pull-back operations among the stress measures.

2.2 Fundamentals of Electrostatics

This section will cover the basic expressions of electrostatic. Thus, the associated

electro-mechanical equations will be obtained by combining electrical expressions

with the mechanical equations introduced in Section 2.1. Fundamental equations of

electrostatics such as Coulomb’s law, Lorentz’s law, Faraday’s law and Maxwell’s

equations for electrostatics will be presented at first. Then, the balance equations of

continuum electromechanics will be introduced using geometric transformations of

electrical expressions for each configuration in order to obtain the coupled electro-

mechanical equations for upcoming chapters. For detailed information on electrostat-

ics and coupled electromechanics, the reader is referred to the references [9, 15, 26]

and the references cited therein.
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2.2.1 Coulomb’s Law and Lorentz Law of Force

One of the essential laws of electrostatics is the Coulomb’s law, which has been dis-

covered by Charles Augustin de Coulomb while conducting experiments on charged

particles at rest [26]. Coulomb states that when two charged particles, which are de-

noted by q and Q with opposite signs, are placed at locations x and x′, respectively.

They attract each other, whereas they repel each other when these two charges have

same sign. The law that determines the force of attraction on these charges is called

Coulomb’s law. Specifically, the force exerted on the charge q at position x due to

the charge Q at position x′ can be determined as

f
(

x, q
)

:=
1

4πǫ0
q Q

x− x′

| x− x′ |3 , (2.47)

where ǫ0 is called the electric permittivity of free space and it is 8.854 · 10−12
[

F/m
]

according to the SI system of units. Hence, the force of attraction on the particle q is

dependent upon the magnitude and sign of the charge itself and the distance between

the charges.

Another important electrostatic relation, the Lorentz law of force, states that the force

of attraction on the charge q at rest exists due to the electric field e
(

x
)

at position x

due to the presence of the electric charge Q at position x′ which can be defined as

f
(

x, q
)

:= qe
(

x
)

, where e
(

x
)

=
1

4πǫ0
Q

x− x′

| x− x′ |3 . (2.48)

It is important to state that electric charge q must be as small as possible, i.e. q → 0,

in order that it does not perturb the system. In other words, if magnitude of q is

considerably high, then, the force of attraction on charge Q may change its position,

hence, influence the electric field e
(

x
)

.

The Lorentz law, given in (2.48), considers the attractive force on the charge q in the

presence of a single charge Q. Considering several source of charges Qi at positions

x′
i where i = 1, 2, . . . , n, the principle of superposition can be used to find out the

resultant force of attraction on the test charge q, i.e.

e
(

x
)

=
n

∑

i=1

Qi

4πǫ0

x− x′

| x− x′ |3 . (2.49)
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When a case where magnetic effects are not ignored and the particle q is not at rest

but moving is considered and the instantaneous velocity of the particle q is assumed

to be v at position x, there is an extra force, to which particle q is subjected, due to

the magnetic induction vector bmg at position x. This force occurs in the direction

perpendicular to the instantaneous velocity v. Therefore, the Lorentz law can be

generalized as

f
(

x, q,v
)

:= qe
(

x
)

+ qv × bmg . (2.50)

2.2.2 Faraday’s Law

Considering the case that several source charges Qi at positions x′
i where i = 1, . . . , n

constitute a spherical volume S whose center is located at position x′, the total charge

within S can be determined by
n

∑

i=1

Qi =

∫

S

ρe
(

x′
)

dv′ , (2.51)

where ρe
(

x′
)

is called as volume charge density within the confined volume S . More-

over, it must be emphasized that dv′ = dv′
(

x′
)

.

Thus, the relation in (2.49) can be recast into

e
(

x
)

=
n

∑

i=1

Qi

4πǫ0

x− x′

| x− x′ |3 =
1

4πǫ0

∫

S

ρe
(

x′
) x− x′

| x− x′ |3 dv′ . (2.52)

For vector calculus, it is known that gradient operation can be handled by

x− x′

| x− x′ |3 := −∇x

( 1

| x− x′ |
)

= ∇x′

( 1

| x− x′ |
)

. (2.53)

Substituting (2.53) into (2.52), the electric field because of the contributions from all

source charges within volume S can be rewritten as

e
(

x
)

= −∇x

( 1

4πǫ0

∫

S

ρe
(

x′
)

| x− x′ | dv
′
)

. (2.54)

The latter states that electric field vector can be obtained by the gradient of a scalar

field function known as the electrostatic potential or the electric potential. Conse-

quently, the electric potential can be defined as

φ
(

x
)

:=
1

4πǫ0

∫

S

ρe
(

x′
)

| x− x′ | dv
′ . (2.55)
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Since the curl of a gradient of a scalar-valued function is zero, that is, ∇x×∇x

(

�
)

=

0 where � is any scalar-valued function, the first equation of electrostatics or Fara-

day’s law of electrostatics can be obtained as

curl
(

e
)

:= 0 where e = −∇x φ . (2.56)

2.2.3 Gauss’s Flux Theorem

The Gauss’s law of electrostatics expresses the electric flux through any closed sur-

face ∂S of volume S because of a source charge Q. For simplicity, to illustrate the

Gauss’s flux theorem, the closed volume S is assumed to be a sphere and that the

source charge is placed at the center of the sphere located at x′. Thus, (2.48) can be

rewritten in terms of the direction normal of the electric field vector as

e
(

x
)

=
1

4πǫ0
Q

n

| x− x′ |2 , (2.57)

where n := x−x′

|x−x′|
is defined as the radially outward direction normal at point x ∈ ∂S .

As a consequence, for a single source charge, flux through any infinitesimal area

element da at point x can be depicted as

e · n da :=| e | da =
1

4πǫ0

Qda

| x− x′ |2 , (2.58)

where da =| x − x′ |2 sin θdθ dγ in a spherical coordinate system. The total flux

through the surface of sphere can be determined by

∮

∂S

e · da =

∫ 2π

0

∫ π

0

Q

4πǫ0
sin θdθ dγ =

Q

ǫ0
. (2.59)

Note that (2.59) is written for a single source charge within the volume S enclosed

by the surface ∂S . For the same volume, provided that there are certain amount of

source charges within the volume S , the former can be generalized by employing the

principle of superposition as

∮

∂S

e · da =
n

∑

i=1

Qi

ǫ0
. (2.60)
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Combining (2.51) and (2.60), and employing the divergence theorem, (2.60) can also

be written as
∫

∂S

e · da =

∫

S

div
(

e
)

dv′ =

∫

S

ρe
(

x′
)

ǫ0
dv′ . (2.61)

The local form of 2.61 then becomes

div
(

e
)

:=
ρe
ǫ0

, (2.62)

which is called the second equation of electrostatics or Gauss’s law.

The work done by electric field W e on a particle q can be determined by

W e =

∫ x2

x1

f
(

x, q
)

· dx . (2.63)

Incorporating (2.48), (2.56), into (2.63), it becomes

W e =

∫ x2

x1

qe
(

x
)

· dx =

∫ x1

x2

q ∇xφ · dx . (2.64)

Using the fundamental theorem of calculus, (2.64) is tranformed into
∫ x1

x2

q ∇xφ · dx = q φ|x1

x2
= U1 − U2 . (2.65)

In short, the negative change of potential energy or work required to move the par-

ticle q from position x1 to x2 in the presence of an electric field e is the difference

between the corresponding electric potentials at x1 and at x2 times the particle charge

q. Since the change of potential energy is the negative of work done by the system,

the potential energy at x1 and x2 will be determined as

U1 = q φ
(

x1

)

, and U2 = q φ
(

x2

)

. (2.66)

2.2.4 Electric Polarization and Electric Displacement Vector

Up to now, the electric field is applied in the vacuum. When the substance is placed in

an electric field, there will be the Coulombic attraction on the atoms of the substance.

At first, neutrallity of the nucleus will change, i.e. positive charges try to move in the

direction of electric field and opposite occurs for the negative charges. Since negative
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charges are lighter than the positive charges, at first, negative charges try to move in

the opposite direction of electric field.

For a general case in a polarized atom, it is assumed that positive and negative charges

are displaced by a small amount δ
2

from the initial center of nucleus. The vector from

negative charges to positive charges is called the electric dipole vector or the electric

dipole moment, δ. The electric field is also externally applied such that there exists a

force of attraction on these particles such that the direction of the force is dependent

upon the direction of the electric field vector and the sign of the particle. The net

force on these particles in the atom will vanish. However, depending on the direction

of δ, there occurs a torque between these two particles, trying to orient the particles

in the direction of the electric field. The direction and magnitude of the torque can be

expressed as

Ω := δ × f . (2.67)

Using (2.48), the latter becomes

Ω := δ × qe

Ω := p× e and | Ω |=| p || e | sin
(

θ
)

,
(2.68)

where p := qδ which is called the electric polarization vector directed from negative

charges to positive charges and θ is the angle between electric field vector and electric

dipole moment.

The infinitesimal work done by the torque is the scalar product of the torque, Ω, and

infinitesimal rotation, dθ, i.e.

dW p := Ω · dθ = −pe sin
(

θ
)

dθ , (2.69)

where "-" sign that is used in (2.69) indicates that the direction of the torque and the

rotation is opposite. Hence, for finite rotations, the total work done on electric dipole

by the electric field vector can be calculated as

W p =

∫ θ2

θ1

−pe sin
(

θ
)

dθ = pe
(

cos
(

θ2
)

− cos
(

θ1
)

)

. (2.70)

Note that the expression in (2.70) is none other than the scalar product of the electric
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polarization and the electric field vectors

∆W = U = p · e . (2.71)

As a result, combining (2.55), (2.66), and (2.71), the electric potential can be rewritten

through the electric polarization

φ
(

x
)

=

∫

S

1

4πǫ0

p
(

x′
)

·
(

x− x′
)

| x− x′ |3 dv′ . (2.72)

According to [9] and many others, dielectric materials or just dielectrics are the ma-

terials that show certain polarization in the presence of an electric field such that

positive charges accumulate on the surface in the direction of electric field vector and

negative ones will move towards opposite direction due to the polarization. Hence,

the total charge density in (2.62) can be decomposed into bound charges ρb and free

charges ρf . Taking into consideration of the electric potantial incorporating polariza-

tion, (2.72), the electric potential can be rewritten for the dielectric materials using

(2.53) as

φ
(

x
)

=
1

4πǫ0

∫

S

p
(

x′
)

· ∇x′

( 1

| x− x′ |
)

dv′ . (2.73)

The divergence theorem is applied to (2.73) to obtain

φ
(

x
)

=
1

4πǫ0

∫

S

(

−∇x′ ·p
(

x′
)

) 1

| x− x′ | dv
′+

1

4πǫ0

∫

∂S

p
(

x′
)

· n′

| x− x′ | da
′ , (2.74)

which can be rewritten as

φ
(

x
)

=
1

4πǫ0

∫

S

ρb
| x− x′ | dv

′ +
1

4πǫ0

∫

∂S

σb

| x− x′ | da
′ . (2.75)

Since it is known that ρb
(

x′
)

= −∇x′ · p
(

x′
)

=: −div ′
(

p
)

at any point x′ in V , it

can be inferred that ρb
(

x
)

= −∇x ·p
(

x
)

= −div
(

p
)

at any point x in V . Therefore,

the first term on the right-hand side of (2.75) is defined as the contribution of volume

density of bound charges, and the second term is the Cauchy’s theorem for electric

expressions as follows

ρb = −div
(

p
)

in S , σb = p · n on ∂S . (2.76)

Since the total volume charge denisity is detemined by (2.62) and the latter is the

bound charge density for polarized materials or dielectric materials, the rest can be
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explained by the density of free charges, i.e. ρf . Thus, the free charge density can be

found by

ρe = ρb + ρf ,

ǫ0 div
(

e
)

= −div
(

p
)

+ ρf ,

div
(

ǫ0e+ p
)

= div
(

d
)

= ρf ,

(2.77)

where d := ǫ0e + p is the electric displacement vector. It should be noted that in

isotropic linear dielectrics, the polarization vector is the parallel to the electric field

vector, hence (2.77) simplifies to

d = ǫre , (2.78)

where ǫr is the relative electric permittivity and different from the electric permittiv-

ity of vacuum ǫ0. In order to understand the electric displacement vector, a capacitor

should be considered. The capacitor, by definition, is a device that stores electric

potential energy and electric charge. It consists of two conductors that surround di-

electric material. Since there occur electric charges on these two parallel conductors,

the electric field develops between them. In other words, one of the conductors is fully

filled with positive charges whereas the other is filled with negative charges, resulting

in the electric field between these two conductors. The electric field between two con-

ductor plates is directed from positively charged conductor to negatively charged one.

Due to the electric field, there exists bound charges on the surfaces of the dielectric

due to the polarization. The orientation of the bound charges are expressed such that

negative bound charges try to move to the surface of the positively charged conductor

and vice versa. The orientation of the bound charges creates another electric field

within the dielectric material whose direction is opposite to the electric field created

by conductors. The total (or net) charge enclosed on the surface of the capacitor and

dielectric is called free charges on the surface which are the consequence of the elec-

tric displacement vector. The electric displacement occurs until the net electric field

vanishes, which may happen as long as charge distribution is canceled out [9, 48].
∫

∂S

d · n da =

∫

∂S

σf da (2.79)

(2.79) is the Cauchy’s theorem for electric expression.
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2.2.5 Geometric Mapping For Electrical Objects

For continuum electromechanics, the transformation of electrical objects is essentially

transformed to each other [9]. Using (2.56), the electric field vector in the Eulerian

configuration is found as

e = −∇x φ ,

φ
(

x
)

= −
∫ x

x′

e · dx =

∫ x′

x

e · dx .
(2.80)

Combining (2.7) and (2.80), (2.80) can be recast into
∫ x′

x

e · dx =

∫ X′

X

e · F dX =

∫ X′

X

E · dX , (2.81)

where e ∈ T ∗
xS and E ∈ T ∗

XB.

The Lagrangian electric field vector is denoted by E and it is the pull-back of the

Eulerian electric field; that is,

E = ϕ∗
(

e
)

= F Te . (2.82)

Rearranging the definition in (2.79) and employing the Nanson’s formula for area

map in (2.13), the electric displacement vector in the Lagrangian configuration can

be obtained as
∫

∂S

d · nda =

∫

∂B

d · JF−TNdA =

∫

∂B

D ·NdA (2.83)

Accordingly, the electric displacement vector in the Lagrangian configuration D is

defined as the pull-back of the Eulerian electric displacement.

D = ϕ∗
(

d
)

= JF−1d = F−1d̃ , (2.84)

where d̃ ∈ TxS and D ∈ TXB.

Similarly, the electric polarization vector defined in (2.76) is the Eulerian tangent

space can be transformed into its Lagrangian counterpart as
∫

∂S

p · nda =

∫

∂B

p · JF−TNdA =

∫

∂B

P ·NdA (2.85)
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where p ∈ TxS and P ∈ TXB.

The electric field, electric displacement, and electric polarization vectors in each set-

ting can be shown in a commutative diagram as shown in Figure 2.8.

E

T ∗
XB F−T

e

T ∗
xS

D

TXB
F

d̃

TxS

Figure 2.8: Commutative Diagram for electrostatical objects in each configuration.

However, it is important to emphasize that the electric field belong to the covari-

ant (normal) space while the electric displacement and electric polarization vectors

are defined in contravariant (tangent) space. Therefore, the relation (2.77) should

be rewritten considering the space of the vectors. The final form of (2.77) will be

presented as

d = ǫ0g
−1 e+ p (2.86)

2.2.6 Balance Laws of Continuum Electromechanics

The balance laws in continuum mechanics consist of a fundamental set of equations.

These are the conservation of mass, the conservation of linear and angular momen-

tum, and the conservation of energy. The contribution of an electric activity on the

balance laws of continuum mechanics will show additional effects for the coupled

electro-mechanical interactions. The global balance laws are written and all the for-
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mulations applies for the rest of the thesis in the Eulerian setting.

2.2.6.1 Conservation of Mass

For closed systems such as PS ⊂ S defined in the Cauchy’s theorem in (2.35), there

is no mass flow in or out with time, meaning that the mass cannot be produced or

destroyed within the system. In other words, MPB
= MPS

. Hence, the relation for

the conservation of mass of the cut PS ⊂ S can be defined as

MPB
= MPS

,
∫

PB

ρ0
(

X
)

dV =

∫

PS

ρ
(

x, t
)

dv .
(2.87)

Recalling the relation between the volume elements, i.e. the Jacobi map defined in

(2.11), (2.87) becomes
∫

PB

ρ0
(

X
)

dV =

∫

PB

ρ
(

x, t
)

JdV . (2.88)

Localizing the latter for arbitrarily small PB we end up with the first equation of the

conservation of mass

ρ0
(

X
)

= J ρ
(

x, t
)

. (2.89)

Since the mass density in the Lagrangian setting does not depend on time, (2.87)2 can

be reconsidered as

d

dt

(

MPB

)

= 0 =
d

dt

(

MPS

)

,

d

dt

[

∫

PB

ρ0
(

X
)

dV
]

=
d

dt

[

∫

PB

ρ
(

x, t
)

JdV
]

.
(2.90)

Using the chain rule for (2.90)2, it will possess its final form as

d

dt

[

∫

PB

ρ
(

x, t
)

JdV
]

=

∫

PB

ρ̇
(

x, t
)

JdV +

∫

PB

ρ
(

x, t
)

J̇dV . (2.91)

(2.91) has to hold locally as well, i.e.

ρ̇J + ρJ̇ = ρ̇0 = 0 . (2.92)
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The rate of the Jacobi map, J = det
(

F
)

, can be obtained as

J̇ =
∂

∂F

[

detF
]

: Ḟ = JF−T : Ḟ = J1 : Ḟ F−1 . (2.93)

In (2.93), Ḟ F−1 is known as spatial velocity gradient in (2.32). Finally, the rate

equation for the conservation of mass is obtained as

Jρ̇+ Jρ1 : l = 0 , (2.94)

or ∀J 6= 0, otherwise, (2.94) is trivially solved.

ρ̇+ ρ1 : l = ρ̇+ ρ div
(

v
)

= 0 , (2.95)

2.2.6.2 Balance of Linear Momentum

In the Eulerian setting, the balance of linear momentum can be expressed as the equal-

ity between the time rate of change of the linear momentum (IPS
) and the sum of the

forces (FPS
) acting on the body, PS .

∂

∂t

(

IPS

)

:= FPS
(2.96)

with

IPS
: =

∫

PS

ρ
(

x, t
)

v
(

x, t
)

dv ,

FPS
: =

∫

PS

ρ
(

x, t
)

γ
(

x, t
)

dv +

∫

∂PS

t
(

x, t
)

da ,

(2.97)

where γ is the mass specific body force and t is the mechanical Cauchy stress traction,

defined in (2.35). It must be stated that the total body force γ is the summation of the

mechanical body force, γm and the electrical body force, γe, that is, γ = γm + γe

At first, the left-hand side of (2.96) is considered. In that case, the time rate of change

of momentum can be expressed as

d

dt

[

∫

PS

ρv dv
]

=

∫

PS

ρv̇ dv +

∫

PS

v
d

dt

[

ρdv
]

(2.98)

The last term on the right-hand side of (2.99) is fulfilled automatically due to the

conservation of mass. Therefore, (2.99) boils down to

d

dt

[

∫

PS

ρv dv
]

=

∫

PS

ρv̇ dv . (2.99)
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In (2.97)2, the surface integral term on the right-hand side can be transformed into a

volume integral using the Cauchy’s theorem (2.35) and the divergence theorem as
∫

∂PS

t da =

∫

∂PS

σ · n da =

∫

PS

div
(

σ
)

dv . (2.100)

Using (2.97)2, (2.99), and (2.100), the final form of the balance of linear momentum

can be written as
∫

PS

ρ v̇ dv =

∫

PS

ργ dv +

∫

PS

div
(

σ
)

dv . (2.101)

The local form of (2.101) can be written for an arbitrary cut out PS :

ρv̇ = div
(

σ
)

+ ργ , (2.102)

where σ is the mechanical Cauchy stress. For the quasi-static case, (2.102) simplifies

to

div
(

σ
)

+ ργ = 0 (2.103)

Recall that the total body force can be decomposed into two by considering mechan-

ical and electrical contributions; that is, γ = γm + γe. According to [9], the electric

body force can be written as

ργe = div
(

σe
)

= ∇xe · p+ ρfg
−1e , (2.104)

where σe = g−1e⊗d− 1

2
ǫ0
(

e · g−1e
)

g−1 is the electric Maxwell stress. According

to [9], the former term on the right-hand side of (2.104) can be obtained by using the

two dipole model of non-interacting dipoles such that using the generalized Lorentz

law accounting for magnetic induction and the Taylor’s series expansion, the forces

applied on charges of dipole are rewritten and the resultant body force can be ob-

tained. Moreover, the latter one in (2.104) is the consideration of the forces due to

free charges. Hence, using (2.104) in (2.102), local form of the linear momentum

expression for the quasi-static case transforms into

div
(

σ + σe
)

+ ργm = div
(

σ
)

+ ργm = 0 , (2.105)

where σ is the total Cauchy stress and it is symmetric only for dielectric materials,

i.e. e ‖ d.
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2.2.6.3 Balance of Angular Momentum

The time change of angular momentum DPS
for the cut out element PS is equal to

the resultant moment MPS
which is summation of moments generated by the forces

acting on PS . In other words,

d

dt

(

DPS

)

:= MPS
, (2.106)

where

DPS
: =

∫

PS

x× ρ
(

x, t
)

v
(

x, t
)

dv ,

MPS
: =

∫

PS

[

x× ρ
(

x, t
)

γ
(

x, t
)

+ ρΩ
(

x
)]

dv +

∫

∂PS

x× t
(

x, t
)

da ,

(2.107)

In (2.107)1, the time rate of change of angular momentum can then be expressed as

d

dt

[

∫

PS

x× ρ v dv
]

=

∫

PS

ẋ× ρ v dv +

∫

PS

x× ρ v̇ dv (2.108)

Since ẋ = v and v×v = 0, then, the first part of the right-hand side of (2.108) drops

out and it becomes

d

dt

[

∫

PS

x× ρ v dv
]

=

∫

PS

x× ρ v̇ dv . (2.109)

The cross product can be written in indicial form as

a× b := ǫijkajbk , (2.110)

where ǫijk is the permutation symbol or the Levi-Civita symbol defined as

ǫijk =























1 : even permutation ,

−1 : odd permutation ,

0 : double index .

(2.111)

Combining (2.35), (2.110), and (2.111), the last term in (2.107) can be written in
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indicial form as
∫

∂PS

x× t
(

x, t
)

da =

∫

∂PS

ǫijkxjtk da ,

=

∫

∂PS

ǫijkxjσklnl da ,

=

∫

PS

∂
(

ǫijkxjσkl

)

∂xl

dv ,

=

∫

PS

ǫijkσkj dv +

∫

PS

ǫijkxj

∂σkl

∂xl

dv .

(2.112)

Hence, (2.107)2, (2.109), and (2.112) together yields
∫

PS

x×
[

ρv̇ − div
(

σ
)

− ργ
]

dv +

∫

PS

ρΩ
(

x
)

dv =

∫

PS

ǫijkσkjdv . (2.113)

The first term on the left-hand side of (2.113) vanishes identically due to the balance

of linear momentum (2.102). Then, (2.113) simplifies to
∫

PS

ρΩi dv =

∫

PS

ǫijkσkjdv . (2.114)

It is known that ǫijkǫimn = δjmδkn − δjnδkm. Using this identity in the local form of

(2.114), we end up with

1

2
ρǫimnΩi =

1

2
ǫimnǫijkσkj =

1

2

(

σmn − σnm

)

,

ρωmn = skew
(

σmn

)

(2.115)

where ω is the skew-symmetric tensor of the mechanical Cauchy stress and using

the definition in (2.68), it can be written as ρω = g−1e ⊗ p. Moreover, considering

(2.104), the skew symmetric part of electric Maxwell stress can be written as

skew
(

σe
)

= skew
(

g−1e⊗ p
)

= −skew
(

p⊗ g−1e
)

= −ρω . (2.116)

Consequently, skew-symmetric part of total Cauchy stress can be denoted as

skew
(

σ
)

= skew
(

σ + σe
)

= 0 . (2.117)

In other words, the total Cauchy stres is symmetric whereas mechanical part of the

total Cauchy stress is not [9].
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2.2.6.4 Balance of Energy

The balance of energy or the first law of thermodynamics dictates that the time rate

of change of the total energy EPS
, which is the sum of kinetic energy, i.e. KPS

, and

internal energy, that is, UPS
, is equal to the summation of mechanical power, PPS

,

and the thermal power, QPS
such that

∂

∂t

[

KPS
+ UPS

]

= PPS
+QPS

, (2.118)

where

KPS
: =

∫

PS

1

2
ρv · gvdv ,

UPS
: =

∫

PS

ρedv ,

PPS
: =

∫

PS

ργ · gv dv +

∫

∂PS

t · gv da ,

QPS
: =

∫

PS

ρr dv −
∫

∂PS

q da

(2.119)

where e is the internal energy density, r is the total energy supply such that r =

rm + re, and q is the heat flux vector such that h = q · n for the Cauchy-type

expression.

In (2.119)3, employing the Cauchy’s theorem and the divergence theorem respec-

tively, the mechanical power expression becomes
∫

PS

ργ · gv dv +

∫

∂PS

t · gv da : =

∫

PS

ργigijv
jdv +

∫

∂PS

tigijv
jda ,

=

∫

PS

ργigijv
jdv +

∫

∂PS

σiknk gijv
jda ,

=

∫

PS

ργigijv
jdv +

∫

PS

∂
(

σik gijv
j
)

∂
(

xk
) dv ,

=

∫

PS

ργigijv
jdv +

∫

PS

∂
(

σik
)

∂
(

xk
) gijv

jdv

+

∫

PS

σik gij
∂
(

vj
)

∂
(

xk
)dv ,

∫

PS

ργ · gv dv +

∫

∂PS

t · gv da =

∫

PS

ργ · gv dv +

∫

PS

div
(

σ
)

· gv dv

+

∫

PS

σ : gl dv .

(2.120)
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Moreover, the time rate of change of the kinetic and internal energies will be presented

as follows
∂

∂t

[

KPS
+ UPS

]

=

∫

PS

ρv̇ · gvdv +
∫

PS

ρėdv (2.121)

Combining (2.119), (2.120), and (2.121) along with h = q · n, the first law of ther-

modynamics can be written as
∫

PS

ρv̇ · gvdv +
∫

PS

ρėdv =

∫

PS

ργ · gv dv +

∫

PS

div
(

σ
)

· gv dv

+

∫

PS

σ : gl dv +

∫

PS

ρr dv

−
∫

PS

div
(

q
)

dv

∫

PS

gv
[

ρv̇ − div
(

σ
)

− ργ
]

dv +

∫

PS

ρėdv = −
∫

PS

div
(

q
)

dv

+

∫

PS

σ : gl dv +

∫

PS

ρr dv .

(2.122)

Rearranging (2.122) considering (2.102), the simplified expression for the balance of

energy can be obtained as
∫

PS

ρėdv = −
∫

PS

div
(

q
)

dv +

∫

PS

σ : gl dv +

∫

PS

ρr dv (2.123)

The local form of (2.123) can be written as:

ρė = −div
(

q
)

+ σ : gl + ρr , (2.124)

where ρr = ρrm + ρre and ρre = ρe · d
dt

(

p

ρ

)

obtained from the work done by the

electric forces on an electric dipole and the Taylor’s series expansion [9, 15].

2.2.6.5 Balance of Entropy

This balance equation is also known as the second law of thermodynamics, and com-

paring with the other balance expressions, it states that the internal entropy productıon

rate is always non-negative. Entropy can be defined as disorderness or the measure

of disorder. The balance of entropy can be expressed as

ΓPS
= ḢPS

− ṠPS
≥ 0 . (2.125)
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where

ΓPS
: =

∫

PS

ργ dv ,

ḢPS
: =

∫

PS

ρη̇ dv ,

ṠPS
: =

∫

PS

ρ
r

θ
dv −

∫

∂PS
q

·
n

θ da ,

(2.126)

where ρr = ρrm + ρre as in (2.124). In (2.125) and (2.126), ḢPS
denotes the rate

of entropy change and ṠPS
is defined as the entropy power. On the left-hand side of

(2.125), the term ΓPS
stand for the rate of entropy production. Then, the combination

of (2.125) and (2.126) will provide as the second law of thermodynamics in an integral

forms; that is,
∫

PS

ρ η̇ dv ≥
∫

PS

ρ
r

θ
dv −

∫

∂PS
q

·
n

θ da ,

∫

PS

ργ dv : =

∫

PS

ρη̇ dv −
∫

PS

ρ
r

θ
dv +

∫

∂PS

q · n
θ

da .

(2.127)

The last term in (2.127)2 is transferred into a volume integral by
∫

∂PS

q · n
θ

da =

∫

PS

div
(q

θ

)

dv ,

=

∫

PS

1

θ
div q dv −

∫

PS

1

θ2
q · ∇xθ dv

(2.128)

Employing (2.128) in (2.127)2, we arrive at
∫

PS

ρ γ dv :=

∫

PS

ρη̇ dv−
∫

PS

ρ
r

θ
dv+

∫

PS

1

θ
div q dv−

∫

PS

1

θ2
q ·∇xθ dv (2.129)

The local form of (2.129) yields

ργ := ρη̇ − ρ
r

θ
+

1

θ
div q − 1

θ2
q · ∇xθ ≥ 0 . (2.130)

The latter is called the Clausius-Duhem Inequality. It is obtained from (2.124) that

1

θ

(

ρrm − div q
)

=
1

θ

(

ρė− σ : gl− ρre
)

(2.131)

Next, an alternative form of the Clausius-Duhem Inequality is specified as

ργ := ρη̇ − 1

θ

(

ρė− σ : gl− ρre
)

− 1

θ2
q · ∇xθ ≥ 0 . (2.132)
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Besides, the spatial dissipation, ρD is defined as the product of entropy production

rate and the absolute temperature. In other words, ρD := ρθγ. Thus, the Clausius-

Duhem inequality can be rewritten in terms of spatial dissipation.

ρD := ρθη̇ − ρė+ σ : gl− ρre − 1

θ
q · ∇xθ ≥ 0 (2.133)

Spatial dissipation can be divided into two parts, namely the local dissipation (ρDloc)

or the Clausius-Planck Inequality (CPI) and the conductive dissipation (ρDcon) or

Fourier Inequality (FI) defined as

ρDloc : = ρθη̇ − ρė+ σ : gl− ρre ,

ρDcon : = −1

θ
q · ∇xθ ,

(2.134)

The Lagrangian form of the spatial dissipations in the Eulerian configuration can be

written employing the pull-back expressions as

ρ0Dloc : = ρ0θη̇ − ρ0ė+ gP : Ḟ − ρ0R
e ,

ρ0Dcon : = −1

θ
Q · ∇Xθ ,

(2.135)

In (2.135), the internal energy can be replaced by the Helmholtz free energy defined

as Ψ = e − θη using Legendre transformation. Consequently, an alternative form of

Clausius-Planck inequality is obtained

ρDloc := σ : gl− ρηθ̇ − ρΨ̇− ρre , (2.136)

For the isothermal case (θ = constant), and by the definition of energy supply from

electric effect (ρre) defined in [15], the Clausius-Planck inequality turns out to be in

the Lagrangian form as

ρ0Dloc := τ :
1

2
Lvg − ρ0Ψ̇− d̃ : Lve , (2.137)

where τ is the total Kirchhoff stress. It can be expressed as τ = τ + τ e. Until

the end of this chapter, total stress expressions are shown by
(

�
)

. Using the Cole-

man’s Exploitation Method generated by [49], from the principles of local action and

equipresence, the Helmholtz free energy can be defined as

Ψ = Ψ̂
(

g;F , e
)

. (2.138)
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As a result, the rate form of the Helmholtz free energy function is defined as

Ψ̇ = 2∂gΨ :
1

2
Lvg + ∂eΨ · Lve . (2.139)

When (2.139) is inserted into (2.137), the electro-mechanical constitutive equations

are obtained through the work conjugate variables

ρ0Dloc :=
[

τ − 2ρ0∂gΨ
(

g;F , e
)]

:
1

2
Lvg +

[

d̃+ ρ0∂eΨ
(

g;F , e
)]

: Lve ≥ 0 .

(2.140)

The equality in (2.140) holds for arbitrary rates, in other words, Lvg 6= 0 and Lve 6=
0. Hence,

τ
(

g;F , e
)

= 2ρ0∂gΨ
(

g;F , e
)

,

d̃
(

g;F , e
)

= −ρ0∂eΨ
(

g;F , e
)

.
(2.141)

Employing the push-forward and the pull-back operations, the other dual variables

can be obtained using the commutative diagram defined in the previous sections. To

illustrate, mechanical stress power Pmec per unit reference volume is defined as

Pmec := τ :
1

2
Lvg = τ :

1

2

(

F−T ĊF−1
)

,

= F−1τF−T :
1

2
Ċ ,

= S :
1

2
Ċ

(2.142)

Therefore, the second Piola-Kirchhoff stress tensor and the right Cauchy-Green defor-

mation tensor are work conjugates. Other dual variables are the first Piola-Kirchhoff

stress tensor and the deformation gradient. In order to show the duality, (2.142) is

elaborated as

S :
1

2
Ċ := S :

1

2

(

Ḟ
T
gF + F TgḞ

)

= S :
1

2

(

Ḟ
T
gF

)

+ S :
1

2

(

F TgḞ
)

,

= S
T
:
1

2

(

F TgḞ
)T

+ S :
1

2

(

F TgḞ
)

,

= S :
(

F TgḞ
)

,

= gFS : Ḟ ,

= P : Ḟ .

(2.143)
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Finally, the work conjugate variables can be determined by considering the mechani-

cal stress power and push-forward and pull-back operations. Final form of mechani-

cal stress power is

Pmec := τ :
1

2
Lv

(

g
)

= S :
1

2
Ċ = P : Ḟ . (2.144)

Similarly, the electrical power denoted as Pelec can be obtained by

Pelec := −d̃ : Lve = −d̃ : FĖ ,

= −F T d̃ : Ė ,

= −D : Ė .

(2.145)

Therefore, electrical power can be written for each configuration

Pelec := −d̃ : Lve = −D : Ė . (2.146)

The mechanical stress power (2.144) and the electrical power (2.146) are useful equa-

tions for the constitutive relations. It is important to state that the mechanical stress

and the electrical displacement are dependent upon each other in terms of the non-

linear deformation map and the gradient of the electric potential, or electric field.

Using the state variables, electro-mechanical interactions can be determined for each

configurations. However, the equations for the Eulerian configuration are used for the

rest of this work.
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CHAPTER 3

CONSTITUTIVE EQUATIONS

The fundamental equations of continuum mechanics such as kinematics, balance

equations, and stress expressions apply to all materials. However, the material be-

havior depends on the type of material at hand. Hence, this part of the thesis consists

of the specific material models. Material models are the subject that is generated

mathematically to represent the real behavior of material. Some of the materials may

undergo small deformations whereas some other exhibit finite deformations. Among

them, hyperelastic material behavior is generally employed for the materials under-

going finite deformations. According to [47] and many others, in solid mechanics,

the hyperelasticity theory requires the Helmholtz free energy to model the character-

istics of materials. The Helmholtz free energy function is defined as the energy per

unit volume and it depends on the state variables. For the coupled electro-mechanical

interactions, the state is defined as

State
(

X, t
)

:=
{

ϕ
(

X, t
)

, φ
(

X, t
)

}

. (3.1)

It is important to point out for hyperelasticity theory that constitutive equations can

be considered as functions of state variables. Accordingly, the electro-mechanical

Helmholtz free energy density is a function of the spatial metric tensor g, the defor-

mation gradient F , and the electric field e and can be written as

Ψ
(

g;F , e
)

:= Ψm
(

g;F
)

+Ψem
(

g;F , e
)

, (3.2)

where Ψm is characterized as the mechanical part and Ψem is the electro-mechanical

part of the total free energy density function, respectively. It is important to note that

the Helmholtz free energy function shows the normalization condition, i.e. Ψ
(

1
)

= 0
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at the stress-free or reference state, and Ψ
(

g;F , e
)

≥ 0 when it is under some electro-

mechanical deformations.

It must be considered that the rigid body at its reference state is exposed to a rigid

body translation c and a rotation Q such that the material point X is mapped to

X+ = c+QX and ∀Q ∈ G ⊂ SO
(

3
)

. According to [9, 29, 46, 47] and many others,

the material is called isotropic provided that the Helmholtz free energy function at

the reference configuration is equal to free energy function when it is under rigid

body translation and rotation. To figure out, Helmholtz free energy functions can be

rewritten as

Ψm
(

g;F
)

= Ψm
(

g; b
)

, (3.3)

and the special orthogonal group is defined as:

G ≡ SO
(

3
)

=
{

Q|QQT = 1 ∧ detQ = +1
}

. (3.4)

Due to symmetry conditions, the Helmholtz free energy function can be written in

terms of eigenvalues (λi for i = 1, 2, 3) or the principle invariants of the left Cauchy-

Green tensor in the Eulerian configuration (Ii for i = 1, 2, 3) for isotropic response.

Ψ = Ψ̃
(

λ1, λ2, λ3

)

, or Ψ = Ψ̃
(

I1, I2, I3
)

(3.5)

Some of the materials like foams show compressible nature whereas some others,

such as rubberlike materials show incompressible or quasi-incompressible behavior.

To be more specific, in compressible materials, volume changes are observed in con-

siderable amounts such that J = detF 6= 1. Nevertheless, like most of the rubbers,

the volume changes of such materials are not very much effective in incompressible

materials, i.e. J = detF = 1. Consequently, the deformation gradient can be multi-

plicatively decomposed into the volumetric (spherical) and the isochoric (unimodular)

part. It can be shown as

F := F volF iso, where F vol := J
1

31 and F iso := J− 1

3F . (3.6)

The volumetric part of the deformation gradient F vol is responsible for the volume

changing and shape preserving deformations,whereas the isochoric part F iso indi-
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cates the shape changing and volume preserving deformations. Similarly, the iso-

choric part of the right and left Cauchy-Green deformation tensors can be written as

Ciso : = J− 1

3F TgJ− 1

3F = J− 2

3C ,

biso : = J− 1

3FG−1J− 1

3F T = J− 2

3b .
(3.7)

In addition, in the light of this information and using (3.2), the Helmholtz free energy

function can be additively decomposed into three for the coupled electro-mechanical

response as: mechanical-volumetric, mechanical-isochoric, and coupled electro-mech-

anical free energy functions

Ψ
(

g;F , e
)

:= U
(

J
)

+Ψ
(

g;F iso

)

+Ψem
(

g;F , e
)

. (3.8)

The Helmholtz free energy functions are defined for different material models. Among

them the Neo-Hookean model is often employed for the mechanical part. For the

electro-mechanical part of the total free energy function, different functions are pro-

posed. While some researchers consider the mechanical effects to explain the elec-

tromechanical part of the Helmholtz free energy, some others think this may not be

the case [18]. To be more specific, some of the researchers explain relative permit-

tivity as deformation-dependent [10, 18] and some others indicate that the relative

permittivity is constant [32]. Two alternative models, which are proposed by [10] and

[32], are provided for the electro-mechanical free energy functions.

To study the pattern transformation behavior, the material is exposed to the compres-

sion. With the effect of periodic boundary conditions, periodicity changes when the

critical loading is reached. The experimental investigations is carried out by [6] and

the numerical analysis are went through [6, 4, 5]. Thus, in Model III, the Helmholtz

free energy function that is proposed in [6, 4, 5] are provided to determine the stress

and moduli terms which are required to obtain the residual vector and consisten tan-

gent matrice.

3.1 Model I

For the first model problem, the electro-mechanical free energy function proposed

by [10] for VHB 4910 as a dielectric elastomer is considered. It suggests that the
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Helmholtz free energy density function in the Lagrangian configuration is decom-

posed as:

Ψ
(

J,Ciso,E
)

: = U
(

J
)

+Ψ
(

Ciso

)

+Ψem
(

J,Ciso,E
)

,

U
(

J
)

: =
κ

4

(

J2 − 1− 2 ln J
)

,

Ψ
(

Ciso

)

: =
µ

2

(

Ciso : G
−1 − 3

)

,

Ψem
(

J,Ciso,E
)

: = −1

2
J ǫ0ǫrC

−1 :
(

E ⊗E
)

,

(3.9)

where ǫ0 is the electric permittivity for vacuum and ǫr is the relative permittivity.

According to [50], the relative permittivity is dependent upon the stretches. [10]

provides improvements to the relative permittivity expressions. Consequently, the

relative electric permittivity is defined as:

ǫr := c0
[

1 + c1
(

C : G−1 − 3
)]

. (3.10)

Similarly, (3.9) and (3.10) can be redefined in the spatial setting as:

Ψ
(

J, biso, e
)

: = U
(

J
)

+Ψ
(

biso
)

+Ψem
(

J, biso, e
)

,

U
(

J
)

: =
κ

4

(

J2 − 1− 2 ln J
)

,

Ψ
(

biso
)

: =
µ

2

(

biso : g − 3
)

,

Ψem
(

J, g, e
)

: = −1

2
J ǫ0ǫrg

−1 :
(

e⊗ e
)

,

(3.11)

where

ǫr := c0
[

1 + c1
(

b : g − 3
)]

. (3.12)

From (3.9) to (3.12), all the material parameters are provided in Table 3.1.

Considering the definitions in (2.141), the Kirchhoff stress tensors obtained from vol-

umetric, isochoric, and electro-mechanical parts of the total free energy function and

the electric displacement obtained from the electro-mechanical part of the total free
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Table 3.1: Material Properties for Model I

Parameter Unit Definition Value

κ [MPa] Bulk Modulus 13.5

µ [kPa] Shear Modulus 13.5

ǫ0 [F/m] Electric Permittivity of Vacuum 8.854× 10
−12

c0 [–] Relative permittivity coefficient 1 4.68

c1 [–] Relative permittivity coefficient 2 -0.0105

energy function per unit reference volume can be expressed for the Model I as

τ vol := 2 ∂gU =
κ

2

(

J2 − 1
)

g−1 ,

τ iso := 2 ∂gΨ = µbiso ,

τ em := 2 ∂gΨ
em = −1

2
J ǫ0 ǫr

(

e · e
)

g−1

− J ǫ0 c0 c1
(

e · e
)

b

+ J ǫ0 ǫr
(

e⊗ e
)

,

d̃ := −∂eΨ
em = J ǫ0 ǫr e

♭ ,

(3.13)

where e♭ := g−1e. The total Kirchhoff stress tensor τ := τ vol + τ iso + τ em and the

electric displacement vector d̃ are employed for the calculation of residual vectors.

Nonetheless, the residual vectors are non-linear. Hence, linearization is required to be

applied to the residual vectors. Consequently, the mechanical, electrical, and mixed

electro-mechanical moduli terms in the Eulerian configuration are defined as


vol : = 2 ∂gτ vol = 4 ∂ggU ,


iso : = 2 ∂gτ iso = 4 ∂ggΨ ,




em : = 2 ∂gτ
em = 4 ∂ggΨ

em ,

a : = 2 ∂gd̃ = −2 ∂geΨ
em ,

b : = −∂eτ
em = −2 ∂egΨ

em ,

d : = −∂ed̃ = ∂eeΨ
em ,

(3.14)

where a and b are third-order mixed moduli terms, and d is second-order electric
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moduli. Besides, it can be stated that a = b

T .

3.2 Model II

In Model II, the electro-mechanical free energy function is defined as indicated in

[32]. In this model, [32] do not define the multiplicative split of deformation gradient.

Hence, the free energy density function for the Lagrangian configuration is proposed

as follows:

Ψ(J,C,E) : = Ψm
(

J,C
)

+Ψem
(

J,C,E
)

,

Ψm
(

J,C
)

: =
λ

2

(

ln J
)2 − µ ln J +

µ

2

(

C : G−1 − 3
)

,

Ψem
(

J,C,E
)

: = αG−1 :
(

E ⊗E
)

+ βC−1 :
(

E ⊗E
)

− 1

2
JǫrC

−1 :
(

E ⊗E
)

(3.15)

In contrast to Model I, the relative permittivity is independent of deformation. In

addition, material coeeficients and their definitions are presented in Table 3.2. The

expressions in (3.15) can be transformed into the free energy function in the Eulerian

configuration as:

Ψ
(

J, b, e
)

: = Ψm
(

J, b
)

+Ψem
(

J, b, e
)

,

Ψm
(

J, b
)

: =
λ

2

(

ln J
)2 − µ ln J +

µ

2

(

b : g − 3
)

,

Ψem
(

J, b, e
)

: = αb :
(

e⊗ e
)

+ βg−1 :
(

e⊗ e
)

− 1

2
Jǫrg

−1 :
(

e⊗ e
)

(3.16)

Likewise, the total Kirchhoff stress tensor τ := τm + τ em and the electric displace-

ment vector d̃ can be calculated for Model II as

τm := 2 ∂gΨ
m =

(

λ ln J − µ
)

g−1 + µb ,

τ em := 2 ∂gΨ
em =

(

J ǫr − 2β
)(

e♭ ⊗ e♭
)

− 1

2
J ǫr

(

e♭ · e
)

g−1 ,

d̃ := −∂eΨ
em =

(

J ǫr − 2 β
)

e♭ − 2 αbe .

(3.17)

(3.17) is necessary for the determination of the residual vectors. For the linearization
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Table 3.2: Material Properties for Model II

Parameter Unit Definition Value

λ [MPa] Lamé Constant 0.06

µ [MPa] Shear Modulus 0.05

ǫ0 [F/m] Electric Permittivity of Vacuum 8.854× 10
−12

ǫr [F/m] Relative Permittivity
[

5ǫ0, 1000ǫ0
]

α [F/m] Coefficient 1 0.2ǫ0

β [F/m] Coefficient 2 2ǫ0

of the coupled electromechanical residual vectors, moduli expressions are required.

Hence, coupled electro-mechanical moduli terms can be determined as in (3.14).

3.3 Model III

In this section, the Helmholtz free energy function is defined only for the mechanical

state variables (Ψ
(

J,F
)

= Ψm
(

J,F
)

). For this model problem, the microstructure

possess unit cells which are periodically located. Consequently, the state different

from the electromechanical state (3.1) can be redefined for the periodic microstruc-

tures as

State
(

X, t
)

:=
{

ϕ
(

X, t
)

}

. (3.18)

According to [4, 5, 6], the Helmholtz free energy function is provided for Model III

in the Lagrangian configuration as

Ψ
(

J,C
)

:=
κ

2

(

J − 1
)2− 2 c1 ln J + c1

(

C : G−1− 3
)

+ c2
(

C : G−1− 3
)2

, (3.19)

(3.19) is also called a two-term I1-based Rivlin model. The Eulerian counterpart of

(3.19) can be expressed as

Ψ
(

J, b
)

:=
κ

2

(

J − 1
)2 − 2 c1 ln J + c1

(

b : g − 3
)

+ c2
(

b : g − 3
)2

, (3.20)

where κ, c1, and c2 are material parameters and they are presented in Table 3.3.
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Table 3.3: Material Properties for Model III

Parameter Unit Definition Value

κ [MPa] Bulk Modulus 55.0

c1 [MPa] Material Parameter 1 0.55

c2 [MPa] Material Parameter 2 0.30

Then, the total Kirchhoff stress tensor τ and the Eulerian moduli 
 can be determined

as

τ : =
[

κ
(

J2 − J
)

− 2 c1
]

g−1 +
[

2 c1 + 4 c2
(

b : g − 3
)]

b ,


 : = 8 c2 b⊗ b+ κ
(

2 J2 − J
)

g−1 ⊗ g−1 +
[

4 c1 − 2 κ
(

J2 − J
)]

Ig−1 ,
(3.21)

where
(

Ig−1

)abcd
:= 1

2

[

(

g−1
)ac(

g−1
)bd

+
(

g−1
)ad(

g−1
)bc

]

in indicial representa-

tion.
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CHAPTER 4

DISCRETIZATION OF THE COUPLED EQUATIONS

This chapter is concerned with the numerical solution techniques for the coupled

differential equations of electromechanics. Employing the constitutive equations for

the selected models which are presented in Chapter 3, the Finite Element Method

(FEM) is used to solve the coupled electro-mechanical differential equations. At the

begining of this chapter, the preliminaries for the coupled electro-mechanical system

of equations; that is, the governing differential equations in strong form, are recalled.

Then, the standard FEM procedure is presented in Section 4.2. So as to solve the weak

form of the electro-mechanical equations, linearization must be applied since they are

still nonlinear. Consequently, Galerkin functionals for the mechanical and electrical

parts of the coupled electro-mechanical equations, and their incremental form are

desired in Section 4.3. In Section 4.4, employing the FE discretization in the Galerkin

functionals and their incremental form, the residual vectors and the consistent.tangent

matrices.are obtained. To find the solution vector of electro-mechanical system, the

Newton scheme is used. In this chapter, only the formulation for the standard FEM is

explained. The four-field mixed FEM has been used, but its formulation has not been

shown for the sake of generality and brevity. Detailed information about the latter

method is available in [9, 10, 27] and the ones cited therein.

4.1 Preliminaries

The detailed information for the preliminaries of coupled electromechanical system of

equations are provided in Chapters 2 and 3. However, for the sake of completeness,

these are briefly recalled in this section as well. To begin with, X and x are the
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locations of a material point in the reference and spatial configurations, respectively.

Moreover, the deformation gradient (2.8) is denoted as

F
(

X
)

= ∇Xϕ
(

X, t
)

, (4.1)

which maps a tangent vector in the Lagrangian configuration to that of the Eulerian

configuration. Furthermore, E and D are the electric field vector and the electric

displacement vector in reference configuration, respectively. The spatial counterparts

can be determined by the push-forward operations (2.82) and (2.84) such that [9, 10]

e := ϕ∗

(

E
)

= F−TE ,

d̃ := ϕ∗

(

D
)

= FD, and d̃ = Jd .
(4.2)

In the current configuration, the Maxwell equations for electrostatics are written as

div
(

d
)

= ρf and curl
(

e
)

= 0 (4.3)

where e = −∇x φ. The latter can be written for the electric field vector and the

electric displacement vector in the reference configuration as:

Div
(

D
)

= ρ0f and Curl
(

E
)

= 0 (4.4)

where E = −∇X φ.

The governing constitutive relation for the electric field vector and the electric dis-

placement vector for a dielectric material are defined as:

d := ǫ0 g
−1 e+ p ,

D := Jǫ0C
−1E + P ,

(4.5)

where P and p are the electric polarization vectors in the Lagrangian and Eulerian

settings, respectively, and the relation between these two vectors can be expressed as

P = JF−1p. For linear isotropic dielectric materials, the polarization induced by

the medium is proportional to electric field itself [9, 15]. Hence, for these materials,

the polarization term is dropped out and the expression (4.5) simplifies to

d̃ := ǫ0 ǫr g
−1 e ,

D := Jǫ0 ǫr C
−1E .

(4.6)
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In order to solve the mechanical part of the coupled electromechanical equations, the

conservation of linear momentum (2.102) and the Maxwell equation for electrostatics

(2.77) are applied. To illustrate, in the Eulerian configuration, the conservation of

linear momentum states that

div
(

σ
)

+ ργ = ρv̇ in S . (4.7)

Knowing that the total Cauchy stress can be written in terms of the total Kirchhoff

stress using (2.36), (4.7) is modified as

div
(

J−1τ
)

+ ργ = ρv̇ in S . (4.8)

To finalize the description of the boundary value problem of the coupled electrome-

chanics in the Eulerian configuration, the boundary conditions must be introduced.

For that case, the surface of the body is divided into two such that mechanical and

electrical essential (Dirichlet) and natural (Neumann) boundary conditions are pre-

scribed; that is,

∂S = ∂Sϕ ∪ ∂St and ∂S = ∂Sφ ∪ ∂Sσ ,

∂Sϕ ∩ ∂St = ∅ and ∂Sφ ∩ ∂Sσ = ∅ .
(4.9)

Superscript ϕ and φ represent the mechanical and electrical Dirichler boundary con-

ditions, respectively. Similarly, t and σ are written for the mechanical and electrical

Neumann boundary conditions, respectively. Particularly, in the current configura-

tion, the Dirichlet boundary conditions for the mechanical and the electrical equations

are represented as follows

ϕ = ϕ on ∂Sϕ and φ = φ on ∂Sφ . (4.10)

Similarly, in the current configuration, the Neumann boundary conditions for the me-

chanical and electrical equations are represented as follows

σ n = t on ∂St and d · n = σf on ∂Sσ . (4.11)
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4.2 Discretization using Finite Element Method

In this section, the governing differential equations of the coupled electromechanics in

strong form is transformed into the weak form for the prescribed boundary conditions

given in (4.10) and (4.11). For this purpose, (4.6) and (4.8) are multiplied by the test

functions
{

− gδϕ,−δφ
}

. δϕ is the variational form of the non-linear deformation

map while δφ is the variational form of the electric potential.
∫

S

{

−
(

gδϕ
)

· div
(

J−1τ
)}

dv −
∫

S

{(

gδϕ
)

· ργ
}

dv +

∫

S

{(

gδϕ
)

· ρv̇
}

dv = 0
∫

S

{

− δφ div
(

J−1d̃
)}

dv +

∫

S

{

δφ ρf
}

dv = 0

(4.12)

Integration-by-parts is applied to first terms on the left hand side of (4.12) to obtain
∫

S

{

−
(

gδϕ
)

· div
(

J−1τ
)}

dv = −
∫

S

{

div
[(

gδϕ
)

· J−1τ
]}

dv

+

∫

S

{(

g∇xδϕ
)

:
(

J−1τ
)}

dv ,
∫

S

{

− δφ div
(

J−1d̃
)}

dv = −
∫

S

{

div
(

δφ J−1d̃
)}

dv

+

∫

S

{

∇xδφ · J−1d̃
}

dv .

(4.13)

Inserting (4.13) into (4.12), the Galerkin functionals can be obtained as

Gm
(

δϕ,ϕ, φ
)

=

∫

S

{(

g∇xδϕ
)

:
(

J−1τ
)}

dv −
∫

∂S

{(

gδϕ
)

· t
}

da

−
∫

S

{(

gδϕ
)

· ργ
}

dv +

∫

S

{(

gδϕ
)

· ρv̇
}

dv ,

Ge
(

δφ, φ,ϕ
)

=

∫

S

{

∇xδφ · J−1d̃
}

dv −
∫

∂S

{

δφ σf

}

da

+

∫

S

{

δφ ρf
}

dv ,

(4.14)

where (4.14) can be decomposed as:

Gm
(

δϕ,ϕ, φ
)

: = Gm
int

(

δϕ,ϕ, φ
)

−Gm
ext

(

δϕ,ϕ, φ
)

,

Ge
(

δφ, φ,ϕ
)

: = Ge
int

(

δφ, φ,ϕ
)

−Ge
ext

(

δφ, φ,ϕ
)

.
(4.15)

In the absence of mechanical traction vector on the surface ∂St and body force for

the quasi-static loading, external mechanical part of the Galerkin functional become
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zero such that

Gm
ext

(

δϕ,ϕ, φ
)

=

∫

∂S

{(

gδϕ
)

· t
}

da+

∫

S

{(

gδϕ
)

· ργ
}

dv

−
∫

S

{(

gδϕ
)

· ρv̇
}

dv = 0

(4.16)

Likewise, in the case that there is no free electric charges on the surface of the body

∂Sσ and in the body, external electrical part of the Galerkin functional boils down to

Ge
ext

(

δφ, φ,ϕ
)

=

∫

∂S

{

δφ σf

}

da−
∫

S

{

δφ ρf
}

dv = 0 (4.17)

As a result, the internal part of the mechanical and electrical Galerkin functionals are

used for the calculation of the residual vector and the consistent tangent matrice.

Gm
(

δϕ,ϕ, φ
)

=

∫

B

{(

g∇xδϕ
)

: τ
}

dV ,

Ge
(

δφ, φ,ϕ
)

=

∫

B

{

∇xδφ · d̃
}

dV ,

(4.18)

where τ is the total Kirchhoff stress, which is defined as τ := τ vol + τ iso + τ em in

(3.13) or τ := τm + τ em in (3.17).

4.3 Linearization of Galerkin Functional

In order to solve (4.18) combined with the prescribed boundary conditions presented

in (4.10) and (4.11), linearization must be conducted within the iterativeframework

of the Newton method. The linearization of the Galerkin functionals yields

Lin
[

Gm
(

δϕ,ϕ, φ
)

]

ϕ̃,φ̃
=Gm

(

δϕ̃, ϕ̃, φ̃
)

+∆Gm
(

δϕ, ϕ̃, φ̃; ∆ϕ,∆φ
)

,

Lin
[

Ge
(

δφ, φ,ϕ
)

]

φ̃,ϕ̃
=Ge

(

δφ̃, φ̃, ϕ̃
)

+∆Ge
(

δφ, φ̃, ϕ̃; ∆φ,∆ϕ
)

,
(4.19)

where ∆Gm and ∆Ge are the incremental forms of Galerkin functionals for the me-

chanical part and the electrical part, respectively. These two incremental functionals

can be determined as

∆Gm
(

δϕ,ϕ, φ; ∆ϕ,∆φ
)

=∆
[

∫

B

{(

g∇xδϕ
)

: τ
}

dV
]

,

∆Ge
(

δφ, φ,ϕ; ∆φ,∆ϕ
)

=∆
[

∫

B

{

∇xδφ · d̃
}

dV
]

.

(4.20)
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The linearized weak form of (4.20) can be rewritten using the chain rule operation.

The incremental mechanical part (4.20)1 of the Galerkin functional can be written as

∆Gm
(

δϕ,ϕ, φ; ∆ϕ,∆φ
)

=∆
[

∫

B

{(

g∇xδϕ
)

: τ
}

dV
]

,

=

∫

B

{

∆
(

g∇xδϕ
)

: τ
}

dV

+

∫

B

{(

g∇xδϕ
)

: ∆τ
}

dV ,

(4.21)

where ∆
(

g∇xδϕ
)

in (4.21) can be found by:

∆
(

g∇xδϕ
)

:= g∆
(

∇xδϕ
)

= g∆
(

∇XδϕF−1
)

= −g
(

∇xδϕ
)(

∇x∆ϕ
)

. (4.22)

The incremental form of the total Kirchhoff stress tensor ∆τ can be found by em-

ploying the Lie derivative of the total Kirchhoff stress tensor. The way how to obtain

the Lie derivative is determined by (2.33)

L∆τ = F
{

∆
(

F−1τF−T
)

}

F T ,

= F
{

∆F−1τF−T + F−1∆τF−T

+ F−1τ∆F−T
}

F T ,

=
(

F ∆F−1
)

τ +∆τ + τ
(

F ∆F−1
)T

,

(4.23)

where

∆F−1 := −F−1∆FF−1 = −F−1
(

∇X∆ϕ
)

F−1 = −F−1∇x∆ϕ , (4.24)

Inserting (4.24) into (4.23), more pronounced results can be obtained. Hence, the

incremental Kirchhoff stress tensor is

∆τ = L∆τ +
(

∇x∆ϕ
)

τ + τ
(

∇x∆ϕ
)T

, (4.25)

where

L∆τ : =
(


vol + 
iso + 


em
)

:
(

g∇x∆ϕ
)

− b · L∆e

= 
 :
(

g∇x∆ϕ
)

+ b · ∇x∆φ
(4.26)
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Using (4.22),(4.25), and (4.26) in (4.21), the linearized form of Galerkin functional

for mechanical equation, (4.21), can be obtained

∆Gm
(

δϕ,ϕ, φ; ∆ϕ,∆φ
)

=

∫

B

{(

g ∇xδϕ
)

: 
 :
(

g ∇x∆ϕ
)}

dV

+

∫

B

{(

g ∇xδϕ
)

: b · ∇x∆φ
}

dV

+

∫

B

{(

g ∇xδϕ
)

:
(

∇x∆ϕ τ
)}

dV ,

(4.27)

where b := −∂eτ
em from (3.14)5. Consequently, the linearized Galerkin functional

is acquired. Furthermore, the linearization of electrical part (4.20)2 can be derived as

∆Ge
(

δφ, φ,ϕ; ∆φ,∆ϕ
)

= ∆
[

∫

B

{

∇xδφ · d̃
}

dV
]

,

=

∫

B

{

∆
(

∇xδφ
)

· d̃
}

dV

+

∫

B

{

∇xδφ ·∆
(

d̃
)}

dV ,

(4.28)

where ∆
(

∇xδφ
)

:= ∆
(

∇XδφF−1
)

and using the chain rule as in the case of (4.22),

the first term in the right hand side of (4.28) can be redefined as

∆
(

∇xδφ
)

: = ∆
(

∇XδφF−1
)

,

= ∆
(

∇Xδφ
)

F−1 +∇Xδφ∆
(

F−1
)

,

= −
(

∇xδφ
)(

∇x∆ϕ
)

.

(4.29)

In addition, the second term of (4.28) can be determined by employing the Lie deriva-

tive of the electric displacement vector, which is an Eulerian vector. It can be inter-

preted considering the Lie derivative in (2.33):

L∆d̃ : = F
[

∆
(

F−1d̃
)]

,

= F
[

∆
(

F−1
)

d̃+ F−1∆
(

d̃
)]

,

= −
(

∇x∆ϕ
)

d̃+∆d̃ .

(4.30)

The incremental electric displacement vector is then found as

∆d̃ := L∆d̃+
(

∇x∆ϕ
)

d̃ , (4.31)
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where the Lie derivative of the electric displacement vector can also be defined as

L∆d̃ : = a :
1

2
L∆g − d · L∆e ,

= a :
(

g ∇x∆ϕ
)

+ d · ∇x∆φ

(4.32)

In (4.32), a := 2∂gd̃ and d := −∂ed̃ from (3.14)4 and(3.14)6, respectively. Finally,

electric part of the incremental Galerkin functional becomes

∆Ge
(

δφ, φ,ϕ; ∆φ,∆ϕ
)

=

∫

B

(

∇xδφ
)

· a :
(

g ∇x∆ϕ
)

dV

+

∫

B

(

∇xδφ
)

· d · ∇x∆φ dV .

(4.33)

To sum up, all the Galerkin functionals and their incremental forms can be summa-

rized as follows

Gm
(

δϕ,ϕ, φ
)

=

∫

B

{(

g ∇xδϕ
)

: τ
}

dV ,

Ge
(

δφ, φ,ϕ
)

=

∫

B

{

∇xδφ · d̃
}

dV ,

∆Gmm
mat

(

δϕ,ϕ, φ; ∆ϕ,∆φ
)

=

∫

B

{(

g ∇xδϕ
)

: 
 :
(

g ∇x∆ϕ
)}

dV ,

∆Gmm
geo

(

δϕ,ϕ, φ; ∆ϕ,∆φ
)

=

∫

B

{(

g ∇xδϕ
)

:
(

∇x∆ϕ τ
)}

dV ,

∆Gme
(

δϕ, φ,ϕ; ∆φ,∆ϕ
)

=

∫

B

{(

g ∇xδϕ
)

: b · ∇x∆φ
}

dV ,

∆Gem
(

δφ,ϕ, φ; ∆ϕ,∆φ
)

=

∫

B

{(

∇xδφ
)

· a :
(

g ∇x∆ϕ
)}

dV

∆Gee
(

δφ, φ,ϕ; ∆φ,∆ϕ
)

=

∫

B

{(

∇xδφ
)

· d · ∇x∆φ
}

dV .

(4.34)

where ∆Gmm
mat denotes the material part of the incremental Galerkin functional of the

mechanical contribution whereas ∆Gmm
geo stands for the geometric counterpart of the

mechanical contribution.

4.4 Discretization of Galerkin Functionals

So as to numerically analyze a coupled boundary-value problem, the body of interest

B is divided into finite elements Be. Then, the Galerkin functionals and their incre-

ments for the prescribed boundary conditions are discretized to obtain the associated
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residual vectors and the consistent tangent matrix terms. For this purpose, the test

functions and the gradient terms in (4.34) are approximated as

δϕ ∼=
n

∑

A=1

NA δdA, in Be

∇xδϕ ∼=
n

∑

A=1

δdA ⊗ ∂xN
A, in Be

∆ϕ ∼=
n

∑

A=1

NA ∆dA, in Be

∇x∆ϕ ∼=
n

∑

A=1

∆dA ⊗ ∂xN
A, in Be

δφ ∼=
n

∑

A=1

NA δφA, in Be

∇xδφ =
n

∑

A=1

δφA ∂xN
A, in Be

∆φ =
n

∑

A=1

NA ∆φA, in Be

∇x∆φ =
n

∑

A=1

∆φA ∂xN
A, in Be

(4.35)

where NA is the shape function belonging to Node A where ∀A = 1, 2, . . . , n. More-

over, n is the total number of nodes in each finite element. Inserting (4.35) into (4.34),

the residual vectors and the tangent matrix terms are obtained as

Rm : =
nel

A
i=1

{

∫

B

∂xN
A · τ dV

}

,

Re : =
nel

A
i=1

{

∫

B

∂xN
A · d̃ dV

}

,

Kmm
mat : =

nel

A
i=1

{

∫

B

∂xN
A · 
 · ∂xNB dV

}

,

Kmm
geo : =

nel

A
i=1

{

∫

B

∂xN
A ·

(

∂xN
Bτ

)

dV
}

,

Kme : =
nel

A
i=1

{

∫

B

∂xN
A · b · ∂xNB dV

}

,

Kem : =
nel

A
i=1

{

∫

B

∂xN
A · a · ∂xNB dV

}

,

Kee : =
nel

A
i=1

{

∫

B

∂xN
A · d · ∂xNB dV

}

,

(4.36)
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where A designates the assembly operator that gather the residual vector and tan-

gent stiffness matrix of each local element into the global counterparts. Moreover,

nel is the total number of element. The assembly operation is carried out over the

connectivity information of the elements. Hence, the Newton solution algorithm can

be demonstrated as




dm

de



 ⇐=





dm

de



−





Kmm Kme

Kem Kee





−1

·





Rm

Re



 (4.37)

where dm and de are the solution vectors for the mechanical and electrical parts of

the coupled electro-mechanical equation system.
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CHAPTER 5

NUMERICAL EXAMPLES

This chapter is devoted to representative numerical examples on the coupled electro-

mechanics of EAPs, outlined in Chapters 2-4. Hence, in Section 5.1, the constitutive

models presented in Chapter 3 are verfied with the associated articles. In addition, the

mechanical behavior of elastomers with periodic microstructures under compression

is considered. The smallest element that repeats itself before the deformation is called

a unit cell. In the presence of inclusions or voids in unit cells, they can be symmetric

or unsymmetric. In this study, only the symmetric unit cells with voids are employed.

It is realized that under compressive loads with certain periodic boundary conditions,

the microstructures with voids exhibit different mechanical instability phenomena

than expected. Such materials show local buckling rather than global buckling which

is demonstrated in the articles [4, 5, 6, 7] and many others. Moreover, the local

buckling causes pattern transformations in the microstructure. Therefore, in Section

5.2, pattern transformation properties of periodic microstructures is investigated. In

the final part of this chapter, combined effects; that is, pattern transformations of

EAPs in the presence of both compressive loading and electric potential as boundary

conditions are examined. The combined effect on the periodic microstructures is

analyzed and the results are illustrated through computational examples. All these

analyses are conducted using the Finite Element Analysis Program (FEAP) [51] and

some of the meshes are created using ABAQUS/CAE [52].
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5.1 Coupled Electromechanics

In this section, the electro-mechanical coupling is investigated for different free en-

ergy functions provided in Chapter 3. At first, the work carried out by [10] is exam-

ined. According to [10, 27], EAPs are quasi-incompressible materials where standard

entirely displacement-based FEM may show a locking phenomenon. Hence, four-

field FEM should be applied to overcome the volumetric locking. Hence, in Model I,

four-field FEM formulated in the Eulerian configuration is applied along with the free

energy functions which are different from the study provided in [10]. Accordingly,

in Model I (3.9 or 3.11), the relative electric permittivity term is expressed as defor-

mation dependent in [10]. The deformation dependence of the relative permittivity is

obtained from the experimental results conducted by [50]. Secondly, [32] compares

the effects of the coupled Boundary Element Method (BEM) and FEM, that is, the

coupled BEM-FEM is compared with only standard FEM method. Moreover, for

Model II in Table 3.2, the relative permittivity is simplified as being independent of

deformation. Hence, the results obtained from the coupled electro-mechanical mod-

els are provided in the following subsections.

5.1.1 Example I: Bending Beam Actuator

In this model problem, a cantilever beam is exposed to the electric field through a

voltage difference applied between two electrodes. One of the electrodes is placed

at the bottom surface whereas the other is located in the middle of the beam, see

Figure 5.2. It can be produced such that this electrode is sandwiched by two dielectric

elastomers (EAPs). Besides, these electrodes are compliant meaning that they do not

contribute to the stiffness of the beam. That is, they may deform along with the EAPs.

The representation of the bending actuator which is employed throughout the analysis

is shown in Figure 5.1 and 5.2. In addition, e2 − e3 plane in Figure 5.1 is fixed and

the rest is free to move.

Hence, when the electric voltage difference is applied as depicted in Figure 5.2, there

will be a contraction in the direction of the applied electric field whereas elongation

occurs perpendicular to the electric field vector which causes the actuator bend. For
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e1

e2

e3 L1 = 20 mm
L2 = 1 mm

L3 = 5 mm
A

Figure 5.1: Representation of the bending actuator and its dimensions.

∆φ
e1

e2

Figure 5.2: 2D representation of the bending actuator with an applied electric voltage

difference.

the given electric voltage difference, different bending phases can be observed. To be

more specific, the higher the electric voltage difference, the more the actuator bends

under certain limits. To clearly understand the effect of the electrical stimulation on

the beam actuator, the deformed shapes corresponding to different levels of voltage

difference are presented in Figure 5.3. Moreover, in [10], the normalized displace-

ment values of Point A shown in Figure 5.1 in x− and y− directions are provided for

comparison. Point A is located at (20,1,5) as shown in Figure 5.1. The normalized

values of the displacements in x− and y−directions are plotted against the applied

potential difference in Figure 5.5 and Figure 5.6, respectively.
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Electric Potential [mV]

1.6e+6 3.1e+6 4.6e+60.000e+00 6.200e+06

Electric Potential [mV]

∆φ = 0 kV

∆φ = 1.55 kV

∆φ = 3.1 kV

∆φ = 4.65 kV

∆φ = 6.2 kV

Figure 5.3: Deformed shapes of bending actuator.

68



Moreover, the distribution of the total stretch values of each element on the unde-

formed form of the bending beam actuator is depicted in Figure 5.4

0.715 0.959 1.24.708e-01 1.447e+00

Total Stretch

Figure 5.4: The stretch distribution on the undeformed form of the bending beam

actuator.

Through this example our implementation of Model I is verified with the article

results proposed by [10]. In this model, the relative permittivity is considered as

deformation-dependent. Moreover, four-field FEM for finite deformations is achieved

for the formulation considered in the Eulerian configuration. Furthermore, it can be

seen from Figures 5.5 and 5.6 that employing about 2000 brick elements, similar re-

sults are obtained when it is compared with the results in the article proposed by [10].

However, when the number of elements is increased to about 5000 brick elements, the

x− and y−components of the displacement of Point A alters little from the results in

the article and it reaches to its ultimate values when the number of elements is further

increased to 8000 elements. Hence, for this problem 5000 element are accurate to

achieve convergent and accurate results.
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Figure 5.5: Potential difference vs. normalized displacement of Point A in

x−direction.
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Figure 5.6: Potential difference vs. normalized displacement of Point A in

y−direction.
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5.1.2 Example II: C-Shaped Plate

In this part, Model II (3.16) mentioned in Chapter 3 is utilized for an electromechani-

cal analysis of C-shaped plate body. For this model problem, the relative permittivity

expression is independent of deformation. Accordingly, [32] compares the result of

the coupled BEM-FEM and the standard FEM. It is emphasized that when the relative

electric permittivity decreases, the effect of the free space increases. Hence, in order

to eliminate such an effect, a coupled BEM-FEM approach is investigated. However,

in this study only standard FEM is used for verification. In order to do so, the C-

shaped plate is discretized by quadrilateral elements. The geometric dimesions and

the FE mesh of the C-shaped plate is shown in Figure 5.7.

t = 15 µm

t = 15 µm

w = 60 µm

h = 45 µm

Figure 5.7: Dimensions of the C-shaped plate and quadrilateral mesh for standard

FEM.

The electric potentials are applied to the plate as a boundary conditions as indicated

in Figure 5.8. The lower and upper bounds are applied to electric voltages which have

same magnitude but opposite signs. Also, the lower edges of the plate is not allowed

to move in y−direction and bottom left corner point is fixed in x− and y−direction to

eliminate the rigid body motion. Employing different electric voltage differences and

changing the relative permittivity constant defined in Table 3.2, the electric voltage

gradients can be obtained and they are presented from Figure 5.9 to Figure 5.11.

In Figure 5.9, the relative permittivity is provided as 5 times greater than the electric

permittivity of vacuum. For ∆φ = φup − φlow = 100 − (−100) = 200 V, there

appears a little deformation, whereas increasing the electric potential difference from
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φlow

φup

Figure 5.8: Applied electrical boundary conditions on the C-shaped plate.

200 V to 1 kV, there exists a considerable amount of deformation.
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Figure 5.9: ǫr = 5ǫ0 with electric potentials applied on upper and lower boundary of

the plate.

For ǫr = 5ǫ0, 200 V potential difference is not enough to deform the body. When such

difference increases to 1 kV, it is then observed considerable amount of deformations.

Similar results can be observed in Figure 5.10. It can be stated that the difference in

electrical potential required to deform the body remarkably decreases as the relative

permittivity value increases. Figure 5.9 and Figure 5.10 can be compared to examine.

Accordingly, with lower electric potential differences, that is ∆φ = 600 V, consid-

erable amount of deformation can be obtained when the relative permittivity value

increases.

For ǫr = 100ǫ0, ∆φ = 100 V is enough to deform the body of interest. According to
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Figure 5.10: ǫr = 10ǫ0 with electric potentials applied on upper and lower boundary

of the plate.

[32], provided that the electric permittivity increases to ǫr = 1000ǫ0, the contribution

of the free space to the deformation can be neglected. The distribution of electric field

for examples in Figure 5.9-5.11 show a good agreement with the results in [32].
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Figure 5.11: ǫr = 100ǫ0 with electric potentials applied on upper and lower boundary

of the plate.

5.2 Pattern Transformations in Porous Elastomers

In nature, materials may possess cell type structures which has periodically ordered

occurance in their microstructures [3, 6, 7]. Hence, imitating periodic characteristics

in the design and manufacturing of these materials, they can be employed in differ-
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ent engineering applications. When the mechanical properties of these materials are

searched, it is observed that under compressive loadings, due to the periodicity of

the microstructure of the material, the pattern of the material in its initial state may

change. Using Model III in (3.20), geometry whose periodic structure is presented in

Figure 5.12 is examined to compare the results with the articles [4, 5]. In Figure 5.12,

the body consists of about 1000 quadratic, triangular, plane strain elements, which is

generated in ABAQUS/CAE [52]. However, the number of elements used for conver-

gence analysis is more than 1000. It must be emphasized that at least four elements

must be used for the region between circular voids and the edge at which PBC are

defined for more precise results. The reason why PBC are defined on the left and

right edges is that whole structure is semi-infinite such that the domain repeats itself

in the lateral direction. Note that positions of the nodes on the left surface ∂B− of

the body B is denoted as X− ∈ ∂B− and on the right surface ∂B+ of the body is

specified as X+ ∈ ∂B+.

L = 5l

2l

d

PBCPBC

ud

Figure 5.12: The dimensions of periodic microstructures (left) and quadratic triangu-

lar mesh and boundary conditions (right).

Besides, the nodal displacement vectors for the nodes on ∂S− and ∂S+ are shown

by d− and d+, respectively. In Figure 5.12, PBC (Periodic Boundary Conditions)

means that two corresponding degrees of freedom at each node on PBC are linked

such that the global equation numbers for the corresponding nodes are the same. In
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other words, with PBC, d− = d+ [27, 44, 45]. The dimensions of porous solid are

given in Table 5.1.

Table 5.1: Geometric properties of the microstructure

Parameter Unit Definition Value

L [mm] Height of the solid 49.85

l [mm] Size of a single unit cell 9.97

d [mm] Diameter of circular hole 8.67

The solid undergoes the uniform vertical displacement ud on the upper edge as can

be seen in Figure 5.12. Uniform compressive displacement is applied such that the

nominal strain ud/L is taken to a maximum of 0.1. Furthermore, this displacement

is applied in 200 equal loading steps. For the given boundary value problem, the

deformed shape of the specimen consisting of 2 by 5 unit cells at ud = 4.985 mm is

illustrated for about 1000 elements in Figure 5.13.

ud = 4.985 mm

Figure 5.13: The pattern transformation between undeformed and deformed state.

It is observed that when the compression is applied on the specimen circular voids

transform into elliptical voids whose major axes are perpendicular to each other due

to local buckling on the ligaments [4, 5, 6, 7]. The ligament is, by definition, the ma-
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terial thickness between two neighboring voids. Hence, before global buckling, local

buckling, which alters the origin periodicity condition dominates the deformation.

This is called a pattern transformation.

The nominal stress f/2l where f is the reaction force and the nominal strain ud/L

results can be obtained from the analysis. Since it is a displacement-driven process,

the nominal stress can be calculated using the reaction forces per unit thickness. The

nominal stress-strain graph is provided for comparison with [4, 5] in Figure 5.14.
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Figure 5.14: Comparison of the nominal stress-strain graph for different meshes with

[4, 5].

From Figure 5.14, although the nominal stress-strain graph may appear to be an

elastoplastic behavior with some hardening; in fact, it is completely elastic. This

is a result of geometric instability [4, 5, 6]. In addition, when the number of finite el-

ements increases, the nominal stress-strain values approaches to the results of [4, 5].

However, the time and the cost to solve the system also increases when the mesh is

finer. As a consequence, the purely mechanical pattern transformation of the mate-

rials with periodic microstructures is accomplished for further analyses. In the next

subsection, the pattern transformation of EAPs under electro-mechanical effects is to

be determined.
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5.3 Pattern Transformations in Porous EAPs Under Electromechanical Load-

ing

In this section, the coupled electromechanical interaction is investigated in EAPs with

porous microstructures. In other words, the material model defined for Model II is

assigned to a geometry with a periodic and porous microstructure to examine the

coupled electromechanical behavior. Two different analyzes are conducted. First, a

constant electric field is applied to each element in the body. Second, the deforma-

tions under the associated electromechanical effects is examined under the action of

electrical potentials applied to the surfaces mentioned.

5.3.1 Uniform Electric Field in Elements

At first, the microstructure shown in Figure 5.15a is employed such that electric field

is uniformly applied over each element in the body. Note that the dimensions of the

body is the same as ones in Figure 5.12 and PBC is applied again on the left and

right surfaces of the body.

(a) (b)

Stiffening

e

PBCPBC

ud

Figure 5.15: (a) Uniform electric field applied in each element Be (b) Deformed

shape of the periodic microstructure under combined electric field and compressive

load ud = 4.985 mm.
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The value of x− and y−components of the applied electric field in each element Be

is presented in Table 5.2.

Table 5.2: The value of x− and y−components of the applied electric field in each

element Be

Parameter Unit Definition Value

ex [mV/mm] x−component of electric field 4× 10
5

ey [mV/mm] y−component of electric field 2× 10
5

In this boundary value problem, the upper edge is uniformly displaced ud in y− direc-

tion, whereas it is free to move in the x−direction as shown in Figure 5.15a. When

the electric field 4.47 × 105 mV/mm is applied in the direction at an angle 26.56◦,

the material stiffens in that direction, causing the material to deform according to the

stiffening effect. Hence, the deformed shape is obtained as in Figure 5.15b.

In the following example, constant electric field vectors having the same magnitude

but different directions are applied to different parts of the body. Specifically, the

electric field vectors are applied to the upper two and the lower two rows of the mi-

crostructure which are symmetrically applied to the middle of the microstructure as

shown in Figure 5.16a. Being different from Figure 5.15, uniform vertical displace-

ment is applied on the upper edge of the microstructure and this edge is fixed not to

move in the x−direction. By applying the electric field vectors in this way and under

the effect of the specified boundary conditions, the microstructure tends to bend. As

a result of this bending, a completely new pattern is formed, which is totally different

from the pattern created only by mechanical loads, see Figure (5.13). In other words,

the ellipses whose major axes are perpendicular to each other formed by compression

are transformed into the deformed configuration illustrated in Figure 5.16b.

The values of x− and y−components of the applied electric fields e1 and e2 is pre-

sented in Table 5.3. Subjected to the constant electric field applied in the specified

portions of the microstructure, the nominal stress-strain curve of the body is demon-

strated in Figure 5.17.
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(a) (b)

Stiffening

Stiffening

e1

e2

PBCPBC

ud

Figure 5.16: (a) Uniform electric field which the magnitude but different directions

applied to different portions of the microstructure (b) Deformed shape of the periodic

microstructure under combined electric fields in different directions and compressive

load.

Table 5.3: The value of x− and y−components of the applied electric fields e1 and

e2

Parameter Unit Definition Value

e1x [mV/mm] x−component of electric field, e1 5× 10
5

e1y [mV/mm] y−component of electric field, e1 5× 10
5

e2x [mV/mm] x−component of electric field, e2 5× 10
5

e2y [mV/mm] y−component of electric field, e2 -5× 10
5

The x−component of the electric field vector applied in the elements in the upper and

lower portions demonstrated as in Figure 5.16, is changed while the y−component

is kept constant. In Figure 5.17, e1x = e2x = 4 × 10 5mV/mm and e1x = e2x =

5 × 10 5mV/mm are compared with the only compression case. It is observed that

for the case in which the constant electric field vector is applied as in Figure 5.16,

the nominal stress-strain behavior of the microstructure increases in the presence of

the electric field. Furthermore, the ultimate stress values are almost the same for both
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e1x = 4× 10 5mV/mm and e1x = 5× 10 5mV/mm loading case.
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Figure 5.17: Nominal stress-strain graph for constant electric fields applied on differ-

ent portions of the microstructure.

This approach provides pronounced results. Nonetheless, the more realistic scenario

is needed for the application point of view. To do so, electric potentials are applied

by electrodes on the edges.

5.3.2 Uniform Electric Potentials on Edges

There are alternative configurations for the location of electrodes, hence, electric po-

tentials. For a simpler case, the electric potentials are applied on the left and right

sides of the microstructure. The electric field, by definition, is the negative value of

the gradient of the electric potential. Hence, the variation of electric field changed

over the volume of the microstructure. However, such a variation is not directly pro-

portional through the volume since the microstructure does not have homogeneity.

Moreover, the boundary conditions are prescribed on the surface of the geometry as

in Figure 5.15a. The only difference is that electric potentials are applied on the edges

where PBC are defined as shown in Figure 5.18a.
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(a) (b)

φl φr

PBCPBC

ud

Figure 5.18: (a) Electric potentials are employed on the left and right edge of the

microstructure and (b) Deformed shape of the periodic microstructure under the in-

fluence of applied electric potentials and compression.

By the application of electric potentials on the left and right edges of the microstruc-

ture, its deformed shape is obtained as shown in Figure 5.18b. Employing the electric

potentials, the nominal stress-strain curve of the microstructure is presented in Figure

5.19.

It must be emphasized that the model is allowed to deform due to the electric potential

difference at first; prior to the application of vertical deformation, the body buckles

due to the applied electric potential difference. Later, the compression is applied in

the presence of the electric potential difference. Under this combined loading, the

deformed shape in Figure 5.18b is obtained at ud = 4.985 mm.

Employing the electric potentials along with the mechanical loading, the nominal

stress values increase when the electric potential difference increases up to a certain

limit. However, it should be noted that the applied voltage differences are huge.

Therefore, additional analyzes are conducted for the same model with edge lengths

three orders of magnitude shorter. Hence, the unit of lengths become in µm.
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Figure 5.19: Nominal stress-strain graph for applied electric potentials on the left and

right surfaces of the microstructure.

5.3.3 Uniform Electric Potentials on Edges For Microscale Model

In this section, the same geometry is created with different edge lengths. The edge

lengths were reduced to the order of microns, unlike the previous examples. A sample

of micron sized is thus scaled by far 10−3. For this example, the electric potential

is applied to the side edges as well. However, unlike the previous examples, the

values of the electrical potentials applied are much smaller due to size differences.

Geometry and boundary conditions are applied as in Figure 5.18a. However, before

the coupled electromechanical equation system was solved iteratively, the sample

was deformed by applying the electric field resulting from the difference between

the electrical potentials and then the stability behavior was examined by applying

compression. In addition, since the smaller sample is used for the current analysis,

the value of the applied compression is reduced by the same ratio. The deformed

shapes of the microstructure for different electric potentials are provided in Figure

5.20.As can be observed from Figure 5.20, the applied electric potential differences

to deform the microstructure is comparably small. The nominal stress-strain behavior

of the corresponding deformations is presented in Figure 5.21.
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∆φ = 400 mV ∆φ = 800 mV ∆φ = 1200 mV

Figure 5.20: Deformed shapes of the periodic microstructure under combined electric

field and compressive load.
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Figure 5.21: Nominal stress-strain graph for applied electric potentials on the left and

right surfaces of the micron sized microstructure.

Up to certain electric potential differences, micron sized specimen exhibits the sway

type deformation. However, prior to vertical displacement, when the applied electric

potential difference is ∆φ = 2400 mV, the micron sized solid body is predeformed

due to electric field and the mode switch can be obtained. Moreover, it must be

emphasized that the maximum nominal stress increases when the higher electric po-

tential difference is applied on the side edges of the solid.
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CHAPTER 6

CONCLUSION

In this thesis, the pattern transformation of Electro-Active Polymers (EAPs) under

coupled electromechanical effects has been investigated within the framework of

FEM. Three representative numerical examples have been proposed for verification.

Among these three examples, the first two have been examined for the coupled elec-

tromechanical effects and the last one has been solved considering mechanical in-

stability of porous cellular microstructures. In the first of the examples, the rela-

tive electrical permittivity value is defined as deformation-dependent [10]. Moreover,

considering the incompressible behavior of EAPs, the four-field FEM has been used

for discretization. On the other hand, the relative permittivity is defined independent

of the deformation in [32]. Also, only the standard FEM has been used for verifi-

cation in the second example. In the last example of numerical examples for verifi-

cation, computational investigation on the stability analysis of elastomeric materials

whose microstructures exhibit periodic occurances has been conducted. The models

in [4, 5] for given periodic boundary conditions have been verified using FEM. The

pattern transformation of the 2D porous solids shown in [4, 5] has been tested for

only mechanical compression.

In literature, there are no studies on pattern transformation of EAPs with periodic

porous microstructures with coupled electromechanical interaction. To fill this gap,

an additional examples have been studied where both the electromechanical coupling

and the pattern transformation have been examined. Under entirely mechanical com-

pression, the pattern transformation of periodic microstructures manifest itself in the

form where the initially circular voids become ellipses whose major axes are perpen-

dicular to each other. It has been observed in the analyses, in the presence of electric
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field, the mode shape can be shifted to another one. When electrical potentials are

applied to the geometry in which the geometry is then subjected to the progressively

increasing mechanical loading only, the order of these potentials to change the de-

formation mode of the geometry is still relatively large. Hence, the micron-sized

geometry has also been analyzed to investigate the influence of size on the order of

the electric potentials applied. It has been realized that there is a significant decrease

in the order of electrical potentials applied when it is compared with the decrease in

the size of porous microstructure.

In this thesis, the geometric stability analysis has been investigated by conducting

the stability analysis of the EAPs having periodic microstructures. Thus, control-

lable mode changes can be achieved through the small electrical potential differences

applied. It is possible to obtain more optimized results in the future by conducting

design studies of this claim of materials with periodic microstructure. This study

can be further enhanced by computational homogenization method for coupled elec-

tromechanics. Furthermore, it is thought that these materials may be applicable in

aerospace applications, especially in morphing technology. Hence, design studies

could be beneficial for the aerospace applications. It is known that Refined Eigen

Analysis (REA) shows a good agreement with the experimental studies [6]. Since

the REA utilizes the enlarged system consisting of more than one unit cell, the time

required to solve the system is relatively high. Therefore, more economical investi-

gation for the prediction of the onset of instability which is called as Bloch-Floquet

wave analysis is to be employed in the future studies.
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