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ABSTRACT

ANALYTICAL SOLUTIONS FOR EVOLUTION AND RUNUP OF LONG
WAVES OVER A SLOPING BEACH

Ceylan, Nihal

M.S., Department of Engineering Sciences

Supervisor: Assoc. Prof. Dr. Utku Kânoğlu

Co-Supervisor: Assist. Prof. Dr. Baran Aydın

September 2019, 49 pages

The initial value problem of the linear evolution and runup of long waves on a plane

beach is analyzed analytically. The shallow water-wave equations are solved by in-

tegral transform and eigenvalue expansion methodologies. The results from linear

solutions are compared with the solution of the nonlinear shallow water-wave equa-

tions confirming the runup invariance, i.e. nonlinear and linear theories produce same

maximum runup. Then, existing analytical nonlinear solution for shoreline motion is

implemented for the waveforms given for near-shore earthquakes producing results

exactly compared with existing ones, but with a much simpler algebra.

Keywords: Tsunami, shallow water-wave equations, wave runup/rundown, analytical

solution
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ÖZ

UZUN DALGALARIN GELİŞİMİ VE SABİT EĞİMLİ KUMSALA
TIRMANMASI İÇİN ANALİTİK ÇÖZÜMLER

Ceylan, Nihal

Yüksek Lisans, Mühendislik Bilimleri Bölümü

Tez Yöneticisi: Doç. Dr. Utku Kânoğlu

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi Baran Aydın

Eylül 2019 , 49 sayfa

Sabit eğimli kumsala tırmanan uzun dalgaların tırmanması ve doğrusal gelişiminin

başlangıç değer problemi analitik olarak ele alınmıştır. Sığ su-dalga denklemleri, in-

tegral dönüşümü ve özdeğer açılımı yöntemleri ile çözülmüştür. Doğrusal çözüm-

lerden elde edilen sonuçlar, tırmanmanın değişmezliğini doğrulamak için doğrusal

olmayan sığ su-dalga denklemlerinin çözümünden elde edilen sonuçlarla karşılaştı-

rılmıştır. Bu karşılaştırmada, doğrusal ve doğrusal olmayan teorilerin aynı maksimum

tırmanma değerlerine sahip olduğu görülmektedir. Daha sonra, kıyı şeridi hareketini

inceleyen mevcut doğrusal olmayan analitik çözüm yöntemi, kıyıya yakın deprem-

lerle oluşan dalga formlarına uygulanmıştır. Elde edilen sonuçlar, mevcut çözüm yön-

teminden elde edilen sonuçlarla karşılaştırıldığında sunulan yöntemin aynı sonuçları

mevcut yönteme kıyasla daha basit cebir kullanarak verdiği görülmektedir.

Anahtar Kelimeler: Tsunami, sığ su-dalga denklemleri, dalga tırmanması, analitik

çözüm
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CHAPTER 1

INTRODUCTION

Shallow water-waves, which are also called long waves, are ocean waves with wave-

length (L) much larger compared to the water depth (d) over which they are propagat-

ing, i.e., L >> d. Tsunamis are long waves, and they are generated by an impulsive

movement of the ocean floor such as an underwater earthquake, volcanic eruption

and submarine or subaerial landslides. When ocean floor is disturbed suddenly, it

is commonly accepted that this displacement is instantaneously transferred to ocean

surface, hence tsunami occurs. In an open sea, tsunami may not be noticed because

of its much smaller amplitude compared to its wavelength. As it reaches shallower

water; its wavelength becomes smaller and its speed is reduced, according to shallow

water-wave speed, c =
√
gd, where g is the gravitational acceleration.

Tsunamis are high-impact and long-duration disasters, often with multiple waves at-

tacking target coastlines, challenging rescue efforts (Kânoǧlu et al., 2015). Tsunami

as a Japanese word is the combination of ‘tsu’ and ‘nami’, meaning ’harbor wave’ in

English. It became known after the damage of the 1896 Great Meiji Tsunami. It was

realized by fishermen after they returned to the port and found the village surround-

ing the harbor devastated by an enormous wave although they had not been aware of

anything unusual while fishing in the open sea. There are authentic records related to

these type of waves dated back to the 9th Century AD in Japan. However, the first

historical report of coastal inundation by tsunamis refers to the eruption of the Thera

volcano in the eastern Mediterranean, which is believed to occur around 1620 BC

(Kânoğlu and Synolakis, 2015).

According to the United States National Oceanic and Atmospheric Administration’s

1



National Centers for Environmental Information (NOAA NCEI1), tsunamis have cost

over 400,000 people’s lives since 1850 (NOAA, 2018). Also, according to historical

tsunami records, tsunamis mostly occur in oceans –specifically the Pacific Ocean with

a share of 70%– and open seas (International Tsunami Information Center, 2018),

Figure 1.1.

The deadliest tsunami in recorded history is the 26 December 2004 Indian Ocean

tsunami. It is also one of the largest earthquakes in the recorded history (Rabinovich

and Thomson, 2007), with the rupture length of almost 1600 km long. This disaster

claimed the loss of more than 220,000 lives and devastation throughout the Bay of

Bengal (Bilek et al., 2007). According to the post-disaster investigations the wave

height reached over 30 m in some areas and affected at least 16 nations directly

across the Indian Ocean (Synolakis and Kong, 2006; Kânoğlu et al., 2019). The

economic impact of this tsunami is about $10 billion and the world’s response was an

unprecedented, $13.5 billion in international aid (Bernard and Robinson, 2009).

Again, the primary assumption of the shallow water theory is that the horizontal scales

(e.g., wavelength, L) are much larger than the vertical scales (e.g., water depth, d,

or wave height, H). Therefore, vertical momentum exchange is negligible and the

vertical velocity component is much smaller than the horizontal components. The

vertical momentum equation is then reduced to a hydrostatic pressure equation and,

after averaging the continuity and momentum equations over the depth, the resulting

equations employ only two spatial variables, in addition to the temporal variable.

The study of tsunami science has initiated from laboratory experiments with a focus

on wave runup. The initial model for tsunamis was a solitary wave, which is a single

wave preserving its shape when propagating over a constant depth. Hall and Watts

(1953) studied, the 1+1 canonical problem –a one-dimensional single long wave, gen-

erated over a constant-depth basin and then climbing up on a uniformly sloping beach.

1 It is formerly known as National Geophysical Data Center (NGDC).
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Carrier and Greenspan (1958) contributed significantly to the initial value problem so-

lutions of the 1+1 dimensional nonlinear shallow water-wave equations introducing a

nonlinear transformation, which is now known as Carrier–Greenspan (CG) transfor-

mation. They transformed the nonlinear shallow water-wave equations into a single

second-order linear Bessel-type equation by substituting the physical variables (x and

t) with auxiliary variables (σ and λ). After their transformation the shoreline, which

moves up and down over a beach, becomes a fixed point (σ = 0) in the transform

space. Unfortunately, their study remained unused for a long time due to mainly dif-

ficulty to define an initial wave in the transform space given in the physical space.

Afterwards, Keller and Keller (1964) derived a Bessel-type equation by using linear

shallow water-wave equations. They acquired an amplification factor dependent on

initial wave height (H) by considering periodic waves over a constant depth at the toe

of the beach.

In the 1980s, the results obtained from analytical methods were coupled with ex-

perimental results. In particular, Synolakis (1987) made contribution to evolution and

runup of solitary waves both propagating over a constant depth and then evolving over

a sloping beach as an initial value problem solution of the nonlinear shallow water-

wave equation including reflection. He linearized the CG transformation to generalize

the initial offshore conditions neglecting nonlinear effects far from the shore. He also

utilized Keller and Keller (1964) formulae to define the boundary condition at the

toe of the beach. Synolakis (1987) also verified his analytical solutions with experi-

mental results and derived a formula which is known as the runup law to predict the

maximum runup for nonbreaking waves.

Tadepalli and Synolakis (1994) offered N-wave shape as a leading waves of a tsunami.

They defined two different waveforms named as leading elevation N-waves (LEN)

and leading depression N-waves (LDN) depending on whether crest or trough is ob-

served first, respectively. They showed that N-waves are more suitable to represent

leading wave of a tsunami compared with solitary waves, a claim which was not ac-

cepted at first, but confirmed after studies on events such as the 1992 Nicaraguan

tsunami.

Carrier et al. (2003) used hodograph transformation over a uniformly sloping beach
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to solve 1+1 nonlinear initial value problem with Green’s function representation to

have more accurate runup computations. Their solution contains integrals with singu-

larities. Kânoğlu (2004) overcame these difficulty using original solution of Carrier

and Greenspan (1958) and with linearization of the transformation in space at t = 0,

and validated the results with Carrier et al. (2003). Tinti and Tonini (2005) used

CG transformation to calculate runup of waves produced by near-shore earthquakes.

They used different earthquake parameters to create various initial waveforms and

then discuss their effect on wave height amplification at the coast. Kânoğlu (2004)’s

study is extended for nonzero initial velocity conditions by Kânoğlu and Synolakis

(2006). More recently, Aydın (2011) solved the nonlinear shallow water-wave equa-

tions as an initial-boundary value problem. He combined the CG transformation with

eigenvalue expansion, and obtained propagation and runup of different initial wave-

forms having zero and nonzero initial velocities. His solution does not only compare

well with existing literature, but it is also more general and computationally efficient.

In this study, first, the linear shallow water-wave equations are solved by using an ap-

proach which is similar to the methodology of Carrier and Greenspan (1958). In this

method, integral transformation is used for reformulation of the free surface problem.

Then, solution method employing eigenfunction expansion, similar to Aydın (2011),

is presented. Then, both solution methodologies are implemented to calculate the

shoreline wave heights and shoreline velocites for the Gaussian waveforms with zero

and nonzero initial velocity. Then, new formulations for shoreline quantities, shore-

line wave height and velocity, are developed for near-shore earthquakes following

Kânoğlu (2004), as an alternative to Tinti and Tonini (2005)’s methodology based on

nonlinear shallow water-wave equations.
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CHAPTER 2

ANALYTICAL SOLUTIONS OF THE LINEAR SHALLOW WATER-WAVE

EQUATIONS

In this chapter, the linear shallow water-wave equations over a sloping beach are

solved similar to the solutions of the nonlinear shallow water-wave equations given by

Carrier and Greenspan (1958), and Aydın and Kânoğlu (2017). In the former solution

methodology, integral transformation is used whereas the latter employs eigenvalue

expansion method. The results are compared with the nonlinear solution of Kânoğlu

(2004) for the free-surface elevation and shoreline quantities, i.e. shoreline wave

height and velocity, for different initial wave profiles.

η∗s(t
∗)

x∗

β

η∗(x∗, t∗)

Mean sea level

h∗(x∗)

Figure 2.1: The definition sketch (not to scale).
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2.1 Governing Equations

In dimensional form, the linear shallow water-wave equations are

u∗t∗ + g∗η∗x∗ = 0, (2.1a)

η∗t∗ +
(
h∗u∗

)
x∗

= 0, (2.1b)

where u∗ = u∗(x∗, t∗) represents the depth-averaged velocity, η∗ = η∗(x∗, t∗) rep-

resents the free-surface disturbance with respect to mean sea level, and h∗(x) =

x∗ tan β is the local water depth (x∗ ≥ 0, t∗ ≥ 0). β is the angle the beach makes

with horizontal, and g∗ is the gravitational acceleration (Figure 2.1).

The dimensionless quantities are defined as

x =
x∗

l∗0
, t =

t∗√
l∗0/g

∗ tan β
, η, h =

η∗, h∗

l∗0 tan β
, u =

u∗√
l∗0 g

∗ tan β
, (2.2)

where l∗0 is a characteristic length scale. Then, the dimensional linear shallow water-

wave equations (2.1) takes the following form

ut + ηx = 0, (2.3a)

ηt +
(
h u
)
x

= 0. (2.3b)

Substituting equation (2.3a) into the equation (2.3b) and writing h(x) = x, the fol-

lowing second-order linear partial differential equation is obtained as

ηtt =
(
xηx
)
x
. (2.4)

This equation is subject to initial and boundary conditions, which are specified in the

next section.

2.2 New Solution Methodologies

In the following subsections, two new solution methodologies for the linear shallow

water-wave equation (2.4) over a sloping beach are introduced.
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2.2.1 Integral Transform Formulation

In this subsection, linear shallow water-wave equation (2.4) will be solved in the

infinite domain, 0 ≤ x and 0 ≤ t. Assuming a time-harmonic dependence of the

form

η(x, t) = A(x) e−iwt, (2.5)

the linear governing equation (2.4) becomes

x A′′(x) + A′(x) + w2 A(x) = 0. (2.6)

Equation (2.6) is a Bessel-type equation and its general solution is given as

A(x) = C1 J0(2w
√
x) + C2 Y0(2w

√
x), (2.7)

where J0 and Y0 are the first and the second kind Bessel functions of order zero, and

C1 and C2 are arbitrary constants. Bounded solution at the shoreline, i.e. η(x =

0, t) = finite, requires C2 to be zero since Y0(2w
√
x)→ −∞ when x→ 0. Hence,

the solution of equation (2.6) will be

A(x) = C J0(2w
√
x). (2.8)

Hence, the solution of equation (2.4) is

η(x, t) = C J0(2w
√
x) e−iwt.

The governing equation (2.4) will assume the superposition of all such solutions as

general solution, since it is a linear differential equation.

At the initial time (t = 0) this general solution can be written as

η0(x) =

∫ ∞
0

C(w) J0(2w
√
x) dw. (2.9)

Here, the Hankel transform of order ν is introduced as

F (k) =

∫ ∞
0

f(r) Jν(kr) r dr, (2.10)

where Jν is the Bessel function of order ν with ν ≥ −1/2. The inverse Hankel

transform of F (k) is then given as

f(r) =

∫ ∞
0

F (k) Jν(kr) k dk. (2.11)
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The initial waveform, equation (2.9), is apparently the Hankel transform of zero order

with w = r, f(r) = C(w)
w

, and k = 2
√
x ;

η0(x) =

∫ ∞
0

C(w)

w
J0(2w

√
x) w dw. (2.12)

Then inverse Hankel transform, according to (2.11), reads

C(w)

w
=

∫ ∞
0

η0(x) J0(2w
√
x) (2

√
x)

dx√
x
, (2.13)

or

C(w) =

∫ ∞
0

2w η0(ξ) J0(2w
√
ξ) dξ, (2.14)

after changing dummy variable x of the integral with ξ.

Finally, the free surface elevation can be given as

η(x, t) =

∫ ∞
0

[ ∫ ∞
0

2w η0(ξ) J0(2w
√
ξ) dξ

]
J0(2w

√
x) e−iwt dw. (2.15)

2.2.2 Series Solution Formulation

The governing equation (2.4) can also be solved in a finite domain, 0 ≤ x ≤ L

and 0 ≤ t, as an initial-boundary value problem with eigenvalue expansion, i.e. as

a classical separation of variables problem, similar to Aydın and Kânoğlu (2017),

instead of the integral transform technique presented in the previous section. In this

case, initial-boundary value problem has a solution as an eigenvalue expansion under

the most general condition, that is an initial wave height distribution, η(x, t = 0) =

η0(x), with a corresponding initial velocity profile, u(x, t = 0) = u0(x) 6= 0.

Separating the variables, η(x, t) = S(x)T (t), equation (2.4) becomes

Sx
S

+ x
Sxx
S

=
Ttt
T

= −λ2, (2.16)

where λ is a real separation constant. Then, the separated equations become

x Sxx + Sx + λ2S = 0, (2.17a)

Ttt + λ2T = 0. (2.17b)

The solutions of equations (2.17a) and (2.17b) are

S(x) = C1 J0(2λ
√
x) + C2 Y0(2λ

√
x), (2.18a)

T (t) = C3 cos(λt) + C4 sin(λt), (2.18b)
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respectively, where J0 and Y0 are the first and the second kind Bessel functions, and

C1, C2, C3, and C4 are arbitrary constants. Hence, the solution of the governing

equation (2.4) takes the following form

η(x, t) = S(x)T (t)

=
[
C1 J0(2λ

√
x) + C2 Y0(2λ

√
x)
][
C3 cos(λt) + C4 sin(λt)

]
.

(2.19)

The arbitrary constants could be determined considering the following initial and

boundary conditions. First, finite solution at the shoreline as in the previous solution,

η(x = 0, t) = finite, requires C2 to be zero since Y0(2λ
√
x) → −∞ when x → 0.

Hence, the solution (2.19) reduces to

η(x, t) = C1 J0(2λ
√
x)
[
C3 cos(λt) + C4 sin(λt)

]
. (2.20)

Next, Dirichlet (first-type) boundary condition at the seaward boundary (x = L) is

assumed in order to allow for a simpler formulation for eigenvalue expansion, i.e.

η(x = L, t) = 0, which results

J0(2λ
√
L) = 0. (2.21)

Therefore, eigenvalues are

λn = zn =
zn

2
√
L
. (2.22)

Note that zn’s are the eigenvalues of the problem where zn’s are the zeros1 of the

Bessel function of the first kind of order zero, J0. Hence, the series solution for

η(x, t) becomes

η(x, t) =
∞∑
n=1

J0(2zn
√
x)
[
An cos(znt) +Bn sin(znt)

]
, (2.23)

after substituting (2.22) into the equation (2.20). Also, substitution of equation (2.23)

into equation (2.3a), ut = −ηx, leads

u(x, t) =
∞∑
n=1

J1(2zn
√
x)√

x

[
An sin(znt)−Bn cos(znt)

]
. (2.24)

The coefficients An and Bn are calculated imposing the following initial conditions,

1 The first few zeros of the function J0(z) are: z1 = 2.405, z2 = 5.520, z3 = 8.654, z4 = 11.792, . . . .
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η(x, t = 0) = η0(x) and ηt(x, t = 0) = u0(x) and obtained as

η0(x) =
∞∑
n=1

An J0(2zn
√
x), (2.25a)

u0(x) =
∞∑
n=1

znBn J0(2zn
√
x). (2.25b)

Multiplying both sides of equations (2.25a) and (2.25b) with J0(2zm
√
x) and inte-

grating along the domain of solution we get∫ L

0

η0(x) J0(2zn
√
x)dx = L J2

1 (zn) An, (2.26a)∫ L

0

u0(x) J0(2zn
√
x)dx = znLJ

2
1 (zn)Bn, (2.26b)

using orthogonality of Bessel functions defined as∫ L

0

J0(2zn
√
x) J0(2zm

√
x)dx = L J2

1 (zn) δnm, (2.27)

where δnm represents Kronecker’s delta. Hence, the unknown coefficients An and Bn

are calculated as

An =
1

L J2
1 (zn)

∫ L

0

η0(x)J0(2zn
√
x)dx, (2.28a)

Bn =
1

zn LJ2
1 (zn)

∫ L

0

u0(x)J0(2zn
√
x)dx, (2.28b)

where (n ≥ 1).

The shoreline quantities are now calculated by simply substituting x = 0 in equations

(2.23) and (2.24). Hence, temporal variation of the shoreline free-surface height is

given as

η(0, t) = ηs(t) =
∞∑
n=1

[
An cos(znt) +Bn sin(znt)

]
, (2.29)

from equation (2.23) and temporal variation of the shoreline velocity is given as

u(0, t) = us(t) =
∞∑
n=1

zn

[
An sin(znt)−Bn cos(znt)

]
, (2.30)

from equation (2.24). Note that the singularity of the velocity at the shoreline can be

avoided considering

lim
x→0

J1(2zn
√
x)√

x
= zn.
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2.3 Application to Different Initial Wave Profiles

In this section, the linear solution methodologies developed in Section 2.2 are applied

to the initial wave profiles introduced in Carrier et al. (2003) and the results are com-

pared with the nonlinear solution of Kânoğlu (2004). The wave profiles considered

are Gaussian wave, solitary wave, and isosceles and generalized N-waves. In these ap-

plications, the seaward boundary is selected to be at L = 50 for the series solution so

that waves reflected from the artificial seaward boundary do not affect the nearshore

solution. Initial waves introduced here extend to infinity theoretically. However, L

is chosen large enough to have wave height practically zero at the seaward boundary

initially.

2.3.1 Gaussian Wave Type Initial Conditions

Carrier et al. (2003) define a Gaussian initial wave profile as

η0(x) = H1 e−c1(x−x1)
2

, (2.31)

where H1 is the initial wave height, c1 is the steepness of the profile and x1 is the

initial location of the wave maximum, respectively. Further, they define N-wave as a

combination of two Gaussian waves

η0(x) = H1 e−c1(x−x1)
2 −H2 e−c2(x−x2)

2

. (2.32)

According to (2.15), the free surface elevation η(x, t) resulting from the integral trans-

form solution for this N-wave configuration can be given as

η(x, t) =

∫ ∞
0

2
(
H1 e−c1(ξ−x1)

2 −H2 e−c2(ξ−x2)
2)×[ ∫ ∞

0

wJ0(2w
√
ξ)J0(2w

√
x)e−iwt dw

]
dξ . (2.33)

For the series solution method, the free surface elevation can be calculated by using

(2.23) and (2.28) as

η(x, t) =
∞∑
n=1

J0(2zn
√
x)
[ 1

L J2
1 (zn)

∫ L

0

(
H1 e−c1(ξ−x1)

2 −H2 e−c2(ξ−x2)
2)×

J0(2zn
√
ξ)dξ

]
cos(znt). (2.34)
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The solutions (2.33) and (2.34) are given for zero initial velocity condition. The initial

wave profiles used in the presented solution methodologies are shown in Figure 2.2

and their parameters are listed in Table 2.1.

Figure 2.2: The initial wave profiles given by Carrier et al. (2003); (a) positive Gaus-

sian wave, (b) negative Gaussian wave, (c-d) Gaussian N-waves. The wave parame-

ters used to define these initial waves are listed in Table 2.1.

Table 2.1: Parameters for the initial waveforms given in Figure 2.2 (Carrier et al.,

2003).

H1 c1 x1 H2 c2 x2

Case 1 0.017 4.0 1.69 - - -

Case 2 -0.017 4.0 1.69 - - -

Case 3 0.020 3.5 1.5625 0.010 3.5 1.0

Case 4 0.006 0.4444 4.1209 0.018 4.0 1.6384
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2.3.1.1 Results for Zero Initial Velocity Case

The spatial and temporal variations of water surface elevations are calculated using

both the integral transform and the series solution methods, i.e. equations (2.33) and

(2.34) for the initial waveforms given in Figure 2.2 and the results are presented in

Figures 2.3 and 2.4.

Figure 2.3: Spatial and temporal variations of (thin lines) the water surface elevation

including (thick lines) shoreline motion obtained from the integral solution for (a)

positive Gaussian wave, Case 1, (b) negative Gaussian wave, Case 2, (c-d) Gaussian

N-waves, Case 3 and Case 4, defined by Carrier et al. (2003).
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Figure 2.4: Spatial and temporal variations of (thin lines) the water surface elevations

including (thick lines) shoreline motions obtained from the series solution for (a)

positive Gaussian wave, Case 1, (b) negative Gaussian wave, Case 2, (c-d) Gaussian

N-waves, Case 3 and Case 4, defined by Carrier et al. (2003).

In Figures 2.5 and 2.6, spatial variations of the free surface elevation η for Case 1 are

compared with linear solution methodologies for zero initial velocity condition. The

shoreline wave heights ηs and the shoreline velocities us are compared for the results

of the solutions introduced here, linear integral and series solutions, and the results

of nonlinear solution (Kânoǧlu, 2004) in Figure 2.7 in the case of zero initial velocity

condition. Also, the maximum and minimum values of shoreline wave heights and

the shoreline velocities are listed and compared in Table 2.2.
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Figure 2.5: Spatial variations of wave heights η for the positive Gaussian wave (Case

1), given in Figure 2.2a, (left insets) results from integral and series solution method-

ologies with zero initial velocity and (right insets) results from series solution with

nonzero initial velocity. Solid lines represent the series solution results, while dots

represent the integral solution results.
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Figure 2.6: Continued from Figure 2.5
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Figure 2.7: Temporal variations of (left insets) the shoreline wave heights ηs and

(right insets) the shoreline velocities us for the initial wave profiles given in Figure

2.2 without initial velocity. Solid and dashed lines represent the integral transform

solution and nonlinear solution of Kânoğlu (2004), respectively, while dots represent

the series solution results. The maximum runup and minimum rundown values are

tabulated in Table 2.2.
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2.3.1.2 Results for Nonzero Initial Velocity Case

In this section, results of the series solution of the linear shallow water-wave equation

is presented for the cases introduced in Section 2.3 having nonzero initial velocity pro-

files. Nonzero initial velocity assumption is implemented as in Carrier et al. (2003),

i.e. linear approximation for the initial velocity,

u0(x) = − η0(x)√
h(x)

= −η0(x)√
x
. (2.35)

Minus sign is introduced here to allow initial wave to propagate toward to the shore-

line.

The effect of having initial velocity is also investigated using linear series solution

methodology. In Figures 2.5 and 2.6, spatial variations of wave height are given

for Case 1 of Carrier et al. (2003) and compare with the case zero initial velocity. In

Figure 2.8, the shoreline wave heights ηs and the shoreline velocities us are compared

for the cases with nonzero and zero initial velocity conditions. In addition, linear

series solution results are compared with the results from the nonlinear solution of

Aydın and Kânoğlu (2017). The maximum and minimum values of the shoreline

wave heights ηs and the shoreline velocities us are listed in Table 2.3.
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Figure 2.8: Temporal variations of (left insets) the shoreline wave heights, ηs, and

(right insets) the shoreline velocities, us, for the Gaussian and N-wave initial wave

profiles given in Figure 2.2. Solid and dashed lines represent the nonzero and zero ini-

tial velocity conditions for the present series solution, respectively, while dots repre-

sent the results of nonlinear series solution of Aydın and Kânoğlu (2017) with nonzero

initial velocity. The maximum runup and minimum rundown values are tabulated in

Table 2.3.
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2.3.2 Solitary Wave Type Initial Condition

A solitary wave is defined as

η0(x) = H sech2γs (x− x1), (2.36)

where γs =
√

3H/4. In this definition, H is the initial height and x1 is the initial

location of the maximum of wave. Once a solitary wave is introduced over a slop-

ing beach without initial velocity, according to (2.15), free surface elevation η(x, t)

resulting from the integral transform solution is given as

η(x, t) =

∫ ∞
0

2
[
H sech2γs (ξ − x1)

]
×[ ∫ ∞

0

wJ0(2w
√
ξ)J0(2w

√
x)e−iwt dw

]
dξ . (2.37)

For the series solution, free surface elevation is calculated by using (2.23) and (2.28)

as

η(x, t) =
∞∑
n=1

J0(2zn
√
x)
[ 1

L J2
1 (zn)

∫ L

0

H sech2γs (ξ − x1)×

J0(2zn
√
ξ)dξ

]
cos(znt), (2.38)

again for solitary wave initial form without initial velocity.

Kânoğlu (2004) calculated the shoreline height and velocity of the solitary wave ini-

tial condition with the parameters H = 0.03 and x1 = 20 (Figure 2.9a) without

initial velocity. The spatial and temporal variations of the water surface elevations are

calculated with the integral transform and series solution techniques using equations

(2.37) and (2.38), and presented in Figure 2.10. The shoreline wave height ηs and

the shoreline velocity us are compared for the integral solution and series solution in

Figure 2.9b-c. The maximum and minimum values of shoreline wave heights and the

shoreline velocities are also given in Table 2.4 for both solution methodologies. Sev-

eral initial wave heights are considered in Figure 2.9d. Maximum runup of solitary

wave follows R ∼ H5/4 as in Synolakis (1987)’s result (R = 2.831
√

cot β H5/4).

Even though Synolakis (1987) derived the maximum runup formula for the canonical

problem with a different normalization, as similar observation (R ∼ H5/4) made here

as in Kânoğlu (2004) with nonlinear solution.
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Figure 2.9: The runup-rundown characteristics of solitary wave initial waveform, (a)

initial wave profile with H = 0.03, x1 = 20, (b) temporal variation of the shoreline

wave height ηs and (c) shoreline velocity us for (solid line) integral and (dots) series

solutions, (d) maximum runup of solitary waves with H = 0.04, 0.035, 0.03 and

0.025 at x1 = 20; (dots) the linear series solution for presented here and (circles) the

nonlinear solution of Kânoğlu (2004).
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Figure 2.10: Spatial and temporal variations of (thin lines) the water surface ele-

vations including (thick lines) shoreline motions calculated with (a) integral and (b)

series solutions for the solitary wave with H = 0.03 and x1 = 20.

Table 2.4: Comparison of the maximum runup and minimum rundown for solitary

wave with the integral transform and series solution techniques. Refer to the caption

of Figure 2.9.

ηmax ηmin umax umin

Integral Solution 0.074473 -0.037683 0.086136 -0.037918

Series Solution 0.074511 -0.037692 0.086374 -0.037692

2.3.3 Isosceles N-Wave Type Initial Condition

Tadepalli and Synolakis (1994) introduced a waveform, which has the same wave

height at depression and elevation sides and called as isosceles N-wave. An isosceles

N-wave is defined as

η0(x) =
3
√

3

2
H sech2γs (x− x1) tanhγs (x− x1), (2.39)

where γs = (3/2)
√
H
√

3/4. In this definition, H is the initial wave height and x1

locates the initial wave.

According to (2.15), free surface elevation η(x, t) for an isosceles N-wave is

η(x, t) =

∫ ∞
0

2
[3√3

2
H sech2γs (ξ − x1) tanhγs (ξ − x1)

]
×[ ∫ ∞

0

wJ0(2w
√
ξ)J0(2w

√
x)e−iwt dw

]
dξ, (2.40)
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for zero initial wave velocity. For the series solution, the free surface elevation is

calculated by using (2.23) and (2.28) as

η(x, t) =
∑
n=1

J0(2zn
√
x)
[ 1

L J2
1 (zn)

∫ L

0

3
√

3

2
H sech2γs (ξ − x1)×

tanh γs (ξ − x1)J0(2zn
√
ξ)dξ

]
cos(znt). (2.41)

again for zero initial velocity case.

Kânoğlu (2004) presented nonliner solution for two examples of the isosceles N-

waves, leading-depression isosceles N-wave, ηd, and leading-elevation isosceles N-

wave, ηe = −ηd, with parameters H = 0.03 and x1 = 15 (Figure 2.11a and e,

respectively). The spatial and temporal variations of water surface elevations of the

same initial wave are calculated with the integral and series solution techniques, and

presented in Figures 2.12 and 2.13 using equations (2.40) and (2.41). The shoreline

wave height ηs and the shoreline velocity us of the leading-depression and -elevation

isosceles N-waves are compared for the integral and series methodologies in Fig-

ure 2.11 with zero initial velocity condition, u0 = 0. The maximum and minimum

values of shoreline wave heights and the shoreline velocities are also summarized

in Table 2.5. Several cases are considered in Figure 2.11 for leading-depression

and -elevation isosceles N-wave forms as in Kânoğlu (2004). Maximum runup of

isosceles N-wave follows R ∼ H5/4 as in Tadepalli and Synolakis (1994)’s result

(R = 3.86
√

cot β H5/4). Even though Tadepalli and Synolakis (1994) derived the

maximum runup formula for the canonical problem with a different normalization,

as similar observation (R ∼ H5/4) made here as in nonlinear solution of Kânoğlu

(2004).
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Figure 2.11: The runup-rundown characteristics of isosceles (left insets) leading-

depression ηd(x, 0) and (right insets) leading-elevation N-waves (ηe(x, 0) =

−ηd(x, 0)) with H = 0.03, x1 = 15. (a, e) The initial wave profiles, (b, f) tem-

poral variations of the shoreline wave heights ηs and (c, g) shoreline velocities us

for (solid line) integral and (dots) series solution. (d, h) The maximum runup of the

leading-depression and leading-elevation isosceles N-waves with H = 0.04, 0.035,

0.03 and 0.025 at x1 = 15 are shown for (dots) linear series solution presented here

and (circles) the nonlinear solution of Kânoğlu (2004).
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Figure 2.12: Spatial and temporal variations of (thin lines) the water surface eleva-

tion including (thick lines) shoreline motions for (a) integral solution and (b) series

solution for the leading-depression isosceles N-wave with H = 0.03 and x1 = 15.

Figure 2.13: Spatial and temporal variations of (thin lines) the water surface eleva-

tion including (thick lines) shoreline motions for (a) integral solution and (b) series

solution for the leading-elevation isosceles N-wave with H = 0.03 and x1 = 15.

Table 2.5: Comparison of the maximum runup and minimum rundown values for the

given leading-depression and leading-elevation isosceles N-waves for the integral and

series solution methodologies. Refer to the caption of Figure 2.11.

Leading-Depression Isosceles N-wave Leading-Elevation Isosceles N-wave

ηmax ηmin umax umin ηmax ηmin umax umin

Integral Solution 0.177929 -0.080769 0.255126 -0.341837 0.080769 -0.177929 0.341837 -0.255126

Series Solution 0.178732 -0.081037 0.255624 -0.345142 0.081037 -0.178732 0.345142 -0.255624
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2.3.4 Generalized N-Wave Type Initial Condition

Tadepalli and Synolakis (1996) also introduced a waveform, which produces positive

and negative disturbances with different heights, as an alternative model to isosceles

N-waves which are called as generalized N-waves. A generalized N-wave is defined

as

η0(x) = ε H (x− x2) sech2γs (x− x1), (2.42)

where γs =
√

3H/4. In this definition, ε is a scaling parameter to provide a wave

with initial maximum height H and x1 is the initial location of the wave.

According to (2.15), free surface elevation η(x, t) for the generalized N-wave is

η(x, t) =

∫ ∞
0

2ε H (ξ − x2) sech2γs (ξ − x1)×[ ∫ ∞
0

wJ0(2w
√
ξ)J0(2w

√
x)e−iwt dw

]
dξ. (2.43)

for zero initial wave velocity. For the series solution, the free surface elevation can be

calculated by using (2.23) and (2.28) as

η(x, t) =
∑
n=1

J0(2zn
√
x)
[ 1

L J2
1 (zn)

∫ L

0

(
ε H (ξ − x2) sech2γs (ξ − x1)

)
×

J0(2zn
√
ξ)dξ

]
cos(znt). (2.44)

again for zero initial velocity.

Kânoğlu (2004) presented nonlinear solution for two examples of the generalized

N-wave as initial condition, leading-depression generalized N-wave with parameters

H = 0.06, ε = 0.2, x1 = 18 and x2 = 17, and leading-elevation generalized N-wave

with parameters H = 0.06, ε = 0.2, x1 = 24.2 and x2 = 25.2 (Figure 2.14a and

e). The shoreline wave heights, ηs, and the shoreline velocities, us, of the leading-

depression generalized N-wave are compared on integral and series solution in Figure

2.14 with the zero initial velocity condition, u0 = 0. The maximum and minimum

values of shoreline wave heights and the shoreline velocities are given in Table 2.6.

The spatial and temporal variations of the water surface elevation of the same initial

wave are calculated with integral and series solution techniques, and presented in

Figures 2.15 and 2.16.
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Several cases are considered in Figure 2.14d and h for leading-depression and -

elevation generalized N-wave forms as in Kânoğlu (2004). Maximum runup of gen-

eralized N-waves follow R ∼ H3/4 as in Tadepalli and Synolakis (1994)’s result

(R = 2.831ε
√

cot β H5/4 [|X1−X2− 0.366/γ|+ 0.618/γ]). Even though Tadepalli

and Synolakis (1994) derived the maximum runup formula for the canonical problem

with a different normalization, as similar observation (R ∼ H3/4) made here as in

Kânoğlu (2004) with nonlinear solution.
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Figure 2.14: The runup and rundown characteristics of (left insets) the leading-

depression (H = 0.06, ε = 0.2, x1 = 18 and x2 = 17) and (right insets) leading-

elevation (H = 0.06, ε = 0.2, x1 = 24.20 and x2 = 25.20) generalized N-wave pro-

files. (a, e) The initial wave profiles, (b, f) temporal variations of the shoreline wave

heights ηs and (c, g) shoreline velocities us for (solid line) integral and (dots) series

solution, (d) the maximum runup of the leading-depression generalized N-waves with

H = 0.08, 0.07, 0.06 and 0.05 for ε = 0.2, x1 = 18 and x2 = 17 are shown for (dots)

linear series solution presented here and (circles) the nonlinear solution of Kânoğlu

(2004) and (h) the maximum runup of the leading-elevation generalized N-waves with

ε = 0, 2, x1 − x2 = −1 and x1 = 23.24, 23.66, 24.20 and 24.88 for H = 0.08, 0.07,

0.06 and 0.05 are shown for (dots) results of the linear series solution presented here

and (circles) the nonlinear solution of Kânoğlu (2004).
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Figure 2.15: Spatial and temporal variations of (thin lines) the water surface elevation

including (thick lines) shoreline motions for the leading-depression generalized N-

wave with H = 0.06, ε = 0N.2, x1 = 18 and x2 = 17.

Figure 2.16: Spatial and temporal variations of (thin lines) the water surface ele-

vation including (thick lines) shoreline motions for the leading-elevation generalized

N-wave with H = 0.06, ε = 0.2, x1 = 24.2 and x2 = 25.2.

Table 2.6: Comparison of the maximum runup and minimum rundown for the given

leading-depression and -elevation generalized N-wave with the integral and series

solution techniques. Refer to the caption of Figure 2.14.

Leading-Depression Generalized N-wave Leading-Elevation Generalized N-wave

ηmax ηmin umax umin ηmax ηmin umax umin

Integral Solution 0.156911 -0.046090 0.191664 -0.219136 0.099743 -0.154796 0.329033 -0.189200

Series Solution 0.157079 -0.046090 0.192898 -0.219279 0.099744 -0.155590 0.329319 -0.189299
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2.4 Conclusion

The linear shallow water-wave equations are solved using integral formulation method-

ology similar to Kânoğlu (2004) and eigenvalue expansion similar to Aydın and

Kânoğlu (2017) over a sloping beach as an initial-boundary value problem. Com-

parisons of the results of the linear solutions with nonlinear solution show the runup

invariance between the linear and nonlinear solutions, i.e. both theories produce dif-

ferent propagation yet they produce same maximum runup.

In addition, the linear solution does not include hodograph transforms; hence, it is

much more simpler than the nonlinear solutions. Also, the series solution uses eigen-

function expansion rather than integral transforms, which makes the present series

solution method more efficient in terms of computation time and effort.
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CHAPTER 3

RUNUP OF NEAR-SHORE LONG WAVES ON A SLOPING BEACH

ηs(t
∗)

x∗s(t
∗)

x∗

β

η∗(x∗, t∗)

Mean sea level

h∗(x∗)

Figure 3.1: The definition sketch (not to scale).

In dimensional form, the nonlinear shallow water-wave equations are given as

u∗t∗ + u∗ u∗x∗ + g∗η∗x∗ = 0, (3.1a)[
u∗(h∗ + η∗)

]
x∗

+ η∗t∗ = 0, (3.1b)

where u∗ = u∗(x∗, t∗) and η∗ = η∗(x∗, t∗) represent the depth-averaged velocity and

the free-surface elevation, respectively. The variable depth h∗(x∗) can be defined as

h∗(x) = x∗ tan β where β is the beach angle from the horizontal. After defining the

dimensionless variables as

u =
u∗√

l∗0 g
∗ tan β

, η, h =
η∗, h∗

l∗0 tan β
, x =

x∗

l∗0
, t =

t∗√
l∗0/g

∗ tan β
, (3.2)
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where l∗0 is a characteristic length scale and g∗ is the gravitational acceleration. The

dimensionless form of the nonlinear shallow water-wave equations can be written, in

view of equations (3.2), as

ut + u ux + ηx = 0, (3.3a)

[u(h+ η)]x + ηt = 0. (3.3b)

Carrier and Greenspan (1958) introduced the following transformation, hence called

Carrier–Greenspan transformation

x =
1

16
σ2 − 1

4
φλ +

1

2
u2, (3.4a)

t = u− 1

2
λ, (3.4b)

u =
φσ
σ
, (3.4c)

η =
1

4
φλ −

1

2
u2, (3.4d)

and they were able to reduce equations (3.3) into the following differential equation

σφλλ − (σ φσ)σ = 0. (3.5)

Given initial wave profile in (σ, λ)–space, i.e. η(σ, λ = 0), which corresponds t = 0

in the absence of initial velocity, i.e. u = 0, the solution of (3.5) is

φ(σ, λ) = −
∫ ∞
0

ω−1J0(ωσ) sin(ωλ)dω

∫ ∞
0

ξ2J1(ωξ)Φ(ξ)dξ, (3.6)

and, from (3.4),

u(σ, λ) =

∫ ∞
0

σ−1J1(ωσ) sin(ωλ)dω

∫ ∞
0

ξ2J1(ωξ)Φ(ξ)dξ, (3.7)

where Φ(σ) = uλ(σ, 0) = 4ησ(σ, 0)/σ (Carrier and Greenspan, 1958). Hence, the

evolution of water surface elevation is now given by

η(σ, λ) =
1

4
φλ −

1

2
u2 = −1

4

{∫ ∞
0

ξ2Φ(ξ)

[∫ ∞
0

J0(ωσ) J1(ωξ) cos(ωλ)dω

]
dξ

}

− 1

2

{∫ ∞
0

ξ2Φ(ξ)

[∫ ∞
0

J1(ωσ)

σ
J1(ωξ) sin(ωλ)dω

]
dξ

}2

.

(3.8)
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Major difficulty in Carrier and Greenspan (1958)’s solution was how to transform

the initial condition given in (x, t)–space into the (σ, λ)–space. Kânoğlu (2004)

proposed the linearized form of the hodograph transformation x ∼= 1
16
σ2, which

can be used when defining the initial waveform in (σ, λ)–space as η( 1
16
σ2, 0) after

defining the initial waveform in (x, t)–space as η(x, 0). Hence, the evolution of ini-

tial waveform can be calculated with a straightforward integration after considering

Φ(σ) = 4ησ( 1
16
σ2, 0)/σ. Further, equation (3.8) can be written for the shoreline

runup-rundown motion as

ηs(λ) =
1

4
φλ −

1

2
u2s = −1

4

{∫ ∞
0

ξ2Φ(ξ)

[∫ ∞
0

J1(ωξ) cos(ωλ)dω

]
dξ

}

− 1

2

{∫ ∞
0

ξ2Φ(ξ)

[∫ ∞
0

1

2
ωJ1(ωξ) sin(ωλ)dω

]
dξ

}2

.

(3.9)

since σ = 0 at the shoreline. Moreover, Kânoğlu (2004) simplified the solution for

the shoreline velocitiy us(λ) = u(0, λ) as

us = −λΦ(0)− 1

2

∫ λ

0

2λ2 − ξ2√
λ2 − ξ2

dφ(ξ)

dξ
dξ. (3.10)

and the shoreline wave height ηs(λ) = η(0, λ) as

ηs(λ) =
1

4
φλ −

1

2
u2s = −1

4

[ ∫ ∞
0

ξΦ(ξ)dξ − λ2Φ(0)−
∫ λ

0

λ
√
λ2 − ξ2dΦ(ξ)

dξ
dξ

]
− 1

2

[
− λΦ(0)− 1

2

∫ λ

0

2λ2 − ξ2√
λ2 − ξ2

dΦ(ξ)

dξ
dξ

]2
.

(3.11)

Further, Tinti and Tonini (2005) obtained an analytical solution for propagation of

tsunamis resulting from near-shore earthquakes. They use Carrier and Greenspan

(1958)’s solution as presented in (3.6) and (3.7) with uλ(σ, 0) = Φ(σ) = 4ησ(σ, 0)/σ.

Further, in the hodograph space, they assumed the following initial waveform for

near-shore earthquakes

η0(σ) =
3∑

k=0

ck(1 + σ2)−(k+3/2)

= c0(1 + σ2)−3/2 + c1(1 + σ2)−5/2 + c2(1 + σ2)−7/2 + c3(1 + σ2)−9/2.

(3.12)
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After substantial algebra, Tinti and Tonini (2005) first gives analytical expression

for spatial and temporal evolution of long waves. Then, they reduce expressions for

shoreline velocity uc(0, λ) as

uc(λ) = u(0, λ) = −4

(
c0 +

c1
3

+
c2
5

+
c3
7

)
Im

{
1

p3

}
− 4

(
c1
3

+
c2
5

+
c3
7

)
Im

{
3

p4

}

− 4

(
c2
5

+
6c3
35

)
Im

{
4

p5

}
− 4

c3
7

Im

{
4

p6

}
,

(3.13)

and shoreline elevation ηc(0, λ) as

ηc(λ) = η(0, λ) =

(
c0 +

c1
3

+
c2
5

+
c3
7

)
Re

{
1

p2

}
+

(
c1
3

+
c2
5

+
c3
7

)
Re

{
2

p3

}

+

(
c2
5

+
c3
35

)
Re

{
2

p4

}
+

6c3
35

Re

{
8

p5

}
− uc

2

2
,

(3.14)

where p = (1 − iλ). Hence, their solution not only involves substantial algebra but

also calculation with complex numbers. However, Tinti and Tonini (2005) could have

used their initial waveform (3.12) directly in Kânoğlu (2004)’s solution, which would

have avoid substantion algebra involved.

3.1 New Mathematical Formulation

In this subsection, the initial waveform given by Tinti and Tonini (2005) is used with

Kânoğlu (2004)’s methodology. The procedure is described below in details.

Given initial waveform in the transform space as in equation (3.12), initial condition

for the solution can be written as

Φ(σ) =
4ησ(σ, 0)

σ

= −8(1 + σ2)−5/2
3∑

k=0

(
3

2
+ k) ck (1 + σ2)−k

= − 12c0
(1 + σ2)5/2

− 20c1
(1 + σ2)7/2

− 28c2
(1 + σ2)9/2

− 36c3
(1 + σ2)11/2

, (3.15)
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which leads to

dΦ(σ)

dσ
=

4σ[15c0(1 + σ2)3 + 35c1(1 + σ2)2 + 63c2(1 + σ2) + 99c3
(1 + σ2)13/2

. (3.16)

Then, the following integrals can be calculated analytically to calculate us and ηs

Φ(0) = −4(3c0 + 5c1 + 7c2 + 9c3), (3.17a)

∫ λ

0

2λ2 − ξ2√
λ2 − ξ2

dΦ(ξ)

dξ
dξ =

8λ3

105(1 + λ2)6
[105c0(1 + λ2)3(10 + 9λ2 + 3λ4)

+ 35c1(1 + λ2)2(70 + 91λ2 + 60λ4 + 15λ6)

+ 21c2(210 + 567λ2 + 708λ4 + 526λ6 + 210λ8 + 35λ10)

+ 3c3(2310 + 4851λ2 + 6336λ4 + 4730λ6 + 1890λ8 + 315λ10)],

(3.17b)

∫ ∞
0

ξΦ(ξ)dξ = −4(c0 + c1 + c2 + c3), (3.17c)

and

∫ λ

0

λ
√
λ2 − ξ2dΦ(ξ)

dξ
dξ =

4λ4

105(1 + λ2)5

[
105c0(1 + λ2)3(5 + 3λ2)

+ 35c1(1 + λ2)2(35 + 42λ2 + 15λ4)

+ 21c2(1 + λ2)(105 + 189λ2 + 135λ4 + 35λ6)

+ 3c3(1155 + 2772λ2 + 5λ4(594 + 308λ2 + 63λ4)
]
.

(3.17d)

Hence, the shoreline velocity can be given through equation (3.10) as

us(σ = 0, λ) =− 4λ

105(1 + λ2)6
[105c0(1 + λ2)3(−3 + λ2)

+ 35c1(1 + λ2)2(−15 + 10λ2 + λ4)

+ 21c2(−35 + 42λ4 + 8λ6 + λ8)

+ 3c3(−315 + 420λ2 + 126λ4 + 36λ6 + 5λ8)],

(3.18)
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using equations (3.17a) and (3.17b). Then, the shoreline wave height ηs(σ = 0, λ)

becomes

ηs(λ) = c0 + c1 + c2 + c3 − (3c0 + 5c1 + 7c2 + 9c3)λ
2 − 8λ2

11025(1 + λ2)12
×[

105c0(−3 + λ2)(1 + λ2)3 + 35c1(1 + λ2)2(−15 + 10λ2 + λ4)

+ 21c2(−35 + 42λ4 + 8λ6 + λ8) + 3c3(−315 + 420λ2 + 126λ4 + 36λ6 + 5λ8)
]2

+
λ4

105(1 + λ2)5
[
105c0(1 + λ2)3(5 + 3λ2) + 35c1(1 + λ2)2(35 + 42λ2 + 15λ4)

+ 3(735c2 + 1155c3 + 42(49c2 + 66c3)λ
2 + 54(42c2 + 55c3)λ

4

+ 70(17c2 + 22c3)λ
6 + 35(7c2 + 9c3)λ

8)
]
,

(3.19)

using (3.17c), (3.17d) and (3.18) in (3.11). Equations (3.4) then provides xs = −ηs
and ts = us − 1

2
λ.

3.2 Results for Different Initial Waveforms

Tinti and Tonini (2005) chose four different near-shore earthquake configurations to

confirm the form of equation (3.12) as an initial wave profile. They derived the initial

vertical coseismic movements for coastal earthquakes by using Okada’s dislocation

model (Okada; 1985, 1992 ). Then, they curvefit (3.12) to Okada (1985)’s deforma-

tion. Initial profiles used by Tinti and Tonini (2005) are shown in Figure 3.2 and the

coefficients ck’s determined by using curve fitting are given in Table 3.1.
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Figure 3.2: The initial wave profiles used by Tinti and Tonini (2005). The coeffi-

cients in (3.12) are listed in Table 3.1 for each parameter. The dimensional quanti-

ties are calculated using the characteristic length of l∗0 = 50 km and beach slope of

tan β = 1/25, leading to the characteristic depth of l∗0 tan β = 2000 m. Case 1 is a

vertical fault located inland; Case 2 is the same vertical fault which is located under

the shoreline. Case 3 is also the same vertical fault is placed slightly offshore. The

last configuration, Case 4, consists of the combination of a dominant inverse two-

segment and an ancillary surface normal faults which are placed under the seabed.

Refer to Tinti and Tonini (2005) for corresponding earthquake source parameters.
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Table 3.1: The coefficients in equation (3.12) for the cases presented in Figure 3.2

(Tinti & Tonini, 2005).

c0 c1 c2 c3

Case 1 2.046E-03 -2.127E-03 5.526E-04 1.750E-07

Case 2 9.979E-04 6.634E-03 -1.580E-02 8.170E-03

Case 3 7.399E-04 9.559E-03 -2.230E-02 1.175E-02

Case 4 7.106E-03 -1.438E-02 2.797E-04 6.881E-03

In Figures 3.3-3.6, the solutions through equations (3.18) and (3.19) are compared

with Tinti and Tonini (2005)’s solution with exact agreement as expected. Yet, so-

lution presented here is much simpler than Tinti and Tonini (2005)’s methodology,

since it does not involve computations with complex numbers.

3.3 Conclusion

Tinti and Tonini (2005)’s initial waveform is implemented in Kânoğlu (2004)’s shore-

line solution. Results reveal that the solution presented here is much simpler and does

not involve complex algebra. Hence, it allows calculation of maximum runup in a

much simpler way.
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Figure 3.3: Time evolution of the shoreline wave height η∗s and the shoreline velocity

u∗s for Tinti and Tonini (2005)’s Case 1. Solid and dashed lines represent the shoreline

wave height and the shoreline velocity for the solution presented here, respectively,

while dots represent the results of Tinti and Tonini (2005). The dimensional quanti-

ties are calculated using the characteristic length of l∗0 = 50 km and beach slope of

tan β = 1/25, leading to the characteristic depth of l∗0 tan β = 2000m.

Figure 3.4: Time evolution of the shoreline wave height η∗s and the shoreline velocity

u∗s for Tinti and Tonini (2005)’s Case 2. Solid and dashed lines represent the shoreline

wave height and the shoreline velocity for the solution presented here, respectively,

while dots represent the results of Tinti and Tonini (2005). The dimensional quanti-

ties are calculated using the characteristic length of l∗0 = 50 km and beach slope of

tan β = 1/25, leading to the characteristic depth of l∗0 tan β = 2000m.
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Figure 3.5: Time evolution of the shoreline wave height η∗s and the shoreline velocity

u∗s for Tinti and Tonini (2005)’s Case 3. Solid and dashed lines represent the shoreline

wave height and the shoreline velocity for the solution presented here, respectively,

while dots represent the results of Tinti and Tonini (2005). The dimensional quanti-

ties are calculated using the characteristic length of l∗0 = 50 km and beach slope of

tan β = 1/25, leading to the characteristic depth of l∗0 tan β = 2000m.

Figure 3.6: Time evolution of the shoreline wave heights η∗s and the shoreline ve-

locities u∗s for Tinti and Tonini (2005)’s Case 4. Solid and dashed lines represent

the shoreline wave height and the shoreline velocity for the solution presented here,

respectively, while dots represent the results of Tinti and Tonini (2005). The dimen-

sional quantities are calculated using the characteristic length of l∗0 = 50km and beach

slope of tan β = 1/25, leading to the characteristic depth of l∗0 tan β = 2000m.
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CHAPTER 4

CONCLUSION

In this study, first, analytical solutions for the 1+1 dimensional linear shallow water-

wave equations over a sloping beach are presented. Two different approach is used to

solve the linear shallow water-wave equations. First, a methodology is developed us-

ing integral transform and, then, series solution method is developed using eigenvalue

expansion. Then, results of solution methodologies developed here are compared with

the existing solution of the nonlinear shallow water-wave equations for different ini-

tial waveforms as in Kânoğlu (2004). Results confirmed existing runup invariance

between linear and nonlinear solution of the shallow water-wave equations, i.e. even

though evolutions are different for these solutions they produce the same maximum

runup.

Then, nonlinear solution of Kânoğlu (2004) for temporal variation of shoreline mo-

tion was used with Tinti and Tonini (2005)’s initial wave profiles. Kânoğlu (2004)’s

solution is based on Carrier and Greenspan (1958) transformation which requires lin-

earization of the transformation to define initial condition as suggested by Kânoğlu

(2004). However, Tinti and Tonini (2005) presented initial waveform in the trans-

form space for near-shore events, fitting earthquake source deformation to a specific

profile. Here, their initial profile in the transform space is directly implemented to

Kânoğlu (2004)’s shoreline formulation. This result much simpler formulation for

the shoreline motion than Tinti and Tonini (2005)’s, which involves complex algebra,

yet, results show exact comparision.
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