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ABSTRACT

SUPERVISED MESH SEGMENTATION FOR 3D OBJECTS WITH GRAPH
CONVOLUTIONAL NEURAL NETWORKS

Perek, Emir Kaan
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Yusuf Sahillioğlu

Co-Supervisor : Assoc. Prof. Dr. Sinan Kalkan

August 2019, 54 pages

Mesh segmentation is a fundamental application that is primarily used for understand-

ing and analyzing 3D shapes in a broad range of areas in Computer Science. With

the increasing trend of deep learning, there have been many learning-based solutions

to the mesh segmentation problem based on the classification of the individual mesh

polygons.

In this thesis, we cast mesh segmentation as a supervised graph labeling problem by

using Graph Convolutional Neural Networks (GCNN). We treat a mesh object as a

graph to be labeled and develop a segmentation model that takes an entire structure

of the object as input and returns its segmentation. While similar models focus on

labeling each polygon of the 3D objects separately, our model is capable of labeling

all polygons in a single run thanks to GCNN. Moreover, being able to use connec-

tivity information in the graph provides an opportunity for a drastic decrease in the

required features used as input to the model, compared to the previous studies. We

train and test our model for segmenting human shapes, one of the challenging shapes

to segment. We report competitive results compared to other state-of-art supervised
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segmentation techniques by using noticeably less input features.

Keywords: mesh segmentation, deep learning, graph convolutional neural networks.
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ÖZ

GRAFİKSEL EVRİŞİMLİ SİNİR AĞLARI KULLANARAK DENETİMLİ 3
BOYUTLU NESNE BÖLÜTLEMESİ

Perek, Emir Kaan
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Yusuf Sahillioğlu

Ortak Tez Yöneticisi : Doç. Dr. Sinan Kalkan

Ağustos 2019 , 54 sayfa

Nesne bölütlemesi 3B şekillerin anlamlandırılması ve analizi başta olmak üzere Bil-

gisayar Bilimlerinin birçok farklı alanında kullanılan temel bir uygulamadır. Derin

öğrenme uygulamalarının yaygınlaşmasıyla nesne bölütlemesi için tekil çokgenlerin

sınıflandırılmasına dayanan çözümler halihazırda üretilmiştir.

Bu tezde biz, nesne bölütlemesi problemini Grafiksel Evrişimli Sinir Ağlarını kulla-

narak bir denetimli grafik etiketleme problemi olarak ele alıyoruz. Bir objeye etiket-

lenmesi gereken bir grafik yapısı olarak bakıp, bu objenin tüm yapısını girdi olarak

alan ve bölütlenmiş halini çıktı olarak veren bir bölütleme modeli geliştiriyoruz. Ben-

zer modeller 3B obje üzerindeki her bir çokgeni ayrı ayrı etiketleme üzerine kuruluy-

ken, bizim modelimiz objenin tüm çokgenleri için tek bir turda etiketleme yetene-

ğini Grafiksel Evrişimli Sinir Ağları sayesinde edinebilmektedir. Ayrıca, grafik yapı-

sındaki bileşenlerin bağlantısallığını kullanabilmek önceki çalışmalara nazaran girdi

modelleri için gereken özellik sayısını ciddi derecede azaltabilmektedir. Biz modeli-

mizi segmentasyon işlemi zorlu şekil gruplarından biri olan insan şekilleri üzerinde

eğitip test ettik ve diğer denetimli bölütleme teknikleriyle rekabet edebilecek düzey-
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deki sonuçları onlardan çok daha az girdi özelliği kullanarak elde edebildik.

Anahtar Kelimeler: nesne bölütlemesi, derin öğrenme, grafiksel evrişimli sinir ağları
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CHAPTER 1

INTRODUCTION

Object segmentation is the process of decomposing virtual objects into meaningful

and smaller pieces. In this thesis, objects are assumed to be 3D surfaces discretized

as mesh structures comprised of vertices, edges, and polygonal faces. Hence, we

deal with the mesh segmentation problem. Furthermore, we restrict our attention to

the segmentation of humans, a popular object type that appears quite frequently in

computer graphics applications.

Mesh segmentation is a crucial and fundamental problem, which has been studied

extensively, since it is critical for understanding and processing 3D objects for further

applications such as animation, texture applying, modeling, and skeleton extraction,

to name a few.

1.1 Motivation and Problem Definition

Unlike a regular data segmentation, mesh segmentation should be handled as a differ-

ent case because of its structure, which includes a network inside. It is also required

to be visually consistent and semantically correct.

There are fundamental solutions to the segmentation problem such as watershed seg-

mentation [12] and statistical modeling based methods like Conditional Random Field

[13, 7]. Most of the existing solutions, however, suffer from not being able to inject

the inherent graph structure into the process. They overcome this problem by in-

creasing the number of features used in segmentation process which results in high

dimensional and complex data models.
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Figure 1.1: Visualization of a mesh segmentation result (Figure Source: [1]).

There are also prominent techniques that are quite commonly used for mesh segmen-

tation. Shape Diameter Function [14] is one of the most popular one among them;

however, it does not use the graph structure of the mesh, so the results of this al-

gorithm suffer from the adjacency related problems which results in a fragmentary

segmentation. Region Growing [15] and Random Walking [16] algorithms are other

solutions to the problem but they require a logical set of seed points to start and the

selection of these seed points brings another problem to the table which needs to be

solved separately. We avoid seeding and explicitly consider the graph structure.

1.2 Proposed Methods and Contributions

In this thesis, we propose a data-driven mesh segmentation technique which uses in

its core the Graph Convolutional Neural Network, the specialized version of the Deep

Neural Networks for graph-structured data. Our method presents a generic approach

for mesh segmentation and represents a solution independent of the polygon counts

of the input meshes. Our method has a training phase in order to create a capable
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network model and after the training phase, segmentation could be done straightfor-

wardly and in real-time by using the capabilities of our trained model without the

need of any input parameter like a seed point, segment count, and so on.

Our contributions in this thesis are as follows:

• In contrast to the most of the mesh segmentation techniques, we propose a

method that requires just a few core features of the mesh objects and extends

them using the additional feature extraction power of Graph Convolutional

Neural Networks. Our decision making system also takes into account the

neighborhood information which brings more accuracy to the results.

• Unlike all the segmentation models based on learning, our model is the first one

taking the entire mesh object as an input instead of a single polygon of the mesh

object. In other words, we feed the input mesh to our network in its entirety

and only once, whereas the existing learning-based methods feed each mesh

polygon to the network. This provides us an object-based learning, instead of a

polygon-based learning.

• We show that it is possible to create a model that learns the pose of an object

and this model can transfer the information of the pose to the newly encountered

objects, which in turn yields a pose-invariant segmentation solution.

1.3 The Outline of the Thesis

The remaining of this thesis is organized as follows:

In Section 2; mesh segmentation techniques and their approaches are examined. Also,

background information about Deep Neural Networks and Graph Convolutional Neu-

ral Networks are given and their usages are explained.

In Section 3; our proposed method for mesh segmentation is presented in detail. Ar-

chitectural structure of the segmentation model and used loss functions to accomplish

learning process are described.

In Section 4; experimental results of our segmentation method are given quantita-

3



tively through figures. In particular, we compared our method with other methods

and we also evaluated our segmentation performance with the Princeton Segmenta-

tion Evaluation Benchmark.

In Section 5; conclusion of the method is given. Also, future work of our method

have been discussed.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Mesh Segmentation

Mesh segmentation has always been an active research area in computer graphics,

because it is one of the key parts of shape analysis. There is a wide variety of methods

that have been proposed to accomplish this task. All of the methods try to solve an

optimization problem with different approaches. There are several surveys [17, 18,

19, 2] on mesh segmentation techniques. They categorize these methods according

to their solution approach, discuss their performance and compare with each other in

detail. We will use the categorization of Rodrigues et al. [2] to give brief information

about the related work (Figure 2.1).

2.1.1 Volume-based segmentation

This type of algorithms gives 3D volumes as their output. They are sub-categorized

as Exact Convex Decomposition, Approximate Convex Decomposition, Volumetric

Meshes, and Space Partitioning.

Exact Convex Decomposition In this case, 3D mesh objects are decomposed into

exact convex sub-volumes. Chazelle [20] has proposed an algorithm for partitioning

a polygon into a number of smaller convex sub-volumes in 1984 and this study has

been an origin point in this field. On the following studies [21, 22], Chazelle’s work

has been improved but this family of algorithms did not take an essential role in

mesh segmentation techniques due to the performance issues and lack of ability to

consistently give meaningful results.
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Mesh Segmentation Algorithms

Volume-based Segmentation

Surface-based Segmentation

Skeleton-based Segmentation

Multiple Shape Segmentation

Exact convex decomposition

Approximate convex decomposition

Volumetric meshes

Space partitioning

Supervised Segmentation

Unsupervised Segmentation

Semi-supervised Segmentation

Medial axis-based segmentation

Reeb graph-based Segmentation

Mesh contraction-based segmentation

Volumetric contraction-based 
segmentation

Region growing

Watershed-based segmentation

Iterative clustering

Hierarchical clustering

Boundary-based segmentation

Figure 2.1: Categorization of mesh segmentation algorithms in [2].
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Figure 2.2: Taxonomy of algorithms according to their solution approaches (Figure

Source: [2]).

Approximate Convex Decomposition In this case, decomposition results are the

approximate volumetric convex pieces instead of the exact convex hulls. Lien and

Amato’s work [23] is known as the first study in this group. Their work is built upon

the measure of concavity of 3D objects. Later on, Kreavoy et al. [24] have developed

on a method which is based on the convexity instead of the concavity. Liu et al. [25]

have proposed a new method based on Morse theory and stated convex decomposition

problem as an integer linear programming problem.

Volumetric Meshes In this case, decomposition results are the set of primitive vol-

umetric elements such as voxels, tetrahedra, hexahedra, and so forth. Attene et al.

[3] have proposed an algorithm for this purpose by recursively enclosing the object

with convex polyhedra. Xian et al. [26] have come up with a three step solution to

this problem by combining surface mesh segmentation techniques with the graph cut

algorithm.

Space Partitioning In this last case, decomposition is done by subdividing the space
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Figure 2.3: Recursive process of polyhedral enclosing presented in [3] (Figure

Source: [3]).

into regions using the properties of the mesh objects. Simari et al. [27] have intro-

duced a multi-objective optimization problem for space partitioning using k-means

clustering and Voronoi partitioning in its core.

2.1.2 Surface-based segmentation

This type of algorithms gives 2D regions as their output. In this family of algorithms,

surface of the 3D objects is used for producing the segmentation results. Conse-

quently, the features of the surfaces like dihedral angle, curvature, geodesic distance

and the constraints are the principal concern in these algorithms. Similar to [2], we

classify surface-based segmentation algorithms into 5 different sub-categories as such

Region Growing, Watershed Segmentation, Iterative Clustering, Hierarchical Cluster-

ing and Boundary Segmentation.

Watershed Segmentation Mangan and Whitaker [12] have described a method to

apply watershed image segmentation into 3D surfaces. They have created patches in

surfaces according to the curvatures of the surfaces.

Iterative Clustering Shlafman et al. [28] have used convexity, curvature and proxim-

ity for the surface decomposition task. Liu and Zhang [29] have used spectral cluster-

ing for the first time in the mesh segmentation problem by defining affinity matrices

with the help of geometric properties of the regions. Simari et al. [30] have employed
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symmetry detection and a new representation of the meshes, called folding tree, for

the segmentation. Their approach was quite novel but was not sufficiently successful

on non-symmetric mesh inputs. Huang et al. [31] have proposed a novel algorithm

to decompose a deformable mesh object into semantically correct parts using modal

analysis and requiring just a single pose of the object. Algorithm was, however, de-

pendent on the definition of the deformation energy function and the attributes of the

modal analysis.

Hierarchical Clustering Katz and Tal [4] have geodesic distances and convexity in

their study to decompose object meshes into segmented parts. Attene et al. [32]

have described a hierarchical method for face clustering relying on fitting primitives

belonging to an arbitrary set. Their method was basically defining each triangle as a

different cluster and merging adjacent clusters by their geometric closeness. Lai et al.

[16] have proposed a random walk algorithm for mesh segmentation which computes

the probability of belonging to each selected seed point for all the triangles over the

mesh. This approach was quite novel but brought other problems to solve like how

to select efficient seed points and how to describe closeness of triangles. Shapira et

al. [14] have created a new attribute named ‘shape diameter’ and proposed a novel

segmentation and skeleton extraction technique depending on it.

Region Growing Katz et al. [15] have used feature point and core extraction to cre-

ate mesh segmentation in region growing manner and proposed a novel algorithm

for pose-invariant segmentation. Later on, researchers have started to create statisti-

cal models for mesh segmentation and tried to optimize these models as a solution.

To this end, Lavoué and Wolf [13] have used an algorithm which is based Markov

Random Fields, graphical probabilistic models, in order to achieve a global optimal

solution using only local interactions of the mesh structure thanks to the Markov

property of the random fields by combining both the geometry and the attributes into

this model.

Boundary Segmentation Golovinskiy and Funkhouser [5] have used random cuts

over the meshes by creating a partitioning function that tries to compute how likely

each edge is to lie on these random cuts and aimed to find the most consistent cuts

according to this function. Lin et al. [33] have used the concept called ‘part salience’,
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Figure 2.4: Hierarchical clustering using k-means and graph cut introduced in [4]

(Figure Source: [4]).

which was initiated in cognitive psychology, that depends on three factors: the pro-

trusion, the boundary strength, and the relative size of the part. They have created the

computational approximation of this concept for mesh segmentation purpose.

2.1.3 Skeleton-based segmentation

This type of algorithms give 1D skeleton as their output which corresponds to struc-

tural shape of the given 3D mesh input. Skeleton-extraction has an important role in

research fields and applications like animation, virtual navigation and segmentation.

There are approaches to extract skeleton from mesh objects using medial axis, reeb

10



(a) Input mesh (b) Randomized Cuts (c) Partition Function

Figure 2.5: Boundary-based segmentation used in [5] (Figure Source: [5]).

graph and geometric contraction.

Medial axis In this case, main purpose is to find the sufficient medial axis points

of the mesh to create skeleton built upon these points. Several methods have been

proposed for the approximation of skeleton using medial axis. One of them is Siddiqi

et al. [34] which generates the approximation of medial axis using a 3D voxelization

technique. Another algorithm is proposed by Mortara et al. [35] which is based on

extraction of model structure for human-shaped bodies.

Reeb graph Reeb graph is a 1D graph representation whose node points are the

critical points of the subject. Aleotti and Caselli [6] have introduced an algorithm for

Reeb graph-based segmentation for robot grasping.

Geometric contraction In this case, 3D object is continuously deflated until the result

becomes a skeleton. Au et al. [36] have proposed a novel and successful contraction

technique for the purpose of skeleton extraction. Lovato et al. [37] have developed

another approach from voxel coding and active contours.

Skeleton is a 1D structure that captures the topology and geometry of an object in

a simplified manner. An extracted skeleton that reflects its topology accurately pro-

vides valuable information in order to create segmented parts of an object. Reniers

and Telea [38] have proposed shape segmentation technique using the skeleton of an

11



Figure 2.6: Reeb graph based segmentation used in [6]. From left to right: original

mesh, the level-sets of the integral geodesic function, generated reeb graph,

annotated reeb graph, segmentation result (Figure Source: [6]).

object. Li et al. [39] have also introduced a skeleton-based approach for the process

of mesh decomposing.

2.1.4 Multiple shape segmentation

A shape in isolation may not possess sufficient information to carry out a perfect seg-

mentation process. With the increasing availability of 3D models, researchers have

started using shape collections to improve their results in various geometry process-

ing tasks. Shape segmentation task is also affected by this trend which involves the

query shape as well as a collection of annotated or unlabeled related shapes that are

primarily used to train a model. Our proposed method in this thesis also lands in

this family of algorithms. These methods can also be subdivided as supervised, un-

supervised and semi-supervised according to their method of extracting the required

segmentation aspects.

Supervised Segmentation solutions are also affected with the rising trend of machine

12



learning. Kalogerakis et al. [7] have formulated a conditional random field model for

the purpose of the segmentation and optimized it with the JointBoost classifier [40].

This study has been regarded as a state-of-art work and brought a new perspective

to the mesh segmentation research. However, their model has required about six

hundred features of the 3D model for the optimization task.

head
front torso
middle torso
back torso
front leg
back leg
tail

Test MeshesTraining Meshes

Figure 2.7: Result of the supervised mesh segmentation algorithm introduced in

Kalogerakis et al. [7] (Figure Source: [7]).

Xie et al. [41] used a quite similar technique with [7] except they used extreme

learning machine [42, 43] architecture instead of the JointBoost classifier in [40].

Using extreme learning machine has provided observable improvement in the training

performance. Nonetheless, the performance of the segmentation has not improved.

Makadia and Yumer [44] have proposed an algorithm that utilizes a structured SVM

model [45] by using sparsely labeled objects as training data.

In 2015, Guo et al. [46] have introduced a novel and rather successful technique

by adapting CNN to the supervised mesh labeling problem. They managed to get

remarkable results on the accuracy of the labeling process. Later on, George et al.

[47] and Wang et al. [48] also proposed CNN based solutions for the supervised

mesh segmentation problem. However, all these CNN based solutions have suffered

from converting an irregular form of graph structure into a regular grid structure, and

they developed their approach for this conversion process. Also, they used hundreds

of shape features for each face of a 3D object as the input of their network. We also

use a supervised approach in our method, so we fall in this sub-category of the mesh

segmentation algorithms.

Projective approaches are also used for the segmentation task. Wang et al. [49] have

supplied one of the methods that handles the segmentation process by defining 3D
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mesh object as a collection of 2D image and transferring 2D image segmentation into

3D mesh object without using any machine learning techniques. Similarly, Kaloger-

akis et al. [8] have used convolutional neural networks for the projective segmenta-

tion. They have transferred the mesh structure into 2D projective images and they run

CNNs on these images. Finally, they have transferred the results into the 3D mesh

structure.
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Figure 2.8: Representation of the pipeline and architecture proposed in [8] (Figure

Source: [8]).

Semi-supervised In the algorithm proposed by Lv et al. [50], additional energy term

of unlabeled data is added to the conditional random fields, which is responsible

for labeling. Also, they have modified the virtual evidence boosting (VEB) [51] to

succeed the optimization of semi-supervised learning problem. This semi-supervised

study have taken the advantage of the unlabeled data which is useless for supervised

methods. Shu et al. [52] have proposed a scribble based segmentation with weakly-

supervised learning and acquired comparable segmentation results with other state-

of-art techniques.

Unsupervised Kreavoy et al. [53] have created an interchangeable component model-

ing for the objects which relies on the idea that the same classes might share the same

segmentation model. Sidi et al. [54] have performed an analysis in the descriptor

space and using the analysis they have created a spectral clustering for the segmenta-

tion purpose. Their approach used shape descriptors which were independent of the

pose and the location of an object.
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2.2 Deep Neural Networks (DNN)

The term ‘Deep Neural Network’ (DNN), which is also referred to as basis of ’deep

learning’, is derived from the study on artificial neural networks [55]. DNNs inspired

by the working mechanism of the brain. DNNs have been applied to great variety of

areas such as natural language processing, linguistics, pattern recognition, recommen-

dation systems, classification models, and so forth. DNNs are able to learn high-level

features with more complexity than standard neural networks. Accordingly, the usage

of DNNs for complicated tasks result in quite successful and impressive outcomes.

2.2.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are a common type of the DNNs. CNNs

composed of multiple convolution layers and each of the layers provide higher level

of abstraction and crucial information to the consecutive layers. Hubel and Wiesel

[56] introduced the concept of receptive fields in 1962 and this research inspired to

the architecture of CNNs. CNNs are widely used in areas such as image and video

recognition [57, 58, 59, 60], speech recognition [61, 62, 63, 64], robotics [65, 66],

automatic game plays [67, 68, 69], and so forth.

   

Figure 2.9: Schematic architecture of CNNs (Figure Source: [9]).
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2.2.2 Graph Convolutional Neural Networks (GCNN)

Applying deep learning on graph-structured data is a complicated task, because of the

complex and non-grid structure of it. Graph Convolutional Neural Networks (GCNN)

are the generalization of convolutional neural networks from Euclidean domain to

graph-structured data. Because the structure of the graph data is not like a regular

grid, it is not possible to apply classical convolutional filters on graphs.

There exists specialized architectures of CNNs to handle specific cases with graph-

structured data. In the study of Duvenaud et al. [70], CNN architecture that operates

directly on graphs by using standard molecular feature extraction methods based on

circular fingerprints is introduced. Li et al. [71] have proposed a solution to sequence

based models like Long short-term memory networks (LSTM) using graph-structured

data. Since all these methods are developed for the specific cases, they are not pre-

senting a generic solution to the broad range of problem types. There are two methods

to build generic convolutional filters; spatial construction and spectral construction.

Spatial construction is basically provides localization of convolutional filters through

fixed size of kernel and filtering is completed by sliding those filters. However, slid-

ing filters on a graph-structured data is not a straightforward application as 2D image

data or 1D audio data. Therefore, this approach has few challenges inside. First

challenge is defining receptive fields and neighbourhoods on a non-uniform arbitrary

graph data, since there does not exist any mathematical definition to efficiently con-

vert graph data as pointed in [72]. Second challenge is the ordering of the nodes in

the graph. For 2D images and 1D audio, it is quite obvious to create the order of input

data in order to consume. Nonetheless, for a graph structure, there might be created

many different ordering of the nodes. Niepert et al. [73] and Vialatte et al. [74] pro-

posed different methods by using spatial approach to generalize CNNs on irregular

graph structure.

Spectral construction is the representation of the parametrized convolutional filters

as Laplacian operator in spectral domain by using Graph Fourier Transform. Bruna

et al. [72] and Henaff et al. [75] have proposed the methods for applying spectral

filtering in the CNNs. However, using spectral filtering had drawbacks in two main
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topic; localization of the filters and high cost of computation. Defferrard et al. [10]

have introduced a technique to overcome these drawbacks and their technique turned

into state-of-art method in the Graph Convolutional Networks. They approximated

smooth filters in spectral domain using Chebyshev polynomials. Their architecture

was tested on regular domains like MNIST and gave nearly same performance with

basic CNNs.

Classification
Fully connected layers

Feature extraction
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
3. Sub-sampling
4. Pooling

Figure 2.10: Schematic architecture of GCN proposed in [10] (Figure Source: [10]).

Later on, Kipf and Welling [76] have taken the performance of the GCN one step fur-

ther. They simplified the convolutional filtering operation with generalized and differ-

entiable form of Weisfeiler-Lehman algorithm [77] and proposed a semi-supervised

learning mechanism for graph-structured data. Their method is currently state-of-art

method in this field and has wide area of usage. In our network model, we also use

the benefits of this approach.
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CHAPTER 3

SEGMENTATION MODEL

In this chapter, we explain the model architecture and the steps of our segmentation

process. Firstly, we will show the preparation process of the mesh objects in order

to use them in our GCNN structure. Next, architecture of the network and training

of the network will be explained in detail. Finally, application of the result received

from network to the original mesh object, post-processing, will be demonstrated.

3.1 Ground-Truth Labeled Training Data

First of all, we need to have a labeled set of 3D objects since our method uses super-

vised approach. These labeled objects will be split to use as training, validation and

test sets in order to train our segmentation network. Since, our segmentation model

takes whole 3D model as input (related works take faces of 3D model as input), it

is a challenging process to create an effective dataset for our purpose. Variety of

data augmentation techniques can also be used to enrich dataset. For instance, we

also created 90° rotated versions of each individual model to train our model rotation

independently.

3.2 Pre-Process Stage

In order to use convolutional neural networks, we need to have a specified data struc-

ture. Size of the input features and the output features must be determined beforehand.

In our neural network, 3D mesh objects will be our input models. In real world, 3D

mesh objects could have any size of triangles. The question is how can we standardize
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Figure 3.1: Example of ground-truth labeled data set.

these objects so we can use all of them in our network. For images, there are highly

efficient and simple upsampling and downsampling methods to change image resolu-

tion. However, it is not that easy to apply upsampling or downsampling for graphs.

At this point, geometry processing comes to the assistance. Our graph structure rep-

resents 3D mesh objects and there are several adequate 3D object upsampling and

downsampling methods, which are called subdivision and simplification in geometry

processing literature. Before converting our 3D objects into graph structure, we can

apply simplification or subdivision methods to extract uniform graph structures.

Figure 3.2: Example of data augmentation with 90°, 180° and 270° rotation.
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Figure 3.3: Visual result of data pre-processing. Original mesh (13776 faces, on the

left side of poses) and simplified mesh (2000 faces, on the right side of poses).

Labeling information and details are kept in a good way.

3.3 Architecture of the Model

3.3.1 Input Features and Output

We have used 2 most basic characteristics of polygons as input features. They are

center position of the polygon and unit normal vector of the polygon. Each feature

includes 3 numeric values which are X, Y and Z coordinates, which results total of 6

input features in our situation. Output of the network will be the final scores of each

segmentation tag in our segmentation model. For instance, if we have 4 segmentation

tag like head, torso, arms and legs, our network will produce 4 different scores of

each polygon belongs to input model. Applying Softmax function to these scores

will convert nominal scores to probability distribution of each segmentation tag.

3.3.2 Loss Functions

Our goal in this model is taking the feature vector of model which has size NxF ,

where N is the polygon count of pre-processed 3D model and F is the size of input

features which is 6 in our situation, and getting the probability distribution vector

P whose size is NxL, where L is the size of predefined set of possible labels, such

as ’head’, ’torso’, ’arms’ and ’legs’. By taking the index of maximum values in
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Figure 3.4: Pipeline for the segmentation process of a single object.

probability distribution vector for each row, we will get indicated labels for each face

in our input 3D object.

There are 2 loss functions used in the training process of our segmentation model.

First one evaluates the performance of classifier:

L1 =

(
−

N∑
pi

log(pi)

)
/N, (31)

where pi is the predicted probability for correct label. This function can also be

expressed as the average of Negative Likelihood Loss for each face in the object.

Second one evaluates the smoothness of classifier:

L2 =

( N∑
i=1

3∑
aj

L∑
k=1

|pik − pjk |
)
/N, (32)

where pik is the predicted probability for kth label of ith face. This function basically

penalizes the differences between predictions of the neighbourhood faces. In mesh

segmentation problem, adjacent faces are most likely belong to the same class except
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the faces on the border edges. If our network makes the same prediction for every

face in the model, this function achieves the optimal point. The main purpose behind

the necessity in this formula is prevent the fluctuation between adjacent faces, which

leads to less noise in label prediction.

Overall loss function to use in our network is:

Loverall = αL1 + βL2, (33)

where α and β denotes scalar parameters which will be tuned as a hyper-parameter

for training phase. If α value is higher, network will attach importance to accuracy

more than smoothness and it is quite possible to observe noises on segmentation re-

sults. Otherwise, if β value dominates Loverall, network will care about smoothness

more than accuracy, which will result in losing edges of boundaries on mesh object.

Therefore, it is crucial to find balance between α and β in order to have efficient

segmentation results.

3.3.3 Network Layers

There are 3 different subsequent networks in our segmentation model each of them

are trained to accomplish different priorities. We named them as; Prediction Network,

Denoise Network and Transmit Network.

3.3.3.1 Prediction Sub-Network

First sub-network of segmentation network is ’Prediction Sub-Network’, main task

of this sub-network is making predictions as accurate as possible. For this purpose,

influence of Accuracy Loss (Eqn. 31) is higher than the Smoothness Loss (Eqn. 32) in

the training of this sub-network. Major part of the recognition will be accomplished

in this part of the model. This sub-network includes both Graph Convolutional Layers

and Linear Layers.
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Figure 3.5: Illustration of the segmentation network.

3.3.3.2 Denoise Sub-Network

Second sub-network is ’Denoise Sub-Network’. Previous network generates first

round of the scores with satisfying accuracy. For 3D segmentation purpose having

good recognition rate is a major sign of successful segmentation but not always suf-

ficient by itself. Mispredicted parts in 3D mesh object might affect consistency of

segmentation adversely. For this reason, results of the first sub-network have been

processed in this network. The difference from the first network is that Smoothness

Loss has higher impact than the Accuracy Loss in this network. As a result of this

approach, without losing the affect of Accuracy Loss, each polygon in our 3D ob-

ject becomes more similar to its neighbors. This sub-network includes both Graph

Convolutional Layers and Linear Layers.

3.3.3.3 Transmit Sub-Network

Last sub-network of our segmentation model is ’Transmit Sub-Network’. This sub-

network does not have the training phase and has a quite simple job to perform which

is basically replace your scores with the average of your neighbours. In other words,

this module is the minimal version of the Denoise Sub-Network that targets a few
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noisy polygon left in the middle of the correct polygons. According to results, we

observed a slight improvement in accuracy and slight decrease in noise with this

empirical approach, so we decided to add this sub-network to our model as the last

module of the pipeline. This sub-network includes only Graph Convolutional Layers

with all of the weights are constant, which means definition of loss function and

training process are not necessary in this module.

3.4 Training Model

After defining network architecture, we need to complete training process for in order

to get meaningful segmentation result.

Overall algorithm for training is summarized in Algorithm 1.

Algorithm consists of general steps used most commonly in DNNs. However, there

exists a handicap for this training process. Taking derivative of GCLs during back-

ward process requires passing through the adjacency matrix of graph structure for

every single GCL. Using more GCLs caused more slower training process. Another

performance issue to mention is that since GCLs require feature passing mechanism

specific to each graph structure. It is not possible to merge multiple training data as a

single input where we can easily success for uniform data structures like images. For

this reason, concurrent network passing could not be applied for training data. For

every single input in training data, we had to complete all loss calculations to han-

dle new one. Under these circumstances, training time becomes disproportionately

higher compared to common CNNs.
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Algorithm 1: Training Segmentation Network
Input : Labeled & Pre-Processed Training Data Set, T ; Labeled &

Pre-Processed Validation Data Set, V ; Number of Epochs, m; Batch

Size, b; Learning Rate, l; L1 factor, α; L2 factor, β

Output: Learned Weights, W

1 initializate W

2 for m epochs do

3 BatchSet← create subsets of T with size B

4 foreach batch in BatchSet do

5 L← calculate overall loss (Eqn. 33) for batch with L1 (Eqn. 31) factor

α and L2 (Eqn. 32) factor β

6 grads← Calculate L Backward

7 Update W with gradient grads and learning rate l by using Adam

Optimization Algorithm [78]

8 end

9 Lval ← calculate overall loss for V with L1 factor α and L2 factor β

10 if Lval do not decrease for few epochs then

11 Update l

12 end

13 end

14 return W

3.5 Post-Process Stage

In pre-process stage, we changed structure of our 3D mesh model to make it usable

in our network. In this stage, we will transfer the labeling information of our pre-

processed structure, retrieved from our network, to the original one. We have used

pretty straightforward approach to transfer this information. Since our upsampling/-

downsampling methods do not change positions of the object parts, we may directly
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transfer label information to original object structure by their positions.

Algorithm 2: Transferring Pre-Processed Object Labeling
Input : Labeled Pre-Processed 3D Object, P ; Original 3D Object, O

Output: Labeled Original 3D Object

1 foreach face f in O do

2 c← closest face to f in P ;

3 Set label of c to f ;

4 end

5 return O

In this stage, there might be added several computer graphics techniques such as

point clustering, contextual feature labeling to increase overall performance of the

segmentation. Since we focus on handling segmentation task through Deep Neural

Networks, we did not prefer to use any extra computer graphics technique in this

step.
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CHAPTER 4

EXPERIMENTS AND EVALUATION

In this chapter, firstly, we demonstrate the dataset used for our experiments, our tools

and methods for pre-processing and post-processing applications. Then, the training

process and architecture details explained in detail. Lastly, results and evaluation of

our proposed method examined.

4.1 Dataset

Since our approach is a supervised method, we need to acquire a qualified and corre-

spondingly labeled 3D object dataset that serves better for our segmentation purpose.

Despite there are plenty of widely used 3D shape datasets like ShapeNet and Model-

Net, they are not directly usable in our network for the reason that they are not corre-

spondingly labeled. Thus, we needed to find alternative datasets for our experiments,

which preferably correspondingly aligned. The reason for searching a correspond-

ingly aligned dataset is that if the object group is aligned, we might transfer the single

object’s ground-truth segmentation information to the rest of the group easily. Which

means we would complete manual segmentation once for each one of the datasets.

In all our experiments, we used %80 of dataset as training set, %10 of dataset as

validation set and %10 of dataset as test set.

4.1.1 FAUST Dataset

FAUST dataset [11] includes 100 triangulated, high-resolution mesh of 10 different

subjects. Each one of these subjects was scanned in 10 different poses and all of them

29



are aligned.

Figure 4.1: Overview of the 10 poses in the FAUST dataset (Figure Source: [11])

We used Blender [79] software to visualize models, apply face labeling and transfer

face labeling to other models in the dataset. Blender is an open-source 3D creation

suite which has great number of features and Python API.

For each one of the 100 models in this dataset, we labeled each face as one of the four

classes, which represents head, torso, arms and legs, and also created 90°, 180° and

270° rotated versions on z-axis in the scope of data augmentation (See Figure 3.2).

As a result, we created 400 ready to use consistent and labeled 3D objects from

FAUST dataset with a little effort. If the models were not aligned correspondingly, it

would make labeling process more difficult and time-consuming.

Figure 4.2: Overview of 400 labeled and augmented FAUST models (Augmented

version of Figure 3.1).

4.2 Pre-Processing and Data Extraction

After having a set of ground-truth labeled 3D objects, we have applied pre-process

application as stated in Section 3.2. In this stage, we decided to normalize face count
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of objects to 2000. Every object in FAUST dataset has 13776 faces originally. We

applied mesh simplification process to all of the objects in our dataset. For mesh

simplification process, we used modification support of Blender software. The ability

to modify 3D objects with Python interface made it easy to adjust mesh structure and

visualize results directly.

Next step was converting our 3D objects into numeric input features in order to con-

sume it in our neural network. Determined features are the position and the unit

normal vector of the face. We used NumPy [80] library to store values in the ma-

trix format. Since our dataset objects are closed manifold and consist of triangulated

polygons, each face has exactly 3 adjacent faces. So, every face in our dataset trans-

formed into 6 input features, 1 label index and 3 adjacent indices. As a result, we had

input feature matrix with size 400×2000×6, label index matrix with size 400×2000

and adjacency index matrix with size 400× 2000× 3.

Input Features Label Adjacency Indices

1 x 6 1 x 1 1 x 3

2000 x 6 2000 x 1 2000 x 3

... ......

400 x 2000 x 1

...

400 x 2000 x 6

...

400 x 2000 x 3

...

Figure 4.3: Illustration of 3D visual object to nominal value conversion.
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4.3 Experiments and Architecture Details

We trained our models using PyTorch [81] and Deep Graph Library (DGL) [82]. In

all of our experiments we trained weights from scratch. We used NVIDIA GeForce

1080Ti GPU for our training processes.

There are several hyper-parameters and architectural decisions in our model that we

need to optimize. We have 2 different networks (Prediction Sub-Network and Denoise

Sub-Network) to train independently. Since our Prediction Sub-Network is the most

important part of the segmentation model. We completed most of our experiments on

it.

4.3.1 Activation Function

Activation function is one of the architectural decisions that used in all layers of

the networks. We tried 4 different activation functions to find the best one fits our

problem. All parameters and conditions are equal in this experiment except activation

functions.

Table 4.1: Training details for activation function experiment. (G) sign indicates

the layer is graph convolutional layer, which means before passing to the next layer

feature passing operation applied. ’Dropout’ indicates dropout rate between layers.

’Activation’ indicates activation function used between layers (not specified for this

case). ’B.Size’ indicates batch size used during training process. ’Opt.’ indicates

optimizer method used in training process. ’Epoch’ indicates epoch size for training.

α and β indicates loss function constants in Eqn. 33. ’LR’ is the initial learning rate

used in training. ’LR-P’ and ’LR-F’ indicates scheduler patience and scheduler factor

of learning rate, respectively (After 30 epoch LR multiplied by 0.5 for this case).

Layers

6(G)× 128(G)× 512(G)× 256(G)× 128(G)× 4

Dropout Activation B.Size Opt. Epoch α β LR LR-P LR-F

0.3 - 10 Adam 100 1.0 0.3 0.001 30 0.5
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Figure 4.4: Loss and accuracy plot of different activation functions in Prediction

Sub-Network.

After 100 epochs of training, results are Relu > Leaky Relu > Tanh > Sigmoid. Relu

activation function seems the most appropriate one for our problem.

4.3.2 Dropout Rate

Dropout is an important regularization technique which mainly used in order to pre-

vent overfitting in networks. We trained our network with different dropout rates to

check the appropriateness of dropout in our problem and dataset.

Table 4.2: Training details for dropout rate experiment.

Layers

6(G)× 128(G)× 512(G)× 256(G)× 128(G)× 4

Dropout Activation B.Size Opt. Epoch α β LR LR-P LR-F

- Relu 10 Adam 100 1.0 0.3 0.001 30 0.5
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Figure 4.5: Loss and accuracy plot of different dropout rates in Prediction

Sub-Network.

After 100 epochs of training with different dropout rates, not using dropout seems as

the best case for our network. However, we needed to check if this might cause an

overfitting problem and compared our validation set accuracy and test set accuracy.
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Figure 4.6: Accuracy plot of different dropout rates for validation set and test set.
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Using no dropout resulted in slightly higher (around %1) validation accuracy, how-

ever, test set accuracy still the best one. There does not exist any sign of overfitting

with no dropout. Dropout rate around 0.1 seems the best value in context of fitting,

however final result is a little bit worse than no dropout. Also, higher amount of

dropout rates indicates the sign of underfitting with higher test set accuracy.

4.3.3 Layer Architecture

We have run experiments to find the best layer architecture to fit our model. Increasing

the number of GCLs caused huge increase in training time up to 12 hours.

Our experimented layer architectures are as follows;

Table 4.3: Different layer architecture details and their names for the experiment.

NET1 6(G)× 64(G)× 128(G)× 64× 4

NET2 6(G)× 24(G)× 64(G)× 128(G)× 256(G)× 128(G)× 64(G)× 24(G)× 4

NET3 6(G)× 128(G)× 1024(G)× 128(G)× 64× 4

NET4 6(G)× 64(G)× 128(G)× 512× 64× 4

NET5 6(G)× 64(G)× 128(G)× 256(G)× 128(G)× 4

NET6 6(G)× 64(G)× 128(G)× 256(G)× 512(G)× 64× 4

NET7 6(G)× 128(G)× 512(G)× 256× 128× 4

NET8 6(G)× 128(G)× 512(G)× 256(G)× 128(G)× 4

Table 4.4: Remaining parameters for layer architecture experiment.

Dropout Activation B.Size Opt. Epoch α β LR LR-P LR-F

0.0 Relu 10 Adam 100 1.0 0.3 0.001 30 0.5
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Figure 4.7: Loss and accuracy plot of different layer architectures in Prediction

Sub-Network.

Table 4.5: Recognition rate values of test set for different layer architectures.

NET1 NET2 NET3 NET4 NET5 NET6 NET7 NET8

0.883 0.941 0.916 0.897 0.933 0.921 0.904 0.932

NET2 appears as the most successful configuration for our model. It could be seen

from Table 4.3 that NET7 and NET8 have the same number of hidden layer configu-

ration, however, last 2 layers of NET8 is GCL, so we can see the affect of using GCLs

in our model.
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4.3.4 α and β Constants

α and β are the stabilizer values of the loss function (Eqn. 33). If our case was

making labeling only, we probably would not need a smoothness term in our loss

function. However, in segmentation problem, noises are not desirable at all. For Pre-

diction Sub-Network α value must be relatively higher than β value, since accuracy

is the primary concern of this first network. For Denoise Sub-Network concern is

smoothness, oppositely.

We have made several experiments for the best accuracy that we can obtain with the

following setup;

Table 4.6: Training details for α and β experiment.

Layers

6(G)× 24(G)× 64(G)× 128(G)× 256(G)× 128(G)× 64(G)× 24(G)× 4

Dropout Activation B.Size Opt. Epoch α β LR LR-P LR-F

0.0 Relu 10 Adam 100 1.0 - 0.001 30 0.5

For standardization α value is set to 1.0 and β values are changed. Since the scale

of the loss function changes with these values, final loss value is not a meaningful

indicator in this experiment.

Table 4.7: Recognition rate values of test set for different β values.

β 0.0 0.1 0.2 0.3 0.4 0.5

R.Rate 0.9369 0.9435 0.9428 0.9385 0.9476 0.9376

β 0.6 0.7 0.8 0.9 1.0 1.5

R.Rate 0.9455 0.942 0.9348 0.9402 0.9425 0.9346

Up to a specific point, β value improved the recognition rate of the network, since

smoothness is a positive factor for the correctness of the segmentation. However,

after that point, accuracy started to decrease. Higher β value dominates the loss func-

tion and network starts to give more importance on the smoothness than the accuracy.
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This leads to lose boundary edges of the object. Since torso part of the human shape

has the longest boundary edge and more volume in the whole body, torso part starts

to suppress other parts of the object. On the other hand, lower β value leads to the ap-

parent labeling fluctuation, mostly on the boundary edges, since the network does not

give much importance on the labeling of the neighbourhoods. This balance between

α and β directly affects the error rate of the network and they are the most crucial

hyper-parameters for the overall performance of the network.

With α = 1.0 and β = 0.4 values, accuracy is the highest according to our experi-

ments.

4.3.5 Denoise Sub-Network Training

Figure 4.8: Effect of Denoise Sub-Network on a sample object from different views.

On each pair, left object represents the input segmentation of Denoise Sub-Network,

right object represents the output segmentation of Denoise Sub-Network.
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This network is a quite similar network to Prediction Sub-Network, except the bal-

ance between α and β. However, this network does not provide a visible increase in

recognition rate of the final labeling. It only eliminates the noisy labels in the final

prediction for the sake of segmentation purpose. That’s why recognition rate values

are not a good indicator in the training phase of this network.

Parameters are mostly inherited from the previous experiments. Sample architecture

of the Denoise Sub-Network;

Table 4.8: Parameters for Denoise Sub-Network.

Layers

4(G)× 24(G)× 64(G)× 128(G)× 256(G)× 128(G)× 24(G)× 4

Dropout Activation B.Size Opt. Epoch α β LR LR-P LR-F

0.0 Relu 10 Adam 100 1.0 1.0 0.001 30 0.5

For the models that labeled successfully in the first network, denoise application is

quite useless and does not provide a visible outcome. So, we need to visualize not

successfully recognized models to see the difference. The 3D object in Figure 4.8 is

the least successfully recognized model in the test set. Effect of denoise application

could easily be seen on unsuccessful objects. Overall accuracy performance of the

network is not improved but the noise on the object have been mostly overcome.

After training phase of this network, average test set accuracy improved from 0.9476

to 0.9531.

4.4 Evaluation

In this section of thesis, we evaluated our method with the previous supervised 3D

mesh segmentation methods for human shapes. We made our experiments on the

FAUST dataset which has 100 unique human model, however, previous methods

made experiments on PSB [83] dataset which has 20 models on different categories.

For evaluation, leave-one-out cross validation technique has been used. 19 meshes
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are selected for training and 1 mesh is used for testing. This process is completed

20 times for each single human model and the average accuracy is calculated. As in

Kalogerakis et al. [7], the accuracy is computed as:

Acc =
∑
t ∈ T

atgt(lt)/
∑
t ∈ T

at, (41)

where at is the area of the triangle t and lt is the predicted label. gt(lt) denotes the

ltth component of gt, which equals to 1 if the prediction is correct.

Table 4.9: Evaluation table with different methods. First column represents the paper.

Second column is the final accuracy on the human objects. Third column is the used

feature counts for the methods. Fourth column is the checkbox for the method using

Graph-Cut optimization or not. Last column is the main method used in the paper.

Accuracy (SB19) F.C. GC Opt. Method

Kalogerakis et al. [7] [2010] 93.60% 810 3 CRF Opt.

Xie et al. [41] [2014] 88.61% 619 3 Extreme LM

Guo et al. [46] [2015] 88.90% 600 3 CNN

George et al. [47] [2018] 89.81% 800 3 CNN

Ours 88.13% 6 7 Graph-CNN

Ours 91.49% 593 7 Graph-CNN

Firstly, we trained our network with 6 features that we used in our experiments, and

we achieved a successful accuracy in labeling. Later on, we trained a bigger network

with 593 unary features that are shared by Kalogerakis et al. [7], and our accuracy

value outperformed all other techniques using only unary features with the lowest

feature count. The only method we could not surpass is also used pairwise features

of the faces as a second energy term in their network. All other methods used only

unary features of the faces and our method is the best one among them. We also did

not apply the Graph Cut post-optimization method to our results, which increases the

accuracy around a few percents; instead, we used the straight output of our network.

The method of Wang et al. [48] is not added to the evaluation table, since they did

not share their accuracy on human shapes specifically.
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Princeton Segmentation Benchmark

We also evaluated our segmentation performance with PSB [83]. PSB evaluates the

performance of the segmentation with 4 different metrics. Rand Index metric mea-

sures the likelihood that a pair of faces are either in the same segment in two segmen-

tations, or in different segments in both segmentations. Cut Discrepancy metric sums

the distances from points along the cuts in the computed segmentation to the closest

cuts in the ground truth segmentation, and vice-versa. Consistency error metric tries

to account for nested, hierarchical similarities and differences in segmentations. Last

metric hamming distance measures the overall region-based difference between two

segmentation results.

For each metric in the benchmark lower value represents better performance. Results

are given in Figure 4.9 and Figure 4.10. ’Benchmark’ indicates the human-segmented

baseline for benchmark and there are 7 different segmentation algorithms beside our

model for comparison.
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Figure 4.9: Rand Index and Cut Discrepancy metrics.
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Figure 4.10: Consistency Error and Hamming Distance metrics.
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4.5 Visual Results

We visualized the segmentation result of 6 objects from different view angles in the

PSB dataset in Figure 4.11. Our network is highly successful to recognize body parts

and there is not any visible defect in the results.

Figure 4.11: Visual results of sample objects.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we studied the segmentation of 3D objects using Graph Convolutional

Neural Networks with a supervised learning-based approach. We mainly focused on

human shapes in this thesis since it is one of the most challenging and popular shape

types for segmentation.

We neither handled each face in the object separately nor converted the irregular

graph-based structure into a uniform grid-based structure like the previous learning-

based approaches. We have developed a GCNN model that works directly on the

graph structure of 3D objects, and this brought the ability to acquire competitive

segmentation with significantly fewer features. We also tested our model with a large

number of features like the previous works, and our results outperformed most of

the state-of-the-art methods. Unlike previous approaches that used different post-

optimization algorithms, we also developed a different network model for noise and

boundary optimization by adjusting the smoothness power of loss function. This way,

our method falls into the pure learning-based segmentation category.

5.1 Future Work

In the future, we plan to train the models on different datasets and different shape

types. COSEG and PSB datasets have several combinations, and we need to check

the capability of our model for each category in these datasets. We also plan to cross-

check several features to detect the most significant ones for the best labeling accuracy

with the fewer features possible. Moreover, the performance of the networks that are

trained on a particular type and tested on a similar but different type (teddy bear and
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human; plane and bird) could also be measured to check the generalization capacity

of the segmentation model.
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