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ABSTRACT

MICROSTRUCTURAL MODELLING OF DUAL-PHASE STEELS
THROUGH POLYCRYSTALLINE PLASTICITY AT RVE LEVEL

Güngör, Gönül Öykü

M.S., Department of Aerospace Engineering

Supervisor : Assist. Prof. Dr. Tuncay Yalçınkaya

August 2019, 99 pages

In this work the plasticity, localization and the damage behavior of dual phase steels

are investigated through both J2 and crystal plasticity frameworks. For this purpose,

Voronoi based Representative Volume Elements (RVE) are created with different

martensite volume fractions, which are studied at different constant triaxiality val-

ues. The micromechanical and the macroscopic constitutive responses are analyzed

in detail for considering various loading conditions and microstructural parameters.

The results are discussed in comparison to the ones in the literature and the work is

concluded with remarks and outlook.

Keywords: Dual-phase (DP) Steel, Representative Volume Element (RVE), Crystal

Plasticity, Triaxiality, Localization
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ÖZ

ÇİFT FAZLI ÇELİKLERİN THE SEVİYESİNDE POLİKRİSTAL
PLASTİSİTE İLE MİKROYAPISAL MODELLENMESİ

Güngör, Gönül Öykü

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Tuncay Yalçınkaya

Ağustos 2019 , 99 sayfa

Çift fazlı çelikler mikro seviyede modellenmiş, hasar başlangıcı ile birlikte oluşan

bölgesel gerilmeler klasik J2 plastisite ve kristal plastisite kullanılarak incelenmiştir.

Farklı martensit hacim miktarlarına sahip çift fazlı çelikler, Voronoi bazlı temsili ha-

cim elemanları (THE) kullanılarak modellenmiş ve üç eksenli gerilmeler deformas-

yon boyunca sabit tutularak farklı gerilme halleri altında incelenmiştir. Elde edilen

sonuçlara bakıldığında çift fazlı çeliklerin genel davranışında önemli bir farklılık gö-

rülmemesine rağmen, seçilen yapısal malzeme modeline bağlı olarak mikro seviyede

farklılıklar olduğu gözlenmiştir. Klasik J2 plastisite, kristal plastisite ve gerilme ha-

linden kaynaklanan varyasyonlar literatürdeki deneysel ve hesaplamalı bulgular ile

tartışılmış ve karşılaştırılmıştır.

Anahtar Kelimeler: Çift Fazlı Çelik, Temsili Hacim Elemanı (THE), Kristal Plastisite,

Üç Eksenli Gerilme, Lokalizasyon
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CHAPTER 1

INTRODUCTION

Dual-phase steels or DP steels belong to a group of high strength steels that is com-

posed of two different phases. It consists of soft, ductile ferrite and hard, brittle

martensite phases. The ferritic phase is in the form of a matrix while martensitic

phase is dispersed along ferrite grain boundaries in the form of islands [1], [2]. A

schematic illustration of a dual-phase microstructure is shown in Figure 1.1.

Figure 1.1: Dual-phase microstructure [3].

DP steels were developed in late 1970 and early 1980’s when low carbon, low alloy

steels were in demand [4]. These features of dual-phase steels have ensured high

elongation and high strength with improved formability, fatigue and crash resistance

with an addition of being light and affordable [2]. The aforementioned attributes

altogether made dual-phase steels in high demand, especially in the automotive in-

dustry and gave great applicability in car safety parts [5]. Figure 1.2 presents usage
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of dual-phase steels in a car body.

Figure 1.2: A car body showing different grades of DP steels in its main frame [1].

Commercial names such as DP600, DP750 etc. represent the grade and the number

in the name shows the ultimate tensile strength of the material. The ultimate tensile

strength of commercially available steels ranges from 450 to 1200 MPa [1]. Compar-

ison of dual-phase steels with other available high strength (HS) low alloy steels is

shown in Figure 1.3

Figure 1.3: Low strength steels are in dark grey, traditional HS steels are in grey,

remaining colors are for advanced HS steels [5].

Dual-phase steels have a greater strain hardening rate, which is a distinctive property

when compared with other low alloy steels. Dual-phase steels strengthen and reach

higher stress values during plastic deformation as an outcome of the strain hardening

process. The strain hardening behaviour of any metallic material can be identified by
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experiments and described by appropriate empirical or phenomenological relations.

For steels, various mathematical descriptions exist in the literature (see e.g. [6], [7],

[8], [9]). Due to the microstructural complexity of DP steels the overall constitu-

tive response can not be captured by such classical hardening laws. Considering the

fact that the mechanical response of each phase is different, each constituent phase

must be investigated separately. As an example, the electron backscatter diffraction

(EBSD) images of two different dual-phase steels are presented in Figure 1.4, where

the dark areas indicate martensitic phase.

Figure 1.4: EBSD maps of DP600 (a) and DP800 (b) steels [10].

Getting accurate predictions of the mechanical response of a dual-phase steel is only

possible when the features of both are considered separately. The characteristics of

individual phases are influenced by traits such as phases’ carbon content, volume

fraction, grain size and morphology, which conjointly affect the dual-phase steel’s
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overall response [11], [12]. Due to plastic incompatibility between ductile and brittle

phases, damage accumulations and stress localizations exist at the microstructural

level, especially between the grains of different phases. Although dual-phase steels

are very advantageous, these microstructural flaws can cause catastrophic failure of

the bulk material [1]. Therefore, it is vital to gain an in-depth knowledge of the

micromechanics of the plastic deformation. Therefore micromechanical modelling of

dual-phase steels is crucial to understand and capture the bulk constitutive response.

In this context crystal plasticity finite element method is an ideal candidate to simulate

the behavior at mesoscale. Various studies exist in the literature which study these

materials through crystal plasticity using representative volume elements (RVEs) and

experimental observations (see e.g. [13], [14]). Although, in general, modelling

and discussions have been held under uniaxial loading conditions, the effect of stress

triaxiality has not been discussed before.

In this regard, the purpose of this thesis is to study of the micromechanics of plastic

deformation in dual phase steels through RVEs, using crystal plasticity and J2 plas-

ticity approaches under different triaxiality values. In order to realize this, four dif-

ferent representative volume elements are generated with different martensite volume

fractions to be deformed under axial tensile loading conditions. The effect of mi-

crostructural properties on overall plastic behaviour and localization at grain scale is

discussed at different triaxiality values. The effect of boundary conditions on the plas-

tic behaviour of RVEs is discussed for both phenomenological and micromechanical

plasticity models. The similarities and the differences between modelling approaches

are investigated under the effect of stress triaxiality and the results are discussed with

respect to the ones in the existing literature.

The thesis is organizes as follows. First in Chapter 2, the micromechanical aspects of

plastic deformation in dual phase steels is summarized together with modelling ap-

proaches used in the literature and the current study. Then in Chapter 3, the microme-

chanical model is presented with loading and boundary conditions. The homogeniza-

tion of the RVE response is also discussed in detail. In Chapter 4, the numerical

results are presented and discussed. Lastly, in Chapter 5, the concluding remarks are

given and an outlook is presented for future studies.
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CHAPTER 2

MICROSTRUCTURAL ASPECTS AND CONSTITUTIVE MODELLING OF

PLASTIC DEFORMATION IN DP STEELS

2.1 Strength and ductility of dual-phase steels

In this section the microstructural aspects of plastic deformation in dual phase steel

is addressed shortly. The most influential issues are the martensite volume fraction,

martensite carbon content, the ferrite grain size and the morphology of the martensite

phase.

Conducting experimental tests is a simple yet effective way to investigate the strength

and the ductility of a variety of materials. Data such as strain hardening, yield

strength, ultimate tensile strength, fracture strength and strain are commonly col-

lected and these are sufficient to get an overview of the material. It is also common

to perform experiments, such as uniaxial tension, on dual phase steels to obtain the

main characteristics.

During uniaxial tension experiments of DP steels both phases start to deform elas-

tically. Then the ductile phase, ferrite, starts to yield first since its yield strength is

lower than the brittle martensite phase. While deformation spreads through the fer-

ritic matrix, martensite keeps deforming elastically until its yield point. Above this

yield point martensite islands also start to yield. The brittleness and the strength of

dual-phase steel depend on the brittleness and strength of its martensitic phase. Since

the yield and ultimate stress values between ferrite and martensite is highly unlike,

an inter-granular plastic instability occurs [15]. Due to this plastic instability, local-

izations occur at the interphase where martensite and ferrite meets [16]. This local

accumulation plays an important role in dual-phase steels hardening behaviour. The
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overall mechanical response, especially strength and ductility of a dual-phase steel is

highly influenced by its martensite volume fraction, martensite carbon content, fer-

rite grain size and martensite morphology [2]. Following sections will present an

overview of fundamental microstructural features which have substantial effects on

the overall behaviour.

2.1.1 Effect of martensite volume fraction

First, the effect of the martensite volume fraction on the global material response

will be discussed. Martensitic phase can be imagined as fibres reinforced in a matrix

and is the backbone of the material. Volume fraction of martensite has been studied

extensively and found that it influences the strength and ductility of the dual-phase

steels primarily [17], [18], [19]. It is stated that martensite volume fraction has a

linear relationship with the yield and tensile strength, which can be due to rule of

mixture (see e.g. [4], [20]). Strength increases with increasing martensite volume

fraction but Vm has a larger contribution on the ultimate tensile strength than the

yield strength (see e.g [20]), except when the martensite carbon content is low [4].

Figure 2.1 presents martensite volume percent as a function of yield and ultimate

tensile strength and shows that martensite volume fraction has a smaller effect on the

yield strength when compared to ultimate tensile strength. Martensite volume fraction

shows approximately a linear relationship with the tensile strength.

As for materials ductility, increased martensite volume percent provides undesirable

results. Overall strength of the material increases at higher martensite percentages,

however this is always disadvantageous for materials ductility. According to experi-

ments conducted by Ahmad et al., increasing volume fraction increases ultimate ten-

sile strength while elongation of steel decreases drastically [17]. Findings of afore-

mentioned research is presented in Figure 2.2.

2.1.2 Effect of martensite carbon content

The martensite carbon content is another important aspect that affects the overall be-

haviour. The strength of martensite is directly linked to its individual carbon content.
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Figure 2.1: Yield (a) and tensile (b) strengths of DP grades QT-700 and QT-740 as a

function of martensite volume fraction [18].

An increase in the carbon content results in an increase in the steel’s strength and

hardening rate (see e.g. [19], [21], [22]).

The highest carbon content means the strongest martensite but with compromised

ductility based on experiments of Ramos et al. [20]. It is observed that increased

carbon content is unfavourable for materials elongation since martensite with higher
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Figure 2.2: Effect of martensite volume fraction as a function of UTS and elongation

[17].

carbon content shows brittle characteristic. Figure 2.3 shows the relation between

ductility and martensite carbon content. It is presented the ductility and the carbon

content show an opposite tendency. Brittleness of martensite can be downgraded at

some level by decreasing its carbon content, therefore early deformation in martensite

can only be prevented by decreasing its strength.

2.1.3 Effect of ferrite grain size

In comparison to martensite, ferrite phase contains lower percentages of carbon.

Hence, the carbon content has an unnoticeable effect on ferrite’s flow behaviour. Fer-

rite’s grain size is the major microstructural trait that affects its own plastic behaviour

and therefore the strength and ductility of the DP steel as well [18].

As the ferrite grain size decreases, the yield strength and the ultimate strength in-

creases in accordance with the classical Hall–Petch relation [22], [23]. The influence

of the ferrite grain size on the yield strength of the DP steel is observed to be stronger

than its effect on the ultimate tensile strength (see e.g. [24]). Based on the research
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Figure 2.3: Experimental findings of different steels elongation and martensite carbon

content [20].

of Jiang et al., decreasing grain size increases the flow stress and raises the strain

hardening at low strains the effect is limited at high strain values [25]. Figure 2.4

shows the relation between the grain size and the tensile stress through experiments

conducted on DP steels having a constant martensite volume fraction around 25%.

The grain size effect of the martensite phase is not investigated here, as it does not

have a strong influence on martensite’s flow behaviour, which is affected primarily

by its carbon content [26]. Therefore, there is no formulation relating the martensite

flow behaviour to its grain size in the literature.

2.1.4 Effect of martensite morphology

The effect of the martensite morphology on dual-phase steel’s strength and ductility

is the last microstructural aspect considered here. The morphology (the shape and

the distribution) of martensite phase has considerable effect on the strength and the

ductility of dual-phase steels due its contributions in microstructural traits such as

grain size and connectivity [27]. The effect itself is controversial and requires in
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different chosen strain values [25].

depth microstructural studies. In the production process martensite grains can have an

elongated or equiaxed structure. Figure 2.5 shows common, elongated and equiaxed

martensite phases, which are indicated with whiter areas.

Mazinani and Poole claimed that the martensite morphology is not related to the

overall steel strength but is related to the ductility [4]. Same study stated that in low

carbon DP steels martensite goes under a considerable amount of plastic deformation

so it is possible to increase the martensite’s individual strength by decreasing marten-

site connectivity, which is achieved by preferring the equiaxed morphology rather

than elongated one [4]. Bag et al. found that equiaxed structures tend to distribute

strain more homogeneously, therefore steels with equiaxed martensite have superior

uniform elongation [11]. Sarwar and Priestner stated that ductility is highest when

martensite islands are elongated and finely dispersed when compared to equiaxed

martensite islands [28]. The relation between the morphology and the overall strength

is not completely clear. It is claimed that equiaxed martensite particles limit the plas-

tic flow in ferrite phase which causes strain hardening and increase in the yield and

the ultimate tensile strength [19]. Figure 2.6 presents the stress-strain response of a
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(a) Long elongated martensite (b) Short elongated martensite

(c) Equiaxed martensite

Figure 2.5: SEM micrographs that belong to dual-phase steels with different marten-

site morphologies [19].

DP steel (with 60% martensite volume fraction and 0.15wt% carbon content) up to

onset of necking. It is seen that the equiaxed morphology presents highest strength

with lowest elongation while long banded morphology shows vice versa. In the mean-

while some other studies claim that long elongated martensite morphology provides

higher strength (see e.g. [28]). Therefore the effect of morphology on strength is

arguable and requires further micromechanical analysis.

2.2 Constitutive modelling of dual-phase steels

After shortly discussing the interesting microstructure of the DP steels, an overview

on the constitutive modelling of these materials is presented in the following.
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Obtaining an accurate stress-strain response for each phase is the key for modelling

the overall behavior of DP steels. In order to do that one can conduct experiments

such as micro pillar compression [3], in situ neuron [13], high energy X-ray diffrac-

tion [15] and nanoindentation [29] for determining the constitutive behaviour and

microstructural characteristics of the phases. The collected data then could be used

to develop constitutive models which would represent the the mechanical response of

individual phases in a dual-phase steel [10], [18], [30]. While some would choose to

come up with classical phenomenological relations for hardening (see e.g. [31]), the

others try to relate the phenomena to the physics of the plasticity at grain scale (e.g.

through dislocation densities) (see e.g. [32]). However, in both cases a flow curve

is obtained which would eventually be used as hardening data for phenomenological

plasticity modelling (e.g. J2 plasticity). The other option is to use a physics based

approach such as crystal plasticity in order to bridge the micro plasticity to macro be-

haviour (see e.g. [16]). In this case the plastic slip values are summed up on each slip

systems to obtain the plastic strain, which would be then used to get the local stress

response. The model would be anisotropic as the amount of slip would differ from

grain to grain due to their own individual orientations. In this section an overview

of these modelling approaches will be summarized. Both the flow curve and crystal

12



plasticity modelling techniques will be employed throughout the thesis.

2.2.1 Phenomenological flow curve

Phenomenological equations representing the flow behaviour of the dual phase steels

are the most common way to simulate the plastic behaviour of both phases. The

parameters of these models are identified through a comparison with the uniaxial

tensile test data. Unfortunately the parameter set identified for a certain grade of steel

would not work for the other types with different microstructures. Therefore one has

to be careful when using these models and their parameters.

Hill’48 and J2 plasticity frameworks are the most common ones that has been used in

the literature to model the DP steels. Certain flow rules are incorporated specific to

the material. Anisotropic plasticity models that use Hill’48 yield surface focus more

on the sheet metal forming and forming limit diagrams (see e.g. [33]). The following

represents the yield function and the equivalent stress description of the Hill model,

f(σ, εP ) = σHill − s = 0 (2.1)

σHill =
√
F (σy − σz)2 +G(σz − σx)2 +H(σx − σy)2 + 2Lτ 2yz + 2Mτ 2zx + 2Nτ 2xy.

(2.2)

σHill is Hill’48 equivalent stress, εP is equivalent plastic strain, σ is Cauchy stress

tensor, s is the deformation resistance related to hardening law. Constants F to N are

anisotropy parameters which can be found from associated flow rule. The flow rule

associated to Hill’48 yield criterion is

dεP = dεP
∂f

∂σ
(2.3)

where, εP represents the plastic strain tensor. Different hardening or flow relations

can be used to present the strain hardening behaviour. In the above mentioned refer-
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ence [33], Swift hardening law is used,

s = A(ε0 + εP )n. (2.4)

Swift law gives a good fit during uniform elongation, however, it should modified for

higher strain levels.

The classical J2 elastoplasticity framework with isotropic hardening is actually the

most commonly used tool to predict plastic behaviour of DP steels. Likewise, Swift

law is used frequently with J2 as well see (e.g. [34]). The other flow rules are also

employed through a parameter identification procedure with respect to experimental

data, e.g. Ludwik strain hardening law [15]. Hardening behaviour of ferrite and

martensite is fitted to Ludwik equation which has a general form of σ = σy + KεnP .

The flow relations of ferrite and martensite are

σ0 = σy,f +Kfε
nf

P (2.5)

σ0 = σy,m +KmεP (2.6)

respectively. σy,f and σy,m are the initial yield strengths,Kf andKm are the hardening

coefficients, nf is the hardening exponent for ferrite phase. Martensite hardening

behaviour is assumed to be linear therefore the corresponding flow equation does not

include an exponent [7].

Another study proposes an exponential law to fit flow behaviour of martensite accord-

ing to experimental flow curves of 100% martensite specimens [19]. The relation is

as follows,

σy,m = σy0,m + km(1− exp(−εPnm)) (2.7)

where σy,m is current yield strength, εP is accumulated plastic strain and σy0,m, km,

nm are material parameters. The affect of carbon content on strain hardening is found
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from following relation,

σy0,m = 300 + 1000C1/3
m (2.8)

where σy0,m is the current yield strength and Cm is the martensite carbon content in

wt%. The hardening modulus km is directly proportional with Cm

km =
1

nm

[
a+

bCm

1 +
(Cm
C0

)q
]
. (2.9)

Strain hardening formulation for ferrite phase obeys to a modified Swift hardening

law,

σy,f = σy0,f + (1 +HfεP )nf (2.10)

where σy0,f ,Hf and nf are material parameters and depend on the production process.

Parameters are fitted according to experimental findings and kept the same throughout

aforementioned research.

Studies of Lai et al follow the same approach presented in Eqs. (2.7)-(2.9) for marten-

site, while work hardening relation for ferrite is fitted to a modified version of Voce

strain hardening law [18], [26]. Proposed law for ferrite is based on its dominant

microstructural traits. Ferrite has low carbon content because of its nature, therefore

carbon content in ferrite does not contribute to its hardening process. Accumulated

dislocations along ferrite grain boundary is the main mechanism that hardens ductile

ferritic phase. It is revealed that regardless of the value of dynamic recovery coef-

ficient, dislocations accumulate at large strains and cause stage-IV strain hardening.

Therefore a modified expression for ferrite is described by a Voce law for stage-III

and a stage-IV with constant hardening,

σy,f = σy0,f +
θf
β

(1− exp(−βεP )) for σy,f < σtry (2.11)
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σy,f = σtry + θIV (εP − εtrP ) for σy,f > σtry (2.12)

where σy0,f is the current ferrite yield strength, θf is initial work hardening rate and

β is the dynamic recovery coefficient. σtry and εtrP are values of flow stress and plastic

strain at the point where transition from stage-III to stage-IV hardening takes place.

Hardening rate θIV is a constant, altogether with σtry and εtrP are expressed as

σtry = σy0,f +
θf − θIV

β
(2.13)

and

εtrP =
1

β
ln
( θf
θIV

)
. (2.14)

Swift type law shows much higher work hardening rates at larger strains which over-

estimates the uniform elongation is ferrite. Swift type law defined in Eq. (2.10)

is applicable up to moderate strain levels, after a threshold value, the macroscopic

stress strain response of dual-phase steel is not captured correctly. Different stress

strain responses simulated by Swift and Voce+stage-IV are presented in Figure 2.7.

It is seen that resulting curves disagree due to selection of different strain hardening

laws for ferrite, and Swift type law overestimates the overall stress response.

Various phenomenological models exist in the literature which have relatively lower

computational cost and complexity compared with the micromechanical models such

as crystal plasticity frameworks. Phenomenological laws include material properties

that require calibration and will not be reliable in the absence of separate credible

experimental data for each phase. If there are sufficient findings, phenomenological

models will provide simplicity and reduction in computation time. Still for many

cases the stress strain response of dual-phase steels cannot be adequately defined

with a certain function. Considering the fact that dual-phase steels deform in multiple

stages, choosing a law containing stepwise functions may give realistic results.
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Figure 2.7: Comparison of simulated stress strain behaviours for the same DP [18].

2.2.2 Physics based phenomenological constitutive modelling

Another option for describing the flow behaviour of dual phase is to use physically

based empirical formulations, which eventually enters plasticity models such as J2

and Hill. A striking example in this context is a model which describes the strain

hardening behaviour of constituent phases as a function of dislocation storage and

recovery [35]. The model approximates the flow resistance on a slip plane by taking

slip properties, such as Burger’s vector, line direction and dislocation densities into

account. In the regarding work, the macroscopic stress σ and the plastic strain ε

are linked to the critical resolved shear stress τ and the crystallographic slip γ with

orientation factor M as follows,

σ = Mτ and M.dε = dγ. (2.15)

From Eq. (2.15) the microscopic work hardening rate of the crystalline,
dτ

dγ
, can be

related to the macroscopic work hardening rate as

dσ

dε
= M2 dτ

dγ
+ τ

dM

dε
. (2.16)
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Second term of Eq. (2.16) stands for the effect of the strain on orientation variation.

The classical relationship between tensile stress and dislocation density is given by,

σ = σ0 + ∆σ + ∆σε = σ0 + ∆σ + αMµb
√
ρ. (2.17)

The first term σ0 is the Peierl’s stress which is identified as follows,

σ0 = 77 + 750%P + 60%Si+ 80%Cu+ 45%Ni

+60%Cr + 80%Mn+ 11%Mo+ 5000%Nss

(2.18)

where unknowns above are alloys in the DP steel and Nss is the nitrogen content

in solid solution. The second term ∆σ stands for the additional strengthening due

precipitations and carbon in the solution. For ferrite, ∆σ is

∆σ(MPa) = 5000×%Cf
ss (2.19)

and for martensite,

∆σ(MPa) = 3065×%Cm
ss − 161 (2.20)

where %Cf
ss and %Cm

ss are the carbon content in ferrite and martensite respectively.

Third term reflects the effect of the strengthening and the softening due to disloca-

tions. It consists of a constant α, Taylor factor M , shear modulus µ, Burger’s vector

b and dislocation density ρ. During the deformation, the evolution of dislocation den-

sity is given as follows

dρ

dγ
=
dρ

dγ

∣∣∣∣
stored

− dρ

dγ

∣∣∣∣
recovery

. (2.21)

Substitution of Mdε = dγ in Eq. (2.21) allows expressing the dislocation density

change in terms of macroscopic equivalent strain. Different formulations exist for
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each term. Generally, Eq. (2.21) becomes,

dρ

dε
= M

( 1

bL
− krρ

)
, (2.22)

where kr is recovery rate and L is dislocation mean free path which is a constant.

Taking initial dislocation density as ρ0 gives

∆σε = αMµ
√
b

√
k

kr
[1− exp(−krMε)] + ρ0exp(−krMε) with k =

1

bL
(2.23)

Eq. (2.23) can be rearranged as

∆σε = αMµ
√
b

√
1− exp(−Mkrε)

krL
(2.24)

which can be applied to ferrite and martensite to predict their flow stresses. With the

correct set of parameters, this approach is enough to predict flow curves with great

accuracy.

Initial dislocation density is usually negligibly small, with some rearrangements the

final relation can be expressed as follows

σ = σ0 + ∆σ + αMµ
√
b

√
1− exp(−M · krεp)

krL
(2.25)

In here, α and M terms have a strong influence on strain hardening characteristics.

The studies conducted till now with different dual-phase steels adopt 0.3 and 3 respec-

tively for these parameters, which comply well with the experimental flow curves.

Therefore a data fit process is not needed. Dislocation density based flow curve mod-

elling is quite common in the literature (see e.g. [21], [22], [30], [32], [36], [37], [38],

[39], [40], [41]). Even though phenomenological and physics based flow curves in-

corporated in to classical macroscopic plasticity frameworks give satisfactory results,

they do not take into account many of the microstructural aspects of the dual phase

steels. Therefore for a more physical simulation with a better representation of the
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microstructure, the crystal plasticity modelling offers better solutions, which will be

described shortly in the upcoming subsection.

2.2.3 Physics based micromechanical models

Crystal plasticity based finite element (CPFEM) method has gained popularity to

study anisotropic deformation mechanisms in polycrystalline materials. Although

isotropic hardening theory is able to capture the overall stress-strain behaviour of the

material, it cannot thoroughly give information about local deformations and relation

between stress and microstructural attributes. Thus, in order to remedy this downside

of the plasticity modelling, Crystal Plasticity Finite Element Method (CPFEM) has

been used in polycrystalline aggragates, which captures the localization together with

the influence of microstructural characteristics on the overall strength of dual-phase

steels (see e.g. [10], [42], [43], [44], [45], [46]). Asaro’s single crystal plasticity

theory states that the total plastic deformation is the cumulative of crystal slip on all

activated slip systems [47]. Formulation of this theory is developed by Hill and Rice

[48]. Plastic deformation of a metallic material results from shearing on crystallo-

graphic slip systems and lattice stretching and rotation. Local plastic deformation

due to shearing gives the plastic FP, elastic stretching and lattice rotation gives the

elastic deformation gradient F∗. Total deformation gradient tensor F is an decom-

posed as

F = F∗FP. (2.26)

Elastic stress strain relation below links F∗ to stress

T∗ = C[E∗] and E∗ =
1

2
F∗TF∗ − 1. (2.27)

T∗ is called the second Piola-Kirchoff stress and it is the elastic conjugate stress to

the elastic strain tensor E∗. E∗ is also named the Lagrangian strain. C is the cubic

symmetric fourth order elasticity tensor. For cubic crystals C has three independent
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constants C11, C22 and C44. T∗ is linked to symmetric Cauchy stress tensor T as,

T∗ = F∗−1(det(F∗)T)F∗−T. (2.28)

Rearranging formulation above following is obtained

T = (det(F))−1F∗T∗F∗T. (2.29)

In current configuration, local plastic deformation gradient is linked to the velocity

gradient as follows

L = ḞF−1 = Ḟ∗F∗−1 + F∗ḞPF∗PF∗−1. (2.30)

First part of Eq. (2.30) is the elastic part of the velocity gradient. The second part is

the plastic part of the velocity gradient, which can be written as,

LP = ḞF−1 − Ḟ∗F∗−1 = F∗ḞPF∗PF∗−1. (2.31)

In case of crystals the plastic part of the velocity gradient of current state is a function

of the plastic slip rate on each slip system, which is expressed as [49],

LP =
n∑

α=1

γ̇(a)n∗(a) ⊗m∗(a) (2.32)

where n∗(α) defines slip direction, m∗(α) defines slip plane normal. n∗(α) and m∗(α)

are time independent orthogonal vectors. γ̇(α) stands for rate of plastic shear on slip

system α. During slip, slip plane vectors deform by the application of F∗ [47]. So

in a fixed reference frame, n∗(α) can be written in terms of the slip direction in the

current frame,

n(α) = F∗−1n∗(α). (2.33)
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Normal to the slip plane and slip direction are mutually orthogonal, following can be

written,

n(α) ·m(α) = m(α) · n(α) = 0. (2.34)

By the use of mutual orthogonality, slip plane normal can be obtained in terms of its

equivalent in current configuration,

m(α) · (F∗−1 · n∗(α)) = 0. (2.35)

Like slip direction, slip plane normal deforms through the same deformation gradient.

To satisfy Eq. (2.35), the material description of slip plane normal must be

m(α) = m∗(α) · F∗. (2.36)

Amount of the slip on each slip system is found through plastic shearing strain rate

γ̇(α).γ̇(α) is a function of resolved shear stress τ (α) and slip system deformation re-

sistance s(α), critical resolved shear stress. The dependence of γ̇(α) to the current

resolved shear stress τ (α) differentiates rate dependent and rate independent plasticity

models. The formulation used for γ̇(α) is in the form of power law and expressed as

(see e.g. [50])

γ̇(α) = γ̇0

∣∣∣∣τ (α)s(α)

∣∣∣∣1/msign(τ (α)) (2.37)

where γ̇0 is the reference slip rate and it must obey γ̇α = γ̇0 when τ (α) = s(α). Strain

rate sensitivity m presented in Eq. (2.37) is found through [47]

m =
∂(lnγ̇)

∂(lnτ)
. (2.38)

Equations below give an explanation to resolved shear stress τ (α) [49]. In any current
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configuration plastic stress power per unit volume is

ω̇P = (C∗T∗) · LP (2.39)

where C∗ is the right Caughy-Green deformation tensor, which is the decomposition

of deformation gradient as

C∗ = F∗TF∗. (2.40)

For crystallographic systems plastic stress power can also be defined as

ω̇P =
n∑
α

τ (α)γ̇(α). (2.41)

Eqs. (2.32), (2.39) and (2.41) lead to

τ (α) = (C∗T∗) · S(α) and S(α) = n(α) ⊗m(α). (2.42)

The current slip resistance or yield stress s(α) evolves according to

ṡ(α) =
n∑
β=1

hαβ
∣∣γ̇β∣∣ (2.43)

where hαβ is the latent hardening matrix [49]. This matrix measures the strain hard-

ening due to shearing of slip system β on slip system α. hαβ is proposed to have the

form

hαβ = qαβh(β) (2.44)

where qαβ indicates latent hardening behaviour and h(β) is the hardening rate for a
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single slip

h(β) = h0

{
1− sβ

ss

}a
(2.45)

where h0, and ss are hardening parameters. a exponent is a constant material param-

eter. Remaining are shear rate γ̇0, strain rate sensitivity m, initial slip resistance s0

and latent hardening parameter q.

Please note that different formulations exist for evolution of slip resistance, given by

Eq. (2.43), and evolution of hardening, given by Eqs. (2.44), (2.45). Therefore, these

presented formulations are main equations for the calculation of plastic slip in each

slip system in single crystal plasticity framework. After obtaining plastic slip of each

slip system, the plastic strain, the elastic strain and the stress would be calculated.

More detailed explanations could be found in the literature (see e.g. [51], [52]) on the

strain decomposition and the incremental calculations of plastic strain.
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CHAPTER 3

MICROMECHANICAL MODELLING OF DUAL-PHASE STEELS

In this chapter the micromechanical modelling framework of multiphase metallic ma-

terials is presnted in detail. The main purpose is to capture the plasticity behavior at

both local (grain) and macroscopic scales. In order to achieve this, the material is

represented by a representative volume element (RVE) which represents the behavior

of a material point including the information of the microstruture as well. The selec-

tion of a realistic RVE and imposing proper boundary conditions provide the basis

of reflecting large or infinitely large systems from micro level volumetric elements.

Afterwards, the homogenization procedure is applied to transfer the microscopic me-

chanical behaviour to mesoscale (see e.g. [19], [38]). Figure 3.1 shows a RVE at

microscale (right) and a periodic large system at mesoscale (left) which is composed

of periodically stacked representative volume elements.

n-th RVE

Figure 3.1: A 2D periodic large system and the n-th RVE.

The details of the micromechanical modelling of the material behaviour are explained

in the following subsections. Initially, the construction of the RVE and the selection

of constitutive models are addressed which is followed by the detailed description of
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the boundary conditions. Finally the homogenization scheme is studied in detail.

3.1 Representative volume elements

Materials at mesoscale can be considered as duplicates of periodically repeating vol-

umes which are representations of local microstructures. Arrays of duplicated local

microstructures are tightly stacked so that they cannot overlap or have gaps in be-

tween. These local microstructures are called representative volume elements and

they provide an accepted approach to study multi phase materials, since they are able

to give good descriptions of stress and strain partitioning in phases. A good repre-

sentative volume element should be large enough to reflect the physical attributes of

the local microstructure, such that it should realistically mirror the shape and mor-

phology of the bulk material . Aside from being large enough to agree with physical

characteristics, it should also be properly small to give reasonable computation time

(see e.g. [38] for RVE modelling of DP steels).

Different approaches exist to generate the required RVE. In addition to simple cell

models such as stacked hexagonal arrays (see e.g. [38]), artificial or realistic cubic

cell models (see e.g. [41], [53]), could be used as well. Moreover, real dual-phase mi-

crostructures can be detected by light optical microscopy (LOM) images or scanning

electron microscopy (SEM) graphs (see e.g. [3], [54]), which could then be processed

to construct RVEs based on real microstructures.

This study includes only artificial microstructures generated by Neper software which

is used for polycrystal generation and meshing [55]. Neper generates microstructures

by creating Voronoi tessellations in the space domain. Tessellations can be generated

according to various morphological cell property data such as grain size, sphericity

and volume fractions. Figure 3.2 shows Neper generated sample microstructure with

200 grains used for parameter fitting studies which will be explained in upcoming

sections.

Throughout the thesis four different DP steel microstructures having around 400

grains are generated according to their microstructural properties. In this context,

the ferrite grain sizes are picked as 6.5µm, 5.9 µm, 5.5µm and 4.2µm, while marten-
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Figure 3.2: Artificial 200 grained microstructure generated with Neper.

site grain sizes are 1.2 µm, 1.5 µm, 2.1µm and 2.4µm respectively, as reported in

[18]. All microstructures are meshed with ten-noded tetrahedral elements (C3D10

elements of ABAQUS finite element program [56]).

3.2 Constitutive behaviour of different phases

In the initial investigations, the J2 plasticity with isotropic hardening is employed for

the modelling of both phases as presented in Section 2.2.1. Individual flow behaviour

of martensitic phase is obtained from Eqs. (2.7)-(2.9), while the plasticity behaviour

of ferritic phase follow Eqs. (2.11)-(2.14), as used in e.g. [18] and [26]. Flow curve

of martensite depends on the carbon content while ferrite is influenced by the grain

size. The results of the numerical analysis are presented in next chapter.

Next, for a more elaborate investigation, crystal plasticity finite element method is

employed, based on the Huang’s user material routine (see [51]), for the modelling of

ferrite phase while the previous phenomenological plasticity framework still works

for martensite phase (see e.g. [14], [16], [57], [58] for similar modelling approaches).

The current approach takes into account the anisotropy due to different orientations

at the grain scale which is expected to give more realistic and physical results on the

microstructure evolution and localization. {1 1 2} slip family is used for the crystal

plasticity modelling of ferrite phase which is considered to behave like other BCC
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Figure 3.3: Artificial generated dual-phase steel microstructures with different ferrite

and martensite average grain sizes.

crystals at room temperature (see e.g. [59] [52], [60]). For a more detailed analysis of

slip activity of ferrite phase in DP steels please refer to [61]. The governing equations

of crystal plasticity finite element method is presented in the previous chapter. The

only difference here is the employed hardening relation. The self hardening moduli

h(β) includes the effects of three stages of crystalline hardening and all shear strains,

γ(α), from all slip systems,

h(β) =

{
(h0 − hs)sech2

[
(h0 − hs)γ(α)

s(α) − τ (α)

]
+ hs

}
G(γ(β); β 6= α) (3.1)
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where hs is stage I hardening parameter and function G is expressed as

G(γ(β); β 6= α) = 1 +
∑
β 6=α

fαβtanh(γ(β)/γ0) (3.2)

where γ0 is the slip amount at the strongest slip interaction and fαβ’s are slip interac-

tion strength magnitudes [51].

Parameters needed for ferrite’s crystal plasticity flow behaviour are fitted to its rate

independent von Mises elastoplastic finite element solution counterparts, which is

previously gathered from Eqs. (2.11)-(2.14). The data fitting procedure is explained

in detail in the upcoming chapter.

3.3 Implementation of boundary conditions and loads in ABAQUS

Void initiation, growth and coalescence have been the most crucial microstructure

evolution phenomena leading to ductile damage initiation and fracture in metallic

materials. The effect of such mechanisms have been studied experimentally and com-

putationally in the literature (see e.g. [62], [63], [64], [65], [66], [67], [68]), especially

after the pioneering work of Gurson who developed the most commonly used porous

plasticity formulation for ductile damage evolution (see e.g. [69]). The deformation

localization around the inhomogeneities results in the initiation of micro voids.These

voids evolve and accumulate at certain regions by ongoing plastic deformation and

finally lead to ductile damage [16]. Studies have emphasised that the rate of void

growth, therefore the evolution of ductile damage, is strongly influenced by the ra-

tio of hydrostatic stress to equivalent stress, namely the stress triaxiality [62], [70].

Therefore in order to analyse this effect in dual phase steels we focus our concentra-

tion on the triaxiality in the remaining of this thesis.

In order to handle the triaxiality state of the RVE properly the boundary conditions

and loading should be defined carefully. In the following the materials stress state is
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described by stress triaxiality, T , which is a non-dimensional parameter,

T =
Σh

Σeq

(3.3)

Σh =
Σ11 + Σ22 + Σ33

3
(3.4)

Σeq =
1√
2

√
(Σ11 − Σ22)

2 + (Σ11 − Σ33)
2 + (Σ33 − Σ22)

2 (3.5)

with Σh and Σeq being respectively the hydrostatic and equivalent von Mises stresses,

has a pronounced effect on damage, localization and fraction.

The stress triaxiality value evolves with the deformation. T value for the standard

uniaxial tensile specimen is 1/3 till the onset of necking (see e.g. [71]). After the

necking, the stress in that region turns into a complicated triaxial stress condition,

and the value of the stress triaxiality increases (see e.g. [66]). The value of stress tri-

axiality can be controlled in the experimental studies by designing tensile specimens

with different notch radius (see e.g. [72]). In this way the effect of the T could be

observed in axial fracture samples, which will be done in the following for the RVE

case.

Since the triaxiality value during the deformation might change substantially it is

quite hard to control the eveolving triaxaiality through boundary conditions applied

to the RVE. Therefore, as a simplification, the avarage value can be applied as a con-

stant triaxiality in order to the evaluate its effect on the localization and fracture (see

e.g. [73]). In this way the influence of different tensile tests could be simulated in

a simple manner. The simulations in this thesis are performed such that the stresses

acting on unit cell are proportionally loaded and the stress triaxiality is kept constant

at its average value. In order to keep stress triaxiality constant, axial to transverse

stress ratio must be kept constant throughout deformation (see e.g. [74]). This can be

achieved by applying a set of specific boundary conditions and these boundary con-

ditions should comply with the following statements; the opposite faces of the unit

cell must remain straight and stresses acting on opposite faces must be in the oppo-
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site direction to enforce periodicity (see e.g. [75]). It is important to note that the

mesoscopic shear stress components on the unit cell are taken zero because non-zero

components would disrupt the symmetry of unit cell surfaces and stimulate inhomo-

geneous deformation (see e.g. [74]).

In the finite element calculations performed in this study, axisymmetric tension is im-

posed on the RVEs while stress triaxiality is kept constant throughout entire loading.

T=1/3 corresponds to uniaxial tensile loading. For T>1/3, RVE represents a material

point in the centre of the minimum cross-section of a notched tensile specimen, where

the stress triaxiality remains more or less constant during deformation.

3.3.1 Constant stress triaxiality by imposing displacement boundary condi-

tions

Boundary conditions representing the stress state of a dual-phase steel, which are

valid till the onset of necking, are explained in this section. The edges of the unit

cell are aligned with coordinate axes and all edges must remain straight until the

end of deformation. In order to satisfy this, a node, M , is used to impose boundary

conditions to unit cell surfaces. This node is included in the mesh of the unit cell

and placed at the L, L, L coordinates, L being the length of unit cell edges [76].

Placement of node M and unit cell surface names are given in Figure 3.4.

Displacement u2 in y-direction is applied to nodeM and resulting ui displacements of

M are coupled to the right, left, front, back and top surfaces in order to keep surfaces

straight and to make opposing surface displacements equal. The u1 displacement of

the right surface is coupled to the uM1 displacement of the node M :

u1(L1, x2, x3)− uM1 = 0. (3.6)

The u1 displacement of the left surface is coupled to the −uM1 displacement of the

node M since these two displacement vectors show opposite directions:

u1(0, x2, x3) + uM1 = 0. (3.7)

The u3 displacement of the front surface is coupled to the uM3 displacement of the

31



x

y

z

u 1
M

u 2
M

u 3
M

BOTTOM 

SURFACE Y=0

TOP 

SURFACE Y=L

BACK 

SURFACE Z=0

RIGHT 

SURFACE X=L

LEFT 

SURFACE X=0

FRONT 

SURFACE Z=L

Figure 3.4: A unit cell showing location of node M and surface names.

node M :

u3(x1, x2, L3)− uM3 = 0. (3.8)

The u3 displacement of the back surface is coupled to the −uM3 displacement of the

node M since these two displacement vectors show opposite directions:

u3(x1, x2, 0) + uM3 = 0. (3.9)

The u2 displacement of the top surface is coupled to the uM2 displacement of the node

M :

u2(x1, L2, x3)− uM2 = 0. (3.10)

The u2 displacement of the bottom surface is fixed at zero to prevent rigid body mo-

tion:

u2(x1, 0, x3) = 0. (3.11)

With set of equations above, it is ensured that any given displacement to node M will

be fully delivered to appropriate unit cell surfaces.

32



Equations presented in (3.6)-(3.10) are linear constraint equations and can be imposed

to cell simulation by "Equation" module of ABAQUS. Linear constrained equations

are defined in ABAQUS has the following form

A1u
S
i + A2u

Q
j + ...+ ANu

R
l = 0 (3.12)

where N is the number of terms, S,Q,R are node or node sets with i, j, k degrees

of freedom with corresponding uSi , u
Q
j , u

R
l nodal variables. AN ’s define the relative

motion between nodes which are coefficients. Therefore Eqs. (3.6)-(3.10) can be

easily imposed to simulation model. To avoid errors when using "Equation" refer to

[56].

Application of these boundary conditions ensure that all surfaces remain straight

while side surfaces are traction free. Therefore T=1/3 condition is satisfied regardless

of the applied load or displacement to the node M in y-direction. This method works

well for simulations till the onset of necking stress state, 1/3. Another approach is

required when the triaxiality is other than 1/3. Such values can only be obtained by

applying displacements on transverse surfaces. Therefore displacements on all trans-

verse surfaces must be controlled with ABAQUS Riks algorithm which is explained

under section below.

3.3.2 Constant stress triaxiality by using ABAQUS Riks algorithm

This section explains the application of boundary and loading conditions to keep the

stress triaxiality constant at any desired value. As mentioned before, having the stress

triaxiality constant depends solely on the axial and the transverse stresses. With ongo-

ing deformation, as plastic collapse of the material comes close, applied stresses may

decrease therefore it is best to conduct displacement controlled unit cell simulations

[74]. ABAQUS offers Riks algorithm that allows simultaneous control over stresses

and displacements. The simplified loading condition used for simulations is shown in

Figure 3.5.

Loads are exerted in the axial and transverse directions, top and side surfaces re-
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Figure 3.5: A simplified unit cell model and applied loads [74].

spectively. Applied stresses are considered mesoscopic stresses and aligned with the

unit cell axes. ABAQUS includes "dload" option that allows specification of axial

and transverse distributed loads [56]. First, a brief information on "dload" should be

given. Mentioned distributed loads are applied on element faces. Elements used in

this study are 10-node quadratic tetrahedron (C3D10) which has 4 element faces and

is presented in Figure 3.6. In order to apply "dload" to a specific surface of a unit

cell, element faces on the unit cell surface should be determined. Elements on unit

cell surfaces are found and grouped in different element sets according to their face

numbers. Matlab script for finding necessary element faces is presented in Appendix

A.

4

10

3

6

2

5

7

8

1

face 3

face 1

face 4

face 2

Figure 3.6: Ten node tetrahedral element and corresponding face numbering [56].

The relation between axial and transverse loads is explained next. In order to under-

stand the dependency of one stress to another, the stress triaxiality formulation given
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in Eqs. (3.3)-(3.5) are revisited. The mesoscopic stress components on the unit cell

are Σ11 = Σ33 and Σ22 which is in the direction of tension. Therefore the hydrostatic

stress in Eq. (3.4) can be expressed as

Σh = 2Σ11 + Σ22 (3.13)

and the von Mises stress given in Eq. (3.5) becomes

Σeq = Σ22 − Σ11. (3.14)

Therefore the stress triaxiality is

T =
Σh

Σeq

=
2Σ11 + Σ22

3(Σ22 − Σ11)
. (3.15)

After rearrangements, the transverse stress is formulated as a function of axial stress

and stress triaxiality as follows,

Σ11 =
3T − 1

3T + 2
Σ22 (3.16)

where predominant loading is taken to be applied in the y direction.

Since the investigated microstructure is heterogeneous and consists of two phases, a

proper usage of "Equation" module, which is explained under Subsection 3.3.1, is

needed to keep the unit cell symmetric and to ensure uniform deformation. In order

to enforce periodicity, all faces of the RVE are kept straight during entire loading. For

this purpose, three arbitrary nodes, M1,M2 and M3 are selected respectively from the

middle of right, top, and front surfaces of the RVE. Placement of the nodes and the

surface names are presented in Figure see 3.7. Then ui displacements of all the other

nodes on the surface which contains node Mi are coupled to the ui displacement of

nodeMi.Similarly, ui displacements on the surface opposite to the one which contains

node Mi are coupled to the negative value of the ui displacement of node Mi. These

couplings are achieved by the following linear equations
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Figure 3.7: A unit cell showing middle nodes M1,M2, M3 and surface names.

Displacement u1 of node M1, u2 of node M2 and u3 of node M3 are coupled to

selected surfaces of the unit cell. The set of equations for the application of boundary

conditions are explained below. The u1 displacement of the right surface is coupled

to the uM1
1 displacement of the node M1:

u1(L1, x2, x3)− uM1
1 = 0. (3.17)

The u1 displacement of the left surface is coupled to the −uM1
1 displacement of the

node M1 since these two displacement vectors show opposite directions:

u1(0, x2, x3) + uM1
1 = 0. (3.18)

The u3 displacement of the front surface is coupled to the uM3
3 displacement of the

node M3:

u3(x1, x2, L3)− uM3
3 = 0. (3.19)

The u3 displacement of the back surface is coupled to the −uM3
3 displacement of the

node M3 since these two displacement vectors show opposite directions:

u3(x1, x2, 0) + uM3
3 = 0. (3.20)
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The u2 displacement of the top surface is coupled to the uM2
2 displacement of the node

M2:

u2(x1, L2, x3)− uM2
2 = 0. (3.21)

The u2 displacement of the bottom surface is fixed at zero to prevent rigid body mo-

tion:

u2(x1, 0, x3) = 0. (3.22)

In addition to fixing bottom surface in u2 direction, its vertices are also fixed in u1

and/or u3 directions to avoid rigid body motion.

With the set of equations above, unit cell surfaces remain straight and opposite trans-

verse surfaces have uniform deformation at any constant stress triaxiality value. It is

worthwhile to indicate that, mentioned method in this section is also suitable for the

case where stress triaxiality is 1/3. The method explained under Section 3.3.1 can be

preferred for 1/3 simulations to ease the computational expense.

A small parametric study for the usage of "dload" is presented next. Elastoplastic sim-

ulations with 200 grain microstructure are conducted for a constant triaxiality value

1.4. Table 3.1 shows selected axial (Σ22) and its corresponding transverse distributed

loads (Σ11, Σ33). After the selection of axial loads, the corresponding transverse loads

are obtained through Eq. (3.16). Selected uniform distributed loads are applied to cor-

responding surfaces through "dload". In Riks algorithm, loading magnitude is a part

of the finite element solution, therefore a method should be chosen to specify when

the step is completed. As mentioned previously, the simulations are conducted under

displacement control, and therefore a maximum displacement value at a specific de-

gree of freedom is entered. A node is selected such that ABAQUS monitors the node

for the finishing displacement and terminates the step when maximum displacement

is exceeded.

According to different load magnitudes, given in Table 3.1, step termination time

changes. As the distributed load magnitude lowers, it takes more computation time

to complete the analysis and no convergence was achieved for the lowest load magni-

tude, which is seen in Trial 1. It should be noted that later simulations incorporating

crystal plasticity and Riks algorithm have shown that axial load selections do not
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Table 3.1: Axial and transverse load values for "dload".

Trial # Axial distributed load Transverse distributed load

1 -1 -0.5161

2 -10 -5.161

3 -100 -51.61

4 -1000 -516.1

cause a remarkable advance in computational time. Equivalent stress vs. equivalent

strain and triaxiality vs. equivalent strain graphs that belong to different "dload" val-

ues are presented respectively in Figure 3.8(a) and (b) below. Both figures show that,

as long as loading values obey Eq. (3.16), results of simulations overlap and do not

show any variations. Hence, selection of axial load and dependent transverse load

values are up to the user.
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Figure 3.8: Equivalent von Mises stress vs equivalent strain (a) and triaxiality vs

equivalent strain (b) results for different "dload" values.

Aforementioned Σii and T parameters are mesoscopic. Parameters that belong to

mesoscale are obtained by homogenizing their microscale equivalents. Transition

from micro to meso scale with homogenization is described under next section.
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3.4 Homogenization

Evolution of internal variables are gathered by applying a homogenization proce-

dure which allows the transfer of micro variables to meso scale. Microscopic and

mesoscopic stress and strain values are linked through integral averaging methods of

homogenization theory (see e.g. [75]). General form of the equation is presented as,

F̄ =
1

V0

∫
B0
FdV0 with V0 =

∫
B0
dV0 (3.23)

where F̄ is the mesoscopic and F is the microscopic quantity in a domain B0 and V0 is

total volume. Homogenization process calculates mesoscopic stresses as the volume

average of microscopic components [77], [78].

In order to determine the overall response of the RVEs, the fundamental theorem of

homogenization

Σij =
1

V

∫
V

σijdV with (i, j = 1, 2, 3) (3.24)

is employed, which relates mesoscopic stress tensor components Σij for an RVE with

a volume V , to the local Cauchy stress components σij in the RVE. Accordingly,

Σij for a RVE is calculated by summing the microscopic Cauchy stresses over every

element and its corresponding integration points through

Σij =

∑N
m=1(

∑p
q=1 σ

{q}
ij v

{q}){m}

V
(3.25)

where N is the number of elements, p is the total number of integration points which

is 4 for C3D10 elements, and v is the local volume value at the corresponding inte-

gration point. The total volume V of the RVE, which remains as a rectangular prism

in the entire course of the deformation, is calculated by multiplying the current edge

lengths of the RVE: V =L1 x L2 x L3 [76]. After finding corresponding mesoscopic

stresses, hydrostatic stress given in Eq. (3.4), equivalent von Mises stress given in Eq.

(3.5) and stress triaxiality given in Eq. (3.3) can be obtained at mesoscale.
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The mesoscopic principal strain components for the RVE, Eii, are given by

Eii = ln
( Li
Li0

)
with (i = 1, 2, 3) (3.26)

with Li0 being the initial edge lengths of the RVE. Then the equivalent von Mises

strain is calculated by through

Eeq =
2

3
√

2

√
(E11 − E22)

2 + (E11 − E33)
2 + (E33 − E22)

2. (3.27)

The presented homogenization procedure is followed as a post processing step through

an implemented Python script. The script is presented in Appendix B.
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CHAPTER 4

RESULTS AND DISCUSSION

The methodology explained in the previous chapter is followed here to analyze the

plasticity and localization behavior of dual phase steel RVEs under axial loading con-

ditions through J2 and crystal plasticity frameworks. In all simulations the homog-

enization approach is employed to obtain the so-called mesoscopic stress and strain

values.

Representative volume elements with 400 grains are generated to illistrate the DP

steel microstructure. In each case a different martensite volume fraction, therefore a

different morphology is considered. The RVEs are generated according to the pro-

vided data in Table 4.1 where Vm, Cm, dm and df represent the martensite percentage,

martensite carbon content, martensite grain size, and ferrite grain size respectively. In

the initial calculations both phases are assigned to follow J2 plasticity framework with

isotropic hardening. Then, in the second part crystal plasticity model is assigned to

the ferrite phase. Finally, the effect of both constitutive models are investigated for

the selected dual-phase steels at different average stress triaxiality values.

Table 4.1: Microstructural characteristics of investigated DP steels [18].

Steel Vm (%) Cm (%wt) df (µm) dm (µm)

DP1 15 0.3 6.5 1.2

DP2 19 0.3 5.9 1.5

DP3 28 0.3 5.5 2.1

DP4 37 0.3 4.2 2.4
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4.1 Results of uniaxial tensile loading (T = 1/3)

As explained in the previous chapter the Neper software is used to generate the mi-

crostructures with the microstructural parameters in Table 4.1 to be used in axial

loading simulations. The grain size is an input parameter for the software entered as

equivalent diameters for spheres to be generated which are connected in the domain

by forming polyhedra. Therefore, each investigated steel morphology and RVE are

unique. Artificially generated dual-phase RVEs’ martensite volume fractions might

not have exact values. Obtained RVEs’ martensite volume fractions have a tolerance

of ±1.5%. Material assigned configurations of DP1, DP2, DP3 and DP4 are given in

Figure 4.1, in which green represents ferritic, white represents martensitic phase.

4.1.1 Numerical analysis through phenomenological constitutive relations

In here, rate-independent J2 plasticity with isotropic hardening is applied to both

ferrite and martensite phases. The Young’s modulus both is E=210 GPa, and the

Poisson’s ratio is ν=0.3 [19].

The parameter set used for the ferrite flow curves can be seen in Table 4.2, which are

identified with respect to experimental results in [18] and [26]. σy0,f is ferrite yield

strength, αf and β are related to initial hardening rate and average ferrite grain size,

while θf represents the initial hardening rate. θIV is the stage-IV hardening rate and

equals to 100 MPa for all investigated steels. All parameters employed in Eqs. (2.11)-

(2.14) to capture ferrite flow behaviour and resulting curves are presented in Figure

4.2 which shows slight differences in yield points. Note that an increasing flow stress

is obtained with decreasing grain size.

Individual flow behaviour of martensitic phase is obtained from Eqs. (2.7)-(2.9). The

parameter set used for the martensite flow curves are identical in this study and are as

follows; a=33 GPa, b=36 GPa, C0=0.7, q=1.45, nm=120, Cm=0.3 wt%.

Constitutive response of martensite depends mainly on its carbon content Cm, there-

fore increasing carbon content increases the initial yield and flow stress [19]. Al-

though for the investigated dual-phase steels Cm value is the same, in order to see the
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Figure 4.1: Artificial dual-phase steel microstructures DP1 (a), DP2 (b), DP3 (c) and

DP4 (d).

Table 4.2: Parameter set used for ferrite flow curves [18], [26].

Steel σy0,f (MPa) αf (GPa) β (GPa) θf (MPa)

DP1 250 4.9 11 4895

DP2 279 6 13 5980

DP3 300 8.9 17 8925

DP4 307 10.3 20 10260

43



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  0.1  0.2  0.3  0.4  0.5

tr
u
e
 s

tr
e
s
s
 (

M
P

a
)

true strain

ferrite with df=6.5 µm
ferrite with df=5.9 µm
ferrite with df=5.5 µm
ferrite with df=4.2 µm

Figure 4.2: Flow curves that belong to ferrite of investigated dual-phase steels.

effect, flow curves of 0.1 wt%, 0.2 wt% and 0.4 wt% are also presented in Figure 4.3.

It is once more emphasised that Cm=0.3 wt% for the steels investigated in this work.
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Figure 4.3: Flow curves of martensite with different carbon contents.

Martensite with 0.4 wt% shows flow strength over 2000 MPa, while 0.1 wt% shows
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around 1100 MPa. Again 0.4 wt% martensite has an approximate yield point of 1050

MPa, while 0.1 wt% has 750 MPa. Cm influences the maximum flow strength more

than the yield strength.

Although the overall behaviour of ferrite and martensite are distinct due to their plas-

tic responses, according to their elastic properties they are equivalent. Yield strength

of ferrite is much lower than martensite, therefore ferrite goes into plastic regime ear-

lier. The onset of plastic deformation of ferrite determines the initial yield strength

of the dual-phase steel [79]. From the flow responses shown in Figure 4.2 and Figure

4.3, DP1 steel is expected to have the lowest yield and ultimate tensile strength while

DP4 will have the highest.

As referred earlier martensite and ferrite material properties and corresponding hard-

ening formulations for the elastoplastic simulations are taken from Lai et al. [18],

where the material properties for the flow curves are identified with respect to ex-

perimental curves in simple axisymmetric unit cells. The microstructure consists

of periodic stack of hexagonal cylinders, each of which contains a single spherical

particle. On the other hand in the current study, these parameters are used in RVE

simulations which has more realistic two phase grain microstructures. Moreover, the

homogenization procedure is also followed here. Therefore it is interesting to com-

pare the current results with the experimental curves using directly the parameters

coming from other unit cell calculations.

In this context, uniaxial tension simulations are conducted for DP1, DP2, DP3 and

DP4 steels and the obtained overall stress- strain responses are compared to the ex-

perimental findings of Lai et al. [18]. Figure 4.4 presents the equivalent stress-strain

curves of investigated dual-phase steels till the onset of necking along with experi-

mental results.

The results present a good overall fit. The poorest fit is observed for DP2 microstruc-

ture, which slightly overestimates experimental data. However, in general the gen-

erated microstructures give the expected material response without any material pa-

rameter identification procedure, which gives the confidence to use it in the further

analyses.
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Figure 4.4: Comparison of J2 plasticity based RVE calculation with experimental

data up to necking.

Verification of the boundary conditions for the applied uniaxial tension is presented

in Figure 4.5 for four different microstructures. They are deformed in the y direc-

tion and the stress triaxiality is expected to be 1/3 throughout deformation, which is

confirmed in Figure 4.5(a). The mesoscopic strains E11 and E33 are same up to the

third significant figure, and they are almost equal. E11, E33 values are nearly equal to

−E22/2, as presented in Figure 4.5(b) and (c). The mesoscopic strain E22, equivalent

strain Eeq are also found to be close enough to reflect uniaxial tension of an isotropic

material. Differences in these values are due to the existence of two phases and their

heterogeneous distribution in the microstructure. According to the these strain values,

isotropy of generated RVE is also verified.

Figure 4.6 shows the deformed contour plots of von Mises stress in DP microstruc-

tures at equivalent strain value of Eeq=0.12 which is the onset of necking for DP4

steel. Heterogeneous stress distribution is observed in all microstructures due to the

two phase structure of the material. Ferrite matrix shows different stress values de-

pending on the martensite volume fraction. Stresses larger than ferrite’s initial yield

stress are observed in all microstructures indicating that ferrite deforms plastically

and hardens. As seen in Figure 4.6, stress concentrations occur martensite islands
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Figure 4.5: Evolution of (a) the stress triaxiality T and equivalent strain Eeq, (b) the

mesoscopic strain E11 vs E22, (c) the mesoscopic strain E33 vs E22.

at their sharp edges, two sharp ends of martensite islands, thin martensite-martensite

and ferrite-martensite grain boundaries (see e.g. [16], [32], [39]).These stress accu-

mulations and possible damage sites differ according to DP steel’s traits. Since these

researches investigate only one or two DP steels, occurring damage regions show dif-

ferences. The localization points depend highly on the microstructural traits. Lai et

al. have conducted multiple experiments and the findings present all previously men-

tioned damage and fracture locations [26]. The best modelling approach in this regard

would be generating RVEs based on real scanning electron microscopy images, which
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Figure 4.6: Equivalent von Mises stress distributions obtained from J2 plasticity sim-

ulations for DP1 (a), DP2 (b) DP3 (c) and DP4 (d).

would give better conclusions on the capacity of computational models. Yet, within

this study, highest stress concentrations are observed in the DP4 indicating the lowest

ductility and highest strain hardening [21].

Logarithmic principal strain contour plots shown in Figure 4.7 high strain through-

out ferrite phase. This contradicts with studies conducted with 2D RVEs which state

occurrence of narrow bands [80]. As stated previously by other RVE studies plas-

tic strain localization depends on the plastic material properties, applied boundary

conditions and martensite dispersion (see e.g [81]). In such studies both large strain
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Figure 4.7: Logarithmic principal strain distributions obtained from J2 plasticity sim-

ulations for DP1 (a), DP2 (b) DP3 (c) and DP4 (d).

bands throughout ferrite phase (see e.g. [38] for a 3D example) and small localiza-

tion regions in ferrite located between two sharp ends of martensite and sharp ends

of martensite (see e.g. [16]) are observed. In here, no or small straining is seen

in martensite particles of DP1, DP2. Some thin martensite-martensite interfaces of

DP3, DP4 steels show high strain values. This straining pattern is usually seen in

high martensite volume fractions (Vm>32%) according to in situ scanning electron

microscopy tests conducted by Ghadbeigi et al. [82]. This unrealistic straining pat-

tern seen in thin martensite-martensite interfaces of DP3 steel is believed to occur
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because of the generated RVE.

4.1.2 Numerical analysis through crystal plasticity finite element method

Although J2 plasticity is able to capture the overall stress-strain response and the

main microstructural characteristics of the two phase RVE, it lacks capturing the fun-

damental physical relations between the microstructural parameters and the stress.

Therefore, a micromechanics based constitutive model such as crystal plasticity is

needed to give a better understanding about the link between the microstructural as-

pects and the constitutive response and localization leading to damage and fracture.

In this context, in order to reflect the effect of the underlying physics of plasticity a

crystal plasticity model is employed in this section. In the generated RVE the fer-

ritic phase is assigned with the crystal plasticity model while the previously studied

J2 plasticity with isotropic hardening is kept for the martensite islands. All crystal

plasticity simulations the {1 1 2} slip family is used.

Crystal plasticity material parameters of the ferritic phase are calibrated before mov-

ing on to RVE simulations. The parameters are identified with respect to experi-

mental flow behavior, which was studied previously by J2 plasticity using the Eqs.

(2.11)-(2.14). Initially, the procedure is applied for the case with 6.5 µm and 1.2 µm

martensite grain size corresponding to DP1 material. The parameters of the ferritic

phase are identified using a 200 grain unit cell composed of randomly oriented ferrite

grains shown in Figure 3.2. Considering ferrite is cubically anisotropic, the elastic

constants for crystal plasticity unit cell simulations are chosen as follows; C11=231.4

GPa, C22=134.7 GPa and C44=116.4 GPa (see e.g. [46]). After obtaining the fer-

rite material parameters for the DP1, the same set is used in the simulations for the

other dual phase steel RVEs (DP2, DP3 and DP4) in order to the see if the effect

of martensite volume fraction is enough to predict the overall response. The results

are presented in Figure 4.8 and it is clear that the agreement is not good, especially

for the case with high martensite volume fraction which corresponds to low ferrite

grain size. Note that the the influence of the grain orientations, the morphology, and

the grain size effect are all hidden in these results which do not fit perfectly with the

experimental ones. Therefore one material parameter set for the ferrite is not enough
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for a local crystal plasticity model to predict the overall response.

 0

 200

 400

 600

 800

 1000

 1200

 0  0.05  0.1  0.15  0.2

Σ e
q
 (

M
P

a
)

Eeq

DP1−15% CPFEM results
DP2−19% CPFEM results
DP3−28% CPFEM results
DP4−37% CPFEM results

DP1−15% experimental results
DP2−19% experimental results
DP3−28% experimental results
DP4−37% experimental results

Figure 4.8: Crystal plasticity simulations(CPFEM) solutions of DP steels with crystal

plasticity parameters of 6.5 µm.

The The Hall–Petch effect plays an important role here. Therefore the users should

either use a size dependent crystal plasticity model (see e.g. [83], [84], [85]) in order

to take into account the effect of the grain size. Or, as it is conducted here, the local

crystal plasticity hardening parameters must be calibrated for different ferrite grain

sizes. Hence, the procedure followed for 6.5 µm is repeated for the case with 5.9

µm, 5.5 µm and 4.2 µm sized grains, which correspond to DP2, DP3 and DP4 RVEs

respectively. The same procedure is applied for the material parameter identification

and the hardening parameters calibrated to be used in crystal plasticity simulations

are presented in Table 4.3, where, s0 is the initial slip resistance representing the ef-

fect of yield strength, ss is the saturation slip resistance representing the maximum

stress, and h0 is the hardening parameter governing hardening behaviour. Note that

the viscoelastic parameter m and reference slip rate γ̇0 are taken 60 and 0.001 respec-

tively. A high value for m is considered in order to minimize the rate dependency of

the crystal plasticity model [51]. The pure ferrite response of the crystal plasticity

simulations are compared with the (experimentally identified) J2 ones in Figure 4.9.

51



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.05  0.1  0.15  0.2

tr
u
e
 s

tr
e
s
s
 (

M
P

a
)

true strain

experimental results
CPFEM results

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.05  0.1  0.15  0.2

tr
u
e
 s

tr
e
s
s
 (

M
P

a
)

true strain

experimental results
CPFEM results

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.05  0.1  0.15  0.2

tr
u
e
 s

tr
e
s
s
 (

M
P

a
)

true strain

experimental results
CPFEM results

(c)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  0.05  0.1  0.15  0.2

tr
u
e
 s

tr
e
s
s
 (

M
P

a
)

true strain

experimental results
CPFEM results

(d)

Figure 4.9: Comparison of ferrite cell J2 and CPFEM simulations with with calibrated

crystal plasticity parameters for ferrite grain sizes of 6.5 µm (a), 5.9 µm (b), 5.5 µm

(c) and 4.2 µm (d).

Comparison of the homogenized CPFEM equivalent stress-strain response and the

experimental results of different dual-phase steels are presented in Figure 4.10. n

this case the simulations are conducted with optimized ferrite parameter sets for each

Table 4.3: Final calibrated crystal plasticity coefficients for ferrite.

Steel df (µm) ss (MPa) s0 (MPa) h0 (MPa)

DP1 6.5 252 98 475

DP2 5.9 275 109 555

DP3 5.5 306.6 118.5 802.8

DP4 4.2 305 121.5 880
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grain size and they naturally give better results. However, the current results slightly

overestimates the ones obtained from J2 plasticity model, provided in Figure 4.4.

Note that in these simulations only the parameters for ferrite CPFEM model and

the ones for martensite flow rule are identified with respect to their single phase ex-

perimental behaviour. Afterwards these values are used in the created RVEs which

include random grain orientations and martensite morphology. Even though at these

length scale such microstructural parameters play crucial roles, the obtained material

response shows a quite good fit compared to experimental macroscopic studies.
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Figure 4.10: CPFEM solutions of DP steels with calibrated parameters given in Table

4.3.

The verification of applied boundary conditions and simulated uniaxial tension in y

direction can be seen in Figure 4.11. Due to the nature of uniaxial tension, E11 =

E33 = −E22/2 and E22 = Eeq conditions are expected to be ensured. Although

previous elastoplastic simulations have given convenient results, due to the anisotropy

of the applied crystal plasticity model, higher deviations are observed as presented in

Figure 4.11.

Contour plots of investigated dual-phase microstructures are studied next. Figure

4.12 shows the deformed contour plots of simulated DP steels at equivalent strain

Eeq=0.12 which is the onset of necking for DP4 steel.
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Figure 4.11: Evolution of (a) the stress triaxiality T and equivalent strain Eeq (b) the

macroscopic strain E11 vs E22, (c) the macroscopic strain E33 vs E22.

The spatial distribution contour plots of equivalent stress and logarithmic principal

strain are presented in Figure 4.12 and 4.13 respectively. Compared to the results

obtained from J2 plasticity, which is illustrated in Figures 4.6 and 4.7, similar results

are observed for strain distribution but considerable differences exist for the stress

evolution in terms of both amount and heterogeneity. Crystal plasticity simulations

result in higher stress values in general, which can be due to the stress concentrations

that occur at the ferrite grain boundaries because of orientation mismatch. This phe-

nomenon does not exist in J2 plasticity simulations as the grains do not possess any
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Figure 4.12: Equivalent von Mises stress distributions obtained from CPFEM simu-

lations for DP1 (a), DP2 (b) DP3 (c) and DP4 (d).

orientation information. Therefore this physical reality cannot be illustrated through

a phenomenological model, even it is reflected to an upper scale in a slightly ex-

aggerated manner through CP simulations. Amount of the stress and deformation

heterogeneity alter according to the ferrite microstructure and the identified param-

eter sets. Furthermore even though the local stress evolution trend is quite similar,

due to random orientations, CPFEM gives more heterogeneous stress distribution in

ferrite which has an effect on the state in martensite as well. High stress accumulated

regions in martensite show similarities to J2 plasticity solutions and consistent with
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previously mentioned literature. These localizations are broader when compared with

J2 plasticity stress contour plots.

Figure 4.13 shows the distribution of the logarithmic principal strain of investigated

dual-phase microstructures. Localization is observed in the ferrite matrices of all mi-

crostructures, especially at the sharp ends of martensite and between the sharp ends of

martensite islands, some of which are not observable in J2 plasticity simulations. Al-

though contour plots are similar, additional localized regions occur nearby martensite

due to random crystallographic orientations of ferrite [46].
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Figure 4.13: Logarithmic principal strain distributions obtained obtained from

CPFEM simulations for DP1 (a), DP2 (b) DP3 (c) and DP4 (d).
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4.1.3 Comparison of J2 plasticity and CPFEM results

The purpose of this section is to compare explicitly the spatial results obtained from

J2 plasticity approach and the crystal plasticity micromechanical model. Section cuts

from DP2, are plotted in order to investigate differences in stress and strain evolution

and localization. Localization patterns are compared at DP2’s onset of necking strain

value of 0.16.

Figure 4.14 illustrate the comparison of stress distribution. Ferrite in J2 plasticity

solutions shows less variations in stress distributions and therefore has a more homo-

geneous pattern. Ferrite with crystal plasticity shows heterogeneously spread higher

stresses. Heterogeneous stress distribution is caused by randomly assigned orienta-

tions. Incompatible grain orientations causes the evolution of high stress concentra-

tions at the grain boundaries which lead to high stresses. These differences observed

in ferrite, reflect slightly on the martensite stress distribution as well. For both solu-

tions, high stress accumulated regions in the martensite are mostly the same, which

are thin martensite sections and sharp martensite ends. Although stress accumula-

tion patterns are similar, due to orientation mismatch the value of the stresses in the

martensite islands are amplified as well.

Comparison of J2 and CPFEM logarithmic principal strain solutions are given in Fig-

ure 4.15. Strain localization that occurs in J2 plasticity solutions do not necessarily

overlap with strain localization obtained from CPFEM solutions. Some additional

strain localization regions are observed in ferrite microstructure in CP case. Initial

orientation of ferrite grains influences considerably the strain accumulations (see e.g.

[46] for similar conclusions). Ferrite grain orientations also affect the strain distribu-

tions inside and nearby martensite islands. In order to make a more thorough analysis

of the grain orientation influence, various random orientation sets can be assigned

to ferrite phase for dual-phase simulations. However the purpose here is to make a

simple comparison between the two modeling techniques.

Overall, J2 plasticity is numerically more efficient and satisfactory for macroscopic

conclusions. On the other hand, numerically more expensive, crystal plasticity sim-

ulations take into account the effect of different microstructural parameters and give
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more realistic results at the micro scale. Both models give similar macroscopic results

while considerable differences are observed at contour plots.

4.2 Results of axisymmetric tensile loading (T ≥ 1/3)

Dual-phase steels are prone to several different failure mechanisms which may oc-

cur simultaneously. Ductile failure in ferritic phase (see e.g. [17]), brittle fracture in

martensitic phase (see e.g. [27]) and interface debonding in between the phases (see

e.g. [28]), are identified as main failure mechanisms of dual-phase steels. Marten-

site volume fraction is the key factor that determines the dominant failure type (see

e.g. [26], [57]). Although the aforementioned damage and fracture processes are ob-

served as physical initiation phenomenon at micro scale, it does not reflect directly to

macro scale as the main failure mechanism. Many studies have concluded that ductile

macroscopic failure by localized necking is the dominant mechanism for dual-phase

steels (see e.g. [16], [18], [66]). Ductile failure in dual-phase steels starts with nu-

cleation of micro voids, afterwards these nucleated voids grow, grown voids merge

and finally cause material to rupture [17]. However the void initiation mechanism

depends on the microstructure and martensite volume fraction.

This section aims to study the effect of triaxiality on the plastic localization and duc-

tile damage initiation, which is directly linked to micro void nucleation, growth and

coalescence which is a well-known fact nowadays. The effect of the triaxiality on

the ductility has been studied in notched specimens under different triaxiality condi-

tions (see e.g. [62], [70], [72], [86]). Triaxiality evolves throughout the deformation

in tensile specimens. It actually stays constant as 1/3 till the onset of necking, then

increases after necking and shows peak values in the presence of notches and cracks.

Various studies concentrated on this issue in dual phase steels as well. As for the

relation between the stress triaxiality and the evolution of ductile damage, it is found

that, with increasing triaxiality, total volume fraction of voids show a considerable in-

crease while nucleated voids distribute independent of stress triaxiality (see e.g. [66],

[67]). Triaxiality and displacement values are obtained from shear, upsetting and ten-

sile experiments. Initial and final data of each test are used to find average triaxiality

values. Afterwards, numerical simulations are conducted by imposing average stress
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Figure 4.14: Comparison of equivalent von Mises stress distribution for DP2 obtained

from J2 (a,c,e) and CPFEM (b,d,f).
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Figure 4.15: Comparison of logarithmic principal strain distribution for DP2 obtained

from J2 (a,c,e) and CPFEM (b,d,f)
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triaxiality values to the model. Correlation between experimental and simulated re-

sults are found to be satisfactory. It is observed that fracture ductility is inversely

proportional to triaxiality. High triaxial stress states cause low fracture strains due to

void formation in tensile tests (see e.g. [73], [87]).

In this context, the overall stress triaxiality in the RVE simulations is kept constant

here in order to reflect its influence on the void formation, therefore on ductile dam-

age and fracture. Keeping the stress triaxiality at a constant value is already studied in

Section 3.3.2. It is suggested that proper transverse and axial loading is the key factor

for obtaining constant stress triaxiality. Due to the application of simultaneous ax-

ial and transverse loads and resulting large displacements, instability in the stiffness

behaviour occurs. To overcome the convergence issues caused by the unstable load

displacement response Riks algorithm is used, which allows the application of incre-

mental loads under displacement control. Transverse and axial stresses are applied to

RVE surfaces in the forms of distributed loads by using "dload" of ABAQUS [56].

Transverse loading values vary according to chosen average T values 0.33, 0.5, 1, 1.5

and 3. Since the results for the different microstructures provide similar conclusions,

only the results that belong to DP1, with lowest Vm, and DP4, with highest Vm, are

presented. Equivalent stress and strain data from J2 plasticity and CPFEM solutions

of DP1 steel is presented in Figure 4.16. The value of triaxiality does not affect the

equivalent stress-strain response. That is because of the fact that constitutive behavior

here is independent of varying triaxiality [34].

Stress-strain response plots in the axial loading direction are presented in Figure 4.17.

The requirement for the use of Riks algorithm for different triaxiality values can be

seen in this figure. Axial stress values increase dramatically with increasing stress

triaxiality. In the case of T=0.33, Σ22 is equal to Σeq, as expected. As T value

changes, Σ22 becomes higher than Σeq. Static general analysis solver of ABAQUS

gives large displacements as the response of large loading scenarios which eventually

leads to no or undesired results.

The validation of obtained triaxiality values throughout the deformation are presented

for DP4 microstructure in Figure 4.18. Riks algorithm, J2 plasticity (through FEM)

and CPFEM solutions provide satisfactory results and show an equivalent trend as
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Figure 4.16: Comparison of J2 and CP equivalent stress strain responses for DP1 steel

obtained for 0.33, 0.5, 1, 1.5 and 3 average triaxiality simulations.
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Figure 4.17: Comparison of axial stress strain responses for DP1 steel obtained from

0.33, 0.5, 1, 1.5 and 3 average triaxiality simulations.

presented previously in Figure 4.5(a) and Figure 4.11(a). Some small fluctuations

are observed in CPFEM results due to the anisotropic nature of the crystal plasticity
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model. However, applied boundary conditions give satisfactory results overall.
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Figure 4.18: Comparison of triaxiality results for DP4 obtained from J2 and CPFEM

simulations at 0.33 (a), 0.5 (b), 1 (c), 1.5 (d) and 3 (e).

The stress state evolution is analyzed here for DP1 and DP4 alloys for different triax-

iality values. Pressure and logarithmic principle strain contour plots of both DP steels

at mesoscopic strain level of Eeq=0.1 is compared in Figure 4.19 for DP1 and Figure
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4.20 for DP4. For illustration purpose the martensite islands are removed from the

microstructures since the void formation is observed in ferritic phase. Pressure dis-

tributions at different T are presented because negative internal pressure is actually

equal to positive hydrostatic stress. As studied earlier under Section 3.3, the defi-

nition of stress triaxiality is the ratio of hydrostatic stress to von Mises equivalent

stress. Positive hydrostatic stress indicates local high stress triaxiality and therefore

possible void formation. Although overall T is kept constant through deformation, it

is possible to observe the effect through locally different T values.
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Figure 4.19: Pressure (a,c,e,g,i) and logarithmic principal strain (b,d,f,h,j) distribu-

tions of DP1 at mesoscopic Eeq=0.1 obtained for triaxiality values 0.33 (a-b), 0.5

(c-d), 1 (e-f), 1.5 (g-h) and 3 (i-j).
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Figure 4.19: (continued)

65



(Avg: 75%)
S, Pressure

−4000
−3333
−2667
−2000
−1333
 −667
    0
  667
 1333
 2000
 2667
 3333
 4000

−14412

11395

X

Y

Z

(a)

(Avg: 75%)
LE, Max. Principal

0.00
0.04
0.08
0.13
0.17
0.21
0.25
0.29
0.33
0.37
0.42
0.46
0.50

X

Y

Z

(b)

(c) (d)

Figure 4.20: Pressure (a,c,e,g,i) and logarithmic principal strain (b,d,f,h,j) distribu-

tions of DP4 at mesoscopic Eeq=0.1 obtained for triaxiality values 0.33 (a-b), 0.5

(c-d), 1 (e-f), 1.5 (g-h) and 3 (i-j).

Figure 4.19 shows contour plots that belong to DP1. Crystal plasticity grain orienta-

tions are kept same with the previous simulations. High negative pressure therefore

high positive hydrostatic stress regions become observable first at ferrite-martensite

grain boundaries and at locations where martensite has sharp ends. As the triaxi-

ality increases negative pressure regions spread and also become observable along

some ferrite-ferrite grain boundaries. Interestingly, strain localization do not show

any prominent distinction. This shows that the orientation mismatch at grain bound-

aries might be the main driving force for the spatial strain evolution here. An appar-
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Figure 4.20: (continued)

67



ent strain localization (shown in red color) exists at a ferrite-ferrite grain boundary

located in between two sharp ends of two different martensite islands, which happens

to overlap with a high negative pressure region. Figure 4.20 shows contour plots that

belong to DP4. Similar to DP1 contour plots, high negative pressure regions become

observable initially on ferrite, at ferrite-martensite grain boundaries and at locations

where martensite has sharp ends. High hydrostatic stresses are seen at the sharp ends

of martensite due to the fact that martensite deforms less than ferrite. Strain localiza-

tion locations are observed at different points mostly located at sharp ends of marten-

site grains or where two separate martensite sharp ends meet. Some localized strain

regions overlap with negative internal pressure points. Although this is noticeable

in most microstructures, it does not necessarily mean that strain localization regions

possess high stress triaxiality. Both would lead separately to possible void initiation

[16].

According to uniaxial tension studies conducted by Kadkhodapour et al., voids oc-

cur at long ferrite-ferrite grain boundaries in the direct neighbourhood of martensite

islands. These voids initiate because of local stress accumulations caused by strain

incompatibilities. They are found to propagate towards phase interfaces like a crack.

Another type of void formation occurs at ferrite-martensite grain boundaries. This

is observed when small martensite grains are closely packed with ferrite grains lo-

cated in between. It is assumed that local high stress triaxiality causes this type of

void formation [57]. As mentioned before, martensite keeps elastic as ferrite under-

goes plastic deformation. Plastic deformation in ferrite is constrained by martensite

islands located nearby. Martensite islands act as local barriers that constrain defor-

mation of ferrite, inevitably causing build up of high triaxiality at grain boundaries

[88]. Depending on the martensite dispersion inside ferrite matrix, level of constraint

may differ [89]. Therefore different triaxiality values and void formation rates can be

seen.

As presented in pressure distributions in Figure 4.19 and Figure 4.20, locally high

hydrostatic stresses are observed initially at ferrite-martensite grain boundaries. High

triaxiality regions propagate through ferrite-ferrite grain boundaries with increasing

stress triaxiality. High stress and strain accumulation regions obtained here correlate

well with experimental and simulated results reported in the literature (see e.g. [57],
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[88]). errite-ferrite grain boundary void initiation is seen at higher T values of 1.5

and 3. Figures 4.19(i) and 4.20(i) show high hydrostatic pressure spread throughout

the microstructure, indicating that this overall T=3 value is quite high and might be

representing stress state of a specimen under severe deformation. This type of stress

state may refer to the tip of a progressing crack. Starting from Figure 4.19(a) to (i) and

Figure 4.20(a) to (i), as triaxiality increases, a dramatic increase in pressure, there-

fore void fraction is seen. At same strain levels, unusually high stresses accumulate

throughout the microstructure with increasing T . When all microstructures in Figure

4.19 and 4.20 are compared, it is clear that the failure strain remarkably lowers as T

value increases.

Section cuts from DP4 with different triaxiality values are plotted to investigate dif-

ferences in pressure and strain evolutions. Figure 4.21 illustrate the comparison of

pressure distribution. Ferrite in J2 plasticity solutions show less negative pressure dis-

tributions. Ferrite with crystal plasticity shows more spread high negative pressure.

Occurrence of additional negative pressure regions are caused by randomly assigned

orientations. Comparison of J2 and CPFEM logarithmic principal strain solutions are

given in 4.22. Although the amount of strain show difference, interestingly, the strain

localization regions that occur in J2 and crystal plasticity solutions are similar. It is

believed that the axisymmetric loading affects the strain accumulations, while ferrite

grain orientations affect the strain distribution in the previously discussed uniaxial

tension case.
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Figure 4.21: Comparison of pressure distribution for DP4 obtained from J2 (a,c,e)

and CPFEM (b,d,f) at mesoscopic Eeq=0.1 for triaxiality values 0.5 (a-b), 1 (c-d) and

1.5 (e-f).
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Figure 4.22: Comparison of equivalent logarithmic principal strain distribution for

DP4 obtained from J2 (a,c,e) and CPFEM (b,d,f) at mesoscopicEeq=0.1 for triaxiality

values 0.5 (a-b), 1 (c-d) and 1.5 (e-f).
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CHAPTER 5

SUMMARY, CONCLUSIONS AND OUTLOOK

A detailed micromechanical study on the plastic behaviour of dual phase steels is

conducted in this thesis. These materials are composed of a ductile ferritic phase

and a brittle martensitic phase and they have been favourable in automotive industry

due to their satisfying strength and ductility properties. However their two phase

microstructure makes them interesting from localization and failure points of view

at micron scale. DP steels have been studied extensively in order to produce the

optimum material with respect to strength and ductility. This work contributes to

these studies in the context of micromechanical modelling focusing on the effect of

triaxiality and microstructural aspects.

DP steel microstructural characteristics such as martensite volume fraction, marten-

site carbon content, ferrite grain size and martensite morphology are the main con-

tributors to the overall behaviour and the key factors for designing an ideal dual-phase

steel with better features. These microstructural traits are investigated at micro level

by using RVEs which reflect the overall behaviour of the material at mesoscale. Dif-

ferent dual-phase steels having different martensite volume fractions of 15%, 19%,

28% and 37% (named as DP1, DP2, DP3 and DP4 respectively) are generated at

micro scale by using Neper and classical J2 elastoplastic theory is assigned to each

phase with the help of phenomenological flow equations. After the initial results,

crystal plasticity is assigned to ferrite phase for a more detailed investigation. A pa-

rameter fitting procedure is carried initially for DP1 with 6.5 µm. This parameter set

is used to model DP2, DP3 and DP4 which have different ferrite grain sizes. The

obtained stress-strain response did not correlate well with experimental results pre-

sented in [18]. Therefore for each case new hardening parameters are identified for
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each grain size and more accurate agreements are obtained.

The initial conclusion is that the stresses increase as martensite volume fraction Vm

increases. Increased martensite volume fraction has a negative influence on the duc-

tility. Steels with higher martensite volume fractions show higher stresses and higher

number of localization regions compared to steels with lower martensite volume frac-

tions at the same mesoscopic strain level. Also strain in martensite islands become

observable at high Vm while little to no strain is seen at low Vm. Macroscopic response

obtained from both models are quite close to each other.

It is observed that, even though the parameters of the both J2 and CP models are

identified with respect to real experimental data for each phase separately, in the RVE

calculations with a random microstructure and morphology crystal plasticity solutions

slightly overestimates the final DP results. These results could be related to the fact

that in CP simulations there is orientation mismatch between the grains which do not

occur in J2 simulations. J2 is more advantageous for macroscopic observations which

gives quick and good fit to experiments. However at the grain scale J2 plasticity is not

able to give realistic results at all. It lacks capturing the relation between stress and

microstructural traits. The heterogeneity between the ferrite grains is not captured

through J2 at all. The differences between the two constitutive model in the evolution

of deformation and stress of ferrite phase is reflected to the martensitic ones as well.

Strain plots in this phase also show differences again due to random crystallographic

orientations. More pronounced localizations exist in CPFEM solutions. It might be

suggested that if grain scale effects are not in the scope, J2 plasticity theory should be

preferred due to less computational cost.

At the final stage, localization and the initiation of ductile damage through void for-

mation is studied focussing on the effect of stress triaxiality. J2 and crystal plasticity

theories are assigned to previously generated microstructures and axial tension simu-

lations are conducted by ABAQUS Riks algorithm where the stress triaxiality is kept

constant throughout deformation. Models were subjected to different triaxiality states

of 0.33, 0.5, 1, 1.5, 3 by proper imposition of boundary conditions and loading sce-

narios by considering the relationship between void formation and stress triaxiality.

According to the results, possible void nucleation sites increase with increasing stress
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triaxiality and high local stress triaxiality values are seen at sharp ends of martensite,

ferrite-ferrite grain boundaries which are in the vicinity of sharp ended martensite

islands and ferrite-martensite grain boundaries. These observations comply well with

existing studies, where it is shown that ferrite goes into plastic region while marten-

site remains elastic. As martensite islands block the plastic deformation in ferrite,

consequently high stress triaxiality values occur at phase grain boundaries, favouring

ductile damage.

The outcome of the modelling and the simulation methodologies used in this thesis

shows good agreement with the existing experimental results. Therefore, simulations

may be preferred as an alternative way within the DP steel design and optimiza-

tion process. Especially the RVE studies with realistic microstructures and physics

based constitutive models would give important conclusions regarding the effect of

microstructure on the overall constitutive response. In order to satisfy the demands

of related industries, various different DP steel design processes may be analysed by

using aforementioned approaches, providing time and cost efficient applications.

Main conclusions together with tips for future studies can be summarized as follows:

• Even though the RVEs are generated based on certain mechanical assumptions,

the homogenized results show quite good fit with respect to experimental ones.

Note that in these simulations only the parameters of pure ferrite and pure

martensite flow curves are identified. The generated finite element models do

not have any information about the real microstructure and phase morphology.

This effect could be quite pronounced for the physics based simulations with

crystal plasticity model. But the results are quite satisfactory with respect to

experimental ones.

• In local crystal plasticity simulations, one has to identify the ferrite phase pa-

rameter for each different grain size case. It has been observed that with a

single parameter set, which is identified with respect to biggest grain size, the

RVE simulations do not give good correspondence for the other martensite vol-

ume fraction examples which include smaller ferrite size. Use of strain gradient

crystal plasticity models, which are inherently size dependent, could give satis-

factory results with one ferrite parameter set. The model for the martensite uses
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always the phenomenological approach and it would not require any additional

effort in these simulations.

• Even though the parameters of J2 and CPFEM simulations are fitted with re-

spect to real experimental data, in RVE calculations, which includes a random

morphology and orientation distributions, the crystal plasticity results show

more hardening compared to J2 ones. This could be due to the orientation

difference between different ferrite phase that result in stress concentrations at

the grain boundaries. J2 simulations do not feel this phenomenon since there

is no orientation information of the grains at all. This reality is reflected in the

stress values observed in the martensite islands as well which are higher in CP

simulations than the ones in J2 plasticity results.

• There are pronounced differences in the spatial evolution of both stress and

strain between J2 and CP simulations. While J2 is cheaper and satisfactory for

macroscopic conclusions, CP gives more realistic results at the micro scale, yet

it is numerically more expensive. The users should choose the model based on

the needs at micro and macro levels.

• As studied in the last section of the thesis, all types of boundaries (ferrite-ferrite,

martensite-ferrite) play crucial role for the crack initiation in dual phase steels.

For a more thorough study one has to incorporate cohesive zone elements at

the grain boundaries and the parameters of the cohesive zone models should be

identified based on the nature of the boundary. Such a study could give interest-

ing conclusions regarding the failure of DP steels at this length scale. This is a

necessity to obtain solid conclusions for failure initiation. Yet, the identification

of cohesive parameters between different grain boundaries requires certain ef-

fort. The mismatch between the grain boundaries would automatically include

certain physics for the evolution of traction thanks to crystal plasticity model.
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APPENDIX A

EK A

A.1 Matlab script for grouping surface elements according to their faces

fname=’inputFile.inp’;

fid=fopen(fname,’rt’);

S=textscan(fid, ’%s’, ’Delimiter’, ’\n’);

S=S{1};

%find start of nodes

idxS=strfind(S,’Node’);

idx1=find(not(cellfun(’isempty’,idxS)));

%find start of elements(elements start when nodes end)

idxS=strfind(S,’Element’);

idx2=find(not(cellfun(’isempty’,idxS)));

%end of elements

idxS = strfind(S, ’*Elset’);

idx3 = find(not(cellfun(’isempty’, idxS)));

%store the node number and its coordinates

nodes=S(idx1+1:idx2-1);

nodes=cell2mat(cellfun(@str2num,nodes,’UniformOutput’,false));

%store elements and its corresponding nodes
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elements = S(idx2+1:idx3(1)-1) ;

ele = cell(length(elements),1) ;

for i = 1:length(elements)

ele{i,1} = [elements{i}];

end

ele = cell2mat(cellfun(@str2num,ele,’UniformOutput’,false));

ele = ele(:,1:5);

%group nodes as face nodes, edge nodes and vertice nodes

%1=node number, 2=x-cord, 3=y-cord, 4=z-cord

for i = 1:length(nodes)

%% find surface nodes

%% X1 AND X0

if (nodes(i,2)==0)

X0(i)=nodes(i,1);

X0(X0==0)=[];

end

if (nodes(i,2)==1)

X1(i)=nodes(i,1);

X1(X1==0)=[];

end

%% Y1 AND Y0

if (nodes(i,3)==0)

Y0(i)=nodes(i,1);

Y0(Y0==0)=[];

end

if (nodes(i,3)==1)

Y1(i)=nodes(i,1);
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Y1(Y1==0)=[];

end

%% Z1 AND Z0

if (nodes(i,4)==0)

Z0(i)=nodes(i,1);

Z0(Z0==0)=[];

end

if (nodes(i,4)==1)

Z1(i)=nodes(i,1);

Z1(Z1==0)=[];

end

end

%% find elements at X0 and X1 surfaces

%X0

[lia,locb]=ismember(ele(:,2:5),X0(:));

for i=1:length(lia)

%face 1

if lia(i,1)==1 && lia(i,2)==1 && lia(i,3)==1

X0_P1(i)=i;

X0_P1(X0_P1==0)=[];

end

%face 2

if lia(i,1)==1 && lia(i,2)==1 && lia(i,4)==1

X0_P2(i)=i;

X0_P2(X0_P2==0)=[];

end

%face 3

if lia(i,2)==1 && lia(i,3)==1 && lia(i,4)==1

X0_P3(i)=i;

X0_P3(X0_P3==0)=[];
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end

%face 4

if lia(i,1)==1 && lia(i,3)==1 && lia(i,4)==1

X0_P4(i)=i;

X0_P4(X0_P4==0)=[];

end

end

%%

%X1

[lia,locb]=ismember(ele(:,2:5),X1(:));

for i=1:length(lia)

%face 1

if lia(i,1)==1 && lia(i,2)==1 && lia(i,3)==1

X1_P1(i)=i;

X1_P1(X1_P1==0)=[];

end

%face 2

if lia(i,1)==1 && lia(i,2)==1 && lia(i,4)==1

X1_P2(i)=i;

X1_P2(X1_P2==0)=[];

end

%face 3

if lia(i,2)==1 && lia(i,3)==1 && lia(i,4)==1

X1_P3(i)=i;

X1_P3(X1_P3==0)=[];

end

%face 4

if lia(i,1)==1 && lia(i,3)==1 && lia(i,4)==1

X1_P4(i)=i;

X1_P4(X1_P4==0)=[];

end

end
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%% find elements at Y1 surface

%Y1

[lia,locb]=ismember(ele(:,2:5),Y1(:));

for i=1:length(lia)

%face 1

if lia(i,1)==1 && lia(i,2)==1 && lia(i,3)==1

Y1_P1(i)=i;

Y1_P1(Y1_P1==0)=[];

end

%face 2

if lia(i,1)==1 && lia(i,2)==1 && lia(i,4)==1

Y1_P2(i)=i;

Y1_P2(Y1_P2==0)=[];

end

%face 3

if lia(i,2)==1 && lia(i,3)==1 && lia(i,4)==1

Y1_P3(i)=i;

Y1_P3(Y1_P3==0)=[];

end

%face 4

if lia(i,1)==1 && lia(i,3)==1 && lia(i,4)==1

Y1_P4(i)=i;

Y1_P4(Y1_P4==0)=[];

end

end

%% find elements at Z0 and Z1 surfaces

%Z0

[lia,locb]=ismember(ele(:,2:5),Z0(:));

for i=1:length(lia)

%face 1
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if lia(i,1)==1 && lia(i,2)==1 && lia(i,3)==1

Z0_P1(i)=i;

Z0_P1(Z0_P1==0)=[];

end

%face 2

if lia(i,1)==1 && lia(i,2)==1 && lia(i,4)==1

Z0_P2(i)=i;

Z0_P2(Z0_P2==0)=[];

end

%face 3

if lia(i,2)==1 && lia(i,3)==1 && lia(i,4)==1

Z0_P3(i)=i;

Z0_P3(Z0_P3==0)=[];

end

%face 4

if lia(i,1)==1 && lia(i,3)==1 && lia(i,4)==1

Z0_P4(i)=i;

Z0_P4(Z0_P4==0)=[];

end

end

%%

%Z1

[lia,locb]=ismember(ele(:,2:5),Z1(:));

for i=1:length(lia)

%face 1

if lia(i,1)==1 && lia(i,2)==1 && lia(i,3)==1

Z1_P1(i)=i;

Z1_P1(Z1_P1==0)=[];

end

%face 2

if lia(i,1)==1 && lia(i,2)==1 && lia(i,4)==1

Z1_P2(i)=i;

92



Z1_P2(Z1_P2==0)=[];

end

%face 3

if lia(i,2)==1 && lia(i,3)==1 && lia(i,4)==1

Z1_P3(i)=i;

Z1_P3(Z1_P3==0)=[];

end

%face 4

if lia(i,1)==1 && lia(i,3)==1 && lia(i,4)==1

Z1_P4(i)=i;

Z1_P4(Z1_P4==0)=[];

end

end

%% RESHAPE VECTORS FOR ABAQUS INPUT FILE FORMAT AND PRINT

.

.

.
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APPENDIX B

EK B

B.1 Python script for homogenization

#THIS SCRIPT CALCULATES STRESSES, STRAINS AND

#TRIAXIALITY FROM AN ABAQUS .ODB

#WRITES TO A .TXT FILE

from odbAccess import *

import odbAccess

from abaqusConstants import *

import sys

import operator

import numpy as np

import math

from timeit import default_timer as timer

#GET ODB NAME FROM USER

dir = raw_input("TYPE .ODB NAME WITHOUT EXTENSION: ")

type(dir)

#TIC

START = timer()

#OPEN .ODB

odb = openOdb(path = dir + ’.odb’)
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#GET NAME OF THE ASSEMBLY, RETRIEVE AND RENAME THE

#MASTER NODE SET

myAssembly = odb.rootAssembly

ins=odb.rootAssembly.instances[’TESS-1’]

master = ins.nodeSets[’MASTER’]

#OPEN THE FILE TO WRITE OUTPUT DATA

Filename = dir+’.txt’

fout = open(Filename,’w’)

fout.write(’#S11(1) S22(2) S33(3) S12(4) S13(5) S23(6) Seq(7)

Smean(8) T(9) E11(10) E22(11) E33(12) Eeq(13)’)

fout.write(’\n’)

keys = odb.steps.keys()

for stp in keys: #LOOP OVER STEPS

step = odb.steps[stp]

frameRepository = step.frames

numFrames = len(frameRepository)

#LOOP OVER FRAMES

for fr in range(0, numFrames):

STRESS=[0,0,0,0,0,0]

frame = step.frames[fr]

#CALL STRESS AND IVOL DATA FOR EVERY ELEMENT

#AND INTEGRATION POINT

S = frame.fieldOutputs[’S’].getSubset(region=ins,

position=INTEGRATION_POINT,

elementType=’C3D10’)

IVOL = frame.fieldOutputs[’IVOL’].getSubset(region=ins,

position=INTEGRATION_POINT,
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elementType=’C3D10’)

#CALL DISPLACEMENTS AT THE MASTER NODE

DISP = frame.fieldOutputs[’U’].getSubset(region=master)

#ARRANGEMENT FOR STRESS, IVOL AND DISP VALUES

sValues = S.values

iValues = IVOL.values

dValues = DISP.values[0]

#GET DISPLACEMENTS OF THE MASTER NODE AT X, Y, Z

U1 = dValues.data[0]

U2 = dValues.data[1]

U3 = dValues.data[2]

#CALCULATE THE LENGTH AT X(L_1), Y(L_2), Z(L_3)

#1 IS THE INITIAL LENGTH OF EACH SIDE

L_1 = U1 + 1

L_2 = U2 + 1

L_3 = U3 + 1

#CALCULATE THE VOLUME OF THE RVE

VOL = L_1*L_2*L_3

#LOOP OVER INTEGRATION POINTS

for i in range(0,len(sValues)):

STRESS[0] = STRESS[0] +

((sValues[i].data[0])*(iValues[i].data))

STRESS[1] = STRESS[1] +

((sValues[i].data[1])*(iValues[i].data))

STRESS[2] = STRESS[2] +

((sValues[i].data[2])*(iValues[i].data))

STRESS[3] = STRESS[3] +
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((sValues[i].data[3])*(iValues[i].data))

STRESS[4] = STRESS[4] +

((sValues[i].data[4])*(iValues[i].data))

STRESS[5] = STRESS[5] +

((sValues[i].data[5])*(iValues[i].data))

np.seterr(divide=’ignore’, invalid=’ignore’)

STRESS=(STRESS/VOL)

#HYDROSTATIC STRESS CALCULATION

sig_h = (STRESS[0] + STRESS[1] + STRESS[2])/3

#EQUIVALENT VON MISES STRESS CALCULATION

s1 = (STRESS[0]-STRESS[1])**2

s2 = (STRESS[1]-STRESS[2])**2

s3 = (STRESS[2]-STRESS[0])**2

t = (STRESS[3]**2 + STRESS[4]**2 + STRESS[5]**2)

sig_von = ((s1+s2+s3+6*t)/2)**(0.5)

#TRIAXIALITY CALCULATION

T = (sig_h/sig_von)

#LOGARITHMIC STRAINS E11, E22 AND E33 CALCULATION

E11 = 2*np.log(L_1/1)

E22 = np.log(L_2/1)

E33 = 2*np.log(L_3/1)

#EQUIVALENT VON MISES STRAIN CALCULATION

e1 = (E11-E22)**2

e2 = (E22-E33)**2

e3 = (E33-E11)**2

Eeq= (((e1 + e2 + e3)/2)**(0.5))*2/3

#CONCATENATE ALL OUTPUT DATA AND PRINT TO FILE

98



data = np.concatenate((STRESS, sig_von, sig_h, T ,

E11 ,E22 ,E33, Eeq), axis=None)

D = np.array(data).reshape((1,13))

np.savetxt(fout, D, delimiter=’ ’)

fout.close()

#TOC

END = timer()

print "TIME ELAPSED=" , END-START
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