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ABSTRACT 

 

STRESS REDISTRIBUTION AROUND FIBER BREAKS IN 
UNIDIRECTIONAL STEEL FIBER COMPOSITES UNDER 

LONGITUDINAL TENSILE LOADING 
 

Mutlu,  
Master of Science, Mechanical Engineering 
Supervisor: Prof. Dr. lu 

Co-Supervisor: Assoc. Prof. Dr.  
 

September 2019, 95 pages 

 

Due to their significant advantages, such as high strength-to-weight, stiffness-to-

weight ratio, flexibility in design and excellent fatigue resistance, use of fiber-

reinforced composite materials has increased remarkably. Because of their widespread 

use, a comprehensive understanding of failure of composite materials is an important 

issue. Recently, steel fibers are increasingly seen as reinforcement material in 

composites thanks to their advantages like ductility, high stiffness and wide range of 

production diameters. Strength and failure strain of composites are calculated by 

strength models. Stress concentration factor and ineffective length are two important 

input parameters for these strength models. Some parameters that arise from the 

properties of steel fibers may affect the mechanical behavior of steel fiber composites 

under loading. In this study, effects of these parameters on stress concentrations and 

ineffective length in unidirectional steel fiber composites under longitudinal tensile 

loading are investigated. A parametric study is performed by using 3D finite element 

models with random fiber packings. Non-circular cross-sections of steel fibers are 

shown to have a negligible effect on the results. Also, it is found that mechanical 

properties of constituent materials and applied strains cause differences in the results. 

Loading and reloading processes are found to have similar results for same applied 
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strains. Reloading to a lower loading levels than the one in loading resulted in different 

results. 

 

Keywords: Steel Fiber Composites, Stress Concentrations, Ineffective Length, Finite 

Element Analysis, Random Fiber Distribution  
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CHAPTER 1  

 

1. INTRODUCTION 

 

Due to their significant advantages, such as high stiffness- and strength-to-weight 

ratio, flexibility in design and lower production costs compared to commonly used 

materials, use of fiber-reinforced composite materials in many areas has increased 

over the time. Also, complex shapes can be manufactured in one operation with the 

advantage of reduced part count. Naturally, they have some disadvantages regarding 

difficulties in repairing, storage and requirement of special equipment, but these can 

be disregarded and considered as minor problems in some applications in which their 

advantages yield much better profits. Because of their widespread use, a 

comprehensive understanding of failure mechanisms of composite materials is an 

important issue. Therefore, studies conducted in this field allow designers and 

engineers to overcome the challenges encountered and design better parts for the 

industry. Although, in some cases, there could be visible warning, a complete failure 

of fiber-reinforced composite materials mostly occurs without an apparent sign of 

damage and so, predicting the failure of a composite is not an easy task. In most cases, 

failures of multidirectional and unidirectional composites coincide with each other [1]. 

Therefore, understanding the failure mechanism of unidirectional composites is an 

important task and it gives insight about the nature of the composite failure. Carbon, 

glass and aramid fiber-reinforced composites are more commonly used in the industry. 

However, due to some advantages like ductility and wide range of production 

diameter, steel fiber-reinforced composites have also become popular [2]. Besides 

these advantages, steel fibers are nearly as stiff as carbon fibers. Therefore, 

understanding the failure mechanism of steel fiber-reinforced composites is necessary. 

Compared to carbon and glass fibers, higher density of steel fibers may cause 

problems in weight sensitive applications. For those applications, in which ductility is 
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also necessary, hybrid composites including carbon and steel fibers can be a solution 

that provides ductility with a small increase of weight [3]. Another disadvantage of 

steel fibers is that the interfacial strength between matrix and steel fibers is low. 

Therefore, silane coupling agents are used to increase the interfacial strength [4,5]. 

Besides increasing the interfacial strength, these coupling agents improve chemical 

and moisture resistances and thermal properties of the material [5]. Steel as a 

reinforcement material is generally used in concrete and automobile tires. However, 

 polymer composites with the reinforcement of steel 

fibers in micro level are not available in structural applications yet. Therefore, they 

are recently in research phase. In the future, because of the advantage of high 

toughness and consequently high energy absorption, they can be potentially used in 

the applications in which impact resistance is important, such as car bumpers and 

helmets [6,7]. 

One of the common ways to estimate the strength and failure strain of the composite 

is the strength models [1,8]. Strengths of each fiber in the composite are different than 

each other and they follow a statistical Weibull strength distribution [9]. Due to the 

differences in fiber strengths, some of the fibers fail earlier. These statistical 

distributions are implemented in the strength models. Stress concentration factor 

(SCF) and ineffective length are two important input parameters for strength models 

of composite materials. As mentioned in Smith et. al. [10], in case of a broken fiber, 

that fiber locally loses its load-carrying capability and that load is distributed to the 

other surrounding fibers which causes the load on them to increase. This relative 

increase on the surrounding fibers is called SCF. Due to the load increase in the 

neighboring fibers, failure probability of those fibers increases. After a critical number 

of fiber failures, a complete failure in the composite material takes place. Therefore, 

SCF term becomes important for predicting the strength of the material. As mentioned 

in Swolfs et. al. [11], stress redistribution is not constant through the cross-section of 

an intact fiber after a fiber break which is shown in Figure 1.1. Stresses are greater in 

the regions closer to the broken fiber. 



 
 

3 
 

Figure 1.1. Stress field of an intact fiber in case of a broken fiber. 

 

Cross-sectional average SCF on a certain plane, , is defined as the relative increase 

in average fiber stress with respect to stress value on a plane far away from the break 

plane. SCF definition in [12] is used for the calculations. Its formulation is given as 

follows [11]: 

 
 (Eq. 1.1) 

 

The peak SCF on a certain plane, , is found similarly. It is calculated with respect 

to the peak stress value on the fiber cross-section on that plane. Its formulation is given 

as follows: 

 
 (Eq. 1.2) 

 

Ineffective length definition in [13] was used for the calculations. After broken fiber 

loses its load-carrying capability, shear stress takes place on the surrounding matrix. 

Due to the shear stress on the surrounding matrix, the load is transferred back to the 

broken fiber over a length in longitudinal direction (z-direction). Ineffective length is 

defined in [11]  

While getting away from the break plane, stress concentrations on the intact fibers 
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decreases and stresses on them turn back to their initial values over a length. 

Therefore, ineffective length is also an important term while making calculations for 

th. Calculating SCFs and ineffective lengths is the 

first step while predicting the strength and failure strain of a material. In later studies, 

these calculated values can be used as an input for mathematical strength models to 

estimate the strength of the materials. 

1.1. Aims and Objectives of the Study 

The main aim of this study is to investigate the effects of different parameters on SCF 

and ineffective length for unidirectional steel fiber-reinforced composites in case of a 

broken fiber under longitudinal tensile loading by developing numerical models with 

finite element approach. Finite element models were created by using parametric 

modelling strategy developed in programming language Python . A script compatible 

with the finite element software Abaqus  was used for this purpose. In some cases, 

creating a finite element model by using the user interface takes hours or even days 

for detailed and complex models. In a parametric study, several of these models should 

be created and creation of these costs too much time. Also, correcting a mistake in a 

model may take hours. By using the script in a parametric study, the creation time of 

models is significantly reduced, and complex models are created easily. For example, 

by changing a few lines in the script, finite element models with completely different 

properties can be created in a few minutes. 

As the first objective of this study, the effects of cross-sectional shape of fibers on 

SCF and ineffective length were investigated in terms of both peak and cross-sectional 

average fiber stresses. Unlike carbon and glass fibers, final product of steel fibers has 

cross-sectional shapes of irregular polygons due to their manufacturing processes [14]. 

Since there is a possibility of higher stress concentrations on the fibers with polygonal 

shapes, hexagonal and circular cross-sections were compared for this purpose. All 

finite element models were created with randomly distributed fibers to have more 
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realistic models. Also, all fibers were randomly rotated around their longitudinal axes 

in the models with hexagonal-shaped fibers. 

Secondly, steel fibers have an advantage of high ductility compared to carbon and 

glass fibers, which results in that steel fiber composites can resist higher strains until 

fracture. Therefore, effects of mechanical behaviors of the materials on SCF and 

ineffective length were examined in terms of cross-sectional average fiber stresses. 

Also, effects of different strain inputs in the elasto-plastic range were analyzed. 

Lastly, in some cases, the materials do not always remain in the loaded condition, they 

may be unloaded and reloaded. In those cases, stress redistribution around and at the 

interface of a broken fiber may be different. Therefore, SCF results of intact fibers and 

stress recovery profiles of broken fibers for unloading and reloading processes were 

obtained in this study. 

1.2. Research Methodology 

The study starts with an extensive literature survey. Previous studies related with the 

current subject are researched and the current subject is selected. Then, a parametric 

modelling strategy is utilized to create several finite element models with different 

properties. After that, using these finite element models, several analyses are 

performed to investigate the effects of different parameters on the results. For each 

analysis, the effects of a different aspect on the results are examined. All results are 

given in the figures and/or tables and they are discussed in related sections. Finally, 

the key findings and outcomes of the entire study are presented and suggestions for 

future work are given. 

1.3. Outline of the Study 

The current study includes 7 chapters whose summaries are given below: 

Chapter 2, Literature Survey: Previous studies related with the current study are 

presented. 
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Chapter 3, Development of Finite Element Models for Unidirectional Steel Fibers: 

Parametric modelling methodology is presented. Each step for creation of finite 

element models are described in detail. Accuracy of the created finite element models 

are verified. 

Chapter 4, Effects of Cross-sectional Fiber Shape on SCF and Ineffective Length: The 

effects of different cross-sectional shape of fibers on SCF and ineffective length are 

investigated. Hexagonal and circular shapes are compared. The results are examined 

in terms of both peak and cross-sectional average fiber stresses. 

Chapter 5, Effects of Mechanical Behavior of Materials on SCF and Ineffective 

Length: Effects of different mechanical properties of materials on SCF and ineffective 

length are examined. Mechanical behavior of each constituent material is examined 

separately. Effects of different strain inputs are analyzed. 

Chapter 6, Stress Concentrations in Steel Fibers after Unloading and Reloading: 

Procedure for unloading and reloading analyses is described. Stress concentration 

factors and ineffective length results at the end of unloading and reloading processes 

are obtained. 

Chapter 7, Conclusions: The summary of the study is presented. Key findings and 

outcomes of the study are given, and further recommendations are made. 
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CHAPTER 2  

 

2. LITERATURE SURVEY 

 

There are many studies in the literature regarding the stress concentrations, ineffective 

lengths and strength of the fiber-reinforced composites. Various computational and 

experimental methods such as continuum theory of elasticity, shear lag and finite 

element approaches etc. were used concerning the several aspects that influences the 

stress concentrations and composite strengths. Each one of these methods has 

distinctive advantages and disadvantages. 

A shear lag model was developed by Hedgepeth [15] to calculate SCFs within elastic 

limits. Fibers were modelled to be aligned in a single row of parallel fibers with equal 

distances. In this model, it was assumed that fibers and matrix can carry only normal 

and shear loads, respectively. SCF of 33% was found in the study. The model was 

improved in a subsequent study by aligning the fibers with square and hexagonal 

arrays [16]. SCFs of 14.6% and 10.4% were found for square and hexagonal packings, 

respectively. Nedele and Wisnom [17] performed a finite element analysis with a 

broken fiber and six equally-spaced fibers and obtained 5.8% SCF which is much 

lo [18], 3D finite element models and shear lag 

models were compared for polymer-matrix and aluminum-matrix composites with 

hexagonal fiber packing. Stress redistribution calculations were found to be accurate 

in shear lag models for high fiber/matrix stiffness ratios and high fiber volume 

fractions whereas there were some discrepancies in the other cases due to neglecting 

fiber shear deformation and matrix load carrying capability. To examine the damage 

accumulation in carbon/epoxy composites, results of a multi-scale model and 

computed tomography experiments were compared in [19]. The results obtained from 

the experiments and the model were found to be in good agreement. Both showed that 

the failure progression of the composite begins with a single fiber break and evolves 
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into a cluster of broken fibers at higher loads which results in a complete failure of the 

material in the end. Similar results were obtained by Thionnet et. al. [20] using a multi-

scale model. Callens et. al. [6] performed quasi-static tensile tests to examine the 

properties of steel fiber composites with brittle and ductile matrices. Steel fiber 

composites were found to have a failure strain value around 3-4 times the failure strain 

of glass and carbon fiber composites with brittle epoxy matrix. Using ductile matrix 

improved the failure strain around 75% compared to the case with brittle matrix. 

Some of the studies took the interfacial properties into consideration. In [21], a 

modified shear lag model was used to determine the SCFs with the inclusion of matrix 

stiffness and interfacial damage. The study showed that the stress concentrations are 

increased with increasing interface shear strength and fiber/matrix stiffness ratio. 

Also, interfacial shear yielding was found to reduce the stress concentrations. Landis 

and McMeeking [22] im  study by including fiber/matrix 

interface sliding and matrix stiffness. These two terms were found to decrease the 

stress concentrations. In [23], interfacial sliding via Coulomb friction was introduced 

to the 3D finite element models of metal matrix composites with hexagonal array of 

fibers. Tensile strength of the material was calculated using the results of the analyses. 

The tensile strength was found to be insensitive to friction coefficient. Lane et. al. [24] 

showed that the interphase stiffness has an insignificant effect on stress transfer 

process for elastic deformation. However, it affects the process for higher strains with 

plastically deformed matrix. 3D finite element analyses were performed in [25] to 

compare the perfect and poor fiber/matrix adhesion systems in unidirectional 

carbon/epoxy composites with hexagonal arrangement of fibers. With increasing 

friction coefficient, higher SCFs were obtained. Also, good adhesion was found to 

lead to brittle failure while poor adhesion caused brush-like failure. Johnson et. al. 

[26] investigated influences of matrix cracks on stress transfer behavior of matrix by 

using finite element analyses. The study showed that the stress transfer mechanism is 

significantly affected by the presence of transverse matrix crack. Also, magnitude of 

the shear stress in matrix strongly depends on the crack size. Li et. al. [27] found that 
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low and high interfacial shear sliding strengths give rise to debonding and matrix 

cracking, respectively. Moderate interfacial shear sliding strengths caused the 

opposite which results in enhanced composite strength. In [4], an experimental 

procedure was followed to enhance the mechanical properties of steel fiber-reinforced 

composites by modifying the fiber/matrix adhesion. Unidirectional and cross-ply 

laminates with different silane coupling agents deposited on surfaces of the fibers were 

produced. It was shown that higher yield strengths in both configurations were 

obtained by increasing the adhesion by 50%. Decreasing it by 30% has a negligible 

effect on the tensile yield 

[1] examined the effects of matrix cracks around fiber breaks on SCF and ineffective 

length using 3D finite element analyses with random fiber packings. Also, the 

obtained results were implemented into a strength model to observe the influence of 

matrix crack on cluster development and failure strain. It was shown that effects of 

matrix cracks on stress redistribution, cluster development and failure strain are 

negligible. 

Different approaches were adopted for the mechanical properties of matrix material 

such as elastic, perfectly plastic, linearly plastic, viscoelastic etc. In [28], a parametric 

study with 3D finite element analyses were performed by using planar array alignment 

with 5 carbon fibers. SCF results were shown to depend on the applied load in the 

elasto-plastic matrix case. Also, this material behavior caused longer ineffective 

lengths and larger SCFs compared to elastic behavior which are consistent with the 

results of this study presented in chapter 5. Similar results were obtained from the 

studies in [29,30]. Fiedler et. al. [31] showed that elastic-perfectly plastic material 

behavior of matrix leads to significant restriction of load transfer to intact fibers. SCFs 

in the models with hypoelastic matrix, which exhibits nonlinear but reversible stress-

strain behavior, were found to depend on the applied strain and authors interpreted 

this behavior of matrix to be more realistic. In [32], the effects of matrix shear yield 

stress on stress redistribution were investigated by using Raman spectroscopy. It was 

observed that no debonding between fiber and matrix was present after fiber failure 
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for all considered matrix systems. Also, local shear yielding of matrix took place just 

near the broken fiber. Authors found that lower yield strength caused larger ineffective 

lengths, however, no conclusion could be drawn from the study for the effects of shear 

yield strength of matrix on SCF. In [33,34], Blassiau et. al. found that plastic behavior 

of matrix was shown to lead to build-up of stresses on intact fibers due to plastic 

deformation accumulation in matrix in the case of cyclic loading. 

Considering the previous studies in the literature, it can be deduced that fiber 

distributions affect the SCF and ineffective length results. Landis and McMeeking 

[22] examined the effects of uneven fiber spacing and calculated higher stress 

concentrations when intact fibers got closer to the broken fiber. In [35], random fiber 

packings were compared with the square and hexagonal packings under transverse 

loading by performing finite element analyses. Random fiber packings were found to 

influence the results significantly, especially at high fiber volume fractions. In a 

similar study [36], higher stresses were obtained for random packings compared to 

square and hexagonal packings with the same fiber volume fraction. Also, stress 

concentrations were found to depend strongly on the distance between the fibers. 

Matsuda et. al. [37] deduced that random distribution of fibers significantly influences 

the microscopic behavior while it does not have a remarkable influence on the 

macroscopic behavior of the laminates. Swolfs et. al. [11] investigated the influences 

of the random fiber packing for carbon and glass/epoxy composites under longitudinal 

tensile loading using 3D finite element models. It was shown that due to closer fibers 

to the broken fiber, maximum SCFs obtained in random packings were greater than 

those in square and hexagonal packings. Smaller ineffective lengths were obtained 

due to the same reason. However, smaller SCFs for the same distances were obtained 

in random packings. Besides these, increasing fiber volume fraction was found to 

decrease the ineffective length and SCF at the same distances. Considering these 

results, the authors interpreted that random fiber distributions are more suitable for 

strength calculations because they are more realistic representations of real-life 

composites. 
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All those studies mentioned above were based on static cases. Dynamic stress 

concentrations were also investigated in the literature. Sakharova and Ovchinskii [38] 

calculated the dynamic SCFs on intact fibers near the broken fiber for break plane 

approximately twice as large as the SCFs in the static case. In [39], using finite element 

analyses, dynamic stresses caused by a fiber break in single- and multi-fiber 

composites were found to be significantly different from the static stresses, which 

consequently affects the subsequent fiber failure. Ochola et. al. [40] performed 

compressive tests on carbon and glass fiber-reinforced polymer laminates to examine 

the strain rate sensitivity of the materials. Dynamic strength of glass fiber composites 

was found to increase with increasing strain rate. 

Time-dependent aspects were also taken into consideration. In [41], a shear lag model 

for metal matrix composites with long brittle fibers was used to examine the creep 

behavior. Effects of fiber breaks and consequential stress relaxation in broken fibers 

were included in the model. The results showed that ignoring stress relaxation in 

broken fiber causes overestimation of the creep rupture time. Iyengar and Curtin [42] 

observed progressive increase of the stresses on intact fibers due to the shear stress 

relaxation in the matrix. This causes the intact fibers to fail over time and in the end, 

a sudden failure of the composite takes place. In [34], it was shown that stress 

concentrations increase with time for viscoelastic matrix behavior and intact fibers 

continue to fail even when the load is unchanged. Using 3D multifiber unit cell 

models, fatigue behavior of carbon/glass hybrid composites were examined in [43]. It 

was shown that for the highest volume fraction of carbon fibers, composite has the 

longest lifetime under tension-tension cyclic loading while the opposite is valid for 

the highest volume fraction of glass fibers. The highest volume fraction of carbon 

fibers caused the material to show the lowest lifetime under compression-compression 

cyclic loading. Finally, under tension-compression cyclic loading, volume fraction of 

carbon fibers has a mixed effect on the lifetime of the composite. 

Wisnom [44] explained that misalignments of fibers may take place during 

manufacturing and testing of composites, cutting out specimens and in prepreg tapes. 



 
 

12 
 

It was found that even a small angle between the fiber alignment and the loading axis 

leads to significant reduction in the compressive strength of the material. In [43], fiber 

misalignments were found to accelerate the damage on the fibers and to reduce the 

lifetime of the material.  

Many other aspects were also considered in the previous studies. Ryvkin and Aboudi 

[45] claimed that calculations with average fiber stresses overestimate the composite 

strength. Therefore, they introduced point stress concentration factor concept into the 

calculations. In [46], effects of residual stresses due to curing of the material on the 

damage initiation and evolution in unidirectional polymer matrix composites were 

investigated under transverse loading. Residual stresses were found to be always 

harmful for compressive and pure shear loading. They are beneficial for tensile 

loading in the case of high resin strength but detrimental in the case of low resin 

strength. Behzadi and Jones [47] formed the stress-strain curve of the matrix material 

experimentally as a function of temperature. SCF results were found to decrease with 

increasing temperature. Statistical variability of fiber strengths were found to cause 

different composite strengths in [48]. Swolfs et. al. [11] showed that the carbon 

anisotropy resulted in larger ineffective lengths and SCFs at the same fiber distances. 

In [49], effects of different fiber radii and hybrid volume fractions on stress 

concentrations in hybrid composites with carbon and glass fibers were examined using 

3D finite element models with random packings. Assuming equal fiber radius for both 

fibers resulted in significant differences in stress concentrations. Increasing the carbon 

ratio in the composite caused slight decrease in ineffective length and SCFs for both 

fiber types. In [14], 3D finite element models of steel fiber composites were prepared. 

The models were subjected to transverse tensile loadings and fibers with non-circular 

cross-sections were modelled. Extremely higher stress concentrations were found on 

the corners of polygonal cross-sections. In a similar study, Sabuncuoglu [50] 

introduced fillets on the corners of the polygons. Fillets on the corners significantly 

decreased the transverse stress concentrations but, they were still larger than the stress 

concentrations on the sides. 
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CHAPTER 3  

 

3. DEVELOPMENT OF FINITE ELEMENT MODELS FOR 

UNIDIRECTIONAL STEEL FIBERS 

 

3.1. Introduction 

In this section, parametric creation steps of finite element models are described. The 

created models contain randomly distributed unidirectional steel fibers. Also, 

hexagonal fibers are rotated randomly around their longitudinal axes. Models are 

generated with finite element analysis software Abaqus  with the aid of programming 

language Python  that provides means for parametric modelling. With the aid of 

Python  scripts, creation time of finite element models is significantly reduced and 

by changing a model parameter in a single line, a different model is generated 

automatically. The scripts were obtained by modifying the script used in [1] and 

implementing the scripts developed in [14]. Creation of geometric model, meshing, 

material properties, boundary conditions and acquisition of the results are given in 

detail in this section. 

3.2. Parametric Modelling Methodology 

By applying the parametric modelling methodology with the aid of Python  script, 

finite element models completely get ready for the analysis. The final geometry is a 

cylindrical model with a diameter and length of 24 times and 120 times fiber radius 

( ), respectively, where fibers are randomly distributed in matrix. 

3.2.1. Modelling of Square Representative Volume Element 

At the beginning of the modelling, a 3-dimensional square representative volume 

element (RVE) is created before obtaining the final cylindrical geometry, whose 

dimensions depend on the radius of the fibers as fiber radius may vary depending on 
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its material; carbon, glass or steel [14]. Width of square RVE is chosen to be greater 

than the diameter of final cylindrical geometry so that fibers are properly positioned 

in the model before the fibers on the edge are cut longitudinally. The dimensions of 

the square RVE is shown in Figure 3.1.  

Figure 3.1. Square RVE with its dimensions.  

 

3.2.2. Modelling of Fibers 

After creating the 3-dimensional square RVE, fibers are positioned in the model by 

partitioning the geometry. Many strength models in literature ignore fiber-matrix 

interfacial debonding and also, observations of interfacial debonding do not exist for 

composites with thousands or millions of fibers [9]. Therefore, perfect fiber-matrix 

interfacial bonding is assumed in finite element models which is performed by 

modelling the fibers and matrix to share the nodes at interfaces. Cracks and voids can 

be present in steel fibers as well as other fiber types. As mentioned in [9], since there 

is no available Weibull strength distribution in this scale, cracks and voids are ignored 

in the strength models. In this work, it is assumed that there is no cracks and voids in 

the materials. This thesis work includes two different cross-sectional fiber shapes, 

circular and hexagonal, whose modelling implementations differ from each other at 
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some steps. Firstly, before preparing finite element models, 2-dimensional random 

fiber coordinates are generated using the Matlab -based algorithm presented in Melro 

et. al. [51]. The algorithm is used to create 2-dimensional fiber packings with a high 

degree of randomness by using three input parameters; fiber radius, fiber volume 

fraction and size of RVE and writes the coordinates of these randomly generated fibers 

into a file. The algorithm is slightly modified in this study. The minimum distance 

criteria between fiber centers are changed from 2-times fiber radius to a randomly 

generated number between 2 and 2.1-times fiber radius. This change is performed to 

increase the similarity of statistical descriptors between generated and real fiber 

distributions [52]. After the coordinates of fiber centers are written to a file according 

to the desired inputs, the Python  script in Abaqus draws circles 

with a pre-defined fiber radius on either top or bottom plane of 3-dimensional square 

RVE. After that, these circles are used to extrude the fibers in longitudinal direction 

( ). In Figure 3.2, randomly distributed, circular cross-sectional fibers in square RVE 

for 60% and 30% fiber volume fractions ( ) are presented. Note that these fractions 

are valid for cylindrical RVEs. In fiber coordinate generator algorithm, fibers are 

placed to the entire square RVE which meets the desired volume fractions. However, 

the Python  script excludes the fibers outside the diameter of  during creation 

of finite element models. Due to this reason, there is no fiber on the corners of square 

RVEs in Figure 3.2. 

(a) (b) 
Figure 3.2. Randomly distributed fibers with circular cross-section in square RVE for  of: (a) 60%, 
and (b) 30%. 
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Fibers with hexagonal cross-section require more effort to maintain randomness while 

positioning them in RVE. Unlike fibers with circular cross-section, hexagonal fibers 

have no radius due to their cornered shape. Therefore, dimensions of hexagonal fibers 

were determined according to approximate diameter of steel fibers of circular shape 

to have the same cross-sectional area [14]. Steel fiber radius is taken as 15 m, which 

is the common value for steel fibers [14]. Considering the equality of circular and 

hex ce between center of regular hexagon and its 

corner, , is calculated with respect to radius of the circle, , by the following 

equation: 

 

 

 
(Eq. 3.1) 

 

The random fiber coordinate generator algorithm has been created with respect to 

circular-shaped fibers. Therefore, for hexagonal-shaped fibers, there is a possibility 

for hexagons to overlap with each other due to their cornered shapes if the minimum 

distances between fiber centers are set considering the radius of circles as it is 

presented in Figure 3.3.  

 

 
Figure 3.3. Overlapping fibers due to hexagonal shape 
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To prevent such overlapping of hexagonal-shaped fibers, minimum distance 

parameter in the random coordinate generator algorithm is re-set with respect to 

distance between center of hexagon and one of its corners as shown in Figure 3.4. This 

modification prevents the possibility of overlapping of hexagonal-shaped fibers with 

a drawback of obtaining lower maximum  (60%) compared to the maximum  

(70% obtained by circular shaped fibers).  

 
Figure 3.4. Distance between hexagonal fiber center and corner. 

 

The rotations of fibers in the x-y plane were not considered in the original algorithm. 

In the case for the polygonal shaped fibers, the rotation of fibers should be considered 

as the location of the corners and polygonal sides can affect the distribution and the 

results. In this study, the individual rotations of fibers around their longitudinal axes 

are assigned randomly as well as their location. To accom

in Matlab  is used. Random numbers between 0 and 1 are assigned for each fiber.  

The rotation possibility of 0 to /3 radians is considered instead of 0 to 2 ians. 

The first reason is that the fibers return to the /3 

radians. The second reason is that multiplying by /3 instead of 2 s easiness 

ers generated 

dians for each fiber providing the 

Rh 
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modelling of randomly rotated fibers around their longitudinal axes in addition to their 

random locations. In Figure 3.5, randomly distributed and rotated fibers with 

hexagonal cross-section in square RVE for 60% and 30% fiber volume fractions ( ) 

are presented. 

(a) (b) 

Figure 3.5. Randomly distributed and rotated fibers with hexagonal cross-section in square RVE for  
of: (a) 60%, and (b) 30%. 

 

3.2.3. Creating Cylindrical RVE 

After modelling the fiber geometries, square RVE is cut longitudinally to get the final 

cylindrical geometry. The fiber break is located on the bottom plane where . As 

it is mentioned in section 3.2, final geometry has  of diameter and  of 

length. 24 times fiber radius model diameter is large enough for stresses around broken 

fiber to be not affected by model size [11]. Also, 120 times fiber radius model length 

is considered large enough for stress results on top plane to avoid the effect of fiber 

break [1]. These final cylindrical geometrical models with circular- and hexagonal-

shaped fibers for 60% RVE are presented in Figure 3.6 and Figure 3.7, respectively. 

It can be noticed that partially cut fibers on cylindrical RVE borders exist in models 

to preserve . The broken fiber is positioned exactly at the center of final cylindrical 

geometry due to the Python . 
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(a) (b) 

 
(c) 

Figure 3.6. Final cylindrical model with circular-shaped fibers for 60% RVE: (a) top view, (b) zoomed 
view, and (c) isometric view. 

 

(a) (b) 

 
(c) 

Figure 3.7. Final cylindrical model with hexagonal-shaped fibers for 60% RVE: (a) top view, (b) 
zoomed view, and (c) isometric view.  
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3.2.4. Seeding and Meshing of Models 

While carrying out the seeding process, it is aimed to obtain finer mesh in the vicinity 

of broken fiber and break plane as they are the most critical regions in the entire model. 

Seeding process (defining the location of the element borders) starts with adding extra 

circular partitions, having both slightly larger and smaller diameters than the fibers, 

on the borders of the broken fiber for circular-shaped fibers. For hexagonal-shaped 

fibers, these are extra hexagonal partitions, both larger and smaller than the fiber. 

These partitions provide finer mesh on the borders of the broken fiber and are also 

needed for implementation of the boundary conditions which will be clarified in detail 

in section 3.2.6. These partitions are shown in Figure 3.8. 

(a) (b) 
Figure 3.8. Finer mesh on broken fiber borders for: (a) circular fibers, and (b) hexagonal fibers. 

 

Seeding process continues with partitioning the fiber faces radially. For models with 

circular-shaped fibers, broken fiber and the closest fibers to center are partitioned with 

12 equally-spaced radial lines while the rest with 8. For models with hexagonal-shaped 

fibers, regardless of the positions of fibers, all fibers are partitioned by drawing lines 

from fiber center to each fiber corner if both points are in circular RVE. These are 

presented in Figure 3.9.  
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(a) (b) 
Figure 3.9. Angle partition of fiber faces for: (a) circular-shaped fibers, and (b) hexagonal-shaped 
fibers. 

 

After creating the lines on borders of broken fiber and inside all fibers, seeding of 

those lines are performed. In the entire model, the element sizes are set to be relatively 

smaller for fibers close to center of the model. In a single fiber, bias method is applied 

for the seeding of radial lines. This method applies the seeding non-uniformly by using 

the specified number of elements and size ratio as inputs [53]. Element sizes get 

smaller towards the fiber borders to get finer mesh on those regions. Seeding of 

circumferential lines on fiber borders is performed uniformly. Bias method is not 

applied, and lines are equally divided for each fiber. Some parts of the finite element 

models are shown in Figure 3.10 to present the seeding of circumferential lines on 

borders and radial lines.  
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(a) (b) 
Figure 3.10. Seeding of lines on borders and inside of fibers for: (a) circular-shaped fibers, and (b) 
hexagonal-shaped fibers. 

 

Last parts of seeding process are the seeding along fiber direction (thickness) and 

global seeding. Seeding along fiber direction is performed by using bias method to get 

finer mesh towards break plane similar to the model in [1] (Figure 3.11). The model 

is divided into 25 nonuniform planes longitudinally. 

 

Figure 3.11. Seeding along fiber direction by using bias method. 

 

Mesh convergence analyses are performed to choose optimum element sizes which 

are varied only in radial direction (x-y plane). Three different meshing types are shown 

in Figure 3.12 and their corresponding number of elements and nodes are presented in 
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Table 3.1. All finite element models consist of hexagonal-shaped fibers with 60% . 

Both steel and epoxy are defined with elastic material properties. 0.1% strain is applied 

to all models.  

  
(a) 

  
(b) 

  
(c) 

Figure 3.12. Mesh distributions with different element sizes: (a) coarse elements, (b) middle-sized 
elements, and (c) fine elements. 
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Table 3.1. Number of elements and nodes for three different element sizes. 

Element Size Number of elements Number of nodes 

Coarse 46475 160420 

Middle 160250 619625 

Fine 294850 1156775 
 

Maximum SCF results of the closest intact fibers to the broken fiber and ineffective 

lengths of broken fibers are examined for comparison. The maximum difference is 

found as 6.7% between the models with coarse and middle-sized elements. This 

number is 0.4% for the models with middle-sized and fine elements. Since using finer 

element sizes than the middle-size costs more computational time and memory 

without changing accuracy of the results remarkably, middle-sized elements are used 

for the rest of the analyses. Reduced integration elements are used during meshing. 

Number of elements and nodes, element types and their numbers for circular- and 

hexagonal-shaped fiber models with 60%  are presented in Table 3.2. All finite 

element analyses are executed with these corresponding meshing types regardless of 

parameter changes other than fiber volume fraction. Same information is presented in 

Table 3.3 for 30% . Figure 3.13 and Figure 3.14 show 2-dimensional mesh 

distributions of circular- and hexagonal-shaped fiber models with 60% and 30% , 

respectively. 
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Table 3.2. Element types, number of elements and nodes for circular- and hexagonal-shaped fiber 

models with 60% . 

Fiber Shape Element Type Number of Nodes Number of Elements 

Circular 

C3D20R - 114875 

C3D15 - 35875 

Total 569474 150750 

Hexagonal 

C3D20R - 131300 

C3D15 - 28950 

Total 619625 160250 

 

Table 3.3. Element types, number of elements and nodes for circular- and hexagonal-shaped fiber 

models with 30% . 

Fiber Shape Element Type Number of Nodes Number of Elements 

Circular 

C3D20R - 136975 

C3D15 - 19725 

Total 618397 156700 

Hexagonal 

C3D20R - 148500 

C3D15 - 16250 

Total 657107 164750 
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(a) (b) 

  
(c) (d) 

Figure 3.13. 2-dimensional mesh distributions of models for 60%  with: (a) hexagonal-shaped fibers, 
(b) circular-shaped fibers, (c) zoomed view of hexagonal-shaped fibers, and (d) zoomed view of 
circular-shaped fibers. 
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(a) (b) 

  
(c) (d) 

Figure 3.14. 2-dimensional mesh distributions of models for 30%  with: (a) hexagonal-shaped fibers, 
(b) circular-shaped fibers, (c) zoomed view of hexagonal-shaped fibers, and (d) zoomed view of 
circular-shaped fibers. 

 

3.2.5. Material Properties 

The modelling script assigns steel material properties to corresponding fiber regions 

using the fiber coordinates, their geometrical shape and dimension information. Then, 

epoxy material properties are assigned to the rest of the regions as matrix. Either 

elastic or elastoplastic material behavior is defined depending on the type of analysis.  

Elastic properties of epoxy and steel are shown on Table 3.4 [6,11]. True stress  true 

strain plots of epoxy and steel are presented in Figure 3.15 and Figure 3.16, 

respectively [6,54]. 
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Table 3.4. Elastic material properties of epoxy and steel. 

Material Stiffness, E [GPa]  
Epoxy 3 0.4 

Steel 193 0.3 
 

 
Figure 3.15. True stress - strain curve of epoxy 

 

Figure 3.16. True stress - strain curve of steel: (a) entire curve, and (b) zoomed view up to 0.4% 
strain. 

 

(a) (b) 
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Elastic region is defined in the software 

During plastic region modelling, isotropic hardening and von Mises yield criterion are 

defined and plastic strains instead of total strains are defined in the program with their 

corresponding stress values. These plastic strains are calculated by using the equation 

(3.2). Material property assignments of corresponding regions are presented in Figure 

3.17. 

  (Eq. 3.2) 

 

 
Figure 3.17. Assignment of materials to corresponding regions. 

 

3.2.6. Boundary Conditions 

In this step of finite element modelling, boundary conditions are created. 

Displacement is applied as the loading type. Knowing the model length ( ), a desired 

strain input ( ) is given by applying the corresponding displacement value ( ). In this 

study, a set of boundary conditions, used in [23] to represent a broken fiber in a 

composite, is applied with a modification described in [1], i.e. improved strategy. 

Displacement is applied to the entire top plane where coarse mesh along fiber direction 

is available. Fiber break exists on the bottom plane. Top plane boundary conditions 

are shown in Figure 3.18.  
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Figure 3.18. Top plane boundary conditions. 

  

Symmetric boundary conditions are applied to the entire bottom plane except the fiber 

in the middle, which represents the broken fiber. Note that the broken fiber is 

positioned in the middle of the model for stresses around broken fiber to be not 

affected by edge effect. There are two strategies explained in [1] to apply symmetric 

boundary conditions: baseline and improved strategies. In baseline strategy, 

symmetric boundary conditions are applied to the nodes at the perimeter of the broken 

fiber. In improved strategy, these nodes are released, and the boundary condition is 

applied to the nodes just near them which represents a tiny matrix crack, i.e. 

, surrounding the fiber on the bottom plane. In [1], it was shown that baseline 

strategy led to rapid stress build-up to 45% within the first layer of elements of broken 

fiber which is not a realistic representation of a fiber break. The reason for this 

situation is the constraint on the nodes at the perimeter of broken fiber. The elements 

on the borders of broken fiber are stretched and stress build-up takes place on those 

elements. In improved strategy, which is suggested to be a more accurate one [1], that 

constraint is shifted to the nodes just near to the nodes at the perimeter of broken fiber 
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which prevents rapid stress build-up on broken fiber elements. Bottom plane boundary 

conditions and a zoomed view to broken fiber borders are presented in Figure 3.19. 

Green and white regions represent matrix and fibers, respectively. As presented in 

Figure 3.19b, symmetric boundary conditions are not applied on the nodes at the 

perimeter of the broken fiber, instead, it is applied to the nodes just near them. Also, 

lateral cylindrical surface is traction free.  

 

 
(a) 

 
(b) 

Figure 3.19. Bottom plane boundary conditions: (a) entire surface, and (b) broken fiber borders. 

 

 

Fiber 

Matrix 
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3.2.7. Analysis Parameters 

In this section, step, field outputs and job are created in the finite element models. 

Only static analyses are executed and depending on the type of analysis, several steps 

can be defined in the software. For solely loading analyses, there is only one step 

created. This number is increased if there is a need for extra analyses, such as loading 

the part followed by the unloading process which can also be followed by reloading 

process. Field outputs and their explanations are given in Table 3.5 [53]. Job is created 

at this point and its properties are set according to the computer by which the finite 

element analysis is performed. 

 

Table 3.5. Field outputs and their explanations. 

Field Output Explanation 

S All stress components 

PE All plastic strain components 

PEEQ Equivalent plastic strain 

PEMAG Plastic strain magnitude 

LE All logarithmic strain components 

U All physical displacement components 

RF All components of reaction forces 

CF All components of point loads 

CSTRESS Contact pressure and frictional shear stresses 

CDISP Contact opening and relative tangential motions 

SVOL Integrated section volume 

EVOL Current element volume 

IVOL Integration point volume 

COORD 
Coordinates of the integration point for solid elements 

and rebar 
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3.3. Acquisition of the Results 

Stress concentration factors on intact fibers and ineffective length of broken fiber are 

the main results to obtain in this work. Since the models are for unidirectional fiber-

reinforced composites, SCF and ineffective length are calculated with respect to stress 

components along fiber direction, . At the end of the result acquisition process, 

total number of 4 files is obtained. 2 of them include average cross-sectional SCF 

results while the other 2 include peak SCF results. To get these results easily and in 

significantly less time, Python  script, developed in [11] to extract the results, is used 

instead of recording them manually. With the aid of this Python  script, 2 results files 

are obtained. The first one includes SCF results of each fiber for each layer of 

elements. From SCF results of broken fiber in this file, ineffective length is obtained. 

In the second one, maximum SCF value along the fiber direction for each fiber with 

their lateral distance to broken fiber are recorded. These two files are created with 

respect to cross-sectional average fiber stresses. Also, with some modifications on the 

script, both files are also created for peak fiber stresses causing 4 files in total in the 

end.  

During calculation of cross-sectional average SCFs, stress values on each Gaussian 

point of each element are multiplied by their corresponding integration point volume, 

IVOL, and the values on same layer are sum-up for each fiber separately. These 

summations of each layer for each fiber are divided by their corresponding integration 

point volume summations. As a result, cross-sectional average stress values on each 

layer of each fiber are recorded. By applying the SCF formula given in chapter 1, 

SCFs are obtained from these values and the first two files related to cross-sectional 

average SCFs are created. Similar procedure is applied to obtain peak stress results. 

Maximum Gaussian point stresses on each layer of each fiber are picked and recorded. 

SCF formula is applied to these values and the other two files related to peak stresses 

are created. 
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3.4. Verification of the Developed Finite Element Models 

In this section, accuracy of the developed finite element models is verified. It is 

performed by comparing the results of the developed code with the stress recovery 

profile of broken fiber, and the maximum SCFs in intact fibers, obtained for improved 

strategy in Swolfs et. al. [1]. The developed codes generate the finite element models 

similar to the original code in general. Firstly, the modified code which generates finite 

element models with hexagonal-shaped fibers was created. Due to the different cross-

sectional shapes of fibers, modelling of fibers for original and modified scripts differ 

from each other with the usage of different commands and algorithms. Also, there is 

an extra algorithm in modified script for random rotations of individual fibers around 

their longitudinal axes. Differences in the seeding process are the partition of fiber 

faces and extra partitions on fiber borders. Elasto-plastic properties of fiber material 

are defined in the modified script and lastly, some portions of the original script related 

to matrix cracks and multiple fiber cracks are not used in modified script as they are 

unneeded in this study. The modified script which generates finite element models 

with circular-shaped fibers is more similar to the original script due to the same fiber 

shape. It is created from the first modified script by only changing the algorithms 

related to fiber shapes. For verification of modified scripts, the same random fiber 

distribution with circular cross-sectional fibers in [1] is used to generate the finite 

element models. Random fiber distribution with 50%  is shown in Figure 3.20.  
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Figure 3.20. Random fiber distribution of circular cross-sectional fibers with 50%  for verification 
study. 

 

Carbon fibers are modelled with 3.5 m fiber radius [11]. Diameter and length of the 

RVE are  and , respectively. Linear elastic, transversely isotropic 

carbon properties are assigned as the fiber material given in Table 3.6 [11]. 

Elastoplastic properties of epoxy are defined as matrix material, whose material 

properties were given in Table 3.4 and in Figure 3.15. 

 

Table 3.6. Linear elastic material properties of transversely isotropic carbon. 

Property Value 
E11 [GPa] 230 
E22 [GPa] 15 

E33 [GPa] 15 

12 0.25 

13 0.25 

23 0.25 

G12 [GPa] 13.7 

G13 [GPa] 13.7 

G23 [GPa] 6 
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Displacement corresponding to 2% strain is applied to the entire top plane. Symmetric 

boundary conditions are applied to bottom plane except the middle fiber, i.e. broken 

fiber, as explained in detail in section 3.2.6. When elasto-plastic material properties 

are defined for at least one material in the finite element model, due to the nonlinearity 

in stress-strain curve, different SCF results are obtained for different strain inputs in 

case the elastic limit of one of the materials is reached [9]. Despite these differences, 

calculating SCFs at a strain close to failure strain of the composite gives accurate 

results [9]. Therefore, displacement corresponding to 2% strain is applied as an input 

in [1]. Properties of the verification model are given in Table 3.7. 

 

Table 3.7. Properties of the verification model 

Property Value 

 [%] 50 

Applied strain [%] 2 

 [ m] 3.5 

Diameter of RVE  

Length of RVE  

Number of elements 120075 

Number of nodes 449176 

 

Figure 3.21 and Figure 3.22 present the stress recovery profiles of broken fibers and 

maximum cross-sectional average SCF results of intact fibers, respectively, for both 

models created by original and modified scripts. Descriptions of  and  ratios 

for stress recovery profile and SCF graphs, respectively, are given in Figure 3.23. 
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Figure 3.21. Stress recovery profiles of broken fibers for models of both original and modified scripts. 

 

 
Figure 3.22. Maximum cross-sectional average SCF results of intact fibers for models of both original 
and modified scripts. 
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(a) (b) 

Figure 3.23. Descriptions of ratios existing in stress recovery profile and SCF graphs: (a) z/R, and (b) 
d/R. 

 

Considering Figure 3.21 and Figure 3.22, it can be seen that stress recovery profiles 

of broken fibers and maximum cross-sectional average SCF results of intact fibers are 

the same for both finite element models created by original and modified scripts. 

Therefore, accuracy of the developed finite element models created by modified 

scripts is assured by obtaining the same results with respect to figures 2 and 3 for 

improved strategy in [1]. 

 

z R R 

Broken 
fiber 

Intact 
fiber 

d 
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CHAPTER 4  

 

4. EFFECTS OF CROSS-SECTIONAL FIBER SHAPE ON SCF                                   

AND INEFFECTIVE LENGTH 

 

In this chapter, effects of cross-sectional fiber shape on SCF and ineffective length 

with respect to cross-sectional average and peak fiber stresses are investigated. This 

is performed by analyzing the results of the finite element models with circular- and 

hexagonal-shaped fibers which have the same properties including the fiber locations. 

The cross-sectional average and the peak stress results are investigated with the finite 

element models including elastic and elasto-plastic matrix material properties. 

4.1. Analyzed Model Types 

The model types and the properties are presented in Table 4.1. Total 8 different finite 

element models with 60% and 30%  were prepared. In the first 4 models, both fiber 

and matrix are defined with elastic properties while the matrix material of the other 

models is defined with elasto-plastic properties given in Table 3.4 and Figure 3.15, 

respectively. 
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Table 4.1. Properties of finite element models for cross-sectional fiber shape comparison. 

Model No. Model 1 Model 2 Model 3 Model 4 
 [%] 60 60 30 30 

Fiber cross-section Hexagonal Circular Hexagonal Circular 

Fiber material property Elastic Elastic Elastic Elastic 

Matrix material property Elastic  Elastic  Elastic  Elastic  

Applied strain [%] 0.1 0.1 0.1 0.1 

Model No. Model 5 Model 6 Model 7 Model 8 

 [%] 60 60 30 30 

Fiber cross-section Hexagonal Circular Hexagonal Circular 

Fiber material property Elastic Elastic Elastic Elastic 

Matrix material property Elastoplastic Elastoplastic Elastoplastic Elastoplastic 

Applied strain [%] 2 2 2 2 
 

4.2. Analysis of Cross-Sectional Average Fiber Stresses 

4.2.1. Cases with Elastic Matrix Material Properties 

In elastic cases, 0.1% strain input is applied. Apart from 0.1% strain, other strain 

values give the same results because of the linearity in stress-strain curves of both 

materials. The stress recovery profiles of broken fibers and maximum cross-sectional 

average SCF results of intact fibers for 60% and 30%  are presented in Figure 4.1, 

Figure 4.2, Figure 4.3 and Figure 4.4, respectively. SCFs are calculated with respect 

to average stress value through the stress field for each plane along fiber direction and 

in SCF graphs, maximum values among these planes for each intact fiber are 

presented. 
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Figure 4.1. Stress recovery profiles of broken fibers for elastic cases with 60% .  

 

 
Figure 4.2. Maximum cross-sectional average SCF results for elastic cases with 60% .  
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Figure 4.3. Stress recovery profiles of broken fibers for elastic cases with 30% .  

 

 
Figure 4.4. Maximum cross-sectional average SCF results for elastic cases with 30% . 
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Considering the SCF results in Figure 4.2 and Figure 4.4, it can be seen that the results 

are nearly the same for hexagonal- and circular-shaped fibers. Since the cross-

sectional areas of hexagonal- and circular-shaped fibers and their coordinates are the 

same, it is not unusual to obtain such similar results. Maximum SCF results of the 

closest few fibers for 60%  are presented in Table 4.2. As it can be seen, for the first 

and seventh closest fibers, hexagonal shape results in higher SCF while for the rest of 

the fibers, vice versa so that any clear trend related to cross-sectional fiber shape 

cannot be observed. However, these small differences and unclear trend are due to the 

random rotations of the hexagonal-shaped fibers around their longitudinal axes. 

Hexagonal-shaped fiber rotations can cause them to be closer to or farther from each 

other unlike the circular-shaped fibers. They are closer to each other compared to 

circular-shaped fibers at the same coordinates if their corners are faced to each other 

and vice versa if their sides are faced to each other as shown in Figure 4.5. In the case 

that the intact and the broken fiber corners are faced to each other, corner of the intact 

fiber is loaded more as it is closer to the broken fiber. Therefore, depending on the 

rotations of the hexagonal-shaped fibers, a little higher or lower SCFs can be obtained 

on those small regions (corner or side) closest to broken fiber which causes the cross-

sectional average SCFs to be obtained a little higher or lower. Since the rotations of 

the fibers are random, whether it is higher or lower cannot be predicted without 

looking at the rotations one by one. However, these differences caused by hexagonal-

shaped fiber rotations are very small and it can be said that fiber shape barely affects 

the cross-sectional average SCF for elastic materials under uniaxial loading. 
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Table 4.2. Maximum SCF results of the closest few fibers for 60%  with elastic material properties. 

   

   

   

   

   

   

   

   
 

  
(a) (b) 

Figure 4.5. Different rotations of hexagonal-shaped fibers presented with circular-shaped fibers: (a) 
corners are faced to each other, and (b) sides are faced to each other. 

 

Considering Figure 4.1 and Figure 4.3, similar to the SCF results, stress recovery 

profiles of broken fibers nearly overlap with each other. The same reason in SCF 

results cause small differences between stress recovery profiles. Larger shear stresses 

on the material surrounding the broken fiber result in faster stress recovery in the 

broken fiber. Note that for the same applied strain, larger shear stresses occur in the 
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material with larger stiffness value. When the corners of the closest intact fibers are 

directed to the broken fiber as in Figure 4.5a, then the stress recovery occurs a little 

faster for hexagonal broken fiber as those corner regions are formed of fiber material 

with high stiffness while matrix material with small stiffness exists on those regions 

in the case with circular fibers. Therefore, whether it is faster or slower depends on 

the rotations of the neighboring fibers. Similar to the differences in SCF results, 

differences in these results are so small, therefore, it can be said that fiber shape also 

barely affects the ineffective length results for elastic materials under uniaxial loading. 

4.2.2. Cases with Elasto-plastic Matrix Material Properties 

In section 4.2.1, it was shown that fiber cross-sectional shape barely affects the SCF 

and ineffective length for elastic materials. In this section, elasto-plastic material 

properties are defined for the matrix similar to the models in [1]. As explained in 

section 3.4, different SCF results are obtained for different strain inputs in case the 

elastic limit of one of the materials, for which elasto-plastic material properties are 

defined, is reached. Therefore, it is thought that together with elasto-plastic matrix 

properties, difference in fiber cross-sectional shape may affect the SCF and ineffective 

length results. For elasto-plastic matrix cases, 2% strain is used similar to the models 

in [1] which causes matrix to be deformed in plastic range. The stress recovery profiles 

of broken fibers and maximum cross-sectional average SCF results of intact fibers for 

60% and 30%  are presented in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9, 

respectively.  
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Figure 4.6. Stress recovery profiles of broken fibers for only matrix elasto-plastic cases with 60% .  

 

Figure 4.7. Maximum cross-sectional average SCF results for only matrix elasto-plastic cases with 60% 
. 
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Figure 4.8. Stress recovery profiles of broken fibers for only matrix elasto-plastic cases with 30% . 

 

 
Figure 4.9. Maximum cross-sectional average SCF results for only matrix elasto-plastic cases with 30% 

. 
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Considering the similar results in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9, it 

can be said that irrespective of the material properties defined in finite element models, 

cross-sectional fiber shape barely affects the cross-sectional average SCF and 

ineffective length. Those very small differences are due to the hexagonal-shaped fiber 

rotations as explained in section 4.2.1. 

4.3. Analysis of Peak Fiber Stresses 

As explained before, the stress field through fiber cross-section is not constant. As 

mentioned in [11], stresses higher than the cross-sectional average stress are found in 

the regions closest to the broken fiber. Therefore, in this section, SCFs in terms of 

peak stresses are examined instead of the cross-sectional average stresses as there 

might be differences due to the possibility of high stress concentrations on the sharp 

corners of hexagonal-shaped fibers. Initially, the results of models 1 and 2 are 

examined. SCF results of hexagonal- and circular-shaped fibers in terms of peak 

stresses are presented in Figure 4.10. 

 

 
Figure 4.10. SCF results of hexagonal- and circular-shaped fibers in terms of peak stresses. 
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As can be seen in Figure 4.10, there is a significant difference between the hexagonal 

and circular closest fibers to the broken middle fiber. For a more detailed examination, 

results of the first five closest fibers to the broken fiber are given in Table 4.3. 

 

Table 4.3. SCF results of hexagonal- and circular-shaped fibers for the first five closest fibers in terms 

of peak stresses. 

 Hexagonal peak SCF [%] Circular peak SCF [%] 

   

   

   

   

   

 

Considering the results in Table 4.3, it is obvious that the difference between the 

closest fibers is significantly large while the others are relatively small, even most of 

them are negligible. Also, SCF results of hexagonally-shaped fibers are greater except 

for the second closest fibers to the broken fiber so that it is not possible to specify a 

clear trend for these results. According to the results, the difference in SCFs seems to 

be the hexagonal shape generating stress concentrations. However, a careful 

investigation attributed this to the same reason as described in section 4.2: random 

rotations of the hexagons. In Figure 4.11, the closest five intact fibers to the broken 

fiber can be seen with hexagonal and circular cross-sections. Due to the cornered 

shape of hexagonal cross-sections, unlike circular-shaped fibers, the actual values for 

the closest distance between intact and broken fibers to fiber radius ratio ( ) for 

hexagonal-shaped fibers are not as given in Table 4.3. The actual values for both cross-

sections are given in Table 4.4. 
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Figure 4.11. The closest five intact fibers to the broken fiber with hexagonal and circular shapes. 

 

Table 4.4. Actual  values for hexagonal and circular cross-sections 

Hexagonal,  Circular,  

  

  

  

  

  
 

As it is presented in Table 4.4, the closest points of the first, third and fourth closest 

hexagons are 36%, 6% and 8% closer to the broken fiber compared to their circular 

counterparts, respectively, while closest points of the second and fifth hexagons are 

16% and 2% farther from the broken fiber, respectively. In order to understand 

whether the shape or distance affects the SCFs in terms of peak stresses, another finite 

element model with circular fibers was created where the closest five fibers are moved 

to their new positions so that the minimum distances between those five fibers to the 

broken fiber are the same for both models with hexagonal and circular cross-sections. 

Peak SCF results of the two models are given in Figure 4.12. Also, numerical values 

are given in Table 4.5 to examine them in detail.  
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Figure 4.12. SCF results of hexagonal- and circular-shaped fibers in terms of peak stresses with the 
same minimum distances. 

 

Table 4.5. Numerical SCF results of hexagonal- and circular-shaped fibers in terms of peak stresses 

with the same minimum distances (previous values for fibers with circular cross-section given in 

parenthesis). 

 Hexagonal peak SCF [%] Circular peak SCF [%] 

   

   
   

   

   
 

As can be seen in Table 4.5, SCF values of the first, third and fourth closest circular-

shaped fibers increased as they got closer to the broken fiber in the new finite element 

model while vice versa for the rest of the two fibers as they got farther. There was a 

large SCF difference between the first closest fibers due to that hexagonal-shaped 

intact fiber was 36% closer to the broken fiber. Therefore, the largest SCF result 

change occurred in the first closest circular-shaped fiber due to the 36% distance 



 
 

52 
 

change while the others had minor changes due to the smaller distance differences. 

Consequently, the modified distances brought the results for both fiber shapes 

significantly closer together. This demonstrates that rather than the cross-sectional 

fiber shape, the surface-to-surface distance between broken and intact fibers affects 

the SCFs in terms of peak stresses. 

In this study, all SCF results are presented with respect to the parameter . In case 

of a fiber break in strength models, the stress value on a certain intact fiber is increased 

considering the distance between the broken and that certain intact fibers and 

considering the calculated SCF profile on that distance which is shown in [1]. 

Therefore, it is necessary to present the SCF results with respect to the parameter  

as the results are implemented in strength models with respect to this parameter. 

However, during manufacturing process of composite materials, the surface-to-

surface distance is not a controllable parameter, therefore, the peak SCF results can be 

related to the controllable parameter  as well. In composite materials with smaller 

, due to the rareness of fibers, the distances between intact and broken fibers are 

larger compared to the ones in the materials with higher . As it is shown in this 

section, with decreasing distance, peak SCF results increase. Therefore, it can be 

concluded that with increasing , peak SCF results on the surrounding fibers 

increases. 
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CHAPTER 5  

 

5. EFFECTS OF MECHANICAL BEHAVIOR OF THE MATERIALS AND 

THE APPLIED STRAIN ON SCF AND INEFFECTIVE LENGTH 

 

In this chapter, effects of mechanical properties of the materials and the applied strain 

on SCF and ineffective length in terms of cross-sectional average fiber stresses are 

investigated. All finite element models have the same random fiber distribution for 

the same fiber volume fraction similar to the models in chapter 4. 

5.1. Model Properties 

4 new finite element models with 60% and 30%  are prepared in which both 

materials are defined with elasto-plastic properties. Corresponding material properties 

can be found in Table 3.4, Figure 3.15 and Figure 3.16. All models are prepared with 

hexagonal-shaped fibers without a need of circular-shaped fibers since in chapter 4, 

similar results were obtained for both cross-sections. 2% strain is applied as an input 

in two of the models to compare them with former models in chapter 4 (both elastic 

and only matrix elasto-plastic cases). For other two models, 7% strain is applied as it 

was reported in [6] as the strain-to-failure value of unidirectional steel fiber-reinforced 

composites. Properties of the four finite element models are given in Table 5.1. 
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Table 5.1. Properties of finite element models for elasto-plastic material cases. 

Model No. Model 9 Model 10 Model 11 Model 12 
 [%] 60 60 30 30 

Fiber cross-section Hexagonal Hexagonal Hexagonal Hexagonal 

Fiber material property Elastoplastic Elastoplastic Elastoplastic Elastoplastic 

Matrix material property Elastoplastic Elastoplastic Elastoplastic Elastoplastic 

Applied strain [%] 2 7 2 7 
 

5.2. Results and Discussion 

Stress recovery profiles of broken fibers and maximum cross-sectional average SCF 

results of intact fibers for Model 1 (both elastic case), Model 5 (only epoxy 

elastoplastic case) and Model 9 (both elastoplastic case) with 60%  are presented in 

Figure 5.1 and Figure 5.2, respectively. The same plots are given for 30%  (Model 

3, Model 7 and Model 11) in Figure 5.3 and Figure 5.4. 

 

 
Figure 5.1. Stress recovery profiles of broken fibers for material mechanical behavior comparison with 
60% . 
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Figure 5.2. Maximum cross-sectional average SCF results of intact fibers for material mechanical 
behavior comparison with 60% . 

 

 
Figure 5.3. Stress recovery profiles of broken fibers for material mechanical behavior comparison with 
30% . 
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Figure 5.4. Maximum cross-sectional average SCF results of intact fibers for material mechanical 
behavior comparison with 30% . 

 

Considering the stress recovery results in Figure 5.1 and Figure 5.3 for Model 1 vs. 

Model 5 and Model 3 vs. Model 7, it can be seen that stress recovery of broken fibers 

in both elastic cases occur more rapidly. The reason for that is the shear stress build-

up on the surrounding matrix. For the elastic materials cases (Model 1 and Model 3), 

the ratio of the broken fiber stress to be recovered to the shear stress developed on the 

surrounding matrix is constant due to the linear elastic behavior of the constituent 

materials. However, this ratio is larger for only matrix elastoplastic cases (Model 5 

and Model 7) as shear stress development on matrix decelerates in plastic region. As 

shear stress build-up on the matrix in elastic cases is greater, the stress recovery occurs 

more rapidly in these cases. Similar reason applies to the differences between the 

results of Model 5 vs. Model 9 and Model 7 vs. Model 11. When elastoplastic material 

properties are defined for steel, the stress developed on steel fibers for a strain value 

in plastic region would be much lower compared to that of elastic-defined steel (nearly 

one tenth for 2% strain input). Therefore, the stress value of the broken fiber to be 
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recovered is much lower which makes the stress recovery process more rapid and 

ineffective length shorter. The results show that in steel fiber composites under high 

strain, the plastic behavior of steel fibers speeds up the stress recovery process while 

the plastic behavior of epoxy matrix slows down the stress recovery process. 

Considering the maximum cross-sectional average SCF results in Figure 5.2 and 

Figure 5.4 for Model 1 vs. Model 5 and Model 3 vs. Model 7, it can be said that stress 

concentrations on the intact fibers of models with elastoplastic epoxy are mostly 

greater than that of models with elastic material properties. The reason for that is the 

stiffness-dependency of SCF results. In all four models, stiffness of the fibers is 

constant due to linear elasticity. However, for the models with elastoplastic epoxy 

(Model 5 and Model 7), the tangential stiffness of the matrix is smaller in plastic 

region compared to that in models with elastic epoxy (Model 1 and Model 3). For the 

same applied strain, matrix material with smaller stiffness value on that strain carries 

smaller loads compared to matrix with higher stiffness and consequently intact fibers 

in the model with elastoplastic-defined matrix carry more load which causes higher 

SCFs on those intact fibers. Similar effect can be seen between Model 5 vs. Model 9 

and Model 7 vs. Model 11 results. In Model 9 and Model 11, elastoplastic properties 

are defined for steel and for strain inputs in plastic region, steel fiber has smaller 

tangential stiffness values compared to elastic-defined steel. In these models (Model 

9 and Model 11), due to stiffnesses of epoxy and steel becoming closer for strain input 

in plastic region, epoxy in Model 9 and Model 11 carries more load than the epoxy in 

Model 5 and Model 7. Therefore, smaller stress concentrations on intact fibers in 

Model 9 and Model 11 are obtained. Therefore, it can be concluded that in steel fiber 

composites under high strain, the plastic behavior of the matrix increases the stress 

concentrations whereas the plastic behavior of steel fibers reduces the stress 

concentrations. 

Stress recovery profiles of broken fibers and maximum cross-sectional average SCF 

results of intact fibers for Model 9 (2% strain input) and Model 10 (7% strain input) 
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with 60%  are presented in Figure 5.5 and Figure 5.6, respectively. The same plots 

are given for 30%  (Model 11 and Model 12) in Figure 5.7 and Figure 5.8.  

 
Figure 5.5. Stress recovery profiles of broken fibers for the models with 2% and 7% strain inputs and 
60% . 

 

 
Figure 5.6. Maximum cross-sectional average SCF results of intact fibers for the models with 2% and 
7% strain inputs and 60% . 
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Figure 5.7. Stress recovery profiles of broken fibers for the models with 2% and 7% strain inputs and 
30% . 

 

 
Figure 5.8. Maximum cross-sectional average SCF results of intact fibers for the models with 2% and 
7% strain inputs and 30% . 
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Examining the results in Figure 5.5 and Figure 5.7, it is obvious that stress recovery 

profiles of broken fibers for 2% and 7% applied strains are very close to each other. 

This can be explained as that stress to be recovered for broken steel fiber to shear 

stress on surrounding epoxy ratios for both strain levels are close to each other. The 

differences between them show up in SCF results (Figure 5.6 and Figure 5.8), where 

the results of the 7% strain level are slightly higher than the 2% one. The reason for 

this can be explained by examining the stress  strain plots of steel and epoxy used in 

this work given in Figure 5.9. 

 
Figure 5.9. Stress  strain plots of steel and epoxy up to around 8% strain. 

 

Apparently, slopes of the curves, thus the tangential modulus values, decrease with 

increasing strain. This decrease rate is higher in epoxy compared to steel fibers. 

Therefore, stiffness ratio of steel and epoxy increases for higher strains. Due to the 

increase in the stiffness ratio, intact fibers in the model with 7% applied strain carry 

more load compared to those in the models with 2% applied strain causing higher 

stress concentrations. So, the effect of higher strain in the plastic region depends on 

the relative mechanical behavior of fibers and epoxy in the plastic region. 
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5.3. Hypothetical Model 

As explained before, ineffective length depends on the shear stress build-up on the 

surrounding material and SCF depends on material stiffnesses. In this section, a 

hypothetical (unrealistic) finite element model is prepared where elastoplastic material 

properties are defined for steel while only elastic properties are defined for matrix with 

Table 

3.4 and Figure 3.16. For strain levels in plastic region, the stress values on steel fibers 

are lower than that of the elastic-defined fibers. Besides this, matrix material is elastic 

and with increasing strain, stress build-up on it increases linearly and therefore, for 

elastic-defined matrix, stress value would be greater than that of elastoplastic-defined 

matrix in case the elastic limit is reached. Also, stiffness remains on its maximum 

value. With these mechanical properties of the materials, it is expected to obtain stress 

recovery to be more rapid and SCFs on intact steel fibers to be smaller. The same 

random fiber distribution in models 9 and 10 is used. Properties of this new finite 

element model are given in Table 5.2.  

Table 5.2. Properties of hypothetical finite element model 

Model No. Model 13 
 [%] 60 

Fiber cross-section Hexagonal 

Fiber material property Elastoplastic 

Matrix material property Elastic 

Applied strain [%] 7 
 

The hypothetical model is compared with Model 9 (both elastoplastic, 2% strain) and 

Model 10 (both elastoplastic, 7% strain) as the smallest SCF results and the fastest 

stress recovery are obtained from Model 9 and Model 10, respectively. Stress recovery 

profiles of broken fibers and maximum cross-sectional average SCF results of intact 

fibers for Model 9, Model 10 and Model 13 are presented in Figure 5.10 and Figure 

5.11, respectively.  
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Figure 5.10. Stress recovery profiles of broken fibers for models 9, 10 and 13. 

 

 
Figure 5.11. Maximum cross-sectional average SCF results of intact fibers for models 9, 10 and 13. 
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As can be seen from Figure 5.10 and Figure 5.11, the stress recovery occurs more 

rapidly and maximum cross-sectional average SCFs are significantly smaller for 

hypothetical model (Model 13), which were expected. These results mean that when 

a fiber is broken in a plane, the extra loads carried by intact fibers would be smaller 

and the broken fiber would recover its load carrying capacity in a shorter distance in 

fiber direction. These features, therefore, increase the failure strain of the composite 

material. Using such a matrix material could be beneficial for enhancing the structural 

integrity of the products.  

In this chapter, the results of several finite element models with different mechanical 

properties of steel and epoxy materials were compared with the application of two 

different strain values. As a result, it was shown that changing mechanical properties 

of materials cause different ineffective length and SCF results. In case the elastic limit 

is reached, plastic behavior of steel fibers reduces the stress concentrations and speeds 

up the stress recovery while plastic behavior of the matrix increases the stress 

concentrations and slows down the stress recovery. Also, it was shown that results 

change depending on the applied strain and as it was mentioned before in section 3.4, 

calculating SCFs at a strain close to failure strain of the composite gives more accurate 

results [9]. Therefore, since failure strain of steel fiber-reinforced composites, i.e. 7% 

reported in [6], are in the vicinity of plastic region for both steel and epoxy, defining 

elastoplastic properties to both materials with the proper strain input in finite element 

analyses gives more accurate results while predicting the failure strain of steel fiber-

reinforced composites. 
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CHAPTER 6  

 

6. STRESS CONCENTRATIONS IN STEEL FIBERS AFTER UNLOADING 

AND RELOADING 

 

In chapters 4 and 5, stress concentrations in steel fibers in case of a broken fiber were 

examined after loading the models for different parameters. Due to the ductile nature 

of steel fibers, loadings resulted in plastic deformations on the matrix and fibers for 

these cases. Thus, these permanent deformations are expected to cause residual 

stresses on the matrix and fibers after unloading which can alter the stress 

redistributions when the composite is reloaded. In this chapter, therefore, the stress 

concentrations are investigated in the case when the tensile load is applied in the 

elasto-plastic range, removed and applied again. Same random fiber distributions for 

the same fiber volume fractions are used similar to the models in chapters 4 and 5. 

6.1. Description of Unloading and Reloading Processes 

Initially, models are loaded with a displacement input corresponding to the desired 

strain causing a plastic deformation on the matrix and fibers. After that, models are 

unloaded to zero-load condition and at the end, they are reloaded. It should be noted 

that, due to the plastic deformation, the displacement does not return to zero at zero 

load. A state of residual stress arises in the fibers and the matrix. Different than the 

previous cases, these processes require two different analyses. In the first analysis, it 

is aimed to determine the displacement input corresponding to zero-load condition on 

the surface after unloading process. This analysis includes several steps to determine 

the zero-load strain. In the first step, desired displacement is applied on the surface as 

loading process. In the following ones, displacement input is decreased to an estimated 

value step by step. This estimated value is roughly calculated to be around the value 

corresponding to zero-load condition. Since the main load-carrying components in 
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composite materials are fibers, these rough calculations are done as if the whole part 

is comprised of fiber material. After the analysis is completed, the reaction forces on 

the surface are calculated for each step to detect the strain value at which the reaction 

forces are approximately zero. A sample calculation of estimated strain value is as 

follows: 

Let the applied strain be 7%. According to Figure 3.16, 7% strain value corresponds 

to approximately 516 MPa of average stress in steel. After unloading, the elastic strain 

is recovered, and only residual plastic strain is left. This plastic strain is calculated as 

follows: 

  (Eq. 6.1) 

 

strain left after the application of 7% strain is around 6.73%. In the next step, the 

applied strain value is decreased gradually until 6.6% strain which is slightly lower 

than the calculated permanent strain value. The reaction forces in fiber direction 

corresponding to each strain is calculated (Table 6.1).  

Table 6.1. Reaction forces after decreasing the strain to 6.6% for 7% loading strain input. 

Strain [%] Reaction Force on Surface [N] 

7 35.62 

6.95 29.65 

6.9 23.68 

6.85 17.71 

6.8 11.74 

6.75 5.77 

6.725 2.78 

6.7 -0.20 

6.65 -6.17 

6.6 -12.14 
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As expected, the reaction force on the surface decreases linearly and its sign changes 

between 6.70625% and 6.7% strains. Linear interpolation is performed between these 

values to find the zero-load condition strain and it is found as 6.7017%. After finding 

zero-load condition strain, in the second analysis, only three steps are created to 

execute loading, unloading and reloading processes. In the first step, 7% strain is 

applied and after that, this value is decreased to 6.7017%. As a last step, strain input 

is increased to 7% again, by which all three processes are completed. The results of 

unloading and reloading processes are compared with the results of loading process. 

Reaction forces on the surface for the first two steps, loading and unloading, are given 

in Table 6.2. Since the calculated reaction forces for loading and unloading processes 

are in the order of 101 N and 10-3 N, respectively, it can be said that decreasing strain 

to 6.7017% represents the zero-load condition for 7% applied strain. The same 

procedure is applied for 4% and 2% applied strains and the results can be seen in Table 

6.3, Table 6.4, Table 6.5 and Table 6.6. The last strain values in Table 6.4 and Table 

6.6 represent the unloaded conditions. Besides reloading the material to the same 

initial applied strain in loading, a different method is also used. In this method, the 

material unloaded from 7% loading strain is reloaded with a displacement input 

corresponding to a force that gives 2% and 4% strain to the initial undeformed 

material. After that, the results of these reloading processes are compared with the 

results of pure loading processes with 2% and 4% applied strains. 

 

Table 6.2. Reaction forces after loading and unloading processes for 7% applied strain. 

Strain [%] Reaction Force on Surface [N] 

7 35.62 

6.7017 0.0031 
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Table 6.3. Reaction forces after decreasing the strain to 3.7% for 4% loading strain input. 

Strain [%] Reaction Force on Surface [N] 

4 31.73 

3.9 19.79 

3.8 7.85 

3.75 1.88 

3.7 -4.09 
 

Table 6.4. Reaction forces after loading and unloading processes for 4% applied strain. 

Strain [%] Reaction Force on Surface [N] 

4 31.73 

3.73425 0.000122 
 

Table 6.5. Reaction forces after decreasing the strain to 1.75% for 2% loading strain input. 

Strain [%] Reaction Force on Surface [N] 

2 28.49 

1.9 16.55 

1.8 4.61 

1.75 -1.36 
 

Table 6.6. Reaction forces after loading and unloading processes for 2% applied strain. 

Strain [%] Reaction Force on Surface [N] 

2 28.49 

1.76139 0.000017 
 

6.2. Model Properties 

Three new finite element models were prepared to examine the stress concentrations 

in intact fibers due to the residual stresses after unloading and the tensile stresses after 

reloading the steel fiber-reinforced composites. Materials were defined with elasto-
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plastic material behavior. The procedure of three steps was described in section 6.1. 

The model properties are presented in Table 6.7.  

 

Table 6.7. Model properties for unloading and reloading processes. 

Model No Model 14 Model 15 Model 16 
 [%] 60 60 60 

Fiber cross-section Hexagonal Hexagonal Hexagonal 

Fiber material property Elastoplastic Elastoplastic Elastoplastic 

Matrix material property Elastoplastic Elastoplastic Elastoplastic 

Applied strain [%] 2 4 7 
 

6.3. Results and Discussion 

The results of all three steps are obtained for all three models. Maximum cross-

sectional average SCF and ineffective length results of unloading and reloading 

processes are compared with the results of loading process.  

6.3.1. Unloading Process 

Maximum cross-sectional average SCF results of unloading and loading processes for 

7%, 4% and 2% applied strains are given in Figure 6.1, Figure 6.2 and Figure 6.3, 

respectively. According to the figures, after unloading, there is an increase in the 

cross-sectional average SCFs. In Figure 6.4 and Figure 6.5, average axial stresses in 

the closest fiber to and a fiber faraway from the broken fiber with respect to axial 

distance can be seen for 7% loading strain input. In this case, the material is loaded 

with 7% strain and unloaded. The same results of loading process are given in Figure 

6.6 and Figure 6.7 to compare the stress levels of loading and unloading processes.  
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Figure 6.1. Maximum cross-sectional average SCF results of loading and unloading for 7% applied 

strain. 

 

 
Figure 6.2. Maximum cross-sectional average SCF results of loading and unloading for 4% applied 

strain. 
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Figure 6.3. Maximum cross-sectional average SCF results of loading and unloading for 2% applied 
strain. 

 

 
Figure 6.4. Axial stress vs. axial distance plot of the closest fiber to the broken fiber after unloading 
process for 7% loading strain input. 
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Figure 6.5. Axial stress vs. axial distance plot of a fiber faraway from the broken after unloading process 
for 7% loading strain input. 

 

 
Figure 6.6. Axial stress vs. axial distance plot of the closest fiber to the broken fiber after loading 
process for 7% loading strain input. 
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Figure 6.7. Axial stress vs. axial distance plot of a fiber faraway from the broken after loading process 
for 7% loading strain input. 

 

As shown in Figure 6.4 and Figure 6.5, axial fiber stresses after unloading are negative 

which means that they are in compression. As it was mentioned in section 6.1, the 

main load-carrying components are fibers. Therefore, most of the load are relieved 

from the fibers during unloading which causes zero-load strain value to be close to the 

residual plastic strain value of fiber material. However, this is not the case for matrix 

material. Due to the low stiffness value of matrix material, only a small portion of the 

tensile load on matrix is relieved during unloading. This results in matrix to remain in 

tension and accordingly fibers to be in compression after unloading. The following 

sample calculations explain the reason for the fibers to be in compression. Zero-load 

strain value was found as 6.7017% for 7% loading strain in section 6.1. Axial stress 

in epoxy after unloading can be calculated as in equation 6.2. 

According to Figure 3.15, 7% strain value corresponds to approximately 100 MPa of 

average stress in epoxy. 

  (Eq. 6.2) 
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The axial residual stress on epoxy after unloading of whole composite material is 

around 91 MPa which means that the entire elastic strain on matrix is not recovered 

and therefore it is still in tension. This results in fibers to be in compression to obtain 

zero load on the surface. Axial fiber stress after unloading can be calculated as follows: 

 
 

(Eq. 6.3) 

 

As a result, after unloading, due to the different stiffness values of epoxy and steel, 

one of them is left in tension and the other in compression balancing each other.  

Stress recovery results of loading and unloading processes for 7%, 4% and 2% applied 

strains are given in Figure 6.8, Figure 6.9 and Figure 6.10, respectively. Axial stress 

values of the broken fiber with respect to axial distance after loading and unloading 

processes are given in Figure 6.11. In this case, the material is loaded with 7% strain 

and unloaded. 

 

 
Figure 6.8. Stress recovery results of loading and unloading processes for 7% applied strain. 

 



 
 

75 
 

 
Figure 6.9. Stress recovery results of loading and unloading processes for 4% applied strain. 

 

 
Figure 6.10. Stress recovery results of loading and unloading processes for 2% applied strain. 
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Figure 6.11. Axial stress vs. axial distance plot of the broken fiber for 7% applied strain. 

 

Considering the stress recovery plots presented in Figure 6.8, Figure 6.9 and Figure 

6.10, it can be said that stress recovery trend of the broken fiber at the end of unloading 

process is different than that of the loading process. In loading process, stress recovery 

gradually increases while getting away from the crack plane. However, in unloading 

process, stress recovery starts after a dramatic decrease. Therefore, it is completed in 

a much longer distance from the crack plane compared to that of loading process. The 

reason for the dramatic decrease near the crack plane is the axial stress values on the 

broken fiber. As shown in Figure 6.11, after unloading process, broken fiber is in 

tension in some regions that are very close to crack plane. After getting away more 

from the crack plane, broken fiber turns out to be in compression and axial stress 

converges to its final value which is obtained at a faraway distance that is not affected 

by fiber break. In Table 6.8, axial stress results on broken fiber at the end of loading 

and unloading processes can be seen. Also, their differences are given. 

 



 
 

77 
 

Table 6.8. Axial stress results on broken fiber at the end of loading and unloading processes for 7% 

applied strain. 

Z-  
End of loading 

[MPa] 
End of unloading 

[MPa] 
Axial stress 

difference [MPa] 
0.636 15.247 -13.919 29.165 

2.079 49.652 -22.228 71.880 

3.910 88.732 -9.810 98.542 

6.231 130.486 9.475 121.011 

9.175 177.346 34.622 142.724 

12.909 229.353 64.042 165.311 

17.645 285.687 95.935 189.752 

23.652 343.195 126.408 216.787 

31.269 397.519 150.543 246.976 

40.930 442.185 161.484 280.700 

53.184 474.808 156.795 318.014 

68.724 496.962 138.569 358.393 

88.433 508.721 108.225 400.495 

113.430 513.487 71.346 442.142 

145.133 515.237 34.721 480.516 

185.341 515.971 2.992 512.979 

236.336 516.333 -21.559 537.892 

301.012 516.554 -38.450 555.004 

383.039 516.592 -48.790 565.382 

487.071 516.522 -54.379 570.901 

619.012 516.496 -56.997 573.493 

786.350 516.499 -58.094 574.594 

998.580 516.500 -58.526 575.026 

1267.747 516.500 -58.681 575.181 

1609.124 516.500 -58.727 575.227 
 

At the end of loading process, all fibers are in tension. Axial tensile stress value 

decreases towards the crack plane for broken fiber. After unloading, all fibers are 

compressed, and axial stress values reach to a certain amount. As it is presented in 
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axial stress difference column in Table 6.8, the amount of compression on the broken 

fiber decreases towards the crack plane due to the free surface of the broken fiber on 

the crack plane. Because of this reason, some portion of broken fiber is left in tension 

and this causes such a stress recovery trend in broken fiber. 

Stress concentrations at the end of the unloading are found to be much higher than that 

of the loading processes. Also, stress recovery of broken fiber after unloading is much 

slower than one after loading. From these results, at the first sight one could think that 

stress state of the fibers after the unloading process is more critical. However, in this 

case, the material is in unloaded condition and the residual stress values on the fibers 

after unloading process are around 60 MPa (for 7% strain input case), so the stress 

concentrations were calculated with respect to these values. At the end of loading 

process, these values are found to be around 500 MPa for the same strain input case. 

Besides, the residual stress is compressive. Hence, despite the high stress 

concentrations and slow stress recovery profiles, materials are not in a critical 

condition after unloading process. 

6.3.2. Reloading to Initial Strain Level 

Maximum cross-sectional average SCF results of reloading and loading processes for 

7%, 4% and 2% strain inputs are given in Figure 6.12, Figure 6.13 and Figure 6.14, 

respectively. Stress recovery results of loading and reloading processes for 7%, 4% 

and 2% strain inputs are given in Figure 6.15, Figure 6.16 and Figure 6.17, 

respectively. 
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Figure 6.12. Maximum cross-sectional average SCF results of loading and reloading for 7% applied 

strain. 

 

 
Figure 6.13. Maximum cross-sectional average SCF results of loading and reloading for 4% applied 
strain. 
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Figure 6.14. Maximum cross-sectional average SCF results of loading and reloading for 2% applied 
strain. 

 

 
Figure 6.15. Stress recovery results of loading and reloading for 7% applied strain. 
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Figure 6.16. Stress recovery results of loading and reloading for 4% applied strain. 

 

 
Figure 6.17. Stress recovery results of loading and reloading for 2% applied strain. 

 

It is obvious from the figures that maximum cross-sectional average SCF and 

ineffective length results of loading and reloading processes are the same for all 

applied strains. The stress levels on the fibers after both processes are the same as 
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well. The presented results are expected to be accurate only for a few cycles of loading 

as polymeric materials such as epoxy relieve themselves after subsequent loading and 

so, ratcheting and plastic deformation accumulation are expected after several cycles 

of loading [34,55]. Thus, a difference in the results is expected as the cycle number is 

increased. 

6.3.3. Reloading in Elastic Limits 

In this section, results of 2% and 4% strain loadings (with no prior loading-unloading 

cycle) are compared with the results for reloading of the composite which has already 

experienced a higher loading followed by full unloading. Maximum cross-sectional 

average SCF results of reloading and loading processes for 2% and 4% applied strains 

are given in Figure 6.18 and Figure 6.19, respectively. Stress recovery results of 

loading and reloading processes for 2% and 4% applied strains are given in Figure 

6.20 and Figure 6.21, respectively.  

In reloading, the composite is loaded first with 7% strain, then unloaded to zero load 

strain (6.7017%) and reloaded to a certain level after which the surface force in fiber 

direction is obtained as equal to the surface force in the pure loading case with 2% 

strain. Thus, composite at the end of both cases, loading with 2% strain and reloading, 

is under the effect of the same external load. At the end of this reloading process, the 

material reaches to the 6.9403% strain. Lastly, load is increased more to reach the 

level in which the surface force of the reloaded composite is equal to the surface force 

in the pure loading case with 4% strain. At the end of this reloading process, the 

material reaches to the 6.9675% strain. Note that at the end of the reloading process, 

strain level does not reach to 7% and so, it occurs in elastic range.  
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Figure 6.18. Maximum cross-sectional average SCF results of loading with 2% strain and reloading 
with displacement input corresponding to force that gives 2% strain to undeformed composite. 

 

 
Figure 6.19. Maximum cross-sectional average SCF results of loading with 4% strain and reloading 
with displacement input corresponding to force that gives 4% strain to undeformed composite. 
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Figure 6.20. Stress recovery results of loading with 2% strain and reloading with displacement input 
corresponding to force that gives 2% strain to undeformed composite. 

 

 
Figure 6.21. Stress recovery results of loading with 4% strain and reloading with displacement input 
corresponding to force that gives 4% strain to undeformed composite. 
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As seen in Figure 6.18, SCF results in reloading are lower than those in loading for 

the first three closest fibers to the broken fiber and there are slight differences for the 

rest of the fibers. Also, stress recovery occurs more rapidly in reloading (see Figure 

6.20). Besides, stress levels on the fibers in reloading process are slightly lower than 

those in loading process which is shown in Figure 6.22. Considering these results, it 

can be said that composite at the end of reloading process is in less critical condition, 

but with small differences. These differences are smaller for the case of 4% strain (see 

Figure 6.19 and Figure 6.21) and as it is shown in section 6.3.2, the results become 

equal when the material is reloaded to the initial loading strain (7%).  

 

 
Figure 6.22. Axial stress vs. axial distance plot of the closest fiber in loading with 2% strain and 
reloading with displacement input corresponding to force that gives 2% strain to undeformed 
composite.  
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CHAPTER 7  

 

7. CONCLUSIONS 

 

7.1. Summary 

A comprehensive understanding of mechanical behavior of structural materials is an 

important issue for designers and engineers to be able to cope with the difficulties 

encountered or to manufacture better parts. Fiber-reinforced composites are among 

these structural materials and understanding mechanical behavior and failure 

mechanism of them is necessary due to their widespread use. In this study, finite 

element models were developed to understand the mechanical behavior of steel fiber-

reinforced composites in case of a broken fiber under longitudinal tensile loading. 

Stress concentration factors and ineffective lengths were investigated by executing 

several finite element analyses for different parameters, such as cross-sectional fiber 

shape, material property, applied strain and fiber volume fraction. Considering the 

previous studies in the literature, there are some novelties in this study. Basically, steel 

fiber-reinforced composite materials were examined under longitudinal loading. Peak 

SCFs were calculated and investigated by using finite element approach. Different 

from the hexagonal-shaped fibers in the literature which are oriented to the same 

direction, the hexagonal fibers in this study are randomly rotated around their 

longitudinal axes. Models created with this modification are more realistic 

representations of real-life composite structures. Also, steel is defined with 

elastoplastic material properties which is the actual property of ductile steel fibers. 

Relatively higher strain values are applied to the models and accordingly results with 

respect to different strain levels are compared. A hypothetical model is developed and 

matrix material properties which can enhance the structural integrity of the composite 

material is suggested.  
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The study started with the parametric finite element model development. Several 

models for different parameters were created. The details of parametric finite element 

model development were explained in chapter 3. The accuracy of the models also 

verified in this chapter. After creating the models, in chapter 4, effects of cross-

sectional shapes of fibers on SCF and ineffective length were examined with respect 

to peak and cross-sectional average fiber stresses. Hexagonal and circular cross-

sectional shapes were used for this purpose. Also, shape comparison was performed 

by defining different mechanical properties to constituent materials. In chapter 5, 

effects of different mechanical properties of materials on SCF and ineffective length 

were investigated in terms of cross-sectional average fiber stresses. Mechanical 

behavior of both fiber and matrix materials were examined separately. Effects of 

applied strain were analyzed in this chapter as well. Finally, different from the chapters 

4 and 5 with only loading process, SCF and ineffective length results were obtained 

for unloading and reloading processes in chapter 6. 

7.2. Key Findings and Outcomes 

Key findings and outcomes obtained from this study can be summarized as follows: 

1. Cross-sectional shape of fibers barely affects the cross-sectional average SCF 

and ineffective length results under longitudinal tensile loading. Those 

negligibly small differences between hexagonal and circular shapes are due to 

the rotations of the hexagons around their longitudinal axes. 

2. Rather than the cross-sectional shape of fibers, the surface-to-surface distance 

between the intact and the broken fibers affects the stress concentrations of 

intact fibers in terms of peak stresses. 

3. In case the elastic limit is reached, plastic behavior of steel fibers reduces the 

stress concentrations in intact fibers and speeds up the stress recovery in 

broken fiber while the plastic behavior of matrix increases the stress 

concentrations and slows down the stress recovery. 
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4. The effects of applied strain in the plastic region on stress concentrations 

depend on the relative mechanical properties of fibers and epoxy in the plastic 

region. Thus, calculating SCFs at a strain close to failure strain of the 

composite gives more accurate results [9]. 

5. Sustaining a high stiffness of elastic matrix material results in smaller stress 

concentrations and faster stress recovery in case of a fiber break. This means 

that a composite material including such a matrix material will be more 

immune to a fiber break. Using a matrix material which remains elastic 

throughout the loading and therefore, preserves its stiffness will be beneficial 

for enhancing the structural integrity of the products. 

6. Stress concentrations are much higher and stress recovery process is much 

slower for unloading process compared to loading process. Despite these 

characteristics, materials after unloading process are not in a critical condition 

since the material is in unloaded condition and the residual stress values on the 

fibers after unloading process are much lower than those after loading process. 

Besides, the fibers are in compression. 

7. Stress concentrations in intact fibers and stress recovery profiles of broken 

fibers for loading and reloading processes are the same for all applied strains 

if the material is reloaded to the initial strain in loading process. An occasional 

loading  unloading  reloading to initial strain cycle would not make the 

situation worse so far as the SCFs are concerned. 

8. If the material is reloaded to a lower loading levels than the initial loading, 

slightly smaller SCFs and faster stress recovery with slightly smaller stress 

levels in fibers are obtained in reloading compared to loading at the same lower 

loading level. Concerning the SCFs, the material after reloading is in less 

critical condition for this case. 

7.3. Future Work 

Evaluating the key findings and outcomes of this study, some suggestions can be 

presented as a future work.  
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1. All the results presented in this study are output of static loading. This 

parametric study can be conducted to obtain stress concentrations and 

ineffective lengths for dynamic loading conditions.  

2. A mathematical strength model or models can be created to estimate the failure 

strain of steel fiber-reinforced composites by using the results obtained in this 

study. These models can be created in a way that they may use the results for 

both static and dynamic loadings or use them separately. 

3. With increasing computational power, mathematical strength models for 

composites can be combined with finite element models with bigger scales. 

While loading the material and calculating the stress concentrations, 

calculations regarding to failure of the composite can be done simultaneously. 

Thus, progressive failure analyses of composites can be executed for strength 

and failure strain prediction. 

4. Interactions between multiple fiber breaks may affect the stress redistributions 

around fiber breaks. Therefore, multiple fiber breaks can be modeled for steel 

fiber composites with finite element approach and their results can be 

implemented in the strength models of composite materials. 
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