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ABSTRACT

BACHIAN GRAVITY IN THREE DIMENSIONS

Tek, Mustafa
Ph.D., Department of Physics

Supervisor: Prof. Dr. Bayram Tekin

September 2019, 118 pages

Modified theories in 3-dimensions such as the topologically massive gravity (TMG),

new massive gravity (NMG) or Born-Infeld extension of NMG arise from the vari-

ations of diffeomorphism invariant actions; hence the resulting field equations are

divergence free. Namely, the rank two tensor defining the field equations satisfy a

Bianchi identity for all smooth metrics. However there are some recently constructed

theories that do not identically satisfy Bianchi identities for all metrics, but only for

the solutions of the theory. These are called on-shell consistent theories of which

examples are the minimal massive gravity (MMG) and the exotic massive gravity

(EMG). We work out the generic on-shell consistent model in 3-dimensions as a

modified Einstein gravity theory which is based on the analog of the Bach tensor,

hence we name it as the Bachian gravity. Conserved charges are found by using the

linearization about maximally symmetric backgrounds for the Bañados-Teitelboim-

Zanelli (BTZ)-black hole metric. It is complicated to solve the field equations of the

gravity theory and hence very few solutions with only maximal symmetry are known.

We use the projection formalism to obtain a reduction of the some relevant 2-tensors

defining the field equations with the help of the Geroch’s reduction method.
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Keywords: 3-dimensional gravity, Bachian Gravity, Topologically Massive Gravity,

New Massive Gravity, Exotic Massive Gravity,Symmetry reduction
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ÖZ

ÜÇ BOYUTTA BACHIAN KÜTLE ÇEKİMİ

Tek, Mustafa
Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Bayram Tekin

Eylül 2019 , 118 sayfa

Topolojik kütleli kütleçekim, Yeni kütleli kütleçekim veya Born-Infeld genişletilmiş

Yeni kütleli kütleçekim gibi modifiye edilmiş 3 boyutlu teoriler difeomorfizmler al-

tında değişmez kalan Etki’lerin varyasyonları sonucu elde edilirler ve ulaşılan alan

denklemlerinin diverjansı sıfırdır. Yani bütün düzgün metrikler için, alan denklem-

lerini tanımlayan rank-2 tensörler Bianchi özdeşliğini sağlar. Bununla birlikte son

zamanlarda geliştirilen bazı teoriler bütün metrikler için Bianchi özdeşliğini direkt

sağlamak yerine, teorinin çözümü üzerinden sağlamaktadır. Bu tür teoriler "on-shell"

tutarlı olarak adlandırılırlar. Örnek olarak Minimal kütleli kütleçekim ve Egzotik küt-

leli kütleçekim teorilerini verebiliriz. 3-boyutta Bach tensörünü göz önüne alarak is-

mini verdiğimiz Bachian kütleçekim teorisi, Einstein kütleçekim teorisinin bir mo-

difikasyonu olarak 3-boyutlu kapsamlı on-shell tutarlı bir model olarak çözülmüştür.

Korunumlu yükler, maksimum simetrik Bañados-Teitelboim-Zanelli BTZ kara de-

liği metriği etrafında linerizasyon kullanılarak bulunmuştur. Kütleçekim teorilerinin

alan denklemlerini çözmenin zorluğu nedeniyle çok az sayıda ve sadece maksimum

simetriye sahip çözümler bilinmektedir. Geroch indirgeme metodu yardımıyla alan

denklemlerini tanımlayan bazı rank-2 tensörlerin indirgenmiş halleri projeksiyon for-
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mulasyonu kullanılarak bulunmuştur.

Anahtar Kelimeler: 3-boyutlu Kütleçekim, Bachian Kütleçekim, Topolojik Kütleli

Kütleçekim, Yeni Kütleli kütleçekim, Egzotik Kütleli Kütleçekim,Simetri indirge-

mesi
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CHAPTER 1

INTRODUCTION: A BRIEF REVIEW OF GENERAL RELATIVITY

General relativity models gravity as a four dimensional manifold M 1 with certain

desired properties that we shall discuss, whose metric g is determined from the Ein-

stein’s equations

Gµν := Rµν −
1

2
gµνR + Λgµν =

8πGN

c4
Tµν , (1.1)

where Rµν is the Ricci tensor, R is the scalar curvature, Λ is the cosmological con-

stant, Tµν is the energy-momentum tensor and GN is the Newton’s constant while c

is the speed of light. The left hand side is purely related to geometry, while the right

hand side represents all possible matter distribution. The cosmological constant Λ

was observed to be tiny but positive: in SI units Λ = 10−52m−2 hence it plays its ma-

jor role in the global dynamics of the universe [1]. On the other hand, the numerical

value of the "coupling constant" κ := 8πGN
c4

is κ = 2.1 × 10−43m/J which is again

small but when it gets multiplied by possibly large Tµν (as in the interior of a neutron

star) whose unit is J/m3 one gets a large effect. The fact that the left hand side of

Eq.(1.1) satisfies the so called Bianchi identity∇νG
µν = 0 for all smooth metrics, re-

quires the so called the covariant conservation law∇νT
µν = 0. The matter content of

the Universe in small scales is very complicated, therefore there is no hope of solving

Eq.(1.1) exactly. But for large scales the Universe is homogeneous and isotropic and

the matter distribution can be modelled with some simple fluids.

The average observed density of the universe seems to be around ρ ∼= 9.9×10−27kg/m3

[2] which is related to T00 via T00 = ρc2 ≈ 10−9J/m3. So when multiplied with the

coupling constant κ one gets a value around the value of the cosmological constant

1 In the next chapter we review the salient features of Riemannian geometry and relegate details of topology
and manifolds to Appendix A and Appendix B.
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Λ. These arguments suggest that at the large scales and/or outside matter source, the

universe is an "Einstein space" satisfying

Rµν = Λgµν . (1.2)

So a main part of understanding classical General Relativity is finding metrics that

they obey Eq.(1.2); these are also called Einstein metrics. Unfortunately, even though

there have been over 100 years of research on this equation, with many interesting

solutions such as the rotating black holes or cosmological metrics, there is still no

general procedure in finding exact solutions of these equations. For a compilation of

exact solutions of General relativity, see the books [3, 4]. The reason is clear: this

tensor equation is highly non-linear and without assuming symmetries one ends up

with coupled non-linear partial differential equations which are in general too com-

plicated to solve. So all the solutions known up to date have some symmetries. The

fact that classical General relativity is so hard also makes the possible quantum ver-

sion of the theory highly complicated. In fact, we have not yet been able to quantize

General relativity: naive perturbation theory that works for other classical field the-

ories such as electrodynamics fails as there appear new divergences at the one and

two loop levels and beyond. These complications in the four dimensional General

relativity led researchers to study gravity models in simpler settings of two and three

dimensions. Research in lower dimensional gravity dates back to 1960s but received

a renewed interest since 1980s. Some of the historical developments can be found in

the book [5].

The subject of this thesis is the three dimensional gravity theories, not just Einstein

theory, but its various generalizations that have received attention recently. The bulk

of the thesis depends on our published work [6]. Motivation for studying three di-

mensional gravity theories will be explained in more detail in Chapter 3.

The lay-out of this thesis is as follows: In Chapter 2, some mathematical prelimi-

naries that includes Riemannian geometry, hypersurfaces and Stokes’ Theorem are

briefly given. More technical details are explored in the Appendix starting from the

notion of maps, topological spaces and manifolds. In Chapter 3, we discuss some

known massive gravity theories such as the Topologically Massive Gravity (TMG),

New Massive Gravity (NMG), Minimal Massive Gravity (MMG) in 3-dimensions. In

2



Chapter-4, we discuss the Exotic Massive Gravity (EMG) and Bachian Gravity as a

general extension. This chapter is mostly based on our published work [6]. We also

discuss for the developments in Exotic Massive Gravity in that chapter. In Chapter-5,

we consider a 3-dimensional manifold with a time-like Killing vector field and a met-

ric adapted to this Killing vector field; and study the decomposition of the relevant

tensors such as the Ricci and Cotton tensors as well as the more complicated 2-tensors

that appear in the field equations of other 3-dimensional gravity theories.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

2.1 Basics of Riemannian Geometry

Following the discussion and notation of [7] let us consider a manifold M , if it is

endowed with a metric g, which has the following properties at a point p on M :

i-) gp(U, V ) = gp(V, U), symmetric for all U, V in TpM

ii-) gp(U,U) ≥ 0, positive definite, gp(U,U) = 0 ⇒ U = 0,

then it is called a Riemann manifold and denoted as a pair (M, g). If (i) holds, but (ii)

is related as

gp(U, V ) = 0, for any U ∈ TpM , then V = 0, (2.1)

M is called as a pseudo-Riemannian manifold.

The product between vectors and dual vectors is defined as a map in Appendix-B

〈 , 〉 : T ∗pM × TpM → R. (2.2)

The metric g, which is a (0,2) tensor, gives an opportunity to construct an inner prod-

uct of two vector fields. Let us say U, V ∈ TpM , and the inner product is a map as

gp : TpM ⊗ TpM → R (2.3)

The metric also forms an isomorphism between the tangent space and the dual tangent

space, at each point on the manifold as

gp(U, ) : TpM → R ⇒ a one-form ωU := gp(U, ) ∈ T ∗pM , (2.4)

where the notation suggests that ωU is the unique one-form obtained via the metric

form the vector U .
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The metric is symmetric 2-tensor, as such it can be diagonalized at each point p of

M . The number of positive, negative or zero entries in this diagonal matrix is crucial.

Let us note the possibilities:

i-) Riemann: all the eigenvalues are positive

ii-) Pseudo-Riemannian: One or more than one eigenvalues are negative

Note that if only one eigenvalue is negative, we also call it a Lorentzian metric. This

is the relevant case for the space time of General Relativity and Minkowski spacetime.

In the Lorentzian case, the vectors on the tangent space are divided into three classes

as follows

i-) gp(U,U) > 0, U is spacelike

ii-) gp(U,U) = 0, U is lightlike(null)

iii-) gp(U,U) < 0, U is timelike

On the manifold we need more structure than the metric to model gravity: next we

discuss these structures.

2.1.1 Affine Connection

A derivative amounts to comparing a quantity at two distinct points. If that quantity

is a scalar quantity, one does not need additional structure on the manifold to define

the difference. But for any other quantities, such as vectors, tensors etc., the existing

structure on the manifold is not sufficient and hence one must supply the manifold

with some extra structure which will be broadly called the connection. In the differ-

ential structure of the manifold, a vector is defined on a tangent space at a specific

point. To calculate a derivative of a vector field, it is transported between two points

through a curve which is defined uniquely by some vector fields. Notice that this can

be generalized to all type of tensor fields. A connection arises by the virtue of the

tensor transportation.

Definition: Let χ(M) denote the space of vector fields on M . A map ∇ : χ(M) ×
χ(M)→ χ(M), takes two vector fields and sends them to a one vector field, is called

6



an affine connection with the following properties:

∇X(Y + Z) = ∇XY +∇XZ, (2.5)

∇(X+Y )Z = ∇XZ +∇YZ, (2.6)

∇(fX)Y = f∇XY, (2.7)

∇X(fY ) = X[f ]Y + f∇XY, (2.8)

whereX, Y, Z ∈ χ(M) and f ∈ C∞(M). First two properties demand the bilinearity,

the third one is the so called tensorial property (namely the value of theX vector field

at point p is relevant, but its extension around that point is not), the fourth property is

the Leibniz condition with the definition∇Xf = X[f ]. What is given here for vector

fields is sufficient to generalize to form fields and tensor fields in general which we

shall do below.

The connection coefficient is defined for a manifold with the coordinate system x =

φ(p) and the coordinate basis {eµ} = {∂/∂xµ} of the tangent space as

∇eνeµ := ∇νeµ =: eλΓ
λ
νµ. (2.9)

The action∇ on a vector field W along the vector field V is

∇VW = V µ∇eµ (W νeν) = V µ
(
eµ [W ν ] eν +W ν∇eµeν

)
= V µ

(
∂W λ

∂xµ
+W νΓλµν

)
eλ =

(
V µ∇µW

λ
)
eλ.

(2.10)

Here one can define;

∇µW
λ ≡ ∂W λ

∂xµ
+ ΓλµνW

ν = ∂µW
λ + ΓλµνW

ν . (2.11)

The next topic, parallel transport plays an important role in the study of motion of

point test particles on a manifold. We discuss it briefly.

2.1.2 Parallel Transport

A parallel transport of a vector is defined

∇VX = 0 (2.12)

7



where V is the tangent vector to a curve c : (a, b) → M . Below the independent

variable t parametrises the curve.

∇VX = V µ∇eµ (Xνeν) = V µ
(
eµ [Xv] eν +Xv∇eµeν

)
= V µ

(
∂Xλ

∂xµ
+XνΓλµν

)
eλ

(2.13)

⇒ ∇VX =

(
dxµ

dt

∂Xλ

∂xµ
+ Γλµν

dxµ

dt
Xν

)
eλ. (2.14)

Here notice that d
dt

(Xλ) = dxµ

dt
∂
∂xµ

(Xλ) = dxµ

dt
∂Xλ

∂xµ
and so in the component form one

has
dXµ

dt
+ Γµvλ

dxν(c(t))

dt
Xλ = 0. (2.15)

There are certain curves that parallel transport their own tangent vectors; these are

called geodesics and simply

0 = ∇V V = V µ∇µV
λeλ = V µ

(
∂µV

λ + ΓλµνV
ν
)
eλ

=

(
dxµ

dt

∂V λ

∂xµ
+ Γλµν

dxµ

dt
V v

)
eλ =

(
dV λ

dt
+ Γλµν

dxµ

dt

dxν

dt

)
eλ.

(2.16)

Here realize that dV λ

dt
= d

dt
(V λ) = d

dt
(dx

λ

dt
) = d2xλ

dt2
. Now we arrive the geodesic

equation;
d2xµ

dt2
+ Γµνλ

dxν

dt

dxλ

dt
= 0. (2.17)

More properly this is an affinely parametrized geodesic equation, namely any other

perturbation t′ = c1t+ c2 with c1 and c2 keep the equation intact, but, for a non-affine

parametrization of the form t′ = f(t) with some smooth function f , ∇V = f

2.1.3 The Covariant Derivative of Tensor Fields

Let us consider a pairing (or product) of a one-form ω ∈ Ω1(M) with a vector field

Y ∈ χ(M) ,〈ω, Y 〉 ∈ C∞(M). Using the affine connection of a function 〈ω, Y 〉
along the vector field X ∈ χ(M) will give us the covariant derivative of a one-form.

X[〈ω, Y 〉] = ∇X [〈ω, Y 〉] = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉 (2.18)

⇒ Xµ∂µ(ωvY
v) = (∇Xω)vY

v + 〈ω,Xµ∇µY
v〉 (2.19)

8



⇒ (∇Xω)vY
v = Xµ∂µ(ωvY

v)− ωvXµ(∂µY
v + ΓνµλY

λ)

=
(
Xµ∂µων −XµωλΓ

λ
µν

)
Y v

(∇Xω)vY
v = Xµ∂µων −XµωλΓ

λ
µν . (2.20)

For a basis vector X = eµ,

(∇µω)ν = ∂µων − Γλµνωλ (2.21)

and one can obtain connection coefficients by taking ω = dxν

∇µdxν = −Γvµλdx
λ. (2.22)

The covariant derivative of a (p, q) tensor type is a straight forward generalization.

As an example let us note the covariant derivative of a (1, 1) tensor T :

∇νT
α
β = ∂νT

α
β + ΓανµT

µ
β − ΓµνβT

α
µ . (2.23)

It is important to analyze how connection coefficients transform under the coordinate

changes. it does not transform as a tensor field of type (1, 2). The connection coeffi-

cients Γλµν apperantly look like a (1, 2)-tensor but this is not correct. At this stage they

should be considered (without noting the symmetry issue in the lower indices) as n3

functions for a manifold of dimension n. The fact that they are not components of a

tensor is clear from the way they transform under coordinate transformations which

we can work out as follows: Consider two overlapping charts. Let (U, φ) and (V,Ψ).

{eµ} = {∂/∂xµ} and {fα} = {∂/∂yα} are the corresponding basis vectors adapted

to the (U, φ) and (V,Ψ). Now, there are two connection coefficients such as

∇eνeµ = eλΓ
λ
νµ , ∇fαfβ = Γ̃γαβfγ (2.24)

and one can write fα = ∂xµ

∂yα
eµ.

∇fαfβ = ∇fα

(
∂xµ

∂yβ
eµ

)
=

∂2xµ

∂yα∂yβ
eµ +

∂xλ

∂yα
∂xµ

∂yβ
∇eλeµ

=

(
∂2xν

∂yα∂yβ
+
∂xλ

∂yα
∂xµ

∂yβ
Γνλµ

)
eν

(2.25)

⇒ ∇fαfβ = Γ̃γαβfγ = Γ̃γαβ
∂xν

∂yα
eν . (2.26)
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Now it is easy to realize the transformation of the connection coefficients by compar-

ing two equations, Eq.(2.25) and Eq.(2.26)

Γ̃γαβ =
∂xλ

∂yα
∂xµ

∂yβ
∂yγ

∂xν
Γνλµ +

∂2xν

∂yα∂yβ
∂yγ

∂xν
. (2.27)

In GR, a specific connection, so called the metric compatible connection is used, next

we discuss this.

2.1.4 The Metric Compatible Connection

In local coordinates, metric compatible connection is defined as ∇λgµν = 0 which

yields explicitly

∂λgµν − Γκλµgκν − Γκλνgκµ = 0. (2.28)

In this aspect, the affine connection ∇ becomes a metric connection, in other words

a metric compatible connection. In fact we can explicitly derive a formula for Γλµν in

terms of the metric with the following equations

∇λgµν = ∂λgµν − Γκλµgκν − Γκλνgκµ = 0,

∇µgνλ = ∂µgνλ − Γκµνgκλ − Γκµλgκν = 0,

∇νgλµ = ∂νgλµ − Γκvλgκµ − Γκvµgκλ = 0.

(2.29)

Subtracting the first equation from the other two equations, we arrive

∂µgνλ + ∂νgµλ − ∂λgνµ + (Γκλµ − Γκµλ)gκν

+ (Γκλν − Γκνλ)gκµ − (Γκµν − Γκνµ)gκλ = 0
(2.30)

one defines the Torsion tensor as a (1, 2) tensor as

T λµν = Γλµν − Γλνµ. (2.31)

Note that even though the connection is not a tensor as we have shown, the difference

of connections is a tensor since the non-homogeneous term in Eq.(2.27) drops out.

After solving the above equation for Γκ(µν), one reaches at

Γκ(µν) =

 κ

µν

+
1

2
(Tν

κ
µ + Tµ

κ
ν) (2.32)
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with (µν) denoting symmetrization. Here we defined the connection coefficients

known as the Christoffel symbols: κ

µν

 =
1

2
gκλ (∂µgνλ + ∂νgµλ − ∂λgµν) . (2.33)

As a result, making a simple manipulation on the Eq. (2.32), the connection coeffi-

cient Γ is found as

Γκµν = Γκ(µν) + Γκ[µν], Γκ[µν] =
1

2
T κµν

Γκµν =

 κ

µν

+
1

2

(
Tν

κ
µ + Tµ

κ
ν + T κµν

)
. (2.34)

The Contorsion tensor is defined as Kκ
µν ≡ 1

2

(
Tν

κ
µ + Tµ

κ
ν + T κµν

)
. In GR, one also

assumes that the Torsion is zero, therefore in what follows we do not use the sym-

bol {κµν} but instead use Γκµν to denote the metric compatible torsion-free connection

which is called the "Levi-Civita connection". It is clear that the geometry simplified

a lot with this choice of the connection.

2.1.5 Curvature and Torsion

Above, we gave the torsion tensor components in local coordinates. Here we define

it more geometrically and also introduce the curvature tensor. A Torsion tensor is

defined as a map

T : χ(M)⊗ χ(M)→χ(M)

(X, Y )→ T (X, Y )
(2.35)

defined as

T (X, Y ) ≡ ∇XY −∇YX − [X, Y ]. (2.36)

The curvature tensor is defined as a map

R : χ(M)⊗ χ(M)⊗ χ(M)→ χ(M), (2.37)

where

R(X, Y, Z) = R(X, Y )Z ≡ ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (2.38)
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where [X, Y ] denotes the Lie bracket of two vector fields. The tensorial property of

them can be shown rigourosly, which we do here.

R(fX, gY )(hZ) = ∇fX∇gY (hZ)−∇gY∇fX(hZ)−∇[fX,gY ](hZ), (2.39)

with f, g smooth functions.

[fX, gY ] = fX[g]Y − gY [f ]X + fg[X, Y ]. (2.40)

R(fX, gY )(hZ) = f∇X{g∇Y (hZ)} − g∇Y {f∇X(hZ)}

− fX[g]∇Y (hZ) + gY [f ]∇X(hZ)− fg∇[X,Y ](hZ)

= fX[g]∇Y (hZ) + fg∇X{Y [h]Z + h∇YZ}

− gY [f ]∇X(hZ)− gf∇Y {X[h]Z + h∇XZ}

− fX[g]∇Y (hZ) + gY [f ]∇X(hZ)− fg∇[X,Y ](hZ)

= fg∇X{Y [h]Z + h∇YZ} − gf∇Y {X[h]Z + h∇XZ}

− fg[X, Y ][h]Z − fgh∇[X,Y ](Z)

= fgh{∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z}

= fghR(X, Y )Z.

(2.41)

So this says that the curvature is tensorial. For the Torsion tensor, a similar calculation

yields
T (fX, gY ) = ∇fX(gY )−∇gY (fX)− [fX, gY ]

= fg{∇XY −∇YX − [X, Y ]} = fgT (X, Y ).
(2.42)

Let us consider the coordinate basis {eµ} = { ∂
∂xµ
} with its dual {dxµ}. For this basis

[eµ, eν ] = 0. Now, it is easy to obtain component forms of the Torsion and Curvature

tensors.
T λµν =

〈
dxλ, T (eµ, eν)

〉
=
〈
dxλ,∇µeν −∇νeµ

〉
=
〈
dxλ,Γηµνeη − Γηνµeη

〉
= Γλµν − Γλνµ.

(2.43)

Rκ
λµν = 〈dxκ, R (eµ, eν) eλ〉 = 〈dxκ,∇µ∇νeλ −∇ν∇µeλ〉

=
〈
dxκ,∇µ (Γηνλeη)−∇ν

(
Γηµνeη

)〉
=
〈
dxκ, (∂µΓηvλ) eη + ΓηvλΓ

ξ
µη −

(
∂νΓ

η
µλ

)
eη − ΓηµλΓ

ξ
vηeξ

〉
= ∂µΓκνλ − ∂νΓκµλ + ΓηνλΓ

κ
µη − ΓηµλΓ

κ
νη.

(2.44)
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The torsion is a (1, 2) and the curvature is a (1, 3) tensor fields. For the metric com-

patible torsion-free connection T = 0 and the Curvature tensor is called the Riemann

tensor.

2.1.6 The Ricci Tensor and the Scalar Curvature

The Ricci tensor is defined via the contraction of the Curvature as:

Ric(X, Y ) ≡ 〈dxµ, R(eµ, Y )X〉 (2.45)

and in the component form, it reads

Ricµν = Ric(eµ, eν) = Rλ
µλν . (2.46)

Note that one writes Rµν ≡ Ricµν . The scalar curvature Scal is defined as

Scal ≡ gµνRic(eµ, eν) = gµνRicµν = gµνRµν , (2.47)

and one introduces the notation R = Scal.

Bianchi Identities: Using the definition of the curvature tensor one can prove the

following identities, whose proofs we omit here:

The first Bianchi identity;

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0, (2.48)

which in component form reads

Rκ
λµν +Rκ

µνλ +Rκ
νλµ = 0. (2.49)

The second Bianchi identity;

(∇XR)(Y, Z)V + (∇ZR)(X, Y )V + (∇YR)(Z,X)V = 0

∇κR
ξ
λµν +∇µR

ξ
λνκ +∇νR

ξ
λκµ = 0. (2.50)

Contracting, ξ and µ on the second Bianchi identity; one has

∇κRλν +∇µR
µ
λνκ −∇νRλκ = 0. (2.51)
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Another contraction yields

∇µ(Rµν − 1

2
gµνR) = 0. (2.52)

One defines the Einstein tensor as

⇒ Gµν ≡ Rµν − 1

2
gµνR. (2.53)

More geometrically, the covariant form of the Einstein tensor is a rank (0, 2) tensor

defined as

G = Ric− 1

2
Rg. (2.54)

The fact that∇µG
µν = 0 for any smooth metric is extremely crucial in General Rela-

tivity. In the exotic massive gravity theories discussed in this thesis, such an identity

is not assumed for the (0, 2) tensor defining the field equations. The consequences of

this loss of "Bianchi identity" will be discussed.

2.2 Hypersurfaces

Hypersurfaces or codimension-one surfaces play an important role in General Rel-

ativity or other relativistic gravity theories. For example, to be able to count the

dynamical degrees of freedom of the gravitational field, which we shall do in the next

chapter, one has to choose a constant time slice and consider the induced metric and

its derivative (momentum) on the surface. For this purpose, following Appendix-D

of the book [8], we give here the details of the hypersurface geometry in generic n

dimensions. A major part of the discussion is the projection of the tensors into the

hypersurface and off the hypersurface. We carry out these and derive the Gauss’s and

Codazzi’s equations. At the end of the chapter we discuss the Stoke’s theorem that is

used later in the conserved charge construction of exotic massive gravity.

For an n-dimensional manifold M , one can define an n−1-dimensional submanifold

Σ and it is called a hypersurface. One way to define the hypersurface is to consider

the level set of a single function f as

f(x) = c, (2.55)

where c is a constant. The vector field ζµ;

ζµ = gµν∇µf (2.56)
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is orthogonal to all vectors that are defined on the surface Σ. There are three cases to

specify this orthogonal vector;

i-)If ζµ is a timelike vector (g(ζ, ζ) < 0, gµνζ
µζν < 0), then Σ is spacelike that means

Σ "moves" along the time direction.1

ii-)If ζµ is a spacelike vector (g(ζ, ζ) > 0, gµνζ
µζν > 0), then Σ is a timelike surface

iii-)If ζµ is a null vector (g(ζ, ζ) = 0, gµνζ
µζν = 0), then Σ is a null surface.

For the timelike or spacelike cases, we can define

nµ := ± ζµ√
|ζµζµ|

(2.57)

and it is called the normal vector with the magnitude

nµnµ = −1, for spacelike Σ

nµnµ = +1, for timelike Σ.

The null case is subtle as the null vector is both orthogonal and parallel to the surface.

Null hypersurfaces are relevant for the black hole event horizons, as we will not use

them here in this thesis, we skip that part of the discussion which is done in detail [8].

2.2.1 Gaussian Normal Coordinates:

Let us assume that we choose a coordinate system on the hypersurface Σ, such that

yi = {y1, . . . , yn−1}. For every point p on the Σ, one can define a geodesic whose

tangent vector is nµ(normal vector). The affine parameter of these geodesics is z, and

it is unique after nµ is normalized. There is always be a neighbourhood of a point

p, let say q that is on the geodesic and not on the hypersurface Σ. One can reach

that point by taking an affine parameter z as a coordinate component. As a result,

the coordinate system that is valid on the manifold M at least locally, is defined as

{z, y1, . . . , yn−1}. This coordinate system is called the Gaussian normal coordinates

and it may be not well defined globally on the manifold. {∂z, ∂1, . . . , ∂n−1} can be

1 Note that we work with the mostly plus signature.
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chosen as a basis vector fields and rename them as

(∂z)
µ = nµ,

(∂i)
µ = Y µ

(i).
(2.58)

We can now provide an explicit local form of the metric in Gaussian normal coordi-

nates.

g(∂z, ∂z) = gzz = nµn
µ = ±1 = σ, (2.59)

g(∂z, ∂i) = gzi = nµY
µ

(i). (2.60)

To find nµY
µ

(i), let us take a directional covariant derivative along the z-coordinate;

D

dz
(nµY

µ
(i)) = nν∇ν(nµY

µ
(i)) = nν∇νnµY

µ
(i) + nνnµ∇νY

µ
(i). (2.61)

From the geodesic equation, use nν∇νnµ = 0 to get

D

dz
(nµY

µ
(i)) = nνnµ∇νY

µ
(i),

Note that, [n, Y(i)]
µ = 0 → nν∇νY

µ
(i) = Y ν

(i)∇νn
µ

= nµY
ν

(i)∇νn
µ =

1

2
Y ν

(i)∇ν(nµn
µ) = 0.

Therefore nµY
µ

(i) = 0, since nµ is orthogonal to all vectors on the Σ. Finally we have

g(∂i, ∂j) = gij = γij (2.62)

and the line element reads

ds2 = σdz2 + γijdy
idyj, (2.63)

clearly γij = γij(z, y
i).

There is a natural map between the hypersurface and the manifold M that helps us to

construct an induced metric and let us assume that Σ is defined by z = z∗ on M .

φ : Σ→M

: yi → xµ = (z∗, y
i).

(2.64)

Now the pull-back of the metric g that is defined on M is simply

(φ∗g)ij = γij. (2.65)
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It is natural to define a volume element on the hypersurface Σ by using the induced

metric. A volume element of the whole manifold M is defined by the top form

ε =
√
|g|dx1 ∧ · · · ∧ dxn. (2.66)

It is obvious that how to define a "volume element" of Σ whose metric is γij .

ε̂ =
√
|γ|dy1 ∧ · · · ∧ dyn−1. (2.67)

Here let us investigate the determinant of the metric g;

gµν =

σ 0

0 γij

⇒ g = σγij = ±γij,
√
|g| =

√
|γ|. (2.68)

Therefore, we obtain the "volume element" of M as

ε =
√
|γ|dz ∧ dy1 ∧ · · · ∧ dyn−1. (2.69)

The contraction of a volume element ε, with a normal vector n is;

ε(n) = εµ1...µndx
µ1 ∧ . . . dxµn(nλ∂λ)

= nλελµ2...µndx
µ2 ∧ . . . dxµn ,

(2.70)

where nλ is the normal vector and with components , nλ = (1, 0, . . . , 0).

ε(n) = εµ2...µndx
µ2 ∧ . . . dxµn =

√
|γ|dy1 ∧ · · · ∧ dyn−1 = ε̂. (2.71)

Then we can write the induced volume element in a component form,

ε̂µ1...µn−1 = nλελµ1...µn−1 . (2.72)

2.2.2 Projection Tensor:

We have defined the hypersurface, next we would like to project tensors onto the

surface and off the surface. The projection tensor is defined by

Pµν ≡ gµν − σnµnν , (2.73)

where nµ is the unit normal vector and σ = nµn
µ. For any vector V ∈ TpM ,

(PµνV
µ)nν =

[
(gµν − σnµnν)V µ

]
nν = 0, (2.74)
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which says that for any vector V ∈ TpM , the projection operator projects a vector

tangent to the surface. Another useful property of the projection tensor is acting as

a metric for the vectors that are tangent to the surface, and by this reason projection

tensor is also called the first fundamental form at the sufrace. For instance;

PµνV
µW ν = gµνV

µW ν − σnµnνV µW ν

= gµνV
µW ν − σ(nµV

µ︸ ︷︷ ︸
=0

)(nνW
ν︸ ︷︷ ︸

=0

)

= gµνV
µW ν .

(2.75)

As expected, any power of a projection tensor is equal to itself since

P µ
λ P

λ
ν = (δµλ − σn

µnλ)(δ
λ
ν − σnλnν) = δµν − σnµnν = P µ

ν . (2.76)

The Riemann tensor measures the intrinsic curvature of a manifold. But for an em-

bedded manifold in a higher dimensional space, the extrinsic curvature is relevant.

The Lie derivative of the projection tensor along the normal vector will give us the

extrinsic curvature of the hypersurface. Now let us define

Kµν ≡
1

2
LnPµν . (2.77)

It is interesting to show that Kµν is the twice projected Lie derivative of the metric

with respect to the normal vector n. The Lie derivative of the metric tensor isLngµν =

∇µnν +∇νnµ.

P µ
αP

ν
βLngµν = P µ

αP
ν
β (∇µnν +∇νnµ)

= (δµα − σnµnα)(δνβ − σnνnβ)(∇µnν +∇νnµ)

= ∇αnβ +∇βnα − σnνnβ∇αnν − σnνnβ∇νnα︸ ︷︷ ︸
−σnβaα

− σnµnα∇µnβ︸ ︷︷ ︸
−σnαaβ

−σnµnα∇βnµ︸ ︷︷ ︸
=0

+ nµnνnαnβ∇µnν︸ ︷︷ ︸
=0

+nµnνnαnβ∇νnµ︸ ︷︷ ︸
=0

.

(2.78)

⇒ 1

2
P µ
αP

ν
βLngµν = ∇(αnβ) − σn(αaβ) = ∇αnβ − σnαnβ. (2.79)
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Now let us show that Kµν = 1
2
LnPµν = 1

2
Pα
µ P

β
ν Lngαβ .

LnPµν = nα∇αPµν + Pαν∇µn
α + Pµα∇νn

α

= −σnα∇α(nµnν) + gαν∇µn
α + gµα∇νn

α

− σnαnν∇µn
α − σnαnµ∇νn

α.

(2.80)

Let us have a look at the following expression

nν∇µ (nαn
α)︸ ︷︷ ︸

=σ

= nνn
α∇µnα + nνnα∇µn

α = 2nνn
α∇µnα = 0,

LnPµν = ∇µnν +∇νnµ − σnµaν − σnνaµ,

⇒ 1

2
LnPµν = ∇(µnν) − σn(µaν) = ∇µnν − σnµnν . (2.81)

Therefore we obtain the desired result;

Kµν =
1

2
LnPµν =

1

2
Pα
µ P

β
ν Lngαβ = Pα

µ P
β
ν ∇αnβ. (2.82)

The extrinsic curvature Kµν is a symmetric tensor. The contraction of the Kµν with

the normal vector nµ is given by;

Kµνn
µ = (∇µnν +∇νnµ − σnµaν − σnνaµ)nµ

= nµ∇µnν + nµ∇νnµ︸ ︷︷ ︸
=0

−aν − σnνaµnµ

= aν − aν − σnνnµ(nα∇αnµ)︸ ︷︷ ︸
=0

= 0.

(2.83)

So it has no components orthogonal to the surface. Covariant derivative on the hyper-

surface Σ can be found by projecting the ordinary covariant derivative on the mani-

fold. (Note: From now on we will use Latin indices instead of Greek indices due to

the increasing number of indces.)

∇̂aVb = P c
aP

d
b∇cVd, ∇̂aTbc = P d

aP
e
b P

f
c ∇dTed, ∇̂aT

b
c = P d

aP
b
eP

f
c ∇dT

e
f . (2.84)

Now, using the definition of covariant derivative, let us find the Riemann tensor on

the hypersurface.

[∇̂m, ∇̂n]Xb = −R̂a
bmnXa = ∇̂m∇̂nXb − ∇̂n∇̂mXb, (2.85)
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−R̂a
bmnXa = ∇̂m∇̂nXb − (m↔ n)

= P t
mP

l
nP

e
b∇t(P

r
l P

s
e∇rXs)− (m↔ n)

= P t
mP

l
nP

e
b P

r
l P

s
e∇t∇rXs + P t

mP
l
nP

e
b∇t(P

r
l P

s
e )(∇rXs)

− (m↔ n)

= P t
mP

r
nP

s
b∇t∇rXs + P t

mP
l
nP

e
b (P r

l ∇tP
s
e + P s

e∇tP
r
l )(∇rXs)

− (m↔ n)

= P t
mP

r
nP

s
b∇t∇rXs + P t

mP
r
nP

e
b∇tP

s
e (∇rXs)

+ P t
mP

l
nP

s
b∇tP

r
l (∇rX

s)− (m↔ n)

= P t
mP

r
nP

s
b∇t∇rXs + P t

mP
r
nP

e
b∇t(δ

s
c − σnens)(∇rXs)

+ P t
mP

l
nP

s
b∇t(δ

r
l − σnlnr)(∇rXs)− (m↔ n)

= P t
mP

r
nP

s
b∇t∇rXs + P t

mP
r
nP

e
b∇t(−σnens)(∇rXs)

+ P t
mP

l
nP

s
b∇t(−σnlnr)(∇rXs)− (m↔ n)

= P t
mP

r
nP

s
b∇t∇rXs − σP t

mP
r
nP

e
b ne(∇tn

s)(∇rXs)︸ ︷︷ ︸
P eb ne=0

− σP t
mP

r
nP

e
b n

s(∇tne)(∇rXs)− σP t
mP

l
nP

s
b nl(∇tn

r)(∇rXs)︸ ︷︷ ︸
P lnnl=0

− σP t
mP

l
nP

s
b n

r(∇tnl)(∇rXs)− (m↔ n)

= P t
mP

r
nP

s
b∇t∇rXs − σP t

mP
r
nP

e
b n

s(∇tne)(∇rXs)

− σP t
mP

l
nP

s
b n

r(∇tnl)(∇rXs).

(2.86)

Let us use,

⇒ P t
mP

e
b∇tne = Kmb, P t

mP
l
n∇tnl = Kmn. (2.87)

−R̂a
bmnXa = P t

mP
r
nP

s
b∇t∇rXs − σP r

nn
sKmb(∇rXs)

− σP s
b n

rKmn(∇rXs)− (m↔ n)

= P t
mP

r
nP

s
b∇t∇rXs − σP r

nn
sKmb(∇rXs)− (m↔ n).

(2.88)
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For any spatial tensor nsXs = 0;

∇r(nsX
s) = ns∇rX

s +Xs∇rns = 0 ⇒ ns∇rX
s = −Xs∇rns

= P t
mP

r
nP

s
b∇t∇rXs + σP r

nKmbX
s∇rns

= P t
mP

r
nP

s
b∇t∇rXs + σKmbKnsX

s

= −P t
mP

r
nP

s
bRastrX

a + σXaKmbKna − σXaKnbKma.

(2.89)

Let us say Xa = P a
b Y

b;

−R̂abmnP
a
d Y

d =− P t
mP

r
nP

s
bRastrP

a
d Y

d

+ σ(KmbKna −KnbKma)P
a
d Y

d,

−R̂dbmnY
d = −P t

mP
r
nP

s
b P

a
dRastrY

d + σ(KmbKnd −KnbKmd)Y
d. (2.90)

Now we have reached the so called Gauss’s equation

R̂dbmn = P t
mP

r
nP

s
b P

a
dRastr + σ(KnbKmd −KmbKnd),

⇒ R̂abcd = Pm
a P

n
b P

s
c P

t
dRmnst + σ(KacKbd −KadKbc), (2.91)

R̂a
bcd = P a

mP
n
b P

s
c P

t
dR

m
nst + σ(Ka

cKbd −Ka
dKbc),

R̂a
bcd = R̂bd = P a

mP
n
b P

s
aP

t
dR

m
nst + σ(Ka

aKbd −Ka
dKba). (2.92)

Contracting yields the Ricci tensor on Σ

R̂bd = P s
mP

n
b P

t
dR

m
nst + σ(KKbd −Ka

dKba), (2.93)

and one more contraction yields the scalar curvature.

R̂ = P bdR̂bd = P bdP s
mP

n
b P

t
dR

m
nst + σ(KP bdKbd − P bdKa

dKba), (2.94)
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R̂ = P bdP s
mP

n
b P

t
dR

m
nst + σ(K2 −KabKab)

= P s
mP

dnP t
dR

m
nst + σ(K2 −KabKab)

= P s
mP

ntRm
nst + σ(K2 −KabKab)

= (δsm − σnsnm)(gnt − σnnnt)Rm
nst + σ(K2 −KabKab)

= (δsmg
nt − σδsmnnnt − σgntnsnm + nsnmn

nnt)Rm
nst

+ σ(K2 −KabKab)

= R− σnnntRnt − σnsnmRm
s + σ(K2 −KabKab)

= R− σ2nanbRab + σ(K2 −KabKab).

(2.95)

It is interesting to study the contraction of the Riemann tensor by a normal vector.

After contraction is done, to reach the Codazzi’s equation, projection of the contracted

Riemann tensor will be achieved.

Rmnban
a = ∇m∇nnb −∇n∇mnb, (2.96)

∇µnν = Kµν + σnµaν , (2.97)

Rmnban
a = ∇m(Knb + σnnnb)− (m↔ n). (2.98)

Pm
c P

n
d P

b
en

aRmnba = Pm
c P

n
d P

b
e∇mKnb + σPm

c P
n
d P

b
e∇m(nnn

s∇snb)

− (c↔ d)

= Pm
c P

n
d P

b
e∇mKnb + σPm

c P
n
d P

b
e (∇m(nnn

s)(∇snb))

− (c↔ d)

= Pm
c P

n
d P

b
e∇mKnb + σPm

c P
n
d P

b
en

s(∇snb)(∇mnn)

− (c↔ d)

= ∇̂cKde + σPm
c P

n
d P

b
e (∇snb)(∇mnn)− (c↔ d)

= ∇̂cKde + σP b
e (∇snb)Kcd − (c↔ d)

= ∇̂cKde − ∇̂dKce.

(2.99)

Pm
c P

n
d P

b
en

aRmnba = ∇̂cKde − ∇̂dKce, (2.100)

22



(δmc − σnmnc)(δnd − σnnnd)(δbe − σnbne)naRmnba =

∇̂cKde − ∇̂dKce.

(δmc δ
n
d − σnnndδnc − σnmncδnd + nmnnncnd)δ

b
en

aRmnba =

∇̂cKde − ∇̂dKce

Rcdean
a − σndnnnaRcnea − σncnmnaRmdea = ∇̂cKde − ∇̂dKce. (2.101)

Let us multiply above equation by gce, then

⇒ Radn
a − σndnnRnan

a = ∇̂cKd
c − ∇̂dK, (2.102)

we get the Codazzi’s equation

⇒ P n
d Rann

a = ∇̂cKd
c − ∇̂dK. (2.103)

2.3 Stokes’ Theorem

Here we follow the discussion and notation of the related chapter of the book [7]. In

a Euclidean space let us define the rAddinghigherordertermstothetheory-simplex

σ̄r = (p0p1 . . . pr) such as 2

p0 = (0, 0, . . . , 0)→ the point at the origin

p1 = (1, 0, . . . , 0)

. . .

pr = (0, 0, . . . , 1)

(2.104)

In a certain coordinate system σ̄r is defined by

σr =

{(
x1, . . . , xr

)
∈ Rr|xµ ≥ 0,

r∑
µ=1

xµ ≤ 1

}
. (2.105)

Now we can reach the volume-form ω on Rr as

ω = a(x)dx1 ∧ dx2 ∧ · · · ∧ dxr. (2.106)

2 Here we shall not go into the definitions of the relevant tools such as homology and homotopy theory used
below: all these follow the book [7] very closerly.
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and an integration of ω is defined∫
σr

ω ≡
∫
σr

a(x)dx1dx2 . . . dxr (2.107)

We defined an r-simplex in Rr before. It is natural to construct a map f : σr → M

(it is smooth and does not have to posses an inverse). Let us say {sr,i} is a set of

r-simplex that is mapped from Rr to the manifold M . Using the set {sr,i}, one can

define an r-chain c =
∑

i aisr,i, where ai ∈ R. Those r-chains form a group Cr(M)

on the manifold M . We have whole set-up onto the manifold M , and introducing r-

chain, r-cycle and r-boundary is eligible on M . The boundary ∂sr of an r-simplex sr

is an (r-1)-simplex with the help of the map ∂ : Cr(M)→ Cr−1(M). Let say cr is an

r-chain on M . For those cr that satisfy ∂cr = 0 are called an r-cycle and cr = ∂cr+1

are called an r-boundary.

Definition: Br(M) is a boundary group and its elements are r-chains that satisfies

cr = ∂cr+1. Zr(M) is called cycle group that have elements such as r-chains without

a boundary, ∂cr = 0.

It is obvious that Br(M) is a subgroup of Zr(M), Br(M) ⊂ Zr(M).

Definition: Hr(M) is a homotopy group on M and defined by quotient space of

Zr(M) by Br(M) .

Hr(M) ≡ Zr(M)/Br(M). (2.108)

We put all the tools on the table to define an integration of an r-form conclusively.

Using the pull-back of an r-form ω with the help of the map f : σr →M , ω is moved

to the space Rr in which one can perform an integration as below.∫
sr

dω =

∫
σ̄r

f ∗ω (2.109)

Notice that the RHS of the equation is just an r-fold integration because it is performed

in the space Rr

Definition: Stokes’ Theorem:

For an r-1-form ω ∈ Ωr−1(M), we have∫
sr

dω =

∫
σ̄r

f ∗(dω) =

∫
σ̄r

d(f ∗ω) (2.110)
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and using pull-back map for an r-1-form ω,∫
∂sr

ω =

∫
∂σ̄r

f ∗ω, (2.111)

then we established the Stokes’ theorem∫
sr

dω =

∫
∂sr

ω. (2.112)
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CHAPTER 3

THREE DIMENSIONAL GRAVITY THEORIES

Lower dimensional gravitational or non-gravitational theories have always been con-

sidered as both useful tools in understanding the four dimensional physics and ac-

tually effectively realizing them in the laboratory setting. In this context, especially

lower dimensional quantum field theories have been widely studied; for example 2+1

dimensional Chern-Simons theories have applications in effectively 2-dimensional

physical systems, such as the the quantum Hall effect. But as for gravity, the situ-

ation is more subtle for an unexpected reason: 2+1-dimensional General Relativity

(GR) with or without a cosmological constant (Λ) has no local degrees of freedom,

hence there are no gravitons, no gravitational waves and therefore 2+1-dimensional

gravity, apparently cannot be a useful tool for the realistic gravity theory in four di-

mensions. To see that there is no nontrivial gravity in 2+1 dimensional GR, let us

note the following: assuming the validity of Einstein’s equations (say for Λ = 0), one

has

Gµν = Rµν −
1

2
gµνR = κTµν (3.1)

and in vacuum, Tµν = 0, Rµν = 0. In generic n-dimensions, algebraic decomposition

of the Riemann tensor is given in terms of the Weyl tensor and the Ricci tensor and

scalar as

Rλµνκ =Cλµνκ +
1

(n− 2)
(gλνRµκ − gλκRµν − gµνRλκ + gµκRλν)

− R

(n− 1)(n− 2)

(
gλνgµκ − gλκgµν

)
.

(3.2)

In vacuum for GR, Rµν = 0, R = 0, so Rλµνκ = Cλµνκ. But for n = 2 + 1, the

Weyl tensor vanishes identically , hence the Riemann tensor vanishes, which means,

outside the source the spacetime is flat. Since curvature encodes gravity, one has no

local gravity in n = 2 + 1. For the Λ 6= 0 case, the above discussion can easily be
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extended to observe that the Riemann tensor is locally maximally symmetric

Rµανβ = Λ (gµνgαβ − gµβgαν) . (3.3)

For Λ < 0 the maximally symmetric spacetime is called the anti-de Sitter sapcetime,

while for Λ > 0 it is the de Sitter spacetime. So we have just seen that in 2 + 1 GR,

outside the source, depending on Λ, the spacetime is either flat, de Sitter or anti-de

Sitter. The source Tµν cannot change this behaviour. In fact more concisely, in three

dimensions the Riemann tensor and the Ricci (or the Einstein) tensor carry the same

number of independent components, that is 6, and they are related as

Rµανβ = εµασενβρG
σρ, (3.4)

where εµασ is totally antisymmetric tensor. We prove this identity in the next chapter.

It is clear from Eq. (3.4) that vanishing of Gσρ yields flat spacetime.

Another way to see the local triviality of three dimensional Einstein’s gravity is to di-

rectly count the number of degrees of freedom at a point in phase space following [5].

Consider the phase space of n dimensional GR, the relevant canonical variables are

the spatial metric gij on a n − 1 dimensional hypersurface and the corresponding

canonical momenta ∂tgij on the hypersurface. Being a symmetric tensor field, the spa-

tial metric has n(n−1)/2 maximum possible independent components, the canonical

momenta has the same number of components, adding to a maximum of n(n − 1).

But, there are n constraints coming from the Bianchi identity ( 1 Hamiltonian and

n− 1 momentum constraints). In addition, using the coordinate transformations, we

can gauge away n components of the metric hence the maximum possible number of

degrees of freedom is n(n−1)−2n = n(n−3) which yields the expected 4 in four di-

mensions; that are 2 metric and 2 momenta degrees of freedom. But it yields 0 degree

of freedom in 3 dimensions. This discussion is valid whether there is a cosmologi-

cal constant or not. The number of degrees of freedom in 3-dimensions increase by

adding higher order terms to the theory and the constraints become time-dependent.

These facts eliminate the triviality of the 3-dimensional gravity.

All these show that no matter what a source has or does, it cannot change the gravi-

tational field outside. Sometimes this triviality of 2 + 1-dimensional gravity is sum-

marized with the statement that 2 + 1 GR has no non-trivial Newtonian limit. This
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is meant to say the following: in a well presented approximation scheme, say for

Λ = 0 case, in generic n > 2 + 1 dimensions, one gets the Poisson equation for the

Newtonian potential φ from GR as

∇2φ = κρ, (3.5)

but for n = 2 + 1, one does not obtain this equation, instead after gauge-fixing one

gets φ = 0 in sharp contrast to the 2 dimensional Newtonian gravity (i.e. the Poisson

equation in 2-dimensions) which yields φ = κ ln( r
r0

) for a point source, which yields

a 1
r

force as expected.

One should keep in mind that this local triviality does not necessarily mean that the

theory is globally trivial. In fact there have been highly influential works done on

the global structure of gravity for point sources in 2 + 1 dimensions in [9, 10]. These

works initiated a closer scrutiny of the three dimensional gravity theories. Eventually,

it turned out that when the cosmological constant Λ is negative, namely the spacetime

is locally anti-de Sitter (AdS), the theory admits a black hole solution, so called the

Bañados-Teitelboim-Zanelli (BTZ)-black hole [11]. This black hole was totally un-

expected, because of the local simplicity discussion noted above, no one expected

the existence of a black hole in this theory. In fact the BTZ black hole has almost

all the properties of the four dimensional Kerr black hole: it has a mass m, angular

momentum J , inner and outer event horizons and all the relevant thermodynamics

associated with the horizon. There are of course several differences, one of which

is that unlike the Kerr black hole of the four dimensions, the BTZ black hole does

not have a curvature singularity; in addition it does not have a speed of light surface.

The reason this black hole was found more than 75 years after GR was introduced

is the following: this solution arises in a rather non-trivial way: the global AdS3 is

identified along some directions whose details are given in [11]. We should stress that

the black hole solution does not exist for Λ = 0 or Λ > 0, namely the flat and the

de Sitter cases. The fact that a negative cosmological constant is needed for the BTZ

black hole to exist in Einstein’s gravity was proven as a theorem in [12].

All the above discussion has been in the classical regime; in principle one uses lower

dimensional theories as a tool to understand both the classical and quantum regimes

of the realistic four dimensional theories. As for the quantum version of the three
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dimensional Einstein’s gravity, there has been a lot of progress but the final answer

has not been found. Earlier work [13] on the quantum version of the three dimen-

sional GR showed that if the theory is formulated in terms of the dreiben and the spin

connection [14], not the metric formulation, then up to a boundary term, the Einstein-

Hilbert action with or without a cosmological constant can be recast as a non-Abelian

Chern-Simons theory with a non-compact group. Once this is done, then since the

latter theory is quantized, three dimensional gravity is also quantized. But there is a

caveat, in the Chern-Simons formulation of the theory, one allows vanishing gauge

fields, this in the gravity side corresponds to a vanishing dreiben which yields a de-

generate metric which is not acceptable in gravity because one cannot consistently

couple matter fields to a degenerate metric as the inverse does not exist. Therefore,

currently the quantum version of the three dimensional Einstein’s gravity has not been

formulated.

This state of affairs and the fact that one would still like to define a gravity theory

which is locally non-trivial, namely it has gravitons and gravitational waves, one

resorts to other gravity theories that extends the three dimensional GR in one way

or another. One of the first proposals of such a theory is the topologically massive

gravity (TMG) [15], with the following action

I =

∫
d3x
√
−g
[

1

κ
(R− 2Λ)− 1

2µ
ελµνΓρλσ

(
∂µΓσρν +

2

3
ΓσµβΓβνρ

)]
, (3.6)

µ is the so called topological mass; ε012 = 1 is a tensor density, and the Γ’s are the

Christoffel connections. A detailed canonical analysis of this theory, for Λ = 0 was

done in [15] where it was shown that the theory describes a single massive spin-2

degree of freedom with mass m = |µ|. The field equations coming from the variation

of this theory in vacuum are

Gµν + Λgµν +
1

µ
Cµν = 0, (3.7)

where the "Cotton" tensor Cµν is defined as

Cµν ≡ εµ
αβ∇αSβν , (3.8)

and Sβν := Rβν − 1
4
gβνR is the three dimensional Schouten tensor. It is important to

note that εµαβ is a tensor not a tensor density. One can show that the Cotton tensor is

symmetric, traceless and divergence-free: Cµν = Cνµ, gµνCµν = 0 and ∇µC
µν = 0.
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As these identities will be important later, let us show them. First let us prove that

Cµν is traceless;

gµνCµν = gµνεµ
αβ∇αSβν = εναβ︸︷︷︸

anti−sym

∇α Sβν︸︷︷︸
sym

= 0. (3.9)

One can show that Cµν is symmetric by multiplying it with the anti-symmetric tensor,

εµνλ;

εµνλCµν =
1

2
εµνλ

(
C(µν) + C[µν]

)
= εµνλC(µν)︸ ︷︷ ︸

=0

+εµνλC[µν]

=
1

2
εµνλ(Cµν − Cνµ)

=
1

2

[
εµνλεµ

αβ∇αSβν − εµνλεναβ∇αSβµ
]

=
1

2

(
∇αS

αλ −∇αS
αλ −∇λS +∇λS

)
= 0.

(3.10)

Finally let us prove that it is divergence-free

∇µC
µν = εµαβ∇µ∇αSβ

ν . (3.11)

The operator ∇µ∇α can be written as a sum of the symmetric and antisymmetric

operators;

∇µ∇α :=
1

2
(∇µ∇α +∇α∇µ) +

1

2
(∇µ∇α −∇α∇µ) (3.12)

∇µC
µν =

1

2
εµαβ(∇µ∇α −∇α∇µ)Sβ

ν =
1

2
εµαβ[∇µ,∇α]Sβ

ν

=
1

2
εµαβRµα

ν
λSβ

λ +
1

2
εµαβRµαβ

λSλ
ν︸ ︷︷ ︸

=0

=
1

2
εµαβRµα

ν
λSβ

λ.
(3.13)

Next we use the algebraic decomposition of the Riemann tensor in 3-dimensions,

which is

Rµα
ν
λ = δµ

νRαλ − gµλRα
ν − δανRµλ + gαλRµ

ν − R

2
(δµ

νgαλ − gµλδαν), (3.14)

to get

∇µC
µν =

1

2

[
εναβRαλSβ

λ − εµνβRµλSβ
λ

]
= εναβRαλSβ

λ

= εναβRαλ(Rβ
λ − 1

4
δβ
λR) = εναβRαλRβ

λ = 0.

(3.15)

We noted the degree of freedom structure of TMG for Λ = 0. The degree of freedom

structure of TMG for Λ 6= 0 is quite non-trivial: for generic Λ, there is still a single
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massive degree of freedom with mass-square m2 = µ2 + Λ [16, 17], namely the

cosmological constant and the mass parameter µ both appear in the graviton mass.

On the other hand in AdS for Λ ≡ − 1
l2

where l is the radius of AdS3, with µl = 1, the

theory has no bulk degree of freedom. This theory is called Chiral Gravity [18,19] to

which we shall come back below. In addition to these interesting new possibility, it is

easy to see that the TMG field equations (3.7) admit all solutions of Einstein’s theory,

including the BTZ black hole. This is because Gµν = 0, for any Einstein metric,

Rµν = 2Λgµν . Of course in addition to these Einsteinian solutions, TMG admits a

lot of solutions which are non-Einsteinian, namely Gµν 6= 0. Most of the solutions

known to date have been compiled in [20].

The fact that TMG have both black holes and gravitons gave rise to an intensive re-

search on this theory with refered to its classical and quantum nature. Classically it

is a third order theory and much more complicated then the second order Einstein’s

gravity. In the quantum regime naive quantization techniques such as canonical quan-

tizations or path-integral quantization are quite hopeless to carry out in this much

more complicated theory. But after the discovery of anti-de Sitter/Conformal field

theory (AdS/CFT) correspondence [21], another path to quantum gravity became pos-

sible. Briefly this path is as follows: define a gravity theory in an asymptotically AdS

spacetime, the theory on the boundary will be conformal field theory. If this can be

done consistently , then one interprets the boundary theory to be the quantum version

of the bulk theory. Of course this requires both the bulk and boundary theories to be

well-defined in the sense that they must be unitary without ghosts and tachyons. They

must be casual. It is amusing to note that, much earlier than the work in AdS/CFT,

Brown and Henneaux [22] found that asymptotic symmetries of AdS3 is much larger

then the bulk symmetries, in fact the corresponding boundary algebra is infinite di-

mensional and includes 2 copies of the Virasoro algebra which is suitable for a two

dimensional conformal field theory. This Virasoro algebra has a central charge given

as

c =
3

2

l

G
. (3.16)

It was shown [23] that in TMG, this boundary symmetry algebra still has two copies

of Virasoro algebra with the different central charges given as

cR/L =
3l

2G

(
1± 1

µl

)
. (3.17)
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Computation of the bulk and boundary excitations show that one has either the bulk or

boundary excitations to be ghost-free for generic µl. This is dubbed as bulk-boundary

unitarity clash which basically says that the theory cannot be quantized along the de-

scribed lines above. Interestingly the chiral gravity limit is an exception if one takes

µl = 1, then cL = 0 and cR = 3l
G

, one ends up with only the right moving sector

on the boundary. This theory was conjectured to be valid both classically and quan-

tum mechanically in [18, 19] . Of course to prove the conjecture one must find the

corresponding boundary theory. Moreover, it was shown in [24] that exactly at the

point µl = 1, the chiral point, there arises a classical solution with a negative total

unbounded energy, the so called log-mode which ruins the stability of the vacuum.

But it was shown in [20, 21] that the log mode found in [24] is an artifact of the lin-

earization which was suggested in [19]. This issue is called linearization instability:

linearized field equations of a non-linear theory such as TMG can have linear solu-

tions which cannot be obtained from the linearization of any exact solution. This says

that the perturbation theory in AdS3 for chiral gravity must be done with care. So

chiral gravity, as it now stands, is a possibly well-defined theory both classically and

quantum mechanically.

There are various reasons to go beyond TMG: as we have seen TMG is a third deriva-

tive theory hence it is parity non-invariant which means it is highly different from

the parity-invariant four dimensional General Realtivity. It has a single degree of

freedom, one would like to have 2 degrees of freedom with ±2 helicities as in four

dimensions. Of course one would like to have massless graviton. But this is very dif-

ficult in 2+1-dimensions, hence in what follows, we shall discuss some well-known

non trivial gravity theories in 2+1 dimensions, which are all massive gravity theo-

ries. The most obvious extension of Einstein’s gravity is the quadratic theory with the

action

I =

∫
d3x
√
−g
(

1

κ
(R− 2Λ0) + αR2 + βRµνR

µν

)
, (3.18)

with α and β arbitrary dimensionful constants of this stage. Canonical analysis [25]

shows that this theory has a massive spin-2 graviton and a massive spin-0 scalar gravi-

ton with masses

m2
g = − 1

κβ
− 12αΛ

β
− 4Λ,m2

s =
1

κ(8α + 3β)
− 4Λ

(
3α + β

8α + 3β

)
, (3.19)
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where the effective cosmological constant Λ is given as

Λ =
1

4κ(3α + β)

[
1±

√
1− 8κΛ0(3α + β)

]
. (3.20)

Detailed analysis shows that both of these modes cannot be healty at the same param-

eter ranges.

The theory has no ghost or tachyon only either β = 0 or 8α + 8β = 0. For β = 0,

spin-2 graviton is decoupled so we take β 6= 0. The choice is called the new massive

gravity (NMG) [26, 27]. It is also valid for Λ0 = 0.

NMG is the first known example of a parity invariant gravity theory with massive

graviton without a ghost. There is also the Fierz-Pauli theory where one adds the

term m2
g

4
(hµνh

µν − h2) to the Einstein-Hilbert action but since hµν := gµν − ḡµν is

a "perturbation" defined with respect to the backround ḡµν , Fierz-Pauli theory is not

diffeomorphism invariant. In fact a detailed study [28] shows that at the non-linear

level, a ghost, so called Boulware-Deser ghost, arises in the Fierz-Pauli theory.

To possibly construct a dual conformal field theory to NMG, we must introduce a

negative cosmological constant and re-study the bulk and boundary unitarity problem.

The NMG action with a cosmogical constant with redefined parameters is

I =
1

κ2

∫
d3x
√
−g
[
σR− 2λ0m

2 +
1

m2

(
RµνR

µν − 3

8
R2

)]
, (3.21)

where we have taken the form given in [29]. The parameter σ = ±1 and λ0 is the

dimensionless bare cosmological parameter. Vacuum field equations show that there

are two maximally symmetric vacua given by the effective cosmological constant,

Λ = λm2 = −2
(
σ ±

√
1 + λ0

)
m2, (3.22)

hence one must have λ0 > −1 for the existence of a maximally symmetric vacuum.

The mass of the spin-2 graviton is obtained after a detailed analysis [25] to be

m2
g = (−σ +

λ

2
)m2. (3.23)

The important issue is the following: even though the theory is unitary in the bulk,

it has a negative central charge and cannot be unitary on the boundary. If one fixes

the boundary theory, one loses unitarity in the bulk, hence this theory shares the same

fate as the TMG theory for generic m. There has been extended works that try to
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improve NMG by adding judiciously chosen higher curvature terms. For example

O(R3) and O(R4) terms were added [30] that are consistent with some requirements

of ADS/CFT. But it turns out that these new additions do not remedy the problem.

In fact in [31] a Born-Infeld type extension of NMG was given which has the added

feature that it has a single maximally symmetric vacuum and a massive spin-2 ex-

citation about it, but this theory also suffers from the bulk-boundary unitarity clash,

as well as the infinite order theory introduced in [32]. A detailed study [29] showed

that no theory that has the same particle content that is defined by an action based

on the metric can be free of bulk and boundary unitarity clash. This interesting im-

passe led researcers to an interesting idea: instead of defining the theory based on the

metric alone, can one construct on-shell consistent field equations? The idea is the

following. Let us say that the vacuum field equations of the theory are defined as

Eµν = 0, (3.24)

but one does not have the Bianchi identity ∇µEµν = 0 for all smooth metrics, but

only for those which solve the field equations (3.24). So one demands the weaker

on-shell Bianchi-Identity

∇µEµν
∣∣∣
Eµν=0

= 0. (3.25)

Such a requirement might seem to be too loose but that is not the case. In fact these so

called "on shell consistent" theories are highly restricted. The first example of these

theories is the Minimal Massive Gravity (MMG) [33] which was also consistently

coupled to a matter source [34]. Source free field equations of MMG read

Gµν + Λ0gµν +
1

µ
Cµν +

γ

µ2
Jµν = 0, (3.26)

which is a deformation of cosmological TMG with the Jµν tensor given as

Jµν :=
1

2
εµρσεναβSραSσβ. (3.27)

The divergence of the Jµν tensor can be found to be

∇µJ
µν = ενρσSσ

τCρτ , (3.28)

which does not clearly vanish automatically, but MMG obeys the on-shell Bianchi

identity. Let us show this

∇µJ
µν = ενρσSσ

τCρτ = −µενρσSστ
(
Gρτ + Λ0gρτ +

γ

µ2
Jρτ

)
, (3.29)
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each term vanish on its own due to symmetry.

With the addition of the J-tensor, the mass of the graviton is modified as [33,35–37]

m2
0 = µ2

(
1 +

γ

2µ2l2

)2

+
1

l2
, Λ ≡ − 1

l2
(3.30)

but there is still a single massive graviton on the theory’s parity-non invariant. Details

of the MMG theory in various aspects have been worked out in [36, 37]. As for the

bulk-boundary unitarity clash issue, the problem is subtle: If the theory is assumed

to be defined by (3.26) and linearizations are carried out accordingly about the AdS

vacuum, one finds that just like the TMG case, the theory can only be unitarity in the

bulk and boundary at its chiral point [38]. But there is a second formulation of the

theory in terms of the dreiben and auxilary fields which allows an action formulation.

In this formulation bulk-boundary unitarity is achieved [39].

Deforming TMG with the J-tensor yields, as noted above, to a single massive degree

of freedom with +2 or -2 helicity but not both. So one still would like to have the ±2

helicities together. For that purpose MMG2 was introduced in [35] which is defined

by the following field equations

Gµν + Λgµν +
1

µ
Cµν −

1

µ2
Hµν = 0, (3.31)

where the Hµν tensor is defined as the "curl" of the Cotton tensor via

Hµν =
1

2
εµαβ∇αCβ

ν +
1

2
εναβ∇αCβ

µ. (3.32)

We will discuss this tensor (which we shall call the 3D Bach tensor due to its rele-

vance to the higher dimensional Bach tensor) below, but let us note that the covariant

divergence of this tensor reads

∇µH
µν = ενρσSρ

τCσ
τ = −∇µJ

µν , (3.33)

so it does not vanish automatically, but clearly the sum of the Hµν tensor and the Jµν

tensor is divergence free

∇µ(Hµν + Jµν) = 0. (3.34)

Close scrutiny shows that separately Hµν and Jµν do not come from the variations of

an action but their sum come from the variation of the purely quadratic part of NMG

δg

∫
d3x
√
−g
(
RµνR

µν − 3

8
R2

)
⇒ Hµν + Jµν = 0. (3.35)
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So deforming TMG with Jµν yields MMG, while deforming TMG with Hµν yields

MMG2. The computation of the masses and the central charges in this theory are

done in [35]: the positive and negative helicity modes have different masses given as

m2
i = p2

i −
1

l2
i = 1, 2 (3.36)

with

p1,2 = −m
2

2µ
±

√
m2 +

m4

4µ2
. (3.37)

Note that, unlike MMG, MMG2 has two massive helicities, but they have different

masses. This is due to existence of the Cotton tensor which breaks parity due to its

third derivative nature. To the best of our knowledge, four dimensional GR is parity

invariant, but of course one can introduce tiny parity breaking terms that are not ruled

out by experiments. One such attempt is the so called "Chern-Simons Modifications

of GR" [40].
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CHAPTER 4

GENERIC EXOTIC MASSIVE GRAVITY THEORIES

This chapter is mainly based on our work [6] and extends the details of the computa-

tions given there.

Three dimensional Einstein metrics are much simpler than the higher dimensional

ones, as we discussed before; locally Einstein metrics are Riemann flat (or constant

curvature) since in this dimension we have the following identity

Rµανβ = εµασενβρG
σρ, (4.1)

where εµασ is totally antisymmetric tensor and Gρσ is the Einstein tensor Gρσ =

Rρσ − 1
2
gρσR. One can show this as follows. For the signature (−,+,+), the product

of two totally anti-symmetric epsilon tensors can be written in terms of the products

of the metric tensor as

εµασενβρ =− gµν(gαβgσρ − gαρgσβ) + gµβ(gανgσρ − gαρgσν)

− gµρ(gανgσβ − gαβgσν).
(4.2)

Making use of this equation in Eq.(4.1), one arrives at

Rµανβ = εµασενβρG
σρ =gµνRαβ − gµβRαν − gανRβµ + gαβRµν

+
R

2
(gµβgαν − gµνgαβ),

(4.3)

which is just the algebraic decomposition of the Riemann tensor in three dimensions

(3.2). This basically says that in a vacuum, in Einstein’s theory, Rµν = 0 = R,

there is no gravity, and no gravitational wave or radiation. When a negative cosmo-

logical constant is introduced, local triviality is not lifted, but there is the all impor-

tant Bañados-Teitelboim-Zanelli (BTZ) black hole [11] that can carry mass, spin and

pretty much all the properties of its four-dimensional analog Kerr black hole, save the
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curvature singularity and the speed-of-light surface. So some of the Einstein metrics

are highly nontrivial (when considered in 2+1 GR) but one of course still needs local

nontriviality, gravitation, gravitational waves etc. to be able to learn something from

this lower-dimensional setting.

Fortunately, this can still be achieved with Einstein metrics but not as solutions to GR

but as solutions to modified gravity theories, such as the topologically massive gravity

(TMG) [15], new massive gravity (NMG) [26, 27] or Born-Infeld extension of NMG

[31]. All these theories accommodate Einstein metrics and more general metrics

that are not Einstein. But the good thing is that in these theories, perturbation about

an Einstein metric can be interpreted as gravitons (usually massive) or gravitational

waves. Hence these theories are much richer than Einstein’s pure 2+1 GR and simpler

than the 3+1 GR. The immediate aim is to be able to define and understand a version

of quantum gravity in a 2 + 1-dimensional setting. For this purpose, our current best

hope is the AdS/CFT duality [21] which reduces the problem to a construction of a

two-dimensional boundary conformal field theory for the AdS bulk of a given 3D

theory.

4.1 3D Bach Tensor and On-shell Consistency

Let us go back to the discussion of Einstein metrics that was alluded to above: perhaps

the next “nice" set of metrics are the ones conformally related to the Einstein metrics.

Succinctly stated the problem is this: given a metric g (which is not necessarily Ein-

stein) can one construct a metric, g̃ ≡ Ω2g, which is Einstein given that Ω is smooth

and Ω > 0? In n−dimensions, the generic necessary and sufficient conditions for

such a metric g̃ to exist are too difficult to handle. But, in four dimensions the prob-

lem simplifies a little bit in the sense that the necessary condition is the vanishing of

the so-called “Bach Tensor"

Hµν ≡
(
∇α∇β +

1

2
Rαβ

)
Cµανβ, (4.4)

where Cµανβ is the Weyl tensor. The Bach tensor is symmetric, traceless H ≡
gµνHµν = 0, divergence-free ∇µHµν = 0 and conformally invariant (in four di-

mensions). Moreover, one can show that Hµν comes from the variation of the action
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S =

∫
d4x
√
−gCµναβCµναβ. (4.5)

This so-called conformal gravity admits all the Einstein metrics as solutions, but there

are non-Einstein solutions. Remarkably, with some simple (Neumann) boundary con-

ditions, one can show that out of all the Bach flat manifolds, only Einstein manifolds

can be selected [41] .

One can naturally wonder the simpler problem, that is, the problem of the confor-

mal Einstein metrics in three-dimensions. As the Weyl tensor vanishes identically in

three-dimensions, the naive dimensional continuation of the Bach tensor as defined

by Eq.(4.4) to three dimensions does not yield any further information. But as was

realized in [35, 42], using the 3-index Cotton tensor as a potential to the Weyl tensor

yields a meaningful 3D Bach tensor. Recall that the n-dimensional Cotton tensor is1

Cαµν = ∇αRµν −∇µRαν −
1

2(n− 1)

(
gµν∇αR− gαν∇µR

)
, (4.6)

which is antisymmetric in the first two indices. This tensor is conformally invariant

only in three dimensions. Using this, we define the analog of the n-dimensional Bach

tensor as

Hµν ≡
1

2
∇αCαµν +

1

2
RαβCµ

α
ν
β. (4.7)

In particular, for n = 3, we can express the Cotton tensor in terms of the Cotton-York

tensor (Cµν ≡ εµ
σρ∇σSρν with Sµν = Rµν − 1

4
gµνR.) as

Cσρ
ν = −εσρµCµν (4.8)

where

Cµν ≡
1

2
εµ
αβCαβν . (4.9)

Therefore, the 3D Bach tensor can be defined as 2

Hµν ≡
1

2
εµ
αβ∇αCβν +

1

2
εν
αβ∇αCβµ. (4.10)

The Cotton-York tensor plays the role of the Weyl tensor in 3D: namely it vanishes if

and only if the metric is conformally flat. But an interesting situation arises in 3D: un-

like the Weyl tensor (a four-index object) that does not come from the variation of an
1 Note that one uses the same letter C for 3 different tensor, the rank-2 Cotton-York tensor, rank-3 Cotton

tensor, and rank-4 Weyl tensor: the explicit indices remove any possible confusion.
2 To conform with the original definition [35] where the tensor was denoted as Hµν , we drop an overall

factor of 1/2.
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action, the Cotton-York tensor does come from the variation of the topological Chern-

Simons action and it behaves regularly: C̃µν(g̃) = Ω−2Cµν(g) under conformal trans-

formations. This says that conformally flat metrics in 3D are conformally Einstein.

So, the 3D Bach tensor vanishes for conformally Einstein metrics. It is possible that

its vanishing can be a sufficient condition, which we do not know. What is interesting

is that, even though Hµν (4.10) is symmetric and traceless (H ≡ gµνHµν = 0), it is

not divergence-free. In fact one has

∇µH
µν =

1

2
εµαβ∇µ∇αCβ

ν +
1

2
εναβ∇µ∇αCβ

µ. (4.11)

Since any tensor can be written in the form of the sum of symmetric and antisymmet-

ric tensor, let us define two operators

Sµα :=
1

2

(
∇µ∇α +∇α∇µ

)
, Aµα :=

1

2

(
∇µ∇α −∇α∇µ

)
, (4.12)

with the following properties:

∇µ∇α = Sµα + Aµα → εµαβ∇µ∇α = εµαβSµα︸ ︷︷ ︸
=0

+εµαβAµα

=
1

2
εµαβ

(
∇µ∇α −∇α∇µ

)
.

(4.13)

⇒ 1

2
εµαβ∇µ∇αCβ

ν =
1

4
εµαβ

(
∇µ∇α −∇α∇µ

)
Cβ

ν (4.14)

∇µH
µν =

1

4
εµαβ

(
∇µ∇α −∇α∇µ

)
Cβ

ν +
1

2
εναβ∇µ∇αCβ

µ

=
1

4
εµαβ

[
∇µ,∇α

]
Cβ

ν +
1

2
εναβ∇µ∇αCβ

µ.
(4.15)

Now since∇µCβ
µ = 0

∇µ∇αCβ
µ =

[
∇µ,∇α

]
Cβ

µ +∇α∇µCβ
µ︸ ︷︷ ︸

=0

=
[
∇µ,∇α

]
Cβ

µ, (4.16)

⇒ ∇µH
µν =

1

4
εµαβ

[
∇µ,∇α

]
Cβ

ν︸ ︷︷ ︸
I

+
1

2
εναβ

[
∇µ,∇α

]
Cβ

µ︸ ︷︷ ︸
II

. (4.17)

I : εµαβ
[
∇µ,∇α

]
Cβ

ν = εµαβ
(
Rµα

ν
λCβ

λ +Rµαβ
λCλ

ν
)
, εµαβRµαβ

λ = 0. (4.18)
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We use the 3-dimensional identity

Rλµνκ = gλνRµκ − gλκRµν − gµνRλκ + gµκRλν −
R

2

(
gλνgµκ − gλκgµν

)
, (4.19)

to get

⇒ 1

4
εµαβ

[
∇µ,∇α

]
Cβ

ν =
1

2
εναβRαλCβ

λ. (4.20)

The second term in (4.17) can be written as

II : εναβ
[
∇µ,∇α

]
Cβ

µ = εναβ
(
Rµα

µ
λCβ

λ +Rµαβ
λCλ

µ
)

= εναβRαλCβ
λ + εναβRµαβ

λCλ
µ,

(4.21)

since

εναβRµαβ
λCλ

µ = 0, (4.22)

one has

⇒ 1

2
εναβ

[
∇µ,∇α

]
Cβ

µ =
1

2
εναβRαλCβ

λ. (4.23)

Therefore, the divergence of the Bach tensor does not vanish:

∇µH
µν = εναβRα

λCβλ 6= 0, (4.24)

but it vanishes for Einstein metrics and/or conformally flat or Einstein metrics. This

also says that, the 3D Bach tensor cannot come from the variation of an action.

Bianchi identities are related to the diffeomorphism invariance of the action, there-

fore let us examine this issue. Consider an action under the infinitesimal coordinate

transformation xα′ = xα − ξα(x)

S =

∫
dnx
√
−g(x)L(g(x), ∂g(x), . . . ), (4.25)

where g denotes the metric tensor field.

S ′ =

∫
dnx′

√
−g′(x′)L(g′(x′), ∂′g′(x′), . . . )

=

∫
dnx
√
−g′(x)L(g′(x), ∂′g′(x), . . . ),

(4.26)

where in the second equality we relabelled x′ to x. The variation of the action with

respect to the metric yields

δS = S ′ − S =

∫
dnx

δ

δgµν
(
√
−gL)δgµν =

∫
dnx
√
−gΦµνδg

µν = 0. (4.27)

43



Now consider the particular variation corresponding to the infinitesimal diffeomor-

phisms, then one has

δgµν = ∇µξν +∇νξµ. (4.28)

Plugging this expression in (4.27) one has

δS =

∫
dnx
√
−gΦµν(∇µξν +∇νξµ)

=

∫
dnx
√
−g2Φµν∇µξν

= 2

∫
dnx
√
−g∇µ(Φµνξ

ν)︸ ︷︷ ︸
Boundary term=0

−2

∫
dnx
√
−g(∇µΦµν)ξ

ν = 0.

(4.29)

Note that we assumed variations that vanish rapidly, or so called compactly supported

variations. This gives us a desired result that the variation of the diffeomorphism

invariant action yields a divergence free field equations, ∇µΦµν = 0, for all metrics.

We have not used the field equations to derive this result.

4.2 Generalization of 3D Bach Tensor

Let us construct generalization of the 3D Bach tensor (4.10) to define on-shell con-

served theories. Consider a 2-tensor Eµν that comes from the variation of an action

such that it obeys the Bianchi identity ∇µEµν = 0; and assume that we have a sym-

metric 2-tensor Φµν that does not come from the variation of an action and hence does

not obey the Bianchi identity ∇µΦµν 6= 0. Now, consider the following potentially

viable on-shell consistent equations

Eµν +
1

µ
εµ
αβ∇αΦβν +

k

µ2
εµ
αβεν

σρΦασΦβρ = 0, (4.30)

with µ and k free parameters at this stage, but as we shall see, k will be fixed from

consistency. One can certainly add more powers of Φµν but, as we shall comment

later, these do not lead to consistent theories. Inspired by the construction of MMG,

this form of the field equations was first introduced in [43], where the authors chose

Φµν = Cµν to obtain Exotic Massive Gravity (EMG). The middle term is a general-

ization of the Bach tensor, while the last term is a generalization of the J tensor. The

first and the third terms are symmetric under the interchange of indices µ and ν. The
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second one is symmetric only if

∇σΦ = ∇αΦσ
α, (4.31)

which follows from

εµνσεµ
αβ∇αΦβν = −

(
gναgσβ − gνβgσα

)
∇αΦβν

= −∇νΦν
σ +∇σφ = 0 → ∇σφ = ∇νΦν

σ
(4.32)

where Φ ≡ gµνΦµν . This is the first condition on the theory. Another condition comes

from the vanishing of the covariant divergence of the field equations

∇ν

(
Eµν +

1

µ
εµαβ∇αΦβ

ν +
k

µ2
εµαβενσρΦασΦβρ

)
= 0, (4.33)

which explicitly reads

⇒ 1

µ
εµαβ∇ν∇αΦβ

ν︸ ︷︷ ︸
1

+
k

µ2
εµαβενσρ

(
Φασ∇νΦβρ︸ ︷︷ ︸

2

+∇νΦασΦβρ︸ ︷︷ ︸
3

)
= 0. (4.34)

Using the identities;

[
∇ν ,∇α

]
Φβ

ν = ∇ν∇αΦβ
ν −∇α∇νΦβ

ν (4.35)

[
∇ν ,∇α

]
Φβ

ν = Rναβ
λΦλ

ν +Rνα
ν
λΦβ

λ, (4.36)

let us calculate each term separately

1 : εµαβ
[
∇ν ,∇α

]
Φβ

ν + εµαβ∇α∇νΦβ
ν

= εµαβ
(
Rναβ

λΦλ
ν +Rνα

ν
λΦβ

λ
)

+ εµαβ∇α∇βΦ︸ ︷︷ ︸
=0

= εµαβRναβ
λΦλ

ν + εµαβRνα
ν
λΦβ

λ

= εµαβRαλΦβ
λ. (4.37)

note that;

εµαβRναβ
λΦλ

ν = εµαβ
[
gνβRα

λ − δνλRαβ + δα
λRνβ − gαβRν

λ

− R

2

(
gνβδα

λ + δν
λgαβ

)]
Φλ

ν

= εµαβ
(
RανΦβ

ν +RβνΦα
ν
)

= 0

(4.38)
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The second and the third term are identical,

εµαβενσρΦασ∇νΦβρ = εµαβενσρ∇νΦασΦβρ. (4.39)

So we need to calculate;

2k

µ2
εµαβενσρΦασ∇νΦβρ =

2k

µ2
εµαβΦασ ε

νσρ∇νΦβρ︸ ︷︷ ︸
−Cβσ

. (4.40)

To proceed further, we need to use the field equations. So here is what we get;

∇ν

(
Eµν +

1

µ
εµαβ∇αΦβ

ν +
k

µ2
εµαβενσρΦασΦβρ

)
=

1

µ
εµαβRα

λΦβλ −
2k

µ2
εµαβΦασCβ

σ

=
1

µ
εµαβΦβλ

[
Rα

λ +
2k

µ
Cα

λ

]
6= 0.

(4.41)

∇ν

(
Eµν +

1

µ
εµαβ∇αΦβν+

k

µ2
εµαβενσρΦασΦβρ

)
=

1

µ
εµαβΦβλ

(
Rα

λ +
2k

µ
εα

βγ∇βΦγ
λ

)
.

(4.42)

Clearly this expression is not generically zero and the theory is generically inconsis-

tent. But the explicit expression tells us that we must include Einstein’s gravity in

the Eµν tensor since in (4.42) the Ricci tensor appears. But the Ricci tensor is not

divergence-free, so in Eµν we must have the Einstein tensor Gµν , in order to have any

hope of constructing an on-shell consistent theory; hence, we choose

Eµν ≡ Rµν −
1

2
gµνR + Λ0gµν . (4.43)

Therefore our theory reads

Eµν +
1

µ
Cµν +

k

µ2
Lµν = 0, (4.44)

where Cµν is the generalized Cotton tensor given as Cµν = εµαβ∇αΦβ
ν and the L−

tensor is given Lµν = εµαβενσρΦασΦβρ. From (4.30) we have

⇒ Rα
λ =

1

2
δα

λR− Λδα
λ − 1

µ
Cα

λ − k

µ2
Lα

λ. (4.45)
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Inserting this result into the equation (4.41) yields

∇ν

[
Eµν+ 1

µ
Cµν +

k

µ2
Lµν
]

=
1

µ
εµαβΦβλ

[
1

2
δα

λR− Λδα
λ − 1

µ
Cα

λ − k

µ2
Lα

λ +
2k

µ
Cα

λ

]
.

(4.46)

The first two terms vanish identically. The remaining terms are inhomogeneous in the

powers µ, hence separate powers must vanish separately, which leads to k = 1
2

for

the Cotton generalized terms to vanish. Then one has

∇ν

[
Eµν +

1

µ
Cµν +

k

µ2
Lµν
]

= − k

µ2
εµαβΦβλLα

λ. (4.47)

We must check whether εµαβΦβλLα
λ vanishes or not straightforward

⇒ εµαβΦβλLα
λ = εµαβΦβλεα

σρελκγΦσκΦργ = 0, (4.48)

due to symmetry. Now we get the on-shell consistent theory (that is called a third way

consistent 3D gravity) with the field equations explicitly given as

Rµν −
1

2
gµνR + Λ0gµν +

1

µ
εµ
αβ∇αΦβν +

1

2µ2
εµ
αβεν

σρΦασΦβρ = 0, (4.49)

with any Φµν = Φνµ satisfying ∇µΦµ
ν = ∇νΦ, is consistent. This is the main

equation that we shall study in detail below.

The next obvious question is how to find a 2-tensor Φµν that satisfies the desired

properties. This is also remarkably simple to answer: consider any diffeomorphism

invariant action.

I =

∫
d3x
√
−gL, (4.50)

vary it with respect to the metric to get a 2-tensor after dropping the boundary terms

δgI =

∫
d3xΨµνδg

µν , (4.51)

where we called this 2-tensor to be Ψµν . This is still not the Φµν that we are searching

for even though, obviously it is a candidate if it is trace-free. But we can build Φµν

from Ψµν as follows. Let p be a constant, then

Φµν ≡ Ψµν + pgµνΨ , ∇µΨµν = 0, Ψ = gµνΨ
µν
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gµνΦ
µν = Φ = Ψ + 3pΨ → Ψ =

1

1 + 3p
Φ (4.52)

We already observe that∇µΦµν = ∇νΦ, so

∇µΦµν = ∇νΦ = p∇νΨ, → ∇νΦ =
p

1 + 3p
∇νΦ

⇒ p

1 + 3p
= 1 → p = −1

2
. (4.53)

and then one can choose [43]

Φµν := Ψµν −
1

2
gµνΨ , Ψ = gµνΨµν , (4.54)

which satisfies the desired property ∇σΦ = ∇αΦσ
α. Using the Ψµν tensor, we can

recast (4.49) as

Eµν :=Rµν −
1

2
gµνR + Λ0gµν +

1

µ
εµ
αβ∇α

(
Ψβν −

1

2
gβνΨ

)
+

1

2µ2

(
gµν
(
Ψ2
αβ −

3

4
Ψ2
)

+ ΨµνΨ− 2ΨµαΨν
α

)
= 0.

(4.55)

So the summary of the above discussion is that we can deform Einstein’s gravity

with any covariantly conserved Ψµν in such a way that we get a nontrivial on-shell-

consistent theory. Let us stress that, even though∇µΨµν = 0, we only have∇µE
µν =

0. As the "Bianchi identity" is not automatically satisfied, this theory does not have a

variational formulation in terms of the metric only.

As we noted above, we could ask if further deformations of (4.49) or (4.55) which

powers as O(Φ3), O(Φ4) or more are possible. Namely, could they lead to on-shell

consistent theories. In this most general formulation, we have not studied this prob-

lem but the answer seems to be this is unlikely because, in the simpler setting of

MMG, with Φµν = Sµν , it was shown in [42] that no further cubic or quadric or more

deformation is possible. Moreover, it was also shown in that work that the second co-

variant divergence of the MMG field equations do not vanish automatically but vanish

on-shell only. This is an other requirement for consistency.

The above discussion has been general, next we provide some examples of these

theories by choosing the Ψµν tensor from some well studied actions.
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4.3 Ψµν from Quadratic Gravity

On-shell consistency of the theory is certainly not a sufficient condition; keeping a

possible quantum version of the theory in mind, one still needs to understand the spec-

trum (particle content) of the theory about its possible maximally symmetric vacua. In

particular to emulate the four dimensional gravity, which is no spin-0 modes, we shall

demand that in the spectrum of the theory, there are only massive spin-2 particles. To

this end let us consider the generic quadratic action

I =
1

16πG

∫
d3x
√
−g
(
σR + αR2 + βR2

µν

)
, (4.56)

whose variation yields

δI =
1

16πG

∫
d3x
√
−gΨµν δg

µν , (4.57)

where [44]

Ψµν =σGµν + α

(
2RRµν −

1

2
gµνR

2 + 2gµν�R− 2∇µ∇νR

)
+ β

(
3

2
gµνRρσR

ρσ − 4Rµ
ρRνρ +�Rµν

+
1

2
gµν�R−∇µ∇νR + 3RRµν − gµνR2

)
.

(4.58)

Since it is derived from the variation of an action, the tensor Ψµν is symmetric, co-

variantly conserved, and therefore yields consistent field equations. We now consider

the linearization around the AdS3 spacetime as

gµν = ḡµν + hµν , (4.59)

where the background AdS3 metric satisfies

R̄µνρσ =Λ
(
ḡµρḡνσ − ḡµσḡνρ

)
, R̄µν = 2Λḡµν ,

R̄ = 6Λ, Ḡµν = −Λḡµν ,
(4.60)

and the tensor hµν describes the perturbations around the AdS3 background. The

linearized versions of the Ricci tensor, Ricci scalar and the cosmological Einstein
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tensor are given, respectively, by 3

RL
µν = ∇̄ρ∇̄(µhν)ρ −

1

2
�̄hµν −

1

2
∇̄µ∇̄νh,

RL = −�̄h+ ∇̄ρ∇̄σhρσ − 2Λh,

Gµν ≡ (Gµν + Λgµν)
L = RL

µν −
1

2
ḡµνR

L − 2Λhµν .

(4.61)

Under the linearization (4.59), the background value of the tensor Ψµν is given by

Ψ̄µν = aḡµν , a = −Λσ + 2Λ2
(
3α + β

)
, (4.62)

and its linearization yields

ΨL
µν = σ̄Gµν +

(
2α + β

)(
ḡµν�̄− ∇̄µ∇̄ν + 2Λḡµν

)
RL

+β

(
�̄Gµν − ΛḡµνR

L

)
+ ahµν , (4.63)

with

σ̄ = σ + 12Λα + 2Λβ. (4.64)

The linearization of its trace ΨL ≡ (gµνΨµν)
L, can be computed as

ΨL =

(
4α +

3

2
β

)
�̄RL +

(
− σ

2
+ 2Λ

(
3α + β

))
RL. (4.65)

We have to constrain the parameters (σ, α, β) in such a way that there are only massive

spin-2 exitations in the theory. We shall do that discussion below. But before that, let

us note an important isuue: The quadratic theory we discussed here captures a lot of

the physics of more general theories, the so called f(Ricci) theories. In fact in [29]

I =

∫
d3x
√
−g
[
σ̃
(
R− 2λ̃0

)
+ α̃R2 + β̃R2

µν

+ a1R
µ
νR

ν
ρR

ρ
µ + a2RR

2
µν + a3R

3

]
,

(4.66)

and the quadratic action

I =

∫
d3x
√
−g
[
σ (R− 2λ0) + αR2 + βR2

ab

]
, (4.67)

3 Derivations of some of these expressions are highly lengthy, hence we do not depict them here, but simply
quot the final results [44]

50



have the same linearized equations if their parameters are related by the following

equations [29]
σ = σ̃ − 12Λ2 (a1 + 3a2 + 9a3) ,

λ0 =
σ̃

σ
λ̃0 + Λ

(
1− σ̃

σ

)
,

α = α̃ + 2Λ (2a2 + 9a3) ,

β = β̃ + 6Λ (a1 + a2) .

(4.68)

Introduction of a cosmological constant λ0 is in the equivalent quadratic action (4.67),

yields a term proportional to the metric tensor in Ψµν (4.59), which as a result shifts

the parameter Λ0 in the field equations (4.55). The change in the parameter Λ0 is not

of much importance in our subsequent discussion.

4.4 Bachian Gravity

To remove the possible spin-0 modes, let us study the linearized equation. For this

purpose, we consider the trace of the field equations

R− 6Λ0 +
1

µ2

(
Φ2 − ΦµνΦ

µν

)
= 0, (4.69)

which, in terms of the Ψµν tensor,

Φµν = Ψµν −
1

2
gµνΨ , Φ = −1

2
Ψ

Φ2
µν = ΦµνΦ

µν = Ψ2
µν −

1

4
Ψ2

can be recast as

R− 6Λ0 +
1

µ2

(
1

2
Ψ2 −Ψ2

µν

)
= 0. (4.70)

First of all let us find the first order linearization of the trace of the field equation;

gµν = ḡµν + hµν and gµν = ḡµν − hµν , around the background metric ḡµν , and small

perturbation hµν :

δΨ2 = 2ΨδΨ ⇒ (Ψ2)L = 2Ψ̄ΨL, (4.71)

δΨ2
µν = δ(ΨµνΨ

µν) = δΨµνΨ
µν + ΨµνδΨ

µν . (4.72)
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Here we need to calculate δΨµν ;

δΨµν = δ
(
gµαgνβΨαβ

)
= δgµαΨν

α + δgνβΨµ
β + gµαgνβδΨαβ,

⇒ δΨ2
µν = 2δΨµνΨ

µν + 2ΨµνΨ
ν
αδg

µα,

(
Ψ2
µν

)L
= 2Ψ̄µν(Ψµν)

L − 2Ψ̄µνΨ̄
ν
αh

µα. (4.73)

So the linearized trace equation becomes;

RL +
1

µ2

(
Ψ̄ΨL + 2Ψ̄µνΨ̄

µ
αh

να − 2Ψ̄µνΨL
µν

)
= 0, (4.74)

where

Ψ̄µν = aḡµν ⇒ Ψ̄ = 3a,

RL +
1

µ2

(
3aΨL + 2a2h− 2aḡµνΨL

µν

)
= 0. (4.75)

Now, we are suppose to find the terms, ΨL and ḡµνΨL
µν which can be done as follows

δΨ = δ
(
gµνΨµν

)
= δgµνΨµν + gµνδΨµν ,

ΨL = −hµνΨ̄µν + ḡµνΨL
µν ,

Ψ̄µν = aḡµν ⇒ −hµνΨ̄µν = −hµνaḡµν = −ah

so one has

ΨL = −ah+ ḡµνΨL
µν ⇒ ḡµνΨL

µν = ΨL + ah

yielding

⇒ RL +
1

µ2

(
3aΨL + 2a2h− 2a

(
ΨL + ah

))
= RL +

a

µ2
ΨL = 0. (4.76)

Linearization of the ΨL
µν is given by;

ΨL
µν = σ̄GLµν +

(
2α + β

)(
ḡµν�̄− ∇̄µ∇̄ν + 2Λḡµν

)
RL

+β

(
�̄GLµν − ΛḡµνR

L

)
+ hµν

(
− Λσ + 2Λ2

(
3α + β

))
,
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with

σ̄ = σ + 12Λα + 2λβ , a = −Λσ + 2Λ2
(
3α + β

)
ḡµνΨL

µν = σ̄ḡµνGLµν +
(
2α + β

)(
2�̄+ 6Λ

)
RL

+β

(
�̄(ḡµνGLµν)− 3ΛRL

)
+ ah.

Recalling

GLµν = RL
µν −

1

2
ḡµνR

L − 2Λhµν ,

δR = δ
(
gµνRµν

)
= δgµνRµν + gµνδRµν

RL = −hµνR̄µν + ḡµνRL
µν = −2Λh+ ḡµνRL

µν → ḡµνRL
µν = RL + 2Λh (4.77)

ḡµνGLµν = ḡµνRL
µν −

3

2
RL − 2Λh = RL + 2Λh− 3

2
RL − 2Λh = −1

2
RL

ḡµνΨL
µν = σ̄ḡµνGLµν +

(
2α + β

)(
2�̄+ 6Λ

)
RL

+ β

(
�̄(ḡµνGLµν)− 3ΛRL

)
+ ah

= − σ̄
2
RL +

(
2α + β

)(
2�̄+ 6Λ

)
RL

+ β
(
− 1

2
�̄RL − 3ΛRL

)
+ ah

= −1

2

(
σ + 12Λα + 2Λβ

)
RL +

(
2α + β

)(
2�̄+ 6Λ

)
RL

+ β
(
− 1

2
�̄RL − 3ΛRL

)
+ ah.

(4.78)

Finally we have

ΨL = −ah+ ḡµνΨL
µν

= −1

2

(
σ + 12Λα + 2Λβ

)
RL +

(
2α + β

)(
2�̄+ 6Λ

)
RL

+ β
(
− 1

2
�̄RL − 3ΛRL

)
=

(
4α +

3

2
β

)
�̄RL +

(
− σ

2
+ 2Λ

(
3α + β

))
RL,

(4.79)

and the linearized trace equation reads

RL +
a

µ2

[(
4α +

3

2
β

)
�̄RL +

(
− σ

2
+ 2Λ

(
3α + β

))
RL

]
= 0. (4.80)
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Recalling that (4.61) RL ∼ �̄h, this equation is already a fourth order wave equation

of the form with the operator

(c1�̄
2 + c2�̄+ c3)h = 0. (4.81)

Of course in this form it will have spin-0 modes that we would like to avoid unless

we set c1 = 0 and c2 = 0. Setting the coefficient of the �̄RL term to zero, yields two

possibilities:

4α +
3

2
β = 0, or a = Λ

(
− σ + 6Λα + 2Λβ

)
= 0. (4.82)

In both cases, we have RL = 0, and as a result we can choose the compatible

transverse-traceless (TT) gauge (∇̄µhµν = 0 = h).

Having studied the linearization of the trace equation and the constraints coming from

the absence of the scalar mode, we can now linearize the full field equations (4.49)

to find the particle content of the theory and their masses. The background value the

tensor Φµν is given as

Φ̄µν = −a
2
ḡµν , (4.83)

and its linearization yields

ΦL
µν = ΨL

µν −
1

2
hµνΨ̄−

1

2
ḡµνΨ

L. (4.84)

The vacuum equation determining the effective cosmological constants is

Λ0 − Λ− a2

4µ2
= 0, (4.85)

where, of course, a is given in (4.62). The linearization of the field equations can be

obtained as follows

Rµν −
1

2
gµνR + Λ0gµν +

1

µ
εµ
αβ∇αΦβν +

1

2µ2
εµ
αβεν

ρσΦαρΦβσ = 0 (4.86)

with any ∇µΦν
µ = ∇νΦ and Φµν = Φνµ.

Φµν = Ψµν −
1

2
gµνΨ , Ψ = gµνΨµν (4.87)

Now, study the linearization of each term in the field eqautions:

εµ
αβεν

ρσΦαρΦβσ =
(
− gµνgαρgβσ + gµνg

ασgβρ
)
ΦαρΦβσ

+
(
− gµρgασgνβ + gµ

ρgβσgν
α
)
ΦαρΦβσ

+
(
− gναgβρgµσ + gν

βgαρgµ
σ
)
ΦαρΦβσ
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⇒ εµ
αβεν

ρσΦαρΦβσ = −gµν
(
Φ2 − Φ2

αβ

)
+ 2ΦµνΦ− 2ΦµαΦν

α.

gµνεµ
αβεν

ρσΦαρΦβσ = εµ
αβεµρσΦαρΦβσ

⇒ εµ
αβεµρσΦαρΦβσ = Φ2

αβ − Φ2. (4.88)

We list the linearization of the relevant tensors here:

δ
(
ΦαβΦαβ

)
= δ
(
gµαgνβΦαβΦµν

)
= 2ΦαβδΦαβ + 2δgµαΦαβΦµ

β

δ
(
Φµ

ρΦνρ

)
= δ
(
gαρΦµαΦνρ

)
= δgαρΦµαΦνρ + Φν

αδΦµα + Φµ
ρδΦνρ

δ
(
εµ
αβεν

ρσΦαρΦβσ

)
= −

(
Φ2 − Φ2

αβ

)
δgµν − gµν

(
2ΦδΦ− δ

(
ΦαβΦαβ

))
+ 2ΦδΦµν + 2ΦµνδΦ− 2δ

(
Φµ

αΦνα

)
.

(
εµ
αβεν

ρσΦαρΦβσ

)L
=−

(
Φ2 − Φ2

αβ

)
hµν

− ḡµν
(
2Φ̄ΦL − 2Φ̄αβΦL

αβ + 2Φ̄αβΦ̄µ
βhµα

)
+ 2Φ̄ΦL

µν + 2Φ̄µνΦ
L + 2hαρΦ̄µαΦ̄νρ

− 2Φ̄ν
αΦL

µα − 2Φ̄µ
ρΦL

νρ.

(4.89)

We now plug the background tensors given

→ Φ̄µν = cḡµν , Φ̄ = 3c , Φ̄µνΦ̄
µν = 3c2, (4.90)

to arrive at (
εµ
αβεν

ρσΦαρΦβσ

)L
=2cΦL

µν − 4cḡµνΦ
L − 4c2hµν

− 2c2ḡµνh+ 2cḡµν ḡ
αβΦL

αβ

δΦ = δ(gαβΦαβ) = δgαβΦαβ + gαβδΦαβ

ΦL = −hαβΦ̄αβ + ḡαβΦL
αβ, ΦL = −ch+ ḡαβΦL

αβ,

ḡαβΦL
αβ = ΦL + ch.

(4.91)
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Now using ḡαβΦL
αβ = ΦL + ch,

(
εµ
αβεν

ρσΦαρΦβσ

)L the quadratic terms becomes(
εµ
αβεν

ρσΦαρΦβσ

)L
= 2cΦL

µν − 2cḡµνΦ
L − 4c2hµν . (4.92)

We can move on the linearization of the generalized Cotton term. Linearization of the

epsilon tensor reads

δεµνρ = δ
( 1√
−g

εµνρ
)

= −1

2
εµνρgαβδgαβ, (4.93)

hence

(εµνρ)L = −1

2
ε̄µνρh. (4.94)

(
εµ
αβ∇αΦβν

)L
=
(
gµλε

λαβ∇αΦβν

)L
,

(
gµλε

λαβ∇αΦβν

)L
=hµλε̄

λαβ∇̄αΦ̄βν −
1

2
ḡµλε̄

λαβh∇̄αΦ̄βν

+ ε̄µ
αβ(∇̄αΦ̄βν)

L,

(
εµ
αβ∇αΦβν

)L
=hµλε̄

λαβ∇̄αΦ̄βν −
1

2
ḡµλε̄

λαβh∇̄αΦ̄βν

+ ε̄µ
αβ
[
∇̄αΦL

βν − (Γραβ)LΦ̄ρν − (Γραν)
LΦ̄βρ

] (4.95)

∇̄αΦ̄βν = 0 , since Φ̄βν = cḡβν(
εµ
αβ∇αΦβν

)L
= ε̄µ

αβ∇̄αΦL
βν − ε̄µαβ(Γλαν)

LΦ̄βλ. (4.96)

We can easily write everything in terms of the Ψ− tensor. Φµν = Ψµν − 1
2
gµνΨ ,

Φ = −1
2
Ψ , Φ̄µν = cḡµν , Φ̄ = 3c and Ψ̄ = −6c.

ΦL
µν = ΨL

µν −
1

2
hµνΨ̄−

1

2
ḡµνΨ

L, (4.97)

(
εµ
αβεν

ρσΦαρΦβσ

)L
= 2c

(
ΨL
µν −

1

2
hµνΨ̄−

1

2
ḡµνΨ

L
)

− 2cḡµν
(
− 1

2
ΨL
)
− 4c2hµν

= 2c
(
ΨL
µν + chµν

)
.

(4.98)

We can now collect all the pieces together

GLµν + (Λ0 − Λ)hµν +
1

µ
ε̄µ
αβ∇̄αΦL

βν −
1

µ
ε̄µ
αβ(Γλαν)

LΦ̄βλ

+
c

µ2

(
ΨL
µν + chµν

)
= 0,

(4.99)
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where

ε̄µ
αβ(Γλαν)

LΦ̄βλ = ε̄µ
αβ(Γλαν)

Lcḡβλ = cε̄µ
α
β(Γβαν)

L

= cε̄µ
α
β

1

2
ḡβλ
(
∇̄αhλν + ∇̄νhαλ − ∇̄hαν

)
=
c

2
ε̄µ
αλ
(
∇̄αhλν − ∇̄hαν

)
= cε̄µ

αλ∇̄αhλν , (4.100)

and

∇̄αΦL
βν = ∇̄α

(
ΨL
βν + 3chβν −

1

2
ḡβνΨ

L
)
. (4.101)

So finally we arrive at the linearized equation.

Gµν +

(
Λ0 − Λ +

a2

4µ2

)
hµν −

a

2µ2
ΨL
µν

+
1

µ
ε̄(µ

αβ∇̄|αΨL
β|ν) −

a

µ
ε̄(µ

αβ∇̄|αhβ|ν) = 0.

(4.102)

Here round brackets denote symmetrization with a factor of 1
2

and the vertical lines

exclude the indices inside. As it stands, this equation is highly cumbersome and so

one cannot see the excitations that it describes. We need further simplifications. We

have seen that the field equations are compatible with the transverse-traceless (TT)

guage, that is ∇̄µh
µν = 0, h = 0. So we choose this gauge which reduces ΨL

µν to

ΨL
µν = σ̄Gµν + β

(
�̄Gµν − ΛḡµνR

L

)
+ ahµν , (4.103)

plugging this to (4.102) one options a fifth-order equation in hµν :(
1− σ̄a

2µ2

)
Gµν +

σ̄

µ
ε̄µ
αβ∇̄αGβν −

βa

2µ2
�̄Gµν +

β

µ
ε̄µ
αβ∇̄α�̄Gβν = 0, (4.104)

which is a linear equation of coupled relativistic (massive) fields which we need to de-

couple. In order to identify the spin-2 modes, we introduce the mutually commuting

operators that was introduced in [18](
DL/R

)
µ
ν := δµ

ν ± `ε̄µαν∇̄α,

(Dpi) µν := δµ
ν +

1

pi
ε̄µ
αν∇̄α, i = 1, 2, 3,

(4.105)

where pi are to be determined below. In the TT gauge, we have ∇̄ρ∇̄µhρν = − 3
`2
hµν

and the linearized cosmological Einstein tensor can be written as

Gµν = −1

2

(
�̄+

2

`2

)
hµν =

1

2`2

(
DLDRh

)
µν
. (4.106)
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For the remaining three operators, one can show the following identity(
Dp1Dp2Dp3h

)
µν

=hµν +

(
1

p1

+
1

p2

+
1

p3

)
ε̄µ
αβ∇̄αhβν

+
1

p1p2p3

ε̄µ
αβ∇̄α

(
�̄+

3

`2

)
hβν

+

(
1

p1p2

+
1

p1p3

+
1

p2p3

)(
�̄+

3

`2

)
hµν .

(4.107)

Since all the operators mutually commute, it is now easy to apply all of them to hµν ,

which yields

1

2`2

(
DLDRDp1Dp2Dp3h

)
µν

=Gµν +

(
1

p1

+
1

p2

+
1

p3

)
ε̄µ
αβ∇̄αGβν

+
1

p1p2p3

ε̄µ
αβ∇̄α

(
�̄+

3

`2

)
Gβν

+

(
1

p1p2

+
1

p1p3

+
1

p2p3

)(
�̄+

3

`2

)
Gµν .

(4.108)

By inspection, one can see that the linearized equations (4.104) can be written in this

form if the parameters (p1, p2, p3) are chosen such that

p1 + p2 + p3 = − a

2µ
,

p1p2 + p1p3 + p2p3 =
σ̄

β
− 3

`2
,

p1p2p3 =
2µ2 − σ̄a

2βµ
+

3a

2µ`2
.

(4.109)

For generic values of the parameters, there is one set of real roots for (p1, p2, p3). One

can solve these equations but the explicit solution is not particularly useful as the

expressions are lengthy. Since the operators defined in (4.105) commute4, the most

general solution for the equation (4.108) can be written as a sum of all solutions

hµν = hLµν + hRµν + hm1
µν + hm2

µν + hm3
µν , (4.110)

where

(DLhL)µν = 0, (DRhR)µν = 0, (Dpihmi)µν = 0, i = 1, 2, 3. (4.111)

Since
(
DLDRh

)
µν

= 0 implies Gµν = 0, hLµν and hRµν are the two massless excitations

in the theory. But these are the modes that already exist in Einstein’s theory, so they
4 Note that when two linear operators D1 and D2 degenerate, namely, D1D2φ = 0 → D2

1φ = 0, the most
general solution can be obtained as D1φ1 = 0,D1φ2 = φ1, as φ = φ1 + φ2.
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are pure gauge modes in the bulk. With the help of the following equation(
D−pDph

)
µν

= − 1

p2

(
�̄+

3

`2
− p2

)
hµν , (4.112)

it is easy to see that the remaining solutions describe massive excitations with the

masses

m2
i = p2

i −
1

`2
. (4.113)

Since we have a real set of solutions for (p1, p2, p3), the Breitenlohner-Freedman

bound m2
i ≥ − 1

`2
[45] is automatically satisfied and we have three nontachyonic

massive excitations.

The good news it that we have eliminated the massive spin-0 mode and retain only the

massive spin-2 modes. But this does not yet say that the remaining modes are valid

from the point of quantum theory. In fact it turns out that one cannot avoid ghosts in

this construction.

4.5 Conserved Charges

Since we have the linearized equations at our disposal and since the theory admits the

BTZ blackhole metric (the massive, rotating solution which is an Einstein space), we

can calculate the conserved charges of this metric (or any other blackhole solution)

in the Bachian theory. For this purpose, one still needs to develop a lot of machinery

which in itself would constitute another topic which is beyond the scope of this thesis.

So here we basically review briefly the Killing charge construction of Abbott-Deser

[46] as generated to the general gravity theories by Deser-Tekin [44, 47]. For more

details on the conserved charges, see the recent review of the Abbott-Deser-Tekin

construction [48]

Having identified the spin-2 modes in the theory, we now compute the energy and

the angular momentum of the BTZ black hole by using the Abbott-Deser-Tekin tech-

nique [46, 47]. For a spacetime metric gµν having asymptotically the same Killing

symmetries as the background space, one can define ”conserved charges” from the

matter coupled linearized field equations symbolically read

O(g)µναβh
αβ = κTµν . (4.114)
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For each background Killing vector ξ̄µ, satisfying ∇̄(µξν) = 0, a conserved current

can be formed as √
−g∇µ

(
ξνT

µν
)

= ∂µ

(√
−gξνT µν

)
= 0. (4.115)

By applying Stokes’ theorem, one obtains an expression for the conserved global

charges

Q(ξ) =

∫
M
dn−1x

√
−gξνT 0ν =

∫
Σ

dΣiF0i, (4.116)

where M is the (n − 1)-dimensional spatial manifold, Σ is its boundary and the

antisymmetric tensor Fµν satisfies T µνξν = ∇νFµν . Charge expressions for the G,

ε∇G and�G terms in the linearized field equations (4.104) were obtained in [46], [47]

and [49] respectively. For the ε∇�G term, one can make use of the equation

2ξ
ν
ε̄µ
αβ∇̄α�̄Gβν =∇α

{
ε̄µαβ�Gνβξ

ν
+ ε̄ναβ �Gµβξν + ε̄µνβ�Gαβ ξν

}
+Xβ�Gµβ,

(4.117)

and the final result can be written as

Q(ξ) =
1

2πG3

∮
∂Σ

√
−ḡ dli q0i(ξ), (4.118)

where

q0i(ξ) =

(
1− σ̄a

2µ2

)
q0i

(1)(ξ) +
σ̄

2µ

[
q0i

(1)(X) + q0i
(2)(ξ)

]
− βa

2µ2
q0i

(3)(ξ) +
β

2µ

[
q0i

(3)(X) + q0i
(4)(ξ)

]
.

q0i
(1)(ξ) = ξν∇

0
hiν − ξν∇

i
h0ν + ξ

0∇i
h− ξi∇0

h

+ h0ν∇i
ξν − hiν∇

0
ξν + ξ

i∇νh
0ν − ξ0∇νh

iν + h∇0
ξ
i
,

q0i
(2)(ξ) = ε̄0iβGνβξ

ν
+ ε̄νiβG0

βξν + ε̄0νβGiβξν ,

q0i
(3)(ξ) = ξν∇

iG0ν − ξν∇
0Giν − G0ν∇i

ξν + Giν∇0
ξν ,

q0i
(4)(ξ) = ε̄0iβ�Gνβξ

ν
+ ε̄νiβ�G0

βξν + ε̄0νβ�Giβξν ,

(4.119)

and X̄β = εανβ∇αξν is also a background Killing vector.

Let us now apply the above construction to find the charges of the rotating BTZ black

hole in this theory. BTZ is locally AdS3 and hence it is a solution of the theory once

the cosmological constant is adjusted. In the usual (t, r, φ) coordinates, the metric

reads

ds2 =
(
mG3 + Λr2

)
dt2 − jdtdφ+ r2dφ2 +

dr2

−mG3 − Λr2 + j2

4r2

, (4.120)
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where the background metric is found by setting m = 0 and j = 0 as

ds2 = Λr2dt2 + r2dφ2 − dr2

Λr2
. (4.121)

In the asymptotic region, the linearized cosmological Einstein tensor vanishes Gµν =

0 and only qµi(1) terms in (4.119) contribute. Killing vectors ξ
µ

= −
(
∂
∂t

)µ and ξ
µ

=(
∂
∂φ

)µ
yield the energy and the angular momentum, respectively, as

E =
1

G3

[(
1− σ̄a

2µ2

)
m+

jΛσ̄

µ

]
, J =

1

G3

[(
1− σ̄a

2µ2

)
j − mσ̄

µ

]
(4.122)

4.6 Further Developments in Exotic Massive Gravity

Here we briefly summarize some of the further developments in exotic massive grav-

ity. One particularly interesting issue is the matter coupling of the theory. As we do

not possess a Bianchi identity matter coupling is highly non-trivial. But how consis-

tent coupling can be done was worked out [43]. The resulting equations are

Gµν +
1

µ
Cµν −

1

m2
Hµν +

1

m4
Lµν = Θµν(T ) (4.123)

where Θµν(T ) is a complicated effective "energy-momentum" tensor which is on-

shell consistent and defined by

Θµν(T ) =
λ

µ
T̂µν −

λ

m2
εµ
ρσ∇ρT̂νσ +

2λ

m4
εµ
ρσεν

λτCρλT̂στ

− λ2

m4
εµ
ρσεν

λτ T̂ρλT̂στ

(4.124)

where T̂µν = Tµν − 1
2
gµνT and ∇µT

µν = 0. Here λ is a coupling constant which

appears linearly and quadratically on the right-hand side. The Cotton, Schouten, H

and L-tensors are defined

Cµν ≡ εµ
ρσ∇ρSσν , Hµν ≡ εµ

ρσ∇ρCσν , Lµν ≡
1

2
εµ
ρσεν

λτCρλCστ (4.125)

and Sµν ≡ Rµν − 1
4
gµνR.

Recently [50] it was shown that even though the theory has a massive spin-2 ghost, it

is a causal theory. The causality proof was given using the Shapiro time delay ideas

in the presence of a shockwave geometry which is a solution to the theory.
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In [51, 52], non-trivial solutions of the exotic massive gravity have been found. In

[53], a unitary extension of the exotic massive gravity as a bigeometry has been con-

structed.
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CHAPTER 5

SYMMETRY REDUCTION VIA THE GEROCH METHOD

5.1 Reduction of the Various tensors under a Killing Symmetry

The field equations of the gravity theories discussed in the previous chapter are highly

complicated; and hence, very few solutions, usually with maximal symmetry, are

known. The existence of a symmetry can be coordinate invariantly defined by the

existence of Killing vector fields. Let us assume that there is a single Killing vector

field in the spacetime manifold (M, g), then we can ask if such a Killing vector field

can be used to define a hypersurface Σ (of codimension-one). In general, without

for the restriction such an invariantly defined Σ does not exist as a submanifold [54].

Naively this is because of the following: say G be the 1-dimensional group generated

by the assumed Killing vector field, then the invariantly defined space is the quotient

space M/G (see Appendix B for details) which in general is not a manifold, let alone

a codimension-one hypersurface. The proper conditions are summarized as a theorem

in [55] which we write here for completeness, but without proof which is beyond the

scope of the thesis. The theorem is called the quotient manifold theorem:

Theorem: Suppose G is a Lie group acting smoothly, freely and properly on the

smooth manifold M . Then the orbit space M/G is a topological manifold if dimen-

sion equal to dim(M) − dim(G) and has unique smooth structure with the property

that the quotient map π : M →M/G is a smooth submersion.

Geroch [56, 57] developped this so called projection formalism and invariant quanti-

ties needed to describe the geometry of M/G. In [54] details of this construction is

given. The invariant quantities are the twist and the norm of the Killing vector field

as well as the metric on M/G if it is a manifold.
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In this chapter, following [58], we make the first attempt of reducing the relevant

tensors, Ricci, Cotton, Jµν , Hµν under the assumption of a time-like Killing vector

field. The ensuring discussion is still complicated and gave rise to new solutions in

the core of the topologically massive gravity(TMG) [58]. We will start in this general

setting and later restrict our ansatz to the case of vanishing twist which is to be defined

below.

5.1.1 The Stationary Metric

Assuming the existence of a time-like Killing vector field K, we can choose coordi-

nates adapted to this Killing vector field such that local coordinates are x0, x1, x2 and

the Killing vector field reads

K ≡ ∂

∂x0
. (5.1)

Then the metric components gµν = gµν(x
1, x2) do not depend on x0 and the line

element reads

ds2 = gµνdx
µdxν = g00(dx0)2 + 2g0idx

0dxi + gijdx
idxj. (5.2)

Defining

ω2 = g00 , Ai =
g0i

g00

, hij = gij −
g0ig0j

g00

, (5.3)

we can recast the line element in the compact form

ds2 = ω2

[
(dx0)2 + 2

g0i

ω2
dx0dxi +

(
g0i

ω2
dxi
)2
]

+ gijdx
idxj − g0ig0j

ω4
dxidxj

= ω2

[
dx0 +

g0i

ω2

]2

+

(
gij −

g0ig0j

ω4

)
dxidxj

= ω2

(
dx0 + Aidx

i

)2

+ hijdx
idxj.

(5.4)

This will be the form that we shall employ in this chapter. Let us stress that ω2,Ai, hij

depend on x1 and x2 but not on x0. These are 6 functions that represent the symmetric

gµν with 6 independent entries.

As matrices, we have the metric and its inverse:

gµν =

 ω2 ω2Aj

ω2Ai hij + ω2AiAj

 , gµν =

 (1+ω2A2)
ω2 −Ak

−Aj hjk

 , (5.5)
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with det(gµν) = ω2 det(hij).

Note that hij is the metric of the spatial part and as such it is used for raising and

lowering of the spatial indices such as

Ai = hjiAj, hikh
kj = δji . (5.6)

5.1.2 Coordinate or Gauge Transformation

We have chosen the coordinates (x0, xi) but close inspection shows that the following

"new coordinates" leave the w2 and hij intact while change only the Ai field. This

fact can be used to simplify the equations, hence we work this out. Let (x̃0, x̃i) be the

new coordinates, then we define the coordinate transformation as:

x̃0 = x0 + T (xi) (5.7)

x̃i = xi. (5.8)

It is straightforward to see that any covariant field equation is invariant (since it is

of the form Eµν = 0) under these transformations. Notice that the metric also stays

stationary as shown below;

gµν = g̃αβ
∂x̃α

∂xµ
∂x̃β

∂xν
,

g00 = g̃00 → ω̃ = ω,

g0i =g̃00
∂T (xi)

∂xi
+ g̃0jδ

j
i

Ãi = Ai − ∂iT (xi)

gij = g̃αβ
∂x̃α

∂xi
∂x̃β

∂xj
→ hij = h̃ij. (5.9)

It can be easily seen that w2, hij and Fij = ∂iAj − ∂jAi ≡ εijΩ remain invariant.

Note that the last equation defines the scalar function Ω, and εij is a spatial tensor (not

density), defined in terms of the εij symbol as

εij =
√
hεij , ε

ij =
1√
h
εij. (5.10)
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5.1.3 Scalar Twist

Following the analogous expression in four (or higher) dimensions [59], we can define

the scalar twist of the Killing vector field as

ρ ≡ εµνλK
µ∇µKλ

KσKσ
. (5.11)

Since Kµ = (1, 0, 0), we have KσK
σ = g00 = w2 and

ρ =
ε0ijK

0∇iKj

ω2

=
ε0ijg

iµ∇µK
j

ω2
=
ε0ijg

iµΓjµ0

ω2

=
ε0ij
ω2

(gi0Γj00 + gikΓjk0).

(5.12)

To simplify the expression we need to work out the Christoffel symbols which can be

computed. We list the non-vanishing components here

Γαµν =
1

2
gαλ
(
∂µgλν + ∂νgλµ − ∂λgµν

)

Γ0
00 =

1

2
Ai∂iω

2 , Γi00 = −1

2
∂iω2, (5.13)

Γ0
i0 =

1

2

[
AiA

j∂jω
2 + ω2AjFji +

1

ω2
∂iω

2
]
, (5.14)

Γij0 =
1

2

[
ω2F j

i − Aj∂iω2
]
, (5.15)

Γ0
ij =

1

2

(
∇̂iAj + ∇̂jAi

)
+

1

2ω2

(
Aj∂iω

2 + Ai∂jω
2
)

+
1

2
Ak
(
AjAi∂kω

2 − ω2AiFjk − ω2AjFik
)
,

(5.16)

Γijk = Γ̂ijk +
1

2

(
ω2AkF j

i + ω2AjF k
i − AkAj∂iω2

)
, (5.17)

⇒ Γkij = Γ̂kij + Θk
ij, Θk

ij =
1

2

(
ω2AkF j

i + ω2AjF k
i − AkAj∂iω2

)
. (5.18)

Using the relevant connections in (5.12) and the fact that ε0ij = ωεij , we get

ρ =
1

2
ωεijF

ij (5.19)
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and since Ω = 1
2
εijF

ij , the scalar twist is related to the function Ω as

ρ = ωΩ. (5.20)

Also, let us note that

FijF
ij = 2Ω2 = 2

ρ2

ω2
, (5.21)

and

F ikF j
k =

hij

ω2
ρ2. (5.22)

It is clear from the above construction that, just like ω, the twist ρ is gauge invariant

under the transformations (5.7),(5.8).

Before calculating the Ricci tensor (Rµν), the Cotton tensor (Cµν), the Jµν and Hµν

tensors, we search for the components of these tensors if they can be written in terms

of invariant quantities ρ and ω. Under the change of coordinates, a rank (0,2) tensor

transform as

B̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
Bαβ, (5.23)

and for particular case of (5.7),(5.8), one has

B̃00 =
∂xα

∂x̃0

∂xβ

∂x̃0
Bαβ = B00, (5.24)

B̃i0 =
∂xα

∂x̃i
∂xβ

∂x̃0
Bαβ = Bi0 −

∂T

∂x̃i
B00, (5.25)

B̃ij =
∂xα

∂x̃i
∂xβ

∂x̃j
Bαβ = Bij −

∂T

∂x̃j
Bi0 +

∂T

∂x̃i
∂T

∂x̃j
B00, (5.26)

B̃i
0 =

∂x̃i

∂xα
∂xβ

∂x̃0
Bα
β = Bi

0, (5.27)

and finally

B̃ij =
∂x̃i

∂xα
∂x̃j

∂xβ
Bαβ = Bij. (5.28)

So the B00, Bi
0, Bij components are gauge invariant. This means any gauge can be

used to compute them. Also, no gauge-noninvariant object, such as Ai should appear

them.
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5.1.4 Ricci Tensor and The Scalar Curvature

As we have seen above, R00, Rj
0 and Rij are the components of the Ricci tensor that

can be written in terms of the invariant quantities ω and ρ. Let us calculate these

explicitly.

The Riemann tensor is

Rρ
σµν = ∂µΓρσν − ∂νΓρσµ + ΓρµλΓ

λ
σν − ΓρνλΓ

λ
σµ. (5.29)

So one has

R00 = Rρ
0ρ0 = Ri

0i0

= ∂iΓ
i
00 + Γii0Γ0

00 + ΓiijΓ
j
00 − Γi00Γ0

i0 − Γij0Γji0, (5.30)

which yields

R00 = −w�̂ω +
1

4
ω4FijF

ij = −ω�̂ω +
1

2
ω2ρ2, (5.31)

where �̂ := hij∇̂i∇̂j and ∇̂i is the covariant derivative compatible with the spatial

metric hij .

Next we have

Ri0 = Rλ
iλ0 = Rj

ij0.

= ∂jΓ
j
i0 + Γjj0Γ0

i0 + ΓjjkΓ
k
i0 − Γj00Γ0

ij − Γj0kΓ
k
ij, (5.32)

which reads

Ri0 = −1

2
Ai�̂ω

2 +
3

4
Fij∇̂jω2 +

1

2
ω2∇̂jFij

+
1

4
ω−2∇̂jω

2∇̂jω2 +
1

4
ω4AiFjkF

jk

= −ωAi�̂ω +
3

4
Fij∇̂jω2 +

1

2
ω2∇̂jFij +

1

4
ω4AiFjkF

jk

= −ωAi�̂ω +
1

2
Aiω

2ρ2 +
εik
2ω
∂k(ω2ρ),

(5.33)

as expected gauge invariant parts (Ai) appear for this component. We need to raise

the spatial index to get

Rj
0 = gjαRα0 = gj0R00 + gjiRi0, (5.34)
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which reads

Rj
0 = gjµRµ0 =

3

2
w∇̂kωF

jk +
1

2
ω2∇̂kF

jk =
εjk

2ω
∂k(ω

2ρ), (5.35)

which is gauge invariant and compared to (5.33) the latter expression is simpler. Next

we have

Rij = Rλ
iλj = Rk

ikj +R0
i0j, (5.36)

and we need to compute the following components

R0
i0j = −∂jΓ0

i0 + Γ0
00Γ0

ij + Γ0
0kΓ

k
ij − Γ0

j0Γ0
i0 − Γ0

jkΓ
k
i0, (5.37)

Rk
ikj = ∂kΓ

k
ij − ∂jΓkik + Γkk0Γ0

ij + ΓkklΓ
l
ij − Γkj0Γ0

ik − ΓkjlΓ
l
ik, (5.38)

After some long calculations, we arrive at

Rij = R̂ij − ωAiAj�̂ω −
1

ω
∇̂j∇̂iω +

3

4
AiFjk∇̂kω2

+
3

4
AjFik∇̂kω2 +

1

2
ω2Aj∇̂kFi

k +
1

2
ω2Ai∇̂kFj

k

− 1

2
ω2Fi

kFjk +
1

4
ω4AiAjFklF

kl

=
1

2
R̂hij − ωAiAj�̂ω −

1

ω
∇̂j∇̂iω + Ai

εjk
2ω
∂k(ω2ρ)

+ Aj
εik
2ω
∂k(ω2ρ)− 1

2
hijρ

2 +
1

2
AiAjω

2ρ2,

(5.39)

where again hij refers to the 2 dimensional spatial metric. Raising the two indices up,

we get

Rij = giµgjνRµν = R̂ij − 1

ω
∇̂i∇̂jω − 1

2
ω2F ikF j

k

=
1

2
R̂hij − 1

ω
∇̂i∇̂jω − 1

2
hijρ2,

(5.40)

which is a gauge invariant expression. Finally for the scalar curvature, we have

R = gµνRµν = g0νR0ν + giνRiν = g00R00 + g0jR0j + gi0Ri0 + gijRij, (5.41)

which reduces to

R = R̂− 2

ω
�̂ω − 1

2
ρ2. (5.42)

which is clearly gauge invariant. The computations so far can be used to study solu-

tions with a Killing vector in 3D Einstein’s gravity, but we shall not do that, instead

we shall study the reduction of the other rank-2 tensors.
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5.1.5 Reductions of the Cotton Tensor Cµν , and the Jµν and Hµν tensors

Next we carry out the similar reduction to these tensors. Recall that the Cotton tensor

is defined as1

Cµν = εµαβ∇αSβ
ν with Sµν = Rµν −

1

4
gµνR. (5.43)

Some components of the Schouten tensor that we shall use are

S00 = −1

2
ω�̂ω +

5

8
ω2ρ2 − 1

4
ω2R̂, (5.44)

Si0 = −1

2
Aiω�̂ω +

5

8
Aiω

2ρ2 − 1

4
ω2AiR̂ +

1

2ω
εil∂

l(ω2ρ), (5.45)

and

Sij =
1

4
R̂hij −

1

2
AiAjω�̂ω −

1

ω
∇̂j∇̂iω −

3

8
ρ2hij

+
5

8
AiAjω

2ρ2 +
1

2
hij

1

ω
�̂ω − 1

4
ω2AiAjR̂

+
1

2ω
Aiεjk∂

k
(
ω2ρ
)

+
1

2ω
Ajεik∂

k
(
ω2ρ
)
.

(5.46)

we have

C0
0 = ε0αβ∇αSβ0 = ε0iβ∇iSβ0 = ε0ij∇iSj0 =

εij

ω
∇iSj0

=
εij

ω

[
∂iSj0 − Γ0

ijS00 − ΓkijSk0 − Γ0
i0Sj0 − Γki0Sjk

]
,

⇒ Γkij = Γ̂kij + Θk
ij, ∇̂iSj0 = ∂iSj0 − Γ̂kijSk0. (5.47)

Symmetric terms in the parenthesis vanish due to the antisymmetric tensor εij . Then

C0
0 becomes

C0
0 =

εij

ω

[
∇̂iSj0 − Γ0

i0Sj0 − Γki0Sjk
]
, (5.48)

C0
0 =

ρ

ω2
∇̂iω∇̂iω − 1

ω
∇̂iρ∇̂iω − 3ρ

2ω
�̂ω − 1

2
�̂ρ− 1

2
ρR̂ + ρ3. (5.49)

Ck0 = gkαC
α

0 = gk0C
0

0 + gkiC
i
0 = ω2AkC

0
0 + hkiC

i
0 + ω2AkAiC

i
0

= ω2AkC
0

0 + hkiC
i
0.

(5.50)

1 Reduction of the Ricci tensor and the Cotton tensor was worked out in [58].
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The explicit computation of all the components of the Cotton tensor is extremely

tedious. But one can use the previously observed fact that in the gauge invariant

components C00, C
i
0, C

ij , no Ai term should appear. For the sake of keeping the

expressions simple, we shall drop the terms that have the products of Ai’s such as

AiAj . This is because, later on we shall compute Hµν which involve the derivative

of Cµν : if there is one Ai in the expression, its derivative yields an Fij , but terms like

AiAj will disappear at the end from the gauge-invariant expressions. Whenever we

drop terms involvingAi, we shall addO(Ai) meaning that the expression is simplified

by dropping these terms.

Ck0 =Ak

(
− ω∇̂lρ∇̂lω + ρ∇̂lω∇̂lω − 3

2
ωρ�̂ω

− 1

2
ω2�̂ρ− 1

2
ω2ρR̂ + ω2ρ3

)
+
εij

2ω
hik∇̂j

(
3

2
ω2ρ2 + ∇̂lω∇̂lω − 1

2
ω2R̂− ω�̂ω

)
.

(5.51)

C0
k = ε0αβ∇αSβk = ε0ij∇iSjk

=
εij

ω
∇iSjk =

εij

ω

[
∇̂iSjk − Γ0

ikSj0 −Θl
ikSjl

]

C0
k =

εij

ω

[
hjk∇̂i

(1

4
R̂− 3

8
ρ2 +

1

2ω
�̂ω
)

+
1

ω2
∇̂iω∇̂k∇̂jω

− 1

ω
∇̂i∇̂k∇̂jω −

1

ω
∇̂k∇̂i∇̂jω

]
+

3ρ

4ω3
εkl∂

l(ω2ρ).

(5.52)

Ci
j = εiαβ∇αSβj =

εik

ω

[
∇kS0j −∇0Skj

]
=
εik

ω

[
∇̂kS0j − Γ0

kjS00 −Θl
kjS0l + Γ0

0jSk0 + Γl0jSkl

]

Ci
j =− 1

ω
∇̂jω∇̂iρ− 1

ω
∇̂jρ∇̂iω − ρ

ω2
∇̂jω∇̂iω

− 1

2
∇̂j∇̂iρ− ρ

ω
∇̂j∇̂iω +

ρ

2ω
∇̂i∇̂jω

+ δij
(
− 1

2
ρ3 +

1

4
ρR̂ +

3

2ω
∇̂kω∇̂kρ+

ρ

ω
�̂ω +

1

2
�̂ρ
)
.

(5.53)

Cij = giµC
µ
j = gi0C

0
j + gikC

k
j = hikC

k
j, (5.54)
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Cij =hij

(
− 1

2
ρ3 +

1

4
ρR̂ +

3

2ω
∇̂kω∇̂kρ+

1

2
�̂ρ+

ρ

ω
�̂ω

)
− 1
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(
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2
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ρ

2ω
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(5.55)

C00 = ω2ρ3 + ρ∇̂kω∇̂kω − ω∇̂kω∇̂kρ− 3

2
ωρ�̂ω − ω2

2

(
�̂ρ+ R̂ρ

)
. (5.56)

Ci
0 = εiαβ∇αSβ0 = εi0j∇0Sj0 + εij0∇jS00

= − 1
√
g
εi0j∇0Sj0 +

1
√
g
εij0∇jS00

= − 1

ω
√
h
εij∇0Sj0 +

1

ω
√
h
εij∇jS00

=
1

ω
εij
(
∇jS00 −∇0Sj0

)

Ci
0 =

εik

2ω
∇̂k

[3

2
ω2ρ2 + ∇̂lω∇̂lω − 1

2
ω2R̂− ω�̂ω

]
. (5.57)

Cij =hij
[ 3

2ω
∇̂kω∇̂kρ+

ρ

ω
�̂ω +

1

2
�̂ρ− 1

2
ρ3 +

1

4
ρR̂
]
− 1

2
∇̂i∇̂jρ

− ρ

2ω
∇̂i∇̂jω − ρ

ω2
∇̂iω∇̂jω − 1

ω

(
∇̂iω∇̂jρ+ ∇̂jω∇̂iρ

)
.

(5.58)

Now we get all the components of the Cotton tensor that have only invariant quanti-

ties.

Without going into details, let us give the results of the invariant components of the

J-tensor, defined as

Jµν =
1

2
εµρσενταSρτSσα (5.59)

J00 =ω�̂ω

(
1

4
R̂− 3

8
ρ2 +

1

2ω
�̂ω

)
− ω2

(
1

4
R̂− 3

8
ρ2 +

1

2ω
�̂ω

)2

− 1

2

(
�̂ω
)2

+
1

2
∇̂k∇̂lω∇̂l∇̂kω,

(5.60)

J i0 =
εij

2ω

[(
1

4
R̂− 3

8
ρ2 +

1

2ω
�̂ω

)
∇̂j(ω

2ρ)− 1

ω
∇̂k(ω2ρ)∇̂k∇̂jω

]
, (5.61)
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J ij =
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hij
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(5.62)

Now we can move on with the H-tensor:

Hµν = εµαβ∇αCβ
ν , (5.63)

and give the final results:

H ij =hij
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(5.64)

H i
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H00 =ω2∇̂k
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− 1

2ω2
∇̂k

(
3

2
ω2ρ2 + ∇̂lω∇̂lω − 1

2
ω2R̂− ω�̂ω
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+
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(5.66)
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CHAPTER 6

CONCLUSIONS

At large scales or outside a matter source, all the solutions of Einstein equation are

Einstein spaces with the metric Rµν = Λgµν . Einstein equation is non-linear and

without symmetries it is a set of coupled non-linear partial differential equations that

are too complicated to obtain exact solutions. Besides arriving an exact solution,

quantum version of the theory has not been formulated. Up to now we have not able

to have the quantize General Relativity in four dimensions. Lower dimensional grav-

ity theories have become a hope to the researchers for finding a quantum version of

a gravity theory. In three dimensions, General Relativity does not have local degrees

of freedom. Without cosmological constant the spacetime is flat: the Riemann tensor

vanishes. For the Λ 6= 0 case, locally the solution is either de Sitter (dS) with Λ > 0,

or anti-de Sitter Λ < 0. AdS case can be non-trivial globally, admits the first known

solution called BTZ-black hole. There are several extensions of Einstein theory with

non-trivial local dynamics in 3D: there are TMG, NMG and Born-Infeld extension

of NMG. To reach the quantum gravity, these theories are studied using anti-de Sit-

ter/Conformal field theory (AdS/CFT) correspondence. Unfortunately these theories

suffer from the bulk-boundary unitarity clash which should not exist for a viable the-

ory. In search for other theories, on shell consistent theories were proposed such as

the MMG and the EMG that are only divergence free under the condition

∇µEµν
∣∣∣
Eµν=0

= 0. (6.1)

We studied the generic on-shell consistent Exotic massive gravity theory which we

called the Bachian gravity. We define the 3D Bach tensor as

Hµν ≡
1

2
εµ
αβ∇αCβν +

1

2
εν
αβ∇αCβµ, (6.2)

that does not come from the variation of an action.
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On shell consistent theory is constructed with a 2-tensor Eµν that comes from the

variation of an action, generalization of the Bach and J-tensors

Eµν +
1

µ
εµ
αβ∇αΦβν +

k

µ2
εµ
αβεν

σρΦασΦβρ = 0, (6.3)

where Φµν is a symmetric 2-tensor and does not come from any action, ∇µΦµν 6= 0.

With the Choosing

Eµν ≡ Rµν −
1

2
gµνR + Λ0gµν , (6.4)

we obtain the field equations given as

Rµν −
1

2
gµνR + Λ0gµν +

1

µ
εµ
αβ∇αΦβν +

1

2µ2
εµ
αβεν

σρΦασΦβρ = 0. (6.5)

After identification of the Φµν := Ψµν − 1
2
gµνΨ, with covariantly conserved Ψµν , we

finally get the latest form of the field equations

Eµν :=Rµν −
1

2
gµνR + Λ0gµν +

1

µ
εµ
αβ∇α

(
Ψβν −

1

2
gβνΨ

)
+

1

2µ2

(
gµν
(
Ψ2
αβ −

3

4
Ψ2
)

+ ΨµνΨ− 2ΨµαΨν
α

)
= 0.

(6.6)

The spectrum of the theory was investigated with the help of the linearization about

maximally symmetric vacua and Killing charge construction is presented.

As mentioned earlier, obtaining a solution of the gravity theories is hard to find. A

symmetry is defined by the existence of a Killing vector field which can be employed

to reach a solution. Projection formalism on the spacetime manifold (M, g) with a

single Killing vector field is introduced as an option to solve this compelling problem.

Projection formalism needs invariant quantities such as the twist and the norm of the

Killing vector field. We work out the reduction of the tensors, Ricci, Cotton, Jµν and

Hµν .
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APPENDIX A

MAPS AND TOPOLOGICAL SPACES

1

A.1 Maps

A map can be defined as a connection between two sets. It is a sort of a rule of

assigning one or some elements of one set to the other. Let X and Y be sets, we may

write

f : X → Y. (A.1)

The setX becomes the domain of the map and Y is the range of the map. The domain

and the range could be the whole set or the subsets of the corresponding sets. One

can define the image of the map as the Y itself or a subset of Y . Let y ∈ Y and

f(X) = {y = f(x)|y ∈ Y and x ∈ X}. The inverse image of the map is defined

as, f−1(Y ) = {x = f−1(y)|x ∈ X and y ∈ Y }.

f−1 : Y → X. (A.2)

1 Both Appendix A and Appendix B follow the book [7] very closely and we do not claim any originality.
The material in these Appendicies were directly or indirectly used in the understanding of the spacetime as a
manifold and all the structures that come with it.
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A.1.1 Properties of the Maps

i-) Injective map: A map is called injective if an element in the domain set is assigned

only one element in the range set by the rule of the map, f(x) 6= f(x′) for x 6= x′

ii-) Surjective map: A map is called surjective if every element in the range set has

corresponding element in the domain set, imf(X) = Y

iii-) Bijective map: If the map is injective and surjective then it is called a bijective

map.

iv-) Inverse map: Let f be a bijective map between two sets X and Y , f : X → Y .

Due to bijectivity one can define an inverse map f−1 : Y → X that is also bijective.

v-) Composite map: Let f and g be two maps which are defined as f : X → Y and

g : Y → Z. The composite map is constructed such as : g ◦ f : X → Z.

An algebraic structure may be formed on the sets. This structure could be addition

or product. Structure preserving map f : X → Y , is called a homomorphism. For

instance, f(a + b) = f(a) + f(b) or f(ab) = f(a)f(b). In addition to that, if

homomorphic map is also bijective, the map becomes an isomorphism and the two

sets are isomorphic to each other, and one writes X ∼= Y .

A.1.2 Equivalence Class

Equivalence classes are basically mutually disjoint subsets of the set X and the nota-

tion is [s].

Definition: ∼ is an equivalance relation if it satisfies the following conditions:

i-) Reflexivity: s ∼ s

ii-) Symmetry: If s ∼ t, then t ∼ s

iii-)Transitivity: If s ∼ t and t ∼ q⇒ s ∼ q

Definition: Let ∼ be an equivalence relation on the set X . One can define a subset

[s] such as

[s] := {t ∈ X|s ∼ t} , (A.3)
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and it is called an equivalence class of s. Since equivalence classes are supposed to be

a mutually disjoint subsets, the intersection of two different classes are either empty

set, [s] ∩ [t] = ∅.

Definition: Consider a set X . A power set of X , P(X), is a set that contains all the

subsets of X .

Definition: Consider a set X and its equivalence classes [s]. These are subsets of X

and also elements of the power set of X , [s] ∈ P(x) by definition. The quotient space

is a power set P(x) which is defined by

X/∼ := {[s] ∈ P(x)|s ∈ X}. (A.4)

Remark: Any element s in [s] is called the representative of a class [s] and the union

of representatives is isomorphic to the main set, R ∼= X/∼.

A.2 Topological Spaces

Definition: Let X be a set. A topology on X is a power set T ⊆ P(X) that satisfies

the following requirements:

i-) ∅ ∈ T and X ∈ T .

ii-) Intersection of any two subsets of T must be the element of T , e.g., U, V ⊆ T and

U ∩ V ∈ T .

iii-) Union of finite number of subsets again must be element of T , e.g., C ⊆ T ⇒⋃
C ∈ T .

Then the pair (X,T ) is called a topological space.

Informally speaking, a topology can be constructed on almost all sets. Because it is

one of the weakest structure that is defined on a set. For instance, every set accept

empty set (∅) and the set itself as a subset. The topology is called chaotic topology if

it has elements the empty set and the set itself, T = {∅, X}. If the topology contains

all the subsets of a set on which topology is constructed, then this is called the discrete
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topology.

Another useful topology type can be seen like this: Consider a real line as a set, R.

The standard topology consist of the all open intervals and their unions. It can be

extended to any dimension, d.

R := R× R× · · · × R︸ ︷︷ ︸
d−times

. (A.5)

However we need one more definition to construct standard topology.

Definition: The open ball of radius r around the point x,

Br(x) :=

{
y ∈ Rd|

√√√√ d∑
i=1

(yi − xi)2 < r

}
, (A.6)

where r ∈ R+ := {r ∈ R|r > 0}, and xi, yi ∈ R. Then the standard topology on R

is defined by;

U ∈ Tstd :⇔ ∀p ∈ U : ∃r ∈ R+ : Br(p) ⊆ U. (A.7)

Definition: Consider a map f : X → Y and topologies on the sets , (X,TX) and

(Y, TY ). The map f is continuous if it satisfies the following;

∀S ∈ TY , preimf (S) ∈ TX , (A.8)

where preimf (S) := {x ∈ X : f(x) ∈ S} ⊆ X . Here note that preimf (S) ⊆ X

and imf (U) ⊆ Y are open sets.

Definition: Consider an open or closed subset,N , of the topological space (X,T ). N

may contain at least one or more open sets Ui. Then N is a neighbourhood of a point

x ∈ Ui. If N is an open subset, then it is called an open neighbourhood of x ∈ Ui.

Definition: Let x and x′ are arbitrary two points in the topological space (X,T ) with

two neighbourhoods Ux and Ux′ . For the case Ux ∩ Ux′ = ∅, (X,T ) is called a Haus-

dorff space.
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Definition: Let (X,T ) be a toplogical space. A subset U of (X,T ) is called closed

if its complement in X is an open set.

A.2.1 Compactness and Paracompactness

Let (X,T ) be a topological space. One can consider some subsets of X whose union

is X such as
⋃
Ui = X . Then it is said to be a cover of X . For the subsets Ui are

open, they become an open cover of a topological space. Now every open cover Ui

can have finite subsets, Vj , that is also a cover. A family of Vj is called a subcover of

X .

Definition: A topological space (X,T ) is called compact if every open cover has a

finite subcover.

Definition: A topological space (X,T ) is called paracompact if every open cover

has an open refinement.

Here a refinement R of an open cover is defined as a subcover of an open cover, e.g.,

∀P ∈ R : ∃V ∈ Ui : P ⊆ V. (A.9)

A.2.2 Connectedness and Path-connectedness

Definition: A topological space (X,T ) is connected unless there exist two subsets

such as X = X1 ∪X2 and X1 ∩X2 = ∅.

Definition: Consider a pair of points x1, x2 ∈ X and a continuous curve γ : [0, 1]→
X such that γ(0) = x1 and γ(1) = x2. If this construction is applied to the every pair

of points in the topological space, then it is called a path-connected.

A.2.3 Homeomorphism

For some topological spaces, continuous deformation is possible. Informally speak-

ing, two spaces are equivalent if one can deform one space to another.
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Definition: Let f : X1 → X2 be a map and it is continuous and has an inverse which

is also continuous. Then the map f is called a homeomorphism and two topological

spaces X1 and X2 are homeomorphic to each other. In other words they are topologi-

cally equivalent.

The equivalance between spaces allows us to put all topologically equivalant spaces

into one equivalence classes. A Topological invariant means that there is some quan-

tity which is conserved under homoemorphisms. This quantity could be an algebraic

structure, compactness, connectedness etc. Hence homeomorphism is a structure pre-

serving map between topological spaces.
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APPENDIX B

MANIFOLDS AND TENSOR FIELDS

B.1 Manifolds:

An m-dimensional manifold is a topological space that is locally homeomorphic to

Rm. Local homeomorphism allows us to introduce coordinate systems on some re-

gions of the manifold. The important point is that a manifold globally does not have

to be homeomorphic to Rm. Hence one has to put different coordinate systems for

the different regions of the manifold.

Definition: Let M be an m-dimensional topological manifold. Ui ∈M are open sets

that satisfy;

i-)
⋃
Ui = M

ii-) Ui ∩ Uj 6= ∅

One can define a homeomorphism φi between Ui ∈M and U ′i ∈ Rm

φi : Ui → U ′i ∈ Rm. (B.1)

Then the pair (Ui, φi) is called a chart and the whole family of charts {(Ui, φi)} is

called an atlas. It is legitimate to construct a map between two charts.

Ψij : U ′i → U ′j , U ′i , U
′
j ∈ Rm. (B.2)

Every constructed chart can be seen as a coordinate system. Therefore the map Ψij

becomes a coordinate transformation. The number of differentiability of Ψij states
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the differentiability of the manifold. For instance, if Ψij is infinitely differentiable

then we have infinitely differentiable manifold, denoted as C∞. The explicit form of

the map Ψij can be written by

Ψij = φj ◦ φ−1
i . (B.3)

We can cover the manifold using different family of charts that form another atlas.

Let us assume A1 consist of the open set family {(Ui, φi)} and A2 of the {(Vi, ψi)}.
If the map between these two atlases is differentiable then two atlases are said to be

compatible.

Let M be a topological manifold and the family of open sets {Ui} cover the man-

ifold M . It is known that each Ui is homeomorphic to an open set of Rm. Now

suppose that each Ui is homoemorphic to an open set other than Rm, say that is

Hm ≡ {(x1, . . . , xm) ∈ Rm|xm ≥ 0}. A manifold that is covered by such kind of

open sets is said to be manifold with a boundary. The boundary of M is the set of

points which are mapped to points with xm = 0, and denoted by ∂M . The dimension

of the boundary is one dimension less than the manifold, dim(∂M) = m− 1. Let us

say that there are two charts constructed by the maps

φi : Ui → Hm and φj : Uj → Hm. (B.4)

One can define a map between two charts such as

Ψij : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj). (B.5)

The smoothness of the map Ψij is guaranteed when Ψij is C∞ in an open set Rm.

A product manifold can be defined after building up the individual manifolds. Let

M and N be manifolds with dim(M) = m and dim(N) = n. M and N have their

own atlases such as {(Ui, φi)} and {(Vj, ψj)}. Now, constructed product manifold is

(m + n)-dimensional and its atlas is {(Ui, φi), (Vj, ψj)}. Any point on the product

manifold is mapped by the homeomorphism (φi(p), ψj(q)) ∈ Rm+n, where p ∈ M

and q ∈ N . Notice that Ui and Vj are the open sets on the corresponding manifold,

Ui ∈M and Vj ∈ N .
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The torus T 2 is a well known example of the product manifold. It can be constructed

by two S1 manifolds:

T 2 = S1 × S1. (B.6)

It can be generalized to construct a n-Torus that is n-dimensional product manifold.

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n

. (B.7)

Definition: Let M and N are manifolds with charts (U, φ) and (V, ψ) with

φ : U → Rm , ψ : V → Rn. (B.8)

Let us define a map f such as

f : M → N, (B.9)

with p ∈ U and f(p) ∈ N . We know that φ(p) ∈ Rm and ψ(f(p)) ∈ Rn. If the map

ψ ◦ f ◦ φ−1 : Rm → Rn (B.10)

is C∞-differentiable then f is said to be differentiable at point p ∈M .

What we have done is simple: First we put a coordinate system on the manifolds M

and N by defining the homeomorphism φ : U → Rm and ψ : V → Rn where U and

V are the open sets, U ⊂ M and V ⊂ N . Then we see that the map f is differential

if ψ ◦ f ◦ φ−1 : Rm → Rn is C∞-differentiable. Once we have a differentiable map

between two manifolds, it enables us to construct a calculus on manifolds.

Definition: Let f : M → N be a homeomorphism. If the map ψ ◦ f ◦ φ−1 :

Rm → Rn is invertible and both ψ ◦ f ◦ φ−1 and φ ◦ f−1 ◦ ψ−1 are C∞, f is called

a diffeomorphism and the manifolds M and N are diffeomorphic to each other. In

other words diffeomorphism f is a differential structure preserving map.

We have said that, when topological spaces are homeomorphic to each other, it is pos-

sible to deform one space to another continuously. Now we can insert this concept to

the diffeomorphic manifolds as diffeomorphism enables to deform one differentiable
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manifold to another smoothly. It easy to conclude that diffeomorphic spaces are the

same manifold.

Active and passive transformations have much of use in physics. Let us see these

transformations in the framework of the manifolds. We say that a manifold can

have more than one differentiable structure and it is characterized by the differen-

tial map between manifolds, say f . Now let say we have a set of diffeomorphisms

between the same manifold, f : M → M . Using chart (U, φ) with the coordinate

map φ : U → Rm, a point p ∈ U can be moved to Rm to define a set of coordinates

φ(p) ∈ Rm. Picking up one of the diffeomorphisms, f , from many, one can create

an another coordinate values for a point f(p) ∈ U by φ
(
f(p)

)
∈ Rm. Now we have

two coordinate values and a tool to transform one to another. The transformation can

be formed by the map

φ ◦ f ◦ φ−1 : Rm → Rm. (B.11)

This transformation corresponds to active transformation in physics such as rotating

a vector without changing the coordinate axis. Passive transformation is constructed

using two different charts (U, φ) and (V, ψ) that are overlapping, U ∩ V 6= ∅. Say

we have a point p ∈ U ∩ V . Now there are two coordinate maps φ and ψ and

coordinate systems, φ(p) ∈ Rm and ψ(p) ∈ Rm. Again we use the diffeomorphism f

to construct a coordinate transformation,

ψ ◦ f ◦ φ−1 : Rm → Rm. (B.12)

This transformation is called a passive transformation. For instance, keeping the vec-

tor fixed and rotate the coordinate axis. As a result there is a set of diffeomorphism

f : M →M and this set forms a group of transformation.

B.1.1 Curves and Functions:

Consider an open interval in R1 such as (a, b). A map c : (a, b)→M defines an open

curve in an m-dimensional manifold, M . A closed curve can be seen by using a map
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c : S1 → M . Now we have a curve on the manifold and we construct a coordinate

representation of the curve with the chart (U, φ) on the manifold and the map

φ ◦ c : R→ Rm. (B.13)

A function on the manifold is a smooth map

f : M → R. (B.14)

In order to get a coordinate representation of the function, we again use a chart (U, φ)

on the manifold and it is defined as

f ◦ φ−1 : Rm → R. (B.15)

B.1.2 Vectors:

We can use a curve and a function on the manifold to give a rigorous definiton of the

vector. What we are supposed to do is the following,

1. Define a curve on the manifold using an open interval (a, b) that contains zero,

a < 0 < b

c : (a, b)→M. (B.16)

2. Define a function f : M → R

3. and a chart on the manifold (U, φ)

φ ◦ c : (a, b)→ Rm, (B.17)

f ◦ φ−1 : Rm → R. (B.18)
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Here remember that the coordinate representation of the points on the curve

xµ
(
c(t)
)
≡ φ ◦ c : (a, b)→ Rm, (B.19)

and a function along the curve c

f
(
c(t)
)
≡ f ◦ φ−1 : Rm → R, (B.20)

where t ∈ (a, b).

Definition: A directional derivative of a function along the curve is

df
(
c(t)
)

dt
=

∂f

∂xµ
dxµ
(
c(t)
)

dt

∣∣∣∣∣
t=0

(B.21)

and a vector or tangent vector is defined as

d

dt
= Xµ ∂

∂xµ
, (B.22)

where Xµ = dxµ

dt
, is a component of a vector and eµ = ∂

∂xµ
is a basis.

Definition: Tangent space is a vector space that consists of all the tangent vectors at

a point p ∈ M and it is denoted by TpM . Dimension of the tangent space is equal to

the dimension of the manifold, dim(TpM) = dim(M).

B.1.3 One-forms:

One-forms are the elements of the cotangent space which is the dual space of the

tangent space denoted by T ∗pM . In general the one-form is a linear function of a

vector.

ω : TpM → R (B.23)

ω(V ) ∈ R where ω ∈ T ∗pM and V ∈ TpM .
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We have seen that d
dt

= V µ∂µ is a vector. Now one-form can be written as

df =
∂f

∂xµ
dxµ ,

∂f

∂xµ
= f,µ : component of a one-form, dxµ : basis one-form

(B.24)

From the map ω : TpM → R, it is easy to see that one-form takes a vector from

tangent space as variable and gives a real value as a result.

df
( d
dt

)
=

∂f

∂xν
dxν
(
Xµ ∂

∂xµ
)

= Xµ ∂f

∂xν
dxν
( ∂

∂xµ
)

︸ ︷︷ ︸
δνµ

= Xµ ∂f

∂xµ
∈ R. (B.25)

Here, we have used dxµ as a dual basis, dxν
(

∂
∂xµ

)
= δνµ.

Let us take a general one-form ω and a vector V to define an inner product. Inner

product is a bilinear map such as

(
,
)

: T ∗pM × TpM → R, (B.26)

ω = ωµdx
µ , V = V ν ∂

∂xν
, (B.27)

(
ω, V

)
=
(
ωµdx

µ, V ν ∂

∂xν
)

= ωµV
ν
(
dxµ,

∂

∂xν
)

= ωµV
νδνµ = ωµV

µ. (B.28)

As a note, basis vectors eµ = ∂
∂xµ

and basis one-forms eµ = dxµ are called the

coordinate basis. One can define non-coordinate basis {ei} and {ei} which are not

related to the coordinates
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B.1.4 Tensors:

A tensor is a multilinear map of vectors and one-forms. A (q, r) type tensor T is

defined at a point p ∈M as

T : T ∗pM ⊗ T ∗pM ⊗ · · · ⊗ T ∗pM︸ ︷︷ ︸
q

TpM ⊗ TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸
r

→ R. (B.29)

In this notation a vector is a (1, 0) type tensor, a one-form is a (0, 1) type tensor and

a scalar is a (0, 0) type tensor.

Let us suppose that T is a (q, r) type tensor.

T = T µ1...µqν1...νr
∂

∂xµ1
. . .

∂

∂xµq
dxν1 . . . dxνr . (B.30)

T
(
ω, α, . . .︸ ︷︷ ︸

q

;V,W, . . .︸ ︷︷ ︸
r

)
= T µ1...µqν1...νrωµ1αµ2 . . . βµqV

ν1W ν2 . . . Xνr , (B.31)

where ω, α, . . . , β ∈ T ∗pM and V,W, . . . , X ∈ TpM .

B.1.5 Tensor Field:

A vector is a linear map from cotangent space to the R-space. If this map is defined

at every point of the manifold then we have a map over the whole manifold and it is

called a vector field. Similarly, one-form is a linear map from the tangent space to the

R-space. One-form field is a defined map for every point of the manifold. In general,

for every point of the manifold defined multilinear maps from tangent and cotangent

space to R-space form a tensor field.

B.1.6 Push-forward and Pull-back:

Let M and N be manifolds and the map f is defined as

f : M → N. (B.32)
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The corresponding charts of the manifolds are (U, φ) ∈ M and (V, ψ) ∈ N . Now

define a function g : N → R. We know how a vector acts on a function, e.g.;

Xg =
dg

dt
=
dxµ

dt

∂g

∂xµ
∈ R. (B.33)

In this set up, one can define a differential map f∗;

f∗ : TpM → Tf(p)N, (B.34)

where TpM and Tf(p)N are the corresponding tangent spaces of M and N . Let us

move on with the vector V ∈ TpM that acts on a function
(
g ◦ f

)
(x) to give a real

number V
[
g ◦ f

]
∈ R.

Definition: Push-forward of a vector V ∈ TpM is defined as the following

(
f∗V

)
[g] ≡ V

[
g ◦ f

]
, (B.35)

where
(
f∗V

)
is a vector that is defined at the point f(p) ∈ N and acts on a function

g : N → R. This action can be seen more clearly by using the charts of the manifolds,

(U, φ) ∈M and (V, ψ) ∈ N .

(
f∗V

)
[g] =

(
f∗V

)[
g ◦ ψ−1(y)

]
,

V
[
g ◦ f

]
= V

[
g ◦ f ◦ φ−1(x)

]
, (B.36)

⇒
(
f∗V

)[
g ◦ ψ−1(y)

]
≡ V

[
g ◦ f ◦ φ−1(x)

]
. (B.37)

Informally speaking, push-forward of a vector works like this: Instead of acting a

vector to a function that is defined in the manifold that contains a corresponding

vector, move a vector to another manifold with the help of a differential map between

those manifolds and act a vector to a function that is defined on the manifold.

Definition: Pull-back of a one-form is defined with the differential map f ∗ as

f ∗ : T ∗f(p)N → T ∗pM, (B.38)
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(
f ∗ω

)
(V ) = ω

(
f∗V

)
, (B.39)

where ω ∈ T ∗f(p)N and
(
f∗V

)
is a push-forward vector on the tangent space of the N

at a point f(p).

B.1.7 Lie Derivatives:

The picture so far is like this: There is a parametrized curve on the manifold, x(t) and

the tangent vector correponds to this curve, X = Xµ ∂
∂xµ

. From this point it is easy to

obtain a tensor field as an assigned tensor on every point of the manifold. Here is the

thing, we can get an integral curve going backward from that path.

Let suppose that x(t) is a parametrized curve and the coordinate representation of it

is xµ(t). That basically means using chart (U, φ), µth component of φ
(
x(t)

)
is xµ(t).

Consider a vector X = Xµ ∂
∂xµ

with the component

Xµ
(
x(t)

)
=
dxµ

dt
, (B.40)

and it is a system of ordinary differential equations (ODEs). The solution of these

ODEs with the initial conditions xµ0 = xµ(0), which are the coordinates of a curve at

t = 0, provides us the desired integral curve of the vector field X . The existence and

the uniqueness of the ODEs ensure that there is a single curve for a specific point on

the manifold. From the uniqueness of the ODEs we are able to write a curve more

rigorously such as

σ : R×M →M (B.41)

and σ is called the flow generated by the vector field X as a solution of the ODE:

d

dt
σµ(t, x) = Xµ

(
σ(t, x)

)
. (B.42)

Let assume that there are two vector fields and two curves which are generated by
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these vector fields.

dσµ(s, x)

ds
= Xµ

(
σ(s, x)

)
, (B.43)

dτµ(t, x)

dt
= Y µ

(
τ(t, x)

)
. (B.44)

To get a geometrical approach of the Lie derivative of the vector fields, we can carry

out the following steps:

1. Take a tangent vector of the curve τ(t, x) at an intersecting point x of two curves

τ(t, x) and σ(s, x)

Y
∣∣∣
x
∈ TxM. (B.45)

2. Go through along curve σ(s, x) at a point σε(x) and take a tangent vector,

Y
∣∣∣
σ(x)
∈ Tσ(x)M, (B.46)

by using the map

σε : TxM → Tσ(x)M. (B.47)

The map σε can be seen as simple coordinate transformation, e.g.,

x′µ = xµ + εXµ(x). (B.48)

Now we have a different tangent vector than Y
∣∣
x

because Y
∣∣
σ(x)

is a tangent vector

at the point σε(x). We need to compare two vectors by definition of the derivative.

Therefore, Y
∣∣
σ(x)

is supposed to move the point x. It can be done by the map:

σ−ε : Tσε(x)M → TxM, (B.49)

and the resulting vector, (σ−ε)Y
∣∣
σ(x)

is a vector at the point x.
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The Lie derivative of a vector field Y along the curve σ that is generated by a vector

field X is defined by

LXY = lim
ε→0

1

ε

[(
σ−ε
)
Y
∣∣
σ(x)
−Y
∣∣
x

]
. (B.50)

Coordinate-induced view of the Lie derivative of a vector field Y along X is the

following: Consider a chart (U, φ) on the manifold M and two vector fields, X =

Xµ ∂
∂xµ

and Y = Y µ ∂
∂xµ

.

σε(x) = xµ + εXµ(x),

Y
∣∣
σ(x)

= Y µ
(
xν + εXν(x)

) ∂

∂xµ

∣∣∣
x+εX

, (B.51)

Make a Taylor series expansion,

Yσ(x)
∼=
[
Y µ(x) + εXµ(x)∂νY

µ(x)
] ∂

∂xµ

∣∣∣
x+εX

. (B.52)

(
σ−ε
)
Y
∣∣
σ(x)

is nothing but just a coordinate transformation such as;

∂

∂xµ
=
∂xν

∂x′µ
∂

∂x′ν
,

xν = x′ν − εXν(x). (B.53)

(
σ−ε
)
Y
∣∣
σ(x)

=
[
Y µ(x) + εXλ(x)∂λY

µ(x)
] ∂

∂xµ
(
xν − εXν(x)

) ∂

∂xν

∣∣∣
x

=
[
Y µ(x) + εXλ(x)∂λY

µ(x)
][
δνµ − ε∂µXν(x)

] ∂

∂xν

∣∣∣
x

= Y µ(x)
∂

∂xµ

∣∣∣
x
+ε
[
Xµ(x)∂µY

ν(x)− Y µ(x)∂µX
ν(x)

] ∂

∂xν

∣∣∣
x

+O(ε2).

(B.54)
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From there it follows that

LXY = lim
ε→0

1

ε

{
Y µ(x)

∂

∂xµ

∣∣∣
x
+ε
[
Xµ(x)∂µY

ν(x)− Y µ(x)∂µX
ν(x)

] ∂

∂xν

∣∣∣
x

− Y µ(x)
∂

∂xν

∣∣∣
x

}
=
[
Xµ(x)∂µY

ν(x)− Y µ(x)∂µX
ν(x)

] ∂

∂xν

∣∣∣
x
.

(B.55)

Hence;

LXY =
(
Xµ∂µY

ν − Y µ∂µX
ν
) ∂

∂xν
. (B.56)

Notice that LXY is itself a vector field with the component

(
LXY

)ν
= Xµ∂µY

ν − Y µ∂µX
ν . (B.57)

One can easily show that

LXY =
[
X, Y

]
= XY − Y X, (B.58)

where
[
X, Y

]
is called a Lie Bracket.

Let us focus now the geometrical meaning of the Lie bracket. There are two flows

σ(s, x) and τ(t, x) that are generated by vector fields X and Y respectively. First

move along the curve σ by the amount of ε and then move along τ by δ.

τµ
(
δ, σ(ε, x)

)
= τµ

(
δ, xν + εXν(x)

)
= xµ + εXµ(x) + δY µ

(
xν + εXν(x)

)
= xµ + εXµ(x) + δY µ(x) + εδXν(x)∂νY

µ(x).

(B.59)

Now, let us move in the reverse order, first move along a curve τ by the amount of δ

and then move along σ by ε,

σµ
(
ε, τ(δ, x)

)
= σµ

(
ε, xν + δY ν(x)

)
= xµ + δY µ(x) + εXµ

(
xν + δY ν(x)

)
= xµ + δY µ(x) + εXµ(x) + εδY ν(x)∂νX

µ(x).

(B.60)
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It is easy to see that two motions do not have to end up at the same point. To see this,

look for the difference of two paths:

τµ
(
δ, σ(ε, x)

)
− σµ

(
ε, τ(δ, x)

)
= εδ

(
Xν∂νY

µ − Y ν∂νX
µ
)

= εδ
[
X, Y

]µ
.

(B.61)

Reaching the same point requires that the Lie bracket of two vector fields should be

zero.

LXY =
[
X, Y

]
= 0,

⇒ σ
(
s, τ(t, x)

)
= τ
(
t, σ(s, x)

)
. (B.62)

The Lie derivative of a one-form ω along a vector field X can be calculated by a

similar manner.

LXω ≡ lim
ε→0

1

ε

[
σεω
∣∣∣
σε(x)

−ω
∣∣∣
x

]
, (B.63)

σεω
∣∣∣
σε(x)

= ωµ(x)dxµ + ε
[
Xν(x)∂νωµ(x) + ∂µX

νων(x)
]
dxµ,

ω
∣∣∣
x
= ωµ(x)dxµ,

⇒ LXω =
(
Xν∂νωµ + ων∂µX

ν
)
dxµ. (B.64)

The Lie derivative of a function f along a vector field X is

LXf = lim
ε→0

1

ε

[
f
(
σε(x)

)
− f(x)

]
= lim

ε→0

1

ε

[
f
(
xµ + εXµ(x)

)
− f(xµ)

]
= Xµ(x)

∂f

∂xµ
= Xf.

(B.65)

The Lie derivative of any rank tensor can be found by using one of the properties of a

Lie derivative.

LX
(
T1 ⊗ T2

)
=
(
LXT1

)
⊗ T2 + T1 ⊗

(
LXT2

)
, (B.66)

where T1 and T2 are arbitrary tensor fields of any rank. As an example, consider a(
1
1

)
-tensor field T = Tµ

νdxµ ⊗ eν

LXT = X
(
Tµ

ν
)
dxµ ⊗ eν + Tµ

ν
(
LXdxµ

)
⊗ eν + Tµ

νdxµ ⊗
(
LXeν

)
. (B.67)
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B.1.8 Differential Forms:

Definition:Differential form is a totally anti-symmetric
(

0
r

)
-rank tensor and called

also an r-form.

Definition: Wedge product ∧ of r one-forms defined by

dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµr =
∑

p∈perm

sgn(p)dxµp(1) ∧ dxµp(2) ∧ · · · ∧ dxµp(r) , (B.68)

where it constitutes a totally anti-symmetric tensor product.

Some examples:

i-) dxµ ∧ dxν = dxµ ⊗ dxν − dxν ⊗ dxµ,

ii-)

dxµ ∧ dxν ∧ dxσ = dxµ ⊗ dxν ⊗ dxσ + dxν ⊗ dxσ ⊗ dxµ

+dxσ ⊗ dxµ ⊗ dxν − dxµ ⊗ dxσ ⊗ dxν

−dxσ ⊗ dxν ⊗ dxµ − dxν ⊗ dxµ ⊗ dxσ. (B.69)

Let us denote Ωr
p(M) is the vector space of r-forms, then any r-form ω ∈ Ωr

p(M) is

ω =
1

r!
ωµ1µ2...µrdx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµr , (B.70)

where ωµ1µ2...µr are totally anti-symmetric tensor components.

The dimension of the vector space of r-forms is(
n

r

)
=

n!

r!(n− r)!
, (B.71)

where n is the dimension of the manifold. From this it is easy to check that the dimen-

sions are equal for the spaces Ωr
p(M) and Ωn−r

p (M), dim
(
Ωr
p(M)

)
= dim

(
Ωn−r
p (M)

)
.

(
n

r

)
=

(
n

n− r

)
=

n!

r!(n− r)!
. (B.72)

Definition: The exterior product of a q-form and an r-form is a map such as

∧ : Ωq
p(M)× Ωr

p(M)→ Ωq+r
p (M). (B.73)
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Let ω ∈ Ωq
p(M) and ξ ∈ Ωr

p(M) and the exterior product of these forms (ω ∧ ξ ∈
Ωq+r
p (M)). The action of the (q + r)-form (ω ∧ ξ) on (q + r)-vectors is defined by

(ω ∧ ξ)(V1, . . . , Vq+r) =
1

q!r!

∑
p∈perm

sign(p)ω(Vp(1), . . . Vp(q))

× ξ(Vp(q+1), . . . , Vp(q+r)).

(B.74)

Using exterior product, an algebra is defined

Ω∗p(M) ≡ Ω0
p(M)⊕ Ω1

p(M)⊕ · · · ⊕ Ωm
p (M), (B.75)

where Ω∗p(M) is the vector space of all differential forms at p. For comparing an

r-form field, one may assign an r-form smoothly at each point on a manifold and it is

denoted as Ωr(M).

Definition: The exterior derivative, d, on an r-form is defined by

dω =
1

r!

( ∂

∂xν
ωµ1µ2...µr

)
dxν ∧ dxµ1 ∧ · · · ∧ dxµr ,

where

ω =
1

r!
ωµ1µ2...µrdx

ν ∧ dxµ1 ∧ · · · ∧ dxµr . (B.76)

Now, straightforward calculation of the exterior derivative of an r-form ω ∈ Ωr(M)

leads to,

dω(X1, . . . , Xr+1) =
r∑
i=1

(−1)i+1Xiω(X1, . . . , Xi−1, Xi+1, . . . , Xr+1)

+
∑
i<j

(−1)i+jω
([
Xi, Xj

]
, X1, .., Xi−1, Xi+1, . . .

, Xj−1, Xj+1, .., Xr+1

)
.

(B.77)

Another important property of the exterior derivative is

d2 = 0. (B.78)

To prove this result, let us take r-form ω ∈ Ωr(M);

ω =
1

r!
ωµ1µ2...µrdx

ν ∧ dxµ1 ∧ · · · ∧ dxµr ,
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dω =
1

r!

∂ωµ1...µr
∂xν

dxν ∧ dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµr ,

d2ω =
1

r!

∂2ωµ1...µr
∂xλ∂xν

dxλ ∧ dxν ∧ dxµ1 ∧ · · · ∧ dxµr . (B.79)

Here we notice that ∂2

∂xλ∂xν
is symmetric while dxλ ∧ dxν is anti-symmetric and mul-

tiplication of symmetric and anti-symmetric objects gives zero.

Definition: Let ω be an r-form, ω ∈ Ωr(M). ω is called a closed r-form if dω = 0.

In addition to this, it is an exact r-form if there exist ψ ∈ Ωr−1(M) such that ω = dψ.

Beside the exterior product, there is also the interior product of forms.

Definition: The Interior product is a map,

ix : Ωr(M)→ Ωr−1(M), (B.80)

and it is defined by an r-form ω ∈ Ωr(M)

ixω(X1, . . . , Xr−1) ≡ ω(X,X1, . . . , Xr−1), (B.81)

where X ∈ X (M).

B.1.9 Integration of Differential Forms:

In an m-dimensional connected manifold M , let Ui and Uj be charts such that

Ui ∩ Uj 6= . For the common point of the charts, p ∈ Ui ∩ Uj , the tangent space

TpM can be spanned by two different basis, {eµ} = { ∂
∂xµ
} and {ẽα} =

(
∂
∂yα

)
. The

transformation between the basis is defined

ẽα =
∂xµ

∂yα
eµ, (B.82)

and J = det
(
∂xµ

∂yα

)
.

Definition: If J > 0 for any overlapping charts Ui and Uj , then the manifold M is

called orientable. Otherwise, J < 0, it is called a non-orientable.
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The important point is that only for an orientable manifold an integration of a differ-

ential form is constructed. There exist non-vanishing m-form on an m-dimensional

orientable manifold and it is called a volume element. One can say that two volume-

forms are equivalent if there is a positive function h ∈ F(M) such that ω = hω′.

The manifold may have right-handed orientation and left handed orientation which

depends on the definition of a function h. If h is negative-definite then the manifold

is left handed and for h is positive-definite the manifold is right-handed.

Integration of Forms:

A manifold is a paracompact topological space from definition. Paracompactness

provides that any open covering {Ui} has a finite subcover. Using paracompactness

of the manifold, once the integral of a function over Ui is defined, the integral can be

calculated over the whole manifold. This is possible by using the property which is

called partition of unity.

Definition: The family of differentiable functions εi(p) is called a partition function

of unity if it satisfies the following conditions:

i-) 0 6 εi(p) 6 1

ii-) εi(p) = 0 if p /∈ Ui

iii-) ε1(p) + ε2(p) + · · · = 1 for any point p ∈M .

The conditions enable us to write

f(p) =
∑
i

f(p)εi(p) =
∑
i

fi(p). (B.83)

From the paracompactness of the manifold the summation has a finite number of

elements. Now consider a function f : M → R and a volume element ω. We define

the integration as∫
Ui

fω ≡
∫
φ(Ui)

f
(
φ−1
i (x)

)
h
(
φ−1
i (x)

)
dx1dx2 . . . dxm, (B.84)

where φ : M → Rm is a chart map corresponding to the open set Ui. Using the

partition of unity the integral becomes∫
M

fω ≡
∑
i

∫
Ui

fiω. (B.85)
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Notice that the result of the integral is independent of the chosen atlas and the coor-

dinates.

B.1.10 Lie Groups and Lie Algebras:

Definition: A Lie Group G is a differentiable manifold with the differential group

operations;

• : G×G→ G

(g1, g2) 7→ g1 · g2. (B.86)

inv : G→ G

g 7→ g−1. (B.87)

G has the all group operations such as, unit element e, (e · g = g), every element has

an inverse, associativity and closure.

Some of the familiar Lie groups are general Lie groups GL(n,R) or GL(n,C) and

their subgroups. The elements of these groups are matrices and the operations are

matrix multipilication and matrix inverse.

Let us introduce some interesting subgroups of GL(n,R)

-Orthogonal Group: O(n) = {M ∈ GL(n,R)|MMT = MTM = In}.

-Special Linear group: SL(n,R) = {M ∈ GL(n,R)|detM = 1}.

-Special Orthogonal Group: SO(n) = O(n) ∩ SL(n,R).

-Lorentz Group: O(1, 3) = {M ∈ GL(4,R)|MηMT = η}

where η is the Minkowski metric, η = diag(−1, 1, 1, 1).

Theorem: Every closed subgroup H of a Lie group G is a Lie subgroup.

Definition: The coset space G/H is a manifold that is not necessarily a Lie group

and it is constructed with an equivalance class g ∼ g′ and a Lie subgroup H of G
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such that

g′ = gh, (B.88)

with a set

[g] = {gh|h ∈ H}. (B.89)

If ghg−1 ∈ H , that means H is a normal subgroup of G, then the coset G/H is a

Lie group. In other words the elements of the coset space G/H are the equivalance

classes, [g]. Hence notice that the group structure is preserved. That is to say, group

operations, multiplication and inverse element are maintained.

[g][g′] = [gg′], (B.90)

[g]−1 = [g−1], (B.91)

where [g], [g′] ∈ G/H .

Definition:The map La : G→ G is called the left translation and defined by

La = ag, (B.92)

where G is a Lie group and a, g ∈ G. La is a diffeomorphism and one can define an

induced map

La∗ : TgG→ TagG. (B.93)

Definition: The left-invariant vector field in a given Lie group G is defined

La∗X
∣∣∣
g
= X

∣∣∣
ag
. (B.94)

To understand the definition better let us introduce coordinate representation of the

vector field as,

X
∣∣∣
g
= Xµ(g)

∂

∂xµ(g)
(B.95)

is a vector field at the point g and

La∗X
∣∣∣
g
= Xµ(g)

∂xν(ag)

∂xµ(g)

∂

∂xν

∣∣∣
ag

= Xν(ag)
∂

∂xν

∣∣∣
ag

(B.96)

is a vector field at the point that is left-translated.

108



Consider a unique left-invariant vector field XV and

XV

∣∣∣
g
= Lg∗V (B.97)

where V ∈ TeG, g ∈ G. It is straightforward to show that

XV

∣∣∣
ag

= Lag∗V =
(
LaLg

)
∗V = La∗Lg∗V = La∗XV

∣∣∣
g

(B.98)

by using the property of the induced map such as
(
g ◦ f

)
∗ = g∗ ◦ f∗

Here there is a left-invariant vector field XV that is constructed by the vector V ∈
TeG. Hence, it is possible to define a unique vector V = X

∣∣∣
e
∈ TeG by using a

left-invariant vector field X . Using the uniqueness above, we may say that there is

a set of left-invariant vector fields on G, denoted by g. One can easily see that the

map TeG→ g is an isomorphism and we conclude that the set of left-invariant vector

fields isomorphic to TeG

g ∼= TeG (B.99)

and also g is a vector space with the same dimension of G, dimg = dimG.

Consider two vector fields X, Y ∈ g. If we apply La∗ to the Lie bracket of two vector

field,

La∗
[
X, Y

]∣∣∣
g
=
[
La∗X

∣∣∣
g
, La∗Y

∣∣∣
g

]
=
[
X, Y

]∣∣∣
ag

(B.100)

is also an element of g,
[
X, Y

]∣∣∣
ag
∈ g.

In the vector XV

∣∣∣
g
= gV is

Lg∗V = gV

and [
XV , YW

]∣∣∣
g
= Lg∗

[
V,W

]
= g
[
V,W

]
. (B.101)

Definition: Lie algebra of a Lie group G

[
,
]

: g× g→ g (B.102)

for the left-invariant vector fields g.
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B.1.11 The one parameter subgroup:

Let us consider a curve on the manifold G.

φ : R→ G. (B.103)

We can define a vector field X through the curve φ.

dφµ(t)

dt
= Xµ

(
φ(t)

)
. (B.104)

Let us check that a vector field X is left-invariant. It is obvious that a vector field d
dt

is left-invariant vector field on R,

(Lt)∗
d

dt

∣∣∣
0
=

d

dt

∣∣∣
t
. (B.105)

Using a diffeomorphism φ, one can define a push-forward map:

φ∗ : TtR→ Tφ(t)G. (B.106)

The pushed-forward vector fields are

φ∗
d

dt

∣∣∣
0
=
dφµ(t)

dt

∣∣∣
0

∂

∂gµ

∣∣∣
e
= X

∣∣∣
e

φ∗
d

dt

∣∣∣
t
=
dφµ(t)

dt

∣∣∣
t

∂

∂gµ

∣∣∣
g
= X

∣∣∣
g
. (B.107)

Using equation-(126) and the commutativity of the map φLt = Lgφ, equation-(129)

becomes (
φLt
)
∗
d

dt

∣∣∣
0
= φ∗Lt∗

d

dt

∣∣∣
0
= X

∣∣∣
g

and

φ∗Lt∗
d

dt

∣∣∣
0
= Lg∗φ∗

d

dt

∣∣∣
0
= Lg∗X

∣∣∣
e
= X

∣∣∣
g
. (B.108)

As a result a vector field X through a curve φ is a left-invariant vector field, X ∈ g.

Definition: A curve φ : R → G is a one-parameter subgroup of G if it satisfies the

following conditions:

i-) φ(t)φ(s) = φ(t, s),

ii-) φ(0) = e,
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iii-) φ−1(t) = φ(−t).

This one-parameter subgroup may be Abelian even if G is non-Abelian.

φ(t)φ(s) = φ(t+ s) = φ(s+ t) = φ(s)φ(t). (B.109)

We can conclude that any left-invariant vector field X ∈ g defines a one-parameter

subgroup of G. To see this let us define the exponential map:

exp : TeG→ G, (B.110)

⇒ expV ≡ φV (1), (B.111)

where V ∈ TeG and G is a Lie group and φV is a one-parameter subgroup of G that

corresponds to the left-invariant vector field XV

∣∣∣
g
= Lg∗V . By using the exponential

map a one-parameter subgroup φV (t), t ∈ R, is constructed by XV

∣∣∣
g
= Lg∗V as

exp(tV ) = φV (t) = In + tV +
t2

2!
V 2 + · · ·+ tn

n!
V n + . . . (B.112)

where V ∈ TeG.

B.1.12 Frames and Structure Equation:

Consider a Lie group G as an n-dimensional manifold. A basis at each point of the

manifold can be constructed as

Xµ

∣∣∣
g
= Lg∗Vµ. (B.113)

Here {Vµ} is the basis at a point e, Vµ ∈ TeG and Xµ

∣∣∣
e
= Vµ. {Xµ} are the n linearly

independent left-invariant vector fields and it is defined at each point on the manifold

G. Hence {Xµ} is called the frame of basis for G. We know that the Lie bracket of

two basis vectors are again a left-invariant vector field
[
Xµ, Xν

]∣∣∣
g
∈ g. One can write

[
Xµ, Xν

]
= Cµν

λXλ, (B.114)

where Cµνλ are the structure constants of the Lie group and using Cµνλ, a Lie group

is constructed.
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After basis vector fields are determined, the dual basis of that can be introduced ,

{θµ}, 〈θµ, Xν〉 = δµν . The basis left-invariant one forms satisfy the Maurer-Cartan’s

structure equation,

dθµ = −1

2
Cνλ

µθν ∧ θλ. (B.115)

Definition: A Lie-algebra-valued one-form is defined

θ : TgG→ TeG, (B.116)

by

θ : X 7→
(
Lg−1

)
∗X =

(
Lg
)−1

∗ X, X ∈ TgG, (B.117)

where θ is called a canonical one-form or Maurer-Cartan form on G.

Theorem: Let {Vµ} is the basis of TeG and {θµ} is the basis one-form of T ∗eG. The

canonical one-form θ can be written

θ = Vµ ⊗ θµ (B.118)

and θ satisfies

dθ +
1

2

[
θ ∧ θ

]
= 0, (B.119)

where

dθ ≡ Vµ ⊗ dθµ, (B.120)

and [
θ ∧ θ

]
≡
[
Vµ, Vν

]
⊗ θµ ∧ θν . (B.121)

Proof: Y = Y µXµ ∈ TgG and {Xµ} is the set of frames at the point g ∈ G,

Xµ

∣∣∣
g
= Lg∗Vµ

θ(Y ) = Y µθ(Xµ) = Y µ
(
Lg∗
)−1[

Lg∗Vµ
]

= Y µVµ. (B.122)

Let us compare this result with the theorem θ = Vµ ⊗ θµ(
Vµ ⊗ θµ

)
(Y ) =

(
Vµ ⊗ θµ

)(
Y νXν

)
= Y νVµθ

µ(Xν) = Y νVµδ
µ
ν = Y µVµ

dθ +
1

2

[
θ ∧ θ

]
= 0.
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Using the Maurer-Cartan’s structure equation

dθ = Vµ ⊗ dθµ = −1

2
Vµ ⊗ Cνλµθν ∧ θλ,

[
θ ∧ θ

]
≡
[
Vµ, Vν

]
⊗ θµ ∧ θν = Cµν

λVλ ⊗ θµ ∧ θν ,

⇒ dθ +
1

2

[
θ ∧ θ

]
= −1

2
Vµ ⊗ Cνλµθν ∧ θλ +

1

2
Cνλ

µVµ ⊗ θν ∧ θλ = 0. (B.123)

B.1.13 The action of Lie groups on manifolds:

Let us assume that G is a Lie group and M is a manifold.

Definition:A differential map σ : G ×M → M is called an action of G on M if it

satisfies the following conditions

i-) σ(e, p) = p, ∀p ∈M ,

ii-) σ
(
g1, σ(g2, p)

)
= σ(g1g2, p) Here notice that σ(g2, p) ∈ M is a point on the

manifold.

Notation: σ(g, p) = gp and σ
(
g1, σ(g2, p)

)
= g1(g2p) = (g1g2)p.

The action is called transitive if it satisfies

σ(g, p1) = p2, (B.124)

where p1, p2 ∈M and g ∈ G. If the only element of G is the identity element, e, that

satisfies the following

σ(g, p) = p, (B.125)

then the action is called free.

Finally, if the trivial action on M is done by only the identity element

σ(g, p) = p ∀p ∈M ⇒ g = e, (B.126)

then the action is called an effective action.
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B.1.14 Orbits and Isotropy groups:

Consider an action of the Lie group G on a manifold M .

σ : G×M →M. (B.127)

Take an element of M , let say p ∈M , the orbit of p is defined as a subset of M .

Gp = {σ(g, p)|g ∈ G and p ∈M}. (B.128)

Here notice that if the action is transitive then the orbit of p ∈M becomes M itself.

One of the special subgroups of G is important. If there is a point on M , p ∈M , and

the action leaves the point invariant such as

σ(g, p) = p, (B.129)

then the isotropy group of p ∈M is defined by

H(p) = {g ∈ G|σ(g, p) = p}, (B.130)

where H(p) is also called the stabilizer or little group of p. A familiar example of the

isotropy group is SO(2) for the manifold M = R3 and G = SO(3). For the point

p = (0, 0, 1) ∈ R3 the isotropy group is the set of notations about the z-axis.

Theorem: Let M be a manifold and G is a Lie group that acts on M . The isotropy

group H(p) for any p ∈M is a Lie subgroup.

One of the important result of the isotropy group can be seen by contracting a coset

space with a Lie group G and a subgroup H(p). Now consider a Lie group G acting

on a manifold M and an isotropy group H(p). If the coset space G/H(p) with the

dimension, dimG/H = dimG − dimH , has certain requirements (e.g., G/H(p)

compact), G/H(p) is homeomorphic to M .

B.1.15 Induced Vector Fields:

Consider a Lie group G and a manifold M . G is a manifold itself. Taking an element

from the manifold G, e.g., V ∈ TeG and generated left-invariant vector field XV by
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V , one can induce a vector field in M with the help of action of G on M . The flow in

M can be generated by the action

σ(t, x) = exp(tV )x , x ∈M, (B.131)

and it is obvious that σ is a one-parameter group of transformations.

Definition: The induced vector field is defined

V #
∣∣∣
x
=

d

dt
exp(tV )x

∣∣∣
t=0
, (B.132)

by the map # : TeG→ X (M).

B.1.16 The adjoint representation:

Definition: Let G be a Lie group. The adjoint representation of G is defined, a ∈ G

ada : g 7→ aga−1 (B.133)

by the homomorphism ada : G→ G.
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