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ABSTRACT

BACHIAN GRAVITY IN THREE DIMENSIONS

Tek, Mustafa
Ph.D., Department of Physics

Supervisor: Prof. Dr. Bayram Tekin

September 2019, [[ 18| pages

Modified theories in 3-dimensions such as the topologically massive gravity (TMGQG),
new massive gravity (NMG) or Born-Infeld extension of NMG arise from the vari-
ations of diffeomorphism invariant actions; hence the resulting field equations are
divergence free. Namely, the rank two tensor defining the field equations satisfy a
Bianchi identity for all smooth metrics. However there are some recently constructed
theories that do not identically satisfy Bianchi identities for all metrics, but only for
the solutions of the theory. These are called on-shell consistent theories of which
examples are the minimal massive gravity (MMG) and the exotic massive gravity
(EMG). We work out the generic on-shell consistent model in 3-dimensions as a
modified Einstein gravity theory which is based on the analog of the Bach tensor,
hence we name it as the Bachian gravity. Conserved charges are found by using the
linearization about maximally symmetric backgrounds for the Banados-Teitelboim-
Zanelli (BTZ)-black hole metric. It is complicated to solve the field equations of the
gravity theory and hence very few solutions with only maximal symmetry are known.
We use the projection formalism to obtain a reduction of the some relevant 2-tensors

defining the field equations with the help of the Geroch’s reduction method.



Keywords: 3-dimensional gravity, Bachian Gravity, Topologically Massive Gravity,

New Massive Gravity, Exotic Massive Gravity,Symmetry reduction
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UC BOYUTTA BACHIAN KUTLE CEKIMI

Tek, Mustafa
Doktora, Fizik Boliimii

Tez Yoneticisi: Prof. Dr. Bayram Tekin

Eyliil 2019, sayfa

Topolojik kiitleli kiitlecekim, Yeni kiitleli kiitlecekim veya Born-Infeld genisletilmig
Yeni kiitleli kiitlecekim gibi modifiye edilmis 3 boyutlu teoriler difeomorfizmler al-
tinda de8ismez kalan Etki’lerin varyasyonlar1 sonucu elde edilirler ve ulagilan alan
denklemlerinin diverjansi sifirdir. Yani biitiin diizgiin metrikler icin, alan denklem-
lerini tanimlayan rank-2 tensorler Bianchi 6zdegligini saglar. Bununla birlikte son
zamanlarda gelistirilen bazi teoriler biitiin metrikler i¢in Bianchi 6zdesligini direkt
saglamak yerine, teorinin ¢6ziimii izerinden saglamaktadir. Bu tiir teoriler "on-shell"
tutarh olarak adlandirilirlar. Ornek olarak Minimal kiitleli kiitlecekim ve Egzotik kiit-
leli kiitlegekim teorilerini verebiliriz. 3-boyutta Bach tensoriinii gdz Oniine alarak is-
mini verdigimiz Bachian kiitlecekim teorisi, Einstein kiitlecekim teorisinin bir mo-
difikasyonu olarak 3-boyutlu kapsamli on-shell tutarli bir model olarak ¢oziilmiigtiir.
Korunumlu yiikler, maksimum simetrik Bafiados-Teitelboim-Zanelli BTZ kara de-
ligi metrigi etrafinda linerizasyon kullanilarak bulunmustur. Kiitlecekim teorilerinin
alan denklemlerini ¢cozmenin zorlugu nedeniyle cok az sayida ve sadece maksimum
simetriye sahip coziimler bilinmektedir. Geroch indirgeme metodu yardimiyla alan

denklemlerini tanimlayan bazi rank-2 tensorlerin indirgenmis halleri projeksiyon for-
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mulasyonu kullanilarak bulunmustur.

Anahtar Kelimeler: 3-boyutlu Kiitlecekim, Bachian Kiitlecekim, Topolojik Kiitleli
Kiitlegekim, Yeni Kiitleli kiitlecekim, Egzotik Kiitleli Kiitlecekim,Simetri indirge-

mesi
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CHAPTER 1

INTRODUCTION: A BRIEF REVIEW OF GENERAL RELATIVITY

General relativity models gravity as a four dimensional manifold M E] with certain
desired properties that we shall discuss, whose metric g is determined from the Ein-

stein’s equations

87TGN

1
GMV = RMV - EguuR + Aglw = C—4Tum (11)

where R, is the Ricci tensor, R is the scalar curvature, A is the cosmological con-
stant, 7}, is the energy-momentum tensor and G'y is the Newton’s constant while ¢
is the speed of light. The left hand side is purely related to geometry, while the right
hand side represents all possible matter distribution. The cosmological constant A
was observed to be tiny but positive: in SI units A = 107°?m =2 hence it plays its ma-
jor role in the global dynamics of the universe [[1]. On the other hand, the numerical
value of the "coupling constant" x := 8”0# is k = 2.1 x 107%3m/J which is again
small but when it gets multiplied by possibly large 7, (as in the interior of a neutron
star) whose unit is .J/m? one gets a large effect. The fact that the left hand side of
Eq.(1.1) satisfies the so called Bianchi identity V,G** = 0 for all smooth metrics, re-
quires the so called the covariant conservation law V, 7" = (. The matter content of
the Universe in small scales is very complicated, therefore there is no hope of solving
Eq.(1.1) exactly. But for large scales the Universe is homogeneous and isotropic and

the matter distribution can be modelled with some simple fluids.

The average observed density of the universe seems to be around p = 9.9x 102 kg/m?
[2]] which is related to T via Tyg = pc? ~ 1072J/m3. So when multiplied with the

coupling constant x one gets a value around the value of the cosmological constant

! In the next chapter we review the salient features of Riemannian geometry and relegate details of topology
and manifolds to Appendix A and Appendix B.



A. These arguments suggest that at the large scales and/or outside matter source, the

universe is an "Einstein space" satisfying
R, = Agp. (1.2)

So a main part of understanding classical General Relativity is finding metrics that
they obey Eq.(1.2); these are also called Einstein metrics. Unfortunately, even though
there have been over 100 years of research on this equation, with many interesting
solutions such as the rotating black holes or cosmological metrics, there is still no
general procedure in finding exact solutions of these equations. For a compilation of
exact solutions of General relativity, see the books [3,/4]. The reason is clear: this
tensor equation is highly non-linear and without assuming symmetries one ends up
with coupled non-linear partial differential equations which are in general too com-
plicated to solve. So all the solutions known up to date have some symmetries. The
fact that classical General relativity is so hard also makes the possible quantum ver-
sion of the theory highly complicated. In fact, we have not yet been able to quantize
General relativity: naive perturbation theory that works for other classical field the-
ories such as electrodynamics fails as there appear new divergences at the one and
two loop levels and beyond. These complications in the four dimensional General
relativity led researchers to study gravity models in simpler settings of two and three
dimensions. Research in lower dimensional gravity dates back to 1960s but received
a renewed interest since 1980s. Some of the historical developments can be found in

the book [5]].

The subject of this thesis is the three dimensional gravity theories, not just Einstein
theory, but its various generalizations that have received attention recently. The bulk
of the thesis depends on our published work [6]. Motivation for studying three di-

mensional gravity theories will be explained in more detail in Chapter 3.

The lay-out of this thesis is as follows: In Chapter 2, some mathematical prelimi-
naries that includes Riemannian geometry, hypersurfaces and Stokes’ Theorem are
briefly given. More technical details are explored in the Appendix starting from the
notion of maps, topological spaces and manifolds. In Chapter 3, we discuss some
known massive gravity theories such as the Topologically Massive Gravity (TMG),

New Massive Gravity (NMG), Minimal Massive Gravity (MMG) in 3-dimensions. In
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Chapter-4, we discuss the Exotic Massive Gravity (EMG) and Bachian Gravity as a
general extension. This chapter is mostly based on our published work [6]. We also
discuss for the developments in Exotic Massive Gravity in that chapter. In Chapter-5,
we consider a 3-dimensional manifold with a time-like Killing vector field and a met-
ric adapted to this Killing vector field; and study the decomposition of the relevant
tensors such as the Ricci and Cotton tensors as well as the more complicated 2-tensors

that appear in the field equations of other 3-dimensional gravity theories.






CHAPTER 2

MATHEMATICAL PRELIMINARIES

2.1 Basics of Riemannian Geometry

Following the discussion and notation of [/|] let us consider a manifold M, if it is

endowed with a metric g, which has the following properties at a point p on M:
i-) g,(U, V) = g,(V, U), symmetric for all U, V' in T, M

ii-) g,(U,U) > 0, positive definite, g,(U,U) =0 = U =0,
then it is called a Riemann manifold and denoted as a pair (M, g). If (i) holds, but (ii)
is related as

g,(U, V) =0, forany U € T,M,thenV =0, (2.1
M is called as a pseudo-Riemannian manifold.
The product between vectors and dual vectors is defined as a map in Appendix-B
( , )i Ty,MxT,M—R. (2.2)

The metric g, which is a (0,2) tensor, gives an opportunity to construct an inner prod-

uct of two vector fields. Let us say U,V € T,M, and the inner product is a map as

g T,M @ T,M — R (2.3)

The metric also forms an isomorphism between the tangent space and the dual tangent

space, at each point on the manifold as
U, ):T,M—=R = aoneformwy :=g,(U, )eT M, (2.4)

where the notation suggests that wy; is the unique one-form obtained via the metric

form the vector U.



The metric is symmetric 2-tensor, as such it can be diagonalized at each point p of
M. The number of positive, negative or zero entries in this diagonal matrix is crucial.

Let us note the possibilities:
i-) Riemann: all the eigenvalues are positive
ii-) Pseudo-Riemannian: One or more than one eigenvalues are negative

Note that if only one eigenvalue is negative, we also call it a Lorentzian metric. This
is the relevant case for the space time of General Relativity and Minkowski spacetime.
In the Lorentzian case, the vectors on the tangent space are divided into three classes

as follows
i-) g,(U,U) > 0, U is spacelike
ii-) g,(U,U) = 0, U is lightlike(null)

iii-) g,(U,U) < 0, U is timelike
On the manifold we need more structure than the metric to model gravity: next we

discuss these structures.

2.1.1 Affine Connection

A derivative amounts to comparing a quantity at two distinct points. If that quantity
is a scalar quantity, one does not need additional structure on the manifold to define
the difference. But for any other quantities, such as vectors, tensors etc., the existing
structure on the manifold is not sufficient and hence one must supply the manifold
with some extra structure which will be broadly called the connection. In the differ-
ential structure of the manifold, a vector is defined on a tangent space at a specific
point. To calculate a derivative of a vector field, it is transported between two points
through a curve which is defined uniquely by some vector fields. Notice that this can
be generalized to all type of tensor fields. A connection arises by the virtue of the

tensor transportation.

Definition: Let x (/) denote the space of vector fields on M. A map V : x(M) x
X(M) — x(M), takes two vector fields and sends them to a one vector field, is called

6



an affine connection with the following properties:

Vx(Y +2Z) = VxY +VxZ, (2.5)
VixanZ =VxZ+VyZ, (2.6)
Vi)Y = fVyxY, 2.7)
Vx(fY) = X[f]Y + fVxY, (2.8)

where XY, Z € x(M)and f € C°°(M). First two properties demand the bilinearity,
the third one is the so called tensorial property (namely the value of the X vector field
at point p is relevant, but its extension around that point is not), the fourth property is
the Leibniz condition with the definition V x f = X[f]. What is given here for vector
fields is sufficient to generalize to form fields and tensor fields in general which we
shall do below.

The connection coefficient is defined for a manifold with the coordinate system x =

¢(p) and the coordinate basis {e,} = {0/0z*} of the tangent space as
Ve, = Ve, =1 exl,. (2.9)
The action V on a vector field W along the vector field V' is

VyW = VMVeM (Wyeu) =V (eu [WV] €y + WVV@ueV)

=V ( 5 T W”Fiw) en = (VIV, W) ey
Here one can define;
oW
A A v o A A v
VW= e + FWW = 0,W" + FWW ) 2.11)

The next topic, parallel transport plays an important role in the study of motion of

point test particles on a manifold. We discuss it briefly.

2.1.2 Parallel Transport

A parallel transport of a vector is defined

VyX =0 (2.12)

7



where V' is the tangent vector to a curve ¢ : (a,b) — M. Below the independent

variable ¢ parametrises the curve.

Vv X =VHV,, (XVe,) =V* (e, [X"] e + X"Ve,6,)

53> 2.13)
=y (— +X'T), )
Ox#
dzt OXA dx*
= VX =|[—- X" | e 2.14
v (dt TR )6A 14
Here notice that 4 (X*) = %= 0 (X*) = &= %Xu and so in the component form one
has
dXx# dz¥(c(t))
I X*=0. 2.15
TCT 1)

There are certain curves that parallel transport their own tangent vectors; these are

called geodesics and simply

0=VyV =VIV, Ve, =V*(9.V*+T},V") e,

(datov  det N AV et de (2.16)
—\dt dxr M dt M\ Tae T ar )Y

dv> . i A . i @ o A2 . .
t - = dt(V ) = dt( ) = £%-. Now we arrive the geodesic

Here realize tha o T

equation;
A2zt u dz? dz?
+ 1 ——
dt? YA de de

More properly this is an affinely parametrized geodesic equation, namely any other

= 0. 2.17)

perturbation t' = ¢t + ¢, with ¢; and ¢, keep the equation intact, but, for a non-affine

parametrization of the form ¢’ = f(¢) with some smooth function f, Vi = f

2.1.3 The Covariant Derivative of Tensor Fields

Let us consider a pairing (or product) of a one-form w € Q!(M) with a vector field
Y € x(M) (w,Y) € C®(M). Using the affine connection of a function (w,Y")

along the vector field X € x (M) will give us the covariant derivative of a one-form.

X[{w, V)] = Vx[{w, V)] = (Vxw,Y) + (w, VxY) (2.18)

= X0 (w,Y?) = (Vxw), Y + (w, X#V,Y") (2.19)

8



= (Vxw),Y" = X*0,(w,Y") — w,X*(0,Y" + T, Y?)

n

= (X 0w, — XFwpI),) Y

(Vxw),Y" = X*9w, — XFwyI'y,. (2.20)

For a basis vector X = ¢,

(Vuw), = 0w, — I wa (2.21)

1%

and one can obtain connection coefficients by taking w = dx”
Vuda” = =TI, da?. (2.22)

The covariant derivative of a (p, ¢) tensor type is a straight forward generalization.

As an example let us note the covariant derivative of a (1, 1) tensor 7"
V., 1§ =0,Tg + T, Th — T T (2.23)

It is important to analyze how connection coefficients transform under the coordinate
changes. it does not transform as a tensor field of type (1, 2). The connection coeffi-
cients F/’)V apperantly look like a (1, 2)-tensor but this is not correct. At this stage they
should be considered (without noting the symmetry issue in the lower indices) as n?
functions for a manifold of dimension n. The fact that they are not components of a
tensor is clear from the way they transform under coordinate transformations which
we can work out as follows: Consider two overlapping charts. Let (U, ¢) and (V, V).

{e,} = {0/0x"} and {f.} = {0/0y*} are the corresponding basis vectors adapted

to the (U, ¢) and (V, ¥). Now, there are two connection coefficients such as

Veen=ell, . Vifs=Tlf (2.24)

. W
and one can write f, = g%eu.

Oxt O?zH ox> Ozt
Vs = Vi, (a_yge#) = DyeayP " + Dy Dy O

2.25

| P +8m’\ ax“FV . (229
~ \oyedy? oy~ OyP Aw )Y

Y, =T =9 2.26

= Vals=Tah =Tasg zov (2.26)



Now it is easy to realize the transformation of the connection coefficients by compar-
ing two equations, Eq.(2.25)) and Eq.(2.26)
o o> O+ Oy *ar Oy .
B gy yB Oxv M OyedyP dxv

In GR, a specific connection, so called the metric compatible connection is used, next

(2.27)

we discuss this.

2.1.4 The Metric Compatible Connection

In local coordinates, metric compatible connection is defined as V,g,, = 0 which

yields explicitly

O\Gpw — Fiug,w —I'Y, gk = 0. (2.28)

In this aspect, the affine connection V becomes a metric connection, in other words
a metric compatible connection. In fact we can explicitly derive a formula for Ffw in
terms of the metric with the following equations

Vg = G — T3, 90 — T3, Gsp = 0,

Vugun = Ougur — Thgex — Ungew = 0, (2.29)

Vg = Ougru — Uingep — T5,900 = 0.

Subtracting the first equation from the other two equations, we arrive

augw\ + al/gu)\ - a/\guu + (Fiu - Z)\)gm/

(2.30)
+ ( iu o FZ)\)QHM - (FZV - Fs,u)gKA =0
one defines the Torsion tensor as a (1, 2) tensor as
A A A
T;u/ - Fuu - Fuu' (231)

Note that even though the connection is not a tensor as we have shown, the difference

of connections is a tensor since the non-homogeneous term in Eq.(2.27) drops out.

K

(u)> ODE reaches at

After solving the above equation for I'

K 1
() = +5 (LS T,) (2.32)
nv

10



with (pv) denoting symmetrization. Here we defined the connection coefficients
known as the Christoffel symbols:

k 1 KA

= 59 (a,uguA + augu)\ - 8/\g,uu) . (233)
7%

As a result, making a simple manipulation on the Eq. (2.32), the connection coeffi-

cient I' is found as
1

Doy =Ty + Ty Ty = 500
K K 1 K K K
I, = +3 (T + T, +T) . (2.34)
nv

The Contorsion tensor is defined as K7j, = % (T,," p 1+ ij). In GR, one also
assumes that the Torsion is zero, therefore in what follows we do not use the sym-
bol {f,} but instead use I'};, to denote the metric compatible torsion-free connection
which is called the "Levi-Civita connection". It is clear that the geometry simplified

a lot with this choice of the connection.

2.1.5 Curvature and Torsion

Above, we gave the torsion tensor components in local coordinates. Here we define
it more geometrically and also introduce the curvature tensor. A Torsion tensor is

defined as a map
T x(M) & x(M) —x(M)

(2.35)
(X,Y) = T(X,Y)
defined as
T(X,)Y)=VxY —-VyX — [X,Y]. (2.36)
The curvature tensor is defined as a map
R x(M) @ x(M) @ x(M) = x(M), (2.37)
where
R(X,Y,Z)=R(X,Y)Z =VxVyZ - VyVxZ -V ixyZ, (2.38)

11



where [X, Y] denotes the Lie bracket of two vector fields. The tensorial property of

them can be shown rigourosly, which we do here.
R(fX,9Y)(hZ) =VixVey(hZ) =V Vix(hZ) = Vix gv)(hZ), (2.39)
with f, g smooth functions.

[fX,9Y] = fX[glY — gY[f]X + fg[X,Y]. (2.40)

R(fX,9Y)(hZ) = fVx{gVy(hZ)} — gVy{fVx(hZ)}
— JX[gIVy(hZ) + gV [[IVx(hZ) = [gV(xy)(hZ)
= [X[g]Vy(hZ) + fgVx{Y[h]Z + hVy Z}
— gY[fIVx(hZ) — gfVy{X[hZ + hV x Z}
— [X[9IVy(hZ) + gY [[IVx(hZ) = [V (xy|(hZ) (2.41)
= fgVx{YI[h|Z + hVyZ} — gfVy{X[h|Z + RNV xZ}
— f9IX.Y][h]Z = fghVx y)(Z)
= fg{VxVyZ - VyVxZ —Vxyv|Z}
= fghR(X,Y)Z.
So this says that the curvature is tensorial. For the Torsion tensor, a similar calculation
yields
T(fX,9Y) = Vix(gY) = Vv (fX) = [f X, gY]
= fH{VxY =y X - [X,Y]} = fgT(X,Y).

(2.42)

Let us consider the coordinate basis {e,} = {32} with its dual {dz*}. For this basis

le, €] = 0. Now, it is easy to obtain component forms of the Torsion and Curvature

tensors.
A = <d:1:A T ( eu,el,)> = <d:z:)‘,V”el, — Vl,e”>
, s R (2.43)
= (daM Tl ey — Tl ey) =T, =T .
R"y 0 = (dz", R (e, e,) ex) = (dz", V,V,ex — V.,V e))
(2 ¥, (They) — ¥ (Thye0) s

= <dx"i (0, ) e, + T Fg (8VFZ)\) €n — FZArine§>
= 0uL0n = 0T + D0l — DI,

12



The torsion is a (1, 2) and the curvature is a (1, 3) tensor fields. For the metric com-
patible torsion-free connection 7" = (0 and the Curvature tensor is called the Riemann

tensor.

2.1.6 The Ricci Tensor and the Scalar Curvature

The Ricci tensor is defined via the contraction of the Curvature as:
Ric(X,Y) = (dz", R(e,, Y)X) (2.45)
and in the component form, it reads
Ric,, = Ric(eu, e,) = R .- (2.46)
Note that one writes R, = Ric,,. The scalar curvature Scal is defined as
Scal = g" Ric(e,, e,) = ¢"" Ricy, = g" R, (2.47)
and one introduces the notation R = Scal.

Bianchi Identities: Using the definition of the curvature tensor one can prove the

following identities, whose proofs we omit here:
The first Bianchi identity;

RX,)Y)Z+R(Y,Z)X + R(Z,X)Y =0, (2.48)
which in component form reads

R\ + R yx + R\, = 0. (2.49)

The second Bianchi identity;

(VxR)(Y, Z)V + (V,R)(X,Y)V + (VyR)(Z, X)V =0

VR + VR + VR, = 0. (2.50)

Contracting, £ and . on the second Bianchi identity; one has
V.R,, + V,LLRMAI/H -V, R, =0. (2.51)
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Another contraction yields

1
V#(R‘“’ — 59’“’}%) =0. (2.52)
One defines the Einstein tensor as
1
= GM = RW — §g“”R. (2.53)

More geometrically, the covariant form of the Einstein tensor is a rank (0, 2) tensor
defined as
1
G = Ric — éRg. (2.54)

The fact that V,,G* = 0 for any smooth metric is extremely crucial in General Rela-
tivity. In the exotic massive gravity theories discussed in this thesis, such an identity
is not assumed for the (0, 2) tensor defining the field equations. The consequences of

this loss of "Bianchi identity" will be discussed.

2.2 Hypersurfaces

Hypersurfaces or codimension-one surfaces play an important role in General Rel-
ativity or other relativistic gravity theories. For example, to be able to count the
dynamical degrees of freedom of the gravitational field, which we shall do in the next
chapter, one has to choose a constant time slice and consider the induced metric and
its derivative (momentum) on the surface. For this purpose, following Appendix-D
of the book [8], we give here the details of the hypersurface geometry in generic n
dimensions. A major part of the discussion is the projection of the tensors into the
hypersurface and off the hypersurface. We carry out these and derive the Gauss’s and
Codazzi’s equations. At the end of the chapter we discuss the Stoke’s theorem that is

used later in the conserved charge construction of exotic massive gravity.

For an n-dimensional manifold M, one can define an n — 1-dimensional submanifold
> and it is called a hypersurface. One way to define the hypersurface is to consider

the level set of a single function f as

f(z) =c, (2.55)
where c is a constant. The vector field (*;

b= gV f (2.56)
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is orthogonal to all vectors that are defined on the surface Y. There are three cases to

specify this orthogonal vector;

i-)If ¢* is a timelike vector (g(¢, ¢) < 0, g,,¢*¢” < 0), then ¥ is spacelike that means

32 "moves" along the time direction]l]
ii-)If ¢* is a spacelike vector (¢((,¢) > 0, g, C*¢” > 0), then X is a timelike surface
iii-)If ¢* is a null vector (¢(¢,¢) = 0, g, ¢*¢” = 0), then X is a null surface.

For the timelike or spacelike cases, we can define

P

== (2.57)

V1GuCH]

and it is called the normal vector with the magnitude

ntn, = —1, for spacelike ¥

n*n, = +1, for timelike ¥.

The null case is subtle as the null vector is both orthogonal and parallel to the surface.
Null hypersurfaces are relevant for the black hole event horizons, as we will not use

them here in this thesis, we skip that part of the discussion which is done in detail [8].

2.2.1 Gaussian Normal Coordinates:

Let us assume that we choose a coordinate system on the hypersurface >, such that
y' = {y',...,y""'}. For every point p on the ¥, one can define a geodesic whose
tangent vector is n*(normal vector). The affine parameter of these geodesics is z, and
it is unique after n* is normalized. There is always be a neighbourhood of a point
p, let say q that is on the geodesic and not on the hypersurface >.. One can reach
that point by taking an affine parameter z as a coordinate component. As a result,
the coordinate system that is valid on the manifold M at least locally, is defined as
{z,y',..., 4" '}. This coordinate system is called the Gaussian normal coordinates

and it may be not well defined globally on the manifold. {0,,0,...,0,_1} can be

! Note that we work with the mostly plus signature.
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chosen as a basis vector fields and rename them as
v
(az) - nﬂa

(0:)" =Yg

(2.58)

We can now provide an explicit local form of the metric in Gaussian normal coordi-
nates.

g(aza az) = 0zz = nunu =+1= g, (259)

9(0:,0) = gz = nuY (). (2.60)
To find nMY(’;), let us take a directional covariant derivative along the z-coordinate;

D

%(TLMYH

(i)) = n"V,(n,Y;

(i)) - n”V,,nuY(’;) + n”anVY(’;). (2.61)

From the geodesic equation, use n”V,n, = 0 to get

D
- (nuyﬂ

v w
2 () = 1Y),

Note that, [n,Y»]* =0 — n”VVY(f) =Y V,n"
=n,Y;)V,nt = %Y(’{)Vl,(n“n“) = 0.
Therefore nMY(’;) = 0, since n,, is orthogonal to all vectors on the .. Finally we have
9(9;,9;) = gij = ij (2.62)
and the line element reads

ds® = odz* + vidy'dy’ (2.63)

clearly Yii = %‘j(za yi)-

There is a natural map between the hypersurface and the manifold M that helps us to

construct an induced metric and let us assume that X is defined by z = 2, on M.

p:N—>M
A A (2.64)
cyt =t = (2 yY).
Now the pull-back of the metric ¢ that is defined on M is simply
(979)i; = 7is- (2.65)

16



It is natural to define a volume element on the hypersurface > by using the induced

metric. A volume element of the whole manifold M is defined by the top form

e =/|gldz' A - A da" (2.66)

It is obvious that how to define a "volume element" of 3> whose metric is ;;.

é=/|yldy' A~ Ady™t (2.67)
Here let us investigate the determinant of the metric g;

o 0
G = . = g=0%; =%V, Vgl=vhl (2.68)
Yij

Therefore, we obtain the "volume element"” of M as
e=/|yldz Ady' A Ady™t (2.69)
The contraction of a volume element ¢, with a normal vector n is;

e(n) = €4y dz AL datm (n’\(%\)

(2.70)
= n’\ewzmﬂnd:c“? A...dzh,
where n* is the normal vector and with components , n* = (1,0, ...,0).
€(n) = €y dr A dat = \]y[dyt A Ady" T = e (2.71)
Then we can write the induced volume element in a component form,
Eprgin 1 = N1 (2.72)

2.2.2 Projection Tensor:

We have defined the hypersurface, next we would like to project tensors onto the

surface and off the surface. The projection tensor is defined by
P, =guw—on,n,, (2.73)
where n* is the unit normal vector and o = n,n*. For any vector V' € T, M,
(P V)N = [(gu — onun,)V#]n =0, (2.74)
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which says that for any vector V' € T,,M, the projection operator projects a vector
tangent to the surface. Another useful property of the projection tensor is acting as
a metric for the vectors that are tangent to the surface, and by this reason projection

tensor is also called the first fundamental form at the sufrace. For instance;

P,V*W" = g, V¥W" —on,n, VW

= guV*W" = o (n,V*)(n,W") (2.75)
=0 =0

= g VW,

As expected, any power of a projection tensor is equal to itself since

P{P) = (04 — ontny)(0) — on’n,) = 6 — ontn, = P~ (2.76)

The Riemann tensor measures the intrinsic curvature of a manifold. But for an em-
bedded manifold in a higher dimensional space, the extrinsic curvature is relevant.
The Lie derivative of the projection tensor along the normal vector will give us the

extrinsic curvature of the hypersurface. Now let us define
LnFy. (2.77)

It is interesting to show that K, is the twice projected Lie derivative of the metric
with respect to the normal vector n. The Lie derivative of the metric tensor is £,,g,,, =

Vuny + vunu'

PPy LG = PP (Vyun, +V,n,)
= (08 — onng) (65 — on”ng)(Vn, +V,n,)
= Vang + Vgn, —on"ngVan, —on’ngV,n,
—_——

TInpda (2.78)

—ont'ny,V, ng —ontn,Vgn,
N g N >

vV vV
—onqag =0

+n'n"nengV,n, +ntn"n,ngV,n, .
> A g

v ~~
=0 =0

1
= éPo’ngCngW = V(ang) — 0nag = Vang — 0ngng. (2.79)
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Now let us show that K, = %ﬁnPW = %P;}Pfﬁngag.

L,P,, =n*V,P, + P,V,n"+ P, V,n"
= —on*Va(n,m,) + 9o Vun® + guaVon® (2.80)

— onan, V,n® —ongn,V,n®.

Let us have a look at the following expression

nV (nen®) = n,n*V,ne + n,n,V,n® = 2n,nV,n, =0,

=0

L,P, =V, +Vy,n, —on,a, —on,a,,

1
= EEnPW = V() — onpa,y = V,n, —on,n,. (2.81)

Therefore we obtain the desired result;

1 1, N
K = 5LnBu = 5P} PJLugas = PPN ong. (2.82)
The extrinsic curvature K, is a symmetric tensor. The contraction of the K, with

the normal vector n* is given by;

K, n" = (V,n,+ V,n, —onua, —on,a,)n*

=n"V,n, +n"V,n, —a, — on,a,n"
‘—;6—“ (2.83)

=a, —a, —on,n*(n*Vyn,) = 0.
NS

J/

=0
So it has no components orthogonal to the surface. Covariant derivative on the hyper-
surface Y can be found by projecting the ordinary covariant derivative on the mani-
fold. (Note: From now on we will use Latin indices instead of Greek indices due to

the increasing number of indces.)
VoVi = PPV Va, VoD = PAPEPIVT.., VTP = PIPPPIV, TS (2.84)

Now, using the definition of covariant derivative, let us find the Riemann tensor on

the hypersurface.

~ A A A ~

[@ma vn])(b - _RabmnXa - vmvn‘va - vn@m)(ba (285)
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—RabmnXa = @m@nXb — (m S n)
= P! P'PEV(PI PV, X,) — (m < n)
= P! P.P¢P/ P*V,V, X, + P! P. PV, (PP (V, X,)
— (m <> n)
= P! P"P’V,V, X, + P, P.Pf(P/V,P + PV, P/)(V,X,)
— (m < n)
= P.PrP;V,V, X, + P. Pr PV, P:(V, X,)
+ P! PPV, P (V,X®) — (m < n)
= P! P"P’V,V, X, + P! PT PV, (65 — onen®)(V,X,)
+ P! P PV (6] — onn”) (V. X,) — (m > n) (2.86)
= P! P"P’V,V, X, + P! PPV (—on.n®)(V,X,)
+ P! P PV (—onn”)(V,X,) — (m < n)
= P, PiBV.V, X, — 0P, P Pyne(Vin®) (V. X,)

~
Pgne=0

— oP! P"Pn®(Vin.)(V,X,) — o P P Pin(Vn")(V,X,)

/

Plny=0
— P! PLPin™ (Vi) (V. X,) — (m <> n)
— P! P'P:V,V, X, — 0 PL P"Ptn®(Vin)(V,X,)
— oP! PP (Vi) (V. X,).

Let us use,

= PPV, = Kny, P.P'Vn =K. (2.87)

— R Xo = PLPIPIV NV, X, — 0 Pin* Ky (V, X,)
— oPn" K,y (V. Xs) — (m <> n) (2.88)
= P' PPP;VV, X, — 0P’ K,y (V. X)) — (m <> n).
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For any spatial tensor n° X = 0;

V. (nsX*) =n,V, X+ X°Vng =0 = n,V,X°=-X°V,n,

= P. P PSV Y, X, + 0 PTK, XV, n,
= P PIPYV NV, X, + 0 KK s X
= — P! P’ P’ Ror X* + 0 X Ky Kpg — 0 XKy Ko

Let us say X = PY"?;

—Rayun P§Y* = — PPy Py Ryt P4Y
+ U(KmbKna - Kanma)P;Yd7

—Rapn Y = — P! PT P P8 Rty Y + (Koo K g — Ko K ma) Y2

Now we have reached the so called Gauss’s equation

Rapmn = PL,PT PSP Rogtr + 0 (K Kong — Kb Kna),

= Rapea = P PP PR st + 0(KoeKpg — KaaKe),

R%eq = PP PSPLR™ g + 0(K® Ky — K@Ky,

R%ea = Ryg = PLPPPIPIR™ g + 0 (K% Ky — K@4Kp,).
Contracting yields the Ricci tensor on X
Roa = PPy PiR st + 0 (K Kyg — K aKa),
and one more contraction yields the scalar curvature.

R = P"Ryy = PYPs PPPiR™ g + 0(K P Ky — P K1 Ky,),
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R = PPy Pl PiR o + o(K* — K" Ky)
= P P" PR, + 0(K* — K Ky)
= Py PR+ 0(K? — KKq)
= (0, —on’ny, g" — on"n" YR™ o + o(K* — K®K,,
( ) VR st + 0 ( ) 2.95)
= (0° g™ — 00° n"n' — 0g""n Ny + N Npn" Nt ) Ry
+o(K? — K®K,)
= R—on™n'Ry — on’ny, R™y + o(K?* — KKy;)
=R — 02nn’ Ry, + o (K* — K K,).
It is interesting to study the contraction of the Riemann tensor by a normal vector.

After contraction is done, to reach the Codazzi’s equation, projection of the contracted

Riemann tensor will be achieved.

}%mnban(z - vmvnnb - vnvmnba (296)
Vun, = K,, +on,a,, (2.97)
Ronpan® = Vi (Kpp + ongng) — (m <> n). (2.98)

P™ PP Rypppa = PP PN 1 Ky + 0 P™ PPV (0, V gny)

— (c 4+ d)

= P"P}P!N Ky, + 0 P PP (Vi (nan®) (Vsny))
— (¢4 d)

— P PPV, Ky, + 0 P PP PP s (V) (Vien,)  (2.99)
—(c 4> d)

= VeKye + 0 PPy P (Vony) (Vi) — (¢ < d)

= VeKge + 0P (Vnp) Keog — (¢ 4 d)

= VeKie = VaKee.

P PP Ronpe = VeKge — VaKe, (2.100)
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(6™ — on™ne) (85 — on™ng) (02 — on’n)n Rympa =

VKo — VaKe.
(6767 — on™ngd” — on™ned + NN Neng) 6N Ryppa =
VeKge — VaKe
Regean® — ongn"™n®Repeq — onen”" n® Rodea = @CKde — @che. (2.101)
Let us multiply above equation by g“¢, then
= Run® — ongn"Ruan® = VK, — V4K, (2.102)
we get the Codazzi’s equation

= PP'Ren® = VK, — VK. (2.103)

2.3 Stokes’ Theorem

Here we follow the discussion and notation of the related chapter of the book [7]]. In

a Euclidean space let us define the r Addinghigherordertermstothetheory-simplex

- = (pop1 - .. pr) such asE]
po = (0,0,...,0) — the point at the origin

pr=(0,0,...,1)

In a certain coordinate system &, is defined by

a:{(;cl,...,x’“) eR’”\xﬂzo,Zxﬂgl}. (2.105)

p=1

Now we can reach the volume-form w on R" as

w = a(x)de* Ndx® A --- Ada" (2.106)

2 Here we shall not go into the definitions of the relevant tools such as homology and homotopy theory used
below: all these follow the book [7] very closerly.

23



and an integration of w is defined

/ w= / a(z)dz'dz?®. .. dz" (2.107)

We defined an r-simplex in R" before. It is natural to construct a map f : o, — M
(it is smooth and does not have to posses an inverse). Let us say {s,;} is a set of
r-simplex that is mapped from R" to the manifold M. Using the set {s,;}, one can
define an r-chain ¢ = ), a;s,,;, where a; € R. Those r-chains form a group C,.(M)
on the manifold M. We have whole set-up onto the manifold M, and introducing r-
chain, r-cycle and r-boundary is eligible on M. The boundary Js, of an r-simplex s,
is an (r-1)-simplex with the help of the map 0 : C,.(M) — C,_1(M). Let say ¢, is an
r-chain on M. For those ¢, that satisfy dc, = 0 are called an r-cycle and ¢, = J¢,11

are called an r-boundary.

Definition: B,.()) is a boundary group and its elements are r-chains that satisfies
¢y = 0cry1. Z,.(M) is called cycle group that have elements such as r-chains without
a boundary, dc, = 0.

It is obvious that B,.(M) is a subgroup of Z,.(M), B,(M) C Z.(M).

Definition: H, (M) is a homotopy group on M and defined by quotient space of
Z,(M) by B,(M) .

H.(M)=Z.(M)/B.(M). (2.108)
We put all the tools on the table to define an integration of an r-form conclusively.

Using the pull-back of an r-form w with the help of the map f : o, — M, w is moved

to the space R" in which one can perform an integration as below.

/ dw = / Fw (2.109)

Notice that the RHS of the equation is just an r-fold integration because it is performed

in the space R”
Definition: Stokes’ Theorem:

For an r-1-form w € Q" (M), we have

/sr = /g fridw) = /0 d(f'w) (2.110)
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and using pull-back map for an r-1-form w,

/ w= | fu, 2.111)
0sy oo

then we established the Stokes’ theorem

/dw—/ w. (2.112)
S s
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CHAPTER 3

THREE DIMENSIONAL GRAVITY THEORIES

Lower dimensional gravitational or non-gravitational theories have always been con-
sidered as both useful tools in understanding the four dimensional physics and ac-
tually effectively realizing them in the laboratory setting. In this context, especially
lower dimensional quantum field theories have been widely studied; for example 2+1
dimensional Chern-Simons theories have applications in effectively 2-dimensional
physical systems, such as the the quantum Hall effect. But as for gravity, the situ-
ation is more subtle for an unexpected reason: 2+1-dimensional General Relativity
(GR) with or without a cosmological constant (A) has no local degrees of freedom,
hence there are no gravitons, no gravitational waves and therefore 2+1-dimensional
gravity, apparently cannot be a useful tool for the realistic gravity theory in four di-
mensions. To see that there is no nontrivial gravity in 2+1 dimensional GR, let us
note the following: assuming the validity of Einstein’s equations (say for A = 0), one
has

1
G/u/ = R,u,u - éguuR = K/YTU‘V (31)

and in vacuum, 7;,, = 0, R,,, = 0. In generic n-dimensions, algebraic decomposition
of the Riemann tensor is given in terms of the Weyl tensor and the Ricci tensor and

scalar as

1
R)\/J,I/Ii :C)\;wn + ) (g)\uR;m - g)\nR;w - g,uuR/\n + g,u,nRAu)

(n—2
R
- (n - 1)(n _ 2) (gkug,un - g)\mg;w)-

(3.2)

In vacuum for GR, R,, = 0, R = 0, so Ry = Cyuwx. Butforn = 2 + 1, the
Weyl tensor vanishes identically , hence the Riemann tensor vanishes, which means,
outside the source the spacetime is flat. Since curvature encodes gravity, one has no

local gravity in n = 2 4 1. For the A # 0 case, the above discussion can easily be
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extended to observe that the Riemann tensor is locally maximally symmetric

Ruauﬁ =A (guugaﬁ - guﬂgau) . (33)

For A < 0 the maximally symmetric spacetime is called the anti-de Sitter sapcetime,
while for A > 0 it is the de Sitter spacetime. So we have just seen that in 2 4+ 1 GR,
outside the source, depending on A, the spacetime is either flat, de Sitter or anti-de
Sitter. The source 7}, cannot change this behaviour. In fact more concisely, in three
dimensions the Riemann tensor and the Ricci (or the Einstein) tensor carry the same

number of independent components, that is 6, and they are related as
R,uauﬂ = E,uacrEquGUp; (34)

where €., 18 totally antisymmetric tensor. We prove this identity in the next chapter.

It is clear from Eq. (3.4)) that vanishing of G yields flat spacetime.

Another way to see the local triviality of three dimensional Einstein’s gravity is to di-
rectly count the number of degrees of freedom at a point in phase space following [5].
Consider the phase space of n dimensional GR, the relevant canonical variables are
the spatial metric g;; on a n — 1 dimensional hypersurface and the corresponding
canonical momenta 0, g;; on the hypersurface. Being a symmetric tensor field, the spa-
tial metric has n(n — 1) /2 maximum possible independent components, the canonical
momenta has the same number of components, adding to a maximum of n(n — 1).
But, there are n constraints coming from the Bianchi identity ( 1 Hamiltonian and
n — 1 momentum constraints). In addition, using the coordinate transformations, we
can gauge away n components of the metric hence the maximum possible number of
degrees of freedom is n(n—1)—2n = n(n—3) which yields the expected 4 in four di-
mensions; that are 2 metric and 2 momenta degrees of freedom. But it yields 0 degree
of freedom in 3 dimensions. This discussion is valid whether there is a cosmologi-
cal constant or not. The number of degrees of freedom in 3-dimensions increase by
adding higher order terms to the theory and the constraints become time-dependent.

These facts eliminate the triviality of the 3-dimensional gravity.

All these show that no matter what a source has or does, it cannot change the gravi-
tational field outside. Sometimes this triviality of 2 4 1-dimensional gravity is sum-

marized with the statement that 2 + 1 GR has no non-trivial Newtonian limit. This
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is meant to say the following: in a well presented approximation scheme, say for
A = 0 case, in generic n > 2 + 1 dimensions, one gets the Poisson equation for the

Newtonian potential ¢ from GR as
Vi = kp, (3.5)

but for n = 2 4 1, one does not obtain this equation, instead after gauge-fixing one
gets = 0 in sharp contrast to the 2 dimensional Newtonian gravity (i.e. the Poisson
equation in 2-dimensions) which yields ¢ = In(;) for a point source, which yields
a 71 force as expected.

One should keep in mind that this local triviality does not necessarily mean that the
theory is globally trivial. In fact there have been highly influential works done on
the global structure of gravity for point sources in 2 + 1 dimensions in [9, 10]. These
works initiated a closer scrutiny of the three dimensional gravity theories. Eventually,
it turned out that when the cosmological constant A is negative, namely the spacetime
is locally anti-de Sitter (AdS), the theory admits a black hole solution, so called the
Bafiados-Teitelboim-Zanelli (BTZ)-black hole [11]. This black hole was totally un-
expected, because of the local simplicity discussion noted above, no one expected
the existence of a black hole in this theory. In fact the BTZ black hole has almost
all the properties of the four dimensional Kerr black hole: it has a mass m, angular
momentum ./, inner and outer event horizons and all the relevant thermodynamics
associated with the horizon. There are of course several differences, one of which
is that unlike the Kerr black hole of the four dimensions, the BTZ black hole does
not have a curvature singularity; in addition it does not have a speed of light surface.
The reason this black hole was found more than 75 years after GR was introduced
is the following: this solution arises in a rather non-trivial way: the global AdS; is
identified along some directions whose details are given in [[11]. We should stress that
the black hole solution does not exist for A = 0 or A > 0, namely the flat and the
de Sitter cases. The fact that a negative cosmological constant is needed for the BTZ

black hole to exist in Einstein’s gravity was proven as a theorem in [[12]].

All the above discussion has been in the classical regime; in principle one uses lower
dimensional theories as a tool to understand both the classical and quantum regimes

of the realistic four dimensional theories. As for the quantum version of the three
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dimensional Einstein’s gravity, there has been a lot of progress but the final answer
has not been found. Earlier work [[13]] on the quantum version of the three dimen-
sional GR showed that if the theory is formulated in terms of the dreiben and the spin
connection [ 14f], not the metric formulation, then up to a boundary term, the Einstein-
Hilbert action with or without a cosmological constant can be recast as a non-Abelian
Chern-Simons theory with a non-compact group. Once this is done, then since the
latter theory is quantized, three dimensional gravity is also quantized. But there is a
caveat, in the Chern-Simons formulation of the theory, one allows vanishing gauge
fields, this in the gravity side corresponds to a vanishing dreiben which yields a de-
generate metric which is not acceptable in gravity because one cannot consistently
couple matter fields to a degenerate metric as the inverse does not exist. Therefore,
currently the quantum version of the three dimensional Einstein’s gravity has not been

formulated.

This state of affairs and the fact that one would still like to define a gravity theory
which is locally non-trivial, namely it has gravitons and gravitational waves, one
resorts to other gravity theories that extends the three dimensional GR in one way
or another. One of the first proposals of such a theory is the topologically massive

gravity (TMG) [15]], with the following action

1 1 2
_ 3 Ay o o B
I= /d Ty [;(R— 20) = 5T, (a,tr ot 50T p)] . (36)

1 1s the so called topological mass; €912 = 1 is a tensor density, and the I"’s are the
Christoffel connections. A detailed canonical analysis of this theory, for A = 0 was
done in [15]] where it was shown that the theory describes a single massive spin-2
degree of freedom with mass m = |u|. The field equations coming from the variation

of this theory in vacuum are
G+ Mg+ -y = 0 3.)
where the "Cotton" tensor C),,, is defined as
Chw = €,*"V 0S5, (3.8)

and S, := Rp, — 19, R is the three dimensional Schouten tensor. It is important to
note that €/’ is a tensor not a tensor density. One can show that the Cotton tensor is

symmetric, traceless and divergence-free: C* = C**, g, C*” = 0 and V,C*" = 0.
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As these identities will be important later, let us show them. First let us prove that

C),, is traceless;

9" Ch, = g"€,*"V oS5, = €7 ¥V, S5 =0, (3.9)
anti—sym sym

One can show that C),,, is symmetric by multiplying it with the anti-symmetric tensor,

EﬂVA;

1% 1 vV vV 14
" Chy = 5" (Clu) + Cliu) = € Clpuy +€"*Cl

2
=0
= Llan e, - Gy
2 ”V o (3.10)
1
=3 [e””’\euo‘ﬁvaSgy — e“”’\el,o‘ﬁvaSgu]
1
= é(vascM — VoS = VAS + VAS) = 0.
Finally let us prove that it is divergence-free
V,.0" = eV ,V,S5". (3.11)

The operator V,V,, can be written as a sum of the symmetric and antisymmetric

operators;
1 1
ViVa = 5(VuVa + VaVi) + 5(ViVa = VaV,) (3.12)
uy 1 paf v 1 naf v
V,.CH = 3¢ (V,Vo—=VoV,)88" = 5 V., ValSs
1 (3.13)

1 1
= §EMQ’BRMQV)\85>\ + §E“a’3Ruag>\S)\V = §€MQBRMQVA55A.

J/

=0
Next we use the algebraic decomposition of the Riemann tensor in 3-dimensions,

which is
v v v 12 v R v v
R,ua A= 6/,L Ra)\ - g,u)\Ra - 504 Ry)\ + ga)\R,u - 5(5,u Jax — guz\(sa ); (314)
to get

1
VMO“V - 92 GVQBRQASBA - G“VﬁRM\Sﬁ)\ = EVQBRCMSB)\
) (3.15)
_ GyaﬁRa)\(Rg/\ i Zaﬁ)\R) — EyaﬁRa)\RB)\ = 0.

We noted the degree of freedom structure of TMG for A = 0. The degree of freedom

structure of TMG for A # 0 is quite non-trivial: for generic A, there is still a single
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massive degree of freedom with mass-square m? = pu? + A [[16,/17], namely the
cosmological constant and the mass parameter . both appear in the graviton mass.
On the other hand in AdS for A = —l% where [ is the radius of AdSs, with ul = 1, the
theory has no bulk degree of freedom. This theory is called Chiral Gravity [18,19] to
which we shall come back below. In addition to these interesting new possibility, it is
easy to see that the TMG field equations admit all solutions of Einstein’s theory,
including the BTZ black hole. This is because G, = 0, for any Einstein metric,
R, = 2Ag,,. Of course in addition to these Einsteinian solutions, TMG admits a
lot of solutions which are non-Einsteinian, namely G, # 0. Most of the solutions

known to date have been compiled in [20].

The fact that TMG have both black holes and gravitons gave rise to an intensive re-
search on this theory with refered to its classical and quantum nature. Classically it
is a third order theory and much more complicated then the second order Einstein’s
gravity. In the quantum regime naive quantization techniques such as canonical quan-
tizations or path-integral quantization are quite hopeless to carry out in this much
more complicated theory. But after the discovery of anti-de Sitter/Conformal field
theory (AdS/CFT) correspondence [21]], another path to quantum gravity became pos-
sible. Briefly this path is as follows: define a gravity theory in an asymptotically AdS
spacetime, the theory on the boundary will be conformal field theory. If this can be
done consistently , then one interprets the boundary theory to be the quantum version
of the bulk theory. Of course this requires both the bulk and boundary theories to be
well-defined in the sense that they must be unitary without ghosts and tachyons. They
must be casual. It is amusing to note that, much earlier than the work in AdS/CFT,
Brown and Henneaux [22] found that asymptotic symmetries of AdS3 is much larger
then the bulk symmetries, in fact the corresponding boundary algebra is infinite di-
mensional and includes 2 copies of the Virasoro algebra which is suitable for a two
dimensional conformal field theory. This Virasoro algebra has a central charge given

as
31

- 2GT
It was shown [23]] that in TMG, this boundary symmetry algebra still has two copies

c (3.16)

of Virasoro algebra with the different central charges given as
3l 1
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Computation of the bulk and boundary excitations show that one has either the bulk or
boundary excitations to be ghost-free for generic pl. This is dubbed as bulk-boundary
unitarity clash which basically says that the theory cannot be quantized along the de-
scribed lines above. Interestingly the chiral gravity limit is an exception if one takes

3l
G’

ul = 1,then ¢, = 0 and cg = one ends up with only the right moving sector
on the boundary. This theory was conjectured to be valid both classically and quan-
tum mechanically in [18,|19]] . Of course to prove the conjecture one must find the
corresponding boundary theory. Moreover, it was shown in [24] that exactly at the
point ! = 1, the chiral point, there arises a classical solution with a negative total
unbounded energy, the so called log-mode which ruins the stability of the vacuum.
But it was shown in [20,21] that the log mode found in [24] is an artifact of the lin-
earization which was suggested in [19]]. This issue is called linearization instability:
linearized field equations of a non-linear theory such as TMG can have linear solu-
tions which cannot be obtained from the linearization of any exact solution. This says
that the perturbation theory in AdS; for chiral gravity must be done with care. So
chiral gravity, as it now stands, is a possibly well-defined theory both classically and

quantum mechanically.

There are various reasons to go beyond TMG: as we have seen TMG is a third deriva-
tive theory hence it is parity non-invariant which means it is highly different from
the parity-invariant four dimensional General Realtivity. It has a single degree of
freedom, one would like to have 2 degrees of freedom with £2 helicities as in four
dimensions. Of course one would like to have massless graviton. But this is very dif-
ficult in 2+1-dimensions, hence in what follows, we shall discuss some well-known
non trivial gravity theories in 2+1 dimensions, which are all massive gravity theo-
ries. The most obvious extension of Einstein’s gravity is the quadratic theory with the

action

I= /d‘"’x\/—_g(% (R —2Ao) + aR? + 6RWR“”), (3.18)

with « and [ arbitrary dimensionful constants of this stage. Canonical analysis [25]
shows that this theory has a massive spin-2 graviton and a massive spin-0 scalar gravi-

ton with masses

1 12aA
m2=—— 2 — 4N, m? =

kg p

1 _4A(3a+6

k(8a + 30) 8(14—35)’ (3-19)
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where the effective cosmological constant A is given as

1
4/{(3@ + )

Detailed analysis shows that both of these modes cannot be healty at the same param-

14 /1 —8rAo(3a + fB)|. (3.20)

eter ranges.

The theory has no ghost or tachyon only either 3 = 0 or 8a + 83 = 0. For § = 0,
spin-2 graviton is decoupled so we take 3 # 0. The choice is called the new massive

gravity (NMG) [26,27]. It is also valid for Ay = 0.

NMG is the first known example of a parity invariant gravity theory with massive
graviton without a ghost. There is also the Fierz-Pauli theory where one adds the
term mTg(hw,h’“’ — h?) to the Einstein-Hilbert action but since h,, := gu — Gu 18
a "perturbation” defined with respect to the backround g,,,, Fierz-Pauli theory is not
diffeomorphism invariant. In fact a detailed study [28]] shows that at the non-linear

level, a ghost, so called Boulware-Deser ghost, arises in the Fierz-Pauli theory.

To possibly construct a dual conformal field theory to NMG, we must introduce a
negative cosmological constant and re-study the bulk and boundary unitarity problem.

The NMG action with a cosmogical constant with redefined parameters is
=L [ V—g|oR — 2\ 2y L (g rw - 2R (3.21)
= r\/—g|o om” + o | B 3 ) .

where we have taken the form given in [29]. The parameter 0 = +1 and )\ is the
dimensionless bare cosmological parameter. Vacuum field equations show that there

are two maximally symmetric vacua given by the effective cosmological constant,
A=Xm?=—2 <a +/1+ )\0> m?, (3.22)

hence one must have \q > —1 for the existence of a maximally symmetric vacuum.

The mass of the spin-2 graviton is obtained after a detailed analysis [25]] to be

2 A 2.

m; = (—o+ =

2 S)m (3.23)

The important issue is the following: even though the theory is unitary in the bulk,
it has a negative central charge and cannot be unitary on the boundary. If one fixes
the boundary theory, one loses unitarity in the bulk, hence this theory shares the same

fate as the TMG theory for generic m. There has been extended works that try to
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improve NMG by adding judiciously chosen higher curvature terms. For example
O(R?) and O(R") terms were added [30] that are consistent with some requirements
of ADS/CFT. But it turns out that these new additions do not remedy the problem.
In fact in [31]] a Born-Infeld type extension of NMG was given which has the added
feature that it has a single maximally symmetric vacuum and a massive spin-2 ex-
citation about it, but this theory also suffers from the bulk-boundary unitarity clash,
as well as the infinite order theory introduced in [32]. A detailed study [29] showed
that no theory that has the same particle content that is defined by an action based
on the metric can be free of bulk and boundary unitarity clash. This interesting im-
passe led researcers to an interesting idea: instead of defining the theory based on the
metric alone, can one construct on-shell consistent field equations? The idea is the

following. Let us say that the vacuum field equations of the theory are defined as
EM =0, (3.24)

but one does not have the Bianchi identity V,£#” = 0 for all smooth metrics, but
only for those which solve the field equations (3.24). So one demands the weaker
on-shell Bianchi-Identity

V,.EH =0. (3.25)

Env=0

Such a requirement might seem to be too loose but that is not the case. In fact these so
called "on shell consistent" theories are highly restricted. The first example of these
theories is the Minimal Massive Gravity (MMG) [33]] which was also consistently

coupled to a matter source [34]. Source free field equations of MMG read
1 gl
G+ Mg + —Cw + — Jpu = 0, (3.26)
M M
which is a deformation of cosmological TMG with the J,,, tensor given as
JH = L e vabg S 3.27
= 56 € parafB- ( . )
The divergence of the J*” tensor can be found to be
V, JW =7 5,7C, (3.28)

which does not clearly vanish automatically, but MMG obeys the on-shell Bianchi

identity. Let us show this

VM = €778,7Cr = — "’ S," (Gm + Aogpr + %JPT) : (3.29)
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each term vanish on its own due to symmetry.

With the addition of the .J-tensor, the mass of the graviton is modified as [33,35-37]]

2
1 1
mg = ,ﬁ(1 - 2:2[2) tm A=-5 (3.30)

but there is still a single massive graviton on the theory’s parity-non invariant. Details
of the MMG theory in various aspects have been worked out in [36,37]]. As for the
bulk-boundary unitarity clash issue, the problem is subtle: If the theory is assumed
to be defined by (3.26)) and linearizations are carried out accordingly about the AdS
vacuum, one finds that just like the TMG case, the theory can only be unitarity in the
bulk and boundary at its chiral point [38]]. But there is a second formulation of the
theory in terms of the dreiben and auxilary fields which allows an action formulation.

In this formulation bulk-boundary unitarity is achieved [39].

Deforming TMG with the J-tensor yields, as noted above, to a single massive degree
of freedom with +2 or -2 helicity but not both. So one still would like to have the +2
helicities together. For that purpose MMG; was introduced in [35]] which is defined
by the following field equations

1 1
G +Agu +—-Cp — —Hu =0, (3.31)
H H
where the H,,, tensor is defined as the "curl" of the Cotton tensor via
1 1
H" = 5ef“lﬂvacﬁ” + 5e”aﬂvacﬁﬂ. (3.32)

We will discuss this tensor (which we shall call the 3D Bach tensor due to its rele-
vance to the higher dimensional Bach tensor) below, but let us note that the covariant

divergence of this tensor reads
V. H" =P 5,7C," = =V ,J", (3.33)

so it does not vanish automatically, but clearly the sum of the H** tensor and the J*
tensor is divergence free

YV (H™ 4 JH) = 0. (3.34)

Close scrutiny shows that separately /#” and J*” do not come from the variations of

an action but their sum come from the variation of the purely quadratic part of NMG

3
5g / B/ —g (RWR"” - gRQ) = H" 4 J" =0. (3.35)
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So deforming TMG with J*” yields MMG, while deforming TMG with H* yields
MMG,. The computation of the masses and the central charges in this theory are

done in [35]: the positive and negative helicity modes have different masses given as

m;=p; —— i=12 (3.36)

2 4

1.2 m m
= m2 . 3.37
p o m+4u2 (3.37)

Note that, unlike MMG, MMG; has two massive helicities, but they have different

with

masses. This is due to existence of the Cotton tensor which breaks parity due to its
third derivative nature. To the best of our knowledge, four dimensional GR is parity
invariant, but of course one can introduce tiny parity breaking terms that are not ruled
out by experiments. One such attempt is the so called "Chern-Simons Modifications

of GR" [40].
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CHAPTER 4

GENERIC EXOTIC MASSIVE GRAVITY THEORIES

This chapter is mainly based on our work [6]] and extends the details of the computa-

tions given there.

Three dimensional Einstein metrics are much simpler than the higher dimensional
ones, as we discussed before; locally Einstein metrics are Riemann flat (or constant

curvature) since in this dimension we have the following identity
Ruoa/ﬁ = euaaeuﬁpGapa (41)

where €., is totally antisymmetric tensor and G/, is the Einstein tensor G,, =
Ry» — % gpoR. One can show this as follows. For the signature (—, +, +), the product
of two totally anti-symmetric epsilon tensors can be written in terms of the products

of the metric tensor as

€pac€uvBp = — Guv (gaﬁgap - gapgaﬁ) + Gup (goa/gap - gapgau)

4.2)
~ Gup(Gov9op — Gapov)-
Making use of this equation in Eq.(4.1]), one arrives at
Ruau[a’ = EuaaeuﬂpGap :guVRaB - guﬁRaV - gauRﬂu + ga,BRuV
R 4.3)
+ §<guﬁgau - g,ul/gaﬁ)a

which is just the algebraic decomposition of the Riemann tensor in three dimensions
(3:2). This basically says that in a vacuum, in Einstein’s theory, R, = 0= R,
there is no gravity, and no gravitational wave or radiation. When a negative cosmo-
logical constant is introduced, local triviality is not lifted, but there is the all impor-
tant Bafiados-Teitelboim-Zanelli (BTZ) black hole [11] that can carry mass, spin and

pretty much all the properties of its four-dimensional analog Kerr black hole, save the
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curvature singularity and the speed-of-light surface. So some of the Einstein metrics
are highly nontrivial (when considered in 241 GR) but one of course still needs local
nontriviality, gravitation, gravitational waves efc. to be able to learn something from

this lower-dimensional setting.

Fortunately, this can still be achieved with Einstein metrics but not as solutions to GR
but as solutions to modified gravity theories, such as the topologically massive gravity
(TMG) [15]], new massive gravity (NMGQG) [26,27] or Born-Infeld extension of NMG
[31]. All these theories accommodate Einstein metrics and more general metrics
that are not Einstein. But the good thing is that in these theories, perturbation about
an Einstein metric can be interpreted as gravitons (usually massive) or gravitational
waves. Hence these theories are much richer than Einstein’s pure 2+1 GR and simpler
than the 3+ 1 GR. The immediate aim is to be able to define and understand a version
of quantum gravity in a 2 4+ 1-dimensional setting. For this purpose, our current best
hope is the AdS/CFT duality [21] which reduces the problem to a construction of a
two-dimensional boundary conformal field theory for the AdS bulk of a given 3D
theory.

4.1 3D Bach Tensor and On-shell Consistency

Let us go back to the discussion of Einstein metrics that was alluded to above: perhaps
the next “nice" set of metrics are the ones conformally related to the Einstein metrics.
Succinctly stated the problem is this: given a metric g (which is not necessarily Ein-
stein) can one construct a metric, § = 2%¢g, which is Einstein given that ) is smooth
and ) > 0? In n—dimensions, the generic necessary and sufficient conditions for
such a metric g to exist are too difficult to handle. But, in four dimensions the prob-
lem simplifies a little bit in the sense that the necessary condition is the vanishing of

the so-called “Bach Tensor"
1
H,, = (VV’ + 5Raﬁ)cw,,g, (4.4)

where C),.,3 is the Weyl tensor. The Bach tensor is symmetric, traceless H =
g"H,, = 0, divergence-free V*H,, = 0 and conformally invariant (in four di-

mensions). Moreover, one can show that H,,, comes from the variation of the action
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S = / d*z/=gCupap O ", (4.5)

This so-called conformal gravity admits all the Einstein metrics as solutions, but there
are non-Einstein solutions. Remarkably, with some simple (Neumann) boundary con-
ditions, one can show that out of all the Bach flat manifolds, only Einstein manifolds

can be selected [41]] .

One can naturally wonder the simpler problem, that is, the problem of the confor-
mal Einstein metrics in three-dimensions. As the Weyl tensor vanishes identically in
three-dimensions, the naive dimensional continuation of the Bach tensor as defined
by Eq.(@.4) to three dimensions does not yield any further information. But as was
realized in [35,42], using the 3-index Cotton tensor as a potential to the Weyl tensor
yields a meaningful 3D Bach tensor. Recall that the n-dimensional Cotton tensor i{]
L
2(n—1)

which is antisymmetric in the first two indices. This tensor is conformally invariant

Cauu = vaR/u/ - vuRau - g/ulvozR - gauvuR)a (46)

only in three dimensions. Using this, we define the analog of the n-dimensional Bach
tensor as

1 1
H,, = 5vaca,w + 5Ji’agcﬂaf. 4.7)

In particular, for n = 3, we can express the Cotton tensor in terms of the Cotton-York

tensor (Cy,, = €, 7°V,S,, with S, = R, — 19, R.) as
0P, = —PiC, 4.8)

where
1
Co = §eﬁﬁca5y. (4.9)
Therefore, the 3D Bach tensor can be defined as

1 1
H, = §e,ﬁ5vacﬁy + 5eﬂﬁvaoﬁu. (4.10)

The Cotton-York tensor plays the role of the Weyl tensor in 3D: namely it vanishes if
and only if the metric is conformally flat. But an interesting situation arises in 3D: un-

like the Weyl tensor (a four-index object) that does not come from the variation of an

' Note that one uses the same letter C' for 3 different tensor, the rank-2 Cotton-York tensor, rank-3 Cotton
tensor, and rank-4 Weyl tensor: the explicit indices remove any possible confusion.

% To conform with the original definition [35]] where the tensor was denoted as H,,, we drop an overall
factor of 1/2.
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action, the Cotton-York tensor does come from the variation of the topological Chern-
Simons action and it behaves regularly: C**(§) = Q~2C*"(g) under conformal trans-
formations. This says that conformally flat metrics in 3D are conformally Einstein.
So, the 3D Bach tensor vanishes for conformally Einstein metrics. It is possible that
its vanishing can be a sufficient condition, which we do not know. What is interesting
is that, even though H @.10) is symmetric and traceless (H = ¢g"" H, w = 0), 1t s

not divergence-free. In fact one has

1 1
VH" = SV, VaCy 4 SV VOt (“.11)

Since any tensor can be written in the form of the sum of symmetric and antisymmet-

ric tensor, let us define two operators

S 1= (VuVa = VaV,), (4.12)

1
(Vuva + Vavu)> Apa = )

DN | —

with the following properties:

vuva = S;wz + AMCY — E'U“aﬂvluva — el‘aﬂsua +€uaﬁAua
\W—/
=0 (4.13)

= %ewﬁ(vﬂva —VaV,).

1 1
= §e“aﬁvﬂvacﬂv = Zeﬂaﬁ(vuva — VaV,)C5" (4.14)

1 1
VMHIW _ Zeuaﬂ (vuva — VQVM)ng + §€VaﬁvuvaCﬁM

1 1 (4.15)
= Zeﬂaﬁ [V, Va]Cs” + §e”a5vuvacﬁﬂ.
Now since V,C3# = 0
V. VaCs" = [V, Vo] Cs" + Vo V,.C" = [V, Vo] Cs", (4.16)
=0
v 1 aff v 1 vaf3
= V.HY = [V, V] Cs +5€ [V, Vo] Cs". (4.17)

I 11

[:e"P[V,,Va]Cs" = P (Rua"\C5" + Ruag™Cr¥), "’ Ru0p™ = 0. (4.18)
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We use the 3-dimensional identity
R
R)\,U,I/Ii = g)\uR;m - gAKRuU - g,uuR)\/-c + g,uﬁR/\z/ - 5 (g)\lxg,un - g/\ng,uu)a (419)
to get
1 a3 v 1 vafs A
= 1 [V, Va]|Cs" = ¢ RanCis™ (4.20)
The second term in (4.17) can be written as

I1:€P[V,, Vo] Cs" = P (R \Cs™ + Ruas™Ch")

(4.21)
= EVQBRQ)\Cg)‘ + EyaﬁRuag)\C,\u,
since
P R0s O = 0, (4.22)
one has
1 1
= Ee”aﬂ [V, Va]Cst = §e”aﬁRmC@A. (4.23)
Therefore, the divergence of the Bach tensor does not vanish:
V, H" = PR Cpy # 0, (4.24)

but it vanishes for Einstein metrics and/or conformally flat or Einstein metrics. This

also says that, the 3D Bach tensor cannot come from the variation of an action.

Bianchi identities are related to the diffeomorphism invariance of the action, there-
fore let us examine this issue. Consider an action under the infinitesimal coordinate

transformation 2% = 2% — ()

S = /d”x\/ —g(x)L(g(x),09(x),...), (4.25)

where g denotes the metric tensor field.

o =g (@), 09 (), )
d"zr/—g' ()L (¢ (2), 8 (2),...),

where in the second equality we relabelled 2’ to x. The variation of the action with

(4.26)

respect to the metric yields

55:5—5:/613:6

(v/—gL)og" = /d”a:\/—gq),wég”” =0. 427
uv
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Now consider the particular variation corresponding to the infinitesimal diffeomor-
phisms, then one has

ogh” = VHEY - VVER, (4.28)
Plugging this expression in one has
08 = /d”m\/—_g/@m,(V“f” + VVEr)
_ / o/ =G2D,, V"
=2 [ oy (@) -2 [ ey g (TR —0

.

(4.29)

~
Boundary term=0

Note that we assumed variations that vanish rapidly, or so called compactly supported
variations. This gives us a desired result that the variation of the diffeomorphism
invariant action yields a divergence free field equations, V#®,,, = 0, for all metrics.

We have not used the field equations to derive this result.

4.2 Generalization of 3D Bach Tensor

Let us construct generalization of the 3D Bach tensor (4.10) to define on-shell con-
served theories. Consider a 2-tensor £, that comes from the variation of an action
such that it obeys the Bianchi identity V#&,,, = 0; and assume that we have a sym-
metric 2-tensor @, that does not come from the variation of an action and hence does
not obey the Bianchi identity V,®*” # 0. Now, consider the following potentially

viable on-shell consistent equations
1 af k afB _ o
Ew + =€, VaPs, + —€,"7€,7 P Pg, = 0, (4.30)
H H

with 1 and £ free parameters at this stage, but as we shall see, k£ will be fixed from
consistency. One can certainly add more powers of ®,,, but, as we shall comment
later, these do not lead to consistent theories. Inspired by the construction of MMG,
this form of the field equations was first introduced in [43]], where the authors chose
®,,, = (), to obtain Exotic Massive Gravity (EMG). The middle term is a general-
ization of the Bach tensor, while the last term is a generalization of the .J tensor. The

first and the third terms are symmetric under the interchange of indices ;. and v. The
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second one is symmetric only if
V&=V, (4.31)

which follows from
euuoeuab’va@ﬁy — (glzagoﬂ . gl/ﬂgaa) Va(I)BV

=-V",7+Vip=0 — Vip=V"07

(4.32)

where ® = ¢g"”®,,,,. This is the first condition on the theory. Another condition comes

from the vanishing of the covariant divergence of the field equations
v 1 aff v k aff _vo
V| &M + =V, Pp" + — Ve 7P D, P, | =0, (4.33)
H H
which explicitly reads

1 k
= — "V, Vo ®ps" +—5 "7 (0o V, Op, + V, PaoPs, ) = 0. (4.34)
/’L —/_/ /’L ~ ~~ - ' -
1 2 3

Using the identities;

[V, Va] 05" =V, V@5 — VoV, &5" (4.35)

(V.. Va] 25" = Ruap’ @2 + Rua’x 05", (4.36)
let us calculate each term separately

1 : et [VV, Va} D" + ewﬁvavy%”
= E“aﬁ (R,,OC/BACI)AV + RVQVA@ﬂA) + EuaﬁvaVﬂq)
————

=0
= E“aBRyaﬁACb)\y + EMQ'BRV&V/\(I)ﬁA

= PR \Dp. (4.37)
note that;
GHQBRVQB)\(I))\V - Euaﬁ guﬁRa/\ - 5V)\Ra5 + 604)\RV,B - gaﬁRuA
R A s A v (4.38)
- 5 (guﬁ(sa + 61/ gaﬂ) Dy ’

= "’ (Ray®5" + Rp,®o”) =0
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The second and the third term are identical,
PPV, s, = PPV, D, Ds,. (4.39)

So we need to calculate;

2k 2%k
ZenaBerord N, Dy, = —eBP, 7PV, Dy, . (4.40)
M2 Bp M2 Bp

,Cﬁo'

To proceed further, we need to use the field equations. So here is what we get;

1 k
v, (8“” IV Eeﬂaﬁe”w@w@ﬂp)

1 2k

= ZtBR AP — =B, O (4.41)
It S g
1 2k

= —Guaﬂcbﬁ)\ |:Ra)\ + —CQA:| 7é 0.
% %

1 k
v, (5“” 4 —emﬁva%ﬁ—Qewﬁem@ag%)
a a (4.42)
1 pap A 2k By A '
= ;6 Py | Bo™ + Fﬁa Vg, " |.

Clearly this expression is not generically zero and the theory is generically inconsis-
tent. But the explicit expression tells us that we must include Einstein’s gravity in
the &, tensor since in the Ricci tensor appears. But the Ricci tensor is not
divergence-free, so in £,,, we must have the Einstein tensor G ,,, in order to have any

hope of constructing an on-shell consistent theory; hence, we choose
1
Ew =Ry — §gw,R + Nogpuw- (4.43)
Therefore our theory reads
1 k
EM+ —C" + LM =0, (4.44)
H H

where C* is the generalized Cotton tensor given as C* = ¢#*/V ,® 4" and the L—

tensor is given L* = ¢#*Fe*Pd,, P4, From (#.30) we have

= RA=00R- AR - CA - LA (4.45)
1
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Inserting this result into the equation (4.41)) yields

1 k
9o lom s ko]
ft I

1 1 1 k 2k (446)
= —e" B, {—MR — A6 — =C = S L+ =G|
Y 2 I 7 1

The first two terms vanish identically. The remaining terms are inhomogeneous in the
powers i, hence separate powers must vanish separately, which leads to k = % for

the Cotton generalized terms to vanish. Then one has

1 k k
& {5“” - ECW + ELW} = —EEW%AL&*. (4.47)

We must check whether e#*3® 3 sLo? vanishes or not straightforward
= Phs L, = P Dpye, P, D, =0, (4.48)

due to symmetry. Now we get the on-shell consistent theory (that is called a third way

consistent 3D gravity) with the field equations explicitly given as
1 L s L s op
R,uy - §g,u,yR + AOg;w + ;eu vaq)ﬁy + 2_,LL2€H €y (I)acrq)ﬁp =0, (4.49)

with any ®,, = ®,, satisfying V,®#, = V,®, is consistent. This is the main

equation that we shall study in detail below.

The next obvious question is how to find a 2-tensor ®,, that satisfies the desired
properties. This is also remarkably simple to answer: consider any diffeomorphism

invariant action.
I= / Pz —gL, (4.50)
vary it with respect to the metric to get a 2-tensor after dropping the boundary terms

51 = / &z, 69", (4.51)

where we called this 2-tensor to be V.. This is still not the ®,,,, that we are searching
for even though, obviously it is a candidate if it is trace-free. But we can build ®,,,,

from W, as follows. Let p be a constant, then
¢, =V, +pg,V , V¥ =0 V=g,V
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1

PO =0 =V +3p¥V — VU= d 4.52
Iu +op 1+ 3p (4.52)
We already observe that V,®" = V" ®, so
p
V, o =V"d =pV'¥, — V0= A4
. b 1+ 3p
S 453)
1+3p P="3 '
and then one can choose [43]]
1 i
®,, =V, — 59,“,‘1! ;o U =g"V,,, (4.54)

which satisfies the desired property V,® = V,®,%. Using the ¥, tensor, we can

recast (4.49) as

1 1 1
E/uz ::RMV - EguuR + AOg/u/ + peuaﬁva (\Ilﬁu - égﬁu\l/)

(4.55)

1 2 3 2 «
+ o (gw(\lfaﬂ -7Y )+, —20,,T, ) = 0.

So the summary of the above discussion is that we can deform Einstein’s gravity
with any covariantly conserved ¥V, in such a way that we get a nontrivial on-shell-
consistent theory. Let us stress that, even though V,W*” = 0, we only have V ,E*" =
0. As the "Bianchi identity" is not automatically satisfied, this theory does not have a

variational formulation in terms of the metric only.

As we noted above, we could ask if further deformations of (#.49) or (¢.55) which
powers as O(®?), O(®*) or more are possible. Namely, could they lead to on-shell
consistent theories. In this most general formulation, we have not studied this prob-
lem but the answer seems to be this is unlikely because, in the simpler setting of
MMG, with ¢, = S,,,, it was shown in [42] that no further cubic or quadric or more
deformation is possible. Moreover, it was also shown in that work that the second co-
variant divergence of the MMG field equations do not vanish automatically but vanish

on-shell only. This is an other requirement for consistency.

The above discussion has been general, next we provide some examples of these

theories by choosing the ¥, tensor from some well studied actions.
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4.3 Vv, from Quadratic Gravity

On-shell consistency of the theory is certainly not a sufficient condition; keeping a
possible quantum version of the theory in mind, one still needs to understand the spec-
trum (particle content) of the theory about its possible maximally symmetric vacua. In
particular to emulate the four dimensional gravity, which is no spin-0 modes, we shall
demand that in the spectrum of the theory, there are only massive spin-2 particles. To

this end let us consider the generic quadratic action

1
I = 3 en/— 2 2 4.
167TG/d 2v/—g (0R+ aR* + BR2,) (4.56)
whose variation yields
1
I = Sey/—g WU m 4.
0 167G /d V=9 W 097, (4.57)

where [44]]

1
U, =G, +a <2RRW ~ 59w R + 29, OR — 2VuVZ,R>
3
+ B <§g,uuRpoRpg - 4RupRyp -+ DRW, (458)

1
+ 5g,wDR ~V,V,R+3RR,, — gWR2).

Since it is derived from the variation of an action, the tensor ¥, is symmetric, co-
variantly conserved, and therefore yields consistent field equations. We now consider

the linearization around the AdS3 spacetime as

G = guu =+ huua (4.59)

where the background AdS3 metric satisfies

Ruupa =A (gupgua - guagup)a R;w = 2Ag;w7
R=6A, G, =—Agu,

(4.60)

and the tensor h,, describes the perturbations around the AdS; background. The

linearized versions of the Ricci tensor, Ricci scalar and the cosmological Einstein
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tensor are given, respectively, by

_ 1-
R, = V*V by, — 5O =

l\DI»—t

RY = —0Oh + V*V7h,, — 2Ah, (4.61)

1_
g;uz = (G,uu + Ag,u,u)L = Rﬁy - §g,u,uRL - 2Ah,uzw

Under the linearization (4.59), the background value of the tensor VU, is given by

U, = agu, a=—Ao+2A*(3a + ), (4.62)
and its linearization yields

U, = G+ (20 + ) (gWD - V.V, + 2Ag,w) R*
1+ (DQW — AgWRL) + ahy,, (4.63)

with

7 =0+ 12N + 2A0. (4.64)

The linearization of its trace U1 = (¢ ¥ #,,)L , can be computed as
3\ _
ph = (4a+§B)DRL+ (—%+2A(3a+6))RL. (4.65)

We have to constrain the parameters (o, «, 5) in such a way that there are only massive
spin-2 exitations in the theory. We shall do that discussion below. But before that, let
us note an important isuue: The quadratic theory we discussed here captures a lot of

the physics of more general theories, the so called f(Ricci) theories. In fact in [29]

/ Bay=g { (R 2)\0) +aR? + AR,
(4.66)
+ a1 RURRL 4+ aaRR, + a3’ |

and the quadratic action

/ d*z\/=g [0 (R — 2X\0) + aR* + BR%,] | (4.67)

3 Derivations of some of these expressions are highly lengthy, hence we do not depict them here, but simply
quot the final results [44]
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have the same linearized equations if their parameters are related by the following

equations [29]
o =6 — 12A% (ay + 3ay + 9as) ,

5\0+A<1—g>,

g (4.68)
a =&+ 2A (2as + 9a3) ,

B =5+ 6A (a1 + az)

Introduction of a cosmological constant )\ is in the equivalent quadratic action (4.67),

Ao =

Q| Qv

yields a term proportional to the metric tensor in W, (4.59), which as a result shifts
the parameter A, in the field equations (4.55). The change in the parameter A is not

of much importance in our subsequent discussion.

4.4 Bachian Gravity

To remove the possible spin-0 modes, let us study the linearized equation. For this

purpose, we consider the trace of the field equations
1
R—6MAg+ — ((I)Q — (I),W(I)“”) =0, (4.69)
1

which, in terms of the ¥, tensor,

1 1
= §gW\If , &=-—=-U

)
2

=V

1%

1
B, = B, — 0, — L

can be recast as

1 /1, 9
R —6A¢ + E (5\11 — \IIW) = 0. (4.70)

First of all let us find the first order linearization of the trace of the field equation;
9w = Gu + hy and g* = g — k', around the background metric g,,,,, and small

perturbation £, :

0% = 205 = (UL = 20wk, 4.71)

0U2, = 6(W,, M) = 60, UM 4+ U, 60+, 4.72)
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Here we need to calculate §UH";

ST — 5<guaguﬁqjaﬂ) = §ghUY, + 5guﬁ\puﬁ + guagw(;qjaﬂ?

= 002, =200, UM + 20, 0", 56",

(‘Iffw)L = 20" (W, )b — 22U, W  hHe. (4.73)

So the linearized trace equation becomes;

1 /- _ _
R' +— (MJL + 22U, UH h"* — 2\1/%5”) =0, 4.74)
7]
where
\I/W =aguw = U= 3a,
1
RF 4+ — <3a\IJL + 2a%h — QaQ“V\IJﬁV> = 0. (4.75)
ol

Now, we are suppose to find the terms, UX and g“”\Ilﬁy which can be done as follows

o = 5(9“”\11,“,) = 09"V, + g 0¥,

U= —h,,, + g

U, = ag,, = —h*"V,, = —h*ag,, = —ah
so one has
vt = —ah+ gy, = gL, =0"tah
yielding
1
= R+ <3a\IfL +2a*h — 2a (V" + ah)) —RE 4+ DU =0, (476)
H H

Linearization of the W/,

is given by;
v, = 6Gr, + (20 + B) <gwi -V, V., + 2Agw) RE
+5 (Dgﬁy — AgWRL) + h,w( — Ao+ 20* (3o + ﬁ)) ,
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with
g=0+120a+2\3 , a=—Ao+2A\*(3a+ )
gl = 55"GE, + (2a+ B) (20 + 6A) R

+6 (D(g“”g,f,,) — SARL> + ah.
Recalling
1
Gh, =Rl — égWRL — 2Ahy,,

OR = 5(g“”RW) = 09w R + gudR,
R" = =" Ry, + §" R}, = —2Ah + g" R}, — " R};, = R" + 2Ah  (4.77)

3 3

1
—uv L —nuv plL L L I L
70l = 9" Ry, — SR" = 20h = R* 4+ 20h = SR* = 20h = —R

gl =6g"Gr, + (2o + 8) (20 + 6A) R
+ B (D(g“”g,fy) — 3ARL> +ah

= 2R+ (20+ 5) (20+ 6A) R*

- (4.78)
+8(— 5DRL — 3AR") + ah
_ _%(a +12A0 + 2A8) R” + (20 + f) (20 + 6A) R”
+B( - %ERL — 3AR") + ah.
Finally we have
U= —ah+ g,
= (0 + 1200 + 208) R" + (20 + 5) (20 + 6A) B
+8(- %DRL — 3ARY) @
= (4a + gﬁ) OR" + ( - % +2A (3 + B))RL,
and the linearized trace equation reads
RL+%K4Q+;B)ERL+ (—%+2A(3a+5))RL} —0.  (480)
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Recalling that (#.61)) R* ~ [Jh, this equation is already a fourth order wave equation

of the form with the operator
(i + o0+ c3)h = 0. (4.81)

Of course in this form it will have spin-0 modes that we would like to avoid unless
we set ¢; = 0 and ¢, = 0. Setting the coefficient of the CJR” term to zero, yields two

possibilities:
3
da+354=0, or a=A(—o+6Aa+2A8) =0. (4.82)

In both cases, we have RY = 0, and as a result we can choose the compatible

transverse-traceless (TT) gauge (v“hw =0=h).

Having studied the linearization of the trace equation and the constraints coming from
the absence of the scalar mode, we can now linearize the full field equations (4.49)
to find the particle content of the theory and their masses. The background value the

tensor @, is given as

= a
Q= =5 G (4.83)
and its linearization yields
L I R S
Q=Y —huw¥— 59,9 (4.84)

2 2

The vacuum equation determining the effective cosmological constants is

(12

where, of course, a is given in (4.62)). The linearization of the field equations can be

obtained as follows
1 1 . L s o
R, — §g,WR + Noguw + ;eu Vao®s + 2—M26M 6, 7Py Ps, =0  (4.86)
withany V, @,/ =V, ¢ and ¢, = ,,,.
1 v
o=V, — §g,wlll , U=g""v, (4.87)
Now, study the linearization of each term in the field eqautions:
Euaﬁevpgq)apq)ﬁcr = ( - guvgapgﬁg + guvgaogﬁp) PopPss
+(=9."9°°9," + 9,97 9,") Pup P 0
+(— 0.9 9," + 9.°9°°9,°) P, P50
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= 60 00, Pp, = — g, (7 — @) + 20,0 — 20,,P,°.
ge Be P0H  Dys = e, PP, P
wo v ap ¥ fBo Iz ap* Bo

= 67D, D5, = P2y — D, (4.88)

We list the linearization of the relevant tensors here:

§(Pap®?) = 0(g"* 9" Pop®p) = 20°P5®@up + 269" Py 5P,.”

3D, D) = 6(9°7pa®y,) = 59°7 D,y + B, 00D, + B, 5D,

(e, e Py ®ps) = —(D* — ©25) 60 — Guv (2@5@ — 5(q>a5q>aﬁ))

+ 206D, + 28,00 — 25 (P, P,.).

(646, Dy @, )" = — (02 — B2,) b
— G (200" — 20°°0% ; + 205D, 1)

(4.89)
+ 2000 + 20, 0" + 207D, D,
— 20,0 —20,/P)
We now plug the background tensors given
- b =clu , P=3c , ,0" =3 (4.90)
to arrive at
(€,°%6,27 By ®p,) " =2e0F, — 4cg,, DF — 4D,
- 2c2g,“,h + Qng,gaﬁq)éB
0 = 3(g% Pup) = 5™ Pap + g*76Pas
OF = —hup + gD, DT = —ch + g DL, ol

gL, = " 4 ch.
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Now using g @gﬁ = &L + ch, (e,ﬁﬁ eypaéapéﬁa)L the quadratic terms becomes

(euaﬂeyp”@ap(I)BU)L = 20@51, — ZCgWCI)L — 4c2hW.

(4.92)

We can move on the linearization of the generalized Cotton term. Linearization of the

epsilon tensor reads

1 1
) = L5

wp _
e 75(\/—_9 5

hence

(€9)" = —eh.
(Euaﬂvaq)ﬂu)L = (gukeAaﬁvacI)ﬁu)La

o 1 o
(gﬂ,\e)‘aﬁvacbﬁl,)L :hu)f)\aﬂvaq)g,, - EgMEA"‘BhVa@@,

+ gﬂaﬂ(vaéﬂv)La

o 1 o
(6,0 Vo ®3,)" =hyn&**V, B, — §gMEA°‘5hVa<I>5,,
+ gﬂaﬁ [vaq)éu - (FgB)L(i)PV - (FZIJL(i)ﬂP}

Vao®s, =0, since O, = gz,
L _ — _ —
(.2 Va®p,) =€, "Vo®5, — €, (Th,) sy
We can easily write everything in terms of the V— tensor. ®,, = ¥,

@z—%\ﬂ,@uyzcgw ., ®=3cand ¥ = —6c.
1 -1

L _ gL — L

(I)/“’ = \ijj — 5]1“1,\1] — ig‘w,q[ s
af _ po L L 1 T 17 L
(Eu €, @apq)ﬁo) = 20(\I/W — §h,w\If — §gW\D )

- 2C§W( - %\PL) - 4c2hW
=2c(Wh, + chyy).
We can now collect all the pieces together
G+ (B = My + 56, TaB), = 6, (T%, )
+ %(% + chyy) =0,
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(4.94)

(4.95)

(4.96)

1
- §g;wqj 5

(4.97)

(4.98)

(4.99)



where

Eﬂaﬁ(rg\w)Léﬁ)\ = gﬂaﬁ(réy)chﬁ)\ = Cgﬂaﬁ(rgu)L
1 _ _ _
= Cguaﬁigﬁ)\ (vah)\u + Viohar — Vhazz)

= Egﬂ(vamy — Vhay) = 6, Vahy,,  (4.100)
and

= - 1
Va®h, = Vo (¥5, + 3chg, — §gﬁ,,qfﬂ). (4.101)

So finally we arrive at the linearized equation.
Gt (Mo — At Y n — Lt
nyv 0 4,&2 uv 2M
1 (4.102)

+ V|Q\I/ﬁ| )y — EE(M V|ah5| ) = =0.

,u
Here round brackets denote symmetrization with a factor of % and the vertical lines
exclude the indices inside. As it stands, this equation is highly cumbersome and so
one cannot see the excitations that it describes. We need further simplifications. We
have seen that the field equations are compatible with the transverse-traceless (TT)

guage, that is V h** =0, h = 0. So we choose this gauge which reduces \IIL to

Ui, = 0Gu+p (Dgw - AgWRL) + ah,,, (4.103)

plugging this to (4.102)) one options a fifth-order equation in %, :

<1‘z%)gw ,J“BV %v—ﬁ,f DG + geu“ﬁ?amgﬁyza (4.104)

which is a linear equation of coupled relativistic (massive) fields which we need to de-
couple. In order to identify the spin-2 modes, we introduce the mutually commuting

operators that was introduced in [/18]]

(DM5),Y = 6," £ 06,""Va,

1 ~ (4.105)
(DP) )" =19," + —€,""Va, 1=1,2,3,
Pi
where p; are to be determined below. In the TT gauge, we have \Vav wlpy = _z%hlw
and the linearized cosmological Einstein tensor can be written as
G = —l(i + z)h ! 57 (DDh) (4.106)
" 2 2 T o ' '
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For the remaining three operators, one can show the following identity

1 1 1 _
('Dpl'DpQ'Dmh)lw =Ny + <p— + p— + p—) Eﬂaﬂvah@u
1 2 3

+

1 _/_ 3
£,V (D + —)h 5 4.107
pipaps ) ( )

1 1 1 - 3
<p1p2 p1p3 p2p3)( gz) :

Since all the operators mutually commute, it is now easy to apply all of them to i

[2)
which yields
L(DLDRDM'DPQ'Dmh) :g + l + i + l € aﬁﬁ g,B
202 TR p op2 p3) " e
1 — - 3
+ €.V O+ = )Ga, (4.108)
P1p2ps3 : ( 52) o

1 1 1 - 3
+ + + U+ )G
<p1p2 p1p3 p2p3)< 52) g

By inspection, one can see that the linearized equations (4.104)) can be written in this

form if the parameters (py, p2, p3) are chosen such that

a
P1tp2tps=—5-,
24
o 3
DP1p2 + P1DP3 + p2ps = 3@ (4.109)
- 212 — Ga n 3a
P1p2pP3 = 281 A

For generic values of the parameters, there is one set of real roots for (p1, p2, p3). One
can solve these equations but the explicit solution is not particularly useful as the
expressions are lengthy. Since the operators defined in (4.105) commuteﬂ the most

general solution for the equation (#.108)) can be written as a sum of all solutions

huw = hi, + Bl + Bt 4+ 2 + hs, (4.110)

where
(D*hY),, =0, (DER%),, =0, (DPR™),, =0, i=1,23. (4.111)

Since (DLDRh) »

in the theory. But these are the modes that already exist in Einstein’s theory, so they

= 0 implies G, = 0, hl;, and b7 are the two massless excitations

4 Note that when two linear operators D; and Ds degenerate, namely, D1D2¢ = 0 — Df(j) = 0, the most
general solution can be obtained as D1¢1 = 0,D1¢2 = ¢1, as ¢ = P1 + ¢a.
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are pure gauge modes in the bulk. With the help of the following equation

_ 1 (= 3 9
(D prh)W = BT (D + 7z P ) Py (4.112)
it is easy to see that the remaining solutions describe massive excitations with the

masses
1

/g_Q.

Since we have a real set of solutions for (pq, ps, p3), the Breitenlohner-Freedman

m; = p; — (4.113)

bound m? > —%2 [45] 1s automatically satisfied and we have three nontachyonic

massive excitations.

The good news it that we have eliminated the massive spin-0 mode and retain only the
massive spin-2 modes. But this does not yet say that the remaining modes are valid
from the point of quantum theory. In fact it turns out that one cannot avoid ghosts in

this construction.

4.5 Conserved Charges

Since we have the linearized equations at our disposal and since the theory admits the
BTZ blackhole metric (the massive, rotating solution which is an Einstein space), we
can calculate the conserved charges of this metric (or any other blackhole solution)
in the Bachian theory. For this purpose, one still needs to develop a lot of machinery
which in itself would constitute another topic which is beyond the scope of this thesis.
So here we basically review briefly the Killing charge construction of Abbott-Deser
[46]] as generated to the general gravity theories by Deser-Tekin [44,47]]. For more
details on the conserved charges, see the recent review of the Abbott-Deser-Tekin

construction [48]]

Having identified the spin-2 modes in the theory, we now compute the energy and
the angular momentum of the BTZ black hole by using the Abbott-Deser-Tekin tech-
nique [46,/47]. For a spacetime metric g, having asymptotically the same Killing
symmetries as the background space, one can define “conserved charges” from the

matter coupled linearized field equations symbolically read
O(g)uuaﬂhaﬂ =K T/u/- “4.114)
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For each background Killing vector éu, satisfying v(,@) = 0, a conserved current

can be formed as

V=3V, (€, 1) =0, <\/—_§EVT“”) —0. 4.115)

By applying Stokes’ theorem, one obtains an expression for the conserved global
charges

Q&) = / A" ay/—g€, T = / s F*, (4.116)
where M is the (n — 1)—dim/:nsional spatial manifolfi, > is its boundary and the
antisymmetric tensor F*¥ satisfies T""¢, = V,F* . Charge expressions for the G,
eV G and LJG terms in the linearized field equations were obtained in [46]], [47]]

and [49] respectively. For the eVJG term, one can make use of the equation

26", PV (1G5, =Va {guaﬁﬁgyggy +e;0G"°¢, + E“”BEQEEV}

“4.117)
+ Xﬁﬁgﬂﬁu
and the final result can be written as
1 o irE
Q(&) - 27TG3 P \/_gdlzq (6)7 (4118)
where
PO = (1- 75 ) O + 2 [T + @)
- 2 + 3 [0 + ) ©)].
q?z(g) £Vh“’ £Vh0”+£ h SVh
4.119)

+RONE, — BNE, 4+ EVL R — EN,hY + BV E
a0 (&) = E°G, 58 + @GR, + E0GLE,,
% (€) =EV'G” —EN'GY — G"V'E, + G'V'E,,
q% (&) = €06, 4" + ePOG%, + &POGLE,,

and X? = eV £, is also a background Killing vector.

Let us now apply the above construction to find the charges of the rotating BTZ black
hole in this theory. BTZ is locally AdS; and hence it is a solution of the theory once
the cosmological constant is adjusted. In the usual (¢, 7, ¢) coordinates, the metric

reads

d 2
ds? = (mGs + Ar?) df? — jdtdg + r2dg? + T C(4.120)
—mGg AT2
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where the background metric is found by setting m = 0 and j = 0 as

dr?

ds* = Ar?dt* + r?dg* — T

4.121)

In the asymptotic region, the linearized cosmological Einstein tensor vanishes G, =

0 and only qé‘f) terms in (4.119) contribute. Killing vectors & =— (%)” and £ =

w
(%) yield the energy and the angular momentum, respectively, as
1 oa jAe 1 oa\ . mo
EFE=—11-— —, J==|{l1-=—=|j—— 4.122
Gy K 2u2>m+ 1 ] Gy K M)j Iz } 122

4.6 Further Developments in Exotic Massive Gravity

Here we briefly summarize some of the further developments in exotic massive grav-
ity. One particularly interesting issue is the matter coupling of the theory. As we do
not possess a Bianchi identity matter coupling is highly non-trivial. But how consis-

tent coupling can be done was worked out [43]]. The resulting equations are

1 1

1
G + ;Cuv — ﬁHw + @LW =0,,(T) (4.123)

where O, (7') is a complicated effective "energy-momentum" tensor which is on-

shell consistent and defined by

A A . 2\ )
O,u(T) ==T\ — —€,""V,Tyo + —€,"76, " C\ T,
m m
K 2 (4.124)
o AT T
o €, 7€, T T\ Tyr

where TW = T, — 19T and V, 7" = 0. Here X is a coupling constant which
appears linearly and quadratically on the right-hand side. The Cotton, Schouten, H

and L-tensors are defined

Cow =6, VS Huw=6,""V,Cop L =-6"6""CnCohr  (4.125)

N | —

and S, = R, — 19, R.

Recently [50] it was shown that even though the theory has a massive spin-2 ghost, it
is a causal theory. The causality proof was given using the Shapiro time delay ideas

in the presence of a shockwave geometry which is a solution to the theory.
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In [51,/52]], non-trivial solutions of the exotic massive gravity have been found. In
[S3]], a unitary extension of the exotic massive gravity as a bigeometry has been con-

structed.
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CHAPTER 5

SYMMETRY REDUCTION VIA THE GEROCH METHOD

5.1 Reduction of the Various tensors under a Killing Symmetry

The field equations of the gravity theories discussed in the previous chapter are highly
complicated; and hence, very few solutions, usually with maximal symmetry, are
known. The existence of a symmetry can be coordinate invariantly defined by the
existence of Killing vector fields. Let us assume that there is a single Killing vector
field in the spacetime manifold (M, g), then we can ask if such a Killing vector field
can be used to define a hypersurface > (of codimension-one). In general, without
for the restriction such an invariantly defined Y. does not exist as a submanifold [54].
Naively this is because of the following: say G be the 1-dimensional group generated
by the assumed Killing vector field, then the invariantly defined space is the quotient
space M /G (see Appendix B for details) which in general is not a manifold, let alone
a codimension-one hypersurface. The proper conditions are summarized as a theorem
in [55]] which we write here for completeness, but without proof which is beyond the

scope of the thesis. The theorem is called the quotient manifold theorem:

Theorem: Suppose G is a Lie group acting smoothly, freely and properly on the
smooth manifold M. Then the orbit space M /G is a topological manifold if dimen-
sion equal to dim(M/) — dim(G) and has unique smooth structure with the property

that the quotient map 7 : M — M /G is a smooth submersion.

Geroch [56,57] developped this so called projection formalism and invariant quanti-
ties needed to describe the geometry of M /G. In [54] details of this construction is
given. The invariant quantities are the twist and the norm of the Killing vector field

as well as the metric on M /G if it is a manifold.
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In this chapter, following [58]], we make the first attempt of reducing the relevant
tensors, Ricci, Cotton, .J,,,,, H,, under the assumption of a time-like Killing vector
field. The ensuring discussion is still complicated and gave rise to new solutions in
the core of the topologically massive gravity(TMG) [58]]. We will start in this general
setting and later restrict our ansatz to the case of vanishing twist which is to be defined

below.

5.1.1 The Stationary Metric

Assuming the existence of a time-like Killing vector field K, we can choose coordi-
nates adapted to this Killing vector field such that local coordinates are z°, 2!, 22 and
the Killing vector field reads

0

Then the metric components g,, = ¢, (x',2%) do not depend on 2" and the line

element reads

d32 = guydgj“dxl’ = g00<dx0>2 + 2g0idx0dxi -+ gijd:cidxj. (52)
Defining
UJQ = goo ’ AZ = & ) hz] = g’L] - gmgoj’ (53)
goo goo

we can recast the line element in the compact form

[ 2
ds* = w? | (dz°)? + 29% 1:0da + (@dﬂ) + gyjda'dz’ — wdxidxj

w? w? w
. )
= w?|da® + 22| 4 (gij — J0i%b; ) da (5.4)
w w

2
= w? (dmo + Al-dxi) + hijd:cid:cj.

This will be the form that we shall employ in this chapter. Let us stress that w?, A;, h;;
depend on ! and 2? but not on 2°. These are 6 functions that represent the symmetric

g, With 6 independent entries.

As matrices, we have the metric and its inverse:

w? w?A; , (HZ# —A¥
Guv = > gu = . x| (55)
CUZAZ‘ hij + W2AZ’AJ‘ — A7 h’
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with det(g,,) = w? det(h;;).

Note that h;; is the metric of the spatial part and as such it is used for raising and

lowering of the spatial indices such as

AP =h'A; hght =6 (5.6)

5.1.2 Coordinate or Gauge Transformation

We have chosen the coordinates (x°, z*) but close inspection shows that the following
"new coordinates" leave the w?® and h;; intact while change only the A; field. This
fact can be used to simplify the equations, hence we work this out. Let (z°, Z') be the

new coordinates, then we define the coordinate transformation as:

7 =2+ T(2") (5.7)

7= (5.8)
It is straightforward to see that any covariant field equation is invariant (since it is
of the form £#” = 0) under these transformations. Notice that the metric also stays

stationary as shown below;

0z 97°
Gur = 0 G

Jgoo = Joo — W =w,

_ 0T (2 o
9oi =Yoo 8(i ) + Goj0;
x

07 01"

9ij = Gasgz 57 = iy = hij. (5.9)

It can be easily seen that w?, h;; and F;; = 9;A; — 0;A; = €;;€ remain invariant.
Note that the last equation defines the scalar function €2, and ¢;; is a spatial tensor (not

density), defined in terms of the €;; symbol as

€5 = \/Ec?ij s Eij = —Eij. (510)
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5.1.3 Scalar Twist

Following the analogous expression in four (or higher) dimensions [S9], we can define
the scalar twist of the Killing vector field as

GW,,\KMV“K/\
= 5.11
P K.K° (5.11)

Since K* = (1,0,0), we have K,K° = goo = w? and
eOinOVin
2
B 019"V K7 B EOijgwrio (5.12)
N w? N w?

= w_gj(g T+ g krio)-

To simplify the expression we need to work out the Christoffel symbols which can be

computed. We list the non-vanishing components here

(0% 1 (03
F;w =359 )\(aug)\u + azzg)\,u - 8)\9;“,)

2
0 1 7 2 7 1 i, 2
0 1 39,2 2 3 1 2
% 1 2 [ i, 2
FjO: 5[&) Fj —Ajé’w }, (515)
1 1
F? =— (VzAJ —+ VjAz) + —(Ajaiw2 + Azﬁjuﬂ)
72 2w (5.16)
1 .
+ §Ak (Ain(‘)sz — (JJzAiF k — wQAjEk),
) A 1 . . .
I =T + §(W2AijZ + W AFY — ApA0'W?), (5.17)

= TE=TF+0k Of =_(WAF, +wAF) — 44007, (5.18)

17

N —

Using the relevant connections in (5.12)) and the fact that ep;; = we;;, we get
1

P = §w5ijFij (519)
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and since () = %&j F, the scalar twist is related to the function (2 as
p = wil.

Also, let us note that

Pz

] 2 _
FyFY =208 =20,

and

ik g h‘ijZ

(5.20)

(5.21)

(5.22)

It is clear from the above construction that, just like w, the twist p is gauge invariant

under the transformations (5.7)),(5.8).

Before calculating the Ricci tensor (R,,,), the Cotton tensor (C},), the J,,,, and H,,

tensors, we search for the components of these tensors if they can be written in terms

of invariant quantities p and w. Under the change of coordinates, a rank (0,2) tensor

transform as
= O™ 0a”
= B 0

and for particular case of (5.7),(5.8), one has

. Ox® OxP
By = ﬁ@Baﬁ = Byo,
~ Ox® OzP oT
Bio = —— =5 Bas = Bio — 5= Boo,
07 9t az0 T T T gy
B ox® 0zP _ B oT oT oT

97 Paom e T P T gm0 T pmam

- 07 0P ;
B0 = ua o5 = P
and finally
= 0% 0 ’
BY = — B = B,
Ox® 0P

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

So the By, By, B components are gauge invariant. This means any gauge can be

used to compute them. Also, no gauge-noninvariant object, such as A; should appear

them.
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5.1.4 Ricci Tensor and The Scalar Curvature

As we have seen above, Ry, Ré and R¥ are the components of the Ricci tensor that
can be written in terms of the invariant quantities w and p. Let us calculate these

explicitly.

The Riemann tensor is

R gy = 0,1%, — 0,15, + 10,1, —T/,T,,. (5.29)
So one has
Ry = R0 = Roio
= 0T + Iioloo + Fﬁjréo — Told — Fé‘orgm (5.30)
which yields
Ry = —wlw + iwélﬂjFij = —wlw + %w2p2, (5.31)

where [J := A @,@] and V; is the covariant derivative compatible with the spatial

metric h;;.

Next we have

A
Riy = R = Ryj0.

= ;Y + T I, + IV, T — T}, I% — T, TF, (5.32)
which reads
Lymo 3o 1oy,
Rip = —5141“300 + ZLE]'V]W + S¥ V' Fij
1 - Ny 1 .
+ Zw_QijQV%f + 1w4Aiijij
R 3 . 1. 1 ‘ (5.33)
= —(_«)Ati + Z_lFijvJWQ + §w2VJFZ-j + ZW4AiijF]k
| ;
= —wA;Ow + §Aiw2p2 + ;—f)@k(pr),

as expected gauge invariant parts (A;) appear for this component. We need to raise

the spatial index to get
Ry = ¢’*Rao = 9" Roo + ¢’' Rio, (5.34)
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which reads
J Ju 3 ¢ ik p ik el” 2
Rl =¢""R, = §kawF + W V,F7" = —2w8k(w 0), (5.35)

which is gauge invariant and compared to (5.33)) the latter expression is simpler. Next
we have
Rij = in/\j = Rkikj + ROinu (5.36)

and we need to compute the following components

R%; = —0;0% + T Iy, + To, I — D98 — T9,T%, (5.37)

RFipj = O, — 0,0k + TRy, 4+ D Th, — DTy, — Th T, (5.38)
After some long calculations, we arrive at
> - le ¢ 3 Sk 2
Rij = Rij — wAiAij — ;V]V,w + ZAZF]kV w
3 8 1 - 1 .
+ ZAjFikaw2 + inAijFi k + §W2szkﬂ k
1 1
— §w2Fi "Ej + Zw4AiAijlF’“l (5.39)
LA AL — LV Fw A,
= §ha] — WA ij — ;Vjviw + 2%8 (w p)
€ik 1 1
+ Ajﬂak(aﬂp) - §hij,02 + éAiAijpQ,
where again h;; refers to the 2 dimensional spatial metric. Raising the two indices up,
we get
. C AL 1 .~ 1 o
RY = ¢g"¢""R,, = RY — —V'Vw — —W? kT
LYy 2 (5.40)
— L~ L — Ly
2 we TR
which is a gauge invariant expression. Finally for the scalar curvature, we have

R=g¢g"R, = 9% Ro, + g Ri,, = g™ Roo + QOjROj + ¢ R0 + Qinij, (5.41)

which reduces to
2

. . 1
R=R—- “0w— -p* (5.42)
w 2

which is clearly gauge invariant. The computations so far can be used to study solu-
tions with a Killing vector in 3D Einstein’s gravity, but we shall not do that, instead

we shall study the reduction of the other rank-2 tensors.
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5.1.5 Reductions of the Cotton Tensor C),,, and the J,, and 1, tensors

Next we carry out the similar reduction to these tensors. Recall that the Cotton tensor

is defined adll

1
OM = PV, Ss”  with S, = R, — I R (5.43)

Some components of the Schouten tensor that we shall use are

1 - 5 1 ,x
Soo = _§WDW + §w2p2 — ZwQR, (5.44)
Sio = —: Al + S AW — LA R+ Lt (W), (5.45)
10 9 ) ] 7 4 g 20 il ) ’
and
1~ 1 . le @ 3
S, :ZRhij — §AiAijw — ;Vjviw — gpzhi]’
5 1. 1. 1 ~
+ S AAW P+ Shy D — 2w A AR (5.46)
1 1
+ %Aiejkak (w?p) + @Ajﬁikak (w?p)-
we have

. ) €
COO = €0aﬁvaSBo = EozﬁviS@o = EOZJViSjO = UVZ»SjO

€'
- U [&Sjo - F?jSOO - FZSkO - F?()Sjo - FfOSjkL
Symmetric terms in the parenthesis vanish due to the antisymmetric tensor €%/, Then

C°, becomes
€

C% = W [ﬁz‘sjo —TSj0 — Ffosjk]’ (5.48)
A a 1o . 3p =~ 1 1 - .
% = LVwviv — —VipV'w — 2P — S0p— pR+p. (5.49)
w2 w 2(4.1 2 2

Cro = GraC% = groC% + griC'o = w2 ArC% + hy Cly + w? A A;CY
= W2Akcoo + h/ﬂCZO

(5.50)

! Reduction of the Ricci tensor and the Cotton tensor was worked out in [58]].
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The explicit computation of all the components of the Cotton tensor is extremely
tedious. But one can use the previously observed fact that in the gauge invariant
components Cyg, C%, C, no A; term should appear. For the sake of keeping the
expressions simple, we shall drop the terms that have the products of A;’s such as
A;A;. This is because, later on we shall compute H,,,, which involve the derivative

of C,,: if there is one A; in the expression, its derivative yields an F};, but terms like

ijs
A; A; will disappear at the end from the gauge-invariant expressions. Whenever we
drop terms involving A;, we shall add O(A;) meaning that the expression is simplified

by dropping these terms.

. . 3
Chro :Ak( —wVipVw + pViwVie — Ewpr

1 .- 1 .
— §w2Dp — §w2pR + w2p3) (5.51)
e 2 (3 95 & e L 5a 2
+ —haVj| zwp” + ViwVw — —w'R — wlw ).
2w 2 2

Cok = GOQBVaSgk == EOijviSjk:

€ €’ e 0 !
= Uvisjk = ViSjr — LipSio — OuSii

=G =3 e L) + Lot
= i i\ — - = — LW — V,;W 109
S 4 8p 2w w? RYJ

le & e lo o -
- —vikajw - —VkViij] (552)
w w

3p 1, 2
+ mﬂf;a (w p).

ik
O = VoS = — [VkSOj - Voskj}
ik

_ % {msoj — 9S00 — Ok, Sor + TY,So + ngskl}
| le wr Lo oo po o
'y =— ;VJWV’,O - ;Vj,ovzw - 5 VjwVw
V¥ - L0+ LYV (5.53)
+ 04 ( %p?’ + }lpR %@kkap + gﬂw + %Dp)
Cij = i, C"; = giOCOj + gz’kckj = hikckja (5.54)
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(@ip@jw + @ZW@jp) — wﬁﬁiwﬁjw (555)
P

R R R R 3 . 2 R
Coo = wW?p® + pViwVFrw — wV,wVFp — iwpr — % (Op+ Rp).  (5.56)

Ci[) = Gia’gvaSﬁo = GinVOSjo + 61']'0ij00

1 .. 1 ..
o —_€ZOJVQSJ'Q + —E”OVJ'SOO

N/ N/
1 . 1 .
= — eVoSio + —=e"V,5
wvVh 030 w\/ﬁ 7700

1 ..
== 56” (VjSoo — VOSjo)

Eik 1 R .

i = 3 990 & i 2
Cy = zkabw p°+ ViwViw — 2w R—wa} (5.57)

N ST A WO B BV I
Ci —=his [—kavkp L Tt P Y —pR] _ ViV
N N oA 1 ~. .. NN :
— LiVin— LV — = (VioVip + ViwVip).
2w w? w

Now we get all the components of the Cotton tensor that have only invariant quanti-

ties.

Without going into details, let us give the results of the invariant components of the

J-tensor, defined as

1
JH = §e“poe”mSpTSm (5.59)

. (1. 3 1. 1. 3 -’
Joo =wlw| =R — =p* + —0w | —w?| =R — Zp* + —[w
w 4 8 2w

(5.60)
1 2 I ke
— §(Dw) + EV ViwV'Viw,
;. €9 /1. 3 1 - A 1 PN
Jo = % {(ZR — gPQ + ED‘U) Vi(w?p) — ;Vk(WQP)vkvjw} ’ (5.61)



1 A 15 1 -
——w2p2R2—|——w2p4+—w2R2)

64 16

1 g 1 . 1 A

1. 5 1 A\ oo 1 o o
+ <§Dw — gwpz + ZwR) V'V + ZWQVWJ,) + P’ V'uVie  (5.62)
2 (G mm)} |
Now we can move on with the H-tensor:
H" = PV ,Cp, (5.63)

and give the final results:

. 1 . 1 - 1 A ~ ~ A
HY =p—\/* { Vi (§w2p2 — §w2R — wlw + Vlwvlw)}

w 2w 2
1o 1 ~./3 1 5= . SN

— —VI | =V Zw?p? — —w?R — wlw + V,wViw
w 2w 2 2

1.~. ~./1ax 3 1 -
G VA0 VAl (e R
VeV (4 S ”)

+— (Vﬂwvww - vmvkwv’fvw>
“ (5.64)
- — (V%JV’DUJ + VIwVEVIVw + QVJwDV’w)
w
2
L inwip+ Lvipgvie - Eviovie
4w 2w w?
P& igi P2 & i
+ EVivip+ Lviviy
4 )

y 2. . 57/ JESN 1 ,~ 3 1 -
+ hY < - %kavkw — ﬁvkkap + §p2R — ot — —pr),

47 4
i[9 e e o o le, o e 5pe -
Hiy =€V [Zp3vjw - Epvjvkwv% — §vkwvjv’fp — ﬁvjwmw

- 15 . 5 & oA T o 2.0 o
— pRV w + prQVjp — gprjR — ZijDw + avjpvkkaw

(5.65)
A A 1 - A o A A A A a A
— V,wlp — %ijvkkap + %ijvkkaw —V,;ViwV¥p

3o - 1 & = 1 -
- §V]pr — §wVJDp — §CURVJP:| y

- 1 - (3 PR 1 .- .
Hyo =w?VF*| — — V| =w?p* + ViwViw — —w?R — wlw
2uw? 2 2
S S S 5.66
+ 1’ ViwViw — éwpvkwv p—qwp Cw (5.66)
3 9 = 3 995 3 9y
——wpldp — = — :
LW PHp — qwp R+ 5w P

73



74



CHAPTER 6

CONCLUSIONS

At large scales or outside a matter source, all the solutions of Einstein equation are
Einstein spaces with the metric R, = Ag,,. Einstein equation is non-linear and
without symmetries it is a set of coupled non-linear partial differential equations that
are too complicated to obtain exact solutions. Besides arriving an exact solution,
quantum version of the theory has not been formulated. Up to now we have not able
to have the quantize General Relativity in four dimensions. Lower dimensional grav-
ity theories have become a hope to the researchers for finding a quantum version of
a gravity theory. In three dimensions, General Relativity does not have local degrees
of freedom. Without cosmological constant the spacetime is flat: the Riemann tensor
vanishes. For the A # 0 case, locally the solution is either de Sitter (dS) with A > 0,
or anti-de Sitter A < 0. AdS case can be non-trivial globally, admits the first known
solution called BTZ-black hole. There are several extensions of Einstein theory with
non-trivial local dynamics in 3D: there are TMG, NMG and Born-Infeld extension
of NMG. To reach the quantum gravity, these theories are studied using anti-de Sit-
ter/Conformal field theory (AdS/CFT) correspondence. Unfortunately these theories
suffer from the bulk-boundary unitarity clash which should not exist for a viable the-
ory. In search for other theories, on shell consistent theories were proposed such as

the MMG and the EMG that are only divergence free under the condition
V,.EM =0. (6.1)
Enr=0
We studied the generic on-shell consistent Exotic massive gravity theory which we

called the Bachian gravity. We define the 3D Bach tensor as
1 1
HHV = §€MO‘BVQC'6,, + §€ya5vacﬁp7 (62)
that does not come from the variation of an action.
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On shell consistent theory is constructed with a 2-tensor £ that comes from the

variation of an action, generalization of the Bach and .J-tensors
1 af k afB _ o
Ew + =€, VaPs, + —€,7€,77 P Pg, = 0, (6.3)
L It

where @, is a symmetric 2-tensor and does not come from any action, V,®"" # 0.
With the Choosing
1
g;w = R,uzz - §guuR + Aog;w, (64)

we obtain the field equations given as

1 1 1
Ry — §guuR + Ao + ;Eﬂaﬁvaq)ﬁu - Tlﬂeﬂaﬁelfap(baﬂq)ﬁﬂ = 0. (6.5)

After identification of the ¢, := V¥, — % 9,,,'V, with covariantly conserved ¥, we
finally get the latest form of the field equations
1 1 s 1
E;u/ ::R;w — §gWR + Aogw/ + péu Va (\Ifﬁl, — §gﬁy\11)
(6.6)
1 2 3 2 a
+ 2 (gﬂy(waﬁ - )+ UV — 20,7, ) = 0.

The spectrum of the theory was investigated with the help of the linearization about

maximally symmetric vacua and Killing charge construction is presented.

As mentioned earlier, obtaining a solution of the gravity theories is hard to find. A
symmetry is defined by the existence of a Killing vector field which can be employed
to reach a solution. Projection formalism on the spacetime manifold (M, g) with a
single Killing vector field is introduced as an option to solve this compelling problem.
Projection formalism needs invariant quantities such as the twist and the norm of the
Killing vector field. We work out the reduction of the tensors, Ricci, Cotton, J,,, and

H,,.

76



REFERENCES

[1] S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Measure-
ments of €2 and A from 42 high redshift supernovae,” Astrophys. J. 517, 565
(1999).

[2] P. A. R. Ade et al. [Planck Collaboration], “Planck 2015 results. XIII. Cosmo-
logical parameters,” Astron. Astrophys. 594, A13 (2016).

[3] Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., & Herlt, E. (2003).
Exact Solutions of Einstein’s Field Equations (Cambridge Monographs on

Mathematical Physics). Cambridge: Cambridge University Press.

[4] Griffiths, J., & Podolsky, J. (2009). Exact Space-Times in Einstein’s Gen-
eral Relativity (Cambridge Monographs on Mathematical Physics). Cambridge:

Cambridge University Press.

[5] Carlip, S. (1998). Quantum Gravity in 2 + 1 Dimensions (Cambridge Mono-
graphs on Mathematical Physics). Cambridge: Cambridge University Press.

[6] G. Alkac, M. Tek and B. Tekin, “Bachian Gravity in Three Dimensions,” Phys.
Rev. D 98, 104021 (2018).

[7] Nakahara, M. (2003) Geometry, Topology and Physics. Taylor and Francis
Group, New York and London.

[8] Carroll, S. (2019). Spacetime and Geometry: An Introduction to General Rela-
tivity. Cambridge: Cambridge University Press.

[9] S. Deser, R. Jackiw and G. ’t Hooft, “Three-Dimensional Einstein Gravity: Dy-
namics of Flat Space,” Annals Phys. 152, 220 (1984).

[10] S. Deser and R. Jackiw, “Three-Dimensional Cosmological Gravity: Dynamics

of Constant Curvature,” Annals Phys. 153, 405 (1984).

77



[11] M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional
space-time,” Phys. Rev. Lett. 69, 1849 (1992); M. Banados, M. Henneaux,
C. Teitelboim and J. Zanelli, “Geometry of the (2+1) black hole,” Phys. Rev.
D 48, 1506 (1993). Erratum: [Phys. Rev. D 88, 069902 (2013)].

[12] D. Ida, “No black hole theorem in three-dimensional gravity,” Phys. Rev. Lett.
85, 3758 (2000).

[13] E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,” Nucl.
Phys. B 311, 46 (1988).

[14] A. Achucarro and P. K. Townsend, “A Chern-Simons Action for Three-
Dimensional anti-De Sitter Supergravity Theories,” Phys. Lett. B 180 (1986)
89.

[15] S. Deser, R. Jackiw and S. Templeton, “Three-Dimensional Massive Gauge The-
ories,” Phys. Rev. Lett. 48, 975 (1982); S. Deser, R. Jackiw and S. Templeton,
“Topologically Massive Gauge Theories,” Annals Phys. 140, 372 (1982) [An-
nals Phys. 281, 409 (2000)] Erratum: [Annals Phys. 185, 406 (1988)].

[16] S. Carlip, S. Deser, A. Waldron and D. K. Wise, “Cosmological Topologically
Massive Gravitons and Photons,” Class. Quant. Grav. 26, 075008 (2009)

[17] M. Gurses, T. C. Sisman and B. Tekin, “Some exact solutions of all f (RW)
theories in three dimensions,” Phys. Rev. D 86, 024001 (2012).

[18] W.Li, W. Song and A. Strominger, “Chiral Gravity in Three Dimensions,” JHEP
0804, 082 (2008).

[19] A. Maloney, W. Song and A. Strominger, “Chiral Gravity, Log Gravity and
Extremal CFT,” Phys. Rev. D 81, 064007 (2010).

[20] D. D. K. Chow, C. N. Pope and E. Sezgin, “Classification of solutions in topo-
logically massive gravity,” Class. Quant. Grav. 27, 105001 (2010).

[21] J. M. Maldacena, “The Large N limit of superconformal field theories and su-
pergravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231
(1999)].

78



[22] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of
Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Com-

mun. Math. Phys. 104, 207 (1986).

[23] P. Kraus and F. Larsen, “Holographic gravitational anomalies,” JHEP 0601, 022
(2006).

[24] D. Grumiller and N. Johansson, “Instability in cosmological topologically mas-

sive gravity at the chiral point,” JHEP 0807, 134 (2008).

[25] L. Gullu, T. C. Sisman and B. Tekin, “Canonical Structure of Higher Derivative
Gravity in 3D,” Phys. Rev. D 81, 104017 (2010).

[26] E. A. Bergshoeff, O. Hohm and P. K. Townsend, “Massive Gravity in Three
Dimensions,” Phys. Rev. Lett. 102, 201301 (2009).

[27] E. A. Bergshoeft, O. Hohm and P. K. Townsend, “More on Massive 3D Gravity,”
Phys. Rev. D 79, 124042 (2009).

[28] D. G. Boulware and S. Deser, “Can gravitation have a finite range?,” Phys. Rev.
D 6, 3368 (1972).

[29] I. Gullu, T. C. Sisman and B. Tekin, “All Bulk and Boundary Unitary Cubic
Curvature Theories in Three Dimensions,” Phys. Rev. D 83, 024033 (2011).

[30] A. Sinha, “On the new massive gravity and AdS/CFT,” JHEP 1006, 061 (2010).

[31] I. Gullu, T. C. Sisman and B. Tekin, “Born-Infeld extension of new massive

gravity,” Class. Quant. Grav. 27, 162001 (2010).

[32] M. F. Paulos, “New massive gravity extended with an arbitrary number of cur-

vature corrections,” Phys. Rev. D 82, 084042 (2010).

[33] E. Bergshoeft, O. Hohm, W. Merbis, A. J. Routh and P. K. Townsend, “Minimal
Massive 3D Gravity,” Class. Quant. Grav. 31, 145008 (2014).

[34] A. S. Arvanitakis, A. J. Routh and P. K. Townsend, “Matter coupling in 3D
’minimal massive gravity,” Class. Quant. Grav. 31, 235012 (2014).

[35] B. Tekin, “Bulk and boundary unitary gravity in 3D: MMGs,” Phys. Rev. D 92,
024008 (2015).

79



[36] B. Tekin, “Minimal Massive Gravity: Conserved Charges, Excitations and the
Chiral Gravity Limit,” Phys. Rev. D 90, no. 8, 081701 (2014).

[37] M. Alishahiha, M. M. Qaemmagami, A. Naseh and A. Shirzad, “On 3D Minimal
Massive Gravity,” JHEP 1412, 033 (2014).

[38] G. Alkac, L. Basanisi, E. Kilicarslan and B. Tekin, “Unitarity Problems in 3D
Gravity Theories,” Phys. Rev. D 96, 024010 (2017).

[39] E. A. Bergshoeff, W. Merbis and P. K. Townsend, “On-shell versus Off-shell
Equivalence in 3D Gravity,” Class. Quant. Grav. 36, no. 9, 095013 (2019).

[40] R.Jackiw and S. Y. P1, “Chern-Simons modification of general relativity,” Phys.
Rev. D 68, 104012 (2003).

[41] J. Maldacena, “Einstein Gravity from Conformal Gravity,” arXiv:1105.5632
[hep-th].

[42] E. Altas and B. Tekin, “Holographically Viable Extensions of Topologically
Massive and Minimal Massive Gravity?,” Phys. Rev. D 93, 025033 (2016).

[43] M. Ozkan, Y. Pang and P. K. Townsend, “Exotic Massive 3D Gravity,” JHEP
1808, 035 (2018).

[44] S. Deser and B. Tekin, “Energy in generic higher curvature gravity theories,”

Phys. Rev. D 67, 084009 (2003).

[45] P. Breitenlohner and D. Z. Freedman, “Positive Energy in anti-De Sitter Back-
grounds and Gauged Extended Supergravity,” Phys. Lett. 115B, 197 (1982).

[46] L. FE. Abbott and S. Deser, “Stability of Gravity with a Cosmological Constant,”
Nucl. Phys. B 195, 76 (1982).

[47] S. Deser and B. Tekin, “Gravitational energy in quadratic curvature gravities,”

Phys. Rev. Lett. 89, 101101 (2002).

[48] H. Adami, M. R. Setare, T. C. Sisman and B. Tekin, “Conserved Charges in
Extended Theories of Gravity,” arXiv:1710.07252 [hep-th].

[49] S. Deser and B. Tekin, “Energy in topologically massive gravity,” Class. Quant.
Grav. 20, L259 (2003).

80



[50] E. Kilicarslan and B. Tekin, “Exotic massive gravity: Causality and a Birkhoff-
like theorem,” Phys. Rev. D 100, 044035 (2019).

[51] M. Chernicoff, G. Giribet, N. Grandi and J. Oliva, “Vacua of Exotic Massive 3D
Gravity,” JHEP 1808, 087 (2018).

[52] G. Giribet and J. Oliva, “More on vacua of exotic massive 3D gravity,” Phys.
Rev. D 99, no. 6, 064021 (2019).

[53] M. Ozkan, Y. Pang and U. Zorba, “Unitary Extension of Exotic Massive 3D
Gravity from Bigravity,” Phys. Rev. Lett. 123, no. 3, 031303 (2019).

[54] Heusler, M. (1996). Black Hole Uniqueness Theorems (Cambridge Lecture
Notes in Physics). Cambridge: Cambridge University Press.

[55] Lee, J. M. (2003). Introduction to smooth manifolds. New York: Springer.

[56] R. P. Geroch, “A Method for generating solutions of Einstein’s equations,” J.
Math. Phys. 12, 918 (1971).

[57] R. P. Geroch, “A Method for generating new solutions of Einstein’s equation.

2.7 J. Math. Phys. 13, 394 (1972).

[58] R. Percacci, P. Sodano and I. Vuorio, “Topologically Massive Planar Universes

With Constant Twist,” Annals Phys. 176, 344 (1987).

[59] Wald, R. M. (1984). General Relativity, The University of Chicago Press.

81



82



APPENDIX A

MAPS AND TOPOLOGICAL SPACES

A.1 Maps

A map can be defined as a connection between two sets. It is a sort of a rule of
assigning one or some elements of one set to the other. Let X and Y be sets, we may

write

FiX Y. (A.1)

The set X becomes the domain of the map and Y is the range of the map. The domain
and the range could be the whole set or the subsets of the corresponding sets. One
can define the image of the map as the Y itself or a subset of Y. Let y € Y and
f(X)={y=f(z)lyeY and =z € X}. The inverse image of the map is defined
as, f1(Y)={z=f"y)r€X and yeY}

Ly - X (A.2)

' Both Appendix A and Appendix B follow the book [[7] very closely and we do not claim any originality.
The material in these Appendicies were directly or indirectly used in the understanding of the spacetime as a
manifold and all the structures that come with it.
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A.1.1 Properties of the Maps

i-) Injective map: A map is called injective if an element in the domain set is assigned
only one element in the range set by the rule of the map, f(z) # f(2) for x # 2’

ii-) Surjective map: A map is called surjective if every element in the range set has
corresponding element in the domain set, imf(X) =Y

iii-) Bijective map: If the map is injective and surjective then it is called a bijective
map.

iv-) Inverse map: Let f be a bijective map between twosets X and Y, f : X — Y.
Due to bijectivity one can define an inverse map f~! : Y — X that is also bijective.
v-) Composite map: Let f and g be two maps which are defined as f : X — Y and

g Y — Z. The composite map is constructed suchas: go f : X — Z.

An algebraic structure may be formed on the sets. This structure could be addition
or product. Structure preserving map f : X — Y, is called a homomorphism. For
instance, f(a +b) = f(a) + f(b) or f(ab) = f(a)f(b). In addition to that, if
homomorphic map is also bijective, the map becomes an isomorphism and the two

sets are isomorphic to each other, and one writes X = Y.

A.1.2 Equivalence Class

Equivalence classes are basically mutually disjoint subsets of the set X and the nota-

tion is [s].

Definition: ~ is an equivalance relation if it satisfies the following conditions:
i-) Reflexivity: s ~ s
ii-) Symmetry: If s ~ ¢, thent ~ s

iii-)Transitivity: If s ~tandt ~q¢= s~ ¢

Definition: Let ~ be an equivalence relation on the set X. One can define a subset

[s] such as

[s] :={t € X|s ~ 1}, (A.3)
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and it is called an equivalence class of s. Since equivalence classes are supposed to be
a mutually disjoint subsets, the intersection of two different classes are either empty

set, [s] N [t] = 0.

Definition: Consider a set X. A power set of X, P(X), is a set that contains all the
subsets of X.

Definition: Consider a set X and its equivalence classes [s]. These are subsets of X
and also elements of the power set of X, [s] € P(x) by definition. The quotient space
is a power set P(z) which is defined by

X/ ={[s] € P(z)|s € X} (A.4)

Remark: Any element s in [s] is called the representative of a class [s] and the union

of representatives is isomorphic to the main set, 2 = X/,...

A.2 Topological Spaces

Definition: Let X be a set. A topology on X is a power set 7' C P(X) that satisfies

the following requirements:
i-)) € Tand X € T.

ii-) Intersection of any two subsets of 7" must be the element of 7', e.g., U, V' C T" and

unverl.

iii-) Union of finite number of subsets again must be element of 7', e.g., C' C T =

Ucert.
Then the pair (X, T') is called a topological space.

Informally speaking, a topology can be constructed on almost all sets. Because it is
one of the weakest structure that is defined on a set. For instance, every set accept
empty set (()) and the set itself as a subset. The topology is called chaotic topology if
it has elements the empty set and the set itself, 7" = {0, X'}. If the topology contains

all the subsets of a set on which topology is constructed, then this is called the discrete
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topology.

Another useful topology type can be seen like this: Consider a real line as a set, R.
The standard topology consist of the all open intervals and their unions. It can be

extended to any dimension, d.

R=RxRx---xR. (A.S5)
d—t‘z;nes

However we need one more definition to construct standard topology.

Definition: The open ball of radius r around the point x,

(A.6)

where r € Rt := {r € R|r > 0}, and z;,y; € R. Then the standard topology on R
is defined by;

U€Tyy=VpelU:IreRT: B.(p) CU. (A7)

Definition: Consider a map f : X — Y and topologies on the sets , (X, Ty) and

(Y, Ty). The map f is continuous if it satisfies the following;

VS e Ty, preims(S) e Tk, (A.8)

where preimy(S) == {z € X : f(z) € S} C X. Here note that preim(S) C X
and im¢(U) C Y are open sets.

Definition: Consider an open or closed subset, NV, of the topological space (X, 7). N
may contain at least one or more open sets U;. Then N is a neighbourhood of a point

x € U;. If N is an open subset, then it is called an open neighbourhood of x € U,.

Definition: Let x and 2’ are arbitrary two points in the topological space (X, T') with
two neighbourhoods U, and U,.. For the case U, N U, = 0, (X, T) is called a Haus-
dorff space.
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Definition: Let (X, T") be a toplogical space. A subset U of (X, T') is called closed

if its complement in X is an open set.

A.2.1 Compactness and Paracompactness

Let (X, T') be a topological space. One can consider some subsets of X whose union
is X such as | JU; = X. Then it is said to be a cover of X. For the subsets U; are
open, they become an open cover of a topological space. Now every open cover U;
can have finite subsets, 1, that is also a cover. A family of V} is called a subcover of
X.

Definition: A topological space (X, T) is called compact if every open cover has a

finite subcover.

Definition: A topological space (X, T) is called paracompact if every open cover

has an open refinement.

Here a refinement R of an open cover is defined as a subcover of an open cover, e.g.,

VPeR: JVeU:PCV. (A.9)

A.2.2 Connectedness and Path-connectedness

Definition: A topological space (X, T") is connected unless there exist two subsets

suchas X = X; U Xy and X; N X, = 0.

Definition: Consider a pair of points 1, 22 € X and a continuous curve v : [0, 1] —
X such that y(0) = z; and (1) = x». If this construction is applied to the every pair

of points in the topological space, then it is called a path-connected.

A.2.3 Homeomorphism

For some topological spaces, continuous deformation is possible. Informally speak-

ing, two spaces are equivalent if one can deform one space to another.
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Definition: Let f : X; — X5 be a map and it is continuous and has an inverse which
is also continuous. Then the map f is called a homeomorphism and two topological
spaces X; and Xy are homeomorphic to each other. In other words they are topologi-

cally equivalent.

The equivalance between spaces allows us to put all topologically equivalant spaces
into one equivalence classes. A Topological invariant means that there is some quan-
tity which is conserved under homoemorphisms. This quantity could be an algebraic
structure, compactness, connectedness etc. Hence homeomorphism is a structure pre-

serving map between topological spaces.
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APPENDIX B

MANIFOLDS AND TENSOR FIELDS

B.1 Manifolds:

An m-dimensional manifold is a topological space that is locally homeomorphic to
R™. Local homeomorphism allows us to introduce coordinate systems on some re-
gions of the manifold. The important point is that a manifold globally does not have
to be homeomorphic to R™. Hence one has to put different coordinate systems for

the different regions of the manifold.

Definition: Let M/ be an m-dimensional topological manifold. U; € M are open sets

that satisty;
v, =M
ii-) U; N U; # 0

One can define a homeomorphism ¢; between U; € M and U, € R™

¢; U — Ul € R™, (B.1)

Then the pair (U;, ¢;) is called a chart and the whole family of charts {(U;, ¢;)} is

called an atlas. It is legitimate to construct a map between two charts.

Every constructed chart can be seen as a coordinate system. Therefore the map V;;

becomes a coordinate transformation. The number of differentiability of W;; states
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the differentiability of the manifold. For instance, if V;; is infinitely differentiable
then we have infinitely differentiable manifold, denoted as C'*°. The explicit form of

the map W;; can be written by

We can cover the manifold using different family of charts that form another atlas.
Let us assume A; consist of the open set family {(U;, ¢;)} and A, of the {(V;, ;) }.
If the map between these two atlases is differentiable then two atlases are said to be

compatible.

Let M be a topological manifold and the family of open sets {U;} cover the man-
ifold M. Tt is known that each U; is homeomorphic to an open set of R”. Now
suppose that each U; is homoemorphic to an open set other than R™, say that is
H™ = {(«',...,2™) € R™[z™ > 0}. A manifold that is covered by such kind of
open sets is said to be manifold with a boundary. The boundary of M is the set of
points which are mapped to points with ™ = 0, and denoted by M. The dimension
of the boundary is one dimension less than the manifold, dim(0M) = m — 1. Let us

say that there are two charts constructed by the maps
¢i Ui —H™ and ¢; :U; — H™. (B.4)
One can define a map between two charts such as
Ui 0;(U;NU;) = ¢:i(U; N U). (B.5)
The smoothness of the map ¥;; is guaranteed when V;; is C'° in an open set R™.

A product manifold can be defined after building up the individual manifolds. Let
M and N be manifolds with dim(M) = m and dim(N) = n. M and N have their
own atlases such as {(U;, ¢;)} and {(V}, ¢;)}. Now, constructed product manifold is
(m + n)-dimensional and its atlas is {(U;, ¢;), (V},%;)}. Any point on the product
manifold is mapped by the homeomorphism (¢;(p),¥;(q)) € R™*", where p € M
and ¢ € N. Notice that U; and V; are the open sets on the corresponding manifold,

Uie Mand V; € N.
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The torus 72 is a well known example of the product manifold. It can be constructed

by two S! manifolds:

T2 = St x St (B.6)

It can be generalized to construct a n-Torus that is n-dimensional product manifold.

T =5"%x 8" x.-- x5 (B.7)

~~
n

Definition: Let M and N are manifolds with charts (U, ¢) and (V) with

¢:U—=R™ | ¢:V =R (B.8)

Let us define a map f such as

f:M =N, (B.9)

withp € U and f(p) € N. We know that ¢(p) € R™ and ¢(f(p)) € R". If the map
Ypofogp l:R™ - R" (B.10)
is C'*°-differentiable then f is said to be differentiable at point p € M.

What we have done is simple: First we put a coordinate system on the manifolds M
and N by defining the homeomorphism ¢ : U — R™ and ¢ : V' — R" where U and
V' are the open sets, U C M and V' C N. Then we see that the map f is differential
ifio fop™t:R™ — R"is C°-differentiable. Once we have a differentiable map

between two manifolds, it enables us to construct a calculus on manifolds.

Definition: Let f : M — N be a homeomorphism. If the map 1) o f o ¢! :
R™ — R" is invertible and both 1) o f o ¢! and ¢ o f~L o 9p~! are O, f is called
a diffeomorphism and the manifolds M and N are diffeomorphic to each other. In

other words diffeomorphism f is a differential structure preserving map.

We have said that, when topological spaces are homeomorphic to each other, it is pos-
sible to deform one space to another continuously. Now we can insert this concept to

the diffeomorphic manifolds as diffeomorphism enables to deform one differentiable
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manifold to another smoothly. It easy to conclude that diffeomorphic spaces are the

same manifold.

Active and passive transformations have much of use in physics. Let us see these
transformations in the framework of the manifolds. We say that a manifold can
have more than one differentiable structure and it is characterized by the differen-
tial map between manifolds, say f. Now let say we have a set of diffeomorphisms
between the same manifold, f : M — M. Using chart (U, ¢) with the coordinate
map ¢ : U — R™, apoint p € U can be moved to R"™ to define a set of coordinates
¢(p) € R™. Picking up one of the diffeomorphisms, f , from many, one can create
an another coordinate values for a point f(p) € U by qﬁ( f (p)) € R™. Now we have
two coordinate values and a tool to transform one to another. The transformation can

be formed by the map

pofod i R™ 5 R™ (B.11)

This transformation corresponds to active transformation in physics such as rotating
a vector without changing the coordinate axis. Passive transformation is constructed
using two different charts (U, ¢) and (V1)) that are overlapping, U NV # (). Say
we have a point p € U N V. Now there are two coordinate maps ¢ and @ and
coordinate systems, ¢(p) € R™ and ¥(p) € R™. Again we use the diffeomorphism f

to construct a coordinate transformation,

o fogp l i R™ 5 R™ (B.12)

This transformation is called a passive transformation. For instance, keeping the vec-
tor fixed and rotate the coordinate axis. As a result there is a set of diffeomorphism

f+ M — M and this set forms a group of transformation.

B.1.1 Curves and Functions:

Consider an open interval in R! such as (a,b). Amap ¢ : (a,b) — M defines an open

curve in an m-dimensional manifold, M. A closed curve can be seen by using a map
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¢ : S — M. Now we have a curve on the manifold and we construct a coordinate

representation of the curve with the chart (U, ¢) on the manifold and the map

poc:R—R™ (B.13)

A function on the manifold is a smooth map

fiM =R (B.14)

In order to get a coordinate representation of the function, we again use a chart (U, ¢)

on the manifold and it is defined as

fod ' :R™ R (B.15)

B.1.2 Vectors:

We can use a curve and a function on the manifold to give a rigorous definiton of the

vector. What we are supposed to do is the following,

1. Define a curve on the manifold using an open interval (a, b) that contains zero,

a<0<b

c:(a,b) — M. (B.16)

2. Define a function f : M — R

3. and a chart on the manifold (U, ¢)

poc: (ab) = R™ (B.17)

food ':R™ =R, (B.18)
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Here remember that the coordinate representation of the points on the curve

a"(c(t)) = poc: (a,b) = R™,
and a function along the curve ¢

fle@)=fog™ :R™ =R,

where ¢ € (a,b).

Definition: A directional derivative of a function along the curve is

df (c(t)) _of dz (c(t))

dt oxH dt
t=0
and a vector or tangent vector is defined as
d_ 0
dt oxH
where X* = %, is a component of a vector and e, = % 1s a basis.
T

(B.19)

(B.20)

(B.21)

(B.22)

Definition: Tangent space is a vector space that consists of all the tangent vectors at

a point p € M and it is denoted by 7}, /. Dimension of the tangent space is equal to

the dimension of the manifold, dim(T,M) = dim(M).

B.1.3 One-forms:

One-forms are the elements of the cotangent space which is the dual space of the

tangent space denoted by 7,7 M. In general the one-form is a linear function of a

vector.

w:T,M — R
w(V) € Rwherew € TyM and V' € T, M.
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‘We have seen that % = V“@u is a vector. Now one-form can be written as

0y O

- Oz " Ozt

df

= f,,.: component of a one-form, dx* : basis one-form

(B.24)

From the map w : T,M — R, it is easy to see that one-form takes a vector from

tangent space as variable and gives a real value as a result.

Ay O ixn Dy — xn 9 g Oy _ xu0F
df(dt) = axydw (X 81‘“) =X paye dx (&W) =X e c R. (B.25)

Here, we have used dz* as a dual basis, dz” (52;) = 6.

Let us take a general one-form w and a vector V' to define an inner product. Inner

product is a bilinear map such as

( , ) :TyM x T,M — R, (B.26)
w=w,dz" |, V= V”%, (B.27)

(V) = (e, V¥ =) =, V¥ (o, =) = w0, V5 = w V. (B2Y)

As a note, basis vectors e, = and basis one-forms e# = dz* are called the

9
ozH
coordinate basis. One can define non-coordinate basis {e;} and {e’} which are not

related to the coordinates
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B.1.4 Tensors:

A tensor is a multilinear map of vectors and one-forms. A (gq,r) type tensor 7' is

defined at a point p € M as

T TMeTM@ - @TMLMOT,M® @ T,M R (B29)

q s

In this notation a vector is a (1, 0) type tensor, a one-form is a (0, 1) type tensor and

a scalar is a (0, 0) type tensor.

Let us suppose that 7" is a (g, r) type tensor.

0 0

T =T"H -t dz™ ... dx™. (B.30)

T(w, a,.. VW, .. ) =Tl Wy - B VWX (B.31)
q r

where w, o, ..., 0 € TyMand V,W, ..., X € T, M.

B.1.5 Tensor Field:

A vector is a linear map from cotangent space to the R-space. If this map is defined
at every point of the manifold then we have a map over the whole manifold and it is
called a vector field. Similarly, one-form is a linear map from the tangent space to the
R-space. One-form field is a defined map for every point of the manifold. In general,
for every point of the manifold defined multilinear maps from tangent and cotangent

space to R-space form a tensor field.

B.1.6 Push-forward and Pull-back:

Let M and N be manifolds and the map f is defined as
f:M — N. (B.32)
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The corresponding charts of the manifolds are (U, ¢) € M and (V,¢) € N. Now

define a function g : N — R. We know how a vector acts on a function, e.g.;

dg dx* Og
Xg=— = —— R. B.33
I=% = dat owr © (B.33)
In this set up, one can define a differential map f,;
f* : TpM — Tf(p)N, (B34)

where T),M and T}, N are the corresponding tangent spaces of M and N. Let us
move on with the vector V' € T, M that acts on a function (g o f)(x) to give a real

number V[g o f} e R.

Definition: Push-forward of a vector V' € T, M is defined as the following

(£ V)lgl =V]go f]. (B.35)

where ( I V) is a vector that is defined at the point f(p) € N and acts on a function
g : N — R. This action can be seen more clearly by using the charts of the manifolds,

(U,¢) € M and (V,¢) € N.

(FW)gl = (£V)[gov ' (v)],

Vigof] =V]go foo ' (z)], (B.36)

= (fV)[gov T (w)] =V]go fos  (w)]. (B.37)

Informally speaking, push-forward of a vector works like this: Instead of acting a
vector to a function that is defined in the manifold that contains a corresponding
vector, move a vector to another manifold with the help of a differential map between

those manifolds and act a vector to a function that is defined on the manifold.
Definition: Pull-back of a one-form is defined with the differential map f* as
fr T}‘(p)N — T;M, (B.38)
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(frw) (V) =w(£V), (B.39)

where w € 7%, N and ( f*V) is a push-forward vector on the tangent space of the NV

at a point f(p).

B.1.7 Lie Derivatives:

The picture so far is like this: There is a parametrized curve on the manifold, x(¢) and
the tangent vector correponds to this curve, X = X “%. From this point it is easy to
obtain a tensor field as an assigned tensor on every point of the manifold. Here is the

thing, we can get an integral curve going backward from that path.

Let suppose that z(t) is a parametrized curve and the coordinate representation of it
is 2#(t). That basically means using chart (U, ¢), puth component of ¢(xz(t)) is 2*(t).

Consider a vector X = X “8% with the component

(B.40)

and it is a system of ordinary differential equations (ODEs). The solution of these
ODE:s with the initial conditions xf = x#(0), which are the coordinates of a curve at
t = 0, provides us the desired integral curve of the vector field X. The existence and
the uniqueness of the ODEs ensure that there is a single curve for a specific point on
the manifold. From the uniqueness of the ODEs we are able to write a curve more

rigorously such as

oc:RxM—M (B.41)

and o is called the flow generated by the vector field X as a solution of the ODE:

%0“(1&, z) = X"(o(t,z)). (B.42)

Let assume that there are two vector fields and two curves which are generated by
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these vector fields.

dot(s,z)
— = X*(o(s,x)), (B.43)
dri(t,x)
— = (T(t, 2)). (B.44)

To get a geometrical approach of the Lie derivative of the vector fields, we can carry

out the following steps:

1. Take a tangent vector of the curve 7(¢, x) at an intersecting point z of two curves

7(t,z) and o (s, z)

Y

e T, M. (B.45)

2. Go through along curve o (s, z) at a point o(x) and take a tangent vector,

Y| o€ T, (B.46)

by using the map

e TuM — Ty M. (B.47)

The map o, can be seen as simple coordinate transformation, e.g.,

o't = ot 4 eXH(x). (B.48)

Now we have a different tangent vector than Y‘x because Y| is a tangent vector

(z)
at the point o.(x). We need to compare two vectors by definition of the derivative.

Therefore, Y ‘U (@) is supposed to move the point x. It can be done by the map:
0 c: TymyM — ToM, (B.49)
and the resulting vector, (U,G)Y‘O_ () I8 @ vector at the point .
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The Lie derivative of a vector field Y along the curve o that is generated by a vector

field X is defined by

LxY = Tim © [(e-)Y ], Y]] (B.50)

e—0 €

Coordinate-induced view of the Lie derivative of a vector field Y along X is the
following: Consider a chart (U, ¢) on the manifold M and two vector fields, X =
XrloandY =Yr2

Oz *
o(x) = 2t + eX*(x),

=Y*(z" + GX”(x))i

Y ‘ oz

(B.51)

o(z) $+EX’

Make a Taylor series expansion,

Yo & [YH(z) + eX*(2)0,Y" ()] %

. (B.52)
z+eX

(O'_E> Y|a (@) is nothing but just a coordinate transformation such as;

0 oxz” 0

Ozt Ox'm Oz’

¥ =a2" —eX"(x). (B.53)

0

ox?
0

ox”

e[ XN (@)Y (2) = YV (2)0, X" (2)] 5|

9 /. v
m(a: —eX (x))

= [V*(@) + X @)Y (@) [5) — 0. X" (x)]

(O'_E)Y’U(x) = [Y"(2) + eX?(2)0r\Y*(z)]

T

x (B.54)

0
=Y

+ O(é%).
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From there it follows that

0
ox?

z—l—e [ XH(2)0,Y" (x) — Y*(2)0,X"(2)]

e—=0 € oxH T

LxY —lirnl{Y“(yz:)i

0 (B.55)
_YH .
(x) (930” T }
v v 8
= [X*(2)0,Y"(z) — Y*(2)0, X" (z)] e
Hence;
0
LxY = (X“@MY” — Y“@MX”) E (B.56)
Notice that Lx Y is itself a vector field with the component
(LxY)" = X*0,Y" — V"9, X". (B.57)
One can easily show that
LxY = [X,Y} =XY -YX, (B.58)

where [X , Y] is called a Lie Bracket.

Let us focus now the geometrical meaning of the Lie bracket. There are two flows
o(s,x) and 7(t, z) that are generated by vector fields X and Y respectively. First

move along the curve o by the amount of € and then move along 7 by 4.
(8, 0(e,x)) = 7"(8, 2" + X" (x))
= ot + eX¥(x) + Y " (2" + X" (x)) (B.59)
=zt + eX*(z) + 0Y*(z) + e0 X" (2)0,YH(x).

Now, let us move in the reverse order, first move along a curve 7 by the amount of §

and then move along o by e,

o (e,7(6,2)) = o (e, 2" + 6Y"(x))
=gt 4+ 0YH(z) + eX" (2" + 6V (z)) (B.60)
=zt 4+ oY (x) + eXH(x) + e0Y"(x)0, X" (x).
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It is easy to see that two motions do not have to end up at the same point. To see this,

look for the difference of two paths:

T (5, o (e, x)) — ot (e, 7(, x)) = eé(X”@VY“ — Y”@,,X“) ‘
(B.61)
=ef[X,V]".
Reaching the same point requires that the Lie bracket of two vector fields should be
Zero.

LxY =[X,Y] =0,

= a(s,T(t,x)) = T(t,o(s,x)). (B.62)

The Lie derivative of a one-form w along a vector field X can be calculated by a

similar manner.

Lxw = 11_{%% [aew e —w J , (B.63)
Tw = w,(z)dz" + €[ X" (2)0,w,(x) + 0, X" w, ()] dz*,
Te(a)
w| = w,(z)dzH,
=  Lxw= (X"Ow, + w,0,X")dz". (B.64)

The Lie derivative of a function f along a vector field X is

Laf =l <[f(0(0) — £(2)]

= lim % [f(a" + eXH(x)) — f(at)] (B.65)
0
= X“(x)a—l{; =Xf.

The Lie derivative of any rank tensor can be found by using one of the properties of a

Lie derivative.
Lx(Ti®T) = (LxT) @To+ T ® (LxT3), (B.66)

where 77 and 75 are arbitrary tensor fields of any rank. As an example, consider a

(})—tensor field T'=T,"dz" ® e,
LxT = X(Tu”)dx“ ®e, + 71,7 (Exdx“) ®e, + T, dx" @ (Exey). (B.67)
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B.1.8 Differential Forms:

Definition:Differential form is a totally anti-symmetric ()-rank tensor and called
also an r-form.

Definition: Wedge product A of r one-forms defined by

dx" Ndxt? N - Ndatt = Z sgn(p)dxt*® A datr@ A - A dxtre . (B.68)

peEperm

where it constitutes a totally anti-symmetric tensor product.
Some examples:
i-) daxt A dx¥ = da* ® dz¥ — dx¥ ® dxt,
ii-)
de Ndx” Ndx® = dat @ dx¥ @ dz’ + dr¥ @ dx® ® dat

+dz’ Q dx* @ dx¥ — dx” @ dx’ Q dx”
—dz’ @ dr¥ @ dz" — dx¥ @ dx @ dz’.  (B.69)

Let us denote €27 (M) is the vector space of r-forms, then any r-form w € €7 (M) is

1

W= —'wmm,.,mdm“l Adxh? N ANdatT, (B.70)
r

where w,,, ,,...., are totally anti-symmetric tensor components.

The dimension of the vector space of r-forms is

n n!
() = =) (B.71)

where 7 is the dimension of the manifold. From this it is easy to check that the dimen-

sions are equal for the spaces Q7 (M) and Q=" (M), dim (0, (M)) = dim Q2" (M)).

(D N (n i r) - Tv(nn—Lr)' (B.72)

Definition: The exterior product of a ¢g-form and an r-form is a map such as

A QUM) x (M) — QI (M), (B.73)
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Letw € QI(M) and € Q7 (M) and the exterior product of these forms (w A & €
QI*7(M)). The action of the (¢ + r)-form (w A £) on (g + r)-vectors is defined by

1 ,
(WA, .., Vi) = i > sign(p)w(Voay, - - Vi)
" " pEperm (B74)

X EVatgr1ys -+ Vatain))-

Using exterior product, an algebra is defined
* — OO0 1 m
Q (M) =Q,(M) e Q(M)® - & Q) (M), (B.75)

where §27(M) is the vector space of all differential forms at p. For comparing an

r-form field, one may assign an r-form smoothly at each point on a manifold and it is

denoted as Q" (M).

Definition: The exterior derivative, d, on an r-form is defined by

1,0
0= 2 ) A A A
rirdx?
where
1
W= —'wmw_._wdx” Adzt A - A dxtr. (B.76)
r!

Now, straightforward calculation of the exterior derivative of an r-form w € Q"(M)

leads to,

r

d(.U(Xl, . 7X7’+1) = Z(—l)i+1XiW(X1, . 7Xi—17 Xi+17 Ce 7X7”+1)

=1
+ Z(_l)Z+Jw( [le X]] ) X17 ) Xi—h Xi+17 s (B77)

1<j

7Xj*17Xj+17 "7XT+1)'

Another important property of the exterior derivative is
4> =0. (B.78)

To prove this result, let us take r-form w € Q"(M);

1
W= —'wmm,._mdﬁ Adxtt N NdatT,
r
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1 ow
dw = ——FErde? Ada!t A dat? A - A dat

rl Oxv
dPw = lmdm’\ Adz” Ndx' A A dat (B.79)
rl Oz Oxv '
Here we notice that % is symmetric while dz* A dz” is anti-symmetric and mul-

tiplication of symmetric and anti-symmetric objects gives zero.

Definition: Let w be an r-form, w € Q"(M). w is called a closed r-form if dw = 0.

In addition to this, it is an exact r-form if there exist 1 € Q" (M) such that w = d.
Beside the exterior product, there is also the interior product of forms.

Definition: The Interior product is a map,

ip  Q(M) — Q7 H(M), (B.80)

and it is defined by an r-form w € 2"(M)
Z.mbLJ(Xl,...,XT_l) EW(Xle,..‘,XT_l), (B81)

where X € X' (M).

B.1.9 Integration of Differential Forms:

In an m-dimensional connected manifold M, let U; and U; be charts such that
Ui N'U; # . For the common point of the charts, p € U; N Uj, the tangent space
T,M can be spanned by two different basis, {e,} = {72} and {¢.} = (50=). The

transformation between the basis is defined

o
6, = g—;eu, (B.82)

and J = det(gyiz).

Definition: If J > 0 for any overlapping charts U; and U}, then the manifold M is

called orientable. Otherwise, J < 0, it is called a non-orientable.
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The important point is that only for an orientable manifold an integration of a differ-
ential form is constructed. There exist non-vanishing m-form on an m-dimensional
orientable manifold and it is called a volume element. One can say that two volume-
forms are equivalent if there is a positive function h € F(M) such that w = hw'.
The manifold may have right-handed orientation and left handed orientation which
depends on the definition of a function h. If h is negative-definite then the manifold

is left handed and for A is positive-definite the manifold is right-handed.
Integration of Forms:

A manifold is a paracompact topological space from definition. Paracompactness
provides that any open covering {U;} has a finite subcover. Using paracompactness
of the manifold, once the integral of a function over U; is defined, the integral can be
calculated over the whole manifold. This is possible by using the property which is

called partition of unity.

Definition: The family of differentiable functions ¢;(p) is called a partition function

of unity if it satisfies the following conditions:
i-)0<¢€(p) <1

ii-) &(p) = 0if p ¢ U;

iii-) €1(p) + €2(p) + - - - = 1 for any point p € M.

The conditions enable us to write

flp) = Z fp)e(p) = Z filp). (B.83)

From the paracompactness of the manifold the summation has a finite number of
elements. Now consider a function f : M — R and a volume element w. We define

the integration as
/ fw= f(o7 (@) h(d; (2))da'da? . .. dz™, (B.84)
Ui o(Us)

where ¢ : M — R™ is a chart map corresponding to the open set U;. Using the

partition of unity the integral becomes

/Mfw = Z/U fiw. (B.85)
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Notice that the result of the integral is independent of the chosen atlas and the coor-

dinates.

B.1.10 Lie Groups and Lie Algebras:

Definition: A Lie Group G is a differentiable manifold with the differential group

operations;

e : (xG—G

(91,92) ¥ g1 - Go- (B.86)

v - G =G

g g7 (B.87)

G has the all group operations such as, unit element e, (e - g = g), every element has

an inverse, associativity and closure.

Some of the familiar Lie groups are general Lie groups GL(n,R) or GL(n,C) and
their subgroups. The elements of these groups are matrices and the operations are

matrix multipilication and matrix inverse.

Let us introduce some interesting subgroups of GL(n,R)

-Orthogonal Group: O(n) = {M € GL(n,R)|\MM* = MTM =1T,}.
-Special Linear group: SL(n,R) = {M € GL(n,R)|detM = 1}.
-Special Orthogonal Group: SO(n) = O(n) N SL(n,R).

-Lorentz Group: O(1,3) = {M € GL(4,R)|MnM"* = n}

where 7 is the Minkowski metric, = diag(—1,1,1,1).

Theorem: Every closed subgroup H of a Lie group G is a Lie subgroup.

Definition: The coset space G/ H is a manifold that is not necessarily a Lie group

and it is constructed with an equivalance class g ~ ¢’ and a Lie subgroup H of G
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such that

g = gh, (B.88)

with a set

l9] = {ghlh € H}. (B.89)

If ghg™' € H, that means H is a normal subgroup of G, then the coset G/H is a
Lie group. In other words the elements of the coset space GG/H are the equivalance
classes, [g]. Hence notice that the group structure is preserved. That is to say, group

operations, multiplication and inverse element are maintained.

9]lg'] = [99'], (B.90)

g7 =197, (B.91)

where [g], [¢'] € G/H.
Definition:The map L, : G — G is called the left translation and defined by
L, = ag, (B.92)

where G is a Lie group and a, g € G. L, is a diffeomorphism and one can define an

induced map

Lo : T,G — T,yG. (B.93)

Definition: The left-invariant vector field in a given Lie group G is defined

=X

g

Lo X

(B.94)

ag

To understand the definition better let us introduce coordinate representation of the

vector field as,

0
X| = X* B.95
e o (B.95)
is a vector field at the point g and
ox¥(ag) 0 0
Lo X| = X* = X" B.
a p (g) 8513“(9) or” ag (ag) oY ag ( 96)

is a vector field at the point that is left-translated.

108



Consider a unique left-invariant vector field Xy, and

Xy

— L,V (B.97)

g

where V € T.(G, g € G. It is straightforward to show that

Xv| = LogV = (LaLy).V = LaLy.V = Lo Xy

ag

(B.93)

g

by using the property of the induced map such as (g o f), = g. o f.

Here there is a left-invariant vector field Xy that is constructed by the vector V' &

T.G. Hence, it is possible to define a unique vector V = X

€ T.G by using a
left-invariant vector field X. Using the uniqueness above, we meay say that there is
a set of left-invariant vector fields on (G, denoted by g. One can easily see that the
map 7.G — g is an isomorphism and we conclude that the set of left-invariant vector

fields isomorphic to T.G
g=T.G (B.99)

and also g is a vector space with the same dimension of G, dimg = dimG.

Consider two vector fields X, Y € g. If we apply L. to the Lie bracket of two vector
field,

Lo [X,Y]| = [LaeX|  LoY | | = [X,Y] (B.100)
g g g ag
is also an element of g, [X,Y]| €g.
ag
In the vector Xy | = gV is
g
L,V =gV
and
[Xv, Y] = Ly [V, W] = g[V,W]. (B.101)
Definition: Lie algebra of a Lie group G
[ . J:axg—g (B.102)

for the left-invariant vector fields g.

109



B.1.11 The one parameter subgroup:

Let us consider a curve on the manifold G.
¢o:R—G. (B.103)

We can define a vector field X through the curve ¢.

dot (t
4t _ X ((1)). (B.104)
dt
Let us check that a vector field X is left-invariant. It is obvious that a vector field %

18 left-invariant vector field on R,

d d
L *—‘ =2, B.105
(Lo-Zely= al, ( )
Using a diffeomorphism ¢, one can define a push-forward map:
¢ - TR — Ty G. (B.106)
The pushed-forward vector fields are
5 d| dqﬁ“(t)) g
“dtlo dt lodgrle e
d dot(t)| O
—| = —| = ) B.107
Cb dtlt dt t@g” g g ( )
Using equation-(126) and the commutativity of the map ¢L; = L,¢, equation-(129)
becomes
d d
L —‘ _ *L*—’ _ X
<¢ t)*dt 0 gb ! dtlo g
and
. d‘—Lqﬁd‘—LX—X (B.108)
* t*dt 0_ 9 *dt 0_ 9 e_ g. '

As aresult a vector field X through a curve ¢ is a left-invariant vector field, X € g.

Definition: A curve ¢ : R — G is a one-parameter subgroup of G if it satisfies the

following conditions:
i) §(t)d(s) = o(t, s),
ii-) 9(0) = e,
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ifi-) 6~ (t) = ¢(—).
This one-parameter subgroup may be Abelian even if GG is non-Abelian.
P()¢(s) = ot + 5) = o(s + 1) = ¢(s)P(1). (B.109)

We can conclude that any left-invariant vector field X € g defines a one-parameter

subgroup of GG. To see this let us define the exponential map:

exp:1T.G — G, (B.110)

= expV =o¢p(1), (B.111)

where V' € T,G and G is a Lie group and ¢y is a one-parameter subgroup of G that

corresponds to the left-invariant vector field Xy | = L, V. By using the exponential
g

map a one-parameter subgroup ¢y (), t € R, is constructed by Xy | = L,V as
g

n

t2 t
exp(tV) = ¢y (t) :In+tV+§V2+---+EV”+... (B.112)

where V € T,G.

B.1.12 Frames and Structure Equation:

Consider a Lie group G as an n-dimensional manifold. A basis at each point of the

manifold can be constructed as

X,| = LaV,. (B.113)
g

Here {V,,} is the basis at a point e, V,, € T.G and X,

= V,. {X,} are the n linearly
independent left-invariant vector fields and it is defined at each point on the manifold
G. Hence { X} is called the frame of basis for G. We know that the Lie bracket of

two basis vectors are again a left-invariant vector field [X 1> X l,}

€ g. One can write
g9

(X, X,] = Cu X, (B.114)

where C,,,* are the structure constants of the Lie group and using C,,,*, a Lie group

1s constructed.
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After basis vector fields are determined, the dual basis of that can be introduced ,
{0,}, (6", X,) = 6%. The basis left-invariant one forms satisfy the Maurer-Cartan’s
structure equation,

1
do* = —5%“9” N (B.115)

Definition: A Lie-algebra-valued one-form is defined
0:7T,G —T.G, (B.116)

by
0: X (Ly1) X = (L) 'X, X€eT,G, (B.117)

where 6 is called a canonical one-form or Maurer-Cartan form on G.

Theorem: Let {V,} is the basis of 7.G and {#*} is the basis one-form of 7.*G. The

canonical one-form 6 can be written

0=V, 0" (B.118)
and 0 satisfies
1
de+§[9Ae] =0, (B.119)
where
a0 =V, ® do", (B.120)
and
[ON0] = [V, V,] @ 0" NG (B.121)

Proof: ¥ = Y*X, € T,G and {X,} is the set of frames at the point g € G,
Xu| = LoV
g

0(Y) = Y*0(X,) = Y* (L)~ [LyV,] = YV, (B.122)
Let us compare this result with the theorem 6 = V,, ® 0/

(V. @) (V)= (V,®0")(Y"X,) =Y"V,0"(X,) = Y"V,0! =YY"V,

d9+%[9/\9} =0.
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Using the Maurer-Cartan’s structure equation

1
d0 =V, ® " = ~2V, ® Ca0” N6,

ONO] = [V, V] @04 ANO” =C L NV, @04 A6,
[0 A0] = [Vi, Vo] f

1 1 1
= df+ 3 [OA0] = —5 Vi @ C"6" A 0 + SO V@0 A 0* =0. (B.123)

B.1.13 The action of Lie groups on manifolds:

Let us assume that GG is a Lie group and M is a manifold.

Definition: A differential map o : G x M — M is called an action of G on M if it

satisfies the following conditions
i-)o(e,p) = p, Vp € M,

ii-) a(gl,a(gg,p)) = 0(g192,p) Here notice that o(gs,p) € M is a point on the

manifold.

Notation: (g, p) = gp and o(g1,0(g2,p)) = 91(g2p) = (g192)p-

The action is called transitive if it satisfies

o(g,p1) = pa, (B.124)

where p1,p2 € M and g € G. If the only element of G is the identity element, e, that

satisfies the following

a(g,p) =, (B.125)

then the action is called free.
Finally, if the trivial action on M is done by only the identity element

o(g,p)=p VpeM =g=e, (B.126)
then the action is called an effective action.
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B.1.14 Orbits and Isotropy groups:

Consider an action of the Lie group G on a manifold M.
c:GxM— M. (B.127)
Take an element of M, let say p € M, the orbit of p is defined as a subset of M.
Gp,=A{o(g9,p)lg e G and pe M}. (B.128)
Here notice that if the action is transitive then the orbit of p € M becomes M itself.

One of the special subgroups of G is important. If there is a point on M, p € M, and

the action leaves the point invariant such as

o(g,p) = p, (B.129)

then the isotropy group of p € M is defined by

H(p) ={g € Glo(g,p) = p}, (B.130)

where H (p) is also called the stabilizer or little group of p. A familiar example of the
isotropy group is SO(2) for the manifold M = R? and G = SO(3). For the point
p = (0,0,1) € R? the isotropy group is the set of notations about the z-axis.

Theorem: Let M be a manifold and G is a Lie group that acts on M. The isotropy
group H (p) for any p € M is a Lie subgroup.

One of the important result of the isotropy group can be seen by contracting a coset
space with a Lie group G and a subgroup H(p). Now consider a Lie group G acting
on a manifold M and an isotropy group H(p). If the coset space G/H (p) with the
dimension, dimG/H = dimG — dimH, has certain requirements (e.g., G/H(p)
compact), G/ H (p) is homeomorphic to M.

B.1.15 Induced Vector Fields:

Consider a Lie group GG and a manifold M. G is a manifold itself. Taking an element

from the manifold G, e.g., V € T.G and generated left-invariant vector field Xy by
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V/, one can induce a vector field in M with the help of action of G on M. The flow in

M can be generated by the action

o(t,z) =exp(tV)x , ze€M,

and it is obvious that o is a one-parameter group of transformations.

Definition: The induced vector field is defined
V#| = 4 exp(tV)x
dt ’

T t=0

by the map # : .G — X(M).

B.1.16 The adjoint representation:

(B.131)

(B.132)

Definition: Let GG be a Lie group. The adjoint representation of G is defined, a € G

ad, : g+ aga™"

by the homomorphism ad, : G — G.
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