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ABSTRACT

END-TO-END LEARNED IMAGE COMPRESSION WITH CONDITIONAL
LATENT SPACE MODELLING FOR ENTROPY CODING

Yesilyurt, Aziz Berkay
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Fatih Kamish

September 2019, [94] pages

This thesis presents a lossy image compression system based on an end-to-end train-
able neural network. Traditional compression algorithms use linear transformation,
quantization and entropy coding steps that are designed based on simple models of
the data and are aimed to be low complexity. In neural network based image com-
pression methods, the processing steps, such as transformation and entropy coding,
are performed using neural networks. The use of neural networks enables transforms
or probability models for entropy coding that can optimally process or represent data
with much more complex dependencies instead of simple models, all at the expense

of higher computational complexity than traditional methods.

One major line of work on neural network based lossy image compression uses an
autoencoder-type neural network for the transform and inverse transform of the com-
pression system. The quantization of the latent variables, i.e. transform coefficients,
and the arithmetic coding of the quantized latent variables are done with traditional
methods. However, the probability distribution of the latent variables, which the arith-

metic encoder works with, is represented also with a neural network. Parameters of



all neural networks in the system are learned jointly from a training set of real images

by minimizing the rate-distortion cost.

One major work assumes the latent variables in a single channel (i.e. feature map
or signal band) are independent and learns a single distribution model for each chan-
nel. The same authors then extend their work by incorporating a hyperprior neural
network to capture the dependencies in the latent representation and improve the com-
pression performance significantly. This thesis uses an alternative method to exploit
the dependencies of the latent representation. The joint density of the latent repre-
sentation is modeled as a product of conditional densities, which are learned using
neural networks. However, each latent variable is not conditioned on all previous la-
tent variables as in the Chain rule of factoring joint distributions, but only on a few
previous variables, in particular the left, upper and upper-left spatial neighbors of that
latent variable based on Markov property assumption. The compression performance
is on par with the hyperprior based work, but the conditional densities require a much
simpler network than the hyperprior network in the literature. While the conditional
densities require much less training time due to their simplicity and less number of

parameters than the hyperprior based neural network, their inference time is longer.

Keywords: image compression, transform coding, deep learning, conditional model-

ing
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UCTAN UCA OGRENILMIS GORUNTU SIKISTIRMA VE ENTROPI
KODLAMA iCIN GIZLi UZAYIN KOSULLU MODELLENMES]

Yesilyurt, Aziz Berkay
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Fatih Kamigl

Eyliil 2019 ,[94] sayfa

Bu tezde, ugtan uca egitilebilen sinir a1 temelli kayipl goriintii sikistirma sistemi su-
nulmaktadir. Geleneksel sikigtirma algoritmalari basit veri modellerine dayali ve basit
yapilt dogrusal doniisiim, nicemleme ve entropi kodlama adimlarindan olugur. Sinir
ag1 temelli goriintii sikistirma yontemlerinde ise dogrusal doniisiim ve entropi kod-
lama adimlart sinir aglar1 araciligiyla gerceklestirilir. Sinir aglart sayesinde, sayisal
islem karmasiklig1 artmakla birlikte, doniisiimler ve entropi kodlama i¢in gerekli ola-
silik modelleri goriintiiler eniyilenmis bir sekilde islenebilir ve karmasik baglantilar

modellenebilir.

Sinir ag1 tabanl baslica goriintii sikistirma ¢alismalarinda, doniisiim ve ters-doniisiim
adimlari i¢in otokodlayici temelli bir ag yapisi kullanilir. Sakli degiskenlerin (donii-
slim kat sayilarin) nicemlenmesi ve aritmetik kodlanmasinda geleneksel yontemler
kullanilirken, aritmetik kodlayici tarafindan kullanilan bu degiskenlerin olasilik dagi-
limlari ise bir sinir ag1 ile temsil edilir. Sistemde bulunan sinir aglarinin parametreleri,
resimlerden olusan bir veri kiimesi yardimiyla, hiz-bozulma bedelini kiiciilterek 68-

renilir.

vii



Sinir ag1 tabanl sikistirma konusundaki 6nemli bir ¢alismada, tek bir kanaldaki (6zel-
lik haritasinindaki) sakli degiskenlerin kendi i¢cinde bagimsiz oldugu kabul edilip, her
bir kanal i¢in tek bir dagilim modeli 6grenilmistir. Daha sonra aym yazarlar bu ca-
lismayn, iistonsel yardimiyla, bir kanal i¢erisindeki bagimliliklart modelleyerek sikis-
tirma bagsarimini 6nemli derecede artirmistir. Bu tezde ise sakli gosterimdeki bagim-
liliklar1 modellemek i¢in alternatif bir yontem kullamilmustir. Sakli degiskenlerin da-
Silimi, kosullu dagilimlarin carpimi olarak modellenmistir. Ancak, her bir de8iskeni
onceki tiim degiskenlere kosullamak yerine, Markov 6zelligi varsayilarak sadece bir
kac¢ yakin komsusuna (iist, sol ve sol-iist) kogullanmistir. Sunulan kosullu dagilim ta-
banli algoritma, listonsel tabanli algoritmaya gore daha basit bir sinir ag1 icermesi
ve daha az sayida parametre icermesine ragmen, sikistirma performansi iistonsel ta-
banli caligma ile basa bag basarim elde edilirken, kodlama siiresi agisindan daha uzun

siirmektedir.

Anahtar Kelimeler: goriintii sikistirma, doniisiim kodlamasi, derin 6grenme, kosullu

modelleme
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CHAPTER 1

INTRODUCTION

1.1 Image Compression Basics

Image compression or coding aims to represent an image signal using as few bits as
possible for a given reconstruction quality. The compression of a signal is possible
because of a few reasons. Firstly, it is due to spatial and spectral redundancy in the
image signal provided by the image-capturing sensor. The adjacent samples of the
image signal are highly correlated. This is because the image signal samples are
obtained using a sensor which collects the data from the environment at spatially
or temporally closer intervals. Light sensors on a camera will pick up temporally
close light signals which are likely to be correlated if they are from the same source.
Secondly, the human visual system is more sensitive to low frequency content than
the high frequency content. As a result, it is possible to throw away some of the high
frequency content in the image signal, and store fewer bits that are significant to the

viewer.

The demand for the transmission of higher resolution image and video is increasing
constantly. Increasing the communication bandwidth is not a feasible solution, an
efficient transmission of the images and videos is also necessary. Throughput of the
sensors are increasing with the advances in the manufacturing processes and computa-
tional capabilities of processors. Higher sensor data-rate requires better compression,

faster transmission and also larger storage space.

Structure of a typical image compression scheme is shown in Fig. [I.T]and the blocks
are explained further in this section. To reduce the number of bits to be transmit-

ted/stored, the signal is generally represented in a different domain than the original
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Figure 1.1: Block scheme for a generic image compression framework. A source
image is transformed to represent the pixel in a transform domain with good energy
compaction property. After that, the quantization takes place to reduce the represen-
tation accuracy at the cost of introducing distortion. In the end, integer coefficient
values are encoded with an entropy coder using their statistical properties to repre-
sent them with as few bits as possible. The decoding process is just the inverse of the
encoding process, the bits are decoded, inverse quantized and inverse transformed to
reconstruct the compressed image.

domain where the signal lies [[7]]. By applying transformation, it is aimed to decor-
relate the signal samples, hence make the implementation of the quantizer easier, i.e.

use scalar quantizer [8]].

The type of compression discussed so far is called lossy compression, where the sig-
nal is transmitted with negligible error or distortion to achieve low bit-rates. In lossy
compression, distortion in the source signal is compensated with the reduced bit rate.
The trade-off between rate and distortion gives rise to a rate-distortion optimization
problem in compression, where the algorithms try to decrease the marginal cost in the

distortion for lower bit-rate.

Lossy compression schemes make use of another type of redundancy that is depen-
dent on the final receiver/observer [9]. The observer is not interested in the exact
representation of the original signal. This is a common situation in multimedia appli-
cations, because the human visual system is less sensitive to high-frequency informa-
tion. The most popular image/video compression algorithms use that knowledge and
suppress the high-frequency information content in the image, to reduce the number
of bits required to store an image. It is possible to achieve very high compression
ratios even with a small distortion by quantization of the transform coefficients. The
quantization step is chosen to be small for low-frequency information and large for

the high-frequency information.



It is apparent that the performance of the lossy image coders are highly dependent on
the type of transform and quantization strategy. There is a vast literature [7, (10, [11]
on the effectiveness of linear transforms for images that discuss their rate-distortion
performance. Usage of linear transforms, such as discrete cosine transform, discrete
sine transform, wavelet transform, etc., for the decorrelation of the source signals, are
currently the primary approach, due to their reasonable performance and relatively

low complexity on hardware.

In recent years, deep learning is applied to many problems in image processing [[12]
such as denoising|[[13} 14, [15]], inpainting[16, [17]], super-resolution[[18}, 119, 20]. Image
compression is also among these problems [5,4, 16,21} 22, 23| 24, 21]], where a neural
network is trained with the aim of representing an image with less number of bits
under different distortion levels. The use of neural networks have a few advantages

compared to the classical image compression algorithms.

1.2 Current Standards

In the classical image compression algorithms, the transformation, quantization and
entropy coding steps are designed based on the simple models of the data (e.g. Gaussian-
Markov model of the image pixels [[11]) and low complexity algorithms (e.g. linear
transforms with fast computation algorithms such as DCT [10]). Recent classical im-
age or video compression algorithms use multiple transforms [25], probability models

for entropy coding [26, 23] and prediction modes [23, 2]] to model image better.

Each of the processing steps with multiple modes require iterative tweaking to adjust
the processing depending on the previous steps and the used modes to obtain decent
performance. This type of approach requires many iterations and an immense amount
of engineering work. The advantage of using a system based on neural network is
that the processing steps such as transformation and probability models for entropy
coding can be performed with neural networks whose parameters are learned joint
from the dataset of images, hence no iterative tweaking is required and the processing

parameters are optimized from real images instead of simpler models.
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1.3 Problem Definition for Neural Network based Image Compression

Training of a neural network for image compression is formulated in Eq. [I.3]as a
weighted sum of rate and distortion costs [4], where rate is measured with the entropy,
H(Py), of the quantized latent variables/transform coefficients §, and the distortion
is measured with the mean squared error, E||x — X||, between the original image, x

and the compressed/reconstructed image X.

rgianJ:H(Py) + A\E||x — X|| (1.1)
=H(Py) + AE|jx — g(f(x, ), 0)] (1.2)
=E[-logypy (9)] + AE|[x — g(f(x,¢),0)]| (1.3)

The neural network for transform/analysis is f(x, ¢) and inverse transform/synthesis

is g(¥,0), where ¢ and 0 represent the parameters of these neural networks.

There are some problems regarding the differentiability for the image compression
using neural nets. First of all, quantization of transform coefficients is necessary for
the lossy compression, but the quantization operation is not differentiable, which is
explicitly required by the popular nonlinear optimization algorithms using gradients.
The second problem is the quantization of probability densities that is required by
entropy coders such as arithmetic coder. The last problem is the training of a single
neural network to work at different rate-distortion performance, i.e. allow changing
the compression amount in a wide range of possibilities. There are different methods
applied as a solution to these problems. Some of the important steps in the learned

image compression is summarized below.

To overcome the derivative problem of the quantization operation, Ballé et. al. [5]]
uses additive uniform noise as a proxy for quantization during training. The latent
variables at the output of the analysis transform are mixed additively with the uniform
noise to imitate the effect of quantization. During the training, continuous univariate
density model for each channel of latent space is learned, assuming the independence
of adjacent pixels in the latent space. The density model and the latent variables are

only quantized during the testing phase.



Rippel and Bourdev [27] trained a pyramidal structured Generative Adversarial Net-
work (GAN) to train a scale-independent network. The latent space is decomposed
into bit-planes such that each bit level for a given channel is modeled jointly for the

entropy coding.

Theis et. al. [21] proposes an alternative way to deal with the quantization. Instead
of distorting the latent variable with the additive noise, they apply the quantization in
the forward pass, but the derivative of the quantizer is set to unity for the backward
pass. This way the decoder always trains on quantized variables and the quantization
operation only affects the training of the analysis transform (encoder of autoencoder).
They also propose the use of parameter scaling for the analysis transform after the
training, to tune the rate-distortion performance of the network. Otherwise, retraining
of the network is necessary for each time a new point of the rate-distortion curve is

needed.

Toderici et. al. [23)124] trains an Recurrent Neural Network (RNN) that outputs a
binary sequence of bits each time the network is run. This way it is possible to adress
the problem of variable rate coding using a single network. Each time the network
is run for a single image, more bits are generated, which can be used to decrease the
distortion. The generated bitstream is then modeled using an architecture similar to

PixelRNN [28]] for conditional coding.

Li et. al. [29] trains an importance map enabling the network to tune the quantization
steps so that it is possible to control the bit-rate for regions in an image. The resulting
network sets quantization steps smaller for the edges and corners, and larger for the
smooth regions. As a result, better perceptual quality is achieved for the same bit
rate. In addition to that, Trimmed Convolutional Networks are used to model the

latent space coefficients and achieve higher bit rates

Mentzer et. al. [22] proposes an alternative quantization method such that the quan-
tization centers are learned during training. The quantization is applied as it is during
the forward pass and the relaxation of the quantization is performed by a smooth

distance kernel to each quantization center in the backward pass.



1.4 Motivation and Contribution

This thesis focuses on the density modeling of the latent variables to achieve higher
coding efficiency. While a univariate density model is trained in [S]] with the assump-
tion that the latent variables are independent, it is apparent that the latent variables are
still correlated after the training. Motivated by this observation, a conditional density
model, that makes use of the neighboring coefficients, is trained for the joint proba-
bility density modeling of latent variables using an architecture similar to Monotonic

Neural Density Estimator (MONDE) proposed in [30].

Different from the publications that performs context modeling in the latent space
[6, 22} 29]], the proposed network directly learns the distributions, rather than making
nonlinear predictions of the values of the coefficients. In addition to that, learning
the distributions directly requires a very simple network structure, so that the network

complexity is reduced compared to the similar architectures.

In summary, the contribution of this thesis is to train a conditional density model
that outputs the likelihoods of the latent variables conditioned on the values of the
neighborhood coefficients, such that the arithmetic coder can achieve lower bit rates

by coding each coefficient under its density model.

1.5 Outline of the Thesis

Chapter 2 presents some preliminaries which contain essential information about the
following chapters. Topics from information theory related to the lossless and lossy
compression such as rate, entropy, distortion, coding, etc. are discussed. The trade-
off between the rate and distortion and the entropy coding using arithmetic encoder
is presented. The classical methods in image compression are reviewed using image
codecs. In addition, a short background on deep learning including topics such as
mathematical formulation, popular optimization methods and non-linearities is pre-

sented.

Chapter 3 contains a literature review on learned image compression methods. The

key points of major publications in recent years on this topic are discussed, while a
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short summary of their methodology is presented.

Some of the topics from the literature that are closely relevant to this thesis are dis-
cussed in detail in Chapter 4. In addition, the proposed method is formulated and
compared to the univariate density model used in the literature using toy examples
and visualizations. In addition to that, the details of the network architecture and the
training procedure are given. The network architecture is explained in detail and sup-
ported with the block diagrams. The key differences between the training and testing
phases are described. The use of conditional density model in arithmetic encoder is

explained.

Chapter 5 presents compression results and discusses the practicalities of the training
and testing. The used dataset during the training and testing phase, and the network’s
performance on these data is shown with comparisons from the literature. Visualiza-
tions of the latent space as images and histograms, the correlations between the pixels

are also presented.






CHAPTER 2

BACKGROUND

2.1 Source Coding

Source coding or data compression aims to represent data with as few bits as possible.
There are two types of compression methods [31]]: the first one is called lossless com-
pression, where the information can be exactly recovered using the compressed bits.
The other is called lossy compression where the recovered information is allowed to
have some distortion/loss with respect to the original information in order to achieve

higher compression.

A signal to be compressed is represented with x € RY. The encoder typically consists
of a transform, quantizer and entropy coder. A transform f(x) : RY — R is used
to represent the signal x in a different domain R™. Quantization, Q(x) : RY — 7, is
a mapping from the signal space R” to a set P. Entropy coding, () : P — C, is an

invertible mapping to a sequence of bits.

Similarly, the decoder is composed of an inverse mapping, v~ !(z) : C — Z, and an
inverse quantization, Q~!(z) : Z — R". The encoding operation can be represented

as T, = @ o~y and the decoding operation can be represented as 7, = v~ ' o QL.

2.2 Quantization

Quantization function Q(.) is a mapping [32,33] of a signal x € R” to a discrete set,
i.e. codebook P = {i}}rez. The quantizer is called scalar quantizer if N = 1, oth-

erwise, it is called the vector quantizer. Fig. shows a representation for a uniform
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Figure 2.1: A uniform quantizer mapping the values of y to g.

quantization function. The assignment to a codebook element (i.e. reconstruction
level) is done by finding the decision region in which the signal resides and mapping
to the reconstruction level in that region. Quantization is a lossy operation and thus
not exactly recoverable. A quantizer with M distinct quantization / reconstruction

value denoted by {7 }4Z, is expressed as
Q(l’) =3, < 1€ [bkfl,bk), 2.1)

where {bk},]:i - ! denotes the boundaries/decision regions for quantization / reconstruc-
tion with by = —oo and by; = co. A quantizer aims to minimize the distortion while
satisfying other constraint, such as using limited number of codebook size. Because
of that, the decision boundaries and the reconstruction values for each bin should be
set carefully. Quantization noise, oé, is typically used to quantify the amount of dis-
tortion introduced by quantization process, defined as the MSE between the source

signal and the quantized values as:

00 by,
7 =Bla-Qu)] = [ e-QuPiwir =Y [ w-af e ¢2)

The details of the distortion is discussed in Sec. 2.2.11

For a given number of quantization values, the locally optimum values for boundaries
and reconstruction levels that minimize Eq. [2.2] can be determined using Lloyd-Max

algorithm [34, 35]. The Lloyd-Max algorithm iteratively calculates the reconstruction

10



levels and boundaries by the following equations:

b
"o f(x)dr
e R A 2.3)
b
J;’k—l f(z)dx
b, = % 2.4)

Intuitively, the Lloyd-Max algorithm places the reconstruction levels at the proba-
bility centroids between the boundaries and places the boundaries at the middle of
these reconstruction levels. Although the Lloyd-Max algorithm provides an optimal
quantizer in the MSE sense for a given number of reconstruction levels, achieving the

optimum rate for the same MSE distortion requires the utilization of entropy.

2.2.1 Distortion

The average distortion for a given distribution can be expressed in terms of the joint
distribution of x and % denoted as p ¢ (x, X) and the distortion metric d(., .) usually
selected as mean-squared error (MSE). Mathematically, the expected distortion can

be defined as:

D=E[dxX)]= > pyxg(x%)d(x,%) (2.5)

xeX,xeX

where the summation is evaluated over the whole sample space of X and X.Ina
typical compression scheme, the data is generally transformed into another domain
and quantized and entropy coded in that domain [33] 36]]. If we denote the analysis
transform and quantization with f(.) and synthesis transform and dequantization with
g(.), we can express the recovered signal as X = g(f(x)) where the entropy coding
and decoding steps are omitted since they are lossless operations and have no effect
on the distortion. After representing X in terms of X, it is possible to rewrite Eq.

only in terms of x,

D =E[d(x,g(f(x))] = Y px(x)d(x, g(f(x))) (2.6)

xeX
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Eq. [2.6] suggests that it is possible to minimize loss for a given quantizer function
by designing the analysis and synthesis transforms such that they introduce most of
the error when px(x) is low. Hence, it is possible to enhance the encoder and the
decoder by the addition of these transforms. In classical compression approaches [8],

the transforms are constrained to be linear to limit the complexity of the compressor.

In general, it is not possible to know or estimate the distribution px(x) because it
is a very high dimensional. Hence a statistical approximate is used to measure the

distortion:

D = Bldx, o(f(x)))] = 5 3 dx, g () @)

xeD

where D is the dataset consisting of /V realizations of x.

2.3 Entropy

The concept of entropy is proposed by Shannon in [37] as a tool to measure amount
of the information that a discrete signal contains and its typically measured in bits.

The entropy is defined as:
H(X) == px(wi)logypx () (2.8)

Intuitively, the entropy measures the amount of surprise such that the sources with
unpredictable outputs have higher entropy while the sources with predictable outputs
have smaller entropy. For example, a fair coin with outcomes heads, H, and tails, T
has the entropy of 1 bit, while an unfair coin with P(X = T) = 0.99 has the entropy
of 0.08 bits. A plot showing the entropy of a binary source for varying probability

is shown in Fig. 2.2] The equation used to calculate the entropy for this example is

given in Eq. 2.9

H(X) =—P(X =T)log,P(X =T) — P(X = H)log,P(X = H) (2.9)

Entropy can used to estimate the number of bits to send a message from a source to

receiver [31]. In other words, it gives the expected number of bits to use to commu-
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Figure 2.2: Entropy of a binary source: the entropy peaks when the outcome is less
predictable.

nicate the information. Following the coin case, let us assume that we want to send
the result of the coin toss to a receiver, under a lossless communication medium. For
the fair coin case, it would be required to send NV « H(X) = N bits without loss of
information. That means that each outcome of the fair coin toss requires 1 bit. For
the unfair case, P(X = T) = 0.99, expected number of bits is N« H (X ) = N x0.08,
which means that 8 bits is sufficient to send the outcome of 100 unfair coin tosses
on average. Sending 8 bits instead of 100 bits is the subject of data compression or
source coding, where the most popular method called arithmetic encoding which will

be the main topic of the next section.

2.4 Huffman Coding

This section presents Huffman coding [38], which is the most well known method
for lossless coding of symbols with known symbol probabilities. Huffman coding is
preferred in many applications due to its simplicity. To code the symbols with Huff-
man coding, the symbols are associated with bi- nary code-words. The most probable
symbols are assigned shorter binary codes and less probable symbols are assigned
longer binary codes. Codes are chosen such that they are uniquely decodable [38].

The following explains how to generate the Huffman code-words. Given a set of
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Figure 2.3: Huffman coding diagram

symbols with their probabilities, the two symbols with the smallest probabilities are
combined (graphically shown by branches combining them) to generate a new vir-
tual symbol with a probability equaling the sum of the probabilities of the combined
symbols and a 0 is assigned to every lower branch and a 1 to every upper branch .
This procedure is repeated until only one virtual symbol is left. Then the binary code-
words are obtained by combining the assigned 1’s and 0’s from the leaf of the tree to
the root of the tree. Fig. 2.3 shows an example. To code a source with the generated
binary code-words, i.e. Huffman code-words, the code-word for every symbol to be

coded is concatenated after each other forming a binary stream of bits.

2.5 Arithmetic Coding

In this section, an entropy coding algorithm, named arithmetic coding, to code a

signal close to rate estimated by entropy is presented [33]].

The arithmetic coding algorithm [39,/40] given in Alg. [Tjworks as follows: The prob-
ability distribution of the codewords to be coded should be defined. The probability
distribution is the design parameter for an arithmetic coder, which has a very big im-
pact on the average number of bits produced by the algorithm. The arithmetic coder
uses range values to output a bit stream. The initial range is set to [0, 1). To code the
each codeword, the range is updated according to the probability distribution. At the

end, any value between the final range values can be transmitted. The procedure of
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Figure 2.4: Arithmetic coding diagram for 4-symbol {57, S5, S3, S4} source. The low
and high ranges are set to [0.0, 1.0) at the first step and the sequence to be coded is
Sa, Sy, S3. In the first step, S is coded and the ranges become [0.2,0.3). New steps
are scaled into these ranges and S, is coded. At the last step, S5 is coded and the
ranges are finally between [0.265,0.275). At this point, if the coding stops, usually
the lower range value (0.265) is sent to the decoder, however, any value in this range
can be used and they will be decoded the same. If the coding continues, the procedure
can be resumed as it is.

updating the range values is depicted in Fig. 2.4

One known version of arithmetic coding is the context-adaptive binary arithmetic
coding [41] (CABAC), which is used in H.264 and HEVC video coding standards.
CABAC converts symbols first to binary code-words (hence, binary arithmetic cod-
ing) and then applies arithmetic coding on the bits in the codeword. CABAC also
updates the probabilities of each bit of the binary code-words during encoding and

decoding (hence, context-adaptive) to achieve lower rate.

2.6 Rate-Distortion Theory

Rate-distortion theory provides a mathematical basis for lossy compression. It is
possible to analyze the performance of the source coder or compression scheme using

rate-distortion theorem initially proposed by Shannon in [37]. Bit-rate of the source
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Algorithm 1 Arithmetic coding algorithm

1: function ENCODE(data, cdf[)):

2 [L,H] =10,1]

3 for each s € data do

4 if s == EOF then

5: break

6 [L,H| =L+ (H — L)[cdf[s — 1], cdf][s]]
7 return L

8
9

. function DECODE(V, cdf]], N): > V: bitstream, N: number of codewords
1 [L,H]=[0,1]
11: data =[]
12: for 1 to N do

e

13: find i such that cdf[i — 1] < =% < cd£[i]
14: data.push(i)

15: [L,H| =L+ (H — L)[cdf[i — 1], cd£]i]]
16: return data

\
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Figure 2.5: Rate-Distortion plot for the different number of quantization levels is
plotted by applying the Lloyd-Max algorithm on Laplacian distribution. As the rate
gets higher, the distortion is reduced. However, the amount of decrease is getting less
and less as the rate is increased.

could be tuned using variable-sized quantization bins, however, it comes with the
cost of distortion in the transmitted data inversely proportional to the bit-rate. This
trade-off is visualized in Fig. [2.5] for a Laplacian source with scale parameter equals
to one. The data is sampled from the laplacian distribution and quantized using the

Lloyd-Max quantizer to yield minimum distortion for a given codebook size.
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As shown in the graph, using higher bit rates has diminishing returns on the distortion.
Optimal lossy encoding algorithms in general can be seen as a system operating at a
point on the rate-distortion curve. The location of the point depends on the perfor-
mance of the quantizer, which is discussed in Sec. [2.2] Sub-optimal quantizers may
yield points in the shaded region called the feasible region. Any point on the distor-
tion curve is optimal, hence a Lagrangian term is used to move on this curve to set the
trade-off between the rate and the distortion. The curve is defined by D + AR where
D represents the distortion and R represents the rate. The rate-distortion theory is the

information-theoretic way to analyze lossy compression.

2.7 JPEG

JPEG compression is one of the most popular compression methods, utilizing YCbCr
color space transformation, 8 x 8 block Discrete Cosine Transform (DCT), quantiza-

tion, run-length and Huffman coding.

2.7.1 YCbCr Color Conversion and Chroma Subsampling

The image in classical compression systems are often converted into YCbCr color
space so that the intensity levels and color information (chroma) can be processed
independently. In YCbCr color space, Y channel holds the intensity values for the
images while Cb and Cr channels carry the color information. YCbCr color space
was initially developed for the color TV [7]], to use the bandwidth effectively for the
transmission of color signal and make the new colored video broadcast compatible
with the old black and white TV receivers. That was possible because the chromatic
components (color information) can be transmitted in lower resolution, with unno-
ticeable visual distortion. The reason for that is the sensitivity of the human eye to
the light intensity rather than the color information. YCbCr color format carried its
popularity in the digital systems as well, due to the same reason. In compression sys-
tems, the chromatic components are often vertically and horizontally decimated by 2.
Such image formats are marked as YCbCr420. Other alternatives are only horizontal

subsampling, YCbCr422 or no subsampling at all, YCbCr444.
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Figure 2.6: YCbCr420 representation of an image from Kodak Image Dataset. The
first image is in the RGB domain. The second image is the intensity channel (Y)
of the YCbCr representation. The top image in the third column is the Cb channel
and finally, the bottom image is the Cr channel. In 420 image format, the chroma
components of the image are downsampled by 2 in both direction, assuming that they
do not have high-frequency components. If observed, one can see that the doorknob
and the lock is not visible in the Cb channel, and it is barely visible in the Cr channel.

Y 0.299 0587 0.114| [R 0
Cb| = |-0.169 —0.331 0.500| |G| + |128 (2.10)
Cr 0.500 —-0.419 —-0.081| [B 128

Eq. shows the transformation matrix from RGB color space to YCbCr color
space. While the intensity channel (Y) is the weighted sum of the R,G,B channels,
the chroma channels (Cb, Cr) are zero mean before the addition of a bias (128). The
effect of the transformation is given in Fig. [2.6] The intensity channel contains most
of information about the image and chroma channels contain slowly changing/low

bandwidth color information.

2.7.2 Discrete Cosine Transform

The natural images contain most of their energy in the low-frequency component.
This empirical observation leads to usage of Discrete Fourier Transform (DFT) or
its variants in the compression of images. Although, DFT provides a good transfor-
mation for the image compression, the blocking artifacts due to quantization are not
desirable [[7]. An alternative transformation is the Discrete Cosine Transform (DCT)
[10] which is often used in lossy image and video compression algorithms such as
JPEG[1], MPEG[42], H264[26], H265[25] due to its energy compaction property
and low blocking artifacts. Unlike DFT, DCT contains only real coefficients. DCT of
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a signal is the DFT of a signal with mirrored padding, so that the DFT input becomes
even and the results are real. Due to this mirroring, abrupt changes in high-frequency
terms of consecutive blocks are prevented. The transform of a signal x[n] of length N

1s formulated as:
N-1

X[k] = x[n]cos {’% (n + %)} (2.11)

n=0
For image processing applications, 2D-DCT formulation is a simple extention of Eq.

2.11], assuming that 2D image signal z[ny, ns| of support N; x N; is given by:

ot kym 1 ko 1
X[k, ko] = Z Z x[ny, najcos {NLI (m + 5)] cos {%2 (ng + 5)] (2.12)

n1=0 ngy=0

Fig. shows the DCT basis vectors for an 8 X 8 image, meaning that an image
patch could be fully represented by scaled combinations of these patches. JPEG per-
forms compression by dividing the image into 8 x 8 sub-blocks and applying DCT,

quantization, and coding respectively.

2.8 Better Portable Graphics

Better Portable Graphics (BPG) is a wrapper around High Efficiency Video Coding
(HEVC) providing much better compression efficiency compared to JPEG. HEVC
[25], also known as H2635, is the latest video coding standard by ITU-T Video Coding
Experts Group, providing up to 50% better compression rate at the same quality com-
pared to its earlier version H264 [26]. BPG uses the intra-coding [2] of HEVC, which
is mainly designed to compress a video frame using only the information content in
the current frame of interest. Hence, the performance of BPG is directly linked to the

HEVC.

Intra coding consists of quadtree-based coding of a frame, using angular and planar
predictions and transform coding. Neighboring pixels in a coding block of interest
are used for the predictions. The quadtree structure consists of blocks having varying
sizes: 4x4,8x8,...64 x64 as shown in Fig. [2.9] Left and top neighbor pixels of the
block are used to make an angular prediction out of 33 possible angular directions and

2 planar prediction methods, called modes, as shown in Fig. The choice of intra-
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Figure 2.7: 8 x 8 DCT base images used by JPEG is shown in spatial domain. Top
left corner represents the lowest frequency (DC) and bottom right represents the high-
est frequency in the discrete domain. As moved from top left to bottom right, the
checkerboard-like patterns start to repeat more frequently. JPEG [[1] uses the assump-
tion that the human eye is most sensitive to the low-frequency content.

prediction modes and the block sizes are determined by rate-distortion optimization
during the encoding. Since this procedure is repeated for many times for each block in
a frame, it becomes very costly to do intra-coding for large frame sizes. As a result, it
is an area of research to reduce the complexity of the intra-prediction algorithm. Fol-
lowing the prediction, transform coding of residuals using DCT and post-processing
to suppress blocking artifacts at the edges of coding blocks is performed. The trans-

formed and quantized residuals are encoded using CABAC algorithm.
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Figure 2.8: 33 angualar intra prediction directions of HEVC (redrawn from [2]])

2.9 Feed Forward Neural Networks

A fully connected neural network could be expressed as series of chained nonlinear

functions:

T=fkofrk-1...f1 (2.13)

The domain and range of the functions are f; : RV — RNe+1 k€ {1... K}. Each
function denotes a layer in the network, e.g. f; is the first layer, f5 is the second
layer and so on. Also, f; denotes the input layer, fx denotes the output layer, and
fisi € {2,..., K — 1} are the hidden layers of the network. A single function can be
expressed as a linear matrix multiplication, followed by a non-linear function called

activation:

fe(xx) = ge(Wixy + by) (2.14)

where Wy, and by, is the weight matrix and the bias vector to be learned, g(.) is the

nonlinear activation function, x;, is the input vector at [-th layer. Fig. shows a
sample representation of Eq.
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Figure 2.9: An example of quadtree partitioning (redrawn from [3]]).

Figure 2.10: A fully connected neural network with K — 1 hidden layers and 3 nodes
in each layer with a bias term. Arrows represent the weights, nodes labelled with g;%
represent the nonlinearities at each layer and nodes labelled with b; represent the bias
terms.
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2.10 Back-propagation Algorithm

Determining the weights W}, of the neural network requires an optimization algo-
rithm to produce the expected results. This procedure of optimization of the weights
is called learning, which is achieved by making use of an algorithm called back-

propagation.

The back-propagation algorithm [43] is an efficient way to calculate the derivatives at
each layer. The gradients calculated by the back-propagation algorithm is used by an
optimization algorithm, such as the stochastic gradient descent, to optimize the net-
work’s weights so that the network produces expected results. The back-propagation
algorithm calculates the gradients for a given function V f(x, y). Most optimization
algorithms try to optimize a scalar cost function J(#), hence its gradient V,.J(0) is

required.

The main idea behind the back-propagation algorithm is the chain rule of calculus.
The chain rule of calculus can be explained by a simple example. Suppose two func-
tions f(x) = y and g(x) = y are combined, such that z = fog(x), then the derivative

of the combined function is equal to:

(fog)(x)=(f og)(x)d(v) (2.15)
dz  dzdy

For high dimensional functions f(x) = y and g(x) = y, the chain rule can be

generalized as:
_ 0z 0y

_ 2.1
2= By ox 2.17)

where g—; and % are Jacobian matrices. Similarly, a network of L layers consists of
L Jacobian matrices and the back-propagation algorithm computes them starting from
the output. For high dimensional tensor functions, a similar approach for vectors is
used [44, p. 203], where the tensors are rearranged to flatten into a vector form to cal-
culate the gradients, then reshaped back to the original tensor form. The importance

of the properties of the Jacobian matrix for this work is discussed in Sec. 4.3
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2.11 Optimization of Neural Networks

The optimization of machine learning models is different from the classical optimiza-
tion algorithms [44], Ch. 8]. In the latter case, the function to be optimized .J(#) is
the goal itself. However, the optimization algorithms of machine learning aims to
optimize a performance metric, P, which cannot be optimized directly, hence a cost
function J(0) is optimized using a dataset, so that P could be optimized indirectly.
For example, the final metric for this thesis is the rate-distortion cost which is not

differentiable, hence a differentiable cost function is optimized instead.

J(0) = E[L(f(x;0),y)] (2.13)

The expectation is approximated emprically using a dataset

N

E[L(f(r:60),9)] = 5 3 L(f(z:0), ) (2.19)

i=1

where N is the size of the dataset. Another difference is the evaluation of the loss. As
the machine learning algorithms become computationally demanding, evaluation of
the loss over the entire dataset becomes unfeasible. Hence, most of the optimization
algorithms work on a loss function approximated by a randomly sampled subset of
the training data called batches. Since the gradient computations become much faster,
compared to the gradient computation over the whole dataset, the convergence time

is highly reduced, even though more updates are required.

This work uses the Adam algorithm for the optimization of the parameters. Although
there are many variants of the optimization algorithms in deep learning, only Stochas-
tic Gradient Descent, RMSProp, and Adam algorithms will be discussed in detail. A

thorough review of the optimization algorithms is presented in [43]].

2.11.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a popular optimization algorithm in deep learn-

ing. Similar to the gradient descent algorithms used in classical optimization prob-
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lems, SGD tries to reach the minima using approximate gradients using batches that

are randomly sampled from the dataset. The algorithm is summarized in Alg. [2]

The main difference from the classical descent algorithms is the approximation of the
gradients using a small subset of the dataset called batches, instead of using the whole
dataset per gradient calculation. Using smaller dataset has several benefits. First of
all, the neural network training requires a lot of memory, while consumer-level GPUs
can provide somewhat limited memory, usage of small dataset makes training easy
on these memory limited GPUs. Secondly, smaller data size requires fewer computa-
tions, decreasing the time required per weight update during the training of the neural
networks. Thirdly, research shows that large batch sizes causes the optimization al-
gorithm to reach a bad local minima [44], due to the high nonlinearity of the deep

learning problems.

While providing a basis for advanced optimization algorithms in deep learning, SGD
suffers from vanishing gradients towards the end of the training, because the loss is
decreasing and gradients are getting proportionally smaller. To prevent vanishing of
the gradients near the local minima, the learning rate parameter should be adjusted so

that the step size is large enough to continue the optimization.

Algorithm 2 Stochastic Gradient Descent Algorithm

6, Parameter Set
€, Learning Rate
D, Dataset
m, Batch size
while stop criterion not met do
{z;,y;} = sampleBatchPair(D)
d= Vo>, L(f(x:;0), ;) > Compute gradient
=0—ed > Update weights

AN AN AT

2.11.2 RMSProp

RMSProp [46], introduced informally on a lecture note is an algotithm that adapts
the learning rate using the history of the gradients, so that it is possible to reach a
good minima while optimizing the weights. The values of gradients are weighted
exponentially, hence the terms in the past affect the current learning rate less. As

shown in Alg. E], the main difference from the SGD is line 11, which is used to scale
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the learning rate. This approach can be viewed as IIR filtering of the gradients, with

a single-pole filter.

Algorithm 3 RMSProp Algorithm

0, Parameter Set

€, Learning Rate

D, Dataset

m, Batch size

p, Decay rate

9, Small constant used for numerical stability

r = 0, Second moment

while stop criterion not met do
{z,y;} = sampleBatchPairs(D)
d= Vo>, L(f(x:0), ;) > Compute gradient
r=pr+(1—pdod > Update second moment

R A i o

— =
—_ O

1
0=0-— em od > Update weights

—_
N

2.11.3 Adam

The Adam algorithm [47] improves the RMSProp algorithm by addition of the mo-
mentum, and proposes a solution to correct bias introduced by the exponential weight-
ing. Currently, Adam is one of the most popular optmization algorithms, providing
fast convergence and robustness to hyperparameters. The Adam algorithm is summa-

rized in Alg. {4

2.12 Convolution

The use of convolution operation in neural networks is motivated by the local cor-
relations in natural images. It is possible to optimize much fewer parameters using
convolutional layers and parameter sharing is possible among the image data. Con-

volution of two functions is defined as:

£(t) * glt) = / f()glt —7)dr (2.20)



Algorithm 4 Adam

0, Parameter Set
¢, Learning Rate
D, Dataset
m, Batch size
p1, p2, Decay rates
0, Small constant used for numerical stability
s = 0,r = 0, First and second moments
t =0, Step
while stop criterion not met do
{z,y;} = sampleBatchPairs(D)
d= Vo>, L(f(x:0), ;) > Compute gradient

1—p1)d

s = 215 —; ( : p1) > Update first moment
—P1

pP2r + (1 — pg)d@ d

D A G S s

—_ =
—_ o

_
N

13:

> Update second moment

14: 0=0—c¢
15: t=t+1

> Update weights

Since image data is discrete and 2-dimensional (2D), 2D discrete convolutions are

utilized in image processing defined as follows:

flm,n] * glm,n] = Z kal*gm k,n—1] (2.21)

k=—o00 l=—00
There are some differences between the convolution operation in the image process-
ing area and deep learning area. First of all, since the convolution kernels are learned
rather than engineered, the kernels are not flipped before the convolution operation,
and this would only affect the position of the learned weights. Hence, the right termi-

nology would be correlation:

flm,n] * glm,n] = Z kal*gk m,l — n] (2.22)

k=—oc0 l=—00
Secondly, amount of padding is usually optional and the output size of the convolution
depends on the padding of the input image. In addition to that, the images or latent
representations have a third dimension, which the convolution kernel also operates on

to yield a single-dimensional representation. Also, there are usually more than one
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Figure 2.11: Three activation functions used in this work.

filter. Hence, the commonly used convolution equation becomes:

N oo 00
f[m,n]*gj[m,n]zz Z Z flk,1i] * gj[k —m,l —n,i (2.23)
i=1 k=—o0 [=—00

In Eq. 2.23] f[k,1, 4] denotes the input data and 7 is the index at the third dimension,
gjlk, 1, 1] denotes the j-th kernel.

2.13 Activation Functions

Activation functions are the source of nonlinearity in neural networks. The structure
of the layers, weight initialization is dependent on the selected nonlinearity. Important
non-linearities for this work, namely sigmoid, softplus, tanh, is drawn in Fig. 2.11]

The equations for the activation functions and the derivatives are as follows
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B 1
C l4e®

sigmoid(x) = o(x)

d
o(@) =o(@)(1 - o(z))

et +e "
d
%tanh(a:) = (1 — tanh?(x))
softplus(z) = o™ () = In(1 + ')

d + _
~ ot (@) = o(2)

(2.24)
(2.25)
(2.26)

(2.27)
(2.28)

(2.29)

The use of these nonlinearities and importance of their derivatives are discussed in

Chapter 4]
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CHAPTER 3

RELATED WORK

3.1 Overview

This chapter presents core ideas published in the learned image compression litera-
ture. The chapter starts with the generalized idea of the nonlinear transform coding
[4] and how it compares to the classical transform coding approach. A general formu-
lation for optimizing a nonlinear coding framework is presented. After that, the key
publication [5] which is also the baseline for this work is presented in details. The
proposed non-linearity functions to use in the analysis and synthesis transforms, solv-
ing the quantization problem for both latent variables and the probability distributions
and finally the training of the end-to-end learned model is explained in detail. Follow-
ing this, advances in the image compression methodology and different approaches
from the key publications are presented with their core ideas and formulations while

giving a short background where necessary.

3.2 Nonlinear Transform Coding

The linear transforms are preferred for their simplicity in the analysis and design
of compression systems. For a similar reason, the modular design approach for
the design of transformation, quantization and entropy coding steps are preferred.
However, this kind of approach hinders the performance of compression systems, be-
cause the design of the modules are based on simple models of the data (e.g. Gauss-
Markov model for image pixels to derive transforms [[11] or spatial prediction meth-

ods [48l 149]) and low-complexity algorithms, hence their joint performance is sub-
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optimal. To overcome these issues, general nonlinear transform coding framework is

proposed [4].

In the nonlinear transform coding framework, the whole compression system is repre-
sented in three signal domains as shown in Fig. [3.1] The original signal is represented
as z, and its domain is called signal domain. The other two domains are the perceptual

and code domains.

First domain is the code domain, where the signal is transformed using a nonlinear
differentiable function, y = f(x;¢), and ¢ is the parameter vector to be optimized.
Scalar quantization is applied to the transformed signal § = )(y), and the rate is
measured using the entropy of the resulting integer stream. To measure the distortion
in the perceptual domain, signal is nonlinearly transformed back to signal domain,
X = ¢g(y,0). Again, 0 is the parameter vector of the synthesis transform to be opti-

mized.

It is known that measuring PSNR or MSE of the raw signal does not reflect the human
visual system well [50]. Hence, a general perceptual domain approach is proposed,
that the signal is first transformed into another domain using a transform h, where
measuring the distortion reflects the target perceptual quality better. One commonly
used perceptual domain metric is the SSIM [51] or MS-SSIM metric [S2] The dis-
tortion is measured in the perceptual domain by making use of the priors about the

observer.

In this framework, the analysis and the synthesis transforms should be optimized to

minimize the rate distortion function:
rgiensz(py)+)\]E||z—i|| (3.1

where z = h(x) is the original and Z = h(X) is the reconstructed signal in the
perceptual domain. In this equation, the second term measures the total perceptual
distortion while the first term measures the total rate to store the signal. Noting that
both of the terms require explicit probability distribution for the source signal which

is generally not available, they are estimated using the ensemble averages.

There is one thing to note in Eq. [3.1) and Fig. [3.1] that the quantization operation is
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Figure 3.1: Block diagram for nonlinear transform coding (redrawn from [4])

not differentiable, while most optimization methods require differentiable functions.

A relaxation of quantization function is utilized [4]], to overcome this challenge.

As an improvement to [4], Balle et. al. [3] proposed to optimize a convolutional
autoencoder for the rate-distortion cost. The analysis transform, y = f(x;¢), and
synthesis transform, X = ¢(¥, 6), are the encoder and decoder parts of the convolu-
tional autoencoder. The encoder network generates the latent variables to be coded
by the arithmetic encoder and the decoder network recovers the image from the la-
tent variables. During the joint optimization of this network, the decoder learns to

minimize the distortion while the encoder learns to minimize the rate.

There are a few challenges to overcome to train a compression network. First one
is the quantization operation, where its derivative is zero almost everywhere. That
is very problematic since currently the state-of-the-art for the training of the neural
networks is performed by back-propagation algorithm used in variants of gradient
descent algorithms, which requires differentiable functions to optimize. There are
different approaches to the quantization problem. Balle et. al. [S]] uses an approach
similar to the one used in the quantization literature, where the quantization is mod-
eled as additive noise. During training, uniform noise is added to the output of the
encoder network, and during testing, rounding is performed. This way the decoder
network learns to recover the image under quantization noise during training, as a

result, it will be robust to the rounding operation during the testing phase.

Second challenge is the calculation of the rate. Although calculation of distortion

between the input and recovered images to measure distortion, calculation of the rate
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is rather difficult since the discrete probability distribution of the latent variables is
required for the rate estimation. The representation of the probability distributions
of the latent variables should be differentiable, and possibly be implemented with a
neural network, so that it is easily integrated into the neural network based non-linear
transform coding system and allows learning its parameters and the estimation of the

rate term in Eq. [3.1] with the standard optimization methods.

3.3 End-to-end optimized image compression

The work of Ballé et. al. [5] is explained in detail in the following subsections and
also in Sec. [4.3] because their work on has a central role for this thesis. The use of
the univariate density model in [3] is replaced with the conditional density model in

this thesis to improve the rate-distortion performance.

The nonlinear compression scheme is divided into two parts, namely the analysis and
synthesis transforms which are a series of linear convolutions followed by nonlinear
activation functions. The analysis transform is explained in Sec. [3.3.3]and the syn-
thesis transform is explained in Sec. [3.3.4] Nonlinear functions are choosen as GDN
[S3]], which is better at Gaussianizing the data [5]. The details of GDN is explained
in Sec. 3.3.Iland

3.3.1 Divisive Normalization

Image compression systems aim to minimize rate and distortion and it has been shown
that [54] the problem is much more tractable in a transform domain. The first reason
is that the elements of the representations in the transformed domain tend to be less
correlated. The second reason is that it is easier to control the source of distortion
in the transform domain. The transforms were preferred to be linear because of their
low complexity and tractability. However, it is known that linear transforms are in-
sufficient to achieve the aforementioned goals since the images or image blocks are
not only linear combinations of independent patches but they are mostly composed

of different objects in the scene.
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To overcome these limitations of linear transforms, several nonlinear transforms are
proposed. Inspired by the gain control and response normalization of neurons [35,56]

in the visual cortex, a nonlinear transform called Divisive Normalization (DN) [37] is

proposed.
sgn(2;)|zi|”
i = 3.2
z — Hx (3.3)

In Eq. [3.3] the image, represented with input vector x, is transformed using a lin-
ear transform H, then in Eq. each element z; of the transformed vector z is
independently normalized using the neighbouring transform coefficients to introduce
non-linearity. Hence, the divisive normalization weights the energy of the neighbor
coefficients in the transform domain, such that each coefficient z; is rectified and
exponentiated. The resulting coefficients are divided by the weighted sum of the
neighbor coefficients to normalize the transform. Unlike the current trend in the opti-
mization of parameters, authors of the DN proposed to use block-DCT for the linear
transform for H and a Gaussian kernel for the weights h;; in Eq.

hy = exp(~ 0 (3.4)

2
9

1
o = 6|ﬁ| +0.05 (3.5)

where f; and f; are 2-D frequency vectors of the j-th and ¢-th basis functions. Such
a choice of transforms enhances the compression performance of JPEG [1] by more

than 50% when the distortion metric is chosen as PSNR.

3.3.2 Generalized Divisive Normalization

A generalized version of DN, named Generalized Divisive Normalization(GDN) [53],

is shown to perform well at modeling local probability models for natural images. In
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GDN, parameters of the DN are left for optimization such that Eq. [3.2] becomes:

Zi

Yi =
VBi+ 2757

z = Hx (3.7)

(3.6)

In Eq. the parameter set {3, v, H} is to be optimized, hence it is possible achieve

better independence using a very nonlinear transform.

It should be noted that there is an important difference between a popular normaliza-
tion method, Batch Normalization (BN) [58]], for the training of deep networks and
GDN. In BN, every dimension, 7, of an input vector x is independently normalized,

scaled and shifted to prevent internal covariance shift such that:

%X = Xl_—E[Xl] (3.8)
Var[xi]
yi = viXi + B (3.9)

First and second order statistics, p; = E[x;], 07

(2

= Var[x;] and the parameter set
{7, B} is learned while training. As seen in Eq. the data in each dimension is
separately normalized with the ensemble mean and variance learned over the dataset.
Although, there is a shifting and scaling operation in Eq. [3.9] it is not adaptive to the
data and learned over the dataset, as a result, they are fixed for the inference. On the
other hand, the normalization factor in the denominator in Eq. is dependent on the

input data as well, hence it is said to be signal adaptive even after the training phase.

3.3.3 Analysis Transform

In the analysis transform, each channel ; of input image ué [m,n| at layer [ is con-
volved with a series of 2D-filters hij [m, n] and a bias term b! is added to produce an

output image v![m, n| at channel 7.

Zh [m, n] * ul[m, n] + b} (3.10)
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According to this notation a color image in the first layer can be expressed as x =
ul[m,n] where ¢ € {1,2,3}. Each convolutional layer is followed by a downsam-
pling operation, a common operation used in deep learning community [S9], to reduce
the number of computations. Downsampling of v![m, n] by a downsampling factor of
s' can be expressed as:

wi[m, n] = vl[s'm, s'n] (3.11)

It is a common procedure in signal processing to combine convolution and decimation
operations to avoid the computational burden. The two operations are combined in

this work as well and the convolution expression in Eq. [2.2T| can be rewritten as:

flm,n] * g[m,n] = Z kal*g]\/[m k, Mn — ] (3.12)
k=—o00l=—c0

where M is the downsampling factor to be applied. This operation is commonly

used in generative models in deep learning to reduce the network complexity and

make training faster and also interpreted as learning downsampling filters or nonlinear

downsampling [60]. The power of the neural networks comes from their nonlinearity,

hence the convolutional layers are followed by a nonlinear layer proposed by Balle

et. al. [53]. z[ |
w;m,n

VB 5wt m, )2

The parameter set to be optimized for the analysis transform is ¢ = {h”, LB, fyfj},

U

l+1[

m,n| = (3.13)

which are kernel parameters and biases and scaling terms of GDN. The analysis trans-
form will be denoted as y = f(x, ¢), where x is the input image and y is the coeffi-

cients in the transform domain.

3.3.4 Synthesis Transform

The synthesis transform follows the inverse structure of the analysis transform. The
downsampling operation is replaced with the upsampling operation, where the input

to the synthesis transform is @.[m/3'] at layer | and upscaling factor 5'. Hence the
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upsampling can be expressed as:

g [m n m n

1 Uu; [TlaTl} 7 € Z,

w;[m, n] = s s ss (3.14)
0 otherwise

After the upsampling, another convolution operation is applied to the input similar to
the linear interpolation filter in signal processing domain. Unlike the interpolation fil-
ter, the filter coefficients are learned rather than designed, which is shown to produce
high-quality results compared to linear interpolators such as bilateral and bicubic in-
terpolator [18, 19, 20]. The convolution operation for the synthesis transform can be
written as

o m Zh m,n] % w[m, n] + b} (3.15)

Similar to the downsampling filters, the upsampling and convolution can be applied
at once to reduce the number of computations. Hence Eq. [2.21] for 2D convolution

can be rewritten as:

yli + mM,i+ nM] = Z kaMlM]*g[m k,n—1,i=0,1,...M —1

k=—o00l=—00
(3.16)
Folllowing this operation, approximate IGDN is applied.
at[m, n] = 9 {m, n \/ﬁl + Z%j (0tm, n])? (3.17)

Following notation, output image is expressed as y = u2[m, n], where ¢ € {1,2,3}.

The parameter set to be optimized for the synthesis transform is 6 = {hw’ s ﬁf, ﬁ/f]}

which are kernel parameters and biases and scaling terms of IGDN.

The synthesis transform will be denoted as X = ¢(¥,0), where ¥y is the quantized

transform coefficients and X is the reconstructed/compressed image.

3.3.5 Rate Estimation

The rate estimation is an important topic for learned image compression and the work

of Ballé et. al. [6] on this problem is closely related to this thesis work, hence it is
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Figure 3.2: Operation diagram for the compression model in [5]. Arrows indicate the
flow of data and boxes represent the transformation of the data. U/|Q represent the
additive noise during the training or the quantization and arithmetic coding during
testing. The vectors with a tilde is produced during training and the vectors with a hat
is produced during testing. (redrawn from [6]])

discussed in detail in Chapter |and summarized here. The latent variables are subject
to noise during the training instead of the quantization, which can be used as a proxy
for the quantization as discussed in Sec. Fully connected neural networks for
each channel in the latent space are trained to estimate the probability densities of
each channel as explained in Sec. 4.3] The rate is estimated as the continuous entropy
of the probability densities during training. For the density modeling, Ballé et. al.
[S] assumes independence between the latent variables of a channel. In this thesis,
the densities of latent variables are estimated using conditional density models as

explained in Sec. .4]

3.3.6 Training

Since we aim to optimize for both rate and distortion, a Lagrangian function is to be

optimized

minJ =H(P,) + AE|x — | (3.18)
=H(Y) + \E|x — g(f(x,¢),0)]| (3.19)
=E[—log,py (9)] + AE[x — g(f(x,9),0)] (3.20)
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Since Y and % are both discrete, it is not straightforward to directly optimize the
network weights over the loss function with gradient descent. The solution for these
terms is using a differentiable proxy as discussed in detail in Sec. .2] The overall

operation of the network is shown in Fig.

3.4 Variational Autoencoders

Variational Autoencoders (VAE) [61] are one of the most popular tools for unsuper-
vised learning of complex distributions. The variational Bayesian methods [62]] aim
to model a complicated distribution px (x) of high dimensional random vector X, e.g.
pdf of images, assuming an underlying latent space exists. The assumption that vari-
ational models make is that a latent distribution pz(z) defined in a high dimensional
space Z exists such that it is possible to find a model f(z,60) : Y x © — X where the
set of parameters 6 in the parameter space © is to be optimized. Using the variational
model f(z, ), it is possible to generate samples by randomly sampling Z. The likeli-
hood of the resulting model should be maximized to optimize the parameter set, 6, of

the model. The maximum likelihood optimization is performed over the expression:

px(z) = /px(x|z;€)pz(z)dz (3.21)

For the VAEs, the output space is assumed to be a Gaussian distribution.

px(z|2:0) = N(f(2:0),0°I) (3.22)

having mean f(z;6) and covariance matrix o2I. The preference for Gaussian dis-
tribution is due to its differentiability. The maximum likelihood expression can be

written as

L(O;x,z2) = arg max H px(xi]z;0) (3.23)

z,€D

Current deep learning frameworks require differentiable functions such that they can
be optimized using the stochastic gradient methods. However, the evaluation of the
integration Eq. [3.21]is not straightforward since the high dimensionality of the la-

tent space Z taking the integral is not straightforward. This kind of integrations are
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generally evaluated using Monte Carlo methods, such that the samples {z;} € Z is

sampled randomly and the integral is approximated by
(x) _1 E (x2i;0) (3.24)
px(z) ~ |2 24
X nZ Px

In practice, the posterior probability px(x|z;#) is nearly zero for most of z, hence
their contribution is very low for the maximum likelihood estimation. As a result,
sampling meaningful results of x requires a lot of samples of z which may not be
feasible in a high dimensional spaces in terms of memory and time. Variational Au-
toencoder (VAE) provides a solution for the sampling problem of z, it generates val-
ues of z that will have higher posterior probability, so that it is possible to maximize
the likelihood. In other words, it provides a function ¢(z) : X — Z that generates z
which are more likely to produce z. The distribution for the new samples of z values

is shown with pg(z|z).

To measure the distance between the distributions of the approximate generator pg (z|z)

and true prior pz(z|z) KL divergence can be utilized,

Dlpq(z|z)|[pz(z|z)] = E. |lo % (3.25)
= E, [log pg(z|z) — log pz(z|x)] (3.26)
| px(z|2)pz(2)
=E, _log po(z|x) — log @) (3.27)

=E, [logpg(z|z) —logpx(z|z) —logpz(2) — log px ()]
(3.28)

= E. [log po(z|r) — log px (z|2) — log pz(2)] — log px ()
(3.29)

The definition of KL divergence is used in Eq. [3.25] Bayes’ theorem is used in Eq.
and [, is the expectation over the random variable z. The last term in Eq.
goes out of the expectation since it does not depend on z. Rearranging the terms yield

the following equation:

log px () — D [po(z|2)|lpz(2|2)] = E. [log px (z[2)] — D [po(z]x)|Ipz(2)] (3.30)
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Eq[3.30]is the main equation that is used for the training of VAE. Since the left-hand
side is not easily calculated, it is called Evidence Lower Bound and the optimization
procedure minimizes the right-hand side. To perform stochastic gradient descent op-
timization, the form of pg(z|z) should be differentiable, which is choosen to be a

Gaussian

pq(zlr) = N(u(w; ¢u), E(x; é5)) (3.31)

(1 and X are deterministic functions to generate mean and diagonal covariance pa-
rameters for the multivariate Gaussian distribution with parameters ¢, and ¢x. The

selection of this function makes the computation of the second term in the right hand

side of Eq. [3.30|easy:

det 21

det 22
(3.32)

Since z is assumed to be normally distributed with zero mean and identity covariance

1
D N (g1, D) (12, )] = 5t 2575 + (2 = pua) " St = pin) — ke + log

the equation simplifies to:

1
D [N (1, 29)||N(0,1)] = St Y1+ pdpy — k4 logdet (3.33)

where 111 = p(x;¢,) and 3y = X(x; ¢x). The first term on the right-hand side is
not differentiable since it is sampling x using a random variable z. The solution for
that is the "reparametrization trick" that enables the training of VAE. To overcome
the differentiability problem, the mapping function ¢(z) is modified to generate the

parameters of z instead of generating 2 directly.

E. [logpx(z]z = p(z) + 21/26)} — D [pg(z|x)||pz(2)] (3.34)

3.5 Variational Image Compression with a Scale Hyperprior

Balle et. al. [6]] utilizes a scale hyperprior approach which makes the encoder send
adaptive side information concerning the image that is being coded. The network
learns to send side information related to the latent representation of the image. By

utilization of the scale hyperprior, the fully factorized models of latent variables are
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Figure 3.3: Operation diagram for the compression model in [6], same as in Fig.
but extended with the hyperprior model. (redrawn from [6]])

modeled as independent Gaussians, hence the entropy is further reduced. Since the
side information content is smaller than the reduction of the code length of the latent

representation, the overall rate is reduced.

This procedure is analogous to sending the side information in HEVC [25]] such as
quadtree sizes. In contrast, the side information in [6] is learned, while the side
information in HEVC is engineered, hence the scale hyperprior yields efficient com-

pression.

To reduce the spatial dependencies among the latent variables y;, they are further
conditioned on independent variables z;. Each y; is modelled as zero-mean Gaussian
with independent standard deviations o;. The encoder uses this information to scale
the latent variables and codes them in as normalized variables. The scale information
is sent independently to the decoder. At the decoder side, the scale information is de-
coded first and the recovered latent variables are denormalized to reconstruct the final
latent variables to feed to the "decoder" part of the autoencoder. Overall operation

diagram for the hyperprior model is given in Fig.
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3.6 Real-Time Adaptive Image Compression

Rippel and Bourdev [27] utilizes discriminative loss to introduce GANSs into the
learned compression literature and uses pyramidal structured convolutional networks

in the feature extraction for scale-dependent structures.

GANSs are known to be image generators that can synthesize high-resolution sharp
images [[63,19]]. Hence, the use of GANSs is also yielding sharp images in low bitrates.
On the other hand, training of GANs are highly unstable due to their training loss

function and the authors propose a training scheme to improve stability.

For the entropy coding part, bitplane decomposition followed by adaptive arithmetic
coding is used. After the feature extraction, The bitplane decomposition is the pro-
cedure of splitting the latent variables of size C' x W x H into binary planes of size
BxCxW x H, where C'is the number of channels, W and H is the width and height
in the latent domain, B is the number of bits after the quantization of the latent vari-
ables. The motivation behind this decomposition is to exploit the spatial correlations

in the bit level, such that it is possible to achieve further compression.

A classifier is trained to predict the bits in the bitplane using the context features, and
the probabilities at the output layer of the classifier is fed to arithmetic encoder. In
the decoder step, the same context is used to estimate the probabilities and decode the

bitstream.

3.7 Lossy Image Compression with Compressive Autoencoders

Theis et. al. [21] proposes an alternative way to deal with the quantization. Instead of
relaxing the quantization function, which distorts the derivatives in the decoder, they

only replace the derivatives such that the relaxation only affects the back-propagation.

—round(y) = — (3.35)

As a result of Eq. [3.35] the derivatives for the decoder is calculated with respect to

the quantized values § = round(y) and the decoder’s derivates directly propagate to
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the encoder bypassing the quantizer.

Another advantage of this compression model is that, it is possible to tune the rate-
distortion parameter after the training such that training of a single network is suffi-
cient for a wide range of rate-distortion performances, i.e. compression factors. On
the other hand, most of the compression networks [6, 5, 29], require retraining for a

given rate-distortion parameter, i.e. compression factor.

The idea can be expressed as defining a scaling function:

Su(f(x)) = f©ox) (3.36)

w

where w is the scale parameter set to be optimized for the desired rate distortion per-
formance. Note that, z and w are vectors of the same size and © is the element-wise
multiplication and the division is also element-wise. Rewriting the rate-distortion cost

in Eq. [3.20|using the scaling function,

min J ~E[~log, 5. (py (7)) + E[x — g(S.(/(x,0).0)|  (337)

such that the latents are scaled before the quantization, hence the distortion induced by
the quantization is reduced. The latents are modeled using Gaussian scale mixtures
[64] with 6 scales for the bit rate estimation during the training. For the entropy
coding, Laplacian-smoothed histograms are prepared using the training data. The
neural network structure includes input normalization and output denormalization,

residual blocks [65] and subpixel convolutions [66].

3.8 PixelRNN and Pixel CNN

PixelRNN [28]] and PixelCNN [67] architectures are a way to conditionally model

images in the following form:

N

p(x) = Hp(xi|xi_1, ...,x1,h) (3.38)

=1

45



where x is the image signal and z; are the image pixels and h is the optional high
level description parameters, such as latent representations or labels. To condition the
current pixel on only the previous pixels in raster scan order, masked convolutions
are utilized which masks out the coefficients that are on the bottom or right, so that
the network only processes the previous data. The conditional model generates a
multinomial distribution of 256 possible values for each pixel to be generated. For an
N x N x 3image, N x N x 3 x 256 predictions are produced. Although the training
is parallel during the training, the network should run sequentially for each pixel
prediction during the inference to condition the previous pixels which are already

predicted.

PixeIRNN models the pixel distributions using 2D LSTM [68, |69]], which are good
at modeling long term dependencies, while Pixel CNN models the pixel distributions
using convolutional neural networks, and much faster during training and inference
than PixeIRNN. To take the best of two worlds, ReLLU activation functions between
the masked convolutional layers in the PixelCNN are replaced with gated activation

units:

y = tanh(Wy x2) © o(W, * x) (3.39)

where o is the sigmoid activation, * is the convolution operator, 1¥; and W, are the

convolution kernels to be learned and © is the element wise product.

3.9 Full Resolution Image Compression with Recurrent Neural Networks

Toderici et. al. [23] proposed an RNN based image compression pipeline for the
variable rate compression on images. Encoder, decoder and binarizer parts of the net-
works are based on RNN and the entropy coding is performed by a fully connected
NN. An image is divided into image blocks of 32 x 32 and compressed independently.
Later, Toderici et. al. [24]] also proposed another RNN model for increased indepen-
dent compression performance and an entropy coder to capture spatial dependencies

between image patches.

While CNN based image compression models require retraining for each point on

the rate-distortion curve, usage of RNN enables compressing an image progressively,
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which yields a variable rate compression. At each run, RNN produces residual bits
that will be added to the previous ones, to increase the transmitted details. Since
RNN s store their state until they are reset, each bit from different residual states are
encoded and decoded under different contexts. The compression rate and the distor-
tion is determined by the number of residual bits, i.e. number of iterations of the

network.

Although the binarizer network is also RNN, it is chosen to be stateless, producing
binary stream, b € {—1,1}"™ of length m. At each iteration, the same number of bits

are produced, i.e. £ x m bits are produced for £ iterations.

In particular, the encoder network together with the binarizer works on image blocks
of size 32 x 32, producing a binary stream of length 2 x 2 x 32 for a colored image
patch of size 32 x 32 x 3. Hence, the first iteration yields 192 : 1 compression without

entropy coding.

The generated bitstream is progressively entropy-coded in raster scan order to ex-
ploit spatial dependencies among the generated bitstream. The bitstream is encoded
using an architecture similar to PixelRNN [28]], for conditional compression. This
way, the encoded bits depends on the short term and long term information. Sim-
ilar to [28]], masked convolutions are utilized to enforce causality, making sure the
bitstream can be decoded using previously decoded bits. At the output of the Bina-
ryRNN, Bernoulli-distribution parameter is estimated using sigmoid activation, while

the network is optimized for the cross-entropy loss.

3.10 Learning Content-Weighted Deep Image Compression

The image codes aim for the decorrelation of the spatial dependencies, which is very
high for natural images. The lossy decorrelation processes usually compromise the
high-frequency details like edges and corners, which generally carry significant infor-
mation for the human observer. In addition to that, the spatial correlations still exist

so that the resulting code lengths are still sub-optimal.

To overcome the drawbacks of the previous approaches, [29] proposes to make us of
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an importance mask such that the bit rate allocation along the image is locally adaptive
to the information content rather than uniform. The importance map is trained using
the intermediate features extracted from the encoder to produce a single channel map

having the same spatial size as the encoder output.

The importance map learns to adaptively allocate the number of channels that is used
to code the codeword at a given location. As a result, it is possible to code the salient
features using more channels, while smooth regions require fewer channels, which
helps to preserve fine details without any increase in the code length. Since the code
length corresponds to the number of channels utilized, and it is controlled by the im-
portance map, it is possible to estimate the bit rate using the importance map without

any assumptions on the distribution of quantized codes.

It is indicated that the spatial correlations still exist, hence a new method, named
trimmed convolutional networks (TCNN), is proposed to make use of spatial depen-
dencies for arithmetic coding to achieve higher bit rates. Trimmed CNN predicts the
current symbols using the previous symbols which are available to the decoder, so
that fewer bits are required. Furthermore, an inclined TCNN is proposed to partition

the 3D code map to inclined planes such that they can be decoded in parallel.

3.11 Conditional Probability Models for Deep Image Compression

Mentzer et. al. [22] trains a 3D CNN to model the conditional distribution’s latent
space following a similar approach to [29]]. A context model is trained to output an
importance map to control the bit allocation along with the image, while the autoen-

coder learns to map the image into latent space.

Similar to [28]], a conditional distribution of the quantized latent space representation

Z is learned:

N
p(2) = [[pGilzia..... 20) (3.40)
i=1
The quantization is represented as:
Z; = argmin ||z; — ¢j| (3.41)
J
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and the relaxation is provided using the following formulation:

—Z exp(—ol|z — ¢l|) ¢ (3.42)
Zk Lexp(—ollz — i)

While Eq. [3.41]is used in the forward pass, the gradients are calculated using Eq.
[3.42] hence the differentiability is assured. This way, the measured loss during the
training is very close to the inference stage because the forward and backward passes
are isolated and it is possible to learn the quantization centers instead of the fixed

points.
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CHAPTER 4

PROPOSED METHOD

4.1 Overview

If the latent variables in a channel of the latent representation (i.e. transform coeffi-
cients of a neural network based non-linear transform) are assumed to be independent
and their distribution does not change with the position of that variable inside the
channel, then the entire channel’s joint probability distribution can be represented
using a single univariate probability distribution. In addition, arithmetic coding of
the entire channel can be performed in a single manner using this single univariate
distribution. This approach was used in [S]. However, our empirical observations
indicate that latent variables in a channel are not independent. Indeed, the authors of
[6] improve their work by accounting for the dependencies using a hyperprior neural
network that transforms the latent variables to another set of variables, conditioned

on which the latent variables become independent.

This thesis proposes an alternative way to model the dependencies of latent variables
to reduce the modeling error. The joint density of the latent representation is modeled
as a product of conditional densities. However, only a few of the neighbors are taken
into account for the conditioning based on Markov property assumption. Hence, the
latent variables are only conditioned on the adjacent values, namely upper, left and
upper-left pixels. The conditional densities are no longer univariate functions due to
the conditions and are learned with neural networks. The analysis for the conditional

density model using neural networks follows a similar analysis to [30].

In this chapter, we first discuss how the zero-derivative problem of the quantizer is

handled in neural network based compression systems in the literature in Sec.
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Next, starting with the detailed explanation of the univariate model solution from [6],
the chapter continues with the details of the conditional density model in Sec. @.4]
The two approaches are compared using a toy example on an artificial source distri-
bution in Sec. 4.5] The use of arithmetic coding with the univariate and conditional
density model are discussed in Sec. [4.6] and Finally, the overall compression

system is outlined and supported with diagrams in Sec. [4.8]

4.2 Differentiable Quantization

A major problem with end-to-end learned image compression systems is that the
quantization operation has zero derivative, hampering its use in differentiation based
learning frameworks. Fig. [2.1|shows the plot of a basic quantizer that is implemented

with rounding:

¥ = Q(y) = round(y) (4.1

The optimization frameworks generally require differentiable functions, however the
derivative of the quantizer given in Eq. [4.]is zero at non-integer points and is unde-
fined at integer points. To overcome this challenge, different methods are proposed.
One of them is to approximate the quantization using additive noise as it is used in the
signal processing literature [70]. To understand how this method works, the effect of
quantization should be investigated. Let us start by assuming a laplacian distribution

with mean, y, and scale, b, for the source values to be compressed.

1 —
Sy (y; i1, b) = —exp <_|y_bu|) (4.2)

The PDF of y for 4 = 0 and b = 1, as well as the PMF of y given in Eq.
is shown in Fig. [.I] The problem with the quantization in this case is that the
back-propagation algorithm will encounter zeros for the gradients almost everywhere,
hence the optimization algorithms will not be able to minimize the cost function. To

have an estimate entropy for the intermittent values, [4] proposes to add continuous
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Figure 4.1: Continuous Laplacian distribution with zero mean and unity scale param-
eter is shown with fy(y). Addition of a uniform noise to the samples from Lapla-
cian distribution corresponds to the convolution of their densities, which is shown
as fy (7). The uniform quantization of the samples from the Laplacian distribution
corresponds to the integration of probability density function at the integer numbers
within a unity window, which is shown with the probability mass function py (7).

uniform noise, w ~ U[—0.5,0.5], such that g = y + w:

1 ifw e [-0.5,0.5],
fw(w) = 4.3)

0 otherwise.

Hence, the PDF of y can be expressed as:

Iy @) =f () * fw(y) 4.4)
+o00
- / Fur(0) f (7 — )0 4.5)
s
— [ tvi-o)as (4.6)
—0.5
0=-0.5
=Fy (7 —0) ’9:0.5 4.7)
—Fy(§ +0.5) — Fy(§ — 0.5) (4.8)

where Eq. in step |4.5| represent the PDF of the noise, and Fy(y) = ffoo Iy (y)
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is defined as the cumulative distribution function (CDF) of fy (y). Interestingly, the
distributions match at integer locations, such that the resulting PDF fy () can be used

as a proxy for the quantized distribution py () as shown in Fig.
py(9) = f3(§) <= 4=y€Z (4.9)

This way the quantizer is relaxed and now a differentiable function can be used in
rate/entropy estimation in a gradient descent optimization framework. Since the dis-
tribution is continuous now, the rate estimation should be calculated using differential

entropy rather than discrete entropy.

4.3 Univariate Non-parametric Density Modelling

A univariate probability density functionl| px(z) : R — R and its CDF Fx(x) :

R — [0, 1] should satisfy the following constraints:

Fx(—00) =0 (4.10)
Fyx(o0) =1 4.11)
oF

gf) = px(2) >0 (4.12)

These conditions imply that the CDF should be a monotonically increasing function,
starting from O raising up to 1. If we want to express the CDF by series of K functions

such as:

Fx(z) = fx o fx10...0 fy (4.13)

then the PDF can be expressed using the chain rule of calculus as the derivative of the

functions according to Eq. {.12}

F
px(z) = J g;x) (4.14)
= %(f}( o fi1-. f1) (4.15)
= fx frer--- 1 (4.16)

1 This section uses the notation px (z) for the probability densities and fi (x) for the neural network layers
to be coherent with the notation in the literature.
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;0 . —
where f, = 8—fk are the partial derivatives. Eq. 4.16|can also be used when f; are
x

vector functions such that f, : R¥ — RNk+1 where RV is the domain of f;, and
the range of fx_;. If fi is a vector function, f,; is a Jacobian matrix with entries are

derivatives with respect to each dimention:

B % ] 8fk;1 aflm
8$1 axl o amN}c—l
% 6fk2 afkm
f’; _ % _ axQ _ 61’1 aCC'Nk—l (417)
i
afk akak akak
_8xNk71_ L O0xq o aINk—l .

Hence the PDF can be expressed as series of matrix multiplications, which suggests
the use of fully connected neural networks explained in Sec. 2.9 To ensure that

px () is univariate, input and output dimensions of px (z) are Ny = Ni = 1.

According to the Eq. |4.12, F'x(x) should be monotonically increasing since py ()
is nonnegative. Although F'y(x) can be represented by neural networks with several
layers, the constraints in Eq. {.10} 4.11] and @.12] should be imposed such that the

resulting function is a proper probability distribution function. Although imposing the

constraints in Eq. {.10]and {f.1T] can be as simple as applying the sigmoid activation
function at the output of the last layer fx, the procedure to satisfy Eq. is not

straightforward.

To assure that the derivative of F'y(x) is always positive, the analysis of derivatives

should be conducted. Let fj be fully connected layers as defined in Sec. [2.9]

fr(xx) = ge(Wixy + by) (4.18)
fx(xx) = c(Wgxg + bg) (4.19)

where k € {1... K — 1} are the intermediate layers and K denotes the output layer,

o is the sigmoid nonlinearity, used to constrain the output in the range [0, 1]. The
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derivatives of the layers are

fi(xx) = Wy, diag g, (Wyx, + by) (4.20)
fie(XK) = Wk o' (Wgxp + by) 4.21)

To ensure that px(z) > 0, all the elements of f, € {1...K}, i.e. the Jacobian
matrices given in Eq. must be nonnegative. Starting with Eq. 4.20], it is assumed

that the nonlinearity g is a pointwise nonlinearity, hence its Jacobian is a diagonal
agki <X>

5 = 0,V7 # j. The nonlinearity g, is chosen as
Lj

matrix, since

gr(Xk) = Xi, + a; © tanh(xy) (4.22)

where ay, is a parameter vector and © is the element-wise multiplication. This partic-
ular choice for the nonlinearity enables the function to model troughs as easy as the

peaks of px (x) as indicated by Balle et. al. [6].

The derivative of the nonlinearity given in Eq. [4.22]is

gllf(Xk) =14a,0® tanh'(xk) (4.23)

To ensure that Eq. is nonnegative, all of a’s elements should be greater than —1,

since the derivative of tanh : R — [—1, 1] is already nonnegative:
tanh’(z) = 1 — tanh?(2) (4.24)

To assure nonnegativity of g;, a could be reparametrized to yield values greater than
—1,
ar = tanh(ﬁk) (425)

For Eq. the only thing that remains is to assure that W, is a nonnegative matrix.

For this purpose, a similar reparametrization is applied here such that
W, = oF(Wy) (4.26)

where 07 : R — R is the softplus function. Overall, all elements of W, and the

56



Figure 4.2: Network diagram for the univariate density model. The dashed lines
correspond to softplus reparametrization, nodes with g; are the nonlinearity function
given in Eq. b; are the bias terms, and the o corresponds to the sigmoid non-
linearity at the output.

diagonal matrix in Eq. .20]are positive. To ensure positiveness of the Jacobian matrix
in Eq. a similar parametrization for W g can be used and note the derivative of

a sigmoid is always positive.
In summary, the univariate non-parametric density model can be implemented using

a neural network with the following explicit form:

fu(x) = 0" (W)xs + by, + tanh(a) © tanh(ot (W)xy, + by,) (4.27)
fr(xx) = o(0c"(Wg)xxk + br) (4.28)

® € {Wy, by, ac}, k € {1... K} is the parameter set to be optimized using back-
propagation algorithm. Fig. {.2] provides a graphical representation of the neural

network.
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4.4 Conditional Density Model

To guarantee the validity of a univariate CDFE] generated by a neural network, the

conditions that must be satisfied are

111}1 Fx(z)=0 (4.29)
lim Fx(z) =1 (4.30)

OF
gx@ = px(a) >0 4.31)

as explained in detail in Sec. The validity of conditional CDF generated by a

neural network are analyzed in [30] and similar conditions should be satisfied:

lim Fy(zly) =0 (4.32)
T—r—00
lim Fy(zly) =1 (4.33)
oF
% =px(zly) >0 (4.34)

Eq. [.32] and 4.33] is satisfied using sigmoid nonlinearity at the output layer of the
neural network. An example network is shown in Fig. {.3] To achieve Eq. §.34]
every layer following x should be constrained such that the weight matrix should be
nonnegative Wj > 0. This can be shown using a similar procedure discussed in Sec.

Let F'y (x) denote a K layer neural network and let f; denote the j-th layer of it.

Fx(z) = fx o fg—10---0 fi(x) (4.35)

After the introduction of the conditional terms, Eq. 4.35becomes

Fx(zly) = fx o fk—10---0 fi(z]y) (4.36)

OFx (z]y)

It is clear that the analysis to show how to achieve —5-
the layers following x as long as %(m) > 0, which 1s achieved by reparametrization
X

> 0 does not change for

of the weights using softmax as in Sec. [4.3] If the conditional variables are designed

2 This section uses the notation px (x) for the probability densities and f () and hy(z) for the neural

network layers to be coherent with the notation in the literature.
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Figure 4.3: Network diagram for the conditional density model. The dashed lines
correspond to softplus reparametrization, while the solid lines correspond to uncon-
strained parameters. The nodes with g; are the nonlinearity function given in Eq.

the nodes with ; are the unconstrained nonlinearity functions. The input nodes
labeled with y; correspond the condition variables. Finally, the o corresponds to the
sigmoid non-linearity and the bias terms are omitted in the diagram.

to be transformed using extra layers to model the condition space better, Eq.

becomes

Fx(zly) = fx o fxk—10...0 fi(z|H(y)) 4.37)
H(y)=hpohy_10---0hy) (4.38)

where H () denotes the composition of L layers to process only y. The weights form-
ing the conditional terms, namely the weights of /;, are not constrained to be positive
since there are no constraints for the conditional terms. A network satisfying the con-
ditional CDF requirements is given in Fig. wherey = [y1,4q), K =3and L = 2.
The layers with positive weights are indicated with dashed lines, while straight lines

indicate the layers with unconstrained weights.

4.5 Modelling Simple Distributions using the Density Models

A simple example is demonstrated to show how the density models perform for a de-
pendent signal. A stochastic signal is generated making use of three Laplacian distri-
butions and a Markov chain to model the dependencies between consecutive samples.

The three laplacian distributions have the same scale parameter and are differentiated
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Figure 4.4: A dependent source is modeled using the transition matrix given in Eq.
M.39] Each sample is sampled from one of the three Laplacian distributions with
different means and same scale parameters. The probability of sampling from the
same distribution as the previous sample is 0.6, while the probability of sampling
from other two distributions is 0.2. The univariate density model learns to represent
this density model, ignoring any dependencies among adjacent samples.

by their mean p that can have three different values p; € {—5,0,5}. Each sample of
the sequence { X, } is sampled from one of three Laplacian distributions fx, (z; u;, 1)

i€{1,2,3}.

The distribution to be sampled is determined with a state machine. The transition
probability between 3 different states s;,7 € {1, 2,3}, is given by the state transition

matrix,
06 0.2 0.2

P50 =102 0.6 0.2 (4.39)
0.2 0.2 0.6

According to Eq. [4.39] there is a 0.6 probability that the consecutive samples are
from the same distribution and 0.4 probability of sampled from a different distribu-
tion. 10000 samples are generated to create a dataset using this formulation and their
histogram is as shown in Fig. #.4] The generated dataset is then used for training of
the univariate model and the output of the univariate model is shown in Fig 4.4 with
solid lines. The univariate network can model the frequencies of occurrence for the

given distribution, however, the resulting model does not incorporate the dependen-
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Figure 4.5: The plot represents the output of the conditional density model trained on
the samples data similar to[d.4] While x-axis shows the sampled values x;, y-axis rep-
resent 1 adjacent/previous sample values x; ;. The colors represent the conditional
probability density function fx,(x;|z;—1). In contrast to uniform density model, the
conditional density model is able to extract the dependence information and able to
represent the density closer.
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Figure 4.6: The output of the conditional density model is plotted for three differ-
ent conditions z;_y = —H, 2,1 = 0,2,_1 = b respectively, which correspond to 3
horizontal slices of the plot in Fig. {.6] It is clear that the density model assigns
higher likelihoods around the mean if the distributions from which the condition x; 4
is likely to come while assigning lower but peaky likelihoods to the means of the
other two distributions.

cies between the consecutive samples. This causes inefficiency in the bitrate of the
compression system, since the extra information about the signal is not modeled and

its price is paid as extra bits.
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The conditional density modeling is useful for modeling this type of distributions,
where close pairs are dependent. To model dependencies of neighboring latent vari-
ables, the conditional density model is trained using the same dataset, but this time,
previous samples are fed as a conditional variable to the network in Sec. #.4] In other
words, the network is trying to model px (z;|x;_1). After the training, the function
that the conditional density model represents is drawn in Fig. 1.5 In this figure, the
current signal values, x; are represented on the x-axis and the previous values of the
signal values ;i are represented on the y-axis. For example, the network estimates
the probability of the next symbol to be around x; = 0 much higher, if the value of
x;—1 = 0. In addition to that, the peak probabilities shifts to 5 when the previous value
is increased and shifts to —5 when the previous value is decreased. This behaviour
is clearer in Fig 4.6 which includes 3 sub-figures, each drawn for a given previous
sample value X; ; € {—5,0,5} respectively. For example, X; ; = 0 for the cen-
ter figure, and probability of sampling from the distribution fx(x;u = 0, 1) is more
likely than probability of sampling from the distribution with 4 = —5 or ¢ = 5 and
therefore the PDF has higher likelihoods around the mean of fx(z;u = 0,1) than

around the means of the other two distributions.

4.6 Arithmetic Coding Using Univariate Density Model

After training of the compression network, all that remains is coding of transform
coefficients using the learned probability models. A practical implementation of the
arithmetic encoder works with integer values for CDF and the finite number of sym-
bols due to varying implementations of the floating-point arithmetic across different
hardware. In addition, a discrete PMF is required rather than a continuous one, due
to the discrete nature of computers. Hence, the quantization of the continuous CDF

and the limitation of the possible number of symbols is necessary.

Conversion of the continuous density model f (7) to discrete model py-(7) is already
discussed in Sec. .2]and handled during the training by introducing uniform noise to
the transform coefficients. After the training, sampling the CDF at integer points is

sufficient.
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The quantization of the discrete CDF is necessary for arithmetic encoding, due to
implementation differences of floating-point hardware. Firstly, the floating points
have finite precision and coding the arbitrary number of symbols in the range [0, 1] is
not possible. Secondly, the implementation of the floating-point arithmetic may differ
across the software and hardware platforms. As a result, the quantization of the CDF
is required by arithmetic encoders. The step size for the quantization controls the
trade-off between distortion and the complexity of the arithmetic encoder. Smaller
steps size causes lower distortion, hence yields higher compression efficiency, while
increasing the complexity of the encoder and the decoder so that the encoding and
decoding times are increased. The steps size is generally powers of 2 and controlled
by the bit depth parameter of B in the expression 2~ 2. Practical values of B for the

arithmetic coding algorithm used in this work is in the range of [10, 16].

The last step is limiting of a discrete quantized CDF to represent the finite number of
symbols. The univariate model represents a continuous monotonic function, and its
input is unbounded during the training, In other words, the network yields a probabil-
ity value for symbol in the range [—o0, co]. For the arithmetic encoder to support this
kind of input, infinite precision is required, hence the number of possible symbols
should be handled correctly. The CDF model is clipped at a predefined value, and
only the symbols inside the clipped range are encoded using arithmetic coding. The
arithmetic encoder assigns zero probability to the symbols outside this range, which
means that if a symbol outside this range is encountered, (even though the occurrence
of this event has a very low probability, it is still possible) it cannot be encoded using

arithmetic coding.

The problem of coding the symbols falling outside of the range is solved by creating
a density model for these symbols. After the training, a normalized histogram for the
latent variables which are outside of the density range is calculated. After that, the
histogram is used as a density model in the arithmetic coder when a latent variable

which cannot be encoded using the conditional density model.
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4.7 Arithmetic Coding Using Conditional Density Model

Arithmetic coding using the conditional density model is mostly the same as using
the univariate model. While the discretization and quantization parts are the same,

the limitation (i.e. clipping to a finite range) part requires some more processing.

When performing arithmetic coding using the conditional density model, each symbol
to be coded is using a different CDF, determined from the conditional density network

using the previous coded symbols’ value as the condition.

Finding the range of the univariate model is rather easy, since the neural network is
approximating a monotonically increasing function in 1D. In the conditional model,
space becomes ND, and the complexity of searching the space to find the tails for ev-
ery symbol combination grows exponentially. Applying the binary search algorithm
while the function F'y(x) is univariate has complexity O(logn). By addition of a
single conditional variable F'x(z|y), even though the complexity for a given Y = y
is still O(log n), the tails need to be found for each y, which increases the complexity
to O(N logn), assuming that y takes /V distinct values. By addition of another con-
ditional variable Fx(z|y1,y2), the complexity becomes O(N?logn). For arbitrary
conditional vector y € R for a given the CDF Fx(x]y), the complexity of finding
ranges is O(NM logn).

4.8 Opverall System

The overall system for the training of the network is given in Fig. An input im-
age is fed to the convolutional encoder for the analysis transform to obtain the latent
space coefficients. The output of the transform is subject to additive uniform noise
of unit length and zero mean during training. The distorted latent variables are fed to
convolutional decoder for the reconstruction of the input image. Mean squared error
(MSE) is used for the evaluation of distortion by comparing the reconstructed image
from the distorted latent variables and the input image. In the meantime, the distorted
latent variables are used in the density model for the conditional distribution estima-

tion for each channel in the latent space. Each channel in the latent space is fed to a
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separate fully connected neural network to model the dependencies in that channel.
The conditional density model is conditioned on three neighboring coefficients. In
this thesis, only three neighbors (top, left, top left) are used for conditional density
modeling. The coefficients that are on the boundaries of the channels and do not have
the necessary neighbors, are assumed to have neighbors with zero value, such as the
first latent variable in a channel which is missing all three neighbors. The likelihoods
from the output of the density model is used to estimate the entropy. Finally, the rate

and distortion losses are combined into a single loss using a scalar multiplier.

After the training phase, the network structure changes such that the additive noise
is replaced with quantization for compression of the latent variables. In addition, the
arithmetic coder is inserted to the graph instead of the rate estimation. The overall
block diagram for the testing is shown in Fig. 4.8 Similar to the training phase, an
image is transformed using convolutional encoder. The latent variables are quantized
to be used by the arithmetic encoder and density estimation. The arithmetic coder
uses the density model for the range estimation for a given latent variable. The den-
sity model requires 3 neighbors variables (top, left and top left) of each coefficient and
outputs a density or range of values for each integer latent value. For the variables
that do not have any neighboring pixels, neighbors with the zero value are assumed
similar to the training phase. The ranges are also quantized to prevent floating-point
errors in the arithmetic coder. Range values are used in the arithmetic encoder to code
the corresponding latent variable and each channel in the latent space is coded inde-
pendently from other channels. In other words, each channel uses its own conditional

density model for compression.

The coded latent variables are sent to the decoder. To decode the bitstream, the arith-
metic decoder requires the same density model, so that each code can be recovered
without any error. Since the densities or the range values of the coded variables de-
pends on the neighbors, the value of the neighbors should always be available to the
density model. However, this is not the case for the edge values, because they do not
have any neighbors. To solve this issue, the missing neighbors are assumed to be zero
as it is the case in the encoding process. For example, for the decoding of the first
latent variable without any neighbors, the density model assumes the neighbors to be

zero. The next variable will have a left neighbor, but others are assumed to be zero
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again. This way, the decoding of the edge values of each channel is possible.

The hyperparameters of the overall network are shown in Fig. For example, the
analysis and synthesis transforms each have 3 layers, use filters with support of 3 x 3

or 5 x 5 and have 128 channels/feature maps.
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Figure 4.7: Graph used in the training of the proposed network. An input image is
transformed using convolutional encoder. The transform coefficients are subject to
noise during training as a proxy for quantization. The distorted latent variables are
inverse transformed by convolutional decoder and image are reconstructed. The qual-
ity of the reconstruction is evaluated using mean squared error. In the meantime, each
channel of the latent variables are sent to a separate density model for the likelihood
estimation. Every coefficients likelihood is evaluated using their adjacent coefficients
with a conditional density model. The likelihoods are used for the rate estimation by
evaluating their average entropy. Finally, the rate and distortion values are combined
into a single loss using a scalar multiplier, which controls the amount of distortion
and the bit-rate.
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Figure 4.8: Graph used in the testing of the proposed network. An image is trans-
formed using convolutional encoder. The transform coefficients are quantized and
sent to the density model and the arithmetic encoder. The density model outputs
range values for quantized codes and arithmetic encoder uses these ranges to encode
the corresponding coefficients. The arithmetic decoder uses the same density model
to estimate the ranges and decode the latent variables one-by-one. The decoded latent
variables are inverse transformed and the image is reconstructed.
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Figure 4.9: Detailed visualization of the network layers. Each convolutional layer has
128 channels and followed by GDN non-linearity. The stride values of each channel
are shown with s. The output of the encoder is fed to rate estimation block where
each channel has a separate fully connected NN.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Overview

This chapter presents the image compression performance of the proposed network.
The details of training and testing are also discussed. Visualizations of the latent
space and the correlations of the latent variables are also presented to show the im-

provements with the conditional density models.

5.2 Training and Evaluation

A combination of two uncompressed public image datasets are used for the training
of the neural network. A set of approximately 2000 uncompressed natural images
of size 2040 x 1356 from DIV2K dataset [[71, [72]] and the dataset from CVPR 2019
- Challenge on Learned Image Compression (CLIC) is used for training. PyTorch
[73]], a deep learning library, is used for implementation of the convolutional and
fully connected layers. rangecoderﬂ is used for arithmetic coding of quantized latent
variables. Batch size is set to 8 images and a batch is created by randomly cropping
256 x 256 pathces from the images in the dataset. Learning rate is set to 107> for
the convolutional layers and GDN layers and 10~ for the conditional density model.

The networks are trained for 10° iterations or approximately 5000 epochs.

The comparisons to other algorithms are done by measuring the rate and distortion

performance of the algorithm on the Kodak Image Dataseiﬂ Kodak Dataset consists

! github.com/kazuho/rangecoder
2 rOk.us/graphics/kodak/
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Figure 5.1: Nine images from the Kodak Image Dataset of 24 images.

of 24 RGB images of size 768 x 512, where a subset of the dataset is shown in Fig.
[5.1] The rate is calculated by the size of the file written by the arithmetic coder and
reported as bit per pixels (bpp) using the formula %. The distortion is

calculated using the Peak Signal-to-Noise Ratio (PSNR) defined as 10 log;, %
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5.3 Compression Performance

To evaluate the compression performance of the proposed neural network based sys-
tem in the thesis, we compare its rate-distortion curve over the Kodak Image Dataset

with 4 other compression systems:

JPEG(1]]

BPG [2]

Univariate density model based neural network [5]]

e Hyperprior incorporating neural network [6].

JPEG, proposed in 1992, is the most popular compression standard due to its sim-
plicity and decent performance. Compression in JPEG is performed by applying
8 x 8 block-DCT, quantization, run-length and Huffman coding steps. BPG, based
on the intra-frame coding of HEVC [25, 2], is the current state-of-the-art in the tradi-
tional image compression. Intra-frame coding is performed by intra-prediction of the
quadtree blocks and followed by the transform coding of residuals. The univariate
density model based neural network [3] is the pioneer work in the literature which
this thesis is based on. An image is transformed using a convolutional autoencoder
and the latent variables are coded using the independent density estimation of the la-
tent variables. The hyperprior incorporating neural network [6], written by the same
authors, captures the spatial dependencies in the latent representation using a hyper-
prior network which estimates the mean and the scale parameter of the distribution

assuming Gaussian density.

Rate and distortion are the competing parameters for image compression systems.
The classical compression algorithms provide an option to tune the trade-off between
the rate and distortion. It is possible to compress an image with lower distortion and
higher rate or vice versa. A rate-distortion curve is drawn for each system by changing
their operation point on the rate-distortion curve to compare their performance. To
achieve this, JPEG provides a Quality parameter from 0 to 100, BPG also provides
a Quality parameter from 0 to 51 which is known as QP in HEVC. Unfortunately,
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the neural networks require retraining for each operation point on the rate-distortion

curve.

Fig. [5.2) shows the rate-distortion curves for each compression system as well as the
proposed network in this thesis. The worst compression is performed by JPEG, be-
cause it is aimed to be very low complexity. The next is the neural network with
univariate density model where the indepence assumption hinders its performance.
Followed by the hyperprior model and the conditional model which are built upon
the previous network, perform on par. The hyperprior models the density for each
latent variable as a Gaussian density and estimates its mean and scale parameter. Our
density model assumes Markov property for the latent representation and models the
densities conditionally using adjacent latent variables. Finally, the best performing
algorithm is the BPG, which is a heavily engineered state-of-the-art compression al-

gorithm used mainly for the coding of intra-frames in HEVC.

The encoding and decoding times of the compared algorithms are given in Table[S.1]
JPEG is by far the fastest system, followed by BPG. The neural network based sys-
tems require more time due to their complexity. The conditional model proposed in
this work require much more time compared to the other neural network based sys-
tems, because the encoding and decoding is performed sequentially. In addition to
that, the tails of the density should be searched each time a latent variable needs to be
coded/decoded and this operation has very high complexity depending on the number
of conditioned variables as explained in Sec. The duration of the encoding/de-
coding times are measured on a system with Ubuntu 18.04 with 16GB of RAM and
Intel 17-6700HQ. JPEG is working on MATLAB, BPG is working on C, neural net-
works are working on Python on CPU. The default configuration values are used for

JPEG and BPG.
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Encoding Time (sec.) Decoding Time (sec.) H

JPEG [1] 0.01 0.01
BPG [2] 0.38 0.17
Univariate Mdl. [5]] 7.80 7.60
Hyperprior Mdl. [6] 9.10 8.50
Cond. MdI. (this work) 53.62 50.12

Table 5.1: Encoding and decoding times of compression algorithms.
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Figure 5.2: Comparison of the rate distortion performance of the proposed network
with other compression algorithms. The conditional model (this work) improves the
univariate model [3] by 30% and have almost the same performance with the hyper-
prior model [6]].
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5.4 Visualization and Histograms of the Latent Space

After the training is finished, quantized latent variables from our neural network based
systems for a single image in the dataset is shown in Fig. [5.3] 128 channels in the
latent space are drawn in raster order, to create 16-by-8 grid of latent images. The
input image, kodim23.png, is the fourth image in Fig. [5.1] and its size is 768 x 512,
the encoder/analysis transform of the network downsamples the input by 16, hence

each channels are represented by 48 x 32 image patches.

As seen in Fig. [5.3] most of the channels are very sparse. In fact, most of the channels
have coefficients y are either y € {0} ory € {—1,0, 1}. In other words, only a few
of the channels contains most of the information. This property is called energy
compaction and studied extensively for linear transforms [11, [10]. This is expected
since the network is trained to minimize the rate while maintaining low distortion. Bit

rate for this image is 0.10 bpp and PSNR is 30.91 dB.

The channels with higher entropies are drawn in Fig. [5.5] seperately and upsampled
by 8 using nearest neighbour upsampling to emphasize the details. The histograms
of the coefficients are shown in Fig. [5.6] It should be noted that the y-axis of the
histograms are in log-scale to emphasize the sparsity of the channels. Even after the
5th channel with the highest entropy, the counts are quickly decaying to zero. This is

expected since lower entropy implies impulse-like probability distributions.

75



‘paIoust
9q ued pue 3urpped o3 onp Jeadde puo oy Je sY00[q JYor[q Y], "Wy} Jo a1y} 3dadxa asreds are sPUUBRYD Y} JO [[V JOpIo Id)sel ur A[ojeredas
umelp s1 aoeds Judje[ Y Ul [QUUBYD YOBH JIOMIAU [BINAU Ay} JO Sururen; Jojye doeds juaje paznjuenb oy Jo uoneziensia oy, :¢°G AIn31g




5.5 Conditional Densities of the Latent Space

While the histograms in Fig. [5.6] provide information about the marginal distribu-
tions of the latent variables, the pictures of the channels in Fig. [5.5|indicate that the
neighboring latent variables are dependent. A simple evidence of the dependency
is given in Fig. [5.4] which provides the joint 2D histogram of two adjacent latent
variables. Hence, our neural network that models the dependencies using conditional
densities performs better at compression. An example of the learned conditional den-
sities fy (y|yieft, y;op) is provided in Fig. As can be seen from Fig. there
is a strong dependency between the latent variable and its left and upper neighbors.
The mean and variance of the latent variable can change significantly depending on

the value of the left and upper neighbors.

10 0.2
o)
B
§ 0 = . 0.1
[}
—
-10 0.0
-10 0 10 -10 0 10 -10 0 10
Current pixel Current pixel Current pixel

Figure 5.4: 2D histograms of the adjacent latent value pairs is shown for three chan-
nels with highest entropy. To draw the histograms, quantized pixels are paired with
their left neighbors to create a 2D pair, then each unique pair is counted and repre-
sented on the figure.
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Figure 5.5: Channels with the highest entropy from Fig. [5.3|are redrawn to emphasize
the details. While images in the first row resembles the original image, the remaining
ones have less and less details about the image. In fact, the remaining channels are
used mostly for coding of the edges. There is a one-to-one correspondence between
the latent variable images, i.e. channels, and their histograms in Fig. [5.6] Meaning
that the image and histogram at the same position are related.
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Figure 5.6: The number of occurrences of a latent variable for each channel in Fig.
[5.3] are plotted as a histogram and normalized. Note that the y-axis is in log-scale.
The channels distributions quickly becomes narrow and more than 90% of a channel
is just zeros. The histograms are normalized so that, their sum is 1.0.
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Figure 5.7: A grid of conditional density plots, fy (Y| e, Yiop), for a single channel
in the latent space is given. 5-by-5 grid is composed of 5 different values for adjacent
pixels, i.e. mesh of yseft, Yop € {—10,—5,0,5,10}. The network learns the positive
correlations shown in Fig. [5.4] For example, when both of the neighbours y.;; =
Ytop = 10, the likelihood peaks at y = 10. To make the visualization easier, a network
is trained with the densities conditioned only on two neighbours (only for this plot),
namely left and top.
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5.6 Visual Results

Two images from the Kodak Image Dataset are coded with all image compression
systems that we use in comparisons. Fig. [5.8shows an image compressed at the same
rate (0.21 bpp.) using 5 different systems. Fig. shows a small patch from the same
image. The BPG system introduces the lowest distortion in terms of MSE, followed
by the network proposed in this thesis. The distortion is visible around the text and

the faces.

Fig. [5.10] shows another image encoded at the same PSNR (~ 26.5 dB) and Fig.
shows a smaller area from the same image. The PSNR is set as close as possi-
ble across different algorithms. The BPG system achieves lowest bpp., followed by
hyperprior model [6] and the conditional model(this thesis).
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Figure 5.8: Comparison of the images coded with different algorithms.
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Figure 5.9: Comparison of the images coded with different algorithms.
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Figure 5.10: Comparison of the images coded with different algorithms.
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Original Image [4] Univariate Model (26.84 dB, 0.67 bpp)
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Figure 5.11: Comparison of the images coded with different algorithms.
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CHAPTER 6

CONCLUSIONS

In this thesis work, a neural network architecture for end-to-end learning of image
compression is presented. The proposed network jointly learns the transform and en-
tropy coding operations using neural networks, while minimizing the rate-distortion

cost estimated from a dataset of images.

An end-to-end learning framework is presented in [5]] by coding the latent variables
with an independent density model. The same authors then extend their work by
incorporating a hyperprior to capture the spatial dependencies in the latent represen-

tation [6]].

This thesis uses an alternative method to exploit the dependencies of the latent rep-
resentation. The joint density of the latent representation is modeled as a product of
conditional densities based on Markov property. In other words, each latent variable
is not conditioned on all previous latent variables but only on a few previous variables,
in particular the left, upper and upper-left spatial neighbors of that latent variable. The
analysis for conditional density model is conducted similar to the monotonic neural
density estimator proposed in [30]]. Use of conditional density model increases the
performance of the arithmetic coder, because each latent variable is coded using a

density estimated from the adjacent variables and has better density estimation.

The compression performance of the proposed network is compared to other classical
compression algorithms, as well as learning-based compression algorithms on Kodak
Image Dataset for different rate-distortion performance. The proposed network im-
proves the coding efficiency of the univariate density model in [5]] by 30% and is on

par with the hyperprior model in [6].
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6.1 Future Work

In future, the proposed method could be extended in two ways. Firstly, the encod-
ing/decoding duration could be decreased. Secondly, the dependencies between the
latent variables between the channels could be explored to achieve higher compres-

sion efficiency.

In the current approach, the tails of the densities are required to be searched for each
latent variable using the conditional variables, which increases the time required to
encode/decode an image. The encoding/decoding duration could be decreased by
minimizing the number of tail searches. This is possible by storing/caching the data
for the frequently used conditional variables in a map. In addition to that, the same
map could be used as an initial condition for a search with close values of conditional

variables to decrease the convergence time for the search of the tails of the densities.

The visualizations of the latent space in Fig. indicates that there is also depen-
dency between the channels of the latent space for the same spatial location. This

dependency could be explored in a future work to increase the coding efficiency.
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