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ABSTRACT

A GENERAL FRAMEWORK FOR ADAPTIVE RADAR DETECTION
BASED ON FAST AND SLOW-TIME PREPROCESSING

Saraç, Uğur Berkay

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Gökhan Muzzaffer Güvensen

August 2019, 104 pages

This thesis is about the design of an adaptive radar detector under heterogeneous clut-

ter environment using a small number of secondary data, which is at the same time

robust to Doppler mismatch. To this end, the observations taken from heterogeneous

clutter environment are first processed with a specially designed fast-time preprocess-

ing matrix, cleansing the target contamination in the secondary range cells. Using

these clean secondary data, the covariance matrix of the clutter is estimated via the

parametric spectral estimation method proposed by Burg. Using this clutter space

and the target space in which the targets are assumed to be in Generalized Eigenspace

operation, a reduced dimension space which includes the target space and escapes

the clutter space is found. After the observations which are purified in the fast-time

dimension are projected in this newfound space, the detection mechanism is activated

using the reduced dimension Kelly detector. In this thesis, all steps described here

are explained in detail and the performance of the proposed detector is evaluated and

compared with the other detectors in the literature by using the MATLAB simulation

results.
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ÖZ

HIZLI VE YAVAŞ ZAMANDA ÖN İŞLEMEYE DAYANAN UYARLAMALI
RADAR DETEKTÖRLERİ ÜZERİNE GENEL BİR ÇERÇEVE

Saraç, Uğur Berkay

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Gökhan Muzzaffer Güvensen

Ağustos 2019 , 104 sayfa

Bu tez, heterojen kargaşa altında az sayıda ikincil menzil hücresi kullanarak çalı-

şan, aynı zamanda Doppler uyumsuzluklarına karşı gürbüz olan bir uyarlamalı radar

detektörü tasarımıyla ilgilidir. Bu amaçla heterojen kargaşa altında alınan gözlem-

ler önce özel tasarlanmış bir hızlı-zaman işleme matrisiyle işlenip, hedef yankısının

ikincil menzil hücrelerindeki uzantıları temizlenmektedir. Sonrasında bu temizlenmiş

verileri kullanarak, Burg tarafından önerilen parametrik spektrum kestirim metoduyla

kargaşanın kovaryans matrisi kestirilmektedir. Kestirilen bu kargaşa uzayı ile hedefin

içinde olduğu tahmin edilen hedef uzayı kullanılarak, Generalized Eigenspace ope-

rasyonu ile hedef uzayını içerip kargaşa uzayından kaçan, düşük boyutlu bir uzay

bulunmaktadır. Hızlı-zaman ekseninde temizlenmiş gözlem verileri, bu yeni bulunan

uzaya düşürüldükten sonra, düşük boyutta Kelly detektörü kullanılarak tespit meka-

nizması çalıştırılmaktadır. Bu tezde yukarıda anlatılan her adım detaylı olarak açık-

lanmış, Matlab ortamında yapılan gerçekleme sonuçlarıyla da önerilen detektörün

başarımı değerlendirilmiş ve literatürdeki diğer detektörlerle kıyaslanmıştır.
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CHAPTER 1

INTRODUCTION

The term radar is an acronym which stands for RAdio Detection And Ranging. As

it is obvious from the definition, general purpose of radar can be described as to

detect objects using radio waves and to determine how distant they are to the radar.

However, the radar is used to fulfill lots of different goals today, including measuring

the speed of vehicles, predicting the meteorological events, mapping the surface of

the earth, etc. This wide range of applications may be the underlying reason that

scientific studies regarding understanding the nature of radar systems and improving

their capabilities have never ended and still keep being published frequently.

This chapter starts with a brief history of radar technology and general information on

radar systems. Then, adaptive radar detectors are introduced and the existing studies

in the literature related to this thesis are summarized. The significance of the work

proposed by this thesis is also going to be provided. Finally, the notation of symbols

used throughout this thesis is going to be explained for convenience.

1.1 Brief History of Radar

The history of radar can be considered to start with the exploration of reflection of

electromagnetic waves. Scottish scientist James Clerk Maxwell had formulated his

famous equations describing the fundamental properties of electromagnetic waves

when German scientist Heinrich Hertz showed experimentally in 1886 that metallic

objects reflect electromagnetic waves [2]. This phenomenon made Serbian-American

engineer Nikola Tesla propose electromagnetic detection and velocity measurement

in 1900, followed by the ship detection experiments of German engineer Christian

1



Hülsmeyer in 1904 [3].

The world wars played an important role in the development of radar systems as

different countries worked on this technology in order to be able to use it in military

applications. The use of radar for military purposes is still of great importance today.

1.2 General Description of Radar Systems

Due to the wide range of services in which radar systems are used, there is not a

unique design for radar systems. However, it is convenient to define a general radar

system as having a transmitter, a receiver, and a processor. The similarity of this sys-

tem model to a general communications system model should be noted. In fact, when

the connection between the transmitter and the receiver, namely the channel, is added

to the model, the radar system model looks exactly the same as a general communi-

cations system. However, the elements of the two systems work quite differently, the

biggest difference being in the processing part. A block diagram of a more detailed

radar system is given in Fig. 1.1.

TransmitterWaveform Generator Antenna

Channel

AntennaReceiverSignal Processor

Local 
Oscillator 

Possible Feedbacks

Figure 1.1: Block diagram of a general radar system
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The transmitting and receiving antennas are responsible for generating and collect-

ing the electromagnetic waves. If the two antennas are separated in their locations

significantly, the radar system is called bistatic and if they are located near to each

other, the radar system is called monostatic. The monostatic radars usually use the

same antenna for both transmission and reception of the electromagnetic waves. The

geometric properties of the antennas such as their width, height, shape, curvature,

etc. determine the shape of the electromagnetic waves transmitted from them or their

responses to the waves impinging on them. The radar antennas are usually designed

such that they emit the waves directionally, rather than being isotropic, meaning that

the radiation intensity is high in some specific directions in space and low in another

directions. This directional electromagnetic waves are usually called beams and the

mapping from each specific direction to the radiation intensity at that direction is usu-

ally called the beampattern. The radar antenna’s beampattern directly influences the

transmitted and received powers at different directions and thus it is almost always

designed with respect to the specific requirements of the radar system.

The transmitter and receiver blocks in Fig. 1.1 are responsible for up/down conver-

sion, noise elimination and amplification of the useful signals. The radar transmitters

may have peak powers varying from milliwatts to megawatts, depending on the appli-

cation they are being used [3]. Again depending on the application, the frequency of

radar waveforms vary from 3 MHz to 300 GHz. There are some frequency bands in-

side this range according to IEEE [4]. The nominal radar frequency bands are shown

in Fig. 1.2. The attenuation of the radar waveforms in the air generally increases with

the frequency, so lower frequencies are used for longer range applications. On the

other hand, the increase in the frequency results in a smaller antenna size requirement

and finer resolution, so higher frequencies are used for applications that need shorter

range and better resolution. The receiver usually includes a low-noise RF amplifier at

its first stage, and its structure can be different for different applications. The radar

waveforms can be categorized as continuous waves and pulsed waves. A continuous

wave (CW) radar emits a continuous, possibly and usually modulated electromag-

netic wave and receives the echoes of this wave at the same time. On the other hand,

a pulsed radar emits several short duration electromagnetic waves, called electro-

magnetic pulses or simply pulses, each separated in time. The waveform generator
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Figure 1.2: The nominal radar frequency bands [1]

block in Fig. 1.1 is responsible for determining the exact baseband waveform shape,

including the adjustments on modulations used in the waves, the duration and time

separation of pulses, etc.

In this chapter, a special kind of radar system, which is pulsed Doppler radar, and two

interrelated signal models related to pulse Doppler radars will be introduced. A pulsed

Doppler radar, as its name suggests, is a pulsed radar; that is, it transmits a number of

short duration electromagnetic waves, pulses, and collect and process them together.

The word Doppler states that this radar takes the famous Doppler effect into account

while generating and processing the signals. Pulsed Doppler radars are especially

useful for determining the range and the radial velocity of the targets. The way they

fulfill this aim will be explained in the upcoming sections.

There are many parameters the pulse Doppler radars work with. Pulse Repetition

Interval (PRI) is a characteristic parameter of this kind of radar systems; it is the time

between the beginnings of two consecutive pulses that are transmitted. The reciprocal

of PRI is the Pulse Repetition Frequency (PRF). Although it is not obligatory for all

cases, pulsed radar systems usually collect the echoes from a number of pulses and

process them together. The duration of time in which the pulse echoes are collected

and processed together is called Coherent Processing Interval (CPI). The word CPI

is also frequently used for the echoes themselves in the CPI. For the rest of this thesis,

the pulse repetition intervals in a coherent processing interval are assumed to be the

same. This constant PRI is denoted as T and the number of pulses in a CPI is denoted

as N so that the duration of a CPI becomes NT , assuming that the time duration

between the last pulse in the corresponding CPI and the end of that CPI is also equal

to T . Obviously, the PRF is also constant in a CPI, and that constant frequency is

denoted as "PRF" throughout this thesis.
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Assuming that there is not any transmitters other then the radar transmitter in the

scenario, the received signal at ∆t amount of time after the transmission is the echo

of the transmitted waveform from an object at distance c∆t/2. Here, c is the speed

of light and it is taken as 3 × 108 m/s. This relation shows that there is a direct

relationship between the time an echo is received and the distance at which the object

causing that echo is located measured from the radar.

In practical radar systems, echoes are collected at discrete time instants. Following the

discussion in the previous paragraph, the sampling in time corresponds to a sampling

in distance. If two samples are taken 1 µs apart, they will correspond to objects

located 150 m away from each other. In this case, if the duration of the pulse is

less than 1 µs, there will be some distances that the echoes coming from them are

not sampled in the receiver, namely, lost in the environment. Therefore, in order not

to lose the echoes from any distances, the pulse duration must not be smaller than

the time between two consecutive samples taken at the receiver. This also means

that the sampling rate must be higher than inverse of the pulse duration. The inverse

pulse duration is approximately the bandwidth of a rectangular pulse. Therefore, the

required sampling rate at the receiver can actually be generalized such that it must be

higher than the Nyquist rate, which is the bandwidth of the transmitted signal [3].

1.3 Adaptive Radar Detectors

As a brief definition, adaptive radar detectors’ parameters are adjusted according to

the observed signals. In other words, the adaptive radar detectors observe the inter-

ference and try to estimate its characteristics in order to apply some kind of filtering

and eliminate it.

The adaptive detectors were first studied by Kelly [5] in 1986. In this paper, the

secondary data is added to the hypothesis test with Sample Matrix Inversion (SMI)

and the GLRT expression for this hypothesis test is provided for the first time. The

analytical false alarm and detection probabilities were also provided in this work.

After this study, many other detector schemes, similar to Kelly’s one, have been pro-

posed. One of them is the Adaptive Matched Filter (AMF) [6], which suggests that
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the interference covariance matrix (ICM) of the cell under test (CUT) be estimated

by using the secondary cells and this estimation be used in the hypothesis test as if

it is perfect. AMF also uses SMI to estimate the ICM. This method also assumes

that the interference in the CUT is Gaussian distributed. This method is shown to

be sensitive to the ICM estimation errors, and it is also shown by Reed-Mallet and

Brennan [7] that the number of secondary cells must be as at least twice the number

of dimensions of ICM in order for the SNR loss due to the errors in ICM estimation

with SMI to be reduced to below 3 dB. This thesis is built on a scenario in which only

a few secondary cells are available, and the performance loss of this AMF technique

in such a scenario is also provided in this thesis.

In other adaptive radar detector schemes like adaptive coherence estimator (ACE)

[8] and adaptive normalized matched filter (ANMF) [9], the clutter environment is

assumed to be heterogeneous. In these detectors, the normalized ICM in CUT and the

secondary cells are assumed to be the same but the average powers of these matrices

are considered as unknown nonrandom variables. The GLRT detector for this scheme

is also provided in these studies. These works are similar to the work in this thesis

in the way the heterogeneity of the clutter environment is assumed. [10] and [11]

are also studies concerning the detectors and their performances under heterogeneous

clutter environments.

Dimension reduction is another important part of this thesis, and there are several

studies on reduced-dimension adaptive radar detectors in the literature. In [12, 13],

the dimension reduction operation is explained to be a beneficial solution to the prob-

lem of small number of secondary cells. The motivation of dimension reduction in

this thesis is the same as these studies; however, this thesis is unique in the way that it

conducts the dimension reduction and the detection operation it applies in the reduced

dimension.

There are also experimental works about adaptive radar detectors in the literature

[14, 15, 16]. In [15], the false alarm rate of the detectors using real data is shown to

be higher than the expected false alarm rate provided analytically in the papers. A

large difference of average powers in the secondary cells or the correlation between

the secondary cells are considered to be the possible reasons for this performance
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loss. In [16], a robust recursive ICM estimation method is proposed in order to avoid

such problems and the proposed detector is tested with real sea clutter data. The false

alarm rate in the results are again higher than expected, and this situation is explained

with the non-stationarity of the clutter in both time and space dimensions.

Following these works, this thesis proposes an adaptive radar detector which works

under heterogeneous clutter environment with only a few secondary cells. By de-

creasing the number of secondary cells required, the effects of non-stationary clutter

can be minimized whilst a faster convergence rate in adaptation can be achieved. This

detector is shown to be significantly more robust to clutter heterogeneity than the con-

ventional adaptive detectors. To achieve this, a two-stage adaptation operation is pro-

posed. At the first stage, the ICM is assumed to be an AR process and it is estimated

with Burg’s parametric spectral estimation method. Then, generalized eigenspace of

this estimated interference space and an estimated signal space is found in order to

achieve a reduced dimension subspace to make detection inside. The Kelly’s adap-

tive GLRT detector is then used in this reduced dimension subspace as the second

adaptation stage.

In the detector scheme proposed, the dimension reduction technique, a parametric

spectral estimation method and Kelly’s adaptive radar detector are combined. The

adaptive radar detector is required to make the detection under unknown or fast-

changing clutter environments, but it needs secondary cells to do its work. The di-

mension reduction is required to make adaptive radar detector adapt itself to the en-

vironment when only a few secondary cells are available. The parametric spectral es-

timation provides a good subspace for dimension reduction, which helps eliminating

the interference. Other than these three methods, a fast-time preprocessing method is

also provided in order to purify the secondary cells from the contamination of target

due to the pulse code used. This purification also helps finding a good subspace by

preventing the ICM estimators considering the target signal as an interference. All of

these methods are brought together to have a fast-converging adaptive radar detector

which is robust to clutter heterogeneity, target Doppler mismatch and restrictions on

the number of secondary cells. The block diagram of this radar detector is provided

in Fig. 1.3.
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Figure 1.3: Block Diagram of the radar detector proposed in this thesis
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1.4 Notation

In this section, the mathematical notation which will be used throughout this thesis

will be described. Since this thesis is considered as a general framework, it includes

lots of different variables and equations relating these variables. This section aims to

help the readers follow the mathematics of this thesis by introducing general rules of

notation used through all of this document.

In this thesis, scalar variables are noted as small italic letters like a whereas the vector

variables are expressed with small and bold letters like b. In this notation, whether the

variable is random or deterministic is not important. In other words, no special nota-

tion is used for random variables. The variables in matrix form are denoted as capital

bold letters like C. The (i, j)th element of a matrix C is denoted as C(i, j). Finally,

the capital italic letters like T denotes the deterministic constants in this thesis. These

notations do not change whether the variable is used as a subscript or superscript.

The capital subscripts of matrices depicts the dimensions of them. For example, IK

is a K ×K square matrix, and YN×K is an N ×K matrix. Small subscripts can be

used to define the variables, there is not a general rule about them.

In this thesis, the estimation of a variable is denoted with a hat sign above the true

variable. For example, if a is a scalar value, its estimation is denoted as â and the

estimation of a matrix C is denoted as Ĉ.

Throughout this thesis, the autocorrelation vector of a scalar random variable a is

denoted as ra. Similarly, autocorrelation matrix of a vector random variable b is

denoted as Rb.

If a vector is written in a sequence form, its elements become scalars so that the

sequence is denoted like ra[m]. Here, ra[m] can denote both the whole sequence

and the mth element of this sequence. Which option is correct can be understood by

the context in which this notation is used. The sequences can also be denoted like

{ak}pk=1. There is no difference between {ak}pk=1 and a[k] for k = 1, 2, . . . , p.

The explanations of each variable used in this thesis can be found in the section that

it is first defined. However, the notation rules should make the readers understand the
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meaning of the variable names easily.
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CHAPTER 2

SYSTEM MODEL FOR HETEROGENEOUS ENVIRONMENTS

2.1 General System Description

In this section, the mathematical framework used throughout this thesis will be en-

lightened. The names of the vectors and matrices are introduced along with some

basic equations about the scenario which is being investigated.

The problem is presented as a pulsed Doppler radar system, which uses N pulses in

each coherent processing interval (CPI); but it is easy to convert the problem into other

signal processing problems, such as a beamformer which has N sensors sampling the

signals in space. Any consecutive two of these N samples are separated in time by

T seconds. The received echoes of the pulses in the CPI are sampled in fast-time

dimension such that there are K samples for each pulse. In other words, there are K

fast-time samples for each N slow-time sample in the problem. The echoes received

outside the CPI are ignored in this thesis.

Each fast-time sample of the transmitted radar pulse is denoted with bk for k =

{0, 1, . . . , K − 1}. bk can also be depicted as the samples taken with a sampling

rate of 1 samples per chip, from a pulse which is coded with a pulse code having K

chips. We define this pulse code as:

b ,
[
b0 b1 . . . bK−1

]T
(2.1)

and with no loss of generality, choose b as a unit-norm vector.

If a target has a radial velocity with respect to the radar antenna, the echoes from

different pulses will have their phases changed due to the Doppler shift. In order

to make use of the phase difference of the consecutive pulses, the pulses must be
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transmitted coherently. In fact, a CPI consists of only coherently transmitted pulses

by its definition, which means that all pulses in a CPI must have a common fixed phase

reference [3]. This way, the common initial phase of the pulses can be subtracted from

the individual phases of each pulse in order to get the phase differences between them.

After this phase correction operation, the firstly received pulse is considered to have

zero phase, because its phase is exactly the same with the common phase reference.

In order to make Doppler shift operations easier, Stop-and-Hop approximation is also

used in this thesis. The "Stop" part suggests that during the time in which a pulse is

in the medium, all objects it reaches and echoes from and the radar system are mo-

tionless. The "Hop" part suggests that just before stopping for the transmission of a

pulse, the radar system and all the objects in the scenario moves to their correspond-

ing positions suddenly. This approximation is valid when the movements of objects

during the duration of the CPI is not larger than the length of a pulse.

With the above assumptions, when the first pulse has zero phase, the next pulse will

have a phase of 4πvrT/λ, where vr is the radial velocity of the target, T is the pulse

repetition interval (PRI) and λ is the wavelength of the transmitted electromagnetic

wave [3]. Therefore, if all pulses in the CPI are normalized with the first pulse, the

complex amplitudes of the pulses will construct the vector:

dφ =
[
1 ejφ . . . ej(N−1)φ

]T
(2.2)

while the phase term can be written as:

φ =
4πvrT

λ
= 2π

fd
PRF

(2.3)

where fd = 2vr/λ is the Doppler frequency shift and PRF is the pulse repetition

frequency. The elements of dφ are called dφ,n for n = {1, . . . , N}. Then, dφ,n is

a multiplicative phase to all fast-time samples taken from the echo of the nth pulse,

when the target’s radial velocity is (λ/4πT )φ. That is, when there is no interference

and the power of the received signal is not considered, the received echo of the nth

pulse from a target at kth range cell is dφ,nbk. The observation matrix including the

received and grouped echo signals from a single target when there is no interference

or noise is given in Fig. 2.1. In the next section, the interference in the scenario of

this thesis is going to be introduced and its statistical characteristics will be provided

in detail.
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Figure 2.1: The observation matrix for a single target without any interference or noise

2.2 Clutter Model

In this thesis, the interference sources are considered to be the clutter signals and

the noise. These two are common interference sources to nearly all radar systems;

however, there might be some other interference sources like jammer signals or com-

munication signals in some radar applications. In this section, the clutter model used

throughout this thesis will be explained in detail. Describing the clutter model thor-

oughly is essential for this thesis because the research done here is about increasing

the radar detection performance and the biggest challenge in this work is suppressing

the received clutter returns. With this motivation, in this section, the statistical model

of the clutter process and its power parameter are explained and they are followed by

the role of this clutter process in the radar system.

2.2.1 Statistical Model of the Clutter Process

The scenario investigated in this thesis includes two separate, statistically independent

clutter sources which are called as the sea clutter and the rain clutter. Say cnk,sea

is the sea clutter return from the nth pulse at the kth range cell and cnk,rain is the
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corresponding value for the rain clutter. For convenience, cnk will be used instead of

any of these clutter returns. That is, cnk may represent any one of cnk,sea and cnk,rain,

the important point is that this term corresponds to a clutter echo received from the

nth pulse at the kth range cell. If cnk is used to construct an (N × (2K − 1)) matrix

C such that (n, k)th element of C is cnk , then each column of this matrix is denoted as

ck and each row of this matrix is denoted as (cn)T . To be more clear, the C matrix is

defined as:

CN×(2K−1) ,


(c0)T

(c1)T

...

(c(N−1))T

 ,
[
c−(K−1) c−(K−2) . . . cK−2 cK−1

]
(2.4)

In this thesis, uncorrelated scattering assumption is used, i.e. ck are assumed to be

uncorrelated from each other. This can be shown as:

rck,l [m] , E
{
cnk(cn−ml )∗

}
= E

{
cnk(cn−mk )∗

}
δk−l (2.5)

where δ is the Kronecker Delta function and (∗) is the complex conjugate operator.

The second expectation in Eq. (2.5) can be defined as the autocorrelation function of

the slow-time process ck, which is assumed to be a zero-mean circularly symmetric

compound complex Gaussian process with a nonrandom texture parameter, uncorre-

lated among fast-time. This kind of clutter processes are examined in detail in [17].

Another assumption made in this thesis is that the clutter is wide sense stationary

(WSS) in slow-time dimension. This assumption suggests that in addition to having a

stationary mean, which is zero, the second order characteristics of the slow time clut-

ter process ck is also stationary. In other words, the second expectation in Eq. (2.5),

which is the autocorrelation of the slow-time sequence ck, depends only on m, which

is the time difference between any two elements of this sequence. It can be noted that

when the time difference m is zero, the autocorrelation function becomes equal to the

average power of cnk and since it depends only on m and does not depend on n, it has

the same value for all n pulses. Consequently, the WSS assumption also states that

the average power of the slow-time process ck is also stationary.

Since the clutter process is zero-mean, its variance can also be depicted as its average
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power. The variance can be defined as:

τk , E {cnk(cnk)∗} = E
{
|cnk |

2} (2.6)

and it is the average power of any sample in the slow-time sequence ck. For clar-

ity, it is repeated that the average powers of the samples in the slow-time sequence

ck are the same due to the slow-time WSS assumption. For a homogeneous clutter

environment, τk will be equal for all k values, by definition, but in general the aver-

age power of clutter returns can change from a range cell to another. In such cases,

the clutter environment is called to be heterogeneous. How the heterogeneous clutter

environment is created in this thesis is explained in Section 2.2.2.

Even if the clutter environment is heterogeneous, ck are still uncorrelated and have the

same autocorrelation function shape for all k, only the average power of ck changes

with k. Then, the normalized autocorrelation function can be defined as:

rc[m] ,
E
{
cnk(cn−mk )∗

}
τk

(2.7)

which is the same for all range cells. For clarity, the expectation in Eq. (2.7) is over the

slow-time index n, which means that the defined normalized autocorrelation function

is showing the correlations between each transmitted pulse in a CPI, no matter which

range cell is being considered. On the other hand, rc[0] = 1 by the definition of τk.

In this thesis, it is assumed that both rain and sea clutter processes have Gaussian

shaped power spectral densities (PSD). For any clutter process, the PSD as a function

of regular frequency is denoted as Sc(f) and is given by the famous formula:

Sc(f) =
1

σ
√

2π
exp

(
−(f − µ)2

2σ2

)
(2.8)

which forces the previously defined rc[m] to be in the form of:

rc[m] = ej2πµ(mT )e−2π2σ2(mT )2 (2.9)

where T is the PRI of the radar system and µ and σ2 are the mean and the vari-

ance of the Gaussian shaped PSD, Sc(f), respectively. The autocorrelation function

in Eq. (2.9) can be considered as the samples taken from the continuous time auto-

correlation function at sampling period T . In general, the sea and the rain clutter

have different mean and variance parameters, therefore rcsea [m] and rcrain [m] are two
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different autocorrelation functions whose Fourier transforms are Gaussian functions

with means µsea and µrain, and variances σ2
sea and σ2

rain, respectively.

The autocorrelation sequence defined in Eq. (2.9) form = 0, 1, . . . , (N−1) can easily

be turned into an autocorrelation matrix using the fact that autocorrelation matrices

have Toeplitz structure. The autocorrelation matrix Rc and a new operator Toeplitz

is defined as:

Rc , Toeplitz(rc[m]) (2.10)

so that

Rc(i, j) , rc[i− j], for i, j = 0, 1, . . . , (N − 1) (2.11)

It should be noted that the diagonal elements of Rc are equal to unity because of the

normalization done in the definition of rc[m] in Eq. (2.7).

Rcsea and Rcrain are the slow-time autocorrelation matrices of the two clutter pro-

cesses which are statistically independent. Let τ seak denotes the average power of the

sea clutter process at kth range cell, and τ raink be the same entity for the rain clut-

ter. Then, the autocorrelation of the sum of these two clutter processes is equal to

τ seak Rcsea + τ raink Rcrain . At the receiver, there is also a white noise process which

is also independent from the other interference sources. The autocorrelation of this

white noise process is IN , which is the N×N identity matrix, after the normalization

with the white Gaussian noise PSD usually called as N0. However, the characteristics

of the interference at the receiver cannot be found by simply adding the two matrices

corresponding to the clutter echoes and the identity matrix corresponding to the white

noise. This is because in contrast to additive white noise, the clutter echoes do depend

on the pulse code used.

Throughout this thesis, it is assumed that the clutter does not fold over, or the clutter

folding is eliminated properly. This means that the received signal from a range

cell consists of only the echo of the last pulse transmitted, without any effect of the

previously transmitted pulses.

In the next section, the statistical distribution used for τk in heterogeneous clutter case

is explained in detail.
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2.2.2 Statistical Model of the Clutter Power in Heterogeneous Clutter Environ-

ments

The proposed detector of this thesis is claimed to work well with little amount of

secondary data, therefore it pays for its complexity mostly in heterogeneous clutter

environments where large number of secondary cells cannot be used in the adaptation

process. This is why examining the case where the clutter power is changing from

one range cell to another is essential for featuring the significance of the work done.

With this aim in this section, it is clarified that how the heterogeneity of the clutter

environment is constructed in this thesis.

As specified in Section 2.2.1, the clutter process has a compound-Gaussian distribu-

tion with a nonrandom texture parameter, τk. A random process having compound-

Gaussian distribution means that the random process is distributed with a Gaussian

distribution with one or more parameters being also random. The clutter process is

assumed to be uncorrelated in the fast-time domain, with the uncorrelated scattering

assumption. Therefore, only the first order statistics of the fast-time clutter process

is of importance. The clutter is also assumed to be zero-mean, so only the power

(variance) of it is of importance.

As they are previously defined, the power of the fast-time samples of the clutter pro-

cess is called as τk and τ seak and τ raink are the powers of sea and rain clutter samples,

respectively. In this thesis, τ seak and τ raink are considered to be deterministic constants

and they are called as the scaling parameters of the clutter power. However, another

parameter called texture parameter defines how this power is distributed among fast-

time. The texture parameter is called as wk and wk is assumed to be a realization of

the random variable W for each range cell. In this thesis, W is chosen to be Weibull-

distributed with probability distribution:

fW (w;λ,m) =


m
λ

(
w
λ

)m−1
e−(w/λ)m , w ≥ 0

0 , w < 0
(2.12)

where m > 0 is called as the shape parameter and λ > 0 is called as the scale

parameter of the distribution. The shape parameter is also abbreviated as SP in some

parts of this thesis for convenience. A special case of Weibull distribution is when the
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shape parameter m = 1, reducing the pdf to an exponential pdf with rate parameter

λ. The mean of the Weibull distribution is given as:

E{W ;λ,m} = λΓ(1 + 1/m) (2.13)

where Γ(.) is the famous gamma function which is given as:

Γ(z) =

∫ ∞
0

xz−1e−xdx (2.14)

In order to make the mean of the Weibull distribution be equal to unity, a shape

parameter is chosen and the corresponding scale parameter is calculated by using:

λ =
1

Γ(1 + 1/m)
(2.15)

with the given shape parameter m. During the research, different m values are exam-

ined and it is seen that as m increases, the random variable W becomes nearer and

nearer to a deterministic value of 1. On the other hand, as m decreases and becomes

closer to zero, the number of “spikes" in the realizations increases and to compensate

for this increase in the mean, other realizations decrease in the value. This create the

effect of heterogeneity; the clutter value can be small in one range cell but it can have

a spiky value in the next range cell. As a result, it is observed that decreasing the

shape parameter m increases the heterogeneity of the clutter texture.

As it is described in the previous paragraphs, the average power of the clutter pro-

cesses are handled with τk parameters and how this power is distributed among fast-

time is handled with wk parameters. In order not to change the long-term average

power of the clutter processes, wk is chosen to have a unity mean. This way, the long

term average power of the clutter processes are handled only with τk but in each real-

ization (for each individual CPI) the power of the clutter process for each range cell

depends on both τk and wk.

It should be noted that wk does not vary for sea and rain clutter, it multiplies both

processes. This means that in a heterogeneous clutter environment, in each range

cell, the power of the sea clutter is given as wkτ seak and the power of the rain clutter

is given as wkτ raink . This is an assumption made in this thesis and it may not be valid

in real scenarios. On the other hand, assigning different power levels to sea and rain

clutter means changing the slow-time autocorrelation structure of the clutter process

in each fast-time cell, which is out of the scope of this thesis.
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Another note should be that wk are assumed to be uncorrelated among different range

cells and CPIs. For the scenarios including land clutter, this assumption is not valid

in most cases because the texture of the earth remains the same for very long times.

However the texture of the sea surface is mostly determined by the sea waves, which

are assumed to occur independently in different range cells and CPIs. Since the sce-

nario of this thesis includes only sea and rain clutters, assuming that wk are uncorre-

lated is considered to be convenient.

As the final discussion, all the explanations about wk are useful only in heteroge-

neous clutter case. If the clutter environment is homogeneous, wk = 1 for all K

range cells and the average powers of the clutter returns are denoted as τk = τ and it

is a deterministic constant. However in heterogeneous clutter case, in order to keep

the notation as simple as possible, the average powers of the clutter returns are again

notated as τk with a difference that τk is now a Weibull-distributed random variable.

It is needed that the reader distinguishes between the homogeneous and the hetero-

geneous cases and perceives the difference between the deterministic constant τk and

the random variable τk.

Up to here in this chapter, both fast and slow-time characteristics of the clutter and

noise processes are examined, and the target signal’s slow-time behavior is described.

To give a big picture of the radar system including the target signal, clutter and noise

vectors, a general system model is provided in the next section.

2.2.3 Clutter Process in the System Model

In this section, the system model between the transmission of the radar pulse and the

reception of it is given in a compact form for a clear understanding of how clutter

process is being involved in the overall radar system.

In Fig. 2.2, the system model between the transmission and the reception of the nth

radar pulse is given. The scenario in this thesis assumes a co-located radar system but

for clarity, transmitter and the receiver are separated in Fig. 2.2. The transmitter uses

b as the pulse code vector as previously described. If the time index of the discrete

time processes is chosen as k keeping the convention, the discrete time sequence of
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transmitted pulses can be written as {bk}. Here, {bk} denotes the whole pulse code

sequence, the kth element of this code is, on the other and, denoted as bk as the pre-

vious convention. Since the clutter signals are actually the echoes of the transmitted

pulse, the clutter process can be considered as a channel between the transmitter and

the receiver. This channel can be described by its impulse response, which is denoted

as {cnk}. It should be noted that the time index of this sequence is k, n is a constant in

this discussion and only represents which pulse is transmitted. If there is a target in

the cell which is being tested, namely if the hypothesis 1 is true, then the transmitted

pulse is also reflected back from that target. This is why the target is also considered

as a channel between the transmitter and the receiver, the impulse response of which

being denoted as {sk}. After the pulse code is convolved with the channels, the dis-

crete time white noise {nnk} is added at the receiver side to form the discrete time

observation {ynk}.
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Figure 2.2: The system model between transmitter and receiver

In the next section, the slow-time index n is also going to be varied so that the slow-

time vectors become matrices.

2.3 Matrix Notation and Hypothesis Testing Problem

In this section, the previously defined discrete time processes will be written com-

pactly in a matrix form. This will simplify the calculations and enable the usage of

some useful matrix identities. In addition to this, the hypothesis testing problem will

be given in the matrix form, which will be the basis for the detectors to be described

in Chapter 3.
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Based on the previous definitions, the received clutter signal from kth range cell due to

nth transmitted pulse is called as cnk . Following the same notation, the corresponding

interference signal, which is called as ψnk , can be defined as:

ψnk , {bk}~ {cnk}+ nnk (2.16)

where ~ is the convolution operator, nnk is the additive white Gaussian noise (AWGN)

included in ψnk and the convolution is taken over fast-time dimension:

{bk}~ {cnk} =
K−1∑
i=0

bic
n
k−i (2.17)

for k = 0, 1, . . . , (K − 1). This operation can also be written in a vector and matrix

multiplication form, using the previously defined (cn)T , which is a row vector whose

kth entry is cnk , for k = −(K−1), . . . ,−1, 0, 1, . . . , (K−1). The convolution matrix

of b can be defined as:

B ,



bK−1 0 . . . 0

bK−2 bK−1 . . . 0
...

...
...

...

b0 b1 . . . bK−1

0 b0 . . . bK−2

...
...

...
...

0 0 . . . b0


(2K−1)×K

(2.18)

Then, the result of the convolution operation in Eq. (2.17) is the kth element of

(cn)TB, which is a row vector containing K clutter returns received at the receiver.

The above operations can be done for all N pulses without any change. Then, com-

bining the row vectors for different pulses together, the observed clutter matrix at the

receiver side becomes:

Ψ , CB + N =
[
ψ0 ψ1 . . . ψK−1

]
(2.19)

where

N ,
[
n0 n1 . . . nK−1

]
(2.20)

and the columns of the N ×K matrix N are the independent, identically distributed

additive white Gaussian noise vectors nk. C is the N × (2K − 1) matrix of clutter
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responses whose columns are independent, identically distributed random vectors ck,

as previously defined. Then, the kth column of Ψ, ψk, consists of a linear combina-

tion of the kth column and the previous K− 1 columns of C, the coefficients of these

columns being the elements of the pulse code b, and the white Gaussian noise added

in the receiver side. To be more clear:

ψk ,
K−1∑
i=0

bick−i + nk (2.21)

Thus, it can be noted that Eq. (2.19) is the matrix form of Eq. (2.16).

An important note should be that after being convolved with the pulse code b, the

clutter process loses its uncorrelatedness among fast-time. That is, even if the uncor-

related scattering assumption is made (ck are uncorrelated), ψk are correlated. This

phenomenon is going to be explained in more detail in Section 2.3.2.

2.3.1 Hypothesis Testing

In this section, it will be explained that how the detection operation is conducted. The

radar detection operation is a binary detection in which the two options from which

the selection is done are the existence of a target at the investigated cell and the lack

of one. Conventionally, the hypothesis which argues that there exists a target is called

as H1 and the opposing hypothesis is called H0.

Following the ongoing notation, the hypothesis testing for each range cell becomes:

H0 : yk = ψk, k = {0, 1, . . . , K − 1}
H1 : yk = ρdφbk +ψk, k = {0, 1, . . . , K − 1}

(2.22)

where yk is the N -element observation vector taken at kth range cell, ψk vectors

are zero-mean circularly symmetric compound complex Gaussian vectors correlated

among fast time with covariance matrix:

Rψk
, E

{
ψkψ

H
k

}
(2.23)

and ρ corresponds to the unknown, non-random signal-to-noise-ratio (SNR). Since b

is a unit-norm vector, all SNR information is included in ρ parameter.
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We can collect all K observation vectors into an observation matrix and redefine

the hypothesis test in matrix form. Define Y ,
[
y0 y1 . . . yK−1

]
and recall

Ψ =
[
ψ0 ψ1 . . . ψK−1

]
. Then, the hypothesis test becomes:

H0 : Y = Ψ

H1 : Y = ρdφb
T + Ψ

(2.24)

2.3.2 Statistics of the Interference Matrix

It can be shown that the convolution operation in fast-time does not affect the structure

of the slow-time autocorrelation function of the received clutter signals. To explain

this statement with an example, it is reminded that the (not-normalized) autocorrela-

tion matrix of the clutter returns from kth range cell was given as τkRc previously.

The statement suggests that after convolving the clutter process with the pulse code,

the autocorrelation of the kth column of the matrix CB will be αkRc where αk is the

average power of the convolved clutter process at kth range cell. It will also be shown

that this new average power αk will be a function of the pulse code b and the average

powers of the unprocessed clutter processes, τk, for k = k − (K − 1), . . . , k.

In order to examine the effects of the fast-time convolution operation on the statistical

properties of the interference, the first step is to define the diagonal matrix T and the

operator diag so that:

T , diag{
√
τk}K−1

k=−(K−1) (2.25)

where kth diagonal entry of T is
√
τk, for k = −(K− 1), . . . , (K− 1). Note that this

T matrix is assumed to be invertible, meaning that the clutter echo coming from any

range cell has nonzero power. Then, the normalized clutter return matrix C′ can be

defined as:

C′ , CT−1 (2.26)

so that

C = C′T (2.27)

where the power of each column of C′ is 1. The next step is to rewrite the observation
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matrix in Eq. (2.19) with this new notation and using vectorization:

η , vec(Ψ) = vec(C′TB + N)

= vec(C′TB) + vec(N)

=
(
(TB)T ⊗ IN

)
vec(C′) + vec(N) (2.28)

where IN is the N × N identity matrix as defined before and ⊗ is the Kronecker

product operation. The last two equations in Eq. (2.28) are useful properties of vec-

torization operation and their proofs exist in the literature [18]. The η vector consists

of each column of Ψ matrix concatenated vertically. Then, the autocorrelation matri-

ces of the columns of Ψ matrix can be investigated by examining the autocorrelation

matrix of the η vector. Writing the autocorrelation matrix of η yields:

Rη = E
{
ηηH

}
=
(
(TB)T ⊗ IN

)
E
{
vec(C′)vec(C′)H

} (
(TB)T ⊗ IN

)H
+ INK (2.29)

=
(
(TB)T ⊗ IN

)
(I2K−1 ⊗Rc) ((TB)∗ ⊗ IN) + INK (2.30)

=
(
BTT2B∗ ⊗Rc

)
+ INK (2.31)

where a number of mathematical properties are used. In Eq. (2.29), the uncorrelat-

edness of the white noise processes for different range cells and uncorrelatedness of

clutter and noise processes are used. In Eq. (2.30), the uncorrelatedness of the clutter

processes for different range cells is used to form the block diagonal matrix. The fact

that Hermitian of the Kronecker product of two matrices is the Kronecker product of

the Hermitian of these matrices is also used in this equation. Finally in Eq. (2.31), the

associativity property of the Kronecker product is used.

Returning to the investigation of the statistical properties of interference, the autocor-

relations of the observation vectors ψk are the N ×N block matrices on the diagonal

of Rη. It can be seen in Eq. (2.31) that each of theseK blocks have the same structure,

which is Rc + IN , and different multipliers of Rc which are the diagonal elements of

BTT2B∗. Furthermore, the kth diagonal element of BTT2B∗ can be written as the

norm-square of the kth column of (TB)∗ or simply TB because conjugation does not

change the result of the norm-square. Left multiplying B with the diagonal matrix

T multiplies its rows with the diagonal elements of T, which are
√
τk. In the other

perspective, right multiplying T with B means convolving the columns of T with the
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pulse code b. These perspectives help understanding the effect of the pulse code on

the received clutter processes. Either one way or another, the resultant multiplier of

the kth diagonal block of Rη is denoted as αk and written as αk =
∑K−1

m=0 |bm|2τk−m,

for k = 0, 1, . . . , (K − 1). Consequently,

Rψk
= αkRc + IN , for k = 0, 1, . . . , (K − 1) (2.32)

If the clutter environment is homogeneous, τk term will lose its dependence on k and

αk = τk = τ will be satisfied for all k because the pulse code is selected to be unit-

norm. Then, Rψk
will be the same for all range cells. It should be noted that these

results are applicable to both the sea and the rain clutter. It is also important to notice

that in heterogeneous environments, not only the pulse code used but also all other

fast-time processing operations applied at the receiver affects the multiplier, or power

in a sense, of the interference signals from different range cells. In fact, the same

derivations will be used in Section 3.1 while fast-time preprocessing methods will be

being explained.

As a final comment, it can be deduced from Eq. (2.31) that even if the uncorrelated

scattering assumption is made, the cross-correlations of the observations from dif-

ferent range cells will not be zero but a scaled version of Rc, due to the pulse code

used. If it was possible to find a perfect pulse code such that BTB = IK , then the

observations from different range cells would be uncorrelated. Fortunately, the pro-

posed detector in this thesis, which is a modified adaptive Kelly detector, uses only

the slow-time correlation structure of the observations so that it is not affected by the

fast-time correlation created by the pulse code.
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CHAPTER 3

SLOW-TIME AND FAST-TIME PREPROCESSING METHODS FOR

ADAPTIVE RADAR DETECTION

In this chapter, the signal processing stage between the reception of observations and

the detection of possible targets is explained in detail. Although the contribution of

this thesis seems to be a new fast and robust adaptive detector, the key differences

that distinguishes this detector from already existing ones are the signal processing

operations performed before the detection operation. This is why elucidating these

pre-detection signal processing operations, namely the preprocessing operations, is

necessary for enlightening the main focuses of this thesis, which are the improve-

ments made on the existing detectors.

The predefined observation matrix Y is preprocessed before entering the detection

stage both in fast-time and slow-time dimensions in order to increase the performance

of the detection. The term "fast-time preprocessing" implies that the operations will

be implemented to the columns of Y because each column represents the echoes from

different range cells, which are sampled in fast-time. Since it is a column operation,

fast-time preprocessing can be implemented with the right multiplication of Y with

a matrix which implements a fast-time filter, such as matched filter. Similarly, the

term "slow-time preprocessing" means that the operations are conducted on the rows

of Y because each row represents the echoes of different pulses, which are sampled

in slow-time. Because slow-time preprocessing is a row operation, it can be imple-

mented via the left multiplication of Y with a matrix which implements slow-time

filtering, such as a Doppler filter bank.

The dimensions of the fast and slow-time preprocessing matrices are important in the

context of this thesis. The number of columns of the fast-time preprocessing matrix
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determines the number of range cells that the detector will use other than the cell

under test, which are also called as secondary cells. The number of rows of the slow-

time preprocessing matrix determines the dimension of these secondary cells. If there

are enough number of useful secondary cells which the detector can use to estimate

the interference characteristics, the detector performance will reach to its probabilis-

tic limits. However, when the interference characteristics change rapidly in fast-time,

the number of useful secondary data cannot be large enough to achieve those limits.

It is known that especially when there is a small number of secondary cells available,

reducing the dimension of the secondary data helps improving the detection perfor-

mance [19]. Nonetheless, the dimension reduction operation is not optimized when

the clutter is heterogeneous. Unlike the conventional reduced dimension techniques

like Post-Doppler processing, the detector proposed in this thesis finds the dimen-

sion reducing matrix by a generalized eigenspace (GES) operation with the help of

a parametric spectral estimation method. This detector pays for its complexity by

increasing the detection performance, which will be shown in Chapter 5.

In the following sections, the fast and slow-time preprocessing methods will be ex-

plained separately.

3.1 Fast-Time Preprocessing

In radar signal processing, the fast-time processing, which is applied on the fast-time

samples of the received echo signals, is usually used for integrating the energy of the

meaningful waveform against the white noise and for determining the distance of the

targets from the radar system. In the context of this thesis, the range detection is not

important thus it will not be explained in detail, but the main focus is on the determi-

nation of the existence of targets. For this purpose, however, the energy integration

plays an important role.

An example of a basic radar detection case will help explaining the more complex

situations. If there is only a target but no clutter in front of the radar system, the

radar pulse will be reflected back from the target and sampled at the receiver at some

time which is not important. If the received signals are filtered with the matched
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filter of the pulse, the autocorrelation sequence of the pulse code will be observed at

the resultant signal. Considering the sampling at the receiver is done in correct time

instants, the cell under test (CUT) will include the peak value of this autocorrelation

sequence. In addition, this value will be equal to the total energy of the pulse code.

This is the well-known matched filtering operation, and it is known for increasing

the signal to noise ratio optimally, only when the sampling times are correct and the

system is under white Gaussian noise.

Despite its optimality in increasing SNR at the CUT, matched filter also produces

some unwanted distortions in the secondary cells. The autocorrelation sequence of

the pulse code b does not reduce to zero at the finite lags. This means that if there is a

target at kth range cell, after matched filtering, it will result in nonzero autocorrelation

value at the cells between k − (K − 1) and k + (K − 1), K being the pulse length.

This may create a problem if an adaptive detector would use those secondary cells

to estimate the interference characteristics at the CUT because those cells contain

information about not only the interference but also the target itself. This effect is

called target contamination on the secondary cells, and it is a direct result of matched

filtering with finite code lengths.

Target contamination on secondary cells is shown to be an important problem when

the estimated Doppler frequency of the target is not correct, namely when there is a

Doppler mismatch [20].

In the following two sections, the application of the matched filter and another fast-

time preprocessing method using unitary transformation will be investigated. After

these, the effect of fast-time preprocessing on the slow-time characteristics of the

observations is going to be explained.

3.1.1 Matched Filter

The matched filtering is known as convolving a known signal with its time-reversed

conjugate. This convolution operation can be implemented via using matrix notation,

as described in Section 2.3. In that section, B matrix is defined as the convolution

matrix, which convolves the matrix it is multiplied from right with the pulse code
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vector b. Define a new matrix Qm, the subscript m denoting the matched filter:

Qm ,



b∗0 0 . . . 0

b∗1 b∗0 . . . 0
...

...
...

...

b∗K−1 b∗K−2 . . . b∗0

0 b∗K−1 . . . b∗1
...

...
...

...

0 0 . . . b∗K−1


(2K−1)×K

(3.1)

It can be seen that Qm has the same structure with B and the only difference is that

Qm is constructed with time reversed conjugate of b instead of b itself.

It should be noted that Qm cannot directly multiply the observation matrix Y from

right because Y has onlyK columns. In order to make this multiplication possible, Y

matrix should be concatenated from right withK−1 zero columns. If the observation

matrix after fast-time filtering is denoted as Y and fast-time preprocessed observation

vectors are denoted as yk, then:

Y ,
[
y0 y1 . . . yK−1

]
,
[
Y 0N×(K−1)

]
Qm (3.2)

for matched filtering. In order for compactness, the explicit notation of zero vectors

will be omitted and matched filtering will be denoted as YQm. Whenever the reader

sees YQm, s/he should understand that this is just a simple notation and the dimension

mismatch between Y and Qm is handled with zero-padding.

It is well known that in non-random parameter estimation under additive Gaussian

noise, using matched filter (whitening matched filter for colored interference) yields

the sufficient statistic, if the covariance matrix of the interference is exactly known.

However in the scope of this thesis, the detectors do not know the covariance matrix of

the interference, Rψ, rather they use an estimate of Rψ to realize the hypothesis test.

In problems like this, matched filtering operation may not be the most suitable fast-

time preprocessor. Indeed, it is shown that another fast-time preprocessing method

based on a unitary transformation works better than the matched filter, especially

increasing the robustness to the target Doppler mismatch [20]. In the next section,

this new fast-time preprocessing method will be explained.
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3.1.2 Unitary Transform

In the previous section, it is stated that the matched filter is optimal when there is no

Doppler mismatch. However under Doppler mismatch, the target contaminates the

secondary cells and decrease the performance of the radar system if matched filter

is used. In order to eliminate the target contamination on secondary cells, another

fast-time processing method is proposed in the literature [20]. This fast-time prepro-

cessing matrix is unitary, meaning that the columns of this matrix are uncorrelated

and each has unit power. Choosing a unitary matrix as the fast-time filter is com-

pletely optional but it simplifies the power calculations as all the information about

power can be combined into one term. Since the proposed preprocessing matrix is a

unitary one, it is denoted as Qu, and it is defined as:

Qu ,
[
b∗ b⊥1 . . . b⊥K−1

]
K×K

(3.3)

where b⊥k for k = 1, 2, . . . , (K − 1) are orthonormal to the b∗ vector, which is the

complex conjugate of the pulse code. That Qu is unitary can be shown as:

QH
u Qu = IK (3.4)

because b and all the other vectors orthonormal to it are unit-norm. Then, the fast-

time preprocessed observation matrix and vector becomes:

Y ,
[
y0 y1 . . . yK−1

]
, YQu (3.5)

for filtering with this unitary transform. An important point which is needed to be

noted here that this observation matrix Y represents a bunch of observations collected

through a range window used to preprocess the CUT. For example, if kth range cell

is the CUT, then the range cells from k to k + K − 1 are combined into the matrix

Y and multiplied with Qu from right. After the processing for kth range cell is over,

the CUT becomes (k + 1)st range cell and the unprocessed range cells from k + 1

to k + K are combined into the matrix Y and multiplied with Qu from right. Then,

the reconstruction of Y goes on in a similar fashion via the sliding window for other

possible CUTs. The range cells outside this window are ignored in the processing of

the CUT even if they may possibly carry some useful information.

It should be noted that Qu is not essentially a convolution matrix; therefore, this kind

of fast-time preprocessing cannot be represented as a single filtering operation like in
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the case of matched filtering. On the contrary, multiplying the observations with Qu

can be considered as taking the inner product of each range cell under consideration

with different K-length vectors. The inner product of a range cell with a K-length

vector can also be considered as applying a K-length filter to that range cell and

taking the Kth element of the result. In this point of view, the filter output at the CUT

is the same as the matched filter output, and the other range cells are filtered with

different filters, all being orthogonal to the matched filter.

It should also be noted that the first column of Qu is the same as the first column of the

matched filter Qm, except for the zero terms in Qm needed for convolution operation.

This is the optimality of matched filter, that is, if there is a target echo in the received

signal, it will create the maximum amount of energy if it is filtered with its conjugate.

However, the other columns of Qu are orthonormal to b, so if there is a target echo in

the secondary cells, it will give zero energy if it is filtered with vectors orthonormal to

it. Using such a matrix as the fast-time preprocessor, the target signal contamination

on the secondary cells are eliminated, increasing the detector robustness to the target

Doppler mismatch. This kind of fast-time preprocessing also increases the slow-time

preprocessing performance because the slow-time covariance matrix of the interfer-

ence is better estimated using target contamination free secondary cells rather than

contaminated ones.

In this kind of preprocessing, it is assumed that the echo signal from the target is the

same as the pulse code used. In reality, the target echo has an extra phase term due to

the radial velocity of the target, namely Doppler effect. However in this thesis, stop-

and-hop assumption is used. This assumption states that the targets stop moving just

after the pulse is transmitted and remain constant until the pulse reaches the receiver.

This way, the Doppler shift of the pulse code is eliminated. It should be noted that this

assumption is only valid when the pulse length is small enough, which is considered

to be true in this thesis.

A final note on the fast-time preprocessing method should be that it does not consider

the case in which there are targets in the secondary range cells. This method tries

to purify the secondary cells only from the contamination of the possible target in

the CUT. If there are targets in the secondary cells, the fast-time preprocessor does
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nothing to eliminate them, and the overall processor treats those targets as interference

sources. This scenario is not investigated in this thesis, relevant to the single target

assumption.

As described in Section 2.3.2, multiplying the interference matrix with another matrix

from right keeps the covariance structure of the interference the same but may change

the power of the interference vectors from different range cells differently. Since the

fast-time preprocessing is applied as a right-multiplication, it has the same effect on

the observation matrix. In the next section this effect will be highlighted.

3.1.3 Effect of Fast-time Preprocessing on the Slow-time Characteristics of the

Interference

The received interference signals are collected in the matrix Ψ and multiplied with

the fast-time preprocessing matrix Q from right in the receiver. Ψ is defined as the

fast-time preprocessed interference matrix:

Ψ , ΨQ (3.6)

whose columns are fast-time preprocessed interference vectors:

ψk , ΨQ(:, k) (3.7)

where Q(:, k) represents the kth column of Q. Applying the same procedure used in

Eq. (2.28), the vectorized form of Ψ can be written as:

η , vec(Ψ) = vec(ΨQ)

=
(
QT ⊗ IN

)
vec(Ψ) =

(
QT ⊗ IN

)
η (3.8)

Following the same steps in Eqs. (2.29) to (2.31):

Rη , E
{
ηηH

}
=
(
QT ⊗ IN

)
E
{
ηηH

} (
QT ⊗ IN

)H
=
(
QT ⊗ IN

) ((
BTT2B∗ ⊗Rc

)
+ INK

)
(Q∗ ⊗ IN)

=
(
QT ⊗ IN

) ((
BTT2B∗ ⊗Rc

)
+ (IK ⊗ IN)

)
(Q∗ ⊗ IN)

=
(
QTBTT2B∗Q∗

)
⊗Rc +

(
QTQ∗

)
⊗ IN (3.9)
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The first term in Eq. (3.9) is similar to the first term in Eq. (2.31), and it corresponds to

the clutter part of the interference. It shows that each of the autocorrelation matrices

of the fast-time preprocessed interference vectors ψk, which are the N × N block

diagonal matrices of the Rη, has the same structure Rc for the clutter part. On the

other hand, the power of the clutter process in the kth range cell is the kth diagonal

element of the matrix QTBTT2B∗Q∗, which is equal to the norm square of the kth

column of the matrix TBQ.

The second term in Eq. (3.9) is the noise part of the autocorrelation matrix of the

fast-time preprocessed interference matrix. This term suggests that if Q is a unitary

matrix, which is the case in this thesis, QTQ∗ = IK and therefore the fast-time pre-

processing operation affects neither the power nor the structure of the autocorrelation

matrix of the noise process.

In the next section, the slow-time preprocessing method used in this thesis will be

thoroughly described, along with some theoretical discussions and the comparison

between the proposed method and the conventional counterpart of it.

3.2 Slow-Time Preprocessing

In order to increase the performance of the detector against the clutter, or more gener-

ally the interference, some slow-time operations can be applied to the raw observation

data before it is fed to the detector. These operations are called as slow-time prepro-

cessing, and they are implemented as a left multiplication in the notation of this thesis.

Throughout this thesis, the slow-time preprocessing matrix is denoted as U, and this

processing is applied to the observations via UHY. U is, in general, an N ×D ma-

trix, so that after the slow-time preprocessing, the observations from each range cell

becomes D-element vectors. This means that the slow-time preprocessing operation

takes the observations from the N -dimensional observation space and map them to

a D-dimensional subspace of it. D is called as the dimension of the subspace, and

naturally, D ≤ N .

The selection of aD-dimensional subspace inside anN -dimensional one is a problem
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with various solutions. The main consideration in the solution of this problem should

be increasing the detector performance. To this aim, it is clear that the selection must

be in such a way that the echoes coming from the targets must be inside the selected

subspace, as they are the signals which are to be detected. Besides this, if the detec-

tor will not use any other interference suppression techniques, the subspace should

include as little interference signal as possible. On the other hand, if the detector

will implement another interference suppression technique and it needs to estimate

the interference characteristics, then an amount of interference must be included in

the selected subspace in order for the detector to make the correct estimations. An

example of such a detector is the adaptive Kelly detector which uses the data from

secondary range cells for the estimation of interference statistics in CUT, to suppress

the unwanted signals. If the subspace that adaptive Kelly detector works on includes

only the useful target signals, then the detector will make a wrong interference esti-

mation and suppress this useful signals.

The previous discussion showed that the slow-time preprocessing matrix depends on

the type of the detector, the dimension of the subspace and how that subspace is

selected. Fortunately, there are some optimal methods found in the literature which

helps selecting the correct slow-time preprocessing matrix [20]. In the next section,

an optimal subspace construction method, its optimality limitations and its role in the

proposed detector in this thesis will be explained.

3.2.1 Optimal Right Subspace Construction for Parametric Clutter Models:

Dimension Reduction with Generalized Eigenspace

Generalized eigenvalue problem of two matrices A and B tries to find the generalized

eigenvectors en and corresponding generalized eigenvalues λn which satisfy:

Aen = λnBen (3.10)

The generalized eigenvalue problem is, as its name suggests, a general problem and

it can be reduced to simpler problems in some special cases. One such case, which is

used in the scope of this thesis, is the one in which B is invertible. In that case, the
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generalized eigenvalue problem can be rewritten as:

B−1Aen = λnen (3.11)

which is the standard eigenvalue problem for B−1A. Intuitively, this eigenvalue prob-

lem finds the basis vectors of a space which is away from B and near to A. This oper-

ation is also mathematically proved to be the optimal dimension reduction technique

with respect to several criteria when A is selected to be the target signal’s covariance

matrix and B is selected as the covariance matrix of the interference [20].

Since the resultant eigenvectors of generalized eigenvalue problem can be considered

as the basis vectors of a vector space, the operation of finding the generalized eigen-

vectors of two matrices is also called as Generalized Eigenspace (GES) operation and

this notation is used throughout this thesis.

In this thesis, the GES operation is used imperfectly in finding the optimum slow-time

preprocessing matrix. In order to make use of the optimality of the GES operation, the

detector must know the target signal and interference covariance matrices perfectly.

However, both the exact velocity of the target and the interference characteristics are

unknown at the receiver side, so the estimations of the covariances must be used in

the detector.

Throughout this thesis, all estimations are denoted with a hat (̂) symbol above the

estimated variable’s name. Following this notation, the estimation of the interference

covariance matrix (ICM) is denoted as R̂ψ and the estimation of the target signal’s

covariance matrix is denoted as R̂s. The estimation processes will be explained later

in Section 3.2.3. The N generalized eigenvectors of R̂s and R̂ψ are found by solving

for en the generalized eigenvalue problem:

R̂sen = λnR̂ψen (3.12)

If the N eigenvalues are sorted in descending order such that λ1 > λ2 > . . . > λN ,

then, concatenating the eigenvectors corresponding to the largestD eigenvalues gives

the dimension reducing matrix proposed to be used in slow-time preprocessing:

U = [e1 e2 . . . eD] (3.13)

It should be noted that if R̂ψ is invertible, the generalized eigenvectors of R̂s and R̂ψ

are also the eigenvectors of (R̂ψ)−1R̂s. Therefore intuitively, the U matrix represents
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a subspace which escapes the estimated interference space and includes the estimated

target signal space. The optimality of this kind of slow-time preprocessing must be

checked in future works.

In the next section, a simpler and widely used dimension reduction technique for

slow-time preprocessing will be explained. This technique does not need an estima-

tion of interference subspace by itself, so it is a non-adaptive technique and it works

faster than the proposed adaptive technique. Comparing the detection performances

of these two methods is thus essential for the sake of the significance of the proposed

slow-time preprocessing technique in this thesis.

3.2.2 Conventional Non-Adaptive Technique Based on DFT Subspace: Post-

Doppler Processing

Even if the slow-time characteristics of the interference are not known or estimated,

the dimension reduction can be done by using simpler non-optimal dimension reduc-

tion matrices. One such matrix is the DFT matrix and the technique using DFT matrix

to reduce the dimension of the observations is called as Post-Doppler Processing. Be-

fore getting in the details of this technique, the DFT matrix should be defined.

The dφ vector defined in Eq. (2.2) was written in terms of the phase difference of the

two consecutive slow-time samples when the target is moving radially with respect to

the radar system with a Doppler frequency fd. The same vector is rewritten here with

the name of dfd in terms of the target Doppler frequency fd in order to investigate the

DFT matrix:

dfd =


ej2πfd(0/PRF)

ej2πfd(1/PRF)

...

ej2πfd((N−1)/PRF)

 =


1

ej2πfdT

...

ej2πfd(N−1)T

 (3.14)
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The structure of the dfd vector can be used to construct a Vandermonde matrix:

UDFT =
[
d0 d1/NT d2/NT . . . d(N−1)/NT

]
(3.15)

=



1 1 1 . . . 1

1 ω1.1 ω1.2 . . . ω1.(N−1)

1 ω2.1 ω2.2 . . . ω2.(N−1)

...
...

... . . . ...

1 ω(N−1).1 ω(N−1).2 . . . ω(N−1).(N−1)


(3.16)

where ω = ej2π/N . The UDFT matrix is called as the DFT matrix because for an N -

element vector v, (UDFT )Hv operation gives the N -element Discrete Fourier Trans-

form of v. The columns of UDFT are called as the first DFT bin, the second DFT bin,

etc.

In radar signal processing, each DFT bin is actually a steering vector of its corre-

sponding frequency. That is, if the N slow-time samples are taken with a sam-

pling period T , the nth DFT bin is the steering vector of the Doppler frequency

fd = ((n − 1)/NT ) for n = 1, 2, . . . , N . On the other hand, the DFT bins can

also be considered as the matched filters for the echo signals coming from the targets

whose Doppler frequencies are exactly the multiples of 1/NT = PRF/N .

In post-Doppler processing, the dimension reduction operation is conducted by using

a matrix whose columns are some of the DFT bins. For example, if the target Doppler

frequency is estimated to be 1/NT and the dimension in which the observations are

to be reduced is 5, then, the dimension reducing matrix will be:

U =
[
d(N−1)/NT d0 d1/NT d2/NT d3/NT

]
(3.17)

The periodicity of the DFT bins can be seen in Eq. (3.17), as the first Doppler bin

is preceded by the last one in the increasing order of frequencies. This periodicity is

caused by nothing but the periodicity of discrete-time complex exponentials with 2π.

The U matrix, when applied to the fast-time preprocessed observation matrix Y,

maps the observations taken in N -dimensional space to vectors in a D dimensional

subspace. The new subspace is centered on the estimated target signal’s steering vec-

tor, making sure that the target signal is included in the subspace. The other vectors

in the subspace, whose amount is determined by the dimension of U, are included
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because the detector shall need them to estimate the interference characteristics later.

It can be deduced that in this technique, first the dimension of the observations are

reduced using the target’s estimated Doppler frequency, and then another signal pro-

cessing is done with the aim of estimating the interference characteristics and ulti-

mately eliminating the interference. Since the interference elimination is conducted

after applying a Doppler processing, the post-Doppler processing name is relevant.

Post-Doppler processing is significantly easy to implement, therefore it is a powerful

alternative reduced dimension signal processing method to the one using GES oper-

ation. However, the drawback of post-Doppler processing is its performance. When

the slow-time characteristic of the interference is not taken into consideration during

the dimension reduction, a large amount of noise is allowed into the constructed sub-

space. As it will be seen in Chapter 5, this will greatly reduce the performance of the

detectors using post-Doppler processing. Opposite to this, detectors using GES for di-

mension reduction eliminates most part of the interference already before conducting

the detection operation. This is why the detectors using GES operation outperform

the ones using post-Doppler processing as it will be seen in Chapter 5.

In the next section, it will be explained that how the GES operation is used adaptively

in the proposed detector, or specifically, how R̂s and R̂φ are constructed.

3.2.3 Adaptive Construction of Generalized Eigenspace with Parametric Spec-

tral Estimation Methods

Adaptive construction of GES requires the estimations of the signal and interference

covariance matrices, R̂s and R̂ψ. R̂s requires predicting the target’s Doppler fre-

quency, which can be done via spectral estimation methods after a successful elimi-

nation of interference. However in general, the target is assumed to have one Doppler

frequency among a number of predetermined Doppler frequencies. In other words,

a number of filters adjusted for some Doppler frequencies are constructed and the

received observations are filtered by all these filters at the same time. This kind of

filtering is called as Doppler filter bank, and it helps bypassing the estimation of tar-

get’s exact Doppler frequency while allowing an amount of mismatch between this

real Doppler frequency and the ones for which the filters are adjusted. R̂ψ, on the
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other hand, requires a more complicated spectral estimation because the interference

is not a target with a fixed Doppler frequency but instead is a cluster of different

targets whose Doppler frequencies are spread all over the Doppler frequency band

in use. Although there are lots of spectral estimation methods in the literature, the

Burg’s method [21] is the one being focused on in this thesis, due to some advantages

which are going to be highlighted in Section 3.2.3.2.

In the next two sections, the estimation processes of R̂s and R̂ψ will be explained in

detail.

3.2.3.1 Estimation of Signal Subspace

In Section 3.2.2, the steering vector for a target having Doppler frequency fd was

denoted as dfd . The conventional post-Doppler processing used this dfd vector for

different predetermined fd values. In reality, the possible values that a target’s radial

velocity can have are infinitely many. This is why the exact Doppler frequency of a

target signal, the exact fd, cannot be known at the receiver. Using Doppler filter banks

enables the radar signal processors to estimate the target’s Doppler frequency with an

error which can be reduced as much as it is required. The error in the estimated target

Doppler frequeny is called as Doppler mismatch. It should be noted that an amount of

Doppler mismatch is unpreventable in real detectors, therefore robustness to Doppler

mismatch is an important property for the radar detectors.

In the problem of this thesis, N slow-time samples are taken from each range cell,

meaning that in slow-time dimension, the observations are N -element vectors. Us-

ing a Doppler filter bank, on the other hand, is similar to taking the DFT of these

observation vectors. It is known that the number of DFT points must be larger than

or equal to N in order for the results not to be aliased [22]. Using larger number of

DFT points gives more resolution in the frequency domain, decreasing the maximum

possible Doppler mismatch, in exchange for the receiver complexity. The main goal

of this thesis is proposing a radar detector which works with high-performance and

high-speed at the same time, so the minimum number of Doppler filters are used in

the scope of this thesis. In other words, there are N Doppler filters at the receiver side

which are placed uniformly on the frequency axis in this thesis.
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The first filter in the Doppler filter bank is assumed to be placed on zero frequency

(DC filter). If the filter frequencies in the Doppler filter bank are denoted as fi, then:

fi = i/NT , i = 0, 1, . . . , (N − 1) (3.18)

The radar detector filters the incoming observation data from each range cell using all

N Doppler filters separately and produces N decisions about a target’s existence. If

any of the decisions are “1", the detector claims “there is a target" in the corresponding

range cell. The detector is not working as a target velocity estimator in the scope of

this thesis, therefore it is not important in which filter frequency the detector finds a

target. This detection rule can also be considered as the detector gives a “1" if the

filter output with maximum SINR results in a “1", and “0" otherwise. This is because

the higher the SINR in the filter output, the more possible the detector claims the

existence of the target. If the highest-SINR filter results in a “no target" decision,

other filters make the same decision for sure.

Each target steering vector dfd has the highest correlation with the Doppler filter

whose frequency fi is the closest to fd. That is, if a target has fd = 3.2/NT and fi

are selected as in Eq. (3.18), the filter with fi = 3/NT gives the highest correlation

with fd, and consequently this filter’s decision will be dominant decision among all

filters. If the target has fd = 3.6/NT , then the decision of the target with fi = 4/NT

would dominate. It is assumed that if the target has exactly fd = 3.5/NT , whether

the 4th or the 5th filter dominates is not important, those two would give the same

results anyway.

From a different point of view, each filter in the Doppler filter bank is responsible

for filtering the target signals whose Doppler frequencies are nearest. Then for each

Doppler filter, the possible values of target signal’s Doppler frequency are limited.

Following this reasoning, the ith filter in the filter bank is responsible for filtering the

target signals whose Doppler frequencies are in the interval:

Fi ,

[
fi−1 + fi

2
,
fi + fi+1

2

]
(3.19)

for i = 0, 1, . . . , N − 1. It should be noted that fN = f0 and f−1 = fN−1 because of

the periodicity of the DFT bins.

In this thesis, the estimation of target signal covariance matrix is the average of the
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covariance matrices of the possible target steering vectors in the interval described in

Eq. (3.19). The number of covariance matrices averaged is denoted as Nf . Then, the

estimate of target signal covariance matrix for ith filter is:

R̂s,i =
1

Nf

∑
fd∈Fi

dfdd
H
fd

(3.20)

where Nf can be indefinitely large. If Nf = 1, then R̂s,i = dfid
H
fi

would be satisfied.

This estimate has a rank of only one, which is not wanted because the target sig-

nal subspace is needed to include the possible target steering vectors having Doppler

mismatch. Increasing Nf clearly increases the rank of R̂s,i. However, since the steer-

ing vectors being averaged are centered on the ith DFT bin, R̂s,i has one prominent

eigenvalue whose corresponding eigenvector is dfi .

3.2.3.2 Estimation of Interference Subspace

In this thesis, the estimators of the interference subspace assume that the interference

process is an auto-regressive process and try to find the underlying AR coefficients.

An AR process is a random process whose elements can be expressed as a function

of its p past elements and a noise term. If X is a zero-mean discrete-time AR random

process and Xt is the random variable which is drawn from the ensemble of X at

discrete-time t, then:

Xt =

p∑
k=1

−akXt−k + nt (3.21)

where p is a positive integer and it is called as the order of the AR process, or simply

AR order, {ak}pk=1 are called as the AR coefficients of the process,
∑p

k=1−akXt−k

is a linear predictor of Xt and nt is the prediction error at time t. The AR parameter

estimators usually try to minimize this prediction error.

There are various methods to estimate the AR coefficients of a random process from

the observations of that process [21, 23]. In this thesis, Burg’s parametric spectral

estimation method is used to achieve this goal. Burg’s method is known as its ability

to find good estimates for AR coefficients especially when there is a small amount of

observation data, which is why it is suitable for being used in this thesis in which the

observations are limited.
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The details of Burg’s parametric spectral estimation method is provided in Appendix A.

In this section, how Burg’s method is integrated into the estimation of ICM is ex-

plained in paragraphs for convenience.

Yule-Walker Equations

The AR coefficients and the autocorrelation sequence of a random process are related

with each other through Yule-Walker (YW) equations [23]. If rm denotes the auto-

correlation of the random process at lag m, then the value of rm can be found with

the equation:

rm = −
p∑
j=1

ajrm−j (3.22)

If Eq. (3.22) is written for m = {1, 2, . . . , p} in the rows of a matrix, the matrix form

of YW equations are obtained:

r1

r2

...

rp−1

rp


= −



r0 r−1 . . . r2−p r1−p

r1 r0 . . . r3−p r2−p
...

... . . . ...
...

rp−2 rp−3 . . . r0 r−1

rp−1 rp−2 . . . r1 r0





a1

a2

...

ap−1

ap


(3.23)

where r−m = r∗m can be used to determine the negative lags of the autocorrelation

sequence.

It should be noted that in Eq. (3.23), the matrix is a valid autocorrelation matrix and

it is invertible so that the equations are solvable for {ak}pk=1. This means that if

the autocorrelation sequence of a random process is exactly known up to lag p, then

the AR coefficients of that random process up to order p can be found without any

errors. However in real applications, the time during which the process is observed

and stay wide-sense stationary is limited. This cause the autocorrelation sequence of

the processes cannot be known exactly, neither can the AR coefficients. As a result,

the estimation of AR coefficients gets harder as the time the process is observed gets

smaller.

A significant characteristic of the proposed detector in this thesis is that it works with

reduced dimension data in order to adapt itself to the changing environment faster.
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The discussion in the above paragraph shows that this feature of the detector creates a

challenge in estimating the ICM because working in reduced dimension means hav-

ing a smaller number of slow-time samples of the interference process. In Chapter 4

of this thesis, the performance loss of the proposed detector compared to the same

detector knowing the ICM perfectly is indicated explicitly. This shows that although

performing better than all other detectors to compare in this thesis, the proposed de-

tector can be improved by estimating the ICM better. In other words, better spectral

estimation methods may increase the performance of the detector proposed in this

thesis. Nevertheless in this thesis, Burg’s method is selected to be used as the esti-

mator of AR coefficients. In the next paragraph, a recursive algorithm which is used

in Burg’s method and also in the ICM estimating algorithm proposed in this thesis is

going to be introduced.

Reverse Levinson-Durbin Recursion

The matrix equation given in Eq. (3.23) requires a matrix inversion. There are several

algorithms with different complexities for applying the matrix inversion operation.

One of these algorithms is Levinson-Durbin Recursion, which is a widely-used al-

gorithm whose details are out of scope for this thesis [23]. On the other hand, this

algorithm can be reversed so that given the AR coefficients, the matrix equation in

Eq. (3.23) can be solved for the values of autocorrelation sequence [24]. This method

first converts AR coefficients to so called reflection coefficients with an algorithm

called Stepdown and then use Levinson-Durbin Recursion to swap from reflection

coefficients to autocorrelation sequence. This process is called as Stepdown Levin-

son Recursion or Reverse Levinson-Durbin Recursion, and it is used in some of the

detectors explained in Chapter 4 of this thesis. Burg’s method also uses the reflection

coefficients to find the AR coefficient estimates from the observations as explained in

Appendix A.

In the next paragraph, how YW equations can be used to generate autocorrelation

estimates up to infinite lag is going to be investigated.

Extrapolating the Autocorrelation Sequence

There exists an important and interesting issue about YW equations that they give
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rise to the opportunity to estimate the autocorrelation sequence up to infinite lag.

When equation Eq. (3.22) is examined, it can be seen that with the knowledge of p

AR coefficients and p autocorrelation lags from (m − p) to (m − 1), the mth auto-

correlation lag can be calculated. With this new p-length autocorrelation sequence

from (m− p+ 1) to (m) and p AR coefficients, (m+ 1)st autocorrelation lag can be

calculated by solving Eq. (3.23). Applying the same operations repeatedly, the auto-

correlation sequence can be extrapolated infinitely. However in fact, also intuitively,

this does not mean that the estimation errors can be reduced infinitely. In a hypothet-

ical situation, an N -length observation vector may be present. With this vector, the

N -length autocorrelation sequence can be estimated via different methods [23] and

this estimation has an error by nature. Extrapolating this sequence to an M -length

sequence (M > N ) does not increase the accuracy of the estimation unlike having

an M -length observation vector beforehand. This is because the real information is

present only in the observations and applying some operations on these observations

cannot increase the amount of information they carry, if not reducing it. Nevertheless

in Chapter 4, the extrapolation operation is used in some detectors that find theN×N
ICM estimate by using pth order AR coefficients where N > p.

In the next paragraph, the ICM estimating algorithm of this thesis is going to be

explained. This algorithm uses Burg’s method, reverse Levinson-Durbin recursion,

the extrapolation operation and averaging in order to estimate the ICM from the L

observation vectors taken from the secondary cells which are fast-time preprocessed

and cleansed from target contamination effects.

Estimating the ICM

The ICM estimating algorithm uses L secondary range cells in N dimension, and

finds an N × N Toeplitz matrix as the ICM estimate. This algorithm takes ad-

vantage of Burg’s parametric spectral estimation method, which is explained in Ap-

pendix A, in finding the pth order AR coefficients from N -element observation vec-

tors. The estimated pth order AR coefficients for lth secondary cell are denoted

by
{
âlk
}p
k=1

. These AR coefficients can be turned into autocorrelation estimates

r̂ψl
[m],m = 0, 1, . . . , p− 1 by using the reverse Levinson-Durbin recursion [24].

Then, these autocorrelation lags and the AR parameters are used to extrapolate the
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autocorrelation sequence up to length N by simply using the Yule-Walker equations.

If the autocorrelation vector estimate of interference process ψ at the lth secondary

cell, ψl, is defined as:

r̂ψl
, [r̂ψl

[0] r̂ψl
[1] . . . r̂ψl

[N − 1]]T (3.24)

then the covariance estimate of the interference is given as:

R̂ψ =
1

L

L∑
l=1

Toeplitz (r̂ψl
) =

1

L

L∑
l=1

R̂ψl
(3.25)

where

R̂ψl
(i, j) = r̂ψl

[i− j], i, j = 1, 2, . . . , N (3.26)

The Toeplitz operation, as it is defined before, takes as input a vector or a sequence

of scalars and creates the optionally complex Toeplitz matrix whose first column is

the input vector or sequence of scalars. Thus, from Eq. (3.25) it can be seen that R̂ψ

is the average of the Toeplitz covariance matrices found from each of the L secondary

cells.

The process explained above is summarized in Algorithm 3.1.

Algorithm 3.1 Calculation of the ICM Estimate From AR Parameters

Initialize with the fast-time preprocessed observation matrix Y

for l = 1 to L do

Use Algorithm A.1 to find
{
âlk
}p
k=1

and τ̂ from yl

Use Reverse Levinson Recursion to find r̂ψl
[m],m = 0, 1, . . . , p− 1, from{

âlk
}p
k=1

and τ̂

Extrapolation Algorithm:

for m = p to N − 1 do

Use YW equations to find r̂ψl
[m] from r̂ψl

[i], i = m− p, . . . ,m− 1, and{
âlk
}p
k=1

end for

R̂ψl
= Toeplitz (r̂ψl

[m],m = 0, 1, . . . , N − 1) (R̂ψl
(i, j) = r̂ψl

(i− j))

end for

Find the ICM Estimate: R̂ψ = 1
L

∑L
l=1 R̂ψl
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With the help of the parametric spectral estimation methods and GES operation, the

slow-time preprocessing matrix is completed. Using the left and right preprocessing

matrices, the dimension of the observation matrix Y is reduced to D × L and the

next step is the detection operation. Different detector schemes are explained in a

comparative manner in Chapter 4.
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CHAPTER 4

DETECTORS

In this chapter, the seven different detectors which are examined in this thesis are

going to be described. These detectors are chosen to put emphasis on the significant

properties of the proposed detector like two-stage adaptation, dimension reduction

and fast conversion rate.

This chapters begins with a tree of detectors, given in Fig. 4.1, in which the seven de-

tectors are classified and put under groups. This diagram helps understanding the dif-

ferences and similarities between the detectors and summarizes the rest of the chapter.

In the remaining sections of this chapter, the detectors and their hypothesis tests are

explained in detail.

An important note for this chapter is that the threshold γ in each detection test is

not determined by the detectors. The Monte-Carlo simulations are conducted and the

threshold values are determined to get exactly 10−3 Pfa. In real cases, the thresholds

must be determined by the detectors; however, using training pulses and acquiring an

empirical threshold is also a solution if the interference is stationary for a while.
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4.1 Non-Adaptive Detectors

In radar detection, the main goal is to determine whether a range cell contains a target

or not. To distinguish between the clutter and the targets, the difference between

the slow-time characteristics of them can be used. The adaptive detectors can use an

estimate of the slow-time characteristics of the clutter (and noise) in order to eliminate

it in the received observations. However, it is also possible to detect targets under

clutter without using the clutter characteristics. The detectors which do not use the

interference characteristics in detection are called as non-adaptive detectors.

In this section, two non-adaptive detectors are going to be explained. First one is an

upper bound on all detectors, namely the max-SINR detector, which is not realizable.

Wiener filtering is briefly discussed in the explanation of this detector. Second one

is a conventional and significantly easy-to-implement non-adaptive detector, which is

called windowed DFT.

4.1.1 Genie-Aided Max-SINR Detector

In this section, an upper bound to the performance of the detectors examined in this

thesis is provided. This upper bound is in terms of the knowledge of the ICM. In other

words, this detector is provided with the exact full-dimension (N × N ) covariance

matrix of the interference signal in the CUT. The estimate of ICM is then:

R̂ψ = Rψ,0 (4.1)

With the knowledge of the true covariance matrix of the interference, the detector

can escape the interference by applying a Wiener filter approach. The fast-time pre-

processed observation vector from CUT, y0, is the data to which the detection test is

applied and it can be written as:

y0 = s0 +ψ0 = ρdφ +ψ0 (4.2)

where s0 is the target steering vector in the CUT. It should be noted that the fast-

time preprocessing is not explicitly explained under this section because this section

is more related to the detector itself. However, in order to integrate energy and truly
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detect the range of the target, a fast-time processing is almost always done in the

very first parts of the radar receivers. In the scope of this thesis, whether it is the

fast-time matched filter or the fast-time unitary transformation, the first column of

the fast-time preprocessing matrix Q is matched to the pulse code b. Since the pulse

code is selected to be unit-norm, the target steering vector in the CUT can be written

as ρdφ. The effect of fast-time preprocessing on the interference vector is implicitly

considered in Rψ,0.

The observation vector is filtered with an N -tap discrete-time filter w to give the

detection test:

tGenie =
∣∣wHy0

∣∣2 H1

≷
H0

γ (4.3)

The aim of using the discrete-time filter w is to reduce the effects of interference in

the observation signal y0 while keeping the useful target signal untouched, namely,

to increase the Signal-to-Interference-plus-Noise-Ratio (SINR) in the data which is

to be tested. The error vector in the filtering operation is defined as:

e , wHy0 − s0 (4.4)

The discrete-time filter which minimizes the mean-square of e (optimum fiter in the

MMSE sense) is then [25]:

w =
(Rψ,0)−1 dφ√
dHφ (Rψ,0)−1 dφ

(4.5)

The denominator of Eq. (4.5) is a scalar value which has no effect to the detection

performance of the genie-aided full-dimension detector. It is a scaling to the discrete-

time filter w whose purpose is to make the residue interference power at the output

of the filter equal to unity. In order to show this, the filtered data vector is called as z

and it is examined in two parts:

z = wHy0 = wHs0 + wHψ0 = ρwHdφ + wHψ0 (4.6)

The first term in Eq. (4.6) corresponds to the target signal and the second term cor-

responds to the interference. The average power of the interference after the filtering
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is:

E
{∣∣wHψ0

∣∣2} = E
{

wHψ0ψ
H

0 w
}

= wHE
{
ψ0ψ

H

0

}
w

=
dHφ (Rψ,0)−1 Rψ,0 (Rψ,0)−1 dφ

dHφ (Rψ,0)−1 dφ
= 1 (4.7)

Making the residue clutter power constant is desired when the false alarm rate is

wanted to be kept independent from the input interference power. Detectors that

achieve this property, like the genie-aided max-SINR detector, are called as Constant

False-Alarm Rate (CFAR) detectors. Detailed information about CFAR detectors can

be found in [3].

After the substitution of max-SINR filter w in Eq. (4.5) into the test in Eq. (4.3), the

hypothesis test for this detector can be rewritten as:

tGenie =
|yH0 R−1

ψ dφ|2

dHφ R−1
ψ dφ

H1

≷
H0

γ (4.8)

The genie-aided max-SINR detector is optimal in the sense that it knows the inter-

ference characteristics perfectly and uses the MMSE estimate of the target signal in

order to make the decision. However, it does not know the exact target velocity,

instead it uses a Doppler filter bank. This means that the discrete-time filters are cre-

ated for a finite number of dφ steering vectors. The actual target Doppler frequency,

however, can be any real number, so an amount of target Doppler mismatch and con-

sequently a straddle loss is unpreventable for the genie-aided detectors as well as all

other detectors used in this thesis.

4.1.2 Windowed DFT

This detector is a DFT filter bank, multiplied with an appropriate time (or frequency)

window. Each filter in the DFT filter bank is actually a steering vector for a spe-

cific Doppler frequency, which is one of the DFT bins described in Section 3.2.2.

Therefore, there are N Doppler filters located at the N DFT bins in this detector.

The observation in the CUT could be directly filtered with the steering vectors cor-

responding to each DFT bin. Then, the metric with largest magnitude could be com-
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pared with the threshold to make the detection test. This way, the detector would be

called as DFT detector. However, this detector would suffer from the effects of DFT

leakage so that the performance of the filters would be low. In order to eliminate the

effects of DFT leakage, a low-pass window can be applied to the filters. This fil-

ter decreases the frequency sidelobes of the clutter process, meanwhile increases the

width of its main lobe. This way, the performance of the filters can be significantly

improved in the clutter-free or near-clutter regions; however, the minimum detectable

velocity also increases after windowing. Such detectors are called as windowed DFT

detectors, and there are lots of different windows in the literature [26].

If the length-N time-domain window is denoted as ζ, then the filter for nth DFT bin

is:

w = ζ � d(n−1)/NT (4.9)

where d(n−1)/NT is the steering vector corresponding to the nth DFT bin following

the notation of Section 3.2.2; and � sign represents Hadamard product, which is the

operation of element by element multiplication of vectors or matrices. Then, the

hypothesis test for this detector is:

tWindowed-DFT =
∣∣wHy0

∣∣2 H1

≷
H0

γ (4.10)

In this thesis, ζ is chosen to be N -length Chebyshev window with 70 dB sidelobe

attenuation [27].

4.2 Full-Dimension Adaptive Detectors

In this thesis, the observation vector y consists ofN slow-time samples, meaning that

it represents a point in an N -dimensional space. In this section, four detectors which

works in N -dimensional space for slow-time operations are going to be explained.

These detectors are called as full-dimensional detectors because they perform in-

terference elimination in whole observation space rather than a reduced-dimension

subspace of it. On the other hand, each detector introduced in this section is depen-

dent on the interference characteristics. In other words, the detectors in this section

adapt themselves to the interference signals they receive, namely they are adaptive

detectors.
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4.2.1 Full Dimension Adaptive Matched Filter Using Burg Method

In this section, a full-dimension detector which uses Burg’s parametric spectral esti-

mation method to estimate the interference characteristics is explained in detail. This

detector is similar to the genie-aided full-dimension detector in the sense that both

apply a magnitude-square operation to the filtered observation vector before conduct-

ing thresholding. The filter applied to the observation vector y0 is also similar and its

form is rewritten as:

w =

(
R̂ψ

)−1

dφ√
dHφ

(
R̂ψ

)−1

dφ

(4.11)

where R̂ψ is the estimation of the ICM. The only distinction between this detector

and the genie-aided full-dimension detector is that this detector uses the estimated

ICM while the genie-aided detector uses the correct one.

The first step in the calculation of R̂ψ is estimating the pth order AR coefficients

from the N slow-time samples for each secondary range cell using Burg’s method.

The details of this step is explained in Appendix A. The second step is the creation of

the p-length autocorrelation sequences using the AR coefficients and constructing the

N × N autocorrelation matrices via the extrapolation algorithm explained in Algo-

rithm 3.1. The last step is taking the mean of the L different autocorrelation matrices

created by using L secondary range cells. This whole process is also described in

Section 3.2.3.2 as well.

The filter w is applied to the fast-time preprocessed observation vector y0 to give the

detection test:

tAMF-Burg-Full =
∣∣wHy0

∣∣2 =
|yH0 R̂−1

ψ dφ|2

dHφ R̂−1
ψ dφ

H1

≷
H0

γ (4.12)

This kind of adaptive filtering is first proposed in [6] and called Adaptive Matched

Filter (AMF). The only difference of AMF-Burg-Full from the original AMF is that

AMF-Burg-Full uses Burg’s method to estimate the ICM while the original AMF uses

sample matrix inversion (SMI).

55



4.2.2 Full Dimension Kelly-Like Detector Using Burg’s Method

In this section, a full-dimension alternative to the proposed detector in this thesis is

described. The detector has two adaptation stages. First step is the construction of the

estimate of ICM, R̂ψ. This step uses L observation vectors from the secondary cells,

therefore it is considered as the first adaptation stage. The second step of adaptation

is conducted in the detector itself. The detector also uses L observation vectors taken

from secondary range cells, so it is the second adaptation stage. The observation

vectors used in this detector is in full-dimension, that is, they have N elements.

The first adaptation stage is the process of constructing R̂ψ from the L range cells.

This process is explained in detail in Section 3.2.3.2. As a brief explanation of this

step, for each secondary range cell, the pth order AR coefficients of the interference

process is found by Burg’s method. Then the AR coefficients are used to construct

the N × N autocorrelation matrix estimates of interference. Finally, the different

estimates from different secondary range cells are averaged to find the final estimate

R̂ψ.

The hypothesis test for this detector is given as:

tKelly-Like-Burg-Full =
|yH0 R̂−1

ψ dφ|2

dHφ R̂−1
ψ dφ(1 + (1/L)yH0 R̂−1

ψ y0)

H1

≷
H0

γ (4.13)

for positive L values. For convenience, the case where no secondary cells are used

(L = 0) is also defined. For that case, the hypothesis test of this detector becomes:

tKelly-Like-Burg-Full =
|yH0 R̂−1

ψ dφ|2

dHφ R̂−1
ψ dφ(yH0 R̂−1

ψ y0)

H1

≷
H0

γ (4.14)

This detector is the same as the full-dimension AMF detector described in Sec-

tion 4.2.1 except for the (1 + yH0 R̂−1
ψ y0/L) term in the denominator. This term,

in a sense, normalizes the detector with the power of the filtered observation vector in

CUT. Without using this term, as in the AMF in Eq. (4.12), the detection metric can

become indefinitely large when the clutter power in any secondary range cell becomes

near to zero. In such cases, even if there is no target in the CUT (hypothesis H0), the

metric becomes so large that the threshold must be set to a higher value in order to

keep the false-alarm rate constant. This undesired increase in the threshold effectively
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reduces the detection performance. Adding the normalization term, however, com-

pensates for the effects of abruptly low clutter powers in the secondary cells. This

scenario is more likely to occur in heterogeneous clutter environments. Therefore,

the detectors which include the (yH0 R̂−1
ψ y0) term in their denominators are expected

to be more robust to clutter heterogeneity than the ones which do not.

4.3 Subspace-Aware Adaptive Detectors

In this section, detectors working on a D-dimensional subspace of N -dimensional

observation space are going to be introduced. As discussed in Section 3.2, the reduc-

tion of dimension helps improving the performance of adaptation to the interference

environment when a small amount of training data is available. In a heterogeneous

clutter environment like in the scenario of this thesis, the source of training data can

be limited to only a few secondary range cells and therefore, the reduced dimension

techniques may manifest themselves in such environments.

Subspace-aware detectors apply both fast-time and slow-time operations on the ob-

servation matrix Y. The preprocessed observation matrix with which the detectors

are fed is:

ZD×(L+1) , (UN×D)H YN×KQK×(L+1) (4.15)

where Q and U are the fast and slow-time preprocessing matrices described in Sec-

tion 3.1 and Section 3.2, respectively. The number of columns of U, D, is the dimen-

sion in which the detection occurs and the number of columns of Q, L + 1, is the

number of secondary cells used in the detection, L, plus one for the range cell under

test. It should be noted that the Q matrix was defined to be K × K in Section 3.1;

however, the detectors use only the first L + 1 columns of this matrix so it is conve-

nient to write Q as a K × L + 1 matrix in this section where the detectors are being

explained.

Although both fast and slow-time preprocessing can be expressed as matrix opera-

tions, in some detectors, they are not nonsequential. This is caused by the depen-

dence of U matrix on the YQ = Y matrix. When the slow-time operations use

secondary cells in order to estimate the characteristics of interference, the target con-
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tamination on the secondary cells becomes a problem. Contaminated secondary cells

reduces the robustness of adaptive detectors to target Doppler mismatch. The same

effect is seen in the beamforming literature as the target contamination deteriorates

the angular mismatch robustness of the beamformers. In order to mitigate this effect,

Robust Capon Beamformer is proposed in the beamforming literature [28]. Exactly

the same phenomenon occurs in the adaptive target detection, and the solution is

eliminating the effects of targets in the secondary cells. The fast-time preprocessing

method explained in Section 3.1.2 achieves this goal and provides the slow-time pre-

processing operation with an uncontaminated observation matrix. Some detectors use

these target-free secondary cells to create the slow-time preprocessing matrix, so the

fast-time operation must be done prior to the slow-time operation in such detectors.

The details of such detectors are going to be explained in the related subsections.

4.3.1 Subspace-Aware Kelly Detector Using GES with Burg’s Method

The adaptive detector proposed in this thesis is explained in this section. This detector

is an approximate Kelly’s GLRT detector [5], which assumes uncorrelated secondary

cells. However in the scenario of this thesis, the secondary cells are correlated as

explained in Section 2.3.2, that’s why the detector is called an approximate to Kelly’s

GLRT detector.

The proposed detector uses the unitary transformation based fast-time preprocess-

ing matrix described in Section 3.1.2 in order to decontaminate the secondary cells

from the effects of range sidelobes of target signals. Using the purified secondary

range cells, Subspace-aware Kelly Detector applies GES operation described in Sec-

tion 3.2.1 in order to reduce the dimension in which detection occurs. In the process

of applying GES operation, the detector finds the ICM estimate by using the algo-

rithm involving Burg’s method, which is explained in Section 3.2.3.2. After reducing

the dimension of the observations, Kelly’s GLRT detector again uses the target-free

secondary data in order to escape the interference and detect the existence of a target

in the CUT.

A two-stage adaptation is present in the working method of the proposed detector.

First adaptation is done during the reduction of the dimension of observations, in the
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process of determination of the generalized eigenspace. In this stage, the ICM is

estimated adaptively in order to select a good subspace for dimension reduction. The

second adaptation is done in the detection stage in order to escape the interference

in the subspace which is already cleansed from interference as much as possible in

the adaptive dimension reduction process. This method of two-stage adaptation in a

reduced dimension significantly increases the detection performance when there is a

strong constraint on the number of available training data.

For convenience, the hypothesis test given in Section 2.3.1 is recalled:

H0 : Y = Ψ

H1 : Y = ρdφb
T + Ψ

(4.16)

where Ψ is the total interference received at the receiver whose autocorrelation matrix

is Rψ. Kelly’s GLRT detector assumes that both ρ and Rψ are unknown nonrandom

parameters and uses the estimate of Rψ, R̂ψ, to make the estimation of ρ. After

estimating ρ, or any other sufficient statistic, the detector can compare the estimated

value with a threshold and decide whether there is a target signal in the observations

or not.

The preprocessed observation matrix is called as Z as it is explained in Section 4.3.

The columns of Z are called as zl for l = {0, 1, . . . , L}, z0 being the data from CUT

and other vectors being related to the secondary cells. In this notation, the Kelly’s

GLRT test is:

tKelly-GES-Burg =
|zH0 S−1d̃φ|2

d̃Hφ S−1d̃φ(1 + zH0 S−1z0)

H1

≷
H0

γ (4.17)

where

S =
L∑
l=1

(
zlz

H
l + λdID×D

)
(4.18)

and

d̃φ = UHdφ (4.19)

d̃φ in Eq. (4.17) is the reduced dimension steering vector, and it is found by applying

the dimension reduction operation to the target steering vector. λd in Eq. (4.18) is

called as the diagonal loading factor. S matrix in Eq. (4.18) is an estimate to the au-

tocorrelation matrix for z0. This estimation, followed by the inversion of S matrix, is

called as Sample Matrix Inversion (SMI) in reduced dimension and it is based on av-

eraging the simplest autocorrelation matrix estimates of the secondary data cells. The
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conventional Kelly detector assumes a homogeneous clutter environment in making

this autocorrelation estimate [5] and this is another difference of the proposed detec-

tor from the Kelly’s GLRT detector. Full information on the derivation of Kelly’s test

is available at [29]. The second term in S matrix, which is a scaled identity matrix,

is called diagonal loading. Diagonal loading is a widely used technique to increase

the robustness of the detectors to the target Doppler mismatch. A clear explanation

of this technique can be found in [28], investigating the well-known Robust Capon

Beamformer which is also based on diagonal loading. Finding the optimum amount

of loading is an issue which is not discussed in this thesis. In contrast to this, the

diagonal loading factor is selected as a constant λd, and λdI is added to each autocor-

relation estimate.

The algorithm that the proposed subspace aware Kelly detector uses can be summa-

rized as:

Algorithm 4.1 Calculation of the detection metric in Kelly-Burg-GES
1: Initialize with the observation matrix Y

2: Fast-time preprocess Y to get Y = YQ

3: Find the ICM estimate R̂ψ from the L secondary cells in Y using Burg’s spectral

estimation method described in Algorithm 3.1 (first adaptation stage)

4: Find the signal subspace estimate R̂s for the target Doppler frequency which is

of interest, as explained in Section 3.2.3.1

5: Apply GES operation with R̂ψ and R̂s to find the dimension reducing matrix U,

as explained in Section 3.2.1

6: Reduce the dimensions of all observation and steering vectors: Z = UHY and

d̃φ = UHdφ

7: Find the autocorrelation matrix estimate of the interference in the CUT (S matrix)

by the SMI technique and diagonal loading, using the secondary cells in reduced

dimension as explained in Section 4.3.1 (second adaptation stage)

8: Apply Kelly’s GLRT detector using Z, S and d̃φ to find the metric which is used

in thresholding operation (Eq. (4.17))

9: Use the metric in thresholding.
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4.3.2 Subspace-Aware Kelly Detector Using GES with Perfect Interference Knowl-

edge

The detector which is going to be explained in this section is not a realizable one but it

is considered as a benchmark. The detector assumes that the covariance matrix of the

interference in the CUT is perfectly known, just like the case in the Genie-Aided Max-

SINR detector explained in Section 4.1.1. However, this detector does not apply the

max-SINR detector, but it uses the knowledge of ICM only in the dimension reduction

operation. After reducing the dimension, this detector applies Kelly’s GLRT detector

to find the metric to be compared with the threshold. In other words, this detector is

the limit of the proposed detector of this thesis when the subspace being worked on

is perfectly constructed.

The hypothesis test of this detector is:

tKelly-Perfect-GES =
|zH0 S−1d̃φ|2

d̃Hφ S−1d̃φ(1 + zH0 S−1z0)

H1

≷
H0

γ (4.20)

where

S =
L∑
l=1

(
zlz

H
l + λdID×D

)
(4.21)

In Eq. (4.20), it can be seen that this detector is the same as the proposed Kelly detec-

tor. However the z vectors, which are the columns of the matrix Z, and the d̃φ vector

are in a different subspace. It should be recalled that Z = UHY and d̃φ = UHdφ.

The U matrix in this detector is composed of the D generalized eigenvectors corre-

sponding to the D largest generalized eigenvalues satisfying the generalized eigen-

value problem:

R̂sen = λnRψen (4.22)

The equation Eq. (4.22) is similar to the Eq. (3.12) in Chapter 3. The only difference

between these equations is that the ICM is not an estimate but perfectly known in

equation Eq. (4.22). In the literature, the GES operation with perfect ICM is shown

to be the operation which gives the optimal dimension reduction matrix in several

senses [19].

The detector explained in this section can be compared with the proposed detector of

this thesis in the sense that the proposed detector’s failure relative to the detector of
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this section stems from the failure of Burg’s method relative to a hypothetical perfect

spectral estimation method. In other words, the difference between the performances

of these two detectors may be diminished by using better spectral estimation methods

than Burg’s one. However, it should be noted that no spectral estimation method can

make perfect estimations when only a few secondary data are available; and Burg’s

method is considered as a high performance detector in such cases.

4.3.3 Subspace-Aware Kelly Detector Using Conventional DFT Subspace

The detector of this section is a Kelly detector working in a reduced dimension sub-

space, like the detectors explained in Section 4.3.1 and Section 4.3.2. However in

this detector, the subspace on which the detection occurs is not selected via a GES

operation. Instead of estimating the interference and signal subspaces and using GES

operation to find the dimension reducing matrix U, which is costly in computational

sense, this detector uses the D dimensional DFT subspace as the U matrix. The

most significant difference between this detector and the detectors in Section 4.3.1

and Section 4.3.2 is that this detector does not use the knowledge of ICM in order to

determine the dimension reducing matrix. In other words, this detector has only one

adaptation stage which is on the Kelly detection part, whilst the other detectors have

one more adaptation stage which is on the part of selecting the dimension reducing

matrix.

The slow-time preprocessing method used in this detector is called as Post-Doppler

processing, which is explained in Section 3.2.2. In that section, the process of finding

the dimension reducing matrix U is clearly described, therefore it will not be restated

in this section. With the U matrix found via Post-Doppler processing, the fast-time

preprocessed observation matrix Y and steering vectors dφ are projected onto the

reduced dimension DFT subspace to give Z and d̃φ. Then, the hypothesis test is:

tKelly-DFT-Subspace =
|zH0 S−1d̃φ|2

d̃Hφ S−1d̃φ(1 + zH0 S−1z0)

H1

≷
H0

γ (4.23)

where

S =
L∑
l=1

(
zlz

H
l + λdID×D

)
(4.24)
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By comparing this detector with the proposed detector explained in Section 4.3.1,

the importance of selecting the reduced dimension subspace can be investigated. In

fact, examining the performance of this detector is inevitable if the significance of

applying the first adaptation stage and GES operation is wanted to be understood.

In the next chapter, the MATLAB simulation results about these detectors are going

to be provided along with some comments on them.
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CHAPTER 5

NUMERICAL RESULTS

This chapter is dedicated to the simulation results related to the radar detectors which

are described in the previous chapter. At the time this thesis is composed, the detec-

tors have not yet been realized within a radar system. Therefore, the detector perfor-

mances are compared with Monte Carlo simulations which are done in MATLAB. In

the first section of this chapter, the necessary parameters and methods related to the

simulations are going to be provided. After the simulation environment is described,

various figures for comparing different aspects of the detectors are presented in the

second section of this chapter. Together with the figures, some explanations and com-

ments are also going to be provided in order to make clear the significance of the

thesis.

5.1 Scenario

This thesis is about improving the detection performance of a radar system in a spe-

cific scenario. In this section, the parameters about the scenario which are used in the

simulations are going to be described. In Table 5.1, these parameters are given in a

tabular form, including their notations used throughout the thesis.
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Table 5.1: Parameters used in the simulations

Name Notation Value Unit

Sea Clutter

Average Power τsea 50 dB

Mean Velocity vsea 3.156 m/s

Velocity Spread σsea 1 m/s

Rain Clutter

Average Power τrain 40 dB

Mean Velocity vrain 10.853 m/s

Velocity Spread σrain 2 m/s

Target

Average Power (SNR) ρ Variable —

Mean Velocity vt Variable —

Doppler Frequency fd Variable —

RCS Type Swerling-1

Clutter Texture Parameter ωk Variable —

Clutter Shape Parameter mk Variable —

Radar RF Frequency fRF 10 GHz

Radar Wavelength λRF 30 mm

PRF PRF 10 kHz

PRI T 100 µs

# of Pulses in a CPI N 16 —

# of Filters in a Filter Bank — 16 —

AR Estimation Order p 4 —

Dimension of the Subspaces D Variable —

# of Secondary Cells Used L Variable —

Length of the Pulse Code K 16 —

Pulse Code Used — P4 Code —

# of Monte Carlo Trials — 10000 —

False Alarm Rate Pfa 10−3 —

Diagonal Loading Factor λd 3 —

# of steering vectors averaged Nf 10 —
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5.2 Results

In this section, the simulation results are provided along with the comments about the

detector performances. There are four subsections which stand for four different value

of clutter heterogeneity. As discussed in Section 2.2.2, the clutter shape parameter

mk determines how the clutter power is distributed among range cells. A lower shape

parameter means a higher possibility to see spiky clutter powers and a higher shape

parameter means a more homogeneous clutter environment.

Each subsection of this section starts with the probability of detection (Pd) versus

Target Doppler Frequency (fd) curves. These figures help comparing the robustness

of the detectors to Doppler mismatch as well as the minimum detectable velocities

of them. The SNR loss of some of the detectors in the clutter-free region of Doppler

spectrum can also be seen in these figures. The Doppler frequency axis of each figure

is normalized to the PRF of the system, in order for it to be independent of the PRF.

After the Pd vs. Doppler curves, Pd vs SNR curves are provided. These curves are the

ones where the SNR gains (or losses) of the detectors with respect to each other can be

determined. These figures also represents the maximum range a radar system can be

operated because target SNR is strongly dependent on the distance of the target to the

radar system. The Pd vs SNR curves are plotted for different target Doppler frequency

values in order to compare the robustness of detectors to Doppler mismatch.

Following the Pd vs SNR curves are the Pd vs number of secondary cells used (L)

curves. These figures indicates how many secondary cells the detectors need in or-

der to properly estimate and eliminate the interference. The non-adaptive detectors

do not use secondary cells, therefore they perform the same for all L values. The

other detectors usually perform better as L increases because they use at least one

adaptation stage in which they estimate the ICM. However, the rate of increase in

the performances of the detectors can be compared through these figures. The less

amount of secondary cells a detector needs to reach its maximum Pd, the faster it con-

verges when the clutter environment is changed abruptly. Therefore, Pd vs L curves

can actually be used to infer a robustness to fast-changing clutter environments.

The subsections end with the Pd vs subspace dimension (D) curves. These figures
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indicate the importance of reducing the dimension in which the adaptation occurs

when the secondary information is limited. The detectors which do not use dimension

reduction at all performs the same for all D values in these figures. When D reaches

the maximum possible value, which is the number of pulses in a CPI (N), it can be

examined that how the reduced dimension detectors would perform if they worked

in full dimension. Pd vs D curves are plotted for different L values, which are the

number of secondary cells used, in order to examine the relation between these two

parameters.

In all of the figures given in this chapter, the proposed detector of this thesis is the

red curve with the legend name of "Kelly-Burg-GES". The dark blue curve with

dashed line represents the max-SINR filter and it provides an upper bound for the

other detectors. The yellow curve with dotted line, whose legend name is "Kelly-

Perfect-GES", is another upper bound, which is the same as proposed detector but

with the perfect knowledge of ICM in the dimension reducing operation. The green

curve with dashed and dotted line is the Windowed DFT, it represents a benchmark

radar detector. The gray curve with star-shaped marker is another detector put forward

in this thesis, its legend name is "Kelly-Like-Burg-Full Dim.". It is similar to the

Kelly’s GLRT detector but it does not use SMI, instead it uses a parametric ICM

estimate in full dimension. The purple curve with dotted line and plus-shaped marker

is the detector which tries the Wiener filtering as the max-SINR detector, but with a

parametric estimate of ICM instead of the actual ICM. It is called "AMF-Like-Burg-

Full Dim." in the legend. Finally, the cyan curve with cross-shaped marker is the so

called "Kelly-DFT-Subspace", which is the reduced dimension Kelly’s detector using

DFT subspace instead of using the subspace found with GES operation.

5.2.1 Homogeneous Clutter

In this subsection, the figures are created in a homogeneous clutter environment. In

such cases, using higher number of secondary cells increases detection performance,

therefore the proposed detector which uses a small number of secondary cells may

seem to be ineffective. However, using reduced amount of secondary data can help

track the abrupt changes in the clutter power and it also helps resolving targets which
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are near to each other in range dimension. Because of this, the simulations are done

with a small number of secondary cells and a reduced dimension subspace parallel to

this.
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Figure 5.1: Pd vs Doppler Curves, SNR = 20 dB, D = 3, L = 3, Homogeneous Clutter

In Fig. 5.1, Pd vs target Doppler frequency curves for all seven detectors examined in

this thesis are provided. It can be seen that at 20 dB SNR, no detection is possible

for targets whose Doppler frequency is up to nearly 0.14 PRF. For the targets with

0.18-0.2 PRF Doppler frequency, Kelly-like full dimension detector has the best de-

tection probability; however, this probability is still near 0.6, which can be considered

a low Pd. If the Pd value for which a target can be considered as "detectable" is cho-

sen as 0.8, then Fig. 5.1 shows that the best detector is the proposed one in terms of

minimum detectable velocity when SNR is 20 dB. However, the Kelly-like-Burg-Ful

Dimension detector has a lower minimum detectable velocity at high SNR values. In

the clutter-free region (CFR), which is between nearly 0.3 and 0.8 PRF, the proposed

detector is the best one in terms of peak detection probability. This can be considered

as the SNR-loss of the proposed detector is the smallest among all. In highly mis-

matched Doppler frequencies, some detectors perform better than the proposed one;

however, this performance loss is only due to straddle loss and it can be compensated
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by increasing the number of filters used in the filter bank. This comment is going to

be proved with the Pd vs SNR curves.

By looking at Figs. 5.2 to 5.5, the proposed detector can be compared to other de-

tectors at different Doppler mismatch values. For example, when fd = 0.225 PRF

and looking at Pd = 0.8, Kelly-Burg-GES performed 7-8 dB better than the Kelly-

DFT-Subspace and 3 dB worse than Kelly-Perfect-GES. This comparison shows that

selecting a good subspace is significantly important for the detectors which reduce

the dimension and perform Kelly detection. On the other hand, Kelly-Burg-GES

performed 2.5 db better than AMF-Like-Burg and 3 dB better than Kelly-Like-Burg

which both work in full dimension. This observation indicates that estimating the

ICM with Burg’s method is not enough for a good detection performance, but reduc-

ing the dimension in a clever manner helps the adaptive detectors (etiher KElly or

AMF) identify and eliminate the interference better. It can also be seen that the Pd

vs SNR characteristics are similar for different Doppler mismatches except only for

fd = 0.2 PRF. As a final comment, Windowed DFT, which is significantly easy to im-

plement, is still a considerable option in clutter-free region, but it fails in near-clutter

region.
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Figure 5.2: Pd vs SNR Curves, fd = 0.2 PRF, D = 3, L = 3, Homogeneous Clutter
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Figure 5.3: Pd vs SNR Curves, fd = 0.225 PRF, D = 3, L = 3, Homogeneous Clutter
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Figure 5.4: Pd vs SNR Curves, fd = 0.25 PRF, D = 3, L = 3, Homogeneous Clutter
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Figure 5.5: Pd vs SNR Curves, fd = 0.3 PRF, D = 3, L = 3, Homogeneous Clutter

In Figs. 5.6 and 5.7, Kelly-Burg-GES shows its ability to converge much faster than

the other detectors. It can be seen that all adaptive detectors increase their perfor-

mances with increasing number of secondary cells, which is expected in homoge-

neous clutter environments. However, Kelly-Burg-GES reaches nearly 0.9 Pd with

6 secondary cells when there is mismatch and only 2 secondary cells when there

is no mismatch. On the contrary, other detectors reach the same Pd value with 3-6

secondary cells when there is no mismatch and they cannot even reach it with 16

secondary cells when there is mismatch. This shows that the proposed detector can

work with a significantly smaller amount of secondary data comparing to the other

ones, which make it adapt faster to the changing clutter schemes. Nevertheless, the

robustness to clutter heterogeneity in fast-time can only be seen by comparing these

detectors in a heterogeneous clutter environment.

In Figs. 5.8 to 5.10, it can be seen that dimension reduction is beneficial for increas-

ing the detection performance of the detectors which applies SMI. When the subspace

dimension is increased, the detectors behave as if they are more like full-dimension.

However, this deprecates their performances significantly. This is because the space

in which the detection occurs include too much interference and GES operation can-
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Figure 5.6: Pd vs L Curves, fd = 0.225 PRF, SNR = 23 dB, D = 3, Homogeneous Clutter

not find any place to avoid the interference space. Decreasing the dimension too

much, on the other hand, causes an efficient interference suppression in first place but

it is also not preferable because the second adaptation stage also needs some space

to distinguish between the interference and the target. In the extreme case, when the

dimension is one, the estimated ICM after the dimension reduction becomes a scalar

value, meaning that no interference suppression is available at the second stage. This

discussion shows that there is an optimum dimension to reduce, which is consistent

with the figures.

In the next section, the case when clutter environment is heterogeneous with shape

parameter SP = 1 is going to be investigated.
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Figure 5.7: Pd vs L Curves, fd = 0.25 PRF, SNR = 23 dB, D = 3, Homogeneous Clutter
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Figure 5.8: Pd vs D Curves, fd = 0.25 PRF, SNR = 20 dB, L = 3, Homogeneous Clutter
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Figure 5.9: Pd vs D Curves, fd = 0.25 PRF, SNR = 20 dB, L = 6, Homogeneous Clutter
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Figure 5.10: Pd vs D Curves, fd = 0.25 PRF, SNR = 30 dB, L = 3, Homogeneous Clutter
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5.2.2 Heterogeneous Clutter with Shape Parameter = 1

In this subsection, the figures are created in a heterogeneous clutter environment

whose texture parameter ωk is Weibull-distributed with mean 1 and shape parame-

ter 1. This distribution is the same as the exponential distribution with mean 1. In this

case, the mean clutter power in the CUT may be different than the secondary cells.

Therefore, the detectors may underestimate the interference and do not suppress it

enough or overestimate it and suppress the target signal more than needed. On the

other hand, the detectors may also use the powerful clutter in the secondary cells in

estimating the ICM and suppress the interference better.

In Fig. 5.11, it can be seen that the Pd vs Doppler frequency curves do not differ

significantly from homogeneous clutter case when the clutter is heterogeneous with

SP = 1. Kelly-Burg-GES is still seen to be the best detector in clutter-free region

and there is no target Doppler mismatch. However, the performance drop of Kelly-

Like-Burg-Full Dim. in the case of target Doppler frequency mismatch is obvious

from the graph. This shows that the proposed detector seems more robust to clutter

heterogeneity when there is Doppler mismatch.
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Figure 5.11: Pd vs Doppler Curves, SNR = 20 dB, D = 3, L = 3, SP = 1
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Figure 5.12: Pd vs SNR Curves, fd = 0.2 PRF, D = 3, L = 3, SP = 1
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Figure 5.13: Pd vs SNR Curves, fd = 0.225 PRF, D = 3, L = 3, SP = 1
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Figure 5.14: Pd vs SNR Curves, fd = 0.25 PRF, D = 3, L = 3, SP = 1
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Figure 5.15: Pd vs SNR Curves, fd = 0.3 PRF, D = 3, L = 3, SP = 1
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In Figs. 5.13 to 5.15, the dominating performance of the Kelly-Burg-GES can be seen.

In Fig. 5.12, the Kelly-Like-Burg-Full Dim. again outperforms the proposed detector

but this case is true only for a specific target Doppler frequency region. Comparing

these figures with the homogeneous clutter case reveals that heterogeneous clutter

with SP = 1 is not significantly different from homogeneous clutter.

In Figs. 5.16 and 5.17, it can be seen that the proposed detector still converges faster

than the other ones in heterogeneous clutter case with SP = 1.

In Figs. 5.18 to 5.20, it is proved again for the heterogeneous clutter case with SP = 1

that there is an optimum dimension to reduce for the best performance.

In summary, heterogeneous clutter with SP = 1 is not significantly different from

homogeneous clutter. In the next section, the shape parameter is reduced to 0.25 and

the results are provided in the same order.
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Figure 5.16: Pd vs L Curves, fd = 0.225 PRF, SNR = 23 dB, D = 3, SP = 1
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Figure 5.17: Pd vs L Curves, fd = 0.25 PRF, SNR = 23 dB, D = 3, SP = 1
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Figure 5.18: Pd vs D Curves, fd = 0.25 PRF, SNR = 20 dB, L = 3, SP = 1
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Figure 5.19: Pd vs D Curves, fd = 0.25 PRF, SNR = 20 dB, L = 6, SP = 1
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Figure 5.20: Pd vs D Curves, fd = 0.25 PRF, SNR = 30 dB, L = 3, SP = 1
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5.2.3 Heterogeneous Clutter with Shape Parameter = 0.25

In this subsection, the figures are created in a heterogeneous clutter environment

whose texture parameter ωk is Weibull-distributed with mean 1 and shape parame-

ter 0.25. This shape parameter is low enough to see the significant changes in the

clutter environment.
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Figure 5.21: Pd vs Doppler Curves, SNR = 20 dB, D = 3, L = 3, SP = 0.25

When 5.21 is examined, the robustness of Kelly-Burg-GES is revealed. While the

other detectors’ performances start to fall of, the proposed detector still reaches its

theoretical limits in clutter-free region. On the other hand, the robustness of the pro-

posed detector to target Doppler mismatch is reduced with increasing heterogeneity;

however, the other detectors seem to lose more of their robustness to Doppler mis-

match in highly heterogeneous environments.
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Figure 5.22: Pd vs SNR Curves, fd = 0.2 PRF, D = 3, L = 3, SP = 0.25
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Figure 5.23: Pd vs SNR Curves, fd = 0.225 PRF, D = 3, L = 3, SP = 0.25
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Figure 5.24: Pd vs SNR Curves, fd = 0.25 PRF, D = 3, L = 3, SP = 0.25
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Figure 5.25: Pd vs SNR Curves, fd = 0.3 PRF, D = 3, L = 3, SP = 0.25

84



In Figs. 5.22 to 5.25, it can be seen that the proposed detector keeps its leading char-

acteristics in highly heterogeneous environments. The most significant performance

drop among the adaptive detectors is seen in AMF-Like-Burg-Full Dim. because it

lacks the power-normalizing term in its denominator. That term, as explained in ??,

helps the Kelly (and Kelly-like) detectors adjust the detection metric according to the

power of CUT, eliminating the effecs of abruptly changing clutter power in secondary

cells. The importance of this term is thus supported with simulation results.

In Figs. 5.26 and 5.27, it can be seen that the proposed detector still converges to

its maximum performance faster than the other ones, but this time, the maximum Pd

value it can have is decreased. Nevertheless, Kelly-Burg-GES reaches Pd = 0.8 with

only two secondary cells even if there is a target Doppler mismatch.

In Figs. 5.28 to 5.30, it can be seen that the importance of selecting a good D value

increases as heterogeneity increases. On the other hand, the proposed detector out-

performs the others if the correct subspace dimension is selected.
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Figure 5.26: Pd vs L Curves, fd = 0.225 PRF, SNR = 23 dB, D = 3, SP = 0.25
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Figure 5.27: Pd vs L Curves, fd = 0.25 PRF, SNR = 23 dB, D = 3, SP = 0.25
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Figure 5.28: Pd vs D Curves, fd = 0.25 PRF, SNR = 20 dB, L = 3, SP = 0.25

86



0 2 4 6 8 10 12 14 16

Dimension of the subspace (D)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

Max SINR

Kelly-Perfect-GES

Kelly-Burg-GES

Kelly-Like-Burg-Full Dim.

AMF-Like-Burg-Full Dim.

Kelly-DFT-Subspace

Windowed DFT

Figure 5.29: Pd vs D Curves, fd = 0.25 PRF, SNR = 20 dB, L = 6, SP = 0.25
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Figure 5.30: Pd vs D Curves, fd = 0.25 PRF, SNR = 30 dB, L = 3, SP = 0.25
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5.2.4 Heterogeneous Clutter with Shape Parameter = 0.1

In this subsection, the figures are created in a heterogeneous clutter environment

whose texture parameter ωk is Weibull-distributed with mean 1 and shape parame-

ter 0.1. This is an extremely heterogeneous clutter environment, therefore the effects

of heterogeneity are most obvious for this case. It should be remembered that the

mean of the texture parameter among fast-time is one, so the average clutter power is

kept the same among the range cells. Therefore, having large spikes in the distributed

clutter power requires having smaller clutter powers in most range cells. This may

increase the performances of the detectors in some trials but fortunately, the Monte-

Carlo simulation helps observing the average behaviors.
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Figure 5.31: Pd vs Doppler Curves, SNR = 20 dB, D = 3, L = 3, SP = 0.1

In 5.31, it can be seen that in clutter free region at 20 dB SNR, the proposed Kelly-

Burg-GES dominates the other detectors by far. An important fact to notice is that

AMF-Like-Burg-Full Dim. detector completely vanishes at this SNR when hetero-

geneity is too high. This observation proves that the power normalizing term in

Kelly’s detector increases the robustness for heterogeneous clutter environments. The

proposed detector also outperforms the other ones in terms of the robustness to target
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Doppler mismatch.

In Figs. 5.32 to 5.35, it can be seen that Kelly-Burg-GES completely dominates all

other detectors. When there is no target Doppler mismatch, at 0.9 Pd, Kelly-Burg-

GES is 6 dB better than the Kelly-Like-Burg-Full Dim. and Kelly-DFT-Subspace,

and only 2 dB below the Kelly-Perfect-GES. This indicates a substantial increase in

the detector performance with respect to conventional post-Doppler processing under

highly heterogeneous clutter environments.
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Figure 5.32: Pd vs SNR Curves, fd = 0.2 PRF, D = 3, L = 3, SP = 0.1
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Figure 5.33: Pd vs SNR Curves, fd = 0.225 PRF, D = 3, L = 3, SP = 0.1
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Figure 5.34: Pd vs SNR Curves, fd = 0.25 PRF, D = 3, L = 3, SP = 0.1
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Figure 5.35: Pd vs SNR Curves, fd = 0.3 PRF, D = 3, L = 3, SP = 0.1
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Figure 5.36: Pd vs L Curves, fd = 0.225 PRF, SNR = 23 dB, D = 3, SP = 0.1

91



0 2 4 6 8 10 12 14 16

# of secondary cells (L)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d

Max SINR

Kelly-Perfect-GES

Kelly-Burg-GES

Kelly-Like-Burg-Full Dim.

AMF-Like-Burg-Full Dim.

Kelly-DFT-Subspace

Windowed DFT

Figure 5.37: Pd vs L Curves, fd = 0.25 PRF, SNR = 23 dB, D = 3, SP = 0.1
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Figure 5.38: Pd vs D Curves, fd = 0.25 PRF, SNR = 20 dB, L = 3, SP = 0.1
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Figure 5.39: Pd vs D Curves, fd = 0.25 PRF, SNR = 20 dB, L = 6, SP = 0.1
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Figure 5.40: Pd vs D Curves, fd = 0.25 PRF, SNR = 30 dB, L = 3, SP = 0.1
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In Figs. 5.36 and 5.37, it can be seen that the fast convergence rate of the proposed

detector still exists in this extremely heterogeneous clutter case. However, increasing

the number of secondary cells now starts to decrease the detector performances at

some point. This makes sense as increased heterogeneity disables the detectors to

correctly take information from distant range cells.

In Figs. 5.38 to 5.40, it can be seen that the optimum dimension to reduce still exists

at this highly heterogeneous environments. It can be deduced that whether the clutter

is homogeneous or heterogeneous, the subspace dimension must be determined in

order to efficiently design a detector.

This chapter included the simulation results created in MATLAB. The proposed Kelly

detector using GES operation with Burg’s method is shown to be ahead of other con-

ventional detectors. In the next and last chapter, concluding remarks are going to be

provided.
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CHAPTER 6

CONCLUSION

This thesis is about a robust adaptive radar detector based on fast-and-slow-time pre-

processing. By examining the positive and negative features of the existing adaptive

radar detectors, this thesis combines different methods and approaches to propose a

solution to the problem of radar detection under heterogeneous compound Gaussian

clutter.

The main motivation of this thesis is doing radar detection under heterogeneous clut-

ter environments, which sea clutter usually is. This heterogeneity results in the fact

that the interference characteristics change rapidly in fast-time. This is why only a

small number of secondary cells can be used to estimate the ICM of the CUT. Without

any preprocessing, it is shown in the literature that lots of secondary cells are needed

to estimate this matrix with reasonable error. In the literature, there also exist stud-

ies on subspace techniques to overcome the issue of restricted secondary cells. The

proposed detector of this thesis also uses subspace processing, but it exhibits a novel

method to find a good subspace.

In subspace radar detection, a good subspace can be considered as the one which

involves the target signal and avoids including unnecessary amounts of interference at

the same time. It should be noted that some amount of interference must be included

in the subspace if an adaptive detection is going to be conducted in that subspace

because adaptive detectors need to estimate the ICM using the interference signals.

In the literature, the optimum subspace in several senses is found with generalized

eigenspace operation when the target and interference covariance matrices are exactly

known. In real cases this is not possible, therefore the estimates of these matrices

must be used to find a subspace which is near to the optimum one. In this thesis, both
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signal and interference subspace estimations are made and these estimates are used in

the generalized eigenspace operation. By comparing this subspace with conventional

DFT subspace (which is used in post-Doppler processing), this thesis proves that

cleverly selecting the subspace significantly increases the detection performance.

As the subspace selection requires ICM estimation, how to estimate ICM before di-

mension reduction gains importance in subspace radar detection. In the works of

this thesis, it is shown that a perfect ICM estimation used in subspace adaptive radar

detection reaches performances that are nearly the same as the performance of max-

SINR filter. Since the scenario of this thesis restricts the amount of secondary cells,

the ICM estimation before dimension reduction must also be done with only a few

secondary data. In this stage, a novel method which finds ICM estimates from each

secondary cell and takes the average of them is proposed. In heterogeneous environ-

ments where one secondary cell can include a powerful clutter while the next one

having a near-zero clutter, averaging different ICM estimates can help avoiding ex-

treme power estimates for the interference and finding a good threshold. Other than

the averaging operation it conducts, the ICM estimation is novel also in the spec-

tral estimation method it exploits. The detector assumes that the interference is an

AR process and finds its AR coefficient estimates using Burg’s method. However, in

order to avoid the noise effects in the AR coefficient estimation, the AR prediction or-

der is kept much smaller than the dimension of the interference. After the coefficients

are estimated, they are extrapolated to the dimension of interference via well-defined

Yull-Walker equations.

This thesis also addresses another challenge in adaptive radar detection, the target

contamination on secondary cells. The explained methods for cleverly selecting a

subspace and adapting to the interference environment require that observations used

in adaptation include only unwanted interference signals. However without any fast-

time operation, the impulse response of the target to the pulse code creates nonzero

echoes of the target in the secondary cells. In conventional radar systems a guard in-

terval around the CUT may help reducing this sidelobe level; however, in a scenario

in which the clutter is heterogeneous, there are already a few secondary cells so that

eliminating them with a guard interval is not beneficial. Reducing the sidelobes to

zero requires infinite pulse length and using an uncoded pulse makes time synchro-
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nization significantly hard. Therefore, a fast-time preprocessing method is used to

eliminate the target contamination effect on secondary cells. This method filters the

CUT with a matched filter but applies such filters to secondary cells that the observa-

tions in the secondary cells are projected into a fast-time subspace orthonormal to the

target space in the fast-time. This method eliminates the target contamination com-

pletely in the expense of adding a correlation to the interference process in fast-time.

Nevertheless, the slow-time preprocessing method proposed in this thesis does not

use fast-time correlation characteristics of interference at all, and it is shown explic-

itly in this thesis that fast-time preprocessing does not affect the slow-time correlation

characteristics of interference.

The scenario in which the target is longer than a range cell, namely the extended target

case, is not examined in this thesis and the preprocessing methods can be developed

accordingly in the future works. Other than this, the optimum AR prediction order

is also not discussed in this thesis, and it can be a good starting point in the future

studies. Spectral estimation methods other than Burg’s one can also be investigated

in future works. On the other hand, assuming a Gaussian ICM and estimating the

mean and spread parameters for the two clutter sources may be a different adaptive

detection method and may increase the performance due to the match of the ICM

models. However, that method would probably fail under ICM model mismatches

while the proposed method of this thesis is more robust to model mismatches because

it uses an AR model. Nonetheless, mean and spread estimation can be integrated into

AR coefficient estimation in future studies in order to increase the robustness to model

mismatches. In addition to these, the scenario in which two clutter sources have two

independent texture parameters may be a challenge to the proposed detector of this

thesis. Such a scenario suggests different range cells have different ICM models;

therefore, adaptive radar detectors may fail in this kind of scenarios. İnvestigating

such cases may be a further study of this thesis.

The proposed detector in this thesis is not yet tested with real data. This test may

be a good opportunity to find the capabilities and weaknesses of the detector and a

good source for the future works. On the other hand, testing this detector with real

data requires a good threshold determining algorithm, which is absent in this thesis.

Nevertheless, using training data to find good thresholds is always an option when
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interference characteristics cannot change very fast. In addition to these, the exact

probabilities of detection and false alarm for this detector may be found analytically

in the future. These studies may help this detector become a benchmark for the future

studies on adaptive radar detection.
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APPENDIX A

BURG’S PARAMETRIC SPECTRAL ESTIMATION METHOD

Throughout the thesis, the focus is on Burg’s method because it is fast especially for

the case when the number of pulses in a CPI is small.

Burg’s formula for parametric spectral estimation [21] is used in estimation of the

interference subspace, in slow-time preprocessing stage. This method takes as the

inputN equally spaced (in time, space or any other dimension) observations, assumes

they are from a realization of an auto-regressive (AR) process and estimates the AR

coefficients by using Levinson-Durbin recursion, up to a predefined AR order p ≤ N .

The theoretical background of Burg’s method can be found in the literature [30, 24].

The summary of this method is given in Algorithm A.1.
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Algorithm A.1 Burg’s Algorithm for Calculation of the AR Parameters
Initialize with:

r̂ȳ,0 =
1

N

N−1∑
n=0

|ȳn|2

τ̂0 = r̂ȳ,0

êf0,n = ȳn n = 1, 2, . . . , N − 1

êb0,n = ȳn n = 0, 1, . . . , N − 2

for i = 1 to p do

Calculate the reflection coefficient:

β̂i =

−2
N−1∑
n=i

(êfi−1,n)(êbi−1,n−1)∗

N−1∑
n=i

(|êfi−1,n|2 + |êbi−1,n−1|2)

Update the power estimate:

τ̂i = (1− |β̂i|2)τ̂i−1

Update the AR Coefficient estimates:

if i = 1 then

â1,1 = β̂1

else

âi,k =

âi−1,k + β̂iâ
∗
i−1,i−k for k = 1, 2, . . . , i− 1

β̂i for k = i

end if

Update êfn and êbn:

êfi,n = êfi−1,n + β̂iê
b
i−1,n−1 n = i+ 1, i+ 2, . . . , N − 1

êbi,n = êbi−1,n−1 + β̂∗i ê
f
i−1,n n = i, i+ 1, . . . , N − 2

end for

pth order AR coefficient estimates {âk}pk=1 = {âp,1, âp,2, . . . , âp,p}
Find the power estimate at the range of interest τ̂ = τ̂p
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