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ABSTRACT 

 

SIMULATIONS ON GLOW DISCHARGE: DEVELOPMENT AND 

VALIDATION OF ONE-DIMENSIONAL KINETIC MODEL BY PARTICLE 

IN CELL/MONTE CARLO COLLISION METHOD  

 

Tiryaki, Özgecan 

Master of Science, Physics 

Supervisor: Assoc. Prof. Dr. Serhat Çakır 

 

August 2019, 77 pages 

 

Numerical codes for glow discharge plasma simulations were developed by using 

Particle in Cell/Monte Carlo Collision (PIC/MCC) method. The model is one-

dimensional in coordinate space and three-dimensional in velocity space (1d3v). A 

modification of Direct Simulation Monte Carlo (DSMC) method known as null-

collision method was used for particle collisions. MPI and sub-cycling were used for 

speed up. The code was validated using benchmarks for capacitively coupled helium 

discharges and tested with three-dimensional (3d3v) model of electron swarm in 

argon. Results of the code were compared with the presented results for radio 

frequency (RF) argon discharge. Code was further used to study effect of electron 

reflection at the boundaries for RF helium discharge.        

 

 

 

Keywords: Gas Discharge, Plasma, Particle in Cell Method, Monte Carlo Collision 

Method  
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ÖZ 

 

PARILTILI DEŞARJ ÜZERİNE SİMULASYONLAR: BİR BOYUTLU 

KİNETİK MODELİN HÜCREDE PARÇACIK/MONTE CARLO ÇARPIŞMA 

YÖNTEMİYLE GELİŞTİRİLMESİ VE DOĞRULANMASI 

 

Tiryaki, Özgecan 

Yüksek Lisans, Fizik 

Tez Danışmanı: Doç. Dr. Serhat Çakır 

 

Ağustos 2019, 77 sayfa 

 

Parıltılı deşarj plazma simülayonları için nümerik kodlar, Hücrede Parçacık/Monte 

Carlo (PIC/MCC) çarpışma yöntemi kullanılarak geliştirilmiştir. Model koordinat 

uzayında bir boyutlu ve hız uzayında üç boyutludur (1d3v). Parçacık çarpışmalarında 

null-collision metodu olarak bilinen Doğrudan Simülasyon Monte Carlo (DSMC) 

metodunun bir modifikasyonu kullanılmıştır. Hızlanma için MPI ve sub-cycling 

kullanılmıştır. Kod, kapasitif olarak bağlanmış helyum deşarjları için kriterler 

kullanılarak doğrulandı ve argonda üç boyutlu (3d3v) elektron sürüsü modeli ile test 

edildi. Kodun sonuçları, radyo frekansı (RF) argon deşarjı için sunulan sonuçlarla 

karşılaştırıldı. Kod, RF Helyum deşarjı için sınırlardaki elektron yansımasının etkisini 

incelemek için de kullanılmıştır. 

 

Anahtar Kelimeler: Gaz Deşarjı, Plazma, Hücrede Parçacık Yöntemi, Monte Carlo 

Çarpışma Yöntemi 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Motivation 

Modeling of plasmas contributes wide range of applications and theory from industry 

to astrophysics. Gas discharges have immense use in microelectronics, integrated 

circuit production and other industries such as biomedical, automotive, aerospace, 

steel [1]. Sputtering, thin film deposition, etching, optical emission and mass 

spectroscopies are important processes for surface modification, optimization, 

detecting and analyzing chemical compositions. With developing technology and 

computational resources, more detailed and accurate modeling becomes possible. 

Simulations give insight about complex physics of discharges and plasmas that is not 

always possible to get with classical diagnostics or experiments and help 

development of more efficient technologies.  

Main goal of this study is development and validation of one-dimensional kinetic 

model using particle-in-cell-Monte-Carlo (PIC-MCC) collision method. Validation 

and benchmarking are done with the available literature. Model is further used for 

investigating boundary effects of RF discharges.  

1.2. Types of Plasmas 

Conventional definition of fourth state of matter and name plasma goes back to the 

studies of Crookes and Langmuir on electrical discharges [2]. In general, plasma can 

be seen as collection of charged particles and neutrals. Classification is broad. 

Density and temperature of charged particles and ionization degree are to be 

considered. Ionization degree is given by the ratio i i gn /(n +n ) , here in and gn  are 

ion and neutral number densities. If this is in order of unity, plasma is fully ionized. 
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For weakly ionized plasmas, ratio is far below unity and for most of the cases they 

are far from thermal equilibrium as electron temperature is much greater than that of 

heavy ions. In this case, neutral density determining frequency of charged-neutral 

collisions becomes important parameter. For higher pressures, near or local thermal 

equilibrium could be reached as electron temperature reduces and becomes equal to 

the ion temperature. This is observed in transition from glow to arc regimes in direct 

current (DC) discharges.      

 

Figure 1.1. Pressure and temperature regimes for DC discharges [3].  

In general, electron density is considered as plasma density and electron 

temperature are used to classify different types of plasmas. 
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Figure 1.2. Plasma types for different electron temperature and density [4]. 

 

1.3. Modeling of Discharges 

Numerical simulations help to understand different characteristics and properties of 

various types of discharges. There are mainly three types of modeling namely, kinetic 

or particle, fluid and hybrid methods. Particle method [5] uses so called macro or 

super particles that represent certain number of real particles to sample distribution 

function. Trajectories is followed by solving Lorentz equations of motion. Fluid 

method [6] solves first three velocity moments of Boltzmann equation, namely, 

density, momentum and energy conservation equations. Maxwell’s equations are 

solved for electric and magnetic fields. Hybrid methods [7] combine kinetic and fluid 

methods. While kinetic method is used for one species, fluid method could be used 

for another depending on conditions. Main disadvantage of particle methods is 

numerical cost or computational time. However, they are accurate and reliable for 
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phenomena occurring in sheath region of discharges and at low pressure, non-thermal 

discharges where there is relatively small frequency of charged-neutral collisions. 

Advantage of fluid model is the application of more complex geometries relatively 

fast and it is reliable for thermal equilibrium regions. Hybrid method tries to combine 

advantages by using fluid method for slower species, while applying particle method 

to energetic ones [8]. Particle method is combined with the Monte-Carlo collision 

method to involve Coulomb or charged-neutral collisions.                                 
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CHAPTER 2  

 

2. BASICS OF PLASMAS AND DISCHARGES 

 

2.1. Breakdown and Townsend Discharge 

There are number of ions and electrons in gasses on ambient conditions mostly due to 

external radiation. When an electric field is applied, current starts to increase as 

particles reaching electrodes. Loss of charges due to recombination limits the increase 

of the current. After further increase of the field, ionization rate increases and 

condition where all charged particles reach electrodes before recombination occurs. 

Current becomes independent of voltage and takes a saturation value. Saturation 

current density is limited by external sources [9] and given by  

dn
j qd

dt
= , (2.1) 

where j  is saturation current density, d  is distance between electrodes, q  is 

elementary charge and dn / dt  is rate of production of the charged particles. Saturation 

current is very weak, discharge is very dark. After saturation, current increases again 

with voltage until the breakdown voltage is reached. Breakdown voltage depends on 

gas pressure, electrode spacing and material. Townsend discharge is the region 

between saturation and breakdown. In this region as electric field increases, ionization 

causes an electron avalanche and current increases above saturation value. 

Considering electron multiplication over a distance, current in the discharge can be 

written as 

𝑖 = 𝑖0𝑒
𝛼𝑑 , (2.2) 

where 𝑖0 is the current at the cathode or primary current, 𝛼 is first Townsend 

coefficient or ionization coefficient defined as number of ionization events made by 
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per electron, per unit distance. It depends strongly on ionization cross-section of 

electrons and pressure of the gas.  Electrons can also be emitted from cathode by 

impact of positive ions. These electrons are called secondary electrons. Secondary 

electron coefficient gives electron yield per incident ion. Secondary emission is 

essential for self-sustaining discharges. If a steady state is assumed, then the number 

of ions arriving at the cathode is 

𝑛𝑡 − (𝑛𝑐 + 𝑛𝑠) (2.3)

where 𝑛𝑡 is total number of electrons per second arriving at the anode, 𝑛𝑐 and 𝑛𝑠 are 

number of electrons per second leaving cathode due to external radiation and due to 

secondary emission respectively. Ionization and secondary yield coefficients [9] give  

𝑛𝑡 = (𝑛𝑐 + 𝑛𝑠)𝑒
𝛼𝑑 , (2.4) 

𝛾(𝑛𝑡 − (𝑛𝑐 + 𝑛𝑠)). (2.5)

Here 𝛾 is the secondary electron yield for per incident ion. Combining these (Eq. (2.4) 

and Eq. (2.5)) by eliminating 𝑛𝑠, current in discharge gap can be written as          

𝑖 =
𝑖0𝑒

𝛼𝑑

1 − 𝛾(𝑒𝛼𝑑 − 1)
(2.6) 

In Eq. (2.6), current is increased by the second term at the denominator with effect of 

secondary emission. Current becomes infinite when denominator equals zero. This 

constitutes breakdown condition as 

𝛾(𝑒𝛼𝑑 − 1) = 1, (2.7) 

and if 𝛾 ≪ 1, Townsend criterion for breakdown becomes 

𝛾𝑒𝛼𝑑 = 1. (2.8) 

Ionization coefficient as found from experiment is in the form 

α = 𝐴𝑝exp (−
𝐵𝑝

𝐸
) , (2.9) 
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where 𝐴 and 𝐵 are constants that depend on gas type, 𝑝 is pressure and 𝐸 is electric 

field. This value can be written considering number of ionization collisions in distance 

𝑑𝑥 as   

α𝑑𝑥 =
𝑑𝑥

𝜆
𝑒𝑥𝑝 (−

𝜀𝑖
𝑞𝐸𝜆

) , (2.10) 

where 𝜀𝑖 is ionization threshold energy of gas atoms and 𝜆 is the mean free path of 

electrons. Mean free path is inversely related to pressure. 𝑑𝑥/𝜆 refers to number of 

collisions in distance 𝑑𝑥 and exponential term is ionization probability. Using 

breakdown criterion (Eq. (2.7)) and 𝐸 for parallel electrodes gives 

α𝑑 = 𝑙𝑛⁡(1 +
1

𝛾
), (2.11) 

𝐴𝑝𝑑𝑒𝑥𝑝 (−
𝐵𝑝𝑑

𝑉𝐵
) = 𝑙𝑛⁡(1 +

1

𝛾
). (2.12) 

DC breakdown voltage becomes 

𝑉𝐵 =
𝐵𝑝𝑑

ln⁡(𝐶𝑝𝑑)
, (2.13) 

where 𝐶 is taken as another constant as  

𝐴

ln⁡(1 +
1
𝛾
)
. (2.14)

 

Value of 𝑉𝐵  depends on product of gas pressure and distance between the electrodes. 

This relation holds for limited range of field and pressure values. For range of values 

of 𝑝𝑑, 𝑉𝐵  is minimum for certain gas type. For very low values of product 𝑝𝑑 as 

breakdown voltage goes infinity, no breakdown is possible for the gas when  

𝑝𝑑 <
1

𝐴
ln⁡(1 +

1

𝛾
). (2.15)  
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𝑉𝐵  versus 𝑝𝑑 curve known as Paschen’s curve shows these characteristics.  

 

Figure 2.1. Paschen curves for different gasses [10]. 

For lower values of pressure, there are not enough collisions and higher voltage is 

needed for breakdown. For higher values of pressure, smaller mean free path makes 

collisions frequent but energy gain of electrons is not enough. Thus, higher values of 

breakdown voltage are observed. This explains the minimum point in the Paschen 

curve. 

2.2. Glow Discharge 

After breakdown voltage is reached, steady state of Townsend regime is disturbed. 

Transition to glow region occurs where current or discharge becomes self-sustaining. 

Glow discharge can be seen as starting point where many plasma properties are 

observed, such as potential drop at the walls, quasi-neutrality of the bulk and the nature 

of collisions.  
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Figure 2.2. Glow discharge layers [11]. 

Self-sustaining behavior of glow discharge regime depends on how particle lost to the 

walls is compensated by collisional processes. Secondary electrons produced by ion 

impact at the cathode and ionization collisions between electron and neutrals are 

determining factors for the glow regime. Characteristic dark and luminous layers are 

formed depending on gas type. Positive space charge forms in cathode region and 

electrons are accelerated by resulting electric field. Cathode glow is mostly due to 

recombination of positive ions with electrons. After cathode glow, the cathode dark 

space forms where electrons continue to gain energy and cause ionizing collisions. In 

this region very low excitation cross-sections results in dark region. Negative glow is 

resulted from excitation reactions caused by energetic electrons. This region along 

with the cathode dark space form main ionization source of the discharge. After 

negative glow, as a result of decreasing field strength, energy gain of electrons reduces 

and energy losses in negative glow results in Faraday dark space. Decrease in the 

density of electrons results in positive column where net charge density becomes close 

to zero. Positive column is where the quasi-neutrality is mainly observed. When the 

electrode distance is made smaller, positive column gets smaller and eventually 

removed along with the Faraday dark space. Discharge can maintain only with the 

cathode region containing negative glow. Closer to anode increasing electric field 

accelerating electrons results in anode glow. Further increase of the current result in 

transitions to abnormal glow and later arc discharge regimes. Ohm’s law for the 

discharge circuit [10] is given by  

𝜀 = 𝑉 + 𝑖𝛺, (2.16) 
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where 𝜀 is the supplied voltage.𝑖,𝛺 are the discharge current and resistance of the 

system respectively and 𝑉 is the voltage between the electrodes. Intersection of 

straight line arising from this equation with voltage-current graph gives the value of 

current and voltage of the discharge. This line is known as load line. Steepness of the 

line is determined by resistance for a fixed electromotive force supplied from a power 

source. 

 

Figure 2.3. Voltage-current characteristics of discharge. A: Non-self-sustaining 

discharge. BC: Townsend discharge. CD: Subnormal glow. DE: Normal glow. EF: 

Abnormal glow. FG: Transition to arc. GH: Arc discharge [10]. 

Very high resistance and low current corresponds to dark discharge and Townsend 

regime. After further decreasing resistance, transition to normal glow discharge from 

low current region called subnormal glow occurs. In normal glow region, there is 

constant current density while the current increases. After whole surface of cathode is 

covered by discharge, abnormal glow region begins where current density and current 

increase with voltage. Further increase of current after abnormal glow results in 

transition to arc regime where heating of the cathode becomes important. In the arc 

regime, discharge reaches higher pressure values and higher current density is 

obtained with relatively low voltage. Main source of electrons in the arc regime is the 

thermionic emission and potential drop at the cathode is reduced compared to glow 

regime.   
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2.3. Debye Shielding 

Collective behavior of charged particles is one of the distinct properties of the plasmas 

and characteristic length scale over which this is observed is known as Debye length. 

This can be explained by potential or electric field around a single charge in plasma. 

When same equilibrium density is assumed for both ions and electrons, where 

electrons follow Boltzmann distribution, one dimensional Poisson’s equation becomes 

d2𝑉

dx2
=
𝑒𝑛0
𝜀0

(𝑒𝑥𝑝 (−
𝑒𝑉

𝑘𝑇𝑒
) − 1) . (2.17) 

Expanding exponential where  𝑒𝑉 ≪ 𝑘𝑇𝑒  and omitting higher order terms, Eq. (2.17) 

can be written as 

d2𝑉

dx2
=

𝑛0𝑒
2

𝜀0𝑘𝑇𝑒
𝑉, (2.18) 

which has the solution 

𝑉 = 𝑉0𝑒𝑥𝑝 (
−|𝑥|

𝜆𝐷
) , (2.19) 

where 

𝜆𝐷 = √
𝜀0𝑘𝑇𝑒
𝑛0𝑒2

. (2.20) 

Here 𝜆𝐷is the Debye length. It characterizes the screening distance of potential where 

it goes off exponentially. Depending on the Debye length, two fundamental conditions 

for plasma state can be given. For collective behavior to be observed, there should be 

enough number of particles in Debye sphere. This also gives condition for plasma state 

as 

𝑛
4

3
𝜋𝜆𝐷

3 ≫ 1, (2.21) 
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where 𝑛 is the density. Moreover; length scale in which plasma is observed to be quasi-

neutral should be much greater than the Debye length as 

𝜆𝐷 ≪ 𝐿. (2.22) 

2.4. Sheath Formation 

When a neutral substrate inserted in plasma or near the insulating walls, a sheath 

region with a negative potential to the bulk develops. At first, electron flux to the wall 

is much greater than ion flux because of the temperature and mass difference. This 

results in negative charge which attracts ions and repels electrons. Thus, a positive 

space charge is formed around wall. Later, ion and electron currents to the wall are 

balanced and value of potential that this is observed is called as floating potential. 

Potential at the bulk is known as space potential. Electrons are accelerated to the bulk 

and ions to the wall by the potential difference. Potential of the sheath region can be 

given by balancing the fluxes to the wall as  

𝑛0𝑣𝑒𝑒𝑥𝑝 (
𝑒𝜙𝑤

𝑘𝑇𝑒
) = 𝑛0𝑣𝑖𝑒𝑥𝑝 (

−𝑒𝜙𝑤

𝑘𝑇𝑖
) . (2.23) 

Here, same equilibrium density is taken for electrons and ions for the bulk. Both 

electrons and ions follow Boltzmann distribution. 𝑣𝑒,𝑖 are thermal velocities. 𝜙𝑤 is the 

wall potential. If electron and ion temperature are assumed to be equal, Eq. (2.23) 

becomes 

(
𝑚𝑖

𝑚𝑒
)
1/2

= 𝑒𝑥𝑝 (
−2𝑒𝜙𝑤

𝑘𝑇𝑒
) (2.24) 

taking logarithm of both sides gives 

𝜙𝑤 = −
𝑘𝑇𝑒
4𝑒

𝑙𝑛 (
𝑚𝑖

𝑚𝑒
) . (2.25) 

Wall potential is negative, depends on electron temperature and ratio of the masses. 

Using continuity equation in one dimension where there is no time dependence, 

density conservation for ions coming to sheath region becomes 
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𝑛𝑖(𝑥)𝑢𝑥 = 𝑛0𝑢0, (2.26) 

where 𝑛0 and 𝑢0 are bulk density and flow velocity of ions coming to the sheath 

respectively. Here, 𝑛𝑖 and 𝑢𝑥 are density and flow velocity in the sheath region. 

Energy conservation gives  

1

2
𝑚𝑖𝑢0

2 =
1

2
𝑚𝑖𝑢𝑥

2 + 𝑒𝜙(𝑥), (2.27) 

where 𝑒 is the elementary charge. Then, ion velocity in sheath region becomes 

𝑢𝑥 = (𝑢0
2 −

2𝑒𝜙(𝑥)

𝑚𝑖
)

1/2

. (2.28) 

Thus, ion density in sheath is 

𝑛𝑖(𝑥) =
𝑛0

(1 −
2𝑒𝜙(𝑥)

𝑚𝑖𝑢0
2 )

1/2
(2.29)

 

Electrons facing potential barrier in the sheath is taken to follow Boltzmann 

distribution as 

𝑛𝑒(𝑥) = 𝑛0𝑒𝑥𝑝 (
𝑒𝜙(𝑥)

𝑇𝑒
) . (2.30) 

Poisson’s equation becomes 

𝑑2𝜙

𝑑𝑥2
=
𝑒𝑛0
𝜀0

[𝑒𝑥𝑝 (
𝑒𝜙(𝑥)

𝑇𝑒
) − (1 −

2𝑒𝜙(𝑥)

𝑚𝑖𝑢0
2 )

−1/2

] (2.31) 

This gives a non-linear system. By taking 𝑒𝜙 ≪ 𝑇𝑒 and 𝑒𝜙 ≪ 𝑚𝑖𝑢0
2, terms on the right 

can be expanded as 

exp (
𝑒𝜙

𝑇𝑒
) ≅ 1 +

𝑒𝜙

𝑇𝑒
+ O[(

𝑒𝜙

𝑇𝑒
)
2

] (2.32) 
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(1 −
2𝑒𝜙

𝑚𝑖𝑢0
2)

−1/2

≅ 1+
𝑒𝜙

𝑚𝑖𝑢0
2 + ⁡O[(

𝑒𝜙

𝑇𝑒
)
2

]. (2.33) 

Putting these (Eq. (2.32) and Eq. (2.33)) in Poisson’s equation and omitting higher 

order terms [12], Eq. (2.31) becomes  

𝑑2𝜙

𝑑𝑥2
=

𝜙

𝜆𝐷
2 (1 −

𝑣𝑠
2

𝑢0
2) , (2.34) 

where 𝜆𝐷,𝑣𝑠 are Debye length and ion sound speed given as (𝑇𝑒 ∕ 𝑚𝑖)
1/2 respectively. 

Using the definition of Mach number giving ratio of speed to sound speed (𝑀 = (
𝑢0

𝑣𝑠
)), 

Eq. (2.34) can be written as 

𝑑2𝜙

𝑑𝑥2
=

𝜙

𝜆𝐷
2 (1 −

1

𝑀2
) . (2.35) 

Eq. (2.35) gives non-oscillatory solutions for 𝑀2 > 1, which also gives the condition 

known as Bohm sheath criterion that ions come into sheath with a greater speed than 

ion sound speed that is also called here as Bohm velocity. Poisson’s equation can be 

written again to calculate current that can be drawn if wall potential is made arbitrarily 

large, in the form 

𝑑2𝜒

𝑑𝑥2
=

1

𝜆𝐷
2 [𝑒𝑥𝑝(𝜒) − (1 −

2𝜒

𝑀2
)
−1/2

] , (2.36) 

where 𝜒 = 𝑒𝜙𝑤 ∕ 𝑇𝑒 . Neglecting electron density near the wall and taking 

𝑒|𝜙𝑤|⁡ ⁡𝑇𝑒⁄ ≫ 1, Eq. (2.36) [12] becomes  

𝑑2𝜒

𝑑𝑥2
=
−𝑀

𝜆𝐷
2

1

(−2𝜒)1/2
, (2.37) 

Integrating after multiplying both sides with 𝑑𝜒 ∕ 𝑑𝑥 gives  

𝜆𝐷
𝑑𝜒

𝑑𝑥
= 𝑀1/223/4𝜒1/4. (2.38) 

Integrating once more to an arbitrary position 𝑑 Eq. (2.38) becomes 
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∫𝑑𝑥 = ∫
𝜆𝐷𝑑𝜒

𝑀1/223/4𝜒1/4

𝜒

𝜒𝑤

𝑑

0

. (2.39) 

Neglecting the upper limit on right-hand side and taking the square of both sides, 

solution can be written as  

𝑀𝑑2 =
𝜆𝐷
2

23/2
16

9
𝜒𝑤
3/2

. (2.40) 

After putting Mach number 𝑀 = 𝑢0 ∕ 𝑣𝑠 and 𝜒𝑤 = 𝑒𝜙𝑤 ∕ 𝑇𝑒 in Eq. (2.40), ion current 

density (𝐽 = 𝑛𝑖𝑒𝑢0) to the wall becomes 

𝐽 =
4

9
(
2𝑒

𝑚𝑖
)
1/2 𝜀0𝜙𝑤

3/2

𝑑2
. (2.41) 

This relation (Eq. (2.41)) is known as Child-Langmuir law gives the ion current 

density in space charge limit.    

2.5. Plasma Probes 

Probes are used for plasma diagnostics using voltage-current characteristics. 

Measurements give information about temperature and density. By inserting the 

probe, a bias voltage is introduced. Reference could be one of the electrodes or another 

probe. Bias voltage [13] is given by  

𝑉 = 𝑉𝑝 + 𝑉𝑠, (2.42) 

where 𝑉𝑝 and 𝑉𝑠 are probe and plasma potential respectively. Different probe voltages 

determine the amount of current drawn. There are ion and electron saturations and a 

region in between. For 𝑉 ≪ 𝑉𝑠 , probe potential can produce negative space charge 

limit and ion saturation current is reached. Point where probe potential is zero 

corresponds to floating potential resulting from zero net current to probe. For 𝑉 > 𝑉𝑠 , 

there is electron saturation. For the region between floating and plasma potential, 

electrons are repelled by the potential. Electrons having enough energy, 
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 𝑣 > (2𝑒|𝑉𝑝| 𝑚⁄ )
1/2

, can reach the probe. Considering drift velocity in one 

dimension, electron current to the probe [14] is calculated by  

𝐼𝑒 = 𝑒𝑛𝑒𝐴 ∫ 𝑑𝑣𝑥 ∫ 𝑑𝑣𝑦 ∫ 𝑓(𝑣𝑥 , 𝑣𝑦, 𝑣𝑧)𝑣𝑧𝑑𝑣𝑧

∞

(
2𝑒|𝑉𝑝|

𝑚 )

1/2

∞

−∞

∞

−∞

(2.43)
 

Here 𝐴 is the effective area of the probe. 𝑓(𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) is the Maxwellian velocity 

distribution given by 

(
𝑚

2𝜋𝑘𝑇𝑒
)
3/2

𝑒𝑥𝑝(−
𝑚(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2)

2𝑘𝑇𝑒
) . (2.44) 

Then, electron current becomes 

𝐼𝑒 =
𝑒𝑛𝑒 < 𝑣𝑒 >

4
𝐴𝑒𝑥𝑝 (

𝑒𝑉𝑝
𝑘𝑇𝑒

) , (2.45) 

where average velocity < 𝑣𝑒 > is given as 

𝑣𝑒 = (
8𝑘𝑇𝑒
𝜋𝑚

)
1/2

. (2.46) 

After taking logarithm Eq. (2.46) becomes 

𝑙𝑛𝐼𝑒 =
𝑒𝑉𝑝
𝑘𝑇𝑒

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (2.47) 

Electron temperature 𝑇𝑒 can be determined from slope of the Eq. (2.47). Using electron 

temperature other properties such as plasma density, density of electrons and ions and 

current density of ions can be found. Electron saturation current is calculated by taking 

the lower limit in the third integral in Eq. (2.43) as zero, which is given by  

𝐼𝑒 =
𝑒𝑛𝑒 < 𝑣𝑒 >

4
𝐴. (2.48) 
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Using Bohm velocity 𝑢𝐵 given by (𝑘𝑇𝑒 𝑚𝑖⁄ )1/2, ion saturation current density can be 

written as 

𝐽𝑖 = 𝑒𝑛𝑖𝑢𝐵 (2.49) 

Multiplying Eq. (2.49) with effective probe area gives ion saturation current. Potential 

at the sheath edge making ions reach Bohm speed is given by 

𝜙𝑠 ≈ ⁡−
1

2

𝑘𝑇𝑒
𝑒

. (2.50) 

Using 𝜙𝑠 and assuming Boltzmann distribution for electrons, density at the sheath 

edge can be written as  

𝑛𝑠 = 𝑛0exp⁡(𝑒𝜙𝑠 𝑘𝑇𝑒⁄ ). (2.51) 

Eq. (2.50) and Eq. (2.51) give 

𝑛𝑠 ≈ 0.5𝑛0, (2.52)

where 𝑛0 is the plasma density. In pre-sheath region density of electrons and ions can 

be taken as approximately equal. Then, ion saturation current can be given as 

𝐼𝐵 =
1

2
𝑛0𝑒𝐴 (

𝑘𝑇𝑒
𝑚𝑖

)
1/2

. (2.53) 

When electron temperature is known, plasma density is calculated by 𝐼𝐵 that is also 

called as Bohm current [12]. 

2.6. Diffusion 

Collisional diffusion is considered as random walk process where mean free path of 

the molecules is the step size. Diffusion coefficient relates mean square distance with 

average time between collisions. If a net flux around a point in one dimension is 

considered as 

+ − =  − , (2.54) 



 

 

 

18 

 

where + , − are fluxes to right and left respectively. In the time interval t , where 

half of the particles travels to each direction, flux to right is 

0

0

1 ( )

2

x

x x

n x
dx

t
−

 , (2.55) 

where n, 0x  are the density and reference point respectively. Expanding density n(x) 

in Taylor series, Eq. (2.55) becomes 

0

0

0 0

1
( ) ( )

2

x

x x

dx dn
n x x x

t dx
−

 
+ −   

 , (2.56) 

where higher order terms are omitted. Thus, particle flux to right is given by 

2

0

1
( )

2 2

x dn
n x x

t dx
+

 
 =  − 

  
. (2.57) 

Similarly, flux to left is found as 

0

0

2

0

1 ( ) 1
( )

2 2 2

x x

x

n x x dn
dx n x x

t t dx

+

−

 
 = =  + 

   
 . (2.58) 

Therefore, net flux is 

2( )

2

x dn
D n

t dx

− 
 = = − 


. (2.59) 

This is the Fick’s diffusion law giving net flux dependent on density gradient, taking 

diffusion coefficient D as 2 / 2x t  . In a weakly ionized plasma where there is no 

magnetic field, flux of species can be determined by momentum balance equation 

given by 

v
v

d
mn qnE p mnv

dt
= − − . (2.60) 
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Considering a steady state where 𝑑v ∕ 𝑑𝑡 vanishes and isothermal system where 

collisions are dominant as collision frequency is much greater than the time scale that 

density changes and where p kT n =   [12], Eq. (2.60) gives flow velocity as  

v=
q kT n

E
mv mv n


− , (2.61) 

Thus, particle flux becomes 

n E D n = −  , (2.62) 

where  , D are mobility ( /q mv ) and diffusion coefficient ( /kT mv ) respectively. In 

plasmas, diffusion and mobilities of electrons and ions are different because of mass 

difference. Electrons being more mobile diffuse faster and leaves a positive space 

charge. This results in an electric field known as ambipolar that confines electrons and 

accelerates ions oppositely. Condition of equal fluxes ( e i =  ) required by quasi-

neutrality is  

e e i in E D n n E D n − −  = −  . (2.63) 

This gives ambipolar electric field as 

i e

i e

D D n
E

n 

− 
=

+
. (2.64) 

Using this field in flux for either ions and electrons gives ambipolar flux as 

i e e i
a

i e

D D
n

 

 

+
 = − 

+
, (2.65) 

where ambipolar diffusion coefficient is 

i e e i
a

i e

D D
D

 

 

+
=

+
. (2.66) 
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Taking mobility of ions much smaller than electron mobility and assuming equal 

temperatures, ambipolar diffusion coefficient can be approximated as 

2a iD D . (2.67) 

Therefore, diffusion of ions is multiplied by ambipolar electric field and value of aD

is governed by diffusion of ions [12]. 

2.7. Electron Plasma Oscillations 

As stated by quasi-neutrality, any changes of equilibrium values of field and potential 

are opposed by motion of charged particles in plasma with the effect of long-range 

Coulomb forces. As being more mobile, electrons response much more effectively 

than ions to small changes. Considering only first order perturbations around 

equilibrium density and after omitting higher order terms, continuity equation in one 

dimension is written as 

𝜕𝑛

𝜕𝑡
+ 𝑛0

𝜕𝑣

𝜕𝑥
, (2.68) 

where 𝑛0, 𝑛 are equilibrium density and first order perturbation respectively and where 

𝑣 is perturbed flow velocity. Momentum equation with same approximations becomes 

𝑚𝑒𝑛0
𝜕𝑣

𝜕𝑡
= 𝑛0𝑒

𝜕𝑉

𝜕𝑥
− 𝛾𝑇𝑒

𝜕𝑛

𝜕𝑥
, (2.69) 

where 𝛾 is the specific heat ratio ( /p vC C ) depending on degrees of freedom and 

equals three for one dimension and 𝑉 is the perturbed potential given by Poisson’s 

equation as 

𝑑2𝑉

𝑑𝑥2
=

𝑒

𝜀0
𝑛. (2.70) 

Here equilibrium densities of electrons and ions are taken as equal. If equilibrium 

thermal motion is ignored, combining these equations by taking time derivative of 
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continuity equation and putting value of 𝜕𝑣 ∕ 𝜕𝑡 from Eq. (2.69), equation for 

perturbed density can be written as  

𝜕2𝑛

𝜕𝑡2
+ (

𝑛𝑒𝑒
2

𝑚𝑒𝜀0
)𝑛 = 0, (2.71) 

where electron plasma frequency is given by 

𝑤𝑝𝑒 = (
𝑛𝑒𝑒

2

𝑚𝑒𝜀0
)

1/2

. (2.72) 

An electron with thermal velocity goes approximately distance of Debye length in one 

plasma period as 

λD =
𝑣𝑇
𝑤𝑝𝑒

. (2.73) 

If electron temperature is not neglected, independent density fluctuations of electrons 

couple with the thermal motion. This gives the dispersion relation relating wave vector 

to frequency of oscillations. To do this, fluid equations are used with Maxwell’s 

equations. Considering only electric field, continuity and momentum equations for the 

electrons become  

𝜕𝑛𝑒
𝜕𝑡

+ ∇ ⋅ 𝑛𝑒𝑣𝑒 = 0, (2.74) 

𝑚𝑒𝑛𝑒 (
𝜕𝑣𝑒
𝜕𝑡

+ 𝑣𝑒 ⋅ ∇𝑣𝑒) = −𝑒𝑛𝑒𝐸 − 𝛾𝑇𝑒∇𝑛𝑒. (2.75) 

Gauss’s Law is 

∇ ⋅ 𝐸 =
𝜌𝑝 + 𝜌𝑓

𝜀0
, (2.76) 

where 𝜌𝑝, 𝜌𝑓  are polarization charge density due to density perturbation and free 

charge density respectively. Assuming wave-like solutions [12]  as  
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 𝑛𝑒 = 𝑛̅exp⁡(𝑖𝑘 ⋅ 𝑟 − 𝑖𝑤𝑡) where 𝑘 is wave vector and using only first order 

perturbations as before continuity equation gives 

−𝑖𝑤𝑛̃𝑒 + 𝑖𝑛0𝑘 ⋅ 𝑣̃𝑒 = 0, (2.77) 

where 𝑛0, 𝑛̃𝑒, 𝑣̃𝑒 are equilibrium density, first order perturbations of density and 

velocity for electrons respectively. Eq. (2.75) gives velocity as 

𝑣̃𝑒 =
𝑒𝐸̃

𝑖𝑤𝑚𝑒
+

𝛾𝑇𝑒
𝑤𝑚𝑒

𝑘
𝑛̃𝑒
𝑛0

, (2.78) 

where 𝐸̃ is first order perturbation of electric field. Using this value in Eq. (2.77), 

electron polarization density takes the form 

𝑛̃𝑒 =
−𝑖𝑘 ⋅ 𝐸̃

1 − 3𝑘2v𝑇 ∕ 2𝑤2

𝑛0𝑒

𝑚𝑒𝑤2
, (2.79) 

where thermal velocity of electron is taken as (2𝑇𝑒 𝑚𝑒⁄ )1/2. Eq. (2.79) gives the 

density perturbation along electric field. Using this value, Gauss’s law (Eq. (2.76)) 

becomes 

∇ ⋅ 𝜀0⁡𝐸̃ (1 −
𝑤𝑝𝑒

2

𝑤 − (3 2⁄ )𝑘v𝑇
2) = 𝜌̃𝑓, (2.80) 

where 𝜌̃𝑓  is perturbed free charge density. Thus, electrostatic dielectric constant of 

plasma can be written as 

𝜀(𝑘,𝑤) = 𝜀0 (1 −
𝑤𝑝𝑒

2

𝑤 − (3 2⁄ )𝑘v𝑇
2) (2.81) 

 Dispersion relation giving frequency for the normal mode oscillations is the condition 

of 𝜀(𝑘, 𝑤) = 0. This gives 

𝑤2 = 𝑤𝑝𝑒
2 + 3𝑘2v𝑇

2 . (2.82) 
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Eq. (2.82) is known as Bohm-Gross dispersion relation. Here ions are considered as 

fixed uniform background and only electron oscillations along electric field 

(longitudinal) is considered.  

 

Figure 2.4. Dispersion curve [12]. 

Slope of any line from origin to any point on the dispersion curve gives phase velocity 

(v𝜙). Group velocity is given by the slope of the tangent to any point on the curve as  

v𝑔 =
𝑑𝑤

𝑑𝑘
=
3

2

𝑣𝑇
2

v𝜙
⁡ . (2.83) 

Information is carried at the order of thermal velocity. For higher electron 

temperatures this is closer to thermal velocity. If thermal motion is ignored, 

information is not carried at all as group velocity, v𝑔 = 0 [12, 15]. 
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CHAPTER 3  

 

3. NUMERICAL METHOD 

 

3.1. Particle in Cell Method 

Numerical methods used in plasma simulations have different approaches to solve 

linear Boltzmann equation for particle distribution functions in six-dimensional 

position and velocity phase space given as 

𝜕𝑓(𝑟, v⃗⃗, 𝑡)

𝜕𝑡
+ v⃗⃗ ⋅ ∇𝑟𝑓(𝑟, v⃗⃗, 𝑡) + 𝑎⃗ ⋅ ∇v𝑓(𝑟, v⃗⃗, 𝑡) = (

𝜕𝑓

𝜕𝑡
)
𝑐𝑜𝑙𝑙

(3.1) 

Here distribution function f can be defined as probability of finding particles in unit 

volume where number of particles in the infinitesimal volume element 𝑑3𝑟𝑑3v can 

be written as 

𝑓(𝑟,v)𝑑3𝑟𝑑3v. (3.2) 

Macroscopic quantities such as particle density, drift velocity and mean energy are 

calculated from velocity moments of distribution function [16] as  

𝑛(𝑟) = ∫𝑑3v⁡𝑓(𝑟,v) (3.3) 

𝑣(𝑟) =
1

𝑛(𝑟)
∫𝑑3v⁡𝑓(𝑟,v) v (3.4) 

𝜀(𝑟) =
1

𝑛(𝑟)
∫𝑑3v⁡𝑓(𝑟,v)

1

2
𝑚v2 (3.5) 

By excluding collisional term on the right-hand side of Eq. (3.1), PIC method is 

shown to be equivalent to solving Vlasov equation which considering only one 

dimension and electric field is written as 
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𝜕𝑓𝑠
𝜕𝑡

+ v
𝜕𝑓𝑠
𝜕𝑥

+
𝑞𝑠𝐸

𝑚𝑠

𝜕𝑓𝑠
𝜕v

, (3.6) 

where 𝑚𝑠  and 𝑞𝑠 are mass and charge of the given particle species. Eq. (3.6) describes 

the evolution of particle trajectories by external forces. In particle in cell method, finite 

sized computational particles are used and their trajectories are followed to sample the 

phase space distribution.   

3.1.1. Particle Weighting 

Super particles used in the simulation represent number of real particles that is called 

as particle or specific weight. They can be seen as finite elements in phase space that   

distribution function of charged species [17] is given by superposition of these 

elements. Order of the weighting method determines the accuracy of the forces on 

particles and of the densities and fields on grid points.  

Distribution function of the computational or super particles in one dimension [17] is 

written as  

𝑓𝑝(𝑥,v, 𝑡) = 𝑁𝑝𝑆𝑥 (𝑥 − 𝑥𝑝(𝑡)) 𝑆v ((v − v𝑝(𝑡)) (3.7) 

where 𝑆𝑥 and 𝑆v are shape functions in spatial and velocity space respectively. Here 

𝑁𝑝 is the specific weight. Velocity space shape function is Dirac delta function as 

particles represented by one super particle are considered to have same speed. Spatial 

shape functions are determined from different orders of basic splines as  

𝑆𝑥(𝑥 − 𝑥𝑝) =
1

∆𝑝
𝑏𝑙 (

𝑥 − 𝑥𝑝
∆𝑝

) . (3.8) 

Here ∆𝑝 is the length scale of the super particle. Most commonly used weighting 

methods are zero and first order weightings that are known as nearest-grid-point 

(NGP) and cloud in cell (CIC) respectively. Zeroth order weighting gives nearest grid 

point (NGP) scheme where particle densities are weighted to one nearest grid point 

and same grid contributes to fields at particle positions. First order weighting gives 
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CIC method which is also used in this study and usually preferred because of reduced 

noise compared to NGP scheme. 

 

Figure 3.1. NGP scheme [18]. 

As mentioned before, first order weighting is resulted from using higher order 

interpolation method and it is used to reduce density and field fluctuations in the NGP 

scheme. Charge densities are accumulated at two grid points rather than one as 

1j i

j i

X x
q q

x

+ − 
=  

 
, (3.9) 

1

i j

j i

x X
q q

x
+

− 
=  

 
. (3.10) 

Here jq  and 1jq +  are charges on respective grid points, ix and , 1j jX + are the particle 

and grid point positions  respectively. 

 

Figure 3.2. CIC scheme [18]. 
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Higher order interpolations give more accurate results with fewer particles, but they 

are computationally more involved. 

 

Figure 3.3. Various weighting functions a) Zero-order (NGP), b) First-order (CIC), c) 

Second-order (parabolic) [19]. 

3.1.2. Equation of Motion 

Above chosen form of distribution function for the computational particles satisfies 

the moments of one-dimensional Vlasov equation. First order spatial and velocity 

moments result in Newton’s equations of motion.  

𝑑𝑣

𝑑𝑡
=

𝐹

𝑚
, (3.11) 

𝑑𝑥

𝑑𝑡
= 𝑣. (3.12) 

𝐹 is the force on particles, 𝑚 is the mass, 𝑥 and 𝑣 are position and velocity 

respectively. There are several time integration methods. Commonly preferred method 

in PIC simulations is the leapfrog integration. It is an explicit method where velocities 

are updated using forces at the older time steps and it is second order accurate where 

velocities are calculated half time steps whereas positions and fields are calculated in 
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integer time steps. It can be seen as velocities and positions following each other and 

jumping over at half time steps as name suggests as leapfrog. It is derived from Taylor 

series as 

2 31
( ) ( ) ( ) ( , ) ( )

2
n n n n nx t t x t v t t a x t t O t+  = +  +  +  (3.13) 

where 𝑎 is acceleration. Velocity at half time step is used at Eq. (3.16) as 

1/2

1
( ) ( ) ( , )

2
n n n nv t v t a x t t+ = +  , (3.14) 

that gives 

3( ) ( ) ( / 2) ( )n n nx t t x t v t t t O t+ = + +  +  . (3.15) 

In implementation, first step is finding velocity at half time step back using initial 

force value. After this, algorithm becomes 

1/2 1/2n n nv v a t+ −= +  , (3.16) 

1 1/2n n nx x v t+ += +  . (3.17) 

Leapfrog is usually chosen over higher order methods as it couples well with the field 

equations and gives accurate results while being relatively faster. Another common 

integration method is velocity Verlet which is also used in this study. Velocity Verlet 

is second order accurate as leapfrog and it is an implicit method where velocities and 

positions are calculated at same time step as  

2

1

1

2
n n n nx x v t a t+ = +  +  (3.18) 

1 1

1
( )

2
n n n nv v a a t+ += + +  . (3.19) 
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Because of being implicit, it allows higher values for time step than leapfrog but could 

be more involved as it requires force and position on the same time step to update 

velocities [20]. For stability of explicit leapfrog scheme, time step should satisfy 

Courant (CFL) condition known as 

maxv

x
t


  , (3.20) 

where vmax is the maximum speed of particles. Time step should also resolve electron 

plasma oscillations as 2pew t  . For more accuracy smaller limit could be used as 

0.2pew t  (3.21) 

pew is the electron plasma frequency,  

1/2
2

pe

0

w = e

e

e n

m

 
 
 

(3.22)  

For collisions, modification of classical leap-frog integration [21] is possible to get 

position and velocity vectors at same time steps giving accurate results with Monte 

Carlo collisions.  

3.1.3. Field Equations 

After finding densities on grid points, potential and related fields are calculated using 

Maxwell’s equations and chosen discretization method in space. In this study, only 

electric field is considered requiring solution of Poisson equation in one dimension as 

2

2

0

V

x






= −


, (3.23) 

where V is the potential and  is the total charge density. Discretization of this 

equation by finite difference takes the form 
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1 1

2

0

2i i i iV V V

x




+ −− +

= −


, (3.24) 

which gives system of equations 

2 1 0 0

1 2 1

0 0

0 1 2 1

0 0 1 2

− 
 
− −
 
 
 

− − 
 − 

2

3

2

1

N

N

V

V

V

V

−

−

 
 
 
 
 
 
  

=

2

2 0 1

2

3 0

2

2 0

2

1 0

( / )

( / )

( / )

( / )

N

N N

x V

x

x

x V

 

 

 

 

−

−

  +
 

 
 
 

 
  + 

(3.25) 

There are N-2 equations for inner nodes where Dirichlet boundary conditions are 

applied on first and last of the inner nodes. There are various methods to solve such 

system of equations. This is a sparse tridiagonal system that is easily solved by 

Gaussian elimination where forward elimination and backward substitution are 

applied. After calculating potential on the grids, electric field for inner nodes is 

calculated by second order central difference as 

1 1

2

i i
i

V V
E

x

+ −−
= −


. (3.26) 

For field on the first and last grid point, forward difference and backward difference 

are used respectively. Grid fields are interpolated to particle positions by using the 

same interpolation function used in charge assignment that is 

 1    

0                   else( )

i p
i p

i p

x x
x x x

xS x x

−
− −  



 
 

− =  
  

, (3.27) 

where ix and px are grid point and particle positions respectively. This gives field on 

particle positions as 

1

1

p i i p

p i i

x x x x
E E E

x x

+

+

− −
= +

 
. (3.28) 
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3.1.4. Particle Loading 

In simulation first step is creating super particles with certain position and velocity 

distribution. For positions, particles can be injected from certain point or can be 

distributed using uniform random numbers between (0,1). Velocities can also be 

sampled from desired distribution or direction according to physical and geometrical 

considerations of the system. Common way for velocities is sampling Maxwellian 

distribution which is used in this study. This illustrates the elementary idea of Monte 

Carlo sampling where cumulative distribution function of a random variable is 

mapped to uniform random numbers between (0,1). Probability distribution function 

of a random variable can be written in any interval (a,b) and is normalized as 

( ) 1

b

a

p x dx = , (3.29) 

where ( )p x dx gives probability of x to be between (x, x+dx). Cumulative distribution 

function is defined as  

( ) ( )

x

a

P x p x dx =  (3.30) 

giving probability of random variable taking a value up to x. By generating random 

numbers from uniform distribution between (0,1) and using invertibility of cumulative 

distribution function, values of random variable from desired probability density 

function [22] can be produced as  

( ) ( )

x

a

P x p x dx R = = , (3.31) 

1( )x P R−= . (3.32) 

where R is a uniform random number. Forms of probability density functions are 

usually known such as Maxwellian velocity distribution which can be written as 
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2

1/2 2

1
exp

(2 ) 2t t

v

v v

 
− 
 

, (3.33) 

where tv is the thermal velocity. To apply above basic method, P(x) should be 

calculated from the integral in Eq. (3.34). In this study to produce Maxwellian 

velocities, Box-Muller method [23] is used. General form of Gaussian distribution can 

be written as   

2

1/2

1 1
( ) exp

(2 ) 2
g t t



 
= − 

 
. (3.34) 

Considering independent random variables in two dimensions, Eq. (3.37) takes the 

form 

2 21
( , ) exp

2 2

x y
f x y



 +
= − 

 
, (3.35) 

using polar coordinates where  

cos( )x r = (3.36) 

sin( )y r = , (3.37) 

this becomes  

21
( , ) exp

2 2

r
f r drd rdrd  



 
= − 

 
. (3.38) 

There are two independent probability density functions that can be sampled with two 

uniform random numbers [24]  as  

2

1

0

exp
2

r
r

r dr U
 

 − = 
 

 (3.39) 
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2

0

1

2
d U






= , (3.40) 

which gives 

12lnr U= − (3.41) 

22 U = (3.42) 

Here 𝑈1  and 𝑈2 are uniform random numbers, thus velocity components become 

1 22ln cos(2 )x U U= − , (3.43) 

1 22ln sin(2 )y U U= − (3.44) 

3.2. Collisions 

In this study, collisions between charged particles and neutrals are simulated using 

Null collision method which is a well-known modification of direct Monte Carlo 

method. General idea of the direct method is determining particle free flight times 

based on the collision probability [25] 

( ) 1 exp( )cP t v t= − − , (3.45) 

where cv is the total collision frequency of particle and P(t) is probability of collision 

at t. Collision frequency depends on neutral density, total cross-section and energy as   

0 (v)vc Tv n = . (3.46) 

Here v is the magnitude of velocity. Free flight time can be determined mapping 

cumulative distribution function with uniform random numbers related with the 

probability of free flight that is the probability of not making collisions in certain time 

interval [26] as  
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( ) exp( )c c c cp t v v t= − , (3.47) 

0

( ) ( )

t

R c t p t dt = =  . (3.48) 

Inverting cumulative distribution function in Eq. (3.51) gives  

ln
c

c

R
t

v
= − , (3.49) 

 where ct  is the time between collisions and R is a uniform random number between 

(0,1). This value is determined for every particle. After free flight, type of collision is 

determined by checking the ratio of probability of the process to the total probability 

as 

1 exp( )i c i

t c

v t v
R

P v

− −
  . (3.50) 

Here iv  is collision frequency of the process that depends on the cross-section value. 

If above condition is satisfied then collision of that type occurs. After that, particle is 

given another free flight time with another random number and tracked until next 

collision check and so on. Here total collision frequency of particle is taken to be 

constant for free flight which is not always the case due to effects of fields. This direct 

method could be accurate depending on the range of collision frequencies but it is not 

always applicable as it can be very involved as total collision frequency depends on 

particle energy and can be time consuming to assign a random number for probability 

check and free flight time to all the particles.  

Addition of collisions to the system, imposes another consideration for time step as 

maximum collision probability for particles should be reasonably small ( 1cv t  ).  
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3.2.1. Null Collision Method   

In this method, a null process that does not have any effect on particles is introduced 

with a certain probability. This makes the total collision frequency independent of 

energy and gives maximum collision frequency [27] as  

𝑃𝑛𝚤𝚤𝑙𝑙 =
𝑣𝑛𝑢𝑙𝑙
𝑣𝑚𝑎𝑥

, (3.51) 

𝑣𝑚𝑎𝑥 = 𝑣 + 𝑣𝑛𝑢𝑙𝑙 . (3.52) 

Maximum probability of collision is determined according to this maximum value as 

𝑃𝑚𝑎𝑥 = 1 − exp⁡(−𝑣𝑚𝑎𝑥∆𝑡) ≈ 𝑣𝑚𝑎𝑥∆𝑡 (3.53) 

In every time step (∆𝑡), instead of checking every particle for collisions, fraction of 

particles for collision check is determined by 

𝑁𝑐 = 𝑁𝑃𝑚𝑎𝑥 . (3.54) 

Here 𝑁 and 𝑁𝑐 are number of total and collisional particles respectively. Next step is 

to determine if a collisional particle makes actual collision as 

𝑅 >
1 − exp⁡(−𝑣∆𝑡)

𝑃𝑚𝑎𝑥
≈

𝑣

𝑣𝑚𝑎𝑥
, (3.55) 

where 𝑅 is a uniform random number between (0,1). If this is satisfied a null collision 

occurs meaning no change at all. Otherwise, particle is checked for collision type with 

another random number. For this, ratio of the cross-section of certain types to total 

cross-section is used. If number of processes excluding null is k, then selection 

procedure for the k-th process can be given as  

1

1 1

( ) ( )k k
j j

j jT T

R
   

 

−

= =

   , (3.56) 

where j is cross-section of one process depending on energy and T  is total cross-

section. Adding a null collision process is an example of rejection method that is used 
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when cumulative distribution function c(x) of a random variable x is not invertible to 

sample probability density function in the interval (a,b). To choose a value for random 

variable in this interval, a uniform random number is used as  

( )x a b a R= + − . (3.57) 

Then depending on the maximum value on the interval, this value is accepted only if 

a condition using another random number [22]  is satisfied as  

max

( )f x
R

f
 . (3.58) 

 

Figure 3.4. Null-collision scheme [22]. 

3.2.2. Calculation of Post-Collision Velocities 

In electron-neutral collisions, neutrals are considered to be stationary which is a valid 

assumption because of mass difference. Therefore, scattering angle in the lab frame 

coincides with the center of mass frame. However, for ion-neutral collisions relative 

velocity should be used. Scattering angles for velocity transformation are calculated 

using differential cross-section which gives fraction of particles scattered into solid 

angle d . In general, differential cross section depends on polar and azimuthal angles 
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and incident particle energy. If spherical symmetry is considered, azimuthal 

dependence is removed. Total cross section of a process [28] becomes  

0

( ) 2 ( , )sinT d



       =  , (3.59) 

where  and  are differential cross section and scattering angle respectively. Using 

differential and total cross sections, probability density function of scattering into solid 

angle is normalized as  

0

( , )
2 sin 1

( )T

d


  

  
 

= , (3.60) 

where normalized differential cross section is  

( , )

( )T

  

 
. (3.61) 

Thus, probability of scattering into solid angle is 

( , )
sin

( )T

d d
  

  
 

. (3.62) 

Probability density functions in both directions are sampled by uniform random 

numbers. For azimuthal angle  

2

0

1

2
d R






= , (3.63) 

which gives 

2 R = . (3.64) 

For polar angle [28],  
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0

2
( , )sin

T

d R




    


   = . (3.65) 

For isotropic scattering, normalized differential cross section is taken as 1/ 4 , then 

scattering angle becomes independent of energy and can be given as 

cos 1 2R = − . (3.66) 

For electron-neutral collisions, elastic scattering, excitation and ionization is 

considered. Particle energy is modified depending on the collision type. In the elastic 

scattering change in the electron energy is related with scattering angle [29] as  

2
(1 cos ) i

m

M
   = − , (3.67) 

where i ,m and M are the energy of the incident electron, mass of the electron and 

the neutral respectively. Eq. (3.71) is obtained considering center of mass system 

coinciding with lab frame of electrons by taking neutrals at rest. Change in the kinetic 

energy in the center of mass frame can be written as  

2 21 1
v v

2 2
rE   = − , (3.68) 

where  , v , v r are reduced mass, incident particle velocity in lab frame where target 

velocity is taken to be zero  and relative velocity after the collision in center of mass 

frame respectively. Reduced mass is given by  

mM

m M
 =

+
, (3.69) 

where m , M  are electron and neutral mass respectively. Taking neutrals at rest, center 

of mass velocity becomes  

vcm

m
V

m M
=

+
. (3.70) 
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Then, relative velocity after collision takes the form 

v v vr

m M m

M M

+
= − , (3.71) 

where v is the electron velocity after the collision in the center of mass frame. Using  

this in the Eq. (3.72), kinetic energy change in the center of mass frame [30] gives  

(1 / ) (1 / ) 2( / ) cosi f i fE m M m M m M     = − − + + (3.72) 

where i , f  are initial and final energy of electron respectively. Taking 0E = for 

elastic scattering with assumption of m<<M, formula for kinetic energy change for 

electrons is obtained as in Eq. (3.71).  

For ionization and excitation, threshold energies are the difference. In ionization, 

remaining energy is equally distributed between scattered and ejected electron, and 

produced ion velocity is sampled using neutral temperature. Energy of ejected electron 

can also be determined by using experimental value and random number [31] as  

tan arctan
2

inc ion
ej B R

B

 
 −  

=   
  

, (3.73) 

where B is experimental parameter depending on the gas type and R is a uniform 

random number. inc and ion are incident electron and ionization energy respectively.  

 Pre-collision angles of the incident electron is determined as  

cos

sin cos

sin sin

x

y

z

v

v v

v



 

 

   
   

=
   
      

, (3.74) 

where v is the magnitude of the pre-collision velocity. Post collision velocity 

components are calculated using updated velocity magnitude and scattering angles as  
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cos

sin cos

sin sin

x

y

z

v

v v

v



 

 

   
   

=
   
      

. (3.75) 

Then inverse rotations are made to transform back to lab frame. First inverse rotation 

is about z axes by angle   and other is about x axes by angle   [32]  as  

1 0 0 cos sin 0 cos

0 cos sin sin cos 0 sin cos

0 sin cos 0 0 1 sin sin

Tv v

  

     

   

−     
     

= −
     
          

. (3.76) 

Thus, post-collision velocity components become   

cos cos sin sin cos

sin cos cos cos cos sin cos sin sin sin

sin sin cos cos sin sin cos cos sin sin

Tv v

    

         

         

− 
 

= + −
 
 + + 

(3.77) 

For ion-neutral collisions, magnitude of relative velocity does not change. Direction 

of the relative velocity is modified and post-velocity of ion is found [33]  as  

1

2
r cmv V+ , (3.78) 

where rv is updated relative velocity. Ion and neutral mass are taken as equal and cmV

is center of mass velocity that is 

1 1 2 2

1 2

cm

m v m v
V

m m

+
=

+
. (3.79) 

Neutral velocity is sampled as Maxwellian for certain temperature. 
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3.3. Parallel Algorithm and Speed Up 

Parallelization is done by using MPI in present work. There are mainly two methods 

namely Lagrangian and Eulerian decompositions [34]. In Lagrangian decomposition, 

same grid is copied for all the processors which is used in present work. MPI_Reduce 

function is used to accumulate charge densities in master worker which is responsible 

for solving for electric field. MPI_Bcast function is used to distribute field to all the 

processors that are responsible for their own particles. In Eulerian decomposition, 

processors are responsible for certain locations on the grid; therefore, grid is 

distributed among workers instead of particles. Increasing number of processors and 

speed up are not proportional. There is a limit related to part of the program that can 

not be parallelized known as Amdahl’s law [35] that states when all the other effects 

such as communication time are neglected, speed up factor depending on number of 

processors N and non-parallelizable ratio p is given by  

1

1Ns
p

p
N

=
−

+

. (3.80)
 

For ideal case of infinite processors, speed up factor Ns  is 1/ p .  

Speed up for 4 vs. 20 cores is calculated to be about 3.12. Speed up for 4 vs. 40 cores 

is calculated to be about 3.84. Reduce in efficiency with increasing number of cores 

is obvious.  

Speed up for single processor can be achieved by sub-cycling; which is used in present 

study for positive ions, where time-step size of slower species is certain integer 

multiple of faster species as ( ion electronΔt =kΔt ). After this, maximum collision 

probability of slower species is modified by same factor as ( max ionP t ) and also 

collisions for them is checked for every k time step. Another way is using different 

weight values [36] as higher for slower species allowing smaller number of macro 

particles.  Fig. 3.5 shows a summary of PIC/MCC cycle for single processor.         



 

 

 

43 

 

 

Figure 3.5. PIC-MCC cycle [37]. 
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CHAPTER 4  

 

4. VALIDATION AND RESULTS 

 

4.1. RF Helium Discharge 

Comparison is made with the parameters taken from [38]. Secondary emission, and 

reflection at the boundaries are ignored in these cases. Only collisions with the neutral 

atoms is considered. Electron-neutral collisions are elastic, single excitation, triple 

excitation and ionization. For ions, isotropic and backward scattering are considered.  

 

Figure 4.1. Electron and ion cross-sections taken from [38]. 

For all the cases, distance between the electrodes is 6.7 cm and neutral temperature is 

300 K. Sinusoidal potential is applied from one electrode with certain amplitude with 
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frequency 13.56 MHz. Changing parameters are initial plasma density, neutral 

density, time step size and number of grids.  

Table 4.1. Parameters taken from [38]. 

Case V(V) N0(1014m-3) N(1020m-3) x (m) t (s) 𝑁𝑝𝑝𝑐 

I 450 2.56 9.64 L/128 (400f)-1 512 

II 200 5.12 32.1 L/256 (800f)-1 256 

III 150 5.12 96.4 L/512 (1600f)-1 128 

IV 120 3.84 321 L/512 (3200f)-1 64 

 

In all the figures, continuous lines are present study results. As neutral density and 

pressure increases from case 1 to 4, power density profiles of both electrons and ions 

get closer to the sheath region. Good agreement is obtained with the benchmark cases, 

maximum relative error for mean ion densities is obtained in case 4 as 0.044. This 

value is far less in other cases. Particle weights are calculated with given particle per 

cell parameter as 

𝑤 =
𝑛𝑉𝑐𝑒𝑙𝑙
𝑁𝑝𝑝𝑐

, (4.1) 

where 𝑉𝑐𝑒𝑙𝑙  and 𝑁𝑝𝑝𝑐 are the volume of the cell and particle per cell respectively, n is 

the particle density. Volume is taken as length of the discharge and initial plasma 

density is used with the total super particle number.    



 

 

 

47 

 

 

Figure 4.2. Comparison of mean ion densities with [38], continuous line is present 

study results. a) Case I, b) Case II, c) Case III, d) Case IV. 
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Figure 4.3. Comparison of ion heating rates with [38], continuous line is present study 

results. a) Case I, b) Case II, c) Case III, d) Case IV. 



 

 

 

49 

 

 

Figure 4.4. Comparison of electron heating rates with [38], continuous line is present 

study results. a) Case I, b) Case II, c) Case III, d) Case IV. 
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Figure 4.5. Electron energy distribution function case II. Comparison with [38]. 

Continuous line is present study result. 

 

Figure 4.6. Electron energy distribution function case III. Comparison with [38]. 

Continuous line is present study result. 
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Figure 4.7. Electron energy distribution function case IV. Comparison with [38]. 

Continuous line is present study result. 

Electron energy distribution function 𝑓(𝜖) is calculated by counting number of 

particles in the interval  (𝜖, 𝜖 + 𝑑𝜖) [39] and it is normalized as 

∫ √𝜖

∞

0

𝑓(𝜖)𝑑𝜖 = 1 (4.2) 

4.2. 3D3V Electron Swarm in Argon  

Parameters are taken from and results are compared with [32]. 500000 electrons from 

cathode are tracked until they are absorbed by the boundaries.  
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Figure 4.8. Electron-neutral cross sections for argon taken from [40]. 

 

Figure 4.9. Ion-neutral cross sections for argon taken from [41].  
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Constant reduced electric field (E/n) is taken as 500 Td. Mean energy and drift velocity 

of electrons, ionization coefficient (first Townsend coefficient) are calculated. 

Ionization coefficient ( ) is calculated as given [32] by 

( )

( )

e

e

d x

x dx





= , (4.3) 

where e is the electron flux. Electrode distance and neutral temperature are 1 cm and 

300 K respectively. Only absorption occurs at the boundaries. Near the cathode, 

system is not in equilibrium, mean electron energy increases. After electrons reach 

enough energy for excitation and ionization, electron number is multiplied with the 

ionization. Through center of discharge, mean energy decreases and reach an 

equilibrium value. Near the anode, mean electron energy again increases with the drift 

velocity. As number of energetic electrons decreases, ionization coefficient is lower 

than equilibrium value near the anode.         

 

Figure 4.10. Mean energy, comparison with Ref. [32]. 
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Figure 4.11. Ionization coefficient, comparison with Ref. [32]. 

 

 

Figure 4.12. Drift velocity, comparison with Ref. [32]. 
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4.3. RF Argon Discharge 

Comparison is made with the parameters given by [42]. Boundary interactions are 

ignored. Two main type of discharge is distinguished by ionization source, namely α 

and γ types. For α type, main ionization source is primary electrons resulting from 

ionizing collisions. For γ type, ionization is mostly due to secondary electrons 

resulting from ion impact at the cathode. In this case, discharge is α type, secondary 

electron emission is ignored.      

Table 4.2. Comparison parameters RF Argon discharge. 

Parameter Value 

Gas type Argon 

Neutral pressure (p) 50 mTorr 

Neutral temperature (T) 350 K 

Potential (V) 350 V 

Electrode distance (L) 2 cm 

Frequency (f) 13.56 MHz 

Grid size (∆x) L/600 

Weight  2.5x108 

 

Maximum relative error for particle densities is calculated using difference between 

maximum values by  

𝜀rel =
𝑚𝑎𝑥|𝑛𝑟𝑒𝑓 − 𝑛|

𝑚𝑎𝑥|𝑛𝑟𝑒𝑓|
(4.4) 

For mean electron density εrel is calculated to be about 0.029. Quantitative comparison 

could not be done for spatio-temporal plots. Accuracy is in the limit of 80-90%. 
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(a) 

 

(b) 

Figure 4.13. Ion density (1015 m-3) for Argon, p=50mTorr, V=350 V, L= 2 cm. a) 

Result of Ref. [42], b) Present study result. 
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(a) 

 

(b) 

Figure 4.14. Potential (V) for Argon, p=50mTorr, V=350 V, L= 2 cm. a) Result of 

Ref. [42], b) Present study result. 
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(a) 

 

(b) 

Figure 4.15. Electric field (104 V/m) for Argon, p=50mTorr, V=350 V, L= 2 cm. a) 

Result of Ref. [42], b) Present study result. 
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(a) 

 

(b) 

Figure 4.16. Electron density (1015 m-3) for Argon, p=50mTorr, V=350 V, L= 2 cm. 

a) Result of Ref. [42], b) Present study result. 
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(a) 

 

(b) 

Figure 4.17. Electron heating rate (Wm-3) for Argon, p=50mTorr, V= 350 V, L=2cm 

a) Result of Ref. [42], b) Present study result. 
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4.4. Effects of Electron Reflection at The Boundaries 

In this case, electron reflection at the boundaries is included and results are compared 

with the complete absorption for the RF helium discharge. Electrons are reflected 

without energy loss. Main ionization source is electron impact ionization of primary 

electrons for relatively low pressure of 10 Pa. Reflection coefficient is taken as 0.2. 

Secondary electron emission due to ion impact is not included.  

Table 4.3. Comparison parameters for reflection at the boundaries for Helium. 

Parameter Value 

Gas type Helium 

Neutral pressure (p) 10 Pa 

Neutral temperature (T) 300 K 

Potential (V) 240 V 

Electrode distance (L) 6.7 cm 

Frequency (f) 13.56 MHz 

Time step size (∆t) (3200f)-1 

Grid size (∆x) L/512 

Reflection coefficient (r) 0.2 

Weight 7.8515x108 
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Figure 4.18. Comparison of particle densities with reflection for helium discharge a) 

ion density, b) electron density.  

 

Figure 4.19. Comparison of electron heating rate with reflection for helium discharge. 
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Figure 4.20. Comparison of ion heating rate with reflection for helium discharge. 

  

 

Figure 4.21. Comparison of current densities with reflection for Helium discharge a) 

ion current density, b) electron current density. 



 

 

 

64 

 

 

Figure 4.22. Comparison of potential with reflection for Helium discharge. 

 

Figure 4.23. Comparison of ionization rate with reflection for Helium discharge.  
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For comparison, simulation was performed for 13000 RF cycles (~1 ms) and results 

are averaged over 5000 RF cycle (~0.3 ms) which corresponds to 16 x 106  time steps. 

Ionization rate is highest at the center of the discharge. Ionization rate, particle 

densities, heating rates and current densities are increased by reflection of electrons. 

Potential in the center of the discharge is slightly reduced by reflection.  

4.5. RF Argon Discharge Analysis 

Detailed results of the code for Argon discharge is given. Secondary electron emission 

due to impact of positive ions is included with the coefficient of 0.2. For ions, sub-

cycling is used with coefficient of 5. Results are averaged over 20 RF cycles except 

for instances of one RF period. 

 

Table 4.4. Parameters for RF Argon discharge. 

Parameter Value 

Gas type Argon 

Neutral pressure (p) 40 Pa 

Neutral temperature (T) 300 K 

Potential (V) 200 V 

Electrode distance (L) 2 cm 

Frequency (f) 13.56 MHz 

Grid size (∆x) L/512 

Secondary electron yield (γ) 0.2 

Reflection coefficient (r) 0.2 

Ion sub-cycling coefficient 5 

Weight 7.8515x108 
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Figure 4.24. Electron and ion densities for argon. 

Ion density is higher than electron density in the sheath region as they are accelerated 

towards electrodes while electrons are accelerated towards bulk with strong electric 

field in the sheaths. 

 

Figure 4.25. a) Potential for argon, b) Electric field for argon. 
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Electric field at the bulk region is close to zero, while it changes over sheath regions.  

 

Figure 4.26. a) Ion heating rate for argon, b) Electron heating rate for argon. 

Energy gain of electrons increase towards the sheath edges, while it reduces an 

equilibrium value in the center of the discharge. For ions, there is strong energy gain 

in sheath regions. 

 

Figure 4.27. Electron and ion current densities (Je, Ji) for argon. 
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Current densities are calculated by multiplying charge densities with average 

velocities of particles on grid points as 

𝐽𝑒,𝑖 = 𝑛𝑒 ,𝑖 < 𝑣𝑥𝑒,𝑖 > 𝑞𝑒,𝑖 (4.4) 

where ne,i , <vx> and q are particle densities, average velocity on grid points in the x-

direction and elementary charge respectively.   

 

Figure 4.28. Ionization rate for argon. 

Ionization rate is calculated by counting ionizing collisions in every time step and seen 

to be greatest at the sheath edges with the effect of the accelerated energetic electrons. 

It reduces through the center of the discharge.   
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Figure 4.29. Electron energy distribution function for argon. 

 

Figure 4.30. Particle densities at instances of RF period for argon a) Ion, b) Electron. 

Symmetrical results for particle densities are observed for given instances of RF 

period. Ion density remains to be constant through the discharge while electron density 

changes periodically in the sheath region.  
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Figure 4.31. Electric field at instances of RF period for argon. 

Electric field also gives periodic results at given instances of RF period as expected. 

 

Figure 4.32. Mean ion energies at instances of RF period for argon. 

Mean ion energies increase in the sheath region towards the electrodes and remain 

constant and very low in the bulk. They also show periodic results at instances of RF 

period. It is an important parameter for surface applications in RF discharges.  
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In general, symmetrical results for particle densities, electric field and mean ion 

energies for instances of RF period ( / 2wt  ) are observed. Results are obtained after 

5000 RF cycles. 
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CHAPTER 5  

 

5. CONCLUSION 

In this study, 1d3v kinetic code for discharge plasma simulations was developed and 

validated by using Particle in cell/Monte Carlo Collision (PIC/MCC) method. The 

model is three-dimensional in velocity space. The code was parallelized using MPI 

and written in Fortran 90 language. Null-collision method was used for particle 

collisions. Validation was done by benchmarks for capacitively coupled Helium 

discharges from the literature and the code is applied for 3d3v model of electron 

swarm in Argon. Boundary effect of reflection of electrons was compared for RF 

Helium discharge resulting overall increase in particle energy gain, current densities 

and ionization rate. Results of the code were compared with the presented results for 

RF Argon discharge.  

For future works, the model can be developed with advanced management of particle 

weights [43] which is an important parameter for accuracy and performance of particle 

codes. Model can be improved with more efficient parallelization, higher performance 

can be achieved for simulation of more realistic systems and advanced geometries. 
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