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ABSTRACT

GEAR TOOTH OPTIMIZATION FOR NONSTANDARD CYLINDIRICAL
INTERNAL AND EXTERNAL AEROSPACE GEAR PAIRS

Karaca, Orhan Nuri
Master of Science, Mechanical Engineering
Supervisor: Prof. Dr. Metin Akkok

September 2019, 162 pages

Aerospace gears are produced by grinding method and can have arbitrary addendum
circle and dedendum circle radii and rounded gear root as opposite to the gears
produced by traditional method such as rack and pinion generation method. The
aerospace gears have also nonstandard module, pressure angle and helix angle. In this
study, helical external and internal aerospace gear pairs are optimized by considering
bending stress, contact stress and scuffing limitations. Pinion and gear number of
teeth, normal module, helix angle, pressure angle, pinion shifting coefficient, center
distance, pinion addendum radius, gear addendum radius, pinion dedendum radius and
gear dedendum radius are taken into consideration as the design parameters which are
to be optimized. Pinion and gear rotational speeds, input power, Young Modulus and
Poisson ratios of the pinion and gear material, Contact and Bending strength of the
gear material are taken as input parameters. All the possible gear pairs are considered
in terms of contact stress, bending stress, scuffing temperature, tiff clearance, top land
thickness, root form radius and tip clearance limitations. AGMA 908-B89 is used for
evaluating the contact stress geometry factor. AGMA 2001-D04 is used for evaluating
the bending and contact stress. The rounded gear root evaluation is conducted for
cylindrical gear pairs. The bending stress geometry factor is implemented for gear
pairs which have rounded gear root. AGMA 925 is used for evaluating the flash



temperature and scuffing evaluations. The analytical method is conducted in
MATLAB. All the obtained results are compared with KISSOFT commercial tool and
it is observed that KISSOFT uses only the transverse plane in the gear root evaluation
and does not consider the backlash effect on the bending stress geometry factor
evaluation. The minimum center distance optimization has a crucial role in aerospace
applications to decrease the weight of an air vehicle. The minimum weight design

solutions are obtained by using the minimum center distance optimization.

Keywords: Gear tooth profile optimization, grinding, rounded gear root, aerospace

gear optimization,
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HAVACILIKTA KULLANILAN STANDART DISI SILINDIRIK IC VE DIS
DiSLi CIFTLERINDE DIiS OPTIMIiZASYONU

Karaca, Orhan Nuri
Yiiksek Lisans, Makina Miihendisligi
Tez Damismani: Prof. Dr. Metin Akkok

Eyliil 2019, 162 sayfa

Havacilik dislileri taglama yontemi ile tretilir ve disli kol-fener disli gibi geleneksel
yontemlerle iretilen dislilerin aksine herhangi bir istenen dis {istii dairesi yarigapina
ve dis dibi dairesi yarigapina sahip olabilir. Bu ¢alismada havacilikta kullanilan helisel
ic ve dis disli ¢iftlerinin profil optimizasyonu, egilme gerilimi, temas gerilimi ve
siirtme aginmasi limitasyonlar1 yapilmistir. Havacilik dislileri ayrica standart disi
modiil, basing agis1 ve helis agisina sahiplerdir. Dondiiren ve dondiiriilen dislilerin dis
sayilari, normal modiil, helis agis1, basing agisi, pinyon profil kaydirma katsayisi, disli
merkezleri aras1 mesafe, dondiiren disli dis dibi dairesi yaricapi, donen disli dis dibi
dairesi yarigapi, dondiiren disli dis iistii dairesi yarigap1 ve dondiiriilen dislinin dis iistii
dairesi yarigapt optimize edilmesi gereken tasarim parametreleri olarak alimmustir.
Ihtimal dahilindeki biitiin disli ciftleri temas gerilimi, egilme gerilimi, siirtiinme
asimmast sicakligy, tiff araligy, dis tisti kalinligi, dis kokii yaricapr ve dis tistii aralig
limitasyonlar1 incelenmigtir. AGMA 908-B89 standardi temas gerilimi geometri
faktorii hesaplamasinda kullanilir. AGMA 2001-D04 standardi egilme ve temas
gerilimi hesabi i¢in kullanilir. Yuvarlatilmis disli kokii hesabr silindirik disliler igin
yapilir. Egilme gerilimi geometri faktorii hesabi yuvarlatilmis disli kokiine sahip
silindirik disliler i¢in yapilir. AGMA 925 standardi siirtiinme asinmasi sicakligi
hesabinda kullanilir. Analitik metot MATLAB programinda kodlamalar gelistirilerek
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diizenlenmistir. Biitiin sonuclar KISSOFT ticari yazilimi ile karsilastirilmistir ve
KISSOFT programinin disli kokii hesabinda enine diizlemi kullandigi ve disli
boslugunun egilme gerilimi geometri faktorii hesabi iizerindeki etkisini ihmal ettigi
gozlemlenmistir. Minimum disli merkezleri aras1 mesafe optimizasyonu bir hava
aracinin agirligini azaltmak i¢in 6nemli bir role sahiptir. Minimum agirlik tasarim

¢Ozlimleri minimum disli merkezleri aras1i mesafe optimizasyonu yapilarak elde edilir.

Anahtar Kelimeler: Disli disi optimizasyonu, taslama, yuvarlatilmis disli kokdi,

havacilik disli optimizasyonu
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1. Introduction

Gears are widely used in transmission systems to transmit power. There are numerous
gear types used in industrial applications. Cylindrical gears are not only used in
automotive industry, they are also used in aerospace applications especially in
planetary stage and accessory gear box. They are also used as collector gear in some
helicopters. Cylindrical gears used in automotive industry are usually produced by
traditional techniques such as hobbing and shaping. However, aerospace cylindrical
gears are mostly produced by grinding. Grinding manufacturing is also called as direct
gear design in the literature. Aerospace gears can have arbitrary addendum and
dedendum radii since the grinding wheel can be dressed into whatever shape is
desired. Dressing the grinding wheel in desired shape also makes obtaining the
rounded gear root possible. However, the addendum circle and dedendum circle radii
depends on the cutter shifting in traditional manufacturing techniques and obtaining
the arbitrary addendum circle and dedendum circle radii is not possible. This

dependency does not allow the design nonstandard gears.

Numerous different gears can be manufactured by using direct gear design technique.
Therefore, different gear pairs can be manufactured to satisfy a wide range of working

conditions.

Optimization is a required process at the beginning of a design project to obtain the
optimum design which satisfies the requirements and the desired stress values to
maintain a robust design against the compelling operational conditions. Gear design
optimization takes an important place in helicopter transmission system projects. The

minimum weight consideration is one of the most important design approach in



aerospace applications. Therefore, the gear pairs which have minimum center distance
are more desirable when the whole system is considered. Minimum center distance
makes the casing weight minimum. Hence, the weight of the gear box is also

minimized.

There are numerous optimization techniques. Traditional optimization techniques are
not suitable for the complex gear optimization. Nontraditional optimization methods
are commonly used in gear optimization due to this complexity. However, the gear
optimization studies conducted by nontraditional optimization method do not cover so
many design parameters as considered in this study. Most of the studies are suitable
to use nontraditional optimization methods due to including less design parameters
and constraint functions as compared to current study. The different optimization
method is required for the current study due to its complexity. The fine sizing
optimization methodology which is explained in a detailed way in the following
sections is determined as the optimization procedure. The fine sizing optimization
method is used in commercial gear design and analysis computer programs like
MASTA and KISSOFT. In this method, all the possible gear pairs are constituted by
giving a range for all design parameters and then by combining all of them. The related
constraints are evaluated for all the possible gear pairs. Gear pairs which do not satisfy
the required constraints are eliminated. The remaining gear pairs after the all constraint
eliminations are completed are the gear pairs which satisfy the all the geometrical and
material strength requirements. Fine sizing method vanishes the possibility of the

converging a local minimum such a complex gear optimization like the current study.

Commercial gear design and analysis computer programs makes the gear optimization
by considering only the gears produced by traditional manufacturing technigues. The
arbitrary addendum radius, dedendum radius and the rounded gear root are not
considered in these programs. Addendum and dedendum radii are dependent on the
shifting coefficient and taking the arbitrary values for these radii is not allowed.
MASTA and KISSOFT programs are also not capable to calculate the bending stress

for the gears which have rounded root. Bending stress geometry factor is calculated as



if the gear root is produced by traditional techniques and has a trochoidal shape despite
the software allows the user to implement arbitrary addendum and dedendum radii as

input parameters.

In the current study, the optimum gear pair is obtained by considering the direct gear
design methodology. The rounded gear root and arbitrary addendum and dedendum
radii are considered. Pinion and gear number of teeth, normal module, pressure angle,
helix angle, center distance, shifting coefficient, addendum and dedendum radii of the
pinion and the gear are taken as the design variables. Contact stress, bending stress

and scuffing limitations are considered with the geometrical constraints.
1.2. Objective of the Thesis

The main aim of the study is to obtain optimum helical external and internal gear pairs
for given input and given output speeds under a specified input power. Geometrical
calculations of the helical external and internal gear pairs are evaluated. Bending
stress, contact stress and scuffing calculations are conducted. The optimum gear

design is obtained by using fine sizing method.
1.3. Literature Survey

The conducted studies in the literature about the cylindrical gear pairs are investigated

in this part of the thesis.

Mohan and Seshaiah [1] conducted an optimization study on spur gear sets by taking
the center distance, weight and tooth deflections as objective functions. Module, face
width and number of teeth on pinion were taken into consideration as decision
variables. Since the optimum problem is multi objective function and involves
constraints, it is a very challenging issue to obtain the optimum result with a traditional
optimization technique. Therefore, they used a nontraditional optimization technique
called as Genetic Algorithm. However, they also used the traditional optimization
methods to compare the traditional and nontraditional optimization techniques. They

concluded that genetic algorithm gives more accurate and more optimal results than



the traditional approach. They stated that since genetic algorithm is random search and
optimization technique, the chance of getting global optimum is possible. The weak
side of their study is that they used very simple formulas for contact stress and bending
stress evaluations. The contact stress formula proposed by them does not cover
Hertzian Contact theory. Bending stress formula proposed in their study does not
cover the geometry factor evaluated in AGMA standards. Therefore, geometry of the
gear root was not included in their study. Another weak side of their study is that they
didn’t clarify how the possibility of finding a local optimum is vanished. They also
didn’t evaluate the scuffing temperature. Saxena et al. [2] investigated the
optimization of internal spur gear design by using genetic Algorithm. They specified
the minimum center distance as the objective function. They specified some limits on
the contact ratio, gear ratio and tip interference. They also proposed a requirement to
eliminate the involute interference. They examined the face width as a constraint
function. They determined the required face width which meets bending and contact
stress requirements. The weak side of the study is that they used some charts to
evaluate the face width for the bending stress and for the contact stress. However, the
proposed charts do not include any information about the tooth geometry. Therefore,
the proposed formulas for face width evaluation can give the same results for the gears
which have different geometric shape with respect to each other. They stated that the
global optimum result was found by using genetic algorithm. However, Wu [3] stated
that genetic algorithm can give the local optimum. To overcome this issue, he
proposed an algorithm includes an improved genetic and simulated annealing
algorithm with the function of disturbance. Saxena et al. didn’t propose an improved
genetic algorithm and they stated that the global optimum was reached in their study.
They didn’t clarify how the possibility of finding a local optimum is vanished by using
genetic algorithm. Revar et al. [4] investigated the optimization of helical gears. They
considered the face width and helix angle as design variables. They changed the helix
angle and face width by keeping the other parameters constant. They evaluated the
maximum bending stress and the maximum contact stress by trial and error method.

They tried to find the optimum design that gives the maximum contact stress and



bending stress in certain limits. They made finite element analysis in ANSYS. They
concluded the effect of the helix angle and the face width on the contact stress and
bending stress. They stated that less thickness and helix angle give better and
maximum contact stress and bending stress. The weak side of the study is that they
didn’t use any optimization technique to obtain the optimum result. They tried to find
optimum solution by trial and error method. They considered a few parameters as
design parameters and they didn’t consider any geometrical constraint. However, they
used AGMA standards to evaluate the bending stress and contact stress. As compared
to [1] and [2], their results in terms of contact stress and bending stress were more
accurate than the results of the others since the gear tooth geometry was included.
Kapelevich and Shekhtman [5] examined the direct gear design. The direct gear design
is a gear design which is not restricted by a choice of gear tooth profiles based on
standard tool parameters. The method uses non-standard tooth shapes to cover the
custom applications. They investigated fillet optimization of standard rack-generated
gears by considering the bending stress. They tried to minimize the bending stress of
the standard rack-generated gears by applying the fillet optimization. They proposed
a method for balancing the bending stress of the pinion and the gear. They changed
the tooth thickness ratio in FEA program to satisfy the bending stress balance
requirement. They used FEA for bending stress evaluation because the Lewis equation
and its related coefficients do not provide a reliable solution to the wide variety of
non-standard gear tooth profiles. They concluded that optimization of the fillet profile
allowed reducing the maximum bending stress in the gear tooth root area by 10-30 %.
Padmanabhan et al. [6] investigated the optimization of spur gear pair by using
Genetic Algorithm. They defined the objective functions of the problem as follows:
maximization of power delivered by the gear pair, minimization of the overall weight,
maximization of the efficiency of the gear pair, minimization of the center distance.
They named the contact stress as the crushing stress. They took the crushing stress and
the bending stress as the constraint functions. Module, face width, number of teeth in
pinion and power were considered as design variables. They used the same formulas

for the bending stress and for the contact stress proposed in [1]. They verified the



results by implementing FEA. By FEA analysis the maximum stress was less than the
theoretical value. The weak side of the study is that bending stress and contact stress
formula used in their study didn’t include any information on the tooth geometry. They
didn’t consider the scuffing as a constraint function. Gopal et al. [7] investigated the
optimization of helical gear design by using Genetic Algorithm. The minimum center
distance was taken as objective function. They specified number of teeth on the pinion,
diametral pitch and helix angle as design variables. They took involute interference,
bending stress, contact stress, gear ratio and addendum to dedendum ratio as the design
variables. They used AGMA standards to evaluate the bending stress and contact
stress calculation. Their study didn’t neglect the geometry of the gear tooth. However,
they didn’t use the arbitrary addendum and dedendum radii. Therefore, their study is
limited to the gears which are restricted by the standard tool parameters. They didn’t
consider the scuffing evaluation. They didn’t suggest any proposal how the possibility
of converging a local optimum is vanished. Dr. Rajiv Suman et al. [8] investigated the
optimization of helical gears by using the Genetic Algorithm. Face width, center
distance and radius of the pinion were chosen as the parameters are to be optimized.
They evaluated the contact stress, bending stress and the involute interference as the
constraint functions. Pinion number of teeth, diametral pitch, helix angle, addendum
ratio and dedendum ratio were specified as the design parameters. Since they
considered the addendum and dedendum ratio as the design parameters, the proposed
method in their study does not include the direct gear design. Rai et al. [9] investigated
the optimization of spur gears by considering the center distance as the objective
function. Contact ratio, involute interference, bending stress, contact stress and
scuffing were considered as the constraint functions. They evaluated the optimization
problem with scuffing evaluation and without scuffing evaluation and they tried to
understand the effect of the scuffing into the optimized gear pair. They also used two
different optimization techniques in their study. They used the simulated annealing
and the real coded genetic algorithm for the same optimization problems. One of the
main interests of the study is comparison between these two techniques. Summary of

the some studies conducted in the literature is given in Table 1.1.



Table 1.1 Summary of some studies

Study | Design Variables Method Constraints Gliometry
actor
Module Genetic Algorithm Bending Not
[1] | Mumber of teeth Stress Contact | included
of pinion Stress
Module Genetic Algorithm Contact Ratio | Not
Number of teeth Gear Ratio included
[2] of pinion Tip
Interference
Module Genetic Algorithm Crushing Not
[6] | Number of teeth stress included
Power Bending stress
Number of teeth, | Genetic Algorithm Involute Included
Diametral pitch interference
Helix angle Bending stress
[7] Contact _stress
Gear ratio
Addendum to
dedendum
ratio
Module Genetic Algorithm Contact Stress | Included
Radius of the Bending Stress
pinion Diametral Involute
[8] | pitch interference
Helix angle
Addendum ratio
Dedendum ratio
Diametral pitch Simulated annealing Contact Stress | Included
Number of teeth Real coded genetic Involute
[9] algorithm interference
Bending Stress
Scuffing
Temperature







CHAPTER 2

CYLINDIRICAL EXTERNAL AND INTERNAL GEAR PAIR OPTIMIZATION
PARAMETERS AND OPTIMIZION METHODOLOGY

2.1. Cylindrical External Gear Pair Optimization Parameters

The optimization parameters for external and internal gear pairs are given in this
chapter. The optimization methodology is consisted of two constraint groups. The first
constraint group is named as geometrical constraints and the second constraint group

is named as material based constraints.
2.1.1. Geometrical Constraints

Geometrical constraints are investigated in this chapter. The geometrical constraints
are root clearance, top land thickness, contact ratio, involute clearance and tiff

clearance. The basic radii are given in Figure 2-1 and Figure 2-2.

Figure 2-1 Geometrical parameters of internal gear



base circle

dedendum circle

Figure 2-2 Geometrical parameters of external gear

2.1.1.1. Root Clearance

Root clearance for the cylindrical external gear pairs is given in [11]. As seen from

Figure 2-3, the root clearance of the pinion and the gear is:

(2.1)
2.2)

C1=Qw —Tf1 —Ta2

C2=Qy — T2 —Taa
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Figure 2-3 Root clearances c; and c, of an external gear pair [11]

Root clearance for the cylindrical internal gear pairs can be evaluated from Figure 2-4.

As seen from Figure 2-4, the root clearance of the pinion and the gear is:

(2.3)
(2.4)

C1 =Ta2 — Ay — 151

C2 =Tp—Ay —Tna

Figure 2-4 Root clearances c; and c, of an internal gear pair
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2.1.1.2. Top Land Thickness Evaluation of External Gear Pairs

The basic geometric relations and top land thickness evaluation is outlined in this

section. Basic geometric relations are given in Table 2.1.

Table 2.1 Basic geometric relations

Transverse circular pitch [12] p, = Pn (2.5)
£ cosp
Transverse tooth thickness in reference circle [12] g = Sn (2.6)
£ cosp
Transverse module [12] _ M (2.7)
£ cosp
Diameter of the reference cylinder [12] d = ZMpy (2.8)
cospf
Normal base pitch [13] P, = mm,cosa (2.9)
n n n
Transverse base pitch [13] . 2TTp1t (2.10)
bt )
Gear ratio [13] — (2.11)
G z,
Base helix angle [13 P,
gle [13] B, = arccos (%) (2.12)
t
Reference center distance [12] _(dy+dy) (2.13)
Gref =5
Profile shift coefficient [12] =2 (2.14)
mn
Reference radius of the pinion [12] o= Z1Mn _ ru (2.15)
17 2cosp
Base radius of the pinion [12] Ty, = T,C0SQ (2.16)
Base radius of the gear [12] (2.17)

sz = TZCOSC(t

Transverse pressure angle [12]

ta"“n) (2.18)

a; = arctan(
t cosf
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The normal circular tooth thickness of the zero backlash external gear at its reference

cylinder is: [12]

Sp = Enmn + 2ytana, (2.19)

The angle between the normal plane and the transverse plane is equal to helix angle.
Therefore, tooth thickness at gear reference cylinder in transverse plane can be
expressed as follows:

_ Sn (2.20)
cospf

St

If two external gears are to mesh with no backlash, their profile shift values must
satisfy: [12]

_ Qrep(invay, — invay) (2.21)
Y1 ty2= tana,
(e FCOSQ
e = arccos (L) (222)
aW
inva, = tana; — a; (2.23)
inva,,: = tana,,; — ay; (2.24)
Sum of profile shift coefficients for zero backlash is:
a inva,,; — inva
X+ %, = ref( wt t) (2.25)
mytana,
Pinion operating radius is:
__ (2.26)
Twi COSUyy;
Gear operating radius is:
_ "2 (2.27)
Tw2 COSQyt

13
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Figure 2-5 Tooth thickness of external gear pair pinion at reference and operating
circles

S
¢, = ril — 2(inva,,; — inva,) (2.28)
1
Swt1 = Twih1 (2.29)
Backlash at operating circle in traverse section is given as:
_ Jowr (2.30)

Jewr = cosf

Tooth thickness at operating circle with backlash in transverse section is given as:

Ji 2.31
Sweib = Swer — % ( )

Tooth thickness at reference circle with backlash in transverse section and in normal

section is given as:

S
0, = ( thb) + 2(inva,,; — inva,) (2.32)

Tw1
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Tw1

Sw
Seip =101 =11 (( tlb) + 2(inva,, — invat)> (2.33)

(2.34)

Snip = Stpcosp

——— 1
|

eﬁce circle

[
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Figure 2-6 Top land thickness evaluation of external gear pair pinion

Top land thickness of the pinion in the transverse section is expressed as:

Snat1 = Ta1(61 — 2(inva, — inva,)) (2.35)
Top land thickness of the pinion in the normal section is expressed as:
T,
Snani=Snat1€0S (arctan (tanﬁ ril>> (2.36)
1
Similarly for the gear:
_22_y ; (2.37)
P, = — 2(inva,,; — inva,)
2
(2.38)

Swiz = Twa2W2
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Tooth thickness at operating circle with backlash in transverse section is given as:

] 2.39
Swizb = Swiz — % ( )

Tooth thickness at reference circle with backlash in transverse section is given as:

S
0, = ( Wth) + 2(inva,,; — inva,) (2.40)
Tw2
S
Stap =126, =1, (( :’th) + 2(invay,; — invat)> (2.41)
w2

Top land thickness of the gear in the transverse section is expressed as:

Snatz = Taz(02 — 2(inva, — inva,)) (2.42)
Top land thickness of the gear in the normal section is expressed as:
T,
Snanz = Snat2€0S (arctan (tan,[? rLZ)> (2.43)
2

2.1.1.3. Top Land Thickness Evaluation of Internal Gear Pairs

The normal circular tooth thickness of the zero backlash internal gear at its reference
cylinder is: [12]
(2.44)

1
Sp = Enmn * 2ytana,

If an external pinion and an internal gear are to mesh with no backlash, their profile
shift values must satisfy: [12]

o Arer(invay,, — inva,) (2.45)
Y2—W tana,

Reference center distance for an internal gear pair is:

(dy —dy) _ (2.46)

Uref =5~ N

16



Profile shift coefficients for zero backlash have the following relation:

a inva,,; — inva
Xy — X, = ref( wt t) (2_47)
mytana,
From Figure 2-7,
S
¢, = % - 2(inva; — inva,,;) (2:48)
2
(2.49)

Swiz = Twa®2

Jewr (2.50)

Swizb = Swiz — T

|
|
_ / |
|
| ! .
|1 Iy |
1 fl |
IIL III |
| ¢ i !
R 2 I — |
VS N — - Ihva, o , . -
inVOer o — L—_q}'t:-l:- 7t PPeraty, Cir |
invowe Ilr* 1T *j: Yty —=TCle |
| | ! | '
'l B : - h' ' ~l T 1 ]
| | |t | — B

Figure 2-7 Tooth thickness of internal gear at reference and operating circles
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Tooth thickness at reference circle with backlash in transverse section is given as:

Swezb (2.51)
0, = ( = ) + 2(inva, — inva,,,)
Tw2
S
Stap = 12 (( Wt2b> + 2(inva, — invawt)> (2.52)
Tw2
San = SthCOSﬁ (253)
Top land thickness of the gear in the transverse section is expressed as:
Snatz = Taz (8, — 2(inva, — inva,)) (2.54)
Top land thickness of the gear in the normal section is expressed as:
T,
Snan2 = Stoplandt2€0S <arctan (tanﬁ %)) (2.55)
2
[ -

—1in Vqt

'ting

|

(—

:IJ/’ - lnvawt Opel"‘a
i an32

|

|

l

Figure 2-8 Top land thickness evaluation of internal gear pair
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2.1.1.4. Contact Ratio Evaluation of External Gear Pairs

Tip form radius of the pinion of external gear pair is given as:

rtfl =Tq1 — tc
Tip form radius of the gear of external gear pair is given as:

rtfz =Tq2 — tc
‘ Mpa
! Line of
‘ Uwt action

PIfE
au

Figure 2-9 Transverse plane view of the line of action of an external gear pair
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Ce = (11 + npx)tana,,, = a,,sina,,; (2.58)

6= Co= frat = 1o (2.59)
CS = ’rtflz —_ rblz (260)

C, = Cs — Py, (2.61)

C3 = rytana,, (2.62)

C,=0C1+ Py (2.63)

/ 2.64
Tsap, = |[Tp1® + C,* (2.64)

Tsap, = \/szz + (C¢ — Cs)? (2.65)
Active length of line of action is expressed as:
Z=C—C (2.66)
Transverse contact ratio is given as: [13]
4 (2.67)
m, = — '
P Py
2.1.1.5. Contact Ratio Evaluation of Internal Gear Pairs
Contact ratio evaluation of the internal gear pair is conducted as follows:
Tip form radius of the pinion of internal gear pair is given as:
TtF1 = Ta1 — LC (2.68)
Tip form radius of the gear of internal gear pair is given as:
(2.69)

Ttf2 = Ta2 + tc

20



Figure 2-10 Transverse plane view of the line of action of an internal gear pair

C6 = (sz - Tbl)tanawt = awsinawt (270)

6= Jrt =t = G @71)
Cs = W (2.72)
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C, = Cs — Py, (2.73)

C3 = ryitana,,; (2.74)
C,=Cy, + Py, (2.75)
Active length of line of action is expressed as:
Transverse contact ratio is given as: [13]
Z 2.77)
m, = — :
P Py

2.1.1.6. Gear Root Evaluation of External Gear Pairs

Gear root evaluation of the external gear pairs is conducted in this section. Helical
gears have rounded gear root in normal section. Therefore, gear root evaluation is
evaluated in transverse section and then it is transmitted into the normal section. As

seen from Figure 2-11,

(pt—gtlb) -
4 = T (invat — invaRflt) (2.78)
Rfltx = RfltSin{1 (279)
Rfity = Rpq¢€0SGy (2.80)
Conversion of the R¢;, into the normal plane is given as
Rfinx = Ry1sindicospPg,,, (2.81)
Rflny = Rfltcosfl (2.82)
(2.83)

2 2
Rfln = \/Rflnx + Rflny

As seen from Figure 2-11,

22



Thiex = Tp1SiN (51 + aRflt) (2.84)

Tpity = Tp1€0S ({1 + aRflt) (2.85)
Conversion into the normal section
Thinx = Tp1SiN ((1 + aan) Cosﬁrflt (2.86)
Thiny = Tp1€OS ((1 + aRflt) (2.87)
(2.88)

— 2 2
Thin = \/rblnx + rblny

dnvor | Rriey base o e

invaRsie] ’;‘i 1rcle h |
| bit j
LG Foiex ’ \Sﬁ
| I Reiex r‘bf—-,.,_, /J
e | .

| S = | | R e

Figure 2-11 Transverse plane view of external gear pair pinion tooth

As seen from Figure 2-12, set of equation of the gear root is given as:

a
0,1 = arctan (—1) (2.89)
by
Rfiny + Aycos(8; — Oyx1) —b; =0 (2.90)
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a; + Aysin(0; — 0x1) — Reinxy = 0 (2.91)

a2 +b% = (rp+4,) =0 (2.92)

2 / 2.93
\/(rfl + A1) — Tpin? — Ay — Rfln2 —Tp1n? =0 ( )

Ay, 01, Rp1p, by are unknown parameters which are to be determined by solving the

nonlinear equations given above. Initial values are assigned for these unknown
parameters and the set of equation is solved by using an iterative method. In this study,
the gear root equations are solved by using fsolve method in MATLAB.

Figure 2-12 Normal plane view of external gear pair pinion tooth

The gear root evaluation for the external gear is conducted by using the same
methodology given previously for external pinion.
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2.1.1.7. Gear Root Evaluation of Internal Gear Pairs

Gear root evaluation of the internal gear pairs is conducted in this section. Gear root
evaluation of the external gear pairs are given in the previous section. The same
methodology given in Chapter 2.1.1.6 is used for the gear root evaluation of the pinion
of internal gear pairs. Helical gears have rounded gear root in normal section.
Therefore, gear root evaluation is evaluated in transverse section and then it is

transmitted into the normal section. As seen from Figure 2-13,

(pt—StZD)

2 ; : 2.94
(= T - (mvaRth - mvat) ( )
Rfatx = RypzeSing, (2.95)
Rfaty = Ry2¢€05¢; (2.96)
Conversion of the R, into the normal plane is given as
Ronx = RthSiTlZZCOSﬁRth (297)
Rfony = Rpprc05$, (2.98)
2.99
Ron = \/Ronxz + Rf2ny2 ( )
As seen from Figure 2-13,
Thaex = T525in (@, — G2) (2.100)
Thaty = Tp2COS (aszt - {2) (2.101)
Conversion into the normal section
Thanx = Tp2Sin (aRth - (2) cosPBry,, (2.102)
Thonx = Tp2C0S (aszt — (2) (2.103)
(2.104)

— 2 2
rb2n_er2nx +rb2ny

25



inva il

_“pase €' pnveRec o T

~ Rzt 7|Jr$| 7

|
roaey | E?,_a!-r‘l_,

[ Thatx

Figure 2-13 Transverse plane view of internal gear pair gear tooth

As seen from Figure 2-14, the set of equation of the gear root is given as:

az
0,, = arctan (—)
b,

Rony - A2COS(92 + sz) - bz = O
a, + AZSL'TL(QZ + sz) - Ronx =0

a22 + bz2 - (sz - Az)z =0

+ e +A
sin(6, + 6,,) z

i
\/(rbZntan <E — (6, + 9x2)>

- \/Ronxz + Rony2 =0
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Az, 8, Rean, by are unknown parameters which are to be determined by solving the
nonlinear equations given above. Initial values are assigned for these unknown
parameters and the set of equation is solved by using an iterative method. In this study,

the gear root equations are solved by using fsolve method in MATLAB.

~Ppap

A
rb2ny
/ / / rb2nx

Figure 2-14 Normal plane view of internal gear pair gear tooth

2.1.1.8. Involute Clearance

The gear tooth should have a clearance between the starting radius of the involute and
the base radius to eliminate the mounting and manufacturing errors. Root form radius
which is lower than the base radius causes the undercutting of the gear root. The
clearance is mathematically expressed for the pinion of external and the internal gear

pairs as:
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[ (2.110)

For the gear of external gear as:

Ic, = Ry — Ty (2.111)
For internal gears the clearance between the starting radius of the involute and the

base radius is expressed as:
Icy; =T — Th (2.112)
2.1.1.9. Tiff Clearance

Clearance between the start of active profile radius and the root form radius is defined
as the tiff clearance. Tiff clearance is a required clearance to satisfy the operating
condition of the gear pair. The start of active profile radius which is lower than the
root form radius causes the crashing of the pinion and gear teeth and the gear pair
could not operate. The clearance for the pinion of the external and the internal gear

pairs is mathematically expressed as:

Tiffi = rsap, — Rp1 (2.113)
Tiff clearance for the gear of external gear pairs is:

Tiffo = Tsap, = R2 (2.114)
Tiff clearance for the gear of internal gear pairs is:

Tiff, = Rfy — Tsap, (2.115)

2.1.2. Material Based Constraints

Material based constraints are investigated in this chapter. The material based

constraints are consisted of three groups. These are conducted as follow:

Contact stress number evaluation, bending stress number evaluation and scuffing risk

evaluation.
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2.1.2.1. Contact Stress Number Evaluation of External Gear Pairs

The contact stress number formula for gear teeth is: [14]

K Cr (2.116)

S = Cp\/WtKoKva MT

Contact strength geometry factor is given as: [13]

cosa,Cy*
= — ¥ (2.117)

(% + E) dwimy

Helical overlap factor, C, is given as follows: [13]

For LACR helical gears (my < 1.0)

Pm1Pm2Z\]"° (2.118)
c =[1—m (1_—)] :
v F P1P2Pun
Radius of curvature of the pinion profile at the mean radius of the pinion, p,,;

Pm1 = (Rm1 — 1p1)%° (2.119)
Radius of curvature of the gear profile at the mean radius of the gear, p;,,»
Pmz = C6 + pm1 (2.120)
For spurs and conventional helical gears (my > 1.0)
C, =10 (2.121)
Load sharing ratio, m,, is given as follows:
For helical gears:
F (2.122)

For spur gears with mp < 2.0, gives L,,;, = F, therefore:
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mN = 10

(2.123)

For LACR helicals, (my < 1.0), load sharing is accommodated by C,,, therefore load

sharing factor is taken as unity.

Face width ratio is given in Table 2.2 according to gear mounting relative to bearings.

Table 2.2 Maximum Face width Ratio [15]

Face width ratio, ¢ = b/d;

Type of Gear Gear mounting relative to bearings
Symmetric | Asymmetric Overhung

Spur and Single Helical <16 <12 <0.8
1. Hardness < 180 HB <14 <11 < 0.7
2. Hardness > 180 HB <1.1 <09 < 0.6
3. Induction hardened, case carburised <08 < 0.6 < 0.5
4. Nitrided
Spur and Single Helical, with lead correction
5. Case carburised <14 <12
6. Nitrided <12 <1.0
Double Helical Gears
7. Induction hardened. case carburised <20 <16
8. Nitrided <14 <11

In the current study face width ratio is taken as “’0.7”’. Therefore, the face width ratio

considered in this study is applicable for spur and helical gears which are induction

hardened or case carburized with lead correction or without lead correction. The face

width is given as:

F=O7th1

Axial contact ratio is given as:
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where axial pitch, P, , is
p = T
* sinB
Minimum length of the lines of contact is given as follows:

For spur gears with mp < 2.0 the minimum length of contact lines, L, , IS

Lipin = F
For helical gears, two cases must be considered:

Casel,forn, <1-—n,

L mpF —nyn,. Py,
min COSﬁb

Case ll, forn, > 1 —n,

L. :mPF_(l_na)(l_nr)Px
min COSﬁb

where n,. is the fractional part of mp and n, is the fractional part of m.

Normal base pitch is given as:

Py, = mm,cosa,

Transverse base pitch

2Ty
Py =
Z4
Base helix angle
P
By = arccos (ﬂ)
Ppy

Radii of curvature of profiles at stress calculation point are given as follows:
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For conventional helical gears (my > 1.0) the radii of curvature are calculated at the

mean radius or middle of the working profile of the pinion where:

Mean radius of pinion, R,,;

1 2.1
Ry = E [ral + (aw - raz)] ( 33)

Radius of curvature of the pinion profile at the point of contact stress calculation, p;

2.134
p1 = |Rmi® =112 ( )

Radius of curvature of the gear profile at the point of contact stress calculation, p,

p2 = Ce + ps (2.135)

For spurs and LACR helical gears (m; < 1.0) the radii of curvature are calculated at
the LPSTC

(2.136)
(2.137)

p1=0C,
p2 = Ce + py

2.1.2.2. Bending Strength Geometry Factor and Bending Stress Number

Evaluation
The fundamental formula for bending stress number is given in [14]

Py K Kp
se = WeKo KoK — "} (2.138)

Bending stress geometry factor is evaluated as follows:

Bending stress geometry factor is given as: [13]

_ Y&y (2.139)
Kme
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Tooth form factor is given in [13].

K
Y = L
cosan, | 6hy  tanay,
cosay, |S2C, Sr

l (2.140)

Helical factor is given as follows: [13]

For Spur and LACR Helical Gears (mp < 1.0), a unity value is used,

C, = 1.0 (2.141)
For Conventional Helical Gears, when myz > 1.0
1
Ch = A (2.142)
- |00 (1~ 100)]
(2.143)

w = arctan(tanfsina,)

The helix angle factor given in [13] depends on the type of gear. For Spur and LACR
Helical Gears (my < 1.0), a unity value is used. For Conventional Helical Gears,

when my; > 1.0

Ky = cospycosp (2.144)
Stress correction factor for the pinion is given as:
Ky = H+ (%)L (i_]i)M (2.145)
Similarly for the gear
Kp,=H+ (Z—Z)L <fl_z>M (2.146)

where H = 0.331 — 0.436a,, L =0.324—-0.492a, M =0.261+ 0.545¢,,
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2.1.2.2.1. Virtual Spur Gear Evaluation

Helical gears are considered as virtual spur gears with the following virtual geometry
while for the spur gear the actual geometry is used. The following geometrical
relations given in Table 2.3 are used for virtual gear root evaluation.

Table 2.3 Basic geometric relations of virtual gear

Virtual tooth number of the pinion g = Z1 (2.147)

[13] ' cos3p

Virtual tooth number of the gear [13] g =22 (2.148)
2 cos3p

Virtual reference radius of the pinion e =m 21w (2.149)

[13] 1v n 2

Virtual reference radius of the gear ro=m Zow (2.150)

[13] 2v n 2

Virtual base radius of the pinion [13] Tp1p = T1pCOSTy, (2.151)

Virtual base radius of the gear [13] Thop = TopCOSCy, (2.152)

Virtual outside radius of the pinion Yoty = Tip +Ta1 — 11 (2.153)

[13]

Virtual outside radius of the gear [13] Taoy = Top + Taz — 12 (2.154)

Virtual root radius of the pinion [13] Ty =T1p — 11 + 71 (2.155)

Virtual root radius of the gear [13] Troy = Top — T2 + 152 (2.156)

Tip form radii of the pinion and the gear can be expressed in a similar way used in

evaluating the outside radii. Virtual tip form radius of the pinion:

Ttfiv =T T Tef1 — 11 (2.157)
Virtual tip form radius of the gear:
Tifov = 2w + Ttrz — 12 (2158)
Sixth distance along line of action of virtual spur gear is:
(2.159)

Cop = (rbZU + rblv)tanawn
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First distance along line of action of virtual spur gear is:

€y =% [Cﬁv - (T‘tfzvz - szvz)o.s] (2.160)

Fourth distance along line of action of virtual spur gear is:

Cap = C1p + Ppp (2'161)

2.1.2.2.2. Load Angle and Load Radius for External Gear Pairs

For helical gears and spur gears that are analyzed where the load is applied at the tip

of the tooth, the pressure angle at load application point for the pinion is given in [13].

l(rtflv)z r's (2.162)
tana,y, = -1
Th1v

For spur gears, where the highest bending stress occurs when the load is at the highest
point of single tooth contact (HPSTC), the pressure angle for the pinion is given in

[13].

Cy (2.163)

Tp1v

Equation (2.163) may also be used for LACR helical gears (my < 1.0), but distance

tan anWl =

C, must be based on the virtual spur gear.
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Figure 2-15 Pressure angle where external gear tooth comes to point

As seen from Figure 2-15.

Sn1
2714

nvay,, = inva, +

inva, = tana, — a,

By subs.

Sn1
211,

nvay,, =tana, —a, +

As seen from Figure 2-16,

Anr1 = LANAyy, — INVAppq
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(2.166)

(2.167)



Sn1 (2.168)
2714

"p1v (2.169)
coSQy1q

Apr1 = tanay,,; — tana, + a, —

Thi1 =

Figure 2-16 Load angle and load radius of an external gear

2.1.2.2.3. Virtual Gear Root Evaluation for External Gear Pairs

Virtual gear root evaluation is outlined in this chapter. As seen from Figure 2-17,

2
2 2.170
Rflv = \/(J(rflv + Alv) - rblvz - A1v> + rblvz ( )
yip = arceos | —2¥ (2.171)
rflv + Alv
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_ Th1v
Olwa = arccos R

flv
invaRflv = tanag,,, — g,

. ( Th1v >
0., = arcsin| ————
rflv + Alv

by, = (rflv + Al,,)cos <9p1v — (invan - invaRflv) - (V1v - aRf1V)>

a1y
0,1, = arctan (—)
1v

(Pn — Sn1p)
271y

Op1v =

Figure 2-17 Normal plane view of virtual spur gear

The eqution of the virtual gear root of the pinion is expressed as:
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aiy + Alein(Hlv - Hxlv) - Rflein (lev - (invan - invawa)> (2.178)
=0

This nonlinear equation is solved by implementing an iterative method. The equation
is solved by using fsolve in MATLAB in this study. The virtual gear root evaluation
of the gear of external gear pair is conducted by using the same methodology which

is outlined in the current section.
2.1.2.2.4. Critical Section Determination for External Gear Pairs

The related equations for evaluation of the critical section are outlined in this section.

As seen from Figure 2-18,

a1p? + b1y + Tepp® — Alvz\ (2.179)

A1y
QAcrp1 = arctan (b_) + arccos
1 /
0 Zrcrvl alvz + blvz
Th1v
Ly, = ——— (2.180)
it cos(anr1)
T
hfl = Lpy1 = Terp1€OS (Z_ - acrvl) (2.181)
1v
T
SF1 = 2T¢rp1Sin <_ - acrvl) (2.182)
Z1v
Similarly for virtual gear root
a Agp? + Dy’ + Teryn? — Agy”
®cryy = arctan (ﬁ) + arccos | =% 2v crv2 v (2.183)
2 /
’ Zrcrvz a2v2 + bzvz
T
hpy = Lpyp — Terp2€OS (Z— — acer) (2.184)
2v
T
Sr2 = 2T¢ryp2Sin <_ - acer) (2.185)
Zoy

39



Figure 2-18 Critical section evaluation of virtual spur gear

2.1.2.2.5. Evaluation of the Critical Radius for External Gear Pairs

Critical radius is determined by using the following methodology outlined in this

section.
Table 2.4 Critical radius algorithm for the pinion
fori=1:50
Terp1 (1) = Tr1v
. , (R 1w~ Tr1 )
Terp1 (E+ 1) = 1o () + M
itr
end
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The same algorithm given in Table 2.4 is used to evaluate the critical radius of the

gear. The consisted radii are substituted into the formulas of a1, hfq and Sg4. Then,
the related Y3, K¢, values are obtained for each different a1, hfy and Sg;. For each
different Y, K¢, values, the different geometry factor values of the pinion ( /; ) are

evaluated. Mathematically it is expressed as:

Table 2.5 Algorithm of bending strength geometry factor for the pinion

fori=1:50
\2
/alvz + b1v2 + (rcrvl(l)) B Alvz\

Zrcrvl(i)1 / a;,% + b1v2

s
hfl (1) = Lpy1 — Terpr (D cos (Z_ - acrvl(D)

. a1y
Q1 (1) = arctan b + arccos

1v

1v

A0 ~

1) = }
cosay | 6he (D) _ tanay,
cosayq (SFl(i))ZCh Sr1(D)

. . . 7T .
SFl(l) = 271 (D)sin| —— acrvl(l)
Z1y

Y (i) = fo
' cosay ;| 6he (D) _tananm]
COSQlyq (SF1(i))ZCh Sp1 (D)
A\ L M
0+ (29 (22
RAGH
]1(1) - Kfl(i)mN

end
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The same algorithm given in Table 2.5 is used for the bending stress calculation of the
gear.The minimum ones of the J; and J, are taken as the geometry factor and

implemented into the bending stress equation.

2.1.2.2.6. Load Angle and Load Radius for Internal Gear Pairs

The pressure angle at load application point for the pinion is given by:

r 2 0.5
tf1v> B 1] (2.186)
Th1v

tananWl = l(

The pressure angle at load application for the gear is given by:

Ttfav\> 0o (2.187)
tana,y, = s -1
v

For spur gears, where the highest bending stress occurs when the load is at the highest

point of single tooth contact (HPSTC), the pressure angle for the pinion is given by:

C
tand,y, = — (2.188)
Th1v
Pressure angle for the gear is given by:
C
tandy, = — (2.189)
Tp2v

Equation (2.188) and equation (2.189) May also be used for LACR helical gears

(my < 1.0), but distance C, must be based on the virtual spur gear.

The pressure angle for the pinion is:

Cav (2.190)

Tph1v

tananw1 =
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The pressure angle for the gear is:

Cav (2.191)

tananwz =

reference circlej

//(_SnZ

| - G 1 e"‘x,\ | | ? Iiny “ \\\4
V e C 1 L ] I a Npo ‘
ba S ] |
! | b i
I R L e
| = I LA L L I L

Figure 2-19 Pressure angle where internal gear tooth comes to point

43



Figure 2-20 Load angle and load radius of an internal gear

As seen from Figure 2-19,

s
iVa,y, = ZLZ — inva, (2.192)

v

inva, = tana, — ay, (2.193)

By subs.
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S
invay,, = ™ _ tana, + ay, (2.194)
275,
Anrz = tanQpy, + iNVA,y,; (2.195)
s
Uiz = tANApy, — tandy, + ay + —— (2.196)
2Ty
= b (2.197)
2 s,
2.1.2.2.7. Virtual Gear Root Evaluation for Internal Gear Pairs

Virtual gear root evaluation of the internal gears is outlined in this chapter. The
following equations are derived from Figure 2-21.

2
2 2.198
Rfoy = \/(J(erv - AZv) — Tpap® + AZv) + Tp2p? ( )
"b2v (2.199)
Ya» = arccos | ————
v <rf2v - A2v>
T
e = arccos< bzv) (2:200)
f2v

invag,,, = tandg,, — g, (2.201)

L) (2.202)

05, = arcsin(
Trop — AZU

bz" = (rf2v - AZU)COS (9p2v - (invaszv - invan) - (aszv — y2v)> (2-203)
a
0., = arctan (ﬂ) (2.204)
b2v
The equation of the virtual gear root of the gear is expressed as:
azy + AZvSin(HZV + HXZU) - szvsin (9p2v - (invaRfZU - invan)> =0 (2.205)

This nonlinear equation is solved by implementing an iterative method. The equation

is solved by using fsolve in MATLAB in this study.
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Figure 2-21 Normal plane view of virtual spur gear

2.1.2.2.8. Critical Section Determination for Internal Gear Pairs

The related equations for critical section evaluation of internal gear are outlined in this

chapter. As seen from Figure 2-22,

a Agp? + Doy’ + Teryn? — Ay
Aory2 = arctan (b_zv> + arccos 2v 2v crv 2v (2206)
* Zrcrvz,’aZUZ + bzvz
Th2v
Ly, = — 22 (2.207)
2 Cos(anLZ)

T
Rya = Terpp0S (— - am,z) ~ L, (2.208)

Zy
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. T
Sr2 = 2Trp1Sin <_ - acruZ) (2.209)

Zy

|

|

| Critical
‘ Section
‘ \
|

|

|
|
|
.
LA
Figure 2-22 Critical section evaluation of virtual spur gear
2.1.2.2.9. Evaluation of the Critical Radius for Internal Gear Pairs

Evaluation of critical radius for internal gear is outlined in this section.

Terp2 (1) = Rf2v (2.210)
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, . Traw — Ry 2.211

Tervz (l + 1) = rcrvz(l) + M ( )
ltr

The consisted radii are substituted into the formulas of @, Ay, and Sg,. Then, the

related Y, Ky, values are obtained for each different a,,,, hs, and Sg,. For each

different Y, K¢, values, the different geometry factor values of the pinion ( J, ) are

evaluated. Mathematically it is expressed as:

fori=1:itr
a /a 24 b, % 4 (r.,(0) = A 2\
Q2 (1) = arctan (b—zv) + arccos | 2% 20+ (Terva (@) 2v
v \ 2Terv2 (i)1/a2v2 + b2v2
. . 7T .
hfz (1) = rerp2(Dcos | =— — acrp2 (D) | = Lpyo
Zoy
. . . 7T .
Sp2(i) = 2142 (i)sin Z_ — Qe (1)
2v
K.
1) = L
cosany | Ohea (D) tandy,,
CoSQy, (SFZ (i))zCh Sp2(0)
SF2<i)>L (Sn(i))’”
K~ (i) =H+ -
fZ( ) ( Azy hfz(l)
. Y,(i)C
() = L
Kfz(l)mN
end

The minimum one of the J, is taken as the geometry factor and implemented into the

bending stress equation.
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2.1.2.3. Scuffing Evaluation

The term scuffing is defined as localized damage caused by solid-phase welding
between surfaces in relative motion. It is accompanied by transfer of metal from one
surface to another due to welding and subsequent tearing, and may occur in any highly
loaded contact where the oil film is too thin to adequately spate the surfaces. Scuffing
appears as a matte, rough finish due to the microscopic tearing at the surface. It occurs
most commonly at extreme end regions of the contact path or near points of single
tooth contact. Scuffing is also known generically as severe adhesive wear.

Scuffing risk is considered as the main criteria for scuffing elimination in optimization

process.

Table 2.6 Scuffing Risk [16]

Probability of scuffing Scuffing risk
<10% Low
10 to 30% Moderate
>30% High

Maximum contact temperature is given as:

05 max = Ou + Bﬂmax (2212)
Tooth temperature is given as:
Om = ksumpOou +0.5667; (2.213)

where

ksump = 1.0 if splash lube; 1.2 if spray lube;

In the current study, temperature of the oil is considered as 100 °C.
6,; = 100 °C

Flash temperature is given as:
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N vrl(i) - v‘rZ(i)| (2214)
; 0.5 0.5 03
’ (bH(i)) Bu1 (vrl(i)) *+ Buz (er(D)

Mean coefficient of friction, Hmg is given as:

XF(i) WTl

Gfl([) = 31621([1

‘um(i) = Hmeonse = O'O6CRavgx (2215)

The surface roughness constant, CRapg, is limited to a maximum value of 3.0:

1.13
1.0<C =— <30 (2.216)
= Ravgx T 113 — Rypg,
R _ Ralx + RaZx (2217)
avg, — 2

The thermal contact coefficient accounts for the influence of the material properties

of pinion and gear:

By = Am1Pm16m1)®® (2.218)

Buz = Am2Pm26m2)"° (2.219)

For martensitic steels the range of heat conductivity, 4,,, is 41 to 52 N/[s K] and the
product of density times the specific heat per unit mass, p,,c,, IS about
3.8 N/[mm?K], so that the use of the average value B,, = 13.6 N/[mms®°K] for
such steels will not introduce a large error when the thermal contact coefficient is

unknown.
Hertzian contact band is given as:

The semi-width of the rectangular contact band is given by:

0.5
b = (el (2.220)
Ho ™ nE,

E,. is reduced modulus of elasticity given by:
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-1
Y v, L1- v,° (2.221)
’ E, E,

Evaluating the roll angles is necessary to implement the load sharing factor. Pinion
roll angles corresponding to the five specific points along the line of action shown in

Figure 2-23 are given by:
C;
£ = i (2.222)

where
j=A4A,B,C,D,E
i =12345
2.1.2.3.1. Profile Radii of Curvature

Figure 2-23 shows the transverse radii of curvature, P and p, o’ of the gear tooth

profiles at a general contact point defined by the roll angle ¢(;), where (i) is any point

on the line of action from A to E.

Pl(i){_

Figure 2-23 Transverse relative radius of curvature for external gears [16]
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pl(i) = rblf(i) (2223)

where

$a<%w <%z

pZ(i) = C6 i pl(i) (2224)
Transverse relative radius of curvature
p, = _ProPre (2.225)
@ pZ(i) i pl(i)
Normal relative radius of curvature
Prq (2.226)

pn(i) =

cosfPyp

Figure 2-24 Transverse relative radius of curvature for internal gears
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2.1.2.3.2. Gear Tooth Velocities and Loads

Rotational (angular) velocities

Operating pitch line velocity

Rolling (tangential) velocities

_ Wlpl(i)
"o = 1000
_ WZpZ(i)
Yr2e = 71000
Sliding velocity (absolute value)

Usay =

Vrig — vrz(i)|

Entraining velocity (absolute value)

Vew = |Vrip + vﬂ(i)|
Nominal tangential load
1000P
(F)nom =
t
Combined derating factor
Kp = KoK Ky

where

F = (Ft)nomKD

Normal operating load
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(2.228)

(2.229)

(2.230)

(2.231)

(2.232)

(2.233)

(2.234)

(2.235)

(2.236)



F (2.237)

Fun = COSQyn COS Py
Normal unit load
_ Fun (2.238)
W = Lmin
2.1.2.3.3. Load Sharing Factor
For unmodified tooth profiles
If there is no tip or root relief
Foré, < &u <$s
x. 1.1 (M) (2.239)
07373\ g - ¢,
Forép <$u < $p
Xr, =1 (2.240)
Forép <$u) < ¢k
X. = 1 +1<EE - f(i)) (2.241)
® 3 3\&—¢p

D e e —— ——

I
I
|
|
&
B

A
Figure 2-25 Load sharing factor — unmodified profiles [16]

54



2.1.2.3.4. Evaluation of Maximum Flash Temperature

The roll angles are evaluated to find the maximum flash temperature.

fori=1:48
$1=238a
. itp
if <T
$p —$a
fi+1=fi+it_p_
. . 4
if i22 && <272
$c —$p
$ivr =&t itp
4
if i>222 g& <32
4 4
$p —$c
Ei+1=fi+ lt_p
7
if i232 && i<itp
$e —$p
$ivn =S + itp
4
end

Py P2y Priy Prgy Vi gy Vrzgy X1, and bH(i) are obtained by implementing the all
different roll angles. Therefore, different flash temperatures values, Or1;) for each

roll angle are obtained. The maximum one of the different flash temperature values is
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implemented into the equation (2.213) to find the tooth temperature. Tooth

temperature is implemented into eq (2.212) to evaluate the contact temperature.

Speed parameter,

Load parameter,

XF(i) WTl

Wi =
(l) Erpn(i)

Dimensionless central film thickness,

0.56770.69
GOSs Y
0.10
W

H.. = 3.06

2]
The central film thickness at a given point is:
heqy = HegyPngy x 10°

The specific film thickness is:

0.5
1 _ hC(i) Log
2bHy 2b

O 0pg [2DH,

where

o5 = [Rad, + Raj 1’

LO.8 = 08 mm
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CHAPTER 3

OPTIMIZATION METHODOLOGY

3.1. Root Clearance Criteria

Addendum and dedendum coefficient of the standard cutters are given in Table 3.1.

Coefficients are given for standard center distance.

Table 3.1 Addendum and dedendum coefficient of standard cutters

Standard Profil Type Dedendum Addendum

coefficient coefficient
ISO 53.2:1997 Profil A 1.25 1.00
ISO 53.2:1997 Profil B 1.25 1.00
ISO 53.2:1997 Profil C 1.25 1.00
ISO 53.2:1997 Profil D 1.40 1.00
DIN 867:1986 - 1.25 1.00
DIN 3972:1952 | - 1.1670 1.00
DIN 3972:1952 |1 - 1.25 1.00
DIN 58400:1984 | (m, 0.1 — 0.6) 1.50 1.10
DIN 58400:1984 | (m, > 0.1 — 0.6) 1.35 1.00
DIN 58412:1984 | (m, 0.1 — 0.6) 1.50 1.10
DIN 58412:1984 | (m, > 0.1 — 0.6) 1.35 1.10
DIN 58412:1987 - 1.25 1.00
DIN 867:1986 - 1.20 1.00
DIN 867:1986 - 1.16 1.00
DIN 867:1986 - 1.30 1.00
DIN 867:1986 - 1.40 1.00

As seen from Table 3.1, the standard cutters generally satisfy 0.25 - m; root clearance.
The minimum standard root clearance is 0.16 - m;. The maximum standard root
clearance is 0.4 - m;. Therefore, the minimum root clearance is specified as 0.16 - m;

and the maximum root clearance is specified as 0.4 - m;
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3.2. Top Land Thickness Criteria

Surface hardened gear teeth require adequate case depth to resist the subsurface shear
stresses developed by tooth contact loads and the tooth root fillet tensile stresses, but
depths must not be so great as to result in brittle teeth and high residual tensile stress

in the core.

Correlation between the normal diametral pitch and the effective case depth is given
in Figure 3-1.

30 Effective case depth is defined as depth of case which has
a minimum hardness of 50 HRC

20 Total case depth to core carbon is approximately 1.5 x
effective case depth

| o min = 0.119 935 x P;,q~0-86105
LY Normal case depth

AN
NN
N\

W B D ~NDOO

The values and ranges shown on the case \
depth curves are to be used as guides. For ~ _— -1.124 BT
gearing in which maximum performance is \\ ™, fig min = 0.264 693 X Png
required, detailed studies must be made of the N
application, loading, and manufacturing \
procedures to obtain desirable gradients of bath \
2| hardness and internal stress. Furthermore, the .

method of measuring the case as well as the '\

allowable tolerance in case depth may be a \

matter of agreement between the customer and N
the manufacturer.

1 | L 111l | | \ \

0.001 2 3 5 7 0.010 2 3 5 7 0.100 0.300
Minimum effective case depth, fiy . inches

Mormal diametral pitch, Phg

| [
‘\\ éHeaw case depth

Figure 3-1 Minimum effective case depth for carburized gears, h, j,in [14]

For heavy case depth,

Re min = 0.264693P, ;112481 (3.1)
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The unit is converted into mm , the equation becomes

—1.12481

25,
Ry i = 0.264693( ) . 25.4 (3.2)

my

The tolerance of the carburizing depth can be taken as 0.25 mm. Therefore, the

maximum carburizing depth is:
he max = he min + 0.250 (3.3)

The relation between the top land thickness and the maximum effective case depth is

given as:

he max = 0.565p4 (3.4)
By equating the (3.3) and (3.4),

2T gy ~112481 (3.5)
0.264693 +25.4 4+ 0.250
(0264093 (224)
Sna min = 0.56
3.3. Contact Stress Criteria
Load cycle formula is given as: [14]
N = 60Lng (3.6)

Aerospace gears are considered as resisted to 5000 hours life. After 5000 hours the
gears are inspected. If there exist no failure in gears, the gears are expected as having
infinite life. Therefore, the life is taken as 5000 hours in this study. Since the single
gear pairs are considered in this study, g is taken as unity.Allowable contact stress

number for steel gears is given in Table 3.2.
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Table 3.2 Allowable contact stress number, s, , for steel gears [14]

Allowable contact stress number?), s,

Minimum Ib/in2
Material Heat surface
. designation treatment hardness!) Grade 1 Grade 2 Grade 3
;Steel3) Through hardened® |see figure 8 see figure 8 see figure 8 --
: Flame® or induction |50 HRC 170 000 190 000 -
hardened 54 HRC 175 000 195 000 -
Carburized and see table 9 180 000 225 000 275 000
hardened®
Nitrided® (through 83.5 HR15N 150 000 163 000 175 000
hardened steels) B2 S AR15N 155 000 168 000 180 000
2.5% Chrome (no Nitrided®) 87.5 HR15N 155 000 172 000 189 000
aluminum)
Nitralloy 135M Nitrided® 90.0 HR15N 170 000 183 000 195 000
Nitralloy N Nitrided® 90.0 HR15N 172 000 188 000 205 000
2.5% Chrome Nitrided® 90.0 HR15N 176 000 196 000 216 000
(no aluminum)
NOTES

1) Hardness to be equivalent to that at the start of active profile in the center of the face width.

2) See tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.

3) The steel selected must be compatible with the heat treatment process selected and hardness required.
4) These materials must be annealed or normalized as a minimum.

5) The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.

Grade 3 carburized and hardened steel is considered in this study. Therefore, allowable

contact stress number is:

Sqc = 275 ksi (3.7)
Contact strength stress cycle factor, Z , is associated with the lubrication regime in
AGMA 925. If the specific film thickness is greater than or equal to 1.0 indicates the
beginning of regime 111 and the end of regime Il lubrication. Specific film thickness
between 0.4 and 1.0 indicates operation within regime Il and specific film thickness

less than or equal to 0.4 indicates regime 1.

Table 3.3 Stress cycle factor equations for regimes I, 1l and 111 [14]

Regime of lubrication Stress cycle factor for surface durability
Regime IlI Zy = 1.47 for N < 10 000 cycles
Z, = 2.46604 x N 0056 for N = 10000 cycles
Regime II 7, = 3.83441 x N~009¢ for N = 100 000 cycles
Regime | y = 7.82078 x N~0-156 for N = 100000 cycles
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Since the pinion has a higher rotational speed than the gear, number of load cycle of
the pinion is higher than the number of load cycle of the gear. Because of that, pinion
has a lower allowable contact stress number than the gear has. Therefore, considering
only the contact stress of the pinion is enough to evaluate the contact stress

elimination.

Permissible allowable contact stress number of the pinion is:

Zy C
Sacp = Sac K_NK_H (3.8)
T KR

The case hardened aerospace gears have minimum 60 HRC surface hardness values.
Surface hardness values of the pinion and the gear are almost the same. In [2001-D04],
hardness ratio factor for case hardened pinions (48 HRC or harder) are run with

through hardened gears (180 to 400 HB) is given in Figure 3-2.

1.08

1.06

1.04

Hardness ratio factor, Cy
Calculated hardness ratio

1.02

1.00-
0

2 4 6 8 10 12 14 16 18 20
Single reduction gear ratio

Figure 3-2 Hardness ratio factor, Cy (through hardened) [14]
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As seen from Figure 3-2, if the ratio of the hardness value of the pinion to hardness
ratio value of the gear is lower than 1.2, hardness ratio factor is taken as unity even
for the gear pairs which have a minimum 5 HRC hardness value difference between
the pinion and the gear. In this study, the gear pairs which have a small amount of
difference between the hardness value of the pinion and the hardness ratio of the gear

are considered. Therefore, it is suitable to consider the hardness ratio factor as unity.

The temperature factor, K, is generally taken as unity when gears operate with
temperatures of oil or gear blank not exceeding 250° F. In normal operating
conditions, temperature of oil or gear blank is not higher than 250° F . Therefore, the

temperature factor is taken as unity.

The allowable stress numbers given in Table 3.2 and Table 3.5 are based upon a
statistical probability of one failure in 100. Therefore, reliability factor, Kj, is taken

as unity as given in Table 3.4.

Table 3.4 Reliability factors, Ky [14]

Requirements of application Eg"
Fewer than one failure in 10 000 1.50
Fewer than one failure in 1000 1.25
Fewer than one failure in 100 1.00
Fewer than one failure in 10 0.852)
Fewer than one failure in 2 0.702) 3)
NOTES

1} Tooth breakage is sometimes considered a greater
hazard than pitting. In such cases a greater value of Ky
is selected for bending.

2 At this value plastic flow might occur rather than pit-
ting.

3] From test data extrapolation.

The contact stress reserve factor is:

R, = 2@ (3.9)
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3.4. Bending Stress Criteria

Allowable bending stress number, s,; , for steel gears is given in Table 3.5.

Table 3.5 Allowable bending stress number, s, , for steel gears [14]

_ i )
Minimum Allowable bendlr:g;_isl:ress number?), sz
Material Heat surface !
designation treatment hardness! Grade 1 Grade 2 Grade 3
Steel3) Through hardened see figure 9 see figure 9 see figure 9 --
Flame® or induction
hardened® with type | see table & 45 000 55 000 —-
A pattern®
Flame® or induction
hardened® with type | see table 8 22 000 22 000 -
B pattern®
Carburized and 65 000 or
hardenedd) see table 9 55000 70 0008 75000
Nitrided® 7) (through . .
hardened steels) 83.5 HR15N see figure 10 | see figure 10 -
Nitralloy 135M,
Nitralloy N, and o4} ) ) .
2.5% Chrome (no Nitrided 87.5 HR15N see figure 11 | see figure 11 | see figure 11
aluminum)
NOTES
1) Hardness to be equivalent to that at the root diameter in the center of the tooth space and face width,
2) See tables 7 through 10 for major metallurgical factors for each stress grade of steel gears.
3 The steel selected must be compatible with the heat treatment process selected and hardness required.
4l The allowable stress numbers indicated may be used with the case depths prescribed in 16.1.
5) see figure 12 for type A and type B hardness patterns.
8} |f bainite and microcracks are limited to grade 3 levels, 70,000 psi may be used.
7} The overload capacity of nitrided gears is low. Since the shape ofthe effective S-N curve isflat, the sensitivity to shock
should be investigated before proceeding with the design. [7]

Grade 3 carburized and hardened steel is considered in this study. Therefore, allowable

bending stress number is:

Sat = 75 ksi (3.10)

Bending strength stress cycle factor is given in Figure 3-3 . Bending strength stress

cycle factor is specified as:

Yy = 1.6831 - N700323 (3.11)
Permissible allowable bending stress number is: [14]
Satp = S (3.12)
atp KTKR .
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The bending stress reserve factor is:

__ Satp

R, = s, (3.13)

Bending strength stress cycle factor is given in Figure 3-3 .

5.0
J ‘ ‘ { H { | I I HH NOTE: The choice of Y}y in the shaded area is influenced
40 Yy = 9.4518 N-0.148 by:
400 HB 4 [ Pitchline velocity
T TTTH 01100 Gear material cleanliness
3.0 Tase b - YN =6.1514 N-Y- Al Hesidya\ stregs
| - N Material ductility and fracture toughness
Sl S Ll M
BURE N EP‘ \ Y = 4.9404 N-0-1045
f Nitrided "‘\\ ™ ot Lornn l
N 2.0 + “h\ » N Y = 3.517 N-0.0817
S | L‘ TSN D N
3] 160 H TN = S \
£ — ~ "\."b\_ .
@ T— el )
3] [~ M~
g Yi = 2.3194 N-00538 _ APTT~L 1 Ty = 1.3538N70.0172
g i - ¥l |
o i
= T — L X
%) 10 - o 1 0
0.9 r 0.9
0.8 AR ERRTIEENTIT R
0.7 Yy = 1.6831 N-0.0323 0.7
0.6 0.6
0.5 0.5
102 103 104 108 108 107 108 10° 1010

Number of load cycles, N

Figure 3-3 Bending strength stress cycle factor, Yy [14]
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Table 3.6 Minimum and maximum values of the constraint functions used in

optimization
Constraint Minimum Value Maximum Value
C1 0.16 -m, 0.40 -m,
cy 0.16 -m, 0.40 -m,
—1.12481
<O.264693 (215'4) . 254 + 0.250)
Sna n
0.56
m. 1
Icq 0.10 - ms
Ic, 0.10-m,
Tiffy 0.20 -m,
Tiff, 0.20-m,
R, 1
Ry 1
R:» 1
Q 10

3.5. Optimization Steps

Optimization steps are given in this chapter.

3.5.1. Cross Combination of Normal Module, Helix Angle, Pinion Profile Shifting

Coefficient, Pressure Angle and Pinion Number of Teeth

The initial assignments of the normal module, helix angle, pinion profile shift

coefficient, pressure angle and pinion number of teeth are implemented.

Table 3.7 Initial assignments of the design variables

m, = mnmin . mninc. mnmax

B = Bmin: Binc * Bmax

X1 = xlmin' xlinc' xlmax

U = Ay, 1A

Z1 =

Nine' nmax
Z1min’ “line’ “lmax

Zy = Mgzy
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Cross combination of the m,, , 8, x; , a,, and z; is obtained. Cross combination matrix
is named as Combs1.

Table 3.8 First cross combination of the design variables

m, = Combs1(:,1)
B = Combs1(:,2)
x; = Combs1(:,3)
a, = Combs1(:,4)
z, = Combs1(:,5)

z, = Combs1(:,6) = mzCombs1(:,5)

3.5.2. Evaluation of Pinion Addendum Radius and Gear Dedendum Radius

Addendum radius of the pinion is evaluated by using the following algorithm given in

Table 3.9.

Table 3.9 Evaluation of addendum radius of the pinion

1 _ My Zy + my
Tatpre (1,:) = cosp 2 Y1 cosf
vz —y1)
[ =2: ———+1
fort incl +

. _ My Zy my , n .
ralpre(l’ ) = cosﬁ? +y; @ + (mcl —) (i-1)

m
cosf

end
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Therefore, num, times addendum radii for external and internal pinion (for each row

of Combs1) are obtained by applying increment of inc1.

Dedendum radii of the each gear set is evaluated by using the following algorithm

given in Table 3.10.

Table 3.10 Evaluation of dedendum radius of the gear

1:) = my z, my
Tr2pre (1) = cosB 2 ty cospB
fori=2: —(yjn_ci}7) +1
LN Mn 2 Mmn . Mn\, .
Tr2pre(b3) = cosf 2 Ty cosp * (mc4 cos,B) =1
end
num, = % +1 (3.15)
For example
_ (mp)1 (B)1 (1)1 (@)1 (21)1 (22)1
COmBST = (ma)z (8): (1) (@) (21 (), (3.16)
If num1 is taken as <’3”’.
(my)1 (z1)4 (M), .
cos(B), 2 + 1 cos(B), Ta1,,,(1,1) (3.17)
(my), (21), (M), .
COS(ﬁ)Z 2 + 1 COS(ﬁ)Z - ralpre(l'z) (318)
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ralpre

s (D g (12
o (ma)s ineq )2
_ Ta1,,,(L1) + (lncl cos(ﬁ)1> 1 741,,,(1,2) + (anl cos(B),
. (mn)l ; (mn)z
_’fa1pre(1'1) + (mcl cos(,[?)1> 2 1a,,,(12) + (mcl cos(B),

If num4 is taken as <’3”’.

My (21 . (mah
cos(B); 2 77 cos(B),
My (z); . (ma),
cos(B); 2 7 cos(B),

T 2pre
[ szpre (1, 1)

m
rfzpre(l:l) + (inc4 ()

(mn) 1

cos(B)1

TF2pre (1,D) + (inc4

rfzpre
[ rfzpre(l’l) rfzpre(l'z)
Tea (1,1 + | inc4 (m)i ) o (1,2) + | inc4 (mn)z )
— | /2prer cos(B), fapret™ cos(B),
172, (1) + <inc4 CZT;D 2 1, (L2 + <inc4 CZZ;;) 2

Cos(ﬁ)1> 1 772,,(12) + <inc4

) 2 1p,(12) + <inc4

= szpre (1, 1)

= rfzpre (1,2)

szpre (1,2)

(mn)z 1
cos(B)
(mn)z .
i) ?

> (3.19)

)

(3.20)

(3.21)

(3.22)

(3.23)

Cross combination of the Talpre and T2, is implemented to obtain r,; and 7¢,.
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[Ta1pre (1,1) [TF2pre (1,1)7
Talpre (2,1) Tf2pre (1,1
Tatyye (31) 20 (L1)
Talpre (1L,1) Tf2pre (2,1)
Talpre (2,1) Tf2pre (2,1)
Tatyye (31) T2y (2,1)
a1y, (11) 72,0 (3,1)
Talpre (2,1) Tf2pre 31
Talpre (3,1) Tf2pre 31
Tt = @22 T |y (12) (3.24)
a1y (2,2) 72,0 (1,2)
a1y (3:2) 72,0 (1,2)
Taly,e (1,2) szpre(z'z)
Taly,e (2,2) Tf2pre (2,2)
a1y (3:2) 72,0 (2,2)
Taly,e (1,2) szpre(&z)
Taly,e (2,2) Tf2pre (3.2)
[Ta1,re (3,2)] _rfzpre(&z)_

After obtaining the 74, and r¢,, combination of the m,,, 8 ,x, ,ay, , z1 , z5 , 741 and
Ty, Is evaluated by expanding the each row of the Combs1 (numl - num4) times.

Therefore second combination is expressed as:
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[(my,): (B (x1)1 (@)1 (@)1 (221 1a(L1) Tf2 (1,17
(M) B)r ()1 (@)1 (@)1 (21 ta(L2)  17,(1,2)
(mp)1 B)r ()1 (@)1 (@)1 (21 ta(13)  172(13)
my):1 B ()1 (@)1 (@)1 (221 1a(L4) Tf2 14
(mp)1 B)r ()1 (@)1 ()1 (21 ta(15)  172(15)
(M) B)r ()1 (@)1 ()1 (21 ta(1,6)  17,(1,6)
my):1 B ()1 (@)1 @)1 (@221 1a(L7) Tf2 @7
(M) B)r ()1 (@)1 ()1 (21 ta(1,8)  17,(1,8)
(mp)1 B ()1 (@)1 (@)1 (21 ta(19)  172(1,9)
M) B ()2 @)z @2 @) 1aa(L10) 7(110)| (3:29)
(mp)z, Bz (x1)2 (an): (212 (22)2 7141(1,11) rfz(l,ll)
(my)z, Bz (x1)2 (an): (212 (22)2 74:1(1,12) rf2(1,12)
(Mmp), Bz (x1): (an): (212 (22)2 7a1(1,13) rf2(1’13)
(mp)z (B2 ()2 (an)2 (22 (22)2 71ai(L,14) 172(1,14)
My, Bz (x1): (an): (z1)2 (22); 741(1,15) Tf2(1,15)
My, Bz (x1): (an): (212 (22); 741(1,16) rf2(1116)
(mp)z Bz ()2 (an)2 (22 (22)2 71 (L17) 172(1,17)

(M), (B2 (x1)2 (an)z (z1)2 (22)2 7141(1,18) rf2(1118).

Combs2 =

Operating center distance for external gear pair is:

a, = my, (7, + 7;) (3.26)
cospf 2
Operating center distance for internal gear pair is:

@ = my (2, — 21)
Y cosp 2

(3.27)

3.5.3. Gear Root Clearance Elimination

The gear root clearance elimination is implemented by applying the following
algorithm given in Table 3.11.

Table 3.11 Gear root clearance elimination algorithm

fori=1:size(c,)

if c;(i) < 0.17m; || c,(i) > 0.35m;
Combs2(i,:) =[]

end

end
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3.5.4. Pinion Top Land Thickness Elimination

Pinion top land thickness elimination is implemented by applying the following

algorithm given in Table 3.12.

Table 3.12 Pinion top land thickness elimination algorithm

fori=1:size(Span1)
if Snanl(i) < Snan1min
Combs2(i,:) =[]
end

end

Therefore, the gear pair sets which do not satisfy the pinion top land criteria is
eliminated.

3.5.5. Evaluation of Gear Addendum Radius and Pinion Dedendum Radius

After pinion top land thickness elimination is completed, evaluation of 7, and 7y, is

done. Addendum radius of the gear is evaluated by using the following algorithm
given in Table 3.13..

Table 3.13 Evaluation of addendum radius of the gear

my my
1,:) = —+
Tazpre (1,2) cosp 2 Ya cosf
fori=2: (y‘;n_czyg) +1
. my 2z my ( my > ,
1) = - 2 -1
Tatpre () cosf 2 HEE cospP e cosp -1
end
num, = (y4. — ¥3) ‘1 (3.28)
inc2
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Therefore, num, times addendum radii for external and internal gear (for each row of

Combs1) are obtained by applying increment of inc2.

Pinion dedendum radii of the each gear set is evaluated by using the following
algorithm given in Table 3.14.

Table 3.14 Evaluation of dedendum radius of the pinion

, 1,:) = mpy Z1 mpy

Jipre cosp 2 T Y6 cosp cosp

(Y6 — ¥s)

| =2: ——+1
fort inc3
. my Zl my . my .
Tipre(B3) = cosB 2 Y sﬁ (ncS cosﬁ) -1
end
num, = (ys_ — ¥s) ‘1 (3.29)
inc3

Let’s assume after the gear root clearance elimination and pinion top land thickness

elimination is completed, Combs2 becomes:

(mp)1 B ()1 (@)1 (@)1 (Z2)1 71.1(1,9) rf2(1,9)

CMBZ= | m), (B ()e @)y ()2 (22 Ta(L6) 1(1e)]  (3:30)
If num?2 is taken as “’3”’.
(my)y (22)1 (my), _
cos(B); 2 TV eos(p), ez (3.31)
(my), (22), (M), _
cosB); 2 Peosp),  Tozere(HD) (3:32)
[ razpre(l’l) raZpre(l 2) ]
. (mn)l . ( n)2 |
rey = Tazpre(1’1)+ inc2 cos(B), 1 raZpre(1'2)+ inc2 cos(B), 1 (3.33)
. (M4 ( n)z |
|Tazpre (LD + | inc2 -2 ‘2 Taz,,(1,2) + | inc2- 2J
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If num3 is taken as <’3”’.

(my)1 (21 (my)q — 1,1
cos(B); 2 Scos(R)y et (339
(my)2 (21)2 (my), — (1,2)
cosB); 2 cos(B, e (33
[ rflpre(l,l) rflpre(l,Z) ]
. (mn)l . (mn)z
e = rflpre(l,l) + (mc3 Cos(ﬂ)l) -1 rflpre(l,Z) + <mc3 cos(ﬁ’)) : 1| (3.36)
. (mn)l . (mn)z |
lrflpre (1,1) +{ inc3 cos(B), 2 1p1,,(L2) + | inc3 cos(B), : 2J

Cross combination of the Ta2pre and T 1pre is implemented to obtain r,, and ¢;.

[Tazp,e (1,17 [T 1pre (L,1)7
Tazyyo (21) 71,0 (L1)
Tz, (31) 71,0 (L1)
Ta2pre (1,1) Tf1pre (2,1)
Ta2pre (2,1) Tf1pre (2,1)
Tz, (31) 710 (21)
Tazy o (11) 71,0 (3,1)
Ta2pre (2,1) Tf1pre 31
T el I (3.37)
Ta2pre (1,2) Tf1pre (1,2)
Ta2pre (2,2) Tf1pre (1,2)
Ta2pre (32) Tf1pre (1,2)
Ta2pre (1,2) Tf1pre (2,2)
Ta2pre (2,2) Tf1pre (2,2)
Ta2pre (3.2) Tf1pre (2,2)
Ta2pre (1,2) Tf1pre (3,2)
Ta2pre (2,2) Tf1pre (3,2)
[Ta2yre (3,2)] [T 1pre (3,2)]
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After obtaining the r,, and 75,, combination of the m,, , B, x1 ,an , 21 , Z3 , Tq1 , T2
Tq2 and 74 is evaluated by expanding the each row of the Combs2 (num?2 - num3)

times. Therefore third combination is expressed as:

(my)r (B ()1 (@)t (@)1 (21 1 (1,6) 77(16)  72(L1) 77, (L1) ]
My B Gy (an)r (@)1 (22)1 10(16) 7172(1,6) 715,(12)  7171(12)
My B Oy (an)r (@)1 (22)1 10(16) 7172(1,6)  715,(13)  771(1,3)
my): B ()1 (@) (@)1 (21 1.(1,6) T2(1,6)  71,2(14)  17(14)
my): B ()1 (@) (@)1 (21 1.(1,6) T2(1,6)  71,2(15)  17,(1,5)
my): B ()1 (@) (@)1 (21 1. (1,6) T2(1,6)  714,2(1,6)  17.(1,6)
My B Gy (an)r (@)1 (22)1 1a(16) 7172(1,6) 715, (L7)  171(17)
My B Gy (an)r ()1 (22)1 70(1,6) 7172(1,6) 715,(18)  771(1,8)
My B Gy (an)r (@)1 (22)1 70i(16) 7172(1,6)  7152(L9)  771(19)
me (B Gy @)y (@) (@) 19 12(1L6) 12(110) m10)| (3.38)
my), By (x)2 (@), (22 (2)2 1.(1,9) 72(1,6) 715(L,11) 75,(1,11)
my), By (x)2 (@), (22 (2)2 1.(1,9) 12(1,6) 152(1,12) 157,(1,12)
my), B (x)2 (@), (22 ()2 1.(1,9) 72(1,6) 142(1,13) 77,(1,13)
(my), B (1), (an)2 (212 (z2); 74:1(1,9) Tf2(1'6) Ta2(1,14) Tf1(1'14’)
My, B2 ()2 (@) (z1): (22)2 7a1(19) 752(1,6) 742(1,15) 774(1,15)
(my), B (1), (an)2 (z1)2 (z2); 74:1(1,9) Tf2(1'6) 742(1,16) Tf1(1'16)
my), By (x)2 (@), (22 (2)2 1.(1,9) 12(1,6) 152(L,17) 15,(1,17)
Lm), (B2 (x1)2 (an)2 (z): (22)2 71.1(1,9) rfz(1:6) 742(1,18) rf1(1:18).

Combs3 =

3.5.6. Pinion Root Clearance Elimination

The gear root clearance elimination is implemented by applying the following

algorithm given in Table 3.15.

Table 3.15 Pinion root clearance elimination algorithm

fori = 1:size(c;)

if c1(i) < 0.17m; || ¢4 (i) > 0.35m;
Combs3(i,:) =[]

end

end

3.5.7. Gear Top Land Thickness Elimination

Gear top land thickness elimination is implemented by applying the following
algorithm given in Table 3.16.
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Table 3.16 Gear top land thickness elimination algorithm

fori=1:size(Spanz)
if Snanz(i) < Snan2 min
Combs3(i,:) =[]
end

end

3.5.8. Contact Ratio Elimination

The contact ratio is implemented by applying the following algorithm given in Table
3.17.

Table 3.17 Contact ratio elimination algorithm

fori=1:size(m,)
ifm(i)<1
Combs3(i,:) =[]
end

end

3.5.9. Involute Clearance Elimination

Pinion involute clearance elimination is implemented by applying the following
algorithm given in Table 3.18.

Table 3.18 Pinion involute clearance elimination algorithm

fori=1:size(lc,)
if Ic;(i) > 0.1m;
Combs3(i,:) =[]
end

end

75



Gear involute clearance elimination is implemented by applying the following
algorithm given in Table 3.19.

Table 3.19 Gear involute clearance elimination algorithm

fori=1:size(Ic,)
if Ic,(i) > 0.1m;
Combs3(i,:) =[]
end

end

3.5.10. Tiff Clearance Elimination

Pinion tiff clearance elimination is implemented by applying the following algorithm
given in Table 3.20.

Table 3.20 Pinion tiff clearance elimination algorithm

fori=1:size(Tiff;)
if Tiffi(i) <0.2m;
Combs3(i,:) =[]
end

end

Gear tiff clearance elimination is implemented by applying the following algorithm
given in Table 3.21.

Table 3.21 Gear tiff clearance elimination algorithm

fori = 1:size(Tiff,)
if Tiff,(i) <0.2m;
Combs3(i,:) =[]
end

end
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3.5.11. Contact Stress Elimination

Contact stress elimination is implemented by applying the following algorithm given
in Table 3.22.

Table 3.22 Contact stress elimination algorithm

fori = 1:size(R.)
if R.(i) <1
Combs3(i,:) =[]
end

end

3.5.12. Bending Stress Elimination

Bending stress elimination is implemented by applying the following algorithm given
in Table 3.23 and Table 3.24.

Table 3.23 Pinion bending stress elimination algorithm

fori=1:size(R:)
if Ry(i) < 1
Combs3(i,:) =[]
end

end

Table 3.24 Gear bending stress elimination algorithm

fori = 1:size(Rs)
if Rip(i) <1
Combs3(i,:) =[]
end

end
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3.5.13. Scuffing Elimination

Scuffing elimination is implemented by applying the following algorithm given in
Table 3.25.

Table 3.25 Scuffing elimination algorithm

fori=1:size(Q)
ifQi)<1
Combs3(i,:) =[]
end

end

After all the eliminations are implemented, the gear pair which has the lowest

operating center distance is specified as the optimum gear pair among the remaining
gear pairs.
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CHAPTER 4

SENSITIVITY ANALYSIS AND CASE STUDIES

4.1. Sensitivity Analysis and Case Studies of External Gear Pair and Internal

Gear Pair

Sensitivity analysis of external and internal gear pairs are implemented in this section.
Relatively high and low speed analyses are conducted to observe the speed effect on
the sensitivities of the design variables. The main aim in this section is to observe the
effect of the change of the increment of design variables on objective function. The

required increment values for each design variable are determined in this section.

4.1.1. Sensitivity Analysis of External Gear Pair

The external gear pairs are examined in the case studies from 1 to 10. The rotational
speed of the pinion is taken as 4000 rpm in the cases from 1 to 5. The pinion rotational
speed is taken as 1500 rpm in the cases from 6 to 10. Difference between the pinion
rotational speed is applied to observe the relatively high and low speeds on the

sensitivity of the design variables.

Table 4.1 gives the pinion and gear rotational speeds and the power input in the cases
from 1 to 5. Table 4.2 gives the upper and lower bounds and the increment values of
the pinion and gear addendum and dedendum radii.

Table 4.1 Speed and power values for the analysis from Case 1 to Case 5

Parameter Value
nyg 4000 rpm
n, 1017.81 rpm
Power 1700 kW
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Table 4.2 Lower and upper bounds and increment values for addendum and
dedendum radii for the analysis from Case 1 to Case 5

- Y1 incl Y2
al 0.8 0.1 1.20
, Y3 inc2 Ya
az 0.8 0.1 1.20
ey Vs inc3 Ye
f —1.5 0.1 —1.10
res Ys inc4 Y7
f —1.5 0.1 —1.10

Initial assignments of the design variables are given in Table 4.3. In the first case,
pinion number of teeth is started from 10 and it is ended at 50 by increasing its value
1. The module is started from 2 mm and it is ended at 7.7 mm by increasing its value
0.3 mm. The pressure angle is started from 15 and it is ended at 35" by increasing its
value 1°. The pinion profile shifting coefficient is started from —0.6 and it is ended at
0.6 by increasing its value 0.2. The helix angle is started from 5° and it is ended at 21°
by increasing its value 2°. In the second cases, all the design parameters are kept as
the same as they are in the first case except the parameter of the module. The module
values are taken as constant values to observe the effect of the increment value of the
module on objective function. In the third cases, all the design parameters are kept as
the same as they are in the first case except the parameter of the helix angle. The helix
angle values are taken as constant values to observe the effect of the increment value
of the helix angle on objective function. In the fourth cases, all the design parameters
are kept as the same as they are in the first case except the parameter of the pinion
profile shifting coefficient. The pinion profile shifting coefficient values are taken as
constant values to observe the effect of the increment value of the pinion profile
shifting coefficient on objective function. In the fifth cases, all the design parameters
are kept as the same as they are in the first case except the parameter of the pressure
angle. The pressure angle values are taken as constant values to observe the effect of

the increment value of the pressure angle on objective function.
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Table 4.3 Input parameters of the studies from Casel to Case 5

Case Zq m, (mm) a,(deg) B(deg) X1

1 10:1:50 | 2:03:7.7  15:1:35 | 5:2:21 | —0.6:0.2:0.6
2A  10:1:50 2.9 15:1:35 5:2:21 -06:0.2:0.6
2B 10:1:50 3.0 15:1:35 5:2:21 —-0.6:0.2:0.6
2C 10:1:50 31 15:1:35 5:2:21 —-0.6:0.2:0.6
2D 10:1:50 3.2 15:1:35 5:2:21 —-0.6:0.2:0.6
2E 10:1:50 3.3 15:1:35 5:2:21 —-0.6:0.2:0.6
2F 10:1:50 3.4 15:1:35 5:2:21 —-0.6:0.2:0.6
2G 10:1:50 3.5 15:1:35 5:2:21 —-0.6:0.2:0.6
2H 10:1:50 3.6 15:1:35 5:2:21 —-0.6:0.2:0.6
3A | 10:1:50 2:03:7.7 | 15:1:35 10 —-0.6:0.2:0.6
3B 10:1:50 2:03:7.7 15:1:35 11 —-0.6:0.2:0.6
3C | 10:1:50 2:03:7.7 | 15:1:35 12 —-0.6:0.2:0.6
3D |10:1:50  2:03:7.7 | 15:1:35 13 —-0.6:0.2:0.6
3E 10:1:50 2:03:7.7 15:1:35 14 —-0.6:0.2:0.6
3F 10:1:50 | 2:03:7.7 | 15:1:35 15 —-0.6:0.2:0.6
3G |10:1:50  2:03:7.7 | 15:1:35 16 —-0.6:0.2:0.6
3H | 10:1:50 2:03:7.7 | 15:1:35 17 —-0.6:0.2:0.6
4A 10:1:50 2:03:7.7 15:1:35 5:2:21 —-0.2

4B 10:1:50 2:03:7.7 15:1:35 5:2:21 -0.1

4C 10:1:50 2:03:7.7 15:1:35 5:2:21 0

4D 10:1:50 2:03:7.7 15:1:35 5:2:21 0.1

4E 10:1:50 2:03:7.7 15:1:35 5:2:21 0.2

4F 10:1:50 2:03:7.7 15:1:35 5:2:21 0.3

SA | 10:1:50 2:03:7.7 21 5:2:21 | -0.6:0.2:0.6
5B |10:1:50  2:03:7.7 21.5 5:2:21  —-0.6:0.2:0.6
5C | 10:1:50  2:03:7.7 22 5:2:21  —-0.6:0.2:0.6
oD 10:1:50 | 2:0.3:7.7 22.5 5:2:21 | -0.6:0.2:0.6
5E |10:1:50  2:03:7.7 23 5:2:21  —-0.6:0.2:0.6
SF 10:1:50 | 2:03:7.7 23.5 5:2:21 | -0.6:0.2:0.6
5G | 10:1:50 2:03:7.7 24 5:2:21 | —0.6:0.2:0.6
5H | 10:1:50  2:03:7.7 24.5 5:2:21 | -0.6:0.2:0.6
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Table 4.4 Optimized design variables (Casel — Case 5)

Zy 2y my, An B X1 Ta1 Ta2 Tf1 Tr2 Ay

Case - - mm deg deg - mm mm mm mm mm

1 37 | 145 | 32 23 13 0.2 64.698 | 241.058 | 56.816 | 233.176 | 298.860
2A 41 161 29 24 19 0.2 66.249 | 249.355 | 59.502 | 242.608 | 309.777
2B 40 157 3.0 26 15 0.2 65.533 | 246.292 | 58.390 | 239.149 | 305.924
2C 37 145 31 22 21 0.2 65.415 | 243.728 | 57.446 | 235.759 | 302.170
2D 37 145 3.2 23 13 0.2 64.698 | 241.058 | 56.816 | 233.176 | 298.860
2E 37 145 33 23 7 0.2 65.498 | 244.039 | 57.519 | 236.060 | 302.555
2F 35 138 34 23 15 0.2 65.823 | 246.044 | 57.023 | 237.560 | 304.475
2G 35 138 35 23 13 0.2 67.172 | 251.085 | 58.551 | 242.464 | 310.714
2H 35 138 3.6 24 9 0.2 68.159 | 254.777 | 59.047 | 246.029 | 315.282
3A 44 | 173 | 2.9 22 10 0.2 68.318 | 257.665 | 60.956 | 250.303 | 319.504
3B 38 | 149 | 32 24 11 0.2 65.850 | 245.796 | 58.026 | 237.972 | 304.800
3C 38 | 149 | 32 23 12 0.2 66.084 | 246.670 | 57.905 | 238.819 | 305.884
3D 37 145 | 32 23 13 0.2 64.698 | 241.058 | 56.816 | 233.176 | 298.860
3E 37 145 | 32 23 14 0.2 64.970 | 242.071 | 57.055 | 234.155 | 300.115
3F 37 | 145 | 32 23 15 0.2 65.264 | 243.166 | 57.313 | 235.215 | 301.472
3G 37 | 145 | 3.2 23 16 0.2 65.580 | 244.346 | 57.591 | 236.356 | 302.935
3H 37 | 145 | 32 22 17 0.2 65.920 | 245.612 | 57.890 | 237.581 | 304.505
4A 50 197 26 24 21 -0.2 | 71.852 | 277.384 | 65.725 | 270.978 | 343.945
4B 40 157 3.2 25 7 -0.1  67.382 | 256.633 | 59.967 | 249.218 | 317.567
4C 38 149 3.2 24 13 0 65.683 | 247.955 | 57.801 | 240.073 | 307.070
4D 35 138 3.2 24 21 0.1 63.412 | 239.594 | 55.871 | 231.710 | 296.493
4E 37 145 32 23 13 0.2 64.698 | 241.058 | 56.816 | 233.176 | 298.860
4F 37 145 32 24 15 0.3 65.264 | 242.834 | 57.644 | 235.215 | 301.472
5A 41 | 161 | 2.9 21 21 0.2 67.407 | 253.165 | 59.641 | 245.399 | 313.738
5B 37 | 145 | 32 215 | 21 0.2 67.525 | 251.591 | 58.956 | 243.364 | 311.917
5C 37 | 145 | 32 22 17 0.2 65.920 | 245.612 | 57.890 | 237.581 | 304.505
5D 37 145 | 32 225 | 15 0.2 65.264 | 243.166 | 57.313 | 235.215 | 301.472
5E 37 | 145 | 32 23 13 0.2 64.698 | 241.058 | 56.816 | 233.176 | 298.860
5F 37 | 145 | 32 235 | 13 0.2 64.698 | 241.058 | 56.488 | 233.176 | 298.860
5G 38 | 149 | 32 24 11 0.2 65.850 | 245.796 | 58.026 | 237.972 | 304.800
5H 38 | 149 | 32 245 | 13 0 65.683 | 247.955 | 57.801 | 240.073 | 307.070
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Table 4.4 and Table 4.5 gives the pinion and gear rotational speeds and the power
input in the cases from 1 to 6. Table 4.6 gives the upper and lower bounds and the

increment values of the pinion and gear addendum and dedendum radii.

Table 4.5 Speed and power values for the analysis from Case 6 to Case 10

Parameter Value
ny 1500 rpm
n, 381.679 rpm
Power 1700 kW

Table 4.6 Lower and upper bounds and increment values for addendum and
dedendum radii for the analysis form Case 6 to Case 10

r Y1 incl b))
al 0.8 0.1 1.20
r V3 inc2 V4
az 0.8 0.1 1.20
el Vs inc3 Ve
! —1.5 0.1 —1.10
Ty Ys inc4 Y7
f —15 0.1 —1.10

Initial assignments of the design variables are given in Table 4.7. In the sixth case,
pinion number of teeth is started from 1 and it is ended at 50 by increasing its value 1.
The module is started from 2 mm and it is ended at 7.7 mm by increasing its value
0.3 mm. The pressure angle is started from 15 and it is ended at 35" by increasing its
value 2°. The pinion profile shifting coefficient is started from —0.6 and it is ended at
0.6 by increasing its value 0.2. The helix angle is started from 5° and it is ended at 21°

by increasing its number at 2°.

In the seventh cases, all the design parameters are kept as the same as they are in the
sixth case except the parameter of the module. The module values are taken as constant
values to observe the effect of the increment value of the module on objective function.
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In the eight cases, all the design parameters are kept as the same as they are in the
sixth case except the parameter of the helix angle. The helix angle values are taken as
constant values to observe the effect of the increment value of the helix angle on
objective function. In the ninth cases, all the design parameters are kept as the same
as they are in the sixth case except the parameter of the pinion profile shifting
coefficient. The pinion profile shifting coefficient values are taken as constant values
to observe the effect of the increment value of the pinion profile shifting coefficient
on objective function. In the tenth cases, all the design parameters are kept as the same
as they are in the sixth case except the parameter of the pressure angle. The pressure
angle values are taken as constant values to observe the effect of the increment value

of the pressure angle on objective function.
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Table 4.7 Input parameters of the studies from Case 6 to Case 10

Case Zq m, (mm) a,(deg) B(deg) X1

6 10:1:50 | 2:03:7.7  15:1:35 | 5:2:21 | —0.6:0.2:0.6
7A  10:1:50 4.1 15:1:35 5:2:21 -06:0.2:0.6
7B 10:1:50 4.2 15:1:35 5:2:21 —-0.6:0.2:0.6
7C 10:1:50 4.3 15:1:35 5:2:21 —-0.6:0.2:0.6
7D 10:1:50 4.4 15:1:35 5:2:21 —-0.6:0.2:0.6
7E 10:1:50 4.5 15:1:35 5:2:21 —-0.6:0.2:0.6
7TF 10:1:50 4.6 15:1:35 5:2:21 —-0.6:0.2:0.6
7G 10:1:50 4.7 15:1:35 5:2:21 -0.6:0.2:0.6
7H 10:1:50 4.8 15:1:35 5:2:21 —-0.6:0.2:0.6
8A |10:1:50 2:03:7.7 | 15:1:35 18 —-0.6:0.2:0.6
8B 10:1:50 2:03:7.7 15:1:35 19 —-0.6:0.2:0.6
8C |10:1:50 2:03:7.7 | 15:1:35 20 —-0.6:0.2:0.6
8D |10:1:50  2:03:7.7 | 15:1:35 21 —-0.6:0.2:0.6
8E 10:1:50 2:03:7.7 15:1:35 22 —-0.6:0.2:0.6
8F 10:1:50 | 2:03:7.7 | 15:1:35 23 —-0.6:0.2:0.6
8G |10:1:50  2:03:7.7 | 15:1:35 24 —-0.6:0.2:0.6
8H | 10:1:50 2:03:7.7 | 15:1:35 25 —-0.6:0.2:0.6
9A 10:1:50 2:03:7.7 15:1:35 5:2:21 —-0.1

9B 10:1:50 2:03:7.7 15:1:35 5:2:21 0

9C 10:1:50 2:03:7.7 15:1:35 5:2:21 0.1

9D 10:1:50 2:03:7.7 15:1:35 5:2:21 0.2

9E 10:1:50 2:03:7.7 15:1:35 5:2:21 0.3

10A  10:1:50  2:03:7.7 22 5:2:21  —-0.6:0.2:0.6
10B  10:1:50  2:03:7.7 22.5 5:2:21 | -0.6:0.2:0.6
10C  10:1:50  2:03:7.7 23 5:2:21  —-0.6:0.2:0.6
10D  10:1:50  2:03:7.7 23.5 5:2:21  —-0.6:0.2:0.6
10E  10:1:50  2:03:7.7 24 5:2:21 | -0.6:0.2:0.6
10F 1 10:1:50  2:03:7.7 24.5 5:2:21  —-0.6:0.2:0.6
106G 10:1:50  2:03:7.7 25 5:2:21 | -0.6:0.2:0.6
10H | 10:1:50 | 2:03:7.7 25.5 5:2:21 | —0.6:0.2:0.6
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Table 4.8 Optimized design variables (Case6 — Case10)

Z, 23 my Ay B X1 Ta1 Ta2 Tf1 T2 Ay
Case - - mm deg deg - mm mm mm mm mm
6 35 | 138 | 44 22 21 0.2 88.134 | 329.913 | 75.880 | 318.130 | 407.678

7TA 40 157 41 23 17 0.2 90.892 | 340.414 | 80.602 | 330.125 | 422.303

7B 38 149 42 22 19 0.2 89.729 | 335.372 | 78.179 | 324.267 | 415.328

7C 38 149 43 24 13 0.2 89.145 | 332.748 | 78.553 | 322.157 | 412.626

7D 35 138 44 22 21 0.2 88.134 | 329.913 | 75.880 | 318.130 | 407.678

7TE 35 138 45 23 19 0.2 88.999 | 332.675 | 77.576 | 321.252 | 411.679

7F 35 138 46 24 15 0.2 89.054 | 332.883 | 77.149 | 321.453 | 411.936

7G 33 130 47 23 21 0.2 89.109 | 331.766 | 76.523 | 319.683 | 410.302

7H 33 130 4.8 23 21 0.2 91.004 | 338.825 | 78.151 | 326.485 | 419.032

8A |37 | 145 | 44 24 18 0 90.215 | 340.506 | 79.112 | 328.939 | 421.005

8B 37 | 145 | 44 23 19 0.2 91.675 | 341.569 | 80.041 | 330.401 | 423.471

8C 37 | 145 | 44 22 10 0.2 92.243 | 344.155 | 80.537 | 332.449 | 426.097

8D 35 | 138 | 44 22 21 0.2 88.134 | 329.913 | 75.880 | 318.130 | 407.678

8E 35 | 138 | 44 22 22 0.2 88.742 | 332.189 | 76.403 | 320.325 | 410.490

8F 37 | 145 | 44 23 23 0 93.210 | 351.807 | 81.738 | 339.857 | 434.979

8G |38 | 149 | 41 25 24 0.2 90.209 | 337.947 | 79.887 | 327.625 | 419.629

8H 35 | 138 | 44 21 25 0.2 90.786 | 339.840 | 78.649 | 327.703 | 419.946

9A 38 149 44 26 13 -0.1 89.863 | 341.390 | 79.477 | 331.004 | 422.222

9B 37 145 44 24 17 0 89.720 | 338.637 | 78.678 | 327.594 | 418.695

9C 35 138 44 23 21 0.1 87.663 | 329.913 | 76.351 | 318.130 | 407.678

9D 35 138 44 22 21 0.2 88.134 | 329.913 | 75.880 | 318.130 | 407.678

9E 43 169 338 24 21 0.3 92.397 | 347.201 | 82.628 | 337.839 | 431.457

10A | 35 | 138 | 44 22 21 0.2 88.134 | 329.913 | 75.880 | 318.130 | 407.678

10B | 37 | 145 | 44 22,5 17 0.2 90.641 | 338.177 | 79.138 | 326.674 | 418.695

10C | 35 | 138 | 44 23 21 0.2 88.134 | 329.441 | 76.351 | 318.130 | 407.678

10D | 37 | 145 | 44 235 13 0.2 88.960 | 331.455 | 77.671 | 320.617 | 410.932

10E | 37 | 145 | 44 24 13 0.2 88.960 | 331.455 | 77.671 | 320.617 | 410.932

10F | 37 | 145 | 44 245 13 0.2 88.960 | 331.455 | 77.671 | 320.617 | 410.932

10G | 38 | 149 | 44 25 7 0.2 89.547 | 334.251 | 78.465 | 323.612 | 414.490

10H | 35 | 138 | 4.7 255 |15 0 90.017 | 340.606 | 78.826 | 329.415 | 420.892
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The optimized results of the cases from 1 to 5 are given in Table 4.8. It is concluded
that the optimized center distance is 298.860 mm in the first case with the module of
3.2 mm. When the Case 2A is considered it is seen that the optimized center distance
is 309.777 mm with the module of 2.9 mm. Sensitivity of the Case 2A is considered

as follow:

(309.777 mm — 298.860 mm)
*

1
(298.860 mm) 00

Sensitivity =

The sensitivity calculation is conducted as given above for all other points in each case
study. The module sensitivity and the center distance relation at 4000 rpm and 1500
rpm are given in Figure 4-1 and Figure 4-2, respectively. The optimum center distance
and the optimum module value are obtained as 298.86 mm and 3.2 mm respectively
in the first case. It is seen that the optimum center distances are 302.17 mm and
302.555 mm when the module values are adjusted to 3.1 mm and 3.2 mm,
respectively. Therefore, changing the module value 0.1 mm around the actual
optimum module deviates the center distance value 3.70 mm at most. The sensitivity
of the module parameter is 1.23 % at most 0.1 mm around the actual optimum module
value. When the 0.1 mm increment of the module is considered sensitivity of the
module is always in a decreasing manner if the module values are moved away from
the optimum module point. The optimum center distance and the optimum module
value are obtained as 407.678 mm and 4.4 mm respectively in the sixth case. It is
seen that the optimum center distances are 412.626 mm and 411.679 mm when the
module values are adjusted to 4.3 mm and 4.5 mm, respectively. Therefore, changing
the module value 0.1 mm around the actual optimum module deviates the center
distance value 4.948 mm at most. The sensitivity of the module parameter is 1.21 %
at most 0.1 mm around the actual optimum module value. When the 0.1 mm
increment of the module is considered sensitivity of the module is always in a

decreasing manner if the module values are moved away from the optimum module
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point. The increment of the module value is specified as 0.1 mm which gives a

sensitivity value of 1.23 % at most.
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Figure 4-1 Module sensitivity and center distance relation of external gear pair at
relatively higher pinion rotational speed (4000 rpm)
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Figure 4-2 Module sensitivity and center distance relation of external gear pair at
relatively lower pinion rotational speed (1500 rpm)
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The helix angle sensitivity and the center distance relation at 4000 rpm and 1500 rpm
are given in Figure 4-3 and Figure 4-4, respectively. The optimum center distance and
the optimum helix angle value are obtained as 298.86 mm and 13" respectively in the
first case. It is seen that the optimum center distances are 305.884 mm and
300. 115 mm when the helix angle values are adjusted to 12° and 14, respectively.
Therefore, changing the helix angle value 1° around the actual optimum helix angle
deviates the center distance value 7.02 mm at most. The sensitivity of the helix angle
parameter is 2.35 % at most 1° around the actual optimum helix angle value. When
the 1° increment of the helix angle is considered sensitivity of the helix angle in a
decreasing manner if the helix angle values are moved away from the optimum helix

angle point.

The optimum center distance and the optimum helix angle value are obtained as
407.678 mm and 21° respectively in the sixth case. It is seen that the optimum center
distances are 426.097 mm and 410.49 mm when the helix angle values are adjusted
to 20° and 22°, respectively. Therefore, changing the helix angle value 1° around the
actual optimum helix angle deviates the center distance value 18.419 mm at most.
The sensitivity of the helix angle parameter is 4.52 % at most 1°around the actual
optimum helix angle value. When the 1° increment of the helix angle is considered
sensitivity of the module is not always in a decreasing manner if the helix angle values
are moved away from the optimum helix angle point. The sensitivity value does not
show a consistent behavior as opposite to obtained in 4000 rpm. Therefore, when the
rotational speed of the pinion is decreased the helix angle does not keep its consistent
behavior any more. Although this inconsistency, the sensitivity of the helix angle is
still below the 5 % 1°around the actual optimum helix angle value. The increment of
the helix angle value is specified as 1° which gives a sensitivity value of 4.52 % at

most.
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The pinion profile shifting coefficient sensitivity and the center distance relation at
4000 rpm and 1500 rpm are given in Figure 4-5 and Figure 4-6, respectively. The
optimum center distance and the optimum profile shifting coefficient are obtained as
298.86 mm and 0.2 respectively in the first case. It is seen that the optimum center
distances are 296.493 mm and 301.472 mm when the pinion profile shifting
coefficient values are adjusted to 0.1 and 0.3, respectively. Therefore, changing the
pinion profile shifting coefficient value 0.1 around the actual optimum profile shifting
coefficient deviates the center distance value 2.61 mm at most. The sensitivity of the
pinion profile shifting coefficient parameter is 0.87 % at most 0.1 around the actual
optimum pinion profile shifting coefficient value. When the 0.1 increment of the
pinion profile shifting coefficient is considered sensitivity of the pinion profile shifting
coefficient in a decreasing manner if the pinion profile shifting coefficient values are

moved away from the optimum pinion profile shifting coefficient point.

The optimum center distance and the optimum pinion profile shifting coefficient value
are obtained as 407.678 mm and 0.2 respectively in the sixth case. It is seen that the
optimum center distances are 407.678 mm and 431.457 mm when the pinion profile
shifting coefficient values are adjusted to 0.1 and 0.3, respectively. Therefore,
changing the pinion profile shifting coefficient value 0.1 around the actual optimum
pinion profile shifting coefficient deviates the center distance value 23.78 mm at
most. The sensitivity of the pinion profile shifting coefficient parameter is 5.83 % at
most 0.1 around the actual optimum pinion profile shifting coefficient value. When
the 0.1 increment of the pinion profile shifting coefficient is considered sensitivity of
the pinion profile shifting coefficient is in a decreasing manner if the pinion profile
shifting coefficient values are moved away from the optimum pinion profile shifting
coefficient point.
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The pressure angle sensitivity and the center distance relation at 4000 rpm and 1500
rpm are given in Figure 4-7 and Figure 4-8, respectively. The optimum center distance
and the optimum pressure angle value are obtained as 298.86 mm and 23°
respectively in the first case. It is seen that the optimum center distances are
301.472 mm and 298.86 mm when the pressure angle values are adjusted to 22.5°
and 23.5°, respectively. Therefore, changing the pressure angle value 0.5° around the
actual optimum pressure angle deviates the center distance value 2.61 mm at most.
The sensitivity of the pressure angle parameter is 0.87 % at most 0.5 around the
actual optimum pressure angle value. When the 0.5° increment of the pressure angle
is considered sensitivity of the pressure angle in a decreasing manner if the pressure

angle values are moved away from the optimum pressure angle point.

The optimum center distance and the optimum pressure angle value are obtained as
407.678 mm and 23’ respectively in the sixth case. It is seen that the optimum center
distances are 418.695 mm and 410.932 mm when the pressure angle values are
adjusted to 22.5” and 23.5°, respectively. Therefore, changing the pressure angle value
0.5 around the actual optimum pressure angle deviates the center distance value
11.017 mm at most. The sensitivity of the pressure angle parameter is 2.7 % at most
0.5 around the actual optimum pressure angle value. When the 0.5° increment of the
pressure angle is considered sensitivity of the pressure angle is not always in a
decreasing manner if the pressure angle values are moved away from the optimum
pressure angle point. The sensitivity value does not show a consistent behavior as
opposite to obtained in 4000 rpm. Therefore, when the rotational speed of the pinion
is decreased the pressure angle does not keep its consistent behavior any more.
Although this inconsistency, the sensitivity of the pressure angle is still below the 5 %
0.5 around the actual optimum pressure angle value. The increment of the pressure

angle value is specified as 0.5° which gives a sensitivity value of 2.7 % at most.
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4.1.2. Addendum and Dedendum Radii Sensitivity of External Gear Pairs

Sensitivity analysis of the addendum and dedendum radii is evaluated in this section.
Initial assignments of the design variables and pinion and gear rotational speeds and
input power are given in Table 4.9. In the EX2 case, all the design parameters are
almost kept as the same as they are in the EX1 case except the increment of the
addendum and dedendum radii. In EX3 case, all the design parameters are kept as the

same as they are in the EX1 case except the increment of the addendum and dedendum
radii.

Table 4.9 Input parameters and initial assignment of the design variables of Case
EX1, EX2 and EX3

PARAMATERS EX 1 EX 2 EX3
N,y 10:1:50 13:1:47 10:1:50
m,, (mm) 2:03:7.7 32:03:7.7 20:03:7.7
a, (degree) 15:1:35 15:1:35 15:1:35
B (degree) 5:2:21 5:2:21 5:2:21
X4 —06:02:06 [—06:02:06 |—0.6:0.2:0.6
V4 0.80 0.80 0.80
v, 1.20 1.20 1.20
V3 0.80 0.80 0.80
Va 1.20 1.20 1.20
Ve —1.50 —1.50 —1.50
Ve —~1.10 —~1.10 ~1.10
V7 —1.50 —1.50 —1.50
Vg —1.10 —1.10 —1.10
incl 0.2 0.1 0.05
inc2 0.2 0.1 0.05
inc3 0.2 0.1 0.05
inc4 0.2 0.1 0.05
ny 4000 rpm 4000 rpm 4000 rpm
n, 1017.81 rpm 1017.81 rpm 1017.81 rpm
Power 1700 kW 1700 kW 1700 kW
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When the optimized results of the Case EX1, Case EX2 and Case EX3 are considered
It is seen that the optimum center distances are 307.07 mm, 298.860 mm and
296.493 mum, respectively. The optimum center is obtained as 298.860 mm in the
first case. Therefore, changing the increment value of the addendum and dedendum
radii 0.05 mm around the actual optimum increment of the addendum and dedendum
radii the center distance value 8.21 mm at most. The sensitivity of the increment of
the addendum and dedendum radii is 2.75 % at most 0.05 mm around the actual

optimum increment of the addendum and dedendum radii.

Table 4.10 Optimized design variables (Case EX1 — Case Ex3)

Case EX1 EX?2 EX3
Study
m, 3.2mm 3.2mm 3.2mm
B 13° 13° 21
X1 0 0.2 0.2
Ta1 65.683 mm 64.698 mm 63.926 mm
T a2 247.955 mm 241.058 mm 239.594 mm
T'r1 58.130 mm 56.816 mm 55.528 mm
T'fo 240.401 mm 233.176 mm 231.367 mm
N4 38 37 35
N, 149 145 138
a, 24° 23° 23°
a, 307.070 mm 298.860 mm 296.493 mm

Initial assignments of the design variables and pinion and gear rotational speeds and
input power are given in Table 4.11. In the EX4 case, pinion number of teeth is started
from 1 and itis ended at 50 by increasing its value 1. The module is started from 2 mm
and itis ended at 7.7 mm by increasing its value 0.3 mm. The pressure angle is started
from 15° and it is ended at 35° by increasing its value 1°. The pinion profile shifting
coefficient is started from —0.6 and it is ended at 0.6 by increasing its value 0.2. The

helix angle is started from 5° and it is ended at 21" by increasing its value 2°.
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In the EXS5 case, all the design parameters are kept as the same as they are in the EX1
case except the increment of the addendum and dedendum radii. In EX6 case, all the
design parameters are kept as the same as they are in the EX1 case except the

increment of the addendum and dedendum radii.

Table 4.11 Input parameters and initial assignment of the design variables of Case
EX4, EX5 and EX6

PARAMATERS EX 4 EX5 EX6
N, 10:1:50 10:1:50 10:1:50
m,, (mm) 2:03:7.7 2:03:7.7 2.0:03:7.7
a, (degree) 15:1:35 15:1:35 15:1:35
B (degree) 5:2:21 5:2:21 5:2:21
Xq —06:02:06 [—-06:02:0.6 |—0.6:0.2:0.6
V1 0.80 0.80 0.80
Vo 1.20 1.20 1.20
V3 0.80 0.80 0.80
Va 1.20 1.20 1.20
Vs —1.50 —1.50 —1.50
Ve —-1.10 —1.10 —1.10
V7 —1.50 —1.50 —1.50
Vs -1.10 —-1.10 —1.10
incl 0.2 0.1 0.05
inc2 0.2 0.1 0.05
inc3 0.2 0.1 0.05
inc4 0.2 0.1 0.05
nq 1500 rpm 1500 rpm 1500 rpm
n, 381.679 rpm 381.679 rpm 381.679 rpm
Power 1700 kW 1700 kW 1700 kW

The optimized results of the Case EX4, Case EX5 and Case EX6 are given in Table
4.12. It is seen that when the increments of the addendum and dedendum radii are
taken as 0.2 mm, 0.1 mm and 0.05 mm the optimum center distances are same.
Changing the increment of the addendum and dedendum radii has not an effect on the

center distance when the rotational speed of the pinion is decreased.
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Table 4.12 Optimized design variables (Case EX4 — Case Ex6)

Case Inc0.2 Inc0.1 Inc 0.05
Study
m, 4.4 mm 4.4 mm 4.4 mm
B 21° 21° 21°
Xq 0.2 0.2 0.2
T 88.134 mm 88.134 mm 88.134 mm
T2 329.913 mm 329.913 mm 329.913 mm
T 76.351 mm 75.880 mm 75.880 mm
T2 318.130 mm 318.130 mm 318.130 mm
N4 35 35 35
N, 138 138 138
a, 22 22 22
a, 407.678 mm 407.678 mm 407.678 mm

4.1.3. Detailed Optimization of Case 1

As discussed in the previous sections, the increment of the all design parameters are
specified according to sensitivity analyses. In this section, the specified increments for
each design parameter are used to obtain more optimum results. Initial assignments of
the design variables, rotational speed of the pinion and the gear and the input power

Is given in Table 4.13. Optimization result of the first case study is given in

Table 4.4. The first case study is evaluated again by changing the increments of each
design variables. In Case 1 Detailed A, increment of the module, pressure angle, helix
angle and pinion profile shifting coefficient are changed from 0.3 mm,1°,2" and 0.2
to 0.1 mm,0.5°,1° and 0.1 respectively to observe the more optimal results. In Case
1 Detailed B, the increment of the design variables are kept constant as in Case 1
Detailed A. However, increment of the addendum and dedendum radii is changed

from 0.1 mm to 0.05 mm.
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Table 4.13 Input parameters and initial assignment of the design variables of Case 1
Detailed A and Case 1 Detailed B

PARAMATERS Case 1 Case 1 Detailed | Case 1 Detailed
A B
Ny 10:1:50 35:1:41 33:1:38
m,, (mm) 2:03:7.7 29:0.1:3.4 3.1:01:3.3
a, (degree) 15:1:35 21:0.5:28 22.5:0.5:26
B (degree) 5:2:21 10:1:20 13:1:20
X4 —-06:02:06 [—01:01:03 [01:0.1:0.2
V1 0.80 0.80 0.80
Vs 1.20 1.20 1.20
V3 0.80 0.80 0.80
Va4 1.20 1.20 1.20
Ve —1.50 —1.50 —1.50
Ve —1.10 —1.10 —-1.10
V7 —1.50 —1.50 —1.50
Vg —-1.10 —1.10 —-1.10
incl 0.1 0.1 0.05
inc2 0.1 0.1 0.05
inc3 0.1 0.1 0.05
inc4 0.1 0.1 0.05
ny 4000 rpm 4000 rpm 4000 rpm
n, 1017.81 rpm 1017.81 rpm 1017.81 rpm
Power 1700 kW 1700 kW 1700 kW

The optimized results of the Case 1, Case 1 Detailed A and Case 1 Detailed B are
given in Table 4.14. As seen from Table 4.14, the more optimal results are obtained
when the increment of the design variable and the increment of the addendum and
dedendum radii are deceased to values which are obtained as results of sensitivity

analyses.
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Table 4.14 Optimized design variables (Case 1 Detailed A — Case 1 Detailed B)

Case Case 1 Case 1 Detailed A | Case 1 Detailed B
Study
m, 3.2mm 3.3mm 3.3mm
B 13° 15° 14°
X1 0.2 0.1 0.1
a1 64.698 mm 63.204 mm 63.089 mm
T a2 241.058 mm 238.807 mm 237.732 mm
T 56.816 mm 55.346 mm 55.437 mm
T2 233.176 mm 230.949 mm 229.739 mm
Ny 37 35 35
N, 145 138 138
a, 23° 25.5° 25°
a, 298.860 mm 295.520 mm 294.189 mm

4.1.4. Detailed Optimization of Case 6

Initial assignments of the design variables, rotational speed of the pinion and the gear
and the input power is given in Table 4.15. Optimization result of the sixth case study
is given in Table 4.8. The sixth case study is evaluated again by changing the
increments of each design variables. In Case 6 Detailed A, increment of the module,
pressure angle, helix angle and pinion profile shifting coefficient are changed from
0.3mm,1°,2" and 0.2 to 0.1 mm,0.5",1" and 0.1 respectively to observe the more
optimal results. In Case 6 Detailed B, the increment of the design variables are kept
constant. However, increment of the addendum and dedendum radii are changed from

0.1 mm to 0.05 mm.
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Table 4.15 Input parameters and initial assignment of the design variables of Case 6
Detailed A and Case 6 Detailed B

PARAMATERS Case 6 Case 6 Detailed | Case 6 Detailed
A B
Ny 10:1:50 27 :1:41 33:1:38
m,, (mm) 2:03:7.7 40:0.1:5.6 3.1:01:3.3
a, (degree) 15:1:35 20:0.5:28 22.5:05:26
B (degree) 5:2:21 7:1:21 13:1:20
X4 —06:02:06 |[—-01:01:03 [0.1:0.1:0.2
V1 0.80 0.80 0.80
v, 1.20 1.20 1.20
V3 0.80 0.80 0.80
Va 1.20 1.20 1.20
Ve —1.50 —1.50 —1.50
Ve —1.10 —1.10 —1.10
V7 —1.50 —1.50 —1.50
Vg —-1.10 —1.10 —-1.10
incl 0.1 0.1 0.05
inc2 0.1 0.1 0.05
inc3 0.1 0.1 0.05
inc4 0.1 0.1 0.05
nq 1500 rpm 1500 rpm 1500 rpm
n, 381.679 rpm 381.679 rpm 381.679 rpm
Power 1700 kW 1700 kW 1700 kW

The optimized results of the Case 1, Case 1 Detailed A and Case 1 Detailed B are
given in Table 4.16. As seen from Table 4.16, the more optimal results are obtained
when the increment of the design variable and the increment of the addendum and
dedendum radii are deceased to values which are obtained as results of sensitivity
analyses.

101



Table 4.16 Optimized design variables (Case 6 Detailed A — Case 6 Detailed B)

Case Case 6 Actual Case 6 A Actual Case 6 B
Study Detailed Detailed
m, 4.4 mm 4.2 mm 4.4 mm
B 21° 20° 20°
X4 0.2 0.2 0.2
a1 88.134 mm 88.050 mm 87.561 mm
T a2 329.913 mm 328.512 mm 327.533 mm
T 75.880 mm 76.876 mm 75.620 mm
T'r2 318.130 mm 317.338 mm 316.061 mm
N, 35 37 35
N, 138 145 138
a, 22° 22° 23°
a, 407.678 mm 406.729 mm 405.026 mm

4.2. Sensitivity Analysis and Case Studies of Internal Gear Pair

The internal gear pairs are examined in the case studies from 11 to 20. The rotational
speed of the pinion is taken as 900 rpm in the cases from 11 to 15. The pinion
rotational speed is taken as 3000 rpm in the cases from 16 to 20. Difference between
the pinion rotational speed is applied to observe the relatively high and low speeds on
the sensitivity of the design variables. Table 4.17 gives the pinion and gear rotational
speeds and the power input in the cases from 11 to 15. Table 4.18 gives the upper and
lower bounds and the increment values of the pinion and gear addendum and

dedendum radii.

Table 4.17 Speed and power values for the analysis from Case 11 to Case 15

Parameter Value
ny 900 rpm
n, 329 rpm
Power 1700 kW
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Table 4.18 Lower and upper bounds and increment values for addendum and
dedendum radii for the analysis from Case 11 to Case 15

, Y1 incl Y2
al 0.80 0.1 1.20
r Y3 inc2 V4
az -1.20 0.1 —0.80
r Vs inc3 Ve
1 —1.40 0.1 —1.00
r Vg inc4 Y7
f2 1.00 0.1 1.40

Initial assignments of the design variables are given in Table 4.19. In the 11" case,
pinion number of teeth is started from 10 and it is ended at 50 by increasing its value
1. The module is started from 2 mm and it is ended at 7.7 mm by increasing its value
0.3 mm. The pressure angle is started from 15 and it is ended at 35" by increasing its
value 1°. The pinion profile shifting coefficient is started from —0.6 and it is ended at
0.6 by increasing its value 0.2. The helix angle is started from 5° and it is ended at 21°
by increasing its value 2°. In the 12" cases, all the design parameters are kept as the
same as they are in the 11" case except the parameter of the module. The module
values are taken as constant values to observe the effect of the increment value of the
module on objective function. In the 13" cases, all the design parameters are kept as
the same as they are in the 11" case except the parameter of the helix angle. The helix
angle values are taken as constant values to observe the effect of the increment value
of the helix angle on objective function. In the 14" cases, all the design parameters are
kept as the same as they are in the 11" case except the parameter of the pinion profile
shifting coefficient. The pinion profile shifting coefficient values are taken as constant
values to observe the effect of the increment value of the pinion profile shifting
coefficient on objective function. In the 15 cases, all the design parameters are kept
as the same as they are in the 11" case except the parameter of the pressure angle. The
pressure angle values are taken as constant values to observe the effect of the

increment value of the pressure angle on objective function.
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Table 4.19 Input parameters of the studies from Case 11 to Case 15

Case Ny m, (mm) a,(deg) p(deg) X1

11 10:1:50 2:03:77 15:1:35 5:2:21 —0.6:0.2:0.6
12A  10:1:50 6.8 15:1:35 5:2:21 —-06:0.2:0.6
12B  10:1:50 6.9 15:1:35 5:2:21 —-0.6:0.2:0.6
12C 10:1:50 7.0 15:1:35 5:2:21 —-06:0.2:0.6
12D  10:1:50 7.1 15:1:35 5:2:21 —-0.6:0.2:0.6
12E  10:1:50 7.2 15:1:35 5:2:21 —-0.6:0.2:0.6
12F  10:1:50 7.3 15:1:35 5:2:21 —-0.6:0.2:0.6
122G 10:1:50 7.4 15:1:35 5:2:21 —-0.6:0.2:0.6
12H  10:1:50 7.5 15:1:35 5:2:21 —-0.6:0.2:0.6
13A | 10:1:50 2:03:77 15:1:35 6 —-0.6:0.2:0.6
13B 10:1:50 2:03:7.7 15:1:35 7 —0.6:0.2:0.6
13C 10:1:50 2:03:7.7 15:1:35 8 —0.6:0.2:0.6
13D | 10:1:50 2:03:77 15:1:35 9 —-0.6:0.2:0.6
13 E 10:1:50 2:03:7.7 15:1:35 10 —-06:0.2:0.6
13 F 10:1:50 2:03:77 15:1:35 11 —-0.6:0.2:0.6
13G 10:1:50 2:03:7.7 15:1:35 12 —0.6:0.2:0.6
1I3H | 10:1:50 2:03:77 15:1:35 13 —-0.6:0.2:0.6
131 10:1:50 2:03:77 15:1:35 14 —-0.6:0.2:0.6
13J 10:1:50 2:03:7.7 15:1:35 15 —0.6:0.2:0.6
13K | 10:1:50 2:03:77 15:1:35 16 —-0.6:0.2:0.6
13L 10:1:50 2:03:7.7 15:1:35 17 —0.6:0.2:0.6
14A  10:1:50 2:03:77 15:1:35 5:2:21 —-0.1

14B  10:1:50 2:03:77 15:1:35 5:2:21 0

14C  10:1:50 2:03:77 15:1:35 5:2:21 0.1

14D  10:1:50 2:03:77 15:1:35 5:2:21 0.2

1I5A | 10:1:50 2:03:7.7 27.5 5:2:21 —0.6:0.2:0.6
15B 10:1:50 2:03:77 28 5:2:21 | —-06:0.2:0.6
15C | 10:1:50 2:03:7.7 28.5 5:2:21 | —0.6:0.2:0.6
15D | 10:1:50 2:03:77 29 5:2:21 | —-0.6:0.2:0.6
15E 10:1:50 2:03:77 29.5 5:2:21 | —-06:0.2:0.6
15F 10:1:50 2:03:7.7 30 5:2:21 —-06:0.2:0.6
15G | 10:1:50 2:03:77 30.5 5:2:21 | —-06:0.2:0.6
15H 10:1:50 2:03:7.7 31 5:2:21 —-06:0.2:0.6
151 10:1:50 2:03:77 31.5 5:2:21 —0.6:0.2:0.6
15J 10:1:50 2:03:7.7 32 5:2:21 —0.6:0.2:0.6
15K 10:1:50 2:03:7.7 32.5 5:2:21 —0.6:0.2:0.6
15L 10:1:50 2:03:77 33 5:2:21 —0.6:0.2:0.6
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Table 4.20 Optimized design variables (Case 11- Casel5)

2y 2, my; ap B X1 Ta1 Ta2 Tf1 T2 ay

Case - - mm| deg | deg| - mm mm mm mm mm

11 25| 68 | 71| 29 7 0 | 95.855 236.060 | 80.117 251.797 | 153.796
12A 26 71 68 28 7 0.2 | 96.600 237.732 | 81.528 252.804 | 154.149
12B 25 68 69 28 15 0 95722 235.732 | 80.006 251.448 | 153.583
12C 25 68 7.0 28 13 0  96.267 237.076 | 80.462 252.881 | 154.459
12D 25 68 71 29 7 0 | 95.855 236.060 | 80.117 251.797 | 153.796
12E 25 68 72 29 5 0  96.849 238.508 | 80.948 254.408 | 155.391
12F 25 68 73 29 5 0 98194 241.820 | 82.072 257.942 | 157.550
12G 23 63 74 26 19 02 98.613 239.488 | 80.612 257.488 | 156.528
12H 23 63 75 28 15 0  96.281 236.820 | 79.199 253.902 | 155.291
13A | 25| 68 | 71| 29 6 0 | 95.664 235.591 | 79.958 251.297 | 153.491
13B 25| 68 | 7.1 29 7 0 | 95.855 236.060 | 80.117 251.797 | 153.796
13C 25| 68 | 71| 28 8 0.2 | 97.509 238.037 | 81.018 253.810 | 154.150
13D 25| 68 |71 29 9 0 | 96.326 237.221 | 80.511 253.035 | 154.553
13E 25| 68 | 7.1 29 10 0 | 96.608 237.915 | 80.747 253.775 | 155.005
13F 35| 96 50| 27 11 | 0.2 | 94.741 240.417 | 83.025 251.623 | 155.354
13G |35 | 96 |50 | 27 12 | 0.2 | 95.078 241.272 | 83.321 252.518 | 155.907
13H | 31| 8 |56 | 28 13 0 | 94.256 238.513 | 81.612 251.157 | 155.177
131 31| 8 |56 | 28 14 0 | 94.652 239.515 | 81.954 252.212 | 155.829
137 37 | 101 | 47 | 27 15 | 0.2 | 95.370 241.830 | 84.178 252.535 | 155.706
13K | 37 | 101 | 47 | 27 16 0 | 94.855 242.026 | 84.098 252.782 | 156.461
13L 29| 79 |59 | 27 17 | 0.2 | 96.245 238.763 | 82.672 252.336 | 154.240
14A 37 101 47 29 15 -0.1 93910 240.857 | 83.692 251.075 | 155.706
14 B 25 68 71 29 7 0  95.854 236.060 | 80.117 251.797 | 153.796
14C 29 79 59 27 17 0.1 95.629 80.117 82.055 251.719 | 154.240
14D 26 71 68 28 7 0.2 96.600 251.797 | 81.528 252.804 | 154.149
15A |29 | 79 |59 | 275 | 17 0 | 95.012 237.529 | 81.438 251.102 | 154.240
15B 26| 71 | 6.8 | 28 7 0.2 | 96.600 237.732 | 81.528 252.804 | 154.149
15C 25| 68 | 71| 285 | 7 0 | 95.854 236.060 | 80.117 251.797 | 153.796
15D 25| 68 | 7.1 29 7 0 | 95.854 236.060 | 80.117 251.797 | 153.796
15E 50 | 137 | 44 | 295 | 5 0 114.395 | 298.576 | 105.120 | 307.852 | 192.131
15F 50 | 137 | 3.8 | 30 21 0 105.015 | 275.563 | 96.874 283.296 | 177.060
15G |40 | 109 | 44 | 305 | 21 0 | 98.031 253.090 | 88.605 262.045 | 162.600
15H |34 ] 93 |5 31 21 0 | 95.332 244,757 | 84.620 254.933 | 157.994
151 37 | 101 47 | 315 | 17 0 | 94.855 244263 | 85.025 | 253.601 [ 157.272
153 35| 9 |5 32 13 0 | 93.907 242.208 | 84.157 251.958 | 156.511
15K |34 ] 93 |53 |325 | 9 0 | 95516 245229 | 84.784 255.425 | 158.300
15L 341 93 59| 33 5 0 105.421 | 270.660 | 94.168 281.913 | 174.715
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The optimized results of the cases from 11 to 15 are given in Table 4.20. Table 4.21
gives the pinion and gear rotational speeds and the power input in the cases from 16
to 20. Table 4.22 gives the upper and lower bounds and the increment values of the

pinion and gear addendum and dedendum radii.

Table 4.21 Speed and power values for the analysis from Case 16 to Case 20

Parameter Value
ny 3000 rpm
n, 1096.67 rpm
Power 1700 kW

Table 4.22 Lower and upper bounds and increment values for addendum and
dedendum radii for the analysis from Case 16 to Case 20

r Y1 incl Y2
al 0.80 0.1 1.20
r Y3 inc2 Ya
az —1.20 0.1 —0.80
r Vs inc3 Ye
s —1.40 0.1 —1.00
r Vs inc4 Y7
2 1.00 0.1 1.40

Initial assignments of the design variables are given in Table 4.23. In the 16™ case,
pinion number of teeth is started from 10 and it is ended at 50 by increasing its value
1. The module is started from 2 mm and it is ended at 7.7 mm by increasing its value
0.3 mm. The pressure angle is started from 15" and it is ended at 35" by increasing its
value 1°. The pinion profile shifting coefficient is started from —0.6 and it is ended at
0.6 by increasing its value 0.2. The helix angle is started from 5° and it is ended at
21°by increasing its value 2°. In the 17" cases, all the design parameters are kept as
the same as they are in the 16" case except the parameter of the module. The module
values are taken as constant values to observe the effect of the increment value of the
module on objective function. In the 18™, all the design parameters are kept as the

same as they are in the 16" case except the parameter of the helix angle. The helix
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angle values are taken as constant values to observe the effect of the increment value
of the helix angle on objective function. In the 19" cases, all the design parameters are
kept as the same as they are in the 16" case except the parameter of the pinion profile
shifting coefficient. The pinion profile shifting coefficient values are taken as constant
values to observe the effect of the increment value of the pinion profile shifting
coefficient on objective function. In the 20" cases, all the design parameters are kept
as the same as they are in the 16" case except the parameter of the pressure angle. The
pressure angle values are taken as constant values to observe the effect of the

increment value of the pressure angle on objective function.
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Table 4.23 Input parameters of the studies from (Case 16 — Case 20)

Case Ny m, (mm) a,(deg) B(deg) X1

16 10:1:50 | 2:03:7.7  15:1:35 | 5:2:21 | —0.6:0.2:0.6
17A 10:1:50 4.3 15:1:35 5:2:21 —-0.6:0.2:0.6
17B 10:1:50 4.4 15:1:35 5:2:21 —-0.6:0.2:0.6
17C 10:1:50 4.5 15:1:35 5:2:21 -0.6:0.2:0.6
17D 10:1:50 4.6 15:1:35 5:2:21 —-0.6:0.2:0.6
17E 10:1:50 4.7 15:1:35 5:2:21 —-0.6:0.2:0.6
17F 10:1:50 4.8 15:1:35 5:2:21 —-0.6:0.2:0.6
17G 10:1:50 4.9 15:1:35 5:2:21 -0.6:0.2:0.6
17H 10:1:50 5.0 15:1:35 5:2:21 —-0.6:0.2:0.6
18A  10:1:50 | 2:03:7.7 | 15:1:35 8 —-0.6:0.2:0.6
8B  10:1:50 | 2:03:7.7 | 15:1:35 9 —-0.6:0.2:0.6
18C  10:1:50 | 2:03:7.7 | 15:1:35 10 —-0.6:0.2:0.6
18D  10:1:50 | 2:03:7.7 | 15:1:35 11 —-0.6:0.2:0.6
18E  10:1:50  2:03:7.7 | 15:1:35 12 —-0.6:0.2:0.6
18F  10:1:50 | 2:03:7.7 | 15:1:35 13 —-0.6:0.2:0.6
188G  10:1:50  2:03:7.7 | 15:1:35 14 —-0.6:0.2:0.6
18H  10:1:50 | 2:03:7.7 | 15:1:35 15 —-0.6:0.2:0.6
1I9A 10:1:50 2:03:7.7 15:1:35 5:2:21 —-0.1

9B 10:1:50 2:03:7.7 15:1:35 5:2:21 0

19C 10:1:50 2:03:7.7 15:1:35 5:2:21 0.1

19D 10:1:50 2:03:7.7 15:1:35 5:2:21 0.2

20A | 10:1:50 | 2:03:7.7 24.5 5:2:21 | -0.6:0.2:0.6
20B | 10:1:50 | 2:03:7.7 25 5:2:21 | —-06:0.2:0.6
20C | 10:1:50 | 2:03:7.7 25.5 5:2:21 | -0.6:0.2:0.6
20D | 10:1:50 | 2:03:7.7 26 5:2:21 | —-06:0.2:0.6
20E | 10:1:50 | 2:03:7.7 26.5 5:2:21 | —-06:0.2:0.6
20F | 10:1:50 | 2:03:7.7 27 5:2:21 | -0.6:0.2:0.6
200G 10:1:50 | 2:03:7.7 27.5 5:2:21 | —-06:0.2:0.6
20H|10:1:50 | 2:03:7.7 28 5:2:21 | -0.6:0.2:0.6
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Table 4.24 Optimized design variables (Case 16 — Case 20)

Z 23 my Ay B X1 Ta1 Ta2 Tf1 T2 Ay

Case - - mm | deg | deg - mm mm mm mm mm

16 25 68 4.7 26 11 0.2 65.116 | 158.482 | 53.625 | 169.494 | 102.941
17A 26 71 4.3 24 21 0.2 64.944 | 159.365 | 54.350 | 169.959 | 103.633
17B 26 71 4.4 25 17 0.2 64.875 | 159.196 | 53.832 | 169.779 | 103.524
17C 26 71 45 26 11 02 64.638 | 158.614 | 53.635 | 169.158 | 103.145
17D 25 68 4.6 25 17 0.2 65.418 | 159.217 | 54.355 | 170.280 | 103.419
17E 25 68 4.7 26 11 0.2 65.116 | 158.482 | 54.104 | 169.494 | 102.941
17F 25 68 4.8 26 7 0.2 65.770 | 160.073 | 54.647 | 171.196 | 103.975
17G 23 63 4.9 25 19 0.2 65.298 | 158.580 | 52.860 | 170.499 | 103.647
17H 23 63 5.0 25 17 0.2 65.879 | 159.991 | 53.330 | 172.016 | 104.569
18A | 37 101 | 3.2 25 8 0 63.013 | 159.634 | 55.258 | 167.389 | 103.406
18B | 37 101 | 3.2 25 9 0 63.178 | 160.051 | 55.402 | 167.826 | 103.676
18C | 25 68 4.7 26 10 0.2 64.906 | 157.970 | 53.452 | 168.947 | 102.609
18D | 25 68 4.7 26 11 0.2 65.116 | 158.482 | 53.625 | 169.494 | 102.941
18E | 25 68 4.7 26 12 0.2 65.348 | 159.050 | 53.816 | 170.097 | 103.308
18F | 25 68 4.7 26 13 0.2 65.601 | 159.662 | 54.507 | 170.757 | 103.708
18G | 25 68 4.7 26 14 0.2 65.877 | 160.333 | 54.252 | 171.474 | 104.144
18H | 25 68 4.7 26 15 0.2 66.175 | 161.058 | 54.497 | 172.249 | 104.615
1I9A 25 68 4.7 25 11 -0.1  63.680 | 157.524 | 53.146 | 168.058 | 102.941
19B 25 68 4.7 25 11 0 64.159 | 158.003 | 53.146 | 168.537 | 102.941
19C 25 68 4.7 25 11 01 64.159 | 158.961 | 54.583 | 168.537 | 102.941
19D 25 68 4.7 25 11 0.2 65.116 | 158.482 | 53.625 | 169.494 | 102.941
20A | 37 101 | 3.2 245 |9 0 63.178 | 160.051 | 55.402 | 167.826 | 103.676
20B | 26 71 4.4 25 17 0.2 64.875 | 159.196 | 53.832 | 169.779 | 103.524
20C | 25 68 4.7 255 |11 0.2 65.116 | 158.482 | 53.625 | 169.494 | 102.941
20D | 25 68 4.7 26 11 0.2 65.116 | 158.482 | 53.625 | 169.494 | 102.941
20E | 26 71 4.4 265 | 11 0 63.955 | 158.736 | 53.372 | 168.858 | 103.524
20F | 25 68 4.7 27 11 0.2 65.116 | 158.961 | 54.583 | 169.494 | 102.941
20G | 25 68 4.7 275 |11 0 64.159 | 158.003 | 53.146 | 168.537 | 102.941
20H | 25 68 4.7 28 11 0 64.159 | 158.003 | 53.146 | 168.537 | 102.941
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The optimized results of the cases from 16 to 20 are given in Table 4.24. The module
sensitivity and the center distance relation at 900 rpm and 3000 rpm are given in Figure
4-9 and Figure 4-10, respectively. The optimum center distance and the optimum
module value are obtained as 153.796 mm and 7.1 mm respectively in the 11" case.
It is seen that the optimum center distances are 154.459 mm and 155.391 mm when
the module values are adjusted to 7.0 mm and 7.2 mm, respectively. Therefore,
changing the module value 0.1 mm around the actual optimum module deviates the
center distance value 1.59 mm at most. The sensitivity of the module parameter is
1.04 % at most 0.1 mm around the actual optimum module value. When the 0.1 mm
increment of the module is considered sensitivity of the module is not always in a
decreasing manner if the module values are moved away from the optimum module
point. When the module is moved away from the actual optimum point there can be

local optimum points as observed at 7.50 mm module.

The optimum center distance and the optimum module value are obtained as
102.941 mm and 4.7 mm respectively in the 16" case. It is seen that the optimum
center distances are 103.419 mm and 103.975 mm when the module values are
adjusted to 4.6 mm and 4.7 mm, respectively. Therefore, changing the module value
0.1 mm around the actual optimum module deviates the center distance value
1.034 mm at most. The sensitivity of the module parameter is 1.00 % at most
0.1 mm around the actual optimum module value. When the 0.1 mm increment of the
module is considered sensitivity of the module is in a decreasing manner if the module
values are moved away from the optimum module point. The increment of the module

value is specified as 0.1 mm which gives a sensitivity value of 1.00 % at most.
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Figure 4-9 Module sensitivity and center distance relation of internal gear pair at
relatively lower pinion rotational speed (900 rpm)
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Figure 4-10 Module sensitivity and center distance relation of internal gear pair at
relatively higher pinion rotational speed (3000 rpm)
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The helix angle sensitivity and the center distance relation at 900 rpm and 3000 rpm
are given in Figure 4-11 and Figure 4-12 respectively. The optimum center distance
and the optimum helix angle value are obtained as 153.796 mm and 7° respectively
in the first case. It is seen that the optimum center distances are 153.491 mm and
154.15 mm when the helix angle values are adjusted to 6° and 8°, respectively.
Therefore, changing the helix angle value 1° around the actual optimum helix angle
deviates the center distance value 0.36 mm at most. The sensitivity of the helix angle
parameter is 0.23 % at most 1° around the actual optimum helix angle value. When
the 1" increment of the helix angle is considered sensitivity of the helix angle is not in
a decreasing manner if the helix angle values are moved away from the optimum helix
angle point. The sensitivity of the helix angle has an inconsistent behavior at relatively

lower speed like it is also observed in external gear pairs as seen in Figure 4-4.

The optimum center distance and the optimum helix angle value are obtained as
102.941 mm and 11° respectively in the sixth case. It is seen that the optimum center
distances are 102.609 mm and 103.308 mm when the helix angle values are adjusted
to 10° and 12°, respectively. Therefore, changing the helix angle value 1° around the
actual optimum helix angle deviates the center distance value 0.37 mm at most. The
sensitivity of the helix angle parameter is 0.35% at most 1’around the actual
optimum helix angle value. When the 1° increment of the helix angle is considered
sensitivity of the module is not always in a decreasing manner if the helix angle values
are moved away from the optimum helix angle point. When the 1° increment of the
helix angle is considered sensitivity of the helix angle is in a decreasing manner if the
pinion helix angle values are moved away from the optimum pinion profile helix angle
point. The increment of the helix angle value is specified as 1° which gives a

sensitivity value of 0.35 % at most.
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The pinion profile shifting coefficient sensitivity and the center distance relation at
900 is given in Figure 4-13. The optimum center distance and the optimum profile
shifting coefficient are obtained as 153.796 mm and 0 respectively in the 11" case.
It is seen that the optimum center distances are 155.706 mm and 154.24 mm when
the pinion profile shifting coefficient values are adjusted to —0.1 and 0.1, respectively.
Therefore, changing the pinion profile shifting coefficient value 0.1 around the actual
optimum profile shifting coefficient deviates the center distance value 1.91 mm at
most. The sensitivity of the pinion profile shifting coefficient parameter is 1.24 % at
most 0.1 around the actual optimum pinion profile shifting coefficient value. When
the 0.1 increment of the pinion profile shifting coefficient is considered sensitivity of
the pinion profile shifting coefficient in a decreasing manner if the pinion profile
shifting coefficient values are moved away from the optimum pinion profile shifting
coefficient point. When Table 4.24 is considered, it is seen that changing of the pinion
profile shifting coefficient does not effect the value of the optimum center distance in
internal gear pairs at relatively high speed. The increment of the pinion profile shifting

coefficient value is specified as 0.1 which gives a sensitivity value of 1.24 % at most.
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Figure 4-13 Pinion profile shifting coefficient sensitivity and center distance
relation of internal gear pair at relatively lower pinion rotational speed (900 rpm)
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The pressure angle sensitivity and the center distance relation at 900 rpm and 3000
rpm are given in Figure 4-14 and Figure 4-15, respectively. The optimum center
distance and the optimum pressure angle value are obtained as 153.796 mm and 29°
respectively in the 11" case. It is seen that the optimum center distances are
153.796 mm and 192.131 mm when the pressure angle values are adjusted to 28.5°
and 29.5°, respectively. Therefore, changing the pressure angle value 0.5° around the
actual optimum pressure angle deviates the center distance value 38.33 mm at most.
The sensitivity of the pressure angle parameter is 24.93 % at most 0.5" around the
actual optimum pressure angle value. When the 0.5° increment of the pressure angle
is considered sensitivity of the pressure angle is not in a decreasing manner if the
pressure angle values are moved away from the optimum pressure angle point. It is
seen that the sensitivity has sudden jumps in some points. However, when the 28.50°
is considered, the sensitivity of the pressure angle becomes very high. The 0.5
increment of the pressure angle is enough to obtain the optimum point if the initially
assigned interval is wide enough. The optimum center distance and the optimum
pressure angle value are obtained as 102.941 mm and 26 respectively in the 16
case. It is seen that the optimum center distances are 102.941 mm and 103.524 mm
when the pressure angle values are adjusted to 25.5° and 24.5°, respectively.
Therefore, changing the pressure angle value 0.5 around the actual optimum pressure
angle deviates the center distance value 0.583 mm at most. The sensitivity of the
pressure angle parameter is 0.57 % at most 0.5 around the actual optimum pressure
angle value. When the 0.5° increment of the pressure angle is considered sensitivity
of the pressure angle is always in a decreasing manner if the pressure angle values are
moved away from the optimum pressure angle point. However, the sensitivity value
does not show a consistent behavior as it is observed in 900 rpm. Therefore, when the
rotational speed of the pinion is decreased the pressure angle does not keep its
consistent behavior any more. Although this inconsistency, the sensitivity of the
pressure angle is still below the 5 % 0.5°around the actual optimum pressure angle

value. The increment of the pressure angle value is specified as 0.5".
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4.2.1. Addendum and Dedendum Radii Sensitivity of Internal Gear Pairs

Sensitivity analysis of the addendum and dedendum radii is evaluated in this section.
Initial assignments of the design variables and pinion and gear rotational speeds and
input power are given in Table 4.25. In the INT1 case, pinion number of teeth is started
from 1 and it is ended at 50 by increasing its value 1. The module is started from 2 mm
and itis ended at 7.7 mm by increasing its value 0.3 mm. The pressure angle is started
from 15 and it is ended at 35" by increasing its value 1°. The pinion profile shifting
coefficient is started from —0.6 and it is ended at 0.6 by increasing its value 0.2. The
helix angle is started from 5° and it is ended at 21° by increasing its value 2°. In the
INT2 case, all the design parameters are kept as the same as they are in the INT1 case
except the increment of the addendum and dedendum radii. In INT3 case, all the
design parameters are kept as the same as they are in the INT1 case except the
increment of the addendum and dedendum radii.

Table 4.25 Input parameters and initial assignment of the design variables of Case
INT1, INT2 and INT3

PARAMATERS INT 1 INT 2 INT 3
N, 10:1:50 10:1:50 20:1:40
m, (mm) 2:03:77 2:03:77 44:03:7.7
a,, (degree) 15:1:35 15:1:35 25:1:35
B (degree) 5:2:21 5:2:21 5:2:21
Xq —0.6:0.2:0.6 —0.6:0.2:0.6 —04:02:04
Vq 0.80 0.80 0.80
Yo 1.20 1.20 1.20
Va3 —1.20 —1.20 —1.20
Y4 —0.80 —0.80 —0.80
Vs —1.40 —1.40 —1.40
Ve —1.00 —1.00 —1.00
V7 1.00 1.00 1.00
Vs 1.40 1.40 1.40
incl 0.2 0.1 0.05
inc2 0.2 0.1 0.05
inc3 0.2 0.1 0.05
inc4 0.2 0.1 0.05
nq 900 rpm 900 rpm 900 rpm
n, 329 rpm 329 rpm 329 rpm
Power 1700 kW 1700 kW 1700 kW
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The optimized results of the Case INT1, Case INT2 and Case INT3 are given in Table
4.26. It is seen that when the increments of the addendum and dedendum radii are
taken as 0.2 mm,0.1 mm and 0.05mm the optimum center distances are
157.880 mm, 153.796 mm and 153.233 mm, respectively. The optimum center is
obtained as 153.796 mm in the 11" case. Therefore, changing the increment value of
the addendum and dedendum radii 0.05 mm around the actual optimum increment of
the addendum and dedendum radii the center distance value deviates 4.084 mm at
most. The sensitivity of the increment of the addendum and dedendum radii is 2.66 %
at most 0.05mm around the actual optimum increment of the addendum and

dedendum radii.

Table 4.26 Optimized design variables (Case INT1 — CASE INT3)

Case INT 1 INT 2 INT 3
Study
m, 5mm 7.1 mm 7.1 mm
B 15° 7° 5
X1 0 0 0.2
a1 94.728 mm 95.854 mm 97.285 mm
T a2 244.325 mm 236.060 mm 235.551 mm
Tr1 84.375 mm 80.117 mm 80.180 mm
Tf2 254.678 mm 251.797 mm 252.300 mm
N, 35 25 25
N, 96 68 68
a, 32° 29° 26°
a, 157.880 mm 153.796 mm 153.233 mm

Initial assignments of the design variables and pinion and gear rotational speeds and
input power are given in Table 4.27. In the INT4 case, pinion number of teeth is started
from 1 and it is ended at 50 by increasing its value 1. The module is started from 2 mm
and itis ended at 7.7 mm by increasing its value 0.3 mm. The pressure angle is started

from 15° and it is ended at 35° by increasing its value 1°. The pinion profile shifting
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coefficient is started from —0.6 and it is ended at 0.6 by increasing its value 0.2. The

helix angle is started from 5° and it is ended at 21" by increasing its value 2°.

Inthe INTS5 case, all the design parameters are kept as the same as they are in the INT4
case except the increment of the addendum and dedendum radii. In INT6 case, all the
design parameters are kept as the same as they are in the INT4 case except the

increment of the addendum and dedendum radii.

Table 4.27 Input parameters and initial assignment of the design variables of Case

INT4, INT5 and INT6

PARAMATERS INT 4 INT5 INT 6
N,y 10:1:50 10:1:50 20:1:40
m,, (mm) 2:03:7.7 2:03:7.7 41:03:77
a, (degree) 15:1:35 15:1:35 25:1:35
B (degree) 5:2:21 5:2:21 5:2:21
Xq —0.6:02:06 |—-0.6:02:06 |—04:02:04
V1 0.80 0.80 0.80
Vs 1.20 1.20 1.20
V3 —1.20 —1.20 —1.20
Va —0.80 —0.80 —0.80
Vs —1.40 —1.40 —1.40
Ve —1.00 —1.00 —1.00
V7 1.00 1.00 1.00
Vs 1.40 1.40 1.40
incl 0.2 0.1 0.05
inc2 0.2 0.1 0.05
inc3 0.2 0.1 0.05
inc4 0.2 0.1 0.05
ny 3000 rpm 3000 rpm 3000 rpm
n, 1096.67 rpm 1096.67 rpm 1096.67 rpm
Power 1700 kW 1700 kW 1700 kW

The optimized results of the Case INT4, Case INT5 and Case INT6 are given in Table
4.28. It is seen that when the increments of the addendum and dedendum radii are

taken as 0.2 mm,0.1 mm and 0.05mm the optimum center distances are
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105.299 mm, 104.569 mm and 102.941 mm respectively. The optimum center is
obtained as 102.941 mm in the 16" case. Therefore, changing the increment value of
the addendum and dedendum radii 0.05 mm around the actual optimum increment of
the addendum and dedendum radii the center distance value deviates 1.628 mm at
most. The sensitivity of the increment of the addendum and dedendum radii is 1.60 %
at most 0.05mm around the actual optimum increment of the addendum and

dedendum radii.

Table 4.28 Optimized design variables (Case INT4 — CASE INT6)

Case INT 4 INT5 INT 6
Study
m, 3.8mm 5.0 mm 4.7 mm
B 13° 17° 11°
X1 0 0.2 0.2
T a1 63.569 mm 65.879 mm 65.356 mm
a2 162.628 mm 159.991 mm 158.242 mm
T'r1 55.769 mm 53.330 mm 53.386 mm
Tf2 170.428 mm 172.016 mm 169.494 mm
N, 31 23 25
N, 85 63 68
a, 31° 25 25
a, 105.299 mm 104.569 mm 102.941 mm

4.2.2. Detailed optimization of Case 11

As discussed in the previous sections, the increment of the all design parameters are
specified according to sensitivity analyses. In this section, the specified increments for

each design parameter are used to obtain more optimum results.

Initial assignments of the design variables, rotational speed of the pinion and the gear
and the input power is given in Table 4.29. Optimization result of the first case study
is given in Table 4.20. The first case study is evaluated again by changing the

increments of each design variables. In Case 11 Detailed A, increment of the module,
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pressure angle, helix angle and pinion profile shifting coefficient are changed from
0.3mm,1°,2" and 0.2 to 0.1 mm,0.5",1" and 0.1 respectively to observe the more
optimal results. In Case 11 Detailed B, the increment of the design variables are kept
constant as in Case 11 Detailed A. However, increment of the addendum and

dedendum radii is changed from 0.1 mm to 0.05 mm.

Table 4.29 Input parameters and initial assignment of the design variables of Case
11 Detailed A and Case 11 Detailed B

PARAMATERS Case 11 Case 11 Detailed | Case 11 Detailed
A B
N, 10:1:50 20:1:40 23:1:27
m, (mm) 2:03:7.7 4.0:0.1:8.0 6.5:0.1:7.5
a, (degree) 15:1:35 25:0.5:33 25:0.5:32
B (degree) 5:2:21 5:1:21 5:1:21
X1 -06:02:06 |—-02:01:04 |[—-0.2:0.1:0.3
V1 0.80 0.80 0.80
Vs 1.20 1.20 1.20
V3 —1.20 —1.20 —1.20
Va4 0.8 0.8 0.8
Vs —1.40 —1.40 —1.40
Ve —1.00 —1.00 —1.00
V7 1 1 1
Vg 1.4 1.4 1.4
incl 0.1 0.1 0.05
inc2 0.1 0.1 0.05
inc3 0.1 0.1 0.05
inc4 0.1 0.1 0.05
ny 900 rpm 900 rpm 900 rpm
n, 329 rpm 329 rpm 329 rpm
Power 1700 kW 1700 kW 1700 kW
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Table 4.30 Optimized design variables (Case 11 Detailed A — Case 11 Detailed B)

Case Case 11 Case 11 Detailed Case 11 Detailed
Study A B
m, 7.1 mm 7.1 mm 7.1 mm
B 7° 28.5° 5
X1 0 0.1 0.2
a1 95.855 mm 96.216 mm 97.285 mm
T2 236.060 mm 235.908 mm 235.551 mm
T 80.117 mm 80.536 mm 80.180 mm
T'ro 251.797 mm 251.587 mm 252.300 mm
N, 25 25 25
N, 68 68 68
a, 29° 28.5° 26°
a, 153.796 mm 153.233 mm 153.233 mm
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CHAPTER 5

VERIFICATION AND DISCUSSION OF THE RESULTS

For the verification of the results, the geometrical and material based constraints are
evaluated for external and internal gear pairs. Evaluations of root clearance, top land
thickness, contact ratio, involute clearance, tiff clearance, contact stress, bending
stress and tooth temperature are verified in this section by comparing the results with

Kissoft commercial gear design and analysis tool.
5.1. Verification of External and Internal Gear Pairs by Using Kissoft

The optimized gear pair which is obtained by Case 6 given in Table 4.8 and the
optimized gear pair which is obtained by Case 11 given in Table 4.20 are verified in

this section for the verification of the external and internal gear pairs, respectively.

The geometrical parameters and material based parameters are evaluated for the
optimized gear pairs. Results are compared with the results of Kissoft commercial gear
design and analysis tool. Results of Case 6 and Kissoft commercial tool are given in
Table 5.1. Tooth contact temperature of the optimized gear pair in Case 6 is obtained
by Kissoft and given in Figure 5-1. Results of the Case 11 and Kissoft commercial
tool are given in Table 5.2. Tooth contact temperature of the optimized gear pair in

Case 11 is obtained by Kissoft and given in Figure 5-2.
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Table 5.1 Results of the verification case study for external gear pairs

Parameter Current Study Kissoft
1 82.478 mm 82.478 mm
T 325.2 mm 325.2 mm
Th1 75.694 mm 75.694 mm
Tho 298.45 mm 298.45 mm
Ay 23.402° 23.402°
Ter1 87.909 mm 87.909 mm
Ter2 329.688 mm 329.688 mm
Ry 76.995 mm 77.028 mm
R, 319.171 mm 319.235 mm
Py, 13.589 mm 13.589 mm

Snip 7.498 mm 7.498 mm
Snob 6.076 mm 6.076 mm
Snani 2.346 mm 2.346 mm
Snan2 2.152 mm 2.152mm
Z 23.391 mm 23.392 mm
m, 1.721 1.721
mg 2.994 2.994
P, 38.572 mm 38.572 mm
Cq 1.414 mm 1.414 mm
Cy 1.885 mm 1.885 mm
Tiff; 1.642 mm 1.609 mm
Tiff, 1.472 mm 1.408 mm
Icq 1.301 mm 1.334 mm
Ic, 20.721 mm 20.785 mm
J1 0.6728 0.661
P 0.6827 0.661
S¢1 441.836 MPa 459.76 MPa
St2 435.451 MPa 459.69 MPa
| 0.272 0.272
Sc 1072 MPa 1072 MPa
Oy 141.08 °C 153.53 °C
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Figure 5-1 Tooth contact temperature variation of the optimized gear pair in Case 6
with angle of rotation
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Table 5.2 Results of the verification case study for internal gear pairs

Parameter Current Study Kissoft
1 89.417 mm 89.417 mm
Ty 243.213 mm 243.213 mm
Th1 78.067 mm 78.067 mm
Tho 212.343 mm 212.343 mm
Ayt 29.182° 29.182°
Ttf1 95.630 mm 95.630 mm
Ttf2 236.285 mm 236.285 mm
Rsq 81.481 mm 83.159 mm
Ry, 251.251 mm 249.092 mm
Py, 19.620 mm 19.620 mm
Snib 11.0277 mm 11.0277 mm
Snob 11.0281 mm 11.0281 mm
Snani 3.393 mm 3.393mm
Snan2 3.396 mm 3.396 mm
Z 26.581 mm 26.581 mm
m, 1.355 1.355
mg 0.684 0.684
P, 183.026 mm 183.026 mm
Cq 2.147 mm 2.147 mm
Cy 2.146 mm 2.146 mm
Icy 3.414 mm 5.092 mm
Ic, 23.717 mm 23.717 mm
J1 0.6396 0.681
/> 0.8032 0.853
Se1 352.1888 MPa 332.11 MPa
Sto 280.4582 MPa 265.09 MPa
I 0.3875 0.387
Sc 915 MPa 915 MPa
Oy 135.6 °C 125.0 °C
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Figure 5-2 Tooth contact temperature variation of the optimized gear pair in Case
11 with angle of rotation

5.2. Discussion of the Sudden Changes in the Value of the Objective Function

When Figure 4-4, Figure 4-8, Figure 4-11, Figure 4-14 and Figure 4-15 are considered,
it is seen that changes in the optimum center distance values are respectable. The
reason of the sudden changes in the optimum center distance is discussed in this
section. The optimized gear pair obtained by Case 8F given in Table 4.8 is considered

to discuss the sudden changes in the value of the objective function.

When Figure 4-4 is considered, it is seen that the optimum center distance is about
435 mm. However, when the helix angle is 22" and 24° the optimum center distance

is obtained as about 411 mm and 420 mm respectively.

It is stated in Table 4.8 that the optimum values of the pinion number of teeth, the gear
number of teeth, the normal module, the pressure angle, the helix angle and the shifting
coefficient are obtained as 37,145,4.4mm,23°,23" and 0, respectively. The

optimum center distance is obtained as 434.979 mm.

127



Analysis of Case 21 is conducted around the optimum point of 8F which is given in
Table 4.8 by applying the initial assignments of the design variables given in Table
5.3. However, the optimization eliminations are not implemented in this analysis to
obtain the all possibilities and to observe the reasons of not converging to a more

optimum point.

Table 5.3 Initial assignments of case 21

Case V2 m, (mm) a,(deg) p(deg) X1
21 35:1:40 | 41:03:4.7 20:1:26 23 —0.2:0.2:0.2
ny 1500 rpm
n, 381.679 rpm
Power 1700 kW
Y1 incl Y2
Ta1
0.8 0.1 1.20
Y3 inc2 V4
L)
0.8 0.1 1.20
YVs inc3 Ve
rfl
—-1.5 0.1 -1.10
YVs inc4 V7
sz
-1.5 0.1 —-1.10

As seen from Table 5.3, the given initial assignments of the design variables in Case
21 covers the values of the optimized design variables obtained in Case 8F given in
Table 4.8. 157500 results are obtained without optimization eliminations. The

different center distances among the obtained results are given in Table 5.4.
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Table 5.4 Center distance variation with normal module, pinion number of teeth and
gear number of teeth in Case 21

my ,80 Z1 Z2 Ay
4.1 mm 23 35 138 385.278 mm
4.1 mm 23° 37 145 405.321 mm
4.1 mm 23° 38 149 416.456 mm
4.1 mm 23° 40 157 438.727 mm
4.4 mm 23° 35 138 413.469 mm
4.4 mm 23° 37 145 434979 mm
4.4 mm 23° 38 149 446.929 mm
4.4 mm 23° 40 157 470.829 mm
4.7 mm 23° 35 138 441.660 mm
4.7 mm 23° 37 145 464.636 mm
4.7 mm 23° 38 149 477.401 mm
4.7 mm 23° 40 157 502.931 mm

As given in Table 4.8, the optimized center distance value is 434.979 mm in Case 8F.
As seen from Table 5.4, the center distance values which is lower than 434.979 mm
are 385.278 mm,405.321 mm, 413.469 mm and 416.456 mm. However, the
iteration does not converge to a center distance value which is lower than
434.979 mm in Case 8F.

Addendum and dedendum radii for each gear pair set are evaluated by using the
algorithms given in Table 3.9, Table 3.10, Table 3.13 and Table 3.14. When Table 5.3
is considered it is seen that the maximum addendum and dedendum radii for each gear
pair set are obtained by using y,, y., ¢ and y,. The maximum addendum radii are
1.20 m, higher than the pitch radii of each gear pair set while the maximum dedendum
radii are 1.10 m, lower than the pitch radii of each gear pair set. The maximum
possible addendum and dedendum radii are given in Table 5.5 and Table 5.6,

respectively.
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Table 5.5 The maximum addendum radii of the pinion and the gear with normal
module, pinion number of teeth and gear number of teeth in Case 21

my ﬁo Z] Z2 Ta1 Ta2
4.1 mm 23 35 138 83.291 mm | 312.676 mm
4,1 mm 23° 37 145 87.745 mm | 328.266 mm
4,1 mm 23° 38 149 89.972 mm | 337.174 mm
4.4 mm 23° 35 138 89.386 mm | 335.555 mm

Table 5.6 The maximum dedendum radii of the pinion and the gear with normal
module, pinion number of teeth and gear number of teeth in Case 21

my B Z Z2 Tf1 Tr2
4.1 mm 23° 35 138 73.047 mm | 302.432 mm
4.1 mm 23° 37 145 77.501 mm | 318.021 mm
4.1 mm 23° 38 149 79.728 mm | 326.929 mm
4.4 mm 23° 35 138 78.392 mm | 324.561 mm

The optimum center distance can be obtained as 385.278 mm. The normal module is

directly 4.1 mm and the pinion number of teeth is 35 and the gear number of teeth is

138 with the 23" helix angle and with 385.278 mm center distance as seen from

Table 5.4. The results of Case 21 are filtered by taking the normal module, the pinion

number of teeth, the gear number of teeth as 4.1 mm , 35 and 138, respectively. The

addendum radii of the pinion and the gear are taken as 83.291 mm and 312.676 mm,

respectively. The dedendum radii of the pinion and the gear are taken as 73.047 mm

and 302.432 mm, respectively. There are remaining seven gear pairs among the

results of Case 21 when the design parameters are selected as mentioned above. The

bending stress safety factor and the pinion top land thickness relation are given in

Figure 5-3.
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Figure 5-3 Variation of safety factor and top land thickness vs pressure angle with
-0.2 profile shifting coefficient (m,, = 4.1mm,z, = 35,2z, = 138,58 = 23" 1, =
83.291mm ,r,;, = 312.676 mm, 1, = 73.047 mm , 1y, = 302.432 mm)

As seen from Figure 5-3, the pinion bending stress safety factor values are all below
1. The top land thickness values of the pinion are also below the minimum required
top land thickness value. The pinion profile shifting coefficient can be increased to 0
by keeping the other parameters as the same to increase the pinion bending stress
safety factor value. The following results given in Figure 5-4 are obtained with the 0

pinion profile shifting coefficient.
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Figure 5-4 Variation of safety factor and top land thickness vs pressure angle with
0 profile shifting coefficient (m, = 4.1mm,z, =35,z, =138, =23",x, =
0,741 = 83.291mm, 1y, = 312.676 mm, 15y = 73.047 mm, 15, = 302.432 mm)

As seen from Figure 5-4, the pinion bending stress safety factor is increased and the
gear bending stress safety factor is decreased. However, when the bending stress
safety factor values are slightly higher than 1 the top land thickness values of the
pinion are still below the minimum required top land thickness value. The gear
bending stress safety factor values are all below the 1 when the profile shifting
coefficient of the pinion is taken as 0.2. Therefore, the iteration can’t converge to the
optimum center distance of 385.278 mm. Because the bending stress safety factor
values can be increased only by increasing the addendum radii. However, the

maximum possible addendum radii are already implemented.

The optimum center distance can be obtained as 405.321 mm. The normal module is

directly 4.1 mm and the pinion number of teeth is 37 and the gear number of teeth is
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145 with the 23" helix angle and with the 385.278 mm center distance as seen from
Table 5.4. The results of Case 21 are filtered by taking the normal module, the pinion
number of teeth, the gear number of teeth as 4.1 mm , 37 and 145, respectively. The
addendum radii of the pinion and the gear are taken as 87.745 mm and 328.266 mm
respectively. The dedendum radii of the pinion and the gear are taken as 77.501 mm
and 318.021 mm, respectively. There are remaining seven gear pairs among the
results of Case 21 when the design parameters are selected as mentioned above. The
bending stress safety factor and the pinion top land thickness relation is given in Figure
5-5.
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Figure 5-5 Variation of safety factor and top land thickness vs pressure angle with
-0.2 profile shifting coefficient (m,, = 4.1 mm,z, = 37,2z, = 145, = 23,14, =
87.745 mm ,r,, = 328.266 mm , 15y = 77.501 mm , 1y, = 318.021 mm

As seen from Figure 5-5, the pinion bending stress safety factor values are below 1.

The top land thickness values of the pinion are also below the minimum required top
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land thickness values. The profile shifting coefficient can be increased to 0.2 to
increase the pinion bending stress value and the pinion top land thickness. The

obtained results with 0.2 pinion profile shifting coefficient are given in Figure 5-6.
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Figure 5-6 Variation of safety factor and top land thickness vs pressure angle with
0.2 profile shifting coefficient (m,, = 4.1mm,z, = 37,2, = 145,58 = 23" 15, =
87.745 mm ,r,, = 328.266 mm , 15, = 77.501 mm , 1y, = 318.021 mm

It is seen from Figure 5-6 that the gear bending stress safety factor value is higher
than 1 when the pressure angle is 25° and 26°. However, the pinion top land thickness
is still below the minimum required top land thickness value. If the pressure angle is
increased the top land thickness value becomes lower. If the pinion profile shifting
coefficient value is increased the tooth thickness of the gear will be lower. Therefore,
the gear bending stress safety factor values become lower than 1. As a result, the

iteration can’t converge to the optimum center distance of 405.321 mm.
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The optimum center distance can be obtained as 413.469 mm. The normal module is
directly 4.4 mm and the pinion number of teeth is 35 and the gear number of teeth is
138 with the 23" helix angle and with the 413.469 mm center distance as seen from
Table 5.4. The results of Case 21 are filtered by taking the normal module, the pinion
number of teeth, the gear number of teeth as 4.4 mm , 35 and 138, respectively. The
addendum radii of the pinion and the gear are taken as 89.386 mm and 335.555 mm,
respectively. The dedendum radii of the pinion and the gear are taken as 78.392 mm
and 324.561 mm, respectively. There are remaining seven gear pairs among the
results of Case 21 when the design parameters are selected as mentioned above. The
bending stress safety factor and the pinion top land thickness relation is given in Figure
5-7.
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Figure 5-7 Variation of safety factor, top land thickness and pinion root clearance vs
pressure angle with -0.2 profile shifting coefficient (m,, = 4.4 mm,z; = 35,2z, =
138,05 = 23° ,Ta1 = 89.386 mm , 14, = 335.555 mm , 1y = 78.392 mm, 15, =
324.561 mm
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It is seen from Figure 5-7 that all the pinion and all the gear bending stress safety
factor values are almost higher than 1. However, the pinion root clearance is negative.
The analysis results are filtered for 413.469 mm center distance. All the constraints
are satisfied. However, it is observed that the gear top land thickness criteria is not
satisfied while the other constraints are satisfied. There are remaining sixteen gear
pairs when the all constraints are satisfied except the gear top land thickness
constraint. The safety factor and the top land thickness relation for remaining gear
pairs is given in Figure 5-8. All the addendum radii which are
0.8 m;,0.9m;,1.0 m;,1.1 m; and 1.2 m, higher than the pitch radii of the gear pairs
obtained in Case 21 are considered. All the dedendum radii which are
1.5m;,1.4m;,1.3m;,1.2 m, and 1.1 m, lower than the pitch radii of the gear pairs

obtained in Case 21.
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Figure 5-8 Variation of safety factor and top land thickness (m, = 4.4 mm,z, =
35,2z, =138, =23",x, =0,0.2,71; = all ,ry; = all , 15y = all 15, = all
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As seen from Figure 5-8, the contact stress safety factor, the pinion and the gear
bending stress safety factor are above 1. However, the gear top land thickness
constraint is not satisfied in all steps. Therefore, the iteration does not converge to the

413.469 mm center distance.

The optimum center distance can be obtained as 416.456 mm. The normal module is
directly 4.1 mm and the pinion number of teeth is 38 and the gear number of teeth is
149 with the 23° helix angle and with the 416.456 mm center distance as seen from
Table 5.4. The results of the Case 21 are filtered by taking the normal module, the
pinion number of teeth, the gear number of teeth as 4.1 mm , 38 and 149, respectively.
The addendum radii of the pinion and the gear are taken as 89.972 mm and
337.174 mm respectively. The dedendum radii of the pinion and the gear are taken
as 79.728 mm and 326.929 mm, respectively. There are remaining seven gear pairs
among the results of Case 21 when the design parameters are selected as mentioned
above. The bending stress safety factor and the pinion top land thickness relation is

given in Figure 5-9.
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Figure 5-9 Variation of safety factor, top land thickness and pinion root clearance vs
pressure angle with -0.2 profile shifting coefficient (m,, = 4.1mm,z; =38,z, =
149 ,8 = 23" ,x, = 0,1, = 89.972 mm,7,, = 337.174 mm,ry =

79.728 mm 1y, = 326.929 mm

137



As seen from Figure 5-9, the pinion top land thickness is below the required minimum
top land thickness value. The pinion profile shifting coefficient must be increased to
higher values. The pinion profile shifting coefficient is increased to 0.2. The following

results given in Figure 5-10 are obtained.
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Figure 5-10 Variation of top land thickness and root clearance vs pressure angle with
0.2 profile shifting coefficient (m,, = 4.1mm,z, = 38,2, = 149,58 = 23" ,1,, =
89.972 mm ,ry, = 337174 mm, 1y, = 79.728 mm , 1y, = 326.929 mm

As seen from Figure 5-10, the gear top land thickness criteria is not satisfied. The
results are filtered to 416.456 mm center distance. The pinion profile shifting
coefficient are taken as 0 and 0.2. All the pressure angle and the addendum and the
dedendum radii are implemented without any elimination. The obtained analysis
results are filtered to satisfy all the constraints. However, the gear top land thickness
criteria is not satisfied when all the other constraints are satisfied. The following

results given in Figure 5-11 is obtained.
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Figure 5-11 Variation of safety factor and top land thickness (m,, = 4.1 mm,z; =
38,2z, =149 ,8 = 23" ,x, = 0,0.2,14; = all , 7y, = all , 15y = all 15, = all

As seen from Figure 5-11, all the safety values are above 1. The pinion top land
thickness criteria is also satisfied. However, top land thickness of the gear is below
the minimum required top land thickness value in all analysis. Therefore, the iteration

does not converge to the 416.456 mm center distance.
5.3. Verification of the Bending Stress Geometry Factor Evaluation

The gear root evaluation is conducted and given in Chapter 2.1.1.6 and Chapter 2.1.1.7
for external and internal gear pairs respectively. The equations given in Chapter
2.1.1.6 are converted into the transverse plane. The gear root equations in transverse

plane are:
a
6,, = arctan (—1) (5.1)
b,
Rf1py + Arcos(60y — 0x1) — by =0 (5.2)
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a; + A;sin(0; — 0y1) — Reiex =0 (5:3)

a2+ by = (1 +4;) = 0 64

2 / 5.5
\/(Tf1 + A1) —Tp1* — Ay — Rfln2 —1p1* =0 (5:5)

The bending stress geometry factor evaluation is conducted by using the gear root

equations in the transverse plane for the optimized gear pair obtained by Case 1 given
in Table 4.4. The results of the bending stress geometry factor evaluation of the

optimized gear pair in Case 1 are given in Table 5.7.

Table 5.7 Comparison of the bending stress geometry factor of the optimized gear pair

obtained by Case 1

Parameters Kissoft Current Study
hsq 6.70 mm 6.70 mm
s, 6.78 mm 6.75mm
Sk1 7.44 mm 7.43 mm
N 7.76 mm 7.74 mm
Ania 29.10° 29.10°
AL 24.31 24.31°
Ky 0.95 0.95
Cy, 1.28 1.28
Y 0.637 0.635
Y, 0.641 0.640
K¢y 1.578 1.491
K¢, 1.584 1.515
Cy 1 1
my 0.59 0.59
Ay 1.1516 mm 1.1516 mm
A, 1.1941 mm 1.1942 mm
Aqy 0.6845 mm 1.1168 mm
Ay, 0.7745 mm 1.1539 mm
1 0.683 mm 0.721 mm
1> 0.684 mm 0.716 mm
St 352 MPa 332 MPa
Sto 351 MPa 334 MPa
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The main concern of the current study is the optimization of cylindrical gear pairs.
Normal module, helix angle, pinion number of teeth, gear number of teeth, addendum
radius of the pinion, dedendum radius of the pinion, addendum radius of the gear,
dedendum radius of the gear and pressure angle are design parameters. Root clearance,
top land thickness, contact ratio, involute clearance and tiff clearance are considered
as the geometrical constraints. Evaluation of contact stress, bending stress and
scuffing probability are conducted as material based constraints. From Table 1.1 it is
seen that studies conducted in the literature usually consider a few parameters as
design parameters. However, ten design parameters are optimized by using the
developed methodology by applying five geometrical constraints and three material
based constraints in the current study. In the literature it is seen that nontraditional
optimization techniques are used in the studies. However, it is given by Wu [3] that
there is always the possibility of finding a local optimum in nontraditional
optimization techniques. Additional methods must be implemented to overcome the
possibility of local optimum. However, when the conducted studies in the literature
are considered, it is seen that the optimization problems are usually consisted of a few
design parameters and the number of constraint functions are not high as evaluated in

the current study.

Furthermore, the rounded gear root evaluation is not conducted in the studies.
However, the current study suggests an optimization method with rounded root
evaluations by considering the arbitrary addendum and dedendum radii for the pinion
and the gear. Therefore, using a nontraditional optimization technique can cause a
local optimum solution in such a detailed gear optimization problem. In the current

study, fine sizing method is implemented for optimization. All the possible gear sets
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for the given range of the design variables are evaluated in fine sizing method. The
constraints are applied for each of the gear pairs. The gear pairs which don’t satisfy
one of the constraints are eliminated. The possibility of the local optimum solution is
eliminated since all the possible solutions are considered for given range of each
design variables.

The most remarkable contribution of the current study is the evaluation of the root
geometry and the bending stress geometry factor of the gear pairs which have rounded
gear root. The gear root evaluation is conducted and given in Chapter 2.1.1.6 and
Chapter 2.1.1.7 for external and internal gear pairs, respectively. The helical gears
which are produced by grinding method have rounded gear root in the normal plane.
However, when Table 5.1 and Table 5.2 are considered, it is seen that the evaluated
bending stress geometry factor differs from Kissoft commercial tool. The gear root
equations given in Chapter 2.1.1.6 are converted into the transverse plane and given
in equations (5.1), (5.2), (5.3), (5.4) and (5.5). Evaluation of the root geometry and the
bending stress geometry factor is evaluated in the transverse plane for the optimized
gear pair obtained by Casel given in Table 4.4. The obtained results are given in Table
5.7. It is seen from Table 5.7 that the maximum radii of the gear roots (4, and A,) are
the same in Kissoft and in the current study. Therefore, it is concluded that Kissoft
evaluates the gear root in the transverse section. However, the helical gears which are

produced by grinding method have rounded gear root in the normal plane.

Since the maximum radii of the gear roots are the same, it is expected that the stress
correction factor for the pinion and for the gear (K, and Ky,) must be the same.
However, it is seen that the maximum radii of the virtual gear roots (4,,, and A,,,) are
different in Kissoft results and in the current study. The difference in the radii of the
virtual gear roots comes from that Kissoft uses the methodology outlined in AGMA
908 [13] while the methodology given in Chapter 2.1.2.2.3 is used in the current study.
However, the methodology given in [13] is applicable for the gears which have
trochoidal gear root. Therefore, the methodology given in [13] does not cover the gears

which are produced by grinding method.

142



The outlined methodology in the current study covers the effect of fully rounded gear
roots and the backlash on the bending stress geometry factor evaluation. The
lubrication regime is also considered in the contact stress evaluation. The outlined
methodology differs from the other studies and Kissoft commercial tool by
considering the fully rounded gear root, the lubrication regime and the gears produced

by grinding method.

The proposed methodology in the current study is suitable for the gear pairs produced
by nontraditional manufacturing methods and the optimized design parameters are
nonstandard. The minimum weight consideration is the most important design
constraint in aerospace applications. The minimum weight consideration requires an
optimization methodology and nonstandard design parameters. In the current study,
the minimum center distance optimization is implemented by obtaining the
nonstandard optimized design parameters. There are lots of studies in aerospace
applications to decrease the weight of an air vehicle. The proposed methodology has
a crucial role in aerospace applications regarding the minimum weight considerations.
However, the standard gear pairs which are designed without an optimization
methodology are not the gear pairs which have the minimum center distance and the
minimum weight. Therefore, the standard gear pairs are not suitable for aerospace

applications.

The proposed methodology in the current study covers the optimization of the single
pair of external and internal gear pairs. Optimization of the planetary stages can be
implemented by using the same methodology as a future work. In the literature, there
are some studies which evaluate the bending stress of the asymmetric gears as outlined
in [10]. Therefore, the proposed optimization methodology can be also expanded into
the optimization of asymmetric external and internal gear pairs. Evaluation of the gear
root and the bending stress geometry factor with the 0.250 mm normal circular
backlash are conducted for different external and internal gear pairs. The obtained

results are given in Table 6.1 and Table 6.2.
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Table 6.1 Gear root and bending stress geometry factor evaluation for external gear
pairs with 0.250 mm normal circular backlash

Study 1 2 3 4 5

m, 3.2mm 4.1mm 3.2mm 3.8mm 3.2mm

B 13° 17° 21° 21° 7

X, 0.2 0.2 0.2 0.3 -0.1

Z 37 40 37 43 40

Z, 145 157 145 169 157

an 23° 23° 21.5° 24° 25°

a,, 298.86 mm 422.303 mm 311917 mm 431.457 mm 317.567 mm
a1 64.698 mm 90.892 mm 67.525 mm 92.397 mm 67.382 mm
a2 241.058 mm 340.414 mm 251.591 mm 347.201 mm | 256.633 mm
Ty 56.816 mm 80.602 mm 58.956 mm 82.628 mm 59.967 mm
Tf2 233.176 mm 330.125 mm 243.364 mm 337.839mm | 249.218 mm
A 1.197 mm 1.435 mm 1.169 mm 0.878 mm 1.284 mm
A, 1.244 mm 1.486 mm 1.283 mm 1.391 mm 1.031 mm
Ay 1.196 mm 1.432 mm 1.166 mm 0.875 mm 1.284 mm
Ay, 1.243 mm 1.484 mm 1.281 mm 1.388 mm 1.031 mm
1 0.677 0.690 0.632 0.694 0.611

I 0.671 0.685 0.645 0.660 0.691

Table 6.2 Gear root and bending stress geometry factor evaluation for internal gear
pairs with 0.250 mm normal circular backlash

Study 1 2 3 4 5
my, 7.1mm 4.7 mm 7.1mm 4.5mm 7.1mm
B 7° 11° 6 11° 10°
X 0 -0.1 0 0.2 0
z; 25 25 25 26 25
Z, 68 68 68 71 68
an 29° 28° 29° 26° 29°
a, 153.796 mm 102.941 mm 153.491 mm 103.145 mm 155.005 mm
a1 95.854 mm 63.680 mm 95.664 mm 64.638 mm 96.608 mm
Ta2 236.060 mm 157.524 mm 235.591 mm 158.614 mm 237.915 mm
Ty 80.117 mm 53.146 mm 79.958 mm 53.635mm 80.747 mm
Tf2 251.797 mm 168.058 mm 251.297 mm 169.158 mm 253.775 mm
Aq 1.946 mm 1.570 mm 1.959 mm 1.178 mm 1.890 mm
A, 1.174 mm 1.012 mm 1.191 mm 1.203 mm 1.107 mm
Ay 1.944 mm 1.566 mm 1.958 mm 1.175 mm 1.887 mm
A,y 1.174 mm 1.012 mm 1.191 mm 1.203 mm 1.107 mm
1 0.640 0.879 0.625 0914 0.679
J2 0.803 1.152 0.786 1.116 0.850

144




REFERENCES

[1] Y. M. Mohan and T. Seshaiah, *“ Spur Gear Optimization by Using Genetic
Algorithm, >’ International Journal of Engineering Research and Applications,
vol. 2, No. 1, pp. 311-318, Jan-Feb.2012.

[2] A.K.Singh, H.P. Gangwar, R. Saxena and A. Misra, “ Optimization of Internal
Spur Gear Design Using Genetic Algorithm, *> MIT International Journal of

Mechenical Engineering, vol. 2, No. 1, pp. 22-30, Jan.2012.

[3] R. Wu, “Gear Weight Optimization Design Model Based on Disturbance and
Simulated Annealing Algorithm, *’Metallurgical and Mining Industry, vol. 51,
No. 8, pp. 502-507, 2015.

[4] V. Revar, D. Parmar and H. Shah, “Design, Modelling and Stress Analysis of
High Speed Helical Gear on Basis of Bending Strength and Contact Strength by
Changing Face Width and Helix Angle, *’International Journal For Technological

Research In Engineering, vol.3, Issue 9, pp. 1975-1980, May 2016.

[5] A. L. Kapelevich and Y. V. Shekhtman, “Direct Gear Design: Bending Stress
Minimization, *’Gear Technology, vol.20, No. 5, pp. 44-47 , September-October
2003.

[6] S. Padmanabhan, S. Ganesan, M. Chandrasekaran, and V. Srinivasa Raman,
“Gear pair design optimization by genetic algorithm and FEA,” Proc. Int. Conf.
Front. Automob. Mech. Eng. - 2010, FAME-2010, No. November, pp. 301-307,
2010.

145



[7] Ram Gopal, Rajiv Suman and R.S. Jadoun, “ Optimization of Helical Gear
Design Using Genetic Algorithm for Center Distance, *’International Journal of

Advance and Innovation, vol.4, Issue 3, pp. 543-548, 2016.

[8] Dr. Rajiv Suman, Ram Gopal, Anshika Gupta and Praveen Kumar Singh “ Use
of Genetic Algorithm for Center Distance to Optimize the Helical Gear Design,
>’Seminar on Advances in Technology to Mitigate the Effect of Natural Hazards,
organized by The Institution of Engineers (India), Pantnagar Local Centre, March
2-3, 2017.

[9]  Paridhi Rai, Asim Gopal Barman, “Design Optimization of Spur Gear Using
SA and RCGA, ’Journal of the Brazilian Society of Mechanical Sciences and
Engineering, vol.40, Issue 5, pp. 1-8, 2018.

[10] Mahir Gokhan Orak, “Investigation of Asymmetric Gear Tooth Bending Stress
Formulation, "’Middle East Technical University, March 2018.

[11] International Standard Organization, ‘‘Gears — Cylindrical involute gears and
gear pairs — Concepts and geometry ISO 21771,” vol.01, no. September, p.31,
2007.

[12] American Gear Manufacturers Association, “Method for Specifying the
Geometry of Spur and Helical Gears AGMA 913-A98,” vol. 98, no. March, p. 4-
8,12, 1998.

[13] American Gear Manufacturers Association, “Geometry Factors for

Determining the Pitting Resistance and Bending Strength of Spur, Helical and
Herringbone Gear Teeth AGMA 908-B89,” vol. 89, no. August, p. 5-8,16 ,1989.

146



[14] American Gear Manufacturers Association, “Fundamental Rating Factors and
Calculation Methods for Involute Spur and Helical Gear Teeth AGMA 2001-
DO04,” vol. 04, no. December, p. 9-18, 20-24,33-42, 2004.

[15] Engineering Sciences Data Unit, ‘“The design of spur and helical involute
gears. A procedure compatible with BS 436: Part 3: method for calculation of
contact and root bending stress limitations for metallic involute gears ESDU
88033,’’ vol.3, no. June, p.32, 16, 2012

[16] American Gear Manufacturers Association, “Effect of Lubrication on Gear
Surface Distress AGMA 925-A03,” vol. 03, no. January, p. 7-25, 2013.

[17] Stephen P.Radzevich, Dudley’s Handbook of Practical Gear Design and
Manufacture, >> CRC Press, Second Edition, pp. 311-318, 2012.

[18] International Organization for Standardization, ‘“Calculation of Load Capacity
of Spur and Helical Gears ISO/DIS 6336-6.”” no. September, p.15,16, 2005

147



148



APPENDICES

A. Overload factor, K,

Overload factor,K,,, is given in [18]. Examples for driving machines with various

characteristics are given in Table A.1.

Table A.1 Examples for driving machines with various working characteristics [18]

Working characteristic Driving machine
Uniform Electric motor (e.g. d.c. motor), steam or gas turbine with uniform
operation @ and small rarely occurring starting torques °.
Light shocks Steam turbine, gas turbine, hydraulic or electric motor (large, frequently
oceurring starting torques ®).
Moderate shocks Multiple cylinder internal combustion engines.
Heavy shocks Single cylinder internal combustion engines.

@  Based on vibration tests or on experience gained from similar installations
b see service life graphs, Zyt, Yy, for the material in 1ISO 6336-2 and 1SO 6336-3. Consideration of momentarily acting overload
torques, see examples following Table B.1.

In aerospace industry, gas turbines are generally used. Therefore, driving machine

characteristic of the driving machine is specified as light shocks.
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Table A.2 Examples of working characteristics of driven machine [18]

Working characteristic Driven machines

Steady load current generator; uniformly loaded conveyor belt or platform
conveyor; worm conveyor; light lifts; packing machinery; feed drives for
Uniform machine tools; ventilators; light-weight centrifuges; centrifugal pumps;
agitators and mixers for light liquids or uniform density materials; shears;
presses, stamping machines 2; vertical gear, running gear 2.

Non-uniformly (i.e. with piece or batched components) loaded conveyor
belts or platform conveyors; machine-tool main drives; heavy lifts; crane
slewing gear; industrial and mine ventilators; heavy centrifuges;
Light shocks centrifugal pumps; agitators and mixers for viscous liquids or substances
of non-uniform density; multi-cylinder piston pumps; distribution pumps;
extruders (general); calendars; rotating kilns; rolling mill stands €,
(continuous zinc and aluminium strip mills, wire and bar mills).

Rubber extruders; continuously operating mixers for rubber and plastics;
Moderate shocks ball mills (light); wood-working machines (gang saws, lathes); billet rolling
mills < 9; lifting gear; single cylinder piston pumps.

Excavators (bucket wheel drives); bucket chain drives; sieve drives;
power shovels; ball mills (heavy); rubber kneaders; crushers (stone, ore);
Heavy shocks foundry machines; heavy distribution pumps; rotary drills; brick presses;
de-barking mills; peeling machines; cold strip & ®; briquette presses;
breaker mills.

Nominal torque = maximum cutting, pressing or stamping torque.
Nominal torque = maximum starting torque.

Nominal torque = maximum rolling torque.

Torque from current limitation.

K, up to 2.0 because of frequent strip cracking.

® a o oo

Since the gear pairs are considered in this study, working characteristic of the driven

machine is specified as uniform.

After determining the characteristics of the driving and driving machine, overload

factor is specified by using Table A.3

Table A.3 Overload factor, K, [18]

Working characteristic of Working characteristic of driven machine
driving machine Uniform Light shocks Moderate shocks Heavy shocks
Uniform 1,00 1,25 1,50 1,75
Light shocks 1,10 1,35 1,60 1,85
Moderate shocks 1,25 1,50 1,75 2,00
Heavy shocks 1,50 1,75 2,00 W 2,25

As seen from Table A.3, overload factor is '1.10’ for light shock driving machine and

uniform driven machine.
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B. Load Distribution Factor, K,,

In [14], the load distribution factor (K,,) is given as:

K = Cony (B.1)
For relatively stiff gear designs having gears mounted between bearings and relatively
free from externally caused deflections, the following approximate method may be

used:

Con = 1.0 + Cone(Cpp Com + CmaCe) (B.2)
Lead correction factor, C,,., is 0.8 for gear with leads properly modified by crowning

or lead correction.

The values for C, can be determined by the following equations:

when F < 1.0
C.. = —0.025 (B.3)
Pf 7 10d,,
when1.0< F <17
Cr= —0.0375 + 0.0125F (B.4)
P 7 10d,, *
when 17 < F <40
B.5
Cpp = ———— 0.1109 + 0.0207F — 0.000228F2 (B.5)
10d,,,

For values of (F / (10d_w1)) less than 0.05, 0.05 is used for Cy.

Cp

mounted pinions with S; /S > 0.175.

m 15 1.0 for straddle mounted pinions with §; /S < 0.175 and C,,,, is 1.1 for straddle
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Fig. B.1 Evaluation of S and S; [14]

Cpm IS taken as unity in this study.

The mesh alignment factor, C,,,, is given as:

Cna = A + B(F) + C(F)? (B.6)

Table B.1 Empirical constants; A, B and C [14]

Curve A B C
Curve 1 Open gearing 2.47 x 10-1 0.167 x 10-1 -0.765x 10-%
Curve 2 Commercial enclosed gear units 1.27 x 10-1 0.158 x 10-1 -1.083 x 10-4
Curve 3 Precision enclosed gear units 0.675 x 101 0.128 x 10-1 -0.926 x 10-*
Curve 4 Extra precision enclosed gear units 0.380 x 101 0.102x 10-1 -0.822x10°*

Extra precision enclosed gear units are considered in this study.

C, is 0.80 when the gearing is adjusted at assembly;
is 0.80 when the compatibility of the gearing is improved by lapping;
is 1.0 for all other conditions.

Super finished gears are considered in this study. Therefore, C, is taken as 0.8.
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C. Rim Thickness Factor

Rim thickness factor is given in Fig. A.2.

2.4 3
Formg <1.2 -
2.2 Ky =161n (2;342) /‘tw
B 1
204
m
M 184
g 164 " —
S
b 144 Formg=1.2 )/ m _r
123 Kg=1.0 B
C
2104 £
<
£
o
0 L1 1 11 ] l ] ] Ll 1 1 11
I 1 1 ] L) 1 LI 1 I I L) I 1 1 L)
05 06 08 10 1.2 2 3 4 5 6 7 8 910

Backup ratio, mpg

Fig. C.1 Rim thickness factor, Kz [14]

In this study, mg is considered as higher than 1.2. Therefore, rim thickness factor

is taken as unity.
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D. Other Factors

According to [14], where gearing is manufactured using process controls which
provide tooth accuracies which correspond to ‘very accurate gearing ‘, or where the
design and manufacturing techniques ensure a low transmission error which is
equivalent to this accuracy, values of K, between 1.02 and 1.11 may be used,
depending on the specifier’s experience with similar applications and the degree of
accuracy actually achieved. Since aerospace gears have a very high level of accuracy,

dynamic factor is taken as 1.02.

The size factor, K is related with non-uniformity of material properties. Since the gear

materials used in the current study are Grade 3 quality, the size factor is taken as unity.

The surface condition factor, Cy is related with surface finish and residual stresses.
Since the gear teeth are grinded from solid and shot peened, the tensile residual
stresses on the gear teeth are avoided even the compressive residual stresses arise.
Also since the super finish is applied on the gear teeth, the surface roughness is

minimized. Therefore, Cr is taken as unity.
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E. Scuffing Risk Evaluation

Scuffing risk evaluation is given in [16]. For random variables that follow normal
(Gaussian) distributions, the following procedure can be used to calculate probabilities

of failure in the range of 5 % to 95 %.

™) E1)
Oy
Zy = 0.3989422804¢l-05(’] (E.2)
Table E.1 Constant parameters for Scuffing Evaluation [16]
Parameter Value
b, 0.319381530
b, —0.356563782
b, 1.781477937
b, —1.821255978
bs 1.330274429
P 0.2316419
. 1
1+ plx] (E:3)
Evaluation of Q
if [x| > 1.6448, then:
Q = 0.05; (E.4)
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else

Q = Zy(byt + byt* + bst® + byt* + bst>) (E.5)

Probability of failure

if x > 0, then:

probablity of failure =1-Q (E.6)

else

probablity of failure = Q (E.7)
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F. Evaluation of Material Parameter

Material parameter is given in [16]:

G =ak, (F.1)
Where
a = k(mu)® (F.2)
a = k(mu)® (F.3)
iy = 109 — 0.9 (F.4)
g = 10°(8y + 273.15)4 (F.5)
¢ = logg[logio(Mao + 0.9)] — 2.495752d (F-6)

10810 (1100 + 0.9) (F.7)
log10(M40 + 0.9)

Viscosity and pressure-viscosity coefficient values for different lubricants are given
in Table F.1. MIL — L — 23699E is considered in this study.

Dynamic viscosity of the oil at 40 °C is:

Nao = 22.56448 mPa.s (F.8)

Dynamic viscosity of the oil at 100 °C is:

N0 = 4.591235 mPa.s (F.9)

k = 0.006515 (F.10)
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Table F.1 Data for determining viscosity and pressure-viscosity coefficient [16]

Lubricant 10 VGT} 140 1100 c d 3 5
Mineral oil 32| 27.17816 4294182 | 10.20076 | -4.02279 | 0.010471 0.1348
46 | 39.35879 5.440514 | 10.07933 | -3.95628 | 0.010471 0.1348
68 | 58.64514 7.059163 9.90355 | -3.86833 | 0.010471 0.1348
100 | 86.91484 9.251199 9.65708 | -3.75377 | 0.010471 0.1348
150 | 131.4335 12.27588 9.42526 | -3.64563 | 0.010471 0.1348
220 | 194.2414 15.98296 9.24059 | -3.55832 | 0.010471 0.1348
320 | 284.6312 20.60709 9.09300 | -3.48706 | 0.010471 0.1348
460 | 412.0824 26.34104 8.96420 | -3.42445| 0.010471 0.1348
680 | 613.8288 34.24003 8.84572 | -3.36585| 0.010471 0.1348
1000 [ 909.4836 38.56783 9.25943 | -3.52128 | 0.010471 0.1348
1500 [ 1374.931 49.58728 9.19946 | -3.48702 | 0.010471 0.1348
2200 | 2031.417 62.69805 9.15646 | -3.46064 | 0.010471 0.1348
3200 | 2975.954 78.56109 9.13012 | -3.44157 | 0.010471 0.1348
PAO - based 150 | 128.5772 16.17971 7.99428 | -3.07/304 | 0.010326 0.0507
synthetic non- 220 | 189.9828 21.60933 7.79927 | -2.98154 | 0.010326 0.0507
VI improved oil 320 | 278.3370 28.66405 7.63035| -2.90169 | 0.010326 0.0507
460 | 402.8943 37.54020 7.49799 | -2.83762 | 0.010326 0.0507
680 [ 600.0179 53.20423 7.16434 | -2.69277 | 0.010326 0.0507
1000 | 868.1710 68.60767 7.12008 | -2.66528 | 0.010326 0.0507
1500 [ 1310.350 91.03300 7.07678 | -2.63766 | 0.010326 0.0507
2200 | 1933.070 118.0509 7.06113 | -2.62221 | 0.010326 0.0507
3200 | 2827.726 151.2132 7.06594 | -2.81561 | 0.010326 0.0507
6800 | 6077.362 244.5559 711907 | -2.62091 | 0.010326 0.0507
PAG - based 100 102.630 19.560 6.42534 | -2.45259 0.0047 0.1572
synthetic?) 150 153.950 27.380 6.19586 | -2.34616 0.0047 0.1572
220 225.790 40.090 576552 | -2.16105 0.0047 0.1572
320 328.430 56.710 5.49394 | -2.04065 0.0047 0.1572
460 472.130 77.250 5.35027 | -1.97254 0.0047 0.1572
680 697.920 113.43 5.06011 | -1.84558 0.0047 0.1572
1000 1026.37 163.30 4.85075| -1.75175 0.0047 0.1572
MIL-L-7808K 12| 11.35364 2.701402 9.58596 | -3.82619 | 0.005492 0.25472
Grade 3
MIL-L-7808K 17| 16.09154 3.609883 9.08217 | -3.60300 | 0.005492 0.25472
Grade 4
MIL-L-23699E 23| 22.56448 4.591235 8.91638 | -3.51779| 0.006515 0.16530
NOTES:
1) vyg (mm2s)
2} Gopolymer of ethylene oxide and propylene oxide in 50% weight ratio.
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G. Backlash and Tip Round Values

When the backlash is required, the following values given in Table G.1 can be used.
For tip chamfer, the following values given in Table G.2 can be used.

Table G.1 Recommended backlash values [17]

Recommended Backlash Allowance for Power Gearing

Normal Center Distance, in. (3.93701 x 10-2 mm)

Diametral

Pitch, Py 0-5 5-10 10-20 20-30 30-50 50-80 80-120
0.5 - - - - 0.045 0.060 0.080
1 - - - 0.035 0.040 0.050 0.060
2 - - 0.025 0.030 0.035 0.045 0.055
3 - 0.018 0.022 0.027 0.033 0.042 -

4 - 0.016 0.020 0.025 0.030 0.040 -

6 0.008 0.010 0.015 0.020 0.025 - -

8 0.006 0.008 0.012 0.017 - - -
10 0.005 0.007 0.010 - - - -
12 0.004 0.006 - - - - -
16 0.004 0.005 - - - - -
20 0.004 - - - - - -
32 0.003 - - - - - -
64 0.002 - - - - - -

Table G.2 Tip round values [17]

Values for Tip Round and Edge Round and End Round

Edge Round Tip Round and
Diametral Pitch General Applications Medium Strength High Strength End Round
20 and finer Burr brush edges 0.001-0.005 0.005-0.010 0.001-0.005
16 Burr brush edges 0.003-0.015 0.010-0.025 0.003-0.010
12 Burr brush edges 0.005-0.020 0.012-0.030 0.005-0.015
10 Burr brush edges 0.010-0.025 0.015-0.035 0.005-0.015
8 Burr brush edges 0.010-0.025 0.020-0.045 0.010-0.030
5 Burr brush edges 0.010-0.025 0.025-0.060 0.010-0.030
3 Burr brush edges 0.015-0.035 0.040-0.090 0.010-0.050
2 Burr brush edges 0.015-0.035 0.060-0.125 0.010-0.050
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Optimization Flow Chart

( START )
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Evaluation of ¢,

i “| Eq.(2.2) 2.4)

Initial Assignments of the
Design Variables
Table 3.7 Gear Root Clearance
Elimination
Table 3.11

A

Cross combination of

My, Ay B X4 [21 Z;]

Table 3.8 Pinion Top Land Thickness
Evaluation
Chapter 2.1.1.2/2.1.1.3
A
Evaluation of 7,4
\4
Table3.9 Pinion Top Land Thickness
Elimination
v Table 3.12
Evaluation of 7¢,
Table 3.10

Evaluation of r,,
Table 3.13

Combination of
my, ay ﬁ X1 [Zl ZZ] Ta1 rfz
Eq. (3.17) - (3.25)

Evaluation of 7y,

Table 3.14
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Py

Pinion Involute Clearance

> Elimination
Table 3.18
A\ 4
Combination of
My, @y B X1 [21 Z2] Ty Tr2 Taz 111 _V
Eq. (3.31) - (3.38) Evaluation of IC,
Eq. (2.111) (2.112)
\ 4
Evaluation of c; \
Eq. (2.1) (2.3) Gear Involute Clearance
Elimination
Table 3.19
\ 4
Pinion Root Clearance
Elimination
Table 3.15 Evaluation of Tif f;
Eq. (2.113)
v
Gear Top Land Thickness
Evaluation Pinion Tiff Clearance
Chapter 2.1.1.2/2.1.1.3 Elimination
Table 3.20

A\ 4
Gear Top Land Thickness
Elimination
Table 3.16

y
Evaluation of Tif f,

Eq. (2.114) (2.115)

Evaluation of m : .
¢ Gear Tiff Clearance Elimination

Chapter 2.1.1.4/2.1.15 Table 3.21
Contact Ratio Elimination Contact Stress Evaluation
Table 3.17 Chapter 2.1.2.1
A
Evaluation of IC; P,
Eq. (2.110)
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P,

4

Contact Stress Elimination
Table 3.22

A

Virtual Spur Gear Evaluation
Chapter 2.1.2.2.1

Load Angle and Load
Radius Evaluation
Chapter 2.1.2.2.2/

2.1.2.2.6

\ 4

Virtual Gear Root Evaluation
Chapter 2.1.2.2.3/2.1.2.2.7

Critical Section Determination
Chapter 2.1.2.2.4/2.1.2.2.8

A

Critical Radius Evaluation
Chapter 2.1.2.2.5/2.1.2.2.9

\ 4

Bending Stress Evaluation
Chapter 2.1.2.2

Bending Stress Elimination
Table 3.23 / Table 3.24
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Profile Radii of Curvature
Chapter 2.1.2.3.1

Gear Tooth Velocities and
Loads
Chapter 2.1.2.3.2

Load Sharing Factor
Chapter 2.1.2.3.3

Evaluation of Maximum
Flash Temperature
Chapter 2.1.2.3.4

Scuffing Evaluation
Chapter 2.1.2.3

Scuffing Elimination
Table 3.25

Minimum Center Distance
Optimum Gear Pair




