
CONNECTIVITY ENFORCED BAYESIAN SUPERPIXELS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ONUR EKER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

CONNECTIVITY ENFORCED BAYESIAN SUPERPIXELS

submitted by ONUR EKER in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. A. Aydın Alatan
Supervisor, Electrical and Electronics Eng. Dept., METU

Dr. Kutalmış Gökalp İnce
Co-supervisor, Center for Image Analysis, METU

Examining Committee Members:

Assoc. Prof. Dr. Selim Aksoy
Computer Engineering Dept., Bilkent University

Prof. Dr. A. Aydın Alatan
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Fatih Kamışlı
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Elif Vural
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Emre Akbaş
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Onur Eker

Signature :

iv

ABSTRACT

CONNECTIVITY ENFORCED BAYESIAN SUPERPIXELS

Eker, Onur
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Aydın Alatan

Co-Supervisor: Dr. Kutalmış Gökalp İnce

September 2019, 132 pages

In this study a general flow for clustering-based superpixel (SP) extraction methods

is presented, while each step is analyzed in detail, and improvements are proposed.

Considering general SP extraction method steps, initial grid alternatives are exam-

ined. The necessity of initial grid refinement is studied and unlike current approaches,

a novel Edge Based Refinement step which does not break regular grid structure is

proposed. Label update constraints are also analyzed in terms of preserving regular

initial tiling, and Just Connected method enforcing connectivity from the beginning is

proposed. The requirement of adjusting one of hyper-parameters, iteration count, for

different image resolutions and different number of SPs is eliminated by determining

the number of iterations relative to SP area. Considering these proposals,extensions

to the state-of-the-art SP methods, SLIC+ and LASP+, are proposed which normalize

spatial term with SP spatial covariance. Novel cost-functions SLIC++ and LASP++

are also presented for a further improvement with the normalization of spectral term

with SP specific dynamic parameter. Finally, a Bayesian classifier is proposed for pix-

els during SP label assignment. Based on improvements in various steps mentioned

above, a family of superpixel extraction methods including, SLIC++/R, SLIC++/H,

v

LASP++/R. LASP++/H, BSP/R and BSP/H are presented. For the evaluation, a novel

Boundary Achievable Segmentation Accuracy metric is proposed that replaces three

frequent metrics from the literature. Compactness and area under curve approaches

are also proposed as evaluation methods to minimize any performance ambiguity for

the literature benchmarks. Both proposed spectral term and spatial term improve-

ments significantly increase accuracy of generated SPs with no execution-time bur-

den. In addition, employing Bayesian classifier leads to generate more accurate SPs

in a shorter amount of run-time. Besides, with the proposed label update criteria, con-

nectedness of SPs are ensured during generation process that preserves regular grid

topology enabling them to be fed into conventional neural-networks.

Keywords: Superpixel, Oversegmentation, Bayesian, Clustering-based, Connectivity

vi

ÖZ

BAĞLANIRLIĞA ZORLANMIŞ BAYESÇİ SÜPERPİKSELLER

Eker, Onur
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Ortak Tez Yöneticisi: Dr. Kutalmış Gökalp İnce

Eylül 2019 , 132 sayfa

Bu çalışmada küme tabanlı süper piksel (SP) çıkarım metodları detaylı incelenmek-

tedir. Bu metodların genel akışı ortaya konularak, akışın her bir adımı detaylı ana-

liz edilmekte ve iyileştirmeler önerilmektedir. Genel SP çıkarım metod adımlarından

olan ilk örgü alternatifleri incelenmektedir. İlk örünün düzeltilmesi gerekliliği çalışılarak

diğer yöntemlerden farklı olarak, düzenli örü yapısını bozmayan Kenar Tabanlı Dü-

zeltim önerilmektedir. Etiket güncelleme kısıtları düzenli ilk örüyü koruması bakımından

analiz edilmektedir ve bağlanırlığı baştan zorlayan Sadece Bağlı yöntem önerilmekte-

dir. Yineleme sayısı parametresinin farklı görüntü çözünürlükleri ve farklı SP sayıları

için ayarlanması gereklliği, yineleme sayısını SP alanına göreli hale getirilerek orta-

dan kaldırılmaktadır. Uzamsal terimi SP uzamsal kovaryans ile normalize ederek gün-

cel metodları iyileştiren SLIC+ ve LASP+ metodları önerilmektedir. SP dinamik pa-

rametreleri ile spektral terimi normalize ederek metodları daha da iyileştiren SLIC++

ve LASP++ maliyet fonksiyonları önerilmektedir. Son olarak piksellere SP etiketi

ataması için bir Bayesian sınıflandırıcı önerilmektedir. Yukarıda bahsedilen algorit-

manın farklı adımlarında yapılan iyileştirmeler sonucunda bir süper piksel çıkarım

metod ailesi önerilmektedir, bu aile SLIC++/R, SLIC++/H, LASP++/R. LASP++/H,

vii

BSP/R ve BSP/H metodlarını içermekte ve R kare ilk örü, H ise altıgen ilk örüyü tem-

sil etmektedir. Ölçüm değerlendirmesinde ise literatürde kullanılan 3 metrik; Sınır

Çağrışımı, Yetersiz Bölütleme Hatası ve Erişilebilir Bölütleme Doğruluğu metriği

yerine geçen Sınır Erişilebilir Bölütleme Doğruluğu metriği önerilmektedir. Litera-

türdeki ölçüm belirsizliğini gidermek için değerlendirme metodu olarak kompaktlık

ve eğri altındaki alan metodları önerilmektedir. Önerilen spektral ve uzamsal terim-

lerdeki iyileştirmeler, üretilen süper piksellerin doğruluğunu koşum zamanını etki-

lemeden belirgin şekilde arttırmaktadır. Ek olarak, Bayesian sınıflandırıcı kullanımı

daha kısa koşum zamanında daha doğru süper pikseller üretilmesini sağlamaktadır.

Bununla birlikte, önerilen etiket atama kriteri üretim aşamasında süper piksellerin

bağlanırlığını garanti etmekte ve böylece düzgün örü topolojisini koruyarak onların

sinirsel ağlara beslenebilmesini sağlamaktadır. Ölçümlerde yapılan iyileştirmeler ile

ölçümleri parametre bağımlılığından kurtararak metod performans değerlendirmesinin

kapsamlı şekilde yapılabilmesini sağlamaktadır.

Anahtar Kelimeler: Süperpiksel, Aşırı Bölütleme. Bayesian, Küme Tabanlı, Bağlanırlık

viii

to Can

ix

ACKNOWLEDGMENTS

I would like to thank my thesis supervisor Prof.Dr. A. Aydın Alatan of Electrical

Electronics Engineering Department at Middle East Technical University and co-

supervisor Dr. Kutalmış Gökalp İnce of Center for Image Analysis at Middle East

Technical University for enormous guidance and support. Without their assistance

and dedicated involvement in every step throughout the process, this thesis would

have never been accomplished. It was honour for me to be their student. Thank you.

I must express my very profound gratitude to my wife and my son for providing

me with unfailing support and continuous encouragement throughout my study and

through the process of researching and writing this thesis.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xvi

LIST OF ABBREVIATIONS . xx

CHAPTERS

1 INTRODUCTION . 1

1.1 Superpixel Definition . 1

1.2 Scope of Thesis . 3

1.3 Contributions of Thesis . 3

1.4 Outline of Thesis . 5

2 RELATED WORK . 7

2.1 Watershed-based Methods . 9

2.2 Density-based Methods . 9

2.3 Path-based Methods . 10

2.4 Graph-based Methods . 11

xi

2.5 Wavelet-based Methods . 11

2.6 Gradient-based Superpixel Extraction Methods 12

2.6.1 Contour Evolution Methods 12

2.6.2 Energy Optimization-based Methods 14

2.6.3 Clustering-based Methods . 16

2.7 Summary and Discussion . 23

3 SUPERPIXEL PERFORMANCE METRICS AND PERFORMANCE EVAL-
UATION . 25

3.1 Superpixel Performance Metrics . 25

3.1.1 Boundary Recall . 26

3.1.2 Undersegmentation Error . 27

3.1.3 Achievable Segmentation Accuracy 28

3.1.4 Explained Variation . 29

3.1.5 Proposed Metric : Boundary Achievable Segmentation Accuracy 31

3.2 Superpixel Performance Evaluation 32

3.2.1 Compactness Parameter . 34

3.2.2 Proposed Evaluation Method: Area Under Curve 36

4 ANALYSIS OF A GENERAL CLUSTERING-BASED SUPERPIXEL EX-
TRACTION METHOD . 39

4.1 A General Clustering-based Superpixel Extraction Method 39

4.2 Initial Tiling . 41

4.3 Cluster Connectivity . 41

4.3.1 4 or 8-Connected Update . 43

4.3.2 Simply-Connected Update 45

xii

4.3.3 Proposed Method: Just-Connected Update 47

4.4 Refinement of Initial Tiling . 48

4.4.1 Predefined Re-segmentation 49

4.4.2 Proposed Method : Edge-based Refinement 50

4.5 Cost Function . 55

4.5.1 Spatial Adaptiveness . 64

4.5.2 Spectral Adaptiveness . 70

4.5.3 Proposed Cost Function . 76

4.6 Number of Iterations . 83

5 COMPARISON OF SUPERPIXEL EXTRACTION METHODS 95

5.1 Proposed Alternative Superpixel Extraction Methods 95

5.2 Experiments . 96

6 CONCLUSION . 111

REFERENCES . 117

APPENDICES

A PERIMETER MEASUREMENT . 121

A.1 Accuracy Problem during Measurements 121

A.2 Accuracy of Perimeter Measurement 122

A.3 Conclusions on Perimeter Measurement 131

xiii

LIST OF TABLES

TABLES

Table 2.1 List of state of art Superpixel extraction methods 24

Table 4.1 Initial tiling refinement experiment configuration 53

Table 4.2 Initial tiling refinement experiment BASA AUC 55

Table 4.3 Initial tiling refinement experiment run-time AUC 55

Table 4.4 SLIC vs SLIC+ cost function experiment configuration 65

Table 4.5 Comparison summary of SLIC and SLIC+ cost functions 65

Table 4.6 LASP vs LASP+ cost function experiment configuration 68

Table 4.7 LASP vs LASP+ cost function experiment AUC 68

Table 4.8 SLIC, SLIC+ vs SLIC++ cost function experiment configuration . . 71

Table 4.9 SLIC, SLIC+ vs SLIC++ cost function experiment AUC 71

Table 4.10 LASP, LASP+ vs LASP++ cost function experiment configuration . 74

Table 4.11 LASP, LASP+ vs LASP++ cost function experiment AUC 74

Table 4.12 SLIC++, LASP++ vs BSP cost function experiment configuration . . 78

Table 4.13 SLIC++, LASP++ vs BSP cost function experiment AUC 78

Table 4.14 Spectral and spatial normalization approaches of analyzed cost func-

tions . 84

Table 4.15 Number of iteration experiment configuration 86

xiv

Table 4.16 BASA results of iteration count experiment for 500 and 1000 SPs . 91

Table 4.17 BASA results of iteration count experiment for 1500 and 2000 SPs . 92

Table 4.18 Run-time results of iteration count experiment for 500 and 1000 SPs 93

Table 4.19 Run-time results of iteration count experiment for 1500 and 2000 SPs 94

Table 5.1 Summary of proposed SP extraction methods 96

Table 5.2 State of the art comparison experiment configuration 97

Table 5.3 BR, UE and ASA performance of state-of-the-art and proposed

methods . 107

Table 5.4 BASA and Run-time performance of SOTA and proposed methods . 108

Table A.1 Perimeter measurement method experiment configuration 124

Table A.2 RMS error of measured compactness of square at different orientations130

Table A.3 RMS error of measured compactness of hexagon at different orien-

tations . 130

xv

LIST OF FIGURES

FIGURES

Figure 1.1 Typical Superpixel representations 2

Figure 2.1 Superpixel extraction method categories 8

Figure 2.2 Superpixel extraction method combined categories 8

Figure 2.3 Watershed-based method SP extraction example 9

Figure 2.4 Density-based method SP extraction example 10

Figure 2.5 Path-based method SP extraction example 10

Figure 2.6 Graph-based method SP extraction example 11

Figure 2.7 Wavelet-based method SP extraction example 12

Figure 2.8 TurboPixels SP extraction example 13

Figure 2.9 ERGC SP extraction example 13

Figure 2.10 SEEDS SP extraction example 14

Figure 2.11 ETPS SP extraction example 15

Figure 2.12 CRS SP extraction example . 16

Figure 2.13 SLIC SP extraction example . 17

Figure 2.14 LASP SP extraction example 18

Figure 2.15 STP SP extraction example . 19

xvi

Figure 2.16 SCS SP extraction example . 20

Figure 2.17 DASP SP extraction example 21

Figure 2.18 VC SP extraction example . 21

Figure 2.19 VCSS SP extraction example 22

Figure 2.20 PreSLIC SP extraction example 22

Figure 2.21 LSC SP extraction example . 23

Figure 3.1 Boundary recall metric example 27

Figure 3.2 Undersegmentation error metric example 29

Figure 3.3 ASA metric example . 30

Figure 3.4 BASA mask example . 33

Figure 3.5 BASA metric example . 34

Figure 3.6 AUC evaluation example . 37

Figure 4.1 Initial tiling example . 42

Figure 4.2 Connected cluster example . 42

Figure 4.3 4-connected examples . 43

Figure 4.4 8-connected examples . 44

Figure 4.5 4-connected update example 45

Figure 4.6 8-connected update example 45

Figure 4.7 Simply-connected update example 46

Figure 4.8 Just-connected update example 48

Figure 4.9 Update pattern of simply and just connected label updates 48

Figure 4.10 Edge-based refinement example 52

xvii

Figure 4.11 Performance of different tiling refinement methods for hexago-

nal initial tiling and 500 SPs . 56

Figure 4.12 Performance of different tiling refinement methods for hexago-

nal initial tiling and 1000 SPs . 57

Figure 4.13 Performance of different tiling refinement methods for rectan-

gular initial tiling and 500 SPs . 58

Figure 4.14 Performance of different tiling refinement methods for rectan-

gular initial tiling and 1000 SPs . 59

Figure 4.15 Comparison of SLIC and SLIC+ cost functions 66

Figure 4.16 LASP vs LASP+ cost function comparison experiment results . . 69

Figure 4.17 SLIC, SLIC+ vs SLIC++ cost function experiment results 72

Figure 4.18 LASP, LASP+ vs LASP++ cost function experiment results . . . 75

Figure 4.19 SLIC++, LASP++ vs BSP experiment results for hexagonal tiling 79

Figure 4.20 SLIC++, LASP++ vs BSP experiment for rectangular tiling . . . 80

Figure 4.21 Metric convergence vs iteration count for 500 SPs 87

Figure 4.22 Metric convergence vs iteration count for 1000 SPs 88

Figure 4.23 Metric convergence vs iteration count for 1500 SPs 89

Figure 4.24 Metric convergence vs iteration count for 2000 SPs 90

Figure 5.1 BR performance state-of-the-art and proposed methods 102

Figure 5.2 UE performance state-of-the-art and proposed methods 103

Figure 5.3 ASA performance state-of-the-art and proposed methods 104

Figure 5.4 BASA performance state-of-the-art and proposed methods 105

Figure 5.5 RT performance state-of-the-art and proposed methods 106

xviii

Figure 5.6 Sample outputs of state-of-the-art SP extraction methods 109

Figure 5.7 Sample outputs of proposed SP extraction methods 110

Figure A.1 Freeman code chain example 122

Figure A.2 Perimeter calculation of a square having perimeter 80 px 125

Figure A.3 Perimeter calculation of a square having perimeter 800 px 126

Figure A.4 Compactness calculation of a square having perimeter 80 px . . 126

Figure A.5 Compactness calculation for a square having perimeter 800 px . 127

Figure A.6 Perimeter measurement of a hexagon having perimeter 72 px . . 128

Figure A.7 Perimeter measurement for a hexagon having perimeter 750 px . 128

Figure A.8 Compactness calculation of a hexagon having perimeter 72 px . 129

Figure A.9 Compactness calculation of a hexagon having perimeter 750 px . 129

Figure A.10 Root mean square error of measured compactness for different

perimeter metrics for a square . 131

Figure A.11 Root mean square error of measured compactness for different

perimeter metrics for a hexagon . 131

xix

LIST OF ABBREVIATIONS

ABBREVIATIONS

SP SuperPixel

EBR Edge Based Refinement

PDR Predefined Re-segmentation

BSP Bayesian Superpixels Method

LASP Local Adaptive Superpixels Method

SLIC Simple Linear Iterative Clustering Method

RGB Red-Green-Blue Dimensions

RGB-D Red-Green-Blue-Depth Dimensions

CIE International Commission on Illumination

LAB L(luminance), A(red-green axis), B(blue-yellow axis) Dimen-

sions

RECT Rectangular

HEX Hexagonal

BR Boundary Recall

UE Under-segmentation Error

ASA Achievable Segmentation Accuracy

BASA Boundary Achievable Segmentation Accuracy

EV Explained Variation

CO Compactness

AUC Area Under Curve

SOTA State of the Art

JC Just Connected

BSD Berkeley Segmentation Data Sets

xx

Fr Freemans metric

PR Proffitt and Rosens Metric

VS Vossepoel and Smeulders Metric

PC Pixel Count Metric

ED Erosion/dilation Difference Metric

ST Stutz benchmark code Metric

FG Foreground Pixels

BG Background Pixels

W Watershed Method

PF Path Finder Method

STP Speeded-up Turbo Pixels Method

SEEDS Superpixels Extracted via Energy-Driven Sampling Method

SCS Simply-connected Superpixels Method

DASP Depth-Adaptive Superpixels Method

VC VCells Method

VCSS Voxel Cloud Connectivity Segmentation-Supervoxels

for Point Clouds Method

LSC Linear Spectral Clustering Superpixel Method

ERGC Eikonal-based Region Growing Clustering Method

ETPS Real-Time Coarse-to-fine Topologically Preserving

Segmentation Method

CRS Contour Relaxed Superpixels Method

xxi

xxii

CHAPTER 1

INTRODUCTION

Picture elements, or their well-known abbreviation pixels store discrete information

proportional to the light radiance and spectral content from the scene points onto an

image. However, this individual information is quite poor without spatial neighbor-

hood relations of these pixels. On the other hand, processing an image in pixel-wise

requires high computation power as it needs extra local deductions to correlate pix-

els. In order to ease those problems, pixels are grouped into clusters having similar

properties in terms of color and spatial distance, namely superpixels [1].

Using superpixels (SPs) rather than pixels, significantly decreases the number of

units to be processed and also provides more compact neighborhood information

to applications, such as segmentation, optical flow, tracking, object detection, 3D-

reconstruction. In other words, SP extraction is a pre-processing step that reduces

computational complexity and improves performance of subsequent applications in

many applications.

It should be noted that the output of any segmentation algorithm that yields rela-

tively large number of regions that contain relatively small number of pixels with no

semantic meaning is denoted as oversegmentation. Superpixels are oversegmented

representations with further requirements.

1.1 Superpixel Definition

A SP representation should have the following requirements: [2]:

1. SPs should partition an image with a connected group of pixels having similar

1

Figure 1.1: Typical Superpixel representations

spectral (i.e. color) properties.

2. Each pixel should be assigned to one SP, overlaps are not allowed.

3. SPs should cover whole image.

4. SPs should present a regular and compact structure, while following the object

boundaries (This requirement makes SPs differ from other oversegmentation

techniques).

5. Each SP should (preferably) contain pixels from a single semantic object.

6. Number of SPs should be controllable.

7. SP extraction methods should present a fair performance in terms of time and

memory, since they are emerged against inefficient pixel-wise processing.

Figure 1.1 shows typical SP representations having 1000 SPs generated using pro-

posed methods in Section 5.1.

2

1.2 Scope of Thesis

The scope of this thesis can be summarized as follows:

• This thesis focuses on SP extraction, which carry no semantic information, on

N (spectral) channel still images. SP specific requirements that distinguish SP

extraction from other oversegmentation methods are also mentioned.

• Different approaches for SP extraction are investigated. Their advantages and

drawbacks are explained in terms of performance and efficiency.

• As the most effective ones among SP extraction approaches, clustering-based

methods are analyzed in detail. Alternatives for each step of clustering-based

methods are evaluated and new ones are proposed.

• SP performance evaluation is studied; drawbacks and strengths of performance

evaluation methods and metrics are presented, and alternative approaches are

proposed.

1.3 Contributions of Thesis

The fundamental drawbacks related to SP research can be stated as follows:

SP extraction methods in the literature are grouped into several categories. Perfor-

mance of these methods are evaluated based on SP requirements given in Section

1.1. However, the related literature work does not make it clear to distinguish perfor-

mance of methods. For instance, there is no metric that is independent of SP number.

Even for a fixed number of SPs, the present metrics measure segmentation accuracy

of individual semantic objects; however, they do not take compactness of SPs into ac-

count. In general, as the compactness decreases, the segmentation accuracy increases.

Compactness is usually adjusted by a hyper-parameter, however this parameter is in-

sufficient to quantify the compactness of SPs.

SP extraction methods consist of various steps, although each step has an effect on

overall performance, effects of these steps are not examined rigorously by related

3

past works. Furthermore, those methods are usually configured by method specific

hyper-parameters, and the effect of those parameters are completely ignored. Each

method defines its own set of parameters and even if there are some common ones,

they do not affect the performance in the same manner. Besides, benchmarks ignore

the shapes of SPs which are usually controlled by those hyper-parameters. Moreover,

the method configurations in experiments are not the optimum ones due to lack of

published information. Therefore, currently state-of-the-art methodologies are evalu-

ated regardless of inner step options and benchmark comparisons do not distinguish

performances of SP extraction methods well.

In this thesis work, it is aimed to focus on above mentioned problems in literature

and to propose some contributions. This effort includes examining every step of

clustering-based SP extraction methods, investigating performance of each available

option, and proposing alternative approaches to improve performance when possible.

In order to get rid of confusion with hyper-parameters, it is aimed to have a minimum

set of parameters to configure the methods. Hyper-parameter dependency problems

in benchmarks will also be investigated; new approaches will be put forward to have

a common base benchmark framework to ease the comparison of different methods in

a fair way, and provide sufficient information to applications that to use SP extraction

methods.

SPs are employed by graph-based segmentation methods [3], and shown to be quite

effective. However, since SP methods are usually do not preserve a regular grid struc-

ture, they cannot be employed by neural networks. One of the priorities of this work

is to propose methods that generate SPs in a regular grid.

Finally, a family of clustering-based SP methods is proposed which follows object

boundaries better in a shorter time, while allowing to control compactness and number

of SPs, and resulting in a regular SP grid. Since every step of clustering-based SP

extraction methods are examined in terms of their effect on performance, pointed

improvements can be applied to rest of the methods in the literature. In addition to

new methods, a benchmark framework will be proposed to be used in further studies

that more accurately investigates the performance of alternative methods.

4

1.4 Outline of Thesis

This work investigates the framework of clustering-based Superpixel extraction meth-

ods, extract drawbacks of state-of-the-art methods, and propose new approaches to

get a better performing family of methods. To achieve this, first, the state-of-the-art

SP extraction methods are investigated in Chapter 2. Second, benchmark metrics for

performance comparison are presented, and alternative metrics and evaluation meth-

ods are proposed in Chapter 3. Third, each step of a general clustering-based SP

extraction method is analyzed in detail, alternatives are proposed, and their affect on

performance is evaluated with experiments in Chapter 4. Then, in Chapter 5 new SP

extraction methods are proposed by bringing the best performing proposed alterna-

tives of each step together, and a comprehensive set of experiments are conducted

to compare performance of proposed methods to the top performing state-of-the-art

methods. Finally, in Chapter 6 conclusions are presented.

5

6

CHAPTER 2

RELATED WORK

Superpixel (SP) extraction methods can be categorized based on the difference be-

tween their fundamental strategies. In such an effort, Achanta [2] divides all SP ex-

traction methods into two categories as graph-based and gradient-ascent methods. In

the graph-based approaches, the pixels are assumed to form graphs and neighboring

pixel similarities set the edge weight of the graph nodes. These graphs are partitioned

forming SPs that minimize a cost function. On the other hand, in gradient-ascent

methods, the image is initially clustered and clusters are updated iteratively. In these

iterative approaches, the algorithm starts either 1) from a non-regular clustered struc-

ture called seeds and seeds grow until meeting a specific criteria or 2) from regular

distributed clusters and at each iteration clusters grow around their centers by ex-

changing a single pixel or a block of pixels.

In general, one can argue that graph-based methods adhere well to object boundaries,

however they have a very high computational complexity increasing with the image

size. Iterative methods have fair performance in terms of boundary adherence and

undersegmentation error with a very low time complexity and regular distribution of

SPs.

As a different taxonomy of SP extraction methods, Stutz [4] divides SP extraction

methods into eight categories as depicted in 2.1, in order to provide high-level ab-

straction of algorithm details. In this chapter, Stutz [4] and Achanta’s [2] catego-

rization approach are combined as shown in Figure 2.2and the resultant categories

with well-known state-of-the-art techniques from each technique are explained in the

following sections.

7

Superpixel extraction methods

Watershed-

based

Density-

based
Path-

based

Contour

Evolution
Energy

Optimization

Clustering-

based
Graph-

based

Wavelet-

based

Figure 2.1: Superpixel extraction method categorization of Stutz [4]

Superpixel extraction methods

Watershed-

based

Density-

based

Path-

based

Gradient-

based

Contour

Evolution

Energy

Optimization

Clustering-

based

Graph-

based

Wavelet-

based

Figure 2.2: Proposed combined categorization for superpixel extraction methods of

Stutz [4] and Achanta [2]

8

Figure 2.3: Watershed-based method SP extraction example (Vincent [5] Figure 16).

Left to right represents original and segmented image respectively.

2.1 Watershed-based Methods

Watershed is a mature segmentation method from the literature, typically creating an

oversegmented representation. These methods apply gradient-ascent method from an

initial local minimum to compute lines that separate basins called watershed. Wa-

tershed (W) [5] algorithm is known to be a relatively fast algorithm generating very

compact structures. However, this method lacks regularity in shape and size and

shows poor performance in boundary recall with no control over SP count and their

compactness. Figure 2.3 depicts an example extraction of this category taken from

Vincent’s [5] work.

2.2 Density-based Methods

The methods belonging to this category assign each pixel to a closest partition in the

density image. One of the well known method of this category Edge augmented mean

shift [6] (EAMS) algorithm, finds modes of image in terms of intensity or color and

assigns each pixel to the closest one. The algorithm has no control over generated

number of pixels and compactness. Method shows fair boundary adherence but its

performance is not stable under different images, i.e. variations on performance met-

rics are high between images [4]. Figure 2.4 shows an example extraction of EAMS

taken from Meer’s [6] work.

9

Figure 2.4: Density-based SP method extraction example (Meer [6] Figure 7). Left

to right represents original and segmented image respectively.

Figure 2.5: Path-based method SP SP extraction example (Drucker [7] Figure 5). Left

to right represents original and segmented image respectively.

2.3 Path-based Methods

This type of SP extraction methods connect seed points along SP paths using discrete

image gradients or edge detection. One popular state of-the-art-method, Path finder

(PF) [7], employs discrete image gradients as connection criteria. As indicated in

[4], that method is able to control the number of SPs, but does not provide a control

over compactness and generates highly non-compact pixels. Computation time is

relatively low, however method performs poorly under performance metrics, such

as boundary recall and under-segmentation error, and shows unstable performance

across images. Figure 2.5 presents an example extraction of PF taken from Drucker’s

[7] work.

10

Figure 2.6: Graph-based method SP extraction example (Liu [9] Figure 5). Ground

truth segments labels are color-coded

2.4 Graph-based Methods

These methods form graphs whose nodes are pixels and partition the graphs to min-

imize a cost function. In normalized cuts [8] (NC) method, edge-weights of graphs

partitioning the image is based on similarities among the pixels. Stutz [4] states that

the number of SPs is controllable for this method and regular clusters are generated,

however computation time and memory usage is extremely high and boundary adher-

ence performance is low.

Entropy Rate Superpixel Segmentation (ERS) [9] applies a graph segmentation al-

gorithm that optimizes graph topology, having entropy rate maximization term to

generate homogeneous and compact SPs while a balancing term to force SPs having

identical size. ERS enhances greedy algorithm in entropy rate maximization term.

According to Stutz [4], ERS shows one of top boundary adherence performance with

consistency over different data sets. Its drawback is having relatively higher run-time.

Figure 2.6 shows an example extraction of ERS taken from Liu’s [9] work.

2.5 Wavelet-based Methods

Edge-avoiding wavelets [10] (SEAW), use multi-scale image analysis approach such

that for each SP a reconstruction image is formed using pre-calculated weights, and

at the end all the resultant images are merged. The number of generated SPs can be

11

Figure 2.7: Wavelet-based method SP extraction example (Strassburg [10] Figure 8).

Left to right represents original image and gray-coded segments respectively

controlled, but method provides no control over compactness. Boundary adherence

performance is very low, computation time and memory usage is very high according

to Stutz [4]. Figure 2.7 depicts an example extraction of SEAW taken from Strass-

burg’s [10] work.

2.6 Gradient-based Superpixel Extraction Methods

2.6.1 Contour Evolution Methods

In this approach, the seeds are initially assigned and they grow iteratively to reach

to a local minimum (gradient ascent) of an appropriate cost function. Some popular

methods of this category can briefly explained as follows:

• TurboPixels - Fast Superpixels: TP [11] starts from an initial uniformly seeded

distribution. At each iteration, seeds dilate until no expanding region is left. Ve-

locity calculation has two arguments; 1) the proximity of SPs to other SPs and

2) local affinity of the pixels. First one is for non-overlapping SPs, the latter is

for boundary recall. According to calculated velocity, boundary expands on the

following iteration. Boundary velocities are calculated and skeleton is formed

and maintained using an algorithm which is based on the distances between

regions. At the end of the algorithm, the resultant skeleton gives SP extrac-

tion. Stutz [4] reports that method generates very compact SPs, however does

12

Figure 2.8: TurboPixels SP extraction example (Levinshtein [11] Figure 5). Left to

right represents segmented image and its two zoomed-in version respectively

Figure 2.9: ERGC SP extraction example (Buyssens [12] Figure 5). Left to right

represents segmented image in different compactness levels.

not provide a parameter to control compactness. Method shows inadequate

boundary performance and generates irregular SPs with lack of smoothness.

An extraction example taken from Levinshtein’s [11] work is shown in Figure

2.8.

• Eikonal-based Region Growing Clustering: ERGC [12] starts from an ini-

tial set of seeds which are dilated iteratively. Meanwhile cuts are added or

removed to refine clustering. Clustering is performed with the solution of

Eikonal equation [13]. Fast-matching method is suggested to solve the equa-

tion efficiently. Method controls both number of SPs and their compactness.

It demonstrates good and stable performance in terms of boundary adherence,

under-segmentation error and computation time [4]. An extraction example

taken from Buyssens’ [12] work is shown in Figure 2.9.

13

Figure 2.10: SEEDS SP extraction example (Van [14] Figure 1). Left to right repre-

sents evolution of SPs as iterations go.

2.6.2 Energy Optimization-based Methods

In these methods, image is initially clustered and clusters are iteratively reshaped to

optimize an energy function. Pixel transfers between clusters are performed if energy

decreases with the new form, and each transfer can contain either a single pixel or

group of pixels.

State-of-the-art methods of this category are:

• SEEDS Superpixels Extracted via Energy-Driven Sampling: SEEDS [14]

initially starts from a lattice-like clusters. Then iteratively updates regions to

minimize color distribution within region while preserving the compactness. In

color distribution calculation and updates, histograms are used. If movement of

randomly chosen pixels or block of pixels between regions increases the energy

function, new partitioning is preserved. Hill-climbing approach is employed to

reduce calculation complexity. If no update in region boundaries is required,

algorithm is stopped. It does not ensure connectivity across regions, post pro-

cessing must be applied to connect separated regions to nearest region. An

extraction example taken from Van’s [14] work is shown in Figure 2.10.

• Real-time coarse-to-fine topologically preserving segmentation: ETPS [15]

starts from an regular initial grid on which SP centers and statistics are cal-

culated. Fine-to-grid approach is enhanced such that at first iterations, large

blocks (group of pixels) are checked for label update and as iterations go on

number of pixels in each transferred block decreases reaching to single pixel

update at the end. Updates are performed if total energy defined by energy

14

Figure 2.11: ETPS SP extraction example (Yao [15] Figure 6).

function decreases. To speed-up computations only boundary pixels/blocks are

iterated. Method is the top performing one in Stutz benchmark [4], showing

very good boundary adherence, low under segmentation error and consistent

performance across different image sets. It provides control over number of

SPs and compactness; however, generates irregular shapes. Figure 2.11 depicts

an example extraction of ETPS taken from Yao’s [15] work.

• Contour-relaxed superpixel: Contour Relaxed Superpixels [16] is a Maxi-

mum a-posteriori approach that aims to obtain maximum homogeneity of the

texture inside of each cluster and as well as get the highest matching ratio of

contours with image content and Gibbs-Markov random field model. In order

to achieve this, an energy function is formulated with using less parameters

which is maximized at each SP label update. As generated SPs are not well

shaped, afterwards a shape control parameter is integrated into the formula to

adjust compactness of SPs. In benchmark results of Stutz [4], CRS is one of

the top performing methods in terms of boundary recall and stability across dif-

ferent images. However, producing highly irregular and disconnected SPs and

having relatively high processing time are disadvantages of this method.Figure

2.12 depicts an example extraction of ETPS taken from Yao’s [15] work.

15

Figure 2.12: CRS SP extraction example (Conrad [16] Figure 4). Left to right repre-

sents segmented images in different compactness levels.

2.6.3 Clustering-based Methods

These methods initially cluster the image with a uniform shape, and iteratively re-

shapes clusters to minimize a cost function. Initial clusters can be rectangular or

hexagonal (honeycomb) shaped. Centers are already assigned at this stage. Before

iterations, in order to speed-up convergence a refinement operation can be applied.

Refinement stage reshapes SPs to make them closer to their final shapes with a min-

imum amount of time. Connectivity might be broken during iterations, therefore a

post-processing process might be needed to ensure connectivity.

Label updates are performed iteratively to minimize a cost function. At each iteration,

pixels are assigned to the closest SPs in terms of several parameters such as color and

spatial distance. Generally, the cost function to be minimized consists of spectral dis-

tance and spatial distance with adjustable weights. SP center positions and statistics

are updated at the beginning of each iteration.

Color space is method dependent; however, most of them supports either RGB, LAB,

or both. SP centers or SP mean statistics are used to calculate Euclidean distances for

each pixel. Instead of using global definitions, some methods enhances variance of

SPs to regularize spectral distances to achieve local adaptiveness.

Spatial distance calculations are used to preserve SPs compactness. Two dimensional

Eulidian distances with respect to SP centers are calculated. There are also some

methods specialized for images having depth information on. These methods use

depth information as another dimension in the spatial domain. Compactness and

spectral similarity out-weights each other, algorithms provide parameters to prioritize

16

Figure 2.13: SLIC SP extraction example (Achanta [2] Figure 1). Images are com-

posed of images segmented into various number of SPs.

them called compactness parameter. High values of compactness parameter priori-

tize spatial distance, resulting compact SPs having less boundary adherence; on the

other hand low values of this parameter, prioritize the spectral similarity resulting less

compact SPs with high boundary adherence.

State-of the-art methods of this category are:

• Simple Linear Iterative Clustering: SLIC [2] initiates clusters using a rectan-

gular grid, and iteratively updates clusters to achieve a set of pixels with similar

spectral affinities using k-means algorithm. To speed up the k-means algorithm,

grouping computations are only performed within a predefined region for each

cluster. Weighted spectral and spatial distances are utilized to calculate affini-

ties. At each iteration, pixels are assigned to the cluster that have the minimum

affinity difference, and first order cluster statistics are updated. Stutz [4] states

that, method generates compact SPs and provides control over compactness.

Its run-time, boundary recall, under-segmentation error performances are good

and stable across different images. However, method needs post-processing

to ensure connectedness as the update procedure do not enforce it. Example

extraction taken from Achanta’s [2] is shown n Figure 2.13

• LASP: Local Adaptive Super-Pixels: LASP [17] segments image into regu-

17

Figure 2.14: LASP SP extraction example (Ince [17] Figure 1). Images are composed

of images segmented into various number of SPs.

lar shaped convex SPs having regular spectral distributions. Image is clustered

initially with equally sized uniformly distributed honey-comb clusters. Before

starting iterations, to preserve spectral similarity across hexagons, a predefined

re-segmentation is performed. Re-segmentation chooses the best fit in terms of

contrast among five different combinations of sub-clusters. To reduce complex-

ity, iterative pixel label updates are only applied to the pixels on the boundaries

of non-settled SPs. Spectral distributions (variance) of each SP is calculated

and updated at each iteration. Local adaptiveness is applied by using mini-

mum of neigbour SPs variance to regularize spectral distances. Weight factor

between spectral and spatial can be adjusted to set priority. Method generates

regular SPs and provides control over compactness. Due to local adaptiveness,

boundary recall and under-segmentation error performance is higher than SLIC

[2]. However, this method also needs post-processing to ensure connectedness.

Extraction results taken from Ince’s [17] work are show in 2.14

• Speeded-up Turbo Pixels: STP [18] is quite similar to SLIC [2]; however, as

spectral distance L1 norm is employed and has a better pixel label update proce-

dure than SLIC. Iteratively pixels are exchanged between neighboring clusters.

To speed-up computation, iterations last till the count of interchanged pixels

are below a threshold. Parameters of the cost function enable to adjust weight

between convexity of clusters and spectral similarity of pixels within clusters.

Run-time, boundary recall, under-segmentation error performances are good,

generates compact, convex and connected SPs. This method also needs post-

18

Figure 2.15: STP SP extraction example (Çla [18] Figure 2). Left to right represents

original image and zoomed in version segmented image. Images are composed of

images segmented into various number of SPs.

processing to ensure connectedness. STP extraction results taken from Çla [18]

can be seen in Figure 2.15.

• A Fast method for inferring high-quality simply-connected superpixels:

SCS [19] improves related methods that are using Gaussian Mixture Model by

enabling them to be parallel processed and replacing fixed spatial covariances

by Bayesian prior. It aims to guarantee connectivity across regions without

post-processing by ensuring clusters stay simply-connected during label up-

dates. Initialization is done clustering the image with a honey-comb. At the

first step of iteration, parameters (statistics) are updated where Freifeld [19]

claims that parallel processing is better for small number of SPs. At the second

step labeling is performed with minimizing a cost function based on Gaussian

Mixture Model. During label updates, for each pixel the neighboring 3x3 block

is checked to ensure connectivity. This approach results in the dependency of

label updates in 3x3 neighborhood. To speed-up the method parallel processing

is enabled using 3 pixels steps on horizontal and vertical directions. Compact-

ness and number of SPs can be controlled. Method generates connected clus-

ters, therefore no post-processing is needed. Figure 2.16 shows results of SP

extraction taken from Freifeld’s [19] work.

• Depth-Adaptive SuperPixels: DASP [20] exploits depth information in ad-

19

Figure 2.16: SCS SP extraction example (Freifeld [19] Figure 1).

dition to color. Hence, it can only be applied to images having depth infor-

mation such as RGB-D images. Pixel positions in 2D are transferred to 3D

surface points using depth information, and then cluster centers are assigned

such that density of SPs is increased with increasing distance from camera and

inclination angle with image surface. During over-segmentation to decide label

update, k-means algorithm is applied where Euclidean-distances are calculated

in terms of 1) point normal angles, 2) color space values and 3) distance to the

cluster centers. To speed-up label assignment calculations, comparison window

can be limited to a predefined region as done in SLIC [2]. According to Stutz

[4], method presents similar performance with SLIC [2] except stability, i.e.

performance is not stable across different images. Method enables to control

compactness and the number of SPs; needs post-processing to ensure connect-

edness but generates many SPs at post-processing. Stutz [4] concludes that

regarding methods enhancing depth information, DASP performance is better

than VCCS [21]. Figure 2.17 depicts results of SP extraction taken from Weik-

ersdorfer’s [20] work.

• VCells: Simple and efficient superpixels using edge-weighted centroidal

Voronoi tessellations: VC [22] initially tiles image with hexagon-like shaped

clusters using Lloyd’s algorithm [23]. Then, at each iteration assigns each pixel

to nearest cluster in terms of color and spatial distances to cluster centers. Cost

function encourages pixels to take the label of a SP that the majority of their

neighbor pixels within a predefined distance are assigned to. Method produces

20

Figure 2.17: DASP SP extraction example (Weikersdorfer, [20] Figure 1). Left to

right represents original and segmented image respectively.

Figure 2.18: VC SP extraction example (Wang, [22] Figure 8). Left to right represents

segmented image and its two zoomed-in version respectively.

compact SPs, and gives control over compactness and the number of SPs. Its

performance is not stable across different images and processing time is rela-

tively long. It generates many SPs when connectivity is enforced [4]. Example

results of VC taken from [22] are depicted in Figure 2.18.

• Voxel cloud connectivity segmentation-supervoxels for point clouds: VCSS

[21] takes depth information of RGB-D images into account for over-segmentation.

Works on 3D space (x, y, depth), setups a voxel grid and selects initial cluster

centers that are closest to voxel grid centers. At each iteration, pixels get label

of the closest cluster in terms of weighted color (LAB), spatial (x, y, depth)

and geometrical local surface similarities. Compactness is adjustable; however,

number of generated SPs cannot be controlled. Weikersdorfer [20] states that,

VCSS performance is worse than the other depth-based method DASP [20] and

it does not follow the surface as well as DASP does. Moreover post-processing

for connectivity results in many SPs. Figure 2.19 shows example VCCS ex-

traction results take from Weikersdorfer’s [21].

• Compact watershed and preemptive SLIC: PreSLIC[24], makes SLIC al-

21

Figure 2.19: VCSS SP extraction example (Papon, [21] Figure 6)

Figure 2.20: PreSLIC SP extraction example (Neubert, [24] Figure 2).

gorithm faster by employing local termination criteria for each SP that stops

evolution boundaries in homogeneous regions earlier. Its boundary recall and

under-segmentation error performance is slightly worse than SLIC but outper-

forms it in runtime performance achieving real-time processing capability [4].

PreSLIC sample results taken from Neuberts’ [24] work can be seen in Figure

2.20

• Linear spectral clustering superpixel: LSC [25] adopts N-Cuts algorithm

and combine its objective function with the objective function of K-means.

Method maps each pixel to a 10-dimensional space by transforming weighted

5-dimensional spectral (CIELAB color space l,a,b) and spatial (x, y) space.

Clusters are initiated using a regular rectangular grid. Then, each pixel is as-

signed to the closest cluster in aforementioned 10-dimensional space. At the

end of each iteration, cluster statistics are updated. To speed-up computations,

method suggests limiting windows for cluster membership updates. Accord-

ing to Stutz [4], LSC offers control over SP number and compactness; how-

ever, generates irregular SPs and exceeds the number of required SPs when

post-processing for connectedness is applied. Its performance is unstable on

different images and generated SPs are irregular, i.e. generated SPs varies in

22

Figure 2.21: LSC SP extraction example (Chen, [25] Figure 2). Images are composed

of images segmented into various number of SPs.

size much and their arrangements within image do not represent a regular grid

structure. Figure 2.21 depicts sample results taken from Chen’ [25] work.

2.7 Summary and Discussion

In Table 2.1, the type, number of configuration parameters, status of control over num-

ber of SPs and compactness of state-of-the-art SP extraction methods are presented

for the examined SP extraction methods.

Among different SP extraction categories, clustering-based approach effectively sat-

isfies SP extraction requirements; they present high boundary following and semantic

object performance with almost real-time performance. These techniques provide

control over number of SPs and compactness. Furthermore, due to their ease of im-

plementation and wide range of usage, the clustering-based methods are selected to

be analyzed in detail and improved in the upcoming chapters of this thesis. Start-

ing from a general clustering-based SP extraction method, every step of this generic

method will be examined to obtain a better approach.

23

Table 2.1: List of state of art Superpixel extraction methods

Method Type
Number Of

Parameters

Number of

SuperPixel

Control

Compactness

Control

SLIC [2] Clustering-based 2 ✓ ✓
LASP [17] Clustering-based 2 ✓ ✓
STP [18] Clustering-based 2 ✓ ✓
SCS [19] Clustering-based 2 ✓ ✓
DASP [20] Clustering-based 5 ✓ ✓
VC [22] Clustering-based 6 ✓ ✓
VCCS [21] Clustering-based 4 - ✓
PreSLIC [24] Clustering-based 4 ✓ ✓
LSC [25] Clustering-based 4 ✓ ✓
TP [11] Contour evolution 4 ✓ -

ERGC [12] Contour evolution 3 ✓ ✓
SEEDS [14] Energy optimization 6 ✓ -

ETPS [15] Energy optimization 5 ✓ ✓
CRS [16] Energy-optimization 4 ✓ ✓
W [5] Watershed-based 1 ✓ -

EAMS [6] Density-based 2 - -

NC [8] Graph-based 3 ✓ -

ERS [9] Graph-based 3 ✓ -

PF [7] Path-based 2 ✓ -

SEAW [10] Wavelet-based 3 - -

24

CHAPTER 3

SUPERPIXEL PERFORMANCE METRICS AND PERFORMANCE

EVALUATION

SPs are specialized subset of over-segmentation having their own requirements. Ex-

tracting SPs is a pre-processing step for user applications that decreases their number

of computations while increasing accuracy. However, the methods in literature have

different characteristics. In order to be able to compare their performance, precise

performance metrics and a test benchmark is needed. This benchmark should mea-

sure how well methods satisfy SP requirements. Therefore, the benchmark contains

several metrics that unveils method performance such as accuracy and run-time for

the benefit of user applications. When these metrics are chosen from the ones com-

monly used in literature, results become globally acceptable. However, not all of the

common metrics give results effectively. There have been proposals of improving

existing ones. This study are investigating SP extraction methods and proposing new

ones. During the study, in order to observe the affect of proposed improvements and

compare proposed SP extraction methods with the literature ones, a benchmarking is

presented. This chapter defines benchmark used in this study, by first defining metrics

used and then explaining evaluation methods.

3.1 Superpixel Performance Metrics

Several metrics are used to evaluate performance of Superpixel (SP) extraction meth-

ods. Metrics like Boundary recall (BR), Under-segmentation Error (UE), Achievable

Segmentation Accuracy (ASA) measure how well the generated SP represent the ob-

jects in the image. In order to measure this object-based representation, ground-

25

truth images that label each object with a unique id are used. Examples of com-

monly used data sets for benchmarking are The Berkeley Segmentation Data Sets

(BSDS300, BSDS500), The Stanford Background Dataset (SBD), The NYU Depth

Dataset (NYUV1, NYUV2), The SUN RGB-D Dataset (SUNRGBD) and The Fash-

ionista Dataset (Fash), which all provide ground-truth images.

Other metrics look from the structural point of view without relying on ground-truth.

Since SP generation is a pre-process that significantly decreases computational com-

plexity of succeeding algorithms, resultant SP structure should be used effectively by

those algorithms. This kind of metrics gives an idea about how well the generated

SP can be utilized by the following processes by measuring explained variation (EV),

compactness and regularity etc.

The metrics relying on ground-truth segments, evaluate performance based on the

idea that each SP should belong to a single object in the ground-truth image. Hence,

each SP is assigned to a single object and metrics penalize method for the mislabeled

pixels.

Following sections describe the metrics used to evaluate performance of SP extraction

methods. At the end, a new metric is proposed that cover boundary recall, under-

segmentation error and achievable segmentation accuracy.

3.1.1 Boundary Recall

Boundary Recall (BR), one of the most commonly used metrics, shows SP adherence

to object boundaries. It measures the proportion of ground-truth boundaries overlap-

ping with SP boundaries. Let S be SP boundaries and G be ground-truth boundaries.

Boundary Recall (Rec) is calculated as follows [26]:

Rec(G,S) =

∑
G ∩ S∑
G

(3.1)

For this metric, higher values mean better boundary adherence. One of the major

drawbacks of this metric is over-penalizing slight boundary following errors. The

other drawback is, it also fails to distinguish SP extraction method performance well.

As an example, in Figure 3.1 BR of proposed alternatives in Section 5.1 are pre-

26

sented, there is less than 1% difference between proposed alternatives for the same

compactness parameter.

Figure 3.1: Boundary recall metric example, proposed methods generate 1000 SPs

3.1.2 Undersegmentation Error

Undersegmentation error (UE) measure the overlap of SP with multiple ground-truth

segments. It is also referred as leakage or bleeding error. It also gives a notion about

boundary recall. Error becomes higher when SPs overlap (leak) more with other

objects. Hence, lower values are better. Levinshtein [11] was the first to use this

metric as a benchmark and the related equation is as follows:

UELevin(G,S) =
1

|G|
∑
Gi

(
∑

Sj∩Gi ̸=∅ |Sj|)− |Gi|
|Gi|

(3.2)

For this metric, each ground-truth object is evaluated one by one. For each object,

SPs intersecting with ground-truth object are assigned to that object, and the rate of

mis-assigned pixels are obtained.

However, Achanta [2] argues that former equation of Levinshtein [11] unfairly penal-

izes clusters that leaked slightly and suggested an improvement. In order to tolerate

small amount of leakages, Achanta adds an overlap threshold to former equation, such

that only SP that at least 5% of pixels are mis-overlapped are considered as leakage.

27

In order to overcome drawbacks of the aforementioned metrics, Van den Bergh [14]

proposed a new approach for measuring UE. SPs are assigned to their largest overlap

ground-truth clusters and leakage with respect to other clusters is taken into account.

With this approach, UE metric becomes complementary to Achievable Segmentation

Accuracy (ASA) metric explained in following section (UE = 1 - ASA). Van den

Bergh [14] UE equation is as follows:

UEBergh(G,S) =
1

N

∑
Sj

|Sj − argmax
Gi

|Sj ∩Gi|| (3.3)

For each SP, leakage is calculated by getting the difference between SP area and its

highest overlap area with a ground-truth cluster. Calculated leakages are accumulated

and divided to SP count.

Neubert and Protzel [24] proposed another metric for UE. In this approach, mini-

mum of overlap and non-overlapped region of each SP and ground-truth segment is

considered as leakage. SPs are not assigned to its largest overlapping segments as

Bergh [14] proposed; instead for each SP larger part among overlapping and non-

overlapping parts with each segment is considered to be assigned to that segment and

remaining one is calculated as error.

UENP (G,S) =
1

N

∑
Gi

∑
Sj∩Gi ̸=∅

min{|Sj ∩Gi|, |Sj −Gi|} (3.4)

Error is accumulated by calculating it for each combination of SP and ground-truth

segment and divided to SP count.

During the experiments throughout this thesis, UE metric 3.4 proposed by Neubert

and Protzel (NP) is used. One drawback of UE is, it double penalizes mislabel as-

signments. The other one is, like BR, it is not adequate to distinguish SP extraction

method performance well. As an example, in Figure 3.2 UE of proposed alterna-

tives in Section 5.1 are presented, there is less than 1% difference between proposed

alternatives for the same compactness.

3.1.3 Achievable Segmentation Accuracy

Achievable Segmentation Accuracy (ASA) [9] shows the highest achievable accuracy

when SPs are used for object segmentation. SPs are assigned to ground-truth seg-

28

Figure 3.2: Undersegmentation error metric example, proposed methods generate

1000 SPs

ments with largest overlap. Then, fraction of mis-assigned pixels to all pixels gives

ASA showing the ratio of correctly labeled pixels. For this metric, higher values are

better.

ASA(G,S) =
1

|G|
∑
j

max
Gi

{|Sj ∩Gi|} (3.5)

Drawback of this metric is being SP number dependent. As SP number increase

metric gives better results, which means 100% success can be achieved when SP count

is equal to pixel count. On the other hand, similar to UE, ASA is yet to distinguish SP

extraction method performance well. As an example, in Figure 3.3 ASA of proposed

alternatives in Section 5.1 are presented, there is less than 1% difference between

proposed alternatives for the same compactness.

3.1.4 Explained Variation

As ground-truth images are labeled by human operators, the process is hard and prone

to error. Explained variation (EV) proposed by Moore [27] removes this human de-

pendency by providing a metric that does not rely on ground-truth images. Metric

29

Figure 3.3: Achievable segmentation error metric example, proposed methods gener-

ate 1000 SPs

exploits high color variation on object boundaries to show boundary precision using

image only data. EV is calculated as:

EV (S) =

∑
Sj
|Sj|(µ(Sj)− µ(I))2∑
xn
(I(xn)− µ(I))2

(3.6)

where µ(Sj) and µ(I) are color mean of SP Sj and image I respectively. In (3.6),

total color variation of SPs with respect to global mean is divided into total color

variation of pixels with respect to global image mean. As a result, metric shows the

fraction of image variation that is explained when the detail is removed. SPs with high

spectral variances are penalized by the metric; but this effect decreases by increasing

number of SPs. EV takes values between 0 and 1 where higher values indicates better

performance.

This metric is quite useful when no ground truth image exists. However, data set

used throughout this work contains ground truth images. Hence this metric becomes

redundant, and is not used in this thesis.

30

3.1.5 Proposed Metric : Boundary Achievable Segmentation Accuracy

Achievable Segmentation Accuracy (ASA) gives the amount of correctly labeled pix-

els with respect to ground-truth segment. However, only SPs located on object bound-

aries can contain mislabeled pixels, SPs far from object boundaries usually fully over-

lap with a single ground-truth segment. Since the ratio of boundary SPs is signifi-

cantly less than non-boundary ones; non-boundary SPs dominate this metric which

makes the metric fail to distinguish the performance of segmentation algorithms well.

Moreover as mentioned earlier, ASA is dependent to number of SPs, as the number

of SPs increase, ratio of boundary SPs decreases and ASA increases.

The other metrics BR and UE are not fair either. While BR over-penalize slight

boundary errors, UE doubly penalize segmentation error. All BR, UE and ASA are

insufficient to evaluate performance of different SP extraction methods clearly.

In order to overcome those drawbacks, an alternative metric is proposed, namely

Boundary Achievable Segmentation Accuracy (BASA). Unlike ASA that takes into

account SPs without categorization, BASA only considers the SPs close to object

boundaries, and calculates ASA on the regions close to object boundaries. By getting

rid of non-boundary domination, metric allows to compare segmentation accuracy of

different SP generation methods more effectively.

In order to calculate BASA, first boundaries on ground-truth image are dilated with

a circle having radius proportional to average SP area, and then achievable segmen-

tation accuracy for this dilated region is calculated. For this metric, higher values

indicate better segmentation accuracy. BASA is obtained as follows:

BASA(Gr, S) =

∑
j maxGr

i
{|Sj ∩Gr

i |}∑
|Sj∩Gr|>0 |Sj|

(3.7)

where j is SP index, i is object index, and Gr is the masked ground-truth image.

The mask is the dilated ground-truth boundary image with a circular dilation element

having radius r, and r is calculated as
√
SParea/π.

Figure 3.4 depicts BASA evaluation mask on an example for 500 SPs and 1000 SPs.

As shown in figure, a decrease in SP number results an increase in mask size due to

an increase in area of SPs.

31

In literature UE, BR and ASA performance of SP extraction methods are usually pre-

sented together. However, while comparing two different methods, one can perform

better in BR and worse in UE which makes hard to make a conclusion. However,

BASA makes it possible to evaluate and compare different methods with a single dis-

tinctive metric, instead of non-distinctive three metrics. Since the evaluation mask

is obtained with a circular dilation proportional to average SP area, as the number

of SPs increases the evaluation mask is getting smaller and even small segmenta-

tion errors become visible. This approach allows BASA to evaluate the performance

independent from number of SPs.

Figure 3.5 depicts BASA for the proposed alternatives in Section 4 as an example.

Besides being a fair metric, BASA distinguishes performance better than the others as

this can be clearly observed from the figure. The gap between curves is larger than the

ones for BR, UE and ASA which are shown in Figures 3.1, 3.2 and 3.3, respectively.

Performance of alternative methods has the same order for all four metrics, meaning

they all give the same decision about ranking of methods.

3.2 Superpixel Performance Evaluation

Metrics unveil performance of SP extraction methods from several point of views

such as object boundary following accuracy and run-time. In order to achieve an ef-

fective comparison, evaluation of the measurement results needs to be achieved com-

prehensively. Otherwise, ambiguity arises for the results that makes them unusable.

Although the metrics are selected from the globally accepted ones, current evaluation

of the results are benchmark dependent, as they are generally based on number of

generated SPs and method hyper-parameters. However, method dependent evaluation

prevents achieving a fair comparison and causes misinterpreted results. This section

defines evaluation approach of this study that gets SP extraction experiment results

evaluated effectively and also gets rid of ambiguity in literature benchmarks. First

Compactness to be used as metric base parameter is explained, and then Area-under-

curve approach is proposed to make evaluation independent of hyper-parameters.

32

(a) (b)

(c) (d)

Figure 3.4: BASA mask on an example; a) original image, b) ground-truth object

boundaries, c) BASA mask for 1000 SPs d) BASA mask for 500 SPs

33

Figure 3.5: Proposed boundary achievable segmentation error for proposed alterna-

tives

3.2.1 Compactness Parameter

Compactness (CO) metric [28] gives information about SP shapes by measuring their

closeness to a circle. It is also denoted as circularity measure. As the circle is the

most compact shape having a maximum achievable area for a given boundary length;

higher values of compactness corresponds to shapes closer to circle, and for a perfect

circle compactness score is 1.

SP extraction methods are used as a pre-processing step for image processing appli-

cations to decrease complexity of image data. Many of those applications require

compact clusters to process them efficiently. Hence, the methods proving better com-

pactness while preserving boundary adherence or achievable segmentation accuracy

could be a better choice for those applications. However, shape of generated SPs

strongly dependent to approach of the method. Moreover some methods provides

compactness parameter to adjust compactness of clusters waiving spectral similarity

and boundary performance. Therefore, different SP extraction methods cannot be

fairly compared without considering compactness parameter.

Stutz [4], [16], variate compactness hyper-parameter of various methods [14], [15],

34

[17], [19] to take compactness into account in comparison, but not the compactness

of SPs itself. Since compactness hyper-parameter is method dependent, it does not

have a common definition. This parameter is used for adjusting compactness of the

resulting SPs. In this thesis, compactness of SPs is the target, parameter is a tool

to achieve it. Hence, instead of relying on method dependent parameter, directly

measuring the compactness generated SPs is a better approach. Compactness is a

common metric, independent from method and image. When compactness is used as

base component of other metrics, it helps to display performance of methods within a

wide range compactness levels. In this manner, applications employing SP extraction

methods can easily select fitting method depending on desired compactness level.

Due to the reasons mentioned above, in this work, compactness is selected as base of

other performance metrics.

CO compares area of each SP with the area of circle. Hence, metric compares area

of all SPs with area of circle and has a range of [0-1] where higher values indicate a

better compactness. Compactness is defined as follows:

CO(S) =
1

A(I)

∑
Sj

|Sj|
4πA(Sj)

P (Sj)2
(3.8)

where A(I) and A(Sj) are area of image and SP Sj respectively and P (Sj) is perime-

ter of SP Sj .

However due to discrete nature of images, perimeter measurement of SPs can dif-

fer from actual one which results misleading compactness evaluations. This error

between measured and actual one increases when size of SPs get smaller due to in-

crease in dominance of boundary pixels. Since compactness is an evaluation method it

needs to be measured accurately for effective comparisons. There are several methods

in literature for measuring perimeter of objects having discrete nature. In Appendix

A, measurement accuracy of these methods are examined by conducting experiments

and then the most accurate one is selected to be used in compactness measurements

of generated SPs throughout this study.

35

3.2.2 Proposed Evaluation Method: Area Under Curve

Most of oversegmentation methods have hyper-parameters which enables to adjust

compactness of generated SPs. The reason why SP number is kept constant during

comparative evaluations in literature is same for compactness which should be kept

constant as well, as with the increasing number of SPs or decreasing compactness

usually increase the performance. Figure 3.6 depicts ASA vs compactness perfor-

mance of two state of the art methods SLIC [2] and ERGC [12] that are calculated

during experiments in Chapter 5. It cannot be stated easily which method perform

better by just analyzing the graph. Additionally, without measuring the performance

without compactness, depending on chosen hyper-parameters one method may easily

be presented as better than other, which is not the case as shown in Figure 3.6.

Moreover, the researchers usually select hyper-parameters for a specific data set which

might give completely different results in other data sets. As a result, performance of

methods should be measured for entire range of hyper-parameters.

In order to completely evaluate performance of SP extraction methods, in this work

measuring Area Under Curve (AUC) method is proposed. To enhance AUC, exper-

iments are conducted for various set of values of hyper-parameters, and area under

the curve of desired metrics are calculated for a range of compactness to achieve a

fair comparison. In machine learning, AUC is used together with Receiver Operating

Characteristics (ROC) [29] for the evaluation of signal (or object) detection perfor-

mance. ROC represents performance of a detection result at all thresholds while AUC

of ROC represents overall performance across all possible thresholds measuring de-

gree of separability.

In this work, AUC of UE, BR, ASA, BASA and run-time with respect to compactness

are evaluated. As shown in Figure 3.6, it is hard to make a decision here by analyzing

the graph, since for specific compactness values one method can outperform the other

and vice versa. However, calculating AUC in the required range of compactness

clearly indicates the better performing method. For the example shown in Figure

3.6, BASA AUC values of ERGC [12] and SLIC [2] is 80.7% and SLIC is 81.3%,

respectively. Hence, it can be concluded that SLIC has a better BASA performance

36

than ERGC. For the rest of this work, both raw graphics of various performance

metrics and the area under curve for the selected compactness range will be presented

for a fair comparison.

Figure 3.6: Area under curve evaluation example. BASA AUC values of ERGC [12]

and SLIC [2] is 80.7% and SLIC is 81.3%, respectively

37

38

CHAPTER 4

ANALYSIS OF A GENERAL CLUSTERING-BASED SUPERPIXEL

EXTRACTION METHOD

Clustering-based SP extraction methods are widely used due to their high perfor-

mance with a low response time. They solve a cost-function iteratively where each it-

eration pixels are assigned to closest cluster. In this chapter, clustering-based method

framework will be extracted, alternatives to steps of this framework will be investi-

gated in detail, alternative approaches will be proposed and performance of the alter-

natives will be analyzed.

4.1 A General Clustering-based Superpixel Extraction Method

A general clustering-based SP extraction method initially clusters image into regu-

larly distributed and compact SPs. Then, before advancing to iterations as an optional

pre-processing step, this grid may be refined further to ease convergence. After that,

iterations takes place. SP statistics are calculated and based on these statistics, cost-

function to be minimized and other constraints like connectivity, pixels are assigned

to pixel to SP assignments are updated iteratively. Iterations may last till all SPs

converge or number of iterations may be a pre-defined hyper-parameter. After itera-

tions phase, an optional connectivity post-processing phase takes place for methods

produce disconnected clusters.

Algorithm 1 shows a general flow of a clustering-based SP extraction method. In

following sections, all steps are analyzed in detail.

39

Algorithm 1 A General Clustering-based Superpixel Extraction Method
1. Initial tiling: Initial tiling is performed and cluster centers are assigned. Rect-

angle or hexagon is chosen as cluster shape.

2. Refinement of initial tiling (optional): To start with better cluster statistics,

initial grid may be refined.

3. Iterations:

for i in MaxIteration do

for all S in SPList do

4. Statistics update: First and second order SP statistics are calculated.

end for

for all (x, y) in Image do

5. Label update: Pixel at (x, y) is assigned to its closest neighbor cluster in

terms of spectral and spatial distance to cluster estimated statistics. A cost-

function is minimized while updates. There may be additional criteria such as

connectivity enforcement, to enable label update.

end for

end for

6. Post-processing (optional): If a method produce disconnected clusters, a post-

processing step is required to obtain connected clusters. Depending on the post-

processing algorithm, either new clusters are generated for disconnected clusters

or they can be assigned to a neighbor cluster. This method may break regular grid

structure when new SPs are generated.

40

4.2 Initial Tiling

Due to the nature of clustering-based extraction methods, an initial grid is formed at

the beginning and clusters are reshaped based on a cost function iteratively. At the

initial tiling step, each pixel is assigned to a cluster which is shaped according to the

selected tiling method. In order to form initial tiling, clusters can be selected either

rectangular or hexagonal shaped. Tiling type has effect on SP extraction performance

which is analyzed in the following sections. Advantages of using rectangular grid is

its low computational cost over hexagonal one. On the other hand, since the perfor-

mance is evaluated with respect to compactness, starting with a shape close to circle

which is hexagon, leads to early convergence and more compact SPs with a better

accuracy.

Figure 4.1 depicts rectangular and hexagonal tiling example. Due to its nature, hexag-

onal tiling has advantage over rectangular tiling by starting with a higher compactness

value. Therefore hexagonal tiling gives significantly better boundary adherence than

rectangular one for the same compactness. However, both tiling alternatives have

different usage areas that makes it no sense to compare their performance. In other

words, if the generated SPs are going to be fed into graph based processing applica-

tions, hexagonal tiling should be used; on the other hand, rectangular tiling has an

advantage such that SPs can form a regular rectangular grid, which can be treated

as an image on which all computer vision methods can be applied easily especially

the neural network applications. Hence, in order to track performance of the two in-

dependently, throughout this work, experiments are conducted by both starting with

hexagonal and rectangular tiling.

4.3 Cluster Connectivity

Both initial tiling options results in initially connected clusters. However preserving

cluster connectivity is a major issue for SP extraction algorithms. Due to definition of

SPs, every pixel in an SP (or cluster) should be connected to other pixels in the SP. For

methods generating disconnected clusters, an additional post-processing step should

be applied to form connected clusters and obtain SPs. Mentioned post-processing

41

Figure 4.1: Initial tiling example; rectangular tiling on the left side, hexagonal tiling

on the right

step should either connect disconnected pixels of a cluster to closest and connected

neighbor clusters or create new SPs from them.

A cluster is connected and therefore can be called as an SP, if for each member pixel

of that cluster there exists at least one within cluster path to rest of the member pix-

els. In other words, a cluster can form an SP if there is no disconnectivity within a

cluster, which makes necessary every pixel of that cluster can be accessible by stay-

ing inside that cluster. Figure 4.2 a and b shows connected and disconnected clusters

respectively.

Figure 4.2: Connected cluster example; a) a connected cluster, b) a disconnected

cluster

For a 2 dimensional image, a pixel represented by x and y has 8 neighbors located at

(x± 1, y ± 1), (x, y ± 1), (x± 1, y) positions. Depending on the relation with neigh-

bors, within the context of this work 2 types of connectivity are observed; 4-connected

42

and 8-connected.

4.3.1 4 or 8-Connected Update

4-connected pixels are the ones that touch to the neighbor pixels’ edge. 4 out of

8 neighbors are 4-connected and located at (x, y + 1), (x+, y), (x− 1, y), (x, y − 1)

positions. If at least one of 4-connected neighbors belong to same cluster, that pixel is

4-connected to that cluster. If every pixel of a cluster is 4-connected to that cluster and

there is no discontinuity within the cluster, the cluster becomes 4-connected. Figure

4.3 shows examples of 4-connected pixel and region. Foreground pixels are labeled

1, backgrounds are labeled 0.

Figure 4.3: 4-connected examples; a) 4-connected neighbors, b) 4-connected pixel to

a region, c) 4-connected region

8-connected pixels are the ones that touch to the neighbor pixels’ edge or corner. So

all possible neighbors of every pixel are 8-connected to them for an 2-D image. If at

least one of those neighbors belong to same cluster, that pixel is called 8-connected

to that cluster. In addition, if every pixel of a cluster is 8-connected to that cluster

and there is no discontinuity within that cluster, the cluster becomes 8-connected. 4

connectivity is additional restricted subset of 8-connectivity in a way that, if pixels

and clusters are 4-connected, they are also 8-connected. Figure 4.4 shows examples

of 4-connected pixel and region. Foreground pixels are labeled 1, backgrounds are

labeled 0.

At the label update step of SP extraction methods, pixels take SP labels minimizing

a cost function iteratively. Pixels are only able to take values of their neighboring

43

Figure 4.4: 8-connected examples; a) 8-connected neighbors, b) 8-connected pixel to

a region, c) 8-connected region

clusters. So that at each iteration for each pixel, distance to their neighbor clusters

are calculated and the minimum one is selected. At this point, selection of neighbor

pixels determines the connectivity of the clusters. SP extraction methods in literature

choose either 4-connected or 8-connected update, that means pixel can get value of

their either 4-connected or 8-connected neighbors respectively. However this type of

update may break connectivity within a cluster.

Figure 4.5 shows two examples of label update scenario of initially 4-connected pixel

to region. Pixels belonging to the SP that the center pixels belongs are shown with

ones and the other labels are shown with zeros. In a), changing the label of the

center pixel, causes foreground pixels disconnect from each other in terms of 4-

connectedness. This update will break connectivity of the foreground cluster. In

b), update is safe since foreground pixels remains 4-connected and background is ei-

ther. In c), break of connectedness due to label update of a pixel is shown in a wide

view. Initially foreground pixels are 4-connected, however when the marked pixel

gets a label from background clusters, foreground pixels become disconnected and as

a result two foreground regions are formed in terms of 4-connectivity.

Figure 4.6 shows two examples of label update scenario of initially 8-connected pixel

to region. In a), update may result a disconnected regions. In b), safe update as

foreground and background pixels remain 8-connected. In c), example of breaking

connectivity with in cluster after label update. After update of marked foreground

pixel, foreground cluster split into three clusters and becomes a disconnected cluster.

44

Figure 4.5: 4-connected update examples; a) label update breaking connectivity, b)

label update preserving connectivity, c) disconnected region

Figure 4.6: 8-connected update examples; a) label update breaking connectivity, b)

label update preserving connectivity, c) disconnected region

4.3.2 Simply-Connected Update

As explained in previous section, 4 and 8-connected updates may result disconnected

regions, and those regions must be handled by a post-processing step. This step would

result in either creating new SPs for disconnected regions or connecting those dis-

connected pixels to their closest clusters. In order to get rid of this post-processing

step and to ensure connectivity during iterations, Freifeld [19] proposed a simply-

connected update method. This method is initiated from the concept of simple point

defined by Bertrand [30]; if removing of a point does not change the topology, the

point is called simple point. This can be rephrased in image domain such as if chang-

ing label of a pixel does not change topology, which is the number of connected

components, the pixel is called as a simple pixel. Freifeld [19] let only the simple

pixels to update their label during iterations.

The update mechanism of Freifeld [19], enables pixel label update if number of fore-

45

ground and background clusters do not change within a 3X3 neighbour block. Fore-

ground pixels are defined as all the pixels belong to same cluster with center pixel

and the background ones are the rest. The count of 4-connected foreground regions

gives Foreground Number, FG, and the count of 8-connected background regions

gives Background Number, BG. Before update FG and BG values are calculated,

then center pixel is replaced with background value and new FG and BG values are

calculated. If FG and BG do not change through label update, the center pixel is

defined as a simple pixel and it can get label of one of its 4-connected neighbors.

Figure 4.7.a shows a denied label update. Initially there are 1 FG and 2 BG regions

and after label update there are 2 FG and 2 BG regions, where count of FG changes

indicating that pixel is not a simple pixel. However for the case 4.7.b, label update is

allowed. At the beginning there are one FG and one BG region, and after the update

number of FG and BG remains the same indicating pixel is a simple point.

Figure 4.7: Simply-connected update examples; a) not allowed update, b) allowed

update

This update procedure preserves 4-connectivity within a cluster and hence ensures 4-

connectivity within cluster. There is an update pattern for simply-connected update;

46

image is divided by 3x3 blocks and 9 sub-iterations performed where at each itera-

tion, only pixels at the same location of the 3x3 block are processed for label update

as show in Figure 4.9. However, there is a different approach between paper work

and its open source implementation. Although it is not stated as in paper work, in its

implementation part, every 4-connected neighbor value is tested against Simply Con-

nectedness and when the tests for all background labels are passed label update for

that pixel becomes available. This approach requires checking simply-connectedness

for each neighbor which brings a significant computational burden. In addition, this

approach makes label update harder leading to late convergence of SPs which also

requires extra processing time.

4.3.3 Proposed Method: Just-Connected Update

In order to find an efficient label update constraint that satisfies the need of generat-

ing connected regions and enabling fast convergence of SP methods, in this work a

neighbor selection method called Just Connected (JC) is introduced. When the initial

clusters are (4 or 8) connected regions, the proposed method ensures the connectivity

to be preserved during the label update.

The idea behind JC is; regarding 3x3 neighborhood region of each pixel, if the region

is 4-connected initially, region should remain 4 connected after a label update and if

it is 8-connected before label update it should remain 8-connected after label update.

No 4 or 8 discontinuity is allowed within 3x3 block. The detailed algorithm is given

in Algorithm 2. A sample update mechanism is presented in Figure 4.8. In a) FG

is 4-connected and its count is 1 but after it is 2 so that the update is denied. In b)

FG is 4-connected and its count 1 which is not changed across update so update is

allowed. In c) FG is 8-connected and count is 1, however after update FG count

is to 2 which means update is not allowed. In d) FG is 8-connected and count is 1,

FG count remains 1 after label update meaning that update is enabled for this case.

This update procedure preserves the initial connectedness both for 4-connected and

8-connected cases. Processing pattern given in Figure 4.9 is applied for this method

preventing interference between neighbors during label update.

47

Figure 4.8: Just-connected update examples; a) 4-connected foreground not allowed

update, b) 4-connected foreground allowed update, c) 8-connected foreground not

allowed update, d) 8-connected foreground allowed update

Figure 4.9: Update pattern of simply and just connected label updates

4.4 Refinement of Initial Tiling

After initial tiling step, an optional grid refinement may be applied. Initial statis-

tics of SPs are calculated after initial tiling. This statistic has an important role on

48

Algorithm 2 Just Connected Label Update Decision
if Before label update, foreground is 4-connected then

if After label update, number of 4-connected foreground region is 1 then

Pixel update is allowed

else

Pixel update is not allowed

end if

else if Before label update, foreground is 8-connected then

if After label update, number of 8-connected foreground region is 1 then

Pixel update is allowed

else

Pixel update is not allowed

end if

else

Pixel update is not allowed

end if

convergence of SPs during iterations. However, if statistics are not well initialized,

performance of SP extraction method might degrade. To get rid of this degradation,

either number if iterations should be increased that significantly increases overall

processing time or grid refinement should be applied. Grid refinement corrects initial

clusters, therefore the initial statistics of SPs before starting iterations.

4.4.1 Predefined Re-segmentation

Ince [17] proposed predefined re-segmentation (PDR), an initial tiling refinement

method, that splits some SPs into either two or three clusters according to their inner

spectral distribution. SPs whose contrast variations are high are the candidates to get

divided into sub-SPs. Method is proposed to be applied after hexagonal initial tiling

but can be extended to initially square tiled ones. The major drawback of PDR is, it

breaks regular grid structure by creating new SPs which is out of scope of this work.

This work focuses methods that only produces regular grid structure. However the

idea refining the initial grid before iterations proposed by Ince [17] is investigated in

49

the next section in detail and a new refinement method is proposed that keeps regular

grid structure. Then it is evaluated that, whether such a grid refinement is necessary

or not.

4.4.2 Proposed Method : Edge-based Refinement

A good performing SP extraction method generates SPs which follow object bound-

aries well. Therefore, during iterations, SPs tend to converge at the edges of the

objects. In other words, edge of objects become boundaries of SPs at the end. De-

pending on the method, the convergence may take too long. Before starting iterations,

a pre-processing step that extracts these convergence points and shifts SP boundaries

to those points speed-ups the overall process. In this in this work, Edge-based Re-

finement (EBR) method is proposed as a new grid refinement method. With EBR

both boundaries and initial statistics of SPs become close to final ones that leads to

an early convergence with only a few updates during iterations.

EBR can be applied with or without generating new SPs and can be used for both

hexagon and rectangular initial tiling. After EBR, a post-processing step is needed to

ensure cluster connectedness. Pseudo code of EBR is given in Algorithm 3.

Algorithm 3 Edge-based Grid Refinement
for all S in SP List do

for all N in S Neighbor List do

B is boundary point between S and N

P and M is local extremum point on brightness derivative image and value

respectively on the line between center of S, Cc, and center of N , Cn

Th is threshold hyper-parameter

if M ≤ Th then

if using P as boundary does not change connectedness of S and N then

B ← P , use P as new boundary

end if

end if

end for

end for

50

Figure 4.10 a, b, c depicts SPs after initial tiling, EBR and iteration steps respectively

for rectangular initial tiling. As seen in (b) EBR modifies initial SPs (a) by shifting

boundaries to a point close to object edges which are later converged in (c). Similarly,

(d), (e) and (f) depicts output of SP extraction steps: initial tiling, EBR and iterations

respectively for hexagonal initial tiling. Here EBR modifies hexagonal grid given in

(d), by locating boundaries through the object boundaries shown in (e) so that SPs

converge faster during iterations (f).

In order to analyze the affect of initial tiling refinement, an experiment is conducted

starting with rectangular and hexagonal initial tiling. Since this work focuses only on

regular grid structure, connectivity must be enforced from the beginning. So proposed

just connected 2 label update criteria is employed. JC, keeps connectivity as it is. If

clusters are 4-connected at the beginning, they remain 4-connected after iterations,

and same for 8-connected. Since both HEX and RECT initial tiling is 4-connected,

generated SPs are going to be 4-connected as well with JC criteria.

Predefined re-segmentation is out of context of this experiment since it breaks reg-

ular grid structure. This experiment will clarify whether refinement of initial tiling

is needed or not, therefore options edge-based refinement and no refinement are an-

alyzed in this experiment. However, the results of PDR is also presented to make

a comparison. Experiments are conducted for 500 and 1000 SPs and two different

cost functions; SLIC and LASP given in Equations 4.9 and 4.10 respectively. Details

of those cost-functions are described in the related sections. For each configuration,

several lambda (compactness parameter) values are used to get results within a wide

range of compactness and then BR, UE, ASA, BASA and Run-time values are calcu-

lated from the generated SPs. In order to make different configurations comparable,

iteration length of experiments chosen such that total run-time of the algorithm with

different tiling refinement methods is kept constant. To achieve a constant run-time,

experiments employing EBR has two iterations less than the ones with no refinement,

as EBR implementation approximately takes 2 iterations long. Table 4.1 shows sum-

mary of related configuration options of this experiment.

To begin with analyzing the refinement of initial tiling. There are 3 options, no re-

finement (OFF), pre-defined segmentation (PDR) and edge based refinement (EBR).

51

(a) (b)

(c)

(d) (e)

(f)

Figure 4.10: Edge-based refinement example; a, b, c are refinement of rectangular

tiling, d, e, f are refinement of grid tiling

52

Table 4.1: Initial tiling refinement experiment configuration

Initial Tiling Refinement #SPs Cost Function Metrics

Hexagonal OFF 500 SLIC (4.9) BR

Rectangular EBR 1000 LASP++ (4.10) UE

PDR ASA

BASA

Run-time

BASA AUC

Run-time AUC

Figure 4.11 depicts performance of chosen cost functions in metrics BR, UE, ASA,

BASA and run-time for 500 SP and hexagonal initial tiling. Here, PDR ones which

marks with triangle shows top boundary performance. Then there is no significant

difference between EBR and OFF marked with square and circle respectively. The

results for 1000 SPs and hexagonal tiling case shown in Figure 4.12, results are simi-

lar to 500 SP case. PDR performs best and EBR and OFF comes after.

Besides, Table 4.2 and 4.3 shows numerical averages of BASA and run-time respec-

tively which are area under curve (AUC) for the figures mentioned above. Numerical

values are consistent with the figures. For 500 SPs and SLIC cost function, PDR has

best BASA score with 0.6% above EBR and OFF score. Regarding run-time, they

are close to each other as mentioned above this is what is intended. For LASP cost

function, BASA score of PDR 0.5% is better than EBR and OFF where EBR and

OFF has same score. For the 1000 SP case and SLIC cost function, PDR is 0.5%

and 0.6% higher than OFF and EBR respectively. OFF has 0.1% higher score than

EBR. For LASP, PDR is 0.5% and 0.4% shows better performance than EBR and

OFF respectively. OFF beats EBR by 0.1%. Run-time difference is negligible for this

experiment.

Figure 4.13 depicts performance of different tiling refinement methods for 500 SP.

Here, similar to hexagonal tiling case, PDR outperforms the others in all metrics

except run-time. The main difference from hexagonal tiling case is EBR performs

53

better than OFF. For the 1000 SPs case shown in Figure 4.14, PDR remains at the top,

EBR continues to show better performance than OFF.

As shown in Tables 4.2 and 4.3, for 500 SPs and SLIC cost function, PDR has the

best BASA score about 0.8% and 1.3% above of EBR and OFF score respectively,

and EBR score is 0.5% higher than OFF. Regarding run-time, they are close to each

other similar to hexagonal tiling case. Regarding LASP cost function performance,

PDR is 0.6% and 1.0% better than EBR and OFF respectively, EBR outperforms OFF

by 0.4%. For the 1000 SP case and SLIC cost function, PDR is 1.0% and 1.7% higher

than EBR and OFF respectively. EBR has 0.7% higher score than OFF. For LASP

cost function, PDR outperforms EBR and OFF by 0.8% and 1.4% respectively, EBR

shows 0.6% better performance than OFF. Run-time difference is again negligible for

this experiment.

To sum up, after a series of experiments to see effect of initial tiling refinement on

SP extraction method performance, PDR is the one having best performance for all

cases. Nevertheless, as mentioned earlier the drawback of PDR is, it generates new

SPs breaking regular grid which prevents them to be employed by certain approaches

like neural networks. In this work, only the methods preserving regular SP grid struc-

ture is considered, therefore PDR is out of scope of the work. It is used in the ex-

periments to give idea about its performance for the users who do not care about

preserving neighborhood topology. Then regarding the remaining methods OFF and

EBR, EBR does not outperform OFF as expected for the hexagonal tiling case, how-

ever achieves better results when rectangle is selected as initial tiling type. EBR is

designed to set final SP boundaries as early as possible, even before iterations start,

however its computational burden makes its performance comparable with OFF. OFF

performs slightly better than EBR in hexagonal tiling case but worse in rectangular

tiling experiments.

Ince [17] claims that after initial tiling, applying a pre-processing step that refines

initial tiling increases SP extraction performance and proposes a refinement method

called predefined re-segmentation. Despite proposed method breaks regular grid

structure, the idea initial tiling refinement is investigated in in this section. As a

result, Edge-based refinement is proposed that keeps regular grid structure as it is

54

Table 4.2: Initial tiling refinement experiment BASA area under curve performance

BASA RECT HEX

#SPs Method OFF EBR PDR OFF EBR PDR

500
SLIC (4.9) 80,9% 81,4% 82,2% 81,3% 81,3% 81,9%

LASP (4.10) 82,3% 82,7% 83,3% 82,7% 82,7% 83,2%

1000
SLIC (4.9) 80,6% 81,3% 82,3% 81,7% 81,6% 82,2%

LASP (4.10) 81,8% 82,4% 83,2% 82,8% 82,7% 83,2%

Table 4.3: Initial tiling refinement experiment average run-time (ms) area under the

curve performance

RT RECT HEX

#SPs Method OFF EBR PDR OFF EBR PDR

500
SLIC (4.9) 59,6 58,9 65,2 58,6 56,6 54,6

LASP (4.10) 69,7 66,9 71,9 67,1 64,0 63,7

1000
SLIC (4.9) 53,0 51,1 50,7 50,4 49,1 47,7

LASP (4.10) 63,0 59,0 59,0 59,1 56,2 55,8

and experiments are conducted to evaluate if there is a need of such a refinement.

However, after experiments, it is observed that there is no increase in performance

concluding refinement of initial tiling is not needed. Instead, performing two more

iterations without refinement of initial tiling gives similar results. Since EBR calcu-

lations takes two iterations long, this time can be utilized at iterations step such that

first two iteration already modifies the initial tiling in the same way.

4.5 Cost Function

Cost function is evaluated at the label update step of method flow given in Algorithm

1. Label updates are performed iteratively and applied for each pixel to minimize a

55

Figure 4.11: Performance of different tiling refinement methods for hexagonal initial

tiling and 500 SPs

56

Figure 4.12: Performance of different tiling refinement methods for hexagonal initial

tiling and 1000 SPs

57

Figure 4.13: Performance of different tiling refinement methods for rectangular initial

tiling and 500 SPs

58

Figure 4.14: Performance of different tiling refinement methods for rectangular initial

tiling and 1000 SPs

59

cost function. SP extraction methods differ in their proposed cost functions. As it

affects the label update, the cost function the backbone of methods, that mainly deter-

mines the performance of the method. Following paragraphs describe cost function

basics, presents state-of-the art ones, and then explain the proposed ones in detail.

Every pixel can be represented by a feature vector composed of visual (spectral) and

spatial components:

X = [I1(x, y) ... Is(x, y) x y] (4.1)

where X ∈ Rn is n dimensional feature vector, [I1(x, y) ... Is(x, y)] are visual

components over S spectral bands and [x, y] is the location on the image plane. Depth-

based algorithms enhance extra depth information as the third dimension of spectral

component besides [x, y].

Achanta proposed SLIC method [2] which performs pixel to SP label assignment

with K-means algorithm. SLIC assigns pixels to the closest SP based on Euclidean

distance of feature vector X . Additionally, SLIC employs a compactness parameter

to prioritize spatial distance over spectral distance or vice versa. SLIC [2] performs

label updates by solving the following minimization problem iteratively:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2 + λ((x− x̄c)

2 + (y − ȳc)
2) (4.2)

where s represents index of S spectral bands, c is a cluster belongs to cluster set Cx,y

and λ is compactness parameter. SLIC utilize first order spectral and spatial statistics

which are represented with Īs,c and (x̄c, ȳc) in (4.2). Higher values of compactness

parameter results in lower boundary adherence but more compact SPs.

The successor clustering-based cost functions use same approach such that function

consists of a spectral distance part and a weighted spatial distance part.

However, Ince [17] claims that clustering-based methods based on SLIC approach

solves a maximum likelihood problem. For the given conditional distribution of clus-

60

ters, pixel label can be calculated by maximizing the likelihood given in equation

(4.3) by observing the feature vector X .

arg max
c∈CX

p(X|c) (4.3)

where c is SP and CX is the list of possible neighbor SPs that the pixel can be assigned

to. Probabilistic distributions of clusters (SPs) are estimated while label updates.

If the distribution of a cluster is an n-dimensional multivariate Gaussian, pixel to SP

membership function in (4.3) becomes:

p(X|c) = 1

(2π)n/2|Σc|1/2
e−

1
2
(X−X̄c

T
)Σ−1

c (X−X̄c) (4.4)

where Σc ∈ Rnxn is covariance matrix and X̄c is mean vector of cluster c in n dimen-

sional feature space. The maximization problem in (4.3), with Gaussian distribution

(4.3) assumption, can be expressed as the following minimization problem:

arg min
c∈CX

(X − X̄c)
TΣ−1

c (X − X̄c) + ln |Σc| (4.5)

If the spectral bands are assumed to be independent and orthogonal (i.e. LAB color

space), minimization equation (4.5) can be expressed as:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2

σ2
s,c

+
S∑

s=1

lnσ2
s,c + ln(σ2

x,cσ
2
y,c − σ2

xy,c)

+

x− x̄c

y − ȳc

T  σ2
x,c σxy,c

σxy,c σ2
y,c

−1 x− x̄c

y − ȳc

 (4.6)

where σ2
s,c is variance of spectral band s, σ2

x,c and σ2
y,c are spatial variance over x and

y axes respectively, and σ2
xy,c is spatial covariance of x and y axes of cluster c. This is

the general cost function when cluster distributions are assumed to be Gaussian and

spectral axes are assumed independent and orthogonal.

61

If it is assumed that spatial axes are independent, equation (4.6) can be expressed as:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2

σ2
s,c

+
(x− x̄c)

2

σ2
x,c

+
(y − ȳc)

2

σ2
y,c

+
S∑

s=1

lnσ2
s,c + lnσ2

x,cσ
2
y,c

(4.7)

Based upon (4.7), when the variance terms are assumed to be constant they can be

omitted, and (4.7) can be rewritten as follows:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2 + λ((x− x̄c)

2 + (y − ȳc)
2) (4.8)

where λ is a compactness parameter that prioritizes spatial distance over spectral

distance. Higher values of lambda (λ) results more compact SPs with less boundary

adherence.

Starting with the claim of clustering-based methods solve a maximum likelihood

problem, and making several assumptions such as Gaussian distributed independent

and orthogonal axes and constant variance, Ince [17] obtains SLIC cost function (4.2)

as in (4.8).

Equation 4.8 can be rewritten as:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2

σ2
spec

+
(x− x̄c)

2 + (y − ȳc)
2

σ2
spa

(4.9)

where σ2
spec and σ2

spa are default spectral and spatial variances respectively. If σ2
spa =

σ2
specAsp/λ

′, where Asp is the average SP area and λ′ is compactness parameter, modi-

fied SLIC cost function [2] which can handle varying average SP area can be obtained.

Revised equation (4.9) of SLIC, indicates that cost function of SLIC uses constant

global spectral variance and spatial covariance. Obviously, it is derived from equation

(4.7) by assuming constant variance and covariance.

62

LASP [17] discards SLIC global spectral variance assumption and utilize second or-

der statistics of spectral bands. As the variance of SPs are not converged initially,

LASP estimates a robust a variance for each pixel by getting the minimum variance

of neighboring SPs. The resultant equation becomes:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2

σ2
s(x, y)

+
(x− x̄c)

2 + (y − ȳc)
2

σ2
spa

(4.10)

where Is is color channel s component of pixel, Īs,c is average color channel s com-

ponent of SP c, x and y describe spatial location of pixel, x̄c and ȳc describe location

of SP center, σ2
spa = Asp/λ is the spatial variance, Asp is the average SP area, λ is

compactness parameter and σ2
s(x, y) = min

{
σ2
s,c

}
c∈Cx,y

as variance.

With this approach, LASP [17] utilizes spectral distributions of clusters to take the

advantage of local adaptation. Since SLIC [2] does not distinguish if processed re-

gion is texture-rich or not, it either fails to follow the object boundaries or generates

less compact shapes. LASP [17], uses a region dependent normalization term for

spectral distance which increases boundary adherence while preserving compactness.

However, instead of directly using candidate cluster variances, method selects mini-

mum variance among all candidate neighbors for each pixel as cluster variations are

wanted to be small. Additionally, since initial statics are not reliable, even if it is not

explicitly declared but just mentioned in [17], LASP limits spectral variances with a

constant global hyper-parameter.

Both SLIC and LASP assumes a constant spatial covariance which forces every SP

to have identical shape. This assumption significantly decreases boundary adherence

as SPs should have different shapes and sizes to adapt to object boundaries well. An-

other disadvantage of those methods are that they rely on global spectral variance

or variance limit which makes performance of methods image dependent. Although

LASP cost-function introduces adaptiveness to local structure, global variance limits

cause method to be image and data set dependent. Additionally, those globally con-

stant parameters are hyper-parameters of the method making it harder to be employed

by other applications.

63

Both methods make several assumptions while forming the cost-function. Gaussian

distribution for spectral and spatial axes is quite acceptable. Orthogonal spectral axes

is valid if LAB color space is used. However, independent spatial axes assumption

is far away from being valid. Omitting spectral variances and employing a global

spectral variance term or a limit for variance make SPs hard to adapt to local im-

age structure which results in either low boundary adherence or irregular SP shapes.

Moreover, discarding logarithmic parts of the Equation (4.7) with constant variance

assumption decreases the performance further.

Based upon these facts, in the following sections, spectral and spatial part of SLIC

and LASP cost functions will be improved and effect of improvements will be ana-

lyzed with a comprehensive set of experiments. New cost function alternatives will

be proposed based on (4.6) which assumes Gaussian distributions, independent and

orthogonal spectral axes.

4.5.1 Spatial Adaptiveness

As explained in previous section cost functions of SLIC (4.9) and LASP (4.10) are

derived from (4.7) by employing several assumptions. One of them is identical spatial

covariance matrix assumption. This assumption forces every SP to have same size

and shape which is close to circular. However, it is quite hard to represent objects

accurately with SPs having an identical shape. Shape can differ depending on the

image structure and initial tiling. Therefore, enabling SPs to become ellipsoid in any

alignment gives methods some flexibility to follow boundaries effectively.

A new cost function SLIC+ is proposed by employing spectral covariance onto SLIC

cost function (4.9). With this update SLIC cost function, which will be called as

SLIC+ for the rest of the text, is expressed as follows:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2

σ2
spec

+ ln(σ2
x,cσ

2
y,c − σ2

xy,c)

+

x− x̄c

y − ȳc

T  σ2
x,c σxy,c

σxy,c σ2
y,c

−1 [
x− x̄c y − ȳc

] (4.11)

64

Table 4.4: SLIC vs SLIC+ cost function experiment configuration

Initial Tiling Refinement #SPs Cost Function Metrics

Hexagonal None 1000 SLIC (4.9) BR

SLIC+ (4.11) UE

ASA

BASA

Run-time

BR AUC

UE AUC

ASA AUC

BASA AUC

Run-time AUC

Table 4.5: Comparison summary of SLIC and SLIC+ cost functions

Cost Function BR UE ASA BASA Run-time

SLIC (4.9) 88.7% 6.95% 96.4% 81.6% 51.7

SLIC+ (4.11) 89.0% 6.90% 96.5% 81.7% 51.7

In this equation, the hyper-parameter σspec acts as the compactness parameter, and

can be utilized to prioritize the spatial term over spectral term or vice versa.

Proposed cost function SLIC+ (4.11), takes spatial covariance into account which al-

lows SPs to have different sizes and orientations. This modification is expected to

increase boundary adherence which is analyzed in the following experiment. SLIC

and SLIC+ cost functions are compared by an experiment with the configuration sum-

marized in Table 4.4. In this experiment initial tiling is hexagonal, initial tiling re-

finement is not applied, JC label update constraint is applied, 1000 SPs are extracted,

and LAB color space is used.

Figure 4.15 shows the results of the experiment. It is clearly seen that utilizing spatial

65

Figure 4.15: Comparison of SLIC and SLIC+ cost functions

66

covariances improves the performance for all measured metrics. Additionally, Table

4.5 quantifies performance of two cost-functions by calculating area under curve of

each metric. As presented in Table 4.5, SLIC+ improves SLIC by 0.3% in BR, 0.05%

in UE, 0.1% in ASA and 0.1% in BASA metric. Difference in run-time is negligible.

It can be concluded that proposed spatial adaptiveness improves the performance.

Spatial adaptation is applied to LASP cost function (4.10) as well, to propose a new

cost function called LASP+. Equation of LASP+ is as follows:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2

σ2
s(x, y)

+ ln(σ2
x,cσ

2
y,c − σ2

xy,c)

+

x− x̄c

y − ȳc

T  σ2
x,c σxy,c

σxy,c σ2
y,c

−1 x− x̄c

y − ȳc

 (4.12)

As proposed, LASP+ (4.12) takes spatial covariance into account allowing SPs to

have different sizes and orientations. Like SLIC+ (4.11), this modification is expected

to increase boundary adherence and it’s effect is analyzed with an experiment. LASP

and LASP+ cost functions are compared in the experiment whose configuration is

summarized in Table (4.6); initial tiling is hexagonal, initial tiling refinement is not

applied, JC label update constraint is applied, 1000 SPs are extracted, and LAB color

space is used.

Figure 4.16 depicts the results of the experiment. Similar to SLIC (4.9) - SLIC+ (4.11)

cost function comparison, the performance improvement is clearly seen in all mea-

sured metrics. Additionally, Table 4.7 quantifies performance of two cost functions

by calculating area under curve of each metric. LASP+ improves LASP by 0.5% in

BR, 0.06% in UE, and 0.1% in BASA metric. Results are similar for ASA metric. In

this experiment difference in run-time is negligible meaning improvements does not

bring a significant computational burden. As in SLIC cost function (4.9), proposed

spatial adaptiveness improves the performance for LASP 4.10.

Regarding performance metrics for LASP+ and SLIC+, it can easily be concluded that

employing spatial covariance in cost function significantly increases performance by

enabling to generate different sized and shaped SPs that fit to local image structure

67

Table 4.6: LASP vs LASP+ cost function experiment configuration

Initial Tiling Refinement #SPs Cost Function Metrics

Hexagonal None 1000 LASP (4.10) BR

LASP+ (4.12) UE

ASA

BASA

Run-time

BR AUC

UE AUC

ASA AUC

BASA AUC

Run-time AUC

Table 4.7: LASP vs LASP+ cost function experiment area under curve comparison

Cost Function BR UE ASA BASA Run-time

LASP (4.10) 88.6% 6.51% 96.7% 82.8% 64.2

LASP+ (4.12) 89.1% 6.45% 96.7% 82.9% 65.0

68

Figure 4.16: LASP vs LASP+ cost function comparison experiment results

69

well with insignificant computational cost.

4.5.2 Spectral Adaptiveness

The cost function utilized by SLIC (4.9) uses a global fixed variance to normalize

spectral term. LASP performs spectral normalization with a pixel specific robust vari-

ance estimate (4.10), however it also employs fixed global upper and lower bounds

for this variance estimate. All are method specific hyper-parameters. However, these

fixed global definitions makes it harder to adapt different images. These parame-

ters are mostly data set optimized and when algorithm is tested on a different set of

images, performance of the methods might significantly change.

In order to get rid of those hyper-parameters and make them adaptive to image, vari-

ous improvements are proposed in this section. Unlike SLIC (4.9) and SLIC+ (4.11),

that use a fixed global variance for normalization of spectral term, variance of spectral

channels can be extracted from image. In other words, making variance change dy-

namically by setting it to SPs average variance at each iteration may help to achieve

a more adaptive method and increase performance.

A new cost function SLIC++ is proposed by incorporating dynamic variance calcula-

tion to SLIC+ (4.11) cost function:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2

σ̄2
s

+ ln(σ2
x,cσ

2
y,c − σ2

xy,c)

+

x− x̄c

y − ȳc

T  σ2
x,c σxy,c

σxy,c σ2
y,c

−1 x− x̄c

y − ȳc

 (4.13)

where σ̄2
s is the average variance of SPs over spectral channel s.

Proposed cost function SLIC++ (4.13), employs image adaptive variance and it is ex-

pected to improve performance of cost function SLIC+ (4.11) which is superior of

SLIC. In order to compare the performance of these cost functions, an experiment

whose configuration is summarized in Table (4.8) is conducted. In this experiment

initial tiling is hexagonal, tiling refinement is not applied, JC label update constraint

70

Table 4.8: SLIC, SLIC+ vs SLIC++ cost function experiment configuration

Initial Tiling Refinement #SPs Cost Function Metrics

Hexagonal None 1000 SLIC (4.9) BR

SLIC+ (4.11) UE

SLIC++ (4.13) ASA

BASA

Run-time

BR AUC

UE AUC

ASA AUC

BASA AUC

Run-time AUC

is applied, 1000 SPs are extracted, and LAB color space is used. Performance evalu-

ation is performed on Berkeley Segmentation Dataset BSD300 [31].

Figure 4.17 shows the results of experiment for various metrics. It is clearly seen

that SLIC++ improves SLIC+ and hence SLIC performance in all measured metrics.

Table 4.9 gives quantified performance of three cost functions by calculating area

under curve of each metric. SLIC++ improves SLIC+ by 0.5% in BR, 0.48% in UE,

0.2% in ASA and 1.4% in BASA metric, on the other hand improves SLIC by 0.8%

in BR, 0.53% in UE, 0.3% in ASA and 1.5% in BASA metric. There is no significant

Table 4.9: SLIC, SLIC+ vs SLIC++ cost function experiment area under curve com-

parison

Cost Function BR UE ASA BASA Run-time

SLIC (4.9) 88.7% 6.95% 96.4% 81.6% 51.7

SLIC+ (4.11) 89.0% 6.90% 96.5% 81.7% 51.7

SLIC++ (4.13) 89.5% 6.42% 96.7% 83.1% 51.7

71

Figure 4.17: SLIC, SLIC+ vs SLIC++ cost function experiment results

72

difference in run-time. Based on experiment results, it can be stated that spectral

enhancement proposed in this section significantly increases accuracy of SLIC 4.9

and SLIC 4.11.

The idea using image adaptive global variables instead of constant hyper-parameters

can be applied to LASP (4.10) and LASP+ (4.12) cost functions as well. LASP and

LASP+ limit variance of SPs with pre-defined upper and lower limits. As SLIC and

SLIC+, these fixed hyper-parameters make methods incapable of adapting to different

images or data sets. Instead of using fixed global limits, extracting limits from image

itself may help to adapt to different images and data sets better. In proposed cost

function LASP++ 4.14, upper and lower bounds are defined relative to average SP

variance for each spectral band:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2

σ2
s(x, y, k)

+ ln(σ2
x,cσ

2
y,c − σ2

xy,c)

+

x− x̄c

y − ȳc

T  σ2
x,c σxy,c

σxy,c σ2
y,c

−1 x− x̄c

y − ȳc

 (4.14)

where σ2
s(x, y, k) = min(max(σ2

s(x, y), σ̄
2
s/k), kσ̄

2
s),k is upper and lower bound

with σ2
s(x, y) is the robust variance estimate of pixel (x, y) for channel s and σ̄2

s is

average SP variance over channel s.

Proposed method LASP++ (4.14), employs image adaptive variance limits and it is

expected to improve th performance of cost function LASP+ (4.12) which is superior

of LASP (4.10). In order to evaluate improvement, an experiment with the configura-

tion summarized in Table 4.10 is conducted. In this experiment initial tiling is hexag-

onal, tiling refinement is not applied, JC label update constraint is applied, 1000 SPs

are extracted, and LAB color space is used. Performance evaluation is performed on

Berkeley Segmentation Dataset BSD300 [31].

Figure 4.18 shows results of the experiment. It is clearly seen that LASP++ improves

LASP+ and hence LASP performance in all measured metrics except BR. In addi-

tion, regarding Table 4.11 that shows AUC of metrics, LASP++ improves LASP+ by

0.17% in UE, 0.1% in ASA and 0.6% in BASA metric and improves LASP by 0.23%

73

Table 4.10: LASP, LASP+ vs LASP++ cost function experiment configuration

Initial Tiling Refinement #SPs Cost Function Metrics

Hexagonal None 1000 LASP (4.10) BR

LASP+ (4.12) UE

LASP++ (4.14) ASA

BASA

Run-time

BR AUC

UE AUC

ASA AUC

BASA AUC

Run-time AUC

Table 4.11: LASP, LASP+ vs LASP++ cost function experiment area under curve

comparison

Cost Function BR UE ASA BASA Run-time

LASP 88.6% 6.51% 96.7% 82.8% 64.2

LASP+ 89.1% 6.45% 96.7% 82.8% 65.0

LASP++ 88.4% 6.28% 96.8% 83.4% 63.3

74

Figure 4.18: LASP, LASP+ vs LASP++ cost function experiment results

75

in UE, 0.1% in ASA and 0.6% in BASA metric. LASP++ under-perform in BR met-

ric; however, this metric is not a fair metric over-penalizing errors as described in

Chapter (3). In this experiment difference in run-time is negligible meaning improve-

ments does not bring any significant computational burden to existing cost functions.

To conclude, instead of using fixed global hyper-parameters for spectral terms, ex-

tracting them from image significantly improves performance and makes cost func-

tions stable across different images and data sets without a significant computational

burden.

4.5.3 Proposed Cost Function

Throughout this chapter, SP are assumed to be Gaussian distributed. If this assump-

tion is valid, right distribution can be obtained during iterations, and a Bayesian clas-

sifier can be achieved for pixel to SP assignments by using the most general form of

the cost function (4.6).

In this section, a new cost function is proposed to achieve Bayesian classification for

pixel to SP assignment. Proposed cost function assumes independent and orthogonal

spectral bands and employs spatial covariance. Additionally, proposed cost function

adapts variance bounds dynamically by extracting them from image. For the rest of

the text the proposed cost function will be called as Bayesian cost function and the

SP extraction with this cost function will be called as Bayesian Superpixels (BSP).

The proposed Bayesian cost function is as follows:

arg min
c∈Cx,y

S∑
s=1

(Is − Īs,c)
2

σ2
s,c(k)

+
S∑

s=1

lnσ2
s,c + ln(σ2

x,cσ
2
y,c − σ2

xy,c)

+

x− x̄c

y − ȳc

T  σ2
x,c σxy,c

σxy,c σ2
y,c

−1 x− x̄c

y − ȳc

 (4.15)

where σ2
s,c(k) = min(max(σ2

s,c, σ̄
2
s/k), kσ̄

2
s), k is upper and lower bound ratio with

respect to average SP variance, σ2
s,c is the variance estimate of SP c for channel s and

σ̄2
s is average SP variance over channel s.

76

Method improves LASP family in terms of run-time by using SP level variance calcu-

lations. This removes per-pixel variance calculation burden comes with LASP-based

cost functions. Method also employs spectral covariance to follow image structure

effectively that improves LASP and SLIC state of the art cost functions. Addition-

ally, proposed cost function (4.15) employs dynamic variance bounds as defined in

LASP++ 4.14 to increase adaptiveness both within image and across different data-

sets.

LASP++ has high boundary adherence but suffers from high run-time, on the other

hand SLIC++ has low run-time but has relatively lower performance than LASP++.

It is expected that, the proposed cost function enables to achieve LASP++ boundary

performance with SLIC++ run-time.

In order to evaluate Bayesian cost function, an experiment is conducted where BSP,

LASP++ and SLIC++ are compared in terms of SP extraction performance. Table

4.12 shows related configuration; hexagonal and rectangular initial tiling alternatives

evaluated separately, tiling refinement is not applied, JC label update constraint is ap-

plied, 1000 SPs are extracted, and LAB color space is used. Performance evaluation

is performed on Berkeley Segmentation Dataset BSD300 [31].

Figure 4.19 shows the results of the experiment for hexagonal initial tiling for metrics

defined in Chapter 3. BSP performance is in between SLIC++ and LASP++. Perfor-

mance is close to LASP++ in terms of boundary adherence, and on the other hand

close to SLIC++ in terms of run-time. Table 4.13 shows area under curve for each

metric to make a qualitative comparison.

For hexagonal initial tiling, BSP is better than SLIC++ by 0.08% in UE, 0.1% in ASA

and 0.2% in BASA metric; worse than SLIC++ 0.2% in BR and 4.8ms in run-time.

Regarding BASA performance that is the major metric in this work, BSP performance

is higher than SLIC++, with about 10% worse run-time. Hence it is hard to compare

both while one provides high accuracy in a relatively longer time and the other pro-

vides lower accuracy in a relatively shorter time.

With respect to LASP++, BSP performance is lower by 0.06% in UE and 0.1% in

BASA metric. Their ASA performance is similar, and BSP performs better by 0.9%

77

Table 4.12: SLIC++, LASP++ vs BSP proposed cost function experiment configura-

tion

Initial Tiling Refinement #SPs Cost Function Metrics

Rectangular None 1000 SLIC++ (4.13) BR

Hexagonal LASP++ (4.14) UE

BSP (4.15) ASA

BASA

Run-time

BR AUC

UE AUC

ASA AUC

BASA AUC

Run-time AUC

Table 4.13: SLIC++, LASP++ vs BSP proposed cost function experiment area under

curve comparison

Tiling Cost Function BR UE ASA BASA Run-time

HEX

SLIC++ (4.13) 89.5% 6.42% 96.7% 83.1% 51.7

LASP++ (4.14) 88.4% 6.28% 96.8% 83.4% 63.3

BSP (4.15) 89.3% 6.34% 96.8% 83.3% 56.5

RECT

SLIC++ (4.13) 89.9% 6.87% 96.5% 81.9% 55.2

LASP++ (4.14) 88.4% 6.81% 96.5% 82.1% 67.5

BSP (4.15) 89.4% 6.80% 96.5% 82.1% 59.3

78

Figure 4.19: SLIC++, LASP++ vs BSP cost function experiment results for hexago-

nal initial tiling

79

Figure 4.20: SLIC++, LASP++ vs BSP cost function experiment results for rectan-

gular initial tiling

80

in BASA and 7.8ms in run-time metric. Hence regarding BASA and run-time, BSP

has 0.1% worse accuracy than LASP++ achieved in about 12.5% shorter time. Same

conclusion can be stated here, as accuracy increases run-time decreases that makes it

difficult to choose one to another.

To compare SLIC++ and LASP++, LASP++ is better in UE by 0.14%, in ASA by

0.1% and in BASA by 0.3%. Nevertheless, SLIC++ has higher performance in BR

by 1.1%, 11.6ms in run-time. So, LASP++ achieves 0.3% better accuracy in a 22.5%

more time.

There is no certain winner for hexagonal initial tiling. But BSP seems on step ahead

of rest by having accuracy as high as LASP++ with run-time as short as SLIC++.

Then SLIC++ comes, with relatively lower accuracy with the shortest run-time.

Figure 4.19 depicts the results for rectangular initial tiling. Unlike hexagonal tiling,

BSP shows top performance almost for all metrics. In order to compare results nu-

merically, AUC values of all metrics are presented in Table 4.13. BSP has shows

similar performance with LASP++ in BR, ASA and BASA metric and performs bet-

ter than it by 0.01% in UE and 8.2ms in run-time metric. As a result BSP has similar

accuracy with LASP++ obtained in a 13.5% shorter time.

On the other hand, BSP has performance better than SLIC++ in UE by 0.07%, in

BASA by 0.2%, same with it in ASA, and worse than it in BR by 0.5% and by 4.1ms

in run-time metric. Regarding BASA and run-time performance, BSP shows 0.2%

better performance than SLIC++ in a 7, 5% longer time. Therefore, it can be stated

that both perform close to each other.

When SLIC++ and LASP++ are compared for rectangular initial tiling, LASP++ is

better in UE by 0.06% and in BASA by 0.2%. They show same accuracy in ASA

metric but SLIC++ has higher performance in BR by 0.5%, 12.3ms in run-time. To

sum up, LASP++ achieves 0.2% better accuracy in a 22% longer run-time.

Unlike hexagonal initial tiling, the experiments for rectangular initial tiling has more

distinguishable results. BSP shows better accuracy than LASP++ with a lower run-

time. SLIC++ has close performance to LASP++ achieved in a significantly lower

run-time. BSP is a step further than SLIC++ with top accuracy with insignificant

81

run-time difference.

In this section, a new cost function BSP is proposed that enhances Gaussian distri-

bution assumed general cost function (4.6). BSP improves state of the art methods

with no assumptions on general cost function (4.6), and like other proposed cost func-

tions in this chapter, further improves by employing spatial covariance and adaptive

spectral variance bounds. Based upon experiments, second order SP-level statistics

significantly improves run-time with no significant loss in boundary adherence. As a

result, BSP provides image structure following performance as high as LASP++ in a

run-time as low as SLIC++.

To sum up, clustering-based methods iteratively assign each pixel the the closest

cluster with respect to spectral and spatial distances. A compactness parameter is

enhanced to prioritize compactness over spectral similarity. Methods differ in their

cost functions; they generally utilize Euclidean distance with different normalization

terms. State of the art clustering-based algorithms has made several assumptions in

order to simplify the cost function (4.5). Among these assumptions, orthogonal spa-

tial axis assumption is certainly not valid, which decreases the performance by forcing

all SP to have the same shape and size.

In this chapter, new cost-functions are proposed for clustering-based methods to im-

prove existing ones. SLIC and LASP cost functions are investigated, and improved

first by employing spatial covariance in SLIC+ and LASP+ respectively. With this

update, for spatial term Mahalanobis distance employed instead of Euclidian dis-

tance. As another improvement, using adaptive spectral global parameters in SLIC++

and LASP++ is proposed. And finally, BSP cost function is proposed, which utilizes

Mahalanobis distance both for spectral and spatial term and makes less assumptions

compared to preceding ones. BSP decreases computational burden by allowing SP

level statistic calculations while preserving high boundary adherence.

As summarized in Table (4.14), SLIC [2] uses a global spectral variance and a spatial

variance calculated from expected SP area; LASP [17] uses a spectral variance for

each cluster which is minimum of neighbor SPs and a global spatial variance. The

proposed cost functions SLIC+ and LASP+ improve those state-of-the-art methods by

employing spatial covariance in spatial distance term. SLIC++ and LASP++ further

82

improve their base methods SLIC+ and LASP+ respectively by using dynamic spec-

tral variance and spectral variance bounds which are updated at each iteration instead

of static global ones. Bayesian Superpixels (BSP) proposed in this work, enhances

SP-level spectral variances and spatial covariance to employ Mahalanobis distance.

As the spectral variance terms might be erroneous at the beginning, spectral variances

are bounded with a limit relative to average SP variance for each spectral band. By

using per SP Bayesian prior, method gives similar boundary adherence with LASP

and LASP+ in a much shorter time comparable to SLIC.

Regarding performance results of BSP, SLIC++ and LASP++ cost functions, it can be

concluded that as the accuracy increases run-time performance decreases. Therefore

it can not be concluded that one outperforms the another. It depends on the preference

of applications employing the SP extraction method. However, in general, BSP is top

with lower run-time and higher accuracy and SLIC++ comes second with top run-

time and with worst accuracy and LASP++ comes third having high accuracy with

worst run-time.

4.6 Number of Iterations

Clustering-based SP extraction methods solves their cost function iteratively. The

number of iterations is usually defined as a method specific hyper-parameter. As

the number of iterations increases, the run-time also increases, which might make

the method useless for some applications due to run-time limit. On the other hand,

finishing iterations earlier than it should be, decreases performance since SPs are yet

to converge. Therefore, an optimum point should be selected to stop iterations, which

is enough for convergence and keeps run-time as short as possible. As clustering-

based methods are members of gradient descent-based approach, SPs converge after

a certain number of iterations and more iterations beyond convergence do not increase

performance. Therefore, the point where SPs are about to converge is defined as the

optimum iteration length. To determine this optimum point a set of experiments are

conducted, different values of iteration count is tested and metrics are analyzed to

find the convergence point.

83

Table 4.14: Spectral and spatial normalization approaches of analyzed cost functions

Cost

Function
Spectral Spatial Reference

SLIC
Global constant

variance
Expected area 4.9

SLIC+
Global constant

variance
Spatial covariance

4.11

(Proposed)

SLIC++
Dynamic average

variance
Spatial covariance

4.13

(Proposed)

LASP
Neighbor minimum,

global limits
Expected area 4.10

LASP+
Neighbor minimum,

global limits
Spatial covariance

4.12

(Proposed)

LASP++
Neighbor minimum,

dynamic limits
Spatial covariance

4.14

(Proposed)

BSP
Neighbor regulation,

dynamic limits
Spatial covariance

4.15

(Proposed)

84

As mentioned before, iteration count is a method specific hyper-parameter, however

it might be possible to get rid of this parameter. The maximum number of iterations

should allow an SP to lose all of its pixels. In a single iteration, at worst SP may

transfer all of its boundary pixels to neighboring SPs. For rectangular initial tiling,

it takes edgeLength/2 iterations for an SP to transfer all of its pixels to other SPs,

where edgeLength is SP initial edge length. In other words, iteration count can be

said to depend on edgeLength, and can be configured independent from number

of SPs by setting it relative to edge length, i.e. α ∗ edgeLength where alpha is a

constant. Experiments in this section are conducted to find a reasonable value for

parameter alpha which removes iteration length from hyper-parameter list.

Table 4.15 shows the configuration of the related experiment. Hexagonal and rectan-

gular initial tiling is used separately, no grid refinement is employed, JC label update

criteria is used, SP count is taken as 500, 1000, 1500 and 2000 and alpha search val-

ues are range from 0.25 to 2.50 in 0.25 steps. Proposed cost-functions SLIC++ 4.11,

LASP++ 4.12, BSP 4.15 are tested in this experiment. Common metrics through out

this work are used as performance measures, and proposed BASA AUC with run-time

AUC are also presented to reveal the numerical differences.

Figure 4.21, 4.22, 4.23 and 4.24 depict the performance with respect to iteration count

for hexagonal and rectangular tiling and 500, 1000, 1500 and 2000 SPs respectively.

As claimed above, it is clearly seen on figures that curves start to converge at some

point even for different number of SPs. Based on figures, this point can be decided

as alpha = 1.25. Regarding run-time performance, as expected, run-time increases

proportional to iteration count, as more iterations take more time. Tables 4.16 and

4.18 show related AUC values for BASA and run-time experiments respectively for

HEX ad RECT tiling for 500 and 1500 SPs. Tables 4.17 and 4.19 show related AUC

values for 1500 and 2000 SPs. Consistently, as alpha increases for both HEX and

RECT, BASA values converge, and this point can be extracted as 1.25 for all cost

functions. Beyond this point there is no significant improvement on any metric. It is

inefficient to iterate beyond this point since SPs has already converged. As run-time

increases proportional to selected α value, selecting higher values decreases run-time

performance.

85

Table 4.15: Number of iteration experiment configuration

Initial Tiling Grid Ref. #SPs Cost Function Alpha Metrics

Hex Off 500 SLIC++ (4.11) 0,25 BR

Rect 1000 LASP++ (4.14) 0,50 UE

1500 BSP (4.15) 0,75 ASA

2000 1,00 BASA

1,25 Run-time

1,50 BASA AUC

1,75 Run-time AUC

2,00

2,25

2,50

To conclude, during the experiments in this section, different iteration counts are

tested and SP performance metrics are observed with respect to changing number of

iterations. It is seen that independent from experiment configuration, metrics con-

verge after a certain iteration length which is proportional to average SP area. Min-

imum iteration count which leads to convergence is observed as 1.25xedgeLength.

Run-time results shows that computation time is linearly dependent to the iteration

count. Setting the iteration count proportional to average SP area makes it possible to

get rid of iteration count hyper-parameter.

86

Figure 4.21: Metric convergence wrt. iteration count for 500 SPs, for hexagonal and

rectangular initial tiling where iteration coefficient is alpha

87

Figure 4.22: Metric convergence wrt. iteration count for 1000 SPs, for hexagonal and

rectangular initial tiling

88

Figure 4.23: Metric convergence wrt. iteration count for 1500 SPs, for hexagonal and

rectangular initial tiling

89

Figure 4.24: Metric convergence wrt. iteration count for 2000 SPs, for hexagonal and

rectangular initial tiling

90

Table 4.16: BASA results of iteration count experiment for 500 and 1000 SPs

BASA Tiling Hexagonal Rectangular

#SPs alpha
SLIC

(4.9)

LASP

(4.10)

BSP

(4.15)

SLIC

(4.9)

LASP

(4.10)

BSP

(4.15)

500

0,25 79,8% 79,8% 79,9% 79,3% 79,3% 79,3%

0,50 81,6% 81,7% 81,7% 81,5% 81,5% 81,5%

0,75 82,6% 82,8% 82,7% 82,3% 82,3% 82,3%

1,00 83,0% 83,2% 83,1% 82,6% 82,8% 82,7%

1,25 83,2% 83,5% 83,4% 82,8% 83,0% 82,9%

1,5 83,4% 83,6% 83,5% 82,9% 83,1% 83,0%

1,75 83,5% 83,8% 83,6% 83,0% 83,2% 83,1%

2,00 83,5% 83,9% 83,7% 83,1% 83,3% 83,2%

2,25 83,6% 83,9% 83,7% 83,1% 83,3% 83,2%

2,50 83,6% 84,0% 83,8% 83,1% 83,4% 83,2%

1000

0,25 79,6% 79,6% 79,7% 78,6% 78,5% 78,6%

0,50 82,0% 82,1% 82,1% 80,7% 80,8% 80,8%

0,75 82,6% 82,9% 82,8% 81,6% 81,7% 81,8%

1,00 82,9% 83,2% 83,1% 81,8% 82,0% 82,0%

1,25 83,1% 83,4% 83,3% 82,0% 82,1% 82,1%

1,50 83,2% 83,6% 83,4% 82,0% 82,2% 82,2%

1,75 83,3% 83,6% 83,5% 82,1% 82,3% 82,3%

2,00 83,3% 83,7% 83,5% 82,1% 82,3% 82,3%

2,25 83,4% 83,7% 83,6% 82,2% 82,4% 82,3%

2,50 83,4% 83,8% 83,6% 82,2% 82,4% 82,4%

91

Table 4.17: BASA results of iteration count experiment for 1500 and 2000 SPs

BASA Tiling Hexagonal Rectangular

#SPs alpha
SLIC

(4.9)

LASP

(4.10)

BSP

(4.15)

SLIC

(4.9)

LASP

(4.10)

BSP

(4.15)

1500

0,25 80,0% 80,0% 80,1% 78,8% 78,8% 78,8%

0,50 81,3% 81,4% 81,4% 80,5% 80,6% 80,6%

0,75 82,1% 82,3% 82,3% 80,9% 81,0% 81,0%

1,00 82,3% 82,5% 82,4% 81,2% 81,4% 81,4%

1,25 82,5% 82,8% 82,7% 81,4% 81,5% 81,6%

1,50 82,5% 82,9% 82,8% 81,5% 81,6% 81,7%

1,75 82,6% 83,0% 82,9% 81,5% 81,7% 81,7%

2,00 82,7% 83,1% 82,9% 81,5% 81,7% 81,7%

2,25 82,7% 83,1% 83,0% 81,5% 81,7% 81,8%

2,50 82,8% 83,2% 83,0% 81,6% 81,8% 81,8%

2000

0,25 80,1% 80,1% 80,1% 81,3% 81,4% 81,4%

0,50 83,3% 83,5% 83,4% 82,4% 82,5% 82,5%

0,75 83,7% 83,9% 83,8% 83,0% 83,1% 83,1%

1,00 83,9% 84,1% 84,0% 83,1% 83,3% 83,3%

1,25 84,1% 84,4% 84,3% 83,3% 83,4% 83,5%

1,50 84,1% 84,5% 84,4% 83,3% 83,5% 83,5%

1,75 84,2% 84,6% 84,5% 83,4% 83,5% 83,6%

2,00 84,3% 84,6% 84,5% 83,4% 83,6% 83,6%

2,25 84,3% 84,6% 84,5% 83,4% 83,6% 83,6%

2,50 84,3% 84,7% 84,5% 83,4% 83,6% 83,6%

92

Table 4.18: Average run-time (area under curve) of iteration count experiment for 500

and 1000 SPs

RT Tiling Hexagonal Rectangular

#SPs alpha
SLIC

(4.9)

LASP

(4.10)

BSP

(4.15)

SLIC

(4.9)

LASP

(4.10)

BSP

(4.15)

500

0,25 20,7 19,6 23,7 16,4 21,1 19,5

0,50 30,9 33,2 37,0 28,9 35,1 33,0

0,75 41,0 46,5 49,5 41,2 48,9 46,2

1,00 51,0 59,3 61,2 53,2 62,5 59,1

1,25 60,8 71,7 72,1 65,1 76,0 71,8

1,50 70,6 83,7 82,2 76,8 89,4 84,2

1,75 80,2 95,2 91,6 88,3 102,6 96,2

2,00 89,7 106,3 100,1 99,5 115,7 108,1

2,25 99,0 117,0 108,0 110,6 128,7 119,6

2,50 108,3 127,3 115,0 121,5 141,5 130,8

1000

0,25 17,3 18,5 17,8 15,2 16,5 16,2

0,50 25,9 29,6 27,4 25,4 29,9 27,2

0,75 34,3 40,5 36,8 35,5 42,8 38,0

1,00 42,5 51,2 46,1 45,4 55,1 48,5

1,25 50,6 61,5 55,1 55,2 67,0 58,9

1,50 58,5 71,6 64,0 64,8 78,4 69,1

1,75 66,3 81,4 72,6 74,3 89,2 79,1

2,00 73,9 91,0 81,1 83,7 99,6 88,9

2,25 81,4 100,3 89,4 93,0 109,4 98,5

2,50 88,7 109,3 97,5 102,1 118,7 107,9

93

Table 4.19: Average run-time (area under curve) of iteration count experiment for

1500 and 2000 SPs

BASA Tiling Hexagonal Rectangular

#SPs alpha
SLIC

(4.9)

LASP

(4.10)

BSP

(4.15)

SLIC

(4.9)

LASP

(4.10)

BSP

(4.15)

500

0,25 28,4 37,3 37,7 31,4 34,3 31,0

0,50 35,8 48,2 45,3 43,3 45,6 43,1

0,75 43,3 59,1 53,5 54,4 56,9 54,6

1,00 51,0 70,0 62,3 64,9 68,3 65,6

1,25 59,0 80,7 71,7 74,7 79,7 76,1

1,50 67,1 91,4 81,6 83,9 91,1 86,1

1,75 75,3 102,0 92,2 92,3 102,5 95,6

2,00 83,8 112,5 103,3 100,1 113,9 104,5

2,25 92,4 123,0 114,9 107,2 125,4 113,0

2,50 101,3 133,3 127,2 113,6 136,8 121,0

1000

0,25 24,7 26,9 27,1 30,8 32,8 40,0

0,50 37,7 39,0 41,9 40,0 45,0 50,2

0,75 49,5 50,5 55,3 49,0 56,4 59,8

1,00 60,0 61,4 67,2 57,8 67,1 68,7

1,25 69,2 71,7 77,8 66,5 77,1 77,0

1,50 77,1 81,4 86,9 75,0 86,3 84,7

1,75 83,7 90,5 94,6 83,3 94,9 91,7

2,00 89,1 99,0 100,9 91,4 102,7 98,1

2,25 93,1 106,9 105,7 99,4 109,8 103,9

2,50 95,9 114,2 109,2 107,2 116,2 109,0

94

CHAPTER 5

COMPARISON OF SUPERPIXEL EXTRACTION METHODS

In Chapter 4, steps of a general clustering-based SP extraction method are analyzed

in detail. For each step alternative approaches are investigated and some alternatives

are proposed to enhance the performance. Then, performance of those alternatives

together with proposed ones are evaluated with a set of experiments. At the end it is

concluded that, 1) employing spatial and spectral adaptiveness increases performance

of all investigated cost function alternatives, 2) refinement of initial grid does not

improve the performance significantly, 3) number of iterations can be removed from

hyper-parameters by setting it relative to average SP area.

Based on these conclusions, following sections will propose SP extraction methods

and compare their performance with top performing state-of-the-art methods.

5.1 Proposed Alternative Superpixel Extraction Methods

This section proposes alternative SP extraction methods due to outcome of analysis

in Chapter 4. Hexagonal and rectangular tiling should remain as initial tiling options

as they provide different SP neighborhood topology which should be selected by the

application employing the SP extraction. Proposed JC label update constraint should

be employed since connectivity is required to be enforced from the beginning. No

initial grid refinement is employed and cost functions BSP (4.15), SLIC++ (4.13) and

LASP++ (4.14) are selected due to their top performance.

Proposed SP extraction methods are as follows:

1. SLIC++/R: employs rectangular initial tiling and SLIC++ (4.13) cost-function.

95

Table 5.1: Summary of proposed SP extraction methods

Proposed

Method

Initial

Tiling

Grid

Ref

Label

Update

Cost

Function

SLIC++/R Rectangular None JC SLIC++ (4.13)

SLIC++/H Hexagonal None JC SLIC++ (4.13)

LASP++/R Rectangular None JC LASP++ (4.14)

LASP++/H Hexagonal None JC LASP++ (4.14)

BSP/R Rectangular None JC BSP (4.15)

BSP/H Hexagonal None JC BSP (4.15)

2. SLIC++/H: employs hexagonal initial tiling and SLIC++ (4.13) cost-function.

3. LASP++/R: employs rectangular initial tiling and LASP++ (4.14) cost-function.

4. LASP++/H: employs hexagonal initial tiling and LASP++ (4.14) cost-function.

5. BSP/R: employs rectangular initial tiling and BSP (4.15) cost-function.

6. BSP/H: employs hexagonal initial tiling and BSP (4.15) cost-function.

Rather than proposing a single method, a family of methods are proposed such that

depending on desired Sp neighborhood topology and selection of accuracy vs. run-

time performance there are alternative solutions. In the next section, performance of

these 6 methods is compared to the top performing state-of-the-art methods.

5.2 Experiments

This section is dedicated to compare performance of proposed methods against top

performing state-of-the-art methods. In the experiments, The Berkeley Segmenta-

tion Dataset and Benchmark BSD300 data set ([31]) is used. Dataset contains 300

481x321 RGB images and their respective ground truth segmentation images. Meth-

ods are compared in terms of Boundary Recall 3.1, Under-segmentation Error 3.4,

96

Table 5.2: State of the art comparison experiment configuration

SP Extraction Method #SPs Metrics

CRS [16] 500 BR

ERGC [12] 1000 UE

ERS [9] 2000 ASA

ETPS [15] BASA

SEEDS [14] Run-time

SLIC [2] BR AUC

SLIC++/H (4.13) UE AUC

LASP++/H (4.14) ASA AUC

BSP/H (4.15) BASA AUC

SLIC++/R (4.13) Run-time AUC

LASP++/R (4.14)

BSP/R (4.15)

Achievable Segmentation Accuracy 3.5, Boundary Achievable Segmentation Accu-

racy 3.7 with respect to Compactness 3.8.

For comparison, best performing algorithms are selected from the work of Stuart [4]

where methods are evaluated from various perspectives and ranked according to their

overall performance. The selected methods to be tested against proposed methods

are; CRS [16], ERGC [12], ERS [9], ETPS [15], SEEDS [14] and SLIC [2].

For comparison, a series of experiments are executed and resultant performance met-

rics are analyzed. Table 5.2 summarizes the configuration of experiments. In order to

cover all compactness region of interest, hyper-parameters of state of the art methods

are adjusted so, nevertheless some methods either has no control over compactness

or they only produce SPs within a limited compactness region. Among selected ones,

only SEEDS [14] does not provide control over compactness of generated SPs. So

in order to observe its performance in compactness region of interests existing hyper-

parameters are adjusted.

97

In addition, as described in Chapter 2, one of the drawbacks of some state-of-the-art

methods is producing disconnected clusters. In order to get-rid-of these disconnected

regions, new SPs are created from those disconnected ones with a post-processing

step which results higher SP count than desired. Producing higher number of SPs

than required is an indication for corresponding methods having no-control on num-

ber of SPs although it is not stated explicitly in literature. Proposed methods, uses

proposed JC label update criteria to enforce cluster connectivity from the beginning

and provides full-control over compactness and number of generated pixels.

Regarding the metric figures of this section, to make it easier to read, legend is aligned

such that dashed curves represent state-of-the-art methods and continuous ones rep-

resent the proposed methods. Additionally, some state-of-the-art methods may reside

out of figure window for some metrics because of their poor performance. In order to

analyze good performing ones clearly, only region of importance of each figure is just

drawn. As stated above, not every state-of-the-art method provide control over com-

pactness of SPs so such methods like ETPS may only be seen within a very limited

compactness region.

Figure 5.1 depicts boundary recall metric for 500, 1000 and 2000 respectively. It is

clearly seen that proposed methods significantly outperform state-of-the-art ones ex-

cept ETPS [15]. Especially when compared to SLIC, SLIC++/H and SLIC++/R sig-

nificantly improve the performance, which confirms employing SP dependent global

and local terms for normalization of spectral and spatial distances respectively is use-

ful. Only for the 1000 SPs case ETPS performs slightly better than the proposed ones,

nevertheless its performance is worse for 500 and 2000 SPs case. Besides within a

very limited region, CRS shows close performance to proposed ones for 2000 SPs

case, but worse for the rest.

Under-segmentation error for the compared alternatives is depicted in Figure 5.2. For

500 SPs case, proposed methods over-perform state-of-the art ones. On the other hand

for 1000 and 2000 SPs, proposed methods employing HEX initial tiling still over-

perform rest of methods but ones employing RECT initial tiling comes behind ETPS,

CRS and ERGC. Performance of the proposed alternatives is more robust against

compactness than state-of-the-art methods. Similar to metric BR results, ETPS has a

98

lower UE in some limited region for 1000 SPs but performance is worse for 500 and

2000 SPs. Finally, SLIC++ cost function significantly outperforms SLIC.

Figure 5.3 shows achievable segmentation accuracy performance of methods. The

results are similar to BR and UE experiments, the proposed alternatives with hexag-

onal initial tiling clearly outperform state-of-the-art. For 500 SPs, proposed methods

starting with RECT tiling has better performance than state-of-the-art ones for high

compactness levels. As SP number increases ETPS, CRS and ERGC shows better

performance than proposed alternatives employing rectangular initial tiling. Similar

to UE and BR, ETPS has some good performance within a limited region for only

1000 SP and SLIC++ cost function significantly outperforms SLIC.

For boundary achievable segmentation accuracy which is depicted in Figure 5.3, re-

sults are similar to other metrics. Proposed alternatives employing hexagonal ini-

tial tiling outperforms the rest for all SP counts. Additionally, as compactness level

increases the difference between state-of-the-art and proposed methods increases,

which makes proposed methods a good alternative especially for the applications re-

quiring high compact SPs. Proposed methods employing rectangular initial tiling

performs better than state-of-the-art for 500 SPs, but worse than ETPS, CRS and

ERGC when SP number gets higher.

Metrics are more meaningful when evaluated together with run-time performance.

For instance, if a well performing method achieves this in a rather longer time, it be-

comes unfair to rank it above other methods as poorly performing ones may perform

better when such a time is entitled by applications employing these methods. There-

fore, Figure 5.5 shows related run-time performance of methods. Here, SEEDS has

the lowest run-time for 500 and 1000 SP counts. But proposed ones come after having

performance close to SEEDS and staying in acceptable limits. Especially for 2000

SPs, proposed SLIC++/R and SLIC++/H have the minimum run-time performance

outperforming the rest, including SEEDS. Regarding accuracy metrics, ETPS which

has best scores among state-of-the-art methods, shows worse run-time performance

than the proposed ones and SEEDS and moreover gap increases as the number of SPs

is increased. Although, ETPS has slightly better performance in a limited region for

1000 SPs metrics, when compared with the proposed alternatives in terms of run-time,

99

it is not possible to conclude that ETPS outperforms the proposed alternatives.

As a result, after analyzing performance graphics of methods, proposed methods

SLIC++/H, LASP++/H and BSP/H take top place in all metrics for all SP numbers

with a significant difference. The other proposed methods SLIC++/R, LASP++/R

and BSP/R show better performance than state-of-the-art methods as number of SPs

is decreased on the other cases 3 of the state of the art methods ETPS, CRS and ERGC

have higher performance than RECT initial tiling proposed methods. But CRS and

ERS achieves those scores with far worse run-time performance. Additionally, it is

clearly seen that SLIC++/R and SLIC++/H over-performs SLIC with proposed im-

provements.

Tables 5.3 and 5.4 show area under curve (AUC) values of BR, UA, ASA and BASA,

RT respectively which are calculated from the figures presented in this section. Al-

though figures help to see performance in all compactness levels, AUC values en-

ables numerical comparison by providing average values. As expected, AUC values

are compatible with figures, and as seen in tables performance of methods increase

as number of SPs are increased but for the run-time state-of-the-art methods perfor-

mance are decreased significantly. CRS and ERS reaches up to 1 second, ERGC and

ETPS runs in 3 times and 1.5 times slower than proposed ones respectively. Although

SEEDS run-time is top here but it is the worst in other boundary metrics. SLIC++/H

and SLIC++/R has a significantly better run-time than published version of SLIC.

Also for other metrics, SLIC++/R outperforms SLIC, which means the proposed

enhancement over SLIC is succeeded. Tables 5.3 and 5.4 also clarify the best per-

forming methods on the average; proposed alternatives with hexagonal initial tiling

outperforms state-of-the-art.

As presented in Tables 5.3 and 5.3, despite having shortest run-time, SEEDS has

the worst BR, UE, ASA and BASA score 19%, 5%, 2.5% and 10% behind the top

respectively for 500 SP. ERS has good score in BR but poorly performed in UE, ASA,

BASA and run-time, moreover it has the worst run-time score almost 20 times behind

the fastest method, depending on SP count. ETPS has the best scores among state-

of-the-art methods in BR, UE, ASA and BASA but behind the top especially 1-1.5%

in BASA and 50-150% in run-time. CRS has poorly performed in all the metrics, it

100

is the second poorly performed in terms of run-time, being 10-20 times slower than

the fastest one. ERGC is better than CRS but its performance is poor compared to top

ones, 1.5% and 400% behind in BASA and run-time metrics. SLIC did not perform

well with scores 3-5%, 1-2%, 0.5%, 3-4% and 75% behind the top performing in BR,

UE, ASA, BASA and run-time.

For 500 SPs, SLIC++/H and SLIC++/R improves SLIC by 5.9% and 5,1% in BR,

1.25% and 0,9% in UE, 0.7% and 0,5% in ASA, 2.6% and 1,9% in BASA and 22.0%

and 20,0% in run-time respectively. For 1000 SPs, SLIC++/H and SLIC++/R improve

SLIC performance by 3.5% and 2,4% in BR, 0.8% and 0,4% in UE, 0.5% and 0,2%

in ASA, 2.4% and 1,2% in BASA and 36.0% and 32,0% in run-time respectively.

And finally for 2000 SPs, improvements are 3.7% and 3,2% in BR, 1.12% and 0,85%

in UE, 0.6% and 0,4% in ASA, 3.6% and 2,8% in BASA and 19.0% and 20,0% in

run-time respectively.

SLIC++/H, LASP++/H and BSP/H outperform rest of the methods in all boundary

performance metrics AUC performance for all SP counts. Moreover they have the

lowest run-time after SEEDS. On the other had, SLIC++/R, LASP++/R and BSP/R

has better performance than state-of-the art methods when run-time is concerned.

Only ERGC has a similar high boundary performance achieved in a longer time. As a

result it can be concluded that, enhancements proposed in this work significantly im-

prove performance and at the end top boundary adherence is achieved with the lowest

run-time. Besides, it is clearly seen from the metric figures, one of the advantage

of the proposed algorithms is compactness is controllable for the entire compactness

range. Moreover, rate of change of performance with respect to compactness is lower

when compared to state-of-the-art methods, especially along the interval of impor-

tance, their performance is almost flat meaning that at every level of compactness

same high performance can be achieved.

101

(a) 500 SPs (b) 1000 SPs

(c) 2000 SPs (d) Legend

Figure 5.1: Boundary recall performance of state-of-the-art and proposed methods

102

(a) 500 SPs (b) 1000 SPs

(c) 2000 SPs (d) Legend

Figure 5.2: Under-segmentation error performance of state-of-the-art and proposed

methods

103

(a) 500 SPs (b) 1000 SPs

(c) 2000 SPs (d) Legend

Figure 5.3: Achievable segmentation accuracy performance of state-of-the-art and

proposed methods

104

(a) 500 SPs (b) 1000 SPs

(c) 2000 SPs (d) Legend

Figure 5.4: Boundary achievable segmentation accuracy performance of state-of-the-

art and proposed methods

105

(a) 500 SPs (b) 1000 SPs

(c) 2000 SPs (d) Legend

Figure 5.5: Run-time performance of state-of-the-art and proposed methods

106

Table 5.3: BR, UE and ASA AUC performance of state-of-the-art and proposed meth-

ods for 500, 1000 and 2000 SPs. All values are in percentage

BR UE ASA

500 1000 2000 500 1000 2000 500 1000 2000

CRS [16] 73,5 86,7 94,7 9,37 6,71 5,18 95,3 96,6 97,4

ERGC [12] 77,3 87,9 94,2 9,08 6,70 5,31 95,4 96,6 97,3

ERS [9] 82,3 89,9 96,0 12,14 9,33 7,22 93,9 95,3 96,4

ETPS [15] 82,0 91,6 96,0 8,75 6,23 5,11 95,6 96,9 97,4

SEEDS [14] 64,5 78,2 86,8 13,30 10,70 9,37 93,3 94,6 95,3

SLIC [2] 77,4 87,6 92,8 9,59 7,27 6,15 95,1 96,3 96,9

SLIC++/H (4.13) 83,3 91,1 96,5 8,34 6,39 5,03 95,8 96,8 97,5

LASP++/H (4.14) 81,5 89,9 96,0 8,19 6,24 4,92 95,9 96,9 97,5

BSP/H (4.15) 82,9 90,8 96,4 8,26 6,31 4,96 95,8 96,8 97,5

SLIC++/R (4.13) 82,5 90,0 96,0 8,69 6,87 5,30 95,6 96,5 97,3

LASP++/R (4.14) 80,2 88,5 95,5 8,60 6,81 5,25 95,7 96,6 97,4

BSP/R (4.15) 81,4 89,4 95,8 8,64 6,81 5,25 95,6 96,6 97,4

107

Table 5.4: BASA and Run-time AUC performance of state-of-the-art and proposed

methods for 500, 1000 and 2000 SPs. BASA values are in percentage

BASA Run-time

500 1000 2000 500 1000 2000

CRS [16] 79,3 81,3 82,7 546,0 833,8 1049,5

ERGC [12] 81,9 82,3 83,2 203,4 206,2 224,7

ERS [9] 76,0 75,7 77,4 813,2 769,8 1004

ETPS [15] 82,5 83,5 83,8 71,0 79,1 106,4

SEEDS [14] 73,5 72,4 71,7 44,0 44,1 50,1

SLIC [2] 80,9 80,8 80,5 79,1 82,4 84,4

SLIC++/H (4.13) 83,5 83,2 84,1 57,3 52,7 43,2

LASP++/H (4.14) 83,8 83,5 84,4 70,0 66,7 55,9

BSP/H (4.15) 83,6 83,4 84,3 60,1 57,9 49,6

SLIC++/R (4.13) 82,8 82,0 83,3 58,5 55,2 46,8

LASP++/R (4.14) 83,0 82,1 83,4 72,9 67,5 60,2

BSP/R (4.15) 82,9 82,1 83,5 61,3 60,6 55,7

108

Figure 5.6: Sample outputs of state-of-the-art SP extraction methods: CRS [16],

ERGC [12], ERS [9], ETPS [15], SEEDS [14] and SLIC [2] are presented from top

to bottom and 500, 1000 and 2000 SPs from left to right respectively.

109

Figure 5.7: Sample outputs of proposed SP extraction methods: SLIC++/H,

SLIC++/R, LASP++/H, LASP++/R, BSP/H and BSP/R are presented from top to

bottom and 500, 1000 and 2000 SPs from left to right respectively.

110

CHAPTER 6

CONCLUSION

In this work, the framework of clustering-based SP extraction methods are investi-

gated in detail and alternative approaches are proposed to improve the performance

of existing methods. In addition to requirements of SPs, preserving regular grid struc-

ture is given importance in order to be able to feed generated SPs to neural network

applications. Grid structure can be preserved with connectivity enforced label updates

like proposed Just Connected (JC) constraint.

Regular 4 or 8 connected label updates in literature produce disconnected clusters

that need to be connected via a post-processing step, which either breaks regular grid

structure and disables the control over generated number of SPs or results in poor

performance. Therefore JC label update criteria is proposed in this work to enforce

connectivity from the beginning.

Hexagonal and rectangular initial grid alternatives are analyzed separately due to their

different application areas. These alternatives results in different SP neighborhood

topology, while hexagonal tiling is applicable for graph-based methods, rectangular

grid fits better to neural network applications.

Based on literature work claiming refinement of initial tiling increases performance,

tiling refinement concept is investigated. However, refinement proposed by Ince [17]

breaks regular grid structure that is out of scope of this work. In order to analyze

the effect of refinement, Edge-based Refinement method is proposed which preserves

initial neighborhood topology. Experiments reveal that such a refinement does not

improve the performance as expected. Instead, spending the time consumed in this

step to the iteration phase results in similar performance.

111

Methods in literature are configured through method specific hyper-parameters. Each

method has a different number of hyper-parameters to be adjusted which can cause

ambiguity. Moreover, as the number of parameters is increased, configuring methods

effectively becomes harder. One of the aim of this work is to get rid of as many

parameter as possible by extracting them from image or SPs. Number of iterations

is one of these parameters. As shown through experiments, number of iterations can

be determined with respect to average SP area, and for different number of SPs or for

different image resolutions there is no need to adjust a hyper-parameter.

Performance of SP extraction methods significantly depend on employed cost func-

tion. Therefore, cost functions of existing methods are investigated. Cost function is

composed of spectral and spatial distances. A compactness hyper-parameter is uti-

lized to prioritize spatial one to spectral. Higher values of this parameter results more

compact but less accurate SPs.

It is observed that cost functions in literature are formed by making several assump-

tions, some of which causes a decrease in performance. Regarding spatial distance

term, discarding spatial covariance by assuming orthogonal axes results in poor per-

formance in term of following local image structure, as without spatial covarince all

SPs are forced to have same shape and size. This problem is solved by the proposed

cost function alternatives SLIC+ (4.11) and LASP+ (4.12) which employs spatial co-

variance for the normalization of spatial distance. Proposed alternatives effectively

result in using Mahalanobis distance rather than Euclidian distance.

SLIC [2] use a static and global term for the normalization of spectral distance, which

forces each SP to behave same within an image and across different images. On the

other hand, LASP [17] utilize local SP variance for normalization; however, upper

and lower bounds of variance is set by two hyper-parameters. Hence, these static

and global definitions make cost functions incapable of adapting to different images

and data sets. Moreover, using global definitions [2] prevent spectral term to adapt

different textured regions within image. This drawback is got rid of by proposing

alternative cost functions that extract those parameters from the image itself. With

this approach, SP extraction performance aimed to be high and stable across different

image and data sets and even for different textured regions within image. In this

112

manner, spectral term in cost function (4.9) proposed by SLIC [2], is normalized with

average SP variance for each spectral band, resulting in a new cost function SLIC++

(4.13). Upper and lower bounds of SP variance are defined as hyper-parameters in

LASP [17]. In this study, it is proposed to set these two relative to average SP variance

with a single hyper-parameter, and the cost function LASP++ (4.14) is proposed.

Finally, by performing spectral normalization of SP variance over spectral channels

and spatial normalization with spatial covariance of SPs a Bayesian classifier for pixel

to SP assignment is proposed which is called as Bayesian Superpixels (BSP).

To observe the performance of proposed alternatives, a set of experiments is con-

ducted. It is observed that proposed cost functions outperform existing ones. Each

proposed alternative cost function SLIC+, SLIC++, LASP+, LASP++ improves the

preceding one. Bayesian Superpixels (BSP) cost function which only sticks to Gaus-

sian distribution assumption extracts SPs with a low run-time as SLIC++ does and

high accuracy as LASP++ can provide. Unlike LASP++, BSP works with SP level

statistics during pixel label updates which increases run-time performance close to

SLIC++ and keeping accuracy close to LASP++ which are top observed perfor-

mances. It can be concluded that, employing spatial covariance, extracting variance

definitions from image and using Bayesian prior statistics increases performance.

Besides improving existing SP methods or proposing alternatives, in order to eval-

uate the methods effectively a benchmark is defined. Benchmark consist of metrics

used in the literature, BR, UE, ASA, run-time. Since each of BR, UE and ASA

have drawbacks and should be evaluated together for an effective analysis, it is pro-

posed to evaluate SP extraction accuracy with a single parameter, and BASA metric

is proposed. BASA proposes a fair measurement method that removes this need by

enabling measuring of accuracy using a single metric.

There are many options and hyper-parameters available to be used in SP extractions

methods but the information in literature is insufficient for hyper-parameter values

and comparison. Moreover, there is no information about configuration of methods

in performance benchmarks. Therefore results highly depend on chosen parameters

for individual experiments and seem to be unfair. In order to get the results indepen-

dent of hyper-parameters, it is proposed to evaluate performance metrics with respect

113

to average SP compactness. Compactness is calculated directly from the generated

SPs which makes it independent of hyper-parameter selection and provides an ef-

fective comparison between different methods. Besides, since compactness can be

controllable, metrics based on compactness gives sufficient information to SPs user

applications about the performance of method at desired compactness level.

Compactness is one of the major considerations throughout this work, it needs to

be measured accurately. Nevertheless, due to discrete nature of image, measured

compactness significantly depends on accuracy of perimeter measurement. Perimeter

measurements become erroneous as SP area decreases. Therefore, alternatives for

perimeter measurement are investigated and the most accurate one is determined by

comprehensive experiments.

Methods shows different performance at different compactness levels. A method gen-

erating more accurate SPs at lower compactness levels than another, may generate less

accurate at higher levels. Such a behaviour makes it difficult to compare performance

of two methods and choose one another. Moreover, benchmarks in literature may

configure methods such that a better performing method may fail to outperform the

other as those methods may operate at different compactness levels. In order to get

rid of this ambiguity in performance measurement, area under the curve approach is

proposed. This approach gets the average of performance metrics within a range of

compactness. With this approach, metrics become comparable independent of com-

pactness. Such an approach also eliminates the dependency on hyper-parameters. In

order to enhance this evaluation method, average results are taken along the region of

interest.

Performance of the proposed methods are evaluated against top performing state-

of-the-art methods. Throughout experiments, performance is evaluated with various

accuracy metrics and area under curve approach. Even if it was hard to decide which

method performs better by investigating performance curves with respect to compact-

ness, area under curve approach reveals the best performing methods. With AUC ap-

proach, it is observed that proposed methods outperform the state-of-the-art methods

in both accuracy and run-time.

To sum up, in this work clustering-based SP extraction methods are investigated in

114

detail. Their general algorithm flow is extracted and for each step performance of

alternatives are evaluated and improvements are proposed whenever applicable. At

the end, a family of SP extraction methods is proposed which outperforms state-of-

the-art. Besides, improvements are proposed for performance metrics and evaluation

benchmarks that enable comparison of methods effectively and in a fair way.

115

116

REFERENCES

[1] X. Ren and J. Malik, “Learning a classification model for segmentation,” in null,

p. 10, IEEE, 2003.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, et al., “Slic su-

perpixels compared to state-of-the-art superpixel methods,” IEEE transactions

on pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274–2282,

2012.

[3] C. Çığla and A. A. Alatan, “Efficient graph-based image segmentation via

speeded-up turbo pixels,” in 2010 IEEE International Conference on Image Pro-

cessing, pp. 3013–3016, IEEE, 2010.

[4] D. Stutz, A. Hermans, and B. Leibe, “Superpixels: an evaluation of the state-of-

the-art,” Computer Vision and Image Understanding, vol. 166, pp. 1–27, 2018.

[5] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm

based on immersion simulations,” IEEE Transactions on Pattern Analysis &

Machine Intelligence, no. 6, pp. 583–598, 1991.

[6] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space

analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 24, pp. 603–619, May 2002.

[7] F. Drucker and J. MacCormick, “Fast superpixels for video analysis,” in Work-

shop on Motion and Video Computing, pp. 1–8, 2009.

[8] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transac-

tions on pattern analysis and machine intelligence, vol. 22, no. 8, pp. 888–905,

2000.

[9] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, “Entropy rate superpixel

segmentation,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pp. 2097–2104, IEEE, 2011.

117

[10] J. Strassburg, R. Grzeszick, L. Rothacker, and G. A. Fink, “On the influence of

superpixel methods for image parsing.,” in VISAPP (2), pp. 518–527, 2015.

[11] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and

K. Siddiqi, “Turbopixels: Fast superpixels using geometric flows,” IEEE trans-

actions on pattern analysis and machine intelligence, vol. 31, no. 12, pp. 2290–

2297, 2009.

[12] P. Buyssens, I. Gardin, S. Ruan, and A. Elmoataz, “Eikonal-based region grow-

ing for efficient clustering,” Image and Vision Computing, vol. 32, no. 12,

pp. 1045–1054, 2014.

[13] L. C. Evans, Partial Differential Equations, AMS Graduate Texts in Mathemat-

ics. American Mathematical Society, 1997.

[14] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, and L. Van Gool, “Seeds:

Superpixels extracted via energy-driven sampling,” in European conference on

computer vision, pp. 13–26, Springer, 2012.

[15] J. Yao, M. Boben, S. Fidler, and R. Urtasun, “Real-time coarse-to-fine topo-

logically preserving segmentation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2947–2955, 2015.

[16] C. Conrad, M. Mertz, and R. Mester, “Contour-relaxed superpixels,” in Inter-

national Workshop on Energy Minimization Methods in Computer Vision and

Pattern Recognition, pp. 280–293, Springer, 2013.

[17] K. G. İnce, C. Çığla, and A. A. Alatan, “Lasp: Local adaptive super-pixels,” in

Image Processing (ICIP), 2015 IEEE International Conference on, pp. 4092–

4096, IEEE, 2015.

[18] C. Çığla and A. A. Alatan, “Efficient graph-based image segmentation via

speeded-up turbo pixels,” in Image Processing (ICIP), 2010 17th IEEE Inter-

national Conference on, pp. 3013–3016, IEEE, 2010.

[19] O. Freifeld, Y. Li, and J. W. Fisher, “A fast method for inferring high-quality

simply-connected superpixels,” in Image Processing (ICIP), 2015 IEEE Inter-

national Conference on, pp. 2184–2188, IEEE, 2015.

118

[20] D. Weikersdorfer, D. Gossow, and M. Beetz, “Depth-adaptive superpixels,” in

Pattern Recognition (ICPR), 2012 21st International Conference on, pp. 2087–

2090, IEEE, 2012.

[21] J. Papon, A. Abramov, M. Schoeler, and F. Worgotter, “Voxel cloud connec-

tivity segmentation-supervoxels for point clouds,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, pp. 2027–2034, 2013.

[22] J. Wang and X. Wang, “Vcells: Simple and efficient superpixels using edge-

weighted centroidal voronoi tessellations,” IEEE Transactions on Pattern Anal-

ysis & Machine Intelligence, no. 6, pp. 1241–1247, 2012.

[23] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on informa-

tion theory, vol. 28, no. 2, pp. 129–137, 1982.

[24] P. Neubert and P. Protzel, “Compact watershed and preemptive slic: On improv-

ing trade-offs of superpixel segmentation algorithms,” in Pattern Recognition

(ICPR), 2014 22nd International Conference on, pp. 996–1001, IEEE, 2014.

[25] J. Chen, Z. Li, and B. Huang, “Linear spectral clustering superpixel,” IEEE

Transactions on Image Processing, vol. 26, no. 7, pp. 3317–3330, 2017.

[26] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image

boundaries using local brightness, color, and texture cues,” IEEE Transactions

on Pattern Analysis & Machine Intelligence, no. 5, pp. 530–549, 2004.

[27] A. P. Moore, S. J. Prince, J. Warrell, U. Mohammed, and G. Jones, “Superpixel

lattices,” in 2008 IEEE conference on computer vision and pattern recognition,

pp. 1–8, Citeseer, 2008.

[28] A. Schick, M. Fischer, and R. Stiefelhagen, “Measuring and evaluating the com-

pactness of superpixels,” in Pattern Recognition (ICPR), 2012 21st International

Conference on, pp. 930–934, IEEE, 2012.

[29] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver

operating characteristic (roc) curve.,” Radiology, vol. 143, no. 1, pp. 29–36,

1982.

119

[30] G. Bertrand, “Simple points, topological numbers and geodesic neighborhoods

in cubic grids,” Pattern recognition letters, vol. 15, no. 10, pp. 1003–1011, 1994.

[31] “The berkeley segmentation dataset and benchmark bsd300 image data

set.” https://www2.eecs.berkeley.edu/Research/Projects/

CS/vision/grouping/segbench/. Accessed: 2019-02-25.

[32] R. Giraud, V.-T. Ta, and N. Papadakis, “Evaluation framework of superpixel

methods with a global regularity measure,” Journal of Electronic Imaging,

vol. 26, no. 6, p. 061603, 2017.

[33] H. Freeman, “On the encoding of arbitrary geometric configurations,” IRE

Transactions on Electronic Computers, no. 2, pp. 260–268, 1961.

[34] H. Freeman, “Computer processing of line-drawing images,” ACM Computing

Surveys (CSUR), vol. 6, no. 1, pp. 57–97, 1974.

[35] “Measuring boundary length.” https://www.crisluengo.net/

archives/310. Accessed: 2019-02-15.

[36] D. Proffitt and D. Rosen, “Metrication errors and coding efficiency of chain-

encoding schemes for the representation of lines and edges,” Computer Graph-

ics and Image Processing, vol. 10, no. 4, pp. 318 – 332, 1979.

[37] A. Vossepoel and A. Smeulders, “Vector code probability and metrication error

in the representation of straight lines of finite length,” Computer Graphics and

Image Processing, vol. 20, no. 4, pp. 347 – 364, 1982.

120

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
https://www.crisluengo.net/archives/310
https://www.crisluengo.net/archives/310

APPENDIX A

PERIMETER MEASUREMENT

A.1 Accuracy Problem during Measurements

In theory, compactness of a continuous ideal circle, a square and a hexagon is 1, 0.785

and 0.907 respectively. However during the implementation, due to discrete nature

of pixels, this values may deviate. Especially as the area of SP decreases, perimeter

approximation method start to dominate the metric, i.e. errors in those calculations

has more significant effect on results. If the perimeter of SP is not computed precisely,

low compactness values could be assigned to convex shapes. For instance, Stutz [4]

uses Schick’s method [28] to measure a perimeter. In the released code of the work,

perimeter is measured such that, for each boundary pixel the number of 4-connected

neighbors pixels that differ in cluster label are encountered. This approach calculates

0.78 as compactness score for square which is close to theoretical one however scores

0.58 for hex and 0.62 for circle are far away of their theoretical ones.

Giraud [32] addresses this problem and suggests that all convex shapes are regular and

their compactness should be same. The ones that is not regular shaped with respect

to them get lower compactness values. The method calculates overlap of cluster with

its convex hull and weights it with spatial distribution of pixels within cluster. As

a result regularity measure of circle, square, hexagon becomes 1, 0.830 and 0.940,

respectively.

121

A.2 Accuracy of Perimeter Measurement

In the upcoming experimental section of this work, the metrics are evaluated with

respect to varying compactness values, since it provides comparison of SP extraction

algorithms independent of their input parameters. Compactness measure is crucial

in evaluating performance of algorithms, and significantly affected by accuracy of

perimeter measurement. Therefore different perimeter measurement approaches in

literature are investigated to select the most accurate one. Hence to select the best fit,

perimeter measurement approaches listed in Table A.1 are examined in detail.

Figure A.1: Freeman code chain; a) directions and their assigned label, b) example of

a chain code calculation

• Freeman chain-code based methods: Freeman [33, 34] introduces a chain-

code formed by stepping along object boundary. While stepping, it assigns

a code to each transition from one pixel to another consecutive pixel on the

boundary according to transition direction. Figure A.1.a shows the directions

and related codes. Even number are given to horizontal or vertical steps and

odd numbers are given to diagonal ones. Figure A.1.b shows an example of a

chain code by stepping through boundary. The chain code of this boundary is

"0, 1, 3, 0, 0, 6, 7, 5, 4" starting from the pixel marked with dot. Following

methods evaluates this codes differently to measure the boundary perimeter.

Cris [35] investigated performance of Freeman chain code-based perimeter

metrics which are as follows:

122

• Freeman’s metric (Fr): Since diagonal steps (odd ones) are longer Freeman

suggests to multiple odd ones by
√
2. As a result, metric adds 1 for each even,

and
√
2 for each odd (diagonal transition). Metric formula is given as:

P =
8∑

i=0,Ciϵ2a

1 +
√
2

8∑
i=0,Ciϵ2a+1

1 (A.1)

where P is perimeter, C is Freeman chain code array calculated of that bound-

ary and has size N , i is the index of array C, and a is a sequence of numbers

0, 1, 2, 3.

• Proffitt and Rosen’s metric (PR): Proffitt and Rosen’s [36] proposes using

weights for even ad odd codes and introduces corner count calculation. Metric

applies weight correction to Fr metric. Measures 0.948 for each even, and 1.340

for each odd coded. Related formula is given as:

P = 0.948
N∑

i=0,Ciϵ2a

1 + 1.340
N∑

i=0,Ciϵ2a+1

1 (A.2)

• Vossepoel and Smeulders’ metric (VS): Vossepoel and Smeulders [37] adds

corner correction to PR metric and uses optimal values for odds, evens and

corner count such as measures 0.980 for even, and 1.406 for each odd coded

and subtracts 0,091 for each corner. Metric formula is given as:

P = 0.980
N∑

i=0,Ciϵ2a

1 + 1.406
N∑

i=0,Ciϵ2a+1

1− 0.091
N∑

i=0,Ci ̸=Ci+1

1 (A.3)

• Pixel Count (PC): PC is most commonly used metric, than just counts pixels

without evaluating transitions. Hence, it measures 1 for both even and odd

codes. Related formula is given as:

P = N (A.4)

Apart from Freeman-based methods, two other alternatives are investigated:

123

Table A.1: Perimeter measurement method experiment configuration

Shape Perimeter Metric Description Metric

RECT
80

Freeman’s metric (Fr)

(diagonal pixels counted as
√
2))

Perimeter

800

Proffitt and Rosen’s (PR)

(Fr + weight correction,

such that estimate is unbiased)

Compactness

HEX
72

Vossepoel and

Smeulders’ metric (VS)

(PR + corner correction)

Root-mean-square

(edge length range

[2− 200])

750 Pixel count (PC)

Erosion/dilation difference (ED)

Stutz [4]

benchmark code (ST)

• Erosion/dilation difference (ED): Erosion and dilation method, gets the dif-

ference of a region between dilated and eroded versions with a 3x3 structuring

element composed of ones. Then boundaries are detected and the number of

the boundary pixels are counted.

• Stutz’s metric (ST): Stutz also propose an erosion/dilation based method [4]

to measure perimeter of SPs. Among 4-connected neighbors, method measures

1 for each distinct labeled ones.

In order to to evaluate the accuracy of different perimeter measurement methods,

perimeter and compactness of square and hexagon in different orientations are calcu-

lated. Accuracy is measured for typical values of SP area as well as larger values to

understand the effect of discretization better. Table A.1 shows respective experiment

configuration.

Figure A.2 shows perimeter measurement results of each approach for different ori-

124

entations of a square. Typical value of 20 px is chosen as the edge length of square

which results in 400 px2 area and 80 px perimeter. TR shows the true perimeter

length. As shown in the figure, Fr, PR and V S are stable around the true perimeter

for all orientations. Among them, Fr covers the ground-truth line better than PR and

V S. On the other hand, methods ST , ED and PD produce unstable and erroneous

values. For the methods ST and ED, perimeter increases through 45◦ orientation and

then decreases, and vice versa for PD.

Figure A.3 shows the results for edge length is equal to 200 pixel of a square having

corresponding 40000 pixel2 area and 800 px perimeter. Similar to results above, Fr,

PR and V S outperform the rest in perimeter measurement accuracy for large clusters.

Among them, PR and V S perform better. The other 3 methods, ST , ED and PD,

behave same as they do in analysis of edge length of 20 px. Their output deviates

from the true perimeter length and error increases around 45◦.

Figure A.2: Perimeter calculation results of various algorithms for a square having

perimeter 80 px in different orientations

Figure A.4 and A.5 depict compactness result calculated for each method for edge

length 20 px and 200 px respectively. TR shows the actual compactness value of

the square as reference. Since compactness is inversely proportional to perimeter, as

expected Fr, PR and V S shows better performance than ST , ED and PD.

Figure A.6 shows results of perimeter calculations of related approaches measured for

125

Figure A.3: Perimeter calculation results of various algorithms for a square having

perimeter 800 px in different orientations

Figure A.4: Compactness calculation results of various algorithms for a square having

perimeter 80 px in different orientations

a hexagon in different orientations. Typical value 12 px is chosen for edge length of

hexagon having corresponding area about 374 px2 and perimeter 72 px. TR shows

actual perimeter value of square as reference with 72 px edge length. Similar to

square calculations, Fr, PR and V S are stable around the true perimeter length for

all orientations. Among them, Fr covers ground-truth line better PR and V S. On

the other hand, results of methods ST , ED and PD are unstable and erroneous like

126

Figure A.5: Compactness calculation results of various algorithms for a square having

perimeter 800 px in different orientations

in square case. Perimeter increases through 45◦ orientation and then decreases in ST

and ED calculations, and vice versa in PD ones.

Figure A.7 shows the perimeter results of different methods for a hexagon with edge

length equal to 125 pixel which is about 40594 pixel2 in area of hexagon. Similar to

small hexagon case, Fr, PR and V S outperforms the rest in large cluster measure-

ments. Between them, PR and V S covers the ground-truth line better than Fr. The

other 3 methods behave same as they do in analysis for edge length of 12 px. Their

outputs are not erroneous and deviate for different orientations.

Figure A.8 and A.9 depict compactness calculated with perimeters obtained with dif-

ferent methods for a hexagon with edge length 12 px and 125 px respectively. TR

shows the actual compactness value of the hexagon as reference. Since compact-

ness is inversely proportional to perimeter, as expected Fr, PR and V S shows better

performance than ST , ED and PD.

Above, for large and small cluster size behaviour of perimeter calculation methods in

different orientations of square and hexagon are analyzed. In order to analyze their

performance for different cluster sizes, root mean square error (RMS) with respect

to true compactness value of each shape is depicted in Figure A.10 and A.11. Edge

length is range from 5 to 200 for both shapes.

127

Figure A.6: Perimeter measurement results of various algorithms for a hexagon hav-

ing perimeter 72 px in different orientations

Figure A.7: Perimeter measurement results of various algorithms for a hexagon hav-

ing perimeter 750 px in different orientations

Regarding square, as it is seen from the Figure A.10, for edge length less than 26 pix-

els Fr, for higher values V S has the minimum error for compactness. For hexagon,

when edge length is less than 17 pixels Fr, for higher values PR has the minimum

error as shown in Figure A.11. In both cases Fr perform better, corresponding area is

approximately 700 px2, which means Fr is better for clusters having size up to 700

px2. For larger clusters, although V S and Pr has close performance for hexagon, V S

128

Figure A.8: Compactness calculation results of various algorithms for a hexagon

having perimeter 72 px in different orientations

Figure A.9: Compactness calculation results of various algorithms for a hexagon

having perimeter 750 px in different orientations

is significantly more precise than Pr in calculating square perimeter. Table A.2 and

A.3 show RMS errors of approaches with respect to typical edge length of square and

hexagon respectively. This values are also align with the inference above; Fr has the

minimum error for shapes having typical edge length.

129

Table A.2: RMS error of measured compactness of square at different orientations by

different perimeter metrics

Edge length VS ED ST PC Fr PR

20 0,07 0,29 0,29 0,35 0,05 0,08

15 0,11 0,28 0,28 0,38 0,05 0,11

10 0,16 0,27 0,29 0,41 0,08 0,15

Table A.3: RMS error of measured compactness of hexagon by different orientations

for different perimeter metrics

Edge length VS ED ST PC Fr PR

12 0,08 0,33 0,33 0,28 0,03 0,08

9 0,10 0,33 0,33 0,28 0,03 0,09

6 0,19 0,30 0,30 0,37 0,07 0,18

130

Figure A.10: Root mean square error of measured compactness for different perimeter

metrics for squares of various edge lengths

Figure A.11: Root mean square of measured compactness for different perimeter

metrics for hexagons of various edge lengths

A.3 Conclusions on Perimeter Measurement

In the current work, images up to 150k pixels are processed, and the related typical

area of an SP for 500, 1000 and 2000 SPs is 300, 150 and 75 px2 respectively. There-

fore, typical area is at most 300 px2 when 500 SPs are generated. SPs can be extend

during iterations by gaining pixels from neighbor SPs, but at the same time make

131

others reduce their volume keeping the average area constant. Considering typical

area for 1000 SP over 150k image, Fr seems a better choice to measure the perimeter

and hence the compactness as well. On the other hand, for higher resolutions than

700k and for at most 1000 SPs, V S gives more reliable results in terms of perimeter

calculations.

To sum up, compactness is one of the major evaluation parameter of SP extraction

methods. As compactness depends on SP perimeter, perimeter has to be measured

accurately for a fair evaluation. Due to discrete nature of images, perimeter mea-

surement of different methods may vary from actual one resulting misleading com-

pactness evaluations. The error in measurements increases when SP size decreases

as ratio of boundary pixels increases within SP. There are several perimeter mea-

surement methods, and in order to determine the most accurate one, experiments are

conducted in this section. Perimeter calculation methods are compared in terms of

stability against orientation change and aligning with the theoretical values. Fr is

chosen due to its stable behaviour with minimum deviation from actual value for both

square and hexagon shapes at different orientation. Fr shows best performance for

clusters having area up to 700 px2 which is much higher than typical values used

throughout this work.

132

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	introduction
	Superpixel Definition
	Scope of Thesis
	Contributions of Thesis
	Outline of Thesis

	Related Work
	Watershed-based Methods
	Density-based Methods
	Path-based Methods
	Graph-based Methods
	Wavelet-based Methods
	Gradient-based Superpixel Extraction Methods
	Contour Evolution Methods
	Energy Optimization-based Methods
	Clustering-based Methods

	Summary and Discussion

	Superpixel Performance Metrics and Performance Evaluation
	Superpixel Performance Metrics
	Boundary Recall
	Undersegmentation Error
	Achievable Segmentation Accuracy
	Explained Variation
	Proposed Metric : Boundary Achievable Segmentation Accuracy

	Superpixel Performance Evaluation
	Compactness Parameter
	Proposed Evaluation Method: Area Under Curve

	Analysis of A General Clustering-based Superpixel Extraction Method
	A General Clustering-based Superpixel Extraction Method
	Initial Tiling
	Cluster Connectivity
	4 or 8-Connected Update
	Simply-Connected Update
	Proposed Method: Just-Connected Update

	Refinement of Initial Tiling
	Predefined Re-segmentation
	Proposed Method : Edge-based Refinement

	Cost Function
	Spatial Adaptiveness
	Spectral Adaptiveness
	Proposed Cost Function

	Number of Iterations

	Comparison of Superpixel Extraction Methods
	Proposed Alternative Superpixel Extraction Methods
	Experiments

	conclusion
	REFERENCES
	Perimeter Measurement
	Accuracy Problem during Measurements
	Accuracy of Perimeter Measurement
	Conclusions on Perimeter Measurement

