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ABSTRACT

OPTIMIZING CORE SIGNAL PROCESSING FUNCTIONS ON A
SUPERSCALAR SIMD ARCHITECTURE

Uslu, Çağrı

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı

August 2019, 120 pages

Digital Signal Processing (DSP) is the basis of many technologies, such as Image

Processing, Speech Recognition, Radars, etc. Use of electronic devices such as smart-

phones, smartwatches, self-driving cars and autonomous robots that take advantage

of these technologies becomes widespread and hence it is more critical than ever for

these technologies to be realized with high efficiency on cheaper and less power-

hungry devices. Cortex-A15 processor architecture is one of the solutions from ARM

to this requirement. Therefore, it is worth to optimize certain DSP functions on the

Cortex-A15. In this thesis, four commonly used DSP operations are implemented on

an ARM Cortex-A15 processor, heavily utilizing the vector co-processor NEON. The

optimized operations are Matrix Addition, Matrix Multiplication, Convolution, and

Fourier Transform. Although numerous DSP libraries implement these operations,

they are not tailored to a specific processor. The functions implemented in this thesis

aim to be most efficient on Cortex-A15, which is a superscalar, out-of-order executing

processor. All types of processors may suffer from pipeline stalls. However, unlike

scalar processors, superscalar processors may achieve a superscalar performance even
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in the presence of pipeline stalls. This could be accomplished by utilizing the exe-

cution units of the processor better. One way of possibly increasing the utilization

of the execution units is instruction reordering. To reorder instructions optimally,

one must know certain specifications of the architecture. To discover one of those

specifications, i.e. the cost of instructions in clock cycles, a method is developed for

performing the appropriate time measurements. Additionally, a set of guidelines for

instruction reordering is conceived. Using these guidelines, among other optimization

techniques, the DSP functions mentioned earlier are manually optimized to achieve a

high execution performance.

Keywords: ARM, NEON, SIMD, Optimization, Instruction Reordering, Digital Sig-

nal Processing
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ÖZ

BÜYÜK ÖLÇEKLİ BİR SIMD MİMARİSİ ÜZERİNDE ÇEKİRDEK SİNYAL
İŞLEME FONKSİYONLARININ PERFORMANSLARININ

İYİLEŞTİRİLMESİ

Uslu, Çağrı

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Cüneyt Fehmi Bazlamaçcı

Ağustos 2019 , 120 sayfa

Görüntü İşleme, Konuşma Tanıma, Radar gibi teknolojilerin temelinde Sayısal Sin-

yal İşleme (SSİ) bulunmaktadır. Bu teknolojileri kullanan elektronik cihazlar yay-

gınlaştıkça, bu teknolojilerin daha ucuz ve daha az enerji harcayan donanımlar tara-

fından gerçekleştirilmesi büyük önem kazanacaktır. Cortex-A15 işlemci mimarisi ise

ARM’ın bu gereksinime yönelik geliştirdiği bir çözümdür. Bu sebeple, SSİ fonksi-

yonlarının bu mimari üzerinde olabilen en iyi şekilde çalışması faydalı olacaktır. Bu

tezde, sık kullanılan 4 SSİ operasyonu ARM Cortex-A15 üzerinde, yardımcı para-

lel işlemci NEON olabildiğince etkin biçimde kullanılacak şekilde gerçeklenmiştir.

Gerçeklenen operasyonlar, Matris Toplamı, Matris Çarpımı, Evrişim ve Fourier Dö-

nüşümü’dür. Bu operasyonlar sayısız yazılım kütüphanesi tarafından gerçekleştirilmiş

olsalar da bunların hiç biri belirli bir işlemciye yönelik geliştirilmemişlerdir. Bu tezde

yazılan fonksiyonlar, büyük ölçekli, sırasız işleme yapabilen Cortex-A15 üzerinde en

etkin çalışacak şekilde yazılmıştır. Her tipteki işlemci ardışık düzen oyalanmalarına

maruz kalabilir. Fakat normal ölçekli işlemcilerden farklı olarak, büyük ölçekli işlem-
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ciler ardışık düzen oyalanması durumlarında bile büyük ölçekli performans gösterebi-

lirler. Bu, işlemcide bulunan işletme birimlerinden yüksek oranda faydalanılmasıyla

sağlanabilir. Bu işletme birimlerinden alınan faydanın artılırmasının bir yolu komut-

ların doğru bir şekilde sıralanması olabilir. Komutların en doğru şekilde sıralanabil-

mesi için mimari hakkında çeşitli özelliklerin bilinmesi gerekmektedir. Bu özellikler

arasında yer alan, her komutun kaç saat döngüsü sürdüğü bilgisinin keşfi için bir me-

tot geliştirilmiştir. Buna ek olarak, komut sıralaması sırasında yol gösterebilecek bazı

yönergeler oluşturulmuştur. Başka yöntemlerle beraber bu yönergeler de kullanıla-

rak yukarıda bahsedilen SSİ fonksiyonları geliştirilerek daha yüksek performans elde

edilmeye çalışılmıştır.

Anahtar Kelimeler: ARM, NEON, SIMD, Optimizasyon, Komut Sıralama, Sayısal

Sinyal İşleme
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CHAPTER 1

INTRODUCTION

1.1 Overview

Digital Signal Processing is used in many application areas such as Audio Signal

Processing, Image Processing, Biosensors, Medical Imaging, Pattern Recognition,

Signal Compression, Speech Recognition, Digital Communications, Radars, Sonars,

Seismic Data Processing, etc. In mission-critical settings such as military or safety

applications, keeping the execution time of digital signal processing operations as

low as possible is essential. Moreover, these mission critical applications started to

find their way into smaller and more mobile devices, which almost always operate on

battery power. This brings additional requirements to the computer architecture and

algorithm design. Since power consumption is a fairly recent requirement in com-

puting devices, most compilers do not generate optimal code for less-power hungry

architectures, or existing software libraries do not contain code that can run optimally

on these devices. In this thesis, several optimization techniques, both architecture

dependent and independent, are experimented on certain signal processing functions

for a sample architecture, the ARM Cortex-A15. The Cortex-A15 aims to be power-

efficient while delivering competitive performance in high-end consumer devices and

military applications.

1.2 Aim of the Thesis

Learning from the experiments in this thesis, we aspire to obtain DSP subroutines

that can achieve better performance than the code generated by the compiler from an
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architecture-independent code, or the code readily available in architecture-dependent

software libraries. It is expected that a performance gain will be achieved once certain

optimization methods, such as vectorization, loop unrolling, and instruction reorder-

ing, are applied. In order to achieve an optimal instruction ordering, a deeper knowl-

edge about the architecture is required, such as, the number of execution units, cost of

each instruction in clock cycles, and the existing out-of-order execution capabilities

of the processor. Since most of these topics are unknown to compilers, it is expected

that manual optimization of the functions by the programmer will be beneficial.

It is not always possible to find all the necessary information needed to optimally

reorder the instructions in the official documentation of the processor. Two such non-

existent issues are the exact cost of each instruction in clock cycles and the existing

out-of-order execution capabilities of the processor for Cortex-A15. A method is

developed during this thesis to discover the cycle cost of each instruction, hoping that

it will be beneficial during instruction reordering, however, details about the out-of-

order capabilities of the processor still remained a mystery.

In addition, since there aren’t any DSP libraries specifically optimized for the pro-

cessor used in this thesis, a software library that is optimized to work on all ARM

processors, namely the Ne10, is further optimized by us to run faster on Cortex-A15,

whenever applicable.

1.3 Contributions of the Thesis

Our contributions can be summarized in three main points:

• A method is developed to determine the cost of each instruction in clock cycles.

Although no occasion to use these discoveries is encountered while optimizing

the four functions, the instruction timings are still provided in this thesis with

the hope of helping other researchers.

• Certain optimization techniques are applied to decrease the execution time of

four widely used DSP operations; namely, Matrix Addition, Matrix Multiplica-

tion, Convolution, and Fourier Transform. Although a considerable speed-up is
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achieved in three of these operations, the performance gain has been marginal

for the Fourier Transform case.

• During this thesis work, a set of guidelines for instruction reordering is con-

ceived. These guidelines may be of use to fellow researchers in their struggles

to achieve high performance systems.

1.4 Outline of the Thesis

In chapter 2, background information is provided. Some architectural topics, such

as Superscalar Out-of-order Processors and Vector Co-processors, are briefly intro-

duced. Software related topics about floating-point calculations are mentioned. The

current optimization capabilities of compilers are summarized. The definition of the

DSP operations examined in this thesis are given. Additionally, the current state of

the art in auto-vectorization, instruction scheduling and Fourier Transform is summa-

rized.

In chapter 3, the method used to determine the cost of instructions in clock cycles is

discussed and the obtained results are provided.

In chapter 4, the optimizations applied to the DSP functions are presented in detail

with accompanying code examples.

In chapter 5, the results of the applied optimizations, followed by the instruction

reordering guidelines, are provided.

In chapter 6, concluding remarks and directions for future work are given.
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CHAPTER 2

BACKGROUND AND LITERATURE OVERVIEW

2.1 Background Information

2.1.1 Computer Architecture Concepts

2.1.1.1 Superscalar Out-of-order Processors

Superscalar and out-of-order executing processors exploit a certain type of instruction-

level parallelism by allowing the execution of more than one instructions per cycle.

Together with the branch prediction methods, superscalar processors aim to achieve

a full pipeline at all times.

The general structure of a superscalar out-of-order executing processor is given in

figure 2.1. In these types of processors, the instructions are fetched into Instruction

Buffer, in which they are buffered until the pipeline is ready for them to be decoded

and dispatched. After buffering, the instructions are decoded and placed in reservation

stations where they wait for their operands to be ready. The out-of-execution begins is

reservation stations as the instructions whose operands are ready may be dispatched

before other instructions which are still waiting for operands. Once the operands of an

instruction are complete, the execution begins in the execution pipeline. This is called

being issued to an execution unit. There may be more than one execution pipelines.

This fact introduces the ability of executing more than one instructions per cycle. The

difference in the duration of the waiting that happens in the reservation stations, and

the difference in the lengths of the execution pipelines are the causes of the difference

in the ordering of the instructions leaving the execution stage compared to the original

ordering of the program. The execution results are gathered in the reorder buffer so
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that the side-effects, such as setting or clearing of the condition codes, happen in the

order intended by the program.

Figure 2.1: General Structure of an Out-of-order Superscalar Processor

Although the out-of-order processors allow reordering of instructions in the reserva-

tion stations to increase pipeline efficiency, it is aware only of a small window of

instructions. As the results of this thesis shows, manual reordering of instructions

may still be beneficial to a certain extent.

2.1.1.2 ARM Cortex-A15 Processor

ARM Cortex-A15 processor is a high-performance, low-power microprocessor that

implements the ARMv7-A architecture specifications. A maximum of four cores can

exist in a Cortex-A15 chip, with separate L1 caches and a shared L2 cache.
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Figure 2.2: The General Structure of Cortex-A15 extracted from [1]

The general structure of Cortex-A15 is given in figure 2.2. This figure shows that

Cortex-A15 has an instruction cache, branch prediction capability, loop buffer, reg-

ister renaming, and multiple execution pipelines. In this figure, not all execution

pipelines of the design is given. In figure 2.3, which is originally from [2], it is

observed that the execution stage of Cortex-A15 contains additional units. It has

two integer arithmetic pipelines, one integer multiply pipeline, one branch resolution

pipeline, two NEON/VFP pipelines, one load pipeline, and one store pipeline. From

[1], we learn that there is also an iterative integer divide pipeline, which is not shown

in figures.
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Figure 2.3: Execution Pipelines of Cortex-A15 extracted from [2]

The number of pipelines mirror the issue capacity of the execution units. For ex-

ample, in the same cycle, two integer arithmetic instructions may be issued, since

there are two parallel pipelines for it. Hence, this architecture has great potential for

performance gain if the superscalar structure can be appropriately utilized.

2.1.1.3 Vector Coprocessors

After the disappearance of vector processors, vector coprocessors became the pre-

ferred and the cheapest way of acquiring high throughput in scientific computations

and multimedia applications. Vector coprocessors, or commonly referred to as SIMD

extensions, apply the same arithmetic or logical operations to vectorized data that is

loaded from memory. All major chip manufacturers include SIMD extensions to their

designs. IBM’s AltiVec [4], Intel’s AVX [5], and ARM’s NEON [6] are examples of

these extensions.

All widely used variations of SIMD extensions use their own set of registers that are

distinct from the registers of the processor.

2.1.1.4 ARM NEON Extension

NEON is the name of the SIMD extensions in the ARM processors. In Cortex-A15,

NEON has two separate execution pipelines to which two instructions may be issued
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at the same time.

NEON operations use a register file that is separate from the ARM core. It has 16 128-

bit wide registers where each of them can hold two 64-bit, or four 32-bit floating-point

numbers. It can also hold many combinations of different width integer numbers, but

in this thesis, only floating-point numbers are of interest. In [6], it is said that NEON

is not fully compatible with IEEE Standard for Floating-Point Arithmetic (IEEE 754).

The registers in NEON can be accessed in a couple of different ways. First, there are

16 quad registers that are 128-bit wide and named from q0 to q15. Second, there

are 32 double registers that can hold 64-bits and named from d0 to 31. However,

the registers d(n) and d(n+1) point to the lower and upper halves of the q(n/2)

register, where n is an even integer in [0, 30] interval. For example, the registers d18

and d19 point to the lower and upper halves of the q9 register. Third, there are 32

single registers that can hold 32-bit values and named from s0 to s31. Similarly, the

registers s(n) and s(n+1) point to the lower and upper halves of the d(n/2) reg-

ister, where n is an even integer in [0, 30] interval. Hence, using single registers, it is

not possible to access the d16-31 registers. This register access pattern is visualized

in figure 2.4.
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Figure 2.4: NEON Registers

When using 32-bit floating-point numbers, the NEON quad registers can hold four

floating point numbers. Each number in a register is called a lane. The arithmetic

operations between NEON registers are applied on respective lanes. The NEON pro-

cessor, besides many types of data move instructions with different patterns, can add,

subtract, accumulate, multiply, and multiply-accumulate floating-point numbers. Fig-

ure 2.5 shows the visualization of an addition operation with NEON.
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Figure 2.5: Addition of two registers with NEON

In Cortex-A15, the NEON execution unit includes the ARM’s non-vectorized floating-

point unit named VFP. This unit is also used, albeit rarely, in this thesis for non-

parallel arithmetic operations.

2.1.2 ARM and NEON assembly

In this subsection, ARM and NEON assembly language is explained such that the

codes given in this thesis are easier to understand.

In ARM assembly, the arithmetic and binary operation instructions use two or three

operands:

add r0, r1 @ Two operands

add r0, r1, r2 @ Three operands

In two operand version of the arithmetic instructions, the first operand is both one

of the source operands and the destination operand. For three operand version, the

first operand is the destination, the second and third operands are the source. The

respective RTL representations of above code is given below:

R0 ← R0 +R1

R0 ← R1 +R2

The instructions that begin with the letter v are NEON/VFP instructions. For ex-

ample, the following code block performs the addition of four 32-bit floating point
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numbers that are placed in NEON quad registers.

vadd.f32 q0, q1, q2

Q0 ← Q1 +Q2

Similar to the non-NEON case, NEON instructions have also two operand versions:

vadd.f32 q0, q1

Q0 ← Q0 +Q1

In this thesis, only the NEON load/store instructions are used. These instructions

again begin with the letter v. The explanation of certain types of load/store instruc-

tions used in this thesis is given below.

@ Load 4 floating-point numbers from address r0 to q0

@ without deinterleaving

vld1.32 q0, [r0]

@ Load 8 floating-point numbers from address r0 to q0

@ and q1 without deinterleaving

vld1.32 {q0-q1}, [r0]

@ Load 8 floating-point numbers from address r0 to q0

@ and q1 without deinterleaving and increment r0 by

@ the number of bytes loaded

vld1.32 {q0-q1}, [r0]!

@ Load 8 floating-point numbers from address r0 to q0

@ and q1 with 2-way deinterleaving and increment r0

@ by the number of bytes loaded

vld2.32 {q0-q1}, [r0]!

@ Store 8 floating-point numbers from q0 and q1 to

@ address r0 with 2-way interleaving and increment
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@ r0 by the number of bytes stored

vst2.32 {q0-q1}, [r0]!

2.1.3 Floating Point Numbers and Operations

2.1.3.1 Complex Floating Point Numbers and Operations in C Language

Complex numbers are added to the C language with the ISO/IEC 9899:1999 standard.

This version brought floating-point complex number types with 3 different precisions;

32-bit, 64-bit, and 128-bit.

Complex floating numbers are kept in memory as two separate floating-point numbers

where the imaginary part follows the real part of the number. As a result, complex

number arrays are kept in memory in such a way that the real part of the number

and the imaginary part are interleaved. Thankfully, NEON has a variant of the load

instruction, VLD2, which can deinterleave the data while loading them to NEON

registers:

vld2.32 {q0-q1}, [r1]

This instruction, while loading the data, places the even indexed numbers into q0

register while placing the odd indexed numbers into q1 register, thus separating the

real part of the numbers from their imaginary parts.

Another frequently used variant of the load instruction is the post-increment load.

vld2.32 {q0-q1}, [r1]! @ Notice the (!)

This instruction, after loading the data from the address pointed by r1, increments r1

by the number of bytes loaded. As a result, the r1 pointer points to the next number

in a sequence of numbers. In the upcoming chapters of this thesis, we should keep in

mind that the post-increment operation is executed after the loading of the data.
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2.1.3.2 Fused Multiply-Accumulate Operations

In DSP applications, the multiply-accumulate operation is a frequently encountered

step of many operations. For this reason, most floating-point computation units in-

clude specialized hardware that can handle this operation. Multiply-accumulate can

either be done in two steps with rounding after each step, or in a single step with only

one rounding. It is called a fused multiply-accumulate operation if the computation

is done in a single step. If the hardware has native support for fused operations, the

result may be more accurate.

Although the processor used in this thesis has support for fused floating point opera-

tions, the Cortex-A15 specifications do not mandate their existence. For this reason,

fused floating-point operations are not used while implementing the functions to stay

compatible with all Cortex-A15 implementations from all vendors.

2.1.4 Compiler Optimizations

Compilers usually employ many optimization techniques to generate better code.

These optimizations either try to compensate for the overhead that comes from high-

level programming languages or help the programmer by automatically detecting and

applying certain optimizations opportunities.

One should note that, better code does not always mean faster code. For embedded

systems, memory usage and binary size are also important factors during develop-

ment. For the hardware setup used in this thesis, however, binary size and memory

usage were not a limiting factor.

2.1.4.1 Loop Unrolling and Register Renaming

Loop unrolling, or sometimes referred to as loop unwinding, is the act of copying the

instructions of a loop repeatedly to diminish the overhead of branching and compar-

ison. Note that, the compiler cannot unroll all loops. Either the iteration count or

one of its submultiples should be known during the compile time for the compiler to

generate unrolled loops.
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Decreasing the number of branch instructions may result in a noticeable performance

gain due to increased pipeline utilization. Even though the branch prediction systems

in modern processors reduce the cost of branches, the cost of fetching and decoding

of a branch instruction is here to stay. Additionally, although it is not as costly as the

branch operation, decreasing the number of comparison operations is also beneficial.

Register renaming, which itself is a separate optimization method, is often used hand-

in-hand with loop unwinding. If register renaming is applied to the unwinded loop,

and the calculations made in consecutive iterations are independent of each other,

unrolled statements may be executed in parallel by a superscalar processor, improving

the performance further.

There is usually a limit to how much performance can be gained by unrolling the

loops. After a certain point of unrolling, the code size may become so large that the

instruction cache misses may start to degrade the overall execution time of the loop.

In this thesis, loop unwinding is utilized both manually and automatically. For the

compiler used during this thesis work, loop unrolling is enabled using -funroll-loops

option.

An example for manual unrolling of a C loop is as follows:

@ Not unrolled

for (i = 0; i < 256; i++)

y[i] = a[i] + b[i];

@ Unrolled with a factor of 2

for (i = 0; i < 256; i += 2)

{

y[i] = a[i] + b[i];

y[i+1] = a[i+1] + b[i+1];

}

@ Unrolled with a factor of 4

for (i = 0; i < 256; i += 4)

{
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y[i] = a[i] + b[i];

y[i+1] = a[i+1] + b[i+1];

y[i+2] = a[i+2] + b[i+2];

y[i+3] = a[i+3] + b[i+3];

}

Unrolling of the same code using assembly is provided here:

@ Not unrolled

for (i = 0; i < 256; i++)

{

asm (

"vld1.32 s0, [%[a]]"

"vld1.32 s1, [%[b]]"

"vadd.f32 s0, s1"

"vst1.32 s0, [%[y]]"

);

}

@ Unrolled with a factor of 2

for (i = 0; i < 256; i += 2)

{

asm (

"vld1.32 s0, [%[a]]!"

"vld1.32 s1, [%[b]]!"

"vadd.f32 s0, s1"

"vst1.32 s0, [%[y]]!"

"vld1.32 s0, [%[a]]!"

"vld1.32 s1, [%[b]]!"

"vadd.f32 s0, s1"

"vst1.32 s0, [%[y]]!"

);
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}

@ Unrolled with a factor of 4

for (i = 0; i < 256; i += 4)

{

asm (

"vld1.32 s0, [%[a]]!"

"vld1.32 s1, [%[b]]!"

"vadd.f32 s0, s1"

"vst1.32 s0, [%[y]]!"

"vld1.32 s2, [%[a]]!"

"vld1.32 s3, [%[b]]!"

"vadd.f32 s2, s3"

"vst1.32 s2, [%[y]]!"

"vld1.32 s4, [%[a]]!"

"vld1.32 s5, [%[b]]!"

"vadd.f32 s4, s5"

"vst1.32 s4, [%[y]]!"

"vld1.32 s6, [%[a]]!"

"vld1.32 s7, [%[b]]!"

"vadd.f32 s6, s7"

"vst1.32 s6, [%[y]]!"

);

}

2.1.4.2 Automatic Vectorization

Automatic vectorization is the act of converting sequential mathematical computa-

tions into vector operations, if possible. After the computation is converted to vector-
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ized form, it is much easier to generate associated code to run on SIMD hardware.

The need for automatic vectorization stems from the fact that the most widely used

programming languages, such as C and FORTRAN, do not have semantics to de-

scribe vector operations [7]. Programmers convert these vector operations to sequen-

tial loops because that is what the language supports. The compiler then tries to

analyze the code to identify the vector operations and generate code that utilizes the

SIMD hardware.

Below, a vectorization example is given.

int a[256], b[256], c[256];

@ Before vectorization

for (i = 0; i < 256; i++)

a[i] = b[i] + c[i];

@ After vectorization

for (i = 0; i < 256; i += 8)

{

asm (

"vld1.32 {q0-q1}, [%[b]]!"

"vld1.32 {q2-q3}, [%[c]]!"

"vadd.f32 q0, q2"

"vadd.f32 q1, q3"

"vst1.32 {q0-q1}, [%[a]]!"

);

}

2.1.4.3 Instruction Reordering

Instruction reordering is the act of reordering the instructions to maximize the proces-

sor’s pipeline utilization. It can decrease or get rid of the cost associated with pipeline

stalls. Although the out-of-order executing processors apply reordering internally, as
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the results of this thesis shows, offline reordering of instructions can also lead to a

performance gain.

Instruction reordering is usually utilized to decrease the data dependency of consec-

utive instructions. In the example given below, before reordering, almost all of the

instructions have wait for the previous one to finish, since they require the result of

the previous calculation. However, when the instructions are reordered as given, the

second load operation need not wait for the first load operation to finish, thus, can start

executing in parallel. Same reasoning also applies to the second addition instruction

and the second store instruction.

@ Before reordering

vld1.32 {q0-q1}, [r0]

vadd.f32 q0, q1

vst1.32 {q0}, [r1]

vld1.32 {q2-q3}, [r2]

vadd.f32 q2, q3

vst1.32 {q2}, [r3]

@ After reordering

vld1.32 {q0-q1}, [r0]

vld1.32 {q2-q3}, [r2]

vadd.f32 q0, q1

vadd.f32 q2, q3

vst1.32 {q0}, [r1]

vst1.32 {q2}, [r3]

There are other reasons to apply reordering. The reordering of instructions may

increase the utilization of the execution pipelines when the issue capability of the

pipelines are maximized. An example is given below.

@ Before reordering

vmul.f32 s0, s1

vmul.f32 s2, s3
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vmul.f32 s4, s5

add r0, #32

vmul.f32 s6, s7

@ After reordering

vmul.f32 s0, s1

vmul.f32 s2, s3

add r0, #32

vmul.f32 s4, s5

vmul.f32 s6, s7

For the above example, assume that a processor has two floating-point multiplication

and a single integer arithmetic pipelines. Before reordering, the first two multiplica-

tions, the third multiplication, the addition, and the forth multiplication can be issue

to their respective patterns at each clock. It takes four clock to issue all of the in-

structions. After the reordering of the instructions, the last two multiplications can be

issued together, reducing the issue clock count to three.

Finally, one other reason for instruction reordering is to diminish the impact of the

cache replacement policy. An example of this is given below.

@ Before reordering

vld1.32 {q0-q1}, [r0]

vmul.f32 s0, s1

vmul.f32 s2, s3

vmul.f32 s4, s5

vmul.f32 s6, s7

vld1.32 {q2-q3}, [r1]

vmul.f32 s8, s9

vmul.f32 s10, s11

vmul.f32 s12, s13

vmul.f32 s14, s15

@ After reordering
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vld1.32 {q0-q1}, [r0]

vmul.f32 s0, s1

vmul.f32 s2, s3

vld1.32 {q2-q3}, [r1]

vmul.f32 s4, s5

vmul.f32 s6, s7

vmul.f32 s8, s9

vmul.f32 s10, s11

vmul.f32 s12, s13

vmul.f32 s14, s15

For the above example, the second load operation is moved above to start earlier. If

the address pointed by r1 is not in the cache, the processor has more time to bring

this data into cache until the execution begins at the fifth multiplication operation.

2.1.5 Digital Signal Processing Operations

2.1.5.1 Matrix Addition

Matrix Addition is the entry-wise summation of two equally sized matrices. Its defi-

nition is given in 2.6.

Figure 2.6: Matrix Addition
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2.1.5.2 Matrix Multiplication

For the matrices A and B that are defined as follows:

A =


a11 a12 · · · a1m

a21 a22 · · · a2m
...

... . . . ...

an1 an2 · · · anm

, B =


b11 b12 · · · b1p

b21 b22 · · · b2p
...

... . . . ...

bm1 bm2 · · · bmp


Matrix multiplication, C = AB is defined to be the matrix:

C =


c11 c12 · · · c1p

c21 c22 · · · c2p
...

... . . . ...

cn1 cn2 · · · cnp


such that,

cij = ai1b1j + · · ·+ aimbmj =
m∑
k=1

aikbkj.

Matrix multiplication appears in many field of science, such as applied mathematics,

statistics, physics, economics, and engineering.

2.1.5.3 Convolution

Convolution is a mathematical operation defined on complex valued functions. If

f and g are such functions, which are defined only for integer valued indexes, and

undefined anywhere else, their convolution is defined as such:

(f ∗ g)[n] =
∞∑

m=−∞

f [m]g[n−m]

Convolution is used in very wide variety of applications. In image processing, con-

volution filter is frequently used in edge detection process, and for adding blur to

images. In analytical chemistry convolutional filters are used to improve the signal-

to-noise ratio of spectroscopic data. In acoustics, reverberation is the convolution

of the original sound with echoes from surrounding objects. In probability theory,
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the probability distribution of the sum of two independent random variables is the

convolution of their individual distributions.

Convolution is encountered very frequently in electrical engineering also, where the

convolution of a signal with the impulse response of a linear time-invariant filter gives

the output of the system. In the context of this thesis, f is usually the input signal, g

is usually the filter parameters.

2.1.5.4 Fourier Transform

Fourier Transform decomposes a signal into its constituent frequencies. The Fourier

Transform of a real-valued signal is a complex-valued function whose magnitude

represents the amount of that frequency in the signal. Discrete Fourier Transform is a

version of the transform in which the input signal and the resulting transform consist

of equally-spaced samples. For the signal {xn} := x0, x1, . . . , xN−1, its transform

{Xk} := X0, X1, . . . , XN−1 is defined as:

Xk =
N−1∑
n=0

xn · e−
i2π
N

kn

Computation of Discrete Fourier Transform consists of O(N2) multiplications. On

the other hand, Fast Fourier Transform is an algorithm that computes the Discrete

Fourier Transform of a signal with only O(Nlog(N)) multiplications. When the

definition of Discrete Fourier Transform is expanded, it appears that the transform

can be expressed as a weighted addition of two half-sized transforms. Fast Fourier

Transform takes advantage of this fact and formulates the computation as a recursive

computation of Fast Fourier Transforms. Computation of an 8-point FFT is visualized

in figure 2.7.
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Figure 2.7: 8-point Fast Fourier Transform expressed in terms of two 4-point trans-

forms and a weighted sum

2.1.6 Ne10 Library

Ne10 is a software library that contains a set of algebraic computations and DSP

functions. Ne10 is the recommended library that is developed by ARM for its NEON-

enabled architectures. It incorporates many vector/matrix operations such as addition,

subtraction, multiplication, normalization, dot product, cross product, and determi-

nant calculation. Besides, it has functions related to DSP operations for FFT, FIR

filters, and IIR filters. This library is selected as the benchmark for our comparisons

in our thesis, whenever possible.

2.2 Literature Review

2.2.1 Vectorization

Vectorization has been one of the most popular performance optimization techniques.

In the 1970’s, vector processors, which are specifically designed to take advantage of

the vectorization techniques, began to appear. Around this time, auto-vectorization

research has also began [8]. Later in 1990’s, the vector processors could not keep
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up with the conventional microprocessors and rapidly disappeared from the mar-

ket. However, vectorization extensions to conventional instruction set architectures

are adopted by major chip manufacturers. These instruction set extensions are often

called as Single-Instruction-Multiple-Data (SIMD) instructions. IBM’s AltiVec [4],

Intel’s AVX [5], and ARM’s NEON [6] are examples of these extensions.

Even though auto-vectorization research has been going on for nearly 50 years, it is

still not mature and new implementation techniques appear frequently, for example

[9], [10], and [7]. The compilers adopt these techniques to keep up with performance

requirements of new applications. However, not all effort in auto-vectorization is

targeted towards compilers. Hybrid or hardware based solutions are also proposed as

in [3] and [11] respectively. The hybrid auto-vectorization method proposed by [3] is

visualized in 2.8. However, these solutions did not find their way into commercially

available systems of devices. Another approach is binary translation, proposed in

[12], [13], and [14]. These methods try to convert the vectorized code generated for

one architecture to another without the source code. Again, these solutions are not

encountered frequently in the industry.

Figure 2.8: Hybrid compile-time run-time auto-vectorization proposal by [3]

Nevertheless, offline optimizations and manual vectorization is still considered to be

superior to that of automatically generated ones [3]. There are many research papers

focusing on manual optimization of widely used algorithms with vectorization. Such

algorithms include H.264 decoding [15] [16] [17], HEVC decoding [18] [19], and

FFT [20] [21] [22]. There are also SIMD libraries that provide a basic set of tools

that programmers can use in their programs, such as [23]. Some SIMD libraries are

specialized on certain topics such as image processing [24] [25].
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Current state of the vectorization technology from programmer’s perspective can be

summarized as follows:

• The compilers can detect certain vector operations and generate SIMD-enabled

code automatically.

• If the performance of the auto-vectorized code does not satisfy a programmer,

the current state of the literature could be investigated. If the algorithm being

implemented is found in one of the manual optimization research efforts, the

techniques mentioned in the research can be applied.

• If a research effort concerning the algorithm under development cannot be

found, the programmer can use architecture-dependent vector libraries that pro-

vide basic mathematical tools and implement the operation using the primitives

found in those.

• If the algorithm cannot be expressed in terms of primitives found in vector

libraries and the performance of the libraries do not satisfy the needs, the pro-

grammer must implement the algorithm with architecture-dependent statements

using SIMD intrinsics or instructions.

• There is no guarantee that the vectorized implementation will always perform

better than the sequential one. The programmer should perform performance

tests.

2.2.2 Instruction Scheduling

The Instruction Scheduling research began with the appearance of out-of-order su-

perscalar processors. At first, the out-of-order executing processors dynamically re-

ordered the instructions to allow for the instructions that are not waiting for the result

of previous calculations to start executing before others [26]. Multiple execution

pipelines of superscalar processors even allowed for the parallel execution of inde-

pendent instructions.

Historically, instruction scheduling is applied in two different ways. The first was

dynamic scheduling of instructions in which the code is written sequentially and it is
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reordered to execute in parallel by the processor at run-time. The second method was

using an entirely different processor architecture called Very Large Instruction Word

(VLIW) computers, which allowed the programmer, or compiler to decide which

instructions should be issued to which pipeline in every cycle [27].

While the processors applying dynamic reordering, also known as out-of-order pro-

cessors, did not break the compatibility with the existing binaries and compilers,

VLIW processors required recompilation of the source along with a very compli-

cated compiler [28]. Additionally, the out-of-order processors could, in time, expand

their parallel execution capacity without breaking compatibility and providing more

performance to already compiled programs. On the other hand, each iteration of a

VLIW processor required a new revision of the compiler along with a recompilation.

For the given reasons, today, the VLIW processors can be encountered only in spe-

cialized applications, such as scientific computing. For desktop and mobile use, out-

of-order superscalar processors dominate the market.

2.2.3 Fast Fourier Transform

Fast Fourier Transform is possibly the most frequently used algorithm in signal pro-

cessing applications. It is discovered in 1965 by Cooley and Tukey [29]. Since then,

it is adopted widely, modified to better fit into different architectures [30], variants

have came up [31] [32], and many hardware & software implementations are devel-

oped. For low-cost architectures, sequential and vectorized implementations are also

developed [21] [20].

One software library that tries to adopt the solutions of many researchers in one frame-

work is the FFTW library [33]. When a dedicated hardware for FFT computation is

not found in a system, FFTW is almost always the choice for the software alternative.

This is due to the free availability of the library, and to its superiority against other

free alternatives. A comparison of FFTW against other FFT libraries can be found in

figure 2.9. For this comparison, a 2.4GHz Pentium 4 computer is used.
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Figure 2.9: Single-precision floating-point performance of FFTW against other FFT

implementations

Unfortunately, FFTW had an incompatibility with the compiler used in this thesis,

which is GCC version 6.2.1, and it was not possible to use it for our comparisons.

The FFTW maintainers are informed about this issue but no further comments have

arrived yet.
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CHAPTER 3

DETERMINING THE COST OF ARM AND NEON INSTRUCTIONS IN

CLOCK CYCLES

We envisioned that knowing the cost of each instruction in clock cycles should be

beneficial while reordering the instructions, either manually or automatically. How-

ever, this information is unfortunately not available in any official ARM documen-

tation. Thus, we propose and implement an approach to determine the cost of each

instruction in clock cycles.

One hypothetical case where knowing the cost of the instructions in clock cycles

is essential while reordering is presented below. For this example, assume that the

processor has two hypothetical instructions add and mul. In the given code, the add

instructions are independent of each other but the mul instructions are not, and must

wait for the other before starting executing.

add s0, s1

add s2, s3

add s4, s5

add s6, s7

add s8, s9

add s10, s11

add s12, s13

add s14, s15

mul r0, r1

mul r0, r2

mul r0, r3
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The data dependency of mul instructions can be reduced by placing them as such:

add s0, s1

add s2, s3

add s4, s5

add s6, s7

add s8, s9

add s10, s11

mul r0, r1

add s12, s13

mul r0, r2

add s14, s15

mul r0, r3

However, we cannot know if this configuration is the optimal one. The previous mul

instructions may still be executing while next one is issued.

If we assume that the add instruction executes in three clock cycles while the mul

executes in five, the timings of the instructions of the unordered code will be as in

figure 3.1.

Figure 3.1: Timings of the instructions of the unscheduled code

Once the cost of the instructions in clock cycles are known, the code can be reordered
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optimally as follows, which results in the timings given in 3.2.

mul r0, r1

add s0, s1

add s2, s3

add s4, s5

add s6, s7

mul r0, r2

add s8, s9

add s10, s11

add s12, s13

add s14, s15

mul r0, r3

Figure 3.2: Timings of the instructions of the scheduled code

Consequently, there are cases where the cost of the instructions in clock cycle is

essential if optimal reordering is intended.
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3.1 Test Setup

The principal work conducted within the scope of this thesis required some archi-

tectural discoveries on an actual hardware. Therefore, we believe it is appropriate to

explain our test setup early in this section of this chapter.

All of the code written for this thesis work is executed on the chip 66AK2H14 by

Texas Instruments, which features four ARM Cortex-A15 cores running at 1.4GHz,

32KB of L1 instruction and data caches per core and 4MB of shared L2 cache.

The chip is found on an evaluation board EVMK2H designed by Advantech, which

included a flash memory for the operating system and 4GB DDR3 memory. The

evaluation board came preloaded with a GNU/Linux distribution with kernel version

4.9.41.

Texas Instruments provided the cross-compilation toolchain which included the GNU

Compiler Collection (GCC) version 6.2.1. Most of the code in this thesis is written in

C language with occasional assembly blocks for manual optimizations.

3.2 Measurement Method

To measure the number of clock cycles an instruction takes, should be able to get very

accurate clock cycle measurements in the first place. However, the C language or the

operating system does not provide such accurate timers. The C language standard

library has the time() function which returns the number of seconds since Epoch

(January 1, 1970 00:00), which is unusable for our case because of its one second

granularity. The operating system has the clock_gettime() function which pro-

vides timing information with nanoseconds precision but its granularity is measured

to be approximately 400 nanoseconds, which roughly corresponds to 560 clock cy-

cles. Thankfully, the ARM chip used during this thesis included a cycle counter that

is explained in detail in the following subsection.

There are other problems associated with cycle measurement when it comes to su-

perscalar out-of-order processors with deep pipelines. Suppose that the Instruction
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Under Investigation (IUI) is placed in between two measurements. First of all, in

superscalar out-of-order executing processors, there is no guarantee that the IUI will

be executed after the first and before the second measurement, especially if the in-

structions do not have data dependencies. Second, in pipelined processors, when the

pipeline fills up with successive instructions, an instruction is retired in almost every

cycle. Therefore, even if the IUI executes in between measurements, the measurement

may be much smaller than the actual cost of that instruction. The ARM instruction

ISB turned out to be the solution to the problems discussed in this paragraph. This

instruction and the way we used it is discussed further in this chapter.

3.2.1 PMU Cycle Counter

The ARMv7-A Architecture adopted by the Cortex-A15 Processor allows the chip

manufacturers to include a cycle counter named Performance Monitor Unit (PMU)

in their designs. PMU is accessible by the user-space applications if configured as

such. Requiring no operating system intervention further increases the granularity of

the timing measurements.

After processor reset, the PMU is inaccessible from the user-space. The user-space

access should be enabled by a privileged code, such as the kernel. Since the kernel

does not incorporate such a functionality, a kernel module is written. This module,

upon initialization, configures all cores to enable user-space access to PMU registers.

With this configuration, the user-space programs gain the ability to read the current

value of the counter or reset the counter to zero. The value of the counter is read with

the Move to ARM Core Register from Coprocessor (MRC) instruction:

mrc p15, 0, r0, c9, c13, 0

This instruction reads the c13 register in the c9 bank of the coprocessor named as

p15 into the ARM register r0.

PMU can provide measurements with a single clock cycle granularity, however, the

reading itself takes 8 clock cycles. This overhead must be subtracted from all further

measurements.
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Since the PMU cycle counter counts the number of clock cycles, its results are very

stable for fine-grained measurements. However, for course-grained measurements,

the measurements become less stable and can provide different results each time.

Main reasons for this are the state of the instruction and data caches, the state of the

pipeline, or the intervention of the operating system to the execution of the program

for scheduling purposes. Handling of the results in course-grained measurements are

described in 5.3.

The measurements done in this chapter is very fine-grained and showed very sta-

ble results. The intervention of the operating system between measurements is very

rarely encountered. This is due to the huge difference between the measurement in-

tervals and the intervention period of the operating system. The operating system

intervenes with the processes once every millisecond. However, the measurements

done in this chapter usually took at most 500 nanoseconds. This rough approxima-

tion alone shows that the probability of an operating system intervention between

measurements in is 1 out of 2000 (0,05%).

3.2.2 ISB Instruction

ARMv7-A Instruction Set adopted by the Cortex-A15 Processor provides an instruc-

tion named Instruction Synchronization Buffer (ISB) which flushes the pipeline in the

processor so that the instructions following ISB are fetched from the memory after all

the existing pipelines are cleared.

This instruction is used to clear the pipeline before taking a measurement, which itself

introduced an offset to the measurement because of the time it takes to fetch, decode

and execute the ISB instruction. To diminish the effect of this error, instead of placing

a single instance of the IUI between measurements, many copies of it are placed with

an ISB instruction between each copy:

mrc p15, 0, r0, c9, c13, 0

...

add r2,r3

isb
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add r2,r3

isb

...

mrc p15, 0, r1, c9, c13, 0

The measurement result is divided by the number of repetitions to get the cost of each

ISB-IUI pair. This cost includes the costs of fetch, decode and execute stages of the

ISB and the IUI instructions. Since the fetch and decode costs are unknown, it was

not possible to determine the execution time of an IUI with this measurement only.

In our work, the cycle cost measurement is performed for almost all data processing

instructions. We observed the fastest and the slowest instructions to take 32 and 41

cycles, respectively. The official ARM documentation [2] states the longest execution

pipeline to be 10 stages, and the shortest pipeline to be 1 stages. With this information,

we can infer that the instructions measured as 32 cycles actually spend one clock in

the execution stage, and the ones measured as 41 cycles actually spend ten clocks

in the execution stage. This brings us to the conclusion that 31 clock cycles are

spent on fetching and decoding of the instructions along with the execution of the

ISB instruction. If we subtract 31 from all the measurements, we arrive at the actual

execution duration of each instruction.

3.3 Measurement Results

The cost of select instructions are provided in tables 3.1, 3.2, 3.3, 3.4, and 3.5,

It is worth noting that the cost of an instruction may increase in the presence of a

data dependency with nearby instructions. If an instruction requires the result of a

previous instruction, it may cause a pipeline stall and wait until the previous result is

ready.
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Table 3.1: Cost of Integer Arithmetic Instructions

Instruction Cost (in clock cycles)

add Rd, Rs 1

add Rd, #IMM 1

add Rd, Rs1, Rs2 1

sub Rd, Rs 1

sub Rd, #IMM 1

sub Rd, Rs1, Rs2 1

eor Rd, Rs 1

eor Rd, Rs1, Rs2 1

mov Rd, Rs 1

mov Rd, #IMM 1

Table 3.2: Cost of Integer Multiply/Divide Instructions

Instruction Cost (in clock cycles)

mul Rd, Rs 2

mul Rd, Rs1, Rs2 3

mla Rd1, Rs1, Rs1, Ra 3

umull Rd1, Rd2, Rs1, Rs2 4

umlal Rd1, Rd2, Rs1, Rs2 4

udiv Rd, Rs 5

udiv Rd, Rs1, Rs2 5

Table 3.3: Cost of NEON Arithmetic Instructions

Instruction Cost (in clock cycles)

vadd.f32 Qd, Qs 5

vadd.f32 Qd, Qs1, Qs2 5

vsub.f32 Qd, Qs 5

vsub.f32 Qd, Qs1, Qs2 5

vand.f32 Qd, Qs 3

vand.f32 Qd, Qs1, Qs2 4

36



Table 3.4: Cost of NEON Multiplication Instructions

Instruction Cost (in clock cycles)

vmul.f32 Qd, Qs 4

vmul.f32 Qd, Qs1, Qs2 4

vmla.f32 Qd, Qs 7

vmla.f32 Qd, Qs1, Qs2 8

Table 3.5: Cost of NEON Load/Store Instructions

Instruction Cost (in clock cycles)

vld1.32 {Dn,Dn+1}, [Rd] 7

vld1.32 {Dn,Dn+1}, [Rd]! 7

vld2.32 {Dn,Dn+1,Dn+2,Dn+3}, [Rd] 9

vld2.32 {Dn,Dn+1,Dn+2,Dn+3}, [Rd]! 10

vst1.32 {Dn,Dn+1}, [Rd] 4

vst1.32 {Dn,Dn+1}, [Rd]! 6

vst2.32 {Dn,Dn+1,Dn+2,Dn+3}, [Rd] 10

vst2.32 {Dn,Dn+1,Dn+2,Dn+3}, [Rd]! 9

37



38



CHAPTER 4

OPTIMIZING CORE DSP FUNCTIONS

4.1 Matrix Addition

Matrix Addition is the simplest operation examined in this thesis. During the imple-

mentation of this operation, the development cycle is established, compile and deploy

scripts are written, measurement methods are decided upon, and the functional veri-

fication tactics are developed.

4.1.1 Canonical Implementation

First of all, matrix addition is implemented using only architecture-independent state-

ments in C language. During the implementation, the auto-vectorizable loop exam-

ples in [34] are taken into consideration, and the implementation is made to resemble

the examples given there.

for (int y = 0; y < Y_count; ++y)

Y[y] = A[y] + B[y];

It is worth mentioning that the matrices are accessed as if they were single-dimensional

arrays. For matrix addition, this does not impose any difference, and the generated

code is the same as if they were accessed in two dimensions.

This first implementation can be considered as the canonical implementation because

it is simple to read and understand. It is possibly the easiest implementation because

of its straightforwardness. One might say that it is the cheapest piece of matrix addi-

tion code a programmer might write in C, in terms of development cost.
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In the dictionary [35], it is stated that if something has a canonical status, it is accepted

as having all the qualities that a thing of its kind should have. In the context of this

thesis, the implementations denoted as canonical have all the qualities that a thing of

its kind should have, and nothing more. This small addition to the meaning signifies

that, in this thesis, the canonical implementations are the cheapest implementations

of an algorithm that still works correctly. The cheapness of a code does not have a

widely recognized meaning. Here, it is used for the code that is either implemented

quickly by an experienced programmer or correctly by an inexperienced programmer.

4.1.2 Vectorization

After the canonical implementation, the architecture-independence of the code is bro-

ken with manual vectorization operation. The way it is done is by inserting inline

assembly statements. Since the operation in hand can easily be represented in one-

dimensional vector operations, the first optimized implementation used the vector

coprocessor NEON. Here is the SIMD segment of the code:

vld1.32 {d0,d1,d2,d3}, [r1]!

vld1.32 {d4,d5,d6,d7}, [r2]!

vadd.f32 q0, q2

vadd.f32 q1, q3

vst1.32 {d0,d1,d2,d3}, [r0]!

Four computations are made in every iteration of the loop to utilize NEON efficiently.

In order not to deal with edge cases, the measurements are done only with data sizes

that have a multiple of four elements. After this restriction is established, it seems

fair that the compiler should be given another chance because this restriction puts an

alignment requirement on the data. If the compiler knows that the data will be aligned

to a certain number of elements, it does not need to generate the code that handles the

edge cases of vectorization. The restriction on the number of elements is delivered

to the compiler by unrolling the loop in the canonical implementation by a factor of

four. After a performance gain is observed in the code automatically vectorized by

the compiler, we decided that the unrolling of the canonical implementation should

be repeated after every unrolling performed on the manually optimized code.
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4.1.3 Loop Unrolling

Next, loop unrolling is performed on the vectorized code. The loop is unrolled until

there are no NEON registers left to use, which resulted in a loop unrolling factor of

32. The same number of unrolling is applied to architecture-independent code, too.

While unrolling the loop, the factor of unrolling is an important parameter. As this

factor increases, up to a certain point, the code gets faster because of the decreased

number of condition and branching instructions. After a certain point, the code be-

comes so large that instruction cache misses start to occur, causing a drop in the

performance. Furthermore, as the unrolling factor increases, the restriction on the

size of the data also increases. Meaning that, for an unrolled loop of 1024 repetitions,

the data to be computed must have a multiple of 1024 items, which is not as flexible.

Another point of consideration is the number of registers reused while unrolling.

While doing matrix addition, four numbers from the first matrix are loaded into a

NEON quad register, and four numbers from the second matrix are loaded into an-

other NEON quad register. Then, the first register is accumulated with the contents

of the second register, meaning that the result lay in the first register. For the addition

of 4 numbers, only two quad registers are used. With 16 quad registers in hand, 32

numbers can be added without any register reuse.

The loop is rolled four more times to introduce register reuse, but this showed no

degradation in performance. For our case, register reuse is not an issue because there

is plenty of code between the reusing of the registers. Register reuse becomes an issue

for calculations that use more registers, or for calculations that take many numbers of

cycles that the previous calculation on the same register might not be finished. This

claim can be proved very easily by using the same set of registers while unrolling the

loop, instead of utilizing the free registers.

4.1.4 Instruction Reordering

Following the above mentioned optimizations, instruction reordering techniques are

given a try. The analysis of the code revealed some opportunities for reordering, how-
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ever, no net performance gain is observed when it is applied. Hence matrix addition

is considered to be very simple to provide any gain using instruction reordering.

The final state of the manually optimized code is as follows:

@ Data dependency of load

@ instructions is reduced

vld1.32 {d0,d1,d2,d3}, [r1]!

vld1.32 {d4,d5,d6,d7}, [r2]!

vadd.f32 q0, q2

vadd.f32 q1, q3

@ Store operation can safely began here

vst1.32 {d0,d1,d2,d3}, [r0]!

vld1.32 {d8,d9,d10,d11}, [r1]!

vld1.32 {d12,d13,d14,d15}, [r2]!

vadd.f32 q4, q6

vadd.f32 q5, q7

vst1.32 {d8,d9,d10,d11}, [r0]!

In table 4.1, the optimizations applied on the Matrix Addition code is shown. All

these implementations are compared against each other and results of only the most

performant one in each category is provided in Chapter 5.
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Table 4.1: Optimizations Performed on Matrix Addition Code

Architecture-independent

Canonical (no optimization)

Canonical + Loop Unrolling (2 times)

Canonical + Loop Unrolling (4 times)

Canonical + Loop Unrolling (8 times)

Canonical + Loop Unrolling (16 times)

Canonical + Loop Unrolling (32 times)

Architecture-dependent

Vectorization (8-way)

Vectorization + Loop Unrolling (16 times)

Vectorization + Loop Unrolling (32 times)

4.1.5 Ne10

Ne10 library is compiled for the target board used in this thesis. Matrix addition is

implemented in Ne10 as a combination of 4-by-4 matrixes. Thus, the matrix size in

hand should be a multiple of 16.

As a result of our performance evaluation study, whose results are provided formally

in Chapter 5, we observed that Ne10 implementation is 1.03 to 2.5 times slower than

that of our manually optimized code. Ne10 implementation is then examined to find

a possible cause for this. We discovered that Ne10 implementation used a different

ordering of instructions than that of our implementation. In Ne10’s implementation,

loading of registers is done consecutively. Although one might believe that this or-

dering fills the pipeline of the processor optimally, one thing to note is the usage of

post-increment variant of the load instructions. Ne10 used these load instructions

with a post-increment flag, meaning that the pointer holding the location of the data

is to be incremented after the data is loaded. Thus, every load instruction waits for

the previous one to finish because the address register is incremented at the end of the

execution cycle, in the write-back stage. We believe the authors of Ne10 were aware

of this aspect of the load instructions, but readability is preferred above performance
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in this case. We will see similar examples of the same preference in the following

sections for other functions also.

Ne10 implementation of four-by-four matrix addition is provided below:

@ Load matrices

@ r1 points to first matrix array

@ r2 points to second matrix array

vld4.32 {d0, d2, d4, d6}, [r1]!

vld4.32 {d1, d3, d5, d7}, [r1]!

vld4.32 {d16, d18, d20, d22}, [r2]!

vld4.32 {d17, d19, d21, d23}, [r2]!

@ Calculate values

vadd.f32 q12, q0, q8

vadd.f32 q13, q1, q9

vadd.f32 q14, q2, q10

vadd.f32 q15, q3, q11

@ Store the results

@ r0 points to destination array

vst4.32 {d24, d26, d28, d30}, [r0]!

vst4.32 {d25, d27, d29, d31}, [r0]!

The solution is to reordering the instructions to reduce data dependency. If the calcu-

lation starts as soon as the necessary data is loaded, the forthcoming load instructions

are not blocked by the previous ones. Also, as explained above, it is beneficial to

break up the load instructions that use the same register as the address pointer, if the

post-increment variant is used. This statement is valid for store operations as well.

It is observed that our implementation included a simplest form of unintentional in-

struction reordering anyway.

4.2 Matrix Multiplication

This section consists of three subsections; Four-by-four Real-Valued Matrix Multi-

plication, Real-Valued Matrix Multiplication, and Complex-Valued Matrix Multipli-

44



cation. The reason behind the addition of the "Four-by-four Real-Valued Matrix Mul-

tiplication" category is that it is the only matrix multiplication method supported by

the Ne10 library. For that category, the comparison was made between the Ne10 im-

plementation and the manually optimized code. For generic sized implementations,

the comparison was made between the compiler generated code and the manually op-

timized code, where the comparison results can be found in Chapter 5 that presents

the evaluation study.

4.2.1 Four-by-four Real-Valued Matrix Multiplication

Ne10 library has functions that can only multiply two-by-two, three-by-three, or four-

by-four real-valued matrices. These functions take two arrays of four-by-four matri-

ces as inputs. It multiplies the matrices which correspond to the same index in those

two arrays with a simple for-loop. For the rest of the discussions in this subsection,

the four-by-four version of these functions is selected. It is left to the programmer to

express a generic matrix multiplication in terms of four-by-four multiplications.

Four-by-four matrix multiplication can be implemented on NEON very efficiently

because the row and the column size of the matrix fit perfectly with the size of the

NEON quad registers. A row-to-column multiplication can be made with a single

instruction, without any iteration logic, for-loops, and condition checking.

The optimizations for this operation took the implementation of Ne10 as a basis.

The implementation of Ne10 used macros to increase readability but showed high

improvement potential at first glance. If we look at the load instructions in the begin-

ning of the implementation, it can be observed that even a simple reordering reduces

the data dependency between instructions.

@ Before

vld1.32 {q8-q9}, [r1]! (1st load)

vld1.32 {q10-q11}, [r1]! (2nd load)

vld1.32 {q0-q1}, [r2]! (3rd load)

vld1.32 {q2-q3}, [r2]! (4th load)

...
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@ After

vld1.32 {q8-q9}, [r1]!

vld1.32 {q0-q1}, [r2]!

vld1.32 {q10-q11}, [r1]!

vld1.32 {q2-q3}, [r2]!

...

With this simple swap operation, we have enabled the third load instruction to get in

front of the second load instruction and start executing right away. Otherwise, the

second load instruction would have waited for the post-increment operation in the

first load instruction to finish and stall the pipeline until then. In a way, we have

mitigated the Read-after-write hazard, which might happen if a value is read just after

it is written, up to a certain point. Even in this configuration, there is a pipeline stall

since the load instruction takes 10 clock cycles to execute as measured in Chapter 3,

but we have allowed the third instruction to begin execution earlier. For this piece of

code, no further optimization can be applied to reduce the data dependency.

After the loading of the data, successive multiplication operations begin, followed by

the loading of the second set of registers. The successive multiplication operations

are already placed optimally, and no further optimization could be done.

...

@ Before

@ First multiplication group

vmul.f32 q12, q8, d0[0]

vmul.f32 q13, q8, d2[0]

vmul.f32 q14, q8, d4[0]

vmul.f32 q15, q8, d6[0]

vmla.f32 q12, q9, d0[1]

vmla.f32 q13, q9, d2[1]

vmla.f32 q14, q9, d4[1]

vmla.f32 q15, q9, d6[1]
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vmla.f32 q12, q10, d1[0]

vmla.f32 q13, q10, d3[0]

vmla.f32 q14, q10, d5[0]

vmla.f32 q15, q10, d7[0]

vmla.f32 q12, q11, d1[1]

vmla.f32 q13, q11, d3[1]

vmla.f32 q14, q11, d5[1]

vmla.f32 q15, q11, d7[1]

@ Second load group

vld1.32 {q8-q9}, [r1]!

vld1.32 {q10-q11}, [r1]!

vld1.32 {q0-q1}, [r2]!

vld1.32 {q2-q3}, [r2]!

@ First store group

vst1.32 {q12-q13}, [r0]!

vst1.32 {q14-q15}, [r0]!

...

It is worth noting that, instead of storing the multiplication results to the memory

right away, Ne10 authors chose to load the second set of data first. In addition, the

second group of load instructions bear the same problem with the first group dis-

cussed above. However, in the case of the second load group, the instructions having

data dependency can be placed further apart, in between the multiplication operations

above them. Early submission of load instructions should help dealing with the cache

replacement latency that occurs occasionally, as the memory loading begins earlier

than required.

...

@ After
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vmul.f32 q12, q8, d0[0]

vmul.f32 q13, q8, d2[0]

vmul.f32 q14, q8, d4[0]

vmul.f32 q15, q8, d6[0]

vld1.32 {q4-q5}, [r1]!

vmla.f32 q12, q9, d0[1]

vmla.f32 q13, q9, d2[1]

vmla.f32 q14, q9, d4[1]

vmla.f32 q15, q9, d6[1]

vld1.32 {q6-q7}, [r1]!

vmla.f32 q12, q10, d1[0]

vmla.f32 q13, q10, d3[0]

vmla.f32 q14, q10, d5[0]

vmla.f32 q15, q10, d7[0]

vmla.f32 q12, q11, d1[1]

vmla.f32 q13, q11, d3[1]

vld1.32 {q0-q1}, [r2]!

vmla.f32 q14, q11, d5[1]

vmla.f32 q15, q11, d7[1]

vld1.32 {q2-q3}, [r2]!

...

Notice that the data loaded from the address pointed by r1 is loaded into another

group of registers, thus they could have been placed anywhere in the above code.

However, the same is not true for the instructions loading data from the address

pointed by r2. Since they had to use the same registers as the destination, their

placement is not completely independent of the multiply instructions placed around

them.

After the multiplications, the first group of data is ready to be written back to memory.

In Ne10’s implementation, this is done sequentially again, with a data dependency

between instructions. The store operations are followed by the second multiplication

group.
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...

@ Before

@ First store group

vst1.32 {q12-q13}, [r0]!

vst1.32 {q14-q15}, [r0]!

@ Second multiplication group

vmul.f32 q12, q4, d0[0]

vmul.f32 q13, q4, d2[0]

vmul.f32 q14, q4, d4[0]

vmul.f32 q15, q4, d6[0]

vmla.f32 q12, q5, d0[1]

vmla.f32 q13, q5, d2[1]

vmla.f32 q14, q5, d4[1]

vmla.f32 q15, q5, d6[1]

vmla.f32 q12, q6, d1[0]

vmla.f32 q13, q6, d3[0]

vmla.f32 q14, q6, d5[0]

vmla.f32 q15, q6, d7[0]

vmla.f32 q12, q7, d1[1]

vmla.f32 q13, q7, d3[1]

vmla.f32 q14, q7, d5[1]

vmla.f32 q15, q7, d7[1]

...

The store operations can be placed further apart as shown below. This placement in-

creases the distance between store instructions having a data dependency. Otherwise,

the second store instruction would block the execution of the multiplication operation

below.

...

@ After

@ First store group
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vst1.32 {q12-q13}, [r0]!

@ Second multiplication group

vmul.f32 q12, q4, d0[0]

vmul.f32 q13, q4, d2[0]

vst1.32 {q14-q15}, [r0]!

vmul.f32 q14, q4, d4[0]

vmul.f32 q15, q4, d6[0]

...

After these statements, one might point out that Cortex-A15 is already an out-of-

order architecture with an internal instruction scheduling mechanism. One might

ask why reordering operations such as the ones we carried out above should lead to

performance improvement after all. We argue that the processor has a fixed window

in which reordering could take place, however, we - as the programmers - can do

reordering over the whole function. The performance evaluation performed on the

above code demonstrates that 5 to 20 percent speed-up is observer after all. The

results are given in detail in A.8.

One might ask why these reordering operations lead to performance improvement at

all. We argue that the processor has a fixed window in which reordering could take

place. We, as the programmer, can do reordering over the whole function.

4.2.2 Real-Valued Matrix Multiplication

Similar to Matrix Addition, Real-Valued Matrix Multiplication began with the canon-

ical implementation.

4.2.2.1 Canonical Implementation

The first canonical implementation is given below.

for (int y = 0; y < Y_row_count * Y_col_count; ++y)
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Y[y] = 0;

for (int y_row = 0; y_row < A_row_count; ++y_row) {

for (int y_col = 0; y_col < B_col_count; ++y_col) {

for (int a_col = 0; a_col < A_col_count; ++a_col) {

Y[y_row * B_col_count + y_col] +=

A[y_row * A_col_count + a_col] *

B[a_col * B_col_count + y_col];

}

}

}

When the memory access pattern of this code is analyzed, one can notice that the

following term is introducing a huge performance hit.

B[a_col * B_col_count + y_col];

At every iteration of the innermost loop, the given portion of the code accesses ad-

dresses sequentially that can be very far away from each other when column count of

B is high. This access pattern could cause a cache miss at every iteration. The loop

can be rearranged to decrease the number of cache misses as follows:

for (int y = 0; y < Y_row_count * Y_col_count; ++y)

Y[y] = 0;

for (int a_row = 0; a_row < A_row_count; ++a_row) {

for (int a_col = 0; a_col < A_col_count; ++a_col) {

for (int b_col = 0; b_col < B_col_count; ++b_col) {

Y[a_row * B_col_count + b_col] +=

A[a_row * A_col_count + a_col] *

B[a_col * B_col_count + b_col];

}

}

}
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With this configuration, at every iteration, Y and B arrays are accessed sequentially,

resulting in a much smaller number of cache misses. Although in the above code

it seems like array A is accessed at every iteration of the loop, when the compiler

optimizations are enabled, even at its lowest level, the generated code does not ac-

cess A each time, as its value does not change at every iteration of the innermost

loop. Similarly, for the first for-loop, the compiler is smart enough not to compute

Y_row_count * Y_col_count at every iteration.

4.2.2.2 Vectorization

As the first step of manual optimization, the operation is vectorized using NEON ca-

pabilities. This caused the code to become architecture independent. This step alone

proved to be much faster than the auto-vectorization capabilities of the compiler. As

before, in order not to deal with edge cases, a restriction is made on the size of the

matrices such that their row or column count should be a multiple of four. The re-

striction is again communicated to the compiler by manual loop unrolling done on

the architecture-independent code.

Below, the multiplication section of the code is given.

@ q0 holds the values loaded from the A array

@ r1 points to the array B

@ r2 points to the array Y

vld1.32 {d2,d3}, [r1]!

vld1.32 {d4,d5}, [r2]

vmla.f32 q2, q0, q1

vst1.32 {d4,d5}, [r2]!

4.2.2.3 Loop Unrolling

Loop unrolling is performed in two steps. After 16 factor unrolling, the performance

did not improve, and no further unrolling is performed.
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Below is the multiplication section of the final version of the code.

@ q0 holds the values loaded from the A array

@ r1 points to the array B

@ r2 points to the array Y

vld1.32 {d2,d3}, [r1]!

vld1.32 {d4,d5}, [r2]

vmla.f32 q2, q0, q1

vst1.32 {d4,d5}, [r2]!

vld1.32 {d6,d7}, [r1]!

vld1.32 {d8,d9}, [r2]

vmla.f32 q4, q0, q3

vst1.32 {d8,d9}, [r2]!

vld1.32 {d10,d11}, [r1]!

vld1.32 {d12,d13}, [r2]

vmla.f32 q6, q0, q5

vst1.32 {d12,d13}, [r2]!

vld1.32 {d14,d15}, [r1]!

vld1.32 {d16,d17}, [r2]

vmla.f32 q8, q0, q7

vst1.32 {d16,d17}, [r2]!

4.2.2.4 Instruction Reordering

No opportunities for instruction reordering is discovered for this function. A number

of experiments without any structured approach provided no positive result.

In table 4.2, the optimizations applied on the Real-Valued Matrix Multiplication code

is shown. All these implementations are compared against each other and results of

only the most performant one in each category is provided in Chapter 5.

53



Table 4.2: Optimizations Performed on Real-Valued Matrix Multiplication Code

Architecture-independent

Canonical (no optimization)

Canonical + Loop Unrolling (4 times)

Canonical + Loop Unrolling (8 times)

Canonical + Loop Unrolling (16 times)

Architecture-dependent

Vectorization (4-way)

Vectorization + Loop Unrolling (8 times)

Vectorization + Loop Unrolling (16 times)

4.2.3 Complex-Valued Matrix Multiplication

Optimization of Complex-Valued Matrix Multiplication begins with the canonical

form.

4.2.3.1 Canonical Implementation

The canonical implementation of Complex-Valued Matrix Multiplication is almost

the same as Real-Valued Matrix Multiplication. The only difference is in the declara-

tion part of the types of A, B, and Y pointers.

@ Real-Valued Matrix Multiplication

float *A, *B, *Y;

@ Complex-Valued Matrix Multiplication

float complex *A, *B, *Y;

4.2.3.2 Vectorization

As the first step of manual optimizations, the operation is vectorized using NEON

capabilities. This caused the code to become architecture dependent. Although the
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vectorization was as simple as the previous function, the vectorized version required

twice the number of registers. Additionally, due to complex multiplication, four times

the number of floating-point multiplications were needed. As before, in order not to

deal with edge cases, a restriction is made on the size of the matrices such that their

row or column count should be a multiple of four. The restriction is again commu-

nicated to the compiler by manual loop unrolling of the canonical implementation of

the operation. However, the auto-vectorized code generated by the compiler did not

benefit from this restriction at all, and thus those results are taken out of consideration.

vld2.32 {d4,d5,d6,d7}, [r1]!

vld2.32 {d8,d9,d10,d11}, [r2]

vmla.f32 q4, q0, q2

vmls.f32 q4, q1, q3

vmla.f32 q5, q0, q3

vmla.f32 q5, q1, q2

vst2.32 {d8,d9,d10,d11}, [r2]!

4.2.3.3 Loop Unrolling

Loop unrolling is performed with a factor of 8. Any other unrolling factor did not

bring further performance gain. The state of the code at this stage is given below.

@ q0 holds the real values loaded from A

@ q1 holds the complex values loaded from A

@ r1 points to the array B

@ r2 points to the array Y

vld2.32 {d4,d5,d6,d7}, [r1]!

vld2.32 {d8,d9,d10,d11}, [r2]

vmla.f32 q4, q0, q2

vmls.f32 q4, q1, q3

vmla.f32 q5, q0, q3

vmla.f32 q5, q1, q2

vst2.32 {d8,d9,d10,d11}, [r2]!
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vld2.32 {d12,d13,d14,d15}, [r1]! @ Mark

vld2.32 {d16,d17,d18,d19}, [r2]

vmla.f32 q8, q0, q6

vmls.f32 q8, q1, q7

vmla.f32 q9, q0, q7

vmla.f32 q9, q1, q6

vst2.32 {d16,d17,d18,d19}, [r2]!

4.2.3.4 Instruction Reordering

This function was one of the functions examined in this thesis showing that manual

instruction reordering can lead to a net performance gain. When the marked instruc-

tion in the above code segment is examined, one might notice that it does not have any

data dependencies with the instructions above or below it. However, when the marked

instruction is moved above, as shown in the below code segment, a net performance

gain is achieved. The reason for this is believed to be the cache replacement latency

occurring from time to time. If the load instruction is issued earlier than required, the

memory system has more time to bring the data that will be used in the calculation.

@ q0 holds the real values loaded from A

@ q1 holds the complex values loaded from A

@ r1 points to the array B

@ r2 points to the array Y

vld2.32 {q2-q3}, [r1]!

vld2.32 {q4-q5}, [r2]

vmla.f32 q4, q0, q2 @ (1st multiplication)

vmla.f32 q5, q0, q3 @ (2nd multiplication)

vld2.32 {q6-q7}, [r1]! @ Mark

vmls.f32 q4, q1, q3 @ (3rd multiplication)

vmla.f32 q5, q1, q2 @ (4th multiplication)

vst2.32 {q4-q5}, [r2]!

56



vld2.32 {q8-q9}, [r2]

vmla.f32 q8, q0, q6

vmla.f32 q9, q0, q7

vmls.f32 q8, q1, q7

vmla.f32 q9, q1, q6

vst2.32 {q8-q9}, [r2]!

One might wonder why the out-of-order executing processor such as Cortex-A15

would not reorder this instruction to start earlier. For architectures that use memory-

mapped hardware registers, load/store instructions cannot be reordered by the pro-

cessor automatically. The hardware registers need to be accessed in the way the

programmer wants to. Otherwise, the associated hardware might behave unexpect-

edly. For this piece of program load/store instructions are used with addresses that are

dynamically computed. This address might not be available during the reordering pe-

riod. Thus the processor cannot know whether a given load/store instruction accesses

a hardware register or the memory. It is believed that instead of finding a way around

these complications associated with the rearrangement of load/store instructions, they

are not reordered. Experimental results point to the same conclusion. On the other

hand, we, as the programmer, are free to do such reordering since we are sure the

accessed address does not belong to a hardware register.

The marked instruction showed a performance gain when moved in between any of

the multiplication operations. However, the highest speed-up is observed when it

is placed below the 2nd multiplication. This has to do with the instruction issue

capability of the Cortex-A15. The NEON co-processor has two parallel pipelines.

Thus two instructions can be issued to it in each cycle. To take advantage of this, the

ordering of the multiplications is also altered to reduce the data dependency. With

this configuration, the 1st and 2nd multiplications can be issued to NEON in the same

cycle, similar to 3rd and 4th multiplication instructions. The marked instruction is

placed in between these groups in order not to prevent this from happening.

In table 4.3, the optimizations applied on the Complex-Valued Matrix Multiplication

code is shown. All these implementations are compared against each other and results
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of only the most performant one in each category is provided in Chapter 5.

Table 4.3: Optimizations Performed on Complex-Valued Matrix Multiplication Code

Architecture-independent

Canonical (no optimization)

Architecture-dependent

Vectorization (4-way)

Vectorization + Loop Unrolling (8 times)

Vectorization + Loop Unrolling (8 times) + Instruction Reordering

4.3 Convolution

Convolution is simpler than the operations discussed above and below. This is due

to the one-dimensionality of the chosen operation. To further increase the simplicity

of the implementation, it is assumed that the Convolution will be used in the context

described in 2.1.5.3, where the first operand is assumed to be the input signal and

the second operand is assumed to be the impulse response of a linear time-invariant

filter. Since the filter is time-invariant, its impulse response does not change as time

advances. The implementations given below further assumes that the array which

holds the impulse response of the filter is kept in memory in reverse order because

such a configuration would increase the performance significantly.

4.3.1 Canonical Implementation

Canonical implementation of Convolution is given below:

for (int y = 0; y < X_SIZE - H_SIZE + 1; ++y) {

float complex sum = 0;

for (int i = 0; i < H_SIZE; ++i)

sum += X[y + i] * H[i];

Y[y] = sum;

}
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In the given code segment, X is the input signal, H holds the impulse response of the

filter in reverse order, and Y is the output signal. X_SIZE and H_SIZE are lengths

of X and H arrays, respectively.

Manual unrolling of the canonical implementation did not bring any performance

improvements.

4.3.2 Vectorization

The Convolution operation is implemented utilizing the NEON co-processor. This

operation alone provided more speed-up than that of auto-vectorized code generated

by the compiler. The innermost loop of the canonical implementation appears in the

vectorized version as such:

vld2.32 {d4,d5,d6,d7}, [r1]!

vld2.32 {d8,d9,d10,d11}, [r2]!

vmla.f32 q0, q2, q4

vmls.f32 q0, q3, q5

vmla.f32 q1, q2, q5

vmla.f32 q1, q3, q4

In this code segment, r1 corresponds to X[y + i], r2 corresponds to H[i], and

q0-q1 hold the real and imaginary parts of sum.

4.3.3 Loop Unrolling

The vectorized code is unrolled four times to achieve 16 complex multiplications per

iteration, since this much unrolling provided the maximum performance. Again, the

edge cases are ignored, restricting the length of H to multiples of 16.

4.3.4 Instruction Reordering

A similar approach to instruction Reordering applied in Complex Matrix Multipli-

cation is applied to the unrolled code. To take advantage of the two parallel NEON
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pipelines in Cortex-A15, the instructions having data dependency are reordered as

given:

vmla.f32 q0, q2, q4

vmla.f32 q1, q2, q5

vmls.f32 q0, q3, q5

vmla.f32 q1, q3, q4

Only the first block of multiplications is provided above. The same reordering is

repeated for the rest of the unrolled code.

4.4 Fourier Transform

We decided that the simple optimization techniques employed during this thesis should

be applied upon Discrete Fourier Transform, as it is one of the most frequently used,

most studied, and most complex algorithms used in Digital Signal Processing appli-

cations. The DFT implementation of the Ne10 library is chosen as the competitor for

this endeavor since it is one of the most recognized DSP library optimized for ARM

processors.

First, the approach used in previous DSP functions studied in this thesis is applied.

The canonical implementation is followed by manual vectorization, loop unrolling,

and instructions reordering. For these trials, 16-point DFT was chosen with the hope

of using it as a building block for higher-point FFT operations. Additionally, 16-point

DFT is the smallest DFT calculation that can fully utilize the NEON co-processor.

When the results are obtained, it is observed that the 16-point DFT implementation

of Ne10 was at least four times faster. When Ne10’s implementation is analyzed, it

is realized that our DFT implementation was algorithmically too weak to show the

performance gained by the manual optimizations.

On the other hand, the existing literature shows that most of the research focuses on

efficient partitioning of high-point FFT calculations. Almost all of the FFT imple-

mentations used building blocks that are implemented as DFTs, which are usually

found in sizes of 8, 16, 32, or 64-points. Thus, instead of reinventing the wheel, we
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decided to use Ne10’s implementation of 16-point DFT as a starting point. For this

function, the authors of Ne10 chose to go with the C language instead of the ARM

assembly. The NEON co-processor is utilized by the help of NEON intrinsics. Vec-

torization and loop unrolling were already applied. When the output of the compiler

is examined, we discovered that the compiler has also applied reordering to decrease

data dependance between instruction. However, when the code is analyzed with the

cache usage in mind, it is observed that the store instructions found at the end of

the operation could be reordered to start earlier as to reduce the cache replacement

latency.

@ Before

vadd.f32 q3, q1, q4

vsub.f32 q1, q1, q4

vadd.f32 q12, q10, q9

vadd.f32 q15, q14, q7

vsub.f32 q11, q10, q9

vsub.f32 q14, q14, q7

vadd.f32 q10, q13, q8

vsub.f32 q0, q13, q8

vadd.f32 q6, q15, q3

vsub.f32 q2, q15, q3

vadd.f32 q4, q14, q11

vadd.f32 q7, q10, q12

vsub.f32 q3, q10, q12

vsub.f32 q5, q0, q1

vsub.f32 q12, q14, q11

vadd.f32 q13, q0, q1

vst2.32 {d12-d15}, [r4]

vst2.32 {d8-d11}, [r0]

vst2.32 {d4-d7}, [r1]

vst2.32 {d24-d27}, [r2]

@ After

vadd.f32 q3, q1, q4
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vadd.f32 q12, q10, q9

vadd.f32 q15, q14, q7

vsub.f32 q11, q10, q9

vsub.f32 q14, q14, q7

vadd.f32 q10, q13, q8

vadd.f32 q6, q15, q3

vadd.f32 q7, q10, q12

vst2.32 {d12-d15}, [r4]

vsub.f32 q1, q1, q4

vsub.f32 q0, q13, q8

vadd.f32 q4, q14, q11

vsub.f32 q5, q0, q1

vst2.32 {d8-d11}, [r0]

vsub.f32 q2, q15, q3

vsub.f32 q3, q10, q12

vst2.32 {d4-d7}, [r1]

vsub.f32 q12, q14, q11

vadd.f32 q13, q0, q1

vst2.32 {d24-d27}, [r2]

This modification gained us 5 clock cycles, which corresponds to 1.05 speed-up.

For 32 and higher-point FFT calculations, Ne10 provides one function that uses a dif-

ferent implementation of 16-point DFT as the building block. This implementation

uses assembler macros to organize the code in such a way that enables mixed-radix

FFT computation, as well as improve code readability. Even though Ne10 only sup-

ports FFT calculations of sizes in powers of 2, the authors chose not to generate

separate code for higher-point DFTs, but use a generic one. This version of the code

is not suitable for applying instruction reordering methods since the code blocks have

branching instructions in between. This prevents reordering of instructions that can

jump into neighboring blocks. No other type of reordering opportunities is discovered

that can potentially lead to a performance gain.
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CHAPTER 5

PERFORMANCE EVALUATION

Before giving the results of our comparative evaluations, we provide below the ver-

ification methods, the test setup, the measurement approach, and the performance

metrics used.

5.1 Functional Verification of the Operations

During the development period, it is possible to make a mistake while optimizing

the implementations which may result in an increased performance measurement but

with incorrect computations. To make sure that every performance measurement is

performed under correct working conditions, a functional verification method needs

to be established. For the rest of the thesis work, we first performed the functional

verification of the functions and after a pass, we carried out successive measurements

on each to find out the speed-up or other metrics under investigation.

The following custom functional verification procedure is established. The test data

is generated in GNU Octave and saved in Mat file format, since this format is rela-

tively easy to parse. A function that can load this file into memory is written. The

operation is carried out on the input data, and the output data is compared with the re-

sults. The verification is used every time the implementations are modified. Once the

correctness of the functions are established, the verification is disabled, and timing

measurements are then taken repeatedly.
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5.2 Test Setup

The test setup described in Section 3.1 is used exactly as described there.

5.3 Performance Measurement Method

The execution time of the codes written during the course of this thesis does not

depend on the input data, does not use any I/O devices or operating system calls. For

this reason, the execution time of the code can be used as a performance measurement.

If I/O devices were used, the performance of the I/O device might be a factor in the

measurements. If operating system calls were used, the performance of the operating

system or the context switching speed might be a factor in the measurements. If

the execution time of the functions were dependent on the data, the distribution of it

might be a factor in the measurements. Without any of these factors intervening with

the results, only the execution time of the program is measured.

Even though the DSP functions implemented in this thesis do not have any operating

system calls, they are still operating in the supervision of one. This means that the

operating system will intervene with the process to do scheduling, other processes

may be scheduled during the execution of the program, and these processes may

bring in their own instruction and data to the processor caches, which in turn means

that the execution time measurements will not necessarily be the same at every run.

To provide meaningful and accurate performance metrics, the measurements should

be interpreted reasonably.

A reasonable expectation from a performance measurement is that the improvement,

if exists, should be observable by future researchers with noticeably high occurrence

rate. The best performance, if observed very rarely, should not be reported. Similarly

worst performance might also not be a correct representation of the gain a piece of

work may bring.

The median of measurements is a commonly used benchmark since it is not sensitive

to outliers. The intervention of the operating system should not count as an outlier

since the operating system will always be there. However, network activity, disk ac-
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tivity, and maintenance operations running in the background can count as outliers

and be safely ignored. Luckily, for our system, we had complete control over the

system and was able to stop all other non-essential processes that may generate net-

work or disk activity. To include the operating system intervention on the program’s

performance, the measurements are taken over a longer time than a millisecond.

Touati et. al. [36] argues that when performance benchmarking tests are done using

the same data, it is crucial to justify the measurements using statistical tests. Meaning,

if system A is claimed to be more performant than system B, the probability at which

such a result may not be encountered should also be provided. In [36] this probability

is called as α. For this thesis, we chose α to be at most 0.05, i.e. if system A is

claimed to be faster than system B, enough measurements will be made to ensure that

system A performs better than system B 95% of the time and median of those many

measurements is provided.

Ideally, α should be calculated after every measurement. This is a very time-consuming

process. Instead of calculating the exact value of α after every measurement, it is cal-

culated after many measurements. If the calculated value turns out to be smaller than

0.05, the median of the measurements is recorded. If not, the number of trials is in-

creased, and measurement is repeated. This measure-calculate-increase-repeat loop

is utilized until α drops below 0.05.

5.4 Using Speed-up as a Performance Metric

The speed-up is the ratio of the execution times of two implementations.

S =
Timpl1

Timpl2

In this thesis, whenever two implementations of the same operation are compared,

speed-up is used as the performance metric.
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5.5 Per-cycle Performance Metrics

While designing a product, if the hardware is already fixed, it is meaningful to com-

pare the execution times of two programs to decide on which one should be used.

Alternatively, if the software is final and cannot be modified, it is meaningful to com-

pare the execution times of the same software on different hardware to decide on

which one should be used. However, it is meaningless to compare the execution

times of two different implementations of a program running on two different hard-

ware. To get around this problem, per-cycle metrics are generally used to compare

the efficiency of implementations.

For example, let us say there is a program A1 that performs an operation. This pro-

gram is optimized for processor P1. It takes t1 seconds for this program to run on

P1. Additionally, there is a program A2 that performs the same operation, which is

optimized for the processor P2, and it takes t2 seconds to run. It is meaningless to

compare t1 and t2 if the efficiency of the programs are intended to be compared. If

we could find an operation that dominates all other operations during the execution

of the program, we could compare how many of those operations can be done in unit

time. Furthermore, the processors can usually run at different clock speeds and the

unit time concept might be different from system to system. To compensate for the

effect of clock speed, we can use the number of dominant operations done in a single

clock cycle. With this value in hand, we can estimate the approximate performance

of a processor running on different speeds, even further, we can look at the possible

hardware choices and their clock specifications, and estimate which hardware will

result in a better performance.

5.5.1 Using Additions Per Cycle as a Performance Metric

The number of floating-point additions per clock cycles is given for those operations

where addition is the dominant operation in a function, such as matrix summation.
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5.5.2 Using Multiply-Accumulate Operations Per Cycle as a Performance Met-

ric

Floating-point multiplications followed by accumulation operation is frequently en-

countered in matrix operations. In this thesis, the number of multiply-accumulate

operations is provided whenever meaningful.

5.5.3 Using Butterfly Operations Per Cycle as a Performance Metric

The dominant operation in Fast Fourier Transform is the butterfly operation visual-

ized in 5.1. It includes one complex multiply-accumulate and one complex multiply-

subtract operations. For DFT calculations, the number of butterfly operations is also

provided.

Figure 5.1: Butterfly Operation

5.6 Comparison Results

In this section the comparison of results are provided. Exact measurement results are

provided in Appendix A. The results are categorized according to the implemented

operations. The results of the Ne10 library are also provided whenever applicable.
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5.6.1 Matrix Addition

The speed-up and addition per cycle results of the optimizations performed on Ma-

trix Addition implementations are provided in figures 5.2, 5.3, and 5.4, along with

the results of Ne10’s implementation. The results that are obtained for canonical

implementations are for architecture-independent C code that is compiled with auto-

vectorization, loop unrolling, and instruction scheduling optimizations enabled. The

speed-up is computed against Canonical + Unroll (x32) version.

Figure 5.2: Addition per Cycle Results of Optimizations Performed on Matrix Addi-

tion (Part I)
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Figure 5.3: Addition per Cycle Results of Optimizations Performed on Matrix Addi-

tion (Part II)

Figure 5.4: Speed-up Results of Optimizations Performed on Matrix Addition
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5.6.2 Matrix Multiplication

5.6.2.1 Four-by-Four Real-Valued Matrix Multiplication

The speed-up and addition per cycle results of the optimizations performed on Four-

by-Four Real-Valued Matrix Multiplication implementations are provided in figures

5.5, and 5.6, along with the results of Ne10’s implementation. The speed-up is com-

puted against Ne10 version.

Figure 5.5: Mul.-Acc. per Cycle Results of Optimizations Performed on Four-by-

Four Real-Valued Matrix Multiplication
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Figure 5.6: Speed-up Results of Optimizations Performed on Four-by-Four Real-

Valued Matrix Multiplication

5.6.2.2 Real-Valued Matrix Multiplication

The speed-up and addition per cycle results of the optimizations performed on Real-

Valued Matrix Multiplication implementations are provided in figures 5.7, 5.8, and

5.9. The results that are obtained for canonical implementations are for architecture-

independent C code that is compiled with auto-vectorization, loop unrolling, and

instruction scheduling optimizations enabled. The speed-up is computed against

Canonical + Unroll (x4) version. Ne10 does not appear in these figures since it does

not support generic sized matrix multiplication.
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Figure 5.7: Mul.-Acc. per Cycle Results of Optimizations Performed on Real-Valued

Matrix Multiplication (Part I)

Figure 5.8: Mul.-Acc. per Cycle Results of Optimizations Performed on Real-Valued

Matrix Multiplication (Part II)
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Figure 5.9: Speed-up Results of Optimizations Performed on Real-Valued Matrix

Multiplication

5.6.2.3 Complex-Valued Matrix Multiplication

The speed-up and addition per cycle results of the optimizations performed on Complex-

Valued Matrix Multiplication implementations are provided in figures 5.10, 5.11, and

5.12. The results that are obtained for canonical implementation is for architecture-

independent C code that is compiled with auto-vectorization, loop unrolling, and

instruction scheduling optimizations enabled. The speed-up is computed against

Canonical version. Ne10 does not appear in these figures since it does not support

generic sized matrix multiplication.
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Figure 5.10: Mul.-Acc. per Cycle Results of Optimizations Performed on Complex-

Valued Matrix Multiplication (Part I)

Figure 5.11: Mul.-Acc. per Cycle Results of Optimizations Performed on Complex-

Valued Matrix Multiplication (Part II)
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Figure 5.12: Speed-up Results of Optimizations Performed on Complex-Valued Ma-

trix Multiplication

5.6.3 Convolution

The results of the optimizations performed on Convolution implementations are pro-

vided in figures 5.13, 5.14, and 5.15. The results that are obtained for canonical imple-

mentations, i.e. Canonical, are for architecture-independent C code that is compiled

with auto-vectorization, loop unrolling, and instruction scheduling optimizations en-

abled. The speed-up is computed against Canonical version. Ne10 does not appear

in these figures since it does not support Convolution.
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Figure 5.13: Mul.-Acc. per Cycle Results of Optimizations Performed on Complex

Convolution (Part I)

Figure 5.14: Mul.-Acc. per Cycle Results of Optimizations Performed on Complex

Convolution (Part II)
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Figure 5.15: Speed-up Results of Optimizations Performed on Complex Convolution

5.6.4 Fourier Transform

The results of the optimizations performed on 16-point DFT implementation of NEON

is provided in table 5.1.

Table 5.1: Results of 16-point DFT

16-point DFT Exec. time (cycles) Speed-up Butterflies per cycle

Ne10 103 1.00 0.31

Ne10 + Reordering 98 1.05 0.33

The results of various Fourier Transform implementations are given in figure 5.16.

The first implementation in the figure belongs to Radix-2 Fast Fourier Transform. The

second implementation belongs to Radix-2 FFT which uses 16-point DFT, which is

the reordered version of Ne10’s implementation, as its basis. The third result belongs

to Ne10’s Fourier Transform implementation.
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Figure 5.16: Butterflies per Cycle Results of Various Fourier Transform Implementa-

tions

5.7 Summary

In table 5.2, a summary of the results of this thesis is provided. Our results show that

manual optimization of certain DSP functions is still beneficial for new architectures,

such as Cortex-A15.

Table 5.2: Summary of the Results, Minimum and Maximum Speed-up Observed

Function Speed-up vs. compiler Speed-up vs. Ne10

Matrix Addition 1.58 - 3.35 1.03 - 2.48

Four-by-Four Matrix Multiplication - 1.05 - 1.20

Real-Valued Matrix Multiplication 2.09 - 3.47 -

Complex-Valued Matrix Multiplication 4.00 - 5.23 -

Convolution 5.09 - 5.78 -

Fourier Transform - 1.05
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5.8 Instruction Reordering Guidelines

During this thesis study, we found the following instruction reordering techniques

to prove beneficial. Hence we believe that they could be stated as general purpose

guidelines while performing instruction re-ordering:

• The instructions having data dependency in between, should be placed as away

from each other as possible to allow for the former one to finish executing

before the latter one starts. Performance gain is possible by placing other in-

structions in between the dependent ones.

• Instructions loading data from memory should be executed as early as possible.

Loading the data just before the calculations may cause the program to block

and wait for the data to be brought to the cache.

• Even though out-of-order executing processors can reorder the instructions that

have a data dependency, the processor has a fixed number of instructions it can

monitor and apply reordering. The reordering should not be left to the processor

entirely but applied when a potential gain is detected.

• For architectures that use memory-mapped hardware registers, load/store in-

structions cannot be reordered by the processor automatically. Reordering of

the load/store instructions that do not have data dependency might still be ben-

eficial. These instructions can be placed away from each other to decrease the

impact of cache replacement latency.

• If the instruction issue capacity of execution units is known, it may be beneficial

to keep instructions of such units in groups. For example, if the architecture has

two floating-point multiplication units, it may be beneficial to keep floating-

point multiplications in groups of two. If the group is broken into pieces, their

chance of being issued together decreases.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we have tried to show that certain frequently used functions may still

benefit from manual optimizations, such as vectorization, loop unrolling, and instruc-

tion reordering. The methods and guidelines that are employed and conceived in

this thesis proved their usefulness. A performance gain is encountered in almost all

categories tackled in this study. However, per-cycle metrics show that the efficiency

of the implementations is still far from the theoretical limit, which is 4 additions or

multiplications per cycle for NEON when single-precision floating-point numbers are

used.

The optimization of algorithms for newer architectures is a never-ending study. With

ever increasing high performance and power-efficiency demands of modern applica-

tions, there are endless research opportunities in the low-level optimization field. We

hope that the methods and the set of guidelines conceived in this study will help future

researchers in their similar efforts.

6.2 Future Work

Although we have showed that manual optimization of the code is beneficial, we do

not say that it is necessary. We hope that the compilers in the future would adopt the

techniques applied here and remove the burden of manual optimization altogether.

Additionally, as new architectures emerge, the optimization of algorithms on them
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will continue to be a hot topic of investigation. However, there are some exciting

developments in processor technology that might require a different approach to op-

timization. ARM SVE (Scalable Vector Extension) is one such development. This

architecture allows the vector coprocessor to have different width SIMD registers

across different implementations but still use the same instruction set, allowing better

performance without recompilation of the program. The dynamism of this architec-

ture may require different optimization approaches.
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Appendix A

RESULTS

The exact results are provided in this chapter in table form.

A.1 Matrix Addition

The results of the optimizations performed on Matrix Addition implementations are

provided in tables A.1, A.2, A.3, A.4, A.5, A.6, and A.7, along with the performance

of Ne10’s implementation.

Table A.1: Results of Optimizations Performed on Matrix Addition (Part I)

8x8-8x8 Matrix Addition Exec. time (cycles) Speed-up Additions per Cycle

Canonical 149 0.84 0.43

Canonical + Unroll (x2) 147 0.85 0.44

Canonical + Unroll (x4) 152 0.82 0.42

Canonical + Unroll (x8) 131 0.95 0.49

Canonical + Unroll (x16) 127 0.98 0.50

Canonical + Unroll (x32) 125 1.00 0.51

Manual Vectorization 52 2.40 1.23

Man. Vec. + Unroll (x16) 51 2.45 1.25

Man. Vec. + Unroll (x32) 50 2.50 1.28

Ne10 124 1.01 0.52
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Table A.2: Results of Optimizations Performed on Matrix Addition (Part II)

16x16-16x16 Matrix Addition Exec. time (cycles) Speed-up Additions per Cycle

Canonical 601 0.86 0.43

Canonical + Unroll (x2) 549 0.94 0.47

Canonical + Unroll (x4) 570 0.90 0.45

Canonical + Unroll (x8) 554 0.93 0.46

Canonical + Unroll (x16) 539 0.96 0.47

Canonical + Unroll (x32) 515 1.00 0.50

Manual Vectorization 200 2.58 1.28

Man. Vec. + Unroll (x16) 199 2.59 1.29

Man. Vec. + Unroll (x32) 199 2.59 1.29

Ne10 455 1.13 0.56

Table A.3: Results of Optimizations Performed on Matrix Addition (Part III)

32x32-32x32 Matrix Addition Exec. time (cycles) Speed-up Additions per Cycle

Canonical 2329 0.89 0.44

Canonical + Unroll (x2) 2132 0.97 0.48

Canonical + Unroll (x4) 2215 0.94 0.46

Canonical + Unroll (x8) 2142 0.97 0.48

Canonical + Unroll (x16) 2095 0.99 0.49

Canonical + Unroll (x32) 2073 1.00 0.49

Manual Vectorization 805 2.58 1.27

Man. Vec. + Unroll (x16) 782 2.65 1.31

Man. Vec. + Unroll (x32) 779 2.66 1.31

Ne10 1704 1.22 0.61
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Table A.4: Results of Optimizations Performed on Matrix Addition (Part IV)

64x64-64x64 Matrix Addition Exec. time (cycles) Speed-up Additions per Cycle

Canonical 13164 0.85 0.31

Canonical + Unroll (x2) 13367 0.84 0.31

Canonical + Unroll (x4) 13434 0.84 0.30

Canonical + Unroll (x8) 13200 0.85 0.31

Canonical + Unroll (x16) 12351 0.91 0.33

Canonical + Unroll (x32) 11241 1.00 0.36

Manual Vectorization 3410 3.30 1.20

Man. Vec. + Unroll (x16) 3364 3.34 1.22

Man. Vec. + Unroll (x32) 3360 3.35 1.22

Ne10 7933 1.42 0.52

Table A.5: Results of Optimizations Performed on Matrix Addition (Part V)

128x128-128x128 Matrix Addition Exec. time (cycles) Speed-up Additions per Cycle

Canonical 59556 0.98 0.27

Canonical + Unroll (x2) 59576 0.98 0.28

Canonical + Unroll (x4) 58330 1.00 0.28

Canonical + Unroll (x8) 58719 0.99 0.28

Canonical + Unroll (x16) 58309 1.00 0.28

Canonical + Unroll (x32) 58303 1.00 0.28

Manual Vectorization 33540 1.74 0.49

Man. Vec. + Unroll (x16) 33168 1.76 0.49

Man. Vec. + Unroll (x32) 32252 1.81 0.51

Ne10 34680 1.68 0.47
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Table A.6: Results of Optimizations Performed on Matrix Addition (Part VI)

256x256-256x256 Matrix Addition Exec. time (cycles) Speed-up Additions per Cycle

Canonical 245370 0.99 0.27

Canonical + Unroll (x2) 242132 1.00 0.27

Canonical + Unroll (x4) 242680 1.00 0.27

Canonical + Unroll (x8) 245670 0.99 0.27

Canonical + Unroll (x16) 242126 1.00 0.27

Canonical + Unroll (x32) 242083 1.00 0.27

Manual Vectorization 147599 1.64 0.44

Man. Vec. + Unroll (x16) 146827 1.65 0.45

Man. Vec. + Unroll (x32) 146233 1.66 0.45

Ne10 157201 1.54 0.42

Table A.7: Results of Optimizations Performed on Matrix Addition (Part VII)

512x512-512x512 Matrix Addition Exec. time (cycles) Speed-up Additions per Cycle

Canonical 952881 0.98 0.28

Canonical + Unroll (x2) 937222 1.00 0.28

Canonical + Unroll (x4) 947984 0.99 0.28

Canonical + Unroll (x8) 951625 0.98 0.28

Canonical + Unroll (x16) 936927 1.00 0.28

Canonical + Unroll (x32) 936563 1.00 0.28

Manual Vectorization 599872 1.56 0.43

Man. Vec. + Unroll (x16) 597439 1.57 0.44

Man. Vec. + Unroll (x32) 593935 1.58 0.44

Ne10 609346 1.54 0.43

A.2 Four-by-Four Real-Valued Matrix Multiplication

The results of the optimizations performed on Four-by-Four matrix multiplication

implementations are provided in table A.8, along with the performance of Ne10’s

implementation.
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Table A.8: Results of Four-by-Four Real-Valued Matrix Multiplications

4 4x4 Matrix Mul. Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Ne10 107 1.00 2.39

Ne10 + Reordering 97 1.10 2.64

8 4x4 Matrix Mul.

Ne10 207 1.00 2.47

Ne10 + Reordering 195 1.06 2.63

16 4x4 Matrix Mul.

Ne10 429 1.00 2.39

Ne10 + Reordering 383 1.12 2.67

32 4x4 Matrix Mul.

Ne10 830 1.00 2.47

Ne10 + Reordering 780 1.06 2.63

64 4x4 Matrix Mul.

Ne10 1630 1.00 2.51

Ne10 + Reordering 1542 1.06 2.66

128 4x4 Matrix Mul.

Ne10 3229 1.00 2.54

Ne10 + Reordering 3062 1.05 2.66

256 4x4 Matrix Mul.

Ne10 7308 1.00 2.24

Ne10 + Reordering 6102 1.20 2.69

A.3 Real-Valued Matrix Multiplication

The results of the optimizations performed on Real-Valued Matrix Multiplication im-

plementations are provided in tables A.9, A.10, A.11, A.12, A.13, and A.14.
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Table A.9: Results of Real-Valued Matrix Multiplications (Part I)

16x16-16x16 Matrix Mul. Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 15744 0.82 0.26

Canonical + Unroll (x2) 13120 0.98 0.31

Canonical + Unroll (x4) 12864 1.00 0.32

Canonical + Unroll (x8) 12864 1.00 0.32

Canonical + Unroll (x16) 12864 1.00 0.32

Manual Vectorization 5632 2.28 0.73

Man. Vec. + Unroll (x8) 4736 2.72 0.86

Man. Vec. + Unroll (x16) 4928 2.61 0.83

Table A.10: Results of Real-Valued Matrix Multiplications (Part II)

32x32-32x32 Matrix Mul. Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 99646 0.97 0.33

Canonical + Unroll (x2) 96401 1.00 0.34

Canonical + Unroll (x4) 96379 1.00 0.34

Canonical + Unroll (x8) 96431 1.00 0.34

Canonical + Unroll (x16) 97287 0.99 0.34

Manual Vectorization 37888 2.54 0.86

Man. Vec. + Unroll (x8) 30144 3.20 1.09

Man. Vec. + Unroll (x16) 31296 3.07 1.05
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Table A.11: Results of Real-Valued Matrix Multiplications (Part III)

64x64-64x64 Matrix Mul. Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 856960 0.97 0.31

Canonical + Unroll (x2) 829056 1.00 0.32

Canonical + Unroll (x4) 828864 1.00 0.32

Canonical + Unroll (x8) 829312 1.00 0.32

Canonical + Unroll (x16) 836672 0.99 0.31

Manual Vectorization 379776 2.18 0.70

Man. Vec. + Unroll (x8) 238528 3.47 1.10

Man. Vec. + Unroll (x16) 242752 3.41 1.08

Table A.12: Results of Real-Valued Matrix Multiplications (Part IV)

128x128-128x128 Matrix Mul. Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 11833152 0.71 0.18

Canonical + Unroll (x2) 12499200 0.67 0.17

Canonical + Unroll (x4) 8422976 1.00 0.25

Canonical + Unroll (x8) 12576768 0.67 0.17

Canonical + Unroll (x16) 13010816 0.65 0.16

Manual Vectorization 3185408 2.64 0.66

Man. Vec. + Unroll (x8) 2937792 2.87 0.71

Man. Vec. + Unroll (x16) 3323584 2.53 0.63
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Table A.13: Results of Real-Valued Matrix Multiplications (Part V)

256x256-256x256 Matrix Mul. Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 113966592 0.62 0.15

Canonical + Unroll (x2) 109710208 0.64 0.15

Canonical + Unroll (x4) 70723648 1.00 0.24

Canonical + Unroll (x8) 111758144 0.63 0.15

Canonical + Unroll (x16) 111737728 0.63 0.15

Manual Vectorization 33350400 2.12 0.51

Man. Vec. + Unroll (x8) 32207168 2.20 0.52

Man. Vec. + Unroll (x16) 32809344 2.16 0.51

Table A.14: Results of Real-Valued Matrix Multiplications (Part VI)

512x512-512x512 Matrix Mul. Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 562383296 0.95 0.24

Canonical + Unroll (x2) 557327040 0.96 0.24

Canonical + Unroll (x4) 533936576 1.00 0.25

Canonical + Unroll (x8) 905502272 0.59 0.15

Canonical + Unroll (x16) 897988288 0.59 0.15

Manual Vectorization 268527744 1.99 0.50

Man. Vec. + Unroll (x8) 255559040 2.09 0.53

Man. Vec. + Unroll (x16) 268646336 1.99 0.50

A.4 Complex-Valued Matrix Multiplication

The results of the optimizations performed on Complex-Valued Matrix Multiplication

implementations are provided in table A.15 and A.16.
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Table A.15: Results of Complex-Valued Matrix Multiplications (Part I)

16x16-16x16 Comp. Mat. Mul. Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 78208 1.00 0.21

Manual Vectorization 15936 4.91 1.03

Man. Vec. + Unroll (x8) 15936 4.91 1.03

Man. Vec. + Unroll (x16) 16000 4.89 1.02

Man. Vec. + Unroll (x8) + Reordering 16192 4.83 1.01

32x32-32x32 Comp. Mat. Mul.

Canonical 606784 1.00 0.22

Manual Vectorization 121088 5.01 1.08

Man. Vec. + Unroll (x8) 120640 5.03 1.09

Man. Vec. + Unroll (x16) 120768 5.02 1.09

Man. Vec. + Unroll (x8) + Reorder 123072 4.93 1.07

64x64-64x64 Comp. Mat. Mul.

Canonical 5047296 1.00 0.21

Manual Vectorization 1048960 4.81 1.00

Man. Vec. + Unroll (x8) 967424 5.22 1.08

Man. Vec. + Unroll (x16) 966208 5.22 1.09

Man. Vec. + Unroll (x8) + Reorder 964544 5.23 1.09

128x128-128x128 Comp. Mat. Mul.

Canonical 42471808 1.00 0.20

Manual Vectorization 10501440 4.04 0.80

Man. Vec. + Unroll (x8) 10609024 4.00 0.79

Man. Vec. + Unroll (x16) 10327360 4.11 0.81

Man. Vec. + Unroll (x8) + Reorder 10314944 4.12 0.81

256x256-256x256 Comp. Mat. Mul.

Canonical 338038528 1.00 0.20

Manual Vectorization 81839296 4.13 0.82

Man. Vec. + Unroll (x8) 81306368 4.16 0.83

Man. Vec. + Unroll (x16) 81680448 4.14 0.82

Man. Vec. + Unroll (x8) + Reorder 78999552 4.28 0.85

512x512-512x512 Comp. Mat. Mul.

Canonical 2706064832 1.00 0.20

Manual Vectorization 658233792 4.11 0.82

Man. Vec. + Unroll (x8) 655985600 4.13 0.82

Man. Vec. + Unroll (x16) 656628928 4.12 0.82

Man. Vec. + Unroll (x8) + Reorder 639349376 4.23 0.84
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Table A.16: Results of Complex-Valued Matrix Multiplications (Part II)

16x16-16x256 Comp. Mat. Mul. Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 1296576 1.00 0.20

Manual Vectorization 297088 4.36 0.88

Man. Vec. + Unroll (x8) 294912 4.40 0.89

Man. Vec. + Unroll (x8) + Reordering 282560 4.59 0.93

24x24-24x256 Comp. Mat. Mul.

Canonical 2871808 1.00 0.21

Manual Vectorization 673280 4.27 0.88

Man. Vec. + Unroll (x8) 670144 4.29 0.88

Man. Vec. + Unroll (x8) + Reorder 639616 4.49 0.92

16x16-16x1000 Comp. Mat. Mul.

Canonical 5130112 1.00 0.20

Manual Vectorization 1276672 4.02 0.80

Man. Vec. + Unroll (x8) 1273984 4.03 0.80

Man. Vec. + Unroll (x8) + Reorder 1198784 4.28 0.85

32x32-32x1000 Comp. Mat. Mul.

Canonical 20592000 1.00 0.20

Manual Vectorization 5115968 4.03 0.80

Man. Vec. + Unroll (x8) 5142528 4.00 0.80

Man. Vec. + Unroll (x8) + Reorder 4959168 4.15 0.83

64x64-64x3000 Comp. Mat. Mul.

Canonical 247296064 1.00 0.20

Manual Vectorization 66112512 3.74 0.74

Man. Vec. + Unroll (x8) 67234112 3.68 0.73

Man. Vec. + Unroll (x8) + Reorder 66601408 3.71 0.74

128x128-128x3000 Comp. Mat. Mul.

Canonical 1015243136 1.00 0.19

Manual Vectorization 289148608 3.51 0.68

Man. Vec. + Unroll (x8) 285672832 3.55 0.69

Man. Vec. + Unroll (x8) + Reorder 290692544 3.49 0.68
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A.5 Convolution

The results of the optimizations performed on Complex Convolution implementations

are provided in table A.17, A.18, and A.19.

Table A.17: Results of Convolution (Part I)

32-to-16 Convolution Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 4823 1.00 0.23

Man. Vec. + Unroll (x4) 977 4.94 1.11

Man. Vec. + Unroll (x16) 947 5.09 1.14

Man. Vec. + Unroll (x16) + Reorder 935 5.16 1.16

64-to-16 Convolution

Canonical 13853 1.00 0.23

Man. Vec. + Unroll (x4) 2749 5.04 1.14

Man. Vec. + Unroll (x16) 2705 5.12 1.16

Man. Vec. + Unroll (x16) + Reorder 2652 5.22 1.18

128-to-16 Convolution

Canonical 31878 1.00 0.23

Man. Vec. + Unroll (x4) 6279 5.08 1.15

Man. Vec. + Unroll (x16) 6221 5.12 1.17

Man. Vec. + Unroll (x16) + Reorder 6044 5.23 1.20

256-to-16 Convolution

Canonical 68001 1.00 0.23

Man. Vec. + Unroll (x4) 13379 5.08 1.15

Man. Vec. + Unroll (x16) 13262 5.13 1.16

Man. Vec. + Unroll (x16) + Reorder 13031 5.21 1.18

512-to-16 Convolution Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 140183 1.00 0.23

Man. Vec. + Unroll (x4) 27557 5.09 1.15

Man. Vec. + Unroll (x16) 27345 5.13 1.17

Man. Vec. + Unroll (x16) + Reorder 26751 5.24 1.19
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Table A.18: Results of Convolution (Part II)

64-to-32 Convolution

Canonical 18443 1.00 0.23

Man. Vec. + Unroll (x4) 3376 5.46 1.25

Man. Vec. + Unroll (x16) 3317 5.56 1.27

Man. Vec. + Unroll (x16) + Reorder 3203 5.76 1.32

128-to-32 Convolution

Canonical 54155 1.00 0.23

Man. Vec. + Unroll (x4) 9874 5.48 1.26

Man. Vec. + Unroll (x16) 9675 5.60 1.29

Man. Vec. + Unroll (x16) + Reorder 9364 5.78 1.33

256-to-32 Convolution

Canonical 125579 1.00 0.23

Man. Vec. + Unroll (x4) 22866 5.49 1.26

Man. Vec. + Unroll (x16) 22414 5.60 1.29

Man. Vec. + Unroll (x16) + Reorder 21714 5.78 1.33

512-to-32 Convolution

Canonical 268427 1.00 0.23

Man. Vec. + Unroll (x4) 48985 5.48 1.26

Man. Vec. + Unroll (x16) 47975 5.60 1.29

Man. Vec. + Unroll (x16) + Reorder 46442 5.78 1.33
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Table A.19: Results of Convolution (Part III)

1000-to-512 Convolution Exec. time (cycles) Speed-up Mul.-Acc. per Cycle

Canonical 4330189 1.00 0.23

Man. Vec. + Unroll (x4) 705543 6.14 1.42

Man. Vec. + Unroll (x16) 692121 6.26 1.45

Man. Vec. + Unroll (x16) + Reorder 659565 6.57 1.52

1000-to-32 Convolution

Canonical 540731 1.00 0.23

Man. Vec. + Unroll (x4) 98380 5.50 1.26

Man. Vec. + Unroll (x16) 95883 5.64 1.29

Man. Vec. + Unroll (x16) + Reorder 93004 5.81 1.33

10000-to-512 Convolution

Canonical 84399160 1.00 0.23

Man. Vec. + Unroll (x4) 13962768 6.04 1.39

Man. Vec. + Unroll (x16) 13742893 6.14 1.41

Man. Vec. + Unroll (x16) + Reorder 13096150 6.44 1.48

10000-to-32 Convolution

Canonical 5591105 1.00 0.23

Man. Vec. + Unroll (x4) 1035676 5.40 1.23

Man. Vec. + Unroll (x16) 1003375 5.57 1.27

Man. Vec. + Unroll (x16) + Reorder 978549 5.71 1.30

A.6 Fourier Transform

The results of different Fourier Transform implementations are provided in table

A.20, and A.21. The first implementation belongs to Radix-2 Fast Fourier Trans-

form. The second implementation belongs to Radix-2 FFT which uses 16-point DFT,

which is the reordered version of Ne10’s implementation, as its basis. The third result

belongs to Ne10’s Fourier Transform implementation.
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Table A.20: Results of Different Fourier Transform Implementations (Part I)

16-point Fourier Transform Exec. time (cycles) Butterflies per Cycle

Radix-2 414 0.077

Radix-2 w/reordered Ne10 16-point impl. 98 0.327

Ne10 103 0.311

32-point Fourier Transform

Radix-2 1182 0.068

Radix-2 w/reordered Ne10 16-point impl. 423 0.189

Ne10 337 0.237

64-point Fourier Transform

Radix-2 3615 0.053

Radix-2 w/reordered Ne10 16-point impl. 2139 0.090

Ne10 785 0.245

128-point Fourier Transform

Radix-2 9880 0.045

Radix-2 w/reordered Ne10 16-point impl. 6917 0.065

Ne10 1692 0.265

256-point Fourier Transform

Radix-2 23282 0.044

Radix-2 w/reordered Ne10 16-point impl. 17116 0.060

Ne10 3916 0.261

512-point Fourier Transform

Radix-2 55896 0.041

Radix-2 w/reordered Ne10 16-point impl. 45282 0.051

Ne10 8538 0.270
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Table A.21: Results of Different Fourier Transform Implementations (Part II)

1024-point Fourier Transform Exec. time (cycles) Butterflies per Cycle

Radix-2 136849 0.037

Radix-2 w/reordered Ne10 16-point impl. 117094 0.044

Ne10 20413 0.251

2048-point Fourier Transform

Radix-2 313950 0.036

Radix-2 w/reordered Ne10 16-point impl. 265940 0.042

Ne10 56224 0.200

4096-point Fourier Transform

Radix-2 715767 0.034

Radix-2 w/reordered Ne10 16-point impl. 627959 0.039

Ne10 127304 0.193

8192-point Fourier Transform

Radix-2 1615139 0.033

Radix-2 w/reordered Ne10 16-point impl. 1424822 0.037

Ne10 314995 0.169

16384-point Fourier Transform

Radix-2 3533664 0.032

Radix-2 w/reordered Ne10 16-point impl. 3197615 0.036

Ne10 814480 0.141
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Appendix B

SOURCE CODE

The source code for the functions that prove to be most performant are provided in

this chapter.

B.1 Mat File Parser

unsigned mat(const char *fpath, float **out_buffer,

unsigned *out_row_count, unsigned *out_col_count,

int *out_is_complex)

{

// open file as text file

FILE *f = fopen(fpath, "r");

if (!f) {

fprintf(stderr, "Unable to open file: %s\n", fpath);

return 0;

}

// consume first two lines

fscanf(f, "%*[^\n]\n");

fscanf(f, "%*[^\n]\n");

// consume the line describing the type of the variable

// supported types: matrix, complex matrix

char linebuf[32];

int is_complex;
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fscanf(f, "%[^\n]\n", linebuf);

if (!strcmp(linebuf, "# type: matrix"))

is_complex = 0;

else if (!strcmp(linebuf, "# type: complex matrix"))

is_complex = 1;

else {

fprintf(stderr, "Unsupported variable type\n");

return 0;

}

// read row and column count

unsigned row_cnt, col_cnt;

fscanf(f, "# rows: %u\n", &row_cnt);

fscanf(f, "# columns: %u\n", &col_cnt);

if (row_cnt == 0 || col_cnt == 0) {

fprintf(stderr, "Invalid matrix size\n");

return 0;

}

// allocate buffer

float *buf = malloc(

row_cnt *

col_cnt *

sizeof(float) *

(is_complex + 1));

if (!buf) {

fprintf(stderr, "Unable to allocate buffer\n");

return 0;

}

// read matrix

float *next = buf;

104



for (unsigned row = 0; row < row_cnt; ++row) {

for (unsigned col = 0; col < col_cnt; ++col) {

if (is_complex == 0) {

float tmp;

fscanf(f, "%f", &tmp);

*next++ = tmp;

}

else {

float tmp, tmp2;

fscanf(f, " (%f,%f) ", &tmp, &tmp2);

*next++ = tmp;

*next++ = tmp2;

}

}

}

// close file

fclose(f);

if (out_buffer)

*out_buffer = buf;

else

free(buf);

if (out_row_count)

*out_row_count = row_cnt;

if (out_col_count)

*out_col_count = col_cnt;

if (out_is_complex)

*out_is_complex = is_complex;

return row_cnt *

col_cnt *
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sizeof(float) *

(is_complex + 1);

}

B.2 Matrix Addition

void matadd(struct params *params)

{

register float *A asm("r4") = params->in1;

register float *B asm("r5") = params->in2;

register float *Y asm("r6") = params->out;

unsigned A_row_cnt = params->in1_row_cnt;

unsigned A_col_cnt = params->in1_col_cnt;

unsigned B_row_cnt = params->in2_row_cnt;

unsigned B_col_cnt = params->in2_col_cnt;

unsigned Y_row_cnt = A_row_cnt, Y_col_cnt = B_col_cnt;

register unsigned Y_cnt = Y_row_cnt * Y_col_cnt;

for (unsigned y = 0; y < Y_cnt; y += 32) {

asm volatile (

"vld1.32 {d0,d1,d2,d3}, [%[a]]! \n\t"

"vld1.32 {d4,d5,d6,d7}, [%[b]]! \n\t"

"vadd.f32 q0, q2 \n\t"

"vadd.f32 q1, q3 \n\t"

"vst1.32 {d0,d1,d2,d3}, [%[y]]! \n\t"

"vld1.32 {d8,d9,d10,d11}, [%[a]]! \n\t"

"vld1.32 {d12,d13,d14,d15}, [%[b]]! \n\t"

"vadd.f32 q4, q6 \n\t"

"vadd.f32 q5, q7 \n\t"

"vst1.32 {d8,d9,d10,d11}, [%[y]]! \n\t"
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"vld1.32 {d16,d17,d18,d19}, [%[a]]! \n\t"

"vld1.32 {d20,d21,d22,d23}, [%[b]]! \n\t"

"vadd.f32 q8, q10 \n\t"

"vadd.f32 q9, q11 \n\t"

"vst1.32 {d16,d17,d18,d19}, [%[y]]! \n\t"

"vld1.32 {d24,d25,d26,d27}, [%[a]]! \n\t"

"vld1.32 {d28,d29,d30,d31}, [%[b]]! \n\t"

"vadd.f32 q12, q14 \n\t"

"vadd.f32 q13, q15 \n\t"

"vst1.32 {d24,d25,d26,d27}, [%[y]]! \n\t"

: [a] "+r" (A), [b] "+r" (B), [y] "+r" (Y)

);

}

}

B.3 Four-by-four Matrix Multiplication

void matmul_4by4(struct params *params)

{

float *A = params->in1;

float *B = params->in2;

float *Y = params->out;

register float *A_p asm("r4") = A;

register float *B_p asm("r5") = B;

register float *Y_p asm("r6") = Y;

const unsigned A_row_cnt = params->in1_row_cnt;

const unsigned A_col_cnt = params->in1_col_cnt;

const unsigned B_row_cnt = params->in2_row_cnt;

register const unsigned B_col_cnt =

params->in2_col_cnt;
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const unsigned Y_row_cnt = A_row_cnt;

const unsigned Y_col_cnt = B_col_cnt;

const unsigned Y_dim = Y_row_cnt * Y_col_cnt;

register float32x4_t aaaa asm("q0");

register float32x4_t bbbb asm("q1");

register float32x4_t yyyy asm("q2");

for (int i = 0; i < N; ++i)

asm volatile (

"vld1.32 {q8-q9}, [%[a]]! \n\t"

"vld1.32 {q0-q1}, [%[b]]! \n\t"

"vld1.32 {q10-q11}, [%[a]]! \n\t"

"vld1.32 {q2-q3}, [%[b]]! \n\t"

"vmul.f32 q12, q8, d0[0] \n\t"

"vmul.f32 q13, q8, d2[0] \n\t"

"vmul.f32 q14, q8, d4[0] \n\t"

"vmul.f32 q15, q8, d6[0] \n\t"

"vld1.32 { q4-q5 }, [%[a]]! \n\t"

"vmla.f32 q12, q9, d0[1] \n\t"

"vmla.f32 q13, q9, d2[1] \n\t"

"vmla.f32 q14, q9, d4[1] \n\t"

"vmla.f32 q15, q9, d6[1] \n\t"

"vld1.32 {q6-q7}, [%[a]]! \n\t"

"vmla.f32 q12, q10, d1[0] \n\t"

"vmla.f32 q13, q10, d3[0] \n\t"

"vmla.f32 q14, q10, d5[0] \n\t"

"vmla.f32 q15, q10, d7[0] \n\t"

"vmla.f32 q12, q11, d1[1] \n\t"

"vmla.f32 q13, q11, d3[1] \n\t"

"vld1.32 {q0-q1}, [%[b]]! \n\t"

"vmla.f32 q14, q11, d5[1] \n\t"
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"vmla.f32 q15, q11, d7[1] \n\t"

"vst1.32 {q12-q13}, [%[y]]! \n\t"

"vld1.32 {q2-q3}, [%[b]]! \n\t"

"vmul.f32 q12, q4, d0[0] \n\t"

"vmul.f32 q13, q4, d2[0] \n\t"

"vst1.32 {q14-q15}, [%[y]]! \n\t"

"vmul.f32 q14, q4, d4[0] \n\t"

"vmul.f32 q15, q4, d6[0] \n\t"

"vld1.32 { q8-q9 }, [%[a]]! \n\t"

"vmla.f32 q12, q5, d0[1] \n\t"

"vmla.f32 q13, q5, d2[1] \n\t"

"vmla.f32 q14, q5, d4[1] \n\t"

"vmla.f32 q15, q5, d6[1] \n\t"

"vld1.32 {q10-q11}, [%[a]]! \n\t"

"vmla.f32 q12, q6, d1[0] \n\t"

"vmla.f32 q13, q6, d3[0] \n\t"

"vmla.f32 q14, q6, d5[0] \n\t"

"vmla.f32 q15, q6, d7[0] \n\t"

"vmla.f32 q12, q7, d1[1] \n\t"

"vmla.f32 q13, q7, d3[1] \n\t"

"vld1.32 {q0-q1}, [%[b]]! \n\t"

"vmla.f32 q14, q7, d5[1] \n\t"

"vmla.f32 q15, q7, d7[1] \n\t"

"vst1.32 {q12-q13}, [%[y]]! \n\t"

"vld1.32 {q2-q3}, [%[b]]! \n\t"

"vmul.f32 q12, q8, d0[0] \n\t"

"vmul.f32 q13, q8, d2[0] \n\t"

"vst1.32 {q14-q15}, [%[y]]! \n\t"
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"vmul.f32 q14, q8, d4[0] \n\t"

"vmul.f32 q15, q8, d6[0] \n\t"

"vld1.32 {q4-q5}, [%[a]]! \n\t"

"vmla.f32 q12, q9, d0[1] \n\t"

"vmla.f32 q13, q9, d2[1] \n\t"

"vmla.f32 q14, q9, d4[1] \n\t"

"vmla.f32 q15, q9, d6[1] \n\t"

"vld1.32 {q6-q7}, [%[a]]! \n\t"

"vmla.f32 q12, q10, d1[0] \n\t"

"vmla.f32 q13, q10, d3[0] \n\t"

"vmla.f32 q14, q10, d5[0] \n\t"

"vmla.f32 q15, q10, d7[0] \n\t"

"vmla.f32 q12, q11, d1[1] \n\t"

"vmla.f32 q13, q11, d3[1] \n\t"

"vld1.32 {q0-q1}, [%[b]]! \n\t"

"vmla.f32 q14, q11, d5[1] \n\t"

"vmla.f32 q15, q11, d7[1] \n\t"

"vst1.32 {q12-q13}, [%[y]]! \n\t"

"vld1.32 {q2-q3}, [%[b]]! \n\t"

"vmul.f32 q12, q4, d0[0] \n\t"

"vmul.f32 q13, q4, d2[0] \n\t"

"vst1.32 {q14-q15}, [%[y]]! \n\t"

"vmul.f32 q14, q4, d4[0] \n\t"

"vmul.f32 q15, q4, d6[0] \n\t"

"vmla.f32 q12, q5, d0[1] \n\t"

"vmla.f32 q13, q5, d2[1] \n\t"

"vmla.f32 q14, q5, d4[1] \n\t"

"vmla.f32 q15, q5, d6[1] \n\t"

"vmla.f32 q12, q6, d1[0] \n\t"

"vmla.f32 q13, q6, d3[0] \n\t"
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"vmla.f32 q14, q6, d5[0] \n\t"

"vmla.f32 q15, q6, d7[0] \n\t"

"vmla.f32 q12, q7, d1[1] \n\t"

"vmla.f32 q13, q7, d3[1] \n\t"

"vmla.f32 q14, q7, d5[1] \n\t"

"vmla.f32 q15, q7, d7[1] \n\t"

"vst1.32 {q12-q13}, [%[y]]! \n\t"

"vst1.32 {q14-q15}, [%[y]]! \n\t"

: [a] "+r" (A_p), [b] "+r" (B_p), [y] "+r" (Y_p)

);

}

B.4 Real-Valued Matrix Multiplication

void matmul(struct params *params)

{

float *A = params->in1;

float *B = params->in2;

float *Y = params->out;

register float *A_p asm("r4") = A;

register float *B_p asm("r5") = B;

register float *Y_p asm("r6") = Y;

const unsigned A_row_cnt = params->in1_row_cnt;

const unsigned A_col_cnt = params->in1_col_cnt;

const unsigned B_row_cnt = params->in2_row_cnt;

register const unsigned B_col_cnt =

params->in2_col_cnt;

const unsigned Y_row_cnt = A_row_cnt;

const unsigned Y_col_cnt = B_col_cnt;

const unsigned Y_dim = Y_row_cnt * Y_col_cnt;

111



register float32x4_t aaaa asm("q0");

register float32x4_t bbbb asm("q1");

register float32x4_t yyyy asm("q2");

memset(Y, 0, Y_dim * sizeof(float));

for (unsigned a_row = 0; a_row < A_row_cnt; ++a_row) {

B_p = B;

unsigned y_row_wo_col = a_row * B_col_cnt;

for (unsigned a_col = 0;

a_col < A_col_cnt;

++a_col) {

Y_p = Y + y_row_wo_col;

asm volatile (

"vld1.32 {d0[],d1[]}, [%[a]]! \n\t"

: [a] "+r" (A_p)

);

for (register unsigned b_col = 0;

b_col < B_col_cnt;

b_col += 8) {

asm volatile (

"vld1.32 {d2,d3}, [%[b]]! \n\t"

"vld1.32 {d4,d5}, [%[y]] \n\t"

"vmla.f32 q2, q0, q1 \n\t"

"vst1.32 {d4,d5}, [%[y]]! \n\t"

"vld1.32 {d6,d7}, [%[b]]! \n\t"

"vld1.32 {d8,d9}, [%[y]] \n\t"

"vmla.f32 q4, q0, q3 \n\t"

"vst1.32 {d8,d9}, [%[y]]! \n\t"

: [b] "+r" (B_p), [y] "+r" (Y_p)

);
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}

}

}

}

B.5 Complex-Valued Matrix Multiplication

void matmulc(struct params *params)

{

float complex *A = params->in1;

float complex *B = params->in2;

float complex *Y = params->out;

register float complex *A_p asm("r4") = A;

register float complex *B_p asm("r5") = B;

register float complex *Y_p asm("r6") = Y;

const unsigned A_row_cnt = params->in1_row_cnt;

const unsigned A_col_cnt = params->in1_col_cnt;

const unsigned B_row_cnt = params->in2_row_cnt;

register const unsigned B_col_cnt =

params->in2_col_cnt;

const unsigned Y_row_cnt = A_row_cnt;

const unsigned Y_col_cnt = B_col_cnt;

const unsigned Y_dim = Y_row_cnt * Y_col_cnt;

memset(Y, 0, Y_dim * sizeof(float complex));

for (unsigned a_row = 0; a_row < A_row_cnt; ++a_row) {

B_p = B;

unsigned y_row_wo_col = a_row * B_col_cnt;

for (unsigned a_col = 0;

a_col < A_col_cnt;

++a_col) {
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Y_p = Y + y_row_wo_col;

asm volatile (

"vld1.32 {d0[],d1[]}, [%[a]]! \n\t"

"vld1.32 {d2[],d3[]}, [%[a]]! \n\t"

: [a] "+r" (A_p)

);

for (register unsigned b_col = 0;

b_col < B_col_cnt;

b_col += 8) {

asm volatile (

"vld2.32 {d4,d5,d6,d7}, [%[b]]! \n\t"

"vld2.32 {d8,d9,d10,d11}, [%[y]] \n\t"

"vmla.f32 q4, q0, q2 \n\t"

"vld2.32 {d12,d13,d14,d15}, [%[b]]! \n\t"

"vmls.f32 q4, q1, q3 \n\t"

"vmla.f32 q5, q0, q3 \n\t"

"vmla.f32 q5, q1, q2 \n\t"

"vst2.32 {d8,d9,d10,d11}, [%[y]]! \n\t"

"vld2.32 {d16,d17,d18,d19}, [%[y]] \n\t"

"vmla.f32 q8, q0, q6 \n\t"

"vmls.f32 q8, q1, q7 \n\t"

"vmla.f32 q9, q0, q7 \n\t"

"vmla.f32 q9, q1, q6 \n\t"

"vst2.32 {d16,d17,d18,d19}, [%[y]]! \n\t"

: [b] "+r" (B_p), [y] "+r" (Y_p)

);

}

}

}

}
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B.6 Convolution

void convc(struct params *params)

{

float complex *X = params->in1;

float complex *H = params->in2;

float complex *Y = params->out;

unsigned X_SIZE = params->in1_col_cnt;

unsigned H_SIZE = params->in2_col_cnt;

register float complex *X_p;

register float complex *H_p = H;

for (unsigned y = 0; y < X_SIZE - H_SIZE + 1; ++y) {

X_p = X + y;

asm volatile (

"veor q0, q0\n\t"

"veor q1, q1\n\t"

);

for (unsigned i = 0; i < H_SIZE; i += 16) {

asm volatile (

"vld2.32 {q2-q3}, [%[x]]!\n\t"

"vld2.32 {q4-q5}, [%[h]]!\n\t"

"vmla.f32 q0, q2, q4\n\t" // real * real

"vmla.f32 q1, q2, q5\n\t" // real * imag

"vld2.32 {q6-q7}, [%[x]]!\n\t"

"vmls.f32 q0, q3, q5\n\t" // imag * imag

"vmla.f32 q1, q3, q4\n\t" // imag * real

"vld2.32 {q8-q9}, [%[h]]!\n\t"

"vmla.f32 q0, q6, q8\n\t"

"vmla.f32 q1, q6, q9\n\t"

"vld2.32 {q10-q11}, [%[x]]!\n\t"
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"vmls.f32 q0, q7, q9\n\t"

"vmla.f32 q1, q7, q8\n\t"

"vld2.32 {q12-q13}, [%[h]]!\n\t"

"vmla.f32 q0, q10, q12\n\t"

"vmla.f32 q1, q10, q13\n\t"

"vld2.32 {q2-q3}, [%[x]]!\n\t"

"vmls.f32 q0, q11, q13\n\t"

"vmla.f32 q1, q11, q12\n\t"

"vld2.32 {q4-q5}, [%[h]]!\n\t"

"vmla.f32 q0, q2, q4\n\t"

"vmla.f32 q1, q2, q5\n\t"

"vmls.f32 q0, q3, q5\n\t"

"vmla.f32 q1, q3, q4\n\t"

: [x] "+r" (X_p), [h] "+r" (H_p)

);

}

asm volatile (

"vpadd.f32 d0, d0, d1\n\t"

"vadd.f32 s30, s0, s1\n\t"

"vpadd.f32 d2, d2, d3\n\t"

"vadd.f32 s31, s4, s5\n\t"

"vstmia %[y]!, {s30,s31}\n\t"

: [y] "+r" (Y)

);

}

}

B.7 Fast Fourier Transform
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fft16:

...

@ r5 contains the address of the input array

@ r4 contains the address of the output array

@ :GLOBAL is the base address of rodata section

@ :GLOBAL + 2048 contains the twiddle factor array

strd r0, [sp]

add r1, r5, #32

add r2, r5, #96

add r7, r5, #64

vld2.32 {d20-d23}, [r5]

movw r3, #:GLOBAL

add r0, r4, #32

vld2.32 {d8-d11}, [r2]

movt r3, #:GLOBAL

add r6, r3, #2048

add ip, r3, #2112

vld2.32 {d28-d31}, [r1]

add r5, r3, #2080

add r1, r4, #64

add r2, r4, #96

vld2.32 {d4-d7}, [r7]

vld2.32 {d0-d3}, [r6]

vmov q8, q10

vmov q10, q5

vmov q12, q14

vmov q13, q15

vmov q15, q4

vmov q4, q2

vmov q14, q3

vsub.f32 q2, q13, q5

vadd.f32 q3, q12, q15
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vadd.f32 q9, q8, q4

vsub.f32 q5, q8, q4

vsub.f32 q6, q12, q15

vadd.f32 q7, q13, q10

vadd.f32 q12, q11, q14

vsub.f32 q11, q11, q14

vsub.f32 q14, q9, q3

vsub.f32 q8, q5, q2

vadd.f32 q9, q9, q3

vadd.f32 q3, q5, q2

vzip.32 q14, q8

vsub.f32 q10, q12, q7

vzip.32 q9, q3

vadd.f32 q13, q12, q7

vsub.f32 q15, q11, q6

vadd.f32 q11, q11, q6

vld2.32 {d8-d11}, [ip]

vmov q2, q0

vzip.32 q13, q15

vzip.32 q10, q11

vld2.32 {d12-d15}, [r5]

vmov q12, q1

vmov d1, d29

vmov d0, d19

vmov d29, d28

vmov d28, d18

vmul.f32 q1, q0, q2

vmul.f32 q9, q0, q12

vmov d0, d27

vmov d1, d21

vmov d27, d20

vmla.f32 q9, q0, q2
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vmov q2, q4

vmls.f32 q1, q0, q12

vmov q0, q5

vmov q10, q9

vmov d18, d7

vmov d19, d17

vmov d17, d16

vmov d16, d6

vmov d7, d23

vmov d6, d31

vmov d31, d22

vmul.f32 q4, q9, q4

vmul.f32 q9, q9, q5

vmov q5, q7

vmul.f32 q7, q8, q6

vmls.f32 q4, q3, q0

vmul.f32 q8, q8, q5

vmla.f32 q9, q3, q2

vmls.f32 q7, q15, q5

vmla.f32 q8, q15, q6

vadd.f32 q3, q1, q4

vadd.f32 q12, q10, q9

vadd.f32 q15, q14, q7

vsub.f32 q11, q10, q9

vsub.f32 q14, q14, q7

vadd.f32 q10, q13, q8

vadd.f32 q6, q15, q3

vadd.f32 q7, q10, q12

vst2.32 {d12-d15}, [r4]

vsub.f32 q1, q1, q4

vsub.f32 q0, q13, q8

vadd.f32 q4, q14, q11
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vsub.f32 q5, q0, q1

vst2.32 {d8-d11}, [r0]

vsub.f32 q2, q15, q3

vsub.f32 q3, q10, q12

vst2.32 {d4-d7}, [r1]

vsub.f32 q12, q14, q11

vadd.f32 q13, q0, q1

vst2.32 {d24-d27}, [r2]

...
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