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ABSTRACT

A NEW JACOBIAN MATRIX CALCULATION METHOD TO DECREASE
COMPUTATIONAL TIME IN PERIODIC FORCED RESPONSE ANALYSIS
OF NONLINEAR STRUCTURES

Kizilay, Hazim Sefa
Master of Science, Mechanical Engineering
Supervisor: Prof. Dr. Ender Cigeroglu

August 2019, 84 pages

The contact interfaces between the components used in high speed systems such as the
turbo machinery cause nonlinear vibrations. In order to understand the dynamic
characteristic of nonlinear systems, it is important to perform nonlinear vibration
analysis. In nonlinear vibration analysis, due to the properties of nonlinear elements used,
it is not possible to calculate the Jacobian matrix analytically or it becomes very
complicated and difficult, therefore, Jacobian matrix is calculated as numerically. In each
iteration, obtaining the Jacobian matrix by numeric methods greatly increases the overall
calculation time. In this study, a new method is proposed for numerical Jacobian
calculation of nonlinear vibration analysis of multidegree-of-freedom (MDOF) systems.
The aim of the work is to obtain significant reduction of computational time for Jacobian
calculation compared to classical Jacobian calculation. In order to reveal the effect of the
suggested method, nonlinear equation set is derived by using receptance method. The
nonlinear MDOF system is analyzed in frequency domain by using harmonic balance
method (HBM) which makes nonlinear algebraic equations to be solved iteratively. The
validation of the method is presented by comparing the computational times and
computation reduction ratios obtained with classical Jacobian calculation and

proposed Jacobian calculation method.



Keywords: Jacobian Calculation, Nonlinear Vibration, Harmonic Balance Method,

Dry Friction
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Oz

DOGRUSAL OLMAYAN YAPILARIN PERIYODIK KUVVET CEVAP
ANALIZI HESAPLAMA SURELERINI AZALTMAK ICIN YENI BIR
JACOBIAN MATRIS HESAPLAMA YONTEMI

Kizilay, Hazim Sefa
Yiksek Lisans, Makina Miihendisligi
Tez Danigmani: Prof. Dr. Ender Cigeroglu

Agustos 2019, 84 sayfa

Turbo makineleri gibi yiliksek hizli sistemlerde kullanilan bilesenler arasindaki bosluk
ve temash arayiizler, dogrusal olmayan titresimlere neden olmaktadir. Dogrusal
olmayan sistemlerin dinamik karakteristigini anlamak i¢in dogrusal olmayan titresim
analizlerini gergeklestirmek o©nemlidir. Dogrusal olmayan titresim analizinde,
kullanilan dogrusal olmayan elemanlarin 6zelliklerinden dolayi, Jacobian matrisini
analitik olarak hesaplamak miimkiin olmadig1 gibi baz1 durumlarda ise ¢ok karmagsik
ve zor bir hale gelmektedir. Bu nedenle Jacobian matrisi sayisal olarak
hesaplanmaktadir. Her yinelemede, Jacobian matrisini sayisal yontemlerle elde etmek,
toplam hesaplama siiresini biiyiik dl¢iide artirmaktadir. Bu tez ¢calismasi kapsaminda,
dogrusal olmayan titresim analizlerinde kullanilan sayisal Jacobian hesaplamasi i¢in
yeni bir yontem gelistirilmistir. Calismanin amaci, klasik Jacobian hesaplamasina
yontemine kiyasla hesaplama siiresinde 6nemli bir azalma elde etmektir. Onerilen
yontemin etkisini ortaya ¢ikarmak i¢in, dogrusal olmayan denklem seti, receptance
yontemi kullanilarak tiiretilmistir. Dogrusal olmayan ¢oklu serbestlik dereceli sistemi,
frekans tabaninda, dogrusal olmayan cebirsel denklemlerin yinelemeli olarak
¢oOziilmesini saglayan harmonik denge yontemi kullanilarak analiz edilir. Klasik

Jacobian hesaplama yontemi ve Onerilen Jacobian hesaplama yontemi ile elde edilen

vii



¢Oziimlerin, hesaplama siireleri ve hesaplama azalim oranlari karsilastirilarak,

yontemin gegerliligi gosterilmistir.

Anahtar Kelimeler: Jacobian Hesaplamasi, Dogrusal Olmayan Titresim, Harmonik

Denge Metodu, Kuru Sirtiinme
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CHAPTER 1

INTRODUCTION

1.1. Nonlinearity in Structures

The aim of the modal analysis is to find the frequencies that the structure will increase
the effect of a load and the shapes it will take at these frequencies. Here are some

examples of why modal analysis is performed:
-to find dynamic behavior of structures with many DOFs
-to decide which rotation speeds are dangerous for the systems

-to understand which mode shapes and which operating frequency is important for

structures.

In terms of modeling and solution simplicity, non-linear effects in systems are ignored
most of the time, therefore modal analysis can be performed linearly. However, in
systems where non-linear effects are dominant, it is not a correct approach to obtain

modal information by using linear modal analysis.

In today's mechanical engineering, there are many systems where the effects of non-

linear vibrations have to be considered. Some examples of these systems are listed as:
-friction contact nonlinearity between shrouds of gas turbine blades.

-friction contact nonlinearity at under platform dampers for turbine blades.

-gap contact nonlinearity between shrouds of gas turbine blades.

-friction contact nonlinearity at systems with bolted joints.

-velocity squared damping nonlinearity at tuned liquid column damper.



-material nonlinearity at viscoelastic vibration isolation systems.
-geometric nonlinearity at high level vibrating beams.

For those systems where nonlinearity changes the dynamic characteristics
significantly, many problems are encountered in the process of obtaining reliable and
accurate solutions. In the literature, many researchers study to develop new solution
methods of the nonlinear vibratory systems in order to increase the accuracy and
stability of the solution and reduce the computational effort. This fact shows how
important and difficult it is to obtain solutions in the nonlinear systems. In the

literature survey section, the solution methods of the nonlinear systems are discussed.
1.2. Literature Survey

1.2.1. Set of Nonlinear Equation Solution Methods

1.2.1.1. Time Domain Methods

Cameron and Griffin [1] proposed a new method to analyze dynamically nonlinear
system in time domain. The main aim of their study is to obtain the steady-state
response of the system under the harmonic excitation by using both frequency and
time domain methods together. In the first step, the discrete Fourier transform of the
system response is calculated iteratively. In the second step, returning to the time
domain at each iteration ,nonlinear terms are calculated by using coefficient of the
Fourier transform. After time domain iteration, to continue iteration on the steady state
response in frequency domain, estimated nonlinear terms are converted to frequency
domain. In order to validate their method, a nonlinear system with friction damper is
studied. Results which are obtain by using proposed method are in good agreement
with other method results. However, there are some main disadvantages of this
method. Discrete Fourier transform can causes aliasing, leakage and roundoff errors

therefore, it is possible to cause convergence problem in solution process.

Rezaiee et. al. [2] studied a new explicit higher order time integration algorithm to

solve nonlinear dynamic system of equation of motion. In their study, state-space



concept and the differential transform method theory is combined to solve the equation
of motion. Linear and nonlinear system responses are studied to validate the new
method. System responses obtained by new method are compared with analytical
response and response calculated by Runke-Kutta method. However, as a result of
their study, the differential transform method is a process to solve a differential
equation in a Taylor series form iteratively which may causes to increase overall

computation time.

T. Liu et. al. [3] proposed a new method derived from the Newmark method which
uses the backward acceleration method and the trapezoidal rule. It is single step and
second order accurate algorithm. The main advantage of this method is that in case of
instability of solution process due to trapezoidal rule, this method provides to obtain
stable solution in large deformation and long time analysis.

Balendra et al. [4] studied the effectiveness of passive TLCDs in reducing the wind-
induced vibration of towers. Accordingly, authors used direct time integration method
to solve the linearized nonlinear governing differential equations of motion. In their
studies, optimum parameters were provided for a series of towers in relation to
maximum reduction in acceleration and displacement under harmonic excitations.
Those studies subsequently reveal that virtually the same level of reduction in
acceleration is achievable for any tower of practical interest when a suitable opening

ratio is used for the orifice in the TLCD connected rigidly to the structure.

Gao et al. [5] considered the same problem, where authors employed direct time
integration, i.e. Newmark’s constant average acceleration method, to solve the
nonlinear differential equation of motion of the building coupled with a TLCD.
Authors provided optimum TLCD parameters for a variety of flexible structures which
reduced the peak structural response to harmonic excitation in a wide frequency range.
Authors considered a variation of U- and V-shaped TLCD, which have different cross-

sectional areas in vertical and horizontal sections.



Xie [6] studied on comparison of different time integration methods on nonlinear
transient finite element analysis in terms of accuracy, stability and computational time.
He showed whether Runge-Kutta, Newmark, Houbolt and Wilson-u method are
suitable for transient nonlinear analysis. He found that the accuracy of the methods
changes greatly depending on nonlinearity types in finite element model, method
parameters and the time step sizes. In his study, the Newmark method, the Houbolt
method and the Wilson-u method cause considerable numerical damping on solution
for any application involving integration over a long time duration. He emphasized
that Runge-Kutta method is more expensive than Newmark method for the same time
step size in terms of computational time. Newmark method has less computational
time than Houbolt method and Wilson-u method. He claimed that when the time step
size is small than specific time step size which is given in the study, usage of Runge-

Kutta method gives far more accurate results than other methods.

Literature survey about time domain methods for nonlinear dynamic systems is
summarized. As a result, one can understand that time domain solution methods have
some drawbacks in terms of stability, accuracy and computational time. Considering
the optimization process of a large MDOF system, these drawbacks can cause waste

of time.
1.2.1.2. Frequency Domain Methods

Meng and Griffin [7] proposed a new method for calculating the force response of
structure with friction damper under by using simple finite element model. In their
study, the steady state response is assumed as harmonic and nonlinear forcing is
approximated by using the first term in a Fourier series expansion. In order to do this,
receptance which is obtained by using results of finite element model without friction
damper is utilized. Also, to verify the proposed method, they compare the results
obtained by time integration method with the results obtained by new method. They

show that there is good consistency between both results.



Mengq et. al. [8] studied to calculate the peak vibratory response of a shrouded blade
disk during increase or decrease of engine speed. Friction model that are used between
shroud contact surfaces includes microslip and variable normal load variation. In order
to decrease the total number of nonlinear equation, receptance method is utilized.
Also, they express that the mode number that are used to obtain receptance effects the

accuracy of the response.

Budak and Ozgiiven [9] suggested a new method for analyzing the harmonic response
of multi degree of freedom system with nonlinearities such as spring and damper.
Polynomial form of displacement and velocity responses are used to calculate the
force of nonlinear spring and damper. In order to solve the response of the multi degree
of freedom system efficiently, receptance matrix of the system is obtained by
neglecting the nonlinearities. They states that the proposed method is an iterative
method and effective for small nonlinearities. However, in case of high nonlinearities,
their method can not be suitable to obtain the response of a system because of iterative

procedure.

Budak and Ozgiiven [10] proposed a new solution methodology for the force response
analysis of nonlinear multi degree of freedom systems which is named lterative
Receptance Method (IRM). Variety of nonlinearities are formed by using nonlinear
spring and damping forces. In their study, displacement and velocities are expressed
by polynomial form. Nonlinearity of the system is defined in a matrix form which is
known as describing function method. In order to make analysis efficiently, IRM is
modified for local nonlinearities. They state that convergence problem encountered in
their previous studies are eliminated for highly nonlinear system by using IRM.

Tanrkulu et. al. [11] studied on the harmonic force response analysis of nonlinear multi
degree of freedom system by utilizing the describing function method (DFM) for
symmetric nonlinearities. It is a semi analytical quasi linearization method in
frequency domain. They express that time domain solutions are very expensive for

large structures, therefore, they obtain steady state response in frequency domain



solution by using DFM. In order to reduce the total nonlinear equation number,
receptance method is used and then it is combined with DFM. In their study, systems

with coulomb friction and cubic stiffness are analyzed by using the proposed method.

Kuran and Ozgiiven [12] developed a new method for nonlinear vibratory system
based on combining modal superposition method and multi-harmonic describing
function method. In this method, equation of motion of the structure is transformed
into a set of nonlinear algebraic equations in frequency domain, and then the number
of nonlinear equation is reduced by using information of linear modes. The solutions
obtained by using proposed method are compared with the time domain solutions.
They show that the proposed method reduces computational time significantly and
provides to obtain high accurate solutions by using a few number of modes. Also
effects of higher mode number utilized in analysis procedure and higher harmonic

components used for describing the response of the structure are investigated broadly.

E. Cigeroglu et. al. [13] proposed a modal superposition method for nonlinear
harmonic forced response analysis of bladed disk structures with a two dimensional
microslip friction nonlinearity. Also, in this nonlinearity, normal load variation is
considered. The resulting nonlinear friction force and the stick-slip separation is
determined by using distributed parameter model. In their study, harmonic balance
method (HBM) is employed with an iterative multi-mode solution approach.

E. Cigeroglu et. al. [14] studied on contact interface between under platform damper
and bladed disk. Modal superposition method is utilized to transform the equation of
motion to a set of nonlinear algebraic equation. In their study, the effect of the number
of harmonics to be used in analysis procedure is investigated by utilizing multi-
harmonic balance method (MHBM).

Petrov [15] proposed a method based on frequency response function (FRF) matrix to
reduce computational time and obtain high accurate results for reduced modelling of
jointed structures in frequency domain nonlinear forced response analysis. Petrov

states that nonlinear forces can be highly sensitive to relative displacement of contact



surfaces, therefore, in order to analyze large scale nonlinear models accurately, the
reduced model has to preserve main dynamic characteristics of the structure.
Considering component mode synthesis (CMS) methods, the proposed method has
major benefits and is easily applicable to finite element codes. In order to state main
advantageous of the proposed method, bladed disks with contact interface model is
investigated in detail by using harmonic balance method. Also, the effect of mode
number on FRF matrix accuracy is studied for forced response analysis for wide range
frequency. The force response results of bladed disk structure obtained by proposed
method is compared with the results obtained by CMS method and both results are in

very good agreement.

Zucca and Epureanu [16] derived a new method based on bilinear modes (BLMs) to
reduce the size of the nonlinear structures for forced response analysis in frequency
domain in order to reduce computational time. Dynamic behavior of the nonlinear
structure is spatially associated in the interested frequency range. In this approach, the
response of the nonlinear system is obtained by using harmonic balance method
(HBM).

In their study, intermittent contact model is used for nonlinearity in two case studies
which are force response analysis of a cracked plate and two coaxial cylinders. For
both cases, different contact status is considered such as fully closed contact and
partially closed contact. Results computed by the proposed method is compared with
results of component mode synthesis (CMS) method. They express that the proposed

method provides accurate results and significant reduction of computational time.

Jaumouillé et. al. [17] proposed an adaptive harmonic balance method to reduce
computational time in case of nonlinear forced response analysis with higher
harmonics. In order to verify the method, bolted joint structure with contact interface
is used for case study. They state that when higher harmonics is employed in the
frequency region where nonlinearity is dominant, the method gives more accurate

results.



Von Groll and Ewins [18] applied arc-length continuation method to overcome the
jump phenomenon of the response of nonlinear vibration of rotor with contact
interface. Harmonic balance method (HBM) is used to calculate the force response of
nonlinear structure. The proposed frequency domain algorithm calculates the response
of the system, turning points, bifurcation points and stability of the response. They
express that the algorithm can be used for various element types in nonlinear structural
dynamics and it is more efficient way than time domain methods in terms of the

computational speed.

Petrov and Ewins [19] proposed an analytical approach for multi-harmonic vibration
analysis of nonlinear structures with contact interfaces. A friction model is developed
for the friction forces under the variable normal load and unilateral interaction along
the normal of a contact surface.In their study, the friction interface elements are
derived analytically in order to obtain high accurate results and rapid convergence rate
of Newton-Raphson method, which is an iterative solution process. They state that it
helps to calculate the Jacobian matrix analytically. Utilizing analytic Jacobian matrix
can overcome loss of the convergence of the numerical analysis in case of unexpected
changes of contact conditions. In order to verify the approach, force response analysis
of a sector of a high-pressure turbine-bladed disk is studied. The numerical efficiency

and robustness of the analytic approach is proved.

Lewandowski [20] improved a method to analyze systems with geometric
nonlinearities for the modal and force response analysis. In his study, multi-harmonic

balance method is utilized to obtain higher order solutions.

Riberio and Petyt[20] [21] studied on harmonic forced response of geometric

nonlinear thin plates by using harmonic balance method.

Xu et. al. [22] studied on structures with nonlinear piecewise linear viscous damper.
Incremental harmonic balance method (IHBM) is employed to obtain response of the
structure under harmonic force excitation. They state that there is very good agreement

between the results obtained by using IHBM and time integration results.



Guskov et. al.[23] studied on nonlinear dynamic behavior of rotor system with
multiple unbalances. Multi-harmonic balance method is employed with combining
alternating frequency time domain method. In order to iterative solution procedure

and overcome the jJump phenomenon, arc-length continuation method is utilized.

Most of the nonlinear equation set obtained by the harmonic balance method (HBM)
[24],[25] has to be solved iteratively and numerical solution techniques that are used
in nonlinear vibration analysis has to calculate the Jacobian matrix with finite
difference estimation since it is not always possible to calculate the Jacobian matrix
analytically.

Borrajo et. al. [26] improved an analytic method to calculate Jacobian matrix of the
dynamic system having wedge damper. It is exact and completely analytical. The
method developed by Petrov and Ewins [19] for a particular friction damper model is
extended to a wedge damper model. In their study, set of nonlinear equations is solved
iteratively by employing Newton—Raphson method (NRM). The proposed analytic
method has been compared to the classical numerical Jacobian calculated finite
difference scheme. Comparison of both method shows that the proposed method

reduces computational time significantly.

In recent years, the harmonic balance method has been frequently studied by many
researchers, in addition, the describing function method has been used in many studies
in order to transform equation of motion of the structure into a set of nonlinear

algebraic equations in frequency domain for force response analysis.

In the literature, component mode synthesis, modal super position and receptance
method have been employed by many researchers to reduce the number of nonlinear
equation to be solved and decrease the computational time of the solution process for

nonlinear vibration analysis in frequency domain.

In the literature, there are a few approaches to calculate nonlinear forcing terms
analytically. Due to complexity of the nonlinearities such as friction element with

normal load variation and gap element, most of the studies used numerical solution



methods to obtain force response of the structure. In numerical solution methods, finite
difference estimation is used to calculate the Jacobian matrix, which is the most

important factor that increases the calculation time for iterative solution scheme.
1.3. Objective of the Thesis

In frequency domain nonlinear vibration analysis, iterative numerical methods are
used to find harmonic response of the system. It is necessary to calculate Jacobian
matrix numerically since it is not always possible to derive Jacobian matrix
analytically. In the solution process of the nonlinear equation of motion, calculation

of Jacobian matrix increases computational time significantly.

The main objective of this thesis is to develop a new method to reduce computational
time of the Jacobian matrix for nonlinear vibratory systems. Validation of the
proposed method is made by using lumped model and finite element model. For the
models, cubic stiffness and macroslip friction nonlinearities are studied. Solutions
obtained by using the proposed method are compared with classical Jacobian

calculation method in terms of computational time and computational reduction ratio.

In addition, performance of different nonlinear equation solvers and predictors are
investigated and they are compared in terms of computational time and total iteration

number.
1.4. Outline of the Thesis

Chapter 2 covers equation of motion of the nonlinear vibratory systems and
frequency domain solution method to obtain system response under harmonic
excitation. Harmonic balance method is explained to transform the nonlinear equation
of motion from time domain to frequency domain. Also, mathematical formulation of
receptance method is given to understand how to reduce the nonlinear equation
number of multi degree of freedom systems. Different algebraic nonlinear equation

solvers are explained with classical numeric Jacobian calculation and different
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predictors of Arc-length continuation method are formulated. Cubic stiffness and 1-D

dry-friction nonlinearities is expressed by using harmonic balance method.

Chapter 3 reviews theory of a new Jacobian calculation method for nonlinear
vibratory system response. Mathematical formulation of the proposed method is given
in detail for single and multi-harmonic balance method. Total number of necessary
calculation to obtain global Jacobian matrix by using classical Jacobian method and

the proposed method are compared theoretically.

Chapter 4 copes with case studies to validate the proposed method. Three different
lumped parameter models with cubic stiffness nonlinearity and finite element model
of bladed disk with dry friction nonlinearity are studied under the harmonic excitation.
In the case studies, advantage of the proposed method is shown for different nonlinear
equation number and harmonic number. Actual and expected computational reduction

ratios are tabulated.

Chapter 5 deals with performance of different nonlinear algebraic equation solvers
and predictors of Arc-length continuation method. Total computational time and total

iteration number of the solution obtained are compared.

Chapter 6 concludes benefits of the proposed method and the outcomes in this thesis.
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CHAPTER 2

PERIODIC RESPONSE ANALYSIS OF NONLINEAR STRUCTURES

2.1. Nonlinear Structures

The equation of motion (EOM) of a vibratory system with nonlinear elements can be

given as follows
MX(t) + Cx(t) + Kx(t) + f, (t) =f(t), (2.1)

where x is the displacement vector and dot means differentiation with respect to time.

Here, M,Cand K denote the mass, viscous damping, structural damping and
stiffness matrices, respectively. f, is the vector of internal nonlinear forcing and f is

the harmonic excitation force. For system given in Eq. (2.1), the nonlinear force vector

f, has elements other than zero for only the DOFs where the nonlinear elements are

attached.

2.2. Harmonic Balance Method

In order to calculate the steady- state response of nonlinear differential equations, time
and frequency domain methods can be used. However, computational time of the
solutions obtained using frequency domain methods is less than the time integration
methods. Therefore, it is more advantageous to use frequency domain methods.
Harmonic balance is a method which is mostly used in nonlinear vibration analysis in
frequency domain [16], [19], [23], [25]. In this study, the response is assumed to be
harmonic so that harmonic balance methods (HBM) is used.

Considering the nonlinear equation of motion defined by Eq. (2.1), displacement

response, nonlinear internal force vector and external forcing are stated by using

13



Fourier series and neglecting bias term in Eq. (2.2), Eq. (2.3) and Eq. (2.4),

respectively where 61is ot .

X, (t) = Zh:[usr sin(r@) +u cos(re)] (2.2)

r=1

fy ()= Z[fN sin(ro) + < cos(re)] (2.3)

f(t) = z[f sin(rg) + cos(re)] (2.4)

r=1

Fourier coefficients of nonlinear internal force vector, fy and f\ , can be calculated as

follows,
Ny
fy (1) = D[ 5 sin(ro) + £ cos(ro) |, (2.5)
r=1
1 2
== j f, sin(ro)do, (2.6)
4 0
2
cr 1
fy =— j f\ cos(r@)dé. (2.7)
4 0

2.3. Nonlinearity Types

In this thesis, two different nonlinearities which are cubic stiffness and 1D-Dry friction
are investigated to validate the computational performance of the proposed method.
In this part, harmonic coefficients of cubic stiffness and 1D-Dry friction nonlinearity

are derived by using single and two harmonics.
2.3.1. Cubic Stiffness

Harmonic balance is a method which is mostly used in nonlinear vibration analysis in
frequency domain. In this study, the response is assumed to be harmonic so that

harmonic balance methods (HBM) is used.

14



If harmonic balance method is explained by an example in which cubic stiffness is

considered as nonlinear element. For cubic stiffness, the nonlinear force is written as

F, =kX (2.8)
where, k. is the coefficient of cubic stiffness nonlinearity. For single harmonic balance

method, assuming the response as

u=U_sin(@)+U_cos(d) (2.9
where, U_and U_are relative displacement coefficients of harmonics and 6 = wt .

Using single HBM, nonlinear forcing terms are calculated as follows

F, =F,sin(@)+F,, cos(d) (2.10)

FNS:lj.kC(USsin(6)+UCcos(<9))3sin(0)d49=%kC(U;%LUfUS) (2.11)
T%

2z
F.= 1 I k. (U, sin(8)+U, cos(8))* cos(0)de = % kUZ+UU,) (2.12)
%
Thus, the nonlinear internal forcing becomes

F. =%kC(US3 +UU, )sin(0)+%kc(uf +U2U_)cos(0) (2.13)

Cublc stlffness
(hardening)
Force
-
Displacement

Figure 2.1. Force vs Displacement curve for cubic stiffness nonlinearity
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2.3.2. 1D-Dry Friction

Hysteresis loop of 1D friction model with constant normal load is given in Figure 2.2.

The given figure is obtained by assuming single harmonic response.

37 -1 -uN

Figure 2.2. Force vs Displacement curve for 1D-Dry friction nonlinearity

For single harmonic balance method, assuming the displacement as

u = Asin(@) (2.14)

where, A is the displacement amplitude of vibration .

For 1D friction element with constant normal load, the nonlinear force is written as

—uN +k(u+0) for %sesel
F, = 2 [ (2.15)
—uN for elses?”

21N — kA

where, 6 = , 6 =asin(%). F,,« and N are nonlinear internal forcing,

friction coefficient, constant normal load, respectively. Tangential contact stiffness

and transition angle are represented by k, &,, respectively.
Using single HBM, nonlinear forcing terms are calculated as follows

F, =F,sin(@)+F,, cos(d) (2.16)

16



F. :E( gj (—uN + k(Asin(9)+5))sin(9)d9+T(—yN)sin(@)dej (2.17)
o

T /2

Fi =M(Zﬁl—sin(ZQ)—ﬂ)+g(kA—2,uN) (2.18)
2 T

F zgﬁ(—yN +k(Asin(0)+5))cos(6?)d9+T(—yN)cos(@)dej (2.19)

Nc
T /2

E =

Nc

_KACos (6) , 4N | ZkA_;” N (1+sin@)) (2.20)
T

T T

2.4. Receptance Method

For systems with many degrees of freedom, the number of nonlinear equations
obtained can be very large. Therefore, several numerical difficulties may merge in the
solution process of large systems. In addition to that fact, computational time can
increase enormously. In order to decrease the nonlinear equations to be solved,

receptance method is used. [7], [13], [14]

Receptance method is employed if the number of DOFs where nonlinearities
connected is less than the total DOFs of system. If these DOFs are grouped and the
EOM in Eq. (2.1) is combined with harmonic balance method, Eq. (2.1) can be

. X| 0 f,
|:K—(ra))2|\/| +'mc]{x’}+{fr(x)}:{ff}’ (2.21)

where, sub-indices |1 and n denote linear and nonlinear DOFs, respectively. Here,

rewritten

r=q,,d,,0,..,N, 1is the harmonic index, N, is the number of harmonics used and i
represents the unit imaginary number. a(rw) is the receptance of the linear part of the

structure is expressed in Eq. (2.22).

a(ro) =[K-(ro)’M+iroC]|’ (2.22)
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Multiplying both sides of Eq. (2.21) by a(r®) and partitioning the equations to sub-

matrices and sub-vectors, following Eq. (2.23) is obtained as follows,

X a,(re) | a,(ro) 0 a,(re) | a,(ro) f
{%;}*{a;;zr'z;)'f'a;;(rz;st;'&;S}{a;;zfo;ﬁa;;(rzainf}=0’ (223

where, r=1,2,3,...,N,. By using Eq. (2.23), nonlinear equation set can be clearly re-

written in terms of a residual vector as
X, +o,, (ro)fy (x,) —a, (ro)f (x,) —a,, (ro)f; (x,) =0. (2.24)

Solving only Eq. (2.24), results in a considerable decrease in the number of nonlinear
equations. In order to obtain total solution, firstly nonlinear algebraic equation set Eq.

(2.25) has to be solved simultaneously for all harmonics (r=12,3,...,N, ) to obtain

response of nonlinear dofs which is x, .

X, o, @fx) | [ e ofx)+re, (0f (x) |
X @, (2-0)f(x,) @, (2-o)f(x,) + 0, (2 o)’ (x,)
R(X,,@)=1x

+ ann(s-@)fg(xn) - an.(3~w)f.3(xn)f%(?"w)ff(xn) =0 (2.25)

X' ] La, (N o)) (x) | [e,(N,-o)f" (x)+a, (N, -o)f"(x) |
where r=1,2,3,...,N,

Then nonlinear internal force vector, f) (X,), can be calculated by the known value of
response of nonlinear dofs, x .
In order to solve response of the linear DOFs, x,, can be found by using Eq. (2.26)

and the known value of f (x,).

X =-a, (ro)f} (x,)+a, (ro)f (x,)+a, (ro)f (x,) (r=123..,N,) (2.26)
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2.5. Modal Superposition Method

Another method for the solution of systems with many DOFs is the utilization of
modal superposition method. This method is especially important if the number of
nonlinear elements is large, where receptance method will result also a large number
of nonlinear equations even though this number may be less than the total number of
DOFs of the system.

In modal superposition method, the response is written in terms of the linear system

modes in matrix form, which can be expressed as

X=®dae"", (2.27)
where, ® and a are mode shape matrix and unknown modal coefficient vector,

respectively. Substituting this equation into the equation of motion in Eq. (2.1) and

multiplying both sides by @ ", following equation is obtained.

—'® " M®a+io® CPa+® KPa+®'f (a)='f (2.28)

If ® is mass normalized mode shapes of the linear system, this equation simplified

as,
[’ +ioC, +Qa+®7f (a) =®F, (2.29)
25, 0 0 o’ 0 0
where, 1is the identity matrix, C,=| 0 -. 0 |and Q= 0 . 0 |.
0 0 2o, 0 0 o’

In this nonlinear equation, the unknowns are the modal coefficients given vector a,
which are complex. Nonlinear equation set can be clearly re-written in terms of a

residual vector as

R(a,0)=[-0'1+iaC, +Q|a+®f (a)-®f. (2.30)
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2.6. Solutions of Nonlinear Algebraic Equation

In this section, seven different Newton-like solvers in the literature are given. Each
solver has different calculation scheme. Different characteristics of the solvers such
as order of convergence, number of Jacobian calculation are specified in Table 2.1.

Table 2.1. Specific calculation aspects of the solvers

Number of Number of

Number of Vector Matrix
Jacobian Function Inversion Order of

Calculation Calculation Calculation Convergence
Newton 1 1 1 2
Solver-1 1 2 1 3
Solver-2 2 3 2 6
Solver-3 1 3 1 5
Solver-4 2 2 2 5
Solver-5 3 1 2 3
Solver-6 3 1 2 3
Solver-7 2 1 2 3

2.6.1. Newton’s Solver on Receptance Method

The residual vector for receptance method given by Eq. (2.24) is displacement
dependent; therefore, a numerical method is necessary to obtain the solution. Solution
of the nonlinear algebraic given by Eq. (2.24) is obtained by using Newton’s method.

A single iteration for Newton’s method can be expressed as

(Xn )k+1 :(Xn )k _‘]((Xn )k )_1‘ R((Xn )k lw)v (231)
where, k and J ((Xn ). ) =0R ((Xn ). a)) 16(x,), are the iteration number and the

Jacobian matrix, respectively. Iterations are terminated when the residual norm falls

below a predefined error tolerance.
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Global Jacobian matrix, J ((xn) ), calculation is given as follows

k

a (o) 0 0 0
0 n(2-0) 0 0 .
(e))=1+) o T F(k)) (2.32)
0 0 0 a,(N,- )
_ oy (%),

Jr ((Xn )k)

o) (2.33)

where J" ((xrI )k) and | are Jacobian of nonlinear internal force vector and identity

matrix, respectively. Here, calculation of Jacobian of nonlinear internal force vector
causes to increase computational time significantly, therefore, the main aim of the

proposed method is to decrease computational time.

2.6.2. Newton’s Solver on Modal Super Position Method

The residual vector for modal super position method given by Eq. (2.29) is modal
coefficient dependent; therefore, a numerical method is applied to obtain the solution.

A single iteration for Newton’s method can be expressed as

1

(2),=(@),=3(a) -R(a.o). (2.34)
where, k and J(a,)=0R(a,,®)/da, are the iteration number and the Jacobian matrix,

respectively. Iterations are terminated when the residual norm falls below a predefined

error tolerance.

Global Jacobian matrix, J (ak) , calculation is given as follows

oR(a,, .
J(ak):M:[—a)zlJrla)Cr s+ o) X (2.35)
oa, oX, Oa,
where, J" (xk)zM and Zi:(b, substituting the into Eq. (2.35), following
k ak

equation is obtained.

I(a,)

_ oR(a,, o)

7. =[-0’1+iaC +QI+®@7I" (x,)® (2.36)
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where J"(x,) and | are Jacobian of nonlinear internal force vector and identity

matrix, respectively. The purpose of the proposed method is to decrease computational
cost of specified Jacobian. In the following sections, the proposed method is explained

in detail.

2.6.3. Solver-1

Darvish and Barati [27] proposed a third order newton type method to solve systems
of nonlinear equations. Comparing the Newton’s method, additional 1 Jacobian and 2
vector function evaluations are necessary, however it has 3 order convergence rate.

The algorithm is given as follows,

d.. =9, —J(@,)*(R@)+R(g;.,)). (2.37)
where, g, =09, -J(q,)"R(q,). J(g,) and R(q,) are Jacobian matrix and residual

vector of k™ iteration, respectively.

2.6.4. Solver-2

Cordero et. al. [28] derived a new technic to design predictor—corrector methods for
systems of nonlinear equations. Additional 1 Jacobian matrices and 2 vector function
evaluations are done for each step when comparing the Newton’s method. The main
advantage is to obtain high accurate solutions since it is 6th order convergence

algorithm. Algorithm-2 is expressed as follows,

Y, =0, -23)"R@) 2.38)
z, =q, +[I@,)-23(y,)] (3R(@,)-4R(y,)) (2.39)
Qi = Z +[‘J(qk) -2 (yk)]il R(Zk) (2-40)

22



2.6.5. Solver-3

Sharma et. al. [29] developed Newton-like method for systems of nonlinear equations.
Additional 2 vector function evaluations are done for each step when comparing the
Newton’s method. The main advantage is to obtain high accurate solutions since it is

5th order convergence algorithm. Algorithm-3 is given as follows,

Y. =0, _J(qk)_lR(qk) (2-41)
Z =Y, _SJ(qk)_lR(yk) (2-42)
a4 =Y, —%J(qk)lR(yk)—éR(zk)J(qk)l (2.43)

2.6.6. Solver-4

Sharma et. al. [30] suggested an efficient fifth order method for solving systems of
nonlinear equations. 2 Jacobian matrices and 3 vector function evaluations are
necessary for each step to obtain solution. The main advantage of this algorithm over
the Newton’s method is to obtain high accurate solutions since it is Sth order

convergence algorithm. The proposed method is expressed as follows,

Yi =0, _%J(qk)_lR(qk) (244)
z, =9, —-J(y,)"R@,) (2.45)
Qv =4 _I:Z‘J(yk)il_‘](qk)&]R(zk) (246)

2.6.7. Solver-5

Liu et. al. [31] suggested a a new Newton-type method with third-order for solving
systems of nonlinear equations. 2 Jacobian matrices, 1 vector function evaluations and
2 inverse of Jacobian matrices are necessary for each step to obtain solution. It is 3rd

order convergence algorithm. The proposed method is formulated as follows,
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Y. =4d,-J@,)"R(,) (2.47)

[ 2 (q.+3y, )]
0. =0, {3J(yk>+33(—4 ﬂ R@.) (2.48)

2.6.8. Solver-6

Noor et. al. [32] suggested a method for solving systems of nonlinear equations. 2
Jacobian matrices and 1 vector function evaluations are necessary for each step to
obtain solution. It is 3rd order convergence algorithm. The proposed method is

formulated as follows,

Y. =d,-J@,)"R(,) (2.49)

Qi =4 _4|:J(yk)+3‘] (qk_—?,zykj} R(a,) (2.50)

2.6.9. Solver-7

Cordero et. al. [33] suggested a variant of Newton’s method to solve functions of
several variables. 2 Jacobian matrices and 1 vector function evaluations are necessary
for each step to obtain solution. It is 3rd order convergence algorithm. The proposed

method is formulated as follows,

Y. =0, -J@,) R(@,) (2.51)
O, =0, —J (qk_zykj R(a,) (2.52)

This solution scheme is named as Midpoint Newton’s method.
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2.7. Arc-length Continuation Method

The response curve of the nonlinear systems may have turn back behavior, which
means there is more than a solution for a specific frequency value. This fact may result
in convergence problem or occurrence of the jJump phenomenon during the solution
process. In order to avoid that kind of problems, arc-length continuation method which

is a path following solution method is used.

In this path following method, a new parameter which is frequency  for the nonlinear
response analysis is added to nonlinear equations set. This provides to obtain stable

Jacobian matrix for turning back points. The radius of a hypothetical sphere r, is

selected to find the next solution point on the desired path.

There is a new unknown parameter « , therefore the unknown vector is updated as

X
q ={ } (2.53)
w

Equation of the sphere centered at the previous solution is expressed as follows,

follows,

(M%) +(Aw, ) =12, (2.54)

k

I AX, | . .
where, AX, =(X, =X, ), Ao, =(@ — @, ). Substituting Aq, ={A }mto the equation
]

k

of sphere, the extra equation needed can be obtained as

h(x,,®,) =Aq, -Aqg, -1 =0. (2.55)

Considering the Eq. (2.55) together with nonlinear equation of motion, new equation

to be solved is obtained as,

R(X,,m) OR(X,o)]

T oh(x,, @) oh(x,,®,) h(x, )| ’
OX 0w
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oh(x,w) oh(x.,a@)
OX ow

where, [ } = [ZAq ) ]T . Itis Newton’s iterative solution process.

For most cases, Arc-length parameter r’ is kept constant however it may increase the

solution time when it is selected too small. Also, it may cause the convergence
problem at sharp turning points. Therefore, the best way to avoid that kind of problems
is to use adaptive arc-length parameter algorithm [34]. This algorithm provides to

update r, parameter for each iteration by comparing the total iteration number and

optimum iteration number.
The adaptive arc-length is formulated as

iter
nk—l

(r),=(r). (n—”] , (2.57)

where, n is the total number of iteration at solution of k -1 and n( is the optimum

iteration number.

2.8. Predictors for Path Following Methods
2.8.1. Tangent Predictor

A good initial guess is necessary to converge to the solution of nonlinear system by
using Newton’s method. Better initial guess helps to reduce iteration number therefore

it is significantly important considering computational time.

Tangent predictor is a first order predictor to find initial guess. In order to use tangent
predictor, expanding the solution at the next frequency step by using first order Tailor

series is necessary. The initial guess can be calculated as

a. +5rs)=qk(w>+[—J(qk,rs)1-%}% (2.58)

where q, is the initial guess for the k +1 solution.
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2.9. Proposed Predictors
2.9.1. Linear Predictor

In this part, linear curve fit predictor for arc-length continuation method is formulated.
All the unknown values are function of r, . In order to find the coefficients of liner

equation, Eq. (2.59) and (2.60) are solved together by knowing the solutions q, , and

g, since there are two unknown coefficient vectors, aand b.

s =a§(rs). +b (2.59)
0, =a> (1), +b (260

After finding coefficient vectors which are a and b, initial guess for k +1literation is

calculated as

k+1

(CPom =aIZ:11(rs,). +b. 2.61)

2.9.2. Second Order Polynomial Predictor

Second order polynomial curve fit for arc-length continuation method is formulated.
All the unknown values are function of r, . In order to find the coefficients of second
order polynomial equation, Eqg. (2.62),(2.63) and (2.64) are solved together by
knowing the solutions q, ,, q,, and g, since there are three unknown coefficient

vectors, a,band c.

d,., :a[k_2 (rs),j +bki(rs)I +C (2.62)
d., =a(ki(rs),J erkzill(rs)I +C (2.63)
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a =a(i(rs>.j +b3 (1), +C (2.64)

After finding coefficient vectors which are a,band c, initial guess for K +1iteration

is calculated as

(@) =a(i(n).j +bi(fs). +C. (2.65)

2.9.3. Third Order Polynomial Predictor

Third order polynomial curve fit for arc-length continuation method is formulated. All
the unknown values are function of r, . In order to find the coefficients of second order
polynomial equation, Eq. (2.66), (2.67), (2.68) and (2.69) are solved together by
knowing the solutions q, ,, d,,, 0., and q, since there are three unknown

coefficient vectors, a,b,c and d.

3 2

g,,=4a i(n)' +b TZ;(rS)I +C§(rs)l +d (2.66)
g,,=a klzlzl(rs)I 3 +b kIZf:(rs), 2 +C§(rs)| +d (2.67)
g,,=a TZ;(rs), 3 +b TZ;(rS)I 2 +CT211:(rs)I +d (2.68)
q, = a(lzkl: (r), I +b£|2k1: (r), jz +clzk1:(rs)I +d (2.69)

After finding coefficient vectors which are a,b, ¢ and d initial guess for k+1

iteration is calculated as

(@)e =a[§<n).} +b@<n).j +cg(rs>. +d (2.70)
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2.9.4. Logarithmic Predictor

Logarithmic curve fit predictor for arc-length continuation method is formulated. All
the unknown values are function of r,. In order to find the coefficients of liner
equation, Eq. (2.71 )and (2.72) are solved together by knowing the solutions q, , and

g, since there are two unknown coefficient vectors, aand b.

a., =aln(§(rs).j+b @70
d, =aln(2k‘,(rs).j+b (2.72)

After finding coefficient vectors which are a and b, initial guess for k +1iteration is

calculated as

(@) = aln[ki(rs).}b- (2.73)

2.9.5. Quadratic Spline Predictor

The most common interpolants are polynomials since it is easy to evaluate,
differentiate and integrate. At least 3 data points have to be necessary to use quadratic

interpolation method. Two second order polynomial functions are placed between 3

data points. First polynomial function is fitted between point 1 which is g,_, and point
2 which is g,_, and second polynomial function is fitted between point 2 which is q, ,
and point 3 which is g, . First polynomial and second polynomial values at q, , are
equal to each other and also first derivative of them at point q, , is equal to each other

and given in (2.78). Six unknown coeffieints are a, ,,b, ,,c,,,a,,b, and ¢, however

k=17 k-1 “k-1?

total number of equalities are five. Therefore, for the first interval which is between

point 1 and point 2, first polynomial is assumed linear, which means that a, , =0. This
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assumption provides to reduce the number of unknowns. The other unknowns can be

found by solving Eq. (2.74)-(2.78).

k-2 2 k-2

.. =ak_1[ (c).j +b, > (1), +¢,,
1=1 1=1
k-1 2 k-1

0. =3, (rs)l] +bk—1Z(rs)I +C,
1=1 1=1
k-1 2 k-1

Q... =4, (rs)lj +bk (rs)l +C,
1=1 1=1
k 2 K
. =&, [z(rs)lj +bkz(rs)l +Cy
1=1 1=1
k-1 k-1
2ak 1( (rs)lj +bk—l :Za‘k (Z(rs)lj_'_bk
1=1 1=1
_Point-2 Point-3
(Z (1;)1,q,(_1) (g(r;)nqkj
Point-1 /
((zo)]q]
q(’}):akq(Z(n )1) +b,"plz(r; )( +Cy q(’;) =a, (Z(’;)z]- +bkz(rs)[ +c,

1st Polynomial 2nd Polynomial

Figure 2.3. Quadratic spline explanation
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2.10. Classical Jacobian Matrix Calculation

It is not always available to calculate the analytical Jacobian and also, it is complicated
to calculate for highly nonlinear equations analytically, therefore, numerical
approximations to the Jacobian can be used instead. Forward difference method is the

one of the methods to calculate Jacobian numerically [35] . It has first order error O(h)
, but it requires p’ calculation for an px p system. Forward difference formula is

given as follows

3;((%,), . @) =— 7, (2.79)

where, {e j} is the unit vector in the j" direction and h; is a scaled step size.

31






CHAPTER 3

A NEW JACOBIAN CALCULATION METHOD FOR PERIODIC FORCED
RESPONSE ANALYSIS OF NONLINEAR STRUCTURES-JACOBIAN ELEMENT
METHOD

3.1. Jacobian Element Method for Single Harmonic

Nonlinear internal forcing vector between two DOFs (n = 2) for single harmonic

balance method can be expressed as

fo Ut —uluf —uf) = (Y., Y) = fe (s, Y.)sin(@) + £ (v, y.)cos(8)  (3.1)

fos (Ysr Yo) f, f,
Ry | [ B | R (3.2)
(VLY fy f,

-f. (v ve)) ) -1,

where, y, =u;* —u!

and y =u™-u®

i are harmonic coefficient differences of i™ and

j" dofs. By using Eq. (3.2), 4x4 elemental Jacobian matrix for a single nonlinear
element can be constructed for single harmonic balance method where unknown

. . . T .
harmonic coefficient vector X! is arranged {ufl,ujl,ui“,u?l} . All first order partial

derivatives of the nonlinear forcing vector in terms of harmonic coefficient differences

are given in Eq. (3.3)-(3.18)

o _ O (Vor¥e) O _ AMu(Yor¥e) gy _ g (3.3)
aus oy, ou;*t o, '
A _OYo¥e) ¥ (oY) gy g (3.4)

ou’t oy, out o, '
O _ (Vo ¥e) Fe _ O (¥ei¥e) gy (3.5)

ou o, oy %Y.
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o _Ou(Vo¥e) e _Ou¥o¥e) (v, (3.6)

au o, o %Y.

of, __ of(¥.Y,) oy, __afns(ys’yc).(l):—a, since f,=f, (3.7)

anl 8)/5 8ui51 ays
6f2 :_afns(ys’ yc) . ays __afns(ys’ yc) (—1) =aq, since fz = fl (38)

ous’ %, ouy’ %8

afz __8fns(ys,yc). 8yc __afns(ys’yc).(l)z—b, since f2_ fl (39)

aufl ayc auiCl ayc

of, (Ve ¥) oy, _ (Y. Ye) :
—_ns\Ysr e/ | C —__mrisiiel (] :b,Slnce f,="f 3.10
oust . oust . - © e
8f3 :afnc(ys'yc). ays :afnc(ywyc)‘(l)zc (3.11)
al"IiSl ays 6ui51 ays
o _ (¥ O _ hulode) (gy_ (3.12)
ou’t oy, oust oy, '
o _ Me(¥or¥e) e _ dMel¥er¥e) gy _g4 (3.13)
au o, oy %,
6f3 zafnc(ysayc). ayc zafnc(ys'yc)‘(_l)z_d (314)

au o,  ou %Y.

of, _ (¥ Y) o _ o (V.. i
— _ e\ Ys1 V) | s —_Znels Jed (1) =_¢, since f =f 3.15
6Ui51 GYS al"Iisj- ays () ' 3 ( )

o, _ (VoY) o, __afm(ys,yc)'(_l)zc’ since f, = f, (3.16)

ous’ %, ouyt %

of, _ o (YY) o __afnc(ys,yc),(1):_d,since f,=f, (3.17)

anCI 3yc auiCl ayc
6f4 __afnc(yslyc) . ay(: __afnc(ys’yc) (_l):d’ Slnce f4 = f3 (3_18)

oust A ouf’ e
For single harmonic balance method, calculated 4x4 elemental Jacobian matrix,J”,

for a nonlinear element between 2 dofs is given in Eq. (3.19).
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of, of, of, of, al  —al bl —p

Ji=| : ' o o (3.19)
of, o, ¢l ¢! d' g’

out  out out outt ¢l ¢l g’ g

For multi-harmonic balance method, elemental Jacobian matrix size is equal to
4mx4m where m is the number of harmonics used in the harmonic motion response.
One can realize that it is not efficient way to calculate all partial derivatives of the
nonlinear forcing vector because the calculation of the required 4 partial derivatives is
sufficient to obtain elemental Jacobian matrix for single harmonic balance method.
Therefore, to reduce the size of matrix J”, T' matrix is defined in Eq.(3.20), which
is named as reduced elemental Jacobian matrix.

g |2 b
T _[c d} (3.20)

So far, Jacobian element method is explained for single harmonic balance method and

1D nonlinear element model.

3.2. Assembly Rule for Elemental Jacobian Matrices to Force Jacobian Matrix

For some cases where a nonlinear forcing term can be coupled other dofs, for example
friction contact model with normal load variation. In order to apply Jacobian element
method for general cases where MDOF system and mutli harmonic balance method is

used, firstly, unknown harmonic coefficients vector x| is arranged according to

harmonic numbers and dofs with following form in Eq. (3.21).
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T
_ sl sl cl cl sr sr cr cr
u={ustus U g g |
T
sl sl ,,cl cl sr sr cr cr
V= (v Ve W e
T
_ sl sl cl cl Sr Sr cr cr
w_{wly WO W LW WETLLWE W ...Wnn} (3.21)
u
X, =49V
w

Secondly, size of the reduced elemental Jacobian matrix (sxs) should be calculated
as follows,

s=2N,n,, (3.22)
where, n, is the number of degree of freedom which effects the nonlinear element. For
example, n, is equal to 3, if a nonlinear element is coupled with three different
directions such as u,v,w.
Elemental Jacobian matrices should be assembled into the appropriate locations of the

force Jacobian matrix J™ . Assembly rule for elemental Jacobian matrices into force

Jacobian matrix is given as follows

fn _ i
Wi = 2 Tl o (3.23)

where, i=12,..,n, s,=01..,s-1, s, ,=01..s-1

‘]iTsmw-n,Hsm,-n = _Tsi,:;ﬁl,sm, 410 (324)
where, i=j, s,=01L1.,5-1, s, ,=01..5-1 n isthe total number of node with

row

nonlinear element connection.

3.3. Application of Assembly Rule

In order to clarify the assembly rule for elemental Jacobian matrices to force Jacobian
matrix, 3 DOFs lumped model with four nonlinear elements in Figure 3.1 is

investigated by using single harmonic balance method. For this model, N, =1, n, =1
,$=2 and nn=3. To apply assembly rule correctly, also unknown harmonic

. T
coefficient vector x; has to be arranged as {u;*,us',us',uf*,ug',us'} .
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—q e=3 —> Uz

Figure 3.1. 3-DOF lumped model

In the first step, all reduced Jacobian element matrices have to be calculated and they
are expressed in Eq. (3.25) and (3.26). 2™ and 3™ DOF is not connected to ground
with a nonlinear element, therefore, T>? = T>* =0. In order to obtain the force Jacobian
matrix for 3-DOF lumped model, only four reduced elemental Jacobian matrix

calculation is enough and this fact can clearly be seen from Eq. (3.25) and (3.26),

al,Z bl,Z al,S b1,3 a2,3 b2,3
T1,2 — TZ,l — |:C1’2 dl‘21| , Tl,3 — T3,l — |:Clv3 d1’3i|’ T2,3 — T3,2 — |:sz3 d2’3i| (3'25)

11 bl,l
11 2,2 33
T :L“ &J, T??=0, T*=0 (3.26)

By using Eq. (3.23), some elements of the force Jacobian matrix are calculated as
follows,
Jhi=a+a?+a®,  Jf,=a+a?+a*, I =a+a*’+a*’,
I =b"+b*?+b¥, I =b* +b*?+b*, I =b* +b>2 +b*°,
Jh=ct+ct? e, I =ct 4?4+, I =cM+c> 0%,

I =d¥ed4d®, 0N =ded??d?, 30 =d%d® 4 d,

(3.27)

By using Eq. (3.24), remaining elements of the force Jacobian matrix are calculated

as follows,
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fn _ AL2 fn _ A13 fn _ n21
‘]1,2 =-a, ‘]1,3 =-av, ‘]2,1 =-av,

fn _ 1,2 fn __ 1,3 fn __ 21
Jy=-b"", Jjs=-b"", J;, =-b",

‘]Ir,]z =—c*, ‘]I,na =-c", ‘]Ef,nl =™,
fn 1,2 fn _ 13 fn _ 21

J‘:f’ :_d23, J‘:’B __dsl , JSfY4 __dsz, (3'28)
n s n __ , n o __ ,

Jyz=-a", Jg; =-a, Jg, =-a",

szns — _b2,3’ \];n4 — _b3,1, J:In6 — _b3,2,

\]ng — _C2,3, \]Gfl:ll — _C3,1, Jefl:lz — _C3,2,

I =-d*, 0 =-d*, I =-d*
The element in T" matrices are replaced with the elements in T" since they are equal

and T*? =T°° =0. After all the necessary replacement is made in Eq. (3.27) and Eq.
(3.28), the force Jacobian matrix for 3-DOF lumped model with four nonlinear

elements is obtained by performing the assembly rule and given in Eq. (3.29).

+at? 4 atd _at? _at? +b2 4 pte _pt? _p*3
_at? a? + a2 P _pt? b2 4+ p22 _p23
e _a%? _a%® at® 4 g2® _pt3 _p?? b3 4 p23 (3 29)
- +ct2 4 ctl —ct? i3 +d¥ 4+ gt —g? g .
—ct? o2 4 ¢2® 23 —d*? g2 4+ 23 23
o3 _c?3 o 423 AT 23 dte 4+ d23

After finding J™, global Jacobian matrix J is calculated by using Eq. (2.32).

3.4. Summary of the Proposed Method (JEM)

In order to clarify Jacobian Element Method (JEM), calculation methodology is given
in Figure 3.2. In the first step, all reduced elemental Jacobian matrices have to be
calculated for each nonlinear element. In the second step, assembly rule to obtain force
Jacobian matrix has to be used. In the final step, global Jacobian matrix is calculated

by using equation given in Figure 3.2.
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First Step Calculation of Reduced Elemental Jacobain Matrices, T? (Xi )

Second Step Applying Assembly Rule

\/
Force Jacobian Matrix, J”" (xi )

nn

Third Step J(xf‘l):I—Hx (r(o)Jf”(fo)

v
Global Jacobian Matrix, J (X: )

Figure 3.2. Summary of the proposed method

3.5. Theoretical Comparison of Computation Effort of Classical Jacobian and
Jacobian Element Method

If computational effort is examined for 3-DOF lumped model, the main advantage of
Jacobian element method according to classical Jacobian method is that while 36
computations are made by classical Jacobian method, 16 calculations are made by
Jacobian element method.

For multi-harmonic balance method, in order to obtain Global Jacobian matrix by

using the classical Jacobian method, (2n,N,n)* calculation has to be done however,
(2N,n,)?n, calculation is enough when using the Jacobian element method. n, is the

total number of nonlinear element connected to different nodes. Percentage of the
computational reduction ratio for multi-harmonic balance method between two

methods can be determined by using Eq. (3.30).

RR:loo-(l—Mleoo-(l—&J (3.30)

(2n,N, n)? n’
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One can understand that there is no effect of harmonic number used in analysis over
the computational reduction ratio. It can clearly be seen from Eq. (3.30). The increase
in the number of harmonic used in analysis increases the total number of nonlinear
differential equations. Although, the computational reduction rate does not change
with the harmonic number, Jacobian element method provides a significant reduction

in computational time.
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CHAPTER 4

CASE STUDIES ON JACOBIAN ELEMENT METHOD

4.1. Three Different Lumped Models

Three different lumped models are created to examine the effect of the number of
harmonics and the number of nonlinear elements used in the models on the
computational time. Using the proposed method and classical Jacobian method, the
obtained solutions are compared in terms of the computational time and the
computational reduction ratio while the number of iterations made in solution process
for each model are kept close to each other. The calculations are done on a computer
having a processor Intel Core i7-3630QM CPU @ 2.40 GHz with 16,00 GB of RAM.

In order to have equally weighted nonlinearity between DOFs, cubic stiffness is used
for nonlinear element in the system. The response of the 4-DOF systems are obtained
by using single and multi-harmonic balance method. The response of the 4-DOF
systems are studied by keeping the excitation force amplitude constant at 40N. It is

assumed that the system has proportional damping with a damping ratio 0.1%.
Three lumped model systems with the following properties are given as

m,,,=1kg, K,,,s=2500N/m, 7=0.01, k =1000N/m, F=40N.

Investigated Model-1, Model-2 and Model-3 are given in Figure 4.1, Figure 4.2 and
Figure 4.3, respectively. In order to simulate worst case scenario in terms of
computational time where each dof is connected to other dofs and ground with a
nonlinear element, 4-DOF lumped model (Model-1) with ten cubic stiffness elements
is used, which is given in Figure 4.1. In Model-2 and Model-3, five and two cubic

stiffness elements are used respectively.

41



e=5

Figure 4.1. 4- DOF lumped model with ten cubic stiffness elements (Model-1)

) I X3
F

Figure 4.2. 4- DOF lumped model with five cubic stiffness elements (Model-2)

k k
Iy MMM — ks MMM — ks

m; WW) msy

X2 I X3
F

Figure 4.3. 4- DOF lumped model with two cubic stiffness elements (Model-3)
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Figure 4.5. Receptances of Model-1,2,3 for two harmonics solution
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Receptances obtained by using single and two harmonics are shown in Figure 4.4 and
Figure 4.5 respectively. The effect of cubic stiffness nonlinearity can be seen clearly
from Figure 4.4 and Figure 4.5 by observing the resonance regions where the

stiffening effect occurs for all three models.

Table 4.1. Computational time comparison of force Jacobian matrix with and without using

Jacobian element method (JEM) for single harmonic solution of the lumped models

J™ comp. J™actual / Total

Nonlin. Nonlin. time (s) expected solution

element equation with/ without reduction ratio reduction

# # JEM (%) ratio (%)
Model-1 10 7.92/12.36 35.92 / 37.50 23.94
Model-2 5 8 3.38/10.35 67.34 / 68.75 42.84
Model-3 2 1.45 / 8.16 82.23 / 84.38 56.58

Table 4.2. Computational time comparison of force Jacobian matrix with and without using

Jacobian element method (JEM) for two harmonics solution of the lumped models

J™ comp. J™actual / Total

Nonlin. Nonlin. time (s) expected solution

element equation with/ without reduction ratio reduction

# # JEM (%) ratio (%)
Model-1 10 26.92 / 42.35 36.43 / 37.50 27.56
Model-2 5 16 10.75 / 32.76 67.19 / 68.75 49.76
Model-3 2 3.96 / 23.43 83.10 / 84.38 61.46

Table 4.1 and Table 4.2 show the reduction ratio in computational time required to
solve the lumped models. It can be concluded that the computational time of force
Jacobian matrix decreases by using Jacobian Element Method compared to classical

Jacobian Method. Expected reduction ratio is calculated from Eqg. (3.30) and actual
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reduction ratio is taken from the solution time of MATLAB process. It is verified that
there is a good agreement between actual and expected reduction ratios. Moreover, it
can be concluded that calculation time of J™ is independent of the number of
harmonics by comparing Table 4.1 and Table 4.2. Total solution reduction ratio is the
ratio of total time required to solve the nonlinear system equations by using JEM to
time by using classical Jacobian. The other fact is that although the number of
nonlinear equations are same, decreasing the number of nonlinear elements in a higher

total solution reduction ratio.

4.2. Interpretation of the Worst Case Scenario for Lumped Parameter Model

For the worst case scenario, maximum possible number of nonlinear elements and

relation between number of nonlinear DOFs are given as follows,

n®+n

4.1)
There is a nonlinear element between each dof and each dof is attached to the ground

n,=C(n,2)+n—

with a nonlinear element.
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Figure 4.6. Percentage reduction ratio in computational time of Jacobian calculation

for the worst case scenario for lumped parameter model
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As you can see in Figure 4.6, If Jacobian element method is used for worst case
scenario, minimum twenty five percent reduction is obtained and max reduction ratio

converges to fifty percent.

4.3. Realistic Finite Element Model

Aerodynamic forces are major excitation sources in turbomachinery and bladed disk
systems The airflow passing through these systems results in flow induced vibrations
and due to its nature this type of excitation causes blades to vibrate at their cantilever
beam modes. Therefore, the finite element model with two shrouded blade sectors
analyzed is given at Figure 4.7, in which A and A’ are the points, where harmonic
excitation forces applied in +y and —y direction, respectively. B and B’ are the contact
surfaces, where nonlinear elements are placed. C and C’ are the surfaces, where fixed
boundary condition applied. Natural frequencies and mode shapes of the system are
obtained by finite element software ABAQUS. By using modal information, a the
receptance of the linear part of the system is calculated by using first six natural
frequencies and mode shapes. It is assumed that the system has proportional damping

with a damping ratio 0.1%.
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Shroud-2

u, friction coefficient

Positive Slip

N

>

Negative Slip

Figure 4.7. Finite element model for the blade and Coulomb macroslip model
between Shroud-1 and Shroud-2

Between the nodes located on the contact surface of Shroud 1 and Shroud 2, different
number of nonlinear friction elements are connected to each other by node to node in
order to investigate the effect of it on computational time and corresponding results
are tabulated in Table 4.3.

The force response of the system where four nonlinear elements are placed between
shrouds are analyzed and receptance of point A to B is given in Figure 4.8. For the
specified system, the single harmonic response of finite element model is studied by
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changing the sliding friction force, uN, between 40 and 600 N and applying the

constant amplitude excitation force at 400N.

3} Stuck

Receptance AB yB/FA
a
nN

160 165 170 175
Frequency (Hz)

Figure 4.8. Receptance of the system with four nonlinear friction elements for
different sliding forces

When the results are inspected from Figure 4.8, the resonance frequency of the system
increases as the sliding friction force increases. Moreover, resonance amplitude first
decreases down to a certain amplitude then increases with the increasing sliding
friction force. In other words, there exists an optimum value which minimizes the
resonance amplitude which is 200 N sliding friction force for this specific case. As a
result, the resonance amplitude of the bladed disks can be minimized by adjusting the
normal load acting on the friction damper to the optimum value. Furthermore, the
system becomes completely stuck at higher sliding forces. In completely stuck case,
there is no relative displacement between the shrouds, hence the effect of frictional

damping is lost which results in high resonance amplitudes.
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Table 4.3. Computational time comparison of force Jacobian matrix with and without using

Jacobian element method (JEM) for single harmonic solution of the bladed disk model

J™ comp. time J™actual / Total
Nonlin. Nonlin. Nonlin. (s) expected solution
equation  element DOF with/ without reduction ratio reduction
# # # JEM (%) ratio (%)
8 2 4.96 / 31.68 84.34 / 87.5 56.59
16 4 8 9.14 / 126.72 92.78 / 93.75 70.58
32 8 16 16.61/506.88 96.72 / 96.88 87.04
64 16 32 34.63/2027.52 98.29 / 98.44 93.22

The developed method is applied on large FEM of a bladed disk. In the FEM, friction
nonlinearity is used between the shroud contact surfaces. The effect of different
numbers of nonlinear elements and nonlinear equation numbers on computational time
are observed. Theoretical and actual computational reduction ratios are also presented
and the results are in good agreement. It is concluded that there is a significant
reduction in the computational time with increasing number of nonlinear elements

more than 90%.

4.4. Interpretation of the Worst Case Scenario for Realistic Finite Element Model

with 1D-Dry Friction Nonlinearity

Maximum possible number of nonlinear elements is equal to number of nonlinear

DOFs on one contact surface of shroud. This relation is given as follows,

For node tonode connection, n, =n/ 2. (4.2)

As you can see in Figure 4.9, if Jacobian element method is used for contact
nonlinearity, minimum seventy five percent reduction in Jacobian calculation is

obtained and max reduction ratio converges to one hundred percent.
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Figure 4.9. Percentage reduction ratio in computational time of Jacobian calculation

for contact nonlinearity case
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CHAPTER 5

CASE STUDIES ON DIFFERENT NONLINEAR EQUATION SOLVERS AND
PREDICTORS

5.1. Lumped Model for Different Nonlinear Solvers and Predictors

Lumped model with cubic stiffness nonlinearity is examined in order to compare the

performance of the different nonlinear equation solvers and predictors.

The effect of arc-length parameter and error criterion on the computational time and

iteration numbers are investigated for different parameters.

The response of the 4-DOF systems are obtained by using single harmonic balance

method. The response of the 4-DOF systems are studied by keeping the excitation

force amplitude constant at 1500N. It is assumed that the system has proportional

damping with a damping ratio 0.1%.
Three lumped model systems (4-DOF) with the following properties are given as

M., =1kg, K.,a,5 =25000N/m, 7=001 k =1500N/m, F =1500N.

Investigated lumped model with five cubic stiffness element is given in Figure 5.1 and

the solution obtained is given in .

X2 I X3
Fo

Figure 5.1. 4- DOF lumped model with five cubic stiffness elements
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Figure 5.2. Receptance of the lumped model with five cubic stiffness elements

Firstly, performance comparison of different algebraic nonlinear equation solvers with

different constant arc-length parameters are studied in Table 5.1 and Table 5.2.

Secondly, solver performance are compared by using bypass method. It provides to
avoid unnecessary calculations for solvers other than Newton’s method. Bypass
method is applicable to solvers which use Newton’s method at the first step. If the
solution of the first step calculation satisfies the error criterion, additional vector and
Jacobian calculations for other steps are not made. Performance of the solvers with
bypass method is given in Table 5.3 and Table 5.4.Thirdly, effect of adaptive arc-
length algorithm, which is given in Eq. (2.47), is studied for different optimum

iteration numbers, n} =11.52. and s =0.32,s, =0.04. The corresponding results

opt 7 “min
are given in Table 5.5 and Table 5.6. Finally, effect of adaptive arc-length algorithm
and bypass are investigated together. Comparison results are given in Table 5.7 and
Table 5.8.

Cubic stiffness is a continuous nonlinearity which means it is effective all frequency
range of analysis. In addition, it leads to sharp turning points in the solutions. When
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Figure 5.2 is examined, it is understood that the obtained solution has sharp turning

points. This is specifically chosen to further challenge the solvers.

The cells marked in red in the flag column of the tables indicate that the solution could

not be obtained and there is a convergence problem. The cells marked in red in the

time column of the tables indicate the longest computational time. If it is marked in

green, it is the fastest computational time.

Table 5.1. Performance comparison of different algebraic nonlinear equation solvers with different

constant arc-length parameters for cubic stiffness nonlinearity (Error Criterion=1e-6, 1e-8)

53

Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.|[Flag|Bypass
Newton | 950 1.53 0.32 | 1.00E-06 0 Newton | 1192 1.81 0.32 | 1.00E-08 0
Solver-1| 124 0.28 | 0.32| 1.00E-06 0 Solver-1| 96 0.18 | 0.32 | 1.00E-08 0
Solver-2| 124 0.47 0.32 | 1.00E-06 0 Solver-2| 96 0.29 0.32 | 1.00E-08 0
Solver-3| 124 0.31 0.32 | 1.00E-06 0 Solver-3| 96 0.18 0.32 | 1.00E-08 0
Solver-4| 124 0.46 | 0.32 | 1.00E-06 0 Solver-4| 96 0.29 | 0.32 1.00E-08 0
Solver-5| 1085 [ 3.38 [ 0.32| 1.00E-06 0 Solver-5| 1259 [ 3.79 [ 0.32| 1.00E-08 0
Solver-6| 1083 3.32 0.32 | 1.00E-06 0 Solver-6| 1252 3.72 0.32 | 1.00E-08 0
Solver-7| 811 2.5 0.32 | 1.00E-06 0 Solver-7| 1253 | 3.67 [ 0.32| 1.00E-08 0
Iter. #|Time(s)| s |ErrorCrit. pass Iter. #|Time(s)| s |ErrorCrit. pass
Newton | 2285 3.64 0.16 | 1.00E-06 0 Newton | 2666 4.11 0.16 | 1.00E-08 0
Solver-1| 250 0.47 | 0.16 | 1.00E-06 0 Solver-1| 209 0.39 | 0.16 | 1.00E-08 0
Solver-2| 250 0.78 | 0.16 | 1.00E-06 0 Solver-2| 209 0.65 | 0.16 | 1.00E-08 0
Solver-3| 250 0.49 |[0.16| 1.00E-06 0 Solver-3| 209 0.41 |[0.16| 1.00E-08 0
Solver-4| 250 0.79 0.16 | 1.00E-06 0 Solver-4| 209 0.65 0.16 | 1.00E-08 0
Solver-5| 1325 | 4.05 [ 0.16| 1.00E-06 0 Solver-5| 1688 | 5.01 [ 0.16| 1.00E-08 0
Solver-6| 1327 [ 4.08 [0.16| 1.00E-06 0 Solver-6| 1686 | 5.01 [ 0.16| 1.00E-08 0
Solver-7| 1839 5.64 0.16 | 1.00E-06 0 Solver-7| 1690 5.02 0.16 | 1.00E-08 0
Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit. pass
Newton | 5747 0.08 | 1.00E-06 | O 0 Newton | 6506 0.08 | 1.00E-08 0
Solver-1| 771 1.43 | 0.08 | 1.00E-06 0 Solver-1| 448 0.83 | 0.08 | 1.00E-08 0
Solver-2| 771 2.42 0.08 | 1.00E-06 0 Solver-2| 448 1.4 0.08 | 1.00E-08 0
Solver-3| 771 1.53 [ 0.08 | 1.00E-06 0 Solver-3| 448 0.88 | 0.08 [ 1.00E-08 0
Solver-4| 771 2.43 | 0.08 | 1.00E-06 0 Solver-4| 448 1.39 | 0.08 | 1.00E-08 0
Solver-5| 4025 | 12.52 | 0.08 | 1.00E-06 0 Solver-5| 4837 | 14.87 | 0.08 | 1.00E-08 0
Solver-6| 4026 12.5 0.08 | 1.00E-06 0 Solver-6| 1686 5.01 0.08 | 1.00E-08 0
Solver-7| 4026 | 12.52 [ 0.08 | 1.00E-06 0 Solver-7| 1690 | 5.02 [ 0.08| 1.00E-08 0
Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.|[Flag|Bypass
Newton | 9990 0.04 | 1.00E-06 0 0 Newton | 11884 0.04 | 1.00E-08 0 0
Solver-1| 2047 | 3.78 [ 0.04| 1.00E-06 0 Solver-1| 1471 | 2.71 [ 0.04| 1.00E-08 0
Solver-2| 2047 6.7 0.04 | 1.00E-06 0 Solver-2| 1471 | 4.61 | 0.04| 1.00E-08 0
Solver-3| 2047 4.32 0.04 | 1.00E-06 0 Solver-3| 1471 2.92 0.04 | 1.00E-08 0
Solver-4| 2047 | 6.52 [ 0.04] 1.00E-06 0 Solver-4| 1470 | 4.63 [ 0.04 | 1.00E-08 0
Solver-5| 8861 0.04 | 1.00E-06 | O 0 Solver-5] 9952 | 30.54 [ 0.04| 1.00E-08 | O 0
Solver-6| 8860 27.6 0.04 | 1.00E-06 0 0 Solver-6[10019| 30.92 | 0.04 | 1.00E-08 0 0
Solver-7| 8861 | 27.48 | 0.04 | 1.00E-06 0 0 Solver-7| 10086 0.04 | 1.00E-08 0 0




Table 5.2. Performance comparison of different algebraic nonlinear equation solvers with different

constant arc-length parameters for cubic stiffness nonlinearity (Error Criterion=1e-10, 1e-12)

Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s [ErrorCrit.
Newton | 1402 2.06 0.32| 1.00E-10 0 Newton | 164 0.26 0.32| 1.00E-12
Solver-1| 36 0.07 0.32 | 1.00E-10 0 Solver-1| 22 0.04 0.32| 1.00E-12
Solver-2| 36 0.11 0.32| 1.00E-10 0 Solver-2| 22 0.06 0.32| 1.00E-12
Solver-3| 36 0.07 | 0.32( 1.00E-10 0 Solver-3| 22 0.04 |0.32| 1.00E-12
Solver-4| 36 0.11 0.32| 1.00E-10 0 Solver-4| 22 0.06 0.32| 1.00E-12
Solver-5| 1690 [ 4.88 | 0.32| 1.00E-10 0 Solver-5| 390 1.08 |0.32| 1.00E-12
Solver-6| 1685 4.9 0.32 | 1.00E-10 0 Solver-6| 159 0.45 0.32| 1.00E-12
Solver-7| 1693 4.89 0.32| 1.00E-10 0 Solver-7| 330 0.93 0.32| 1.00E-12

Iter. #{Time(s)| s |ErrorCrit. Bypass Iter. #|Time(s)| s |ErrorCrit.
Newton | 3559 5.37 0.16 | 1.00E-10 0 Newton | 519 0.75 0.16 | 1.00E-12
Solver-1| 133 0.25 0.16 | 1.00E-10 0 Solver-1| 22 0.04 0.16 | 1.00E-12
Solver-2| 133 0.42 | 0.16| 1.00E-10 0 Solver-2| 22 0.06 | 0.16| 1.00E-12
Solver-3| 133 0.28 0.16 | 1.00E-10 0 Solver-3| 22 0.04 0.16 | 1.00E-12
Solver-4| 133 0.42 | 0.16| 1.00E-10 0 Solver-4| 22 0.06 | 0.16| 1.00E-12
Solver-5| 2210 6.47 0.16 | 1.00E-10 0 Solver-5| 493 1.43 0.16 | 1.00E-12
Solver-6| 2225 6.44 0.16 | 1.00E-10 0 Solver-6| 238 0.68 0.16 | 1.00E-12
Solver-7| 2263 | 6.56 | 0.16| 1.00E-10 0 Solver-7| 468 1.29 |[0.16| 1.00E-12

Iter. #[Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s [Error Crit.
Newton | 7902 0.08 [ 1.00E-10 | O 0 Newton | 664 0.99 |0.08| 1.00E-12
Solver-1| 348 0.64 0.08 | 1.00E-10 0 Solver-1| 161 0.29 0.08 | 1.00E-12
Solver-2| 348 1.08 0.08 | 1.00E-10 0 Solver-2| 151 0.46 0.08 | 1.00E-12
Solver-3| 348 0.68 | 0.08| 1.00E-10 0 Solver-3| 110 0.21 | 0.08| 1.00E-12
Solver-4| 348 1.09 0.08 | 1.00E-10 0 Solver-4| 156 0.48 0.08 | 1.00E-12
Solver-5| 5960 [ 17.66 | 0.08| 1.00E-10 0 Solver-5| 727 2.08 | 0.08 | 1.00E-12
Solver-6| 6025 | 17.83 | 0.08 [ 1.00E-10 0 Solver-6| 1075 3.06 0.08 | 1.00E-12
Solver-7| 6057 | 17.85 | 0.08 | 1.00E-10 0 Solver-7| 1112 3.13 0.08 | 1.00E-12

Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s [ErrorCrit.
Newton | 13883 0.04 | 1.00E-10 0 0 Newton | 1439 2.12 0.04 | 1.00E-12
Solver-1| 808 1.49 0.04 | 1.00E-10 0 Solver-1| 602 1.06 0.04 | 1.00E-12
Solver-2| 808 2.53 0.04 | 1.00E-10 0 Solver-2| 596 1.82 0.04 | 1.00E-12
Solver-3| 808 1.6 0.04 | 1.00E-10 0 Solver-3| 322 0.62 0.04 | 1.00E-12
Solver-4| 808 2.52 |0.04| 1.00E-10 0 Solver-4| 599 1.83 |[0.04 | 1.00E-12
Solver-5|12069| 36.29 | 0.04 | 1.00E-10 0 0 Solver-5| 1576 4.52 0.04 | 1.00E-12
Solver-6|12085| 36.31 | 0.04 [ 1.00E-10 0 0 Solver-6| 507 1.49 0.04 | 1.00E-12
Solver-7|12237 0.04 | 1.00E-10 0 0 Solver-7| 1838 5.21 0.04 | 1.00E-12

Flag

Table 5.1 and Table 5.2 shows that convergence problems are experienced with

increasing arc-length parameters. In addition, all solvers is not able to obtain solutions

at low absolute error criteria. In some cases where other solvers had convergence

problems, the solution was obtained by Newton method. It shows that convergence

domain of the solvers other than Newton’s is narrow.
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Table 5.3. Performance comparison of different algebraic nonlinear equation solvers with different
constant arc-length parameters and passing unnecessary calculations for cubic stiffness nonlinearity
(Error Criterion=1e-6, 1e-8)

Iter. #|Time(s)| s |Error Crit.|Flag|Bypass Iter. #|Time(s)| s |Error Crit.|Flag|Bypass
Newton| 950 1.51 |0.32| 1.00E-06 Newton| 1192 [ 1.79 |0.32| 1.00E-08
Solver-1| 286 0.54 |0.32| 1.00E-06 Solver-1| 176 0.31 |0.32| 1.00E-08
Solver-2| 124 0.51 |0.32| 1.00E-06 Solver-2| 96 0.3 |0.32| 1.00E-08
Solver-3| 284 0.59 |0.32| 1.00E-06 Solver-3| 176 0.32 | 0.32| 1.00E-08
Solver-4| 449 1.39 |0.32| 1.00E-06 Solver-4| 323 0.96 |0.32| 1.00E-08
Solver-5| 1086 | 2.54 |[0.32| 1.00E-06 Solver-5| 1257 | 3.11 |0.32| 1.00E-08
Solver-6| 1087 | 2.53 |0.32| 1.00E-06 Solver-6| 1255 | 3.12 |0.32| 1.00E-08
Solver-7| 811 1.91 |0.32( 1.00E-06 Solver-7| 1257 3.1 0.32( 1.00E-08
Iter. #{Time(s)| s [Error Crit. Bypass Iter. #[Time(s)| s [Error Crit.
Newton| 2285 [ 3.63 [0.16| 1.00E-06 Newton| 2666 [ 4.19 |0.16| 1.00E-08
Solver-1| 448 0.81 |0.16| 1.00E-06 Solver-1| 566 1.03 |0.16| 1.00E-08
Solver-2| 250 0.78 |[0.16| 1.00E-06 Solver-2| 209 0.66 |[0.16| 1.00E-08
Solver-3| 443 0.83 |0.16| 1.00E-06 Solver-3| 561 1.03 |0.16| 1.00E-08
Solver-4| 1251 | 3.87 |0.16| 1.00E-06 Solver-4| 601 1.82 |0.16| 1.00E-08
Solver-5| 1327 | 3.06 |0.16| 1.00E-06 Solver-5| 1686 | 3.91 |0.16| 1.00E-08
Solver-6| 1327 | 3.07 |0.16| 1.00E-06 Solver-6| 1687 | 3.89 |0.16| 1.00E-08
Solver-7| 2492 0.16| 1.00E-06 [ O Solver-7| 1690 | 3.89 |0.16| 1.00E-08
Iter. # s | Error Crit. |Flag|Bypass Iter. #[Time(s)| s [Error Crit.

(SN N TN TN S TN TSN TS

RIRr|R[R|Rr|R |~ ]|~

Newton | 5747 0.08] 1.00e-06 | 0 | 1 [Newton| 6506 [110:34 ] 0.08] 1.006-08
Solver-1{ 1087 | 2.04 [0.08] 1.00E-06 1 |solver-1] 1148 | 198 [0.08[ 1.00E-08
Solver-2| 771 | 2.42 |0.08| 1.00E-06 1 |Solver-2| 448 | 1.47 |0.08| 1.00E-08
Solver-3[ 1087 | 2.09 [0.08] 1.00E-06 1 |solver-3] 1102 | 198 [0.08[ 1.00E-08
Solver-4[ 2286 | 7.15 | 0.08| 1.00E-06 1 [solver-4] 1150 | 3.5 |0.08] 1.00E-08
Solver-5[ 4025 | 9.11 [0.08] 1.00E-06 1 |solver-5] 4835 | 11.05 | 0.08[ 1.00E-08
Solver-6| 4026 | 9.22 [0.08] 1.00E-06 1 [solver-6] 1687 | 3.89 |0.08] 1.00E-08
Solver-7| 4026 | 9.07 | 0.08] 1.00E-06 1 |solver-7] 1690 | 3.89 [0.08[ 1.00E-08 1
Iter. #|Time(s)| s |Error Crit.|Flag|Bypass Iter. #|Time(s)| s |Error Crit.|Flag|Bypass
Newton | 9990 [136:8% ] 0.04] 1.00:06 | 0 | 1 [Newton|11834[19:35 | 0.04] 1.00e:08 | 0 [ 1
Solver-1] 4411 | 822 [0.04] 1.00E-06 1 [solver-1] 2291 | 4.16 |0.04] 1.00E-08 1
Solver-2[ 2047 | 6.42 | 0.04] 1.00E-06 1 |solver-2| 1471 | 4.66 |0.04| 1.00E-08 1
Solver-3[ 4403 | 834 [0.04 1.00E-06 1 |solver-3| 2291 | 435 [0.04] 1.00€-08 1
Solver-4| 4540 | 14.31 [ 0.04] 1.00E-06 1 |solver-4| 4752 | 14.85 | 0.04| 1.00E-08 1
Solver-5] 8360 | 17.99 [0.04| 1.00e:06 | 0 | 1 [sSolver-5] 9977 | 22.07 [0.04] 1.00e-08| 0 [ 1
Solver-6| 8860 Ho.m 100E-06 | 0 [ 1 [solver-6 10000H 0.04] 1.00e:08| 0 [ 1
Solver-7| 8361 | 18.17 [0.04] 1.00e:06 | 0 | 1 [sSolver-7]10092| 22.39 [0.04] 1.00e-08] 0 [ 1

Troubles encountered in Table 5.1 and Table 5.2 can not be resolved despite use of
bypass. It can be seen from Table 5.3 and Table 5.4. However, the computational times
of solver-5,6,7 are fallen by almost half since additional calculations are avoided.
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Table 5.4. Performance comparison of different algebraic nonlinear equation solvers with different

constant arc-length parameters and passing unnecessary calculations for cubic stiffness nonlinearity

(Error Criterion=1e-10, 1e-12)

Iter. #{ Time(s)| s [Error Crit.|Flag|Bypass Iter. #[Time(s)| s [Error Crit.|Flag|Bypass
Newton| 1402 [ 2.05 [0.32| 1.00E-10 1 Newton| 164 0.24 |0.32| 1.00E-12
Solver-1| 222 | 0.37 |0.32( 1.00E-10 1 |Solver-1| 223 | 0.36 |0.32( 1.00E-12
Solver-2| 36 0.11 |[0.32( 1.00E-10 1 |Solver-2| 22 0.06 |0.32| 1.00E-12
Solver-3| 218 | 0.38 |0.32( 1.00E-10 1 |Solver-3| 242 | 0.41 |0.32| 1.00E-12
Solver-4| 231 0.68 |0.32| 1.00E-10 1 |Solver-4( 107 | 0.31 |0.32| 1.00E-12
Solver-5| 1693 | 4.13 |0.32( 1.00E-10 1 |Solver-5| 363 | 0.89 |0.32( 1.00E-12
Solver-6| 1688 | 4.12 |(0.32| 1.00E-10 1 Solver-6| 352 0.86 |0.32| 1.00E-12
Solver-7| 1695 | 4.1 |0.32( 1.00E-10 1 |Solver-7| 322 | 0.78 |0.32| 1.00E-12
Iter. #[{Time(s)| s |Error Crit. Bypass Iter. #|Time(s)| s |ErrorCrit.
Newton| 3559 | 5.29 |0.16| 1.00E-10 1 |Newton| 519 | 0.75 |0.16( 1.00E-12
Solver-1| 371 | 0.63 |0.16( 1.00E-10 1 |Solver-1| 384 | 0.62 |0.16( 1.00E-12
Solver-2| 133 | 0.41 |0.16( 1.00E-10 1 |Solver-2| 22 0.06 |(0.16| 1.00E-12
Solver-3| 363 | 0.65 |[0.16( 1.00E-10 1 |Solver-3] 453 | 0.75 |0.16( 1.00E-12
Solver-4| 430 | 1.27 |0.16( 1.00E-10 1 |Solver-4| 517 | 1.48 |0.16( 1.00E-12
Solver-5| 2205 | 5.42 |0.16( 1.00E-10 1 |Solver-5| 415 | 0.98 |0.16( 1.00E-12
Solver-6( 2219 | 5.43 |0.16( 1.00E-10 1 |Solver-6| 238 | 0.56 |0.16( 1.00E-12
Solver-7[ 2235| 5.5 |[0.16( 1.00E-10 1 |Solver-7| 470 | 1.11 |0.16( 1.00E-12
Iter. #{ Time(s)| s [Error Crit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.
Newton| 7902 0.08| 1.00E-10 | O 1 |Newton| 664 | 0.98 |0.08| 1.00E-12
Solver-1| 1163 | 1.97 |0.08| 1.00E-10 1 |Solver-1f 510 [ 0.85 |0.08| 1.00E-12
Solver-2| 348 1.1 |0.08| 1.00E-10 1 |Solver-2| 151 | 0.46 |0.08( 1.00E-12
Solver-3| 1073 1.9 |[0.08( 1.00E-10 1 |Solver-3| 676 1.16 [0.08| 1.00E-12
Solver-4| 1233 | 3.67 |0.08( 1.00E-10 1 |Solver-4| 156 | 0.48 |0.08| 1.00E-12
Solver-5| 5950 | 14.21 | 0.08| 1.00E-10 1 Solver-5| 727 1.69 |0.08( 1.00E-12
Solver-6| 6041 | 14.53 | 0.08( 1.00E-10 1 |Solver-6| 1034 | 2.46 |0.08| 1.00E-12
Solver-7| 6047 | 14.45 | 0.08| 1.00E-10 1 Solver-7| 973 2.3 0.08| 1.00E-12
Iter. #{Time(s)| s [Error Crit.|Flag|Bypass Iter. #[Time(s)| s [Error Crit.
Newton | 13883 0.04| 1.00E-10 [ O 1 Newton| 1439 [ 2.11 |0.04| 1.00E-12
Solver-1| 2233 | 3.84 |0.04( 1.00E-10 1 |Solver-1| 892 | 1.54 |0.04( 1.00E-12
Solver-2| 808 | 2.55 |0.04( 1.00E-10 1 |Solver-2| 596 | 1.83 |0.04| 1.00E-12
Solver-3| 2157 | 3.85 |0.04( 1.00E-10 1 |Solver-3| 1167 | 2.14 |0.04| 1.00E-12
Solver-4| 2233 | 6.74 |0.04( 1.00E-10 1 |Solver-4| 662 | 2.04 |0.04| 1.00E-12
Solver-5|12046| 27.58 | 0.04( 1.00E-10 | 0 1 |Solver-5| 1576 | 3.79 |0.04| 1.00E-12
Solver-6|12087| 27.71 | 0.04| 1.00E-10 | O 1 |Solver-6| 507 | 1.21 |0.04| 1.00E-12
solver-7] 12210 |28 0.04] 1.00e-10| 0 | 1 [solver-7[ 1838 | 4.3 |o0.04] 1.00e-12

When adaptive arc-length method and bypass are used together, it is easier to obtain

solution in error criteria which can not be solved and one can understand from Table

5.7 and Table 5.8. Thus, the use of adaptive arc length is shown to be advantageous.
This fact can be seen from Table 5.5 and Table 5.6 .
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Table 5.5. Performance comparison of different algebraic nonlinear equation solvers with adaptive

arc-length parameter for cubic stiffness nonlinearity (Error Criterion=1e-6, 1e-8)

Error Crit. | Flag| Bypass

Error Crit. | Flag | Bypass

Iter. #|Time(s) |N_opt|s_max|s_min Iter. #|Time(s) |N_opt|s_max|s_min
Newton | 9268 1 | 032 | 004 |1.00e-06| 0 | 0 |Newton|11323 1 | 032 | 0.04 |1.00e08] 0 | o0
Solver1| 124 | 032 | 1 | 032 | 0.04 | 1.00E-06 0 |solver1] 9 | 017 | 1 | 032 | 0.04 | 1.00E-08 0
Solver-2| 124 | 048 | 1 | 032 | 0.04 | 1.00E-06 0 |solver2| 9 | 029 | 1 | 032 | 0.04 | 1.00E-08 0
Solver3| 124 | 033 | 1 | 032 | 0.04 | 1.00E-06 0 |solver3] 96 | 019 | 1 | 032 | 0.04 | 1.00E-08 0
Solver-4| 124 | 052 | 1 | 032 | 0.04 | 1.00E-06 0 |solver4| 96 | 029 | 1 | 032 | 0.04 | 1.00E-08 0
Solver-5| 7570 |JBSMGH 1 | 032 | 004 [ 10006 | 0 | 0 |[Solver-5| 9268 | 2821 | 1 | 032 | 004 [1.00E08| 0 | 0
Solver6| 7567 | 23.69 | 1 | 0.32 | 0.04 | 1.00E-06 | 0 0 |[Solver-6| 9312 H 1 | 032 | 0.04 | 1.00E-08 | 0 0
Solver7| 7575 | 2367 | 1 | 032 | 0.04 | 1.00e06| 0 | 0 |Solver-7]9422| 2835 | 1 | 032 | 0.04 | 1.00E08| 0 | o

Iter. #[Time(s) |N_opt|s_max|s_min |Error Crit.| Flag|Bypass Iter. #| Time(s) [N_opt|s_max|s_min |Error Crit.|Flag|Bypass
Newton | 9247 [BiSW2N| 15 | 032 | 0.04 | 1.00E06| 0 | 0 |Newton|11323 15 | 032 | 0.04 | 100608 | 0 | o
Solver-1| 124 | 023 | 15 | 032 | 0.04 | 1.00E-06 0 |Solver1| 96 | 017 | 15 | 032 | 0.04 | 1.00E-08 0
Solver2| 124 | 039 | 15 | 032 | 0.04 | 1.00E-06 0 |Solver2| 96 | 029 | 15 | 032 | 0.04 | 1.00E-08 0
Solver-3| 124 | 027 | 15 | 032 | 0.04 | 1.00E-06 0 |Solver3| 96 | 018 | 1.5 | 032 | 0.04 | 1.00E-08 0
Solver-4| 124 | 042 | 15 | 032 | 0.04 | 1.00E-06 0 [solvera| 96 | 029 | 15 | 032 | 0.04 | 1.00E-08 0
Solver-5| 7543 |NOSIA] 15 | 032 | 0.04 [100E06| 0 | 0 |solver-5| 9280 | 2811 | 1.5 | 0.32 | 0.04 | 1.00E-08 | 0 | o
Solver6| 7544 | 2329 | 15 | 032 | 004 | 1.00E06| 0 | 0 |Solver-6| 9274 H 15 | 032 | 004 |1.00608| 0 | ©
Solver-7| 7546 | 232 | 15 | 032 | 0.04 | 1.00e:06 | 0 | 0 |Solver-7] 9427 | 2839 | 1.5 | 032 | 0.04 | 1.00E08| 0 | o0

Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter. #|Time(s) |N_opt|s_max]|s_min|Error Crit.|Flag|Bypass
Newton | 2910 [N 2 | 032 | 0.04 |1.00E06| 0 | 0 |Newton| 5210 2 | 032004 100608] 0| O
Solver-1] 124 | 023 | 2 | 032 | 0.04 | 1.00E-06 0 |solver1] 96 | 017 | 2 | 032 | 0.04 | 1.006-08 0
Solver2| 124 | 039 | 2 | 032 | 0.04 | 1.00E-06 0 |solver2| 96 | 029 | 2 | 032 | 0.04 | 1.00E-08 0
Solver3| 124 | 024 | 2 | 032 | 0.04 | 1.00E-06 0 |solver3| 9 | 019 | 2 | 032 | 0.04 | 1.00E-08 0
Solver4| 124 | 038 | 2 | 032 | 0.04 | 1.00E-06 0 |solver-4| 96 | 029 | 2 | 032 | 0.04 | 1.00E-08 0
Solver-5| 1511 2 | 032 | 0.04 | 1.00E-06 0 |[Solvers| 2747 H 2 | 032 | 0.04 | 1.00E-08 0
Solver6| 879 | 267 | 2 | 032 | 0.04 | 1.00E-06 0 |solver6| 2103 | 637 | 2 | 032 | 0.04 | 1.006-08 0
solver-7] 886 | 2.65 | 2 | 032 [ 0.04 [1.00E-06 0 [solver-7] 2211 642 [ 2 [ 032 | 0.04 | 1.006-08 0

Table 5.6. Performance comparison of different algebraic nonlinear equation solvers with adaptive

arc-length parameter for cubic stiffness nonlinearity (Error Criterion=1e-10, 1e-12)

Iter. #[Time(s) |[N_opt|s_max|s_min ErrorCrit.lFIangypass Iter. #| Time(s) |N_opt|s_max|s_min |Error Crit.|Flag|Bypass
Newton | 13670 1 0.32 | 0.04 | 1.00E-10 [ © 0 Newton| 1020 [ 1.49 1 0.32 | 0.04 | 1.00E-12 0
Solver-1] 36 0.06 1 0.32 0.04 | 1.00E-10 0 Solver-1| 22 0.04 1 0.32 0.04 | 1.00E-12 0
Solver-2| 36 0.1 1 0.32 0.04 | 1.00E-10 0 Solver-2| 22 0.06 1 0.32 0.04 | 1.00E-12 0
Solver-3| 36 0.07 1 0.32 0.04 | 1.00E-10 0 Solver-3| 22 0.04 1 0.32 0.04 | 1.00E-12 0
Solver-4| 36 0.11 1 0.32 0.04 | 1.00E-10 0 Solver-4| 22 0.06 1 0.32 0.04 | 1.00E-12 0
Solver-5(11801| 35.05 1 0.32 | 0.04 | 1.00E-10 [ © 0 Solver-5| 1444 | 4.06 1 0.32 | 0.04 | 1.00E-12 0
Solver-6] 11815 35 1 0.32 0.04 | 1.00E-10 | O 0 Solver-6| 940 2.66 1 0.32 0.04 | 1.00E-12 0
Solver-7] 12021 1 0.32 0.04 | 1.00E-10 | O 0 Solver-7| 776 2.2 1 0.32 0.04 | 1.00E-12 0

Iter.# N_opt|s_max|s_min|Error Crit.|Flag|Bypass Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit. pass
Newton | 13651 15 | 032 | 0.04 | 1.00E-10 [ © 0 Newton | 1547 | 2.23 1.5 | 032 | 0.04 | 1.00E-12 0
Solver-1 36 0.06 1.5 | 0.32 | 0.04 | 1.00E-10 0 Solver-1| 22 0.04 1.5 | 032 | 0.04 | 1.00E-12 0
Solver-2[ 36 0.1 1.5 | 0.32 | 0.04 | 1.00E-10 0 Solver-2| 22 0.06 1.5 | 032 | 0.04 | 1.00E-12 0
Solver-3] 36 0.07 1.5 0.32 | 0.04 | 1.00E-10 0 Solver-3| 22 0.04 1.5 0.32 0.04 | 1.00E-12 0
Solver-4| 36 0.1 1.5 0.32 | 0.04 | 1.00E-10 0 Solver-4| 22 0.06 1.5 0.32 0.04 | 1.00E-12 0
Solver-5[11755| 34.8 15 | 032 | 0.04 | 1.00E-10 [ O 0 Solver-5| 1095 3.1 1.5 | 032 | 0.04 | 1.00E-12 0
Solver-6[11808| 35.17 1.5 | 032 | 0.04 | 1.00E-10 ( © 0 Solver-6| 1724 | 4.84 1.5 | 032 | 0.04 | 1.00E-12 0
Solver-7 11947 1.5 | 032 | 0.04 | 1.00E-10 [ © 0 Solver-7| 1515 | 4.28 1.5 | 032 | 0.04 | 1.00E-12 0

Iter.# N_opt|s_max|s_min|Error Crit.|Flag|Bypass Iter. #| Time(s) |[N_opt|s_max|s_min | Error Crit. pass
Newton | 9659 2 0.32 | 0.04 | 1.00E-10| O 0 Newton| 758 1.1 2 0.32 0.04 | 1.00E-12 0
Solver-1] 36 0.07 2 0.32 | 0.04 | 1.00E-10 0 Solver-1| 22 0.04 2 0.32 0.04 | 1.00E-12 0
Solver-2| 36 0.11 2 0.32 | 0.04 | 1.00E-10 0 Solver-2| 22 0.06 2 0.32 | 0.04 | 1.00E-12 0
Solver-3[ 36 0.07 2 0.32 | 0.04 | 1.00E-10 0 Solver-3| 22 0.04 2 0.32 | 0.04 | 1.00E-12 0
Solver-4| 36 0.14 2 0.32 | 0.04 | 1.00E-10 0 Solver-4| 22 0.06 2 0.32 0.04 | 1.00E-12 0
Solver-5] 5556 | 16.14 2 0.32 | 0.04 | 1.00E-10| O 0 Solver-5| 690 1.94 2 0.32 0.04 | 1.00E-12 0
Solver-6| 5542 15.9 2 032 | 0.04 [1.00E-10| O 0 Solver-6| 1597 4.44 2 0.32 0.04 | 1.00E-12 0
Solver-7] 5674 |JNGHB 2 | 032 | 004 | 1.00E10| 0 | 0 [Solver-7] 1037 | 292 | 2 | 0.32 | 0.04 | L.OOE-12 0
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Table 5.7. Performance comparison of different algebraic nonlinear equation solvers with adaptive

arc-length parameter and passing unnecessary calculations for cubic stiffness nonlinearity (Error
Criterion=1e-6, 1e-8)

Error Crit. | Flagl Bypass

Error Crit. | Flag | Bypass

Iter. #|Time(s) |N_opt|s_max|s_min Iter. #|Time(s) |N_opt|s_max|s_min
Newton | 9268 1 0.32 | 0.04 | 1.00E-06 | O 1 Newton | 11323 1 0.32 0.04 | 1.00E-08 | O 1
Solver-1] 3123 5.89 1 0.32 | 0.04 | 1.00E-06 1 Solver-1| 1578 2.94 1 0.32 0.04 | 1.00E-08 1
Solver-2| 124 0.48 1 0.32 | 0.04 | 1.00E-06 1 Solver-2| 96 0.29 1 0.32 0.04 | 1.00E-08 1
Solver-3| 3114 5.99 1 0.32 | 0.04 | 1.00E-06 1 Solver-3| 1574 3.03 1 0.32 0.04 | 1.00E-08 1
Solver-4( 3249 | 10.38 1 0.32 | 0.04 | 1.00E-06 1 Solver-4( 4016 | 12.63 1 0.32 | 0.04 | 1.00E-08 1
Solver-5| 7572 1 0.32 | 0.04 | 1.00E-06 | O 1 Solver-5] 9274 | 20.84 1 0.32 0.04 | 1.00E-08 | O 1
Solver-6| 7568 1 0.32 | 0.04 | 1.00E-06 | O 1 Solver-6] 9294 | 20.92 1 0.32 0.04 | 1.00E-08 | O 1
Solver-7] 7568 | 15.94 1 0.32 | 0.04 | 1.00E-06 | O 1 Solver-7| 9416 1 0.32 0.04 | 1.00E-08 | O 1

Iter. #[Time(s) |N_opt|s_max|s_min |Error Crit.| Flag|Bypass IterA# N_opt|s_max|s_min |Error Crit.|Flag|Bypass
Newton | 9247 1.5 | 032 | 0.04 | 1.00E-06 [ O 1 Newton | 11323 1.5 | 032 | 0.04 | 1.00E-08 [ O 1
Solver-1| 3097 5.7 1.5 | 0.32 | 0.04 | 1.00E-06 1 Solver-1| 1505 | 2.64 1.5 | 032 | 0.04 | 1.00E-08 1
Solver-2| 124 0.39 1.5 0.32 | 0.04 | 1.00E-06 1 Solver-2| 96 0.29 1.5 0.32 0.04 | 1.00E-08 1
Solver-3| 3088 5.8 1.5 [ 032 | 0.04 | 1.00E-06 1 Solver-3| 1505 2.8 1.5 | 032 | 0.04 | 1.00E-08 1
Solver-4 | 3223 | 10.05 1.5 | 0.32 | 0.04 | 1.00E-06 1 Solver-4| 3962 | 12.17 1.5 | 032 | 0.04 | 1.00E-08 1
Solver-5[ 7546 | 15.58 1.5 | 032 | 0.04 | 1.00E-06 [ O 1 Solver-5[ 9269 | 20.48 1.5 | 032 | 0.04 | 1.00E-08 [ O 1
Solver-6| 7544 H 15 | 032 | 004 |100E06| 0 | 1 |solver6| 9285 2049 | 1.5 | 032 | 0.04 [100E-08| 0 | 1
Solver-7| 7545 | 15.57 1.5 0.32 | 0.04 | 1.00E-06 | O 1 Solver-7| 9385 1.5 0.32 0.04 | 1.00E-08 | O 1

Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter.# N_opt|s_max|s_min |Error Crit.|Flag|Bypass
Newton | 2919 2 0.32 | 0.04 | 1.00E-06 [ O 1 Newton | 5210 2 0.32 | 0.04 | 1.00E-08 [ O 1
Solver-1| 286 0.49 2 0.32 | 0.04 | 1.00E-06 1 Solver-1{ 176 0.31 2 0.32 | 0.04 | 1.00E-08 1
Solver-2| 124 0.39 2 0.32 | 0.04 | 1.00E-06 1 Solver-2| 96 0.29 2 0.32 0.04 | 1.00E-08 1
Solver-3| 284 0.51 2 0.32 | 0.04 | 1.00E-06 1 Solver-3| 176 0.31 2 0.32 0.04 | 1.00E-08 1
Solver-4| 844 2.52 2 0.32 | 0.04 | 1.00E-06 1 Solver-4( 1638 4.84 2 0.32 0.04 | 1.00E-08 1
Solver-5( 880 2 2 0.32 | 0.04 | 1.00E-06 1 Solver-5( 2593 | 6.27 2 0.32 | 0.04 | 1.00E-08 1
Solver-6| 1557 H 2 | 032 | 0.04 | 100606 1 |solver-6| 2129 | 512 | 2 | 032 | 0.04 | 100608 1
Solver-7| 886 2.01 2 0.32 | 0.04 | 1.00E-06 1 Solver-7| 2481 5.96 2 0.32 0.04 | 1.00E-08 1

Table 5.8. Performance comparison of different algebraic nonlinear equation solvers with adaptive

arc-length parameter and passing unnecessary calculations for cubic stiffness nonlinearity (Error
Criterion=1e-10, 1e-12)

Error Crit. | Flag| Bypass

Iter. #|Time(s) |N_opt|s_max|s_min Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag|Bypass
Newton | 13670 1 0.32 | 0.04 | 1.00E-10 [ © 1 Newton| 1020 | 1.49 1 0.32 | 0.04 | 1.00E-12 1
Solver-1| 1755 | 2.89 1 0.32 | 0.04 | 1.00E-10 1 Solver-1| 651 1.12 1 0.32 | 0.04 | 1.00E-12 1
Solver-2| 36 0.11 1 0.32 0.04 | 1.00E-10 1 Solver-2| 22 0.06 1 0.32 0.04 | 1.00E-12 1
Solver-3| 1625 2.86 1 0.32 0.04 | 1.00E-10 1 Solver-3| 1022 1.79 1 0.32 0.04 | 1.00E-12 1
Solver-4| 1828 5.45 1 0.32 0.04 | 1.00E-10 1 Solver-4| 1242 3.6 1 0.32 0.04 | 1.00E-12 1
Solver-5(11771| 26.8 1 0.32 | 0.04 | 1.00E-10 [ © 1 Solver-5| 1926 [ 4.51 1 0.32 | 0.04 | 1.00E-12 1
Solver-6 IISOGH 1 | 032 | 004 [100E10]| 0 | 1 |solver-6| 1766 | 411 | 1 | 0.32 | 0.04 | 1.00E-12 1
Solver-7]11941| 26.86 1 0.32 0.04 | 1.00E-10 | O 1 Solver-7| 1536 3.56 1 0.32 0.04 | 1.00E-12 1

Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit. pass
Newton | 13651 1.5 032 | 0.04 | 1.00E-10| O 1 Newton | 1547 2.23 1.5 0.32 0.04 | 1.00E-12 1
Solver-1{ 1700 2.8 1.5 | 0.32 | 0.04 | 1.00E-10 1 Solver-1| 738 1.24 1.5 | 032 | 0.04 | 1.00E-12 1
Solver-2| 36 0.11 1.5 | 0.32 | 0.04 | 1.00E-10 1 Solver-2| 22 0.06 1.5 | 032 | 0.04 | 1.00E-12 1
Solver-3] 1639 2.83 1.5 0.32 | 0.04 | 1.00E-10 1 Solver-3| 1254 2.15 1.5 0.32 0.04 | 1.00E-12 1
Solver-4| 1722 5.01 1.5 0.32 | 0.04 | 1.00E-10 1 Solver-4| 546 1.65 1.5 0.32 0.04 | 1.00E-12 1
Solver-5(11749| 26.85 1.5 032 | 0.04 | 1.00E-10| O 1 Solver-5| 1095 2.51 1.5 0.32 0.04 | 1.00E-12 1
Solver-6[11792| 26.91 1.5 | 032 | 0.04 | 1.00E-10 [ © 1 Solver-6| 1025 [ 2.36 1.5 | 032 | 0.04 | 1.00E-12 1
Solver-7(11918 1.5 | 032 | 0.04 | 1.00E-10 [ © 1 Solver-7| 1534 | 3.56 1.5 | 032 | 0.04 | 1.00E-12 1

Iter.# N_opt|s_max|s_min|Error Crit.|Flag|Bypass Iter. #| Time(s) |N_opt|s_max|s_min | Error Crit. pass
Newton | 9659 2 0.32 | 0.04 | 1.00E-10| O 1 Newton| 758 1.1 2 0.32 0.04 | 1.00E-12 1
Solver-1| 238 0.39 2 0.32 | 0.04 | 1.00E-10 1 Solver-1| 580 0.93 2 0.32 0.04 | 1.00E-12 1
Solver-2| 36 0.11 2 0.32 | 0.04 | 1.00E-10 1 Solver-2| 22 0.06 2 0.32 | 0.04 | 1.00E-12 1
Solver-3[ 218 0.37 2 0.32 | 0.04 | 1.00E-10 1 Solver-3| 742 1.22 2 0.32 | 0.04 | 1.00E-12 1
Solver-4| 955 2.77 2 0.32 | 0.04 | 1.00E-10 1 Solver-4| 516 1.47 2 0.32 0.04 | 1.00E-12 1
Solver-5| 5501 H 2 | 032 | 004 10010 0 | 1 |[Solver5| 690 | 1.61 | 2 | 032 | 0.04 | 1.00E-12 1
Solver-6( 5507 | 12.92 2 0.32 | 0.04 | 1.00E-10 [ © 1 Solver-6| 1104 | 2.59 2 0.32 | 0.04 | 1.00E-12 1
Solver-7 5566| 13.04 | 2 0.32 | 0.04 | 1.00E-10 [ O 1 Solver-7| 1171 2.8 2 0.32 | 0.04 | 1.00E-12 1
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Table 5.9. Performance comparison of different predictors with different constant arc-length

parameters for cubic stiffness nonlinearity (Error Criterion=1e-6, 1e-8)

Iter. #|Time(s)| s [Error Crit.|Flag Iter. #|Time(s)| s [Error Crit.|Flag
Tangent| 999 1.54 |0.32( 1.00E-06 1242 | 1.78 |0.32| 1.00E-08
Linear | 1076 | 1.51 |0.32| 1.00E-06 1405 | 1.85 |0.32| 1.00E-08
Second | 838 1.22 | 0.32 | 1.00E-06 943 1.29 |0.32( 1.00E-08
Third 716 1.33 | 0.32( 1.00E-06 856 1.43 |0.32( 1.00E-08
Log 1318 1.8 |0.32| 1.00E-06 1497 | 1.97 |0.32| 1.00E-08
Spline | 838 | 1.25 |0.32| 1.00E-06 943 | 1.32 |0.32| 1.00E-08
Iter. #|Time(s)| s |Error Crit. Iter. #|Time(s)| s |Error Crit.
Tangent| 1766 | 2.68 |0.16| 1.00E-06 2034 [ 2.99 |0.16( 1.00E-08
Linear | 3433|1473 0.16| 1.00-06 4155 0.16] 1.00E-08
Second | 1452 | 2.05 |0.16| 1.00E-06 1726 | 2.38 |0.16| 1.00E-08
Third | 1313 | 2.52 [ 0.16| 1.00E-06 1452 | 2.67 |0.16| 1.00E-08
Log | 3644 0.16| 1.00E-06 3553 | 4.7 |0.16| 1.00E-08
Spline | 1452 | 2.11 |0.16| 1.00E-06 1730 | 2.44 |[0.16| 1.00E-08
Iter. #|Time(s)| s |Error Crit. Iter. #|Time(s)| s |Error Crit.
Tangent| 5979 0.08| 1.00E-06 [ O |Tangent| 6764 0.08| 1.00E-08
Linear | 4590 0.08| 1.00E-06 | Linear | 5199 0.08| 1.00E-08
Second | 4846 0.08 | 1.00E-06 n Second | 5557 0.08 | 1.00E-08
Third | 4134 | 9.17 |0.08| 1.00E-06 ‘ Third | 4320 | 9.38 |0.08| 1.00E-08
log | 5922 | 824 |0.08| 1.00E-06 \ log | 6163 | 825 |[0.08| 1.00E-08
Spline | 4845 | 7.21 |[0.08( 1.00E-06 [ O | Spline | 5559 [ 8.03 |[0.08( 1.00E-08
Iter. #|Time(s)| s [ErrorCrit.|Flag Iter. #|Time(s)| s |Error Crit.
Tangent| 10237 16.4 |0.04| 1.00E-06 | O |Tangent{12361| 18.91 | 0.04| 1.00E-08
Linear |11385| 15.97 (0.04| 1.00E-06 | O | Linear |12894| 17.79 |(0.04| 1.00E-08
Second | 9219 0.04| 1.00E-06 | O | Second | 9711 0.04 | 1.00E-08
Third | 9111 0.04| 1.00E-06 | O Third | 9281 0.04 | 1.00E-08
Log |11417| 16.03 |0.04| 1.00E-06 | O Log |[13645| 18.66 [0.04| 1.00E-08
Spline [ 9219 | 13.87 [ 0.04( 1.00E-06 [ O | Spline | 9709 | 14.51 |0.04| 1.00E-08

Performance comparison of different predictors with different constant arc-length

parameters for cubic stiffness nonlinearity is given in Table 5.9 and Table 5.10. It can

be seen that third order polynomial and logarithmic predictors are the worst predictors

and second order polynomial and quadratic spline are the promising predictors

comparing the other.
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Table 5.10. Performance comparison of different predictors with different constant arc-length

parameters for cubic stiffness nonlinearity (Error Criterion=1e-10, 1e-12)

Iter. #|Time(s)| s [Error Crit.|Flag Iter. #|Time(s)| s [Error Crit.|Flag
Tangent| 1461 | 2.08 |0.32| 1.00E-10 ‘ Tangent| 265 0.38 |0.32| 1.00E-12
Linear | 1512 | 2.18 |(0.32| 1.00E-10 Linear | 336 0.46 |0.32| 1.00E-12
Second | 1105 | 1.67 |0.32| 1.00E-10 ‘ Second | 261 0.36 |0.32| 1.00E-12
Third 949 1.77 |0.32| 1.00E-10 Third 342 0.52 |0.32| 1.00E-12
Log 1615 3 0.32| 1.00E-10 Log 367 0.49 |0.32| 1.00E-12
Spline | 1109 | 1.66 |[0.32( 1.00E-10 Spline | 314 0.43 |0.32| 1.00E-12
Iter. #|Time(s)| s |Error Crit. Iter. #|Time(s)| s |Error Crit.
Tangent| 2729 | 4.02 |0.16| 1.00E-10 Tangent| 518 0.75 |0.16| 1.00E-12
Linear | 5198 [17:45 ] 0.16| 1.006-10 Linear | 553 | 0.76 |0.16] 1.00E-12
Second | 1948 | 2.75 |0.16| 1.00E-10 Second | 463 0.64 |0.16| 1.00E-12
Third | 1774 | 3.21 |0.16| 1.00E-10 Third 328 0.54 |0.16| 1.00E-12
Log 3958 | 5.41 |0.16| 1.00E-10 Log 877 1.17 |0.16| 1.00E-12
Spline [ 1953 | 2.91 |0.16| 1.00E-10 Spline | 486 0.68 |0.16| 1.00E-12
Iter. #|Time(s)| s |Error Crit. Iter. #|Time(s)| s |Error Crit.
Tangent| 8186 | 12.62 [ 0.08| 1.00E-10 [ O [Tangent| 396 0.6 |0.08| 1.00E-12
Linear | 6666 | 9.26 |0.08| 1.00E-10 ‘ Linear | 1006 | 1.36 |(0.08| 1.00E-12
Second | 6511 0.08| 1.00E-10 n Second | 881 1.22 (0.08| 1.00E-12
Third | 4726 0.08| 1.00E-10 ‘ Third 305 0.55 |0.08| 1.00E-12
Log 7239 | 10.07 |0.08| 1.00E-10 ‘ Log 1256 | 1.68 |0.08| 1.00E-12
Spline | 6495 | 9.57 |0.08| 1.00E-10 | O | Spline | 356 0.55 |0.08| 1.00E-12
Iter. #|Time(s)| s [Error Crit.|Flag Iter. #|Time(s)| s [Error Crit.
Tangent|14433| 22.41 | 0.04| 1.00E-10 [ O [Tangent| 1635 | 2.44 |0.04| 1.00E-12
Linear |15423| 22.42 (0.04| 1.00E-10 | O | Linear | 1560 | 2.23 |[0.04| 1.00E-12
Second | 11540 0.04| 1.00E-10 | O | Second | 635 0.97 |0.04| 1.00E-12
Third | 9678 0.04]| 1.00e-10 | 0 | Third | 1198 | 2.07 |0.04] 1.00E-12
Log |18434 0.04| 1.00E-10 | O Log 2134 | 2.89 |0.04| 1.00E-12
Spline [11369 0.04| 1.00E-10 | O | Spline | 1069 | 1.57 | 0.04| 1.00E-12

The main advantage of adaptive arc-length method is to reduce the computational time

significantly. It can be seen from Table 5.11 and Table 5.12. If adaptive arc-length

method is combined with second order and quadratic spline predictors, it is possible

to obtain fastest computational time.
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Table 5.11. Performance comparison of different predictors with adaptive arc-length parameter for

cubic stiffness nonlinearity (Error Criterion=1e-6, 1e-8)

Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit. | Flag Iter. #| Time(s) |[N_opt[s_max[s_min|Error Crit.|Flag
Tangent| 9523 | 16.36 1 0.32 | 0.04 [ 1.00E-06 | O |Tangent|11810( 18.77 1 0.32 | 0.04 | 1.00E-08 [ O
Linear |10728| 16.04 1 0.32 | 0.04 [ 1.00E-06 | O | Linear |12421| 18.25 1 0.32 | 0.04 | 1.00E-08 [ O
Second | 7890 1 0.32 | 0.04 | 1.00E-06 | 0 | Second | 8900 1 0.32 | 0.04 | 1.00E-08 | O
Third | 7061 1 0.32 | 0.04 | 1.00E-06 | O | Third | 8081 1 0.32 | 0.04 | 1.00E-08 [ O
Llog [11355 1 | 032]004]100E06] 0 Log [13575 1 | 032]004]100E08] 0
Spline | 7827 1 0.32 [ 0.04 | 1.00E-06 | O | Spline | 8842 1 0.32 | 0.04 | 1.00E-08 [ O

Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit.|Flag Iter. #[ Time(s) |N_opt|s_max|s_min [Error Crit. |Flag
Tangent| 9498 | 15.95 | 1.5 | 0.32 | 0.04 | 1.00E-06 | O |Tangent|[11805( 18.92 | 1.5 [ 0.32 | 0.04 [ 1.00E-08 | O
Linear |10732 1.5 | 0.32 | 0.04 | 1.00E-06 | O | Linear [12421| 183 1.5 | 0.32 | 0.04 | 1.00E-08 [ O
Second | 7870 1.5 | 0.32 | 0.04 | 1.00E-06 | O | Second | 8874 1.5 | 0.32 | 0.04 | 1.00E-08 [ O
Third | 6964 1.5 | 0.32 | 0.04 | 1.00E-06 | O | Third | 8012 1.5 | 0.32 | 0.04 | 1.00E-08 [ O
log [11184 1.5 | 032 | 0.04 [ 1.00E06| 0 | log [13568] 19.97 [ 1.5 [ 0.32 [ 0.04 | 1.00e-08 | 0
Spline | 7817 1.5 | 0.32 | 0.04 | 1.00E-06 | O | Spline | 8834 1.5 | 0.32 | 0.04 | 1.00E-08 [ O

Iter.# N_opt|s_max|s_min|Error Crit.|Flag Iter. #[ Time(s) |N_opt|s_max|s_min [Error Crit. |Flag
Tangent| 3115 2 0.32 | 0.04 [ 1.00E-06 | O |Tangent| 5502 [ 8.36 2 0.32 | 0.04 | 1.00E-08 [ O
Linear | 3792 | 5.34 2 0.32 | 0.04 [ 1.00E-06 Linear [ 6777 | 9.45 2 0.32 | 0.04 | 1.00E-08 [ O
Second | 1768 | 2.55 2 0.32 | 0.04 [ 1.00E-06 Second | 2975 2 0.32 | 0.04 | 1.00E-08 [ O
Third | 1426 | 2.85 2 0.32 | 0.04 [ 1.00E-06 Third | 2227 4.4 2 0.32 | 0.04 | 1.00E-08 [ O
Log | 4703 H 2 [ 032 [ 004 ] 1.00E-06 Log |10047 2 [032]004]100E-08] 0
Spline | 1000 [ 1.48 2 0.32 | 0.04 [ 1.00E-06 Spline | 2957 2 0.32 | 0.04 | 1.00E-08 [ O

Table 5.12. Performance comparison of different predictors with adaptive arc-length parameter for

cubic stiffness nonlinearity (Error Criterion=1e-10, 1e-12)

Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit. | Flag Iter. #| Time(s) |[N_opt|s_max[s_min|Error Crit.
Tangent|14227| 22.13 1 0.32 | 0.04 | 1.00E-10 | O |Tangent| 1012 | 1.55 1 0.32 | 0.04 | 1.00E-12
Linear [15307| 22 1 0.32 | 0.04 | 1.00E-10 | O | Linear | 1699 | 2.33 1 0.32 | 0.04 | 1.00E-12
Second | 11004 1 0.32 | 0.04 | 1.00E-10 | O | Second | 990 | 1.43 1 0.32 | 0.04 | 1.00E-12
Third | 8915 1 0.32 | 0.04 | 1.00E-10 [ O | Third | 267 | 0.48 1 0.32 | 0.04 | 1.00E-12
Log [18342 1 0.32 | 0.04 | 1.00E-10 [ O Llog | 1964 | 2.68 1 0.32 | 0.04 | 1.00E-12
Spline | 10799 1 0.32 | 0.04 | 1.00E-10 [ O | Spline | 251 | 0.39 1 0.32 | 0.04 | 1.00E-12
Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit. | Flag Iter. #| Time(s) |[N_opt|s_max[s_min|Error Crit.
Tangent|14214| 22.03 | 1.5 | 0.32 | 0.04 | 1.00E-10 | O |Tangent| 518 [ 0.77 1.5 | 0.32 | 0.04 | 1.00E-12
Linear [15281| 21.96 | 1.5 | 0.32 | 0.04 | 1.00E-10 [ O | Linear | 818 [ 1.14 1.5 | 0.32 | 0.04 | 1.00E-12
Second | 10976 1.5 | 0.32 | 0.04 | 1.00E-10 | O | Second | 373 [ 0.56 1.5 | 0.32 | 0.04 | 1.00E-12
Third | 8908 1.5 | 0.32 | 0.04 | 1.00E-10 | O | Third | 846 | 1.44 1.5 | 0.32 | 0.04 | 1.00E-12
Log (18342 1.5 | 0.32 | 0.04 | 1.00E-10 [ O log | 1964 | 2.68 1.5 | 0.32 | 0.04 | 1.00E-12
Spline |10792 1.5 | 0.32 | 0.04 | 1.00E-10 | O | Spline [ 525 0.8 1.5 | 0.32 | 0.04 | 1.00E-12
Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit. | Flag Iter. #| Time(s) |[N_opt|s_max[s_min|Error Crit.
Tangent|10103| 15.34 2 0.32 | 0.04 | 1.00E-10 | O |Tangent| 565 | 0.83 2 0.32 | 0.04 | 1.00E-12
Linear |[12185| 17.16 2 0.32 | 0.04 [ 1.00E-10 | O | Linear | 123 0.18 2 0.32 | 0.04 | 1.00E-12
Second | 4586 2 0.32 | 0.04 | 1.00E-10 | O | Second| 931 | 1.31 2 0.32 | 0.04 | 1.00E-12
Third | 3012 | 5.79 2 0.32 | 0.04 [ 1.00E-10 | O Third 511 0.79 2 0.32 | 0.04 | 1.00E-12
Log |17968 2 0.32 | 0.04 | 1.00E-10 [ O log | 1743 | 2.39 2 0.32 | 0.04 | 1.00E-12
Spline | 4614 2 0.32 [ 0.04 | 1.00E-10 | O | Spline | 882 1.24 2 0.32 | 0.04 | 1.00E-12
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5.2. Realistic Finite Element Model for Different Nonlinear Solvers and

Predictors

The finite element model with two shrouded blade sectors analyzed is given at Figure
5.3, in which A and 4’ are the points, where harmonic excitation forces applied in +y
and —y direction, respectively. B and B’ are the contact surfaces, where nonlinear
elements are placed. C and C’ are the surfaces, where fixed boundary condition
applied. Natural frequencies and mode shapes of the system are obtained by finite
element software ABAQUS. By using modal information, a the receptance of the
linear part of the system is calculated by using first six natural frequencies and mode
shapes. It is assumed that the system has proportional damping with a damping ratio
0.1%.

Shroud-2

N/

Shroud-1

777

u, friction coefficient

Positive Slip

Negative Slip

Figure 5.3. Realistic finite element model for the blade and Coulomb macroslip
model between Shroud-1 and Shroud-2
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Between the nodes located on the contact surface of Shroud 1 and Shroud 2, four

nonlinear friction elements are connected to each other by node to node.

Due to the nature of 1D-dry friction model without normal load variation, there is no
turning back points and jump phenomenon in receptance. Also, 1D-dry friction is a
piecewise continuous nonlinearity which means it is effective at specific frequency
range of analysis. In order to investigate performance of the different predictors and

solvers, the case where nonlinear effect is highly dominant is selected.

The force response of the system where four nonlinear elements are placed between
shrouds are analyzed and receptance of point A to B is given in Figure 5.4. For the
specified system, the single harmonic response of finite element model is studied for
friction force, uN, 120 N and applying the constant amplitude excitation force at 400N.

10" F

Receptance AB yEJ'IEA
=]
8

107 E

1 1 | |
160 165 170 175
Frequency (Hz)

Figure 5.4. Receptance of the system with four nonlinear friction elements

When the results are inspected from Figure 5.4, the resonance frequency of the system
increases as the sliding friction force increases. The system becomes completely stuck
at higher sliding forces. In completely stuck case, there is no relative displacement
between the shrouds, hence the effect of frictional damping is lost which results in

high resonance amplitudes.
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The cells marked in red in the flag column of the tables indicate that the solution could

not be obtained and there is a convergence problem. The cells marked in red in the

time column of the tables indicate the longest computational time. If it is marked in

green, it is the fastest computational time.

Table 5.13. Performance comparison of different algebraic nonlinear equation solvers with different

constant arc-length parameters for 1D-Dry friction nonlinearity (Error Criterion=1e-6, 1e-8)
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Iter. #|Time(s)| s Flag|Bypass Iter. #|Time(s)| s Flag|Bypass
Newton | 596 0.32 0 0 Newton | 617 0.32 0 0
Solver-1] 593 | 4.84 [0.32 0 | o [solver1| 320 | 278 [032 0
Solver-2| 591 8.71 |0.32 0 0 Solver-2| 317 497 10.32 0
solver-3] 592 | 507 [032 0 | o [solver3| 317 [ 2.87 [032 0
Solver-4] 591 | 93 [032 0 | o [solvera| 317 | 497 [032 0
solver-5| 592 || HE 0.32 0 | o [solvers| 599 | 868 |032 o| o
Solver-6] 592 | 896 [0.32 0 | o [solvers| 599 | 888 [0.32 o[ o
Solver-7| 592 | 9.01 [0.32 0 | o [solver7| 599 0.32 o| o
Iter. #|Time(s)| s lag|Bypass Iter.# s Flag|Bypass
Newton | 1181 [INOMONY 0.16 0| 0 [Newton| 1198 0.16 o| o
solver-1] 1180 | 9.93 [0.16 0| o Jsolver1] 619 | 54 016 0
Solver-2| 1180 | 17.96 [0.16 0| o [solver2| 618 | 975 [0.16 0
Solver-3] 1180 | 10.35 [0.16 0| o [solver3| 618 | 563 [0.16 0
Solver-4| 1180 |[JISISSN 0.16 0| 0 [solvera| 618 | 977 |o0.16 0
Solver-5| 1180 | 1831 [0.16 0 | o [solvers|1183] 1753 |0.16 o| o
Solver-6| 1180 | 17.92 [0.16 0 | 0 [solvers|1183] 17.02 (0.6 o[ o
Solver-7] 1180 | 17.88 [0.16 0 | 0 [solver7]1183 0.16 o[ o
Iter. #|Time(s)| s lag|Bypass Iter.# s Flag|Bypass
Newton | 2358 [8830] 0.08 0 | 0 |Newton| 2371 0.08 o| o
Solver-1] 2358 | 19.71 [0.08 0 | o [solver-1] 2358 | 19.94 [0.08 o[ o
solver-2| 2358 | 35.6 | 0.08 0 | o [solver2] 2358 | 35.84 |0.08 o| o
Solver-3| 2358 | 20.56 | 0.08 0 | o [solver-3| 2358 | 2058 [0.08 o| o
Solver-4] 2358 | 35.73 [0.08 0 | 0 [solver-a| 2358 | 3564 0.8 o[ o
Solver-5| 2358 | 35.7 [0.08 0 | o [solvers| 2358 ] 3571 [0.08 o| o
Solver-6] 2358 | 35.55 [0.08 0 | o [solver6] 2358 3563 |0.08 o| o
Solver-7[ 2358 0.08 0 | 0 [solver7] 2358 0.08 o[ o
Iter.# s lag|Bypass Iter.# s Flag|Bypass
Newton | 4714 0.04 0 0 Newton | 4714 0.04 0 0
Solver-1] 4714 | 39.72 [0.04 0 | 0 [solver-1| 4714 | 3956 |0.04 o| o
Solver-2| 4714 | 71.09 | 0.04 0 0 Solver-2| 4714 | 71.82 | 0.04 0 0
solver-3| 4714 | 41.35 [0.04 0 | o [solver-3| 4714 | 4094 [o0.04 o| o
Solver-4| 4714 | 71.27 [0.04 0 | o [solvera|4714| 71.06 |0.04 o o
Solver-5| 4714 | 71.06 | 0.04 0 0 Solver-5| 4714 | 71.04 |0.04 0 0
Solver-6 4714H0.o4 0 | 0 [solver6|4714| 73.16 |0.04 o| o
solver-7| 4714 | 71.28 [0.04 0 | 0 [solver7] 4714 |JEENGoH 0.04 o| o




Table 5.14. Performance comparison of different algebraic nonlinear equation solvers with different

constant arc-length parameters for 1D-Dry friction nonlinearity (Error Criterion=1e-10, 1le-12)

Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.[Flag|Bypass
Newton | 667 0.32| 1.00E-10 | O 0 Newton | 799 0.32| 1.00E-12 | O 0
Solver-1| 280 2.48 |0.32| 1.00E-10 0 Solver-1| 273 2.41 ] 0.32| 1.00E-12 0
Solver-2| 280 4.5 0.32 | 1.00E-10 0 Solver-2| 273 4.35 | 0.32 1.00E-12 0
Solver-3| 280 2.59 |0.32| 1.00E-10 0 Solver-3| 273 2.51 |0.32| 1.00E-12 0
Solver-4| 280 4.48 | 0.32 1.00E-10 0 Solver-4| 273 4.37 | 0.32 1.00E-12 0
Solver-5| 633 9.57 |0.32| 1.00E-10 | O 0 Solver-5| 706 | 10.28 [ 0.32| 1.00E-12 | O 0
Solver-6| 633 9.6 0.32| 1.00E-10 | O 0 Solver-6| 706 | 10.33 [0.32| 1.00E-12 | O 0
Solver-7| 633 0.32| 1.00E-10 | O 0 Solver-7| 706 0.32| 1.00E-12 | O 0
Iter.# s |Error Crit.|Flag[Bypass Iter.# s |ErrorCrit.[Flag|Bypass
Newton | 1255 0.16 [ 1.00E-10 | O 0 Newton | 1391 0.16 [ 1.00E-12 | O 0
Solver-1| 546 4.86 |0.16| 1.00E-10 0 Solver-1| 535 4.74 | 0.16 | 1.00E-12 0
Solver-2| 546 8.79 | 0.16 | 1.00E-10 0 Solver-2| 535 8.57 | 0.16| 1.00E-12 0
Solver-3| 546 5.08 | 0.16 | 1.00E-10 0 Solver-3| 535 4.94 |0.16( 1.00E-12 0
Solver-4| 546 8.79 | 0.16 | 1.00E-10 0 Solver-4| 535 8.58 | 0.16 | 1.00E-12 0
Solver-5| 1211 | 18.37 [ 0.16| 1.00E-10 | O 0 Solver-5| 1307 | 19.57 [0.16| 1.00E-12 | O 0
Solver-6| 1211 | 18.32 [ 0.16| 1.00E-10 | O 0 Solver-6| 1307 | 19.57 [0.16| 1.00E-12 | O 0
Solver-7| 1211 0.16 [ 1.00E-10 | O 0 Solver-7| 1307 0.16 [ 1.00E-12 | O 0
Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter.# s |Error Crit.|Flag|Bypass
Newton | 2429 0.08 | 1.00E-10 | O 0 Newton | 2591 0.08 [ 1.00E-12 | O 0
Solver-1| 1210 | 10.69 | 0.08 | 1.00E-10 0 Solver-1| 1061 9.4 0.08 | 1.00E-12 0
Solver-2| 1210 | 19.33 [ 0.08 | 1.00E-10 0 Solver-2| 1061 | 17.01 [ 0.08 | 1.00E-12 0
Solver-3| 1210 | 11.18 [ 0.08 | 1.00E-10 0 Solver-3| 1061 | 9.83 [ 0.08| 1.00E-12 0
Solver-4| 1210 | 19.26 | 0.08 | 1.00E-10 0 Solver-4| 1061 | 17.02 | 0.08 | 1.00E-12 0
Solver-5| 2380 | 35.76 [ 0.08| 1.00E-10 | O 0 Solver-5| 2482 | 37.36 [0.08| 1.00E-12 | O 0
Solver-6| 2380 | 35.84 [ 0.08| 1.00E-10 | O 0 Solver-6| 2482 | 37.64 [0.08| 1.00E-12 | O 0
Solver-7| 2380 0.08 | 1.00E-10 | O 0 Solver-7| 2482 0.08 | 1.00E-12 | O 0
Iter.# s |Error Crit.[Flag|Bypass Iter.# s |Error Crit.[Flag|Bypass
Newton | 4767 0.04 | 1.00E-10 | O 0 Newton | 4922 0.04 | 1.00E-12 | O 0
Solver-1| 4714 | 39.29 [0.04| 1.00E-10 | O 0 Solver-1| 2229 | 19.73 [ 0.04 | 1.00E-12 0
Solver-2| 4714 | 71.29 [0.04| 1.00E-10 | O 0 Solver-2| 2229 | 35.82 [ 0.04 | 1.00E-12 0
Solver-3| 4714 | 41.18 [ 0.04| 1.00E-10 | O 0 Solver-3| 2229 | 20.71 | 0.04 | 1.00E-12 0
Solver-4| 4714 | 71.07 [0.04| 1.00E-10 | O 0 Solver-4| 2229 | 35.31 [ 0.04| 1.00E-12 0
Solver-5| 4714 | 70.99 |[0.04| 1.00E-10 | O 0 Solver-5| 4798 | 70.78 [ 0.04| 1.00E-12 | O 0
Solver-6| 4714 | 71.02 [0.04| 1.00E-10 | O 0 Solver-6| 4798 | 70.32 [0.04| 1.00E-12 | O 0
Solver-7| 4714 0.04 | 1.00E-10 | O 0 Solver-7| 4798 0.04 | 1.00E-12 | O 0

Table 5.13 and Table 5.14 shows that convergence problems are experienced with

increasing arc-length parameters and decreasing error criteria. In addition, all solvers

is not able to obtain solutions at low absolute error criteria. In some cases where other

solvers had convergence problems, the solution was obtained by Newton method. It

shows that convergence domain of the solvers other than Newton’s is narrow.
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Table 5.15. Performance comparison of different algebraic nonlinear equation solvers with different
constant arc-length parameters and passing unnecessary calculations for 1D-Dry friction

nonlinearity (Error Criterion=1e-6, 1le-8)

Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.[Flag|Bypass
Newton | 596 0.32 | 1.00E-06 0 1 Newton| 617 0.32 | 1.00E-08 0 1
Solver-1| 593 4.84 |0.32| 1.00E-06 1 Solver-1| 600 5.08 |0.32| 1.00E-08 | O 1
Solver-2| 591 8.71 0.32 | 1.00E-06 1 Solver-2| 317 5.04 0.32 | 1.00E-08 ! 1
Solver-3| 592 4.84 0.32 | 1.00E-06 1 Solver-3| 599 5.07 0.32 | 1.00E-08 0 1
solver-4| 591 |JEIGONN 0-32 | 1.00E-06 1 [solver-4| 590 |[SHNN 032 1.00e08 | 0 | 1
Solver-5| 592 4.88 |0.32| 1.00E-06 1 Solver-5| 599 5.17 |0.32| 1.00E-08 | O 1
Solver-6| 592 4.84 0.32 | 1.00E-06 1 Solver-6| 599 5.22 0.32 | 1.00E-08 0 1
Solver-7| 592 4.87 0.32 | 1.00E-06 1 Solver-7| 599 5.21 0.32 | 1.00E-08 0 1

Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.[Flag|Bypass
Newton | 1181 (NS 0.16 | 1.00E-06 Newton | 1198 [IN91630] 0.16 | 1.00€-08 | 0
Solver-1| 1180 9.53 | 0.16 | 1.00E-06 Solver-1| 1184 | 10.03 [ 0.16| 1.00E-08 | O
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Solver-2| 1180 | 17.2 [ 0.16] 1.00E-06
Solver-3] 1180 | 9.51 [0.16 | 1.00E-06
Solver-4| 1180 0.16 | 1.00E-06
Solver-5| 1180 | 9.51 [ 0.16| 1.00E-06
Solver-6| 1180 | 9.51 [ 0.16] 1.00E-06
Solver-7| 1180 9.52 | 0.16 | 1.00E-06
Iter. #|Time(s)| s |ErrorCrit.|F
Newton | 2358 0.08 | 1.00E-06
Solver-1| 2358 | 19.07 | 0.08 | 1.00E-06
Solver-2| 2358 | 34.59 | 0.08| 1.00E-06
Solver-3| 2358 | 19.1 [ 0.08 | 1.00E-06
Solver-4| 2358 0.08 | 1.00E-06
Solver-5| 2358 | 19.08 | 0.08 | 1.00E-06
Solver-6| 2358 | 19.05 [ 0.08 | 1.00E-06
Solver-7| 2358 19 0.08 | 1.00E-06
Iter. #|Time(s)| s |ErrorCrit.|F
Newton | 4714 0.04 | 1.00E-06
Solver-1| 4714 | 38.29 [ 0.04 | 1.00E-06
Solver-2| 4714 | 69.19 | 0.04 | 1.00E-06
Solver-3| 4714 | 38.32 | 0.04 | 1.00E-06
Solver-4| 4714 0.04 | 1.00E-06
Solver-5| 4714 | 39.54 | 0.04 | 1.00E-06
Solver-6| 4714 | 40.26 | 0.04 | 1.00E-06
Solver-7| 4714 | 39.77 | 0.04 | 1.00E-06

Solver-2| 618 9.89 | 0.16 | 1.00E-08
Solver-3| 1182 | 10.03 | 0.16 | 1.00E-08
Solver-4| 1182 0.16 | 1.00E-08
Solver-5| 1183 | 10.14 | 0.16| 1.00E-08
Solver-6| 1183 | 10.11 | 0.16 | 1.00E-08
Solver-7| 1183 10.1 0.16 | 1.00E-08
Iter. #|Time(s)| s |ErrorCrit.|F
Newton | 2371 0.08 | 1.00E-08
Solver-1| 2358 | 19.74 | 0.08 | 1.00E-08
Solver-2| 2358 | 35.78 | 0.08 | 1.00E-08
Solver-3| 2358 | 19.8 [ 0.08 | 1.00E-08
Solver-4| 2358 0.08 | 1.00E-08
Solver-5| 2358 | 19.79 | 0.08 | 1.00E-08
Solver-6| 2358 | 19.78 [ 0.08 | 1.00E-08
Solver-7| 2358 | 19.77 | 0.08 | 1.00E-08
Iter. #|Time(s)| s |ErrorCrit.|F
Newton | 4714 0.04 | 1.00E-08
Solver-1| 4714 | 39.87 [ 0.04 | 1.00E-08
Solver-2| 4714 | 71.99 | 0.04 | 1.00E-08
Solver-3| 4714 | 39.81 | 0.04 | 1.00E-08
Solver-4| 4714 0.04 | 1.00E-08
Solver-5| 4714 | 39.87 | 0.04 | 1.00E-08
Solver-6| 4714 | 40.01 | 0.04 | 1.00E-08
Solver-7| 4714 | 39.92 [ 0.04 | 1.00E-08
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Troubles encountered in Table 5.13 and Table 5.14 are resolved by using bypass. It
can be seen from Table 5.15 and Table 5.16. However, the computational times of

solver-5,6,7 are fallen by almost half since additional calculations are avoided.
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Table 5.16. Performance comparison of different algebraic nonlinear equation solvers with different
constant arc-length parameters and passing unnecessary calculations for 1D-Dry friction

nonlinearity (Error Criterion=1e-10, 1e-12)

Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.|[Flag|Bypass
Newton| 667 032100610 | 0 | 1 |Newton| 799 | 618 [032]|100E-12]| 0 | 1
Solver-1| 636 | 532 |032] 100610 0 | 1 [Solver-1| 706 |[NSIBANN 0.32| 1.00e-12 | 0 | 1
solver-2| 280 | 453 |032]1.00e-10 [l 1 [solver-2| 273 | 441 [032]1.00e-12 [ 1
Solver-3| 632 | 533 |032|1006-10| 0 | 1 |[Solver3| 702 | 588 |032| 10012 | 0 | 1
solver-4| 632 |JIGISONN 0.32| 1.00e-10 [ 0 | 1 [solver-4| 701 |JGISGH 032 | 1.006-12 [ 0 [ 1
Solver-5| 633 | 569 |032[1.00e-10] 0 | 1 [solver-5| 706 | 698 [032| 100612 0 [ 1
Solver-6| 633 | 57 |032|100E-10| 0 | 1 |[Solver6| 706 | 7.04 |032| 100e-12 | 0 | 1
Solver-7| 633 | 569 |032]1006-10| 0 | 1 |[solver7| 706 | 7.02 |032| 10012 | 0 | 1
Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.[Flag|Bypass
Newton | 1255 [IN91980 0.16 [ 1.00E-20 | 0 | 1 |Newton| 1391 [ 12.21 [0.16[ 200622 | 0 | 1
Solver-1] 1211 | 10.21 |0.16] 1.00E-10 | 0 | 1 |[Solver-1| 1301 || 4% 0.6 1.006-12 | 0 | 1
Solver-2| 546 | 897 |0.16]1.006-10 Bl 1 |[Solver-2| 535 | 874 |0.16| 1.006-12 [N 1
Solver-3] 1211 [ 9.95 |06/ 1200610 0 | 1 [solver-3] 1300 | 10.87 |0.16| 200612 | 0 | 1
Solver-4| 1211 |G 0.16| 100610 | 0 | 1 |[Solver-4| 1300 |JEGWAN 0.16| 1.006-12 | 0 | 1
Solver-5| 1211 | 10.26 [0.16] 1.00e-10| 0 | 1 [Solver-5| 1307 | 12.03 [0.16| 1.00e-12 | 0 | 1
Solver-6| 1211 [ 10.26 |0.16[ 1.006-10| 0 | 1 |[Solver-6| 1307 | 12.04 |0.16| 200612 | 0 | 1
Solver-7[ 1211 | 10.24 [0.16] 100610 0 | 1 [Solver-7| 1307 | 12.03 016100612 0 | 1
Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.[Flag|Bypass
Newton | 2429 [I81220 0.08| 1.00E-10 | 0 | 1 |Newton| 2591 [120080] 0.08| 1.006-12 [ 0 | 1
Solver-1] 2380 | 20.24 [0.08] 1.00e-10| 0 | 1 [Solver-1| 2481 | 21.05 [0.08| 1.00e-12 | 0 | 1
Solver-2| 1210 | 19.21 |0.08] 1.00e-10 [l 1 |[Solver-2| 1061 | 17.39 |0.08| 1.00e-12 [N 1
Solver-3| 2380 | 19.89 [0.08|1.00e-10| 0 | 1 [Solver-3| 2481 | 21.34 [0.08| 100612 | 0 | 1
Solver-4| 2380 |JSGIGMN 008 | 1.00e-10 | 0 | 1 [Solver-4| 2481 |SSIGHM 0.08 | 1.00e-12 | 0 | 1
Solver-5| 2380 | 206 |008]1.00e-10| 0 | 1 [Solver5| 2482 | 22.17 |0.08| 1.00e-12 | 0 | 1
Solver-6| 2380 | 2056 | 0.08] 1.00e-10| 0 | 1 [Solver-6| 2482 | 22.26 |0.08| 1.00e-12 | 0 | 1
Solver-7| 2380 | 20.56 | 0.08] 1.00e-10 | 0 | 1 |[Solver-7| 2482 | 22.29 [0.08]|1.006-12 [ 0 [ 1
Iter. #|Time(s)| s |ErrorCrit.|Flag|Bypass Iter. #|Time(s)| s |ErrorCrit.[Flag|Bypass
Newton | 4767 [1188601] 0.04| 1.00E-10 | 0 | 1 | Newton| 4922 [113940] 0.04| 1.006-12 | 0 | 1
Solver-1| 4714 | 40.02 [004[ 100610 0 | 1 [Solver-1| 4798 | 40.47 |0.04| 100612 | 0 | 1
Solver-2| 4714 | 71.92 [0.04| 1.00e-10 | 0 | 1 |Solver-2| 2229 | 36.11 | 0.04]| 1.00e-12 [JE 1
Solver-3| 4714 | 39065 |0.04] 1.00e-10| 0 | 1 |[Solver-3| 4797 | 40.79 |0.04| 1.00e-12 | 0 | 1
Solver-4| 4714 |JSISM 0.04| 1.00e-10 | 0 | 1 [Solver-4| 4798 |[iGiooM 0.04 | 1.006-12 [ 0 | 1
Solver-5| 4714 | 40.35 |0.04] 1.00e-10 [ 0 | 1 [Solver-5| 4798 | 42.74 [0.04]|1.006-12 [ 0 [ 1
Solver-6| 4714 | 407 |004| 1.00E-10| 0 | 1 [Solver-6| 4798 | 40.76 |0.04| 1.00e-12 | 0 | 1
Solver-7| 4714 | 4065 |0.04| 1.00e-10| 0 | 1 [solver-7| 4798 | 40.36 |0.04| 1.00e-12 | 0 | 1

Thus, the use of adaptive arc length is shown to be advantageous. This fact can be
seen from Table 5.17 and Table 5.18. When adaptive arc-length method and bypass
are used together, it is easier to obtain solution in error criteria which can not be solved
and one can understand from Table 5.19 and Table 5.20. Also, Table 5.19 and Table

5.20 show that some solvers show better performance than Newton’s method.
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Table 5.17. Performance comparison of different algebraic nonlinear equation solvers with adaptive

arc-length parameter for 1D-Dry friction nonlinearity (Error Criterion=1e-6, 1e-8)

Iter.#|Time(s)|N70pt s_max|s_min|Error Crit.|Flag |Bypass Iter. #|Time(s) |N_opt|s_max|s_min |Error Crit.|Flag | Bypass
Newton| 884 7.02 1 0.32 0.04 | 1.00E-06 | O 0 Newton | 2654 1 0.32 0.04 | 1.00E-08 0 0
Solver-1| 667 1 0.32 0.04 | 1.00E-06 | O 0 Solver-1] 1228 1 0.32 0.04 | 1.00E-08 0 0
Solver-2| 591 8.87 1 0.32 0.04 | 1.00E-06 | O 0 Solver-2| 317 4.99 1 0.32 0.04 | 1.00E-08 0
Solver-3[ 666 5.79 1 0.32 | 0.04 | 1.00E-06 [ O 0 Solver-3[ 317 2.88 1 0.32 | 0.04 | 1.00E-08 0
Solver-4| 591 8.94 1 0.32 0.04 | 1.00E-06 | O 0 Solver-4| 317 5.02 1 0.32 0.04 | 1.00E-08 0
Solver-5| 667 1 0.32 0.04 | 1.00E-06 | O 0 Solver-5| 1227 | 18.06 1 0.32 0.04 | 1.00E-08 0 0
Solver-6| 667 9.9 1 0.32 0.04 | 1.00E-06 | O 0 Solver-6| 1227 | 18.12 1 0.32 0.04 | 1.00E-08 0 0
Solver-7| 667 9.86 1 0.32 0.04 | 1.00E-06 | O 0 Solver-7[ 1227 | 18.12 1 0.32 0.04 | 1.00E-08 0 0

Iter. #|Time(s) | N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter. #|Time(s) |N_opt|s_max|s_min |Error Crit.|Flag | Bypass
Newton | 730 5.6 1.5 0.32 | 0.04 | 1.00E-06 | O 0 Newton | 2311 1.5 0.32 | 0.04 | 1.00E-08 0
Solver-1| 654 5.37 1.5 0.32 | 0.04 | 1.00E-06 | O 0 Solver-1] 320 2.81 1.5 0.32 0.04 | 1.00E-08 0
Solver-2| 591 8.7 1.5 0.32 | 0.04 | 1.00E-06 [ O 0 Solver-2| 317 5.05 1.5 0.32 0.04 | 1.00E-08 0
Solver-3[ 621 1.5 0.32 | 0.04 | 1.00E-06 | O 0 Solver-3[ 317 2.91 15 0.32 | 0.04 | 1.00E-08 0
Solver-4[ 591 8.68 a5 0.32 | 0.04 | 1.00E-06 | O 0 Solver-4[ 317 5.04 i85 0.32 | 0.04 | 1.00E-08 0
Solver-5[ 621 9.07 1.5 0.32 | 0.04 | 1.00E-06 | O 0 Solver-5[ 874 1.5 0.32 | 0.04 | 1.00E-08 [ 0 0
Solver-6| 621 9.1 1.5 0.32 | 0.04 | 1.00E-06 | O 0 Solver-6| 874 1.5 0.32 0.04 | 1.00E-08 [ O 0
Solver-7[ 621 1.5 0.32 | 0.04 | 1.00E-06 [ O 0 Solver-7| 874 1.5 0.32 0.04 | 1.00E-08 | O 0

Iter.# N_opt|s_max|s_min [Error Crit.|Flag|Bypass Iter.#N_opt s_max|s_min |Error Crit. | Flag | Bypass
Newton | 596 2 0.32 | 0.04 | 1.00E-06 | O 0 Newton | 620 2 0.32 | 0.04 | 1.00E-08 0
Solver-1] 593 4.88 2 0.32 0.04 | 1.00E-06 | O 0 Solver-1] 320 2.8 2 0.32 0.04 | 1.00E-08 0
Solver-2| 591 8.83 2 0.32 0.04 | 1.00E-06 | O 0 Solver-2| 317 5.05 2 0.32 0.04 | 1.00E-08 0
Solver-3[ 592 5.1 2 0.32 0.04 | 1.00E-06 | O 0 Solver-3[ 317 2.91 2 0.32 0.04 | 1.00E-08 0
Solver-4[ 591 8.8 2 0.32 | 0.04 | 1.00E-06 | O 0 Solver-4[ 317 5.05 2 0.32 | 0.04 | 1.00E-08 0
Solver-5[ 592 8.74 2 0.32 | 0.04 | 1.00E-06 | O 0 Solver-5[ 599 9.12 2 0.32 | 0.04 | 1.00E-08 [ O 0
Solver-6| 592 2 0.32 0.04 | 1.00E-06 | O 0 Solver-6| 599 9.11 2 0.32 0.04 | 1.00E-08 0 0
Solver-7| 592 8.73 2 0.32 0.04 | 1.00E-06 | O 0 Solver-7| 599 2 0.32 0.04 | 1.00E-08 0 0

Table 5.18. Performance comparison of different algebraic nonlinear equation solvers with adaptive

arc-length parameter for 1D-Dry friction nonlinearity (Error Criterion=1e-10, le-12)

ErrorCrit.|FIag|Bypass

Error Crit. | Flag | Bypass

Iter. #|Time(s) |[N_opt|s_max|s_min Iter. #| Time(s) |[N_opt|s_max|s_min
Newton | 2798 1 0.32 0.04 | 1.00E-10 | O 0 Newton | 3113 1 0.32 0.04 | 1.00E-12 0 0
Solver-1| 280 2.46 1 0.32 0.04 | 1.00E-10 0 Solver-1]| 273 2.41 1 0.32 0.04 | 1.00E-12 0
Solver-2| 280 4.48 1 0.32 | 0.04 | 1.00E-10 0 Solver-2| 273 4.36 1 0.32 | 0.04 | 1.00E-12 0
Solver-3| 280 2.6 1 0.32 0.04 | 1.00E-10 0 Solver-3| 273 2.51 1 0.32 0.04 | 1.00E-12 0
Solver-4| 280 4.47 1 0.32 0.04 | 1.00E-10 0 Solver-4| 273 4.4 1 0.32 0.04 | 1.00E-12 0
Solver-5] 2693 | 39.35 1 0.32 0.04 | 1.00E-10 0 0 Solver-5[ 2988 | 43.86 1 0.32 0.04 | 1.00E-12 0 0
Solver-6| 2693 H 1 | 032 | 004 |1.00E:10| 0 | 0 |Solver6| 2988 | 4362 | 1 | 032 | 0.04 | 1.00e:12| 0 | o
Solver-7| 2693 | 39.36 1 0.32 | 0.04 | 1.00E-10 | O 0 Solver-7[ 2988 1 0.32 | 0.04 | 1.00E-12| O 0

Iter. #|Time(s) |N_opt|s_max]|s_min |Error Crit. | Flag | Bypass Iter. # N_opt|s_max|s_min |Error Crit.|Flag|Bypass
Newton | 2783 1.5 0.32 | 0.04 | 1.00E-10 | O 0 Newton | 3115 1.5 0.32 0.04 | 1.00E-12 0 0
Solver-1| 280 2.54 1.5 0.32 | 0.04 | 1.00E-10 0 Solver-1| 273 243 1.5 0.32 | 0.04 | 1.00E-12 0
Solver-2| 280 4.62 1.5 0.32 | 0.04 | 1.00E-10 0 Solver-2| 273 4.43 1.5 0.32 | 0.04 | 1.00E-12 0
Solver-3| 280 2.79 1.5 0.32 | 0.04 | 1.00E-10 0 Solver-3| 273 2.54 1.5 0.32 | 0.04 | 1.00E-12 0
Solver-4| 280 4.59 1.5 0.32 | 0.04 | 1.00E-10 0 Solver-4| 273 4.39 1.5 0.32 | 0.04 | 1.00E-12 0
Solver-5| 2543 | 37.42 1.5 032 | 0.04 | 1.00E-10 | O 0 Solver-5[ 2988 | 44.66 1.5 0.32 | 0.04 | 1.00E-12 0 0
Solver-6{ 2543 | 37.49 1.5 032 | 0.04 [ 1.00E-10 | O 0 Solver-6| 2988 | 44.26 1.5 0.32 | 0.04 | 1.00E-12| O 0
Solver-7| 2543 | 37.59 1.5 0.32 | 0.04 | 1.00E-10 [ O 0 Solver-7 | 2988 1.5 0.32 | 0.04 | 1.00E-12| O 0

Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter. # N_opt|s_max|s_min |Error Crit.|Flag|Bypass
Newton| 718 [BISIGOB 2 | 032 | 004 | 1.00E10| 0 | 0 |Newton| 1164 2 | 032|004 [100e12] 0 | o©
Solver-1| 280 2.61 2 0.32 0.04 | 1.00E-10 0 Solver-1| 273 243 2 0.32 0.04 | 1.00E-12 0
Solver-2| 280 4.55 2 0.32 | 0.04 | 1.00E-10 0 Solver-2| 273 4.4 2 0.32 | 0.04 | 1.00E-12 0
Solver-3| 280 2.59 2 0.32 0.04 | 1.00E-10 0 Solver-3| 273 2.54 2 0.32 0.04 | 1.00E-12 0
Solver-4| 280 4.48 2 0.32 0.04 | 1.00E-10 0 Solver-4| 273 4.39 2 0.32 0.04 | 1.00E-12 0
Solver-5| 633 9.61 2 0.32 0.04 | 1.00E-10 | O 0 Solver-5| 736 11.01 2 0.32 0.04 | 1.00E-12 0 0
Solver-6f 633 9.95 2 0.32 | 0.04 | 1.00E-10 | O 0 Solver-6[ 736 10.89 2 0.32 | 0.04 | 1.00E-12]| O 0
Solver-7| 633 [JNOBAN 2 | 032 | 004 [ 100610 0 | 0 |solver-7] 720 2 | 032 | 004 [100E12| 0 | O
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Table 5.19. Performance comparison of different algebraic nonlinear equation solvers with adaptive

arc-length parameter and passing unnecessary calculations for 1D-Dry friction nonlinearity (Error
Criterion=1e-6, 1le-8)

Iter. # | Time(s) | N_opt|s_max|s_min |Error Crit.|Flag|Bypass Iter. #|Time(s) |N_opt|s_max|s_min |Error Crit.|Flag | Bypass
Newton| 884 7.16 1 0.32 0.04 | 1.00E-06 0 1 Newton| 2654 | 20.45 1 0.32 0.04 | 1.00E-08 [ O 1
Solver-1| 667 1 0.32 0.04 | 1.00E-06 0 1 Solver-1] 1228 | 10.54 1 0.32 0.04 | 1.00E-08 [ O 1
Solver-2| 591 1 0.32 0.04 | 1.00E-06 0 1 Solver-2| 317 5.37 1 0.32 0.04 | 1.00E-08 - 1
Solver-3| 666 5.77 1 0.32 | 0.04 | 1.00E-06 | O 1 Solver-3[ 1036 1 0.32 | 0.04 | 1.00E-08| O 1
Solver-4| 591 9.31 1 0.32 0.04 | 1.00E-06 0 1 Solver-4| 1036 1 0.32 0.04 | 1.00E-08 | O 1
Solver-5| 667 5.74 1 0.32 0.04 | 1.00E-06 0 1 Solver-5| 1227 | 10.09 1 0.32 0.04 | 1.00E-08 [ O 1
Solver-6| 667 5.74 1 0.32 0.04 | 1.00E-06 0 1 Solver-6| 1227 | 10.12 1 0.32 0.04 | 1.00E-08 [ O 1
Solver-7[ 667 5.7 1 0.32 0.04 | 1.00E-06 0 1 Solver-7[ 1227 | 10.06 1 0.32 0.04 | 1.00E-08 0 1

Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter. #|Time(s) |N_opt|s_max|s_min |Error Crit.|Flag | Bypass
Newton | 730 5.83 1.5 0.32 | 0.04 | 1.00E-06 [ O 1 Newton | 2311 | 17.84 1.5 0.32 | 0.04 | 1.00E-08| O 1
Solver-1| 654 | 548 | 15 | 032 | 004 | 1.00e:06| 0 | 1 |solver-1| 875 H 15 | 032 | 0.04 [1.00E08] 0 | 1
Solver-2| 591 1.5 0.32 | 0.04 | 1.00E-06 | O 1 Solver-2| 317 5.03 1.5 0.32 | 0.04 | 1.00E-08 - 1
Solver-3| 621 1.5 0.32 | 0.04 | 1.00E-06 [ O 1 Solver-3| 874 7.25 1.5 0.32 | 0.04 | 1.00E-08| O 1
Solver-4| 591 8.97 1.5 0.32 | 0.04 | 1.00E-06 [ O 1 Solver-4| 874 1.5 0.32 | 0.04 | 1.00E-08| O 1
Solver-5| 621 5.18 1.5 0.32 | 0.04 | 1.00E-06 | O 1 Solver-5| 874 7.37 1.5 0.32 | 0.04 | 1.00E-08 | O 1
Solver-6| 621 5.22 1.5 0.32 | 0.04 | 1.00E-06 | O 1 Solver-6| 874 7.35 1.5 0.32 0.04 | 1.00E-08 | O 1
Solver-7[ 621 5.24 1.5 0.32 | 0.04 | 1.00E-06 | O 1 Solver-7| 874 7.77 1.5 0.32 | 0.04 | 1.00E-08| O 1

Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter. #|Time(s) |N_opt|s_max|s_min |Error Crit.|Flag | Bypass
Newton| 59 | 523 | 2 | 032 | 004 |1.00E-06| 0 | 1 |Newton| 620 [WMAGSNN 2 | 032 | 004 [ 100608 0 | 1
Solver-1] 593 5.09 2 0.32 0.04 | 1.00E-06 | O 1 Solver-1| 600 5.05 2 0.32 0.04 | 1.00E-08 [ O 1
Solver-2| 591 9.1 2 0.32 0.04 | 1.00E-06 | O 1 Solver-2| 317 5.02 2 0.32 0.04 | 1.00E-08 - 1
Solver-3[ 592 5.02 2 0.32 | 0.04 | 1.00E-06 | O 1 Solver-3[ 599 5.05 2 0.32 | 0.04 | 1.00E-08| O 1
Solver-4| 591 H 2 | 032 | 004 |100E06| 0 | 1 |[solver4| 599 |JNGHBNN 2 | 032 | 004 [100E-08| 0 | 1
Solver-5| 592 5.07 2 0.32 0.04 | 1.00E-06 | O 1 Solver-5| 599 5.17 2 0.32 0.04 | 1.00E-08 [ O 1
Solver-6| 592 5.01 2 0.32 0.04 | 1.00E-06 | O 1 Solver-6| 599 5.18 2 0.32 0.04 | 1.00E-08 [ O 1
Solver-7| 592 2 0.32 0.04 | 1.00E-06 | O 1 Solver-7[ 599 5.19 2 0.32 0.04 | 1.00E-08 | O 1

Table 5.20. Performance comparison of different algebraic nonlinear equation solvers with adaptive

arc-length parameter and passing unnecessary calculations for 1D-Dry friction nonlinearity (Error
Criterion=1e-10, 1e-12)

Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter4#|Time(s)|N_opt s_max|s_min | Error Crit.|Flag | Bypass
Newton | 2798 1 | 032 004 [100E10| 0 | 1 |Newton|3113| 2457 | 1 | 032 | 004 |100E12| 0 | 1
Solver1| 2693 | 21.92 | 1 | 032 | 0.04 [1.00e20| 0 | 1 [solver-1] 2988 1 | 032004 [100E12] 0 1
Solver-2| 280 | 45 | 1 | 032 | 004 |zooe10 Ml 1 [Solver2| 273 | 439 | 1 | 032 | 0.04 | 1ooe-12 [ ¢
Solver3| 2693 | 21.88 | 1 | 032 | 0.04 [1.00e10| 0 | 1 [solver-3| 2988 | 2436 | 1 | 0.32 | 0.04 |100E22] 0 | 1
Solver-4| 2693 MISOIGMN| 1 | 032 | 0.04 [100E10| 0 | 1 |solver-4| 2988 1 | 032|004 10022 0| 1
Solvers| 2693 | 2235 | 1 | 032 | 0.04 [1.00e20| 0 | 1 [solver-5[ 2988 | 2629 | 1 | 032 | 0.04 |1.00e22] 0 | 1
Solver6| 2693 | 2232 | 1 | 032 | 0.04 [1.00E10| 0 | 1 [solver-6] 2988 | 2574 | 1 | 032 | 0.04 |1.00E22] 0 | 1
Solver7| 2693 | 21.96 | 1 | 032 | 0.04 [1.00E10| 0 | 1 [solver-7| 2988 | 2614 | 1 | 032 | 0.04 |100E22] 0 | 1

Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter. #|Time(s) |N_opt|s_max|s_min | Error Crit.|Flag | Bypass
Newton | 2783 [12085 | 15 | 032 | 004 | 1.00E-10 | 0 | 1 |Newton| 3115 [12447 | 15 | 032 | 004 [100612| 0 | 1
Solver-1| 2543 | 21.39 | 15 | 032 | 0.04 [1.00e20| 0 | 1 [solver-1[2985| 2435 | 1.5 | 032 | 0.04 |1.00E22| 0 | 1
Solver-2| 280 | 454 | 15 | 032 | 004 | 1.00e-20 [Nl 1 |[solver-2| 273 | 443 | 15 | 032 | 0.04 | 1.00e-12 [N ¢
Solver-3| 2543 | 20.84 | 15 | 032 | 0.04 [1.00E10| 0 | 1 [solver-3| 2985 | 2534 | 1.5 | 032 | 0.04 | 100e22] 0 | 1
Solver-4| 2543 |WSUWSM| 15 | 032 | 0.04 [ 1.00E10| 0 | 1 [solver-4| 2985 |WASIGGM| 15 | 0.32 | 0.04 | 100E12| 0 | 1
Solver5| 2543 | 21.16 | 15 | 032 | 0.04 [1.00e20| 0 | 1 [solver-5[ 2988 | 2529 | 1.5 | 032 | 0.04 | 1.00E22| 0 | 1
Solver-6] 2543 | 21.18 | 15 | 032 | 0.04 [1.00E10| 0 | 1 [solver-6] 2988 | 2533 | 1.5 | 0.32 | 0.04 | 1.00E22] 0 | 1
Solver-7| 2543 | 2119 | 15 | 032 | 0.04 [1.00E10| 0 | 1 [solver-7| 2988 | 2529 | 1.5 | 0.32 | 0.04 |1.00E22] 0 | 1

Iter. #|Time(s) |N_opt|s_max|s_min|Error Crit.|Flag | Bypass Iter. #|Time(s) |N_opt|s_max|s_min | Error Crit.|Flag | Bypass
Newton| 718 | 567 | 2 | 032 | 0.04 [1.00E10| 0 | 1 |Newton|1164| 857 | 2 | 032 | 004 |100e12| 0 | 1
Solver-1| 642 H 2 | 032 | 004 [100E-0| 0 | 1 [solver-1| 764 | 617 | 2 | 032 | 004 | 100612 0 | 1
Solver-2| 280 | 453 | 2 | 032 | 004 | z.00e-10 [l 1 |[Solver2| 273 | 434 | 2 | 032 | 0.04 | 1.00e-12 [N ¢
Solver3| 632 | 535 | 2 | 032 | 0.04 [1.00E10| 0 | 1 [solver-3| 732 2 | 032|004 [t00E12| 0 | 1
Solver-4| 632 2 | 032 | 004 [1.00E20| 0 | 1 [solver-4| 701 2 | 032|004 [t00E12| 0 | 1
Solver-5| 633 | 576 | 2 | 032 | 004 [1.00E-20| 0 | 1 |[solver-5| 736 | 805 | 2 | 032 | 0.04 [1.00e2] 0 | 1
Solver6| 633 | 573 | 2 | 032 | 0.04 [1.00E10| 0 | 1 [solver-6] 736 | 758 | 2 | 032 | 0.04 |1.00E22] 0 | 1
Solver7] 633 | 574 | 2 | 032 | 0.04 [1.00E10| 0 | 1 [solver-7| 720 | 7.07 | 2 | 032 | 0.04 | 1.00622] 0 | 1
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Table 5.21. Performance comparison of different predictors with different constant arc-length

parameters for 1D-Dry friction nonlinearity (Error Criterion=1e-6, 1e-8)

Iter. #|Time(s)| s |[ErrorCrit.|Flag Iter. #|Time(s)| s |[ErrorCrit.|Flag
Tangent| 596 484 | 0.32| 1.00E-06 | O |Tangent| 617 492 |0.32| 1.00E-08 | O
Linear | 508 |42 0.32 [ 1.00E-06 | 0 | Linear | 625 | 4.54 |0.32] 1.00E-08 | 0
Second | 597 443 | 0.32| 1.00E-06 | O |Second| 616 0.32 | 1.00E-08 | O
Third 592 495 |0.32| 1.00E-06 | O Third 614 5.05 [0.32| 1.00E-08 | O
log | 922 |JNGHIGM 032 | 1.00E-06 | 0 | Log [ 1226 0.32 | 1.00E-08 | ©
Spline | 594 448 | 0.32| 1.00E-06 | O | Spline | 614 462 | 032 1.00E-08 [ O
Iter. #|Time(s)| s |ErrorCrit.|Flag Iter. #|Time(s)| s |ErrorCrit.|Flag
Tangent| 1181 [ 9.52 | 0.16 | 1.00E-06 | O [Tangent| 1198 | 9.66 | 0.16 | 1.00E-08 [ O
Linear | 1183 | 8.67 | 0.16| 1.00E-06 | O | Linear | 1209 | 889 | 0.16| 1.00E-08 | O
Second | 1180 0.16 [ 1.00E-06 | O | Second | 1196 0.16 | 1.00E-08 | O
Third | 1175 0.16 | 1.00E-06 | 0 | Third | 1190 0.16 | 1.00E-08 | 0
Log 1350 | 9.85 | 0.16 | 1.00E-06 | O Log 2388 0.16 | 1.00E-08 [ O
Spline | 1177 | 8.76 | 0.16 | 1.00E-06 | O | Spline | 1193 | 9.64 | 0.16| 1.00E-08 | O
Iter. #|Time(s)| s |ErrorCrit.|Flag Iter. #|Time(s)| s |[ErrorCrit.|Flag
Tangent| 2358 | 18.88 | 0.08 | 1.00E-06 | O [Tangent| 2371 | 18.92 | 0.08 | 1.00E-08 [ O
Linear | 2357 0.08 | 1.00E-06 | O | Linear | 2378 ( 17.31 | 0.08 | 1.00E-08 | O
Second | 2358 | 17.26 | 0.08 | 1.00E-06 | O | Second | 2361 0.08 | 1.00E-08 | O
Third | 2353 0.08 | 1.00E-06 | O Third | 2355 | 20.5 | 0.08| 1.00E-08 [ O
Log 2441 | 17.78 [ 0.08 | 1.00E-06 | O Log 3197 0.08 | 1.00E-08 | O
Spline [ 2355 | 17.53 | 0.08 | 1.00E-06 | O | Spline | 2358 | 17.49 | 0.08 | 1.00E-08 | O
Iter. #|Time(s)| s |ErrorCrit.|Flag Iter. #|Time(s)| s |ErrorCrit.|Flag
Tangent| 4714 | 37.51 | 0.04 | 1.00E-06 | O [Tangent| 4714 | 37.47 | 0.04 | 1.00E-08 [ O
Linear | 4713 | 34.25 | 0.04 | 1.00E-06 | O | Linear | 4721 | 35.29 | 0.04 | 1.00E-08 | O
Second | 4714 0.04 | 1.00E-06 | O | Second | 4714 0.04 | 1.00E-08 | O
Third | 4709 0.04| 1.00E-06 | O Third | 4709 0.04 | 1.00E-08 | O
Log 4755 | 34.6 | 0.04| 1.00E-06 | O Log 5134 | 38.29 | 0.04 | 1.00E-08 [ O
Spline | 4711 | 35.19 | 0.04 | 1.00E-06 | O | Spline | 4711 | 35.83 | 0.04 | 1.00E-08 | O

Performance comparison of different predictors with different constant arc-length

parameters for 1D-dry friction nonlinearity is given in Table 5.21 and Table 5.22. It

can be seen that third order polynomial and logarithmic predictors are the worst

predictors and second order polynomial and quadratic spline are the promising

predictors comparing the other.
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Table 5.22. Performance comparison of different predictors with different constant arc-length

parameters for 1D-Dry friction nonlinearity (Error Criterion=1e-10, 1e-12)

Iter. #|Time(s)| s |ErrorCrit.|Flag Iter. #|Time(s)| s |ErrorCrit.|Flag
Tangent| 667 | 5.38 | 0.32| 1.00E-10 [ O |Tangent| 799 | 6.22 | 0.32 | 1.00E-12 | O
Linear | 693 | 5.09 | 0.32| 1.00E-10 | O | Linear | 836 | 6.44 | 0.32| 1.00E-12 [ O
Second | 647 | 4.83 [ 0.32| 1.00E-10 | O | Second | 697 52 |[0.32( 1.00E-12 | O
0 0
0 0

Third | 647 | 5.36 [ 0.32| 1.00E-10 Third | 683 | 555 [0.32| 1.00E-12

Log | 1323 0.32 | 1.00E-10 Log 1595 0.32 | 1.00E-12
Spline | 647 0.32 | 1.00E-10 | O | Spline | 697 0.32| 1.00E-12 | O
Iter. #|Time(s)| s |[ErrorCrit.|Flag Iter. #|Time(s)| s |[ErrorCrit.|Flag

Tangent| 1255 | 10.11 | 0.16 | 1.00E-10 | O [Tangent| 1391 | 11.02 | 0.16 | 1.00E-12 | O
Linear | 1290 (| 9.51 | 0.16 | 1.00E-10 | O | Linear | 1477 | 10.69 | 0.16 | 1.00E-12 | O
Second | 1224 | 9.38 [ 0.16 | 1.00E-10 | O | Second | 1284 | 9.61 | 0.16 [ 1.00E-12 | O
0 0

0 0

Third | 1218 | 10.46 | 0.16 | 1.00E-10 Third | 1270 | 10.79 | 0.16 | 1.00E-12
Log 2460 0.16 | 1.00E-10 Log 2666 0.16 | 1.00E-12
Spline | 1224 0.16 | 1.00E-10 [ O | Spline | 1284 0.16 | 1.00E-12 | O
Iter. #|Time(s)| s |[ErrorCrit.|Flag Iter. #|Time(s)| s |[ErrorCrit.|Flag
Tangent| 2429 | 19.83 | 0.08 | 1.00E-10 [ O ([Tangent| 2591 | 20.85 | 0.08 | 1.00E-12 [ O

Linear | 2454 | 18.37 | 0.08 | 1.00E-10 | O | Linear | 2675 | 19.48 | 0.08 | 1.00E-12 | O
Second [ 2395 | 18.34 | 0.08 | 1.00E-10 | O | Second | 2636 | 18.66 | 0.08 [ 1.00E-12 | O
0 0
0 0

Third | 2385 | 21.33 | 0.08 | 1.00E-10 Third | 2423 | 20.39 | 0.08 | 1.00E-12
Log 4783 0.08 | 1.00E-10 Log 4939 0.08 | 1.00E-12

Spline | 2395 0.08 | 1.00E-10 | O | Spline | 2457 0.08 | 1.00E-12 | O
Iter. #|Time(s)| s |[ErrorCrit.|Flag Iter. #|Time(s)| s |[ErrorCrit.|Flag
Tangent| 4767 | 39.22 | 0.04 | 1.00E-10 [ O [Tangent| 4922 | 37.71 | 0.04 | 1.00E-12 [ O
Linear | 4800 | 36.2 | 0.04 | 1.00E-10 Linear | 5035 | 35.23 | 0.04 | 1.00E-12

0 0
Second | 4735 | 36.42 | 0.04 | 1.00E-10 | O | Second | 6524 | 44.82 | 0.04 [ 1.00E-12 | O
Third | 4727 | 43.09 | 0.04 | 1.00E-10 | O | Third | 4759 | 40.77 | 0.04 | 1.00E-12 | O
0 0
0 0

Log | 8758 0.04 | 1.00E-10 Log 9574 0.04 | 1.00E-12
Spline | 4729 0.04 | 1.00E-10 Spline | 4795 0.04 | 1.00E-12

The main advantage of adaptive arc-length method is to reduce the computational time

significantly. It can be seen from Table 5.11 and Table 5.12. If adaptive arc-length
method is combined with second order and quadratic spline predictors, it is possible

to obtain fastest computational time.
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Table 5.23. Performance comparison of different predictors with adaptive arc-length parameter for

1D-Dry friction nonlinearity (Error Criterion=1e-6, 1e-8)

Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit.|Flag Iter. #|Time(s) |N_opt|s_max|s_min [Error Crit. |Flag

Tangent| 884 | 7.07 1 0.32 | 0.04 | 1.00E-06 | O |Tangent| 2654 | 19.78 1 0.32 | 0.04 | 1.00E-08 | O

Linear | 1306 | 9.35 1 0.32 | 0.04 | 1.00E-06 | O | Linear | 2745 | 18.91 1 0.32 | 0.04 | 1.00E-08 | O
Second | 1060 8.3 1 0.32 [ 0.04 | 1.00E-06 | O | Second | 1959 | 13.66 1 0.32 | 0.04 | 1.00E-08 | O
Third | 1176 | 10.04 1 0.32 [ 0.04 | 1.00E-06 | O | Third | 1786 | 15.42 1 0.32 | 0.04 | 1.00E-08 | O
Log | 4695 1 0.32 | 0.04 | 1.00E-06 | O Log | 5050 1 0.32 | 0.04 | 1.00E-08 | O
Spline | 881 1 0.32 [ 0.04 | 1.00E-06 | O | Spline | 1791 1 0.32 [ 0.04 | 1.00E-08 | O

Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit. |Flag Iter. #|Time(s) |N_opt|s_max|s_min [Error Crit. |Flag

Tangent| 730 | 5.58 15 | 032 | 0.04 | 1.00E-06 | O |Tangent| 2311 ( 17.21 | 1.5 | 0.32 | 0.04 | 1.00E-08 [ O

Linear | 975 6.87 1.5 0.32 | 0.04 | 1.00E-06 [ O | Linear | 2751 [ 19.15 1.5 0.32 | 0.04 | 1.00E-08 | O
Second | 988 7.14 1.5 0.32 | 0.04 | 1.00E-06 [ O | Second | 1821 [ 12.71 1.5 0.32 | 0.04 | 1.00E-08 | O
Third | 1080 8.8 1.5 0.32 | 0.04 | 1.00E-06 [ O Third | 1647 | 14.12 1.5 0.32 | 0.04 | 1.00E-08 | O
Log | 3715 0.32 | 0.04 | 1.00E-06 | O Log | 5046 1.5 | 0.32 | 0.04 | 1.00E-08 | O
Spline | 770 0.32 | 0.04 | 1.00E-06 | O | Spline | 1676 1.5 0.32 | 0.04 | 1.00E-08 | O
Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit. |Flag Iter. #|Time(s) |N_opt|s_max|s_min [Error Crit. |Flag
Tangent| 596 [ 4.63 2 0.32 | 0.04 | 1.00E-06 [ O [Tangent| 620 | 4.81 2 0.32 | 0.04 | 1.00E-08 | O
Linear | 600 4.44 2 0.32 | 0.04 [ 1.00E-06 | O | Linear | 642 4.57 2 0.32 | 0.04 | 1.00E-08 | O
Second | 602 4.52 2 0.32 [ 0.04 | 1.00E-06 | O | Second | 628 4.46 2 0.32 | 0.04 | 1.00E-08 | O
Third 601 4.78 2 0.32 | 0.04 [ 1.00E-06 | O Third 623 4.94 2 0.32 | 0.04 | 1.00E-08 | O
Log 1147 2 0.32 | 0.04 [ 1.00E-06 | O Log 3318 2 0.32 | 0.04 | 1.00E-08 | O
Spline | 594 2 0.32 [ 0.04 | 1.00E-06 | O | Spline | 615 2 0.32 | 0.04 | 1.00E-08 | O

Table 5.24. Performance comparison of different predictors with adaptive arc-length parameter for
1D-Dry friction nonlinearity (Error Criterion=1e-10, 1le-12)

Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit. |Flag Iter. #|Time(s) |N_opt|s_max|s_min [Error Crit. |Flag

Tangent| 2798 | 20.77 1 0.32 | 0.04 | 1.00E-10 | O [Tangent| 3113 | 23.15 1 0.32 [ 0.04 | 1.00E-12 | O

Linear | 2953 | 20.07 1 0.32 | 0.04 | 1.00E-10 [ O | Linear | 3304 [ 22.6 1 0.32 | 0.04 | 1.00E-12 | O
Second | 2971 | 20.3 1 0.32 | 0.04 | 1.00E-10 | O | Second | 4755 | 31.49 1 0.32 | 0.04 | 1.00E-12 | O
Third | 3038 [ 26.35 1 0.32 | 0.04 | 1.00E-10 | O | Third | 3137 | 27.18 1 0.32 | 0.04 | 1.00E-12 | O
Log | 8647 1 0.32 | 0.04 | 1.00E-10 [ O Log | 9461 1 0.32 | 0.04 | 1.00E-12 | O
Spline | 2802 1 0.32 | 0.04 | 1.00E-10 [ O | Spline | 2932 1 0.32 | 0.04 | 1.00E-12 | O
Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit. |Flag Iter. #|Time(s) |N_opt|s_max|s_min [Error Crit. |Flag

Tangent| 2783 [ 20.66 | 1.5 | 0.32 | 0.04 | 1.00E-10 [ O |Tangent| 3115 | 22.94 | 1.5 | 0.32 | 0.04 [ 1.00E-12 | O

Linear | 2931 | 20.17 | 1.5 | 0.32 | 0.04 | 1.00E-10 | O | Linear | 3316 | 22.47 | 1.5 | 0.32 | 0.04 | 1.00E-12 | O
Second | 2923 | 19.96 | 1.5 | 0.32 | 0.04 | 1.00E-10 | O | Second| 4720 [ 31.33 | 1.5 | 0.32 [ 0.04 | 1.00E-12 | O
Third | 3022 [ 26.2 1.5 | 0.32 | 0.04 | 1.00E-10 | O | Third | 3109 | 26.57 | 1.5 [ 0.32 | 0.04 | 1.00E-12 [ O
Log | 8647 1.5 | 0.32 | 0.04 | 1.00E-10 [ O Log | 9461 1.5 | 0.32 | 0.04 | 1.00E-12 | O
Spline | 2732 1.5 | 0.32 | 0.04 | 1.00E-10 [ O | Spline | 2920 1.5 | 0.32 | 0.04 | 1.00E-12 | O
Iter. #| Time(s) [N_opt|s_max|s_min|Error Crit. |Flag Iter. #|Time(s) |N_opt|s_max|s_min [Error Crit. |Flag
Tangent| 718 [ 5.52 2 0.32 | 0.04 | 1.00E-10 | O [Tangent| 1164 | 8.31 2 0.32 | 0.04 | 1.00E-12 | O
Linear | 808 | 5.61 2 0.32 | 0.04 | 1.00E-10 [ O | Linear | 1515 | 10.06 2 0.32 | 0.04 | 1.00E-12 | O
Second | 666 | 4.82 2 0.32 | 0.04 | 1.00E-10 | O [Second| 762 | 5.44 2 0.32 | 0.04 | 1.00E-12 | O
Third | 667 | 5.25 2 0.32 | 0.04 | 1.00E-10 [ O | Third | 726 | 5.59 2 0.32 | 0.04 | 1.00E-12 | O
Log | 7913 2 0.32 | 0.04 | 1.00E-10 [ O Log | 9452 2 0.32 | 0.04 | 1.00E-12 | O
Spline | 660 2 0.32 | 0.04 | 1.00E-10 [ O | Spline | 754 2 0.32 | 0.04 | 1.00E-12 | O
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Computational performance of the different solvers and different predictors are
evaluated on models containing cubic stiffness and dry friction nonlinearities. When
the results are evaluated, it is found to be advantageous to use the adaptive arc-length

and bypass methods together.

When computational performance of Solver-1 and Solver-3 on 1D dry friction
nonlinearity are examined, they were observed to stand out among different solution
methods. The use of these two methods together with bypass and adaptive arc-length
reduces the solution time and the number of iterations. Comparing Solver-1 and
Solver-3 with Newton’s method, they reduce the calculation time by at least 10 percent
and at most 50 percent. Thus, if a model includes only 1D dry friction nonlinearity

without normal load variation, it is beneficial to use Solver-1 and Solver-3.

Different predictor algorithms are investigated for 1D dry friction nonlinearity.
Second order polynomial and quadratic spline are promising methods to reduce
computational time and iteration numbers for both constant and adaptive arc-length
parameter. However, logarithmic and third order polynomial fit are not beneficial to

use since these two methods increase computational time and iteration numbers.

Particularly in cases where adaptive arc-length method is used, quadratic spline
predictor yields promising results. The reason is that quadratic spline has a continuous

derivative on the intervals.

5.3. Detail Comparison of Different Solvers and Proposed Predictors for Both

Cubic Stiffness and 1D-Dry Friction Nonlinearities

In this section, obtained results of case studies on different solvers and predictors are

explained according to minimum calculation time.

73



5.3.1. Effect of Error Criteria for Different Solvers

Comparison results of different solvers according to different error criteria are given
in Figure 5.5 and Figure 5.6 for both cubic stiffness and 1D dry friction nonlinearities.
For constant step size (s=0.04), Solver-1-2-3-4 fail, while error criterion decreases,
since their convergence field is narrower than the other solvers. Newton has better

performance than other solvers for both cases when ““s” is constant.
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Figure 5.5. Performance comparison of different solvers for cubic stiffness

nonlinearity according to different error criteria and constant step
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Figure 5.6. Performance comparison of different solvers for contact nonlinearity

according to different error criteria and constant step
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5.3.2. Effect of Adaptive Step Size for Different Solvers

Comparison results of different solvers according to different adaptive step size
parameters are given in Figure 5.7 and Figure 5.8 for both cubic stiffness and 1D dry
friction nonlinearities. For error criterion (1e-10) and specific adaptive step size

parameters, Solver-5-6-7 have better performance than Newton.
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Figure 5.7. Performance comparison of different solvers for cubic stiffness

nonlinearity according to different adaptive step size parameters
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Figure 5.8. Performance comparison of different solvers for contact nonlinearity

according to different adaptive step size parameters

75



5.3.3. Effect of Adaptive Step Size and Bypass for Different Solvers

Comparison results of different solvers according to different adaptive step size
parameters are given in Figure 5.9 and Figure 5.10 for both cubic stiffness and 1D dry
friction nonlinearities. For error criterion (1e-10) and specific adaptive step size

parameter (N_opt=2), Solver-5-6-7 have better performance than Newton.
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Figure 5.9. Performance comparison of different solvers for cubic stiffness

nonlinearity according to different adaptive step size parameters and bypass
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5.3.4. Effect of Error Criteria for Different Predictors

Comparison results of different predictors according to different error criteria are
given in Figure 5.11 and Figure 5.12 for both cubic stiffness and 1D dry friction
nonlinearities. For constant step size (s=0.04), second order and quadratic spline have

better performance than tangent predictor.
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Figure 5.11. Performance comparison of different predictors for cubic stiffness

nonlinearity according to different error criteria and constant step
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Figure 5.12. Performance comparison of different predictors for contact nonlinearity

according to different error criteria and constant step
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5.3.5. Effect of Adaptive Step Size for Different Predictors

Comparison results of different predictors according to different adaptive step size
parameters are given in Figure 5.13 and Figure 5.14 for both cubic stiffness and 1D
dry friction nonlinearities. For constant step size (s=0.04), quadratic spline have better

performance than tangent predictor.
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Figure 5.13. Performance comparison of different predictors for cubic stiffness
nonlinearity according to different adaptive step size parameters
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CHAPTER 6

CONCLUSION

In this study, a new method, Jacobian Element Method (JEM), is proposed for numerical
Jacobian calculation of nonlinear vibration analysis of multidegree-of-freedom (MDOF)
systems to obtain steady state response. Also, computational performance of different
solution methods and predictor algorithms are investigated. The aim of the work is to
obtain significant reduction of computational time for Jacobian calculation compared to

classical Jacobian calculation.

In order to reduce number of nonlinear equations, receptance method is applied. Also,
Harmonic Balance Method (HBM) which transform the nonlinear differential
equations into a set of nonlinear algebraic equations, are used. HBM provides to solve

nonlinear algebraic equations iteratively.

In order to validate the proposed method, different case studies are investigated. Force
response analysis of a 4-DOF lumped parameter model and a realistic finite element

model of bladed disk sector are performed.

Three different 4-DOF lumped models are constructed by changing number of
nonlinear elements. Cubic stiffness nonlinearity is considered in lumped parameter
model. It is observed the effect of the number of harmonics and the number of
nonlinear elements used in the models on the computational time. It is proven that
computational reduction ratio is independent of number of harmonics. Also, it is
shown that Jacobian element method provides to reductions in total computational
times up to sixty percent. The comparison study on the lumped models is made by
using the developed JEM and classical Jacobian method. The effect of different
nonlinear element numbers on the computational time is studied while keeping the
nonlinear equation numbers constant. Also, the effect of number of harmonics used in

the response analysis on computational time is analyzed. Theoretical and actual
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computational reduction ratios are also presented and the results are in good

agreement.

Force response analysis of a bladed disk sector is analyzed by using finite element
model. 1D-dry friction nonlinearity is placed node to node connection between shroud
contact surfaces. The effect of number of nonlinear elements and nonlinear equations
are investigated. It is shown that Jacobian element method provides to reductions in

total computational times up to ninety percent.

Comparison of computational performance of different nonlinear algebraic equation
solvers and different predictors are studied where, solvers with different convergence
order are selected based on the number of Jacobian matrix and vector function
evaluations. In order to compare the performance of these selected nonlinear solvers,
a lumped parameter model with cubic stiffness nonlinearity and bladed disk sector
with 1D dry friction nonlinearity are considered. Several case studies are performed
and nonlinear solvers are compared to each other in terms of solution time based on
error tolerance used. When the results are evaluated, it is found to be advantageous to
use the adaptive arc-length and bypass methods together in solution process for
different solvers. Comparing different solvers with Newton’s method, it is shown that
they can reduce the calculation time by at least 10 percent and at most 50 percent for
specific adaptive step size parameter. Also, it is concluded that second order
polynomial and quadratic spline are promising methods to reduce computational time

and iteration numbers for both constant and adaptive arc-length parameter.
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