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ABSTRACT

A NOVEL APPROACH TO CONDENSATION MODELING AT
THE FIN TOP OF A GROOVED HEAT PIPE

Akda§, Osman

Ph.D., Department of Mechanical Engineering

Supervisor : Prof. Dr. Zafer Dursunkaya

Co-Supervisor : Dr. Yi§it Akku³

August 2019, 123 pages

Phase-change passive heat spreaders have the capability of carrying large amounts

of heat from a heat source to a heat sink creating a small temperature di�erence.

One common type of the passive heat spreaders is the heat pipes. The liquid

�ow inside a heat pipe is driven by the capillary pressure gradient created by

a wick structure on the inner wall, which may be in the form of grooves, sin-

tered grains or wire meshes. In the literature, grooved heat pipes are the most

studied ones for modeling and experimentation due to their relatively simple

geometry and ease of manufacturing. During the operation of a grooved heat

pipe, continuous thin �lm condensation occurs on the �n top surfaces between

two consecutive grooves and the condensate �ows into the grooves. Modeling

thin �lm condensation is crucial for an accurate estimation of grooved heat pipe

performance. In the current study, a novel approach is developed to model

the condensation and associated liquid �ow in a �n-groove system. Conser-

vation of mass and momentum equations, augmented Young-Laplace equation
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and Kucherov-Rikenglaz equation are solved simultaneously to calculate the �lm

thickness pro�le. Di�erently from the numerical models in the literature, in this

new approach the �n-groove corner is kept inside the solution domain and the

e�ect of disjoining pressure is taken into account. The results reveal that the dis-

joining pressure may become e�ective for some cases and creates a slope break

in the free surface of the liquid at the �n-groove corner. The current study

presents the �rst numerical model which resolves the corner region and shows

the e�ect of disjoining pressure on the thin �lm condensation in a �n-groove sys-

tem. Furthermore, a parametric study is performed and the e�ects of geometric

and thermophysical parameters on the condensation performance are discussed.

Lastly, the thin �lm condensation in non-perpendicular �n-grooves, where the

grooves are not rectangular but have inclined walls, is investigated and the e�ect

of �n-groove corner on the condensation is presented.

Keywords: Thin �lm condensation, grooved heat pipe, disjoining pressure, slope

break
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ÖZ

OLUKLU B�R ISI BORUSUNUN KANATÇI�INDAK�
YO�U�MANIN MODELLENMES�NDE YEN� B�R YAKLA�IM

Akda§, Osman

Doktora, Makina Mühendisli§i Bölümü

Tez Yöneticisi : Prof. Dr. Zafer Dursunkaya

Ortak Tez Yöneticisi : Dr. Yi§it Akku³

A§ustos 2019, 123 sayfa

Faz de§i³imli pasif �s� da§�t�c�lar�, yüksek miktarda �s�y�, �s� kayna§�ndan �s�

yutucuya dü³ük s�cakl�k fark� yaratarak ta³�ma kabiliyetine sahiptir. Is� boru-

lar�, pasif �s� da§�t�c�lar�n yayg�n bir tipidir. Is� borular� içerisindeki s�v� ak�³�,

�s� borular�n�n iç duvarlar�ndaki oluklu, sinterli veya telli �til yap�lar� taraf�n-

dan olu³turulan k�lcal bas�nç fark� sayesinde sa§lanmaktad�r. Oluklu �s� boru-

lar�, görece sade geometrisi ve üretim kolayl�§� nedeniyle, literatürdeki say�sal

ve deneysel çal�³malara en çok konu olan �s� borular�d�r. Oluklu �s� borusunun

çal�³mas� s�ras�nda, ard�³�k iki oluk (kanal) aras�ndaki kanatç�k yüzeyinde sürekli

olarak ince �lm yo§u³mas� meydana gelmekte ve yo§u³an s�v� kanallar�n içine

akmaktad�r. Bu ince �lm yo§u³mas�n� modellemek, do§ru bir �s� borusu çal�³ma

performans� tahmini yapabilmek için oldukça önemlidir. Mevcut çal�³mada, bir

kanatç�k-kanal sistemindeki yo§u³may� ve ilgili s�v� ak�³�n� modellemek için öz-

gün bir yakla³�m geli³tirilmi³tir. Kütle ve momentumun korunumu denklemleri,
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geni³letilmi³ Young-Laplace denklemi ve Kucherov-Rikenglaz denklemi, �lm ka-

l�nl�§� pro�lini hesaplamak için e³ zamanl� olarak çözülmektedir. Literatürdeki

modellerden farkl� olarak, kanatç�k-kanal kö³esi çözüm bölgesi içine dâhil edil-

mi³ ve ayr�lma bas�nc�n�n etkisi hesaba kat�lm�³t�r. Sonuçlar göstermektedir ki,

ayr�lma bas�nc� belli durumlarda etkili olmakta ve kö³ede, s�v� yüzeyinde e§im

k�r�l�m�na neden olabilmektedir. Mevcut çal�³mada, kanatç�k-kanal sistemindeki

kö³e bölgesini çözümleyen ve ayr�lma bas�nc�n�n ince �lm yo§u³mas� üzerindeki

etkisini gösteren literatürdeki ilk say�sal model sunulmu³tur. Ayr�ca, geometrik

ve termo�ziksel parametrelerin yo§u³ma performans� üzerindeki etkilerini tar-

t�³an bir parametrik çal�³ma yap�lm�³t�r. Son olarak, dikdörtgen olmayan (e§ik

duvarl�) kanallara sahip kanatç�k-kanal sistemlerindeki yo§u³ma incelenmi³ ve

kö³e aç�s�n�n yo§u³maya olan etkisi gösterilmi³tir.

Anahtar Kelimeler: �nce �lm yo§u³mas�, oluklu �s� borusu, ayr�lma bas�nc�, e§im

k�r�l�m�
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CHAPTER 1

INTRODUCTION

The power density of the electronic chips have increased with the improvements

in the chip production technology, which enables the production of chips with

higher capacities and smaller sizes, resulting in an increase in the heat dissipation

of electronic chips while the heat removal area decreases. This high heat �ux

generated by the chip should be removed e�ciently in order to prevent elevated

chip temperatures and ensure proper operation. Hence, chip level and electronic

device level cooling methodologies have been widely studied by thermal engineers

and scientists. Passive heat spreaders which use the phase-change mechanism for

heat removal make use of high latent heat of vaporization, providing a su�cient

cooling with small temperature di�erences between the heat source and the heat

sink regions [1]. Another advantage of phase-change heat spreaders over single-

phase cooling techniques is that they are passive devices and thus, they do not

require external pumping.

One common type of the passive heat spreaders is the heat pipe, which have

been used in various cooling applications since their development in 1964 [2].

The operational principle and types of heat pipes are presented in the following

seciton.

1.1 Operational Principle and Types of Heat Pipes

Heat pipe is a sealed system containing a working �uid inside. As shown in

Fig. 1.1, during the operation of a heat pipe, the liquid on the walls of the heat

pipe evaporates at the evaporator section, where a heat source is present, and
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the vapor �ows through the condenser section, where the heat sink is located.

The vapor, then, condenses on the walls of the heat pipe and �ows back to the

evaporator section of the heat pipe through the wick structure embedded in the

inner wall surfaces. The driving force for the vapor �ow from evaporator to

condenser section is the pressure gradient caused by the density gradient in the

gas phase. The liquid, on the other hand, �ows from condenser to evaporator

section due to the capillary pressure gradient generated by wick structures on the

wall. The wick structures enable the formation of liquid menisci on the walls, and

as it is schematically shown in Fig. 1.1, the radii of the menisci on the condenser

section are higher than the ones in the evaporator section due to the higher

liquid amount in the condenser section. This menisci radii di�erence creates a

capillary pressure gradient, which makes the liquid �ow from the condenser to

the evaporator. The pressure gradient generated by virtue of the wick structures

is also referred as capillary pumping.

Figure 1.1: Flow inside the heat pipes and the menisci formed in the wick
structures [3]

In conventional heat pipes, the wick structures may be in the form of grooves,
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sintered grains or wire meshes, examples of which are presented in Fig. 1.2.

Although all the wick structures have the same role in heat pipe operation,

their capillary pumping performance di�er depending on the conditions that

heat pipes are used. Therefore, the wick structure type of a heat pipe must be

speci�cally selected for the particular cooling application.

(a) (b) (c)

Figure 1.2: Wick structure types: (a) grooves, (b) sintered grains, (c) wire
meshes [4]

There are di�erent types of heat pipes used in various applications. The most

common type is the cylindrical heat pipe, which is simply a sealed tube with

wick structures on the inner wall as shown in Fig. 1.2. The operational principle

of cylindrical heat pipes is presented in Fig. 1.1. The other type is the �at heat

pipe which has the same operational principle with the cylindrical heat pipe but

has a rectangular cross section as shown in Fig. 1.3. The rectangular heat pipes

provide larger areas for heat input in heat removal, which makes them preferable

in electronics cooling applications.

Another type of the heat pipe is the loop heat pipe which is shown in Fig. 1.4.

Di�erent from the conventional heat pipes, loop heat pipes have separate liquid

and vapor lines and a compensation chamber (a liquid reservoir), which make

them advantageous in carrying heat e�ciently to long distances and keeping the

evaporator wicks wetted in varying operational conditions.

The variable conductance heat pipe is the type of the heat pipe which keeps
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Figure 1.3: Rectangular heat pipe [5]

the evaporator (or the heat source) at almost constant temperature while the

heat input varies. This is succeeded by changing the length of condenser section

by means of a non-condensing gas reservoir as it is shown in Fig. 1.5. Varying

the heat input changes the saturation pressure of the working liquid inside the

Figure 1.4: Loop heat pipe [6]
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heat pipe, which accordingly changes the volume of the non-condensing gas and

the length of the condenser section. At high heat input levels, the condenser

length increases and the su�cient area for the heat transfer to the heat sink is

ensured; at low heat input, on the other hand, the volume of the non-condensing

gas increases and the condenser length decreases, which restrains the temper-

ature decrease at the evaporator and keeps the heat source at almost constant

temperature. Therefore, the heat sources�like electronic components�do not

experience high temperature �uctuations when the heat dissipation varies.

Figure 1.5: Variable conductive heat pipe [3]

Pulsating heat pipe is another kind of heat pipe, which are bent capillary tubes,

partially �lled with a working liquid. The walls of the tubes do not have wick
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structures and this is the fundamental di�erence between the pulsating and the

conventional ones. The small radius of the capillary tubes leads to formation of

vapor bubbles in between the liquid slugs and the pressure di�erence between

the vapor bubbles at the evaporator and condenser regions is the main driving

force for �uid �ow from evaporator to condenser section. Pulsating heat pipes

can be open loop or closed loop type as shown in Fig. 1.6.

Figure 1.6: Open loop and closed loop pulsating heat pipes [7]

Micro heat pipes, which have hydraulic diameters at the order of 100 µm, can

be listed as the last type of heat pipes. Micro heat pipes can be of di�erent

cross sectional shapes as shown in Fig. 1.7 and generally, they do not have wick

structures on the walls but the corners of the heat pipe have a role similar to the

wicks, i.e. they create the capillary head and function as �ow arteries. However,

with recent developments in MEMS-based micro heat pipes, new types of heat

pipes in micro scale such as capillary pumped loops, micro loop heat pipes, and

micro pulsating heat pipes, operational principle of which are similar to the ones

in macro scale heat pipes, are introduced [8] and some of these micro heat pipes

utilize wick structures for capillary pumping.
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Figure 1.7: Micro heat pipes of di�erent cross sectional areas [9]

1.2 Experimental and Numerical Studies on the Condensation in

Heat Pipes

Thermal characterization and overall performance evaluation of a heat pipe re-

quires detailed modeling of the physical phenomena involved in heat pipe op-

eration. However, developing numerical models is not straightforward since the

heat pipes include di�erent scale problems: macro-scale in axial liquid and va-

por �ow, micro-scale in thin �lm evaporation and condensation at the the wick

structures of evaporator and condenser and nano-scale at the contact line of

evaporating liquid. Numerical and experimental studies in heat pipe litera-

ture mostly investigate heat pipes with grooved wick structures due to their

advantages in developing numerical models and the relative ease of manufactur-

ing [10�15]. Moreover, considering chip-level applications, it is not feasible to

apply sintered grains and wire meshes, while grooves can be engraved on the

7



semiconductors [16�18].

While the modeling of thin �lm evaporation is widely studied [19�42], studies

on the condensation modeling remain restricted [19�23,43,44]. In the condenser

section of a grooved heat pipe, the grooves are �lled with liquid forming a menis-

cus, and liquid �lm forms on the �n top surfaces due to condensation of vapor

into its liquid phase on the wall. The liquid on the �n tops is much thinner

than inside the groove, which makes the resistance to heat transfer much lower

on the �n tops. Therefore, majority of condensation occurs on the �n tops and

the studies in the literature focus on the condensation process on �n top region.

All of the condensate formed on the �n tops is assumed to �ow into the groove

in the existing condensation models [19�23, 43, 44], which reduces the conden-

sation modeling to a two-dimensional problem in the condenser cross section

by neglecting the possible axial �ow on the �n tops. The pro�le of the liquid-

vapor interface on the �n top surface is unknown prior to solving the �uid �ow

problem. In the previous condensation models, di�erent numerical methods and

boundary conditions were used for obtaining the liquid �lm pro�le.

Kamotani [43] developed a model for estimation of �lm thickness variation on a

�n top surface of a grooved heat pipe condenser. The liquid �ow in this study

was modeled neglecting the e�ects of inertial and body forces and assuming that

the viscous forces are in balance with the pressure gradient. He assumed that the

�n-groove corner is a cylindrical surface and solved the condensation problem on

a domain containing half of the cylindrical �n-groove corner and the �n top wall.

The �lm pro�le both on the corner and the �n top surface were approximated

using 4th order polynomials. Symmetry conditions are applied at the central

plane of the �n top. At the half of the corner, where the solution domain

starts, the free surface was assumed to be tangent to the cylindrical wall and the

meniscus curvature inside the groove was assumed as continuous at this point.

At the transition from cylindrical surface to the planar �n top surface the �lm

thickness, slope, curvature, and the mass �ow were all assumed as continuous.

The �lm thickness pro�le was obtained by solving the mass balance together

with the linear momentum equation. In pressure gradient and condensation

mass �ux calculations, only the capillary pressure e�ect is considered and the
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disjoining pressure is neglected.

Zhang and Faghri [44] used the volume of �uid (VOF) method for modeling the

condensation at the condenser section of grooved heat pipes. They neglected

the liquid �ow in the axial direction and the problem domain they used was the

two-dimensional region between the central planes of two consecutive �ns. They

applied symmetry boundary conditions at the �n central planes, wall boundary

condition at the bottom of the groove, and they assumed that as the vapor

condenses to its liquid phase, an identical amount of vapor enters the problem

domain at the top surface, which is in the vapor region. They obtained the

liquid-vapor interface at the �ns and groove for cases with relatively high edge

angles (> 84◦) and high temperature di�erences (5 K and 10 K). The e�ect of

disjoining pressure was neglected in their model. Their study was the �rst and

the only one that used VOF method for condensation modeling at the condenser

of a heat pipe.

Do et al. [21] obtained the free surface pro�le on the �n top of a grooved heat

pipe condenser by using the 4th order polynomial approximation suggested by

Kamotani [43]. They assumed that there is no axial �ow on the �n top surface.

The liquid �ow was modeled by neglecting the e�ects of inertial and body forces.

The condensation mass �ux was calculated using the phase-change model sug-

gested by Wayner et al. [24], where the e�ect of temperature di�erence between

the wall and vapor, and the pressure di�erence across the liquid-vapor interface

were included. The e�ect of disjoining pressure was included in the conden-

sation mass �ux calculation but it was neglected in the liquid �ow in lateral

direction. The symmetry boundary conditions were used at the central plane

of the �n; and continuous curvature and continuous slope boundary conditions

were used at the �n-groove corner. The same model is used in the study of Do

and Jang [22] where they investigated the e�ects of nano�uids on the thermal

performace of grooved micro heat pipes.

Lefevre et al. [19] developed a nodal thermal model to predict the temperature

distribution in a �at grooved heat pipe. They presented a hydrodynamic model

for obtaining the �lm pro�le on the �n top at the condenser section. In this
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model, they calculated the condensation mass �ux using the heat �ux distri-

bution in the axial direction in the groove which was obtained by their nodal

thermal model. Together with conservation of mass, they solved the linear mo-

mentum equation to obtain the liquid-vapor interface pro�le on the �n top. They

solved the condensation problem in the two-dimensional cross sectional area of

the grooves neglecting the e�ect of axial �ow on the �n top. They also neglected

the e�ect of disjoining pressure on the interface pro�le. The symmetry boundary

conditions were used at the central plane of the �n; the curvature of the free

surface was assumed as zero at the �n-groove corner�i.e. there is an in�ection

point at the corner; and the free surface slope was assumed as continuous at the

�n-groove corner.

The aforementioned studies present models for estimating the condensation on

the �n top surface of grooved heat pipes. For achieving this, the liquid �lm

pro�le on the �n top surface, which is unknown a priori, should be obtained.

As a common simpli�cation, the pro�le of the free surface was assumed as a

4th order polynomial in many studies [21�23, 43], yet there exists some studies

which utilized the hydrodynamic models or CFD methods for the free surface

estimation [19, 20, 44]. Moreover, the slope of the free surface at the �n top-

groove corner was assumed to be continuous by the previous studies [19�23,

43]. However, experimental study of Lips et al. [20] reported a slope break for

the free surface at the �n top-groove corner, which made the assumption of

continuous slope questionable. They indicated that their hydrodynamic model

[19, 20] overestimated the �lm thickness on the �n top and concluded that the

possible e�ect of disjoining pressure or the cross-�ow on the �n top, which were

both neglected in their model, may be the underlying reason of this controversy.

It should be pointed out that the slope break at the corner causes the formation of

a substantially thinner �lm on the �n top surface, which results in an elevated

condensation �ux due to the lower thermal resistance. Therefore, numerical

models tend to underestimate the total condensation �ow rate unless the region

where the slope break occurs is resolved.

Disjoining pressure is a surface phenomenon governed by molecular forces similar

to the capillary pressure. Pressure jump across the liquid-vapor interface, i.e.
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pressure di�erence between the liquid and vapor phases, is related to disjoining

and capillary pressures through augmented Young-Laplace equation. Although

the e�ect of disjoining pressure on the pressure jump was considered in the

calculation of condensing mass �ux in some previous modeling attempts [21,

22], the contribution of disjoining pressure gradient to the liquid �ow along

the condensing �lm was neglected in the previous studies. However, recently,

Alipour and Dursunkaya [45] presented a mass conserving model where they

included the e�ect of disjoining pressure both in condensation mass �ux and

liquid �lm �ow. They solved conservation of mass, linear momentum, augmented

Young-Laplace equations together with the phase-change equation based on the

kinetic theory of gases. Similar to previous models, axial �ow was neglected and

the problem was solved in the two-dimensional cross sectional area of the grooves.

Symmetry conditions were used at the �n central plane and the continuous

slope and vanishing free surface curvature boundary conditions were used at

the �n-groove corner. The results revealed that including the e�ect of disjoining

pressure leads to an upper limit to the slope of the �lm at the corner, and beyond

this limit the matching between the liquid free surfaces inside the groove and on

the �n top is incompatible with the vanishing curvature condition at the corner.

No upper limit to slope was encountered when the disjoining pressure e�ect was

neglected.

The existing �lm condensation models use matching conditions between the

liquid free surfaces at the groove and �n top sides, which are based on the as-

sumptions of continuous slope and vanishing curvature. However, the models,

which were built on aforementioned assumptions, have not been experimentally

validated yet, even for simple geometries, such as grooved heat pipes [46]. There-

fore, validity of previous assumptions have not been justi�ed by a comprehensive

numerical model or experimental observation.

1.3 Motivation and Scope of the Current Study

The current study aims to investigate the e�ect of disjoining pressure on the

condensation rate, �lm pro�le of the condensate on the �n top, and to scrutinize
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the validity of the continuous slope of the free surface assumption at the corner.

For this purpose, a uni-directional �ow solver is developed and the condensation

problem on a �n-groove system is solved. A uni-directional �ow solver is applied

to a solution domain, which starts at a point on the vertical wall of the groove

and ends at the centerline of the �n; thereby keeping the �n-groove corner inside

the solution domain and eliminating the need for using a boundary condition at

the corner. In the algorithm developed, the conservation of mass and momen-

tum equations, augmented Young-Laplace equation and the condensation mass

�ux equation based on the kinetic theory of gases (Kucherov-Rikenglaz equa-

tion) are solved simultaneously to calculate the �lm thickness variation on the

�n top. The novel solution methodology utilized in the present study enables

the inclusion of the thinnest part of the liquid �lm near the groove edge to the

condensation model. Therefore, this work takes the �rst step towards a compre-

hensive understanding of the e�ect of molecular forces on the condensing liquid

�lm pro�le formed in a �n-groove system by including the disjoining pressure

e�ect and eliminating the continuous �lm slope assumption at the corner, which

is a fundamentally di�erent approach compared to existing models in litera-

ture [19�23,43,44]. In addition to investigating the e�ect of disjoining pressure,

the e�ects of thermophysical and geometrical parameters on condensation in a

�n-groove system are also examined in the current dissertation.

The thesis is organized as follows: the problem de�nition and physical concepts

involved in the problem are introduced in Chapter 2; the uni-directional �ow

model and the results showing the e�ect of disjoining pressure are given in

Chapter 3; the numerical validation of the uni-directional �ow model by using a

bi-directional �ow solver is shown in Chapter 4; a parametric study discussing

the e�ects of thermophysical and geometrical parameters on condensation is

conducted in Chapter 5; the performance of grooved wall condensers with non-

perpendicular �n-groove corners are evaluated in Chapter 6; and the conclusion

and suggested future studies are presented in Chapter 7.
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CHAPTER 2

PROBLEM DEFINITION AND PHYSICAL CONCEPTS

In this chapter, the physical problem for investigating the condensation process

on the �n top surface of a grooved wall is described. Physical concepts involved

in the problem such as capillary pressure, disjoining pressure, and condensation

are also introduced.

2.1 Problem De�nition

The current study aims to investigate the condensation process on grooved walls

focusing on the �n-groove corner region. In the condenser section of grooved

heat pipes, the vapor condenses on the �n top surfaces forming a thin liquid

�lm. Then the condensate �ows into the groove where it moves back to the

evaporator section by capillary pressure gradient. Although the condensation

models in the literature, including the numerical model presented by Lips et

al. [20], neglect the the e�ect of cross �ow on the �n top (the �ow in groove

axial direction) and disjoining pressure, either or both may be responsible for

the slope break at the corner, which has not been resolved by any numerical

models yet [20]. In the current study, the e�ect of disjoining pressure on the

thin liquid �lm pro�le on condenser section �n top surfaces is investigated. The

condensation problem is solved for an in�nite �n-groove system, to eliminate the

ambiguous e�ect of cross �ow on the �n top. In this system, there are an in�nite

number of grooves in lateral direction. The planar grooved wall is sub-cooled to

a constant temperature and the vapor phase of the working �uid condenses on

the wall surface. The condensate is discharged from the bottom of the groove,
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as shown in Fig. 2.1, and length of the grooves are su�ciently long, so that the

variations in groove axial direction can be neglected. Therefore, the problem is

two-dimensional in the cross sectional plane of the �n-groove system. Moreover,

since the �n-groove system has a repeating pattern in the lateral direction, the

central planes of two adjacent �n and groove pair are the symmetry planes.

Liquid discharge

Fin top 

surface

Groove
Symmetry 

Axis

Condensation Condensation

Symmetry 

Axis

Figure 2.1: Problem de�nition

The height of the liquid inside the groove depends on the amount of initial

liquid in the groove and the amount of liquid discharged at the groove bottom.

Therefore, di�erent liquid heights inside the groove lead to di�erent steady-state

�lm pro�le solutions on the �n top surface.

The in�nite �n-groove system resembles the condenser sections of grooved heat

pipes, but since there is no variation in the direction of groove axis, this prob-

lem is simpler. Therefore, working on this proposed problem provides a better

understanding of the basic physics involved in condensation on grooved walls.

In this problem, the capillary pressure gradient is the main driving force for

the liquid �lm �ow on the �n top surface; in addition to which, the disjoining

pressure is also signi�cant in the regions where the liquid �lm is very thin; and
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the condensation of vapor is present due to the temperature di�erence between

the wall and vapor and the pressure di�erence across the liquid-vapor interface.

All of these concepts are described in detail in the following sections.

2.2 Capillary Pressure

Intermolecular forces on the liquid molecules are balanced if they are surrounded

symmetrically by identical molecules. However, in the close proximity of the free

surface of a liquid�which is the boundary between the liquid and gas media�the

intermolecular forces on the molecules become unbalanced. Together with the

tendency towards a minimum free surface energy, the unbalanced intermolecular

forces on the liquid free surface create the surface tension. The surface tension on

the curved surfaces generates a pressure di�erence across the liquid-gas interface,

which is also called a pressure jump (pjump). This pressure di�erence caused by

the e�ect of surface tension is called the capillary pressure and it is de�ned by

the Young-Laplace equation given below.

pjump = pv − pl = pc =
σ

R1

+
σ

R2

, (2.1)

where, pv is the vapor pressure, pl is the liquid pressure, pc is the capillary pres-

sure, σ is the surface tension, R1 and R2 are the radii of the free surface in two

orthogonal directions. In the grooved heat pipes, the capillary pressure gradient

is the driving force for the liquid �ow inside the groove in the longitudinal direc-

tion and the �ow of the condensate on the �n top surfaces towards the grooves.

In the in�nite �n-groove system problem, however, the �ow in longitudinal di-

rection is negligible and the capillary e�ect is only responsible for the condensate

�ow from �n top to groove. In both problems, the radius of curvature of the free

surface in groove longitudinal direction is much larger than the one in lateral

direction. Therefore, the radius in longitudinal direction can be neglected and

Young-Laplace equation can be written as;

pc =
σ

R
, (2.2)
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where, R is the radius of curvature in lateral direction.

2.3 Disjoining Pressure

A system consisting of a liquid �lm on a solid surface and another �uid on

top of the �lm involves two interfaces at the transitions between solid-�uid and

�uid-�uid. At both interfaces there is a region where the interfacial forces are

e�ective. When there is a su�cient distance between the �uid-�uid interface

and the solid surface, the interaction of these interfacial forces is negligible and

the surface tension has the major e�ect on the shape of the �lm. For this

condition, at thermodynamic equilibrium, the Young-Laplace equation is the

necessary condition for the minimum surface energy. However, for very thin

�lms, the interfacial force regions of solid-�uid and �uid-�uid interfaces overlap

and additional forces are generated leading to an increase or decrease in liquid

pressure [47]. This pressure change is called the disjoining pressure.

For a better understanding of interaction between the two surfaces, the inter-

molecular forces should be explored. The van der Waals potential (dispersion

potential) between two neutral molecules is given by the London equation below:

w(D) =
C

D6
, (2.3)

where, C is the London dispersion coe�cient and D is the distance between the

molecules. The interaction force between the molecules is the negative derivative

of the interaction potential [48]:

f(D) = −dw(D)

dD
. (2.4)

To calculate the interaction potential between two �at surfaces, the intermolecu-

lar dispersion potential of each molecule with the surrounding molecules should

be considered. In [48], the dispersion potentials of all molecules in one body

with all molecules in other were integrated with an assumption of additivity,
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and the dispersion potential per unit area, W , between two �at surfaces was

obtained as,

W (δ) =
πCρn,1ρn,2

12δ2
, (2.5)

where, δ is the distance between surfaces and ρn is the number density of surface

materials. The interaction force per unit area, F , which can be also interpreted

as interaction pressure, is given as,

F (δ) = −dW (δ)

dδ
=
πCρn,1ρn,2

6δ3
. (2.6)

The expression given in Eq. (2.6) de�nes the disjoining pressure, pd, caused by

the interaction of solid surface and liquid-gas interface in liquid thin �lms and

can be written in terms of Hamaker constant, A = π2Cρn,1ρn,2, or in terms of

dispersion constant, Ad = A/6π, as given in the equation below.

pd =
A

6πδ3
=
Ad
δ3
. (2.7)

At this point, it is worth to note that the power relation for disjoining pressure,

which is given in Eq. (2.7), does not include the retardation and structural

e�ects and it is derived for non-polar liquids. Many studies in the literature, on

the other hand, used the power relation for even strong polar liquids [21,22,24,

32], although it is not valid due to the presence of short range intermolecular

forces (hydrogen bonding, hydration forces etc.) in addition to the long range

intermolecular forces (van der Waals forces). In the present study, the problems

with non-polar liquids, such as octane, are solved to refrain from an improper

use of the power relation.

The Hamaker constant is measured experimentally and it is reported for various

individual materials. However, the information about the Hamaker constant val-

ues of many solid-liquid-gas systems is very limited in literature. There are also

some theoretical methods like combining rule which makes use of the Hamaker

constants of individual materials to calculate the Hamaker constant of a system
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composed of di�erent solids, liquids and gases, but they do not always give a

good approximation [48].

The Young-Laplace equation is the necessary condition for thermodynamic equi-

librium and it does not involve the e�ect of disjoining pressure. Therefore, for

very thin �lms, where the disjoining pressure is signi�cant, the thermodynamic

equilibrium analysis of liquid �lms should be revised. For a system consisting

of a cylindrical liquid droplet (i.e. curvature has only one component) on a

solid and the vapor as shown in Fig. 2.2, the total Helmholtz free energy can be

written as [49]:

E =

∫ x2

0

[
σ
√

1 + δx
2 + σsl − σsv +W + (pv − pl)δ

]
dx , (2.8)

where, σ is the surface tension of the liquid-vapor interface, σsl and σsv are the

surface energies of solid-liquid and solid-vapor interfaces, respectively, δ is the

droplet �lm thickness, pv is the vapor pressure, pl is the liquid pressure and W

is the dispersion potential corresponding to the interfacial interaction between

the solid surface and liquid-vapor interface (see Eq. (2.5)).

Figure 2.2: A thermodynamic system including liquid droplet on a solid and
surrounding vapor [49]

At thermodynamic equilibrium, the liquid droplet has a shape such that the
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Helmholtz free energy of the system is at minimum. This makes the case a clas-

sical calculus of variations problem. Let L(x, u(x), ux(x)) be a smooth function

on interval [x1, x2] and the functional, J , is de�ned as;

J(x) =

∫ x2

x1

L
(
x, u(x), ux(x)

)
dx . (2.9)

The functional, J , has an extremum when the �rst variation of it is equal to

zero, i.e.,

δJ(x) = δ

∫ x2

x1

L
(
x, u(x), ux(x)

)
dx = 0 , (2.10)

where, δ denotes the �rst variation operator. The necessary condition for

Eq. (2.10) to hold is Euler-Lagrange equation, which is given in Eq. (2.11) below.

d

dx

d

dξ

[
L
(
x, u(x), ux(x)

)]∣∣∣∣
ξ=ux

− d

du

[
L
(
x, u(x), ux(x)

)]
= 0 . (2.11)

The Helmholtz free energy de�ned in Eq. (2.8) is a functional which is the

de�nite integral of a function of x, δ and δx. For minimizing the Helmholtz free

energy, the �rst variation of it should be zero:

δE = 0 . (2.12)

Then the Euler-Lagrange equation for Eq. (2.12) can be written as:

d

dx

d

dξ

(
σ
√

1 + ξ2 + σsl − σsv +W + (pv − pl)δ
)∣∣∣∣

ξ=δx

− d

dδ

(
σ
√

1 + δx
2 + σsl − σsv +W + (pv − pl)δ

)
= 0 . (2.13)

Taking the derivatives, Eq. (2.13) reduces to,

σ
δxx(

1 + δx
2
)3/2 − dW

dδ
− (pv − pl) = 0 . (2.14)
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In Eq. (2.14), the multiplier of surface tension, σ, is the curvature, κ (or 1/R), of

liquid �lm, so the �rst term is the capillary pressure; the second term, negative

derivative of the dispersion potential, is the disjoining pressure (see Eq. (2.6)

and Eq. (2.7)). Substituting them into Eq. (2.14) yields:

pjump = pv − pl = pc + pd , (2.15)

which is known as the augmented Young-Laplace equation. Di�erent from the

Young-Laplace equation, the augmented Young-Laplace equation involves the

e�ect of disjoining pressure.

2.4 Phase-change

In a �n-groove system, a liquid �lm forms on the �n top surfaces as a result

of the condensation of vapor to liquid. This phase-change occurs due to the

temperature di�erence between the wall and vapor and the pressure di�erence

across the free surface. Therefore, in this problem, one of the crucial phenomena

to be modeled is the heat and mass transfer due to condensation process. The

condensation mass �ux is given by Eq. (2.16), which is derived by Schrage [50]

using the kinetic theory of gases and assuming small drift velocity of vapor

leaving or approaching the interface.

ṁ′′c =

(
2c

2− c

)(
M

2πRu

)1/2
(
pv,lv

T
1/2
lv

− pv

T
1/2
v

)
, (2.16)

where, c is the accommodation coe�cient, which is usually taken as unity [21,

29, 35, 38, 40], M is the molar mass, Ru is the universal gas constant, pv is bulk

vapor pressure and pv,lv is the vapor pressure at the free surface, Tv is the vapor

temperature and Tlv is the temperature at the free surface.

In the extended meniscus evaporation model presented by Wayner et al. [24],

the phase-change mass �ux is calculated under the assumption that:
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T
1/2
lv ≈ T 1/2

v , (2.17)

which is valid for small temperature di�erences. This assumption reduces the

phase-change mass �ux expression to;

ṁ′′c =

(
2c

2− c

)(
M

2πRuTv

)1/2

(pv,lv − pv) , (2.18)

where (pv,lv−pv) is the di�erence of vapor pressure between the free surface and

the bulk region and it occurs due to additive e�ects of the temperature di�erence

between the free surface and the bulk vapor region, and the surface forces at the

liquid-vapor interface [24,42], contributions of which are calculated by using the

Clausius-Clapeyron equation and the Kelvin equation, respectively.

The change of vapor pressure with varying temperature in a closed system where

the liquid is in equilibrium with its vapor is obtained by the Clauisus-Clapeyron

equation given below.

dp

dT
=

hlv
vv − vl

1

T
, (2.19)

where, hlv is the latent heat of evaporation and vv and vl are the speci�c volumes

of vapor and liquid phases, respectively. Since the speci�c volume of vapor

phase is much higher than the one of liquid phase (vv � vl), the speci�c volume

di�erence can be approximated as:

vv − vl ≈ vv . (2.20)

Assuming low pressure, the vapor speci�c volume can be obtained by the ideal

gas law:

vv =
Ru

M

T

p
. (2.21)
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Therefore, for ideal gases, the Clausius-Clapeyron equation can be written as

follows:

dp

dT
=

p

T 2

hlvM

Ru

. (2.22)

Eq. (2.22) is integrated from liquid-vapor interface to bulk vapor region to obtain

the expression below, which de�nes the relation between the vapor pressures at

these two locations.

ln

(
pv,lv
pv

)
=
hlvM

Ru

(
1

Tv
− 1

Tlv

)
. (2.23)

The term on the left-hand side of Eq. (2.23) is approximated by Taylor series

expansion as follows:

(
pv,lv
pv

)
− 1 =

hlvM

Ru

(
1

Tv
− 1

Tlv

)
, (2.24)

and the vapor pressure di�erence between the free surface and the bulk vapor

region is obtained as:

pv,lv − pv =
hlvMpv
Ru Tlv Tv

(Tlv − Tv) . (2.25)

Eq. (2.25) is the contribution of Clapeyron e�ect to the pressure di�erence. The

contribution of the surface forces, on the other hand, are calculated by Kelvin

equation, which de�nes the change of vapor pressure due to the surface forces.

Kelvin equation, originally, includes only the e�ect of surface tension (capillary

pressure, pc) as given in the equation below:

ln

(
pv,lv
pv

)
= − M

ρlRTlv
pc . (2.26)

However, for very thin �lms, the dispersion forces (disjoining pressure, pd) also

become signi�cant. Padday [51] suggested that the e�ects of surface tension and
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the dispersion forces are additive and proposed the modi�ed Kelvin equation

given below:

ln

(
pv,lv
pv

)
= − M

ρlRuTlv
(pc + pd) . (2.27)

The term on the left-hand side of Eq. (2.27) is approximated by Taylor series

expansion as follows:

pv,lv
pv
− 1 = − M

ρlRuTlv
(pc + pd) , (2.28)

and the vapor pressure di�erence between the free surface and the bulk vapor

region, which is created by the surface forces, is obtained as:

pv,lv − pv = − Vlpv
RuTlv

(pc + pd) , (2.29)

where Vl is the molar volume of the liquid.

The Eqs. (2.25) and (2.29) are substituted into Eq. (2.18) to obtain the expres-

sion below:

ṁ′′c =
2c

2− c

(
M

2πRuTv

)1/2(
hlvMpv
RTlvTv

(Tlv − Tv)−
Vlpv
RuTlv

(pc + pd)

)
, (2.30)

and can be further simpli�ed to Eq. 2.31:

ṁ′′c = a (Tlv − Tv)− b (pc + pd) , (2.31a)

a =
2c

2− c

( M

2πRuTlv

)1/2 pvMhlv
RuTvTlv

, (2.31b)

b =
2c

2− c

( M

2πRuTlv

)1/2 pvVl
RuTlv

, (2.31c)
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which is the equation for the rate of phase-change presented byWayner et al. [24].

The phase-change model of Wayner et al. [24] can be modi�ed by assuming pure

conduction within the liquid �lm as explained in [26] and writing the phase-

change mass �ux expression in terms of wall and vapor temperature (Tw and

Tv, respectively), which eliminates the need of using the interface temperature,

Tlv. Applying the assumption of pure conduction within the liquid �lm, the

phase-change equation is obtained as follows:

ṁ
′′

c =
−a (Tv − Tw)− b (pv − pl)

1 + aδhlv/kl
, (2.32)

Eq. (2.32) is used for phase-change mass �ux calculation in the current study.
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CHAPTER 3

UNI-DIRECTIONAL FLOW MODELING

In the current study, an algorithm is developed for solving the condensation

problem described in Chapter 2. In the �ow solver algorithm, the liquid �lm

�ow on the �n top is assumed as uni-directional in the direction parallel to the

solid surface. The details of the suggested model, such as the solution domain,

governing equations, boundary conditions, assumptions and solution approach

are described in the following sections. Moreover, the results which demonstrate

the e�ect of disjoining pressure on the liquid �lm pro�le are presented.

3.1 Physical domain

The condensation process is modeled for the in�nite �n-groove system described

in Sec. 2.1. The center planes of an adjacent �n and groove pair are the symmetry

planes due to the repeating pattern of the �n-groove system. Problem domain is

de�ned between these symmetry planes as shown in Fig. 3.1a. The liquid-vapor

interface within the problem domain is practically divided into two parts: the

intrinsic (bulk) meniscus region and the thin �lm region on the �n top. While

the former one is associated with relatively low condensation rates and a near

circular pro�le, the pro�le of the latter is of interest due to strong condensation,

especially near the corner region. Therefore, the current study strives to solve

the �lm pro�le on the �n top only. Solution domain for this �lm starts at a

point on the groove wall and ends at the line of symmetry of the �n and it is

composed of three regions as shown in Fig. 3.1b: groove wall (I), corner (II),

and �n top (III). The �n-groove corner is approximated by a cylindrical surface
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with radius, Ro.

Fin

Groove

FinGroove

Liquid film

Solution domain
Intrinsic 

meniscus 

region

(a) (b)
Liquid film

Groove 

wall

(I)

Corner

(II)

Fin top

(III)

𝑥
𝑦

𝑠

𝑅𝑜
𝑟
𝜑𝑦′

𝑥′

Figure 3.1: Physical domain for the problem. (a) Problem domain is de�ned
between the center planes of an adjacent �n and groove pair. (b) Solution domain

includes the �n top and the close proximity of �n-groove corner extending to
the groove.

The governing equations are formulated using Cartesian coordinates for planar

surfaces and polar coordinates for the cylindrical surface. Origins of the Carte-

sian (x,y), (x′,y′) and polar (r,ϕ) coordinate systems are shown in Fig. 3.1b.

During the solution, as illustrated in Fig. 3.2, the governing equations are trans-

formed into the surface coordinate, s, the origin of which is also displayed in

Fig. 3.1b.

For the planar surfaces, where surface coordinate is linear, the coordinate trans-

formation is straightforward:

x = s, dx = ds . (3.1)

Eq. (3.1) is written for the �n top region and it is applicable on the groove wall,

with replacing x by x′.
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𝛿𝑥 (or 𝑥′)

𝑅𝑜

𝑟

𝜑

𝛿

𝛿𝑠

𝛿𝑠

(a)

(b)

Figure 3.2: Coordinate transformation. (a) Transformation from Cartesian co-
ordinates to surface coordinate. (b) Transformation from polar coordinates to
surface coordinate.

Switching to surface coordinate along the cylindrical surface, which is shown in

Fig. 3.2b, requires the following transformation:

Roϕ = s, Rodϕ = ds . (3.2)

3.2 Lubrication assumption

In the current model, creeping �ow assumption is applied, which is similar to the

approximations made in case of the �ow of a lubricant inside a journal bearing.

The main simplicity that the lubrication assumption brings is the utilization

of a parabolic velocity pro�le on the cylindrical surface of the journal bearing.

The lubrication assumption is valid as long as the di�usion time scale, tdiff ,

is su�ciently smaller than the convection time scale, tconv, for the liquid �ow.

The condition for the lubrication assumption can be written as the ratio of the

27



di�usion to convection time scale as a function of the local �lm thickness, δx,

extent of �ow, Lflow, kinematic viscosity ν and the local average velocity as

follows:

tdiff
tconv

∼ O
(

(δx)2/ν

Lflow/ux

)
� 1 , (3.3)

which can be rearranged as a function of a local Reynolds number, Rex:

tdiff
tconv

∼ O
(

δx

Lflow
Rex

)
� 1 . (3.4)

For the condition above, the local Reynolds number is de�ned as Rex = uxδx
/
ν

on a planar surface, where ux is the local mean velocity parallel to the planar sur-

face. If the length of the surface in the direction of �ow is much longer than the

�lm thickness or the local Reynolds number is small, lubrication assumption can

be utilized for the liquid �ow on the planar surface. For the �ow of condensate on

the �n top [19�23,43] or the �ow of liquid on a heated planar substrate towards

the contact line [19�42], lubrication assumption has been widely utilized. For a

cylindrical surface, on the other hand, the local Reynolds number is de�ned as

Reϕ = uϕδϕ
/
ν, where uϕ is the local mean angular velocity in ϕ-direction, and

the extent of the �ow is expressed as the function of the radius of the cylindrical

surface (Lflow = Roϕ). For the journal bearing problems, the radial clearance

between the journal and the bearing is extremely small (δ/Ro � 1), therefore,

the lubrication assumption holds even for high rotational speed of the shaft.

In the condensate �ow over �n-groove corner, on the other hand, the lubrica-

tion assumption holds even for comparable magnitudes of the �lm thickness and

corner radius, since, Reynolds number is excessively small, due to the very low

velocities. Therefore, in the current study, using the lubrication approximations,

parabolic velocity pro�les are utilized in both planar and curved surfaces. The

details of the �ow model are presented in the following section.
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3.3 Flow and condensation model

The mass balance within the condensing �lm can be expressed in terms of the

mass �ow rate per unit depth along the surface coordinate, ṁ′, and the conden-

sation mass �ux at the free surface, ṁ
′′
c , as follows:

dṁ′

ds
= −ṁ′′c . (3.5)

To obtain the liquid vapor interface pro�le, the solution domain is divided into

strips, length of which are ∆s, as shown in Fig. 3.3, and the mass balance

equation (Eq. (3.5)) is discretized as,

ṁ′i+1 − ṁ′i
∆s

= −ṁ′′c(i,i+1) , (3.6)

where, i and (i+ 1) denotes the consecutive edges of a strip and ṁc(i,i+1) is the

average of the condensation mass �uxes at ith and (i+ 1)th points. Starting the

from the �rst point on the groove wall region, at each strip shown in Fig. 3.3,

the discretized mass balance equation given in Eq. (3.6) is solved. The conden-

sation mass �ux, ṁ
′′

c(i,i+1), is calculated by the phase-change model presented

in Sec. 2.4, using Eq. (2.32); and the mass �ow rates in s-direction, ṁ′i and

ṁ′i+1, are calculated by solving the conservation of linear momentum equation

together with the augmented Young-Laplace equation. The details are given in

the following paragraphs.

The force balance in the current problem is among the pressure and viscous

forces. Therefore, neglecting gravity and utilizing the lubrication assumption,

i.e. neglecting inertial and longitudinal di�usive terms, conservation of linear

momentum reduces to Eqs. (3.7a) and (3.7b) for planar and cylindrical surfaces,

respectively, and these equations imply parabolic velocity pro�le inside the liquid

�lm in s-direction.

dpl
ds

= µ
d2u

dy2
, (3.7a)
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Figure 3.3: Solution domain divided into strips and the mass balance at a strip

dpl
ds

= µ
d2u

dr2
, (3.7b)

where, pl is the liquid pressure, µ is the dynamic viscosity and u is the ve-

locity in the s-direction. Eq. (3.7a), expressed for the �n top, is also appli-

cable on the groove wall, with replacing y by y′, the local coordinate system.

Eqs. (3.7a) and (3.7b) are solved to obtain the velocity pro�les at the planar

and curved surfaces using no slip boundary condition at the wall and zero-shear

boundary condition at the free surface. These boundary conditions can be writ-

ten for planar surfaces as follows:

at y = 0, u = 0 , (3.8a)

at y = δ,
du

dy
= 0 , (3.8b)

and for the cylindrical surfaces as follows:

at r = Ro, u = 0 , (3.9a)
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at r = Ro + δ,
du

dr
= 0 , (3.9b)

Then, the parabolic velocity pro�les for planar and cylindrical surfaces are ob-

tained as:

u =
1

µ

dpl
ds

(
y2

2
− δy

)
, (3.10a)

u =
1

µ

dpl
ds

(
1

2
r2 − (Ro + δ)r +

2δRo +R2
o

2

)
, (3.10b)

respectively. Eq. (3.10a) is written for �n top region. In order to obtain the

velocity pro�le in groove wall region, y in Eq. (3.10a) should be replaced by y′.

The mass �ow rates (per unit depth) in s-direction is calculated by integrating

these velocities from solid wall to free surface as follows:

ṁ′ = ρl

∫ δ

0

u dy , (3.11a)

ṁ′ = ρl

∫ Ro+δ

Ro

u dr , (3.11b)

for planar and cylindrical surfaces, respectively. Performing these integrations,

the mass �ow rate (per unit depth) along the surface coordinate is obtained as,

ṁ′ = − 1

3ν

dpl
ds

δ3 , (3.12)

for both planar and cylindrical surfaces. The liquid pressure, pl, is calculated

using the well�known augmented Young-Laplace equation which was introduced

in Sec. 2.3 and given in Eq. (2.15). To calculate the liquid pressure gradient, the

augmented Young-Laplace equation is di�erentiated assuming constant vapor

pressure:

dpl
ds

= − d

ds
(pc + pd) . (3.13)
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where, capillary pressure, pc, is de�ned as,

pc = σ
δss(

1 + δs
2
)3/2 , (3.14a)

pc = σ
(δ +Ro)Ro

2δss − 2Ro
2δs

2 − (δ +Ro)
2[

(δ +Ro)
2 +Ro

2δs
2
]3/2 , (3.14b)

for planar and cylindrical surfaces, respectively. It is worth noting that the sub-

script s in Eqs. (3.14a), (3.14b), and following equations denotes the derivative

with respect to s. The disjoining pressure is formulated by the power relation,

pd = Ad/δ
3, as explained in Sec. 2.3. Substituting the expressions of capil-

lary and disjoining pressures into Eqs. (3.14a) and (3.14b), the liquid pressure

gradient is obtained as:

dpl
ds

= −σ δsss(
1 + δs

2
)3/2 + 3σ

δss
2δs(

1 + δs
2
)5/2 +

3Ad
δ4

δs , (3.15a)

dpl
ds

= −σRo
2 (δ +Ro) δsss − 2 (δ +Ro) δs − 3Ro

2δsδss[
(δ +Ro)

2 +Ro
2δs

2
]3/2

+ 3σ

(
Ro

2 (δ +Ro) δss − 2Ro
2δs

2 − (δ +Ro)
2) ((δ +Ro) δs +Ro

2δsδss
)[

(δ +Ro)
2 +Ro

2δs
2
]5/2

+
3Ad
δ4

δs , (3.15b)

for planar and cylindrical surfaces, respectively.

Mass �ux of the phase-change at the interface is calculated based on the model

presented in Sec. 2.4, which expresses the phase-change mass �ux as functions

of the temperature di�erence between the vapor and interface (subcooling) and

the pressure di�erence across the interface (pressure jump). Substitution of the

mass �ow rate per unit depth, ṁ′ (Eq. (3.12)), and the condensation mass �ux

at the free surface, ṁ
′′
c (Eq. (2.32)), into mass balance equation, Eq. (3.5), yields

the following relation:
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− 1

3ν

d

ds

(
δ3
dpl
ds

)
=
a (Tv − Tw)− b (pv − pl)

1 + aδhlv/kl
. (3.16)

For calculating the �lm pro�le on the �n top, the expressions for pressure gra-

dients in planar and cylindrical surfaces, which are given in Eqs. (3.15a) and

(3.15b), respectively, are substituted into Eq. (3.16) separately; then the equa-

tions obtained are discretized as given in Eq. (3.6).

3.3.1 Boundary Conditions

Eq. (3.16), a 4th order ODE of �lm thickness, requires four boundary conditions

at two locations, namely s = 0 and s = L, as shown in Fig. 3.4 for the current

modeling approach. The solution starts at a point on the groove wall, where the

radius of curvature of the meniscus, Rm, and the edge angle of the liquid-vapor

interface inside the groove, θg�the minimum value of which is the apparent

contact angle of liquid on the substrate�, are known. The �rst and second

derivatives of the �lm thickness at the boundary of the problem located in the

groove wall region are calculated based on Rm and θg, which both depend on

the groove width and the amount of liquid inside the groove. The other two

boundary conditions, the �rst and third derivatives of the �lm thickness, are

de�ned at the boundary of the problem located at the central plane of the �n,

based on the symmetry condition.

The boundary conditions for the current model are listed below:

δs = − tan θg , δss =

(
1 + δs

2
)3/2

Rm
at s = 0 , (3.17a)

δs = 0 , δsss = 0 at s = L . (3.17b)

where L is the total length of the solution domain. Note that the symmetry

boundary condition implemented at s = L implies zero mass �ow rate at this

point (ṁ′|s=L = 0).
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Figure 3.4: Boundary conditions

3.3.2 Matching Conditions

The algorithm divides the domain into strips as shown in Fig. 3.3 and at each

strip, the mass conservation equation is solved. At the strip interfaces, continu-

ous �lm thickness and the continuous mass �ux conditions are imposed. These

two conditions, together with the continuous solid wall curvature through the

planar and cylindrical surfaces, make the slope and the curvature of the free

surface continuous in each sub-domain. However, at the locations of transition

from groove wall to corner and from corner to �n top, there is a discontinuous

change of the solid wall curvature from zero to a �nite value and from a �nite

value to zero, respectively. Therefore, at these transition locations, imposing

the continuity of the �lm thickness and the mass �ux are not su�cient to obtain

a continuous interface slope and curvature. Thus, in addition to the continuous

�lm thickness and mass �ux, the continuity of the slope and the curvature of free

surface should also be imposed at the transition locations. For this purpose, the

physical matching conditions listed below are implemented at these locations:

(i) Continuous �lm thickness,
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(ii) Continuous stress at the free surface (smooth �lm thickness pro�le),

(iii) Continuous �lm curvature,

(iv) Continuous mass �ow rate.

In the solution, Cartesian coordinates are used for planar surfaces, and polar

coordinates are used for the cylindrical surface. Neither Cartesian nor polar

coordinates can be used at the transition from one to another. Therefore, a

common de�nition of the geometry and parameters are required at the transition

locations. Based on this need, parametric de�nitions are used to implement the

matching conditions listed above.

The parametric representation of the wall and the liquid-vapor interface pro�le

for the transition from groove wall to cylindrical corner surface is shown in

Fig. 3.5. In the algorithm, the solution starts at the groove wall side and the

�lm thickness is solved through �n top, successively. Therefore, at the speci�ed

transition location, the parameters at the groove wall side are known and the

parameters at the corner side are to be calculated.

Liquid film

Groove 
wall

Corner

�

��

�(�)
�

�′
�′

�(�)
��(�)

�̇�

�̇�

Figure 3.5: Parametric representation for the transition from groove wall to
corner

35



For the parametric representation with the parameter t = ϕ+π/2 (ϕ is shown in

Fig. 3.1b), the position vector of the liquid-vapor interface, r(t), can be written

as:

r(t) = ro(t) + δ(t)n̂(t) . (3.18)

where, the position vector of the solid wall, ro(t), and the surface normal, n̂(t),

are de�ned as:

ro(t) =


− Ro

sin(t)
cos(t)̂i +Rôj 0 ≤ t ≤ π/2

−Ro cos(t)̂i +Ro sin(t)̂j π/2 ≤ t ,

(3.19)

n̂(t) =

ĵ 0 ≤ t ≤ π/2

− cos(t)̂i + sin(t)̂j π/2 ≤ t .
(3.20)

Matching condition (i) implies the continuity of the �lm thickness at the transi-

tion location, so the �lm thickness values at the corner and the groove sides are

equal:

δcorner = δgroove . (3.21)

Matching condition (ii) is the smooth �lm thickness pro�le and it implies that

the tangent vector, T, of liquid-vapor interface is continuous throughout the

domain. Therefore, at the intersection location, namely at t = π/2;

Tcorner = Tgroove . (3.22)

The tangent vector can be de�ned in terms of the �rst derivative of the position

vector, as given below:

T(t) =
rt(t)

|rt(t)|
. (3.23)
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where, the �rst derivative of the position vector of the liquid-vapor interface,

rt(t), is de�ned as:

rt(t) = ro,t(t) + δt(t)n̂(t) + δ(t)n̂t(t) . (3.24)

The �rst derivative of the wall position vector, ro,t(t), is;

ro,t(t) =


Ro

sin2(t)
î 0 ≤ t ≤ π/2

Ro sin(t)̂i +Ro cos(t)̂j π/2 ≤ t ,

(3.25)

and the �rst derivative of the normal vector, n̂t(t), is;

n̂t(t) =

0 0 ≤ t ≤ π/2

sin(t)̂i + cos(t)̂j π/2 ≤ t .
(3.26)

Substituting Eqs. (3.25) and (3.26) into Eq. (3.24), the parametric representation

of the �rst derivative of interface position vector, rt(t), is obtained as:

rt(t) =



Ro

sin2(t)
î + δt(t)̂j 0 ≤ t ≤ π/2[(

Ro + δ(t)
)

sin(t)− δt(t) cos(t)
]̂
i

+
[(
Ro + δ(t)

)
cos(t) + δt(t) sin(t)

]̂
j π/2 ≤ t .

(3.27)

Using Eq. (3.23), the tangent vector at the transition point, where t = π/2, is

calculated as:

Tgroove =
Ro(

R2
o + (δt)groove

2)1/2 î +
(δt)groove(

R2
o + (δt)groove

2)1/2 ĵ , (3.28)

at the groove wall side (π/2 ≤ t); and it is calculated as:

Tcorner =
Ro + δ[

(Ro + δ)2 + (δt)corner
2]1/2 î +

(δt)corner[
(Ro + δ)2 + (δt)corner

2]1/2 ĵ , (3.29)
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at the corner side (0 ≤ t ≤ π/2). In Eqs. (3.28) and 3.29, the �lm thickness, δ,

is written without subscripts groove and corner, since it is equal at the groove

and corner sides (see Eq. (3.21)). According to Eq. (3.22), the expressions given

in Eqs. (3.28) and (3.29) are equal; using this equality, the �rst derivative of the

�lm thickness at the corner side (at t = π/2) can be obtained as:

(δt)corner =
(Ro + δ) (δt)groove

Ro

. (3.30)

In the solution procedure, at this transition location, the �rst derivative of the

�lm thickness pro�le at the groove side, δx′ |x′=0, is known. The transformation

from x′ coordinate to parameter t can be performed by following equations:

t = arccot
(
− x′

Ro

)
, (3.31)

and,

dt =
Ro

R2
o + x′2

dx′ . (3.32)

The relation between the �rst derivatives with respect to t and x′ at the transi-

tion location, where x′ = 0, is given below:

(δt)groove = Ro (δx′)|x′=0 . (3.33)

At the corner side, since the di�erentials of t and ϕ are equal (dt = dϕ), the

expression below can be written:

(δt)corner = (δϕ)|ϕ=0 . (3.34)

Substituting Eqs. (3.33) and (3.34) into Eq. (3.30), the �rst derivative of the

�lm thickness at the corner is obtained as:
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δϕ|ϕ=0 = (Ro + δ) δx′ |x′=0 . (3.35)

Matching condition (iii) states that the curvature of the liquid-vapor interface,

κ, at the transition location is continuous:

κcorner = κgroove . (3.36)

Since the curvature of the liquid-vapor interface at the groove side, κgroove, is

known and it is equal to the the interface curvature at the corner side, κcorner

(Eq. (3.36)), the de�nition of curvature in polar coordinates can be used to

calculate the second derivative of the �lm thickness at the transition as follows:

δϕϕ|ϕ=0 =

{
κcorner

[
(Ro + δ)2 +

(
δϕ|ϕ=0

)2]3/2
+ 2

(
δϕ|ϕ=0

)2
+ (Ro + δ)2

}
1

Ro + δ
. (3.37)

Matching condition (iv) is the continuity of the mass �ow rate at the transition

location, which is:

ṁ′corner = ṁ′groove . (3.38)

The mass �ow rate per unit depth at the corner side, ṁ′corner, is equal to the one

in the groove side, ṁ′groove, which is already calculated in the algorithm. The

mass �ow rate at the corner region is de�ned by Eq. (3.12). Substituting the

de�nition of pressure gradient (Eq. (3.15b)) into the mass �ow rate equation

(Eq. (3.12)), the expression below is obtained:
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ṁ′corner = − 1

3ν

{
− σRo

2 (δ +Ro) δsss − 2 (δ +Ro) δs − 3Ro
2δsδss[

(δ +Ro)
2 +Ro

2δs
2
]3/2

+ 3σ

(
Ro

2 (δ +Ro) δss − 2Ro
2δs

2 − (δ +Ro)
2) ((δ +Ro) δs +Ro

2δsδss
)[

(δ +Ro)
2 +Ro

2δs
2
]5/2

+
3Ad
δ4

δs

}
δ3 . (3.39)

At the corner region, s = Roϕ and ds = Rodϕ. Using this transformation, the

third derivative of the �lm thickness at the transition location is obtained as:

δϕϕϕ|ϕ=0 =

{[
− 3ṁ′cornerνRo

δ3

− 3σ

[
(δ +Ro) δϕϕ − 2δϕ

2 − (δ +Ro)
2] [(δ +Ro) δϕ + δϕδϕϕ](

[δ +Ro)
2 + δϕ

2
]5/2 − 3Ad

δ4
δϕ

]
[
−
[
(δ +Ro)

2 + δϕ
2
]3/2

σ

]
+ 2 (δ +Ro) δϕ + 3δϕδϕϕ

}
1

δ +Ro

, (3.40)

where, all the derivatives with respect to ϕ are evaluated at ϕ = 0. Applying

aforementioned procedure, at the starting point of the cylindrical corner surface

(ϕ = 0), the parameters;

(i) Film thickness, δ (Eq. (3.21)),

(ii) The �rst derivative of the �lm thickness, δϕ (Eq. (3.35)),

(iii) The second derivative of the �lm thickness, δϕϕ (Eq. (3.37)),

(iv) The third derivative of the �lm thickness, δϕϕϕ (Eq. (3.40)),

are calculated. Using these four boundary (initial) conditions, the �lm thickness

pro�le at the corner region can be obtained.

The same matching conditions are applied at the transition from corner to �n

top. The parametric representation for this case is given in Fig. 3.6. At this tran-
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sition location, the parameters at the corner side are known and the parameters

at the �n top side are to be calculated.

Liquid film

Corner Fin top

�
�

�

��

�(�)

�

�(�)

��(�)

�̇�

�̇�

Figure 3.6: Parametric representation for the transition from corner to �n top

For the parametric representation with the parameter t = ϕ (ϕ is shown in

Fig. 3.1b), the position vector of liquid-vapor interface is given by Eq. (3.18),

where the position vector of the solid wall, ro(t), and the surface normal, n̂(t),

are de�ned as:

ro(t) =


−Ro cos(t)̂i +Ro sin(t)̂j 0 ≤ t ≤ π/2

− Ro

sin(t)
cos(t)̂i +Rôj π/2 ≤ t ,

(3.41)

n̂(t) =

− cos(t)̂i + sin(t)̂j 0 ≤ t ≤ π/2

ĵ π/2 ≤ t .
(3.42)

Matching condition (i) implies the continuity of the �lm thickness at the transi-
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tion location. Therefore, the �lm thickness values at the corner and the groove

sides are equal:

δfin = δcorner . (3.43)

Matching condition (ii), smooth �lm thickness pro�le, implies that the tangent

vector, T, of liquid-vapor interface is continuous throughout the domain. There-

fore, at the intersection location, namely at t = π/2;

Tfin = Tcorner . (3.44)

The de�nitions of the tangent vector, T, and the �rst derivative of the position

vector of the liquid-vapor interface, rt(t), are given in Eqs. (3.23) and (3.24),

respectively. The �rst derivative of the wall position vector, ro,t(t), is;

ro,t(t) =


Ro sin(t)̂i +Ro cos(t)̂j 0 ≤ t ≤ π/2

Ro

sin2(t)
î π/2 ≤ t ,

(3.45)

and the �rst derivative of the normal vector, n̂t(t), is;

n̂t(t) =

sin(t)̂i + cos(t)̂j 0 ≤ t ≤ π/2

0 π/2 ≤ t .
(3.46)

Substituting Eqs 3.45 and 3.46 into Eq. (3.24), the parametric representation of

the �rst derivative of interface position vector, rt(t), is obtained as:

rt(t) =



[
(Ro + δ(t)) sin(t)− δt(t) cos(t)

]̂
i

+
[
(Ro + δ(t)) cos(t) + δt(t) sin(t)

]̂
j 0 ≤ t ≤ π/2

Ro

sin2(t)
î + δt(t)̂j π/2 ≤ t .

(3.47)
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Using Eq. (3.23), the tangent vector at the transition point, where t = π/2, is

calculated as:

Tcorner =
Ro + δ[

(Ro + δ)2 + (δt)corner
2]1/2 î +

(δt)corner[
(Ro + δ)2 + (δt)corner

2]1/2 ĵ , (3.48)

at the corner side (0 ≤ t ≤ π/2); and it is calculated as:

Tfin =
Ro(

R2
o + (δt)fin

2)1/2 î +
(δt)fin(

R2
o + (δt)fin

2)1/2 ĵ , (3.49)

at the �n top side (π/2 ≤ t). In Eqs. (3.48) and (3.49), the �lm thickness, δ,

is written without subscripts corner and �n, since it is equal at the corner and

�n top sides (see Eq. (3.43)). According to Eq. (3.44), the expressions given in

Eqs. (3.48) and (3.49) are equal; using this equality, the �rst derivative of the

�lm thickness at the �n top side (at t = π/2) can be obtained as:

(δt)fin =
Ro (δt)corner
Ro + δ

. (3.50)

In the solution procedure, at this transition location, the �rst derivative of the

�lm thickness pro�le, δϕ, at the corner side is known and it is related to the �rst

derivative with respect to t as follows:

(δt)corner = (δϕ)|ϕ=π/2 , (3.51)

since the di�erentials of t and ϕ are equal (dt = dϕ).

For the planar region, however, the transformation can be made as follows:

t = arccot
(
− x

Ro

)
, (3.52)

and,
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dt =
Ro

R2
o + x2

dx . (3.53)

At the transition location, where x = 0, the �rst derivatives with respect to t

and x have the relation given below:

(δt)fin = Ro (δx)|x=0 . (3.54)

Substituting Eqs. (3.51) and (3.54) into Eq. (3.50) the �rst derivative of the �lm

thickness at the �n top side is obtained as:

δx|x=0 =
δϕ|ϕ=π/2
Ro + δ

. (3.55)

Matching condition (iii) states that the curvature of the liquid-vapor interface,

κ, at the the transition location is continuous:

κfin = κcorner . (3.56)

Since the curvature of the liquid-vapor interface at the corner side, κcorner, is

known and it is equal to the the interface curvature at the �n top side, κfin

(Eq. (3.56)), the de�nition of curvature in Cartesian coordinates can be used to

calculate the second derivative of the �lm thickness as follows:

δxx|x=0 = κfin
(
1 + (δx|x=0)

2)3/2 . (3.57)

Matching condition (iv) is the continuity of the mass �ow rate at the transition

location, which is:

ṁ′fin = ṁ′corner . (3.58)

The mass �ow rate per unit depth at the �n side, ṁ′fin, is equal to the one

in the corner side, ṁ′corner, which is already calculated in the algorithm. By
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substituting Eq. (3.15a) into Eq. (3.12), the mass �ow rate at the planar region

is de�ned as follows:

ṁ′fin = − 1

3ν

(
−σ δsss(

1 + δs
2
)3/2 + 3σ

δss
2δs(

1 + δs
2
)5/2 +

3Ad
δ4

δs

)
δ3 . (3.59)

At the �n top region, x = s, and therefore the third derivative �lm thickness at

the transition location is obtained as:

δxxx|x=0 =

(
3ṁ′finν

δ3
+

3σ (δxx|x=0)
2 δx|x=0(

1 + (δx|x=0)
2)5/2 +

3Ad δx|x=0

δ4

)
(
1 + (δx|x=0)

2)3/2
σ

. (3.60)

Applying the procedure, at the starting point of the planar surface (x = 0), the

parameters;

(i) Film thickness, δ (Eq. (3.43)),

(ii) The �rst derivative of the �lm thickness, δx (Eq. (3.55)),

(iii) The second derivative of the �lm thickness, δxx (Eq. (3.57)),

(iv) The third derivative of the �lm thickness, δxxx (Eq. (3.60)),

are calculated. Using these four boundary (initial) conditions, the �lm thickness

pro�le at the �n top surface can be obtained.

3.4 Solution approach

In the described problem, the distribution of the condensing �lm pro�le is un-

known a priori. The objective of the solver developed is to calculate the �lm

thickness along the surface coordinate in accordance with the boundary condi-

tions presented in Sec. 3.3.1. The solution starts at a position on the groove wall
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with two speci�ed boundary conditions at s = 0 (Eq. (3.17a)) and the initial

guesses for the �lm thickness, δ, and mass �ow rate, ṁ′. Thus, using four bound-

ary conditions at s = 0, the solver calculates the �lm thickness distribution up

to the central plane of the �n, where two symmetry boundary conditions are

expected to hold. In order to obtain the desired boundary conditions at the end

of the solution domain, initial guesses for the starting �lm thickness and mass

�ow rate are iterated using two nested secant iteration loops. The �owchart for

the solution algorithm is given in Fig. 3.7 and the details of the solution steps

are explained below.

Step-0. This step yields two boundary conditions, which are not subjected to

iteration during the solution algorithm, based on two geometrical inputs de�ned

at the starting point of the problem. More speci�cally, the �rst and second

derivatives of �lm pro�le at s = 0 are calculated using the edge angle and the

radius of curvature of the liquid �lm inside the groove, as given in Eq. (3.17a).

Step-1. This step aims to calculate the other two boundary conditions, which are

the �lm thickness and the third derivative thereof, to initiate the solution process

at the starting mathematical boundary. While the �lm thickness is directly

provided as an input, the mass �ow rate of the condensate, which is a function

of �lm thickness and its �rst, second and third derivatives (Eqs. (3.12)�(3.15b)),

is utilized to calculate the third derivative at s = 0. The inputs provided in

this step are iterated during the solution in order to match the target boundary

conditions at the end of the domain.

Step-2. This step calculates the �lm pro�le (and the distribution of mass �ow

rate) along the problem domain by solving the governing equation (Eq. (3.16))

based on the boundary conditions estimated in the previous steps. In the solu-

tion procedure, the solution domain is discretized into successive strips and the

mass balance is secured in each strip as given in Eq. (3.6).

Step-3. This step checks if the zero slope boundary condition at the line of

symmetry (s = L) holds, using a su�ciently small tolerance, εtolδs . If the slope

is not su�ciently small, the previous step is repeated with a new �lm thickness

guess at s = 0, else Step-4 starts.
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Figure 3.7: Iterative computational scheme
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Step-4. The symmetry boundary condition speci�ed for the third derivative of

�lm thickness given in Eq. (3.17b) implies that the mass �ow rate at the line of

symmetry of the �n is zero. This step checks if the mass �ow rate is less than

a su�ciently small tolerance, εtolṁ′ . If the �ow rate is higher than the tolerance,

Step-1 is repeated with a new mass �ow rate guess at s = 0, else the the iterative

process is terminated.

To summarize, the algorithm iteratively seeks for �lm thickness and mass �ow

rate values at s = 0, which render the slope of the �lm pro�le and the mass

�ow rate zero on the line of symmetry, utilizing two nested secant loops for root

�nding.

3.5 Comparison with the Results in Literature

In this section, the condensation problem presented by Alipour and Dursunkaya

[45] is solved and their results are compared with the results of the current

model. The working �uid is water and temperature di�erence between the wall

and vapor (subcooling) is 1.0 K. The thermophysical and geometrical parameters

are presented in Table 3.1. The thermophysical parameters are taken from [45].

Total �n length (40µm) and the edge angle inside the groove (64◦) are speci�ed

in accordance with [45]. The radius of the corner between the �n and groove

walls, Ro, is assumed as 50 nm. In their model, Alipour and Dursunkaya [45]

used vanishing curvature at the corner; however, in the current model, since

the corner region is kept inside the domain, the radius of meniscus curvature

inside the groove is given as a boundary condition, which is selected as 100µm.

It is worth noting that the e�ect of meniscus curvature on the results is not

signi�cant, which will be addressed in Chapter 5. Furthermore, water is a polar

substance, disjoining pressure model of which requires inclusion of the e�ect

of short range intermolecular forces. However, since the e�ect of disjoining

pressure on the �lm pro�le is negligible for the case solved, the power rule given

in Eq. (2.7) is used.

The �lm pro�le obtained for this problem is compared with the one obtained
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Table 3.1: Thermophysical properties and geometrical parameters used in the
condensation of water

Vapor temperature (K) Tv 343
Vapor pressure (Pa) pv 103300
Density of liquid (kg m−3) ρl 1000
Latent heat (J kg−1) hlv 2.3× 106

Surface tension (Nm−1) σ 0.0589
Dynamic viscosity of liquid (Pa s) µl 2.79× 10−4

Thermal conductivity (Wm−1K−1) kl 0.6
Molar mass (kg mol−1) M 0.018
Molar volume of liquid (m3mol−1) Vl 1.8× 10−5

Accommodation coe�cient c 1
Dispersion constant (J) Ad 5.0× 10−21

Radius of meniscus in groove (µm) Rm 100

Edge angle inside the groove (◦) θg 64

Fin top length (µm) Lfin 40

by Alipour and Dursunkaya [45] in Fig 3.8. The two �lm pro�les are almost

the same, which shows that the current model converges to very similar results

with [45] for the problems with negligible disjoining pressure and small corner

radius. Moreover, in the results presented by Alipour and Dursunkaya [45], the

curvature is set to zero at x = 0. However, the current model includes the corner

region in the solution domain and the radius of curvature is speci�ed as 100µm

at the starting point on the groove wall (s = 0), and it vanishes and changes

sign in the corner region shown in Fig 3.1. Therefore, in the �lm pro�le obtained

by the current model, the location of the zero free surface curvature is not the

same with the one in [45], which does not lead to a signi�cant di�erence in the

results.

There is no experimental or computational data in literature for high disjoining

pressure problems. Therefore, the comparison or validation of the current model

can not be performed for the problems with high disjoining pressure. The e�ect

of disjoining pressure on the �lm pro�le and condensation are discussed in the

following sections.
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Figure 3.8: Comparison of the �lm pro�le obtained by the current model with
the one presented by Alipour and Dursunkaya [45]

3.6 Results of Uni-directional Flow Model

Liquid �lm pro�les on the �n top are obtained for various cases and the e�ect of

disjoining pressure on the �lm pro�le is investigated by focusing on the region

near the �n top-groove corner. The working �uid is octane and the solid is

silicon similar to previous phase-change studies [31, 52]. The temperature and

the pressure of the vapor phase, together with the latent heat of vaporization are

selected following [52]. The numerical value of 3.18× 10−21 J for the dispersion

constant was used, similar to [31] and [52]. Other thermophysical properties of

the liquid and vapor are evaluated at 343K using NIST Chemistry WebBook

[53]. Grooved heat pipes can be of various �n lengths, which is speci�ed as

100µm for the current problem. The e�ect of the �n length on the condensation

will also be discussed in Chapter 5. Thermophysical properties and geometrical

parameters used in the model are summarized in Table 3.2.

3.6.1 E�ect of subcooling

The condensation mass �ux depends on the �lm thickness, pressure jump across

the liquid-vapor interface, the temperature di�erence (subcooling) between the

wall and vapor, and the thermophysical properties of the �uid. The �lm thick-

ness and pressure jump distributions are the results of the solver. Subcooling,
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Table 3.2: Thermophysical properties and geometrical parameters used in the
model

Vapor temperature (K) Tv 343
Vapor pressure (Pa) pv 15869
Density of liquid (kg m−3) ρl 661.38
Latent heat (J kg−1) hlv 3.398× 105

Surface tension (Nm−1) σ 0.016953
Dynamic viscosity of liquid (Pa s) µl 3.1929× 10−4

Thermal conductivity (Wm−1K−1) kl 0.11136
Molar mass (kg mol−1) M 0.11423
Molar volume of liquid (m3mol−1) Vl 1.7271× 10−4

Accommodation coe�cient c 1
Dispersion constant (J) Ad 3.18× 10−21

Radius of meniscus in groove (µm) Rm 800

Edge angle inside the groove (◦) θg 30

Fin top length (µm) Lfin 100

on the other hand, is an input and directly a�ects the mass �ux. Therefore, the

e�ect of subcooling on the results is of primary interest. While the corner radius,

Ro, is taken as 30 nm, the values used for subcooling range between 1.0 K and

10−3 K, which is nearly isothermal. The edge angle inside the groove, θg, and

the radius of meniscus inside the groove, Rm, are selected as 30◦ and 800 nm,

respectively, which are within the application range for a grooved heat pipe.

Film thickness pro�les obtained for four di�erent subcooling values are presented

in Fig. 3.9. There is a slight di�erence in the �lm thickness pro�les on the �n top

for 1.0, 10−1, and 10−2 K subcooling. However, for 10−3 K, there is a signi�cant

decrease in the �lm thickness. When the insets showing the variations of �lm

thickness pro�les near the line of symmetry and corner region are examined, the

e�ect of subcooling on the �lm pro�les is apparent: the �lm thickness decreases

with decreasing temperature di�erence. The slope of the �lm pro�les, on the

other hand, do not change signi�cantly from the groove side to the �n top for

subcooling values between 10−2 and 1.0 K. However, for 10−3 K subcooling, the

�lm pro�le conforms to the solid substrate surface at the corner region, and
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Figure 3.9: E�ect of subcooling on the �lm thickness pro�le on the �n top

accordingly, at the �n top starting point (x = 0), the slope of the �lm pro�le is

smaller than the slopes obtained for higher subcooling values, which results in

a thinner �lm on the �n top. Therefore, the continuous slope assumption at the

�n top-groove corner, which is widely used in the literature and which implies

that the slope of the free surface does not change from groove side to �n top side

52



of the corner region, is not valid for the near isothermal cases of the problem

investigated.

In the condensation problem solved, the driving force for the liquid �ow is the

pressure gradient. The magnitude of the pressure gradient is related to the

mass �ow in s-direction, ṁ′, and the �lm thickness, δ (Eq. (3.12)). At the �n

center, the symmetry boundary conditions are satis�ed and therefore, there is

no mass �ow in s-direction. Thus, the pressure gradient at the �n center is

zero. As moving through the groove, the mass �ow rate parallel to the solid

surface increases due to the condensation, and also the �lm thickness decreases

(Fig. 3.9), which both increase the liquid pressure gradient. As an example of

liquid pressure gradient variation, the distribution of the pressure gradient in the

problem with 10−2 K subcooling is plotted in Fig. 3.10. The groove wall region

is not speci�ed in Fig. 3.10 since the length of the groove wall is very small

(∼ 0.05 nm) in the problem solved. The pressure gradient is the highest at the

region where the liquid �lm is the thinnest and it decreases through the �n top

surface. At the �n top surface, there is a very small positive pressure gradient.

Only a small portion of �n top surface is included in Fig. 3.10, since the pressure

gradient changes slightly in this region. The liquid pressure has two components;

namely, capillary pressure and disjoining pressure as explained in Sec. 2.3. The

variation of free surface curvature causes a capillary pressure gradient, and when

the �lm thickness is very small, the change in �lm thickness causes a disjoining

pressure gradient; the summation of these two pressure gradients is the liquid

pressure gradient distribution given in Fig. 3.10. For a better understanding

of the physical mechanisms leading to the abrupt change of free surface slope

at the corner region, which is observed in the results of 10−3 K subcooling, the

pressure distribution in the corner region, where the pressure gradient is the

highest, should be investigated.

For 10−3 K subcooling, the free surface makes a sharper turn at the corner re-

gion. Therefore, there is a substantial change in the free surface curvature in

this region, which indicates the existence of a considerable capillary pressure

gradient. Moreover, the �lm thickness at the corner is much lower for 10−3 K

subcooling, which means the e�ect of disjoining pressure is also higher. The

53



-10.0

10.0

30.0

50.0

70.0

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Corner Fin top
P

re
s
s
u

re
 g

ra
d

ie
n

t 
[M

P
a

/m
]

s [μm]

Figure 3.10: Liquid pressure gradient,
dpl
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, for 10−2 K subcooling

capillary pressure, disjoining pressure and their summation (pressure jump) are

plotted in Fig. 3.11 for all subcooling values. For the largest subcooling, �lm

thickness pro�le is the thickest due to the elevated condensation rates. At this

subcooling, the e�ect of disjoining pressure is negligible (see Fig. 3.11a). How-

ever, as the subcooling decreases, the e�ect of disjoining pressure becomes more

pronounced. For the smallest subcooling, disjoining pressure reaches its highest

magnitudes due to the thinner �lm pro�le. This large increase in disjoining pres-

sure is compensated by the capillary pressure as shown in Fig. 3.11d. Therefore,

the gradient of the capillary pressure is also high at the corner region for 10−3 K

subcooling case. The curvature of the �lm pro�le changes abruptly to create

this high capillary pressure gradient, which leads to a sharp turn of the free

surface in the corner region. The result is a �lm pro�le tracing the cylindrical

wall surface for the smallest subcooling. The symmetric distribution of disjoin-

ing pressure in Fig. 3.11d is also related to the conformal pro�le of the �lm due

to the fact that the thinnest part of the �lm pro�le occurs near the mid-point

of the cylindrical corner. For higher subcooling values, the �lm pro�les become

thinnest, i.e. peak disjoining pressure occurs, before the mid-point of the corner

region (see Fig. 3.11b-c), since the e�ect of disjoining pressure is small.
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Figure 3.11: Capillary pressure, disjoining pressure and interface pressure jump
at corner region for subcooling values of (a) 1.0 K, (b) 10−1 K, (c) 10−2 K, (d)
10−3 K

3.6.2 E�ect of dispersion constant

To investigate the e�ect of dispersion forces on the �lm thickness, two additional

cases are solved using 10−3 K subcooling: in the �rst one, the disjoining pressure

is neglected; and in the second one, a dispersion constant 1.5 times higher than

the actual value (4.77 × 10−21 J) is used. The �lm thickness pro�les obtained

are presented in Fig. 3.12. When the disjoining pressure is neglected, the �lm

thickness pro�le is very close to the one obtained for the 1.0 K subcooling case,

where the disjoining pressure e�ect is negligible due to the thicker �lm.
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Figure 3.12: E�ect of dispersion constant on the �lm thickness pro�le (∆T =

10−3 K, R0 = 30 nm)

The pressure jump across the interface, for the case where the disjoining pressure

is neglected, is equal to the capillary pressure (pjump = pc). The variation of

the pressure in the corner region, which is given in Fig. 3.13, is similar to the

one with 1.0 K subcooling case: the magnitude of capillary pressure does not

have a peak unlike the case where the e�ect disjoining pressure is signi�cant. In

this case, the gradient in the capillary pressure is only due to the mass �ow in

s-direction, ṁ′, and it increases with decreasing �lm thickness, δ (see Eq. 3.12).

Therefore, the capillary pressure gradient, and thus the rate of change of the

free surface curvature, is the highest at the corner region, where the mass �ow

rate is the highest and the liquid �lm is the thinnest. This gradient in the free

surface curvature, changes the shape of the �lm pro�le from concave upward to

concave downward, at the corner region. However, since the gradient is not high

as it is when the disjoining pressure is present, the slope of the �lm is higher at

56



the starting point of the �n top surface. Thus the �lm on the �n top is thicker

when the disjoining pressure is not taken into account.
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Figure 3.13: Pressure jump across the interface in the corner region when the
e�ect of disjoining presure is neglected (pjump = pc)

While the total condensation mass �ow rate (per unit depth) is 2.6×10−9 kg m−1s−1

for the solution with 3.18×10−21 J dispersion constant, it is 1.4×10−9 kg m−1s−1

in the absence of disjoining pressure suggesting a 46% de�cit in the condensing

vapor rate. The decrease in the the total condensation mass �ow for the case

where the disjoining pressure is neglected, is attributed to the thicker liquid �lm

on the �n top which results in elevated resistance to the heat transfer. The

higher resistance leads to less heat transfer and decreases the condensation rate.

The dispersion constant, Ad, is de�ned as, Ad = A/6π, where A is the Hamaker

constant. The Hamaker constant is obtained experimentally and it is not re-

ported for many solid-liquid-gas systems in the literature. In addition, there

are some theoretical methods such as combining rule to calculate the Hamaker

constants for multi-material systems using the properties of individual materi-

als, but they do not always result in a valid approximation [48]. Consequently,

there is not a consensus about the Hamaker constants of many systems and the
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reported Hamaker constants lie in a wide range. In the current study, in addi-

tion to using a zero Hamaker constant (i.e. e�ectively eliminating the dispersion

e�ect), a second value, 1.5 times the original is used, to asses the e�ect of the

magnitude of disjoining pressure. This upper bound of the dispersion constant

elevates the total condensation mass �ow rate to 3.6× 10−9 kg m−1s−1 resulting

in a 38% excess condensation rate, since the higher disjoining pressure results

in a free surface conforming better to the solid substrate at the corner region,

which leads to a thinner �lm on the �n top.

The results obtained for these three cases reveal that exclusion of the disjoining

pressure e�ect in the condensation modeling results in misleading �lm thickness

pro�les and mass �ow rates for the small subcooling values in �n-groove systems.

Moreover, �lm thickness pro�les and �ow rates are sensitive to the magnitude

of the Hamaker constant. Therefore, depending on the type of molecular inter-

actions of di�erent solid and �uid materials, the system may be in�uenced by

the dispersion forces even for higher subcoolings.

3.6.3 E�ect of corner radius

Lubrication approximation is widely applied to model the liquid �ow within thin

�lms including the problems with phase-changing interface. In the current prob-

lem, thin �lm is positioned on both the �n top and groove wall surfaces, where

the uni-directional �ow of the condensate can be modeled using lubrication ap-

proximation along the solid surfaces. However, the condensate �owing into the

groove changes its direction at the intersection of the �n top and groove wall

(corner region), where the uni-directionality of the liquid �ow is disturbed. In

order to utilize the lubrication approximation throughout the solution domain,

the corner was modeled as a cylindrical surface rather than a sharp, discontin-

uous edge. In this section, the e�ect of size of the corner radius on the �lm

thickness pro�le is investigated. The results are presented for the near isother-

mal case (10−3 K subcooling), since the di�erence between the �lm pro�les is

more prominent for this case.

Film pro�les for 30, 60, and 100 nm corner radii are presented in Fig. 3.14. As
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Figure 3.14: E�ect of corner radius on the �lm thickness pro�le (∆T = 10−3 K)

the corner becomes sharper, the free surface makes a sharper turn at the corner

and the liquid �lm on the �n top is thinner. Considering this trend, it can be

deduced that decreasing the radius further may lead to an even thinner �lm on

the �n top. Thus, the e�ect of disjoining pressure may be signi�cant even for

higher subcooling values when the corner is sharper. However, decreasing the

corner radius further leads to the violation of the continuum and the lubrication

assumptions of the current model. Therefore, the results for smaller corner radii

are not presented.

3.6.4 On the validity of the assumptions

There are two assumptions that limit the cases which can be solved with the

current model. The �rst one is the lubrication approximation, which restricts

the usage of small corner radius and high subcooling, since both δ/Ro ratio

and Reynolds number increase with reduced corner radius and elevated sub-
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cooling. As the subcooling decreases, the �lm thickness and Reynolds number

also decrease, but this time the second assumption, continuum, becomes a lim-

iting parameter, since the liquid �lm at the corner may become excessively thin.

Table 3.3 summarizes the parameters related to these two assumptions for the

selected cases. For 30 nm corner radius, the time scale ratio decreases from the

order of 10−2 to 10−6 as the subcooling decreases from 1.0 K to 10−3 K. Keeping

the subcooling at 10−3 K, the time scale ratio is of same order for 30, 60 and

100 nm corner radius. However, the minimum �lm thickness is much smaller for

the sharper corner. Therefore, the radius of curvature of the corner is limited

by the lubrication assumption for high subcoolings and is limited by continuum

assumption for low subcoolings. It is worth emphasizing that for the case with

10−3 K subcooling and 30 nm corner radius, the minimum local �lm thickness

becomes 2.1 nm, which may necessitate the inclusion of non-continuum e�ects,

such as wall slip and molecular layering. However, the region of this extremely

thin �lm occurs only around the local minima of the �lm and the extent of this

region is highly restricted.

Table 3.3: Minimum �lm thicknesses and time scale ratios at the corner region

Corner radius
(nm)

Subcooling
(K)

Minimum �lm
thickness (nm)

Average time scale ratio
(tdiff /tconv)

30 1.0 75.7 2.3× 10−2

30 10−1 33.6 1.2× 10−3

30 10−2 8.3 3.8× 10−5

30 10−3 2.1 1.0× 10−6

60 10−3 3.5 9.7× 10−7

100 10−3 5.3 9.8× 10−7
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CHAPTER 4

BI-DIRECTIONAL FLOW MODELING

The condensation models for heat pipes are very limited in literature. The

present models focus on the grooved heat pipe geometry due to the ease of mod-

eling. However, they have not been experimentally validated yet even for this

simple geometry [46]. There is only one experimental study [20] measuring the

liquid �lm pro�le on the �n top surface of a grooved heat pipe. However, simu-

lating the experiments presented by Lips et al. [20] using the model developed in

the current study is not possible because of several reasons: i) the experiments

were performed using methanol, a polar substance, which requires a completely

di�erent disjoining pressure formulation with uncertain constants, not available

in literature; ii) because of the measuring method used, the position of the solid

wall and the liquid �lm could not be determined simultaneously; therefore, the

position of the solid wall was not exactly speci�ed in the results presented; and

iii) the distribution of wall temperature or heat �ux was not explicitly given on

the �n top. Therefore, the experimental validation of the current model is not

achievable at the moment, but a numerical validation can be performed by solv-

ing the same problem using a numerical methodology which does not utilize the

simplifying assumptions made in the current uni-directional modeling approach.

For this purpose, the commercial software COMSOL Multiphysics is used and

the details of modeling with COMSOL are presented in the following sections.
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4.1 Bi-directional Flow Model

Based on the lubrication approximation, the model developed in the current

study assumes that the liquid �ow is uni-directional on the �n top in the direction

parallel to the solid surface. The advantages and the limitations brought by this

approximation are discussed in Chapter 3. In this section, the condensation

problem is modeled in the same problem domain and equations of bi-directional

�ow are solved. Thus, the e�ect of lubrication approximation and consequently,

uni-directional �ow assumption on the results are investigated. The creeping �ow

solver model of COMSOL software, which is based on Finite Element Method

(FEM), is used for this purpose. The problem domain, governing equations and

boundary conditions are given in the following sections.

4.1.1 Problem domain

The problem domain in Cartesian coordinates (x,y), which is presented in Fig. 4.1,

starts at a point on the groove wall and ends at the central plane of the �n, as

described in Chapter 3. The lower boundary is the solid wall involving the

cylindrical corner comprised of �n top and groove wall surfaces; and the upper

boundary is the free surface of the liquid �lm formed by the condensate. The

main complexity of this problem is that the liquid �lm pro�le (upper boundary

of the problem) is unknown prior to solving the �uid �ow problem and com-

mercially available CFD software do not have the capability of estimating the

liquid-vapor interface pro�le formed by the condensate on the �n top. Therefore,

the �lm pro�le is obtained by the uni-directional �ow model and it is taken as

input to COMSOL model. Furthermore, the phase-change can not be solved in

COMSOL. Therefore, the condensation mass �ux information is also gathered

from the results of uni-directional �ow solution, details of which are given in the

following sections.
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Figure 4.1: The problem domain used in the COMSOL simulations

4.1.2 Governing equations

The purpose of solving the same problem with COMSOL is to scrutinize the

validity of the uni-directional �ow assumption of the model developed in the

current study. Therefore, together with conservation of mass equation, conser-

vation of momentum equations in both x- and y-directions are solved in the

bi-directional model. The conservation of mass and momentum equations for an

incompressible and steady bi-directional �ow with u and v velocities in x- and

y-directions, respectively, are given below.

∂u

∂x
+
∂v

∂y
= 0 , (4.1)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂pl
∂x

+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ gx , (4.2)
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u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂pl
∂y

+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ gy , (4.3)

where, gx and gy are the accelerations of gravity in x- and y-directions, respec-

tively. In the current problem, the �ow of the condensate on the �n top, the

inertial terms are negligible due to very low velocities and the force balance is

among the pressure and viscous stress, i.e. gravitational force is also negligible.

Therefore, the conservation of momentum equations reduce to:

0 = −1

ρ

∂pl
∂x

+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (4.4)

0 = −1

ρ

∂pl
∂y

+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, (4.5)

in x- and y-directions, respectively. To solve these equations, Creeping Flow

model in COMSOL is used. The software, by default, recommends the use of

second order interpolation for velocity and �rst order interpolation for pressure

in disretization of the equations, which are well suited for most of the creeping

�ow simulations [54].

4.1.3 Boundary conditions

In bi-directional �ow model, the liquid-vapor interface pro�le and the conden-

sation mass �ux distribution, which are obtained by the uni-directional �ow

algorithm, are taken as input, and the incompressible �ow equations given in

the previous section are solved. The boundary conditions used in the solution

are summarized in Fig. 4.2. At the �n central plane, symmetry boundary condi-

tions are used and the boundary of the problem domain at the groove wall side

is speci�ed as a pressure outlet. In this condensation problem, the condensate

enters the domain at the free surface, where the shear stress is zero. However,

COMSOL does not allow to specify in�ow and zero shear boundary conditions at

the same boundary. Therefore, at the free surface, slip wall boundary condition,

which implies zero shear at the free surface, is used and the condensation mass
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�ux is speci�ed at the solid wall, where the velocity in surface tangential direc-

tion is zero, which implies no slip, and the velocity in surface normal direction is

calculated according to the condensation mass �ux obtained by uni-directional

�ow model. It is worth to note that, since the magnitude of the condensation

mass �ux is very small in this problem, specifying the condensation in�ow at the

upper or lower boundary does not create a signi�cant di�erence in the results in

terms of the numerical validation of uni-directional �ow model.

Slip wall

Leaking wall

Flow direction

Starting point on the 

groove wall

Fin central plane

Pressure outlet

Symmetry

Figure 4.2: Boundary conditions speci�ed in the COMSOL simulations

Both the symmetry and slip wall boundary conditions imply a zero cross �ow

and vanishing shear stress at the boundary by imposing:

u· n̂ = 0 , (4.6a)
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{
n̂·
[
µ
(
∇u + (∇u)T

)]}
· t̂ = 0 , (4.6b)

where, u is the velocity vector, u = ûi + v̂j, n̂ is the unit normal vector of the

surface and t̂ is the unit tangent vector of the surface at the boundary.

The pressure outlet boundary condition speci�es the normal stress at the bound-

ary. The normal stress is de�ned as:

[
−plI + µ

(
∇u + (∇u)T

)]
· n̂ = −p̂on̂ , (4.7a)

p̂o ≤ po , (4.7b)

where, I is identity matrix, po is the relative pressure which is set to zero (po = 0)

in current analyses, and p̂o is the pressure distribution at the boundary. In

COMSOL, the tangential component of stress is set to zero at the pressure

outlet boundary by default.

In leaking wall boundary condition, the velocity in surface tangential direction

is set to zero (no slip) and the velocity normal to the wall is calculated using the

condensation mass �ux distribution obtained in the uni-directional �ow model

as given below:

u· t̂ = 0 , (4.8a)

u· n̂ =
ṁ
′′
c

ρl
, (4.8b)

where, t̂ is the unit tangent vector of the solid wall.

4.1.4 Modeling approach

As mentioned previously, the free surface pro�le and the condensation mass �ux

distribution are obtained in the uni-directional �ow model and they are the in-

puts of COMSOL model. The free surface pro�le is a unique curve, speci�cation
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of which is not straightforward in COMSOL. One way is to import several points

on the curve into the model and create interpolation curves passing through this

points. In the current model, the solid wall and the liquid free surface are created

using this approach.

De�ning the symmetry, pressure outlet and free surface (slip wall) boundary

conditions is straightforward in COMSOL user interface. However, since the

condensation mass �ux obtained in uni-directional �ow algorithm is not con-

stant, specifying the leaking wall boundary condition requires a special treat-

ment, which is performed by dividing the solid wall into small segments and

setting the velocity at each segment in accordance with the local condensation

mass �ux as shown in Fig.4.3.

𝑈𝑐,𝑖 = ൗ
ሶ𝑚𝑐,𝑖
′′

𝜌𝑙

𝒊 − 𝟏

𝒊

𝒊 + 𝟏

Liquid film

Leaking wall

Flow direction

Starting point on the 

groove wall

Fin central 

plane

Figure 4.3: De�ning leaking wall boundary condition on the segments created
on solid wall

At the ith segment, the condensation velocity normal to the wall, Uc,i, is calcu-

lated as follows:
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Uc,i =
ṁ
′′
c,i

ρl
, (4.9)

where, ṁ
′′
c,i is the average condensation mass �ux at the ith segment. The sizes

of the segments on the planar walls are not critical since the direction of surface

normal does not change in the planar surfaces and the rate of change of conden-

sation mass �ux is not high. However, in the cylindrical corner surface, the size

of the segments should be su�ciently small in order to capture the curved geom-

etry. In the current simulations, the cylindrical corner surface of 30 nm radius

is divided into 100 segments, and the planar surfaces are divided into segments

of 0.2µm. Since the total number of segments on the wall is high, specifying

the leaking wall boundary condition manually using the COMSOL user inter-

face is cumbersome. Therefore, the process of setting the simulation model

is automatized using COMSOL LiveLinkTM for MATLAB, which enables the

establishment of simulation (COMSOL) model on MATLAB environment. In

the current study, the generation of problem domain, speci�cation of boundary

conditions and solver settings are all performed on MATLAB using COMSOL

LiveLinkTM interface.

4.2 Results of the Bi-directional Model

Using the COMSOL model described in this section, the simulations of con-

densation problems with subcooling of 1.0, 10−1, 10−2 and 10−3 K, which are

discussed in Section 3.6.1, are performed. The pressure gradients and free sur-

face velocities obtained by the COMSOL model are compared with the results of

uni-directional model. It is worth noting that in uni-directional �ow model, the

liquid pressure is speci�ed by the summation of capillary and disjoining pres-

sures while in COMSOL, capillary and disjoining pressures are not modeled but

the liquid pressure is calculated in accordance with the aforementioned problem

domain and boundary conditions.

For 1.0 K subcooling case, the computational mesh consists of 226,568 elements.

The mesh independence is satis�ed performing the simulation on three di�erent
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meshes and the results obtained are almost identical in terms of the pressure

gradients and the velocities. The same mesh settings are used for all simulations.

In the COMSOL simulations, the boundary at the groove side is extended 20 nm

towards the groove to avoid the e�ect of numerical errors arising at the outlet

boundary such as pressure singularities at the corners of the boundary. The ex-

tended solid wall and liquid-vapor interface surface are speci�ed as wall (no slip,

non-leaking) and slip wall boundary conditions, respectively. This modi�cation

on the solution domain does not have a signi�cant e�ect on the results.

Since the case with high disjoining pressure is of main interest, the results of the

case with 10−3 K subcooling are presented �rst. In Fig.4.4, the velocity contour,

velocity vectors, and u velocity pro�le at x = 30 nm are presented. There is

a very low liquid velocity on the �n top surface; however, approaching to the

�n-groove corner, it increases with increasing amount of condensed liquid and

decreasing �lm thickness and reaches its maximum at the corner region. The

maximum velocity is about 2.6 × 10−3 m/s, but the velocity contour in Fig.4.4

ranges between 0 to 5.0 × 10−6 m/s to demonstrate the distribution on the �n

top. In the uni-directional �ow model presented in Chapter 3, the liquid �ow in

y- direction is neglected and the velocity pro�le is assumed as parabolic. The

zero shear boundary condition at the free surface makes the magnitude of the

velocity maximum at the free surface with vanishing derivative with respect to

y- coordinate. However, when the bi-directional simulations are performed, at

the free surface, the magnitude of u velocity is not maximum and the derivative

of u velocity with respect to y- coordinate is not zero, as shown in Fig.4.4b. This

di�erence is caused by the e�ect of v velocity in -y direction at the free surface.

The most critical region of this problem in terms of validity of the uni-directional

�ow assumption is in the close proximity of the �n-groove corner, where the uni-

directionality of the liquid �ow is disturbed the most. The velocity distribution

in the corner region is presented in Fig. 4.5. The maximum velocity occurs at

the region where the liquid �lm is thinnest. As the �lm thickness increases in

both groove and �n directions, the liquid velocity at the free surface decreases,

as can be seen in Fig. 4.5.
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(a)

(b)

Figure 4.4: The velocity distribution for 10−3 K subcooling: (a) velocity contour
and velocity vectors on the �n top; (b)u velocity pro�le at x = 30 nm

The high velocity in the corner region indicates a high pressure gradient in this

region. The pressure distribution in the corner region is given in Fig. 4.6; as can

be seen in the �gure, the pressure experiences an abrupt change at the region

where the liquid �lm is the thinnest, but at the �n top surface the rate of change

of pressure is very small. In the region near the central plane of the �n surface,

the pressure decreases through the �n-groove corner with a very small gradient

since the �lm thickness is high and the mass �ow rate is low. As approaching to

the corner region, the �lm thickness decreases and the mass �ow rate increases

with increasing amount of condensed liquid; therefore, the pressure gradient

increases (see Eq. 3.12). This is the reason of the rapid pressure change at the

corner region.
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Figure 4.5: The velocity distribution at the corner region for 10−3 K subcooling

To investigate the deviation of the results of uni-directional �ow model from the

bi-directional �ow simulation results, the pressure gradients and the free surface

velocities are compared. This comparison is made at the corner region since it

is the most critical region with the highest gradients.

In the uni-directional model, the pressure gradient in surface normal direction

is neglected and the gradient in s- direction is the main driving force for the

liquid �ow. For comparing the gradient obtained in uni-directional �ow model

with the one in the COMSOL bi-directional simulation, the pressure gradient

in COMSOL results are calculated at the middle height in liquid �lm (at δ/2)

and they are plotted together in Fig. 4.7a. The results of uni-directional and

bi-directional models are in good agreement for 10−3 K subcooling case, which

means the uni-directional assumption (or lubrication approximation) is valid for

this case.

As shown in Fig. 4.4b and explained previously, the pro�le of the velocity par-
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Figure 4.6: The pressure distribution at the corner region for 10−3 K subcooling

allel to the solid surface deviates from the one assumed in uni-directional �ow

model due to the e�ect of �ow in surface normal direction. To investigate the

signi�cance of this deviation, the s- component of the velocity at the free sur-

face obtained in COMSOL simulation is compared with the free surface velocity

obtained by uni-directional �ow model in Fig. 4.7b. The free surface velocities

in two models are also in good agreement for this case. Therefore, it can be de-

duced that the assumption of uni-directional �ow is valid for 10−3 K subcooling

problem.

The condensation problems with 10−2, 10−1 and 1.0 K subcoolings are also solved

by using the COMSOL model. The comparisons of the pressure gradient and

the free surface velocity at the corner region are presented in Fig. 4.8 for all

subcooling values. As discussed in Section 3.6, increasing the subcooling causes

a higher time scale ratio, which is de�ned in Eq. 3.4, since both δ/Ro ratio and

Reynolds number increases due to the increase of �lm thickness and amount

of condensed liquid. The increase of time scale ratio deteriorates the accuracy
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Figure 4.7: Comparison of the results of uni-directional model and COMSOL
simulations for 10−3 K subcooling: (a) pressure gradient, dpl/ds, at the corner
region at the middle height (δ/2), (b) s- component of the free surface velocity
at the corner region

of the uni-directional �ow model, since the lubrication approximation is only

valid for low time scale ratios. As given in Table 3.3, when the subcooling

is increased from 10−3 to 10−2 K, the average time scale ratio increases from

1.0 × 10−6 to 3.8 × 10−5, which is still much less than one; and this increase

in time scale ratio causes a small di�erence between the uni-directional and bi-

directional simulation results as shown in Fig. 4.8a and Fig. 4.8b. Increasing the

subcooling to 10−1 K increases the time scale ratio to 1.2×10−3 and the di�erence

in pressure gradients and free surface velocities obtained by uni-directional and

bi-directional simulations becomes more prominent as shown in Fig. 4.8c and

Fig. 4.8d. The di�erence is the highest for 1.0 K subcooling case (Fig. 4.8e and

Fig. 4.8f), where the average time scale ratio is 2.3× 10−2.

The results presented in Fig. 4.8 show that the lubrication approximation is a

limiting parameter for high subcooling values in accordance with the discussions

made in Section 3.6. However, for 1.0 K subcooling case solved, the disjoining

pressure is not signi�cant and the slope of the free surface is almost continuous

at the corner region as given in Section 3.6. Therefore, an accurate solution of

the �lm pro�le on the corner region, where the deviation from uni-directional
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Figure 4.8: Comparison of the results of uni-directional model and COMSOL
simulations: pressure gradient, dpl/ds, at the corner region at the middle height
(δ/2) for (a)10−2, (c)10−1, (e)1.0 K subcoolings; s- component of the free surface
velocity at the corner region for (b)10−2, (d)10−1, (f)1.0 K subcoolings
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�ow is the highest, is not essential for estimating the �lm pro�le on the �n top

surface. Thus, the uni-directional model still gives a good approximation of �lm

thickness pro�le for 1.0 K, despite the deviation from the bi-directional simu-

lations observed at the corner region. At this point, it is worth to note that

in a heat pipe, at the starting point of condenser section, the subcooling is the

highest and the edge angle at the groove side, θg, is also high, which both lead

to a high �lm thickness at the corner. Therefore, the disjoining pressure e�ect

is not signi�cant and the resolution of the corner region is not crucial at the far

end of the condenser. However, as approaching to the evaporator section, the

subcooling and the edge angle decrease, which both decreases the �lm thickness

at corner and increases the e�ect of disjoining pressure; and therefore, the reso-

lution of the corner region becomes critical. But this time, since the liquid mass

�ow is low due to the low subcooling and the �lm is thin, the time scale ratio

is low. Therefore, bi-directional e�ects are not signi�cant and the accuracy of

the uni-directional �ow model is high. Morover, when the disjoining pressure is

signi�cant, it makes the free surface more conformal to the solid wall, and this

also reduces the e�ect of �ow in surface normal direction.
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CHAPTER 5

DIMENSIONLESS PARAMETERS FOR FIN CONDENSATION

AND PARAMETRIC STUDY OF CONDENSATION

PERFORMANCE

In this chapter, the e�ects of thermophysical and geometrical parameters on the

condensation process, disjoining pressure, and the �lm pro�le forming on the �n

top surface are investigated by a parametric study. For the parametric study, one

alternative is to work with the dimensional form of governing equations, where

the �uid properties and geometrical parameters can be changed independently

to investigate their e�ects. However, in this case, the physical interpretation

and categorization of the parameters which have similar e�ects on the solution

becomes complicated, since the parameters are present in more than one equa-

tion or term. On the other hand, by non-dimensionalizing the equations, the

parameters which have the similar e�ects on the solution are grouped together

in dimensionless numbers, which reduces the total number of independent pa-

rameters and enables the interpretation of the overall e�ects of independent

parameters. Therefore, the governing equations are non-dimensionalized and

the parametric study is made by changing the dimensionless numbers which

appear in non-dimensional forms of equations and boundary conditions.

The non-dimensionalization of the governing equations and the e�ects of non-

dimensional groups on the condensation, �lm pro�le, and disjoining pressure are

presented in the following sections.
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5.1 Non-dimensionalization of Governing Equations

In the uni-directional �ow solver algorithm, the conservation of mass and mo-

mentum (Eqs. (3.5) and (3.12)), augmented Young-Laplace equation (Eq. (2.15))

and phase-change equation based on model of Wayner et al. [24] (Eq. (2.32)) are

solved together to obtain the �lm pro�le on the �n top. There are more than a

unique way of non-dimensionalization of these equations; however, among the al-

ternatives, the reference scales and dimensionless groups identi�ed in the current

method are more suitable for physical interpretation of the results.

The total length of solution domain, L, and the corner radius, Ro, are the

two alternatives for reference length scale in non-dimensionalization. The e�ect

of the corner radius on the pressure distribution at the corner region, slope

break, and �lm thickness pro�le is more prominent. Therefore, in the non-

dimensionalization, the corner radius is de�ned as the reference length scale:

δref = Ro , (5.1)

and

sref = Ro . (5.2)

Using these reference parameters, the dimensionless �lm thickness and surface

coordinate are de�ned as:

δ∗ =
δ

Ro

, (5.3)

s∗ =
s

Ro

, (5.4)

respectively. The �rst derivative of �lm thickness is already dimensionless:

δ∗s = δs , (5.5)
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and the second derivative of �lm thickness is non-dimensionalized as follows:

δ∗ss =
(1/Ro) δss

(1/Ro)
2 = δssRo , (5.6)

which implies the reference value given below for the second derivative of �lm

thickness:

δss,ref = 1/Ro . (5.7)

The interval that the problem is solved, 0 ≤ s ≤ L, is non-dimensionalized by

reference length as follows:

0 ≤ s/Ro ≤ L/Ro , (5.8)

which can be re-written as,

0 ≤ s∗ ≤ Π1 , (5.9)

where, the �rst dimensionless group, Π1 is identi�ed as:

Π1 =
L

Ro

. (5.10)

In the condensation problem solved, the liquid �ow on the �n top surface is

mainly driven by the capillary pressure gradient and the disjoining pressure is

either negligible or e�ective in a very limited region of the domain. Therefore,

for non-dimensionalization of the pressure, the reference pressure scale is de�ned

in terms of the surface tension and the reference scale for the second derivative

of �lm thickness, as follows:

pref = σδss,ref = σ/Ro . (5.11)

79



Substituting Eqs. (3.14a) � (3.14b) and Eq. (2.7) into Eq. (2.15), the augmented

Young-Laplace equation can be written as:

pjump = σ
δss(

1 + δs
2
)3/2 +

Ad
δ3
, (5.12a)

pjump = σ
(δ +Ro)Ro

2δss − 2Ro
2δs

2 − (δ +Ro)
2(

[δ +Ro)
2 +Ro

2δs
2
]3/2 +

Ad
δ3
, (5.12b)

for planar and cylindrical surfaces, respectively. Dividing these equations by

the reference pressure given in Eq. (5.11) and using the non-dimensional �lm

thickness and its derivatives, the expressions below are obtained:

p∗jump =
1

σ/Ro

σ
(1/Ro) δ

∗
ss(

1 + δ∗s
2
)3/2 +

1

σ/Ro

Ad
1

Ro
3δ∗3

, (5.13a)

p∗jump =
1

σ/Ro

σ
Ro

2 (δ∗ + 1) δ∗ss − 2Ro
2δ∗s

2 −Ro
2 (δ∗ + 1)2[

Ro
2(δ∗ + 1)2 +Ro

2δ∗s
2
]3/2 +

Ad
σR2

o

1

δ∗3
, (5.13b)

for planar and cylindrical surfaces, respectively. Collecting the dimensional pa-

rameters, the non-dimensionalized augmented Young-Laplace equation can be

written as:

p∗jump =
δ∗ss(

1 + δ∗s
2
)3/2 + Π2

1

δ∗3
, (5.14a)

p∗jump =
(δ∗ + 1) δ∗ss − 2δ∗s

2 − (δ∗ + 1)2[
(δ∗ + 1)2 + δ∗s

2
]3/2 + Π2

1

δ∗3
, (5.14b)

for planar and cylindrical surfaces, respectively, where the second dimensionless

group, Π2, is identi�ed as:

Π2 =
Ad
σR2

o

. (5.15)
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When the the reference length and pressure are substituted into the equation of

mass �ow rate per unit depth in s- direction (Eq. (3.12), the equation below is

obtained:

ṁ′ = − 1

3ν

σ

Ro

1

Ro

dp∗l
ds∗

Ro
3δ∗3 . (5.16)

De�ning the reference mass �ow rate per unit depth as:

ṁ′ref =
σRo

ν
, (5.17)

and dividing both sides of Eq. (5.16) by the reference mass �ow, ṁ′ref , the non-

dimensional mass �ow rate per unit depth is obtained as:

ṁ′
∗

= −1

3

dp∗l
ds∗

δ∗3 . (5.18)

For non-dimesionalization of the condensation mass �ux equation (Eq. (2.32)),

it is �rst multiplied by the total length, L, to convert the �ux into �ow rate

per unit depth and then the reference scales for length, pressure and mass �ow

rate per unit depth de�ned previously are used for non-dimesionalization of this

equation. The expression obtained is given below:

ṁ′c
∗

=
L

1 + (aRohlv/kl)δ∗

[
ν

σRo

a∆T − ν

σRo

b
σ

Ro

p∗jump

]
. (5.19)

Collecting the dimensional terms, the non-dimensional condensation mass �ow

rate equation is obtained as:

ṁ′c
∗

=
1

1 + Π3δ∗
(
Π4 − Π5p

∗
jump

)
, (5.20)

where, the 3 dimensionless groups are de�ned as:

Π3 =
aRohlv
kl

, (5.21)
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Π4 =
Lνa∆T

σRo

, (5.22)

Π5 =
Lνb

R2
o

. (5.23)

The boundary conditions for the �rst and second derivative of �lm thickness,

δs and δss, at the starting point of the solution domain on the groove wall

(s = 0) are calculated using the radius of meniscus, Rm, and the edge angle, θg,

inside the groove, as explained in Chapter 3. Non-dimensionalizing the radius of

meniscus curvature by the reference length, the dimensionless group given below

is identi�ed.

Π6 =
Rm

Ro

. (5.24)

The last dimensionless number is the edge angle inside the groove:

Π7 = θg . (5.25)

Heat transfer rate is the fundamental indicator of heat pipe performance. There-

fore, in the parametric study, the condensation performance will be evaluated

by comparing the dimensionless heat transfer in each case. Heat transfer is

not used during the �lm thickness pro�le calculations in uni-directional model.

Therefore, the total heat transfer rate per unit depth, q′, is calculated as a result

of the post-process as follows:

q′ = ṁ′s=0hlv . (5.26)

where, ṁ′s=0 is the total condensation mass �ow rate per unit depth. Dividing

the equation above by the reference mass �ow rate per unit depth, the expression

given below is obtained:
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1

σRo/ν
q′ = ṁ′

∗
s∗=0hlv . (5.27)

Using the dimensionless groups de�ned previously, after some algebraic manip-

ulations, the non-dimensional heat transfer equation becomes,

1

kl∆T
q′ = q′

∗
=

Π3Π1

Π4

ṁ′
∗
s∗=0 , (5.28)

which implies a reference heat transfer rate per unit depth,

q′ref = kl∆T . (5.29)

5.2 Parametric Study Results

The parametric study is performed by investigating the e�ects of dimensionless

groups, which are presented in the previous section, on the condensation perfor-

mance (condensation mass �ux and heat transfer) and disjoining pressure. First,

the e�ects of the parameters are investigated on the problems with negligible

disjoining pressure e�ect; then, by performing a parametric study on a problem

where the disjoining pressure is high, the relation between the dimensionless pa-

rameters and the e�ect of disjoining pressure are elucidated. The results are �rst

presented in the dimensionless basis, and then the e�ects of dimensional param-

eters, such as �uid properties and geometrical parameters, on the condensation

performance are discussed.

5.2.1 Parametric study for low disjoining pressure problems

The parametric study is �rst performed on a basic condensation problem where

the e�ect of disjoining pressure is negligible. For this purpose, the case with

octane as working �uid and 1.0 K subcooling, results of which are presented

in Chapter 3, is selected as the baseline problem and it is solved by non-
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dimensionalized model. The values of the dimensionless groups (parameters)

calculated for this problem are given in Table 5.1.

Table 5.1: Dimensionless numbers for the baseline problem (1.0 K subcooling)

Π1 1666.67

Π2 2.08× 10−4

Π3 0.29

Π4 1.51× 10−1

Π5 0.13

Π6 26666.67

Π7 30.00

The dimensionless �lm thickness pro�le on the �n top obtained for this case is

given in Fig. 5.1, where the Cartesian coordinates are non-dimensionalized by

the reference length as follows:

x∗ =
x

Ro

, (5.30)

y∗ =
y

Ro

. (5.31)

The parametric study is performed by solving the problem with di�erent val-

ues of dimensionless parameters. At each run, only one parameter is changed

and the others are kept constant. To investigate the e�ect of a dimension-

less parameter, Πi, two additional simulations are performed by setting this

dimensionless parameter to 1/3 and 10/3 of the baseline value of this parameter

(Πi = 1/3 × Πi,baseline and Πi = 10/3 × Πi,baseline), which is given in Table 5.1.

This is applied for dimensionless numbers Π1 to Π6; for the last dimensionless

number, Π7, on the other hand, the two additional simulations are performed

by setting Π7 to 15 and 45.
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Figure 5.1: Dimensionless �lm pro�le obtained for the input parameters given
in Table 5.1

The fundamental performance parameter in a heat pipe is the heat transfer

rate; therefore, to investigate the e�ect of a dimensionless parameter on the

condensation performance, the dimensionless average heat �ux ratios, q′′∗ratio,

de�nition of which is given in the equation below, are compared for each run.

q′′∗ratio =
q′′∗i

q′′∗baseline
, (5.32)

where, q′′∗i is the dimensionless average heat �ux calculated for the current

value of Πi, and q′′∗baseline is the dimensionless average heat �ux in the baseline

problem. The dimensionless average heat �ux, q′′∗, is de�ned as:
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q′′∗ =
q′∗

Π1

. (5.33)

Heat transfer in condensation process is a function of condensation mass �ow

and latent heat as given in Eq. (5.26). Therefore, the dimensionless average

condensation mass �ux, ṁ′′∗, is another important parameter in the evaluation

of the e�ects of dimensionless parameters and it is de�ned as follows:

ṁ′′∗ =
ṁ′
∗
s∗=0

Π1

. (5.34)

Similar to the heat �ux ratio, the dimensionless average condensation mass �ux,

which is compared for each run, is de�ned as:

ṁ′′∗ratio =
ṁ′′∗i

ṁ′′∗baseline
. (5.35)

The condensation performance is a function of �lm thickness on the �n top,

since the thickness determines the resistance to heat transfer. Therefore, the

dimensionless �lm thickness ratios at the �n center (s∗ = Π1), δ∗L,ratio, de�ned

below are also compared.

δ∗L,ratio =
δ∗L,i

δ∗L,baseline
, (5.36)

When the disjoining pressure is signi�cant, it causes a sudden slope change at

the corner region and decreases the �lm thickness on the �n top, as discussed in

Chapter 3. Therefore, to check the signi�cance of disjoining pressure, the slope

at the groove side of the corner, (δx)groove, and the slope at the �n top side of

the corner, (δx)fin, which are given below, are also checked for each simulation.

(δx)groove =
dδ∗

dx∗

∣∣∣∣
ϕ=0

, (5.37)

(δx)fin =
dδ∗

dx∗

∣∣∣∣
ϕ=π/2

. (5.38)
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For the baseline problem solved with the inputs given in Table 5.1, the dimen-

sionless average heat �ux is, q′′∗baseline = 4.54× 10−3, the dimensionless average

condensation mass �ux, ṁ′′∗baseline = 1.41 × 10−6, and the dimensionless �lm

thickness at the �n center is, δ∗L,baseline = 966.

The �rst dimensionless parameter to be investigated in the parametric study is

Π1. The e�ect of this dimensionless group is summarized in Table 5.2. Π1 is re-

lated to the length of the �n top. As it can be seen in Table 5.2, in all three cases,

at the corner region, the slope of the �lm pro�le does not change signi�cantly

from groove side to �n top side. Therefore, the disjoining pressure e�ect is neg-

ligible in these cases. Keeping the other dimensionless groups constant, increase

in the dimensionless length, Π1, causes a decrease of the average dimensionless

heat and mass �uxes, which can be attributed to the higher dimensionless liquid

�lm thickness on the �n top obtained for the higher Π1.

Table 5.2: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π1 (baseline problem
with low disjoining pressure)

Π1 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π1,baseline 2.49 7.48 0.34 1.73 1.70

Π1,baseline 1.00 1.00 1.00 1.73 1.72

10/3× Π1,baseline 0.35 0.11 3.33 1.73 1.73

The next dimensionless parameter, Π2, is basically related to the signi�cance

of disjoining pressure since it involves the dispersion constant, Ad. As can be

seen in the Table 5.3, in all 3 cases, the slope at the groove side and the �n side

are the same, which indicates that the disjoining pressure e�ect is negligible for

these cases. The �lm thickness, heat and mass �ux ratios also do not change for

this range of Π2.

The third dimensionless paramater, Π3, can be related to the resistance to con-
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Table 5.3: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π2 (baseline problem
with low disjoining pressure)

Π2 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π2,baseline 1.00 1.00 1.00 1.73 1.72

Π2,baseline 1.00 1.00 1.00 1.73 1.72

10/3× Π2,baseline 1.00 1.00 1.00 1.73 1.72

densation, increase of which reduces the rate of condensation. However, it is

worth to note that, the rate of condensation is not directly proportional to the

rate of heat transfer because the change of the latent heat, hlv, have oppo-

site e�ects on the condensation and heat transfer rates. This is also evident

in the de�nition of dimensionless heat transfer rate given in Eq. (5.28), where

Π3 appears in numerator of the multiplier term of dimensionless mass �ow rate,

ṁ′
∗
s∗=0. The e�ect of Π3 on the dimensionless results is summarized in Table 5.4.

The dimensionless �lm thickness at the �n center and the slopes at the corner

region are the same for the three di�erent simulations, which indicates that the

dimensionless �lm thickness pro�les are almost the same for these cases. Despite

almost identical �lm pro�les on the �n top, the dimensionless average condensa-

tion mass �ux decreases and the dimensionless average heat �ux increases with

increasing Π3.

Table 5.4: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π3 (baseline problem
with low disjoining pressure)

Π3 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π3,baseline 0.85 2.54 1.00 1.73 1.72

Π3,baseline 1.00 1.00 1.00 1.73 1.72

10/3× Π3,baseline 1.14 0.34 1.00 1.73 1.72
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The signi�cance of the temperature di�erence (subcooling), ∆T , in the conden-

sation rate is speci�ed by the fourth dimensionless parameter, Π4. Considering

Eq. (5.20), the e�ect of this parameter on the dimensionless condensation mass

�ow rate is obvious: increase of Π4 causes an increase in the dimensionless con-

densation mass �ow rate. However, since Π4 appears in the denominator of the

term multiplying the dimensionless mass �ow rate, ṁ′
∗
s∗=0, in the de�nition of

the dimensionless heat �ux given in Eq. (5.28), without solving the problem,

it can not be determined whether the change in the rate of dimensionless heat

transfer will be positive or negative when Π4 varies. The results for di�erent

Π4 values are given in Table 5.5. For this range of Π4, the �lm pro�les on the

�n top are similar; the e�ect of disjoining pressure is negligible; the change in

average dimensionless mass �ux is almost directly proportional to Π4; however,

the average dimensionless heat �ux changes inversely but not signi�cantly with

varying Π4.

Table 5.5: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π4 (baseline problem
with low disjoining pressure)

Π4 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π4,baseline 1.01 0.34 1.00 1.73 1.72

Π4,baseline 1.00 1.00 1.00 1.73 1.72

10/3× Π4,baseline 0.99 3.28 1.00 1.73 1.72

The next dimensionless group, Π5, determines the signi�cance of pressure jump

across the liquid-vapor interface, pjump, in the condensation rate. The results for

di�erent Π5 are presented in Table 5.6. The dimensionless �lm pro�le, conden-

sation mass �ux and heat �ux does not change in these three cases. Evaluating

the results for various Π4 and Π5 together, it can be deduced that in condensa-

tion process, the e�ect of temperature di�erence has a dominance over pressure

di�erence for these cases solved, since the dimensionless condensation mass �ux
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is much more sensitive to the change of Π4.

Table 5.6: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π5 (baseline problem
with low disjoining pressure)

Π5 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π5,baseline 1.00 1.00 1.00 1.73 1.72

Π5,baseline 1.00 1.00 1.00 1.73 1.72

10/3× Π5,baseline 1.00 1.00 1.00 1.73 1.72

The last two dimensionless groups are derived from the boundary conditions at

the groove side. Π6 is related to the radius of meniscus inside the groove, Rm.

The upper limit of Rm is in�nite which occurs when the groove is fully �ooded.

The minimum value of Rm is speci�ed by the width of the groove together with

the contact angle of the working liquid on the surface. The e�ect of Π6 on the

dimensionless results is negligible for the cases solved as seen in Table 5.7, which

shows that the �lm pro�le and heat and mass �uxes are almost the same.

Table 5.7: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π6 (baseline problem
with low disjoining pressure)

Π6 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π6,baseline 1.00 1.00 1.00 1.73 1.72

Π6,baseline 1.00 1.00 1.00 1.73 1.72

10/3× Π6,baseline 1.00 1.00 1.00 1.73 1.72

Π7 is the edge angle inside the groove. While the upper bound of the edge angle
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is almost 90◦, where the groove is fully �ooded, the lower bound is the contact

angle of the liquid on the solid substrate, which is speci�ed by the material

properties. As mentioned before, additional to the baseline problem, where

Π7 = 30, two simulations are performed for Π7 = 15 and Π7 = 45. The results

are summarized in Table 5.8. The change in the slope from groove side to the

�n top side of the corner is negligible for the baseline problem and the case

with Π7 = 45. Therefore, the e�ect of disjoining pressure is negligible for these

cases. For the case with Π7 = 15, the change in the slope at the corner region is

higher, which is an indication of higher disjoining pressure. However, since the

change of the slope is still small, its e�ect on the �lm pro�le or the condensation

rate is not signi�cant. There is a considerable increase in the dimensionless

�lm thickness as the edge angle decreases, which shows that the �lm thickness

strongly depends on the edge angle (Π7). The resistance to condensation and

heat transfer increases with increasing �lm thickness on the �n top. Therefore,

the dimensionless average condensation and heat �ux are lower for lower Π7.

The changes in average mass and heat �uxes are directly proportional in these

cases, since the dimensionless parameters, Π1, Π3 and Π4 are kept constant.

Table 5.8: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π7 (baseline problem
with low disjoining pressure)

Π7 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

15 0.91 0.91 1.33 3.73 3.65

Π7,baseline(= 30) 1.00 1.00 1.00 1.73 1.72

45 1.18 1.18 0.72 1.00 1.00
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5.2.2 Parametric study for high disjoining pressure problems

To investigate the relation between the dimensionless parameters and the dis-

joining pressure e�ect, a parametric study similar to the one presented in the

previous section is performed. In this study, the baseline problem is the one with

10−2 K subcooling, where the magnitude of the disjoining pressure is higher but

it does not have a signi�cant e�ect on the �lm pro�le as shown in Figs. 3.9

and 3.11c. The dimensionless parameters for this case are listed in Table 5.9.

Table 5.9: Dimensionless numbers for the baseline problem (10−2 K subcooling)

Π1 1666.67

Π2 2.08× 10−4

Π3 0.29

Π4 1.51× 10−3

Π5 0.13

Π6 26666.67

Π7 30.00

The dimensionless �lm thickness pro�le on the �n top for the baseline prob-

lem is given in Fig. 5.2. The dimensionless �lm thickness at the �n center is

δ∗L,baseline = 954; the dimensionless average heat �ux is q′′∗baseline = 4.47× 10−3;

and the dimensionless average condensation mass �ux is ṁ′′∗baseline = 1.39×10−8.

The only di�erence of this baseline problem from the previous one is that Π4 is

10−2 times lower in this problem. Therefore, there is not a signi�cant change

in the dimensionless �lm thickness on the �n top and the dimensionless average

heat �ux, but the dimensionless average mass �ux changes almost directly pro-

portional to Π4. Note that, for the current baseline problem, the slope decreases

from 1.73 to 1.69 from groove side to �n top side at the corner region, which

indicates that the disjoining pressure e�ect starts to become prominent.

The parametric study on the relation between the dimensionless parameters and

the disjoining pressure e�ect starts with the �rst dimensionless parameter, Π1.

92



-200

0

200

400

600

800

1,000

1,200

1,400

1,600

-200 0 200 400 600 800 1,000 1,200 1,400 1,600

y
*

x*

-5 -3 -1 1

-2

0

2

4

6

8

Figure 5.2: Dimensionless �lm pro�le obtained for the input parameters given
in Table 5.9

When Π1 increases, the change in the slope at the corner region increases too,

as shown in Table 5.10. Therefore, the disjoining pressure e�ect increases with

increasing dimensionless length, Π1. As it is observed in the low disjoining pres-

sure problems, the dimensionless average heat �ux decreases with increasing Π1.

However, when the disjoining pressure is high, the change in the dimensionless

heat �ux is suppressed. This suppression is due to the formation of thinner �lms

on the �n top by the e�ect of disjoining pressure, which reduces the resistance

to heat transfer.

The second dimensionless parameter, Π2, is directly related to disjoining pressure

through the dispersion constant, Ad. The increase of this dimensionless number
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Table 5.10: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π1 (baseline problem
with high disjoining pressure)

Π1 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π1,baseline 2.26 6.79 0.34 1.73 1.70

Π1,baseline 1.00 1.00 1.00 1.73 1.69

10/3× Π1,baseline 0.38 0.11 3.12 1.73 1.50

increases the e�ect of disjoining pressure, which results in an abrupt slope change

(slope break) at the corner region as shown in Table 5.11. The dimensionless

�lm thickness decreases; and the dimensionless heat and mass �uxes increase

with increasing disjoining pressure e�ect, as expected.

Table 5.11: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π2 (baseline problem
with high disjoining pressure)

Π2 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π2,baseline 0.99 0.99 1.01 1.73 1.73

Π2,baseline 1.00 1.00 1.00 1.73 1.69

10/3× Π2,baseline 1.14 1.14 0.79 1.73 1.14

As demonstrated in the previous section, Π3 is the resistance to condensation

mass �ow and increase of Π3 results in a decreased dimensionless condensation

mass �ux. Despite the decrease in the dimensionless mass �ux, the dimensionless

heat �ux increases with increasing Π3. The decrease in the mass �ux decreases

the �lm thickness, which increases the e�ect of disjoining pressure. When the

disjoining pressure e�ect becomes signi�cant, a thinner �lm forms on the �n top

due the slope break at the corner, and the decrease in the dimensionless mass
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�ux is suppressed. This results in a higher increase in the dimensionless average

heat �ux when compared with the one in the case with negligible disjoining

pressure. This e�ect of Π3 on the disjoining pressure (slope and �lm thickness)

and heat transfer performance is presented in Table 5.12.

Table 5.12: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π3 (baseline problem
with high disjoining pressure)

Π3 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π3,baseline 0.83 2.49 1.01 1.73 1.72

Π3,baseline 1.00 1.00 1.00 1.73 1.69

10/3× Π3,baseline 1.24 0.37 0.93 1.73 1.47

Π4 directly a�ects the condensation mass �ux due to the presence of subcooling

term. As it decreases, the �lm thickness decreases due to the decreased con-

densation mass �ow, which increases the disjoining pressure. The dimensionless

results summarizing the e�ect of Π4 on the disjoining pressure and the heat

and mass �uxes are given in Table 5.13 : decreasing Π4 increases the change of

slope at the corner and decreases the dimensionless �lm thickness at the �n top.

The change in the dimensionless heat �ux is not signi�cant. The change in the

dimensionless mass �ux would expected to be higher if the e�ect of disjoining

pressure were neglected.

The e�ect of the next dimensionless parameter, Π5, on the disjoining pressure

is not signi�cant as it is presented in Table 5.14. However, as Π5 changes, a

higher variation in the dimensionless heat and mass �uxes are observed when

compared with the results obtained for negligible disjoining pressure case. This

can be attributed to the lower Π4 in the current baseline problem because it

reduces the signi�cance of temperature di�erence in the condensation process

and thus, makes the problem more sensitive to change of Π5, which speci�es
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Table 5.13: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π4 (baseline problem
with high disjoining pressure)

Π4 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π4,baseline 0.97 0.32 0.91 1.73 1.41

Π4,baseline 1.00 1.00 1.00 1.73 1.69

10/3× Π4,baseline 1.02 3.41 1.01 1.73 1.72

the signi�cance of the pressure jump across the interface. The decrease in the

mass and heat �uxes with increasing Π5 shows that the pressure jump across

the interface suppresses the condensation for the cases solved. This suppressing

is only possible when the pressure di�erence (or pressure jump) in Eq. 2.32 is

negative, i.e. liquid pressure is higher than the vapor pressure. The pressure

jump is the summation of capillary and disjoining pressures as given in Eq. 2.15.

The disjoining pressure is positive everywhere in the domain but the capillary

pressure is positive at the groove side where the free surface is concave up and it is

negative at the �n top where the free surface is concave down. The suppression in

the condensation shows that the pressure jump is negative in most of the domain,

where the disjoining pressure is negligibly small and the capillary pressure is

negative due to the concave down shape of the free surface.

Table 5.14: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π5 (baseline problem
with high disjoining pressure)

Π5 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π5,baseline 1.03 1.03 1.00 1.73 1.70

Π5,baseline 1.00 1.00 1.00 1.73 1.69

10/3× Π5,baseline 0.90 0.90 1.00 1.73 1.69
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The dimensionless results for varying Π6, which is related to the meniscus cur-

vature inside the groove, are presented in Table 5.15. Similar to the results

obtained for negligible disjoining pressure problems in the previous section, the

e�ect of Π6 on the disjoining pressure is negligible, which shows that there is

not a distinct e�ect of Π6 on the condensation process.

Table 5.15: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π6 (baseline problem
with high disjoining pressure)

Π6 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

1/3× Π6,baseline 1.00 1.00 1.00 1.73 1.69

Π6,baseline 1.00 1.00 1.00 1.73 1.69

10/3× Π6,baseline 1.00 1.00 1.00 1.73 1.69

In the results presented up to this point, as the dimensionless parameters are

varying, the change in each dimensionless ratio is monotonic: they either increase

or decrease. However, as can be seen in the results presented in Table 5.16,

as Π7 changes, the variations in the dimensionless ratios are non-monotonic.

When Π7 is increased from 30 to 45 the e�ect of disjoining pressure vanishes

but a thinner �lm forms on the �n top due to the higher edge angle, Π7. In

the other case, where Π7 is reduced from 30 to 15, the �lm thickness would be

expected to increase if the e�ect of disjoining pressure were negligible; however,

contrary to the expected thicker �lm on the �n top, a remarkable slope break

occurs at the corner and reduces the �lm thickness on the �n top. Therefore,

as Π7 decreases, the e�ect of disjoining pressure increases. Consequently, for

this particular baseline problem, the dimensionless �lm thickness decreases with

both increasing and decreasing edge angle, Π7. Due to the thinner �lms, the

dimensionless heat and mass �ux increases in either case (Π7 = 15 or Π7 = 45).
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Table 5.16: Comparison of dimensionless average heat �ux ratio, average mass
�ux ratio, dimensionless �lm thickness ratio at the �n center and slopes at the
groove and �n sides of corner region for di�erent values of Π7 (baseline problem
with high disjoining pressure)

Π7 q′′∗ratio ṁ′′∗ratio δ∗L,ratio (δx)groove (δx)fin

15 1.07 1.07 0.91 3.73 1.41

Π7,baseline(= 30) 1.00 1.00 1.00 1.73 1.69

45 1.20 1.20 0.72 1.00 1.00

5.2.3 Discussion on the dimensional parameters

In the previous section, the e�ects of dimensionless parameters on the dimension-

less heat and mass �uxes are presented. However, in engineering applications,

the e�ects of dimensional thermopyhsical or geometrical parameters on the di-

mensional heat and mass �uxes are of main interest. Therefore, in this part, the

dimensionless results obtained in the previous section will be discussed in the

dimensional basis. The dimensional parameters can be present in both reference

scales and dimensionless groups. Therefore, switching to dimensional basis, the

e�ects of a dimensional parameter on both reference scales and the dimensionless

parameters should be considered.

First, the e�ect of each thermopyhical parameters, which is about the selection

of working �uid, is evaluated. The discussions on these parameters are given in

the following paragraphs.

The e�ect of dispersion constant, Ad. The dispersion constant is only present

in Π1. Therefore, the e�ect of Ad on the heat and mass �uxes are parallel to

the e�ect of Π1 on the dimensionless heat and mass �uxes: the increase of Ad

increases the e�ect of disjoining pressure, and when the disjoining pressure is

high enough to cause a slope break at the corner which results in a thinner �lm

on the �n top, both the heat and mass �uxes increase.

The e�ect of surface tension, σ. The surface tension appears in dimensionless

98



parameters Π2 and Π4 and the reference mass �ow rate, ṁ′ref . The decrease of

the surface tension has the same e�ect of increasing Ad on Π1, which raises the

e�ect of disjoining pressure. The relation between the surface tension and dis-

joining pressure e�ect can be explained as follows: the mass �ow in s- direction is

driven by the liquid pressure gradient, which is the summation of rate of change

of the disjoining and capillary pressures. The capillary pressure is a function

of surface tension and curvature (Eq. (2.2)). As the surface tension decreases

the rate of change of curvature increases to ensure the liquid �ow, which results

in an abrupt change in curvature and slope. Therefore, decreasing the surface

tension ampli�es the slope break caused by the disjoining pressure. However, as

the surface tension decreases, Π4 increases, which reduces the e�ect of disjoining

pressure due to the higher condensation mass �ow. Moreover, for lower surface

tension, the reference mass �ow rate decreases as well. Due to these e�ects of

surface tension on di�erent dimensionless numbers and the reference scale make

it impossible to determine the e�ects of changing surface tension without solving

the problem if the disjoining pressure is signi�cant. However, for the problems

with negligible disjoining pressure, the dimensionless average heat �ux is not

sensitive to variation of Π2 and Π4; therefore, the e�ect of changing the surface

tension in low disjoining pressure problems is expected to be minor in terms of

average heat �ux.

The e�ect of coe�cient a. The dimensionless parameters Π3 and Π4 involve the

coe�cient a. Comparing the e�ects of Π3 and Π4 in both high and low disjoining

pressure problems, it can be stated that the dimensionless average heat �ux is

much more sensitive to variation of Π3. Increase of the coe�cient a increases

Π3, which results in a signi�cant increase in the dimensionless average heat �ux.

Therefore, the dimensional heat �ux also increases for higher coe�cient a.

The e�ect of coe�cient b. Coe�cient b appears only in the dimensionless pa-

rameter Π5, the variation of which does not have remarkable e�ect on the dimen-

sionless heat �ux for the problems with high Π4. However, for low Π4 problems,

higher the coe�cient b, lower the dimensionless heat �ux due to the negative

pressure jump, as discussed in the previous section. The change in the dimen-

sional heat �ux is parallel to the dimensionless one.
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The e�ect of the latent heat, hlv. The only dimensionless parameter involving the

latent heat is Π3. The increase of Π3 results in a higher dimensionless average

heat �ux for both low and high disjoining pressure problems. Therefore, the

condensation heat transfer is higher for liquids with higher latent heat.

The e�ect of liquid thermal conductivity, kl. The liquid thermal conductivity is

present in the dimensionless group Π3 and the reference heat �ux, q′ref . Increas-

ing the thermal conductivity increases Π3 and accordingly reduces the dimen-

sionless average heat �ux for both high and low disjoining pressure problems.

However, since the reference heat �ux is directly proportional to the thermal

conductivity, higher thermal conductivity has an increasing e�ect on the dimen-

sional heat �ux (see Eqs. (5.28) and (5.29)). To evaluate the overall change of

dimensional heat transfer, the sensitivity of dimensionless heat transfer to Π3

and the sensitivity of reference heat transfer to thermal conductivity should be

investigated. For the case with high disjoining pressure, for instance, when a 3

times higher thermal conductivity is used, which corresponds to 1/3 times lower

Π3, the dimensionless heat �ux reduces to 0.83 of the original one. However,

the reference heat �ux increases directly proportional to the thermal conductiv-

ity. Therefore, change of dimensional heat �ux will be positive when the thermal

conductivity increases. The underlying reason of the enhancement in heat �ux is

that increasing the thermal conductivity reduces the resistance to heat transfer.

The e�ect of kinematic viscosity of liquid, ν. The kinematic viscosity appears in

the de�nitions of dimensionless groups Π4 and Π5 and the reference mass �ux,

ṁ′ref . When the e�ect of temperature di�erence is dominant over the e�ect of

pressure di�erence in condensation process (Π4 is high), the dimensionless heat

�ux is not sensitive to the changes in Π4 and Π5. However, when the e�ect of

pressure di�erence is signi�cant (Π4 is low), high kinematic viscosity (or high

Π5) may suppress the heat �ux.

The dimensional parameters discussed up to this point are related to the selec-

tion of working �uid and the solid substrate. The e�ect of geometrical param-

eters such as total length, L, corner radius, Ro, radius of meniscus curvature,

Rm, and the edge angle inside the groove, θg, are discussed in the following
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paragraphs.

The e�ect of �n length, Lfin. The length is present in the dimensionless groups

Π1, Π4, and Π5. Among them, the average dimensionless heat �ux is most sensi-

tive to the changes in Π1 for both low and high disjoining problems. Therefore,

the decrease in the total length is expected to enhance the average heat �ux due

to the thinner �lm forming on the �n top.

The e�ect of corner radius, Ro. The corner radius appears in most of the dimen-

sionless parameters and the reference scales. Therefore, evaluating the e�ect of

the corner radius on the heat transfer performance through the dimensionless

groups is not possible. However, in Chapter 3, it is shown that the sharper

corners increases the e�ect of disjoining pressure, which results in higher heat

�ux due to the slope break at the corner and thinner �lm on the �lm top. The

condensation problem with 1.0 K subcooling and 30 nm corner radius, results of

which are presented in Chapter 3, is solved in this part with higher corner radius

of 100 nm. The results obtained shows that the �lm pro�le remains very close to

the one with 30 nm radius and the average condensation mass �ux rate decreases

1.6% for 100 nm radius, which is not a signi�cant change. In this problem, the

e�ect of disjoining pressure is negligible; therefore, it can be stated that if the

corner radius changes in this range, it does not have a considerable e�ect on the

heat transfer performance in the cases with negligible disjoining pressure.

The e�ect of radius of meniscus inside the groove, Rm. The radius of meniscus

is a boundary condition at the groove side and it is only present in the dimen-

sionless parameter Π6, the e�ect of which is negligible for both high and low

disjoining problems.

The e�ect of edge angle inside the groove, θm. The edge angle is the other bound-

ary condition at the groove side, which is equal to the dimensionless parameter

Π7. As discussed in the previous section, decreasing edge angle results in a

thicker �lm on the �n top when the disjoining pressure is negligible. However,

for high disjoining problems, lower edge angles increase the e�ect of disjoining

pressure and consequently, it may cause formation of a thinner �lm on the �n

top.
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5.2.4 Comments on the grooved heat pipes

The parametric study shows that using �uids with high latent heat, hlv, high

thermal conduction coe�cient, kl, and high coe�cient a makes a substantial

improvement in the heat transfer performance in condenser section of a grooved

heat pipe. Under certain conditions discussed previously, the e�ect of disjoining

pressure enhances the heat transfer by leading to a thinner �lm on the �n top.

When the liquids with higher dispersion constant, Ad, are used in a grooved heat

pipe, the e�ect of disjoining pressure on the condensation heat transfer may be

considerable.

The performance of a working �uid inside a heat pipe is generally evaluated by

merit number [55]. It is based on the axial liquid �ow (through surface tension,

σ, and kinematic viscosity, ν), and the phase-change (through latent heat, hlv),

as given in the de�nition below:

NM =
σhlv
ν

. (5.39)

Higher surface tension increases the axial capillary pumping capacity and lower

kinematic viscosity decreases the shear losses in axial �ow. Also, the heat trans-

fer due to the phase-change can be enhanced by high latent heat. Therefore, for

better heat transfer performance, working �uids with high merit number should

be used. In terms of the condensation performance on the �n top, high surface

tension and low kinematic viscosity do not have a signi�cant e�ect; high latent

heat, on the other hand, is preferred. Therefore, working �uids with high merit

number are better for condensation performance as well as the axial liquid �ow

in a grooved heat pipe.

The �n length, Lfin, is the fundamental geometrical parameter in condensation

on the �n top of a grooved wall. The condensation heat �ux is higher for narrower

�ns (small Lfin). However, in a heat pipe, the condensation heat �ux is not

the only performance parameter. Therefore, the optimum �n length should be

decided on by considering the evaporation and capillary pumping performances,

in addition to condensation performance.
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In a grooved heat pipe, from condenser through evaporator section, the edge an-

gle decreases with decreasing liquid amount inside the groove. In the numerical

models of grooved heat pipes in the literature, the e�ect of disjoining pressure

is neglected and the slope of the �lm at the �n-groove corner is assumed as

continuous. Therefore, the liquid �lm thickness on the �n top increases with

decreasing edge angle until the zero subcooling point between the condenser

and evaporator. This creates a singularity at this point because the liquid �lm

on the �n top surface has a �nite thickness at the condenser side while there is

no liquid on the �n top at the evaporator side, which is physically unrealistic.

Considering the results obtained for di�erent Π7 values, it can be speculated

that one of the mechanisms which gradually decreases the �lm thickness on the

�n top at the close proximity of zero subcooling point may be the disjoining

pressure, because both decreasing the subcooling (Π4) and the edge angle (Π7)

intensify the e�ect of disjoining pressure. However, to make a detailed study on

this hypothesis and to obtain the �lm pro�le on the �n top at the close proxim-

ity of the zero subcooling point, utilization of a three-dimensional model which

solves the �ow in the groove axial direction is required.

5.2.5 Case study with real �uids

In this part, the condensation cases with real �uids are solved and the e�ects

of thermophysical properties of the �uids are elucidated in the light of the di-

mensionless analysis presented in previous sections. The �n-groove geometry

and subcooling value (temperature di�erence between the wall and vapor) are

the same for all cases. Condensation of benzene and water on fused silica are

solved in addition to the condensation of octane on silicon, results of which are

presented previously, and both dimensional and dimensionless heat and mass

�uxes are compared.

The comparison of thermophysical properties of octane, water, and benzene

are given in Table 5.17. The properties listed are evaluated at the saturation

pressure at 343.0 K. The dispersion constants of water and benzene which are

listed in [24] are used in the current study. The thermal conductivity and the
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viscosity of benzene are taken from [56] and [57], respectively. NIST Chemistry

WebBook [53] is used for all other properties.

Table 5.17: Thermophysical properties of octane, water and benzene

Octane Water Benzene
Ad (J) 3.18× 10−21 2.87× 10−21 3.41× 10−21

σ (Nm−1) 0.016953 0.064508 0.022413
a (kg m−2s−1K−1) 3.18 2.67 9.80
b (kg m−2s−1Pa−1) 4.85× 10−6 4.02× 10−7 1.01× 10−5

hlv (Jkg−1) 3.398× 105 2.333× 106 4.021× 105

kl (Wm−1K−1) 0.11136 0.66298 0.12739
ν (m2s−1) 4.823× 10−7 4.139× 10−7 4.298× 10−7

Using the properties given in Table 5.17, the condensation problems of 1.0 K

subcooling are solved for the same geometry presented in Section 3.6. At this

point, it should be noted that water is a polar substance, disjoining pressure

model of which requires inclusion of the e�ect of short range intermolecular

forces. However, the power rule for disjoining pressure given in Eq. (2.7) is still

used for water, since the e�ect of disjoining pressure for the cases with 1.0 K

subcooling is negligible. The dimensionless parameters calculated for octane,

water, and benzene are given in Table 5.18.

The simulations are performed with the inputs listed in Table 5.18. The dimen-

sionless average mass and heat �uxes (ṁ′′∗ and q′′∗, respectively) obtained are

presented in Table 5.19. The e�ect of disjoining pressure in the cases solved

in this part is not signi�cant since the subcooling value is high, which leads to

formation of a thicker �lm. Therefore, e�ect of Π2 on condensation is negligible.

Moreover, since the subcooling is high, the main driving force for condensation

is the temperature di�erence, which means that the dependence of condensation

on Π5 is not strong. Comparing the cases with octane and water; Π3 values

are very close but water has a smaller Π4 value. Therefore, dimensionless mass
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Table 5.18: Dimensionless parameters calculated for octane, water and benzene

Octane Water Benzene
Π1 1666.67 1666.67 1666.67

Π2 2.08× 10−4 4.94× 10−5 1.70× 10−4

Π3 0.29 0.28 0.93
Π4 0.15 0.03 0.31
Π5 0.13 0.01 0.24
Π6 26666.67 26666.67 26666.67
Π7 30.00 30.00 30.00

�ux is smaller for the case with water. On the other hand, benzene has higher

Π3 and Π4 compared to octane. Increasing Π3 and Π4 has opposite e�ects on

dimensionless mass �ux and their overall e�ect leads to a decrease in mass �ux

for the case with benzene. The dimensionless heat �ux is not sensitive to the

changes in Π4, but it increases with increasing Π3. Therefore, cases with octane

and water result in close dimensionless heat �uxes, but using benzene increases

the dimensionless heat �ux due to higher Π3.

Table 5.19: Dimensionless average mass and heat �uxes calculated for octane,
water and benzene

Octane Water Benzene

ṁ′′∗ 1.41× 10−6 2.78× 10−7 1.03× 10−6

q′′∗ 4.54× 10−3 4.58× 10−3 5.09× 10−3

As mentioned previously, the fundamental performance parameter is the dimen-

sional heat �ux. The results obtained here are converted to dimensional basis,

and the average heat �uxes of three cases are compared together with the av-

erage mass �uxes in Table 5.20. The values of reference scales for mass �ow

and heat transfer should also be considered in order to discuss the dimensional

results. Therefore, the reference scales for three �uids are also presented in Ta-
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ble 5.20. The di�erence in dimensional mass �uxes of octane and water cases are

not as high as the one in dimensionless mass �ux due to higher ṁ′ref of water.

Furthermore, although the dimensionless mass �ux of benzene is lower than that

of octane, the dimensional mass �ux of benzene is higher as a result of higher

ṁ′ref of benzene. Comparing the dimensional average heat �uxes of water and

benzene, despite similar dimensionless heat �uxes, higher q′ref of water, which

is due to the higher thermal conductivity, results in a substantially higher di-

mensional heat �ux for water. The e�ect of higher thermal conductivity is also

evident in the higher dimensional heat �ux obtained for benzene.

Table 5.20: Dimensional average mass and heat �uxes calculated for octane,
water and benzene

Octane Water Benzene

ṁ′ref (kg m−1s−1) 1.05× 10−3 4.68× 10−3 1.56× 10−3

q′ref (W m−1) 1.11× 10−1 6.63× 10−1 1.27× 10−1

ṁ′′ (kg m−2s−1) 4.96× 10−2 4.33× 10−2 5.38× 10−2

q′′ (W m−2) 1.69× 104 1.01× 105 2.16× 104

To summarize, the performance of the heat pipe condenser section can be im-

proved by using �uids with: high latent heat, hlv, which elevates the rate of

phase-change heat transfer; high thermal conductivity, kl, which reduces the

resistance to heat transfer through the liquid �lm; and high σ/ν ratio which ap-

pears in ṁ′ref and enhances the liquid transport due to higher capillary pressure

and lower shear.
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CHAPTER 6

PERFORMANCE OF CONDENSERS WITH

NON-PERPENDICULAR FIN-GROOVE CORNER

In a grooved heat pipe, the liquid mass transfer inside the groove from condenser

to evaporator section is sustained by the capillary pressure di�erence, which is

generated by varying radius of meniscus curvature inside the groove. At the far

end of the condenser section, the groove is almost �ooded with liquid leading

to a very high meniscus radius. Moving towards the evaporator section, the

liquid amount inside the groove reduces and the radius of meniscus decreases.

In a rectangular groove the lower limit of the meniscus radius is speci�ed by

the contact angle together with the groove width. However, the lower limit of

meniscus radius can be altered by changing the orientation of the groove wall,

i.e., making an inclined groove wall with respect to the �n top surface. In this

chapter, the e�ect of non-perpendicular �n-groove corner, which can be present

in an unconventional grooved heat pipe design, on the condenser performance is

investigated.

6.1 Problem de�nition for non-perpendicular �n-groove corner

Condensation on the rectangular grooves is solved in the previous sections and

e�ects of disjoining pressure, thermophysical and geometrical parameters on

condensation are discussed. In this section, on the other hand, a new parameter

specifying the the angle of the �n-groove corner is de�ned and the e�ect of corner

angle on condensation performance is investigated. The problem solved in this

section is the same as the �n-groove system de�ned in Chapter 2 except the
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orientation of the groove walls. The groove walls are not perpendicular to �n

top surfaces, as shown in Fig. 6.1.

Liquid discharge

Fin

Groove
Symmetry 

Axis

Condensation Condensation

Symmetry 

Axis

Figure 6.1: Fin-groove system with non-perpendicular �n-groove corner

The corner connecting the �n and groove walls is assumed as a cylindrical surface

as it is in the previous problems. The corner angle, γ, is shown in Fig. 6.2a�c

for γ < 90◦, γ = 90◦ and γ > 90◦, respectively.

The uni-directional �ow solver algorithm is utilized to solve the cases with vari-

ous �n-groove corner angles. The solution domain starts at a point on the groove

wall (s = 0 in Fig. 6.2) and ends at the line of symmetry of the �n top surface.

The results showing the e�ect of changing the corner angle on the condensation

performance are presented in the following section.
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(a)
Liquid film

Corner

Fin top

𝑠

𝛾 < 90°

(b)
Liquid film

Groove 

wall

Corner

Fin top

𝑠

𝛾 = 90°

(c)
Liquid film

Corner

Fin top

𝑠

𝛾 > 90°

Figure 6.2: De�nition of corner angle, γ, for a) γ < 90◦; b) γ = 90◦; c) γ > 90◦

6.2 Results and discussion

In a grooved heat pipe, the grooves are almost �ooded with liquid at the far end

of the condenser section and the edge angle is very high, i.e. the free surface

is almost parallel to �n top surface. Therefore, the e�ect of corner angle is not

distinguishable at this region. However, as the edge angle, θg, decreases, the

e�ect of corner angle becomes important. In this part, the e�ect of corner angle

on the condensation performance is shown for a moderate edge angle, θg = 45◦,

and a small subcooling value, ∆T = 0.01 K, which are likely to be present at the

region close to the transition from condenser to evaporator section of a grooved

heat pipe. Octane is used as the working �uid. The thermophysical properties

of octane given in Table 3.2 are used. The radius of the cylindrical corner,

Ro = 30 nm, the length of the �n top surface, Lfin = 100µm and the radius of

meniscus inside the groove, Rm = 800µm for all cases.

The �lm thickness pro�les obtained for di�erent corner angles are given in

Fig. 6.3. As the corner angle increases, the �lm thickness on the �n top in-

creases as can be seen in the �gure. The edge angle, θg, which is the angle

between the free surface and the groove wall, is the same in all cases. Therefore,

varying the corner angle changes the slope of the free surface at the starting

point of the solution domain, i.e. the slope of the free surface is smaller for

lower corner angles since the edge angle is kept constant. Thus, the lower corner

angles results in thinner �lm thickness pro�les on the �n top.
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Figure 6.3: Film thickness pro�les for a) γ = 90◦; b) γ = 60◦; c) γ = 75◦; d)
γ = 105◦; e) γ = 120◦

The thickness of the �lm on the �n top surface is associated with the condensa-

tion mass �ux as discussed previously. The total condensation mass �ow rates

per unit depth, ṁ′s=0 for the cases with di�erent corner angles are presented in

Table 6.1. Decreasing the corner angle from 120◦ to 60◦ results in a 2.2 times
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higher condensation mass �ow rate, which is directly proportional to the heat

transfer.

Table 6.1: Total condensation mass �ow rates for di�erent corner angles

γ (◦) 60 75 90 105 120

ṁ′|s=0 (×10−6 kg m−1s−1) 5.2 3.7 2.9 2.5 2.4

The simulations performed for various the corner angles show that when the

edge angle is low, the �lm thickness on the �n top increases with increasing

corner angle leading to a deterioration in heat transfer performance. The edge

angle is associated with the amount of liquid inside the groove and it decreases

with decreasing liquid amount. Therefore, for the grooved heat pipe designs with

high corner angles, the liquid amount inside the grooves at the condenser section

should be high in order to avoid su�ering from low condensation performance.
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CHAPTER 7

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

7.1 Conclusion

A solution methodology is developed to construct a comprehensive model of thin

�lm condensation in a �n-groove system, which is the representative unit struc-

ture for grooved wicks. The model proposed keeps the �n-groove corner inside

the solution domain and eliminates the need for using boundary conditions at

the corner, which were utilized in previous models and based on the assump-

tions of continuous slope and zero or continuous curvature of free surface at the

corner. The model proposed enables the investigation of the e�ect of dispersion

forces�without structural e�ects�on the �lm pro�le of a non-polar liquid by

keeping the �n-groove corner, where the �lm becomes thinnest, inside the so-

lution domain. The results show that when the dispersion forces are e�ective

in the corner region, the liquid �lm conforms to the solid surface in the close

proximity of the corner leading to an abrupt change, a slope break, in the �lm

pro�le. A similar �nding was reported in a previous experimental study [20],

where the axial liquid �ow and disjoining pressure were speculated to be the pos-

sible sources for the slope break. Although the problem modeled in the current

study is not identical to the problem experimented with, a similar con�guration

(without axial �ow) studied in the current work reveals that disjoining pressure

can bend the liquid-vapor interface such that a thinner �lm forms on the �n top.

This �nding shows that the assumption of continuous slope of the free surface at

the corner region may not be valid for the cases with high disjoining pressures.

High disjoining pressure e�ect leads to formation of thinner �lm on the �n top
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surface due to the slope break and accordingly, increases the condensation rate

by reducing the thermal resistance.

The validity of the assumptions used in the modeling are elucidated in detail

by discussing the time scale ratios obtained for the cases studied and solving

the same cases based on bi-directional �ow of the condensate using COMSOL

Multiphysics software.

A parametric study is performed with dimensionless parameters to understand

the e�ects of thermophysical and geometrical parameters on disjoining pressure

and condensation performance. The results reveal that using �uids with high la-

tent heat, high thermal conductivity, and high liquid surface tension to viscosity

ratio improves the condensation performance. Moreover, any thermophysical or

geometrical e�ect that leads to formation of thinner �lm at the corner region

intensi�es the e�ect of disjoining pressure on the �lm pro�le.

Lastly, the algorithm developed is used to solve the condensation on grooved

walls with non-perpendicular �n-groove corners and the condensation perfor-

mance for di�erent con�gurations are discussed. Results reveal that increasing

the corner angle causes formation of thicker liquid �lm on the �n top and re-

duction in condensation performance for small edge angles.

7.2 Suggestions For Future Work

The current model is developed for non-polar liquids. A future research can

be conducted to investigate the e�ects of polarity and structural forces such as

molecular layering in a similar �n-groove system.

The uni-directional �ow model presented in the current study utilizes some

matching conditions at the transitions from planar to curved and curved to

planar surfaces. Use of these matching conditions can be eliminated by modi-

fying the algorithm if a generalized orthogonal curvilinear coordinate system is

used for de�ning the solid surface. This modi�cation would enable the use of

the current algorithm for the thin �lm �ow on any arbitrary planar or curved
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surfaces.

The condensation model proposed in the current study should be embedded into

a three-dimensional mass conserving model of grooved heat pipes for investigat-

ing the e�ects of axial �ow on the �n top surfaces and the �lm pro�le at the

transition region from condenser to evaporator section.

115



116



REFERENCES

[1] A. Faghri. Heat Pipe Science and Technology. Global Digital Press, 1995.

[2] G.M. Grover, T.P. Cotter, and G.F. Erickson. Structures of very high
thermal conductance. J. Appl. Phys., 35(6):1990�1991, 1964.

[3] A. Faghri. Heat pipes: review, opportunities and challenges. Frontiers in

Heat Pipes (FHP), 5(1), 2014.

[4] ThermoLab Co. Ltd. Wick structures. http://thermolab.co.kr/3443, last
visited on March 2019.

[5] B. Xiao and A. Faghri. A three-dimensional thermal-�uid analysis of �at
heat pipes. Int. J. Heat Mass Tran., 51(11-12):3113�3126, 2008.

[6] Y.F. Maydanik. Loop heat pipes. Applied Thermal Engineering, 25:635�
657, 2005.

[7] A. Faghri and Y. Zhang. Thermal modeling of unlooped and looped pul-
sating heat pipes. J. Heat Transf., 123(6):1159, 2001.

[8] J. Qu, H. Wu, P. Cheng, Q. Wang, and Q. Sun. Recent advances in mems-
based micro heat pipes. Int. J. Heat Mass Tran., 110:294�313, 2017.

[9] M.C. Zaghdoudi, S. Maalej, J. Mansouri, and M.B.H. Sassi. Flat minia-
ture heat pipes for electronics cooling: State of the art, experimental and
theoretical analysis. World Acad. Sci. Eng. Technol., 51:879�902, 2011.

[10] R. Hopkins, A. Faghri, and D. Khrustalev. Flat miniature heat pipes with
micro capillary grooves. J. Heat Transf., 121(1):102�109, 1999.

[11] S. Lips, F. Lefèvre, and J. Bonjour. Combined e�ects of the �lling ratio
and the vapour space thickness on the performance of a �at plate heat pipe.
Int. J. Heat Mass Tran., 53(4):694�702, 2010.

[12] H. Alijani, B. Cetin, Y. Akkus, and Z. Dursunkaya. E�ect of design and
operating parameters on the thermal performance of �at grooved heat pipes.
Appl. Therm. Eng., 132:174�187, 2018.

[13] C. Ömür, A.B. Uygur, �. Horuz, H.G. I³�k, S. Ayan, and M. Konar. Incorpo-
ration of manufacturing constraints into an algorithm for the determination
of maximum heat transport capacity of extruded axially grooved heat pipes.
Int. J. Therm. Sci., 123:181�190, 2018.

117



[14] H. Alijani, B. Cetin, Y. Akkus, and Z. Dursunkaya. Experimental ther-
mal performance characterization of �at grooved heat pipes. Heat Transfer
Eng., 40(9-10):784�793, 2019.

[15] Y. Akkus, C. T. Nguyen, A. T. Celebi, and A. Beskok. A �rst look at the
performance of nano-grooved heat pipes. Int. J. Heat Mass Tran., 132:280�
287, 2019.

[16] G.P. Peterson, A.B. Duncan, and M.H. Weichold. Experimental investi-
gation of micro heat pipes fabricated in silicon wafers. J. Heat Transf.,
115(3):751�756, 1993.

[17] D.K. Harris, A. Palkar, G. Wonacott, R. Dean, and F. Simionescu. An ex-
perimental investigation in the performance of water-�lled silicon microheat
pipe arrays. J. Electron. Packaging, 132(2):021005, 2010.

[18] P.K. Kundu, S. Mondal, S. Chakraborty, and S. DasGupta. Experimental
and theoretical evaluation of on-chip micro heat pipe. Nanosc. Microsc.

Therm., 19(1):75�93, 2015.

[19] F. Lefèvre, R. Rullière, G. Pandraud, and M. Lallemand. Prediction of the
temperature �eld in �at plate heat pipes with micro-grooves�experimental
validation. Int. J. Heat Mass Tran., 51(15-16):4083�4094, 2008.

[20] S. Lips, J. Bonjour, and F. Lefèvre. Investigation of evaporation and con-
densation processes speci�c to grooved �at heat pipes. Frontiers in Heat

Pipes (FHP), 1(2), 2010.

[21] K.H. Do, S.J. Kim, and S.V. Garimella. A mathematical model for ana-
lyzing the thermal characteristics of a �at micro heat pipe with a grooved
wick. Int. J. Heat Mass Tran., 51:4637�4650, 2008.

[22] K.H. Do and S.P. Jang. E�ect of nano�uids on the thermal performance of
a �at micro heat pipe with a rectangular grooved wick. Int. J. Heat Mass

Tran., 53:2183�2192, 2010.

[23] G. Odabasi. Modeling of multidimensional heat transfer in a rectangular
grooved heat pipe. Ph.D. Thesis, Middle East Technical University, 2014.

[24] P.C. Wayner Jr., Y.K. Kao, and L.V. Lacroix. The interline heat-transfer
coe�cient of an evaporating wetting �lm. Int. J. Heat Mass Tran., 19:487�
492, 1976.

[25] F.W. Holm and S.P. Goplen. Heat transfer in the meniscus thin-�lm region.
J. Heat Transf., 101:543�547, 1979.

[26] S. Moosman and G.M. Homsy. Evaporating menisci of wetting �uids. J.

Coll. Interf. Sci., 73:212�223, 1980.

118



[27] A. Mirzamoghadam and I. Catton. A physical model of the evaporating
meniscus. J. Heat Transf., 110(1):201�207, 1988.

[28] P.C. Stephan and C.A. Busse. Analysis of the heat transfer coe�cient of
grooved heat pipe evaporator walls. Int. J. Heat Mass Tran., 35(2):383�391,
1992.

[29] S. DasGupta, I.Y. Kim, and P.C. Wayner. Use of the kelvin-clapeyron
equation to model an evaporating curved micro�lm. J. Heat Transf.,
116(4):1007�1015, 1994.

[30] S.K. Wee, K.D. Kihm, and K.P. Hallinan. E�ects of the liquid polarity and
the wall slip on the heat and mass transport characteristics of the micro-
scale evaporating transition �lm. Int. J. Heat Mass Tran., 48:265�278,
2005.

[31] H. Wang, S.V. Garimella, and J.Y. Murthy. Characteristics of an evapo-
rating thin �lm in a microchannel. Int. J. Heat Mass Tran., 50:3933�3942,
2007.

[32] H.B. Ma, P. Cheng, B. Borgmeyer, and Y.X. Wang. Fluid �ow and
heat transfer in the evaporating thin �lm region. Micro�uid. Nano�uid.,
4(3):237�243, 2008.

[33] R. Bertossi, Z. Lataoui, V. Ayel, C. Romestant, and Y. Bertin. Modeling of
thin liquid �lm in grooved heat pipes. Numer. Heat Transfer, A(55):1075�
1095, 2009.

[34] S. Narayanan, A.G. Fedorov, and Y.K. Joshi. Interfacial transport of evap-
orating water con�ned in nanopores. Langmuir, 27(17):10666�10676, 2011.

[35] S. Du and Y.H. Zhao. New boundary conditions for the evaporating
thin-�lm model in a rectangular micro channel. Int. J. Heat Mass Tran.,
54:3694�-3701, 2011.

[36] L. Biswal, S.K. Som, and S. Chakraborty. Thin �lm evaporation in mi-
crochannels with interfacial slip. Micro�uid. Nano�uid., 10(1):155�163,
2011.

[37] L. Biswal, S.K. Som, and S. Cnakraborty. Thin �lm evaporation in mi-
crochannels with slope and curvature dependent disjoining pressure. Int.

J. Heat Mass Tran., 57:402�410, 2013.

[38] L. Bai, G. Lin, and G.P. Peterson. Evaporative heat transfer analysis of a
heat pipe with hybrid axial groove. J. Heat Transf., 135(3):031503, 2013.

[39] G. Ball, J. Polansky, and T. Kaya. Investigation of particular features of
the numerical solution of an evaporating thin �lm in a channel. FHMT,
4(1), 2013.

119



[40] Z.H. Kou, H.T. Lv, W. Zeng, M.L. Bai, and J.Z. Lv. Comparison of dif-
ferent analytical models for heat and mass transfer characteristics of an
evaporating meniscus in a micro-channel. Int. Commun. Heat Mass, 63:49�
53, 2015.

[41] Y. Akku³ and Z. Dursunkaya. A new approach to thin �lm evaporation
modeling. Int. J. Heat Mass Tran., 101:742�748, 2016.

[42] Y. Akku³, H.I. Tarman, B. Çetin, and Z. Dursunkaya. Two-dimensional
computational modeling of thin �lm evaporation. Int. J. Therm. Sci.,
121:237�248, 2017.

[43] Y. Kamotani. Analysis of axially grooved heat pipe condensers. In 14th

Aerospace Sciences Meeting, page 147, 1976.

[44] Y. Zhang and A. Faghri. Numerical simulation of condensation on a cap-
illary grooved structure. Numerical Heat Transfer: Part A: Applications,
39(3):227�243, 2001.

[45] M. Alipour and Z. Dursunkaya. Limitations of matching condensing �lm
pro�le on a micro �n with the groove: Critical e�ect of disjoining pressure.
Nanoscale and Microscale Thermophysical Engineering, pages 1�15, 2019.

[46] S. Lips, V. Sartre, F. Lefevre, S. Khandekar, and J. Bonjour. Overview
of heat pipe studies during the period 2010- 2015. Interfacial Phenomena

Heat Transfer, 4:33�53, 2016.

[47] B.V. Derjaguin, N.V. Churaev, and V.M. Muller. Surface Forces. Plenum
Publishing Corporation, New York, 1987.

[48] J.N. Israelachvili. Intermolecular and surface forces. Academic press, 2011.

[49] E.K. Yeh, J. Newman, and C.J. Radke. Equilibrium con�gurations of liquid
droplets on solid surfaces under the in�uence of thin-�lm forces: Part i.
thermodynamics. Colloid Surface A, 156(1-3):137�144, 1999.

[50] R.W. Schrage. A Theoretical Study of Interphase Mass Transfer. Columbia
University Press, New York, 1953.

[51] J.F. Padday. Cohesive properties of thin �lms on liquids adhering to a solid
surface. Special Discussions of the Faraday Society, 1:64��74, 1970.

[52] J.A. Schonberg and P.C. Ayner. Analytical solution for the integral contact
line evaporative heat sink. J. Thermophys. Heat Tr., 6(1):128�134, 1992.

[53] P.J. Linstrom and W.G. Mallard. The nist chemistry webbook: A chemical
data resource on the internet. J. Chem. Eng. Data, 46(5):1059�1063, 2001.

120



[54] COMSOL Multiphysics® v. 5.3. www.comsol.com. COMSOL AB, Stock-

holm, Sweden.

[55] McGlen R. Reay, D. and P. Kew. Heat pipes: theory, design and applica-

tions. Butterworth-Heinemann, 2013.

[56] M.L.V. Ramires, F.J. Vieira dos Santos, U.V. Mardolcar, and C.A. Ni-
eto de Castro. The thermal conductivity of benzene and toluene. Int. J.

Thermophys., 10(5):1005�1011, 1989.

[57] J.H. Dymond and K.J. Young. Transport properties of nonelectrolyte liq-
uid mixtures�v. viscosity coe�cients for binary mixtures of benzene plus
alkanes at saturation pressure from 283 to 393 k. Int. J. Thermophys.,
2(3):237�247, 1981.

121



122



CURRICULUM VITAE

PERSONAL AND CONTACT INFORMATION

Surname, Name: Akda§, Osman

Email: akdagosman@outlook.com

EDUCATION

Degree Institution Year

Mechanical Eng./Ph.D. METU 2019

Mechanical Eng./M.Sc. METU 2012

Mechanical Eng./B.Sc. METU 2009

High School Ankara Atatürk Anadolu Lisesi 2004

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2016�Present ASELSAN Expert Engineer

2013�2016 TAI and TEI Design Engineer

2009�2013 Mechanical Eng. Dept., METU Research Assistant

123


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Operational Principle and Types of Heat Pipes
	Experimental and Numerical Studies on the Condensation in Heat Pipes
	Motivation and Scope of the Current Study

	PROBLEM DEFINITION AND PHYSICAL CONCEPTS
	Problem Definition
	Capillary Pressure
	Disjoining Pressure
	Phase-change

	UNI-DIRECTIONAL FLOW MODELING
	Physical domain
	Lubrication assumption
	Flow and condensation model
	Boundary Conditions
	Matching Conditions

	Solution approach
	Comparison with the Results in Literature
	Results of Uni-directional Flow Model
	Effect of subcooling
	Effect of dispersion constant
	Effect of corner radius
	On the validity of the assumptions


	BI-DIRECTIONAL FLOW MODELING
	Bi-directional Flow Model
	Problem domain
	Governing equations
	Boundary conditions
	Modeling approach

	Results of the Bi-directional Model

	DIMENSIONLESS PARAMETERS FOR FIN CONDENSATION AND PARAMETRIC STUDY OF CONDENSATION PERFORMANCE
	Non-dimensionalization of Governing Equations
	Parametric Study Results
	Parametric study for low disjoining pressure problems
	Parametric study for high disjoining pressure problems
	Discussion on the dimensional parameters
	Comments on the grooved heat pipes
	Case study with real fluids


	PERFORMANCE OF CONDENSERS WITH NON-PERPENDICULAR FIN-GROOVE CORNER
	Problem definition for non-perpendicular fin-groove corner
	Results and discussion

	Conclusion and Suggestions for Future Work
	Conclusion
	Suggestions For Future Work

	REFERENCES
	CURRICULUM VITAE

