
SENSOR FUSION OF A CAMERA AND 2D LIDAR FOR LANE DETECTION
AND TRACKING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YASİN YENİAYDIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2019

Approval of the thesis:

SENSOR FUSION OF A CAMERA AND 2D LIDAR FOR LANE
DETECTION AND TRACKING

submitted by YASİN YENİAYDIN in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering Depart-
ment, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Klaus Verner Schmidt
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. Kemal Leblebicioğlu
Electrical and Electronics Engineering, METU

Prof. Dr. Klaus Verner Schmidt
Electrical and Electronics Engineering, METU

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering, METU

Prof. Dr. Umut Orguner
Electrical and Electronics Engineering, METU

Assist. Prof. Dr. Halit Ergezer
Mechatronics Engineering, Çankaya University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Yasin Yeniaydın

Signature :

iv

ABSTRACT

SENSOR FUSION OF A CAMERA AND 2D LIDAR FOR LANE
DETECTION AND TRACKING

Yeniaydın, Yasin

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Klaus Verner Schmidt

August 2019, 114 pages

This thesis proposes a novel lane detection and tracking algorithm based on sensor

fusion of a camera and 2D LIDAR. The proposed method is based on the top down

view of a grayscale image, whose lane pixels are enhanced by the convolution with a

1D top-hat kernel. The convolved image is horizontally divided into a predetermined

number of regions and the histogram of each region is computed. Next, the highest

valued local maxima in a predefined ratio in the histogram plots are determined as

candidate lane pixels. In addition, we segment 2D LIDAR data to detect objects

on the road and map them to the top down view to determine object pixels. Pixels

occluded by the detected objects are then turned into background pixels to obtain a

modified top down view. Next, the Hough Transform is applied to the modified top

down view to detect lines. These detected lines are merged based on their slopes

and the interception points between the lines and bottom and top border of the image

frame. After the merging process, the best lane pair is selected based on length,

slope and interception points of the lines. Lastly, lane detection is carried out on the

selected pair using a second-order polynomial with similar curvatures for the left and

v

right lane markings. The polynomial coefficients are determined via the least squares

method and tracked by a Kalman Filter. In addition, the thesis provides methods for

the reference trajectory generation, the computation of the lateral error and heading

error of a vehicle for lane keeping. Computational and experimental evaluations show

that the proposed method significantly increases the lane detection accuracy.

Keywords: Sensor Fusion, Lane Detection, Lane Tracking, Camera, 2d Lidar

vi

ÖZ

ŞERİT TESPİTİ VE TAKİBİ İÇİN KAMERA VE 2D LIDAR SENSÖR
FÜZYONU

Yeniaydın, Yasin

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Klaus Verner Schmidt

Ağustos 2019 , 114 sayfa

Bu tez çalışması kamera ve 2D LIDAR sensör füzyonuna dayanan yeni bir şerit tespit

ve takip algoritması önermektedir. Önerilen yöntem kuş bakışı görünümünde, şerit

pikselleri 1D kafa şapkası çekirdeği ile evriştirilerek yükseltilmiş gri seviye imgelere

dayanmaktadır. Evriştirilen imge yatay olarak önceden belirlenmiş sayıda bölgelere

ayrılır ve her bir bölgenin çubuk grafiği hesaplanır. Sonra, daha önce tanımlanmış

belirli orandaki en yüksek değerlikli yerel maksimumlar, aday şerit pikselleri olarak

belirlenir. Daha sonra, 2D LIDAR verileri nesneleri tespit etmek için bölütlenir ve kuş

bakışı görünüme nesne piksellerini belirlemek için haritalanır. Tespit edilen nesneler

tarafından işgal edilen pikseller, geliştirilmiş kuş bakışı görünümü elde etmek için

arka plan piksellerine çevrilir. Bir sonraki adımda, çizgileri tespit etmek için geliştiril-

miş kuş bakışı görünümde Hough dönüşümü uygulanır. Tespit edilen çizgilerin eğim

ve çizgiler ile imgelerin alt ve üst sınırlarının kesişim noktaları kullanılarak, tespit

edilen çizgiler birleştirilir. Çizgileri birleştirme işleminden sonra, çizgilerin uzunluk,

eğim ve kesişim noktalarına bağlı olarak en iyi şerit çifti seçilir. Son olarak, seçilen

şerit çifti üzerinde sol ve sağ şerit için benzer eğrilikli ikinci dereceden polinom kulla-

vii

nılarak şerit tespiti gerçekleştirilir. Bu polinom katsayıları en küçük kareler yöntemi

ile hesaplanır ve Kalman süzgeci ile takip edilir. Ek olarak, bir aracı şeritte tutmak

için referans yörüngesinin oluşturulması ve yanal sapma hatası ile yönelme hatası-

nın hesaplanması verilmektedir. Hesaplamalı ve deneysel değerlendirmeler, önerilen

yöntemin şerit tespit doğruluğunu yüksek oranda artırdığını göstermektedir.

Anahtar Kelimeler: Sensör Füzyonu, Şerit Tespiti, Şerit Takibi, Kamera, 2d Lidar

viii

To my family

ix

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my supervisor Prof. Dr. Klaus

Werner SCHMIDT for his guidance, understanding, patience and valuable comments.

Throughout the thesis, it was a great honor to work with him for me.

I am very grateful to the Electrical and Electronics Engineering Department for the

autonomous vehicle kit and TÜBİTAK-SAGE for the facilities provided for me through-

out the thesis.

I would like to extend my appreciation to Berkay BAYKARA and Volkan SÜEL for

their technical support and encouragement.

Lastly, I would like to send my endless thanks to my family, Ramazan YENİAYDIN,

Hatice YENİAYDIN and Çağrı YENİAYDIN.

This work was supported by the Middle East Technical University Research Project

GAP-301-2018-2740.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xvi

LIST OF FIGURES . xvii

LIST OF ABBREVIATIONS . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Literature Research . 3

1.2 Shortcomings of the Existing Methods 8

1.3 Scope of the Thesis . 9

2 BACKGROUND . 13

2.1 General Background . 13

2.1.1 Least Squares Method . 13

2.1.2 Euclidean Distance . 14

2.1.3 Rotation Matrices . 14

2.1.4 Translation Vectors . 15

xi

2.1.5 Transformation Matrices . 16

2.1.6 Convex Sets . 16

2.2 Vision-based Background . 17

2.2.1 Image Formats . 17

2.2.2 1D and 2D Image Convolutions 18

2.2.3 RGB to Grayscale Image Conversion 19

2.2.4 Global Thresholding . 19

2.2.5 Histogram . 20

2.2.6 Inverse Perspective Mapping 20

2.2.7 Hough Transform . 21

2.2.8 Feature Extraction Methods 22

2.2.8.1 Neighborhood AND Operator 22

2.2.8.2 1-Bit Transform . 23

2.2.8.3 Symmetrical Local Thresholding 23

2.2.8.4 Canny Edge Detection 24

2.2.9 Lane Models . 24

2.2.9.1 Second-Order Polynomials 24

2.2.9.2 Clothoids and Arc-splines 25

2.2.10 Kalman Filter . 26

2.2.11 Camera Calibration . 28

2.3 LIDAR-based Background . 32

2.3.1 Definitions . 32

2.3.2 2D LIDAR Segmentation Methods 33

xii

2.3.2.1 FBD and ABD . 33

2.3.2.2 NN and kNN . 34

2.3.2.3 RBNN and dvRBNN 34

3 LANE DETECTION AND TRACKING 35

3.1 Overview of the Proposed Method 35

3.2 Detailed Steps of the Proposed Method 36

3.2.1 Step-1 . 36

3.2.2 Step-2 . 37

3.2.3 Step-3 . 38

3.2.4 Step-4 . 39

3.2.5 Step-5 . 48

3.3 Computational Evaluation . 49

3.3.1 Synthetic Data Generation 49

3.3.2 Quantitative Comparison and Illustrative Examples 50

3.4 Experimental Tests . 56

4 SENSOR FUSION OF A CAMERA AND 2D LIDAR FOR LANE DE-
TECTION AND TRACKING . 59

4.1 Algorithm1-Step1 . 60

4.2 Algorithm1-Step2 . 60

4.2.1 Literature Research . 60

4.2.2 Synthetic 2D LIDAR Data Generation Algorithm 61

4.2.2.1 Algorithm2-Step1 . 62

4.2.2.2 Algorithm2-Step2 . 62

xiii

4.2.2.3 Algorithm2-Step3 . 62

4.2.2.4 Algorithm2-Step4 . 62

4.2.2.5 Algorithm2-Step5 . 63

4.2.2.6 Algorithm2-Step6 . 64

4.2.3 Computational Evaluation . 65

4.3 Algorithm1-Step3 . 68

4.3.1 Extrinsic Calibration between a Camera and 2D LIDAR 68

4.3.1.1 Literature Research 68

4.3.1.2 The Implemented Method for the Extrinsic Calibration
between a Camera and 2D LIDAR 70

4.3.2 Projection of LIDAR Points to the Road Level 75

4.4 Algorithm1-Step4 . 78

4.5 Algorithm1-Step5 . 80

4.6 Computational Evaluation . 86

4.6.1 Synthetic Data Generation 86

4.6.2 Feature Extraction and Lane Detection 87

4.6.3 Computational Results . 87

4.7 Experimental Evaluation . 90

4.7.1 Hardware Setup & Software 90

4.7.1.1 Hardware Setup . 90

4.7.1.2 Software . 92

4.7.2 Experimental Tests . 93

5 COMPUTATION OF OUTPUT SIGNALS FOR CONTROL APPLICA-
TIONS . 95

xiv

5.1 Reference Trajectory Generation . 95

5.2 Heading Error . 96

5.3 Lateral Error . 98

6 CONCLUSIONS . 99

REFERENCES . 101

APPENDICES

A PUBLISHED AND ACCEPTED PAPERS 111

A.1 A Lane Detection Algorithm Based on Reliable Lane Markings . . . 111

A.2 Robust Lane Recognition Based on Arc Splines 112

A.3 Sensor Fusion of a Camera and 2D LIDAR for Lane Detection 113

A.4 Comparison of 2D LIDAR Data Segmentation Methods Based on
Synthetic Data Generation . 114

xv

LIST OF TABLES

TABLES

Table 2.1 Description of the system . 27

Table 3.1 Accuracy results and average norm values based on Mean L1-norm . 52

Table 3.2 Accuracy results and norm values based on Mean L2-norm 52

Table 3.3 Accuracy results and norm values based on L∞-norm 53

Table 3.4 Performance results of the proposed and the state of the art algorithms 54

Table 4.1 Accuracy results according to dMD (NO = 20 and ζave = 0.8m) . . . 65

Table 4.2 Accuracy results according to ζave (dMD = 1m and NO = 20) 66

Table 4.3 Accuracy results according to NO (dMD = 1m and ζave = 0.95m) . . 66

Table 4.4 Accuracy results and average norm values based on Mean L1-norm . 88

Table 4.5 Accuracy results and average norm values based on Mean L2-norm . 88

Table 4.6 Accuracy results and average norm values based on L∞-norm 89

Table 4.7 Main specifications of the NVIDIA Jetson TX2 developer kit 91

Table 4.8 Main specifications of the RPLIDAR A2M6 2D LIDAR 91

Table 4.9 Main specifications of the ZED Camera 91

xvi

LIST OF FIGURES

FIGURES

Figure 2.1 The translation vector tAB . 16

Figure 2.2 An illustration of a convex and non-convex sets 17

Figure 2.3 The line segment form performed in HT 22

Figure 2.4 Clothoid and Arc-spline comparison 26

Figure 2.5 The schematic of the CCF and CHCF in a pose 29

Figure 2.6 Captured checkerboard images for camera calibration process . . 30

Figure 2.7 Corner detection result for camera calibration procedure 30

Figure 2.8 Poses of the chekerboard with respect to the camera 31

Figure 2.9 Mean reprojection error per image 31

Figure 2.10 2D LIDAR output format . 32

Figure 3.1 Overview of the proposed lane detection and tracking method . . 35

Figure 3.2 RGB image (a) and grayscale image (b) 36

Figure 3.3 The fixed ROI (a) and grayscale BEV image (b) 37

Figure 3.4 Obtained binary image, IB . 38

Figure 3.5 Line detection via HT on the IB 39

Figure 3.6 Merged lines using the detected lines in Figure 3.5 40

xvii

Figure 3.7 The best cluster pair representing the current left and right lanes . 41

Figure 3.8 The illustrated process of obtaining the best pair 42

Figure 3.9 The illustrated process of obtaining the best pair 43

Figure 3.10 The illustrated process of obtaining the best pair 44

Figure 3.11 The illustrated process of obtaining the best pair 45

Figure 3.12 The illustrated process of obtaining the best pair 46

Figure 3.13 The illustrated process of obtaining the best pair 47

Figure 3.14 The lane detection and tracking result through the proposed method 49

Figure 3.15 Original and synthetic images 50

Figure 3.16 A representative selection of lane detection and tracking results . 55

Figure 3.17 Experimental lane detection and tracking results 56

Figure 4.1 The edges and their corresponding angles 63

Figure 4.2 Eliminating LIDAR points not in the view of 2D LIDAR 64

Figure 4.3 LIDAR point before (a) and after (b) postprocessing step 64

Figure 4.4 Segmentation results of dvRBNN 67

Figure 4.5 The schematic of the CCF and LCF on a vehicle 71

Figure 4.6 Laser scans hitting the chekerboard 75

Figure 4.7 Laser scans in the image view 75

Figure 4.8 The representation of the LIDAR points on BEV image 76

Figure 4.9 The schematic of the experimental setup for the hc and φ 77

Figure 4.10 The LIDAR points mapped to the perspective image 77

xviii

Figure 4.11 The corresponding LIDAR points of Figure 4.10 mapped to the

road level perspective image . 78

Figure 4.12 The visualization of obtaining the modified BEV image 79

Figure 4.13 The total occluded area . 79

Figure 4.14 The BEV and modified BEV binary images 80

Figure 4.15 The process of recognizing the lanes with the sensor fusion al-

gorithm . 81

Figure 4.16 The process of recognizing the lanes with the sensor fusion al-

gorithm . 82

Figure 4.17 The process of recognizing the lanes with the sensor fusion al-

gorithm . 83

Figure 4.18 The process of recognizing the lanes with the sensor fusion al-

gorithm . 84

Figure 4.19 The process of recognizing the lanes with the sensor fusion al-

gorithm . 85

Figure 4.20 Generated synthetic images . 87

Figure 4.21 Detected lanes for representative synthetic images 89

Figure 4.22 Jetson RACECAR with ZED Stereo camera, NVIDIA Jetson

TX2 and RP LIDAR A2M6 . 90

Figure 4.23 ROS network graph of the proposed sensor fusion method 93

Figure 4.24 The BEV and modified BEV binary images 93

Figure 4.25 Lane detection illustrations without and with 2D LIDAR, re-

spectively . 94

Figure 4.26 Lane detection illustrations without and with 2D LIDAR, re-

spectively . 94

xix

Figure 4.27 Lane detection illustrations without and with 2D LIDAR, re-

spectively . 94

Figure 5.1 Generated reference trajectory 96

Figure 5.2 Heading error representation 96

Figure 5.3 Selected pixel positions for heading error 97

Figure 5.4 Lateral error illustration . 98

xx

LIST OF ABBREVIATIONS

1-BT 1-Bit Transform

1D 1 Dimensional

2D 2 Dimensional

LCF 2D LIDAR Coordinate Frame

3D 3 Dimensional

ABD Adaptive Breakpoint Detection

BEV Bird’s Eye View

CCF Camera Coordinate Frame

CNN Convolutional Neural Network

DBSCAN Density-Based Spatial Clustering of Applications with Noise

dvRBNN Distance Varying Radially Bounded Nearest Neighbor

EDLines Edge Drawing Lines

FBD Fixed Breakpoint Detection

HT Hough Transform

ICF Image Coordinate Frame

IPM Inverse Perspective Mapping

KF Kalman Filter

kNN k Nearest Neighbor

LDW Lane Departure Warning

LIDAR Light Detection And Ranging

LKAS Lane Keeping Assist System

LoG Laplacian of Gaussian

LSD Line Segment Detector

LSM Least Squares Method

xxi

NN Nearest Neighbor

NAND Neighborhood AND

RBNN Radially Bounded Nearest Neighbor

RANSAC Random Sample Consensus

ROI Region of Intereset

ROS Robotic Operating System

SVD Singular Value Decomposition

SLT Symmetrical Local Thresholding

VCF Vehicle Coordinate Frame

xxii

CHAPTER 1

INTRODUCTION

Vehicle crashes are mostly caused by faults of drivers [1, 2] due to drowsiness, fa-

tigue, lack of attention, etc. To increase car safety independent from drivers, advanced

driver-assistance systems (ADAS) which are electronic systems are designed and it

is proven that safety attributes of the ADAS decrease the vehicle crashes by reducing

the driver’s faults [3]. Lane Departure Warning System (LDWS) and Lane Keeping

Assist System (LKAS) are two examples of ADAS, which have a high potential to

decrease the number of vehicle crashes [4, 5]. LDWS is a warning system inform-

ing drivers through vision, acoustic alarm, vibration of seat, etc. if the vehicle is on

the way of crossing its current lanes without intention of the driver. LKAS is a little

bit more advanced system which warns and supports the driver by keeping the vehi-

cle in the center of the lane through controlling the lateral movement of the vehicle.

The LDWS and LKAS mostly rely on two phases, lane detection in the first phase

and computation of output signals from the lane detection phase for warning drivers

(LDWS) or controlling vehicles (LKAS) in the second phase.

In the first phase, the detection of the lanes is mostly performed by utilizing vision-

based techniques [5] - [6] using cameras mounted at the top of windscreen in the

rear-view mirror unit. The detection of the lanes is basically performed in four stages.

In the first stage, Region of Interest (ROI) which contains road area is determined to

decrease computational complexity and discard non-relevant area which can be eval-

uated as noise. In the second stage, edge and brightness level of lane features are

extracted mostly to determine candidate lane pixels through edge filters which en-

hance edges of the lanes or segmentation of the pixels based on the brightness level

in the ROI through predetermined fixed threshold or dynamically computed adaptive

threshold values. In the third stage, noise removal is realized based on geometric

1

attributes of the lanes such as slope of the lanes, lane marking width, lane width, par-

allelism of the lanes, etc. To compute the slope of the lanes, Hough Transform (HT)

which detects lines is generally performed on the candidate lane pixels and the slopes

of the lines are directly computed. The lane marking width is generally detected by

means of blob filters which share features of the lane markings such as brightness

level, width, length, etc. The candidate lane pixels which do not share the features of

blob filter are removed. To make use of parallelism of the lanes and compute the lane

width, Bird’s Eye View (BEV) which is top-down view of the ROI in perspective im-

age is obtained and HT is performed on the candidate lane pixels on the BEV image to

detect the lines. After detecting the lines, interception points of the detected lines and

top and bottom border of the BEV image frame are employed for determination of

the parallelism and computation of the lane width between the detected lines. In this

way, the candidate lane pixels forming current lanes based on the geometric features

are specified as lane pixels. In the last stage, lanes are generally detected by estimat-

ing coefficients of lane models such as polynomials, splines, etc. on the lane pixels

and the coefficients are tracked through Kalman or Particle Filter to take advantage of

temporal relationship of captured images from the camera. As for expectations from

the lane detection phase, these are being robustness against noise, shadows, being

adaptable to different lighting conditions, ignoring objects in the view, having low

computational complexity, etc.

In the second phase, reference trajectory generation and computation of lateral devia-

tion from centerline of the detected lanes and heading error which is an angle between

desired path and vehicle’s heading direction are performed by employing the detected

lanes in the first phase for controlling lateral movement of the vehicle or warning the

driver.

The recent literature mostly offers diversified lane detection methods for LDWS and

LKAS without proposing solutions for the second phase as follows.

2

1.1 Literature Research

[7] firstly determine a static ROI. In the ROI, feature extraction is performed by using

simple filter. The filter is built based on the thickness of the lanes and the thickness

are determined offline throughout the lane in the perspective view. Next, HT is ap-

plied for lane detection by considering the slopes of the lanes. Lastly, Kalman Filter

(KF) is utilized for tracking the parameters of HT.

The study in [8] firstly detects the road to determine the ROI by the help of a stereo

camera. After that, adaptive threshold is applied to extract the features. For that op-

eration, different window size is set according to the distance from camera location.

Furthermore, an edge filter emphasizing the vertical and diagonal edges is carried out

on the feature extracted image. Finally, dynamic programming is performed to detect

the optimal lane path.

The work [9] uses stereo camera, hence 3D information of the field of view and the

RGB data are obtained. The authors firstly determine a seed region in front of the

vehicle in the assumption that the seed region is a part of the road area. Then, they

compute the normal vector of the seed region. Afterwards, the road is segmented by

comparing the normal vector of the seed region with the remaining region in the view.

Hereby, the ROI is specified. Later, a modified local adaptive thresholding using the

mean value and the standard deviations of the gray value of pixels in certain sized-

windows is applied for feature extraction. After that, orientation and the number of

pixels constraints are applied to the candidate lane pixels for eliminating vehicles,

obstacles, etc. Thereafter, initial position of the left and right lanes intersecting the

horizontal line at the bottom of the image are determined. Lastly, lanes are recog-

nized via least square method in the region determined by the initial positions and the

orientation of the lanes.

[10] basically consists of two parts: line and curve fitting in the near and the far

fields. Firstly, static ROI is determined for the near field and lines are extracted via

Line Segment Detector (LSD) algorithm in the perspective view. Then, the lines are

transformed to the BEV. Thereafter, DBSCAN algorithm is used to cluster line seg-

ments. After the clustering, line segments in the same cluster are fused by taking into

account the length and geometric characteristics of the lanes. Hence, lines in the near

field are obtained. Next, edges are extracted via Laplacian of Gaussian (LoG) filter

3

on the far field of BEV to realize curve fitting. Finally, weighted hyperbolic model

including the parameters of the lines is fit to the lane pixels to complete lane detec-

tion.

In [11], the authors firstly transforms perspective image with a predefined static ROI

to the BEV image. After that, temporal blurring is carried out to improve the quality

of the worn-out lanes and first order Gaussian kernel is performed vertically to smooth

the image, sequentially. Afterwards, second order Gaussian kernel is convolved hor-

izontally to enhance lane features. Later, the road component are separated into four

states: non-lane, clear lane, obstacle and unclear lane by using the pixel values of the

filtered image. To specify the states, a window smaller than the dashed type lane re-

gion is exploited through the image. After specifying the states, an adaptive threshold

value is applied to each window sized region in the image to extract the candidate

lane pixels. Thereafter, angles of the candidate lane pixels are computed via Steer-

able filters. Next, feedback Random Sample Consensus (RANSAC) which uses the

angles from the previous step and the curvature of the lanes from the previous frame

as feedback is performed to detect the lanes. Lastly, KF is utilized to track the lane

model parameters.

The authors in [12] firstly determine the dynamic ROI based on vanishing points and

the accumulated statistical data of the location of the lanes. After that, line segments

are extracted via EDLines using the grayscale image and the YUV color model. Next,

noise removal is performed through slope filters parallel to the left and right lanes.

Afterwards, line segments having approximate slopes in close region are merged and

then the merged line segments are tested with the low-high-low intensity characteris-

tics of the lanes to detect them. Lastly, KF is applied for tracking the slopes and the

intersection point of the lanes at the bottom border of the image.

[13] simply consists of 3 steps. First, inverse perspective mapping (IPM) based on

vanishing point is performed. Second, lane extraction via complement LoG and bi-

nary blob filtering which reduces noise by using the properties of the lanes such as the

shape, orientation, etc. Third, HT and RANSAC algorithm are applied for the lane

detection.

[14] makes use of dynamically changing ROI, Sobel operators for edge detection and

HT for lane detection. It defines the ROI by scanning each row of the image for sud-

den change between the mean values of the rows since the sky and the road part of

4

the image have different brightness values.

In [15], feature extraction is performed via Step-Raw filter on grayscale image. Then,

lanes are detected by HT and then corrected by KF on BEV. Lastly, lane is modeled

as spline through Particle Filter around the detected lanes.

In [16], static ROI is determined to discard irrelevant part and to reduce computa-

tional complexity for lane detection, then feature extraction are accomplished by a 1-

bit transform and a Sobel operator, consecutively. Lane markings are detected based

on HT and lastly, temporal relationship for lane parameters are built by KF.

[17, 18] detect lanes to analyze whether or not aggressive driving is performed. To do

that, [17, 18] first applies temporal filtering to grayscale image. After that, road pixels

are determined through mean and variance of low gradient pixels on the temporally

filtered grayscale image. Next, binary image is acquired on the non-road pixels by

utilizing an adaptive threshold to determine candidate lane pixels. Then, binary BEV

image and histogram plot of the binary BEV image are acquired, sequentially. Af-

ter that, lanes are detected through HT by utilizing the candidate lane pixels around

peaks of the histogram plot. In addition to that, ego-lane are determined by the peaks

closest to camera center. Lastly, lanes are tracked by KF.

In [19], Symmetrical Local Thresholding is utilized for feature extraction and it pro-

cesses independently left and right hand side of each row. Then, it applies one dimen-

sional connected component to obtain connected features and to remove the salt and

pepper type noise. After that, further noise is ejected on the feature map based on the

idea in which the difference of the slope of left and right lanes do not be more than a

few degrees. Lastly, HT is performed to detect the lanes.

In [20], Gaussian kernel smoothes the BEV in the vertical direction firstly. After that,

the lanes are made more certain via Second Order Gaussian kernel in the horizontal

direction of the BEV. Then, the pixel values in each row is sorted from lowest to the

highest and it keeps brightest certain number pixels for each row. Next, the resultant

image is binarized. Lastly, lanes are robustly modeled as lines by HT and then as

Bezier splines via RANSAC algorithm around the detected lines, consecutively.

In [21], firstly ROI with fixed ratio rectangle is determined. Then, it converts the RGB

image to grayscale image by using minimum over R and G channels of the image and

afterwards Median Local Threshold is applied on the grayscale image. Next, mor-

phological dilation operation is performed in the vertical direction to connect the lane

5

pixel candidates. After that, the graycale image is convolved with a Gaussian kernel

in horizontal direction to find the peaks in each row and the lane pixel candidates

which are not around the peaks are evaluated as noise and discarded. Lastly, HT is

applied to model the lanes as lines.

[22] firstly apply an edge filter to detect vertical edges. Then, perspective images are

converted to BEV. Next, candidate lanes are detected via HT. Lastly, candidate lanes

which are parallel and having a predetermined lane width on BEV are detected as

actual lane markings.

[23] makes use of the parallelism of lane markings and develops a parallel snake lane

approach which forces being parallel on left and right lane models on BEV.

[24] firstly determines a static ROI with fixed ratio rectangle to decrease the computa-

tional complexity and to discard the non-lane features which can be evaluated as lane

features out of the ROI. Then, binary image is obtained by employing Sobel operator

to grayscale image. After that, lanes are detected through HT. Lastly, position and

orientation of the road boundaries are tracked by KF.

[25] firstly obtains grayscale image and dynamically changing ROI is determined

based on the prediction of the road model. Then, each row is analyzed independently

to determine if the pixels in that row are foreground pixels or not. For a pixel point, a

threshold value is computed by using statistical data and mean intensity values within

the surrounding region of the pixel. After computing threshold value for each pixel

in the ROI, the image is binarized. Next, foreground pixels are examined by taking

morphological properties and decided if they are lane markings or not. Lastly, posi-

tions of the Bots Dot type lane are tracked by KF.

[26] firstly extracts lane features by means of LSD. Then, direction priority search is

applied for eliminating non-lane features. Direction priority search simply connects

line segments having similar slopes in close region. Line segments having small num-

ber of pixels are eliminated after direction priority search. Next, ROI is determined

through vanishing point estimated by the intersection of remaining line segments.

Afterwards, line segments out of the ROI is filtered out, as well. Lastly, single lane

pair is detected by a score function choosing the line segments intersecting vanishing

point closely in the ROI.

[27] firstly determines a static ROI. Then, feature extraction is carried out via thresh-

olding. The threshold value is computed by the help of Otsu’s method. Furthermore,

6

noise is removed by taking the geometric characteristics of the lane segment features

in detection window such as number of pixels, edge number, etc. Next, center points

of each lane features in detection window are computed. Afterwards, linear type lane

fitting is realized by RANSAC algorithm. Finally, lane tracking is achieved around

the detected lane region if the lanes are detected in the previous frame.

[6] is a lane feature extraction algorithm and firstly performs camera calibration in the

pre-processing step. After that, images are converted from RGB to HSI color space.

Lastly, binary image is obtained via thresholding H, S and I channels of the HSI color

space by taking into account white and yellow lane markings.

In addition to machine vision-based techiques for lane detection and tracking given

above [7]-[6], the literature offers deep learning-based approaches [28, 29, 30, 31]

for that problem. [28] firstly transforms the image to the BEV. Then, yaw angle of

the vehicle with respect to the lanes is estimated to correct the lanes in linear part.

Afterwards, BEV image is convolved with Gaussian kernels in horizontal and verti-

cal direction to enhance lane pixels. Furthermore, they train a Convolutional Neural

Network (CNN) classifier to discard non-lane region. The training data is constructed

automatically by using the peak points of the local waveforms of the subparts of the

vertically divided BEV image and the geometric properties of the lanes. Lastly, the

outputs of the CNN classifier are the absence or the presence of the lane markings in

each classification blocks which has a predefined rectangular size.

[29] is based on CNN consists of two branches. In the first branch, lane features are

extracted, thus binary image is obtained via trained network. In the second branch,

lane pixels are clustered based on each lane. In this way, each lane pixel has a lane

ID representing its lane. Lastly, IPM is carried out to fit a polynomial to each lane on

BEV via Homography matrix having 6 degrees of freedom. The Homography ma-

trix is computed by the network referred as H-Net to resolve the issues of road plane

changes.

[30] proposes an approach estimating lane positions based on CNN network referred

to as DeepLanes employing the images from down-facing cameras on the left and

right sides of the vehicle instead of front-facing cameras. The network is trained us-

ing manually-labeled and artificially generated images using real road images with

no lane markings as background. Lastly, the network outputs row index of the lane

marking which is closest to the vehicle on the left and right side.

7

[31] presents a unified multi-task CNN-based network which accomplishes road and

lane marking detection. To maintain annotated lanes along the pooling and convolu-

tional layers, grid-based annotation is acquired. In this way, lane annotations become

wider. Furthermore, the network is trained to predict the vanishing point in order to

make the kernels gain global status of the lanes in the images.

1.2 Shortcomings of the Existing Methods

In most of the machine vision-based methods as given in [7]-[6], each pixel is evalu-

ated for candidate lane pixel extraction. However this approach leads to extract noisy

pixels due to shadows, cracks on the roads, etc. and high computational complexity

since all the pixels are utilized in the lane detection. For the lane detection meth-

ods, HT and RANSAC are mostly performed on the candidate lane pixels as they

are robust to noise and allow gaps between the pixels. However, they are both com-

putationally complex. Moreover, HT is generally utilized for line detection and this

results in coarse lane detection in the case of curved roads. When it comes to lane

tracking, KF and Particle Filter are mostly used. Whereas KF is less computationally

complex, Particle Filter is more robust to noise.

Deep learning-based methods as given in [28]-[31] require copious number of labeled

images covering almost all conditions such as different weather conditions, days and

nights, simple and complex shaped roads, objects in the view, etc. In addition to that,

determining an appropriate network type and structure is very time-consuming since

they are generally determined in an ad hoc way. Besides, it is really hard to specify

the weaknesses and strengths of the trained network by analyzing the outputs of the

hidden layers.

In addition to the problems stated above, vision-based lane detection methods using

one camera have limitations in severe conditions [5]. For example, it is highly prob-

able to get noisy feature extracted frames when there exist vehicles in the camera

view, impairing the lane detection accuracy. To overcome such limitations, there is

little work on the fusion of different sensor modalities. [8] and [9] utilize stereo cam-

era for distance information to extract road region. After that, they detect lanes on

8

the extracted road. However, using stereo camera for distance measurement can be

misleading in outdoor environments due to varying illuminations on the left and right

cameras of the stereo camera. [32] is based on the fusion of LIDARs and cameras

since they reliably have complementary perception capabilities. [32] first extracts the

drivable region via segmentation of LIDAR points and then detects lanes on the ex-

tracted region using cameras. However, the algorithm requires eight 2D LIDARs and

seven cameras.

1.3 Scope of the Thesis

The thesis proposes a novel lane detection and tracking algorithm based on sensor

fusion between a camera and 2D LIDAR. Moreover, it proposes methods for compu-

tation of output signals for LDWS and LKAS and addresses the stated problems of

the lane detection.

The proposed lane detection and tracking algorithm based on sensor fusion of a cam-

era and 2D LIDAR addresses the stated machine vision feature extraction and lane

detection shortcomings covering the objects in the camera view. Hereby, machine

vision-based approach is selected due to the explained shortcomings of the deep

learning-based approaches in previous Section 1.2 for such a vital application related

to human life. Additionally, the thesis proposes methods for the reference trajectory

generation and computation of the heading and the lateral errors for further use by

lateral controllers of autonomous vehicles. Throughout the thesis, all proposed so-

lutions are tested experimentally and quantitatively. For the proposed lane detection

and tracking algorithm, quantitative and illustrative results are presented on the Cal-

Tech database [20] and synthetic data generated from this database. In addition to

that, the proposed method is evaluated on the autonomous vehicle kit [33] which has

camera, 2D LIDAR and a main board for developing algorithms for ADAS. To eval-

uate the method with the autonomous vehicle kit, firstly straight lanes are manually

constructed. Then, the method is implemented and illustrated experimental results

are obtained. Computational and experimental evaluations show that the proposed

lane detection and tracking method significantly increases the lane detection accuracy.

For the proposed sensor fusion method between camera and 2D LIDAR, quantitative

9

and illustrated evaluation results on synthetic data generated from [20] are obtained.

To evaluate the method with the autonomous vehicle kit, objects are placed on the

straight lanes in the camera view. Then, the method is implemented and illustrated

experimental results are obtained. Computational and experimental evaluations show

that the proposed sensor fusion method significantly increases the lane detection ac-

curacy. Additionally, the thesis proposes solutions for estimating camera height from

road plane and tilt angle of the camera with respect to the road plane. Furthermore,

formulation of projection of 2D LIDAR points to the road plane is derived. Illustrated

results of the projection of 2D LIDAR points to the road plane prove the correctness

of the estimation of the camera height, tilt angle and the formulation for the projection

of the 2D LIDAR points to the road plane. Moreover, mostly employed 2D LIDAR

data segmentation methods for object detection are compared in terms of accuracy

and computational complexity on synthetic 2D LIDAR data generated via a novel al-

gorithm given in the scope of the thesis.

The contributions of the thesis are summarized as follows:

• A novel lane detection and tracking algorithm

• A novel sensor fusion method using one camera and 2D LIDAR for lane detec-

tion and tracking in case of occluded lanes by objects

• Projection of 2D LIDAR points to road plane for mapping the LIDAR points in

road level to BEV image

• Estimation of height and tilt angle of a camera with respect to road plane for

projection of 2D LIDAR points to the road plane

• Comparison of 2D LIDAR data segmentation methods for object detection in

terms of accuracy and computational complexity

• A novel synthetic 2D LIDAR data generation algorithm

• Computations of reference trajectory, heading error and lateral error for control

applications

• Introducing arc-splines for lane modeling

10

The remainder of the thesis is organized as follows. Chapter 2 gives necessary back-

ground for vision-based, LIDAR-based methods and the auxiliary techniques for them

in a detailed way. In Chapter 3, we explain and evaluate the proposed lane detection

and tracking algorithm by addressing the stated shortcomings. In Chapter 4, we fuse

2D LIDAR data to the proposed lane detection and tracking algorithm to address the

stated shortcoming of the objects in the camera view. Besides, the fusion of a camera

and 2D LIDAR for lane detection and tracking is evaluated experimentally and quan-

titatively. Chapter 5 generates reference trajectory and computes heading and lateral

errors as the outputs for further use by longitudinal and lateral controllers of au-

tonomous vehicles. In Chapter 6, the conclusions of the thesis are described. Lastly,

published and accepted papers throughout the thesis are summarized in Appendix A.

11

12

CHAPTER 2

BACKGROUND

In this Chapter, we give the necessary background for vision-based and LIDAR-based

methods that are used and developed in the scope of this thesis. Section 2.1 gives gen-

eral background information and Section 2.2 provides information for vision-based

techniques. Segmentation methods for 2D LIDAR data are described in Section 2.3.

2.1 General Background

In this Section, the auxiliary techniques for vision-based and LIDAR-based methods

are presented in a detailed way.

2.1.1 Least Squares Method

Least Squares Method (LSM) is a mathematical tool for fitting the best curve to a

set of given samples by minimizing the least squares error between the curve and the

samples [34].

Consider a set of N measurement pairs {(i1, j1), (i2, j2), . . . , (iN , jN)} and a sec-

ond order polynomial curve model as in equation 2.1. Hereby, it is assumed that

the measurement pairs and the unknown coefficients of the second order polynomial

constitute an overdetermined system, that is, N > 3.

ai2 + bi+ c = j (2.1)

Then, the LSM formulation determines the coefficients a, b, c as

xLSM = (AT
LSMALSM)

−1
AT

LSMyLSM (2.2)

13

Hereby, the matrices and vectors

ALSM =

i21 i1 1

i22 i2 1
...

...
...

i2N iN 1

 , xLSM =

a

b

c

 , yLSM =

j1

j2

...

jN

 (2.3)

are used and the the squared error vector

||ALSMxLSM − yLSM||22 = (ALSMxLSM − yLSM)T(ALSMxLSM − yLSM) (2.4)

is minimized, where ALSM, xLSM and yLSM are called as data matrix, model parameter

vector and model measurement vector, respectively in the scope of the thesis.

2.1.2 Euclidean Distance

The Euclidean distance (dE) is utilized as a tool for measuring the distance between

two points, q and p as follows:

dE(q, p) = ||q − p||2 (2.5)

2.1.3 Rotation Matrices

Rotation matrices, denoted as R, are examples of orthogonal matrices [35, 36, 37].

They are utilized for a rotation of a positional vector v by a given angle θ in a fixed co-

ordinate frame or for a rotation between two coordinate frames (to represent a vector

in another coordinate frame) in the scope of the thesis.

Formally, the rotation of a positional vector v by the angle θ with the resulting vector

v′ is computed as

v′ = R(θ) v. (2.6)

Hereby, R(θ) is the rotation matrix by the angle θ.

In addition to the rotation of the positional vectors in fixed coordinate frames, posi-

tional vectors in a coordinate frame can be represented in the rotated version of this

coordinate frame through a rotation matrix. With the convention in the thesis, the

14

rotation matrix, RA
B , represents vectors in the coordinate frame B according to the

coordinate frame A. The mathematical relation for this purpose is:

vA = RA
B vB. (2.7)

Hereby, vA is the representation of vB in the coordinate frame B according to the

coordinate frame A.

Using the convention that clockwise rotation represents a positive angle in a right-

handed coordinate frame, the rotation matrices in R3 are

Rx(θ) =

1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)

Ry(θ) =

cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

Rz(θ) =

cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 ,

(2.8)

where Rx(θ), Ry(θ) and Rz(θ) are the rotation matrices by the angle θ around the

x-axis, y-axis and z-axis of the right-handed coordinate frame, respectively.

2.1.4 Translation Vectors

Translation vectors are the vectors between the origins of two coordinate frames.

With the convention in the thesis, the translation vector, tAB , represents the position of

the origin of the coordinate frame B in the coordinate frame A.

An illustration of the vector is given in Figure 2.1.

15

Figure 2.1: The translation vector tAB

2.1.5 Transformation Matrices

Transformation matrices are utilized to represent a vector in different coordinate

frames. With the convention in the thesis, TA
B , represents vectors in the coordinate

frame B according to the coordinate frame A. The mathematical relation for this

purpose is vA

1

 = TA
B

vB

1

 =

RA
B vB + tAB

1

 . (2.9)

Hereby, vA is the representation of vB in the coordinate frame B according to the

coordinate frame A.

Remark 1 A transformation matrix consists of a rotation matrix and a translation

vector. For the vectors in R3, T A
B can be written as:RA

B tAB

000 1

 (2.10)

2.1.6 Convex Sets

A set of points, P = {p1, p2, . . . , pn} ∈ RN is convex if the following holds that [38]:

for allλi > 0 such that
n∑
i=1

(λi) = 1 : p =
n∑
i=1

(λipi) ∈ P. (2.11)

16

Remark 2 For a geometrical interpretation, a set of points is said to be convex if all

the line segments formed by any two points in the set are also in the set.

An illustration of a convex and non-convex sets are given in Figure 2.2.

Figure 2.2: An illustration of a convex and non-convex sets

As can be seen in Figure 2.2, the convex set includes all the line segments formed by

the points in the set. However, the non-convex set does not.

2.2 Vision-based Background

In this Section, the necessary background for image processing and machine vision

principles are described in a detailed way.

2.2.1 Image Formats

In the scope of the thesis, RGB, grayscale, convolved and binary images are utilized

to perform lane detection and lane tracking.

We write M , N for the sets of rows and columns of an image respectively. Then,

we consider RGB, grayscale, convolved and binary images as the maps IRGB : M ×
N × {R,G,B} → [0, 1], IG : M × N → [0, 1], IC : M × N → (−∞,∞) and

IB : M ×N → {0, 1}, respectively. IRGB(i, j, k), IG(i, j), IC(i, j) and IB(i, j) denote

the pixel value at row i and column j for color k of the RGB image, for the grayscale

image, for the convolved image and for the binary image, respectively.

From this point on, I(i, j) represents the pixel value at ith row and j th column of the

images in general if the type of the image is clear from the context.

17

2.2.2 1D and 2D Image Convolutions

Image convolution is an operation symbolized by ‘∗’ sign for modifying the certain

features of the input image. To modify the certain features, kernels (κ) are utilized

with the dimensions 1 × kκ in 1D (one row and kκ number of columns) and kκ × kκ
in 2D (kκ number of rows and columns), where kκ is an odd number for symmetry.

The convolutions for the ith row and j th column of an image are computed through the

1D and 2D kernels in equation 2.12 and 2.13, respectively in the scope of the thesis.

Hereby, b•c denotes the floor operation that converts real numbers to the greatest

integer less than or equal to the real numbers.

IC(i, j) = I(i, j) ∗ κ =

bkκ/2c∑
n=−bkκ/2c

I(i, j + n)κ(1, n+ bkκ/2c+ 1) (2.12)

IC(i, j) = I(i, j) ∗ κ =

bkκ/2c∑
m=−bkκ/2c

bkκ/2c∑
n=−bkκ/2c

I(i+m, j + n)

κ(m+ bkκ/2c+ 1, n+ bkκ/2c+ 1)

(2.13)

Some of the well-known kernels are given in 2.14-2.19. Unweighted 3×3 smoothing

kernel:

1/9

1 1 1

1 1 1

1 1 1

 (2.14)

Weighted 3× 3 smoothing kernel with Gaussian:

1/8

0 1 0

1 4 1

0 1 0

 (2.15)

3× 3 sharpening kernel:
0 −1 0

−1 5 −1

0 −1 0

 (2.16)

18

3× 3 horizontal Sobel kernel for horizontal edge detection:

−1 −2 −1

0 0 0

1 −2 1

 (2.17)

3× 3 vertical Sobel kernel for vertical edge detection:

−1 0 1

−2 0 2

−1 0 1

 (2.18)

1× 9 top-hat kernel for lane marking extraction [39]:

[
−1 −1 1 1 1 1 1 −1 −1

]
(2.19)

2.2.3 RGB to Grayscale Image Conversion

An RGB image is converted to a grayscale image as follows [40]:

IG(i, j) = 0.299 IRGB (i, j,R) + 0.587 IRGB(i, j,G) + 0.114IRGB(i, j,B) (2.20)

2.2.4 Global Thresholding

A binary image is obtained from a grayscale image IG or a convolved image IC

through global thresholding in the scope of the thesis as follows:

IB(i, j) =

1 if IG(i, j), IC(i, j) ≥ thf

0 if IG(i, j), IC(i, j) < thf

(2.21)

Here, thf represents a fixed threshold value.

Note that candidate lane features are represented as ’ones’ in the binary images

throughout the thesis.

19

2.2.5 Histogram

Histogram (hist) is a plot which is the summation of the pixel values in each column

of an image and computed as follows:

hist(j) =
Nrow∑
i=1

I(i, j) (2.22)

where Nrow represents the number of rows in the images.

2.2.6 Inverse Perspective Mapping

Inverse Perspective Mapping (IPM) transforms perspective images to bird’s eye view

(BEV) images via a homography matrix (H) which has eight degrees of freedom as

follows [41]:

α

uh

vh

1

 = H

u

v

1

 , H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (2.23)

where α is a scalar, H is the homography matrix, u, uh and v, vh are the column and

row correspondences in the perspective and BEV images, respectively.

To estimate the homography matrices, four or more pixel position correspondences

are needed. In a lane detection application, the pixel position correspondences are

chosen such that lanes in the BEV image become almost parallel. To do that, four

lane pixel positions (e.g. two pixel positions from the left, two pixel positions from

the right) in the perspective image and four pixel position correspondences in parallel

for BEV image are specified.

Let (u1, v1), (u2, v2), (u3, v3), (u4, v4) and (uh
1, v

h
1), (uh

2, v
h
2), (uh

3, v
h
3), (uh

4, v
h
4) become

the correspondences, then the parameters of the homography matrix, [h11, h12, h13, h21,

h22, h23, h31, h32, h33]T as a vector, are estimated by finding the input vector to the

following matrix, which generates the smallest output, via Singular Value Decompo-

20

sition (SVD):

u1 v1 1 0 0 0 −u1u
h
1 −v1u

h
1 −uh

1

0 0 0 u1 v1 1 −u1v
h
1 −v1v

h
1 −vh

1

...
...

...
...

...
...

...
...

...

u4 v4 1 0 0 0 −u4u
h
4 −v4u

h
4 −uh

4

0 0 0 u4 v4 1 −u4v
h
4 −v4v

h
4 −vh

4

(2.24)

For better estimation, the selected pixel positions in the perspective and BEV images

are normalized as follows [42]:

• The pixel positions are translated such that the centroid of the pixels moves to

the origin.

• The pixel positions are scaled such that average distance from the origin be-

comes
√

2.

2.2.7 Hough Transform

Hough Transform (HT) is used for line detection in the scope of the thesis since it is

robust against noise and allows gaps between the pixels forming the line [43].

A line segment can be described in the following form according to the image coor-

dinate frame (ICF) given in Figure 2.3:

u cos (θhough) + v sin (θhough) = rhough (2.25)

where θhough is the angle between the normal line from the origin to this line segment

and the u-axis as in Figure 2.3 and rhough is the length of this normal line. In the figure,

the u-axis and v-axis of the ICF represent the columns and the rows of the images,

respectively.

21

Figure 2.3: The line segment form performed in HT

For all the points of a line in the form of equation 2.25, θhough and rhough are constant.

HT first obtains the Hough parameter space (rhough − θhough) for each pixel point by

different values of θhough with certain resolution in [0, π). Next, the computed rhough

values are quantized based on the predetermined quantization parameter of HT. After

this procedure, certain number of common rhough−θhough pairs greater than a threshold,

thhough, constitute a line by the corresponding pixel points.

As a result, the end point coordinates, (u1, v1) and (u2, v2) as illustrated in Figure 2.3,

of each detected line via HT are utilized in the scope of the thesis.

2.2.8 Feature Extraction Methods

We have applied the following feature extraction methods for comparison with the

proposed feature extraction method given in Section 3.2.2: Neighborhood AND oper-

ator (NAND) [44, 45], 1-Bit Transform (1-BT) [16], Symmetrical Local Thresholding

(SLT) [19], Canny edge detector [46].

2.2.8.1 Neighborhood AND Operator

The NAND operator first convolves a grayscale image IG via a horizontal and ver-

tical Sobel kernel (see (2.17) and (2.18)) to get two convolved images IC,u and IC,v,

respectively. Then, the gradient magnitude image, IC,gm, is computed as follows:

IC,gm =
√
I2

C,u + I2
C,v (2.26)

22

Next, two binary images are acquired, IB1 and IB2, applying global thresholding given

in equation 2.21 to the grayscale image and to the gradient magnitude image, respec-

tively.

The binary images are then merged via the neighborhood AND operator [45] with the

proximity parameter kNAND.

IB(i, j) =

0 if

i+kNAND∑
m=i−kNAND

IB1(m, j) ·
i+kNAND∑

m=i−kNAND

IB2(m, j)

1 otherwise

(2.27)

Equation 2.27 determines IB(i, j) = 0 if all neighboring pixels with distance kNAND

in column j are zero for IB1 and/or IB2. Otherwise, IB(i, j) = 1.

2.2.8.2 1-Bit Transform

1-BT firstly obtains IC by convolving the IG with the 17 × 17 kernel (κ1-BT) defined

as:

κ1-BT(i, j) =

1/25 ← i, j ∈ [0, 4, 8, 12, 16]

0 ← i, j /∈ [0, 4, 8, 12, 16]
(2.28)

Hereby, IB is obtained using the fixed threshold value thf:

IB(i, j) =

1 ← IG(i, j) ≥ IC(i, j) + thf

0 ← IG(i, j) < IC(i, j) + thf

(2.29)

2.2.8.3 Symmetrical Local Thresholding

SLT processes each row of a grayscale image IG independently and computes the

mean intensity values in a predefined range on the left (IG,l) and right (IG,r) hand side

of each pixel. Then, IB is computed using the fixed threshold value thf:

IB(i, j) =

1 ← if IG(i, j) ≥ IG,l(i, j) + thf and IG(i, j) ≥ IG,r(i, j) + thf

0 ← otherwise
(2.30)

23

2.2.8.4 Canny Edge Detection

A Canny edge detector firstly smoothes the grayscale image IG via the discretized

version [47] of continuous Gaussian filter given as follows:

κGauss(u, v) =
1

2πσ2
Gauss

exp (−u
2 + v2

2σ2
Gauss

) (2.31)

where σGauss is the standard deviation of the continuous Gaussian filter. Then, IG is

convolved via horizontal and vertical Sobel kernel to get IC,u and IC,v. After that, the

gradient magnitude image as in equation 2.26 and gradient direction image, IC,gd, as

in equation 2.32 are computed.

IC,gd = tan−1(
IC,v

IC,u
) (2.32)

After that, a non-maximum suppression is performed by checking for each pixel if it

is a local maximum in its neighborhood in the direction of the gradient.

Lastly, the resultant image is thresholded with two thresholds (T1 and T2, where T1 <

T2) to get two binary images (IT1 and IT2). The foreground pixels in IT2 are considered

as certain edges and if the foreground pixels in IT1 has a connection with the edges

in IT2, they are also considered as edges. Thus, a binary image representing edges is

formed.

2.2.9 Lane Models

2.2.9.1 Second-Order Polynomials

Polynomials are one possible lane model [5]. In the scope of the thesis, we use the

second-order polynomial lane model with the same a coefficient for the left and right

lanes:
a i2l + bl il + cl = jl

a i2r + br ir + cr = jr

(2.33)

Here, il, ir and jl, jr represent the row and column indexes of the left and right lane

pixels on the BEV image, respectively. Hence, (a, bl, cl) and (a, br, cr) are the left and

right lane model coefficients.

The advantage of such lane model is the need for only five parameters in total for both

24

lanes, the direct use of the pixel coordinates and the parallelism constraint with the

help of the same a coefficient in a relaxed way since the a coefficient is dominant for

curvature of lanes as can be seen in equation 5.1.

2.2.9.2 Clothoids and Arc-splines

Clothoids [48, 49, 50] are spiral curves, whose curvature karc changes linearly with

their arc-length sarc:

karc(sarc) =
(karc,f − karc,i)sarc

Sarc
(2.34)

Hereby, karc,i and karc,f denote the initial and final curvature, respectively and Sarc is

the total arc-length of the curve. Two additional parameters (Parc,s, ψarc,s) are needed

to define a clothoid curve, where Parc,s and ψarc,s are the starting point and initial tan-

gent angle, respectively. Since clothoids allow for a smooth change of curvature, they

are frequently used in road construction and are hence suitable for representing lanes.

Nevertheless, a main disadvantage of clothoids is that they do not have an analytical

representation, which makes computations with clothoids difficult [50, 51, 52].

As a remedy, it is possible to tightly approximate clothoids by arc-splines [51, 52].

An arc-spline consists of concatenated arc segments, whose radius linearly increas-

es/decreases along the arc length sarc. In addition to the clothoid parameters Parc,s,

ψarc,s, karc,i, karc,f, Sarc, an arc-spline is defined by the integer n, whereby n + 1 is

the number of arc segments. Specifically, the consecutive arcs of an arc-spline are

represented as follows:

• Curvature of arc j : (j = 0, . . . , n) : karc,j = karc,i + j
karc,f − karc,i

n

• Length of arc 0 and n : Sarc,0 = Sarc,n = Sarc
2n

• Length of arc j : (j = 1, . . . , n− 1)Sarc,j = Sarc
n

• Overall change in tangent angle : ∆θarc =
karc,f + karc,i

2 Sarc

The comparison of an arc-spline and the corresponding clothoid curve with karc,i =

0, karc,f = 0.01, Sarc = 100 is shown in Figure 2.4 for n = 2 (left) and n = 5

(right).

25

Figure 2.4: Clothoid and Arc-spline comparison

Arc-splines are utilized in Section 5.1 for reference trajectory generation in this the-

sis. There are two main advantages of using arc-splines as a reference trajectory.

First, the arc segments can be represented analytically. Second, the offset curve of an

arc-spline is again an arc-spline such that parallel lane markings can be easily repre-

sented by arc-splines with an offset in the arc radius. Moreover, it is the case that the

approximation accuracy increases quadratically with the number n of arc segments

[51].

2.2.10 Kalman Filter

To estimate the lane model parameters, we perform Kalman Filter (KF). KF is an

optimal estimator which minimizes the estimation error and operates on the linear

stochastic systems in discrete state space model:

xk+1 = Akxk +Gkwk

yk = Ckxk + Fkvk
(2.35)

A linear time invariant state space model is utilized in this thesis, k subscripts are

removed from Ak, Gk, Ck, Fk as:

xk+1 = Axk +Gwk

yk = Cxk + Fvk
(2.36)

The description of the system is given in Table 2.1. where nx and ny are the dimen-

sions of the state and measurement vector defined in Table 2.1. The formulation of the

26

Table 2.1: Description of the system

Variable Description Dimension

x State Vector nx × 1

y Measurement Vector ny × 1

w Process Noise Vector nx × 1

f Measurement Noise Vector ny × 1

A State Matrix nx × nx
G Process Noise Matrix nx × nw
C Output Matrix ny × nx
F Measurement Noise Matrix ny × nv

KF is valid under the case that the process noise and measurement noise are Gaussian

and all the samples of the noise are independent from each other.

KF basically consists of prediction and filtering steps. At the prediction step, KF

predicts the next state based on the measurements up to current one. The formulation

for the prediction step:

xk+1|k = Axk|k

Σk+1|k = AΣk|kA
T +GQGT

(2.37)

At the filtering step, KF corrects the current step by the help of incoming measure-

ment. The formulation for the filtering step:

xk+1|k+1 = xk+1|k + Σk+1|kC
T(CΣk|kC

T + FLF T)−1(yk+1 − Cxk+1|k)

Σk+1|k+1 = Σk+1|k − Σk+1|kC
T(CΣk|kC

T + FLF T)−1CΣk+1|k

(2.38)

KF formulations are as above with the initial step estimation:

x0|0 = Σ0C
T(CΣ0C

T + FLF T)−1y0

Σ0|0 = Σ0 − Σ0C
T(CΣ0C

T + FLF T)−1CΣ0

(2.39)

Here, xk+1|k represents the expectation value of x at (k+ 1)th step given the observed

measurements up to kth step and Σk+1|k represents the covariance matrix of x at the

(k + 1)th step given the observed measurements up to the kth step, Q represents the

covariance matrix of the process noise and L represents the covariance matrix of the

measurement noise.

27

In the case of using second-order polynomials with the same a coefficients for lane

modeling as given in Section 2.2.9.1, the state vector and state matrix are:

x =

a

bl

cl

br

cr

∆a

∆bl

∆cl

∆br

∆cr

A =

1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

(2.40)

where ∆a, ∆bl, ∆cl, ∆br, ∆cr are estimated by taking difference of a, bl, cl, br, cr

between the current and previous steps. Output matrix C is defined as an identity

matrix with appropriate dimension. The process and measurement noise are assumed

to be Gaussian and independent from each other for all samples. Thus, the covariance

matrices of process and measurement noise are diagonal and constant.

2.2.11 Camera Calibration

For further use in the scope of the thesis, the camera calibration process via a planar

chekerboard as a calibration target is followed to estimate the intrinsic camera ma-

trix and transformation matrix from the chekerboard coordinate frame (CHCF) to the

camera coordinate frame (CCF). Whereas the intrinsic camera matrix (K) consists of

focal length, principal point and skew coefficient parameters of the camera, the trans-

formation matrix consists of rotation matrix (Rc
ch) and translation vector (tcch) of the

CHCF according to the CCF. When using the pinhole camera model [53], the pixel

position of a point in the CCF is determined through the intrinsic camera matrix as

follows:

α

u

v

1

 = KP c (2.41)

28

where P c is a point in the CCF, α is a scaling parameter, u and v are the column and

row indexes of the point P c in the perspective image. The rotation matrix, Rc
ch, and

translation vector, tcch, show the relative orientation and position between CHCF and

CCF. A point in CHCF is represented in CCF through the following relation:

P c = Rc
chP

ch + tcch (2.42)

where P ch is the point in CHCF. For illustration purposes, a schematic of the CCF

and CHCF in a pose is given in Figure 2.5, where [Xc, Y c, Zc]T and [Xch, Y ch, Zch]T

represent the coordinates of points according to the CCF and CHCF, respectively.

Figure 2.5: The schematic of the CCF and CHCF in a pose

Note that 3rd column of Rc
ch is the normal vector of the chekerboard according to the

CCF and tcch is the point in CCF showing the origin of CHCF.

To follow the camera calibration process, a planar chekerboard is utilized as a calibra-

tion target and should completely be captured from the camera in different poses. To

have a unique solution for the intrinsic camera matrix and transformation matrix, we

need at least three different poses in general [53]. Examples of the captured cheker-

board images are given in Figure 2.6.

29

Figure 2.6: Captured checkerboard images for camera calibration process

In the camera calibration process, the Computer Vision System Toolbox of Matlab

[53, 54, 55, 56] is utilized after capturing the checkerboard in different poses. One

of the corner detection results, all estimated checkerboard poses and the mean repro-

jection errors per image of the calibration procedure are given in Figure 2.7, Figure

2.8 and Figure 2.9, respectively. For better illustration of the detected and reprojected

corners, the image in Figure 2.7 is cropped.

Figure 2.7: Corner detection result for camera calibration procedure

30

Figure 2.8: Poses of the chekerboard with respect to the camera

Figure 2.9: Mean reprojection error per image

31

2.3 LIDAR-based Background

This Section gives a detailed explanation of the necessary background for 2D LIDAR

and its segmentation methods.

2.3.1 Definitions

A 2D LIDAR outputs the position of scanned points of the objects in its range in

the polar coordinate frame as illustrated in Figure 2.10. Here, the 2D LIDAR is

represented by the circle and the scanned object is represented by a rectangle, ρl
i is

the distance value and θl
i is the angle value of the ith LIDAR point pl

i. That is, pl
i is

defined as follows:

pl
i =

{
ρl
i, θ

l
i

}
for i = 1, . . . , Nl (2.43)

where Nl is the number of LIDAR points. Nl is determined by the angle resolution

(∆θl) of the 2D LIDAR. Using Nl = 360◦/(∆θl), the LIDAR angle set θl in degrees

is given as

θl =
{

0◦,∆θl, 2∆θl, . . . , 360◦ −∆θl} (2.44)

Figure 2.10: 2D LIDAR output format

Each LIDAR point pl
i can as well be represented in LIDAR coordinate frame (LCF)

32

given in 2.10 as follows, where Xl and Yl represent the x-axis and y-axis of LCF:

xl
i = ρl

i cos θl
i for i = 1, . . . , Nl

yl
i = ρl

i sin θ
l
i for i = 1, . . . , Nl

zl
i = 0 for i = 1, . . . , Nl

pl
i = [xl

i, y
l
i, z

l
i]

T for i = 1, . . . , Nl

(2.45)

Without loss of generality, zl
i = 0 in the scope of the thesis.

2.3.2 2D LIDAR Segmentation Methods

2D LIDARs are utilized for object detection [57, 58] in the scope of this thesis. When

detecting objects, segmentation of the 2D LIDAR data needs to be performed in or-

der to group LIDAR points and associate them to the objects in the LIDAR range.

The methods, fixed breakpoint detection (FBD) [59, 60], adaptive breakpoint detec-

tion (ABD) [61], nearest neighbor (NN) [62], k nearest neighbor (kNN) [62], radially

bounded nearest neighbor (RBNN) [62] and distance varying radially bounded near-

est neighbor (dvRBNN) [63], are highly used for 2D LIDAR data segmentation in the

literature. The necessary background for the methods is given from Section 2.3.2.1 to

Section 2.3.2.3

2.3.2.1 FBD and ABD

FBD and ABD identify abrupt changes in the sequence of LIDAR data through fixed

(thl
f) and adaptive (thl

a) thresholds. Whereas the fixed threshold in FBD has to be se-

lected manually, the ith adaptive threshold thl
a,i in ABD is computed for each LIDAR

point except for the last one as:

thl
a,i = ρl

i

sin(∆θl)

sin (λ−∆θl)
+ 3σr (2.46)

where σr represents the distance resolution of the LIDAR and λ is the worst case

incidence angle. As the incidence angle decreases, the corresponding threshold value

increases. Then, segmentation with FBD and ABD is defined as follows:

pl
i+1 ∈

Ξl
h if dE(pl

i, p
l
i+1) < thl

f(FBD), thl
a,i(ABD)

Ξl
h+1 otherwise

(2.47)

33

where Ξl
h represents the hth set of segmented data.

2.3.2.2 NN and kNN

NN, kNN apply graph-based segmentation. A graph is a pair of sets (nl, E), where

nl is the set of nodes and E is the set of edges connecting the nodes. Here, nodes

represent LIDAR points and an edge (e) connnecting the ith and j th node is defined as

e =
{
nl
i, n

l
j, dE(pl

i, p
l
j)
}

.

NN and kNN connect every node to the nearest neighbor and kNN number of nearest

neighbors, respectively. The set of edges of NN (ENN) and kNN (EkNN) is defined in

this thesis as:

ENN =
{{
nl
i, n

l
j, dE(pl

i, p
l
j)
}
| nl

j ∈ NN(nl
i)
}
, ∀nl

i ∈ nl

EkNN =
{{
nl
i, n

l
j, dE(pl

i, p
l
j)
}
| nl

j ∈ kNN(nl
i)
}
, ∀nl

i ∈ nl
(2.48)

where, NN(nl
i) and kNN(nl

i) represent the nearest and kNN number of nearest neigh-

bor(s) of nl
i using the Euclidean distance given in equation 2.5. Applying equation

2.48, all nodes, which are connected to one another via a chain of edges, belong to

the same segmented group.

2.3.2.3 RBNN and dvRBNN

RBNN and dvRBNN connect every node to the neighbors which are inside a fixed

radius, (thl
f), and distance varying radius, (thl

a), respectively. While thl
f in RBNN has

to be chosen manually, the ith distance varying radius, thl
a,i, in dvRBNN is computed

for each LIDAR point as:

thl
a,i = thscaleρ

l
i tan (∆θl) + 2σr (2.49)

with the scaling parameter thscale of the distance value of the 2D LIDAR. The set of

edges of RBNN (ERBNN) and dvRBNN (EdvRBNN) are defined as:

ERBNN =
{{
nl
i, n

l
j, dE(pl

i, p
l
j)
}
| dE(pl

i, p
l
j) < thl

f

}
, ∀nl

i ∈ nl

EdvRBNN =
{{
nl
i, n

l
j, dE(pl

i, p
l
j)
}
| dE(pl

i, p
l
j) < thl

a,i

}
, ∀nl

i ∈ nl
(2.50)

Applying equation 2.50, all nodes, which are connected to one another via a chain of

edges, belong to the same segmented group.

34

CHAPTER 3

LANE DETECTION AND TRACKING

In this Chapter, we first formalize and explain the proposed lane detection and track-

ing method step by step. After that, the proposed method is evaluated computationally

and experimentally on the real and generated synthetic images. Besides, illustrative

lane detection and tracking results are given. Hereby, we assume that input images

are given in the RGB format for the proposed method.

3.1 Overview of the Proposed Method

The proposed method includes five main steps as given in Figure 3.1.

Figure 3.1: Overview of the proposed lane detection and tracking method

First, RGB image is obtained and converted to grayscale image. Then, a fixed region

of interest (ROI) is determined on the grayscale image and the ROI is transformed to

35

grayscale BEV image via inverse perspective mapping (IPM). Second, candidate lane

pixels are extracted on the grayscale BEV image through the proposed feature extrac-

tion method. Third, the Hough transform (HT) is applied to the candidate lane pixels

to detect lines. Fourth, the lines are merged based on the following features: slope

and distance of the interception points of the detected lines at the top and bottom bor-

der of the image frame. Furthermore, the best lane pair representative is determined

over all the lines through the proposed cost function. Fifth, lane model parameters

are computed by utilizing the lines of the best pair through the least squares method

(LSM) and tracked via Kalman Filter (KF).

3.2 Detailed Steps of the Proposed Method

3.2.1 Step-1

In the first step, the obtained RGB image (IRGB) [20] given in Figure 3.2 (a) is con-

verted to grayscale image (IG) given in Figure 3.2 (b) by using the equation 2.20.

(a) (b)

Figure 3.2: RGB image (a) and grayscale image (b)

Furthermore, a fixed ROI on the IG is determined to focus on the lanes and reduce

the image processing time. In Figure 3.3 (a), the red trapezoid area given on the

IRGB for illustration purposes represents the fixed ROI in the scope of thesis. Next,

we transform the specified ROI on the IG to grayscale BEV image (IG,BEV) via IPM

36

described in Section 2.2.6. In Figure 3.3 (b), the IG,BEV obtained from the IG with the

fixed ROI is shown.

(a) (b)

Figure 3.3: The fixed ROI (a) and grayscale BEV image (b)

3.2.2 Step-2

In this step, we extract candidate lane pixels on the IG,BEV by performing 1D top-hat

kernels and histograms.

Here, we first convolve the IG,BEV as in equation 2.12 via 1D top-hat kernel to get

convolved image (IC), an example of a top-hat filter is given in Section 2.2.2. Note

that the kernel should be tuned for lane marking width to enhance the lanes.

Next, the IC is horizontally divided into a predetermined number of region, NIC , and

the histogram of each region is computed, histi, i = 1, · · · , NIC as explained in Sec-

tion 2.2.5.

Next, local maxima which are greater than a predetermined threshold value thFE in

each histogram plot are determined and then all the determined local maxima are

sorted. Lastly, the highest pFE% local maxima are specified as candidate lane pix-

els. That is, feature extraction is realized and binary image (IB) is obtained. The

IB obtained from the IG,BEV in Figure 3.3 (b) is given in Figure 3.4, in the figure

white pixels represent the candidate lane pixels and the black pixels represent the

background evaluated as the object pixels other than the lane pixels.

37

Figure 3.4: Obtained binary image, IB

With this feature extraction approach, 1D top-hat kernel enhances the lanes and the

enhanced lane pixels supports each other for the local maxima in the close vicinity

of the histograms of the horizontally divided convolved subimages. Since the local

maxima constituted from a number of lane pixels are distinctive from the noisy lo-

cal maxima which are generally constituted from shadows, cracks on the roads, etc.

as they have unregular shapes, we can eliminate the noisy ones easily through low

threshold values. Additionally, adaptivity to the different lighting conditions is pro-

vided since the local maxima which are greater than a low threshold value are sorted

and the highest ones are counted as candidate lane pixels. Lastly, low number of

candidate lane pixels are extracted as they are determined by the local maxima of the

histograms.

3.2.3 Step-3

In this step, we perform HT as explained in Section 2.2.7 on the obtained IB to detect

the lines, li, i = 1, · · · , Nline as illustrated in Figure 3.5 since HT is robust to noise and

allows gaps between pixels. Here, li is the ith line and Nline is the number of the lines.

Thus, we obtain the end points of each line, (ui1, vi1) and (ui2, vi2), i = 1, · · · , Nline

in the ICF defined in Section 2.2.7. Note that the extracted low number of candidate

38

lane pixels in Section 3.2.2 greatly reduces the computational complexity of the HT.

Figure 3.5: Line detection via HT on the IB

3.2.4 Step-4

After detecting the lines, the ith features (lengths, slopes and the interception points

at the top and bottom border image) of the detected lines are computed as:

ζi =
√

(ui2 − ui1)2 + (vi2 − vi1)2 (3.1)

si =
ui2 − ui1
vi2 − vi1

(3.2)

ηi = si(Nrow − vi2) + ui2 (3.3)

µi = −sivi2 + ui2 (3.4)

Here, ζi, si, Nrow, ηi and µi represent the length and slope of the ith line, number of

the rows in the image, interception points between the ith line and the bottom and top

border of the image, respectively.

Furthermore, the lines li and lj, i = 1 and j = 1, · · · , Nline, i 6= j are merged if:

|si − sj| < ths and |ηi − ηj| < thintMerge and |µi − µj| < thintMerge

where ths, thintMerge are the threshold values for allowable maximum distances be-

tween the slope and interception point features of each line, respectively. With this

procedure, the merged lines using the detected lines in Figure 3.5 are illustrated in the

circles in Figure 3.6.

39

Figure 3.6: Merged lines using the detected lines in Figure 3.5

With the merging process, we obtainMC number of line clusters (Ci, i = 1, · · · ,MC),

where MC ≤ Nline and each cluster contains the merged lines. Then, the features of

each cluster are computed as follows:

ζci =
∑
k∈Ci

ζk i = 1, · · · ,MC (3.5)

sci =

∑
k∈Ci sk

NCi
i = 1, · · · ,MC (3.6)

ηci =

∑
k∈Ci ηk

NCi
i = 1, · · · ,MC (3.7)

µci =

∑
k∈Ci µk

NCi
i = 1, · · · ,MC (3.8)

Here, ζci and sci represent the summation of the lines and the mean of the slopes of the

lines in the ith cluster, respectively. The ηci and µci are the mean of the interception

points between the lines in the ith cluster and the bottom and top border of the image,

respectively. The NCi represents the number of lines in the ith cluster.

Thereafter, we compute the following cost function in equation 3.9 for each cluster

pair, Ci and Cj, i = 1 and j = 1, · · · ,MC, i 6= j, to determine the pair giving the

maximum nonzero value.

χ(Ci, Cj) = (ζci + ζcj + ws exp (−(sci − scj)
2)) · if(|ηci − ηcj| > thintMin)·

if(|ηci − ηcj| < thintMax) · if(|µci − µcj| > thintMin) · if(|µci − µcj| < thintMax)·

exp (−(NmidColumn −
ηci + ηcj + µci + µcj

4
)2/2(

σmid

3
)2)

(3.9)

40

where ws is the importance weighting between slope difference and the total length

of the pairs, NmidColumn is the middle column index in the u-axis of the ICF defined

in Section 2.2.7, σmid represents allowable deviation of the mean of the interception

points from the NmidColumn, thintMin and thintMax are the allowable minimum and max-

imum threshold values for the interception point distances between the pairs, respec-

tively. The if(condition) function outputs zero if the condition is false or one if the

condition is true.

The cost function generates high values for the cluster pair whose mean of the inter-

ception points are close to the NmidColumn, which are long in total length and which

have similar slopes if the interception points of the clusters are in allowable distance.

The cluster pair giving the maximum nonzero value are called as the best pair from

this point on and it should represent the current left (left cluster of the pair) and right

(right cluster of the pair) lanes with the assumption that the CCF is placed above the

center of the gravity of the vehicle as described in Section 5.2. As a result, we obtain

the end points of the left (ui1,l, vi1,l), (ui2,l, vi2,l), i = 1, · · · , nl and right (ui1,r, vi1,r),

(ui2,r, vi2,r), i = 1, · · · , nr lines in the clusters of the best pair, where nl and nr repre-

sent the number of lines in the left and right cluster of the best pair, respectively. In

Figure 3.7, the left and right line clusters of the best pair chosen according to the cost

function are shown in the red and purple circles, respectively.

Figure 3.7: The best cluster pair representing the current left and right lanes

To show the effectiveness of the method from obtaining binary images to the best

pair, Figure 3.8 - 3.13 (a), (b), (c), (d), (e) which show the IRGB in CalTech database

[20], IB, hough lines, some merged hough lines in the circles and the chosen best pair

are given, respectively.

41

(a)

(b) (c)

(d) (e)

Figure 3.8: The illustrated process of obtaining the best pair

42

(a)

(b) (c)

(d) (e)

Figure 3.9: The illustrated process of obtaining the best pair

43

(a)

(b) (c)

(d) (e)

Figure 3.10: The illustrated process of obtaining the best pair

44

(a)

(b) (c)

(d) (e)

Figure 3.11: The illustrated process of obtaining the best pair

45

(a)

(b) (c)

(d) (e)

Figure 3.12: The illustrated process of obtaining the best pair

46

(a)

(b) (c)

(d) (e)

Figure 3.13: The illustrated process of obtaining the best pair

47

As can be seen from the Figures 3.8 and 3.9, correct line cluster pairs are extracted in

the case where lanes are affected by extreme shadows and close to the other vehicles.

Moreover, the algorithm correctly extracts line cluster pair in Figure 3.10 where there

exist road signs close to the lanes. In addition to that, accurate line cluster pair are

extracted in Figure 3.11, 3.12 and 3.13 where the texture of road changes, there exist

letters on the road, curbs, traffic lights close to the lanes.

3.2.5 Step-5

In this step, we detect and track the lane model parameters. As a lane model, we

utilize second-order polynomial with the same a coefficient given in Section 2.2.9.1.

The model parameters are computed through the LSM described in Section 2.1.1 by

using the end points of the lines of the best cluster pair. In this case, the data matrix

(ALSM), model parameter vector (xLSM) and model measurement vector (yLSM) defined

in Section 2.1.1 become:

ALSM =

u2
11,l u11,l 1 0 0

u2
12,l u12,l 1 0 0
...

...
...

...
...

u2
nl1,l unl1,l 1 0 0

u2
nl2,l unl2,l 1 0 0

u2
11,r 0 0 u11,r 1

u2
12,r 0 0 u12,r 1
...

...
...

...
...

u2
nr1,r 0 0 unr1,r 1

u2
nr2,r 0 0 unr2,r 1

, xLSM =

a

bl

cl

br

cr

, yLSM =

v11,l

v12,l
...

vnl1,l

vnl2,l

v11,r

v12,r
...

vnr1,r

vnr2,r

(3.10)

After computing the lane model parameter vector through LSM as described in Sec-

tion 2.1.1 with the matrices and vectors given above, we track them via KF as in the

given example in Section 2.2.10. The lane detection and tracking result through the

proposed method on the IRGB in Figure 3.2 (a) is given Figure 3.14.

48

Figure 3.14: The lane detection and tracking result through the proposed method

3.3 Computational Evaluation

In this Section, quantitative and illustrative results of the proposed method are pre-

sented.

To evaluate the proposed method quantitatively, CalTech - Cordova1 database [20]

and synthetic data generated from this database are utilized.

3.3.1 Synthetic Data Generation

Synthetic data are generated by manipulating the images of the Cordova 1 dataset

[20] to evaluate the proposed method quantitatively under the effect of noise and in

different lighting conditions.

To generate synthetic images with noise, Gaussian noise images (IGausss) with zero

mean and 0.01 variance are added to the images (IRGBs) of the database. As a result,

images with Gaussian noise which have a specific variance are generated without

changing the brightness of the images for the evaluation of the algorithm under the

effect of noise. The variance value of the Gaussian noise is determined experimen-

tally such that the noise can represent the effects of rain, impairments of the image

data, shadows, etc.

To generate synthetic images with different intensity values for simulating different

lighting conditions, we add the same intensity values based on the uniform distribu-

tion between [−0.3, 0.3] to the each pixel of the images (IRGBs) of the database. That

is, we obtain the images of the database with different brightness. The limit values

49

of the uniform distribution are determined experimentally such that the generated im-

ages can represent the lighting conditions from the morning until the night without

lack of light and direct exposure to the light.

In total 750 synthetic images are generated from the images in CalTech - Cordova1

database. Three examples of the synthetic images generated from an original image

are given in Figure 3.15.

(a)

(b) (c) (d)

Figure 3.15: Original and synthetic images

Figure 3.15 (a), (b), (c) and (d) show an original image in the database, the original

image with noise, the original image with low intensity and high intensity, respec-

tively.

3.3.2 Quantitative Comparison and Illustrative Examples

For the quantitative comparison, we firstly compare all combinations of the proposed

and described (NAND, 1-BT, Canny, SLT) feature extraction methods by performing

the proposed lane detection and tracking algorithm to evaluate the suitability of the

proposed feature extraction method. Secondly, quantitative comparison between the

proposed and three different state of the art algorithms [20, 64, 65] are made to eval-

uate the algorithm’s effectiveness in the literature.

50

To evaluate the algorithms quantitatively, different norms for the accuracy metric

given in equation 3.12 are performed based on the deviation of manually labeled

ground truth lane data from the detected lane data: Mean L1-norm (mean absolute

difference), Mean L2-norm (mean square error) and L∞-norm (maximum error) are

given in 3.11 from top to bottom, respectively.

1

Nlane

Nlane∑
i=1

|di|

1

Nlane

Nlane∑
i=1

(di)
2

max(|di|), i = 1, · · · , Nlane

(3.11)

where di and Nlane represent the distance of the ith pixel position of the detected lane

from the pixel position of the ground truth at the same row and the number of detected

lane pixels in the perspective view, respectively.

number of correctly detected objects
number of all objects

(3.12)

Here, ’number of correctly detected lanes’ is the number of lanes where the specified

distance bound (Dist) is greater than the distance computed by the defined norms and

‘number of all lanes’ is the number of all ground truth lanes.

Table 3.1 - 3.3 show the average norm values (Norm) for the correctly detected lanes

and the accuracy results (Acc) of the proposed lane detection and tracking algorithm

with the proposed and described feature extraction methods and lane models evalu-

ated on the original and synthetic images together based on the Mean L1-norm, Mean

L2-norm and L∞-norm, where the respective norm value is below the indicated dis-

tance bound (Dist). The accuracy results are given in the form of the percentage.

51

Table 3.1: Accuracy results and average norm values based on Mean L1-norm

Feature Extraction

Methods

Dist < 5 Dist < 8

Same a Independent a Same a Independent a

Proposed method (Acc) 88.04 82.40 93.62 90.24

NAND (Acc) 77.04 59.60 83.96 67.86

1-BT (Acc) 77.47 64.59 82.40 71.83

SLT (Acc) 78.27 72.91 82.73 77.25

Canny (Acc) 78.70 38.84 82.46 43.24

Proposed method (Norm) 1.87 1.88 2.13 2.25

NAND (Norm) 2.08 2.2 2.45 2.76

1-BT (Norm) 2.04 2.02 2.3 2.46

SLT (Norm) 1.87 1.86 2.12 2.11

Canny (Norm) 1.91 2.23 2.10 2.65

Table 3.2: Accuracy results and norm values based on Mean L2-norm

Feature Extraction

Methods

Dist < 5 Dist < 8

Same a Independent a Same a Independent a

Proposed method (Acc) 85.25 79.94 92.27 88.63

NAND (Acc) 73.87 57.24 82.30 65.88

1-BT (Acc) 75.64 62.29 81.49 70.55

SLT (Acc) 76.34 71.83 81.76 76.45

Canny (Acc) 77.09 36.91 81.33 41.79

Proposed method (Norm) 2.10 2.10 2.42 2.51

NAND (Norm) 2.27 2.40 2.72 2.97

1-BT (Norm) 2.26 2.21 2.56 2.73

SLT (Norm) 2.11 2.11 2.40 2.37

Canny (Norm) 2.15 2.39 2.36 2.83

52

Table 3.3: Accuracy results and norm values based on L∞-norm

Feature Extraction

Methods

Dist < 5 Dist < 8

Same a Independent a Same a Independent a

Proposed method (Acc) 62.92 59.31 80.35 76.86

NAND (Acc) 52.82 39.40 71.54 56.08

1-BT (Acc) 53.94 42.64 77.51 62.32

SLT (Acc) 58.47 54.74 75.24 72.17

Canny (Acc) 59.84 25.96 79.68 38.91

Proposed method (Norm) 3.22 3.13 3.90 3.87

NAND (Norm) 3.31 3.26 4.17 4.32

1-BT (Norm) 3.26 3.08 4.18 4.10

SLT (Norm) 3.29 3.28 3.97 4.00

Canny (Norm) 3.34 3.41 4.07 4.35

According to Table 3.1-3.3, the second-order polynomial with common a coefficient

is superior to the second-order polynomial with independent a coefficient for all com-

bination of the different feature extraction methods and metrics. This superiority of

the proposed lane model comes from its suitability for modeling parallel lane mark-

ings in a relaxed way. Specifically, this property of this lane model is highly important

for cases where lane markings in one region (left or right) are worn-out such that most

of lane marking pixels could not be extracted. In addition to that, the proposed fea-

ture extraction method gives the best results for all defined metrics. Lastly, smaller

average norm values for the correctly detected lanes are obtained via proposed lane

model in most of the cases. This indicates that smaller deviations from the ground

truth are achieved for the correctly detected lanes through the proposed lane model.

For the quantitative comparison between the proposed and the state of the art algo-

rithms [20, 64, 65], the metrics [10] given in equation 3.13 are utilized on the original

images of the CalTech - Cordova1 database.

AR =
Nt

Ngt
, FP =

Nf

Nall
, FN =

Nm

Ngt
(3.13)

53

where AR, FP, FN are accuracy rate, false positive rate, false negative rate, respec-

tively and Nt, Nf, Nm, Ngt, Nall represent number of correct lane detections, false lane

detections, missed lanes, ground truth lanes, all detected lanes, respectively.

To evaluate a detected lane as a correctly detected lane, criteria in [20] are utilized

and Table 3.4 shows the results of the proposed and the state of the art algorithms

based on the given metrics. The results of the state of the art algorithms are obtained

from [10].

Table 3.4: Performance results of the proposed and the state of the art algorithms

Algorithms AR FP FN

Proposed algorithm 0.987 0.013 0

Aly [20] 0.972 0.3 -

Niu et al. [64] 0.927 - 0.054

Ruyi et al. [65] 0.974 - 0.13

According to the results, the proposed algorithm has more number of correct lane de-

tections and fewer number of false lane detections than the state of the art algorithms.

Moreover, the proposed algorithm does not miss any ground truth lanes in the given

database.

Additionally, the results for the Precision (Pre), Recall (Rec) and F1-measure (F1)

metrics given in equation 3.14 [66] are computed as 0.987, 1 and 0.993, respectively.

Pre =
Nt

Nt +Nf
, Rec =

Nt

Nt +Nm
, F1 = 2 · Pre · Rec

Pre + Rec
(3.14)

According to the results, the proposed algorithm detects lanes in high accuracy and

does not miss any ground truth lanes in the given database.

A representative selection of the illustrated results of the proposed lane detection and

tracking algorithm are given in Figure 3.16. In the figure, detected lanes and the area

between the lanes are shown by red and green colors, respectively. This selection is

made from the original and synthetic images from CalTech database in [20]. As can

54

Figure 3.16: A representative selection of lane detection and tracking results

55

be seen from Figure 3.16 - (first, second and third rows), the proposed method can

accurately detect the straight and curved lanes in the generated synthetic images with

noise, high intensity and low intensity (see Section 3.3.1 for the generation of the

synthetic images), respectively. Also, a correct lane detection where a vehicle close

to the camera view is realized as in the third row. Besides, the proposed algorithm

performs well for the complex examples of original images in CalTech database [20]

where lanes are affected by extreme shadows and close to the other vehicles as in the

fourth row of the figure. Moreover, accurate lane detection results can be seen in the

fifth row of the original images in the database where the texture of road changes. In

addition to that, the algorithm correctly recognize lanes in the original images of the

database where there exist road signs close to the lanes as in the last row.

3.4 Experimental Tests

In this Section, the proposed lane detection and tracking algorithm is evaluated on the

autonomous vehicle kit [33]. For the utilized hardware (Jetson TX2 developer kit and

ZED stereo camera) and software, see Section 4.7.1.

To evaluate the proposed algorithm, firstly straight lanes are manually constructed on

the ground. Then, the algorithm is implemented and illustrated experimental results

are obtained.

A representative selection of lane detection and tracking results from the vehicle are

shown in Figure 3.17.

Figure 3.17: Experimental lane detection and tracking results

As can be seen in Figure 3.17, the proposed algorithm detects and tracks the lane

markings in cases where the test vehicle is located in different positions and at differ-

56

ent orientations with respect to the lanes.

57

58

CHAPTER 4

SENSOR FUSION OF A CAMERA AND 2D LIDAR FOR LANE

DETECTION AND TRACKING

Vision-LIDAR systems have complementary perception capabilities and they are fre-

quently used in various autonomous robotic applications such as obstacle avoidance,

simultaneous localization and mapping, etc. Since the attributes of the LIDARs and

vision systems complement each other, it is plausible to use them together to recog-

nize the lanes for autonomous vehicles. To do that, we firstly detect objects via 2D

LIDAR. Then, LIDAR points of the detected objects in the LCF are transformed to

the CCF. After that, ground level LIDAR points of the detected objects in the CCF are

computed. Furthermore, the ground level LIDAR points of the objects in the CCF are

mapped to the BEV image and the pixels occupied by the detected objects from the

ground level are evaluated as background on the BEV image. Thus, we obtain a BEV

image where the detected object pixels are cleared, modified BEV image. Lastly, the

lanes are detected and tracked on the modified BEV image.

The overview of the proposed sensor fusion algorithm is given in Algorithm1.
Algorithm1: Sensor fusion of a camera and 2D LIDAR for lane detection and tracking

1. Get the image frame, extract the candidate lane features and obtain binary BEV

image

2. Segment 2D LIDAR data to identify groups/objects

3. Map identified groups/objects to the BEV

4. Turn pixels of groups/objects into background on BEV

5. Perform lane detection and tracking on the modified BEV image

59

4.1 Algorithm1-Step1

In the first step, we obtain binary BEV images as described in Section 3.2.1 and 3.2.2

in a detailed way.

4.2 Algorithm1-Step2

In this step, we segment 2D LIDAR data to identify groups/objects. To evaluate the

2D LIDAR data segmentation methods, we generate synthetic 2D LIDAR data and

make a quantitative comparison between the methods described in Section 2.3.2 in

terms of accuracy and computational complexity by using the generated data.

4.2.1 Literature Research

The literature offers several 2D LIDAR data segmentation methods in different appli-

cations [57, 58, 32, 67].

[68] segments available gaps using FBD for path planning of mobile robots. In [61],

two 2D LIDARs are exploited for pothole detection. After filtering out the high fre-

quency component of the laser scans via a median filter, ABD is applied for abrupt

changes to LIDAR points to recognize the potholes. [69] first applies FBD for seg-

menting LIDAR data and then imposes the minimum number of LIDAR points cri-

terion to the segmented LIDAR data to detect humans from the knee-level for the

applications of mobile-robots. In [59, 60], obstacle detection is performed based on

2D LIDAR. To do that, FBD is utilized for segmentation of the data after applying

a median filter. In [62], RBNN algorithm is developed for 3D LIDAR data, but can

as well be applied to 2D LIDAR data. The advantages of RBNN against the NN

and kNN algorithm are discussed. Moreover, synthetic data for 3D LIDAR are used

without providing a data generation algorithm. [63] segments data from two 2D LI-

DARs using the dvRBNN for outdoor applications and discusses the advantages over

RBNN.

60

4.2.2 Synthetic 2D LIDAR Data Generation Algorithm

Although all segmentation methods come with an individual evaluation, there is no

quantitative comparison. In particular, to the best of our knowledge, the existing lit-

erature does not offer a common labeled 2D LIDAR database. To make a quantitative

comparison between the segmentation methods described in Section 2.3.2, this thesis

also proposes a novel synthetic 2D LIDAR data generation algorithm, Algorithm2,

and performs a comparative study of the methods based on the generated synthetic

data in terms of accuracy and computational complexity. The algorithm first places

objects, triangles and parallelograms, with different shapes, orientations and sizes in

the range of the 2D LIDAR based on a predefined minimum distance between the

objects. After that, we generate the LIDAR points hitting the each edge of the object.

This procedure is applied until reaching a predetermined number of objects. As the

last step of the algorithm, we eliminate LIDAR points which are not scanned by the

2D LIDAR because of the occlusions from other objects. In order to parametrize the

generated LIDAR data, we introduce ζave as the average edge length of objects, dMD

as the minimum distance between objects and NO as the desired number of objects.

The Algorithm2 is presented in a detailed way in this Section.
Algorithm2: Synthetic 2D LIDAR data generation algorithm

1. Determine the shape and size of the next object using ζave

2. Locate and orient the object

3. Determine the minimum distance to other objects

4. If the minimum distance is larger than dMD and line equation of each edge of

the object is definite

Accept the object and generate LIDAR points hitting the object

5. If the desired number of objects NO has not been generated yet

Goto 1

6. Postprocessing to remove occluded LIDAR points

We next give a detailed explanation of Algorithm2 step by step. Note that the uniform

distribution is used for all random assignments.

61

4.2.2.1 Algorithm2-Step1

First, we select the object type. In this work, we use triangles and parallelograms.

Then interior angles (ψls) and lengths of the edges (ζ ls) are determined randomly

within predefined intervals [ψl
min, ψl

max] and [ζ l
min, ζ l

max].

4.2.2.2 Algorithm2-Step2

Second, we rotate the object from its center point by an angle φl, which is ran-

domly determined in a predefined interval [φl
min, φl

max]. Then, we randomly shift

the center point of the object by sl
x (Xl-axis) and sl

y (Yl-axis) in a predefined interval

[sl
x,min, sl

x,max] for sl
x and [sl

y,min, sl
y,max] for sl

y.

4.2.2.3 Algorithm2-Step3

In this step, the minimum distances from the object to the other objects are computed

[70].

4.2.2.4 Algorithm2-Step4

If the minimum distance is smaller than the predefined minimum distance dMD, we

discard the object and directly go to Step-1. After that, we consider each edge of the

object, el, defined by the line equation:

yl = aex
l + be (4.1)

between the corner points cl
w = (xl

w, y
l
w) and cl

t = (xl
t, y

l
t) as in Figure 4.1 (a) without

considering occlusions. That is, all other edges (shown under the cross sign) are

not considered in the view of the 2D LIDAR. For the indefinite cases of the edge,

ae = ±∞, we discard the object and directly go to Step-1. Otherwise, we accept the

object and generate the LIDAR points hitting the object. To this end, the angles γl
w

and γl
t as given in Figure 4.1 (b) from the positive Xl-axis to the vectors formed by

the origin of LCF to the corner points of the corresponding edge are computed for

62

k ∈ {w, t} and |cl
k| =

√
(xl

k)
2 + (yl

k)
2 as

γl
k =

arccos (xl
k/|cl

k|) if yl
k ≥ 0

180◦ + arccos (−xl
k/|cl

k|) otherwise
(4.2)

(a) (b)

Figure 4.1: The edges and their corresponding angles

Thereafter, the set Γl of LIDAR angles hitting the edge el in multiples of the angle

resolution ∆θl with the assumption that γl
t is greater than γl

w is determined as:

Γl ⊂

[0, γl

w], [γl
t, 360−∆θl] if − be

ae
> 0 and yl

w · yl
t ≤ 0

[γl
w, γ

l
t] otherwise

(4.3)

Using the line equation of the edge in 4.1, the x-coordinate and y-coordinate of the

LIDAR point in the LCF hitting the edge for each LIDAR angle γl ∈ Γl is computed

as follows:

xl =
be

tan(γl)− ae
yl = tan(γl)

be

tan(γl)− ae
(4.4)

The procedure explained above is applied for all edges to specify all the LIDAR points

hitting the corresponding object.

An example of generating LIDAR points hitting 30 symbolized objects is given in

Figure 4.3 (a).

4.2.2.5 Algorithm2-Step5

In this step, we check if the desired number NO of objects is reached. If not, we go to

Step 1 to generate new objects.

63

4.2.2.6 Algorithm2-Step6

When reaching this step, a sufficient number ofNO objects has been generated. Then,

we eliminate the LIDAR points which are not scanned by the 2D LIDAR due to

occlusions from other edges of objects. To do that, the distance values of LIDAR

points for each angle in the set Γl of all edges are determined and only the one with

the minimum distance to the origin (LIDAR position), is kept. The procedure for the

kth angle γl
k in the set Γl of all edges is given in Figure 4.2. The point corresponding

to the distance ρl
ik in the red circle is kept as it is closest to the origin of LCF.

Figure 4.2: Eliminating LIDAR points not in the view of 2D LIDAR

Finally, we add uniform noise to the LIDAR points in the interval specified by the

distance accuracy of the 2D LIDAR.

An example of LIDAR points in Figure 4.3 (a) after the postprocessing explained here

is given in Figure 4.3 (b).

(a) (b)

Figure 4.3: LIDAR point before (a) and after (b) postprocessing step

64

4.2.3 Computational Evaluation

This Section performs a quantitative comparison of the methods explained in Section

2.3.2 based on different test cases of generated synthetic data. The parameters of the

segmentation methods are thl
f = 0.65, λ = 18, σr = 0.13, kNN = 3, and thscale =

3.4. In total, 9000 different test cases with varying values of dMD, ζave and NO are

generated. In the synthetic data generation phase, the LIDAR specific parameters are

defined as ∆θl = 1◦, [ζ lmin, ζ
l
max] = [0.1m, 4m], [sl

x,min, s
l
x,max] = [sl

y,min, s
l
y,max] =

[−10m, 10m], [ψl
min, ψ

l
max] = [φl

min, φ
l
max] = [−45◦, 45◦], and the accuracy of the

2D LIDAR is 0.1m. For comparison, we use the accuracy metric in equation 4.5.

number of correctly detected objects
number of all objects

(4.5)

Here, ’number of correctly detected objects’ is the number of objects whose scanned

LIDAR points are all detected correctly. ’number of all objects’ is the number of

objects scanned by the 2D LIDAR.

The quantitative results depending on dMD, ζave and NO are given in Table 4.1, Table

4.2 and Table 4.3, respectively.

Table 4.1: Accuracy results according to dMD (NO = 20 and ζave = 0.8m)

Methods dMD = 0.3m dMD = 1m dMD = 2m

FBD 0.7848 0.8762 0.8562

ABD 0.7924 0.8915 0.9019

RBNN 0.7801 0.8992 0.8589

dvRBNN 0.8102 0.9234 0.9207

kNN 0.5798 0.5819 0.4848

NN 0.6029 0.6176 0.6112

65

Table 4.2: Accuracy results according to ζave (dMD = 1m and NO = 20)

Methods ζave = 0.4m ζave = 1.1m ζave = 2.4m

FBD 0.9722 0.8719 0.7391

ABD 0.9753 0.9152 0.8154

RBNN 0.9924 0.8848 0.7415

dvRBNN 0.9982 0.9432 0.8442

kNN 0.5354 0.7396 0.7507

NN 0.7321 0.6604 0.5764

Table 4.3: Accuracy results according to NO (dMD = 1m and ζave = 0.95m)

Methods NO = 10 NO = 20 NO = 30

FBD 0.8451 0.8528 0.8580

ABD 0.8968 0.8962 0.8950

RBNN 0.8491 0.8608 0.8685

dvRBNN 0.9147 0.9194 0.9179

kNN 0.5964 0.5155 0.4728

NN 0.5888 0.6129 0.5988

For all test cases, the same tunable parameters are used for each method and the pa-

rameters giving the possibly best results in all cases are determined experimentally.

In the test cases, the number of the occlusions increases with a decreasing dMD and

increasing ζave, NO. Besides, the variance of all LIDAR points hitting the objects in-

creases with dMD, ζave and NO.

In Table 4.1, the accuracies of the methods generally decrease with decreasing dMD as

the objects become closer to each other. In Table 4.2, the accuracies of the methods

generally increase with decreasing ζave as the objects become more distant due to the

uniform distribution of sl
x and sl

y in the range of the 2D LIDAR. In Table 4.3, the

accuracy results of each method for the specified NOs are close to each other as dMD

is the same for all the cases and the number of occlusions as in Figure 4.4 (b) is small.

In particular, the accuracy results of FBD and RBNN are close to each other for the

66

chosen values of dMD and ζave.

According to the results, dvRBNN is superior to the other methods. This superiority

arises from its adaptive threshold based on the distance value of 2D LIDAR and the

robustness against the occlusions of small parts of the objects by other objects. Fig-

ure 4.4 shows a dvRBNN segmentation result and each color represents a different

LIDAR group.

(a)
(b)

Figure 4.4: Segmentation results of dvRBNN

Unlike FBD, RBNN, NN, kNN, the adaptive threshold of dvRBNN compensates for

the increasing distances between the LIDAR points as in Figure 4.4 (a) since the dis-

tance varying radius increases with the distance values of LIDAR points. Besides,

unlike the methods FBD and ABD using the distance between consecutive points, the

occluded objects as in Figure 4.4 (b) are detected accurately since dvRBNN connects

every LIDAR point to its neighbors which are inside the computed radius irrespective

of the sequence of LIDAR points.

Regarding the computational complexity, FBD and ABD are the most simple methods

as there is only one query per LIDAR point. Considering the number of LIDAR points

Nl as the input, FBD and ABD are performed in O(Nl). As for NN, kNN, RBNN,

dvRBNN, the algorithm consists of constructing and searching a graph, which can be

done in O(N2
l) in the worst case. That is, dvRBNN comes with a higher complexity

compared to FBD and ABD but with a considerable performance improvement. Fur-

thermore, dvRBNN shows the best performance among the algorithms whose com-

plexity is in the order of O(N2
l).

67

4.3 Algorithm1-Step3

Here, we first transform the LIDAR points of the detected objects in the LCF to

the CCF. To do that we first do extrinsic calibration between the 2D LIDAR and

camera such that we could estimate the transformation between the sensors. After

that, ground level LIDAR points of the detected objects in the CCF are computed.

Furthermore, the ground level LIDAR points of the objects in the CCF are projected

to the BEV image.

4.3.1 Extrinsic Calibration between a Camera and 2D LIDAR

To match the corresponding LIDAR and camera data, the relative coordinate systems

of the camera and 2D LIDAR should be estimated via extrinsic calibration.

4.3.1.1 Literature Research

Several methods have been performed for the extrinsic calibration in the literature.

The methods can be seperated into two groups; explicit and implicit methods.

In the explicit methods [71, 72, 73], the laser beams are visible thanks to infra-red

cameras, etc. in the images. In this category, the corresponding observed LIDAR

and vision features such as points, lines, etc. are known and the correspondences are

employed to compute the relative position and orientation between these sensors.

In the implicit methods, the laser scans are invisible in the images as in this the-

sis. In this category, the transformation between the sensors are determined through

features such as lines, edges, corners, intersection points, etc. in each sensor modal-

ity. [74, 75, 76, 77, 78] utilize a planar checkerboard as a calibration target. The

whole calibration target should be scanned by the LIDAR and captured by the cam-

era simultaneously in different poses. The methods firstly estimate the origin and

normal direction of the calibration target according to the camera coordinate frame

by the help of camera calibration technique. [74] is the state of art in this category

and it takes advantage of the constraint which enforces the equality of the distances

between the any point on the chekerboard in the direction of the estimated normal.

68

They estimate rotation and translation between 2D LIDAR and a camera coordinate

frames by minimizing the distance between the origin of chekerboard and the laser

scans on the chekerboard according to the camera coordinate frame in the direction of

the estimated normal by least square square error method, first. Then, the estimated

transformation matrix is refined by nonlinear optimization by the same constraint.

The method estimates the rotation matrix and the translation vector in coupled way.

The works in [75, 76] are analogous to [74] with the difference that a 3D LIDAR and a

camera are extrinsically calibrated, instead of 2D LIDAR. [77] takes advantage of the

constraint which enforces the perpendicularity of the estimated normal and any vector

on the calibration target. They firstly estimate the rotation matrix by the perpendicu-

larity of the estimated normal and the vector which is composed of the laser scans on

the calibration target via SVD. After that, rotation matrix is refined by nonlinear opti-

mization. Next, translation vector is estimated via nonlinear optimization techniques

followed by least square error by the fact that the estimated normal is perpendicular

to the vector which is between the origin of the chekerboard and the centeroid of the

laser scans on the chekerboard. Furthermore, RANSAC algorithm is used to eliminate

effect of the outliers from the rotation and translation. The proposed method firstly

estimates rotation matrix and then translation vector between 2D LIDAR and cam-

era coordinate frames in a decoupled way. [78] uses the fact that estimated normal

and any vector on the calibration target are perpendicular to each other. They firstly

estimate the rotation matrix by the perpendicularity of the estimated normal and the

vector which is composed of the laser scans on the calibration target via SVD. In ad-

dition to that, they imposes the orthogonality properties of the rotation matrix. After

that, rotation matrix is refined by nonlinear optimization. Next, translation vector is

estimated via nonlinear optimization techniques followed by least square error by the

fact that the estimated normal is perpendicular to the vector which is between the ori-

gin of the chekerboard and the centeroid of the laser scans on the chekerboard. The

proposed method firstly estimates rotation matrix and then translation vector between

2D LIDAR and camera coordinate frames in a decoupled way. [79] uses a black

right-angled triangular object as a calibration target. The presented work firstly de-

tects depth edges and the perpendicular edges as features to constitute the constraints

by using a 2D LIDAR and camera, respectively. Then, they calculate the extrinsics

by minimizing the total squared distance between corresponding LIDAR and camera

69

edges for each pose. Besides, different types of features such as points, lines, etc.

are discussed to associate the measurements. [80, 81] uses a v-shaped calibration

target with distinct black stripes on the edges and the centerline. They associate the

left-right edges and centerline features in the image to the left-right depth and center

point features in LIDAR measurements, respectively. To compute the extrinsic pa-

rameters, range based total weighted-squared distance between the correspondences

are minimized via nonlinear optimization for each pose.

4.3.1.2 The Implemented Method for the Extrinsic Calibration between a Cam-

era and 2D LIDAR

To obtain rotation matrix and translation vector between the camera and 2D LIDAR,

the implicit method mostly based on [77] is implemented in the scope of the thesis.

The method utilizes a planar checkerboard as a calibration target. The whole calibra-

tion target (plane) must be scanned by the 2D LIDAR and captured by the camera

simultaneously in different poses. Each different pose of the calibration target puts

constraints on the extrinsic parameters which are the rotation matrix and translation

vector between the camera and 2D LIDAR. In the method, the rotation matrix is first

estimated and then the translation vector is determined.

The proposed method aims to solve the transformation from the LCF to the CCF. The

transformation can be defined as:

P c = Rc
lP

l + tcl (4.6)

where P c and P l represent the same location in the CCF and LCF, respectively. Rc
l is

a rotation matrix describing the rotation from LCF to the CCF and tcl is a translation

vector representing origin of the LCF in the CCF.

For illustration purposes, a schematic of the CCF and LCF are given in Figure 4.5,

where [X l, Y l, Z l]T represents the coordinates of laser scans in the LCF and without

loss of generality, the laser scans are assumed to be on the plane Z l = 0.

70

Figure 4.5: The schematic of the CCF and LCF on a vehicle

Let nc
i be the normal vector of the calibration target in the ith pose according to the

camera coordinate frame, which is the third column vector of Rc
ch which can be esti-

mated as in Section 2.2.11. Let p̄l
ij = pl

ij − p̄l
i be the difference vector between pl

ij

and p̄l
i points in the LCF, where pl

ij is the j th laser scans hitting the chekerboard and

p̄l
i is the center point of the laser scans hitting the checkerboard in the ith pose.

Since p̄l
ij = [x̄l

ij, ȳ
l
ij, z̄

l
ij]

T vector is on the calibration target in the LCF and nc
i is per-

pendicular to the calibration plane in the CCF, we have the following relation for each

laser scan hitting the calibration target in each pose:

(nc
i)
T (Rc

l p̄
l
ij) = 0 (4.7)

Equation 4.7 can be rewritten as follows due to the fact that the laser scans lie in the

plane Zl=0.

[x̄l
ijn

c
i1 x̄l

ijn
c
i2 x̄l

ijn
c
i3 ȳl

ijn
c
i1 ȳl

ijn
c
i2 ȳl

ijn
c
i3]r = 0 (4.8)

where r = [rT
1 , r

T
2]T is a 6× 1 vector, r1 and r2 represent the first and second column

of the rotation matrix Rc
l , respectively. Furthermore, nc

i1, nc
i2 and nc

i3 represent the

first, second and third component of the normal vector nc
i , respectively.

Several equations are in the form of 4.8 for each pose. So, all the equations have the

form Ar = 0. The solution r can be computed via SVD of A = USV T. In that case,

r becomes the last column of the V . Thus the rotation matrix Rc
l can be constituted

as:

[r1, r2, r1 × r2] (4.9)

Since the computed Rc
l does probably not satisfy attributes of a rotation matrix, near-

est rotation matrix (R̂c
l) to Rc

l based on the Frobenius norm can be computed as fol-

71

lows [82]:

R̂c
l = URV

T
R (4.10)

where UR and VR are the unitary matrices and obtained by the SVD of the computed

Rc
l = URSRV

T
R in equation 4.9.

After estimating R̂c
l via the linear methods, we refine R̂c

l by minimizing the cost func-

tion in equation 4.11 through a nonlinear optimization with the fact that the vectors

(nc
i and R̂c

l p̄
l
ij) should be orthogonal to each other in noise-free environment.∑

i

∑
j

((nc
i)

T(R̂c
l p̄

l
ij))

2 (4.11)

R̂c
l can be parameterized by the Rodrigues formula not to violate the form of the rota-

tion matrix. A rotation matrix is represented as a 3× 1 vector by Rodrigues formula.

The minimization of the cost function is realized using Levenberg-Marquardt algo-

rithm [83].

After refining R̂c
l via the nonlinear optimization, we can estimate the translation vec-

tor, tcl , via LSM described in Section 2.1.1. The translation vector satisfies the fol-

lowing equation:

(nc
i)

Ttcl = −(nc
i)

T(R̂c
l p̄

l
i − pc

i) (4.12)

where pc
i is any point on the calibration plane in the CCF and tcch which can be esti-

mated as in Section 2.2.11 can be used for pc
i .

After estimating rotation matrix R̂c
l via nonlinear optimization and translation vector

tcl via LSM, R̂c
l and tcl are reestimated together in a coupled way. To do that, the cost

function given in 4.13 is minimized using Levenberg-Marquardt algorithm with the

fact that the vectors (nc
i and R̂c

l p̄
l
i + tcl − pc

i) are orthogonal to each other in noise-free

environment. The vector, R̂c
l p̄

l
i + tcl − pc

i , is a line segment from the point pc
i to the

center point of the laser scans hitting the checkerboard in the ith pose according to the

CCF and lies on the calibration plane.∑
i

((nc
i)

T(R̂c
l p̄

l
i + tcl − pc

i))
2 (4.13)

To eliminate the effect of outliers from R̂c
l and tcl , RANSAC algorithm can be used.

Estimation of the R̂c
l via RANSAC algorithm is as follows:

72

1. Select randomly a determined number of images and the corresponding laser

scans hitting the chekerboard. Then, compute R̂c
l using the linear techniques

described in this Section.

2. Compute the distance (dRi) given as follows for each pose:

dRi =

mi∑
j=1

|(nc
i)

T(R̂c
l p̄

l
ij)| (4.14)

where mi is the number of laser scans hitting the chekerboard in ith pose.

3. Determine the number of poses which satisfies the condition-1 (dRi < thR)

where thR is the predetermined threshold value for a valid rotation matrix.

4. Repeat Step-1 to Step-3 for nR times and choose R̂c
l having the maximum num-

ber of poses that satisfies the condition-1.

5. Reestimate R̂c
l by using the images and the corresponding laser scans in the

poses which satisfies the condition-1 via linear techniques.

6. Refine the rotation R̂c
l by minimizing the cost function given in equation 4.11

via Levenberg-Marquardt algorithm using the images and the corresponding

laser scans in the poses which satisfies the condition-1 in the previous step.

7. Compute the distance, dRi, and determine the poses satisfying the condition-1.

8. Repeat Step-5 to Step-7 until the number of poses that satisfies the condition-1

converges.

Estimation of the tcl via RANSAC algorithm is as follows:

1. Select randomly a determined number of images and the corresponding laser

scans hitting the chekerboard. Then, compute tcl using the LSM.

2. Compute the distance (dti) given as follows for each pose.

dti = |(nc
i)

T(R̂c
l p̄

l
i) + tcl − pc

i | (4.15)

3. Determine the number of poses which satisfies the condition-2 (dti < tht)

where tht is the predetermined threshold value for a valid translation vector.

73

4. Repeat Step-1 to Step-3 for nt times and choose tcl having the maximum number

of poses that satisfies the condition-2.

5. Reestimate tcl by using the images and the corresponding laser scans in the

poses which satisfies the condition-2 via the LSM.

6. Refine the translation tcl and R̂c
l by minimizing the cost function given in 4.13

via Levenberg-Marquardt algorithm using the images and the corresponding

laser scans in the poses which satisfies the condition-2 in the previous step.

7. Compute the distance, dti, and determine the poses satisfying the condition-2.

8. Repeat Step-5 to Step-7 until the number of poses that satisfies the condition-2

converges.

To estimate R̂c
l and tcl experimentally, the followed instructions [84] are:

• Place the chekerboard such that it is visible by both camera and 2D LIDAR.

• At least 20-30 laser scans should hit the chekerboard.

• The chekerboard corners should be distinctly detectable in the image.

• At least 15-20 valid pose set in different position and orientation of the cheker-

board.

After estimating R̂c
l and tcl , laser scans which hit the calibration target and in the image

view are projected to the image as given in Figure 4.6 and Figure 4.7, respectively by

the help of intrinsic camera parameters estimated in Section 2.2.11. As can be seen

in Figure 4.6, the laser scans hit the calibration target also hit the calibration target in

the image view.

74

Figure 4.6: Laser scans hitting the chekerboard

Figure 4.7: Laser scans in the image view

4.3.2 Projection of LIDAR Points to the Road Level

In practice, it has to be considered that the camera is not located at the road level and

2D LIDAR scans hit objects above the road level as shown in Figure 4.8 (a) (side

view). As a result, the camera can see different points (such as point B at the road

level and point A not at the road level in Figure 4.8 (a)) that are located at the same

distance from the vehicle. When the object and the LIDAR points taken from this

configuration are projected to the BEV in Figure 4.8 (b) (top view), the points A and

B correspond to the lines Â and B̂. As the occluded area is bounded by the location

of LIDAR points in the BEV, it is necessary to project the LIDAR points to the road

level before sensor fusion. As a result, all object pixels are correctly evaluated as

background as indicated in Figure 4.8 (b). The formulation of the projection of the

LIDAR points to the road level with the assumption that the placement of the CCF is

75

as described in Section 5.2 and the road is flat is:

αg
i

ug
i

vg
i

1

 =

HK

[
R−1

x (φ)

(
Rx(φ)

xc
i

yc
i

zc
i

+

0

hc − [2nd row of Rx(φ)][xc
i y

c
i z

c
i]

T

0

)] (4.16)

where φ is the tilt angle, hc is the height, αg
i is a scaling parameter of the ith projected

LIDAR point, ug
i and vg

i are the column and row indexes of the ith projected LIDAR

points to the road level in the BEV image, Rx(φ) is the rotation matrix performing

rotation as φ in the x-axis of the CCF and [xc
i y

c
i z

c
i]

T is the coordinate of the ith

LIDAR point in the CCF.

(a)
(b)

Figure 4.8: The representation of the LIDAR points on BEV image

With the experimental setup in Figure 4.9 (a), the height of the camera can be defined

as the length of the projection of tcch vector in the direction of Zch-axis plus thickness

of the chekerboard (sch) with the assumption that the ground is flat and the calibration

target is planar. The vector, tcch, and the direction of Zch-axis (i.e. the normal vector

of the chekerboard) can be estimated through camera calibration process described in

Section 2.2.11. For the camera calibration process, the poses of camera calibration

are captured in different orientations and positions on the ground as in Figure 4.9 (a).

After estimating Rc
ch and tcch, the solution for the hc is as follows:

hc = [3rd column of Rc
ch]

T[tcch] + sch (4.17)

76

The tilt angle of the camera (φ) can be computed as:

90− φc,ch (4.18)

where the angle φc,ch can be defined as the angle between the Zch-axis and Zc-axis as

illustrated in Figure 4.9 (b) and the solution for the the φc,ch is as follows:

arccos ([0 0 1][3rd column of (Rc
ch)
−1]) (4.19)

where [0 0 1]T and [3rd column of (Rc
ch)
−1]T are the unit vectors representing Zch-

axis and Zc-axis in the CHCS, respectively.

(a)

(b)

Figure 4.9: The schematic of the experimental setup for the hc and φ

An example of the LIDAR points mapped to the perspective image and their corre-

sponding road level LIDAR points in blue color are given in Figure 4.10 and 4.11,

respectively.

Figure 4.10: The LIDAR points mapped to the perspective image

77

Figure 4.11: The corresponding LIDAR points of Figure 4.10 mapped to the road

level perspective image

4.4 Algorithm1-Step4

In this step, pixels occluded by objects on binary BEV images become background,

where the extracted noise due to objects in front view are removed, thus modified

BEV images are acquired. To obtain the modified BEV images, firstly rectangle

with the corners (cki , i = 1, . . . , 4), which are the minimum and maximum LIDAR

points in u-axis and v-axis of the BEV image, is placed around the kth segmented

group of LIDAR points on the BEV images. Then, straight lines are drawn from the

camera location (bottom midpoint) through the consecutive corners (cki , cki+1) of the

kth rectangle up to corresponding intersection points (bki , b
k
i+1) of these lines and the

image boundaries. Lastly, a convex polygon determined by the boundary lines with

the end points cki , cki+1, bki , bki+1 including the top corners of the image frame which do

not violate the convexity as described in Section 2.1.6 determines an area. Applying

this for all consecutive corners determines the occluded areas where the pixels are

evaluated as background. This procedure is applied for all segmented laser groups

and it is illustrated for the kth segmented laser group in Figure 4.12 (a), (b), (c) and

(d), sequentially. In the figure, the imaginary LIDAR points on the road level of the

vehicle are the dots in red color, the minimum-sized rectangle is shown in blue color,

the occluded area is shaded by yellow dashed lines, camera location is the dot in green

color and the boundary points are the dots in white color.

78

(a) (b)

(c) (d)

Figure 4.12: The visualization of obtaining the modified BEV image

Total occluded area is the combination of the all occluded areas and it is shaded by

yellow dashed lines in Figure 4.13.

Figure 4.13: The total occluded area

79

For illustration purposes, BEV and modified BEV binary images obtained from the

image in Figure 4.13 are given in Figure 4.14 (a) and (b), respectively.

(a) (b)

Figure 4.14: The BEV and modified BEV binary images

With the process explained above, the occluded area on the binary BEV image in

Figure 4.14 (a) is removed to obtain the modified BEV image in Figure 4.14 (b).

Thus, the noise extracted due to the vehicle does not exist on the modified BEV

image.

4.5 Algorithm1-Step5

In the last step, line detection, specification of the best line cluster pair and the lane

detection and tracking are performed as described in Section 3.2.3, 3.2.4 and 3.2.5 on

the modified BEV image, respectively.

To show the effectiveness of the proposed sensor fusion algorithm from obtaining

binary images to the lane detection and tracking result, Figure 4.15 - 4.19 (a), (b), (c),

(d), (e), (f) which show binary BEV image, modified binary BEV image, hough lines,

some merged hough lines in the circles, the best pair and the recognized lanes in the

red color on the generated synthetic images with a vehicle based on CalTech database

[20] are given, respectively. The generation of the synthetic images is described in

Section 4.6.1 in a detailed way.

80

(a) (b)

(c) (d)

(e) (f)

Figure 4.15: The process of recognizing the lanes with the sensor fusion algorithm

81

(a) (b)

(c) (d)

(e) (f)

Figure 4.16: The process of recognizing the lanes with the sensor fusion algorithm

82

(a) (b)

(c) (d)

(e) (f)

Figure 4.17: The process of recognizing the lanes with the sensor fusion algorithm

83

(a) (b)

(c) (d)

(e) (f)

Figure 4.18: The process of recognizing the lanes with the sensor fusion algorithm

84

(a) (b)

(c) (d)

(e) (f)

Figure 4.19: The process of recognizing the lanes with the sensor fusion algorithm

85

As can be seen from the Figure 4.15, correct lane recognition is performed in the case

where lanes are affected by extreme shadows and there exists the manually extracted

vehicle in the view. Moreover, the algorithm correctly recognize the lanes in Figure

4.16 - 4.19 where there exist the shadows, road signs, letters and the vehicles close to

the lanes. Lastly, it is noted that the non-parallel lanes are correctly detected as can

be seen in Figure 4.17.

4.6 Computational Evaluation

In this Chapter, quantitative and illustrated evaluation results of the proposed sen-

sor fusion algorithm are given in a detailed way. To evaluate the proposed method

quantitatively, we generate synthetic image data since there are no labeled data with

compatible camera images and 2D LIDAR points in the existing literature.

4.6.1 Synthetic Data Generation

Synthetic data are generated by manipulating the real road images of the CalTech

Cordova 1 dataset [20]. Firstly, perspective images of the dataset are transformed to

the BEV images. After that, a real vehicle in one of the BEV images of the dataset

is manually extracted. Then, the extracted vehicle is painted to white color. Fur-

thermore, the white colored vehicle is located in different horizontal positions with

respect to the lanes in the top part of the obtained BEV images. Figure 4.20 (a), (b)

and (c) show three synthetic image examples with the vehicles in the left, center and

right part of the image, respectively. In total, 750 synthetic images are generated for

quantitative evaluation of the proposed sensor fusion method.

86

(a) (b) (c)

Figure 4.20: Generated synthetic images

4.6.2 Feature Extraction and Lane Detection

We next evaluate the improvement when utilizing the proposed method by comparing

the lane detection and tracking results when using a BEV image and a modified BEV

image. In order to provide a comprehensive comparison, we employ the proposed and

described (NAND, 1-BT, Canny, SLT) feature extraction methods given in this thesis

for obtaining binary BEV images. Then, modified binary BEV images are acquired

as explained in Section 4.4 by considering that the LIDAR points hit the road level

boundaries of the vehicles on the BEV images. Finally, lanes are detected and tracked

as explained in Section 4.5 on the modified and binary BEV images.

4.6.3 Computational Results

The procedure explained in previous Section 4.6.2 is applied and the norms defined

in equation 3.11 are utilized for the accuracy metric given in equation 3.12. Tables

4.4 - 4.6 show the average norm values (Norm) for the correctly detected lanes and

the accuracy results (Acc) of the lane detection and tracking methods on the BEV and

modified BEV images based on the Mean L1-norm, Mean L2-norm and L∞-norm.

The accuracy results are given in the form of the percentage.

87

Table 4.4: Accuracy results and average norm values based on Mean L1-norm

Feature Extraction

Methods

Dist < 5 Dist < 8

BEV Modified BEV BEV Modified BEV

Proposed method (Acc) 60 81 66 89

NAND (Acc) 59 83 70 88

1-BT (Acc) 67 81 77 86

SLT (Acc) 69 78 81 87

Canny (Acc) 57 70 65 76

Proposed method (Norm) 2.19 1.89 2.59 2.26

NAND (Norm) 2.57 1.99 3.14 2.26

1-BT (Norm) 2.40 1.83 2.86 2.08

SLT (Norm) 2.44 2.08 2.97 2.50

Canny (Norm) 2.42 1.91 2.93 2.28

Table 4.5: Accuracy results and average norm values based on Mean L2-norm

Feature Extraction

Methods

Dist < 5 Dist < 8

BEV Modified BEV BEV Modified BEV

Proposed method (Acc) 57 79 65 88

NAND (Acc) 53 81 66 88

1-BT (Acc) 63 80 75 86

SLT (Acc) 64 75 78 85

Canny (Acc) 52 68 63 76

Proposed method (Norm) 2.42 2.02 2.86 2.44

NAND (Norm) 2.83 2.19 3.49 2.51

1-BT (Norm) 2.63 1.98 3.19 2.28

SLT (Norm) 2.67 2.28 3.31 2.73

Canny (Norm) 2.60 2.06 3.20 2.47

88

Table 4.6: Accuracy results and average norm values based on L∞-norm

Feature Extraction

Methods

Dist < 5 Dist < 8

BEV Modified BEV BEV Modified BEV

Proposed method (Acc) 34 67 53 83

NAND (Acc) 20 61 41 80

1-BT (Acc) 32 70 57 83

SLT (Acc) 34 52 58 73

Canny (Acc) 28 62 49 77

Proposed method (Norm) 3.33 2.93 4.37 3.59

NAND (Norm) 3.64 3.31 5.1 4.02

1-BT (Norm) 3.51 2.95 4.78 3.46

SLT (Norm) 3.56 3.40 4.72 4.27

Canny (Norm) 3.47 2.95 4.62 3.65

According to the Tables 4.4-4.6, better accuracy results and smaller average norm

values for the correctly detected lanes are achieved when using the modified BEV

image for all combinations of the feature extraction methods, the distance bounds

and the norms. This superiority arises from the modified BEV image, where pixels

which can be considered as noise due to objects are cleared.

For illustration purposes, a distinctive selection of lane detection and tracking results

on the modified BEV image are given in Figure 4.21.

(a) (b) (c)

Figure 4.21: Detected lanes for representative synthetic images

89

4.7 Experimental Evaluation

In this Section, the proposed sensor fusion algorithm between a camera and 2D LI-

DAR for lane recognition are evaluated on the autonomous vehicle kit [33] and the

utilized hardware and software are described in a detailed way.

4.7.1 Hardware Setup & Software

In this Section, utilized hardware setup and software for the proposed sensor fusion

algorithm are described in a detailed way.

4.7.1.1 Hardware Setup

To implement the proposed algorithm experimentally, Jetson RACECAR [33] which

mainly has NVIDIA Jetson TX2 as developer board, RPLIDAR A2M6 for 2D LIDAR

data and ZED camera for RGB image data is utilized in the scope of the thesis.

An image of Jetson RACECAR with the main products are given in Figure 4.22.

Figure 4.22: Jetson RACECAR with ZED Stereo camera, NVIDIA Jetson TX2 and

RP LIDAR A2M6

90

Main specifications of the NVIDIA Jetson TX2 developer kit, RPLIDAR A2M6 and

ZED camera are given in Table 4.7, 4.8 and 4.9, respectively.

Table 4.7: Main specifications of the NVIDIA Jetson TX2 developer kit

GPU NVIDIA Pascal, 256 CUDA Core

CPU
HMP Dual Denver 2/2 MB L2 +

Quad ARM A57/2 MB L2

Video
4K x 2K 60 Hz Encode (HEVC)

4K x 2K 60 Hz Decode (12-Bit Support)

Memory 8 GB 128 bit LPDDR4, 58.3 GB/s

Display 2x DSI, 2x DP 1.2 / HDMI 2.0 / eDP 1.4

Others CAN, UART, SPI, I2C, I2S, GPIOs, USB 3.0 + USB 2.0

Table 4.8: Main specifications of the RPLIDAR A2M6 2D LIDAR

Measurement Unit Minimum Typical Maximum

Distance Range m 0.2 - 16

Angular Range Degree - 0 - 360 -

Angular Resolution Degree 0.45 0.9 1.35

Sample Frequency Hz 2000 4000 4100

Scan Rate Hz 5 10 15

Distance range and angular resolution performances are based on white objects with

70 % reflectivity and 10 Hz scan rate, respectively.

Table 4.9: Main specifications of the ZED Camera

Video

Video Mode Frames per second Output Resolution

2.2K 15 4416x1242

1080p 30 3840x1080

720p 60 2560x720

WVGA 100 1344x376

91

4.7.1.2 Software

The proposed algorithms are developed in Python language on the autonomous ve-

hicle kit [33] for the experimental tests through the features of Robotic Operating

System (ROS).

ROS is actually not an operating system, instead it is a free and open-source frame-

work consisting of set of libraries, tools, etc. to facilitate writing programs in sup-

ported languages such as C++, Python, etc. on robotic hardware [85, 86, 87]. More-

over, it also shares the features of an operating system such as hardware abstraction,

device drivers, package management, etc.

The development of ROS began in the mid-2000s with the STAIR [86] project at

Stanford University and the Personal Robots Program [87] at Willow Garage to sat-

isfy some challenges such as sensor integrations, device drivers, communications,

message scheduling etc. Now, ROS has been increasingly attracting attention in all

over the world since it is applicable to the wide variety of robotic platforms and it

handles the specified challenges which can be daunting at the beginning of robot soft-

ware development.

ROS implementation is comprised of four primary notions: nodes, topics, messages,

ROS master. Nodes are responsible for performing computational tasks and transfer

data between each other based on publish/subscribe mechanism via topics. A node

which sends/takes data publishes/subscribes to an appropriate topic for data transfer

on the host operating systems. Messages are the related data and standard data types

such as floating point, string, integer, etc. are supported. Lastly, ROS master informs

nodes to communicate peer to peer when new data are available.

In the scope of the thesis, the schematic of the ROS network is given in Figure 4.23. In

the figure, there exist three different nodes: ‘camera’, ‘LIDAR’ and ‘sensorFusion’.

The nodes, ‘camera’ and ‘LIDAR’, publishes the RGB camera data (‘Camera/RGB’)

and 2D LIDAR data (’LIDAR/LaserScan’) to the topics, respectively. The node, ‘sen-

sorFusion’, subscribes to those topics for the camera and 2D LIDAR data (message).

Next, the node generates the reference trajectory and computes the lateral and head-

ing errors by processing the camera and 2D LIDAR data. Lastly, the ‘sensorFusion’

node publishes the generated arc-spline reference trajectory parameters, lateral error

and heading error to the ‘Lane/outputs’ topic.

92

Figure 4.23: ROS network graph of the proposed sensor fusion method

4.7.2 Experimental Tests

To evaluate the proposed sensor fusion algorithm, firstly some boxes are put on/-

between the manually constructed lanes on the ground. Then, the proposed sensor

fusion algorithm is implemented and illustrative experimental results are obtained.

An example of experimentally obtained binary BEV image and modified binary BEV

image from the perspective image with the obstacles in Figure 4.24 (a) are given in

Figure 4.24 (b) and (c), respectively.

(a) (b) (c)

Figure 4.24: The BEV and modified BEV binary images

As can be seen from Figure 4.24, the noise arising from the obstacles is cleared on

the modified binary BEV image.

Experimental lane detection and tracking results are given in Figure 4.25 - 4.27.

93

(a) (b)

Figure 4.25: Lane detection illustrations without and with 2D LIDAR, respectively

(a) (b)

Figure 4.26: Lane detection illustrations without and with 2D LIDAR, respectively

(a) (b)

Figure 4.27: Lane detection illustrations without and with 2D LIDAR, respectively

The lane detection and tracking results show that the benefit of using 2D LIDAR in

the proposed algorithm. As can be seen in the figures, the proposed algorithm with

sensor fusion correctly detects the lanes even when there exist objects near the lanes

in the ROI.

94

CHAPTER 5

COMPUTATION OF OUTPUT SIGNALS FOR CONTROL APPLICATIONS

In this Chapter, the computations of reference trajectory generation, heading error

and lateral error are described in a detailed way after recognizing the lanes.

5.1 Reference Trajectory Generation

In this chapter, reference trajectory based on arc-spline model is generated for lane

keeping purposes. To specify the arc-spline parameters, obtained polynomial co-

efficients (a, bl, cl, br, cr) in Section 4.5 are utilized. Remember that (a, bl, cl) and

(a, br, cr) are the left and right lane model parameters.

Let a, b, c are the parameters of the y = ax2 + bx + c polynomial, then arc-spline

model parameters can be computed as:

Parc,s = c

ψarc,s = arctan

(
dy

dx

∣∣∣∣
x→0+

)
karc,i =

2a

(1 + b2)3/2

karc,f =
2a

(1 + (2aNrow + b)2)3/2

Sarc ≈
(Nrow/∆x)−1∑

i=0

[y(∆x · (i+ 1))− y(∆x · i)]2

(5.1)

where ∆x is the sampling intervals of x. For Sarc, we take samples of the polynomial

at specified intervals ∆x and compute the Euclidean distance between the consecutive

sampling points.

Hereby, we first compute the arc-spline parameters as in 5.1 from the recognized

95

left and right lanes, then take the average for reference trajectory. For illustration

purposes, a generated reference trajectory from an image in CalTech database [20] is

given in Figure 5.1 in green color.

Figure 5.1: Generated reference trajectory

5.2 Heading Error

The heading error ψ is the angle between the desired path of the vehicle and the

vehicle’s heading on the origin of the CCF and it is represented as in Figure 5.2 (a).

The heading error computation is based on the assumption that the road is flat and the

lane is linear in the near field of the vehicle. The computation is realized according

to the vehicle coordinate frame (VCF), which has zero tilt angle φ (i.e. whose y-

coordinate is normal to the road plane), whose z-coordinate is in the direction of the

vehicle’s heading and where the origin is on the origin of the CCF as given in Figure

5.2 (b). Note that CCF is the tilted version of VCF as in the Figure 5.2 (b).

(a)
(b)

Figure 5.2: Heading error representation

96

The rotation of the CCF with respect to the VCF is represented by the matrix Rv
c and

it is the rotation matrix by the tilt angle φ estimated in equation 4.18 in the x-axis of

a cartesian coordinate frame, Rx(φ). To compute the heading error, we first choose

two pixel positions (u1, v1) and (u2, v2) on the detected lane in the near field of the

vehicle according to the ICF. The selected pixel positions on the left lane are shown

in Figure 5.3.

Figure 5.3: Selected pixel positions for heading error

Then, the heading error is evaluated as

ψ = arctan
xv

2 − xv
1

zv
2 − zv

1

(5.2)

where xv
1, xv

2 and zv
1, zv

2 are the x-coordinates and z-coordinates of the corresponding

pixel positions according to the VCF. The coordinates are computed from the follow-

ing equality with the aid of the height of the camera, hc, estimated in equation 4.17.

xv/zc

yv/zc

zv/zc

 = Rv
cK
−1

u

v

1

 (5.3)

Since yv = hc is the known distance of the camera from the road, we first compute

zc, then xv and zv. Using the resulting parameters from 5.3, the heading error follows

from 5.2.

97

5.3 Lateral Error

The lateral error is the error between the desired path of the vehicle and the origin of

the VCF in the direction of x-axis of the VCF with zero heading error. It is illustrated

in Figure 5.4.

Figure 5.4: Lateral error illustration

After computing the heading error using equation 5.2, the lateral error can be com-

puted in the VCF with zero heading error as:

xv
l + xv

r

2
(5.4)

where xv
l and xv

r are the left and right x-coordinates corresponding to the nearest

detected left and right lane pixel positions, respectively according to the VCF with

zero heading error. These coordinates are computed from the following relation with

the aid of the height of the camera, hc.
xv/zc

yv/zc

zv/zc

 = Ry(ψ)Rv
cK
−1

u

v

1

 (5.5)

Since yv = hc is the known distance of the camera from the road, we first compute

zc, then xv.

98

CHAPTER 6

CONCLUSIONS

Lane Departure Warning System (LDWS) and Lane Keeping Assist System (LKAS)

are two examples of advanced driver-assistance systems. LDWS is a warning system

informing drivers through vision, acoustic alarm, vibration of seat, etc. if the vehicle

is on the way of crossing its current lanes without intention of the driver. LKAS is a

little bit more advanced system which warns and supports the driver by keeping the

vehicle in the center of the lane through controlling the lateral movement of the ve-

hicle. LDWS and LKAS designs mostly rely on lane detection in the first phase and

computation of output signals for warning drivers (LDWS) or controlling vehicles

(LKAS) in the second phase. To compute the output signals correctly, the lane detec-

tion must be performed correctly and expectations from the lane detection phase are

being robustness against noise, shadows, being adaptable to different lighting con-

ditions, ignoring objects in the view, etc. However, the recognition of the lanes in

different conditions is a highly challenging problem.

This thesis contributes to the literature in several ways for the stated problems above

and accordingly, the conclusions are as follows.

Firstly, it proposes a novel lane detection and tracking algorithm which is robust to

noise due to shadows, cracks on the roads, etc. and which is adaptable to the dif-

ferent lighting conditions. The quantitative comparison shows the superiority of the

proposed method over the representative existing methods in the cases where there

exist different lighting conditions, noises, etc. In addition to that, the illustrated lane

detection and tracking results show the efficacy of the proposed method in the cases

where lanes are affected by extreme shadows, close to the other vehicles, road signs,

curbs, etc.

Secondly, the thesis proposes a novel sensor fusion method based on a camera and 2D

99

LIDAR to address the problems of objects in camera view, impairing the lane detec-

tion accuracy. The main idea is to identify objects via 2D LIDAR and clear the object

pixels, which can be considered as noise, on a BEV image. The results show that the

sensor fusion method increases the lane detection and tracking accuracy and robust-

ness against the objects in the view. Additionally, the thesis proposes solutions for

projecting LIDAR points to road plane to evaluate all object pixels as background on

the BEV image. To do that, the thesis also derives formulations for estimating camera

height from the road plane and tilt angle of the camera with respect to the road plane.

Illustrated results of the projection of 2D LIDAR points to the road plane prove the

correctness of the estimation of the camera height, tilt angle and the formulation for

the projection of the 2D LIDAR points to the road plane.

Thirdly, the computations of reference trajectory generation, heading error and lat-

eral error are described for control applications in a detailed way after recogniz-

ing the lanes. Lastly, a novel algorithm for the generation of synthetic 2D LIDAR

data is proposed and a comparative study of different 2D LIDAR data segmentation

methods based on the generated synthetic data is presented. The obtained accuracy

results show the superiority of distance varying radially bounded nearest neighbor

(dvRBNN) over the other methods, which are fixed breakpoint detection (FBD), adap-

tive breakpoint detection (ABD), nearest neighbor (NN), k nearest neighbor (kNN)

and radially bounded nearest neighbor (RBNN), for all different test cases. This su-

periority arises from its adaptive threshold based on the distance value of 2D LIDAR

and the robustness against the occlusions of small parts of the objects by other ob-

jects. Regarding the computational complexity, FBD and ABD prove to be the most

computationally efficient methods since there is only one query per LIDAR point.

As for NN, kNN, RBNN and dvRBNN, the algorithm consists of constructing and

searching a graph which can be done by asking queries from a LIDAR point to all

other LIDAR points in the worst case.

100

REFERENCES

[1] K. A. Brookhuis, D. De Waard, and W. H. Janssen, “Behavioural impacts of ad-

vanced driver assistance systems–an overview,” European Journal of Transport

and Infrastructure Research, vol. 1, no. 3, 2019.

[2] I. Daza, L. Bergasa, S. Bronte, J. Yebes, J. Almazán, and R. Arroyo, “Fusion of

optimized indicators from advanced driver assistance systems (adas) for driver

drowsiness detection,” Sensors, vol. 14, no. 1, pp. 1106–1131, 2014.

[3] U. Z. A. Hamid, F. R. A. Zakuan, K. A. Zulkepli, M. Z. Azmi, H. Zamzuri,

M. A. A. Rahman, and M. A. Zakaria, “Autonomous emergency braking system

with potential field risk assessment for frontal collision mitigation,” in 2017

IEEE Conference on Systems, Process and Control (ICSPC), pp. 71–76, IEEE,

2017.

[4] I. J. Reagan, J. B. Cicchino, L. B. Kerfoot, and R. A. Weast, “Crash avoidance

and driver assistance technologies–are they used?,” Transportation research

part F: traffic psychology and behaviour, vol. 52, pp. 176–190, 2018.

[5] S. P. Narote, P. N. Bhujbal, A. S. Narote, and D. M. Dhane, “A review of recent

advances in lane detection and departure warning system,” Pattern Recognition,

vol. 73, pp. 216–234, 2018.

[6] T.-T. Tran, C.-S. Bae, Y.-N. Kim, H.-M. Cho, and S.-B. Cho, “An adaptive

method for lane marking detection based on hsi color model,” in International

Conference on Intelligent Computing, pp. 304–311, Springer, 2010.

[7] D.-K. Lee, J.-S. Shin, J.-H. Jung, S.-J. Park, S.-J. Oh, and I.-S. Lee, “Real-time

lane detection and tracking system using simple filter and kalman filter,” in 2017

Ninth International Conference on Ubiquitous and Future Networks (ICUFN),

pp. 275–277, IEEE, 2017.

101

[8] J.-G. Kim, J.-H. Yoo, and J.-C. Koo, “Road and lane detection using stereo cam-

era,” in 2018 IEEE International Conference on Big Data and Smart Computing

(BigComp), pp. 649–652, IEEE, 2018.

[9] C. Yuan, H. Chen, J. Liu, D. Zhu, and Y. Xu, “Robust lane detection for compli-

cated road environment based on normal map,” IEEE Access, vol. 6, pp. 49679–

49689, 2018.

[10] W. Li, F. Qu, Y. Wang, L. Wang, and Y. Chen, “A robust lane detection method

based on hyperbolic model,” Soft Computing, pp. 1–14, 2018.

[11] Y. Son, E. S. Lee, and D. Kum, “Robust multi-lane detection and tracking using

adaptive threshold and lane classification,” Machine Vision and Applications,

vol. 30, no. 1, pp. 111–124, 2019.

[12] C. Lee and J.-H. Moon, “Robust lane detection and tracking for real-time ap-

plications,” IEEE Transactions on Intelligent Transportation Systems, no. 99,

pp. 1–6, 2018.

[13] J. Piao and H. Shin, “Robust hypothesis generation method using binary blob

analysis for multi-lane detection,” IET Image Processing, vol. 11, no. 12,

pp. 1210–1218, 2017.

[14] K. Manoharan and P. Daniel, “Image processing-based framework for continu-

ous lane recognition in mountainous roads for driver assistance system,” Journal

of Electronic Imaging, vol. 26, no. 6, p. 063011, 2017.

[15] R. F. Berriel, E. de Aguiar, A. F. De Souza, and T. Oliveira-Santos, “Ego-lane

analysis system (elas): Dataset and algorithms,” Image and Vision Computing,

vol. 68, pp. 64–75, 2017.

[16] A. Küçükmanisa, R. Duvar, and O. Urhan, “Real-time lane marking detection

using modified 1-bit transform based pre-processing,” in 2017 25th Signal Pro-

cessing and Communications Applications Conference (SIU), pp. 1–4, IEEE,

2017.

[17] O. Kumtepe, G. B. Akar, and E. Yuncu, “Driver aggressiveness detection via

multisensory data fusion,” EURASIP Journal on Image and Video Processing,

vol. 2016, no. 1, p. 5, 2016.

102

[18] Ö. KUMTEPE, “Driver aggressiveness analysis using multisensory data fusion,”

Master’s thesis, MIDDLE EAST TECHNICAL UNIVERSITY, 2016.

[19] U. Ozgunalp and N. Dahnoun, “Robust lane detection & tracking based on novel

feature extraction and lane categorization,” in 2014 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 8129–8133,

IEEE, 2014.

[20] M. Aly, “Real time detection of lane markers in urban streets,” in 2008 IEEE

Intelligent Vehicles Symposium, pp. 7–12, IEEE, 2008.

[21] G. Liu, S. Li, and W. Liu, “Lane detection algorithm based on local feature

extraction,” in 2013 Chinese Automation Congress, pp. 59–64, IEEE, 2013.

[22] G. Küçükyildiz and H. Ocak, “Development and optimization of a dsp-based

real-time lane detection algorithm on a mobile platform,” Turkish Journal of

Electrical Engineering & Computer Sciences, vol. 22, no. 6, pp. 1484–1500,

2014.

[23] X. Li, X. Fang, C. Wang, and W. Zhang, “Lane detection and tracking using

a parallel-snake approach,” Journal of Intelligent & Robotic Systems, vol. 77,

no. 3-4, pp. 597–609, 2015.

[24] F. A. Siddiqui, S. Amir, M. Asif, and Z. A. Ali, “Lane tracking and au-

tonomous cruise control for automatic highway system,” in 2011 IEEE 19th Sig-

nal Processing and Communications Applications Conference (SIU), pp. 542–

545, IEEE, 2011.

[25] S. K. Gehrig, A. Gern, S. Heinrich, and B. Woltermann, “Lane recognition

on poorly structured roads-the bots dot problem in california,” in Proceedings.

The IEEE 5th International Conference on Intelligent Transportation Systems,

pp. 67–71, IEEE, 2002.

[26] T. Youjin, C. Wei, L. Xingguang, and C. Lei, “A robust lane detection method

based on vanishing point estimation,” Procedia computer science, vol. 131,

pp. 354–360, 2018.

103

[27] S. Zhu, J. Wang, T. Yu, and J. Wang, “A method of lane detection and track-

ing for expressway based on ransac,” in 2017 2nd International Conference on

Image, Vision and Computing (ICIVC), pp. 62–66, IEEE, 2017.

[28] Y. Y. Ye, X. L. Hao, and H. J. Chen, “Lane detection method based on lane

structural analysis and cnns,” IET Intelligent Transport Systems, vol. 12, no. 6,

pp. 513–520, 2018.

[29] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and L. Van Gool,

“Towards end-to-end lane detection: an instance segmentation approach,” in

2018 IEEE Intelligent Vehicles Symposium (IV), pp. 286–291, IEEE, 2018.

[30] A. Gurghian, T. Koduri, S. V. Bailur, K. J. Carey, and V. N. Murali, “Deeplanes:

End-to-end lane position estimation using deep neural networksa,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition Work-

shops, pp. 38–45, 2016.

[31] S. Lee, J. Kim, J. Shin Yoon, S. Shin, O. Bailo, N. Kim, T.-H. Lee,

H. Seok Hong, S.-H. Han, and I. So Kweon, “Vpgnet: Vanishing point guided

network for lane and road marking detection and recognition,” in Proceedings of

the IEEE International Conference on Computer Vision, pp. 1947–1955, 2017.

[32] Q. Li, L. Chen, M. Li, S.-L. Shaw, and A. Nüchter, “A sensor-fusion drivable-

region and lane-detection system for autonomous vehicle navigation in chal-

lenging road scenarios,” IEEE Transactions on Vehicular Technology, vol. 63,

no. 2, pp. 540–555, 2013.

[33] “Openzeka vehicle configuration.” https://openzeka.com/marc/

arac-konfigurasyonu/. Accessed: 2018.

[34] S. J. Miller, “The method of least squares,” Mathematics Department Brown

University, vol. 114, 2006.

[35] E. W. Weisstein, “Rotation matrix,” 2003.

[36] J. P. Fillmore, “A note on rotation matrices,” IEEE Computer Graphics and

Applications, vol. 4, no. 2, pp. 30–33, 1984.

104

[37] R. M. Murray, A mathematical introduction to robotic manipulation. CRC

press, 2017.

[38] F. A. Valentine, “Convex sets,” New York, vol. 1964, 1964.

[39] T. Veit, J.-P. Tarel, P. Nicolle, and P. Charbonnier, “Evaluation of road marking

feature extraction,” in 2008 11th International IEEE Conference on Intelligent

Transportation Systems, pp. 174–181, IEEE, 2008.

[40] C. Saravanan, “Color image to grayscale image conversion,” in 2010 Second

International Conference on Computer Engineering and Applications, vol. 2,

pp. 196–199, IEEE, 2010.

[41] D. Zhang, B. Fang, W. Yang, X. Luo, and Y. Tang, “Robust inverse perspective

mapping based on vanishing point,” in Proceedings 2014 IEEE International

Conference on Security, Pattern Analysis, and Cybernetics (SPAC), pp. 458–

463, IEEE, 2014.

[42] R. I. Hartley, “In defence of the 8-point algorithm,” in Proceedings of IEEE

international conference on computer vision, pp. 1064–1070, IEEE, 1995.

[43] J. Illingworth and J. Kittler, “A survey of the hough transform,” Computer vi-

sion, graphics, and image processing, vol. 44, no. 1, pp. 87–116, 1988.

[44] Y. Yeniaydin and K. W. Schmidt, “A lane detection algorithm based on reliable

lane markings,” in 2018 26th Signal Processing and Communications Applica-

tions Conference (SIU), pp. 1–4, IEEE, 2018.

[45] Y. Yeniaydin and K. W. Schmidt, “Robust lane recognition based on arc splines,”

in International Conference and Exhibition on Digitial Transformation and

Smart Systems, pp. 1–4, 2018.

[46] A. Mammeri, G. Lu, and A. Boukerche, “Design of lane keeping assist system

for autonomous vehicles,” in 2015 7th International Conference on New Tech-

nologies, Mobility and Security (NTMS), pp. 1–5, IEEE, 2015.

[47] T. Lindeberg, “Scale-space for discrete signals,” IEEE transactions on pattern

analysis and machine intelligence, vol. 12, no. 3, pp. 234–254, 1990.

105

[48] K. Baass, “Use of clothoid templates in highway design,” tech. rep., 1982.

[49] E. Jahnke, “Tables of functions with formulae and curves,” New York: Dover

Publications,| c1945, 4th ed., 1945.

[50] P. J. Davis, W. Gautschi, and A. Iserles, Spirals: from Theodorus to chaos. AK

Peters Ltd, 1993.

[51] D. Meek and D. Walton, “An arc spline approximation to a clothoid,” Journal of

Computational and Applied Mathematics, vol. 170, no. 1, pp. 59–77, 2004.

[52] D. Meek and D. Walton, “A note on finding clothoids,” Journal of Computa-

tional and Applied Mathematics, vol. 170, no. 2, pp. 433–453, 2004.

[53] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions

on pattern analysis and machine intelligence, vol. 22, 2000.

[54] J. Heikkila, O. Silven, et al., “A four-step camera calibration procedure with

implicit image correction,” in cvpr, vol. 97, p. 1106, 1997.

[55] J.-Y. Bouguet, “Camera calibration toolbox for matlab,” http://www. vision. cal-

tech. edu/bouguetj/calib_doc/index. html, 2004.

[56] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the

OpenCV library. " O’Reilly Media, Inc.", 2008.

[57] D. Reiser, M. Vázquez-Arellano, D. S. Paraforos, M. Garrido-Izard, and H. W.

Griepentrog, “Iterative individual plant clustering in maize with assembled 2d

lidar data,” Computers in Industry, vol. 99, pp. 42–52, 2018.

[58] Y.-T. Wang, C.-C. Peng, A. Ravankar, and A. Ravankar, “A single lidar-based

feature fusion indoor localization algorithm,” Sensors, vol. 18, no. 4, p. 1294,

2018.

[59] Y. Peng, D. Qu, Y. Zhong, S. Xie, J. Luo, and J. Gu, “The obstacle detection and

obstacle avoidance algorithm based on 2-d lidar,” in 2015 IEEE International

Conference on Information and Automation, pp. 1648–1653, IEEE, 2015.

[60] A. N. Catapang and M. Ramos, “Obstacle detection using a 2d lidar system for

an autonomous vehicle,” in 2016 6th IEEE International Conference on Control

System, Computing and Engineering (ICCSCE), pp. 441–445, IEEE, 2016.

106

[61] B.-h. Kang and S.-i. Choi, “Pothole detection system using 2d lidar and camera,”

in 2017 Ninth International Conference on Ubiquitous and Future Networks

(ICUFN), pp. 744–746, IEEE, 2017.

[62] K. Klasing, D. Wollherr, and M. Buss, “A clustering method for efficient seg-

mentation of 3d laser data,” in 2008 IEEE International Conference on Robotics

and Automation, pp. 4043–4048, IEEE, 2008.

[63] Y. Choe, S. Ahn, and M. J. Chung, “Fast point cloud segmentation for an in-

telligent vehicle using sweeping 2d laser scanners,” in 2012 9th International

Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 38–43,

IEEE, 2012.

[64] J. Niu, J. Lu, M. Xu, P. Lv, and X. Zhao, “Robust lane detection using two-stage

feature extraction with curve fitting,” Pattern Recognition, vol. 59, pp. 225–233,

2016.

[65] J. Ruyi, K. Reinhard, V. Tobi, and W. Shigang, “Lane detection and tracking us-

ing a new lane model and distance transform,” Machine vision and applications,

vol. 22, no. 4, pp. 721–737, 2011.

[66] M. Hossin and M. Sulaiman, “A review on evaluation metrics for data classifi-

cation evaluations,” International Journal of Data Mining & Knowledge Man-

agement Process, vol. 5, no. 2, p. 1, 2015.

[67] G. Csaba, L. Somlyai, and Z. Vámossy, “Mobil robot navigation using 2d li-

dar,” in 2018 IEEE 16th world symposium on applied machine intelligence and

informatics (SAMI), pp. 000143–000148, IEEE, 2018.

[68] S. Karakaya, G. Küçükyildiz, and O. Hasan, “Detection of obstacle-free gaps for

mobile robot applications using 2-d lidar data,” Uluslararası Doğa ve Mühendis-

lik Bilimleri Dergisi, no. 3, pp. 23–27, 2016.

[69] T. Taipalus and J. Ahtiainen, “Human detection and tracking with knee-high

mobile 2d lidar,” in 2011 IEEE International Conference on Robotics and

Biomimetics, pp. 1672–1677, IEEE, 2011.

[70] H. Edelsbrunner, “Computing the extreme distances between two convex poly-

gons,” Journal of Algorithms, vol. 6, no. 2, pp. 213–224, 1985.

107

[71] H. Yang, X. Liu, and I. Patras, “A simple and effective extrinsic calibration

method of a camera and a single line scanning lidar,” in Proceedings of the 21st

International Conference on Pattern Recognition (ICPR2012), pp. 1439–1442,

IEEE, 2012.

[72] J. Li, X. He, and J. Li, “2d lidar and camera fusion in 3d modeling of indoor

environment,” in 2015 National Aerospace and Electronics Conference (NAE-

CON), pp. 379–383, IEEE, 2015.

[73] J. Gräter, T. Strauss, and M. Lauer, “Photometric laser scanner to camera cali-

bration for low resolution sensors,” in 2016 IEEE 19th International Conference

on Intelligent Transportation Systems (ITSC), pp. 1552–1557, IEEE, 2016.

[74] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser range finder

(improves camera calibration),” in 2004 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3,

pp. 2301–2306, IEEE, 2004.

[75] L. Huang and M. Barth, “A novel multi-planar lidar and computer vision cal-

ibration procedure using 2d patterns for automated navigation,” in 2009 IEEE

Intelligent Vehicles Symposium, pp. 117–122, IEEE, 2009.

[76] G. Pandey, J. McBride, S. Savarese, and R. Eustice, “Extrinsic calibration of a

3d laser scanner and an omnidirectional camera,” IFAC Proceedings Volumes,

vol. 43, no. 16, pp. 336–341, 2010.

[77] L. Zhou and Z. Deng, “Extrinsic calibration of a camera and a lidar based on

decoupling the rotation from the translation,” in 2012 IEEE Intelligent Vehicles

Symposium, pp. 642–648, IEEE, 2012.

[78] L. Zhou and Z. Deng, “A new algorithm for the extrinsic calibration of a 2d lidar

and a camera,” Measurement Science and Technology, vol. 25, no. 6, p. 065107,

2014.

[79] G. Li, Y. Liu, L. Dong, X. Cai, and D. Zhou, “An algorithm for extrinsic pa-

rameters calibration of a camera and a laser range finder using line features,”

in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 3854–3859, IEEE, 2007.

108

[80] K. Kwak, D. F. Huber, H. Badino, and T. Kanade, “Extrinsic calibration of a

single line scanning lidar and a camera,” in 2011 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pp. 3283–3289, IEEE, 2011.

[81] S. Sim, J. Sock, and K. Kwak, “Indirect correspondence-based robust extrinsic

calibration of lidar and camera,” Sensors, vol. 16, no. 6, p. 933, 2016.

[82] N. J. Higham, Matrix nearness problems and applications. Citeseer, 1988.

[83] J. J. Moré, “The levenberg-marquardt algorithm: implementation and theory,”

in Numerical analysis, pp. 105–116, Springer, 1978.

[84] R. Unnikrishnan and M. Hebert, “Fast extrinsic calibration of a laser rangefinder

to a camera,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-05-09,

2005.

[85] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop on

open source software, vol. 3, p. 5, Kobe, Japan, 2009.

[86] M. Quigley, E. Berger, A. Y. Ng, et al., “Stair: Hardware and software architec-

ture,” in AAAI 2007 Robotics Workshop, Vancouver, BC, pp. 31–37, 2007.

[87] K. A. Wyrobek, E. H. Berger, H. M. Van der Loos, and J. K. Salisbury, “Towards

a personal robotics development platform: Rationale and design of an intrinsi-

cally safe personal robot,” in 2008 IEEE International Conference on Robotics

and Automation, pp. 2165–2170, IEEE, 2008.

109

110

APPENDIX A

PUBLISHED AND ACCEPTED PAPERS

A.1 A Lane Detection Algorithm Based on Reliable Lane Markings

This published paper [44] develops a robust and effective vision-based lane detection

approach. In the proposed method, gray-scale images are converted to two binary

images from a fixed region of interest. These images are then merged using a novel

neighborhood AND operator and then transformed to a bird’s eye view via inverse

perspective mapping. A histogram image is extracted from the BEV and two gaus-

sian probability density functions are fit to its left and right regions to determine the

variance of the left and right lane markings. Furthermore, a reliable region for the

detection of the left or right lane markings is chosen based on the distribution of the

candidate lane pixels using the histogram plot and the variances of the regions on

the BEV. High number of candidate lane pixels and small standard deviation of the

pixels along the columns imply a reliable region. After determining reliable region,

second-order polynomial y = ax2 + bx + c is fit to the actual lane pixels on that

region. Lastly, we shift the detected lane to the less reliable region by as many pixel

as the lane width by changing the parameter c of the polynomial.

The proposed method can detect the lanes in complex cases such as lanes that are af-

fected by shadows, occupied by other vehicles and when there exit signs on the road

since the lane detection is carried out on the reliable region and then shifted to the

appropriate location around the peak of the histogram plot of the less reliable region.

In addition to that, it can detect curved lanes thanks to the second-order polynomi-

als. Moreover, since the feature extraction evaluates the both bright and edge pixels

in horizontal and vertical vicinity as candidate lane pixels, low threshold values to

obtain gradient and segmentation-based binary images can be predefined.

111

Unlike the stated advantages of the proposed method in the published work, it can

fail when there exist heading error or when the curvature of the road is high such that

one lane (left or right) crosses the other region (right or left) since the regions are di-

vided from the middle column in the images. In addition to that, even if low threshold

values can be predefined, they are still fixed and this situation can be problematic at

nights since the brightness level is low at nights. Lastly, the shifting of the detected

lane on the reliable region to the less reliable region by changing the c coefficient as

many pixels as the lane width can be erroneous in the case of very curved lanes since

changing c parameter does not analytically represent the offset lane of the detected

lane.

A.2 Robust Lane Recognition Based on Arc Splines

This published paper [45] proposes a lane detection algorithm with a particular fea-

ture extraction technique and an arc-spline lane model. The proposed algorithm first

determines a static region of interest. Then, feature extraction is applied to establish

candidate lane pixels in a binary image. This binary image is then transformed to a

bird’s eye view. In the BEV, a reliable region for lane markings is selected based on

the number and distribution of foreground pixels in the left and right regions. After

that, a lane model for the reliable region is computed using the least square error from

the candidate lane pixels as in [44]. Afterwards, the computed model is shifted to the

less realible region by the lane width to detect the other lane marking. As a specific

feature, a new Neighborhood AND operator is introduced for feature extraction and

arc-splines are used as a lane model for the first time in the literature. Two main ad-

vantages of applying arc-splines are that they can be represented analytically and the

offset curve of an arc-spline is again an arc-spline such that parallel lane markings

can be easily represented by arc-splines with an offset in the arc radius.

In addition to the stated advantages of the work [44] in Appendix A.1, the proposed

method in the published work improves and reduces the computational complexity of

the feature extraction method presented in [44] by taking the pixels of the gradient

and segmentation-based binary images in the vertical vicinity only. More importantly,

this work contributes arc-spline curve for lane modeling for the first time in the litera-

112

ture. Thanks to the arc-spline model, the detected lanes are shifted to the less reliable

region without violating the parallelism constraint.

Images on the bird’s eye view are obtained to make the lanes are parallel. This holds

in most cases, however when the road is not flat or when the vehicles shake, the lanes

may not be parallel on the bird’s eye view. In those situations, applying strict paral-

lelism constraint to the lanes through shifting the arc-spline model can lead to coarse

lane detection results on the less reliable region. Additionally, even if the feature

extraction method is improved, it can be problematic at nights since fixed threshold

values are utilized. Additionally, the stated disadvantage of the work [44] described

in Appendix A.1, when one lane crosses the other region, also holds in this published

work.

To address the disadvantages of the published works [44, 45], we switch to the method

for feature extraction and lane detection described in a detailed way in Chapter 3. For

the feature extraction method, 1D top-hat kernel enhances the lanes and the enhanced

lane pixels supports each other for the local maxima in the histograms of the horizon-

tally divided convolved subimages. Since the local maxima constituted from a num-

ber of lane pixels are distinctive from the noisy local maxima, we can eliminate the

noisy ones easily through low threshold values. Also, since the local maxima which

are greater than a low threshold value are sorted and the highest ones are counted as

candidate lane pixels, adaptivity to the different lighting conditions is provided. In

addition to that, as the best pair for the left and right lanes are selected irrespective

of the location of the detected lines, the problems stated in Appendix A.1 and arising

from the heading error and very curved lanes are addressed in this thesis.

A.3 Sensor Fusion of a Camera and 2D LIDAR for Lane Detection

This published paper presents a novel lane detection algorithm based on fusion of

camera and 2D LIDAR data and the Chapter 4 is based on this published paper. On the

one hand, objects are detected via 2D LIDAR. On the other hand, a binary BEV image

is acquired through feature extraction methods. Then, the location of the detected

objects is estimated on the BEV image after extrinsic calibration between the camera

and 2D LIDAR. The main contribution of this paper is to obtain a modified BEV

113

image, where the pixels occluded by detected objects are converted to background

pixels on the binary BEV image. Then, lane detection is performed on the modified

BEV image. Computational and experimental results show that using the modified

BEV image significantly increases the lane detection accuracy.

A.4 Comparison of 2D LIDAR Data Segmentation Methods Based on Syn-

thetic Data Generation

This accepted paper proposes a novel method for the generation of synthetic 2D

LIDAR data and presents a comparison of existing 2D LIDAR data segmentation

methods in the literature: fixed breakpoint detection, adaptive breakpoint detection,

nearest neighbor, k nearest neighbor, radially bounded nearest neighbor and distance

varying radially bounded nearest neighbor. The Chapter 4.2 is based on this work.

To generate the synthetic data, objects with different shapes, orientations and sizes

are placed in the range of a 2D LIDAR, respecting a predefined minimum distance

between objects. After placing a predefined number of objects, the algorithm deter-

mines the LIDAR points hitting the objects that are not occluded by other objects. A

comparative study of accuracy results based on the synthetic data is presented and the

computational complexity of the described segmentation methods is evaluated. To

achieve a comprehensive comparison, the synthetic data generation is parametrized

by the object size, number of objects and minimum distance between objects.

114

