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ABSTRACT 

 

MODELING, SIMULATION, AND CONTROL OF A QUADROTOR 

HAVING A 2-DOF ROBOTIC ARM 

 

Bulut, Nebi 

Master of Science, Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Ali Emre Turgut 

Co-Supervisor: Assist. Prof. Dr. Kutluk Bilge Arıkan 

 

July 2019, 93 pages 

 

In this thesis, modeling, simulation, and control of a combined system that consists of 

a quadrotor and a 2-DOF robotic serial manipulator are presented. Firstly, the 

kinematic and dynamic model of the combined system are obtained. Then, the 

equation of motion of the combined system is derived by using Lagrange-D’Alembert 

formulation. Based on these equations, control algorithms are developed to control the 

combined system. Firstly, the cascaded PID controllers are designed by using the 

linearized decoupled equations of motion. Then, this controller is tested with the ideal 

dc and servo motor models with highly nonlinear combined system models. Secondly, 

the feedback linearizing controller is designed by using the nonlinear equations of 

motion of the system that is in the form of a standard robot dynamics equation. Then, 

to avoid instability of the system that can be caused by the unmodeled dynamics, 

parameter variations, and external disturbances, and to estimate these uncertainties, an 

extended state observer is added to the feedback linearizing controller. Later, the 

feedback linearizing controller and the extended state observer based the feedback 

linearizing controller is tested with the nonideal dc and servo motor models with the 

nonlinear combined system model. All proposed algorithms and the nonlinear 

combined system model are coded in MATLAB/Simulink environment. Finally, these 
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control algorithms are validated with a simulation case study, and their performances 

are compared. 

Keywords: Aerial Manipulation, Extended State Observer, PID Control, Cascaded 

Control, Quadrotor, Serial Manipulator, Feedback Linearizing Control  
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ÖZ 

 

2 SERBESTLİK DERECELİ ROBOT KOLU BULUNAN BİR 

KUADROTORUN MODELLENMESİ, SİMÜLASYONU VE KONTROLÜ 

 

Bulut, Nebi 

Yüksek Lisans, Makina Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Ali Emre Turgut 

Ortak Tez Danışmanı: Dr. Öğr. Üyesi Kutluk Bilge Arıkan 

 

Temmuz 2019, 93 sayfa 

 

Bu tez çalışmasında, kuadrotor ve 2 serbestlik dereceli bir robotik seri manipülatör 

içeren bir birleşik sistemin modellenmesi, simülasyonu ve kontrolü sunulmuştur. İlk 

olarak, birleştirilmiş sistemin kinematik ve dinamik modeli elde edilmektedir. 

Ardından, birleşik sistemin hareket denklemi Lagrange-D’Alembert formülasyonu 

kullanılarak elde edilmiştir. Bu denklemlere dayanarak, tüm sistemi kontrol etmek için 

kontrol algoritmaları geliştirilmiştir. İlk olarak, kademeli PID kontrolörleri, 

doğrusallaştırılmış ve ayrıştırılmış hareket denklemlerine dayanarak tasarlanmıştır. 

Ardından, bu kontrolör, doğrusal olmayan birleşik sistem modellerine sahip ideal dc 

ve servo motor modelleri ile test edilir. İkinci olarak, doğrusallaştırılmış geribildirim 

kontrolör, standart bir robot dinamiği denklemi formundaki sistemin doğrusal 

olmayan hareket denklemlerini kullanarak tasarlanmıştır. Ardından, modellenmemiş 

dinamiklerin, parametre değişikliklerinin ve dış bozucuların neden olabileceği sistem 

kararsızlığını önlemek ve bu belirsizlikleri tahmin etmek için, doğrusallaştırılmış 

geribildirim kontrolörüne genişletilmiş bir durum gözlemcisi eklenmiştir. Daha sonra, 

doğrusallaştırılmış geribildirim denetleyicisi ve genişletilmiş durum gözlemcisi 

tabanlı doğrusallaştırılmış geribildirim denetleyicisi, doğrusal olmayan birleşik sistem 

modeliyle ideal olmayan dc ve servo motor modelleriyle test edilmiştir. Önerilen tüm 



 

 

 

viii 

 

algoritmalar ve doğrusal olmayan birleşik sistem modeli MATLAB / Simulink 

ortamında kodlanmıştır. Son olarak, bu kontrol algoritmaları bir simülasyon 

çalışmasıyla doğrulanmış ve performansları karşılaştırılmıştır. 

 

Anahtar Kelimeler: Hava Aracı Manipülasyonu, Genişletilmiş Durum Gözlemcisi, 

PID Kontrolü, Basamaklı Kontrol, Kuadrotor, Seri Manipülatör, Doğrusallaştırılmış 

Geribildirim Kontrolcüsü 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Motivation of the Thesis 

In the last decade, with the advances in technology, research on aerial vehicles 

increased a lot. Especially, unmanned aerial vehicles (UAV’s) are getting more 

attention from researchers all over the world. Due to their cost and ease of deployment 

quadrotors are mostly studied. Quadrotors also have the ability of vertical take-off, 

landing, the capability of high maneuverability and they can hold their position in 

hover. UAV’s are mostly used for surveillance, rescue operations, and imaging tasks.  

Recently, robotic arms are being added to UAV’s in order to increase their capabilities 

such as object manipulation and carrying payload. The challenging problem is 

mathematical modeling and controlling these highly coupled and nonlinear systems. 

The difficulty of this problem mainly arises from the underactuated nature of the 

quadrotor itself. In 3-D space, unique locations of the aerial vehicles are represented 

by the 3 cartesian coordinates and 3 Euler angles. Hence, there are 6 states that should 

be controlled. However, quadrotors have 4 control inputs that are the rotational speeds 

of the dc motors of the vehicle. Therefore, 2 states of the UAV are generally controlled 

as internal states. In this particular vehicle, 2 linear positions of the vehicle are coupled 

with 2 angular positions. For example, to control the positions x, and y of the UAV, 

angular positions, and angles of the UAV should be changed. 

In this thesis, a combined system that consists of a quadrotor and a 2-DOF robotic arm 

that is mounted to its bottom is studied. The main focus of this thesis is the kinematic 

and dynamic analysis of the combined system, and the controller design of this system.  

Briefly, the mathematical model of the combined system that consists of a quadrotor 

and a 2-DOF robotic arm is obtained. After constructing the mathematical model of 



 

 

 

2 

 

the combined system and controller architecture, these models should be implemented 

in a suitable simulation environment. In literature, MATLAB/SIMULINK 

environment is mostly preferred. In this dissertation, developed algorithms are 

simulated in MATLAB/SIMULINK environment since it is easy to handle the coding 

and track the errors. 

1.2. Aim and Contribution of the Thesis 

In literature, generally, the end-effector’s interaction with the environment was not 

modeled, and the designed controllers were tested without external forces that are 

applied to the combined system. Other than that, the studies that modeled the external 

forces usually considered only force in one direction. In addition, these applied forces 

on the system are mostly small in up to now researches. In addition, the simpler 

controllers were generally designed as well as more complex controller structures.  

In this thesis, we aim to push a box with a quadrotor and a 2-DOF serial robotic arm. 

Therefore, multi-directional and large forces are modeled and used. Complex control 

strategies such as feedback linearizing controller with extended state observer is 

utilized. Due to this method, active disturbance rejection capability is gained to the 

combined system. Also, although there are highly coupled states in the system, we 

achieved to control all the states of the combined system simultaneously.  

1.3. Outline of the Thesis 

The thesis is organized as six chapters. The first chapter is the introduction. 

Chapter 2 deals with the literature related to the quadrotors and manipulation of the 

quadrotors. Firstly, brief information about quadrotors are given, then the 

manipulation of these vehicles is discussed. Also, mathematical approaches that are 

used to model the unified systems in literature are discussed. In addition to these, 

control strategies that are used to control the overall system are investigated. These 

works are used to get inspired and improve different ways of solution to the problem. 
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Chapter 3 presents details of the kinematic and the dynamic modeling of the combined 

system. Firstly, kinematics relations are obtained for the combined system. Then, for 

the 2-DOF robotic manipulator, Denavit–Hartenberg Parameters are written. After 

that, rotation matrices are acquired to express the orientation of the reference frames 

with respect to each other. Finally, by using the kinematic relations and the Lagrange-

D’Alembert formulation, the equation of the overall system is written in the form of a 

standard robot dynamics equation. Also, for simulating a more realistic scenario, 

experimentally identified transfer function for the quadrotor’s dc motors is given.  

Chapter 4 is devoted to the controller design. In this chapter, different types of 

controllers are designed to control all states of the combined system simultaneously.  

Firstly, decoupled control algorithms are developed by using the linearized equations 

of motion of each state.  The general architecture of this controller is a cascaded type 

PID controller. Secondly, by using the standard equations of motion of the system, a 

feedback linearizing controller is designed. However, because it has some drawbacks, 

more robust and adaptive controller is developed. Therefore, an extended state 

observer is added to the feedback linearizing controller to estimate the uncertainties, 

unmodelled dynamics, and externally applied forces.  

Chapter 5 focuses on the simulation results and discussion. All developed control 

algorithms are implemented in highly nonlinear system simulation and tested. Their 

robustness to the externally applied forces on the tip point of the end-effector are 

tested. Then, for all these 3 control structures, results are obtained, and they are 

compared to with each other. While comparing, universal performance indexes like 

Integral Time Absolute Error (ITAE) and Integral Time Square Error (ITSE) are used. 

Also, the results are discussed in this chapter.    

Chapter 6 summarizes the work done throughout the dissertation. It concludes the 

achievements of the thesis. 
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

2.1. Path from Quadrotor to Its Manipulation 

Last two decades, UAVs, especially, quadrotors, are the focus points of the researchers 

due to their cost and capabilities such as the ability of vertical take-off and landing, 

staying still in hover position, high agility and maneuverability. Also, these vehicles 

have practical uses such as delivering enough payload and observation purposes. 

There are various studies related to quadrotors. For example, a comprehensive study 

is done corresponding to the aerodynamical characteristics of the rotors of the 

quadrotor [1]. In this paper, rotor flapping, blade flapping and induced drag that have 

significant importance on the stability of the aerial vehicle are discussed and modeled. 

Also, simple expressions for the drag coefficient and thrust coefficient of the motors 

are derived from the complex mathematical equations by making some assumptions. 

Kinematics and dynamics of the quadrotor are derived while paying attention to the 

direction of rotation of the rotors [2]. This is important to generate roll, pitch and yaw 

moments. 
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Figure 2.1. Direction of the Roll, Pitch and Yaw Moments [2] 

 

The most challenging part of these flying vehicles is stable and safe trajectory 

tracking. To achieve this, control algorithms are developed from the equation of 

motion of the system. To decrease the mathematical complexity of these equations, 

simplified equations that are obtained by the linearization around some equilibrium 

points are used [3]. While obtaining control algorithms, underactuated nature of the 

quadrotor is considered. 

In time, the necessity of adding new abilities like manipulating objects to the 

quadrotors are increased. There are different approaches to achieve this. For instance, 

cable suspended manipulator was used for manipulation purposes [4], [5], [6]. 

However, the most common manipulation technique is mounting a robotic arm.  There 

are studies that serial manipulators with various degrees of freedom are used for this 
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purpose [7], [8], [9]. Also, a parallel manipulator is attached to the bottom of the UAV 

to increase its capabilities [10]. 

  

 

Figure 2.2.  Parallel Manipulator [10] 
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Figure 2.3. Cable Suspended Manipulator [4] 

 

 

Figure 2.4. Serial Manipulator [8] 

 

In this thesis, a 2-DOF serial robotic arm is used as a manipulator in the quadrotor. 

Therefore, the literature is limited to serial manipulators and UAV’s with serial 

manipulator.  
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2.2. Literature on Contributions 

To develop control algorithms, the mathematical model of a system has great 

importance.  That's why the kinematic and dynamic model of a system must have high 

fidelity. In literature, there are diverse approaches both modeling the dynamics of the 

combined system and controlling the combined system. 

A quadrotor with a bottom mounted 2-DOF robotic arm was studied by Kim et al. [7]. 

Combined system dynamics are derived by using Lagrange-D’Alembert formulation. 

An adaptive sliding mode controller is designed, and the proposed control algorithms 

are implemented and tested in a real-life scenario that is moving an object from one 

location to another. Lee et al. [22] continued to work on aerial robotics, but using a 

different configuration which is an hexarotor and a 2-DOF serial arm. Equation of 

motion of the unified system is obtained. An unknown mass is added to the 

manipulator, and it is estimated by using an online parameter estimator. An augmented 

passivity-based controller is designed for trajectory tracking of the combined system. 

Also, unknown mass is estimated by using an adaptive sliding mode controller and 

results are compared with the proposed algorithms in a simulation environment. In 

addition to that, proposed algorithms are validated with an experiment. Later, this 

work was followed by Kim et al. [11] with a slightly different configuration which is 

a hexarotor combined with a 3-DOF robotic manipulator. In this study, the combined 

system is guided by using an image-based visual servoing system to drive the end-

effector of the manipulator.  

A cartesian impedance control scheme was proposed to deal with external contact 

forces and disturbances by Lippiello and Ruggiero [12]. Proposed algorithms are 

tested in a simulation environment using a 3-DOF robotic arm mounted to the 

quadrotor. Two cases are tested. The first case is that a sinusoidal disturbance force is 

applied in the x direction of the body frame of the quadrotor to simulate wind gust. 

Then, the system shows a compliant behavior and keep its initial positions for both 

quadrotor itself and the end-effector. In the second scenario, in addition to the 
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disturbance force, a force is applied on the end-effector to simulate the contact with 

the environment. In this case, while the end-effector pose is kept unchanged, quadrotor 

body's linear and angular positions are chosen to be compliant. Thus, the end-effector 

position stays around initial conditions with very small error. 

In another study, Arleo et al. [13] considered a quadrotor equipped with a 5-DOF serial 

manipulator. The equations of motion of the unified system are derived using the 

Euler-Lagrange formulation. Inverse kinematics algorithms are developed to generate 

reference trajectories for the motion controller. A standard globally linearized control 

law is selected without any adaptive term to control the combined system in a 

simulation environment. In a follow up study, Caccavale et al. [8] used the same 

configuration and added an adaptation law to the controller design for disturbance 

rejection and unmodeled dynamics. Algorithms are implemented in a simulation 

environment. 

Giglio and Pierri [14] studied a combined system of a quadrotor and a 6-DOF robotic 

arm. Proposed control architecture consists of three parts. The first part is the inverse 

kinematics algorithms that compute the motion references for the combined system to 

bring the end-effector to the desired location. The second part of the control 

architecture is the impedance filter that brings a compliant behavior to the system in 

case of interaction with the environment and disturbances. The third part is the motion 

controller for tracking the reference trajectories.  Developed algorithms are tested in a 

simulation environment. Later, Cataldi et al. [15] studied the same configuration. They 

improve the impedance, inverse kinematics, and control algorithms, and validate these 

algorithms with experiments.  

In a study by Khalifa et al. [16], a quadrotor with a bottom mounted 2-DOF 

manipulator was considered. In this work, decoupled equations of motion of the 

unified system are obtained by using recursive Newton Euler formulation. For each 

state, feedback linearized controllers are designed, then the trajectory tracking 

performance of the proposed controllers are tested using simulations. Afterward, in a 



 

 

 

11 

 

follow up study by Khalifa et al. [17], inverse kinematics algorithms were 

implemented to generate reference inputs for the motion controller for the desired 

position and orientation of the end-effector. Also, robust internal loop compensator is 

proposed for controlling the combined system. Developed algorithms are tested in a 

simulation environment with some tasks such as picking and placing a payload. In a 

follow up study, Fanni and Khalifa [18] improved results in [17]. A novel inverse 

kinematics algorithm is presented, and disturbance observer based robust controller is 

proposed for trajectory tracking. In this study, system parameters such as inertia is 

determined experimentally. Sensors and actuators are modeled realistically.  

Jimenez-Cano et al. [9] investigated the performance of the 2-DOF robotic arm that is 

attached to a UAV.  Different controllers are designed for both quadrotor and the 

robotic arm. The quadrotor's controller deals with the changes such as inertia caused 

by the change of the center of gravity of the overall system. The control algorithm is 

tested by an experiment to show the performance of the controller under the movement 

of the robotic arm.  

In a very recent study by Jones et al. [19], autonomous quadrotor which is equipped 

by a 2-DOF serial robotic manipulator for indoor tasks is tested in a simulation 

environment. The purpose of this study is to show the stable performance of the 

controllers while lifting an unknown mass under the presence of uncertainties such as 

unmodeled dynamics, and wind gust. The proposed controller consists of a 

feedforward torque compensation system and L1 adaptive controller. Movement of 

the arm and delivering a payload are compensated by the controller to ensure a stable 

flight.  

Orsag et al. [20] worked on a quadrotor with a 4-DOF robotic arm. Dynamics of the 

quadrotor and the serial manipulator are obtained separately by using Newton-Euler 

formulation. Then, mass, inertia, and movement of the robotic arm are fed to the 

quadrotor as disturbance input. Lyapunov based model reference adaptive PI-D 

controller is used. Since the model reference adaptation is sensitive to the 
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disturbances, a disturbance estimator is also implemented. All these algorithms are 

tested in a simulation environment with the help of MATLAB/SIMULINK.  

In another recent study, Sumathy et al. [21] considered an aerial robot consisting of a 

UAV and a 2-DOF manipulator that is operating above the workspace of the UAV. 

Equation of motion of the combined system and the payload attached to the end-

effector are derived by using the Euler-Lagrange method. Map of the possible robotic 

arm trajectories is obtained by considering the physical constraints of the combined 

system. A gain scheduling PD based feedback linearized controller is designed for 

trajectory tracking, and the algorithms are tested in MATLAB simulation 

environment.  

In another study, Lee et al. [23], studied the quadrotor system with a bottom-mounted  

2-DOF robotic arm. Lyapunov based coordinated controller is applied to the system 

to achieve zero reference tracking error for both UAV and manipulator.  

Villagómez et al. [24] used both the Newton-Euler and Euler-Lagrange methods for 

determining the equation of motion of the unified system and the couplings between 

the UAV and 1-DOF robotic manipulator that is used to pose the camera attached to 

the end of it. Performances of the linear controller, backstepping controller, and the 

sliding-mode controller are compared in a simulation case study.  

A nonlinear model reference control approach is presented by Garimella and 

Kobilarov [25]. An aerial robot with 2-DOF serial arm experimentally tested by 

performing pick and place task.  

Alvarez-Munoz et al. [26] studied asymptotical stabilization of a quadrotor carrying a 

robotic arm. The set of nonlinear control laws were proposed. The effectiveness of 

these control algorithms is tested with simulation study. 

 Antonelli and Cataldi [27] studied the adaptive control of the quadrotor having a n-

DOF robotic arm. The control inputs are generated by considering the physical 

interaction with the arm. Moreover, the proposed approach is based on the Newton-
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Euler formulation, i.e., it is recursive. The stability analysis of the proposed algorithms 

is also presented.  

 Ruggiero et al. [28] developed a multi-layer special control architecture in order to 

effectively control an aerial platform with a 6-DOF serial robotic arm. They proposed 

a novel mechanism considering a moving battery to counterweight the statics of the 

robotic arm. Then, in order to overcome the mechanical limitations of the previous 

layer, the residual of the arm static effects on the UAV is computed and compensated 

through the given control thrust and torques. The external forces and moments acting 

on the system were estimated and fed back to the controller.  

 Heredia et al. [31] studied the design and control of a multirotor-based aerial 7-DOF 

manipulator for outdoor operation. A stable backstepping-based controller for the 

multirotor that uses the coupled full dynamic model is proposed, and an admittance 

controller for the manipulator arm is outlined. Both experiments and simulation results 

were presented. 

2.3.  Summary of the Literature Survey and Research Objectives 

The first step in studying aerial robotics is the selection of the proper manipulator such 

as cable-like, parallel or serial manipulator. For instance, for transporting a payload 

from one location to another, a cable-like manipulator may be sufficient [4]. However, 

for picking a payload and delivering it to a different place or pushing a box or opening 

a door, a serial manipulator is the right choice [7]. In this study, a serial manipulator 

is examined since the task considered in the thesis is box pushing.  

The next step is to choose the degree of freedom of the serial manipulator. From 1-

DOF [15] to 7-DOF [18] robotic arms are considered in the literature. In this thesis, 

2-DOF freedom serial robotic manipulator is studied to keep the system simple.  

After selecting the robotic manipulator, the equations of motion of the coupled system 

should be obtained, then the controller should be designed. In literature, the dynamics 

of the combined system is obtained either by using Newton-Euler [24] or Euler-
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Lagrange [7] methods. There are two main approaches to control the unified system. 

The first approach is developing different controllers for both the UAV and the robotic 

manipulator [16]. Then, effects of the robotic arm such as mass, and inertia are fed to 

quadrotor as a disturbance input, and quadrotor's controller copes with this 

disturbance. The second approach is designing a common controller by considering 

the whole system as one system [8]. In this thesis, a single controller is designed to 

control the overall system. Also, decoupled controllers are developed for comparison 

purposes. 
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CHAPTER 3  

 

3. MATHEMATICAL MODELING 

 

In this chapter, the kinematic (position and velocity analysis) and the dynamic (the 

equation of motion of the system) of the combined system are presented. Some 

assumptions are made during mathematical modeling. The aerial vehicle and the links 

of the robotic arm are assumed to be rigid and symmetric bodies. The rotors and the 

propellers are also modeled as rigid. Moreover, blade flapping, induced drag, and the 

rotor flapping are neglected as well as frictions. The generated thrust and the torque 

are assumed to be proportional to the square of the rotational speed of the rotors. 

Finally, the robotic arm is assumed to be aligned with the x-axis of the body frame of 

the UAV. 

3.1. Kinematics 

Before deriving the dynamical model of the combined system, kinematic modeling 

should be performed first. Some of the kinematic parameters of the combined system 

are shown in Figure 3.1. 
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Figure 3.1. Side View of the Combined System 

 

3.1.1. Denavit-Hartenberg Parameters 

These parameters are defined for the robotic manipulator [35]. 

3.1.1.1. Twist Angles 

1
2


 = −  is the angle between 

( )

3

bu  and 
(1)

3u  about 
( )

1

bu . 

2 0 =  is the angle between 
(1)

3u  and 
(2)

3u  about 
(1)

1u . 

3.1.1.2. Joint Angles 

1

3

2


 +  is the angle between 

( )

1

bu  and 
(1)

1u  about 
(1)

3u . 

2  is the angle between 
(1)

1u  and 
(2)

1u  about 
(2)

3u   
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3.1.1.3. Offsets 

0b  is the offset from 
bO  to 1O . 

1b  is the offset from 1O  to 
2O . 

2b  is the offset from 
2O  to 

eO . 

Denavit-Hartenberg Parameters for the robotic arm can be further written as a table 

form as follow, 

Table 3.1. Denavit-Hartenberg Parameters 

 1k =   2k =   

k   

2

−
  

0   

k   
1

3

2


 +   2   

kb   
1b   2b   

 

3.1.2. Transformation Matrices 

Transformation matrices are used to transform the components from one reference 

frame to the other. Transformation matrices between the refence frames are 

represented in terms of basic rotation matrices. A basic rotation can be defined as the 

rotation about one of the unit direction vector of a corresponding reference frame [34]. 

Vectors are rotated by using the basic rotation matrices about one of the unit direction 

of the corresponding reference frame by a certain angle [34]. In Figure 3.2, the basic 

rotation matrices are shown. Transformation matrices are derived by using the basic 

rotation matrices. 
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Figure 3.2. Basic Rotation Matrices 

 

Basic rotation matrices can be written in terms of basis vector directions and rotation 

angles. To come up with following expressions, Rodrigues' formula, and Taylor series 

expansions are used [34]. Then, the basic rotation matrices in exponential and matrix 

forms are as follows: 

    1 1

1 1 1 1

1 1

1 0 0

ˆ ( ) 0 cos( ) sin( )

0 sin( ) cos( )

u
R e

  

 

 
 

= = −
 
  

                                     (3.1) 

                         2 2

2 2

2 2

2 2

cos( ) 0 sin( )

ˆ ( ) 0 1 0

sin( ) 0 cos( )

u
R e



 



 

 
 

= =
 
 − 

                                     (3.2) 

3 3

3 3

3 3 3 3

cos( ) sin( ) 0

ˆ ( ) sin( ) cos( ) 0

0 0 1

u
R e



 

  

− 
 

= =
 
  

                                     (3.3) 
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Then, the transformation matrices between the reference frames can be given in terms 

of the exponential forms of the basic rotation matrices [35]. 

3 1 1 3 1 1 3
1 1 2 1

3 3 3
( ) ( ) ( ) ( ) ( )

( ,1) 2 2 2 2 2ˆ
u u u u u

u ubC e e e e e e e
    

 
 

− −
+ +

= = =                      (3.4) 

3 2 3 2 3 21 2 10(1,2)ˆ u u uu u
C e e e e e

  
= = =                                         (3.5) 

1 3 2 1 2 1
3 22 1

3 3
( ) ( ) ( ) ( )

( ,2) ( ,1) (1,2) 2 2 2 2ˆ ˆ ˆ
u u u u

uub bC C C e e e e e e
   

 


− −
+ +

= = =                (3.6)  

Also, the transformation matrix between the quadrotor’s body-fixed reference frame 

and the inertial fixed reference frame can be given as, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

3 2 1( , )

c( )c( ) c s s   s( )c c s c s( )s  

s( )c( ) s( )s s   c c s( )s c

c

ˆ

  c s

s( ) c( )s   ( )c  

u u ui bC e e e
  

           

           

    

=

 
 

=  
 

− +

+ −

− 

       (3.7) 

In above equation, c stands for cosine and s stands for sine. Where  1 2

T
  =  are 

the joint angles of the serial manipulator and  
T

   =  are Euler roll, pitch and 

yaw angles, or phi, theta and psi. 

3.1.3. Position Analysis 

Firstly, values of the basic column matrices are defined since they are used in position 

and velocity analysis. These are: 

1

1

  0

0

u

 
 

=
 
  

        2

0

  1

0

u

 
 

=
 
  

        3

0

  0

1

u

 
 

=
 
  

                                     (3.8) 

The position of the quadrotor in the vector representation is defined as: 

q i bp O O=  
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Then, in the column matrix form: 

 ( )      
Ti

qp x y z=                                                  (3.9) 

Then, the position of link-1 of the robotic arm in quadrotor’s body-fixed and inertial 

fixed reference frames can be written as 

1

( ) (1)

1

(

0

) 1
3

2

b b b
p b u u= +                                          (3.10) 

( / ) (1/1)

3

)1 1 1
0 3

( ) ( ,1

1 1 1 01 1
ˆ sin( ) ( cos( ))

2 2 2

bb bbp
b b b

b uuC uu b = + = + +              (3.11) 

Let’s define that: 

1 1ip O C=  ,  1C  : center of the link 1 

( ) ( ) ( , ) ( )

1 1
ˆi i i b b

qp p C p= +                                          (3.12) 

Similarly, the position of link-2 in different reference frames is obtained as: 

( ) ( ) (1) (2)2
2 0 3 1 1 1

2

b b b
p b u b u u= + +                                         (3.13)  

( ) ( ),1 ,2( ) ( / ) (1/ ) (2/ )2 2
2 0 3 1 1 1 0 3 1 1 1

ˆ ˆ
2 2

b bb b b b bb b
p b u b u u b u b C u C u+ +== + +                 (3.14) 

1 2 1 1 0 1 2 1

( ) 2 2
2 1 31sin(  + ) + b sin( )) (b  + cos(  + ) + b cos )

2
( ( )

2

b b b
p u u     = +       (3.15) 

Let’s define that: 

2 2ip O C=  ,  
2C  : center of the link 2 

( ) ( ) ( , ) ( )

2 2
ˆi i i b b

qp p C p= +                                               (3.16) 

Moreover, the position of the end-effector in similar reference frames is explained as, 
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( ) ( ) (1) (2)

0 3 1 1 2 1

b b

ep b u b u b u= + +                                        (3.17) 

( ) ( ),1 ,2( ) ( / ) (1/ ) (2/ )

0 3 1 1 2 1 0 3 1 1 2 1
ˆ ˆb bb b b b b

ep b u b u b u b u b C u b C u= + +=+ +                (3.18)  

2 1 2 1 1 0 2 1 2 1

( )

311b sin(  + ) + b sin( )) (b  + b cos(  + ) + b cos( ))(b

ep u u     = +       (3.19) 

Let’s define that: 

e i ep O O=  ,  
eO  : center of the link 1 

( ) ( ) ( , ) ( )ˆi i i b b

e q ep p C p= +                                              (3.20)  

3.1.4. Velocity Analysis 

3.1.4.1. Linear Velocity Analysis 

Linear velocity analysis is made based on the position analysis. An overhead dot  (‘.’) 

is used for the time derivative of the corresponding variable. The linear velocity of the 

quadrotor body is as follows.  

 ( )      
Ti

qp x y z=                                              (3.21) 

The linear velocity of link-1 is expressed with respect to both quadrotor’s body-fixed 

reference frame and the inertial fixed reference frame. Also, Jacobian matrices are 

obtained. Linear velocity with respect to quadrotor frame is: 

 
( ) ( )

1 1 1 1 1 1 1
1

3
1( cos( )) ( sin( ))
2 2

b bv
b b

p u u   = = + −                    (3.22) 

Eq. (3.22) can be written further as, 

( ) ( ) ( )

1 11 11 2 2

b b bv v v = +                                               (3.23) 

( ) ( )

1 11 12
ˆ b b

vJ v v =                                                    (3.24)  

where,  
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( )

11 1 1 1 3

( )

12

1 1( cos( )) ( sin( ))
2 2

0

b

b

v u u

v u

b b
 = + −

=

                                     (3.25) 

Then,  

( )

1 1
ˆb

vp J=                                                        (3.26) 

Linear velocity wrt the inertial frame is as follows, 

( ) ( ) ( , ) ( ) ( , ) ( )

1 1 1
ˆ ˆi i i b b i b b

qp p C p C p= + +                                      (3.27) 

( ) ( ) ( , ) ( ) ( ) ( , )

1 1 1
ˆ ˆ ˆ( )i i i b b b i b

q q vp p C SSM w p C J= + +                          (3.28) 

The same procedure is applied to link-2, 

( )

( )

( ) ( ) 2
2 2 2 1 1 1

2
2 1 1 3

1 2 1 1

1 2 1 1

 + b cos( )
2

sin(  + ) b sin

( cos(

)( )

) )

(
2

b b b
v p u

b
u

  

  

  

  

+

+ + −

= = +

−

                  (3.29)  

( ) ( ) ( )

2 21 1 22 2

b b bv v v +=                                                  (3.30) 

( ) ( )

2 21 22
ˆ b b

vJ v v =                                                     (3.31) 

where,  

3

1 2 1 1 1 2 1

(

1

1 2

) 2 2
21 1 3

( ) 2 2
22 1 21

cos(  + ) + b cos( ) sin(  + )-b sin( )
2 2

 cos(  + ) sin(  + )

( ) ( )

( ) ( )
2 2

b

b

b b
v u u

b b
v u u

     

   

= + −

= + −

          (3.32) 

Then, 

( )

2 2
ˆb

vp J=                                                       (3.33) 
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Linear velocity in inertial frame is calculated as follows: 

( ) ( ) ( , ) ( ) ( , ) ( )

2 2 2
ˆ ˆi i i b b i b b

qp p C p C p= + +                                      (3.34) 

( ) ( ) ( , ) ( ) ( ) ( , )

2 2 2
ˆ ˆ ˆ( )i i i b b b i b

q q vp p C SSM w p C J= + +                             (3.35) 

Similarly, the end-effector linear velocity analysis is found as: 

( )

( )

( ) ( )

2 1 1 1

2 1 1 3

2 1 2 1 1

2 1 2 1 1

b  + b cos( )

b sin(  + ) b sin(

( cos( ) )

( ))

b b

e ev p u

u

    

    

+

+

= = +

+ −−

                      (3.36) 

1 2

( ) ( ) ( )

1 2

b b b

e e ev v v +=                                                       (3.37) 

( ) ( )

1 2
ˆ b b

ev e eJ v v =                                                           (3.38) 

where,  

2 1 2 1 1 2 1 2 1

3

( )

1 1 3

1

1

2 1

( )

2 2 2 1 2

b cos(  + ) + b cos( ) b sin(  + )-b sin( )

 b cos(  + ) b sin

( ) ( )

( (  + )) ( )

b

e

b

e

v u u

v u u

     

   

= + −

= + −

            (3.39) 

Linear velocity in inertial frame is calculated as follows: 

( ) ( ) ( , ) ( ) ( , ) ( )ˆ ˆi i i b b i b b

e q e ep p C p C p= + +                                         (3.40) 

( ) ( ) ( , ) ( ) ( ) ( , )ˆ ˆ ˆ( )i i i b b b i b

e q q e evp p C SSM w p C J= + +                                 (3.41) 

3.1.4.2. Angular Velocity Analysis 

Let the angular velocity of the quadrotor in the body-fixed reference frame is written 

as: 

 ( )      
Tb

q p q r =                                                   (3.42) 

Eq. (3.42) can be further written in terms of the derivative of the Euler angles [34]. 
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( ) ˆb

q L =                                                          (3.43)  

Where L̂  is the mapping matrix which is given as [34], 

1 0 sin( )

ˆ 0 cos( ) cos( )sin( )

0 sin( ) cos( )cos( )

L



  

  

− 
 

=
 
 − 

                                       (3.44) 

Then, the angular velocity in the inertial fixed reference frame can be derived as, 

(( ) ) (, )ˆ i b

q

bi

q C =                                                     (3.45) 

( ,( )) ˆ ˆˆ i bi

q C L T =  =                                                   (3.46) 

Here, T̂  maps the derivative of the Euler angles to the quadrotor’s angular velocity in 

the inertial reference frame. 

The angular velocities of the links and the end-effector can be obtained from the 

transformation matrices [35]. For example, 

3 31 1 2 2( , )ˆ ˆ ....
nn na bC C e e e
 

= =                                         (3.47) 

Then, the angular velocity of b with respect a in the reference frame a can be computed 

as follow, 

1 1 1 1 2 2( )

/ 1 1 2 2 3 3 ...
n n na

b a n e n e e n
      = = + + +                         (3.48) 

Therefore, the angular velocity of link-1 is obtained by using Eq. (3.4). 

( ) ( )

11 1 12 2

( )

1 1 2

b bb u     = = +                                       (3.49)  

( )

1

( )

11 12
ˆ b bJ    =                                               (3.50) 

where, 
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( )

11

( )

12

2

0

b

b

u

u





=

=

                                                   (3.51) 

Then, 

( )

1 1
ˆb

wJ =                                                   (3.52) 

The angular velocity in the inertial frame as follows, 

( ) ( ) ( , ) ( ) ( ) ( , )

1 1 1
ˆ ˆ ˆi i i b b i i b

q q wC C J   = + = +                             (3.53) 

Similarly, from Eq. (3.6), the angular velocity of link-2 is carried out as, 

( )( ) ( ) ( )

2 2 2 2221 112

b b bu     = + = +                             (3.54) 

( ) ( )

2 21 22
ˆ b bJ    =                                            (3.55)  

 where, 

 

( )

21 2

( )

22 2

b

b

u

u





=

=

                                                          (3.56) 

Then, 

( )

2 2
ˆb

wJ =                                                         (3.57) 

The angular velocity in the inertial frame as follows, 

( ) ( ) ( , ) ( ) ( ) ( , )

2 2 2
ˆ ˆ ˆi i i b b i i b

q q wC C J   = + = +                                  (3.58) 

Similarly, the end-effector’s angular velocity is: 

( ) ( ) ( )

2 1 1 12 2

( )

2

b b

e

b

e eu      = + = +                                          (3.59) 

( ) ( )

1 2
ˆ b b

e e eJ    =                                                         (3.60) 



 

 

 

26 

 

where, 

( )

1 2

( )

2 2

b

e

b

e

u

u





=

=

                                                              (3.61) 

The angular velocity in the inertial frame as follows, 

( ) ( ) ( , ) ( ) ( ) ( , )ˆ ˆ ˆi i i b b i i b

e q e q ewC C J   = + = +                                    (3.62) 

After obtaining the linear and angular velocities, let’s define the generalized 

coordinates and the generalized velocities of the combined system. 

 1 2

1 2

 
T

T

q x y z

q x y z

    

    

=

 =  

                                   (3.63) 

The linear and angular velocities can be expressed in terms of the generalized 

velocities in the following form [35], 

8

1

8

1

( )

( )

k

k

k

k

v V q k

w W q k

=

=

=

=




                                                 (3.64) 

In Eq. (3.64), V and  W are the linear and angular velocity influence coefficients, 

respectively. Therefore, the velocities of the quadrotor, link-1 and link-2 can be 

written in terms of the velocity influence coefficients and the generalized velocities 

further as, 

( )

3 3 3 5
ˆˆ ˆ0i

q x x qp I q V q = =
 

                                       (3.65) 

( )

3 3 3 2
ˆ ˆˆ ˆ0 0i

q x x qw T q W q = =
 

                                    (3.66) 

( ) ( , ) ( ) ( , )

1 3 3 1 1 1
ˆ ˆˆ ˆ ˆ ˆ( )i i b b i b

x vp I C SSM p L C J q V q = − =
 

                    (3.67) 
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( ) ( , )

1 3 3 1 1
ˆ ˆˆ ˆ ˆ0i i b

x ww T C J q W q = =
 

                                  (3.68) 

( ) ( , ) ( ) ( , )

2 3 3 2 2 2
ˆ ˆˆ ˆ ˆ ˆ( )i i b b i b

x vp I C SSM p L C J q V q = − =
 

                    (3.69) 

( ) ( , )

2 3 3 2 2
ˆ ˆˆ ˆ ˆ0i i b

x ww T C J q W q = =
 

                                (3.70) 

The subscript *x* is for the size of the corresponding matrix. 

3.2. Dynamics 

The equation of motion of the unified system is obtained by benefiting from the 

Lagrange-D’Alembert formulation. The form of the equation is given in Eq. (3.71). 

L L

q q
ext

U

d
u u

d

L K

t

  
− = + 
 

=



−

                                           (3.71) 

Firstly, the kinetic and potential energies of the combined system are computed, then 

the equation of motion of the system is constructed. 

3.2.1. The Kinetic and Potential Energies 

The total kinetic energy of the combined system is the sum of the kinetic energies of 

each individual mass elements. For this combined system, the quadrotor body, link-1 

and link-2 are the mass elements. The kinetic energies are calculated as: 

1 2bK K K K= + +                                                   (3.72) 

( ) ( ), ,( ) ( )( ) ( )1 1 ˆˆ ˆ
2 2

i b i b Ti T i

b b q

i T i

q q b qK m C I Cp p  = +                                 (3.73) 

( ) ( ) ( ) ( ), ,1 ,1 ,( ) ( )

1 1 1 1 1

( ) ( )

1 1
ˆ ˆ1 1 ˆ

2 2
ˆ ˆi b bi T b T i b Ti T iiK m C C Ip C Cp  = +                           (3.74) 

( ) ( ) ( ) ( ), ,2 ,2 ,( ) ( )

2

( ) (

2 22 2

)

2 2
ˆ ˆ1 1 ˆ

2 2
ˆ ˆi b bi T b T i b Ti T iiK m C C Ip C Cp  = +                         (3.75) 



 

 

 

28 

 

In Eq. from (3.73) to (3.75), I is the constant inertia matrix in the body-fixed reference 

frames of each elements. 

Similarly, the potential energies of each elements are obtained as, 

1 2bU U U U= + +                                                 (3.76)  

( )

3

t i

b b qU m gu p=                                                   (3.77) 

( )

1 1 3 1

t iU m gu p=                                                    (3.78)  

( )

2 2 3 2

t iU m gu p=                                                   (3.79) 

3.2.2. The Equation of Motion 

After Eq. (3.72) and Eq. (3.76) are put into Eq. (3.71), the equation of motion of the 

overall system is obtained.  

ˆ ˆˆ ( ) ( , ) ( ) extM q q C q q q G q u u+ + = +                             (3.80) 

Where, 
8x8ˆ ( )M q R  is the positive definite inertia matrix. 

8x8ˆ ( , )C q q R  consists of 

centripetal, Coriolis and gyroscopic terms. ˆ ( )G q  includes gravity terms. 

The inertia matrix can be calculated by using the following kinetic energy formulation 

[36].  

1 ˆ ( )
2

TK q M q q=                                               (3.81)   

The inertia matrix can be further written by using the velocity influenced coefficients 

obtained in from Eq. (3.65) to Eq. (3.70).  

( , ) ( , )

2
( , ) ( , ) ( , ) ( , )

1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( )

T T i b i b T

q b q q b q

T T i b b k i b b k T

k k k k k k

k

M q V m V W C I C W

V m V W C C I C C W
=

= +

+ +
                         (3.82) 
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The elements of the Coriolis matrix can be calculated by using the following 

formulation [36]. 

8
, ,,

,

1

1

2

a j j ba b

a b

j j b a

m mm
c

q q q=

   
= + − 

    
                                  (3.83) 

,x yc  and ,x ym  are the elements of the Coriolis and inertia matrices. 

Finally, gravity matrix is computed by using the formulation, 

ˆ ( )
U

G q
q


=


                                                          (3.84) 

3.2.3. Actuating Forces and Torques 

 

 

Figure 3.3. Actuating Forces and Torques Generated by the Quadrotor’s Motors [51] 

 

Each rotor generates a thrust force, jf  and a torque, j . These forces and torques are 

computed with following relations. It is assumed that the generated forces and torques 

are proportional to the square of the rotational speeds of the rotors [1]. 
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2

2

j T j

j Q j

f c

c



 

=

=

                                                  (3.85) 

Where, 1,2,3,4j =   

Then, the total thrust in the quadrotor’s body-fixed reference frame can be written as, 

( )

0

0b

q

z

f

f

 
 

=
 
  

                                                      (3.86)  

Where,  

1 2 3 4zf f f f f= − − − −                                             (3.87) 

The total torque applied on the quadrotor’s body can be expressed in the body-fixed 

reference frame as, 

2 2

1 4 2 4 2

( ) 2 2

2 1 3 1 3

2 2 2 2

3 1 2 3 4 1 2 3 4

( ) ( )

( ) ( )

( )

q T

b

q q T

q Q

d f f dc

d f f dc

c

  

   

        

   − − 
    

= = − = −    
    − + − + − + − +    

              (3.88) 

Where d is the distance between the quadrotor’s center of mass and one of the rotors. 

Therefore, the rotor torques, and forces are associated with the rotational speeds of the 

propellers with the following relation: 

2

1

2
1 2

2
2 3

2
3 4

0 0

0 0

z T T T T

q T T

q T T

q Q Q Q Q

f c c c c

dc dc

dc dc

c c c c



 

 

 

− − − −     
     

−
     =
     −
     

− −          

                           (3.89)  
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3.2.4. Generalized Input and Interaction Forces 

For the quadrotor, to obtain generalized force, u , the virtual work principle is used. 

In the body-fixed reference frame qf  and  q  are the applied forces and moments, 

respectively. The virtual work done by these forces can be expressed as follows [34]: 

. .q q qW f p   = +                                              (3.90) 

In Eq. (3.90), 
/

( )
O Ob i

q qp p =  and /b iF F  =  . bF  and iF  represent reference 

frames body and inertial. 

By using the column matrix representations of all the vectors in body-fixed reference 

frame, Eq. (3.90) can also be written as 

( ) ( , ) ( ) ( ) ( ). .b T i b T i b T b

q q qW f C p   = +                                 (3.91)  

In Eq. (3.91), ( )b  is usually expressed in terms of suitable set of Euler angles, 

( ) ˆb L  =                                                 (3.92) 

Hence, Eq. (3.91) can be written further as, 

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )ˆ ˆ. . [ ] [ ]b T i b T i b T i b b i T b

q q q q q qW f C p L C f p L      = +  = +             (3.93) 

Let xQ   and yQ  be defined as the generalized forces associated with 
( )i

qp  and  . 

Then, Eq. (3.93) can be written as, 

( )t i t

x q yW Q p Q  = +                                          (3.94) 

For the manipulator, the virtual work can be obtained further as, 

12 12.W  =                                                   (3.95)  

1 1 2 2. .W    = +                                             (3.96)  

Therefore, for the overall system, the generalized force input can be written as, 
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( )

( )

12

ˆ

b

q

b

q

f

u S 



 
 

=  
 
 

                                                  (3.97) 

( , ) ( )
3 3 3 2

( )

3 3 3 2

122 3 2 3 2 2

ˆ ˆ ˆ0 0

ˆ ˆˆ0 0

ˆ ˆ ˆ0 0

i b b
x x q

t b

x x q

x x x

C f

u L

I





   
   

=    
   

   

                                  (3.98) 

Where,                         1 2 3 4 5 6 7 8

T
u u u u u u u u u=                           (3.99) 

In Eq. (3.97),  

ˆdet( ) cos( )S =                                               (3.100) 

Therefore, if      
2

n


  −  ,    n Z  then, Ŝ is an invertible matrix. In this thesis, 

the range of values of theta satisfies this condition. Where,  12 1 2

T
  =  is the vector 

of manipulator joint torques. 

Analysis of the external forces applied on the end-effector at the vehicle and joint level 

as follow. Let F be the applied force and M be the applied moments on the end-

effector. 

 1 2 3

T
F F F F=       and     1 2 3

T
M M M M=                     (3.101) 

Then, the applied forces and moments can be written as an augmented column matrix 

form. 

 1 2 3 1 2 3[ ]
T

P F M F F F M M M= =                           (3.102) 

Therefore, the applied forces and moments can be written in the generalized 

coordinates level as, 

ˆ
extu HP=                                                     (3.103) 
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Where, 8x6Ĥ R is the conversion matrix. Its elements are computed step by step as: 

For the generalized coordinates  x y z , 

1 1

2 2

3 3

1 0 0

0 1 0

0 0 1

ext

ext

ext

u F

u F

u F

     
     

=
     
          

                                        (3.104) 

For the generalized coordinates     , 

4 1 1

( ) ( )

5 2 2

6 3 3

1 0 0 1 0 0

0 1 0 ( ) 0 1 0

0 0 1 0 0 1

ext

b b

ext e e

ext

u M M

u p xF M SSM p F M

u M M

         
         

= + = +
         
                  

     (3.105) 

Eq. (3.105) can be further written as, 

4 3 2 1 1

5 3 1 2 2

6 2 1 3 3

0 1 0 0

0 0 1 0

0 0 0 1

ext e e

ext e e

ext e e

u p p F M

u p p F M

u p p F M

−         
         

= − +
         
                  

                     (3.106) 

For the generalized coordinates  1 2  , 

The joint actuators reaction torques can be written in terms of the end effector Jacobian 

and the applied forces and the moments [35]. 

7 ( )

8

ˆext b

e

ext

u
J P

u

 
= 

 
                                             (3.107) 

Where,  

( ) ]ˆ [ ˆ ˆT T

ev

b

e eJ JJ =                                                  (3.108) 
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11 12 13 11 12 13

21 22 23

1

2

7 3

8 1

3

2

2

1 22 23

ext

ext

ee e e e e

e e e e e e

F

F

u Fv v v

M

v v vu M

M

  

  

 
 
 
    

=     
     

 
 
  

                              (3.109) 

Finally, by using Eq. (3.104), Eq. (3.106), and Eq. (3.109), following relation is 

obtained. 

1

2

3 2 3

3 1 1

2 1 2

11 12 13 11 12 13 3

21 22 23 21 22 23

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

e e

ext

e e

e e

e e e e e e

e e e e e e

F

F

p p F
u

p p M

p p M

v v v M

v v v

  

  

 
 

  
  
  
 − =   −   
 − 
      

  

                       (3.110) 

Eq. (3.110) can be expressed more compactly as, 

3 3 3 3

( )

3 3

ˆˆ 0

ˆ(

ˆ

)

ˆ

x x

b

ext

T T

ev

e

e

x

I

u SSM p I P

J J 

 
 

=  
 
  

                                          (3.111) 

3.2.5. The Moments of Inertia Analysis 

The values of the diagonal elements of the moments of inertias of the quadrotor are 

taken from the quadrotor whose moments of inertias are experimentally identified by 

Yıldız [37]. Off-diagonal elements are assumed to zero since the quadrotor is a 

symmetric vehicle.  
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0 0

ˆ 0 0

0 0

xx

b yy

zz

I

I I

I

 
 

=
 
  

                                                (3.112) 

For the links of robotic arm following formulations are used to calculate the moments 

of inertias of the links. Links are considered as the rectangular prism.  

 

Figure 3.4. Approximate 3-D Link Element 

 

 For the link-1, 

1 1 1

1 1 1

1 1 1

2 2 2 2 2 2

1 1 1 1

, ,
2 2 2

2 2 2 2 2 2

1 1 1 1

, ,
2 2 2
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1

, ,
2 2 2

1
( ) ( ) ( )

12

1
( ) ( ) ( )

12

1
( ) ( )

12

xx

b c d
x y z

yy

b c d
x y z

zz

b c d
x y z

I y z dm y z dzdydx m c d

I x z dm x z dzdydx m b d

I x y dm x y dzdydx m







  
= = =

  
= = =

  
= = =

= + = + = +

= + = + = +

= + = + =

 

 

 
2 2

1 1 1( )b c+

     (3.113) 

Similarly, for the link-2, 
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2 2

2 2 2 2

2 2

2 2 2 2

2 2

2 2 2 2

1
( )

12

1
( )

12

1
( )

12

xx

yy

zz

I m c d

I m b d

I m b c

= +

= +

= +

                                         (3.114)  

Since the beam is a symmetric element, off-diagonal elements are all zero. 

Then,  
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1 1

1

0 0

ˆ 0 0

0 0

xx
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I

I I

I

 
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0 0
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I

I I

I

 
 

=
 
  

                       (3.115) 

3.2.6. DC and Servo Motors Transfer Functions 

To create a more realistic simulation environment, transfer functions of the 

quadrotor’s dc motor and robotic arm joint servos are implemented. For the dc motor, 

the transfer function that is identified for a thesis study is used [37]. The transfer 

function between the commanded propeller speed and the achieved propeller speed is 

as follows, 

0.98
( )

0.062 1

achieved

commanded

G s
s




= =

+
                                    (3.116) 

For the joint servos, it is assumed that the inputs of the servos are torques. To reflect 

the dynamics of the servo motors, a second order transfer function is used with 

0.707 =  and 20nw =  Hz. 

2

2 2
( )

2

achieved n

commanded n n

w
G s

s w s w



 
= =

+ +
                                  (3.117) 
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CHAPTER 4  

 

4. CONTROLLER DESIGN 

 

After the equations of motion of the combined system are obtained, control algorithms 

are developed based on these equations.  Three different control structures are built, 

and their performances are observed in a simulation environment. The first controller 

is the cascaded PID controller that is obtained by using the linearized equations of 

motion of the system. The second controller is the feedback linearizing controller. It 

is developed based on the Eq. (3.80). Finally, the last controller is the feedback 

linearizing controller which is combined with an extended state observer to estimate 

the parametric uncertainties and the external disturbances. Moreover, the control 

inputs of the quadrotor are the rotational speeds of the propellers.  For the joint arms 

servos, the control inputs are the torques of the joint servo motors.   

4.1. Cascaded PID Controller 

This controller is designed by considering the linear and decoupled equations of 

motion of the unified system. Since quadrotor is an underactuated UAV, in order to 

move the quadrotor in the inertial x-direction, the vehicle should tilt in the pitch plane, 

and to move in the inertial y-direction, the vehicle should tilt in the roll plane while 

yaw angle is kept at zero degree. Therefore, state x is coupled with state  , and state

y is coupled with state  . Hence, a controller structure that has two stages is designed. 

In the outer loop, the desired pitch and roll angles are computed for the desired 

translations in x and y directions. Then, all the desired states are fed into the inner loop 

of the controller to compute control input, u . The overall control architecture is given 

in Figure 4.1. 
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Figure 4.1. The Control Architecture of the Cascaded PID Controller  

 

4.1.1. Outer Loop Controller Design 

4.1.1.1. Translational x&y Controller 

This controller generates intermediate control inputs 
des  and 

des for the reference 

inputs x  and y , respectively. The controller is designed by using Eq’s. (3.98) and 

(3.99). From these equations, following relations can be written, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

(cos sin cos sin( )sin   )

(sin( )sin cos   cos sin )

z

z

u f

u f

    

    

= +

= −
                           (4.1) 

Then, by small angle assumptions for   and  , and by assuming 0 = , Eq. (4.1)can 

be further written as, 
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1

2

t z

t z

u m x f

u m y f





= =

= = −
                                                (4.2)  

By using Eq. (4.2), the following PID control laws are obtained by using feedback 

linearizing logic for both 
des  and  

des   

0

( )
( ( ) ( ) )

t

t x
des des px x ix x dx

z

m de t
x K e t K e d K

f dt
  = + + +                    (4.3) 

0

( )
( ( ) ( ) )

t
yt

des des py y iy y dy

z

de tm
y K e t K e d K

f dt
  = − + + +                  (4.4)  

Where,  

des mes

des me

x

sy

e

e

x x

y y

−=

= −
                                          (4.5) 

Feedforward terms 
desx and desy are the desired accelerations. These values are not 

available at this stage, but they can be calculated by numerical differentiation. 

However, since it can be very noisy, a noise filter should be used, or these desired 

accelerations can be fed from the outside to the simulation. In this thesis, they are 

taken to be zero in the control law.  

4.1.2. Inner Loop Controller Design 

This control loop consists of altitude, and attitude controllers of the quadrotor and joint 

controllers of the serial manipulator.  

4.1.2.1. Altitude Controller 

This is also a PID controller that ensures the quadrotor to track reference altitude. It is 

developed by using Eq’s. (3.98) and (3.99). The following expression is written based 

on these equations.  

3 t z tu m z f m g= = +                                            (4.6) 
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Then, the control law can be written down, 

0

( )
( ( ) ( ) )

t

z
z t des pz z iz z dz t

de t
f m z K e t K e d K m g

dt
 = + + + −                  (4.7) 

Again, 
desz is taken as zero. 

4.1.2.2. Attitude Controller 

From Eq’s. (3.98) and (3.99), the following expressions are written for roll, pitch and 

yaw dynamics. 

4 1xx qu I  = =                                               (4.8) 

5 2yy qu I  = =                                              (4.9) 

6 3zz qu I  = =                                            (4.10) 

Then, cascaded type attitude controllers are developed. This control structure is more 

robust to the oscillations. There is an inner loop which stabilizes the angular velocity 

and outer loop which controls the attitudes of the vehicle. A PI controller is used for 

the inner loop and a P controller is used for the outer loop. The control scheme can be 

seen in Figure 4.2. 

 

 

Figure 4.2. Roll Controller Structure 
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The cascaded control laws for the attitude are as follows, 

1 2

0

( ( ) )[ ( ) ( ) ]

t

q p p i
K e t K e t K e d     

   = − +                              (4.11) 

2 2

0

( ( ) )[ ( ) ( ) ]

t

q p p i
K e t K e t K e d     

   = − +                             (4.12) 

3 2

0

( ( ) )[ ( ) ( ) ]

t

q p p iK e t K e t K e d        = − +                          (4.13) 

Where, 

des mes

des mes

e

e





 

 

= −

= −
             

des mes

des mes

e

e





 

 

= −

= −
                

des mes

des mes

e

e





 

 

= −

= −
             (4.14) 

4.1.2.3. Robotic Arm Joints Controller 

To develop the PID joint controllers for the robotic arm, following relations are used.  

1 2
12 1 1 12 1sin( )( )

2
yy

b b
I m g  

+
= −                                   (4.15) 

2
2 2 2 2 2sin( )( )

2
yy

b
I m g  = −                                      (4.16) 

In Eq. (4.15), 12yyI  is the total moments of inertia of link-1 and link-2. The control law 

can be written by using feedback linearizing logic as: 

11

1
1 1

1 2
1 12

1 1 1 1

1

0

2 1

( )
( )

( ) sin( )( )
2

( )p

d

t

i d
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de t
K e t K e d K

dt

b b
I m g


     





  

 = +

+
+ +

+

=



                    (4.17) 
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Where, 

1 1 1

2 2 2

des mes

des mes

e

e





 

 

= −

= −
                                       (4.19) 

After obtaining control laws, quadrotors inputs that are rotational speeds of the rotors 

can be expressed by using Eq’s (3.89), (4.7), (4.11), (4.12), and (4.13). 
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c c c c
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−
− − − −    
    
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     −
    
− −          

                 (4.20) 

For the serial manipulator, Eq’s (4.17), and (4.18) define the control inputs. 

Finally, the gains of the controllers are determined by using the root locus method and 

shown in Table 4.1. The Gains of the PID Controllers 

 

Table 4.1. The Gains of the PID Controllers 

 x  y  z        
1  2  

pK  24.790 24.790 39.430 1.959 1.959 1.269 1325 4669 

iK  12.360 12.360 27.880 20.880 20.880 4.390 6169 40370 

dK  9.407 9.407 12.170 - - - 70.450 129.800 

2pK  - - - 9.172 9.172 3.339 - - 
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4.2. Feedback Linearizing Controller  

A hybrid system that is consisting of an underactuated aerial vehicle and a 2-DOF 

serial robotic arm is studied. The combined system is still underactuated, as well.  The 

nonlinear equation of motion of the system is obtained in a standard form that is 

common in conventional robotics applications. Then, feedback linearizing control law 

is developed for the tracking control of the combined system. The basic idea behind 

the feedback linearization is that constructing a transformation which exactly 

linearizes the nonlinear equations of motion of the system.  

4.2.1. Background 

If we have a fully actuated robotic system, then to directly linearize the Eq. (3.80) with 

0extu = , the following control law can be written [38]. 

ˆˆ ( ) ( , ) ( )u M q v C q q q G q= + +                              (4.21) 

Here, v is an auxiliary control input.  

Then, this control law is put into Eq. (3.80), the next expression is obtained.  

q v=                                                   (4.22)   

Then, the complicated and nonlinear controller design problem takes the shape of a 

simpler linear controller design task. By using the feedback linearizing logic, v can 

be chosen as, 

0

ˆ ˆ ( )ˆ
des

t

ip dv q K e K e K e d = + + +                                 (4.23) 

The feedforward term desq  can be calculated numerically or it can be fed from the 

outside to the system. However, it is taken as zero in the analysis.   

Where                                              
des mese q q= −                                                (4.24) 

After Eq. (4.23) is plugged into Eq.(4.21), the following control input is obtained. 



 

 

 

44 

 

0

ˆˆ ˆ ˆ( )( ) ( , )ˆ (( ) )

t

id p du M q q K e K e C qK qd q q Ge  = + + + + +             (4.25) 

From Eq’s. (3.80) and (4.25), the error dynamics can be written as, 

0

( ) 0ˆ ˆ
t

d ip Ke ee K K e d + + + =                                  (4.26) 

According to linear system theory, convergence of the Eq. (4.26) to zero is guaranteed 

with the suitable selection of the gain parameters [38]. 

While implementing the controller into the simulation environment, Eq. (3.116) is 

used for the dynamics of the dc motors, and Eq. (3.117) is used for the dynamics of 

the servo motors of the manipulator. 

4.2.2. Problem Formulation 

However, the aerial manipulator in this thesis is an underactuated system. Positions x 

and y are coupled with the attitudes pitch and roll angles. In this cascaded controller 

architecture, there is an outer loop that computes the motion references of the attitudes 

pitch and roll angles for the motion references of the x and y positions, and tracks the 

motion reference of the position z. Also, there is an inner loop that tracks the motion 

references of quadrotor attitudes, and joint angles of the robotic arm. Therefore, the 

problem is formulated in a slightly different way. Due to the underactuated nature of 

the system, the feedback linearization technique is partially applicable. So as to extend 

the f/b linearization approach to the control of the aerial manipulator, the couplings 

between the roll/pitch dynamics and the x/y dynamics are utilized together with the 

manipulations in the relevant inertia matrices as expressed in Section 4.2.3.  

The general controller architecture is given in Figure 4.3.  
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Figure 4.3. Feedback Linearizing Controller Architecture 
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Hence, the elements of the Eq. (4.21) are partitioned as [13]:  

ˆ ˆ ˆˆ ˆ ˆ
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     
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                  (4.27) 

Here,  

3 3 3 3 3 2 3 3 3 2 2 2

3 3 3 3 3 2 3 3 3 2 2 2

3 1 3 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,

, , , , , , , , , , ,

x x x x x x

pp p p

x x x x x x

pp p p

x x x

p p p p

M R M R M R M R M R M R

C R C R C R C R C R C R

G u v q R G u v q R G u v q R
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  

 

Then, the linearized dynamics can be written as: 

p pq v

q v

q v

 

 

=

=

=

                                                        (4.28)  

From Eq. (4.23), the auxiliary control inputs are written as: 
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v q K e K e

v q K e K e

v q K e
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K

K e

K e d
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 

 
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       
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





                       (4.29) 

4.2.3. Position Control of the Quadrotor 

For the position control, the following feedback linearizing control law can be written. 
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1

*

2

3

ˆ ˆ ˆˆ ˆ ˆ
p pp p p p pp p p p p

u

u u M v M v M v C q C q C q G

u

       

 
 

= = + + + + + +
 
  

           (4.30) 

In Eq.(4.30), to evaluate the control inputs for the position control, desired roll and 

pitch angles are required. However, in this stage, they are not available due to the 

underactuated nature of the quadrotor. To deal with this problem, the control input pu

is obtained by using a slightly different way. First and second columns of the matrix 

ˆ
pM   are taken as zero and modified 

*ˆ
pM   matrix is obtained. By this way, the roll and 

pitch multipliers of the inertia matrix is replaced by zero so that requirement of the 

knowledge of the desired roll and pitch angles are removed. This assumption is made 

because these elements of the inertia matrix are generally negligible since 

manipulator’s links are much lighter than the mass of the UAV [13]. To validate this 

assumption, 2-norms of the original and modified inertia matrix throughout the 

simulation are given in following figures. As it is seen, the norms are very close to 

each other. Therefore, for controller design, using modified inertia matrix is an 

acceptable assumption [13].    
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Figure 4.4. Norms of the Original and Modified Inertia Matrices 

 

Figure 4.5. The Error Between the Norms of the Original and Modified Inertia Matrices  

 

Now, pu  can be computed.  
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Therefore, reference values of the roll and pitch angles can be calculated by using 

Eq’s. (3.86),  and (3.98). 

1

2

3

( )

( )

( )

z

p z

z

u c s c s s f

u u s s c c s f

u c c f

    

    

 

+   
   

= = −
   
      

                              (4.31) 

From Eq. (4.31), 

T

z p pf u u=                                                (4.32)  

1 2

3

cos( ) sin( )
arctan( )des

u u

u

 


+
=                                   (4.33) 

1 2sin( ) cos( )
arcsin( )des

z

u u

f

 


−
=                                   (4.34) 

 

4.2.4. Attitude Control of the Quadrotor 

After obtaining reference values of the roll and pitch angles, the following feedback 

linearizing control law can be written for the attitude control. 

4

5

6

ˆ ˆ ˆˆ ˆ ˆT T

p p p p

u

u u M v M v M v C q C q C q G

u

           

 
 

= = + + + + + +
 
  

         (4.35) 

From the Eq. (3.98), and (4.35), the torques that are generated by the propellers are 

calculated as, 

( ) 1ˆ( )b t

q L u −

=                                            (4.36) 

Thus, the quadrotor’s propellers rotational speed inputs can be calculated by using 

Eq’s (3.89), (4.32), and (4.36) as: 
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                       (4.37) 

4.2.5. Joints Angle Control of the Manipulator 

The following feedback linearizing control law can be written for the attitude control. 

7

8

ˆ ˆ ˆˆ ˆ ˆT T T T

p p p p

u
u M v M v M v C q C q C q G

u
           

 
= = + + + + + + 
 

       (4.38) 

From Eq. (3.98), and Eq. (4.38), joint torques are obtained as, 

12 u =                                                  (4.39) 

The gains of the CTC are determined by solving a multi-objective optimization 

problem. The method is that the simulation model is converted into executable model 

to faster the optimization process. By using the MATLAB Optimization Toolbox, and 

using ITAE as a cost function, the multi-objective problem is solved. The cost function 

is as follows:   

0
( )

t

ITAE t e t dt=   

Here, “e” is the error between the reference and achieved trajectories. Optimization 

problem is solved to minimize the error. Nonlinear least-squares solver of the 

MATLAB is used for optimization purposes.  

The obtained gain values calculated as: 
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                                       (4.40)  
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 

 

 

( [7.20 10.23 28.83] [100.25 40.95 14.33] [171.69 1197.65] )

( [2.63 0.69 5.76] [37.73 6.86 2.76] [57.18 254.40] )

( [3.33 4.17 16.19] [19.73 10.55 17.01] [23.22 34.35] )

p

i

d

K diag

K diag

K diag

=

=

=

(4.41) 

Where, diag[…] is the diagonal elements of the corresponding matrices.  

4.3. Feedback Linearizing Control with Extended State Observer 

While designing the feedback linearizing controller, it is assumed that perfect 

knowledge of the dynamic system is available, and the effects of the uncertainties are 

not considered. However, this is not the case in reality since there are unmodeled 

dynamics and disturbances acting on the UAV. To eliminate these effects, an extended 

state observer is added to the FLC (Feedback Linearizing Controller) to make the 

controller more robust. 

A state observer is used to estimate the unmeasured state variables by using the 

measured state variables and control input signals [46]. The system uncertainties such 

as unmodeled dynamics, mass variations, and externally applied forces can be added 

as a state to an observer, then an extended state observer is obtained [47]. 

The inertia, Coriolis and gravity matrices can be rewritten by considering the uncertain 

parts of them as [45], 

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( , ) ( , ) ( , )

ˆ ˆ ˆ( ) ( ) ( )

M q M q M q

C q q C q q C q q

G q G q G q

= − 

= −

= −

                             (4.42) 

Then, the Eq. (4.21) can be further written as, 

ˆˆ ( ) ( , ) ( )u M q v C q q q G q  = + +                               (4.43) 
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Later, the Eq. (4.43) is plugged into Eq. (3.80), the following error dynamics is 

obtained. 

0

ˆ ( )ˆ
t

p d iK e d fe K e K e  + + + =                                  (4.44) 

Where, 

1 ˆ ˆˆ ˆ( ) ( ) ( , ) ( ) extf M q M q q C q q q G q u−  =  +  +  +
 

                   (4.45)  

The conventional FLC might cause an unstable system performance for nonzero 

uncertainties, f . Therefore, a control law is proposed including the estimate of f . 

The estimation is made by using an ESO.  

0

ˆ ˆˆ ˆ ˆ ˆ( )( ) ( , ) ( ) (( ) )d p d

t

iu fK qeM q q K e K e C q q G q M qd    = + + + + + −       (4.46) 

For further use, f  is partitioned as: 

pf

f f

f





 
 

=  
 
 

   where  
3 1 3 1 2 1, ,x x x

pf R f R f R                          (4.47) 

 

 

4.3.1. Position Control of the Quadrotor 

From Eq. (4.46), the following control law is written by including the estimate of the 

f .  

* ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ

p pp p p p pp p p p p

pp p p p

u M v M v M v C q C q C q G

M f M f M f

       

   

= + + + + + +

− − −
             (4.48) 

Then, the quadrotor input zf  is calculated like in the Eq. (4.32). 
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4.3.2. Attitude Control of the Quadrotor 

From Eq. (4.46), the following control law is written by including the estimate of the 

f .  

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ

T T

p p p p

T

p p

u M v M v M v C q C q C q G

M f M f M f

           

    

= + + + + + +

− − −
              (4.49) 

From Eq. (4.36), quadrotor torque inputs can be calculated. 

4.3.3. Joints Angle Control of the Manipulator 

From Eq. (4.46), the following control law is written by including the estimate of the 

f .  

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ

T T T T

p p p p

T T

p p

u M v M v M v C q C q C q G

M f M f M f

           

    

= + + + + + +

− − −
          (4.50) 

Then, by using Eq. (4.39), the joint torques are obtained. 

Therefore, to apply proposed control laws, the estimation of the uncertainty, f  is very 

crucial. In the next sections, the concept of ESO and the designing an ESO for our 

system to estimate f  are given. 

In Figure 4.66, the general architecture of the controller with ESO in Eq. (4.46) that 

we used in this thesis is given. 
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Figure 4.6. FLC – ESO Architecture 



 

 

 

55 

 

4.3.4. Concept of Extended State Observer 

To describe the concept of ESO, consider the following integral chain system with 

uncertainty [48]. 

 

1 2

2 3

1

1

( ,..., , ( ), )n n

x x

x x

x f x x w t t bu

y x

=


=



 = +


=

                                    (4.51) 

Where, 
1 2, ,..., nx x x  are the states of the system. u is the input control signal, b is the 

system parameter, and y  is the measured output. ( )w t  is the disturbance acting on the 

system such as external interaction forces and unmodeled dynamics. 

1( ,..., , ( ), )nf x x w t t  represents the dynamics of uncertainty.  

In the scope of ESO, Eq. (4.51) can be further written as,  

1 2

2 3

1

1

1

( )

n n

n

x x

x x

x x bu

x h t

y x

+

+

=


=




= +
 =


=

                                                 (4.52) 

Where, 1( ) ( ,..., , ( ), )nh t f x x w t t=  which is the rate of change of the uncertainty. 1nx +  

is the extended state to represent the uncertainty. Then, to estimate the states of the 

system, the following linear ESO can be provided [48]. 

1 2 1 1

2 3 2 1

1 1

1 1 1

( )

( )

( )

( )

n n n

n n

z z y z

z z y z

z z y z bu

z y z









+

+ +

= + −


= + −



 = + − +


= −

                                 (4.53) 
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In Eq. (4.53), 1 2 1, ,..., ,n nz z z z +  are the estimates of the states. 
1 2 1, ,..., ,n n    +

 are the 

gains of the linear ESO. 

4.3.5. Problem Formulation 

Let 1x q=  and 
2x q= , and from Eq’s. (3.80) and (4.42), the following relation can be 

written. 

1 ˆˆ ( ) ( , ) ( )q M q u C q q q G q f−    = − − +
 

                         (4.54) 

Then, Eq. (4.54) can be further written as a subsystem for each joint(generalized 

coordinates) space parameters 1,2,...,8i = .  

1 2

2

1

i i

i i i

i i

x x

x U f

y x

=


= +
 =

                                           (4.55) 

Where, 1 ˆˆ ( ) ( , ) ( )i
i

U M q u C q q q G q−    = − −
  

. Then, for the continuous and 

differentiable if , an extended state 
3i ix f=  is added. Afterwards, Eq. (4.55) is 

expressed as, 

1 2

2 3

3

1

( )

i i

i i i

i i

i i

x x

x U x

x h t

y x

=


= +


=
 =

                                            (4.56) 

Here, ( )i ih t f=  is assumed to be an unknown and bounded function [49]. It is the rate 

of change of the uncertainty for each generalized coordinates. 

Eq. (4.56) can be rewritten in state space form for each generalized coordinates as, 
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 

1

2

3

0 1 0 0 0

0 0 1 1 0

0 0 0 0 ( )

1 0 0

ˆ ( )

ˆ

i

i i i

i i

i i

i i i i i

i i i

x

x x U

x h t

y x

OR

x A x BU Eh t

y C x

       
       

= + +
       
              

=

= + +

=

                           (4.57) 

Based on Eq. (4.57), the following ESO is designed for disturbance rejection. 

 

1

2

3

0 1 0 0

0 0 1 1 ( )

0 0 0 0

1 0 0

ˆ ( )

ˆ

i

i i i i i i

i

i i

i i i i i i i i

i i i

z

z z U L y y

z

y z

OR

z A z BU L y y

y C z

     
     

= + + −
     
          

=

= + + −

=

                        (4.58) 

In Eq. (4.58), 1iz , 
2iz , 

3iz , and iy   are the estimated values of 1ix , 2ix ,
3ix , and iy , 

respectively . L  is the gains of the linear ESO, and it is in the following form. 

 1 2 3

T

i i iL   =                                          (4.59) 

These coefficients can be determined by using a proper method like pole placement. 

For stability analysis, by using Eq’s. (4.57) and (4.58), the following error equation 

can be written. 

ˆ ( )i ei i i ie A e E h t= +                                             (4.60) 

Where, 

            
i i ie x z= −   and   

1

2

3

1 0

ˆ 0 1

0 0

i

ei i

i

A







− 
 

= −
 
 − 

                             (4.61) 



 

 

 

58 

 

The proposed linear ESO is stable if ˆeiA is Hurwitz and ( )ih t  is bounded [50]. The 

characteristic polynomial of ˆeiA  is written as, 

3 2 3

1 2 3 0( ) ( )i i i is s s s s w   = + + + = +                               (4.62) 

Let 
0w  is the bandwidth of the observer, then the coefficients of the Eq. (4.62) can be 

selected as [50], 

1 03i w = , 
2

2 03i w = , and 
3

3 0i w =                                   (4.63) 

The gains of the FLC is the same as in (4.41). The gains of the ESO is obtained again 

by solving a multi-objective optimization problem by benefiting from the MATLAB 

Optimization Toolbox. The gains are shown in Table 4.2. 

 

 

Table 4.2. The Gains of the Extended State Observer for the Generalized Coordinates 

 x  y  z        
1  2  

1   4.28 4.28 15.84 17.11 8.11 28.75 24.62 49.51 

2   6.10 6.10 83.61 97.53 21.90 275.52 202.03 816.97 

3   2.90 2.90 147.14 185.36 19.72 880.12 552.63 4493.91 

  

Remark 1: A large observer gain 
0w  indicates a small estimation error. Furthermore, 

a large gain increases the speed at which the ESO tracks the total disturbance. 

However, a high gain leads to an increased noise sensitivity [45]. 
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CHAPTER 5  

 

5. SIMULATION RESULTS AND DISCUSSION 

 

5.1. Simulation Environment Information 

The nonlinear coupled system dynamics and kinematics models are coded in 

MATLAB/Simulink environment. Also, the proposed control algorithms are 

implemented in the same environment and tested with these nonlinear unified system 

model. The ODE2 (Heun) Solver of Simulink with the fixed time step of 0. 001 

seconds is used to simulate the scenarios.  

Moreover, to avoid unrealistic controller commands, saturation blocks are added to 

the controller outputs. These are the internal control inputs roll and pitch angles, 

/ 17+ −  degree, rotational speeds of the rotors, 2000  rad/sec, and the torque inputs of 

the servo motors of the robotic arm, / 3+ −  Nm. 

Numerical parameters of the unified system are given in Table 5.1. The most of these 

parameters are taken from thesis written by Yıldız [37]. 

Table 5.1. Numerical Parameters of the Combined System 

mb [kg] 2.6550 d [m] 0.3435 

m1,2 [kg] 0.1700 b0 [m] 0.0800 

Ixx,b [kgm2] 0.0457 b1,2 [m] 0.3000 

Iyy,b [kgm2] 0.0457 c1,2 [m] 0.0500 

Izz,b [kgm2] 0.0846 d1,2 [m] 0.0500 

Ixx,12 [kgm2] 7.0830e-05 gravity [m/s2] 9.8100 

Iyy,12 [kgm2] 0.0013 cT [N/(rad/s)2] 2.7400e-05 

Izz,12 [kgm2] 0.0013 cQ [Nm/(rad/s)2] 0.0470e-05 
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5.2. Simulation Scenario 

For all controller structures, the same scenario is used. However, the performance 

comparison is made between FLC architecture and FLC-ESO architecture since the 

cascaded PID controller structure is simulated with ideal motor and sensor models. 

The FLC and FLC-ESO controller architectures are simulated with nonideal motor 

models and ideal sensor models. The scenario is presented in Table 5.2 and Figure 5.1. 

Reference Trajectories of the Combined System 

Table 5.2. The Simulation Scenario 

Time [s] 0-9 10-19 25-30 30-60 

x  [m] 0-5 5 5 5 

y  [m] 0-3 3 3 3 

z  [m] 0-(-2) -2 -2 -2 

  [deg] - - - - 

  [deg] - - - - 

  [deg] 0-(-5) -5 -5 -5 

1  [deg] 0 0-15 15 15 

2  [deg] 0 0-10 10 10 

1F  [N] 0 0 0-5 5 

2F  [N] 0 0 0-2 2 

3F  [N] 0 0 0-6 6 
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Figure 5.1. Reference Trajectories of the Combined System 

 

In Figure 5.1, the reference trajectories of the combined system are shown. In this 

figure, the reference roll and pitch angles do not exist since they are internal control 

inputs that are generated for the reference cartesian coordinates of x and y. However, 

they are provided in upcoming sections. Here, coupled commands are given to the 

combined system for performance analysis of the controllers. Performance results are 

also presented in the proceeding sections. 
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Figure 5.2. Externally Applied Forces on the End-Effector 

 

In Figure 5.2, the applied forces on the tip point of the end-effector of the combined 

system are illustrated. These applied forces are acting on the system in three directions 

of the cartesian coordinate system simultaneously.  

5.3. Simulation Results 

5.3.1. Cascaded PID Controller 

This controller architecture, unlike the other two controllers, has been tested with ideal 

motor models. Results are presented as follows. 
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5.3.1.1. Position Control of the Quadrotor 

 

Figure 5.3. Desired and Achieved Inertial Position of the Quadrotor 

 

Figure 5.4. The Absolute Error Between the Commanded and the Achieved Quadrotor Position 
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From Figure 5.3 and Figure 5.4, the commanded position tracking performance of the 

controllers can be seen. The controllers are tracking the reference trajectories with a 

very small error at first, and around zero errors throughout the simulation scenario. 

The initial deviations are due to the transient behavior of the controllers. However, the 

initial deviation in the x-direction is bigger than other channels (y and z) since the 

channel x is highly coupled with the manipulator joint arm angles. In other words, the 

Euler pitch and joint angles are in the same plane, and channel x is directly related to 

the Euler pitch angle. Therefore, at first, there are some oscillations in joint angles, 

and this affects the position x of the quadrotor. At time 10 seconds, since the robotic 

arms are moved, some deviations occur. However, these deviations are suppressed by 

the controllers. At time 25 seconds, the external forces are started to be applied to the 

end-effector. This disturbs the quadrotor of its hover position. In a short amount of 

time, these disturbance forces are balanced by the controllers, and the quadrotor comes 

to its original position. 

5.3.1.2. Orientation Control of the Quadrotor 

 

Figure 5.5. The Reference and Achieved Orientation of the Quadrotor 
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Figure 5.6. The Reference and Achieved Orientation of the Quadrotor Between 0 to 5 Seconds 

 

Figure 5.7. The Absolute Error Between the Commanded and the Achieved Quadrotor Orientation 

 

Figure 5.5 and its zoomed version Figure 5.6 illustrate the desired and achieved 

orientation of the quadrotor. Here, phi and theta are the intermediate control signals 
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that are generated for reference y and z positions, respectively. To avoid instability 

due to unrealistic control signals, their maximum values are limited to certain bounds. 

Also, the controllers command high phi and theta angles initially, and system response 

is slower with respect to this, so the initial errors are high. At 25 seconds, the 

disturbance forces are applied to the end-effector, and to balance these forces, 

quadrotor tilts in both roll and pitch planes. As a result, phi and theta angles are 

different from the zero values in the hover position.  Further, at 25 seconds, the yaw 

angle is affected by these disturbances, but the yaw controller brings it to its original 

position. In general, the attitude controllers track the desired orientations with very 

small errors throughout the scenario. 

5.3.1.3. Joint Angles Control of the Robotic Arm 

 

Figure 5.8. The Reference and Achieved Joint Angles of the Robotic Arm 
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Figure 5.9. The Reference and Achieved Joint Angles of the Robotic Arm Between 0 to 5 Seconds 

 

Figure 5.10. The Absolute Error Between the Commanded and the Achieved Joint Angles 

 

Figure 5.8 and its zoomed version Figure 5.9 shows the commanded and obtained 

manipulator’s joint angles, and Figure 5.10 illustrates the error between them. At first, 
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there are some small oscillations due to the transient characteristics, and quadrotor’s 

movement. In other words, they are affected by the fast pitch dynamics of the 

quadrotor. The other reason is that joint angles are controlled by the independent joint 

controllers, so they are influenced by the quadrotor’s motion. However, the joint 

controllers suppress these oscillations in a short amount of time. At time 10 seconds, 

the joint angles are commanded to come at certain angles, and this is achieved by 

controllers successfully. At 25 seconds, the effects of the disturbance forces deviate 

the joint angles from the reference values, but the joint controllers cope with these 

interruption forces well. These controllers show satisfactory performance.  

5.3.2. Feedback Linearizing Controller and Feedback Linearizing Control with 

Extended State Observer 

In this subsection, the performance results of the two controller structures that are FLC 

and ESO- FLC are presented. Their performances are also compared to each other in 

terms of some measurement’s techniques in the next section. ESO based FLC is the 

modified version of the FLC. Both controller architectures have the same FLC gains. 

In order to increase the robustness of the FLC, an ESO is added. With this ESO, the 

combined system has been gained active disturbance rejection characteristics. 

Moreover, both controllers are implemented and tested in a simulation environment 

that has a nonideal dc motor model and a servo motor model to simulate a more 

realistic scenario. 

5.3.2.1. Position Control of the Quadrotor 

From Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14, the following 

observations can be made. Both position controllers show stable system performances, 

and they track the desired trajectories. At first, these two controllers demonstrate 

similar tracking performances. Also, at 10 seconds, the quadrotor moves away from 

the desired path due to the movement of the serial manipulator. Then, this is 

compensated by the controller for both architectures with similar performances.  
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Figure 5.11. Desired and Achieved Inertial Position of the Quadrotor [FLC] 

 

Figure 5.12. The Absolute Error Between the Commanded and the Achieved Quadrotor Position 

[FLC] 
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Figure 5.13. Desired and Achieved Inertial Position of the Quadrotor [FLC-ESO] 

 

Figure 5.14. The Absolute Error Between the Commanded and the Achieved Quadrotor Position 

[FLC-ESO] 
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However, the performance differences come out when the disturbance forces are 

applied to the unified system at 25 seconds. As it can be seen from Figure 5.12, and 

Figure 5.14, the system with the FLC controller more sensitive to the disturbances 

with respect to the system with ESO-FLC. Due to its active disturbance rejection 

property, the ESO-FLC suits faster to these interruption forces and enables quadrotor 

to settle down to the reference trajectory faster. 

5.3.2.2. Orientation Control of the Quadrotor 

The orientation control has a direct effect on the position control of the quadrotor since 

it is an underactuated vehicle, and roll and pitch angles are coupled with the cartesian 

positions y and x, respectively. From the position control section, it is known that 

ESO-FLC shows better position error minimization characteristics. Therefore, it 

should be the result of better orientation control of the controllers, and it can be 

observed from Figure 5.17 and Figure 5.20. 

 

Figure 5.15. The Reference and Achieved Orientation of the Quadrotor [FLC] 
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Figure 5.16. The Reference and Achieved Orientation of the Quadrotor Between 0 to 5 Seconds 

[FLC] 

 

Figure 5.17. The Absolute Error Between the Commanded and the Achieved Quadrotor Orientation 

[FLC] 
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Figure 5.18. The Reference and Achieved Orientation of the Quadrotor [FLC-ESO] 

 

Figure 5.19. The Reference and Achieved Orientation of the Quadrotor Between 0 to 5 Seconds 

[FLC-ESO] 
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Figure 5.20. The Absolute Error Between the Commanded and the Achieved Quadrotor Orientation 

[FLC-ESO] 

 

Before the external forces are applied on the system, FLC and ESO-FLC controller 

structures show similar performances in terms of the orientation control of the 

quadrotor as seen from Figure 5.15 and Figure 5.18. However, after the exerted 

disturbance forces, ESO-FLC stands out in terms of its disturbance rejection 

capability. It compensates these disturbances faster and brings the quadrotor to the 

desired orientation more quickly. 

5.3.2.3. Joint Angles Control of the Robotic Arm 

The FLC and ESO-FLC performances are very similar until the interruption forces are 

applied. At first, there are small oscillations due to the transient dynamics of the 

controllers and coupling between the pitch orientation. However, these oscillations are 

suppressed by the controllers in a short amount of time.  
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Figure 5.21. The Reference and Achieved Joint Angles of the Robotic Arm [FLC] 

 

Figure 5.22. The Reference and Achieved Joint Angles of the Robotic Arm Between 0 to 5 Seconds 

[FLC] 
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Figure 5.23. The Absolute Error Between the Commanded and the Achieved Joint Angles [FLC] 

 

Figure 5.24. The Reference and Achieved Joint Angles of the Robotic Arm [FLC-ESO] 
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Figure 5.25. The Reference and Achieved Joint Angles of the Robotic Arm Between 0 to 5 Seconds 

[FLC-ESO] 

 

Figure 5.26. The Absolute Error Between the Commanded and the Achieved Joint Angles [FLC-

ESO] 
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It can be understood from Figure 5.23, and Figure 5.26, the joint angles of the FLC 

controlled system are disturbed more. FLC-ESO minimizes the error faster with 

respect to the FLC because of its active disturbance rejection capability. In general, 

both controllers provide reference joint angles tracking, but the FLC-ESO structure is 

more powerful.  

5.3.3. Performance Comparison of the Feedback Linearizing Controller and 

Feedback Linearizing Controller with Extended State Observer 

To investigate and compare the performances of the controllers, there are some 

measurement methods like calculation of the error terms. 

5.3.3.1. Comparison of Error Terms 

In literature, there are several measures to compare the performances of the control 

systems. The most common ones The Integral of Squared Error (ISE), The Integral of 

Absolute Error (IAE), The Integral of Time Multiply Squared Error (ITSE), and The 

Integral of Time multiply Absolute Error (ITAE). They are calculated based on the 

error between the desired and achieved states. They can be formulated as, 

( ) ( ) ( )des mese t q t q t= −                                                (5.1)  

2

0
( ( ))

t

ISE e t dt=                                                   (5.1) 

0
( )

t

IAE e t dt=                                                    (5.2) 

2

0
( ( ))

t

ITSE t e t dt=                                                  (5.3) 

0
( )

t

ITAE t e t dt=                                                  (5.4) 

The error terms of the commanded generalized coordinates are tabulated in the 

following table. Since phi and theta are the intermediate control inputs, they are not 

included into this table.  
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Table 5.3. The Error Term Values of the Each Generalized Coordinates 

Generalized 

Coordinates 

ISE IAE ITSE ITAE 

FLC FLC 

-ESO 

FLC FLC 

-ESO 

FLC FLC 

-ESO 

FLC FLC -

ESO 

x   0.016 0.015 0.681 0.553 0.336 0.294 16.410 10.763 
y   0.042 0.003 1.156 0.257 1.587 0.053 43.256 5.622 

z   0.020 0.002 0.541 0.124 0.518 0.013 14.678 2.256 
   

0.043 0.000 0.697 0.055 1.303 0.007 21.905 1.663 

1  
0.016 0.000 0.481 0.025 0.465 0.001 15.918 0.435 

2  
0.006 0.000 0.376 0.020 0.212 0.001 13.715 0.589 

 

From Table 5.3, it can be said that tracking performance of the FLC-ESO controller 

is superior to FLC controller. Estimation of the disturbances significantly increases 

the robustness of the system.  

5.3.3.2. Comparison of Energy Consumption 

One of the most common performance comparison techniques of the comparison of 

the controllers is the energy consumption of the controlled system under the action of 

the controllers. The total energy consumption of the combined system is the sum of 

the energy consumptions of the quadrotor’s dc motors and robotic arm joint servo 

motors. The calculations are made by benefiting from the achieved rotational speeds 

of the dc motors and generated dc motors torques for the quadrotor. For the robotic 

arm, achieved joint velocities of the servo motors and generated joint servo torques 

are used for calculations. To find the energy consumptions, first, the power 

consumptions can be computed for both quadrotor and arm by using the following 

formulae. Here, the powers are calculated in the unit of Joule/sec. 

4

1

quad j j

j

P w
=

=   and  
2

1

arm j j

j

P t 
=

=                                  (5.5) 
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Figure 5.27. Rotational Speeds of the Each DC Motors of the Quadrotor [FLC] 

 

Figure 5.28. Rotational Speeds of the Each DC Motors of the Quadrotor [FLC-ESO] 

 

Then, the integral of the powers with respect to time is gave the energy consumption 

of the quadrotor and the joints in the unit of Joule. Also, Figure 5.27 and Figure 5.28 
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are the visualization of the used rotational speeds of the rotors for FLC and ESO- FLC 

controlled systems. Moreover, Figure 5.29, and Figure 5.30 show the generated joint 

torques by the joint servo motors. Finally, Figure 5.31, and Figure 5.32 demonstrate 

the joint velocities of the serial robotic manipulator. 

 

60

0

60

0

=20313.975

=0.173

quad quad

arm arm

E P dt
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E P dt
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


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Figure 5.29. Robotic Arm Joint Torques [FLC] 
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Figure 5.30. Robotic Arm Joint Torques [FLC-ESO] 

 

Base on Eq’s. (5.6) and (5.7), the quadrotor energy consumption in the system with 

FLC controller scheme is less with respect to FLC-ESO architecture, but they are very 

close to each other. For the robotic arm, FLC-ESO architecture is more energy 

efficient. Overall, the total energy consumption of the FLC-ESO structure is slightly 

bigger than the FLC architecture.  
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Figure 5.31. The Joint Velocities of the Robotic Arm [FLC] 

 

Figure 5.32. The Joint Velocities of the Robotic Arm [FLC-ESO] 
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CHAPTER 6  

 

6. CONCLUSION 

 

6.1. General Conclusion 

In this thesis, modeling, simulation, and control of an aerial manipulation system 

consisting of a quadrotor and a 2-DOF robotic serial manipulator are presented. 

Quadrotor and robotic manipulator are considered as one combined system and 

modeled accordingly. Firstly, kinematics of the unified system is derived, and 

Denavit-Hartenberg parameters are obtained for the serial manipulator. Then, by using 

the kinematics parameters, the dynamics of the unified system are formulated by 

utilizing the Lagrange-D’Alembert method. Based on the equations of motion of the 

combined system, the control system algorithms are developed for reference trajectory 

tracking. Three different control system algorithms are studied. The 3-D position and 

yaw orientation of the quadrotor, and joint angles of the serial manipulator are directly 

controlled. The roll and pitch orientation of the quadrotor is not directly controlled 

since they are coupled with quadrotor positions y and x. Their reference values are 

generated for desired y and x positions, and they are indirectly controlled as an 

intermediate generalized coordinate. 

The cascaded PID controllers are derived by taking advantage of the linear decoupled 

equations for each generalized coordinate. Root locus method is used to tune the gain 

of the controllers. Then, developed control algorithms are tested with the highly 

nonlinear system model. While testing this controller structure, ideal dc and servo 

motor models are used. As it can be seen from the simulation results, the decoupled 

controllers show satisfactory performances. Reference trajectories are tracked as 

desired. Also, disturbance forces are applied to the end-effector, but the controllers 

compensate these interruptions and bring the system to the reference paths. 
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Secondly, by using the nonlinear equations of motion of the unified system, one of the 

most common controllers in the robotics research area which is a feedback linearizing 

controller is designed for stable system performance.  The gains of this controller are 

selected to converge the errors to the zero. While tuning the gains, the root locus 

method is tried. However, the gains could not be optimized by this method 

satisfactorily. Then, these gains are optimized by using the nonlinear least-squares 

solver of the MATLAB. Afterward, with optimized gains, the proposed control 

algorithm is tested in a simulation case study. It is seen that the overall system tracks 

the reference trajectories and error dynamics converge to zero in time. Also, when the 

external disturbance forces are applied to the system, the controller deals with these 

unwanted interactions considerably. 

However, the feedback linearizing controller assumes the availability of the exact 

dynamics model of the system. Unfortunately, this is not the case for real-life 

applications since there are unmodeled dynamics like friction. Also, there may be 

external disturbances on the system, load variations, and parameter variations. These 

uncertainties can cause instability. Therefore, these uncertainties are modeled as an 

extended state and an extended state observer is designed to eliminate those 

uncertainties. This ESO is added to the FLC control architecture. In the FLC-ESO 

control structure, the gains of the FLC are the same as the gains of the predesigned 

FLC. To determine the ESO gains, the pole placement technique is tried, but the 

optimized solution could not be found. Thus, the gains of the ESO is tuned by 

benefiting from the nonlinear least-squares solver of the MATLAB. Then, developed 

algorithms are implemented in the nonlinear system simulation environment. As it can 

be seen from the simulation results, the trajectory tracking performance of the FLC is 

significantly increased with ESO. The performances of the FLC and FLC-ESO control 

architectures are compared with the calculation of error terms and energy consumption 

of the controlled systems. In terms of error terms, the performance of the FLC-ESO 

structure is very ahead of the performance of the FLC architecture. They are close to 

each other in the aspect of energy consumption.  
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6.2.  Future Work 

Nonideal sensor models such as accelerometer/indoor GPS, gyroscope and encoder 

will be implemented in the simulation environment to reflect a more realistic scenario. 

Also, the gains of the controllers will be updated. Developed algorithms will be 

validated with an experiment study.  

The designed system is more sensitive to the disturbance forces in yaw plane with 

respect to the disturbances in roll and pitch planes due to its lower moment of inertia. 

To overcome this drawback, the design of the robotic arm may be updated. In this 

thesis, both revolute joints operate in pitch plane. If one of the revolute joints operates 

in the yaw plane, then the end-effector’s position can be controlled more successfully.   
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