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ABSTRACT

MODELING, SIMULATION, AND CONTROL OF A QUADROTOR
HAVING A 2-DOF ROBOTIC ARM

Bulut, Nebi
Master of Science, Mechanical Engineering
Supervisor: Assist. Prof. Dr. Ali Emre Turgut
Co-Supervisor: Assist. Prof. Dr. Kutluk Bilge Arikan

July 2019, 93 pages

In this thesis, modeling, simulation, and control of a combined system that consists of
a quadrotor and a 2-DOF robotic serial manipulator are presented. Firstly, the
kinematic and dynamic model of the combined system are obtained. Then, the
equation of motion of the combined system is derived by using Lagrange-D’ Alembert
formulation. Based on these equations, control algorithms are developed to control the
combined system. Firstly, the cascaded PID controllers are designed by using the
linearized decoupled equations of motion. Then, this controller is tested with the ideal
dc and servo motor models with highly nonlinear combined system models. Secondly,
the feedback linearizing controller is designed by using the nonlinear equations of
motion of the system that is in the form of a standard robot dynamics equation. Then,
to avoid instability of the system that can be caused by the unmodeled dynamics,
parameter variations, and external disturbances, and to estimate these uncertainties, an
extended state observer is added to the feedback linearizing controller. Later, the
feedback linearizing controller and the extended state observer based the feedback
linearizing controller is tested with the nonideal dc and servo motor models with the
nonlinear combined system model. All proposed algorithms and the nonlinear

combined system model are coded in MATLAB/Simulink environment. Finally, these



control algorithms are validated with a simulation case study, and their performances

are compared.

Keywords: Aerial Manipulation, Extended State Observer, PID Control, Cascaded

Control, Quadrotor, Serial Manipulator, Feedback Linearizing Control
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2 SERBESTLIK DERECELI ROBOT KOLU BULUNAN BIiR
KUADROTORUN MODELLENMESI, SIMULASYONU VE KONTROLU

Bulut, Nebi
Yiiksek Lisans, Makina Miihendisligi
Tez Danismani: Dr. Ogr. Uyesi Ali Emre Turgut
Ortak Tez Damigmant: Dr. Ogr. Uyesi Kutluk Bilge Arikan

Temmuz 2019, 93 sayfa

Bu tez ¢alismasinda, kuadrotor ve 2 serbestlik dereceli bir robotik seri manipiilator
iceren bir birlesik sistemin modellenmesi, simiilasyonu ve kontrolii sunulmustur. Ik
olarak, birlestirilmis sistemin kinematik ve dinamik modeli elde edilmektedir.
Ardindan, birlesik sistemin hareket denklemi Lagrange-D’Alembert formiilasyonu
kullanilarak elde edilmistir. Bu denklemlere dayanarak, tiim sistemi kontrol etmek i¢in
kontrol algoritmalar1 gelistirilmigtir. ilk olarak, kademeli PID kontrolorleri,
dogrusallastirilmis ve ayristirilmis hareket denklemlerine dayanarak tasarlanmaistir.
Ardindan, bu kontroldr, dogrusal olmayan birlesik sistem modellerine sahip ideal dc
ve servo motor modelleri ile test edilir. Ikinci olarak, dogrusallagtiriimig geribildirim
kontroldr, standart bir robot dinamigi denklemi formundaki sistemin dogrusal
olmayan hareket denklemlerini kullanarak tasarlanmistir. Ardindan, modellenmemis
dinamiklerin, parametre degisikliklerinin ve dis bozucularin neden olabilecegi sistem
kararsizligini 6nlemek ve bu belirsizlikleri tahmin etmek icin, dogrusallastirilmis
geribildirim kontroloriine genisletilmis bir durum gézlemcisi eklenmistir. Daha sonra,
dogrusallastirilmis geribildirim denetleyicisi ve genisletilmis durum goézlemcisi
tabanli dogrusallastirilmis geribildirim denetleyicisi, dogrusal olmayan birlesik sistem

modeliyle ideal olmayan dc ve servo motor modelleriyle test edilmistir. Onerilen tiim

vii



algoritmalar ve dogrusal olmayan birlesik sistem modeli MATLAB / Simulink
ortaminda kodlanmistir. Son olarak, bu kontrol algoritmalar1 bir simiilasyon

calismasiyla dogrulanmis ve performanslar1 karsilagtirilmistir.

Anahtar Kelimeler: Hava Araci Manipiilasyonu, Genisletilmis Durum Goézlemcisi,
PID Kontrolii, Basamakli Kontrol, Kuadrotor, Seri Manipiilatér, Dogrusallastirilmis

Geribildirim Kontrolciisi
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CHAPTER 1

INTRODUCTION

1.1. Motivation of the Thesis

In the last decade, with the advances in technology, research on aerial vehicles
increased a lot. Especially, unmanned aerial vehicles (UAV’s) are getting more
attention from researchers all over the world. Due to their cost and ease of deployment
quadrotors are mostly studied. Quadrotors also have the ability of vertical take-off,
landing, the capability of high maneuverability and they can hold their position in
hover. UAV’s are mostly used for surveillance, rescue operations, and imaging tasks.

Recently, robotic arms are being added to UAV’s in order to increase their capabilities
such as object manipulation and carrying payload. The challenging problem is
mathematical modeling and controlling these highly coupled and nonlinear systems.
The difficulty of this problem mainly arises from the underactuated nature of the
quadrotor itself. In 3-D space, unique locations of the aerial vehicles are represented
by the 3 cartesian coordinates and 3 Euler angles. Hence, there are 6 states that should
be controlled. However, quadrotors have 4 control inputs that are the rotational speeds
of the dc motors of the vehicle. Therefore, 2 states of the UAV are generally controlled
as internal states. In this particular vehicle, 2 linear positions of the vehicle are coupled
with 2 angular positions. For example, to control the positions x, and y of the UAV,
angular positions, and angles of the UAV should be changed.

In this thesis, a combined system that consists of a quadrotor and a 2-DOF robotic arm
that is mounted to its bottom is studied. The main focus of this thesis is the kinematic

and dynamic analysis of the combined system, and the controller design of this system.

Briefly, the mathematical model of the combined system that consists of a quadrotor
and a 2-DOF robotic arm is obtained. After constructing the mathematical model of



the combined system and controller architecture, these models should be implemented
in a suitable simulation environment. In literature, MATLAB/SIMULINK
environment is mostly preferred. In this dissertation, developed algorithms are
simulated in MATLAB/SIMULINK environment since it is easy to handle the coding
and track the errors.

1.2. Aim and Contribution of the Thesis

In literature, generally, the end-effector’s interaction with the environment was not
modeled, and the designed controllers were tested without external forces that are
applied to the combined system. Other than that, the studies that modeled the external
forces usually considered only force in one direction. In addition, these applied forces
on the system are mostly small in up to now researches. In addition, the simpler

controllers were generally designed as well as more complex controller structures.

In this thesis, we aim to push a box with a quadrotor and a 2-DOF serial robotic arm.
Therefore, multi-directional and large forces are modeled and used. Complex control
strategies such as feedback linearizing controller with extended state observer is
utilized. Due to this method, active disturbance rejection capability is gained to the
combined system. Also, although there are highly coupled states in the system, we
achieved to control all the states of the combined system simultaneously.

1.3. Outline of the Thesis
The thesis is organized as six chapters. The first chapter is the introduction.

Chapter 2 deals with the literature related to the quadrotors and manipulation of the
quadrotors. Firstly, brief information about quadrotors are given, then the
manipulation of these vehicles is discussed. Also, mathematical approaches that are
used to model the unified systems in literature are discussed. In addition to these,
control strategies that are used to control the overall system are investigated. These
works are used to get inspired and improve different ways of solution to the problem.



Chapter 3 presents details of the kinematic and the dynamic modeling of the combined
system. Firstly, kinematics relations are obtained for the combined system. Then, for
the 2-DOF robotic manipulator, Denavit—Hartenberg Parameters are written. After
that, rotation matrices are acquired to express the orientation of the reference frames
with respect to each other. Finally, by using the kinematic relations and the Lagrange-
D’ Alembert formulation, the equation of the overall system is written in the form of a
standard robot dynamics equation. Also, for simulating a more realistic scenario,

experimentally identified transfer function for the quadrotor’s dc motors is given.

Chapter 4 is devoted to the controller design. In this chapter, different types of
controllers are designed to control all states of the combined system simultaneously.
Firstly, decoupled control algorithms are developed by using the linearized equations
of motion of each state. The general architecture of this controller is a cascaded type
PID controller. Secondly, by using the standard equations of motion of the system, a
feedback linearizing controller is designed. However, because it has some drawbacks,
more robust and adaptive controller is developed. Therefore, an extended state
observer is added to the feedback linearizing controller to estimate the uncertainties,

unmodelled dynamics, and externally applied forces.

Chapter 5 focuses on the simulation results and discussion. All developed control
algorithms are implemented in highly nonlinear system simulation and tested. Their
robustness to the externally applied forces on the tip point of the end-effector are
tested. Then, for all these 3 control structures, results are obtained, and they are
compared to with each other. While comparing, universal performance indexes like
Integral Time Absolute Error (ITAE) and Integral Time Square Error (ITSE) are used.

Also, the results are discussed in this chapter.

Chapter 6 summarizes the work done throughout the dissertation. It concludes the
achievements of the thesis.






CHAPTER 2

LITERATURE REVIEW

2.1. Path from Quadrotor to Its Manipulation

Last two decades, UAVS, especially, quadrotors, are the focus points of the researchers
due to their cost and capabilities such as the ability of vertical take-off and landing,
staying still in hover position, high agility and maneuverability. Also, these vehicles
have practical uses such as delivering enough payload and observation purposes.
There are various studies related to quadrotors. For example, a comprehensive study
is done corresponding to the aerodynamical characteristics of the rotors of the
quadrotor [1]. In this paper, rotor flapping, blade flapping and induced drag that have
significant importance on the stability of the aerial vehicle are discussed and modeled.
Also, simple expressions for the drag coefficient and thrust coefficient of the motors
are derived from the complex mathematical equations by making some assumptions.
Kinematics and dynamics of the quadrotor are derived while paying attention to the
direction of rotation of the rotors [2]. This is important to generate roll, pitch and yaw

moments.
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Figure 2.1. Direction of the Roll, Pitch and Yaw Moments [2]

The most challenging part of these flying vehicles is stable and safe trajectory
tracking. To achieve this, control algorithms are developed from the equation of
motion of the system. To decrease the mathematical complexity of these equations,
simplified equations that are obtained by the linearization around some equilibrium
points are used [3]. While obtaining control algorithms, underactuated nature of the
quadrotor is considered.

In time, the necessity of adding new abilities like manipulating objects to the
quadrotors are increased. There are different approaches to achieve this. For instance,
cable suspended manipulator was used for manipulation purposes [4], [5], [6].
However, the most common manipulation technique is mounting a robotic arm. There

are studies that serial manipulators with various degrees of freedom are used for this



purpose [7], [8], [9]. Also, a parallel manipulator is attached to the bottom of the UAV

to increase its capabilities [10].

Figure 2.2. Parallel Manipulator [10]
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Figure 2.3. Cable Suspended Manipulator [4]

Figure 2.4. Serial Manipulator [8]

In this thesis, a 2-DOF serial robotic arm is used as a manipulator in the quadrotor.
Therefore, the literature is limited to serial manipulators and UAV’s with serial

manipulator.



2.2. Literature on Contributions

To develop control algorithms, the mathematical model of a system has great
importance. That's why the kinematic and dynamic model of a system must have high
fidelity. In literature, there are diverse approaches both modeling the dynamics of the

combined system and controlling the combined system.

A quadrotor with a bottom mounted 2-DOF robotic arm was studied by Kim et al. [7].
Combined system dynamics are derived by using Lagrange-D’Alembert formulation.
An adaptive sliding mode controller is designed, and the proposed control algorithms
are implemented and tested in a real-life scenario that is moving an object from one
location to another. Lee et al. [22] continued to work on aerial robotics, but using a
different configuration which is an hexarotor and a 2-DOF serial arm. Equation of
motion of the unified system is obtained. An unknown mass is added to the
manipulator, and it is estimated by using an online parameter estimator. An augmented
passivity-based controller is designed for trajectory tracking of the combined system.
Also, unknown mass is estimated by using an adaptive sliding mode controller and
results are compared with the proposed algorithms in a simulation environment. In
addition to that, proposed algorithms are validated with an experiment. Later, this
work was followed by Kim et al. [11] with a slightly different configuration which is
a hexarotor combined with a 3-DOF robotic manipulator. In this study, the combined
system is guided by using an image-based visual servoing system to drive the end-

effector of the manipulator.

A cartesian impedance control scheme was proposed to deal with external contact
forces and disturbances by Lippiello and Ruggiero [12]. Proposed algorithms are
tested in a simulation environment using a 3-DOF robotic arm mounted to the
quadrotor. Two cases are tested. The first case is that a sinusoidal disturbance force is
applied in the x direction of the body frame of the quadrotor to simulate wind gust.
Then, the system shows a compliant behavior and keep its initial positions for both

quadrotor itself and the end-effector. In the second scenario, in addition to the



disturbance force, a force is applied on the end-effector to simulate the contact with
the environment. In this case, while the end-effector pose is kept unchanged, quadrotor
body's linear and angular positions are chosen to be compliant. Thus, the end-effector

position stays around initial conditions with very small error.

In another study, Arleo et al. [13] considered a quadrotor equipped with a 5-DOF serial
manipulator. The equations of motion of the unified system are derived using the
Euler-Lagrange formulation. Inverse kinematics algorithms are developed to generate
reference trajectories for the motion controller. A standard globally linearized control
law is selected without any adaptive term to control the combined system in a
simulation environment. In a follow up study, Caccavale et al. [8] used the same
configuration and added an adaptation law to the controller design for disturbance
rejection and unmodeled dynamics. Algorithms are implemented in a simulation

environment.

Giglio and Pierri [14] studied a combined system of a quadrotor and a 6-DOF robotic
arm. Proposed control architecture consists of three parts. The first part is the inverse
kinematics algorithms that compute the motion references for the combined system to
bring the end-effector to the desired location. The second part of the control
architecture is the impedance filter that brings a compliant behavior to the system in
case of interaction with the environment and disturbances. The third part is the motion
controller for tracking the reference trajectories. Developed algorithms are tested in a
simulation environment. Later, Cataldi et al. [15] studied the same configuration. They
improve the impedance, inverse kinematics, and control algorithms, and validate these

algorithms with experiments.

In a study by Khalifa et al. [16], a quadrotor with a bottom mounted 2-DOF
manipulator was considered. In this work, decoupled equations of motion of the
unified system are obtained by using recursive Newton Euler formulation. For each
state, feedback linearized controllers are designed, then the trajectory tracking

performance of the proposed controllers are tested using simulations. Afterward, in a
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follow up study by Khalifa et al. [17], inverse kinematics algorithms were
implemented to generate reference inputs for the motion controller for the desired
position and orientation of the end-effector. Also, robust internal loop compensator is
proposed for controlling the combined system. Developed algorithms are tested in a
simulation environment with some tasks such as picking and placing a payload. In a
follow up study, Fanni and Khalifa [18] improved results in [17]. A novel inverse
kinematics algorithm is presented, and disturbance observer based robust controller is
proposed for trajectory tracking. In this study, system parameters such as inertia is

determined experimentally. Sensors and actuators are modeled realistically.

Jimenez-Cano et al. [9] investigated the performance of the 2-DOF robotic arm that is
attached to a UAV. Different controllers are designed for both quadrotor and the
robotic arm. The quadrotor's controller deals with the changes such as inertia caused
by the change of the center of gravity of the overall system. The control algorithm is
tested by an experiment to show the performance of the controller under the movement

of the robotic arm.

In a very recent study by Jones et al. [19], autonomous quadrotor which is equipped
by a 2-DOF serial robotic manipulator for indoor tasks is tested in a simulation
environment. The purpose of this study is to show the stable performance of the
controllers while lifting an unknown mass under the presence of uncertainties such as
unmodeled dynamics, and wind gust. The proposed controller consists of a
feedforward torque compensation system and L1 adaptive controller. Movement of
the arm and delivering a payload are compensated by the controller to ensure a stable
flight.

Orsag et al. [20] worked on a quadrotor with a 4-DOF robotic arm. Dynamics of the
quadrotor and the serial manipulator are obtained separately by using Newton-Euler
formulation. Then, mass, inertia, and movement of the robotic arm are fed to the
quadrotor as disturbance input. Lyapunov based model reference adaptive PI-D

controller is used. Since the model reference adaptation is sensitive to the
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disturbances, a disturbance estimator is also implemented. All these algorithms are
tested in a simulation environment with the help of MATLAB/SIMULINK.

In another recent study, Sumathy et al. [21] considered an aerial robot consisting of a
UAYV and a 2-DOF manipulator that is operating above the workspace of the UAV.
Equation of motion of the combined system and the payload attached to the end-
effector are derived by using the Euler-Lagrange method. Map of the possible robotic
arm trajectories is obtained by considering the physical constraints of the combined
system. A gain scheduling PD based feedback linearized controller is designed for
trajectory tracking, and the algorithms are tested in MATLAB simulation

environment.

In another study, Lee et al. [23], studied the quadrotor system with a bottom-mounted
2-DOF robotic arm. Lyapunov based coordinated controller is applied to the system

to achieve zero reference tracking error for both UAV and manipulator.

Villagémez et al. [24] used both the Newton-Euler and Euler-Lagrange methods for
determining the equation of motion of the unified system and the couplings between
the UAV and 1-DOF robotic manipulator that is used to pose the camera attached to
the end of it. Performances of the linear controller, backstepping controller, and the

sliding-mode controller are compared in a simulation case study.

A nonlinear model reference control approach is presented by Garimella and
Kobilarov [25]. An aerial robot with 2-DOF serial arm experimentally tested by
performing pick and place task.

Alvarez-Munoz et al. [26] studied asymptotical stabilization of a quadrotor carrying a
robotic arm. The set of nonlinear control laws were proposed. The effectiveness of

these control algorithms is tested with simulation study.

Antonelli and Cataldi [27] studied the adaptive control of the quadrotor having a n-
DOF robotic arm. The control inputs are generated by considering the physical

interaction with the arm. Moreover, the proposed approach is based on the Newton-
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Euler formulation, i.e., it is recursive. The stability analysis of the proposed algorithms

is also presented.

Ruggiero et al. [28] developed a multi-layer special control architecture in order to
effectively control an aerial platform with a 6-DOF serial robotic arm. They proposed
a novel mechanism considering a moving battery to counterweight the statics of the
robotic arm. Then, in order to overcome the mechanical limitations of the previous
layer, the residual of the arm static effects on the UAV is computed and compensated
through the given control thrust and torques. The external forces and moments acting

on the system were estimated and fed back to the controller.

Heredia et al. [31] studied the design and control of a multirotor-based aerial 7-DOF
manipulator for outdoor operation. A stable backstepping-based controller for the
multirotor that uses the coupled full dynamic model is proposed, and an admittance
controller for the manipulator arm is outlined. Both experiments and simulation results

were presented.
2.3. Summary of the Literature Survey and Research Objectives

The first step in studying aerial robotics is the selection of the proper manipulator such
as cable-like, parallel or serial manipulator. For instance, for transporting a payload
from one location to another, a cable-like manipulator may be sufficient [4]. However,
for picking a payload and delivering it to a different place or pushing a box or opening
a door, a serial manipulator is the right choice [7]. In this study, a serial manipulator
Is examined since the task considered in the thesis is box pushing.

The next step is to choose the degree of freedom of the serial manipulator. From 1-
DOF [15] to 7-DOF [18] robotic arms are considered in the literature. In this thesis,

2-DOF freedom serial robotic manipulator is studied to keep the system simple.

After selecting the robotic manipulator, the equations of motion of the coupled system
should be obtained, then the controller should be designed. In literature, the dynamics

of the combined system is obtained either by using Newton-Euler [24] or Euler-
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Lagrange [7] methods. There are two main approaches to control the unified system.
The first approach is developing different controllers for both the UAV and the robotic
manipulator [16]. Then, effects of the robotic arm such as mass, and inertia are fed to
quadrotor as a disturbance input, and quadrotor's controller copes with this
disturbance. The second approach is designing a common controller by considering
the whole system as one system [8]. In this thesis, a single controller is designed to
control the overall system. Also, decoupled controllers are developed for comparison

purposes.
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CHAPTER 3

MATHEMATICAL MODELING

In this chapter, the kinematic (position and velocity analysis) and the dynamic (the
equation of motion of the system) of the combined system are presented. Some
assumptions are made during mathematical modeling. The aerial vehicle and the links
of the robotic arm are assumed to be rigid and symmetric bodies. The rotors and the
propellers are also modeled as rigid. Moreover, blade flapping, induced drag, and the
rotor flapping are neglected as well as frictions. The generated thrust and the torque
are assumed to be proportional to the square of the rotational speed of the rotors.
Finally, the robotic arm is assumed to be aligned with the x-axis of the body frame of
the UAV.

3.1. Kinematics

Before deriving the dynamical model of the combined system, kinematic modeling
should be performed first. Some of the kinematic parameters of the combined system

are shown in Figure 3.1.
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Figure 3.1. Side View of the Combined System

3.1.1. Denavit-Hartenberg Parameters
These parameters are defined for the robotic manipulator [35].

3.1.1.1. Twist Angles

T . _ . .
B == is the angle between G and G{" about G .

B, =0 is the angle between G" and G{* about G .

3.1.1.2. Joint Angles
491+37” is the angle between G” and G about G{" .

9, is the angle between G and G* about G{”

16



3.1.1.3. Offsets

b, is the offset from O, to O, .
b, is the offset from O, to O,.
b, is the offset from O, to O,.

Denavit-Hartenberg Parameters for the robotic arm can be further written as a table
form as follow,

Table 3.1. Denavit-Hartenberg Parameters

k=1 k=2
B = 0
2
b 0, + 3z %,
2
b, b, b,

3.1.2. Transformation Matrices

Transformation matrices are used to transform the components from one reference
frame to the other. Transformation matrices between the refence frames are
represented in terms of basic rotation matrices. A basic rotation can be defined as the
rotation about one of the unit direction vector of a corresponding reference frame [34].
Vectors are rotated by using the basic rotation matrices about one of the unit direction
of the corresponding reference frame by a certain angle [34]. In Figure 3.2, the basic
rotation matrices are shown. Transformation matrices are derived by using the basic

rotation matrices.
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Figure 3.2. Basic Rotation Matrices

Basic rotation matrices can be written in terms of basis vector directions and rotation
angles. To come up with following expressions, Rodrigues' formula, and Taylor series
expansions are used [34]. Then, the basic rotation matrices in exponential and matrix

forms are as follows:

1 0 0
R (a)=€"=|0 cos(e) —sin(e,) (3.1)
0 sin(ey) cos(a) |

cos(er,) 0 sin(a,) ]
ﬁz (az) =eh% = 0 1 0 (3:2)
-sin(a,) 0 cos(a,) |

cos(a;) —sin(a;) O]
R,(a,) =€ =| sin(a)) cos(a;) O (3.3)
0 0 1
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Then, the transformation matrices between the reference frames can be given in terms

of the exponential forms of the basic rotation matrices [35].

_ 3z =TT 3z _ -y - 37
é(b,l) _ eﬁlﬂleu3(91+7) _ eUI(T)elJ3(91+7) _ eﬁzgleu1(7)eua(7) (34)
QU2 _ gif gl _ q00p0l; _ it (3.5)
-y .~ 37 _ 3z, ., -«
é(b’z) _ é(b’l)é(l'z) _ eazgleLh(T)eLb(?)e%gz _ Uz (91+‘92+7)eui(7) (36)

Also, the transformation matrix between the quadrotor’s body-fixed reference frame

and the inertial fixed reference frame can be given as,

é (i ,b) — ea3u/eazgeal¢

cw)e©®) c(w)s(0)s(¢)-sw)c(g) c(w)s(@)c(d)+sw)s(¢)|  (3.7)
= sw)c®) sw)s(9)s(p)+c(w)c(p) stw)s(9)c(s)-c(w)s(¢)
—5(0) c(9)s(4) c(9)c(¢)

In above equation, ¢ stands for cosine and s stands for sine. Where Q=[6, 6, ]T are

the joint angles of the serial manipulatorand Y=[¢ & W]T are Euler roll, pitch and

yaw angles, or phi, theta and psi.
3.1.3. Position Analysis

Firstly, values of the basic column matrices are defined since they are used in position

and velocity analysis. These are:

1 0 0
0 =0 u,=|1 =0 (3.8)
0 0 1
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Then, in the column matrix form:

P =[xy 2]

3.9)

Then, the position of link-1 of the robotic arm in quadrotor’s body-fixed and inertial

fixed reference frames can be written as

I A ) bl*(l)
p1 _b0u3 +Eu1

B byl +%é<b'”uf”l’ - %sin(el)al +(b, +%cos<6a>)ﬁs

Let’s define that:

b, =0C, , C, : center of the link 1

" _ 7 2 (i.b) =(b)
pl - pq +C pl

Similarly, the position of link-2 in different reference frames is obtained as:

b
5O = G® +hg® 4+ 2 G®
p2 _b0u3 +b1u1 + 2 ul

b

EZé(brz)Ul

_ _ _ b, _ _ A(bd)—
P = b + b + ?2 02 = b, +b,C"V, +

U (b—ZZSin(@l + ,) + b;sin(6)))u, + (b, + b—ZZCOS(@l + 6,) +b,c0s(6));

Let’s define that:

C, , C, :center of the link 2

p2 =O

=) _ &) , A>b) w(b
P’ =py +C0py”

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Moreover, the position of the end-effector in similar reference frames is explained as,
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PP = by +bu® +b,u? (3.17)

p®) = b, T +bT™ +b,0* = b, +bC"a, +b,C*7g, (3.18)

p® = (b,sin(6, + 6,) + bsin(8,))T, + (b, + b,cos(8, + 6,) + b,cos(4))T,  (3.19)
Let’s define that:

p. =00, , O, : center of the link 1

p=py +COp (3.20)
3.1.4. Velocity Analysis
3.1.4.1. Linear Velocity Analysis

Linear velocity analysis is made based on the position analysis. An overhead dot (*.”)
is used for the time derivative of the corresponding variable. The linear velocity of the

quadrotor body is as follows.
PO =[xy 2] (3.21)

The linear velocity of link-1 is expressed with respect to both quadrotor’s body-fixed
reference frame and the inertial fixed reference frame. Also, Jacobian matrices are

obtained. Linear velocity with respect to quadrotor frame is:
7 = B = (2 0,co5(6), + (-2 sin)E, 622

Eq. (3.22) can be written further as,
N =6+, (3.23)
I, =[w® v (3.24)

where,
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7 = (% c0s(0), + (- Zsin(@))T,

(3.25)
vy  =0u
Then,
P =J,0 (3.26)
Linear velocity wrt the inertial frame is as follows,
B = B+ COMp 4+ 0 B @.27)
P =p + CvsSMm W) + é("b)jlvﬁ (3.28)
The same procedure is applied to link-2,
0 = B = ({0, +4,)cos(6, + 6,)+bGeos(B))
(3.29)
+(—b—22(6>2 +6,)sin(6, + 6,)—b,65in(6,))T,
V" =90, +V,,0, (3.30)
3, =[v V9] (3.31)
where,
_(b) b2 — b2 - . —_
v, = (E cos(g, + 6,) + blcos.(¢91))u1+(—?sm(0l + 6,)-b,sin(6)))d,
(3.32)
T = (Zcos( + )0+ (-Zsin(d, + )0
Then,
P =J,0 (3.33)

22



Linear velocity in inertial frame is calculated as follows:
BY = B+ COMpL 4+ OV B (3.3
Py =p{ + CsSM (W) pP + é<i'b’j2V§ (3.35)
Similarly, the end-effector linear velocity analysis is found as:

V" = PP = (b, (6, +6;)cos(6, + 6,)+b,6icos(6))T,

(3.36)
+(~b, (6, +86,)sin(6, + 6,)—b,dsin(6)T,
V" =006+, (3.37)
Jo=[v0 W3] (3.38)
where,
Vi) = (b,cos(6, + 6,) + b,cos())T, + (~bsin(6, + 6,)-b;sin(6,))d,
(3.39)
Vi = (b,cos(6, + 6,))0, +(~bsin(4, + 6,));
Linear velocity in inertial frame is calculated as follows:
FO = O +(§(i,b>ﬁ(b> 4GB o) (3.40)
e q e e '
pd = pi + CEPSSM (W) p +é(‘*b)jevfz (3.41)

3.1.4.2. Angular Velocity Analysis

Let the angular velocity of the quadrotor in the body-fixed reference frame is written

as.
o™ =[pqr] (3.42)

Eq. (3.42) can be further written in terms of the derivative of the Euler angles [34].
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a® =LY (3.43)

Where L is the mapping matrix which is given as [34],

1 0 —sin(6)
L=|0 cos(¢) cos(d)sin(y) (3.44)
0 -sin(g) cos(6)cos(g)

Then, the angular velocity in the inertial fixed reference frame can be derived as,

& = (f(i’b)a_)éb) (3.45)

@ =COPLY =TT (3.46)

Here, T maps the derivative of the Euler angles to the quadrotor’s angular velocity in

the inertial reference frame.

The angular velocities of the links and the end-effector can be obtained from the

transformation matrices [35]. For example,
C=C@M =ghflghle™® (3.47)

Then, the angular velocity of b with respect a in the reference frame a can be computed

as follow,
@ =% =0n +0,e™n, + 0, e™"n, + .. (3.48)
Therefore, the angular velocity of link-1 is obtained by using Eqg. (3.4).
o =07, = a6, + @36, (3.49)
J,=[ay af ] (3.50)

where,
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@ =U,

@, =00
Then,

=0 _ 1 O

o =J,Q

The angular velocity in the inertial frame as follows,
@0 = &0 +CGD =50 + 0], &
Similarly, from Eg. (3.6), the angular velocity of link-2 is carried out as,

a)éb) = (92 + 9.1)62 = a_)z(ll))él + a_)ég)éz

where,
@y =0,
@y =,
Then,
& =3,,0

The angular velocity in the inertial frame as follows,

&) =0 +CWa® = g0 +CM ], &
Similarly, the end-effector’s angular velocity is:

a_)e(b) = (92 + él)UZ = a_)e(f)él + CT)e(g)éz

T [ 50 =b
‘Jew - [a)el 29 :I
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(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)



where,

(b)

a_)el = UZ
(3.61)
E)e(kz)) =0,
The angular velocity in the inertial frame as follows,
2" =" +C 5" = @0 +CMJ, O (3.62)

After obtaining the linear and angular velocities, let’s define the generalized
coordinates and the generalized velocities of the combined system.

a=[x y z ¢ 0 v 6 6]
(3.63)

=[x y 2 4 0 v 6 6]

The linear and angular velocities can be expressed in terms of the generalized

velocities in the following form [35],

(3.64)

In Eq. (3.64), Vand W are the linear and angular velocity influence coefficients,
respectively. Therefore, the velocities of the quadrotor, link-1 and link-2 can be
written in terms of the velocity influence coefficients and the generalized velocities

further as,
p =[f3X3 63X5]€| =\7q(j (3.65)
WP =[0, T 0y, |G=W,d (3.66)
po =[f3x3 ~CMssM (p®)L é("b)jlv]dﬂ?ld (3.67)
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V_\/l(i) _ [63)(3 T C(i,b)jlw} q :le (3.68)
pé') —[ 3x3 QIULINNY (p(b))L ca b)J }C_I \72C_| (3.69)
W = [63X3 T é(i,b)jZW] q :sz (3.70)

The subscript *x* is for the size of the corresponding matrix.
3.2. Dynamics

The equation of motion of the unified system is obtained by benefiting from the

Lagrange-D’ Alembert formulation. The form of the equation is given in Eq. (3.71).
d(aL] oL

|l =|"==u+ uext

dt\oq ) o9 (3.71)
L=K-U

Firstly, the kinetic and potential energies of the combined system are computed, then
the equation of motion of the system is constructed.

3.2.1. The Kinetic and Potential Energies

The total kinetic energy of the combined system is the sum of the kinetic energies of
each individual mass elements. For this combined system, the quadrotor body, link-1

and link-2 are the mass elements. The kinetic energies are calculated as:

K=K, +K,+K, (3.72)
1 =0T (i) 1 —(I)TA(b) [ Aib)T (|)
KbZE Pq mbpq+2a) Ctoi, C Wy (3.73)
K, = % 6{i)T mlﬁii)_i_%@ii)'l'é(i,b)é(b,l) flé(b,l)Té(i,b)TE){i) (3.74)
L som g 5o, L s0Tgina0: I G2 E 00T g0
_E p 2p2+§a)2 (3.75)
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In Eq. from (3.73) to (3.75), | is the constant inertia matrix in the body-fixed reference

frames of each elements.

Similarly, the potential energies of each elements are obtained as,

U=U,+U, +U, (3.76)
U, =m,ga; p’ (3.77)
U, =mgt, py’ (3.78)
U, = m,gupY (3.79)

3.2.2. The Equation of Motion

After Eq. (3.72) and Eq. (3.76) are put into Eq. (3.71), the equation of motion of the
overall system is obtained.

M (@)d +C(T,9)T+G(@) =T +T,, (3.80)
Where, M (@) € R®® is the positive definite inertia matrix. C(q,d) € R®® consists of
centripetal, Coriolis and gyroscopic terms. G(q@) includes gravity terms.

The inertia matrix can be calculated by using the following kinetic energy formulation
[36].

K==g"M(@)qJ (3.81)

N |-

The inertia matrix can be further written by using the velocity influenced coefficients
obtained in from Eq. (3.65) to Eq. (3.70).
M (@) =V, m,
) (3.82)
PVImY, AT (CEOEE0) T (EIIEER)TV,
k=1
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The elements of the Coriolis matrix can be calculated by using the following

formulation [36].

om, . N om, ; _ om; (3.83)
6qj aQb 6qa

C., and m, ~are the elements of the Coriolis and inertia matrices.

Finally, gravity matrix is computed by using the formulation,

G(@) = & (3.84)

3.2.3. Actuating Forces and Torques

>Y

Figure 3.3. Actuating Forces and Torgues Generated by the Quadrotor’s Motors [51]

Each rotor generates a thrust force, f; and atorque, z;. These forces and torques are

computed with following relations. It is assumed that the generated forces and torques
are proportional to the square of the rotational speeds of the rotors [1].

29



(3.85)

Where, j=1,2,3,4

Then, the total thrust in the quadrotor’s body-fixed reference frame can be written as,

0
fq(b’ =0 (3.86)
fZ
Where,
f,=—f—f,-f,—f1, (3.87)

The total torque applied on the quadrotor’s body can be expressed in the body-fixed

reference frame as,

Tt d(f,—f,) dCT(wj_wzz)
T, =) d(fi— 1) = dc, (&) —@?) (3.88)
Tys T, +7T,—T,+7, o (@} +; —w; +o;)

Where d is the distance between the quadrotor’s center of mass and one of the rotors.

Therefore, the rotor torques, and forces are associated with the rotational speeds of the

propellers with the following relation:

f, < G 4 G
T 0 —de; 0 de (|

ql

= 3.89
Ty2 d, 0 -dc; 0 ||&? (389)
Ta| |G G o G ||@)
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3.2.4. Generalized Input and Interaction Forces

For the quadrotor, to obtain generalized force, U, the virtual work principle is used.

In the body-fixed reference frame f, and 7, are the applied forces and moments,

a

respectively. The virtual work done by these forces can be expressed as follows [34]:
oW = f,.5p, +7,.09 (3.90)

In Eq. (3.90), 6p,=5(P,), . and 6¥=6¥. .. F, and F, represent reference

Op/0j

frames body and inertial.

By using the column matrix representations of all the vectors in body-fixed reference

frame, Eq. (3.90) can also be written as
SW = FOT.CEDTSPO 1 7O 5P (3.91)
In Eq. (3.91), sP® is usually expressed in terms of suitable set of Euler angles,
SP® = LoY (3.92)
Hence, Eq. (3.91) can be written further as,
OW = FOT.COOTSpY + 70T LoT =[C FP15p +[[ 76T (3.93)
Let Q, and Q, be defined as the generalized forces associated with SP.’ and Y.
Then, Eq. (3.93) can be written as,
oW =Q}sp! +Q|or (3.94)
For the manipulator, the virtual work can be obtained further as,
oW =7,,.00,, (3.95)
oW =17,.06, +1,.50, (3.96)

Therefore, for the overall system, the generalized force input can be written as,
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a=S|7® (3.97)

S (i,b) N e
C 055 03y, fq(b)

U=[0, L[ 0| 7" (3.98)
0,, 0,, I, | %
Where, O=[u u, u; u u U u ul (3.99)
In Eq. (3.97),
det(S) = cos(6) (3.100)

Therefore, if 0 +# ﬁn—% . neZ then, Sis an invertible matrix. In this thesis,

the range of values of theta satisfies this condition. Where, 7,, =[7, 7, ]T is the vector

of manipulator joint torques.

Analysis of the external forces applied on the end-effector at the vehicle and joint level

as follow. Let F be the applied force and M be the applied moments on the end-

effector.
|f=[|:l F, F3]T and M:[Ml M, MS]T (3.101)

Then, the applied forces and moments can be written as an augmented column matrix

form.
P=[F:M]=[F, F, £, M, M, M, (3.102)

Therefore, the applied forces and moments can be written in the generalized

coordinates level as,

a,, =HP (3.103)



Where, H e R®®is the conversion matrix. Its elements are computed step by step as:

For the generalized coordinates [x Yy z],

Ut 1 0 0| R
Uy |=|0 1 0||F (3.104)
Uge3 0 0 1||K

For the generalized coordinates [¢ 0 w],

Uexta 10 0/|M, 10 0|M,
Ups |=POXF+[0 1 0| M, |=SSM(P®)F+|0 1 0| M,| (3.105)
uext6 001 M3 0 01 M3
Eqg. (3.105) can be further written as,
Uexta 0 ~Pes Pe2 Fl 100 Ml
Ueys | =] Pes 0 —Pa Fg +/0 1 O M 2 (3 106)
uextG pe2 pel 0 F3 0 01 M3

For the generalized coordinates [01 6?2],

The joint actuators reaction torques can be written in terms of the end effector Jacobian

and the applied forces and the moments [35].

u s —
L} =3P (3.107)
ext8
Where,
J® =37 37 (3.108)

33



ell

{U} [
uextS v

e21

Ve 22

VelZ Vel3

e23

a)ell

weZl

a)elz

a)e 22

welS

W23

=

KNZZ

3

(3.109)

Finally, by using Eq. (3.104), Eq. (3.106), and Eq. (3.109), following relation is

obtained.
1 0 0 0 0 0 |
0 1 0 0 0 0 |[ F
o 0 1 0 0 o0|F
0 - 1 0 0 F
_ext - p93 peZ X (3110)
pe3 0 - pel 0 1 0 Ml
- pe2 pel 0 0 0 1 M 2
Var Ve Ves @y @y @uz || My
| Vear  Vezz  Vezs @epy @opp @pg |
Eg. (3.110) can be expressed more compactly as,
IA3x3 63)(3
O, =| SSM(P®) 1y |P (3.111)
jT jT

3.2.5. The Moments of Inertia Analysis

The values of the diagonal elements of the moments of inertias of the quadrotor are
taken from the quadrotor whose moments of inertias are experimentally identified by
Yildiz [37]. Off-diagonal elements are assumed to zero since the quadrotor is a

symmetric vehicle.
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., 0 0
lLb={0 1, 0 (3.112)
0 0 I,

For the links of robotic arm following formulations are used to calculate the moments

of inertias of the links. Links are considered as the rectangular prism.

Figure 3.4. Approximate 3-D Link Element

For the link-1,
1
I, = 24+7%)dm= 2 +72%) pdzdydx = —m, (c,> + d,>
xxl J‘_U(y ) " '”;'[1 idl(y ) pdzdy 12 1( 1 1)
SRR
1
Iyylzm'(xzjtzz)dm: N IJ;J; . (x2+zz)pdzdydx=Em1(bf+d12) (3.113)
AR R
1
Io={| (x*+y?)dm= X%+ y?) pdzdydx =—m, (b + ¢,
= ([0 +y) » VLQ |, Oy padydx=gmm (5 )
2T

Similarly, for the link-2,
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| = %mz (c,” +d,?)

XX2

1
|y = 1Mo (0" +,) (3.114)

vy

I :émz(bz2 +¢,%)

222

Since the beam is a symmetric element, off-diagonal elements are all zero.

Then,
l, 0 0 l,, 0 0
=0 I, 0| =0 I, O (3.115)
o 0 | 0o 0 |

3.2.6. DC and Servo Motors Transfer Functions

To create a more realistic simulation environment, transfer functions of the
quadrotor’s dc motor and robotic arm joint servos are implemented. For the dc motor,
the transfer function that is identified for a thesis study is used [37]. The transfer
function between the commanded propeller speed and the achieved propeller speed is

as follows,

0.98

G(S): wachieved —
0.062s+1

w,

(3.116)

commanded

For the joint servos, it is assumed that the inputs of the servos are torques. To reflect
the dynamics of the servo motors, a second order transfer function is used with

¢ =0.707 and w, =20 Hz.

W2

T ..
G s) = achieved _ n 3117
®) T S+ 24 W, S +W. ( )

n

commanded
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CHAPTER 4

CONTROLLER DESIGN

After the equations of motion of the combined system are obtained, control algorithms
are developed based on these equations. Three different control structures are built,
and their performances are observed in a simulation environment. The first controller
is the cascaded PID controller that is obtained by using the linearized equations of
motion of the system. The second controller is the feedback linearizing controller. It
is developed based on the Eq. (3.80). Finally, the last controller is the feedback
linearizing controller which is combined with an extended state observer to estimate
the parametric uncertainties and the external disturbances. Moreover, the control
inputs of the quadrotor are the rotational speeds of the propellers. For the joint arms

servos, the control inputs are the torques of the joint servo motors.
4.1. Cascaded PID Controller

This controller is designed by considering the linear and decoupled equations of
motion of the unified system. Since quadrotor is an underactuated UAV, in order to
move the quadrotor in the inertial x-direction, the vehicle should tilt in the pitch plane,
and to move in the inertial y-direction, the vehicle should tilt in the roll plane while
yaw angle is kept at zero degree. Therefore, state xis coupled with state 4, and state
y is coupled with state ¢. Hence, a controller structure that has two stages is designed.
In the outer loop, the desired pitch and roll angles are computed for the desired
translations in x and y directions. Then, all the desired states are fed into the inner loop
of the controller to compute control input, U . The overall control architecture is given

in Figure 4.1.
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Figure 4.1. The Control Architecture of the Cascaded PID Controller

4.1.1. Outer Loop Controller Design
4.1.1.1. Translational x&y Controller

This controller generates intermediate control inputs 6, and ¢, for the reference

inputs x and y, respectively. The controller is designed by using Eq’s. (3.98) and

(3.99). From these equations, following relations can be written,

u, = f,(cos(y)sin(&)cos(¢)+sin(y)sin(¢))

os(y)s ! 4.1)
u, = f,(sin(y)sin(8)cos(¢)—cos(y )sin(¢))

Then, by small angle assumptions for ¢ and 6, and by assuming =0, Eq. (4.1)can

be further written as,
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u =mX=f@o

N (4.2)
u2 = mt y == fz¢

By using Eq. (4.2), the following PID control laws are obtained by using feedback

linearizing logic for both 8,., and ¢,
t
Hdes = % (Xdes + prex (t) + Kixjex (T)dT + de dedxt(t)) (43)
z 0
m . t de, (t)
Fro == (o + Ky, (0 +K, [, ()7 + Ky, — ) (4.4)
z 0
Where,
€ = Xes ™ Xines

4.5
ey = Yaes ~ Yimes ( )

Feedforward terms X, and Y, are the desired accelerations. These values are not

des
available at this stage, but they can be calculated by numerical differentiation.
However, since it can be very noisy, a noise filter should be used, or these desired
accelerations can be fed from the outside to the simulation. In this thesis, they are
taken to be zero in the control law.

4.1.2. Inner Loop Controller Design

This control loop consists of altitude, and attitude controllers of the quadrotor and joint

controllers of the serial manipulator.
4.1.2.1. Altitude Controller

This is also a PID controller that ensures the quadrotor to track reference altitude. It is
developed by using Eq’s. (3.98) and (3.99). The following expression is written based

on these equations.

Uu,=mZ="f +mg (4.6)
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Then, the control law can be written down,

fz = mt(Zdes + K

t
o€ (t)+ Kiz'[ez ()7 + Ka deét(t)) -mJg
0

Adgain, 7, is taken as zero.

4.1.2.2. Attitude Controller

(4.7)

From Eq’s. (3.98) and (3.99), the following expressions are written for roll, pitch and

yaw dynamics.
u,=1,0= Tq
Us = Iyyé =7y

uG = IZZ‘// = Tq3

(4.8)

(4.9)

(4.10)

Then, cascaded type attitude controllers are developed. This control structure is more

robust to the oscillations. There is an inner loop which stabilizes the angular velocity

and outer loop which controls the attitudes of the vehicle. A PI controller is used for

the inner loop and a P controller is used for the outer loop. The control scheme can be

seen in Figure 4.2.

S

s
;
N/
D
N/
7=

v 9
Vo Tmes

Figure 4.2. Roll Controller Structure
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The cascaded control laws for the attitude are as follows,

t
r = (K8, (0 - DK 8,0+ K, [, (7)de] (4.11)
0
) t
r02 = (Koo (0 - O)K 2, (0 + K, [, (1) 7] (4.12)
0
t
£ = Ky, O —W)IK 8, (0 K, [e, ()de] (4.13)
0
Where,
€ :¢es_¢mes € :ges_emes € = Wies ~Wines
o e oo (4.14)
e¢ = ¢des - ¢mes eg’» = edes - emes ey) =Vies ™ Vines

4.1.2.3. Robotic Arm Joints Controller

To develop the PID joint controllers for the robotic arm, following relations are used.

o . +b
= - Mg sin(@) ) (4.15)
; b,
20, =7, —M,g Sm(@)(?) (4.16)

In Eq. (4.15), 1,,,, is the total moments of inertia of link-1 and link-2. The control law

can be written by using feedback linearizing logic as:

7, =1, (‘91 +7,) +M,gsin(g)

des

b +b,
=)

dt

t
Ty = Koo (t)+ KielJ. € (7)d7+ K,y
0
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. _ b
7, = 1) (Oyhe +74,) +M,Q Sln(ﬁz)(?)
¢ de. (1) (4.18)
7 =K 002802 t+ Kiezjegz ()7 + Ky, szt
0
Where,
eHl = eldes - elmes ( 4 19)
e€2 = szes - 02mes

After obtaining control laws, quadrotors inputs that are rotational speeds of the rotors
can be expressed by using Eq’s (3.89), (4.7), (4.11), (4.12), and (4.13).

] [ < -« -],
@’ 0 —dc, 0 dc T

ol

_ (4.20)
@’ dc, 0 —dc; O Ty
;| |G C Lo G Tg3

For the serial manipulator, Eq’s (4.17), and (4.18) define the control inputs.

Finally, the gains of the controllers are determined by using the root locus method and

shown in Table 4.1. The Gains of the PID Controllers

Table 4.1. The Gains of the PID Controllers

X y z ¢ 0 4 0, 0,
K, |24.790 | 24.790 | 39.430 | 1.959 | 1.959 | 1.269 | 1325 4669
K, 12.360 | 12.360 | 27.880 | 20.880 | 20.880 | 4.390 | 6169 | 40370
Ky 9.407 | 9.407 | 12.170 - - - 70.450 | 129.800
Koz - - - 9.172 | 9.172 | 3.339 - -
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4.2. Feedback Linearizing Controller

A hybrid system that is consisting of an underactuated aerial vehicle and a 2-DOF
serial robotic arm is studied. The combined system is still underactuated, as well. The
nonlinear equation of motion of the system is obtained in a standard form that is
common in conventional robotics applications. Then, feedback linearizing control law
is developed for the tracking control of the combined system. The basic idea behind
the feedback linearization is that constructing a transformation which exactly

linearizes the nonlinear equations of motion of the system.
4.2.1. Background

If we have a fully actuated robotic system, then to directly linearize the Eq. (3.80) with

U, =0, the following control law can be written [38].
=M@V +C(T,9T+G6(@) (4.21)
Here, V is an auxiliary control input.
Then, this control law is put into Eg. (3.80), the next expression is obtained.
q=v (4.22)

Then, the complicated and nonlinear controller design problem takes the shape of a
simpler linear controller design task. By using the feedback linearizing logic, V can

be chosen as,

€(r)dr (4.23)

<l
e
Qo

a

+
X>
"DI
X>
CDI

ot—.r—*

The feedforward term G, can be calculated numerically or it can be fed from the

outside to the system. However, it is taken as zero in the analysis.
Where € = Oueq — s (4.24)

After Eq. (4.23) is plugged into Eq.(4.21), the following control input is obtained.
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t
0=M (@), +K,g+KE+K, j g(r)d7)+C(@,§)T+G(@) (4.25)
0
From Eq’s. (3.80) and (4.25), the error dynamics can be written as,

t

§+K,E+KE+K;[e(r)dr=0 (4.26)
0

According to linear system theory, convergence of the Eq. (4.26) to zero is guaranteed

with the suitable selection of the gain parameters [38].

While implementing the controller into the simulation environment, Eq. (3.116) is
used for the dynamics of the dc motors, and Eq. (3.117) is used for the dynamics of

the servo motors of the manipulator.
4.2.2. Problem Formulation

However, the aerial manipulator in this thesis is an underactuated system. Positions x
and y are coupled with the attitudes pitch and roll angles. In this cascaded controller
architecture, there is an outer loop that computes the motion references of the attitudes
pitch and roll angles for the motion references of the x and y positions, and tracks the
motion reference of the position z. Also, there is an inner loop that tracks the motion
references of quadrotor attitudes, and joint angles of the robotic arm. Therefore, the
problem is formulated in a slightly different way. Due to the underactuated nature of
the system, the feedback linearization technique is partially applicable. So as to extend
the f/b linearization approach to the control of the aerial manipulator, the couplings
between the roll/pitch dynamics and the x/y dynamics are utilized together with the

manipulations in the relevant inertia matrices as expressed in Section 4.2.3.

The general controller architecture is given in Figure 4.3.
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Hence, the elements of the Eq. (4.21) are partitioned as [13]:

Mpp MPY Mpﬁ épp épY épQ
M = MTpY Mw Mm ,C= éTpY éw ém

MLQ M?Q MQQ é-LQ é-;Q CQQ (4.27)
_ (Ep Up vp qp
G= Gr U=\u [,V=|V, ,0=|0y

GQ Ug Vo do

aY =Vy (4-28)
_.Q =V,

From Eq. (4.23), the auxiliary control inputs are written as:
.e ~ . ~ t
V, = U + Ko, + Ky 8, + Ky, [ €, ()7
0
e ~ . A t
Vi = Oyges + KpY§Y + Kyl + KiYI§Y (r)dz (4.29)
0

t
Vo = Ogges + Kpﬁéﬂ + Kyl + KiQI§Q (r)dz
0

4.2.3. Position Control of the Quadrotor

For the position control, the following feedback linearizing control law can be written.
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u
0, =|u, [=M_V, +M} v, +M v, +C_ G, +C .G, +C 0, +GC (4.30)
u

In Eqg.(4.30), to evaluate the control inputs for the position control, desired roll and
pitch angles are required. However, in this stage, they are not available due to the

underactuated nature of the quadrotor. To deal with this problem, the control input T,

is obtained by using a slightly different way. First and second columns of the matrix
M or are taken as zero and modified M ’;Y matrix is obtained. By this way, the roll and

pitch multipliers of the inertia matrix is replaced by zero so that requirement of the
knowledge of the desired roll and pitch angles are removed. This assumption is made
because these elements of the inertia matrix are generally negligible since
manipulator’s links are much lighter than the mass of the UAV [13]. To validate this
assumption, 2-norms of the original and modified inertia matrix throughout the
simulation are given in following figures. As it is seen, the norms are very close to
each other. Therefore, for controller design, using modified inertia matrix is an

acceptable assumption [13].
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Now, T, can be computed.
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Therefore, reference values of the roll and pitch angles can be calculated by using
Eq’s. (3.86), and (3.98).

U, (cysOce +syse) f,

u,=|U, |=| (sysdcg—cyse)f, (4.31)
US (C9C¢) fz
From Eq. (4.31),
f, =00, (4.32)
O = arctan(ul COS(W)J U, sin(y) ) (4.33)
3

4. = arcsin(SiNW) =Y, COS(), (4.34)

f

z

4.2.4. Attitude Control of the Quadrotor

After obtaining reference values of the roll and pitch angles, the following feedback

linearizing control law can be written for the attitude control.
u
U =|Us =M.V + MV, + MV, +C1 0, +C,, T, +Cyd, + Gy (4.35)

From the Eqg. (3.98), and (4.35), the torques that are generated by the propellers are
calculated as,

7@ = () 'a, (4.36)

Thus, the quadrotor’s propellers rotational speed inputs can be calculated by using
Eq’s (3.89), (4.32), and (4.36) as:
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al] [ & - —¢|[f,
o (4.37)

4.2.5. Joints Angle Control of the Manipulator

The following feedback linearizing control law can be written for the attitude control.

u u ' V2 AT T 17 = AT = AT - A _
U, = L;} =M -;va +MIV, + MV, + CTqup +Cl,0, +Cool, + G, (4.38)
8

From Eq. (3.98), and Eqg. (4.38), joint torques are obtained as,
7, =Ug (4.39)

The gains of the CTC are determined by solving a multi-objective optimization
problem. The method is that the simulation model is converted into executable model
to faster the optimization process. By using the MATLAB Optimization Toolbox, and
using ITAE as a cost function, the multi-objective problem is solved. The cost function

is as follows:
ITAE = [ tle(t)|dt

Here, “e” is the error between the reference and achieved trajectories. Optimization
problem is solved to minimize the error. Nonlinear least-squares solver of the

MATLAB is used for optimization purposes.

The obtained gain values calculated as:

Ker Ko | (4.40)
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K, =diag([[7.20 10.23 28.83] [100.25 40.95 14.33] [171.69 1197.65])
K, = diag([[2.63 0.69 5.76] [37.73 6.86 2.76] [57.18 254.40]])
K, =diag([[3.33 4.17 16.19] [19.73 10.55 17.01] [23.22 34.35])

(4.41)
Where, diag]...] is the diagonal elements of the corresponding matrices.
4.3. Feedback Linearizing Control with Extended State Observer

While designing the feedback linearizing controller, it is assumed that perfect
knowledge of the dynamic system is available, and the effects of the uncertainties are
not considered. However, this is not the case in reality since there are unmodeled
dynamics and disturbances acting on the UAV. To eliminate these effects, an extended
state observer is added to the FLC (Feedback Linearizing Controller) to make the

controller more robust.

A state observer is used to estimate the unmeasured state variables by using the
measured state variables and control input signals [46]. The system uncertainties such
as unmodeled dynamics, mass variations, and externally applied forces can be added
as a state to an observer, then an extended state observer is obtained [47].

The inertia, Coriolis and gravity matrices can be rewritten by considering the uncertain

parts of them as [45],

¢(@,q)=C'(q,9)-AC(q.7) (4.42)

Then, the Eq. (4.21) can be further written as,

o=M'@v+C'@a)7q+G'() (4.43)
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Later, the Eq. (4.43) is plugged into Eq. (3.80), the following error dynamics is

obtained.

t
e+K e+K, e+ Ki_[é(r)dr= f (4.44)
0

p

Where,
f =M@ AM(@5 +AC@ 0)G +AG(@)+T,, | (4.45)

The conventional FLC might cause an unstable system performance for nonzero

uncertainties, f . Therefore, a control law is proposed including the estimate of f .

The estimation is made by using an ESO.

0=M'@)@G, +K g+KE+K [e@)dn)+C'@qg+G @) -M'@)f  (4.46)

o
O t—

For further use, f is partitioned as:

_hl
©

—hl
Il
—hl

where f eR¥™, f eR™ f, eR™ (4.47)

l
o =

4.3.1. Position Control of the Quadrotor

From Eq. (4.46), the following control law is written by including the estimate of the
f.

=M p\Tp +M pYVY +M pQVQ +Cppqp +CMC‘1Y +CchTQ +G

p p
-M

<l

p

(4.48)

— — A —

fo-M, f,—-M T,

pp " p

Then, the quadrotor input f, is calculated like in the Eq. (4.32).
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4.3.2. Attitude Control of the Quadrotor

From Eq. (4.46), the following control law is written by including the estimate of the
f.

Ap = A A o

-M or fp —
From Eq. (4.36), quadrotor torque inputs can be calculated.
4.3.3. Joints Angle Control of the Manipulator

From Eq. (4.46), the following control law is written by including the estimate of the

T 7 — A —

prp_M-;QfY_MQQ

e}

Then, by using Eq. (4.39), the joint torques are obtained.

Therefore, to apply proposed control laws, the estimation of the uncertainty, f isvery

crucial. In the next sections, the concept of ESO and the designing an ESO for our

system to estimate f are given.

In Figure 4.66, the general architecture of the controller with ESO in Eq. (4.46) that

we used in this thesis is given.
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4.3.4. Concept of Extended State Observer

To describe the concept of ESO, consider the following integral chain system with

uncertainty [48].

X =X,
X, =X
(4.51)
X, = f(X,..X,,w(t),t)+bu
y=X

Where, x,X,,...,X, are the states of the system. uis the input control signal, b s the

system parameter, and y is the measured output. w(t) is the disturbance acting on the

system such as external interaction forces and unmodeled dynamics.

f(x,..., X,, W(t),t) represents the dynamics of uncertainty.

In the scope of ESO, Eq. (4.51) can be further written as,

X =X,

X, = X

X, =X,,, +hu (4.52)
Xn+l = h(t)

y=X

Where, h(t) = f(xl,..., X,, W(t),t) which is the rate of change of the uncertainty. x,,,

is the extended state to represent the uncertainty. Then, to estimate the states of the
system, the following linear ESO can be provided [48].

2, =2,+ B (y-12)

2, =23+ f,(y-17,)

: (4.53)
2, =2,,+p,(y—1z)+bu

2,0 =Bra(y—17)

55



In Eq. (4.53), z,,2,,...,2,,2,,, are the estimates of the states. g, f,,..., 5,, 5,,, are the

1 5nt Tl

gains of the linear ESO.
4.3.5. Problem Formulation

Let x, =g and x, =q, and from Eq’s. (3.80) and (4.42), the following relation can be

written.
G=M"@)|0-C'@.)HI-G'@ ]+ F (4.54)

Then, Eqg. (4.54) can be further written as a subsystem for each joint(generalized

coordinates) space parameters i =1,2,...,8.

X; =Xy
X, =U, + fi (4.55)
Yi =X

Where, Ui:[M'*1(q)[U—C'(q,*)CT—G'(CT)H. Then, for the continuous and

differentiable f;, an extended state x, = f, is added. Afterwards, Eq. (4.55) is

expressed as,

Xli - X2|
X2| = Ui + X

4,56
X5 = hi (t) ( )
Yi =X

Here, h.(t) = f, is assumed to be an unknown and bounded function [49]. It is the rate

of change of the uncertainty for each generalized coordinates.

EQ. (4.56) can be rewritten in state space form for each generalized coordinates as,
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0 1 0][x,] [0 0
=0 0 1| x,;|+/1/U+ O

0 0 0fx,]| |0 h (t)
y=[L 0 0%
OR (4.57)
X = Ax, +BU, + Eh (t)
Y, =CX

01| z, 0
1 Zy |+ 1 Ui+|:i(yi_yi)
01| z 0

OR (4.58)
ii :Ai_i+§iui+|:i(yi_yi)

J,=Cz

In Eq. (4.58), 7, z,,, z;, and ¥, are the estimated values of X;, X, ,X,, and y;,

respectively . L is the gains of the linear ESO, and it is in the following form.
L= [ﬂu Ba B ]T (4.59)

These coefficients can be determined by using a proper method like pole placement.
For stability analysis, by using Eq’s. (4.57) and (4.58), the following error equation

can be written.

§=Ag+Eh() (4.60)
Where,
By 10
§=%-7 and A, =|-5, 0 1 (4.61)
By 0 0
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The proposed linear ESO is stable if A?i is Hurwitz and h,(t) is bounded [50]. The

characteristic polynomial of Aei IS written as,
4 () =8+ BS” + Bys + By = (5 + W)’ (4.62)

Let w, is the bandwidth of the observer, then the coefficients of the Eq. (4.62) can be

selected as [50],
Bii =3Wy, By :3W§ , and Bai = Wg (4.63)

The gains of the FLC is the same as in (4.41). The gains of the ESO is obtained again
by solving a multi-objective optimization problem by benefiting from the MATLAB

Optimization Toolbox. The gains are shown in Table 4.2.

Table 4.2. The Gains of the Extended State Observer for the Generalized Coordinates

X y z ¢ 0 4 6, 0,

By 4.28 4.28 1584 | 1711 | 811 | 28.75 | 24.62 | 49.51
5, 6.10 6.10 | 83.61 | 97.53 | 21.90 | 275.52 | 202.03 | 816.97
i 2.90 290 | 147.14 | 185.36 | 19.72 | 880.12 | 552.63 | 4493.91

Remark 1: A large observer gain w, indicates a small estimation error. Furthermore,

a large gain increases the speed at which the ESO tracks the total disturbance.
However, a high gain leads to an increased noise sensitivity [45].
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CHAPTER 5

SIMULATION RESULTS AND DISCUSSION

5.1. Simulation Environment Information

The nonlinear coupled system dynamics and kinematics models are coded in
MATLAB/Simulink environment. Also, the proposed control algorithms are
implemented in the same environment and tested with these nonlinear unified system
model. The ODE2 (Heun) Solver of Simulink with the fixed time step of 0. 001

seconds is used to simulate the scenarios.

Moreover, to avoid unrealistic controller commands, saturation blocks are added to
the controller outputs. These are the internal control inputs roll and pitch angles,
+/ =17 degree, rotational speeds of the rotors, 2000 rad/sec, and the torque inputs of

the servo motors of the robotic arm, +/-3 Nm.

Numerical parameters of the unified system are given in Table 5.1. The most of these

parameters are taken from thesis written by Yildiz [37].

Table 5.1. Numerical Parameters of the Combined System

mo [kg] 2.6550 d [m] 0.3435
m12 [Kg] 0.1700 bo [M] 0.0800
hoco [kgm?] 0.0457 b1z [M] 0.3000
lyyo [KgM?] 0.0457 C12[M] 0.0500
2o [KgM?] 0.0846 drz [m] 0.0500
Iux,12 [kgm?] 7.0830e-05 gravity [m/s?] 9.8100
lyy.12 [kgm?] 0.0013 cr [N/(rad/s)?] 2.7400e-05
l22.12 [kgm?] 0.0013 cq [Nm/(rad/s)?] 0.0470e-05
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5.2. Simulation Scenario

For all controller structures, the same scenario is used. However, the performance
comparison is made between FLC architecture and FLC-ESO architecture since the
cascaded PID controller structure is simulated with ideal motor and sensor models.
The FLC and FLC-ESO controller architectures are simulated with nonideal motor

models and ideal sensor models. The scenario is presented in Table 5.2 and Figure 5.1.

Reference Trajectories of the Combined System

Table 5.2. The Simulation Scenario

Time [s] 0-9 10-19 25-30 30-60
x [m] 0-5 5 5 5
y [m] 0-3 3 3 3
z [m] 0-(-2) -2 -2 -2
 [de] - - - -
6 [deg] - - - -

v [deq] 0-(-5) -5 -5 -5

6, [deg] 0 0-15 15 15

0, [deq] 0 0-10 10 10
F, [N] 0 0 0-5 5
F, [N] 0 0 0-2 2
F, [N] 0 0 0-6 6
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Figure 5.1. Reference Trajectories of the Combined System

In Figure 5.1, the reference trajectories of the combined system are shown. In this
figure, the reference roll and pitch angles do not exist since they are internal control
inputs that are generated for the reference cartesian coordinates of x and y. However,
they are provided in upcoming sections. Here, coupled commands are given to the

combined system for performance analysis of the controllers. Performance results are

also presented in the proceeding sections.

61

60



5_
— F1 F2 F3
Z4r 1
44}
@
o
L 3F -
=]
2
3
22
1_ -
0 | | 1 1
0 10 20 40 50 60

Time [s]

Figure 5.2. Externally Applied Forces on the End-Effector

In Figure 5.2, the applied forces on the tip point of the end-effector of the combined
system are illustrated. These applied forces are acting on the system in three directions

of the cartesian coordinate system simultaneously.
5.3. Simulation Results
5.3.1. Cascaded PID Controller

This controller architecture, unlike the other two controllers, has been tested with ideal

motor models. Results are presented as follows.
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5.3.1.1. Position Control of the Quadrotor
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Figure 5.4. The Absolute Error Between the Commanded and the Achieved Quadrotor Position
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From Figure 5.3 and Figure 5.4, the commanded position tracking performance of the
controllers can be seen. The controllers are tracking the reference trajectories with a
very small error at first, and around zero errors throughout the simulation scenario.
The initial deviations are due to the transient behavior of the controllers. However, the
initial deviation in the x-direction is bigger than other channels (y and z) since the
channel x is highly coupled with the manipulator joint arm angles. In other words, the
Euler pitch and joint angles are in the same plane, and channel x is directly related to
the Euler pitch angle. Therefore, at first, there are some oscillations in joint angles,
and this affects the position x of the quadrotor. At time 10 seconds, since the robotic
arms are moved, some deviations occur. However, these deviations are suppressed by
the controllers. At time 25 seconds, the external forces are started to be applied to the
end-effector. This disturbs the quadrotor of its hover position. In a short amount of
time, these disturbance forces are balanced by the controllers, and the quadrotor comes

to its original position.

5.3.1.2. Orientation Control of the Quadrotor
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Figure 5.5. The Reference and Achieved Orientation of the Quadrotor
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Figure 5.7. The Absolute Error Between the Commanded and the Achieved Quadrotor Orientation

Figure 5.5 and its zoomed version Figure 5.6 illustrate the desired and achieved

orientation of the quadrotor. Here, phi and theta are the intermediate control signals
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that are generated for reference y and z positions, respectively. To avoid instability
due to unrealistic control signals, their maximum values are limited to certain bounds.
Also, the controllers command high phi and theta angles initially, and system response
Is slower with respect to this, so the initial errors are high. At 25 seconds, the
disturbance forces are applied to the end-effector, and to balance these forces,
quadrotor tilts in both roll and pitch planes. As a result, phi and theta angles are
different from the zero values in the hover position. Further, at 25 seconds, the yaw
angle is affected by these disturbances, but the yaw controller brings it to its original
position. In general, the attitude controllers track the desired orientations with very

small errors throughout the scenario.

5.3.1.3. Joint Angles Control of the Robotic Arm

— 20 T T T T T
[=)]
@
=
- 10+ .
g theta1 thetal
= 0 _
E
< _10 1 1 1 1 1
0 10 20 30 40 50 60
— 20 T T T T T
o
@
=
ol 10 [
o
g —/
= 0 _
E | | I thletag Itheta2des
-10
0 10 20 30 40 50 60

Time [s]

Figure 5.8. The Reference and Achieved Joint Angles of the Robotic Arm
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Figure 5.10. The Absolute Error Between the Commanded and the Achieved Joint Angles

Figure 5.8 and its zoomed version Figure 5.9 shows the commanded and obtained

manipulator’s joint angles, and Figure 5.10 illustrates the error between them. At first,
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there are some small oscillations due to the transient characteristics, and quadrotor’s
movement. In other words, they are affected by the fast pitch dynamics of the
quadrotor. The other reason is that joint angles are controlled by the independent joint
controllers, so they are influenced by the quadrotor’s motion. However, the joint
controllers suppress these oscillations in a short amount of time. At time 10 seconds,
the joint angles are commanded to come at certain angles, and this is achieved by
controllers successfully. At 25 seconds, the effects of the disturbance forces deviate
the joint angles from the reference values, but the joint controllers cope with these

interruption forces well. These controllers show satisfactory performance.

5.3.2. Feedback Linearizing Controller and Feedback Linearizing Control with
Extended State Observer

In this subsection, the performance results of the two controller structures that are FLC
and ESO- FLC are presented. Their performances are also compared to each other in
terms of some measurement’s techniques in the next section. ESO based FLC is the
modified version of the FLC. Both controller architectures have the same FLC gains.
In order to increase the robustness of the FLC, an ESO is added. With this ESO, the
combined system has been gained active disturbance rejection characteristics.
Moreover, both controllers are implemented and tested in a simulation environment
that has a nonideal dc motor model and a servo motor model to simulate a more

realistic scenario.
5.3.2.1. Position Control of the Quadrotor

From Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14, the following
observations can be made. Both position controllers show stable system performances,
and they track the desired trajectories. At first, these two controllers demonstrate
similar tracking performances. Also, at 10 seconds, the quadrotor moves away from
the desired path due to the movement of the serial manipulator. Then, this is

compensated by the controller for both architectures with similar performances.
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However, the performance differences come out when the disturbance forces are
applied to the unified system at 25 seconds. As it can be seen from Figure 5.12, and
Figure 5.14, the system with the FLC controller more sensitive to the disturbances
with respect to the system with ESO-FLC. Due to its active disturbance rejection
property, the ESO-FLC suits faster to these interruption forces and enables quadrotor

to settle down to the reference trajectory faster.
5.3.2.2. Orientation Control of the Quadrotor

The orientation control has a direct effect on the position control of the quadrotor since
it is an underactuated vehicle, and roll and pitch angles are coupled with the cartesian
positions y and X, respectively. From the position control section, it is known that
ESO-FLC shows better position error minimization characteristics. Therefore, it
should be the result of better orientation control of the controllers, and it can be

observed from Figure 5.17 and Figure 5.20.
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Figure 5.15. The Reference and Achieved Orientation of the Quadrotor [FLC]
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Before the external forces are applied on the system, FLC and ESO-FLC controller
structures show similar performances in terms of the orientation control of the
quadrotor as seen from Figure 5.15 and Figure 5.18. However, after the exerted
disturbance forces, ESO-FLC stands out in terms of its disturbance rejection
capability. It compensates these disturbances faster and brings the quadrotor to the

desired orientation more quickly.
5.3.2.3. Joint Angles Control of the Robotic Arm

The FLC and ESO-FLC performances are very similar until the interruption forces are
applied. At first, there are small oscillations due to the transient dynamics of the
controllers and coupling between the pitch orientation. However, these oscillations are

suppressed by the controllers in a short amount of time.
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— 1 . .
E’ : theta1 thetal
— 05 /\ .
i
©
s 0fe
E \_//-
< 05 ' '
0 1 2 5
— 0.1 . .
o
E 0 N N [\/\/\/\/\/\I‘\AA
o Vv
©
3 W
S .01r .
E theta2 theta2 |
-02 : :
0 1 2 5

Time [s]

Figure 5.22. The Reference and Achieved Joint Angles of the Robotic Arm Between 0 to 5 Seconds

[FLC]

75



I

[theta1d -thetal|

es

jtheta2d -theta2)
es

w
93]
T

w
T

N
93]
T

—_—
o
T

Arm Joint Angles Absolute Error [deg]
- N

OE-T
=
f

30 40 50 60
Time [s]

o
—_—
o
N
o

Figure 5.23. The Absolute Error Between the Commanded and the Achieved Joint Angles [FLC]

— 20 T T T T T
(=]
@
=
— 10 .
.,g theta thetal
s 0 .
E
< _10 1 1 1 1 1
0 10 20 30 40 50 60
— 20 T T T T T
(=]
@
=
o 10 B
©
© —/
= 0 -
E | | I thletaz Itht—.\ta2 dos
-10
0 10 20 30 40 50 60

Time [s]

Figure 5.24. The Reference and Achieved Joint Angles of the Robotic Arm [FLC-ESQ]
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It can be understood from Figure 5.23, and Figure 5.26, the joint angles of the FLC
controlled system are disturbed more. FLC-ESO minimizes the error faster with
respect to the FLC because of its active disturbance rejection capability. In general,
both controllers provide reference joint angles tracking, but the FLC-ESO structure is

more powerful.

5.3.3. Performance Comparison of the Feedback Linearizing Controller and

Feedback Linearizing Controller with Extended State Observer

To investigate and compare the performances of the controllers, there are some

measurement methods like calculation of the error terms.
5.3.3.1. Comparison of Error Terms

In literature, there are several measures to compare the performances of the control
systems. The most common ones The Integral of Squared Error (ISE), The Integral of
Absolute Error (IAE), The Integral of Time Multiply Squared Error (ITSE), and The
Integral of Time multiply Absolute Error (ITAE). They are calculated based on the

error between the desired and achieved states. They can be formulated as,

€(t) = Olyes (t) — G (1) (5.1)
ISE = jot (e(t))2dt (5.1)
IAE = I;|e(t)|dt (5.2)

ITSE = [ t(e(t)?dt (5.3)
ITAE = I;t|e(t)|dt (5.4)

The error terms of the commanded generalized coordinates are tabulated in the
following table. Since phi and theta are the intermediate control inputs, they are not

included into this table.
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Table 5.3. The Error Term Values of the Each Generalized Coordinates

Generalized ISE IAE ITSE ITAE
Coordinates | FLC | FLC | FLC | FLC | FLC | FLC | FLC | FLC-
-ESO -ESO -ESO ESO
X 0.016 0.015 | 0.681 | 0.553 | 0.336 | 0.294 | 16.410 | 10.763
y 0.042 0.003 | 1.156 | 0.257 | 1.587 | 0.053 | 43.256 | 5.622
z 0.020 0.002 | 0.541 | 0.124 | 0.518 | 0.013 | 14.678 | 2.256
v 0.043 0.000 | 0.697 | 0.055 | 1.303 | 0.007 | 21.905 | 1.663
o 0.016 0.000 | 0.481 | 0.025 | 0.465 | 0.001 | 15.918 | 0.435
0, 0.006 0.000 | 0.376 | 0.020 | 0.212 | 0.001 | 13.715 | 0.589

From Table 5.3, it can be said that tracking performance of the FLC-ESO controller
is superior to FLC controller. Estimation of the disturbances significantly increases

the robustness of the system.
5.3.3.2. Comparison of Energy Consumption

One of the most common performance comparison techniques of the comparison of
the controllers is the energy consumption of the controlled system under the action of
the controllers. The total energy consumption of the combined system is the sum of
the energy consumptions of the quadrotor’s dc motors and robotic arm joint servo
motors. The calculations are made by benefiting from the achieved rotational speeds
of the dc motors and generated dc motors torques for the quadrotor. For the robotic
arm, achieved joint velocities of the servo motors and generated joint servo torques
are used for calculations. To find the energy consumptions, first, the power
consumptions can be computed for both quadrotor and arm by using the following
formulae. Here, the powers are calculated in the unit of Joule/sec.

4 2 .
Puea =2, 7;W, and P, =10, (5.5)
j=1 j=1
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Figure 5.27. Rotational Speeds of the Each DC Motors of the Quadrotor [FLC]
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Figure 5.28. Rotational Speeds of the Each DC Motors of the Quadrotor [FLC-ESO]

Then, the integral of the powers with respect to time is gave the energy consumption

of the quadrotor and the joints in the unit of Joule. Also, Figure 5.27 and Figure 5.28

80



are the visualization of the used rotational speeds of the rotors for FLC and ESO- FLC

controlled systems. Moreover, Figure 5.29, and Figure 5.30 show the generated joint

torques by the joint servo motors. Finally, Figure 5.31, and Figure 5.32 demonstrate

the joint velocities of the serial robotic manipulator.
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Figure 5.29. Robotic Arm Joint Torques [FLC]
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Figure 5.30. Robotic Arm Joint Torques [FLC-ESO]

Base on Eq’s. (5.6) and (5.7), the quadrotor energy consumption in the system with
FLC controller scheme is less with respect to FLC-ESO architecture, but they are very
close to each other. For the robotic arm, FLC-ESO architecture is more energy
efficient. Overall, the total energy consumption of the FLC-ESO structure is slightly
bigger than the FLC architecture.

82



Joint Velocities [rad/s]

Joint Velocities [rad/s]

015 T T T T T

theta1 dot thet32 dot
0.1 1
0.05 .
0
-0.05 1
_01 1 1 1 1 . 1
0 10 20 30 40 50 60
Time [s]
Figure 5.31. The Joint Velocities of the Robotic Arm [FLC]
01 T T T T T
theta1 dot thet32 dot
0.05 | 1
0 <
-0.05 1
_01 1 1 1 1 1
0 10 20 30 40 50 60

Time [s]

Figure 5.32. The Joint Velocities of the Robotic Arm [FLC-ESQ]
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CHAPTER 6

CONCLUSION

6.1. General Conclusion

In this thesis, modeling, simulation, and control of an aerial manipulation system
consisting of a quadrotor and a 2-DOF robotic serial manipulator are presented.
Quadrotor and robotic manipulator are considered as one combined system and
modeled accordingly. Firstly, kinematics of the unified system is derived, and
Denavit-Hartenberg parameters are obtained for the serial manipulator. Then, by using
the kinematics parameters, the dynamics of the unified system are formulated by
utilizing the Lagrange-D’Alembert method. Based on the equations of motion of the
combined system, the control system algorithms are developed for reference trajectory
tracking. Three different control system algorithms are studied. The 3-D position and
yaw orientation of the quadrotor, and joint angles of the serial manipulator are directly
controlled. The roll and pitch orientation of the quadrotor is not directly controlled
since they are coupled with quadrotor positions y and x. Their reference values are
generated for desired y and x positions, and they are indirectly controlled as an

intermediate generalized coordinate.

The cascaded PID controllers are derived by taking advantage of the linear decoupled
equations for each generalized coordinate. Root locus method is used to tune the gain
of the controllers. Then, developed control algorithms are tested with the highly
nonlinear system model. While testing this controller structure, ideal dc and servo
motor models are used. As it can be seen from the simulation results, the decoupled
controllers show satisfactory performances. Reference trajectories are tracked as
desired. Also, disturbance forces are applied to the end-effector, but the controllers

compensate these interruptions and bring the system to the reference paths.
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Secondly, by using the nonlinear equations of motion of the unified system, one of the
most common controllers in the robotics research area which is a feedback linearizing
controller is designed for stable system performance. The gains of this controller are
selected to converge the errors to the zero. While tuning the gains, the root locus
method is tried. However, the gains could not be optimized by this method
satisfactorily. Then, these gains are optimized by using the nonlinear least-squares
solver of the MATLAB. Afterward, with optimized gains, the proposed control
algorithm is tested in a simulation case study. It is seen that the overall system tracks
the reference trajectories and error dynamics converge to zero in time. Also, when the
external disturbance forces are applied to the system, the controller deals with these

unwanted interactions considerably.

However, the feedback linearizing controller assumes the availability of the exact
dynamics model of the system. Unfortunately, this is not the case for real-life
applications since there are unmodeled dynamics like friction. Also, there may be
external disturbances on the system, load variations, and parameter variations. These
uncertainties can cause instability. Therefore, these uncertainties are modeled as an
extended state and an extended state observer is designed to eliminate those
uncertainties. This ESO is added to the FLC control architecture. In the FLC-ESO
control structure, the gains of the FLC are the same as the gains of the predesigned
FLC. To determine the ESO gains, the pole placement technique is tried, but the
optimized solution could not be found. Thus, the gains of the ESO is tuned by
benefiting from the nonlinear least-squares solver of the MATLAB. Then, developed
algorithms are implemented in the nonlinear system simulation environment. As it can
be seen from the simulation results, the trajectory tracking performance of the FLC is
significantly increased with ESO. The performances of the FLC and FLC-ESO control
architectures are compared with the calculation of error terms and energy consumption
of the controlled systems. In terms of error terms, the performance of the FLC-ESO
structure is very ahead of the performance of the FLC architecture. They are close to
each other in the aspect of energy consumption.
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6.2. Future Work

Nonideal sensor models such as accelerometer/indoor GPS, gyroscope and encoder
will be implemented in the simulation environment to reflect a more realistic scenario.
Also, the gains of the controllers will be updated. Developed algorithms will be

validated with an experiment study.

The designed system is more sensitive to the disturbance forces in yaw plane with
respect to the disturbances in roll and pitch planes due to its lower moment of inertia.
To overcome this drawback, the design of the robotic arm may be updated. In this
thesis, both revolute joints operate in pitch plane. If one of the revolute joints operates

in the yaw plane, then the end-effector’s position can be controlled more successfully.
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