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Supervisor, Scientific Computing, METU
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ABSTRACT

AN AFFINE TERM STRUCTURE MODEL FOR TURKISH INTEREST RATE
SWAP MARKET: DO SWAPS SPAN VOLATILITY RISK?

Özbekler, Ali Gencay

M.S., Department of Financial Mathematics

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Dr. İrem Talaslı

August 2019, 49 pages

We follow novel procedure of [4] to assess presence of unspanned stochastic volatility
(USV) phenomenon in the Turkish lira interest rate swap (IRS) market. The estima-
tions reveal that IRS yield curve dynamics fail to span volatility in IRS market and
thus volatility risk cannot be hedged using only IRS instruments. The major impli-
cation of USV is then used to investigate the systemic volatility in domestic markets.
In this scope, we employ USV condition as a specification for affine term structure
(AFTS) models. Comparing AFTS models with stochastic and constant volatility, we
find that three-factor constant volatility model provides more robust estimation results
in terms of both volatility and yield fitting.

Keywords: Affine Term Structure Models, Term Premia, Stochastic Volatility, Sys-
temic Volatility, Spanning Hypothesis

vii



viii



ÖZ

TÜRKİYE FAİZ SWAPI PİYASALARI İÇİN AFFİNE VADE PRİMİ MODELİ:
FAİZ TAKASI VOLATİLİTE RİSKİNİ HEDGE ETMEK AMAÇLI

KULLANILABİLİR Mİ?

Özbekler, Ali Gencay

Yüksek Lisans, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Dr. İrem Talaslı

Ağustos 2019, 49 sayfa

Bu çalışmada, [4] çalışmasında önerilen yöntem kullanılarak Türk lirası faiz swapı
(IRS) piyasası için kapsanmamış rassal volatilite (USV) olgusu değerlendirilmiştir.
Tahminler, IRS verim eğrisi dinamiklerinin IRS piyasasındaki oynaklığı kapsamadığı
ve bu nedenle oynaklık riskinin yalnızca IRS enstrümanları kullanılarak "hedge" edi-
lemeyeceğini ortaya koymaktadır. Ayrıca, USV sonuçları yurtiçi piyasalarda sistemik
riskin varlığına ilişkin çıkarım yapabilmemize imkan sağlamaktadır. Bu kapsamda,
USV koşulları afin vade yapısı (AFTS) modelleri açısından gösterge olarak kulla-
nılmaktadır. Sonuçlar, rassal ve sabit volatilite AFTS modelleri karşılaştırıldığında
üç-faktörlü sabit volatilite modelinin hem oynaklık hem de getiri tahmini açısından
daha güçlü sonuçlar verdiğine işaret etmektedir.

Anahtar Kelimeler: Afin Vade Yapısı Modeli, Vade Primi, Rassal Oynaklık, Sistemik
Oynaklık, Kapsama Hipotezi
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CHAPTER 1

INTRODUCTION

The term structure of interest rates, which could be explained as the relationship be-

tween yields and maturities, draw great attention in economics and finance. Through

studying the source of and the determinants of the term structure, economists try to

provide a complete overview of interest rates. As a starting point, there has been

strand literature accumulated in the construction of theoretical framework on term

structure modeling. Since the 1930s, models with simple equilibrium structure to

stochastic processes developed in defining the relationship between yields and their

term to maturities.

One of the pioneering works that builds the theoretical framework of term structure

modeling was proposed by Irving Fisher, in the scope of well-known expectations

theory [28]. The expectations hypothesis points out that long term interest rates coin-

cide with the expected short term rates through the investment horizon. Since expec-

tations play a major role in the consistent term structure modeling of interest rates,

even though expected short term rates deviate from its general trend, they tend to

revert to their mean. The expectation hypothesis states that longer maturity rates are

simply an average of expected future rates of the following subsequent periods. Thus,

the hypothesis makes no distinction between different maturity assets in terms of their

generated returns, and therefore no additional compensations, and default-free bonds

are perfect substitutes on all maturities.

Another theory for the term structure of interest rates centers around the notion of

rational expectations hypothesis ([49] ) and states that market prices are efficient

in incorporating economic agents’ expectations concerning all available information
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([47], [45], [56] ). The foundation of rational expectations paves the way for employ-

ing martingale theory in the context of term structure modeling by [54] and usage of

stochastic processes in the evaluation of spot rate modeling (in [22] ) that became one

of the main pillars of modern term structure models. In this framework, studies such

as [56] and [31] apply rational expectations theory to the term structure of interest

rates and find that moving averages representation of interest rates is fundamental

and provides some evidence on interest rates to be linearly weighted combinations

of different maturity rates. On the contrary, the expectations hypothesis fails to find

empirical support in terms of constant risk and term premium and no uncertainty as-

sumptions. Therefore, a term premium could appear, when there is a deviation from

the hypothesis. Some preliminary studies such as [48] emphasize the importance of

risk premiums by finding reasonable stable premiums on the medium-term interest

rates with different maturities using the notion of Hicksian risk aversion. This no-

tion is a well-known contribution of Hicks in [34], which is amended in a simple

model in hypothesizing that the long-term rate tends to exceed the value implied by

the average of expected future rates by a premium. Thus, differences in expected and

actual returns could be interpreted as rewards for risks. Although, the premise models

such as the liquidity preference hypothesis of John Hicks in [34] explains expected

returns always increase with maturity and therefore the risk premium is hypothesized

in an increasing pattern with maturity, [26] finds that the ordering of expected returns

across maturities changes through time and this implies changes in the ordering of

risks. This behavior of expected returns is inconsistent with previous simple term

structure models. Moreover, the findings of [26] support that the expected term pre-

mium is time-varying and its sign is subject to the changes of the respect to economic

cycles: positive in boom whereas negative in recession periods.

Actually, the term premium literature is also benefited from the liquidity preference

hypothesis of Hicks (in [34] ) and the market segmentation hypothesis of Culbert-

son (in [20]). The liquidity preference hypothesis asserts that premium would ap-

pear because future rates are not known with certainty and thus the actual yield of

long-term securities is uncertain and the holders of securities would require compen-

sation for bearing the uncertainty risk given the risk aversion. On the other hand,

the market segmentation hypothesis contends the Hicksian theory by stating that the
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shorter and longer maturity markets are essentially independent, which implies that

the market for bonds of different maturities is isolated from each other, so that the

explanations using expectations are theoretically unsatisfactory and lack of empirical

relevance. Although, both the liquidity preference hypothesis and the market segmen-

tation hypothesis are empirically rejected by successive studies (see [45] ) and thus

[26] attempts to validate or to deny those hypotheses led the accumulation of strand

literature in term structure models.

The term structure of interest rates is important for economic agents in representing

market pricing of risk and general expectations on the economy regarding different

time horizons. The interest rates in an economy are anchored by central banks or

monetary authorities using short rates. Thus, the longer rates are out of the direct

control horizon of monetary policy through the transmission mechanism. Since un-

certainty regarding economic conditions usually increases with maturity, longer-term

interest rates are subject to risks stem from this uncertainty. Therefore, it is important

to assess the dynamics for term structure, roughly a compensation for risk, for all eco-

nomic agents in terms of whether policymaking or portfolio management purposes.

The policymakers use term premium models as an input for their decision-making

process in terms of market perception of risk and economic prospects. From the per-

spective of central banking, the term premium carries expectations on future short

term rates and thus implies the expected monetary policy stance. Also, the term pre-

mium is essential for treasury financing operations while determining the financing

strategy and the balance between short and long term issuances. Besides, evaluat-

ing the term structure is important for investors and portfolio managers in making

investment decisions. Investors generally use interest rate contingent assets, such as

derivatives, in hedging their portfolio risks. Thus, it is important to illuminate the

future path of short term rates for hedging strategies.

The term structure of interest rates could be obtained by comparing realized long term

rates and its corresponding expected forward short term rates. Even though, there are

a plethora attempts in decomposing yield curves’ factors including term premium, the

analysis of term premium is not straightforward since term premium is not directly

observable nor is it measurable and it requires some assumptions to be extracted from
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the market rates (in [40]).

In the literature, the term structure of interest rates is exploited to evaluate yield curve

movements in an arbitrage-free framework. No arbitrage property in finance neces-

sitates the prices of securities to be equal when their level of risks are the same.

Thus, the pricing procedure of fixed income securities could be simplified with the

assumption of the no-arbitrage condition in a predetermined volatility and correlation

constraints across the cross-section of yields. The recent arbitrage-free term premium

models could be classified under two major categories: the affine terms structure mod-

els and the macro-finance models. In the affine approach, the yield curve is assumed

to be affected by a set of unobservable factors and the framework satisfies no-arbitrage

conditions. Whereas, macro-finance models emerge from macroeconomics, which

takes into account the effect of economic conditions in factor modeling. Although

both models require yields to be affine functions of sets of risk factors which are as-

sumed to have Gaussian distributions, so-called affine Gaussian term structure mod-

els, some of the studies perceive risk factors as latent variables ([24], [21]) and others

use macroeconomic variables in addition to unobservable risk factors ([7], [1])).

In this context, according to their risk factors’ specifications, term structure models

can be classified into two groups. Firstly, affine term structure models imply that

bond yields are a linear function of a set of risk factors, and it is accepted models that

rely exclusively on yields as input data in the scope of this paper. Although affine

models are computationally costly, they have become popular because of their ana-

lytical tractability. Affine models are developed as an eclectic model in the finance

literature. After the first use of martingale property ([54] ) and stochastic processes

([22] ) in the context of interest rate models, following the development of similar

argument for option pricing by the seminal paper of Black and Scholes ([11] ), Va-

sicek in [57] characterizes the term structure of interest rates in an efficient market

framework. [57] models the term structure as an affine function of spot short rate

factor, a single factor, in a Markov setting while conforming the dominating theo-

ries of the expectation hypothesis, the liquidity preference hypothesis and the market

segmentation hypothesis at that time. Also, [57] defines the difference between the

forward rates and expected spot rates as the liquidity premium, while this is referred

to as the term premium by [50]. The single factor model implies that longer-maturity
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yields are determined by the average of short term yields and the risk premium, which

hinges on the variance of instantaneous rate and thus the market price of risk ([51]

). The market price of risk is the marginal compensation for bearing an additional

unit of risk. In single-factor models, bond prices depend only on a single short rate

and as a consequence the price changes are perfectly correlated across the maturities,

which led a short term rate to completely span whole term structure and bond prices

are related to the path of interest rates ([57], [17] ). Cox et al. (1985) in [17] over-

come those issues by extending the affine structure to a two-factor squared Gaussian

model framework while asserting that the mean and variance is proportional to the

state vector for a given stochastic process. Due to the increased popularity of inter-

est rate contingent securities, several specifications are proposed for modeling term

structure. Heath, et al. in [32] exhibit a multifactor model, which provides consistent

structure with the observed term structure of interest rates and any specified volatility

pattern.

Also, [35] presents a term structure model with a time-varying drift parameter by ex-

tending fundamental one-factor models. Most of the contemporary affine term struc-

ture models benefit from the complete characterization of [24]. In [24], it is suggested

that models with affine bond yields by presenting a consistent and arbitrage-free mul-

tifactor model of the term structure of interest rates in which factors, both the fac-

tors extracted from market yields and unobservable latent factors, follow stochastic

Markov process with stochastic volatility and jump-diffusion state processes. The

direction, which is paved by [24], is further extended by [21]. The structural dif-

ferences and relative goodness-of-fits of affine term structure models are explored in

their seminal study. [21] posits that there is a tradeoff between flexibility in model-

ing the conditional correlations and volatilities of the risk factor within the family of

affine models. They also characterize the affine specifications by diversifying multi-

factor affine models with augmented stochastic volatility parameters. Although one of

the most striking features of affine term structure models is their analytical tractabil-

ity, it comes with a cost of strict linear restrictions. Recent advances help to ease

some of the restrictive assumptions, even if there is plenty of space open to further

exploration in the term premium literature (see [38], [58] and [12]).

The second major group of term structure models is arranged under the macro-finance
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group, in which macroeconomic variables and financial market indicators are used in

addition to the latent risk factors. Since [26] argued that the expected term premium

is time-varying and could be related to the economic cycles, there has been strand

literature accumulated to expose the determinants of term premium and yield curve

structure. In their seminal paper, [7] employs a special case of [24] in a vector au-

toregressive (VAR) model. They incorporate macroeconomic variables as risk factors

such that the pricing kernel is represented as a factor in the model and find that those

macro variables can explain 85% of the total variation in yields. Some increasingly

popular models attempt to make a connection between the joint evaluation of yields

including macroeconomic and financial variables in affine modeling framework (see

[8], [58], [30] and [19]). In macro-finance models, some papers suggest that ex-

pectations play a major role in term premium models and therefore market players’

consensus on several macroeconomic indicators may be related to term premium de-

velopments. While the results are more than sufficient to support the hypothesis, they

also encourage further development in the literature of the term structure of interest

rates ( [37], [38] and [53]).

In addition to term structure models, various studies attempt to identify the main

factors that impact interest rates. For instance, to explain the variation observed in

returns Litterman and Scheinkman (1991) in [42] employ an alternative approach

to determine common factors and claim that most of this variation is attributable to

yield curve factors, namely level, steepness, and curvature. Since the term structure

models are accepted to incorporate sufficient information to complete fixed income

markets, this invokes the questioning of the spanning hypothesis which states that

the yield curve contains all of the necessary information for forecasting or estimating

yields. The notion of spanning hypothesis is also exploited to assess whether volatility

spans by the yield curve factors. The relationship between yield variation and yield

curve factors nest important implications. If common factors of yields can explain

a significant part of the yield volatility, one can hedge its portfolio against volatility

using solely those securities. Thus, it is crucial to be investigated not only for portfolio

management but also for market monitoring purposes.

In this thesis, we firstly address the presence of volatility spanning conditions in Turk-

ish lira interest rate swap (IRS) returns following the methodology of [4]. They

6



propose a procedure, where quadratic variation could be approximated by realized

volatility in a relatively higher frequency such as intraday and daily frequency. Thus,

the volatility spanning hypothesis could be tested using the factors and volatility by

employing realized volatility data. The most striking result of volatility spanning

hypothesis is that since fixed income markets are assumed to be complete due to in-

corporating all the available information, if variation in the swap rates are explained

by yield curve factors, meaning that the IRS market is complete, and the volatility can

be hedged using only the IRS instruments. Our empirical results show that volatility

does not span by the IRS market and the market is incomplete. This phenomenon is

called as unspanned stochastic volatility (USV) by [15]. The results are consistent

with the existing literature ([15] and [4] ) in addressing USV in fixed income mar-

kets. Hence, we propose a new indicator for systemic volatility for the Turkish lira

IRS market using the residuals from the spanning hypothesis. The proposed systemic

volatility indicator could be used to assess the vulnerability of the market to possible

sudden shocks.

We also introduce two different affine term structure models: one with a stochastic

volatility ([18] ) and one is with constant volatility ([59] ) component. Then, we use

the USV phenomenon as a specification test for model to suggest and find out that the

affine term structure model without stochastic volatility provides a more robust and

reliable results in representing realized rate dynamics.

The plan of our paper is structured as follows. In Chapter 2, we introduce spanning

hypothesis approachs and primarily focus on unspanned stochastic volatility studies.

In Chapter 3, we provide methodological information regarding affine term structure

models with and without stochastic volatility and USV testing procedure.Also, in-

formation regarding data and the method that we use in estimating volatilities are

explained, in Chapter 3. Then, we give empirical results on realized data and affine

term structure fitted data on USV procedure in Chapter 4. In Chapter 5, we give a

brief conclusion.
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CHAPTER 2

SPANNING HYPOTHESIS

Financial market participants attempt to identify the main factors that impact interest

rates. In their seminal paper of [42], Litterman and Scheinkman (1991) apply an al-

ternative approach in determining the common factors, which explain the variation in

US Treasury bond returns and find out that most of the variation could be attributable

to yield curve factors, namely level, steepness, and curvature. Since the term struc-

ture models are accepted as incorporating sufficient information to complete fixed

income markets, this raises the spanning hypothesis: the yield curve contains all the

necessary information for forecasting or estimating yields. Following this assump-

tion, there appears the need to extract information from the cross-section of returns.

In this framework, the principal component analysis (PCA) is used to find out the

common factors of the yield curve. PCA is a dimension reduction technique, which

is employed to analyze and explore large data sets easier and reduced dimensions are

representing most of the information while all components are orthogonal, linearly

independent, to each other. Although the principal components are extracted in a

mechanical way, the first three principal components of the cross-section of yields

correspond to the level, steepness, and curvature of the yield curve in order. Thus,

principal components are reliable indicators in representing information regarding

the yield curve dynamics.
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2.1 Unspanned Macroeconomic Variables

The term structure models are accepted as incorporating sufficient information to

complete fixed income markets. Then, affine models using principal components

as yield curve factors are contributed the popularity of term structure models due

to their convenience in practice (see [24], [25], [21] and [52]). Those advances in

the yield curve and term premium literature, help the rise of spanning hypothesis;

that is, yield curve contains all the information for forecasting or estimating yields.

This notion evokes the spanning hypothesis to become a benchmark model for testing

the relevance of not only yield curve dynamics but also macroeconomic factors in

extracting contemporaneous relationships and prediction of fixed income yields. This

implication led to a pile of macro-finance affine term structure models ([7], [8], [6],

[55] and [10]) in which macroeconomic variable factors are spanned by the yield

curve.

On the contrary, this macro-spanning structure posits that strong and counterfactual

restrictions on the joint distribution of bond yields and the macroeconomic indicators

and the relationship between macro-variables and term premiums ([36] ). Thus, there

is a growing consensus on questioning spanning hypothesis; whether those macro-

finance models are successful improving output in addition to yield curve dynamics

(see [44], [29], [36], [14] and [23] ) states that the cross-section of yields fail to

explain almost half of the variation in the bond risk premia and only a limited part of

unexplained variation could be detected by macroeconomic factors. Similarly, [36]

investigated the impact of unspanned macro risks on bond risk premiums and find out

that unspanned real economic activity and inflation have a detrimental effects on term

premiums but not on the bond pricing. Thus, they develop a canonical affine model

such that macro factors are not perfectly spanned by yield curve dynamics.

2.2 Unspanned Stochastic Volatility

The spanning hypothesis is also used for assessing the completeness of a fixed in-

come market in terms of volatility forecasting and volatility hedging purposes. Under

complete market conditions of the term structure models, fixed income securities are
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assumed to be redundant ([46] ) and they could also be used to hedge volatility risk.

As it is emphasized by [4], the major property of affine term structure models is that

quadratic variation of bond yields of each maturity are linear combinations of the term

structure of yields. Thus, the volatility of the yields could be hedged solely through

bonds.

First of all, [43] examined the level of interest rate volatility and the shape of the

yield curve. They discuss a model in which the shape of the yield curve is measured

by yield spreads of butterflies, which is the curvature factor, and they exhibit a strong

link with volatility. Similarly, [27] finds out that swaption and swap straddle positions

could be hedged solely by LIBOR bonds, therefore this concludes completeness in

the bond market. On the contrary, [5] posits that volatility risk cannot be hedged

via trading bonds only. Also, Collin-Dufresne and Goldstein (2002) in [15] find that

using swap rates, caps and floors, there is a weak linkage between changes in swap

rates and at-the-money straddles. Their results suggest that there is at least one state

variable which affects the volatility but not rate innovations. Thus, portfolios are

exposed to volatility risk and swap markets are found to be incomplete ([15] and

[39] ). Then, they adapt equity-derivative literature, where volatility risk cannot be

hedged solely by underlying stock ([33] ), to fixed income derivatives and permit

fixed-income derivatives to be non-redundant securities by specifying joint dynamics

of rates and state variables that drive volatilities. This restriction is called unspanned

stochastic volatility (USV). They identify a class of affine models that can exhibit

USV. However, even if the affine framework could provide closed-form solutions for

bonds, bond yields do not relate to volatility state. As a consequence, bond prices

are not sufficient to hedge volatility risk nor do they identify affine class models with

USV restrictions In this setting both bonds and derivatives are required for hedging

against the volatility.

The novel procedure in [15] reveals that only a limited portion of straddle returns

could be explained by the changes in the term structure of swap rates and most of this

unexplained portion of straddle returns could be represented by a single factor. Thus,

the risk factor, which is a deterministic volatility indicator, does not relate to interest

rate changes. This outcome could be generalized to that fixed income markets are

incomplete. Although in most of the affine term structure models ([24] ) spot rate
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is a function of unobserved variables and implies that bonds are sufficient to com-

plete fixed income markets, [15] proposes a restriction that yields do not depend on

volatility variables. In this case, such securities are not redundant and cannot be used

to hedge volatility. Similarly, [41] finds out that USV is valid for the cap market in

a quadratic term structure model. [4] highlights the spanning conditions for condi-

tional variances and propose a framework for instantaneous volatility and quadratic

variation. Their derivations have implications in enabling discrete-time data in testing

the contemporaneous affine yield variation spanning condition at a reasonably high

frequency (daily or intraday). Then, the semi-martingale property of bond prices un-

der physical probability measure implies that changes in yields over relatively short

periods could be remissible in their contributions to instantaneous yield variation and

thus quadratic variation. Thus, we can use realized volatility as a consistent approx-

imate of quadratic variation. In this framework, [4] concludes that the US Treasury

bond market curve fails to span realized volatility and the bond market is incomplete

in hedging volatility risk.

Despite the fact that USV models are resolving the unfitting in the broad class of

affine models, there is a tradeoff between the accuracy of the affine model and its

representation power of volatility. [18] finds out that spanned models capture the

cross-section of yields well but not the volatility while unspanned models fit volatil-

ity at the expense of a poorer fitting to the cross-section of yields. Thus, the practi-

tioner should make a decision between the accuracy of the yield curve and volatility

modeling purposes.
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CHAPTER 3

METHODOLOGY

3.1 Testing Volatility Spanning Condition

In this thesis, the volatility span hypothesis of fixed income securities is tested using

realized volatility of yields following [4].

The fundamental structure of affine term structure models states that short term rates

are an affine function of latent and/or observed factors ([24] ). Let y0(t) be the short

term rate and X(t) be the state variable. Then,

y0(t) = δ0 +
N∑
i=1

δixi(t) = δ0 + δ
′

XX(t). (3.1)

Following [17], it is assumed that risk-neutral probability measure Q, the state vector

X is governed by the following stochastic differential equation (SDE):

dX(t) = κ(Θ−X(t)) + ∑√
S(t)dWQ(t), (3.2)

where S(t) is an affine function of state variables, S(t) = αi + β
′
iX(t), where αi is a

scalar and βi is an N × 1 vector; S(t) indicates that SDE has not only stochastic drift

but also stochastic diffusion parameter ∑. In this setting zero-coupon bond prices at

time t with maturity τ could be obtained using (3.3):

P (t, τ) = exp(A(τ)−B(τ)
′
X(t)), (3.3)

where A(τ) is a scalar function and B(τ) is N × 1 vector of functions solving the

ordinary differential equations (ODE).
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The relationship between bond prices and yield to maturity could be expressed as

P (t, τ) = exp(−τyτ (t)), which in turn could be used to make connection with (3.3)

that

yτ (t) = −A(τ)

τ
+
B(τ)

′

τ
X(t). (3.4)

For J × 1 vector of zero coupon yields, we assume that the number of state variables,

N , are less than the observed bond yields, J ≥ N . Simply, (3.4) can be transformed

as a system of equations:

Y (t) = −A+B
′
X(t), (3.5)

where N × 1 vectors Y (t) =

{
yτj(t), j = 1, ..., J

}
, A =

{
A(τj)

τj
, j = 1, ...J

}
and

N × J matrix B =

{
B(τj)

τj
, j = 1, ...J

}
. In the popular affine model of [24], B

is taken as full-ranked, and thus all factors are assumed to have contemporaneous

relationship with the bond prices. We can transform (3.5) to

X(t) = (BB
′
)−1B(Y (t) + A) = C + (BB

′
)−1BY (t), (3.6)

where we define C = (BB
′
)A.

Also, using Ito’s Lemma and (3.4), the SDE of the yield process yτ follows a process

with drift and diffusion. Since our aim is to focus on volatility, drift parameter is

assumed to have the form µyτ = µyτ
(
X(t), t

)
and hence,

dyτ (t) = µyτ (X(t), t)dt+
B(τ)

′

τ
∑√S(t)dWQ(t). (3.7)

By the diffusion parameter, it is easy to obtain instantaneous variation of yield, namely

instantaneous volatility:

Vyτ (t) =
B(τ)′

τ
∑S(t)∑′B(τ)

τ
. (3.8)

[4] posits that since the affine model follows a stochastic volatility pattern, S(t) matrix

is also an affine function of the state vector X(t). In a similar fashion, (3.6) implies

that X(t) is also an affine function of Y (t). Thus, it is convenient to assert that

instantaneous volatility is an affine function of the yields in the following form,

Vyτ (t) = aτ,0 +
J∑
j=1

aτ,jyτj(t). (3.9)
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Instantaneous variation of yields could be mapped to contemporaneous cross section

of yields in an affine setting as it is represented in (3.9). This relationship is viable

across the maturity spectrum and is called as the volatility spanning condition. [4]

asserts that this volatility spanning condition is valid for both affine and quadratic

term structure models. Since, quadratic models and affine models are isomorphic

to each other in terms of generating volatility and in case of extended state vectors

quadratic term structure models could be incorporated by affine models ([2] ). Thus,

allowing sufficient number of state vectors in turn led [4] to cover quadratic models.

This instantaneous volatility framework enables us to move from discrete frequency

basis to test volatility spanning condition in high frequency setting. The quadratic

variation (QV ) process of observed yields can be defined as:

QVyτ (t) =

∫ t

0

Vyτ (s)ds. (3.10)

Then, the model can be reduced to allow testing daily or intraday time increments.

We will let h > 0 be an intraday time increment in the period of [t + h, t]. The

quadratic variation between the time period could be approximated as QVyτ (t +

h, h) = QVyτ (t + h) − QVyτ (t) and ȳτj(t) = 1
h

∫ t+h
y

Yτj(s)ds. Therefore, (3.9)

becomes:

QVyτ (t+ h, h) = aτ,0 +
J∑
j=1

aτ,j ȳτj(t+ h, t). (3.11)

Here (3.11) defines the contemporaneous affine yield variation spanning condition.

The right side of (3.11) is said to be approximated by intraday or at least frequency

closing yields in daily basis. Since, the quadratic variation cannot be directly observed

in bond prices, most of the previous studies ([15], [39] and [41] ) tried to expose this

relationship using volatility embedded derivative prices. However, [4] proposes a

proxy for quadratic variation that could be obtained from observed prices and yields.

[4] highlights the spanning condition for conditional variances and propose a frame-

work for instantaneous volatility and quadratic variation. Their derivations have im-

plications in enabling discrete time data in testing the relation contemporaneous affine

yield variation spanning condition at a reasonable high frequency (daily or intraday).

Then, the semi-martingale property of bond prices under physical probability mea-

sure implies that the changes in yields over relatively short periods, as dt2 tends
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to zero, could be remissible in their contributions to instantaneous yield variation

and thus quadratic variation. Therefore, we can approximate the realized volatility

with quadratic variation, using bond prices’ martingale approximation property un-

der physical probability. This relation enables us to test spanning condition using

realized volatility.

The approximate martingale relationship of bond prices under P -measure is

EPt
[
yτ (t+

ih

n
)

]
= yτ (t), i = 1, ...n (3.12)

So that the conditional variance could be given by

V arPt
[
yτ (t+ h)

]
= EPt

[ ∑
i=1,...,n

(
yτ
(
t+

ih

n

)
− yτ

(
t+

(i− 1)h

n

))2]
. (3.13)

Note that (3.13) is assumed to hold for any n, thus as n goes to infinity variance

equation approximate to the quadratic variation. This relationship can be interpreted

as

V arPt
[
yτ (t+ h)

]
= EPt

[
QVyτ (t+ h, h)

]
. (3.14)

Hence, by combining equation (3.11) and (3.14), we obtain

V arPt
[
yτ (t+ h)

]
= aτ,0 +

J∑
j=1

aτ,jEPt
[
ȳτj(t+ h, t)

]
. (3.15)

This approximation is assumed to be valid only under P -measure. It should be high-

lighted that the moments of the estimation under P -measure andQ-measure would be

subject to some disparity over discrete steps that are defined as intraday or daily time

intervals. This discrepancy is the major result of differences in the diffusion setting

of two measures.

By the assumption of affine representation under P -measure, we can present predic-

tive yield variation spanning condition. Since future expected yields can be inter-

preted as a linear function of the current level of yields, we get

V arPt
[
yτ (t+ h)

]
= bτ,0 +

J∑
j=1

bτ,j ȳτj(t). (3.16)
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Although conceptually (3.16) seems to be a robust predictor of yield variation, it

should be noted that the test result will not be as powerful as (3.11). Since expec-

tations on future volatility is a conditional and an ex-ante concept, as being forward

looking in its nature, the left hand side of (3.16) is an ex-post measure, namely real-

ized, and subject to a larger innovation component.

3.1.1 Measuring Realized Volatility

The contemporaneous affine yield variation spanning condition requires us to use

intraday or daily realized volatility in the testing procedure. We follow a model-

free approach in estimating the realized volatilities in the scope of volatility span

hypothesis. The variation is computed basically by taking sum of squared changes

in predetermined discrete periods. For illustrative purposes, we annualize those daily

realized volatility by taking 252-working day calendar year and obtain

v2yτ (t+ h, h) =
1

h

n∑
i=1

(
yτ

(
t+

ih

n

)
− yτ

(
t+

(i− 1)h

n

))2

. (3.17)

Here, we take sampling frequency as h
n

for realized volatility yτ in the period [t, t+h].

As emphasized before, realized volatility converges to quadratic variation as discrete

time intervals become smaller. Hence, using realized intraday volatility measure we

construct (3.11) to test volatility spanning conditions.

3.1.2 Testing Contemporaneous Volatility Spanning Condition

The volatility spanning condition constructed in (3.11) implies that using a linear

regression the condition could be tested by using

QVyτ (t+ h, h) = aτ,0 +
J∑
j=1

aτ,j ȳτj(t+ h, t) + ε(t+ h, h), (3.18)

where ε(t+ h, h) denotes the error term. In a hypothetical case, where there exist no

measurement errors the residual term tends to be zero, but in practice measurement

of yields, the transformation of yields to zero-coupon returns and the calculation of

instantaneous volatility are subject to error. This is why there appears the residual

term ε(t+ h, h) in the equation (3.18).
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As shown in the previous sections, we could use realized volatility in the approxi-

mation of quadratic variation of yields. Also, yield levels across different maturities

tend to have quite high correlation; thus, analyzing yields contemporaneous impact

on volatility indicator is embedded to violate fundamental assumptions of linear re-

gressions. To alleviate this problem, we apply one of the most common dimension

reduction techniques, the principal component analysis. The principal components

are mechanically linearly independent from each other and as a result of this prop-

erty, we can have robust estimations. Although [4] employed the first six principal

components in analyzing US treasury bonds’ volatility spanning condition, we pre-

fer to use only the three principal components; those are accepted as bearing level,

steepness and curvature factors of the yield curve.

v2yτ (t, h) = β0 +
3∑

k=1

βkPCk(t, h) + ε(t, h), (3.19)

where, ε(t, h) denotes the error term.

Least squares model is given by (3.19) corresponds to the volatility spanning regres-

sion. The linear combination of yields is assumed to cover most of the information

that is incorporated by the cross section of yields. While, (3.19) uses yields in volatil-

ity spanning hypothesis, we prefer (3.19) in our estimation due to reduced dimen-

sionality of cross sections and also, some of the statistical problems, such as mul-

ticollinearity, is resolved by using mechanically orthogonal principal components.

Thus, we employ (3.19) in testing the contemporaneous volatility spanning condi-

tion.

3.2 Affine Term Structure Models

In this thesis, we follow a new estimation procedure proposed by Creal and Wu (2015)

in [18] for affine term structure models. Their method is flexible to use for both

spanned and unspanned stochastic models. The USV models impose the restriction

that yields do not depend on volatility factors ([15] ). Even though spanned mod-

els solely require an optimization of the parameter space, estimation of unspanned

models are more demanding due to unknown closed form likelihood functions. This
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problem of USV models is resolved by [3]. In their seminal paper, a new method

is developed for estimating closed form maximum likelihood estimators. Also, [18]

proposes the expected maximization algorithm should be used in affine term structure

estimation procedure.

First of all, [18] depicts an affine term structure model with stochastic volatility sim-

ilar to the studies such as [24] and [21], which is also sufficient to cover unspanned

models. The model is described as covering X1 × 1 vector of state variables x1 that

have Gaussian distribution and its diffusion parameter consists of X2 × 1 vector of

state variables x2. In this model, state variables follow vector autoregressive (VAR)

model with conditional heteroscedasticity.

x1t+1 = µQx1 + ΦQ
x1x

1
t + ΦQ

x1x2x
2
t +

∑
x1x2

ξQx2,t+1 + ξQx1,t+1,

ξQx1,t+1 ∼ N
(
0,∑x1

∑′

x1

)
,

∑
x1

∑′

x1 = ∑
0,x1

∑′

0,x1 +
X2∑
i=1

∑
i,x1

∑′

i,x1x
2
i,t,

ξQx2,t+1 = x2t+1 − EQ(x2t+1|Lt),

(3.20)

where Lt captures all available information at time t. Following [17] the state factor

variables for diffusion are affine transformation of the multivariate process, which can

be stated as

x2t+1 = µx2 + ∑
x2ωt+1, (3.21)

ωi,t+1 ∼ Gamma
(
vQx2,i + zQi,t+1, 1

)
, i = 1, ..., X2, (3.22)

zQi,t+1 ∼ Poisson
(
e
′

i
∑−1
x2 ΦQ

x2
∑
x2ωt

)
, i = 1, ..., X2. (3.23)

In the distribution of zQi,t+1 in (3.23), e′i denotes transpose of the ith column of the

X2 ×X2 identity matrix IX2 .

Since we handle the model using zero coupon rates, we can obtain the bond price by
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discounting the short rate as follows:

P n
t = EQ

[
exp(−rt)P n−1

t+1

]
.

By the affinity assumption, the short term interest rate is the linear function of factors:

rt = δ0 + δ
′

1,x2x
2
t + δ

′

2,x2x
1
t .

Hence, bond prices are exponentially affine functions of state variable under Q-

measure are determined by

P n
t = exp

(
ān + b̄

′

n,x2x
2
t + b̄

′

n,x1x
1
t

)
.

The bond loadings following [18] are then given by:

ān = −δ0 + ān−1 + µQ
′

x1 b̄n−1,x1 +
[
µx2 + ΦQ

x1µx2 + ∑
x2v

Q
x2

]′
b̄
′

n−1,x2+

1

2
b̄
′

n−1,x1
∑

0,x1
∑′

0,x1 b̄n−1,x1+

µ
′

x2Φ
Q

′

x2
∑−1′
x2

(
IX2 −

[
diag(ιx2 −∑′

x2 b̄n−1,x1x2)
]−1)∑′

x2 b̄n−1,x1x2−

vQ
′

x2

[
log(ιx2 −∑′

x2 b̄n−1,x1x2) + ιx2 −∑′

x2 b̄n−1,x1x2
]
,

(3.24)

and

b̄n,x2 = −δ1,x2 + ΦQ
′

x1x2 b̄n−1,x1 + ΦQ
′

x2 b̄n−1,x2+

1

2

(
IX2

⊗
b̄
′

n−1,x1
)∑

x1
∑′

x1

(
ιX2

⊗
b̄
′

n−1,x1
)
−

ΦQ
′

x2
∑−1′
x2

(
IX2 −

[
diag(ιX2 −∑′

x2 b̄n−1,x1x2)
]−1)∑′

x2 b̄n−1,x1x2 ,

(3.25)

where

b̄n,x1 = −δ1,x1 + ΦQ
′

x1 b̄n−1,x1 . (3.26)

Those equations, (3.24) to (3.26), have initial values: ā1 = −δ0, b̄1,x1 = −δ1,x1

and b̄1,x2 = −δ1,x2 . The matrix ∑
x1

∑′

x1 is a block diagonal matrix with elements∑
i,x1

∑′

i,x1 , where i = 1, ..., X2 denotes the number of volatility factors. Also, b̄n−1,x1x2 =∑′

x1,x2 b̄n−1,x1 + b̄n−1,x2 . This is also stated by [18] that the condition must be satisfied

for factor loadings: ∑′

x2 b̄n−1,x1,x2 < 1 for each volatility factor.

Then, bond yields can be demonstrated using the bond loadings with the help of the

relationship between bond prices and yields ynt = − 1

n
log(P n

t ).

ynt = an + b
′

n,x2x
2
t + b

′

n,x1x
1
t , (3.27)

where an = 1
n
ān, bn,x2 = 1

n
b̄n,x2 and bn,x1 = 1

n
b̄n,x1 .

20



3.2.1 Unspanned Stochastic Volatility Models

Using the unspanned stochastic volatility model restrictions that are proposed by [15],

we can simplify the bond loadings in (3.27) by setting volatility state vector as zero,

b̄n,x2 = 0, across cross section of maturities. Thus, we get

ān = −δ0 + ān−1 + µQ
′

x1 b̄n−1,x1 +
1

2
b̄
′

n−1,x1
∑

0,x1
∑′

0,x1 b̄n−1,x1 , (3.28)

and

b̄n,x1 = −δ1,x1 + ΦQ
′

x1 b̄n−1,x1 . (3.29)

3.2.2 Physical Dynamics

[18] constructs the state variable dynamics that have the same structure under both

P -measure and Q-measure. The state variables again follow a VAR model with con-

ditional heteroscedasticity similar to that of under Q-measure:

x1t+1 = µx1 + Φx1x
1
t + Φx1x2x

2
t + ∑

x1x2ξx2,t+1 + ξx1,t+1,

ξx1,t+1 ∼ N
(
0,∑x1,t

∑′

x1,t

)
,

∑
x1,t

∑′

x1,t = ∑
0,x1

∑′

0,x1 +
X2∑
i=1

∑
i,x1

∑′

i,x1x
2
i,t,

ξx2,t+1 = x2t+1 − E
(
x2t+1|Lt

)
.

(3.30)

In this structure Gaussian state variables are also dependent on non-Gaussian state

variables in VAR equation through Φx1x2 and ∑
x1x2 . Also, the conditional mean and

variance are different under P -measure and Q-measure become

x2t+1 = µx2 + ∑
x2ωt+1, (3.31)

where

ωi,t+1 ∼ Gamma
(
vx2,i + zi,t+1, 1

)
, i = 1, ..., X2, (3.32)

and

zi,t+1 ∼ Poisson
(
e
′

i
∑−1
x2 Φx2

∑
x2ωt

)
, i = 1, ..., X2, (3.33)

with vx2 = (vx2,1, ..., vx2,X2) as shape parameters. The autocorrelation of x2t+1 is

controlled by Φx1 and also ∑
x2 is a scale matrix and its lower bound is constrained by

µx2 .
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The sufficiency conditions for x2t > 0 are µx2 > 0; ∑
x2 > 0; ∑−1

x2 Φx2
∑
x2 > 0.

The Feller condition in discrete time, which is vx2,i > 0, guarantees the process of

volatility state variablesin order to avoid their lower bound.

The formulation

E
(
x2t+1|Lt

)
= (IX2 − Φx2)µx2 + ∑

x2vx2 + Φx2x
2
t

gives us the conditional mean of state variables in diffusion, which is also affine. In

addition, we use

V
(
x2t+1|Lt

)
= ∑

x2 diag(vx2 − 2∑−1
x2 Φx2µx2)

∑′

x2 + ∑
x2 diag(2∑−1

x2 Φx2µx2)
∑′

x2

as the conditional variance of volatility factors.

3.2.3 Stochastic Discount Factor

Spanned Models

The agents are compensated for holding fixed income securities. The compensation

for risk defines the relationship between P -measure and Q-measure via stochastic

discount factor (SDF). In the following equation E
[
P n
t+1e

−rt
]

= E
[
P n
t+1Mt+1

]
, where

Mt+1 denotes SDF, the no-arbitrage assumptions requires Mt+1 > 0. For intuition,

we focus on the compensation for the risk, the log of SDE, mt+1 = log(Mt+1) and

decompose the compensation parameters as

mt+1 = −rt +
1

2
λ

′

x1tλx1t − λ
′

x1tηx1,t+1 − λ
′

ωtηω,t+1 − λ
′

ztηz,t+1. (3.34)

The compensation for risk consists of three parts, namely Gaussian risk, gamma risk

and non-Gaussian risk. In (3.34), ηi,t+1 corresponds to standardized shocks with zero

mean and unit variance; λit denotes the price of risk for risk components. The notion

of compensation for risk covers Gaussian shocks in ηx1,t+1, gamma shocks in ηω,t+1

and non-Gaussian shocks in ηz,t+1 parameters.

The market price of risk actually corresponds to the compensation per unit of risk

bearing. [18] gives the prices of risks as the following:

λx1t = V
(
x1t+1|It, x2t+1, zt+1

)−1/2[E(x1t+1|It, x2t+1, zt+1

)
−EQ

(
x1t+1|It, x2t+1, zt+1

)]
,
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λωt = V
(
ωt+1|It, zt+1

)−1/2[E(ωt+1|It, zt+1

)
− EQ

(
ωt+1|It, zt+1

)]
,

λzt = V
(
zt+1|It

)−1/2[E(zt+1|It
)
− EQ

(
zt+1|It

)]
.

They are defined as the standardized deviations between mean levels under P -measure

and Q-measure.

Unspanned Models

The implemented restriction in the unspanned models helps us to simplify the risk

compensation. Since USV models put some restrictions on the volatility state vector

and on the stochastic diffusion parameter, (3.34) can be reduced by taking the gamma

shock, ηω,t+1, and non-Gaussian shock, ηz,t+1, as zero. The volatility parameters are

then written as unused while estimating likelihood functions. The compensation is

mt+1 = −rt +
1

2
λ

′

x1tλx1t − λ
′

x1tηx1,t+1.

The compensation parameter mt+1 in the USV models is then depended on price for

risk of drift factors and Gaussian shocks.

3.2.4 State Space Representation

[18] define xt as N1 × 1 vector of state factors, which cover both spanned xt =

(x1
′

t , x
2
′

t )
′ and unspanned xt = (x1t ) stochastic volatility models within affine frame-

work. If the number of observed yields are higher than number of factors, all yields

could not be priced without error. Thus, the yields, those observed with error or not,

are separated.

Assume that there are N different maturities for yields ynt , where n = (n1, . . . , nN)

and Yt = A + Bxt for A and B are N dimensional vectors. Due to the fact that

N > N1 , only Y (1)
t = SY1Y1 could be priced without error while the other yields,

for N2 maturities, where N2 = N − N1, Y (2)
t = SY2Y2 are exposed to Gaussian

measurement errors. In this framework, the equations are given as

Y
(1)
t = A1 +B1xt, (3.35)

23



and

Y
(2)
t = A2 +B2xt + ψt, ψt ∼ N(0,Ω), (3.36)

where Ai = SYiA and Bi = SYiB for i = 1, 2. Then, the representation for state

space is completed using (3.30) – (3.33).

3.2.5 Estimation Procedure

[18] also proposes an estimation methodology using the concept of least squares. In

the scope of estimation procedure, firstly the parameter set θ is separated according

to whether those used in the bond loading calculations or not. Then bond loadings

and spanned factors are solved as xt = B−11 (Y
(1)
t −A1) given the parameters. In this

procedure, the spanned factors do not represented by principal components and the

yields Y (1) are not subject to measurement error, which let us extract factors, directly.

Those properties of and the parameters (µx1 ,Φx1 ,Φx1x2) under P -measure are solved

in a Gaussian VAR framework using least squares regressions.

The likelihood function for spanned models given θ parameters is stated as:

p(Y1:T ; θ) = p
(
Y

(2)
1:T |Y

(1)
1:T ; θ

)
p
(
Y

(1)
1:T ; θ

)
=

T∏
t=1

p
(
Y

(2)
1:T |Y

(1)
1:T ; θ

)
|J(θ)|−T

×
T∏
t=1

p
(
x1t |x2t ,Lt−1; θ

) T∏
t=1

X2∏
i=1

p
(
x2it|Lt−1; θ

)
,

(3.37)

where J(θ) is defined as the Jacobian transformation from state vectors xt = (x1
′

t , x
2
′

t )
′ ,

to Y (1)
t . In this framework, the Jacobian, J(θ), is from x1t and x2t to Y (1)

t . In this sec-

tion, we refer conditional log likelihood function asL(θ), whereL(θ) = log p(Y1:T ; θ).

[18] argues that if the model is defined as given in (3.30) - (3.33), (3.35) and (3.36)

concentrated likelihood, maxθm L
(
θ̂m(θm), θm

)
, where θc =

(
µx1 ,

Φx1 ,Φx1x2 ,Ω
)

and the remaining parameters are grouped in θm, which solves the

maximum likelihood function θ̂ = argmaxθ L(θ). Under P -measure, we solve for

(3.30) via maxθc L
(
θm, θc

)
using generalized least squares (GLS) and (3.36) using

OLS to obtain covariance matrix Ω. Then, they propose a novel estimation procedure

using concentrated likelihood.
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The procedure is constructed by maximization of concentrated likelihood function.

For given parameter set θm the likelihood is formed as follows:

1. Bond loadings,A andB, and spanned factors are solved: xt = B−11 (Y
(1)
t −A1);

2. Given state vectors x1t and x2t , calculate ∑
x1x2 and ξx1,t+1 in (3.30). Then mod-

ify (3.30) to get

x1t+1 −
∑
x1x2ξx2,t+1 = µx1 + Φx1x

1
t + Φx1x2x

2
t + ξx1,t+1;

3. The variance-covariance matrix is also computed in concentrated form:

Ω̂(θm) =
1

T − 1

T∑
t=2

(
Y

(2)
t − A2 −B2xt

)
×
(
Y

(2)
t − A2 −B2xt

)′

;

and using GLS estimation obtain µ̂x1(θm), Φ̂x1(θm), and Φ̂x1,x2(θm).

4. Finally, replace the estimated parameters into log-likelihood function;

θ̂c(θm) =

(
µ̂x1(θm), Φ̂x1(θm), Φ̂x1x2(θm), Ω̂(θm)

)
.

3.3 Affine Term Structure Models with Constant Volatility

In the previous section, we depict the affine model structure with volatility state vari-

able, this model permits both spanned and unspanned stochastic volatility. In this

section, we restrict the affine model not to allow stochastic volatility and thus there is

no volatility state variable. Following [59] and [9] , we type a homoscedastic affine

term structure model in discrete time. Those models let macroeconomic variables to

span bond prices but, since we focus on AFTS models, our model only includes latent

factors.

The dynamics for Gausian state variables are given in a VAR form:

x1t+1 = µQx1 + ΦQ
x1x

1
t + ∑

x1ξ
Q
x1,t+1, ξx1,t+1 ∼ N

(
0,∑x1,t

∑′

x1,t

)
,

∑
x1,t

∑′

x1,t = ∑
0,x1

∑′

0,x1 +
X2∑
i=1

∑
i,x1

∑′

i,x1x
2
i,t, ξx2,t+1 = x2t+1 − E

(
x2t+1|Lt

)
.

(3.38)
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The short term interest rate is a linear function of x1t is

rt = δ0 + δ
′

1,x1x
1
t . (3.39)

Then, bond prices are exponentially affine functions of the state variable under Q-

measure becomes

P n
t = exp

(
ān + b̄

′

n,x1x
1
t

)
. (3.40)

The connection between P -measure and Q-measure is sustained by SDF following

the procedure that simplifying the bond loading equations, (3.24) to (3.26), using

the identity that λt = ∑−1
0,x1

(
λ0 + λ1x

1
t

)
. Thus we get µQx1 = µPx1 −

∑
0,x1λ0 and

ΦQ
x1 = ΦP

x1 −
∑

0,x1λ1 under Q-measure. Then, bond loadings are transformed to

ān = −δ0 + ān−1 +

(
µPx1 −

∑
0,x1λ0

)′

b̄n−1,x1 +
1

2
b̄
′

n−1,x1
∑

0,x1
∑′

0,x1 b̄n−1,x1 , (3.41)

and

b̄n,x1 = −δ1,x1 +

(
ΦP
x1 −

∑
0,x1λ1

)′

b̄n−1,x1 . (3.42)

The initial values are again ā1 = −δ0 and b̄1,x1 = −δ1,x1 .

As mentioned before, the affine term structure models price exactly the number of

assets equal to number of latent variables. When we take number of yield maturities

as N and number of latent factor variables asN1, when N > N1 , only N1 of N

securities could be priced with no error while the other yield vectorsN2 = N−N1, are

exposed to Gaussian measurement error. Thus, similar to [13], we assume that those

maturities in N2 are observed with measurement error. Then, the likelihood function,

given by [7] is simplified by our restriction that there is no observed macroeconomic

variable in state variable dynamics. The likelihood function becomes

L(θ) =
T∏
t=2

p

(
Y

(1)
t |Y

(1)
t−1; θ

)
; (3.43)

and therefore,

log
(
L(θ)

)
= −(T − 1) log |J(θ)| − (T − 1)

1

2
log|∑0,x1

∑′

0,x1|

−1

2

T∑
t=2

(
x1t+1 − µ

Q
x1 − ΦQ

x1x
1
t

)′(∑
0,x1

∑′

0,x1

)−1(
x1t+1 − µ

Q
x1 − ΦQ

x1x
1
t

)

−T − 1

2
log

N2=N−N1∑
i=1

σ2
i −

1

2

T∑
t=2

N2=N−N1∑
i=1

ψ2
i,t

σ2
i

(3.44)
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Here, this gives us the log-likelihood function of affine term structure models without

volatility state variable.

3.4 Data

In this thesis, we use intraday Turkish lira interest rate swap (IRS) data with vari-

ous maturities during January 2016 and June 2019 period. Due to liquid interest rate

derivatives market, IRS instruments has gained great importance for investors. Thus,

the estimation results regarding TRY IRS market are representative in terms of not

only swap market but also general wellbeing of the domestic financial markets. Ba-

sically, IRS is a tool that enables two parties to exchange their fixed interest rate and

floating interest rate cash flows. Although reasons of engaging IRS transactions are

out of the scope of this thesis, in short, investors prefer to engage IRS transactions

for hedging and speculative reasons. For instance, in case of a deposit bank that has

liabilities, which bear relatively floating interest rate, such as short term deposits, and

assets with fixed interest rate, e.g. long term loans. In that case, financial institution

involves in an IRS transaction by paying fixed rate and receiving floating rate in order

to hedge itself against interest rate mismatch. Also, for example, an investor that has

an expectation of decrease in future interest rates, then he/she could speculate through

engaging IRS by paying floating rate and receiving fixed rate transaction.

Firstly, we obtain IRS market data for Turkey via Thompson Reuters (Refinitiv)

Datascope. According to the quality of the data we prefer to use 6-month, 1-year,

2-year, 5-year and 10-year IRS maturities in our analysis. We aggregate high fre-

quency data into 1-hour periods, where we use closing levels across maturities for

each hour between 10:00 and 17:00 in 24-hour basis.

In (3.17), we depict how to construct realized volatility using swap rates. Intraday

volatility of swap rates are given in Figure 3.1. The volatility pattern reveals the

increasing tension in the domestic financial markets since the 1st quarter of 2018.

Actually, the distress in Turkish markets are gradually elevated after a credit rat-

ing agency, Moody’s, downgraded Turkey’s sovereign rating by justifying erosion in

the institutional strength and becoming more exposed to external risks by stressing
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wide current account deficits, large external debt and high political risks in March

2018. Since then uncertainty in domestic markets has resulted in volatility to rise

at unprecedented levels in following periods, especially in 2nd and 3rd quarters of

2018. The major part of the market tension in 2018 disappeared after Central Bank

of Turkey‘s (CBRT) accumulated interest rate hike in September 2018. The intraday

market volatility converged to its long term average shortly after CBRT’s policy re-

action. The highest level of intraday volatility is observed on March 2019 for most

of the maturity dimensions. This is due to Turkish lira liquidity squeeze in offshore

markets.

Moreover, we compare some important events in the estimation period in Figure 3.2.

The first important date is the first working day after the coup attempt in 2016. The

second date corresponds to sanction decision of the US against Turkey and the last

date is due to the squeeze in offshore Turkish lira liquidity. The short term volatility,

6-month, seems to have less affected by market tension while volatility levels of 1-

year and longer maturities reflected a higher level of sensitivity. Although, all major

events unearth uncertainty in terms of interest rates, a significant shock in liquidity

conditions found to be more effective in volatility.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Intraday Swap Rate Volatility
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Figure 3.2: Intraday Swap Rate Volatility Path
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CHAPTER 4

RESULTS

In this thesis, we explore whether volatility spans in the TRY IRS market. Thus, we

choose to employ the estimation procedure that is proposed by [4]. In the method-

ology section, we give the details regarding how an affine model structure could be

transformed to the test volatility span using linear regressions. Prior studies (such

as [15] and [41] ) are heavily depended on volatility embedded derivatives such as

straddles or interest rate caps to analyze spanning condition of yields. Following the

robust methodology of [4], we could analyze the volatility spanning condition of the

IRS market in Turkey using the actual data. In their methodology, they proposed to

take time steps dt as small as possible, thus when computing the quadratic variation,

variance dt2 of the yield becomes omissible and realized volatility could be used to

assess the spanning condition.

To test the contemporaneous volatility spanning condition, we estimate using (3.19).

In (3.19), the dependent variable is the intraday realized volatility of IRS returns.

We give the results of intraday realized volatility estimation in the data section for 6-

month, 1-year, 2-year, 5-year, and 10-year maturities. After obtaining realized volatil-

ities in daily basis, we aggregate intraday yields as closing levels at 16:00 - 17:00 pe-

riod that is assumed to correspond daily yield for our analysis. As emphasized before

the standard version of spanning regression, (3.18), contains a contemporary level of

yields and thus it is subjected to violation of basic assumptions, multicollinearity, of

ordinary least squares estimation. Hence, to resolve the multicollinearity issue and

to reduce the dimensionality of the cross-section of yields, we firstly extract the prin-

cipal components (PCs) of the yields. The extracted components are mechanically
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Figure 4.1: Principal Components

orthogonal to each other and thus they are not subject to multicollinearity problem.

The first three PCs of yields are associated with, respectively, slope, steepness, and

curvature factors of the yield curve and accepted as reflecting the major part of the

total variation ([42] ). The results of the principal component analysis are given in

Table 4.1.

Table 4.1: Principal Component Analysis for Realized Data

Results suggest that the slope, steepness and curvature factors of the yield curve are

sufficient to explain almost all of the variation in IRS yields. Thus, although [4]

prefers to use a larger number of factors in volatility span testing procedure of US

Treasury bond yields, we propose the regression, namely (3.19), to contain only the

first three principal components as independent variables.

Prior to contemporaneous volatility spanning procedure, we firstly explore the di-

rect relationship between intraday yield volatility in the IRS markets and the princi-

pal components of the cross section of yields. According to Figure 4.2 - Figure 4.4,
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Figure 4.2: Principal Components and Volatility

Figure 4.3: Principal Components and Volatility

only PC1, namely the level factor, demonstrates a slight positive relationship between

volatility, while other factors seem to be unrelated to the volatility. Although, steep-

ness, and curvature factors are visually not related to the volatility, those factors’

importance could arise in the regression framework.

Moreover, another pillar of linear regression points to the fact that there must be no

unit root in the volatility or latent factor series. In the data section, it is obvious that

realized volatility series are stationary by their mean reverting nature and we need

to check the stationarity of yield curve factors. However, by both graphical inspec-

tion Figure 4.1 and Dickey-Fuller unit root test results indicate that the first principal

component, namely level factor has unit root and has a first difference stationary pro-

cess, where Augmented Dickey-Fuller test statistic results show that PC1 has failed
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Figure 4.4: Principal Components and Volatility

to reject the null hypothesis indicating there is a unit root with 94% probability, while

the results for first difference reject the unit root hypothesis with 100% probability.

Thus, in the scope of this thesis, we transform (3.19) using the first differences of

yield curve factors as explanatory variables.

The linear regression is estimated using ordinary least squares as follows:

v2yτ (t, h) = β0 +
3∑

k=1

βk4PCk(t, h) + ε(t, h) (4.1)

The results are given in Table 4.2.

One of the most striking results of linear volatility spanning regression is that yield

curve factors can barely explain 15% of the quadratic variation of the yields. The

outcome supports the existing literature that yields do not span volatility in fixed in-

come markets and thus there is unspanned stochastic volatility in the Turkish lira IRS

market returns. This could be interpreted as interest rate swaps have a very limited

ability in hedging against the volatility that is embedded in the market. In addition to

that the proportion of volatility, which is explained by yield curve factors decreases

as maturity increases. Thus, it would be convenient to relate shocks in the yield curve

factors only with the shorter-term volatility indicators. We find that the coefficient of

level factor β1 is statistically significant for all maturities, while the slope coefficient

β2 is significant except for 6-month maturity. This is an intriguing outcome since the

steepness of the yield curve is generally associated with the duration, the indicator for
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Table 4.2: Regression Results of (4.1) on Realized Data

(1) The results in the parenthesis indicates Newey-West heteroscedasticity and autocorrelation robust

standard errors.(2) *, **, *** show 1%, 5% and 10% statistically significant coefficients, respectively.

measuring the sensitivity of bond prices to the changes of the interest rate. Duration

sensitivity therefore increases with the maturity and its effect on shorter-term bonds

are considered to be minor. As a result of this relationship between duration and

maturity, it is logical to have an insignificant β2 coefficient at the short term maturity.

In addition, [43] argues that interest rate volatility is associated with the curvature

factor. Thus, prior to obtaining estimation results, our expectation that the curvature

factor is the most significant and potent indicator in terms of its effect on realized

volatility. Conversely, to the argument of [43], our findings indicate that the co-

efficient of curvature factor β3 is statistically insignificant for most of the maturity

dimensions and only significant for longer-term maturities, 5-year, and 10-year. This

finding can also be related to the characteristics of the yield curve. Since the curvature

characteristics of the yield curve are mainly associated with medium to longer-term

maturities, our findings are consistent with the widely observed dynamics. To sum

up, yield curve dynamics appear to be not directly effective on yield volatility.

In addition to that the yield curve does not span volatility in the Turkish lira IRS

market, we seek for any general pattern in the residuals of the regression results pre-

sented in Table 4.2. This attempt is in line with [15] and [4], where they both find out

that yield variation shows a strong interrelation across different maturities that are not
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Figure 4.5: PC1 of Residual and Median Volatility Across Maturities

related to yield levels. To explore this relationship, we use principal component anal-

ysis on error terms across the maturity spectrum and interpret the variance coverage

ratios of PCs. The results of the principal component analysis are given in Table 4.3.

Table 4.3: Principal Component Analysis for Error Terms in Volatility Equation

Our findings are consistent with the prior studies that roughly 80% of the variation

in the model error terms, (4.1), could be explained by only the first principal compo-

nent. Thus, there is a presence of a common factor, which is not linearly related to

the yield curve dynamics and affecting yield variation across the maturity spectrum.

Also, [4] points out that although the first principal component explains most of the

variation, volatility innovations do not show perfect correlation, and thus there should

be multiple stochastic volatility factors required to contain its characteristics.

The first principal component of residuals from yield variation and median volatil-
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ity level follow similar trends across the estimation period (Figure 4.5). Then, we

could interpret the 1st principal component as systemic volatility using the definition

of spanning hypothesis. As mentioned before spanning hypothesis assumes that the

term structure models are accepted as incorporating sufficient information to com-

plete fixed income markets. Therefore, yield curve dynamics represent all the infor-

mation for replicating assets. Since all the unsystematic shocks are reflected in the

yield curve components and thus a linear combination of those factors could be as-

sociated with the unsystematic part of the yield variation. Then, due to the fact that

volatility is divided into two parts unsystematic and systemic, the residuals from (4.1)

could be good indicators for systemic volatility. As the principal component analysis

of residuals and high correlation with median volatility shows that we could treat the

major principal component of residuals as a reliable indicator for systemic risk, or

volatility.

In the previous chapter, we introduce two different affine term structure models, one

with stochastic volatility component and one with constant volatility components.

One of the main goals of this thesis is to assess which affine model should be preferred

if we use unspanned stochastic volatility phenomenon as a specification test for term

structure models.

4.1 Affine Term structure Model with Stochastic Volatility

[18] proposes an affine term structure model with stochastic volatility which is sim-

ilar to widely accepted studies of [24] and [21]. Then, in the scope of this thesis,

we apply an affine model with three latent factors that has one stochastic volatility

factor using Turkish lira interest rate swap returns. After, affine model estimation, we

repeat the testing procedure of the volatility spanning hypothesis that is explained in

the previous section. We first obtain the latent factors from fitted data and seek for

the same relationship with intraday volatility. The volatility testing results for affine

model with stochastic volatility are depicted in Table 4.4.

According to the results given in Table 4.4, latent factors of the yield curve are barely

have any significant effect on the yield variation. The variation in 1-year maturity
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Table 4.4: Regression Results of Affine Model with Stochastic Volatility (4.1)

(1) The results in the parenthesis indicates Newey-West heteroscedasticity and autocorrelation robust

standard errors.(2) *, **, *** show 1%, 5% and 10% statistically significant coefficients, respectively.

is only affected by the steepness factor, while the curvature factor is found to be

effective in 2-year and 5-year levels. Even if some yield curve components could be

linearly dependent to yield volatility, the signs of their coefficients contradict with

the OLS results using realized data (see Table 4.2). The results of realized data show

that all yield curve factors are positively related to the volatility, contrary to the affine

model with stochastic volatility results that indicate a negative relationship between

steepness, curvature factors of yield curve dynamics and variation in the yields.

Also, a low level of R2 in OLS results shows that in the affine model less than 1% of

the total variation could be explained using the cross-section of yields. Even though,

the level of explained proportion is limited compared to the original regression re-

sults in Table 4.2, the presence of USV is consistent with the regression results using

realized data.

We then seek the presence of systemic factors in the residuals of spanning regression.

We again employ principal component analysis in an exploration of systemic factors.

The PCA results are presented in Table 4.5.

As shown in Table 4.5, only one component in the error term could explain the rest

of the variation from the spanning regression. Although the existing literature em-

phasizes the fact that there is at least one dominant factor regardless of the maturity
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Table 4.5: Principal Component Analysis for Error Terms in Volatility Equation

spectrum, there is only one single hidden factor found to be effective in volatility.

This is the main result of restricting stochastic volatility on a single factor in the

affine framework and therefore volatility innovations show perfect correlation.

The outcome could be misleading since the prior studies find that there should be mul-

tiple stochastic volatility factors required to contain its characteristics. Thus, while

the regression results ensure that unspanned stochastic volatility condition still holds,

the specification check of affine term structure model with one stochastic volatility

factor fails to represent some of the major characteristics in representing P -measure

dynamics. This could be concluded as affine model with three latent variables and

stochastic volatility for Turkish lira IRS markets has weak results in terms of its ro-

bustness with realized volatility dynamics, therefore it would be misleading to depend

on this model especially in volatility modeling of the swap rates.

4.2 Affine Term structure Model with Constant Volatility

In the previous section, we have shown the volatility spanning test results of the affine

model structure with the volatility state variable. In this section, we restrict the affine

model not to allow stochastic volatility and thus there is no volatility state variable.

Following [59] and [9], we apply a homoscedastic affine term structure model in

discrete time which assumes the model to be only affected by the latent variables in

the trend parameter.

Then we construct the testing procedure following [4] as mentioned before. In testing

whether volatility spans the Turkish lira IRS market we use the fitted yields from an
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affine model without any stochastic volatility factor.

As shown in the Table 4.6, at most 16% of the total yield variation is explained

through the spanning hypothesis, which indicates there is unspanned stochastic volatil-

ity in the IRS market using affine model outcome. Similar to the testing results in the

realized yield data, the explained proportion of yield variation decreases as matu-

rity increases. Also, the coefficient of the level factor is significant across all of the

maturity spectra while the steepness factor is found to be ineffective for short term,

6-month, maturity. This finding is in line with the results of realized data shown in

Table 4.2 and we could relate this outcome with the sensitivity of prices, and thus

yields, to the duration, which is expected to be ignorable in short term securities. It

is also important to mention that the curvature factor is effective on longer-term ma-

turities, 5-year, and 10-year. The results of testing volatility spanning conditions in

affine term structure models with constant volatility are found to be analogous with

the results on realized data in the general.

Table 4.6: Regression Results of Affine Model with Constant Volatility (4.1)

(1) The results in the parenthesis indicates Newey-West heteroscedasticity and autocorrelation robust

standard errors.(2) *, **, *** show 1%, 5% and 10% statistically significant coefficients, respectively.

Moreover, the structure of residual parameters is investigated to determine the main

factor in the unexplained proportion of the volatility spanning condition. The princi-

pal component analysis results of residuals are shown in Table 4.7.

The findings, given in Table 4.7, are consistent with the prior studies and P -measure

dynamics in that roughly 80% of the variation in the model error terms could be
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Table 4.7: Principal Component Analysis for Error Terms in Volatility Equation

explained by only the first principal component. The yield variation is not related to

the maturity in its innovations, and therefore, there exists a common factor, which is

interpreted as systemic volatility in the scope of this paper.

As a result of the testing procedure, an affine model with constant volatiliy provides

similar findings with the P -measure dynamics and we can conclude that to model the

Turkish lira IRS market, this restricted version of the affine model is more preferable

comparing to the model with volatility factor.
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CHAPTER 5

CONCLUSION

Since the seminal paper of [42], a pile of literature employed spanning hypothesis

on not only yield curve factors but also macro-finance indicators and volatility of

underlying asset returns. The notion of spanning hypothesis asserts that yield curve

factors incorporate all the available information in the market and thus it is expected,

by those factors, to explain the variation in yields.

In the scope of this thesis, we follow the novel testing procedure of volatility spanning

by [4]. The findings using intraday volatility indicators show that only a limited

proportion of return variation could be explained by yield curve dynamics. Our results

support the existing literature that the Turkish lira interest rate swap markets do not

span volatility and thus incomplete. The incompleteness of IRS markets implies that

volatility in the swap returns cannot be hedged by only using IRS instruments, while

the residuals of the unexplained proportion of yield variation provide us evidence and

a measure on the presence of systemic volatility in IRS market.

The systemic volatility is important for both policymakers and investors. From the

policymakers’ perspective, the presence of systemic volatility constitutes an external-

ity for the transmission mechanism of policy decisions regarding financial markets.

Besides, investors that are interested in fixed income markets are subject to systemic

risk and they need to adjust their positions in terms of uncertainty that is arising from

systemic volatility. Thus, the systemic volatility indicator that is generated from the

spanning hypothesis is a complementary tool for market monitoring purposes.

In the scope of this thesis, we compare affine term structure models with diffusion
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factor, [18], and with a constant volatility component, [59] in the Turkish lira IRS

market and treat the presence and structure of USV as a specification test. According

to the spanning test results, although both the model with stochastic diffusion param-

eter and the model with constant volatility validate the presence of USV condition in

the IRS market, fitted rates, the model without a stochastic diffusion process provides

more analogous dynamics with the observed data in terms of systemic component of

the yield variations. Thus, it is advised to use constant volatility AFTS models in

the Turkish lira IRS market. This result is consistent with the literature that standard

affine models with a volatility state variable are found to be unrelated to the quadratic

variation ([16]). Thus, it is proposed to use an unspanned volatility factor in the scope

of affine model that factor affecting volatility and unraleted to bond prices.

The volatility spanning hypothesis in the affine framework is, indeed, able to yield

much more than what is presented here. Investigation of the sources and direction-

ality of systemic volatility are important but they are beyond the scope of this thesis.

Also, although the presence of USV makes it harder to obtain closed-form bond price

projections, it provides the opportunity for suggesting new restrictions on state vari-

able dynamics and those could be used in volatility modeling.
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