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ABSTRACT

SECURE CLOUD STORAGE WITH ATTRIBUTE BASED ENCRYPTION

Bağlaçer, Ceyda Tuğba

M.Sc., Department of Cryptography

Supervisor : Prof. Dr. Murat Cenk

July 2019, 67 pages

As data storage needs increase, importance of and need for public cloud storage sys-
tems increase as well. However, given the amount, variety and importance of the data
security can become a significant concern. Attribute based encryption schemes are
important tools that can be used for access control in secure cloud storage systems.
There are many attribute based encryption schemes proposed overs the years; key
policy, ciphertext policy and multi-authority schemes. It is important to choose the
most suitable attribute based encryption scheme to use in secure cloud storage sys-
tems. In this work, we investigate which Attribute Based Encryption Scheme would
be suitable to use in a global scale secure cloud storage system. We analyze 5 dif-
ferent Attribute Based Encryption Schemes about; how they work, usage of pairings
and suitability global scale secure cloud storage systems. After choosing the most
suitable scheme we then discuss how we can improve performance of this scheme.

Keywords: Attribute Based Encryption, Key Policy, Ciphertext Policy, Multiauthor-
ity, Cloud Storage
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ÖZ

ÖZELLİK TABANLI ŞİFRELEME İLE GÜVENLİ BULUT DEPOLAMA

Bağlaçer, Ceyda Tuğba

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Murat Cenk

Temmuz 2019, 67 sayfa

Veri depolama ihtiyaçları arttıkça, bulut depolama sistemlerinin önemi ve onlara du-
yulan ihtiyaç da artmaktadır. Bununla birlikte, verinin miktarı, çeşitliliği ve önemi göz
önünde bulundurulduğunda veri güvenliği önemli bir sorun haline gelebilir. Özellik
tabanlı şifreleme şemaları, güvenli bulut depolama sistemlerinde erişim kontrolü için
kullanılabilecek önemli araçlardır. Yıllar içerisinde önerilen birçok özellik tabanlı şif-
releme şeması vardır; anahtar politika, şifreli metin politikası ve çok otoriteli şemalar.
Güvenli bulut depolama sistemlerinde kullanmak için en uygun özellik tabanlı şifre-
leme şemasını seçmek önemlidir. Bu çalışmada, hangi Özellik Bazlı Şifreleme Prog-
ramının global ölçekte güvenli bir bulut depolama sisteminde kullanım için uygun
olacağını araştırılmıştır. 5 farklı Özellik Tabanlı Şifreleme şemasının; çalışma şekil-
leri, eşleşmelerin kullanımı ve global ölçekte güvenli bulut depolama sistemlerine
uygunluğu analiz edilmiştir. En uygun şema seçildikten sonra, bu şemanın perfor-
mansının nasıl artırabileceği tartışılmıştır.

Anahtar Kelimeler: özellik tabanlı şifreleme, anahtar politikası, şifreli metin politi-
kası, çok otoriteli, bulut depolama
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CHAPTER 1

INTRODUCTION

1.1 Secure Cloud Storage

Increase of volume of data to be stored prompted many individual users and organiza-

tions to outsource their storage needs. This model of data storage is called the cloud

storage. By using storage services based on public clouds customer can evade the

costs of having and maintaining private storage infrastructure while having the bene-

fits such as availability, reliability, data sharing and efficient retrieval. These benefits

can be described as below:

• availability: data should be accessible with any machine and any time.

• reliability: data should be backed up in a way that loss is prevented

• data sharing: customers of public cloud storage services are able to share their

data with parties they choose.

• efficient retrieval: while availability is very important, data retrieval times are

also important for efficiency of the public cloud storage system.

However, for enterprises and government organizations confidentiality and integrity

of the data in public cloud storage services becomes a significant concern given the

amount, variety and importance of the data to be stored. We can define these proper-

ties as:

• confidentiality: cloud storage provider is not able to learn anything about cus-

tomers’ data
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• integrity: if a customer data is altered by the cloud storage provider, then

customer should be able to detect this alteration.

Therefore, there is a need for a secure cloud service that provides confidentiality and

integrity while providing the benefits availability, reliability, data sharing and efficient

retrieval.

To address this need, Kamara and Lauter [16] proposed a cryptographic cloud storage

system using the concepts of searchable encryption, attribute based encryption and

symmetric encryption. Kamara-Lauter cryptographic cloud storage system works as

follows;

• First, data is prepared by indexing it with data processor and then data is en-

crypted using a symmetric encryption scheme with a unique key.

• Second, the index, that is created in the first step, is encrypted with a searchable

encryption scheme.

• Third, the unique key, used in the first step, is encrypted using an attribute based

encryption scheme with an appropriate policy.

• Finally, encrypted data that is created in the first step and index encrypted with

searchable encryption scheme encoded together.

Then, we can say that in Kamara-Lauter cryptographic cloud storage system, attribute

based encryption scheme is used for access control.

Assume user A wants to encrypt a data M and store it on the cryptographic cloud

storage. A also wants to share the data with parties that have certain attributes. At-

tribute based encryption is used to encrypt unique key that can decrypt the encrypted

data, so that only parties that have attributes user A specified has access to the unique

key. Therefore, only those parties can decrypt the ciphertext and access the data.

There are many attribute based encryption shemes proposed over the years. While

choosing an ABE scheme to use in Kamara-Lauter cryptographic cloud storage access

control, we need to make sure it satisfies the following conditions:

2



• Being compatible with global scale construction and scalability.

• Having fine grained access control.

• Efficient decryption because cloud storage system should have efficient re-

trieval.

• Confidentiality property of the cloud storage system must be maintained, i.e.

storage provider shouldn’t have access to unique keys encrypted with the ABE

scheme.

1.2 Attribute Based Encryption

We can view Attribute Based Encryption (ABE) systems as a generalized version of

Identity Based Encryption (IBE) system. Considering identity as an attribute, an IBE

system is an ABE system where ciphertexts are associated with only one attribute.

IBE idea, introduced by Shamir [23], allows users to use any string they choose as

their public key. This means that, only requirement for sending a message to a re-

cipient is knowing recipients’ identity. Thus, in this system the need for a public key

distribution infrastructure is eliminated. The first complete IBE systems proposed by

Boneh and Franklin [9] and Cocks [13] in 2001. After [9, 13] were published, IBE

received a lot of attention and [4, 5, 24, 10] were published soon after.

First ABE scheme proposed in 2005 by Sahai and Waters [21] and it was called Fuzzy

Identity Based Encryption (FIBE). In FIBE scheme users are identified with a set of

explanatory attributes and both ciphertext and user’s key are associated with attribute

sets. A specific key is able to decrypt a specific ciphertext only if they have d common

attributes between attributes of key and attributes of ciphertext. Where d is a threshold

value. Thus, FIBE scheme allows sender to specify who should be able to decrypt the

message, in terms of attributes alone. Note that, with this scheme more than one

user can have attributes that satisfy ciphertext. Most important of the Sahai-Waters

scheme is that their initial construction was limited in terms of expressibility of who

can decrypt the ciphertext because formula over attributes consisted of one threshold

gate.
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In following work, Goyal, Pandey, Sahai and Waters [15] introduced two forms of

ABE.

• In Key Policy Attribute Based Encryption (KP-ABE), a sender labels ciphertext

with a set of descriptive attributes and a trusted authority issues each user a

private key that is labeled with an access structure over attributes. A user can

successfully decrypt the ciphertext only if ciphertext’s attributes satisfies the

access structure that is in the user’s private key.

• We can consider Ciphertext Policy Attribute Based Encryption (CP-ABE) scheme

as the reverse of the KP-ABE scheme. In CP-ABE schemes, a sender labels ci-

phertexts with access structures and a trusted authority issues each user a private

key that is labeled with an attribute set. A user is able to successfully decrypt

the message only if private key of the user satisfies the access structure of the

ciphertext.

While introducing the idea of KP-ABE and CP-ABE systems, Goyal et al. [15] in-

creased the expressibility of ABE systems by using monotone access structures which

consists of AND, OR and threshold gates. In 2007, Ostrovsky, Sahai and Waters

proposed a KP-ABE scheme with non-monotonic access structure. Non-monotonic

access structures use NOT gates in addition to AND, OR and threshold gates.

In 2007, Chase [11] claimed that one major drawback of ABE schemes is the need to

go through a trusted party. As a result Chase [11] proposed a multi-authority attribute

based encryption (MABE) scheme based on the FIBE [21] scheme. To realize a multi-

authority scheme Chase defined two techniques: using a global identifier (GID) and

central authority (CA). Other MABE schemes such as [12, 18] were proposed after

[11].

An important security challenge of ABE schemes is to prevent collusion attacks. In

particular, group of users, where normally none of them can decrypt the ciphertext

alone, should not be able to combine their keys and create a joint key that can decrypt

the ciphertext. This property is called collusion resistance.
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1.3 About The Thesis

We consider the Kamara-Lauter secure cloud storage model and assume that customer

does not completely trust the public cloud storage provider. We try to solve access

control problem of these secure cloud storage services.

In Chapter 2, we give necessary background to understand how different ABE schemes

work and security of said schemes.

In Chapter 3, different ABE schemes, i.e. FIBE [21], KP-ABE [15], CP-ABE [3],

ABE with non-monotonic access structure [20] and MABE [11, 12, 18], are exam-

ined. We also evaluate which ABE scheme is more suitable to use in Kamara-Lauter

cryptographic cloud storage access control, in this chapter.

In Chapter 4, we discuss how to improve the ABE scheme we choose in the previous

chapter.

Finally in Chapter 5 we give the conclusion.
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CHAPTER 2

BACKGROUND

In this chapter, we give formal definitions on access structures, and relevant back-

ground on prime and composite order bilinear groups, Linear Secret Sharing Schemes

(LSSS) and Monotone Span Program. Additionally we give security assumptions of

different attribute based encryption (ABE) schemes.

2.1 Access Structure

Definition 2.1 (Access Structure [1]). Let {P1, . . . , Pn} be a set of parties. A collec-

tion A ⊆ 2{P1,...,Pn} is monotone if B ∈ A and B ⊆ C then C ∈ A for ∀B,C.

An access structure is a collection A of non-empty subsets of {P1, . . . , Pn}, i.e.

A ⊆ 2{P1,...,Pn} \ {∅}. The sets that are in A are called the authorized sets, and

the sets that are not in A are called the unauthorized sets.

Schemes given in [15, 3, 18], use monotone access structures where attributes play the

role of the parties. Thereby, in these schemes access structure denoted by A contains

authorized sets of attributes.

2.2 Lagrange Coefficient

Definition 2.2 (Lagrange Coefficient). Lagrange coefficient ∆i,S for i ∈ Zp and a

set of elements S in Zp defined as: ∆i,S(x) =
∏
j∈S
j 6=i

x− j
i− j
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2.3 Prime Order Bilinear Groups

Definition 2.3 ([8]). Let G1, G2 and GT be multiplicative cyclic groups and |G1| =

|G2| = p where p is a prime. Let G1 = 〈g1〉, G2 = 〈g2〉 and e : G1 ×G2 → GT be a

bilinear map. e has the following features:

1. Bilinearity: ∀a ∈ G1, ∀b ∈ G2 and u, t ∈ Zp, we have e(au, bt) = e(a, b)ut.

2. Non-degeneracy: e(g1, g2) 6= 1.

Several ABE schemes consider groups where G1 = G2.

Definition 2.4 ([6, 17]). LetG,GT be multiplicative cyclic groups and |G| = pwhere

p is a prime. Let G = 〈g〉 and e : G × G → GT denote to a bilinear map. e has the

following features:

1. Bilinearity: ∀a, b ∈ G and u, t ∈ Zp, we havee(au, bt) = e(a, b)ut.

2. Non-degeneracy: e(g, g) 6= 1.

Continuing with Definition 2.4, we will also consider vectors of group elements. For

v = (v1, v2, . . . , vn) ∈ Znp and a ∈ G, n-tuple of elements of G can be denoted as

av = (av1 , av2 , . . . , avn).

∀t ∈ Zp and v, w ∈ Znp , we can perform following operations:

atv = (atv1 , atv2 , . . . , atvn)

av+w = (av1+w1 , av2+w2 , . . . , avn+wn)

Let en denote to the product in terms of component pairings:

en(gv, gw) =
n∏
i=1

e(avi , awi) = e(g, g)v·w

Definition 2.5 (Decisional Bilinear Diffie-Hellman (d-BDH) Assumption [6, 21, 15]).

Let G and GT be multiplicative cyclic groups of prime order p. Let G = 〈g〉 and

e : G × G → GT denote to a bilinear map and s, t, u, z
R←− Zp are chosen and

S = gs, T = gt, U = gu.

8



The d-BDH assumption states that no probabilistic polynomial time algorithm B can

distinguish the (S, T, U, e(g, g)stu) from the (S, T, U, e(g, g)z) with no more than neg-

ligible advantage.

Algorithm B outputs a bit in {0, 1} and has the advantage Advd−BDHB = ε in solving

the d-BDH problem.

|Pr[B(S, T, U, e(g, g)stu) = 0]− Pr[B(S, T, U, e(g, g)z) = 0]| ≥ ε

Definition 2.6 (Decisional Modified Bilinear Diffie-Hellman Assumption [21]).

Let G and GT be multiplicative cyclic groups of prime order p. Let G = 〈g〉 and

e : G × G → GT denote to a bilinear map and s, t, u, z
R←− Zp be chosen and

S = gs, T = gt, U = gu.

The Decisional Modified Bilinear Diffie-Hellman Assumption states that no proba-

bilistic polynomial time algorithm B can distinguish the (S, T, U, e(g, g)
st
u ) from te

tuple (S, T, U, e(g, g)z) with no more than negligible advantage.

Algorithm B outputs a bit in {0, 1} and has the advantage ε in solving the problem.

|Pr[B(S, T, U, e(g, g)
st
u ) = 0]− Pr[B(S, T, U, e(g, g)z) = 0]| ≥ ε

Definition 2.7 (Decisional q-Parallel Bilinear Diffie-Hellman Exponent Assump-

tion [25]). Let G be a group with |G| = p where p is a prime and G = 〈g〉. Let

s, t, b1, . . . , bq
R←− Zp be chosen. If an adversary is given y =

g, gt, gs, . . . , gs
q

, , gs
q+2

, . . . , gs
2q

∀1≤j≤q g
t·bj , gs/bj , . . . , gs

q/bj , , gs
q+2/bj , . . . , gs

2q/bj

∀1≤j, k≤q, k 6=j g
s·t·bk/bj , . . . , gs

q ·t·bk/bj

it must remain hard to distinguish gs
q+1t ∈ GT from a random element Z in GT .

An algorithm B that outputs a bit in {0, 1} has advantage ε in Decisional q-Parallel

Diffie-Hellman Exponent Problem in G with

|Pr[B(y, e(g, g)s
q+1t) = 0]− Pr[B(y, Z) = 0]| ≥ ε

Definition 2.8 (Decisional q-Bilinear Diffie-Hellman Exponent Assumption [25]).

Let G be a group with |G| = p where p is a prime and G = 〈g〉. Let s, t R←− Zp. If an

9



adversary is given y = g, gt, gs, . . . , gs
q
, gs

q+2
, . . . , gs

2q it must remain hard to distin-

guish gsq+1t ∈ GT from a random element Z in GT . An algorithm B that outputs a bit

in {0, 1} has advantage ε in Decisional q-Parallel Diffie-Hellman Exponent Problem

in G with

|Pr[B(y, e(g, g)s
q+1t) = 0]− Pr[B(y, Z) = 0]| ≥ ε

Definition 2.9 (Decisional Linear Assumption [17]). Given a group generator G,

following distribution is defined:

G = (p,G,GT , e)
R←− G

g, f, v, w
R←− G, c1, c2, w

R←− Zp

D = (g, f, v, f c1 , vc2)

For probabilistic polynomial time algorithm B with output in {0, 1} we assume that,

AdvG,B = |Pr[B(D, gc1+c2)] = 1− Pr[B(D, gc1+c2+w)] = 1|

is negligible in security parameter κ.

Note that, w R←− Zp denotes that w is uniformly random element of Zp.

2.4 Composite Order Bilinear Groups

Definition 2.10 (Composite Order Bilinear Groups [17]). LetG be a bilinear group

of composite order N = p1p2 . . . pm where p1, p2, . . . , pm are m distinct primes and

e : G × G → GT denote its bilinear map. Both G,GT are cyclic groups and |G| =

|GT | = N . e has the bilinearity and non-degeneracy features. For each pi, G has a

subgroup Gpi of order pi. We let g1, g2, . . . , gm denote generators of these subgroups

as Gp1 = 〈g1〉, Gp2 = 〈g2〉, . . . , Gpm = 〈gm〉.

Each element h ∈ G can be stated as h = g1
a1g2

a2 . . . gm
am for some a1, a2, . . . , am ∈

ZN where each ai is unique modulo pi. gi
ai is referred as the Gpi component of

h. When ai ≡ 0 mod pi, it is said that h has no Gpi component. The subgroups

Gp1 , Gp2 , . . . , Gpm are orthogonal under the bilinear map e, i.e. if t ∈ Gpi and w ∈
Gpj for i 6= j, then e(t, w) = 1, where 1 is the identity element of the group GT .
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For each non-empty subset S ⊆ [m], there is a associated subgroup of order
∏

i∈S pi

in G, which is denoted by GS . Let G be a group generation algorithm which takes in

m and security parameter κ then outputs a bilinear group G with |G| = N . Also let

(N,G,GT , e)
R←− G denote the generation of the group G by running the algorithm G.

Finally let, Zi
R←− GSi mean that Zi is chosen to be a random generator of GSi .

Definition 2.11 (General Subgroup Decision Assumption [17]). Let S0, S1, . . . , Sk

be non-empty subsets of [m] such that for each 2 ≤ j ≤ k, Sj ∩ S0 = ∅ = Sj ∩ S1

or Sj ∩ S0 6= ∅ 6= Sj ∩ S1. Given a group generator G, we define the following

distribution:

G = (N,G,GT , e)
R←− G

Z0
R←− GS0 , Z1

R←− GS1 , . . . , Zk
R←− GSk

D = (G, Z2, . . . , Zk)

We assume that for probabilistic polynomial time algorithm B with output in γ ∈
{0, 1},

AdvG,B = |Pr[B(D,Z0)] = 1− Pr[B(D,Z1)] = 1|

is negligible in security parameter κ.

In multi-authority attribute based encryption scheme described by Lewko and Waters

in [18], composite order bilinear group G with |G| = p1p2p3 with p1, p2, p3 are three

distinct primes.

Definition 2.12 (Composite Order Bilinear Groups with order N = p1p2p3 [18]).

Let G be a group generator algorithm such that G(λ) → (p1, p2, p3, G,GT , e) where

κ is a security parameter, G is a bilinear group, p1, p2, p3 are distinct primes, G and

GT are cyclic groups with |G| = |GT | = N = p1p2p3 and e : G × G → GT is map

which has the features bilinearity and non-degeneracy.

We assume that group operations are computable in polynomial time with respect to

λ in groups G,GT and bilinear map e. The group descriptions of G and GT include

generators of the respective cyclic groups. Let Gp1 , Gp2 , Gp3 denote the subgroups in

G with |Gp1 | = p1, |Gp2| = p2, |Gp3| = p3.

Note that, when hi ∈ Gpi and hj ∈ Gpj for i 6= j, e(hi, hj) = 1 where 1 is the

identity element in GT . Suppose h1 ∈ Gp1 and h2 ∈ Gp2 and G = 〈g〉. Then, gp1p2

11



generates Gp3 , gp1p3 generates Gp2 and gp2p3 generates Gp1 . Then for some α1, α2,

h1 = (gp2p3)α1 and h2 = (gp1p3)α2 . Then:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1

This orthogonality property of Gp1 , Gp2 , Gp3 is used to implement semi-fuctionality

in multi-authority ABE scheme given in [18].

2.5 Threshold Scheme for Secret Sharing [22]

Consider a k-dimensional plane, assume k-points (x1, y1), . . . , (xk, yk) with distinct

xi’s are given in the said plane. There there is a sole polynomial q(x) with deg(q(x)) =

k − 1 such that q(xi) = yi for ∀i.

To divide a number L into i pieces Li, we pick a random polynomial q(x) with

deg(q(x)) = k − 1 such that q(x) = a0 + a1x + · · · + ak−1x
k−1 where a0 = L

and evaluate: L1 = q(1), . . . , Li = q(i). Given a subset of k of these Li values and

their identifying indexes, we can find the coefficients of q(x) by interpolation. Finally

we can calculate L = q(0). Note that, knowing k− 1 of these values, does not suffice

in order to calculate the number L.

To be more precise, we can use modular arithmetic. Consider the field Zp, where p

is a prime. Given integer L, where p > L and p > n. The coefficients a1, . . . , ak−1

in q(x) are chosen uniformly at random over the integers in the interval [0, p) and

L1, . . . , Ln are computed mod p. Assume k − 1 of these Li values are revealed to

the adversary. Using p possible values L in the interval [0, p) adversary can construct

only one polynomial q′(x) of degree k − 1 such that q′(0) = L′ and q′(i) = Li for

the k − 1 given arguments. Since these p possible polynomials are equally likely, the

adversary can’t deduce anything about the real value L.

2.6 Linear Secret Sharing Scheme (LSSS)

Our definition of Linear Secret Sharing Scheme is adapted from definitions given in

[1].
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Definition 2.13 (Linear Secret Sharing Scheme). Consider a secret sharing scheme

Π over a set of parties P . Π is considered to be linear over Zp if;

1. The shares of each party of P form a vector over Zp.

2. There exists a share generating matrix, for the secret sharing scheme Π , that

is denoted by M and M has l rows and n columns. Where ρ(x) is a function

such that ρ(x) : {1, . . . , l} → P , ∀x ∈ {1, . . . , l} xth row of the matrix M

is labeled with ρ(x). When we consider the column vector v = (s, r2, . . . , rn)

where r2, . . . , rn ∈ Zp are randomly chosen and s ∈ Zp is the secret to be

shared, then Mv is the vector of l shares of the secret s according to Π . The

share (Mv)x belongs to party the ρ(x).

In [1] it is shown that every LSSS described as above definition also has the linear

reconstruction property.

Definition 2.14 (Linear Reconstruction Property[1]). Suppose that Π is an LSSS

for the access structure A. Let S ∈ A be an authorized set and let I ⊂ {1, 2, . . . , l} be

defined as I = {x : ρ(x) ∈ S}. Note that, by convention the target vector of any LSSS

is the vector (1, 0, 0, . . . , 0). For any satisfying set of rows I in M , we will have that

the target vector is in the span of I. Then there exists constants {wx ∈ Zp}x∈I such

that, if {λx} are valid shares of any secret s according to Π , then
∑

x∈I wxλx = s.

Constants {wx} can be found in polynomial time with respect to the size of the share-

generating matrix M .

For multi-authority ABE scheme given in [18] we need to consider composite order

group bilinear group construction given in Definition 2.12, i.e. LSSS matrices over

ZN where N = p1p2p3 with p1, p2, p3 are distinct primes. Assume S is a set that is

authorized and access matrix rows which are labeled by the elements of set S, have

(1, 0, . . . , 0) vector in their span modulo N . In the security proof of [18] it is also

assumed that, rows of A which corresponds to an unauthorized set do not include the

vector (1, 0, . . . , 0) in their span modulo p1, p2 or p3.
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2.7 Monotone Span Program (MSP)[15]

Definition 2.15 (Monotone Span Program). Let H be a field and {t1, . . . , tn} be a

set of variables. Also let M be a matrix over H and ρ is a labeling of the rows M

such that every row of M is labeled with one the variables ti ∈ {t1, . . . , tn}. Then a

monotone span program (MSP) over fieldH is the labeled matrix M̂(M,ρ).

Assume γ is a set of variables. For every γ, define a submatrix Mγ of M where Mγ

consists of the rows of M which are labeled with ti ∈ γ. A MSP accepts or rejects an

input according to the following criterion.

Criterion: MSP M̂ accepts γ if and only if some linear combination of the rows of

M̂ gives the all-one vector ~1, i.e. ~1 ∈ span(Mγ). M̂ computes a Boolean function

fM(γ) if it accepts exactly those inputs γ where fM(γ) = 1. The size of M̂ is the

number of rows in M .

2.8 Dual Pairing Vector Spaces [19, 17]

Consider the six-tuple (p,G,GT , g, gT , e), where G and GT are multiplicative cyclic

groups with |G| = |GT | = p and pis a prime, G = 〈g〉, e is a bilinear map such that

e : G×G→ GT and gT = e(g, g) 6= 1.

We choose two random bases B = (b1, b2, . . . , bn) and B∗ = (b∗1, b
∗
2, . . . , b

∗
n) ∈ Znp up

to the constraint that pair (B,B∗) is dual orthonormal, where n is a fixed dimension

and bi, b∗i denotes to vectors forms the bases B,B∗ respectively.We say that (B,B∗) is

dual orthonormal if;

• Whenever i 6= j, bi · b∗j = 0 (mod p)

• For all i = 1, . . . , n, bi · b∗i = ψ where ψ is a uniformly random element in Zp.

Note that, for g of G = 〈g〉, e(gbi , gb∗i ) = 1 as long as i 6= j, where 1 denotes to the

identity element of the group GT . If B and B∗ are dual orthonormal bases, then they

will be denoted by (B,B∗) ∈ Dual(Znp ).
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2.9 The Subspace Assumption [17]

In [17] Lewko intorduced a complexity assumption, called the Subspace Assump-

tion, in prime order groups that imitate the effects of subgroup decision assumption

in composite order groups given in Definition 2.11. Lewko also showed that the sub-

space assumption is implied by the subgroup decision assumption. The subspace

assumption employs dual pairing vector spaces given in section 2.8.

Instead of subgroups that are used in the composite order groups, basis vectors used

in the exponent is used in the prime order groups. If we have dual orthonormal bases

B = (b1, . . . , bn),B∗ = (b∗1, . . . , b
∗
n). we think "subgroup 1" in B corresponds to the

b1, . . . , b4 and this is orthogonal to the b∗5, . . . , b
∗
n in B∗.

For a definite dimension n ≥ 3 and prime p, (B,B∗) R←− Dual(Znp ) denotes the

choosing random dual orthonormal bases B and B∗ of Znp and Dual(Znp ) denotes the

set of dual orthonormal bases. x R←− Zp denotes that x is a uniformly random element

of Zp. Also assume k is positive integer such that k ≤ n
3
.

Definition 2.16 (Subspace Assumption [17]). Considering the groups and bilinear

map definition given in Definition 2.4. Given a group generator G we define the

following distribution:

G = (p,G,GT , e)
R←− G, (B,B∗) R←− Dual(Znp )

g
R←− G, η, β, τ1, τ2, τ3, µ1, µ2, µ3

R←− Zp

U1 = gµ1b1+µ2bk+1+µ3b2k+1 , U2 = gµ1b2+µ2bk+2+µ3b2k+2 , . . . , Uk = gµ1bk+µ2b2k+µ3b3k

V1 = gτ1ηb
∗
1+τ2βb∗k+1 , V2 = gτ1ηb

∗
2+τ2βb∗k+2 , . . . , Vk = gτ1ηb

∗
k+τ2βb∗2k

W1 = gτ1ηb
∗
1+τ2βb∗k+1+τ3b∗k+1 , W2 = gτ1ηb

∗
2+τ2βb∗k+2+τ3b∗2k+2 , . . . , Wk = gτ1ηb

∗
k+τ2βb∗2k+τ3b∗3k

D = (gb1 , gb2 , . . . , gb2k , gb3k+1 , . . . , gbn , gηb
∗
1 , . . . , gηb

∗
k , gβb

∗
k+1 , . . . , gβb

∗
2k ,

gb
∗
2k+1 , . . . , gb

∗
n , U1, U2, . . . , Uk, µ3)

We assume that for any probabilistic polynomial time algorithm B with output in

{0, 1},

AdvG,B = |Pr[B(D, V1, . . . , Vk) = 1]− Pr[B(D,W1, . . . ,Wk) = 1]|

is negligible in security parameter κ.
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CHAPTER 3

ATTRIBUTE BASED ENCRYPTION SCHEMES

In this chapter, we will look at different ABE schemes and examine how these schemes

work, their security, efficiency and suitability to used in secure cloud storage system.

3.1 Fuzzy Identity Based Encryption Scheme (FIBE)

In this section, we examine Fuzzy Identity Based Encryption (FIBE) scheme intro-

duced by Sahai and Waters [21]. In FIBE scheme, identity of the user defined by a

set of attributes. Let the universe of attributes this system is defined in denoted by U ,

then identity w is a subset of U , i.e. w ⊆ U .

This scheme uses four algorithms:

1. Setup, algorithm takes an error tolerance or threshold value d as an input and

it gives the public parameters PP and a master key MK as output.

2. Key Generation, is an algorithm that takes the identity w and master key MK

as inputs and it gives the private key PK as an output.

3. Encryption, is an algorithm that takes the public parameters PP , identity w′

and message M as inputs and it gives the ciphertext C as an output.

4. Decryption algorithm takes the ciphertext C (encrypted under the attribute set

of the identity w′), the private key PK generated for the identity w and thresh-

old value d as inputs. If |w ∩ m′| ≥ d then decryption algorithm outputs the

message M as an output.
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In this scheme, private key PK that is generated for the user with identity w, con-

structed as a set of components where there is a component for each attribute a ∈ w.

In key generation algorithm, shares of the secret values distributed across the ex-

ponents of the user’s private key components using Shamir’s method of Threshold

Scheme for Secret Sharing [22] given in Subsection 2.5. By using Threshold Scheme

for Secret Sharing method, Sahai and Waters ensured that FIBE scheme has the error-

tolerance property because only a subset of private key components are needed to

decrypt a message.

In FIBE scheme, to provide collusion resistance, each users’ private key components

created with a different polynomial. When multiple users try to collude, they won’t be

able to combine their private keys in a useful way because their keys were generated

with different polynomials.

The threshold value d represent the error-tolerance i.e. w and w′ should have min-

imum d overlapping attributes. While a users’ private key is generated, authority

chooses a random polynomial q(x) with deg(q) = d − 1 up to the constraint that

q(0) = y where y is the valuation point that y is the same value for each user. For

each attribute that composes a user’s identity, a private key element which is affiliated

to the user’s random polynomial q(x) is issued by key generation algorithm. If user’s

private key components matches at least d elements of the ciphertext, then user can

perform the decryption successfully.

3.1.1 Construction of FIBE Scheme[21]

In FIBE scheme, ciphertext that is encrypted under the attribute set of identity w, can

be decrypted by a private key of the identity w′ only if |w ∩ w′| ≥ d, where d is the

threshold value.

Consider the prime order bilinear map definition given in Definition 2.4 and Lagrange

Coefficient given in Definition 2.2.

Let the size of the groups G and GT that are defined in Definition 2.4 be determined

by a security parameter, κ.
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Identities are subsets of some attribute universe U , of size |U| = n.

Setup (κ, d→ PP,MK): Following steps are performed in the Setup algorithm.

• Define the universe of attributes U . To provide simplicity, Sahai and Wa-

ters choose to take first n elements of Z∗p as the universe U , i.e. the integers

1, . . . , n (mod p).

• Choose ti
R←− Zp for ∀i = 1, . . . , n and y R←− Zp.

• Compute parameters Ti as, Ti = gti and Y as Y = e(g, g)y.

Then public parameters PP is;

PP = (T1, T2, . . . , Tn, Y )

Master key MK is;

MK = (t1, t2, . . . , tn, y)

Key Generation (w, MK → PK): To create a private key for identity w ⊆ U
following steps are performed in the Key Generation algorithm.

• A polynomial q(x) such that deg(q) = (d− 1) and q(0) = y is chosen.

• Private components (Pi) for every attribute i of w i.e. ∀i ∈ w as;

Pi = g
q(i)
ti

Then private key of identity w is;

PK = ({Pi}∀i∈w)

Encryption (w′, M → C): To encrypt a message M of the form M ∈ GT with the

identity w′, following steps are performed in the Encryption algorithm.

• Choose a random value s ∈ Zp.

• Compute ciphertext components Ci for ∀i ∈ w′ as Ci = T si .
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• Compute ciphertext component C ′ as C ′ = MY s.

Then ciphertext C is published as;

C = (w′, C ′, {Ci}∀i∈w′)

Decryption (C, PK, d): Suppose we have |w ∩ w′| ≥ d, then following steps are

performed in the Decryption algorithm.

• Choose d-element subset, S, of w ∩ w′.

• Then the ciphertext can be computed as:

C ′/
∏
i∈S

e(Pi, Ci)
∆i,S(0) = Me(g, g)sy/

∏
i∈S

(e(g
q(i)
ti , gsti))∆i,S(0)

= Me(g, g)sy/
∏
i∈S

(e(g, g)sq(i))∆i,S(0)

= M

Note that, in the last equality deg(sq(x)) = d−1 so it can be interpolated using

d points.

3.1.2 Security

We now look at the security of the FIBE scheme given above. Sahai and Waters [21]

define a Selective-ID model of security for FIBE. In the Fuzzy Selective-ID game the

adversary is only permitted to inquire for private key for the identity as long as it has

fewer than d overlapping attributes with the target identity.

Fuzzy Selective-ID [21]

Assume A is the adversary and B is the challenger.

Init A announces the identity α, as the identity to be challenged upon.

Setup B runs the Setup algorithm gives resulting PP to A.

Phase 1 A is permitted to issue multiple inquiries for PKs for many identities, γj ,
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where |γ ∩ α| < d for every j.

Challenge A presents two messages M0 and M1 such that length of M0 is equal

to length of M1. B randomly chooses a bit b ∈ {0, 1}, and encrypts Mb using the

identity α. Then ciphertext is presented to A.

Phase 2 Phase 1 is done again.

Guess A outputs a guess b′.

The advantage of A in Fuzzy Selective-ID game is defined as Pr[b′ = b]− 1
2
.

Definition 3.1 ([21]). If advantage in the game above for all polynomial time adver-

saries are less than negligible then a FIBE scheme is secure in the Fuzzy Selective-ID

model of security.

Sahai and Waters stated that the security of this scheme in the Fuzzy Selective-ID

model reduces to the hardness of the Decisional Modified Bilinear Diffie-Hellman

assumption given in Definition 2.6.

Theorem 3.1 ([21]). If an adversary can break the scheme in the Fuzzy Selective-ID

Model, then a simulator can be constructed to play the Decisional Modified Bilinear

Diffie-Hellman game with a non-negligible advantage.

Proof of the Theorem 3.1 can be seen in [21].

3.1.3 Efficiency

• In encryption algorithm, the number of exponentiations will depend of the num-

ber of attributes in the identity w′, because Ei = T si for ∀i ∈ w′.

• In decryption algorithm, cost is dominated by d bilinear map computations,

because we choose d-element subset, S, of |w ∩ w′|.

• The amount of group elements the public parameters have grows linearly with

the size of the attribute universe, i.e. |U| = n, PP = (T1, T2, . . . , Tn, Y ) where

Ti = gti , for all i = 1, . . . , n.

• The amount of group elements that belong to a user’s private key, grows lin-

early with the number of attributes related to their identity, because PK =

({Pi}∀i∈w) for all Pi = g
q(i)
ti .

21



• The amount of group elements in a ciphertext grows linearly with the size of

the identity we are encrypting to, because C = (w′, C ′ = MY s, {Ci}∀i∈w′).

3.1.4 Secure Cloud Storage System Suitability Analysis

Now we look at if FIBE scheme is suitable to use in Kamara-Lauter cryptographic

cloud storage scheme according to the conditions given in Section 1.1.

• Since there is a large universe construction given in [21], we can say that it is

compatible with global scale construction. Although it is important to note that

this scheme is not scalable.

• There is limited expressibility in terms of access control.

• Efficiency of the decryption depends on the threshold value d.

• In this scheme there is one trusted party which is responsible for key generation.

If we use this scheme in the cryptographic cloud storage system this trusted

party most likely reside in the storage provider, then confidentiality property is

compromised because storage provider has access to the unique keys.

3.2 Key Policy Attribute Based Encryption Scheme (KP-ABE)

In this section, we examine KP-ABE scheme introduced by Goyal et al. [15]. In this

scheme, we use Access Structure given in Definition 2.1.

This KP-ABE scheme consists of four algorithms:

1. Setup algorithm only has a security parameter κ as an input. It gives two out-

puts; the public parameters PP and master key MK.

2. Encryption algorithm takes the message M , a set of attributes w and public

parameters PP as inputs. It gives the ciphertext C as an output.

3. Key Generation algorithm takes an access structure A and the master keyMK

as inputs. It gives the decryption key DK as an output.
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4. Decryption algorithm takes the ciphertext C which is encrypted with set of at-

tributes w, the decryption key DK for access structure A and the public param-

eters PP as inputs. If w ∈ A then decryption algorithm outputs the message

M , else decryption algorithm fails.

In this KP-ABE scheme Goyal et al. specified access structure as an access tree.

Construction of the Access Trees [15]

In this scheme’s access tree construction:

• Private keys are tagged with access tree structures where all non-leaf nodes of

the tree are threshold gates and all leaf nodes represent an attribute.

• Ciphertexts are tagged with attributes.

A user can decrypt a ciphertext with their private key if and only if attributes from the

ciphertext satisfy the access tree.

Definition 3.2 (Access Tree T ). Suppose tree T is an access structure. All non-leaf

nodes of T are threshold gates and they are described by their children and a threshold

value. Assume x is node of tree T , then:

• The number of children node x has represented by numx.

• Threshold value of node x represented by kx and 0 < kx ≤ numx.

• If x is a leaf node than it is described by an attribute and kx = 1.

• If x is a non-leaf node and kx = 1 then x is an OR gate.

• If x is a non-leaf node and kx = numx then x is an AND gate.

To be able to work with access trees we need to define the functions given below:

• Parent of node x denoted by parent(x).

• If x is a leaf node, att(x) denotes to the attribute associated with leaf node x.
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• There is a relationship between every non-leaf node x and their children defined

as index(x), the children of node x are numbered arbitrarily from 1 to numx.

Let r be the root node of T and Tx is the subtree of T which has x as a root node.

Then we can say that T = Tr. Let w be a set of attributes, if w satisfies the Tx, then

Tx(w) = 1. Tx(w) can be recursively computed as follows:

1. If x ia a on-leaf node then for every children z of x, compute Tz(w). If kx of

the children return 1, then Tx(w) = 1.

2. If x is a leaf node, then Tx(w) = 1 if and only if att(x) ∈ w

3.2.1 Construction of the KP-ABE Scheme [15]

Same as the FIBE scheme discussed in Section 3.1, we consider the prime order

bilinear map definition given in Definition 2.4 and Lagrange Coefficient given in

Definition 2.2.

Let the size of the groups G and GT that are defined in Definition 2.4 be determined

by a security parameter, κ.

Each attribute associated with a unique element in Z∗p

Construction of KP-ABE scheme given by Goyal et al. [15] follows:

Setup (κ→ PP,MK): Following steps are performed in the Setup algorithm.

• Define the universe of attributes as U = {1, 2, . . . , n}.

• Choose ti
R←− Zp for ∀i ∈ U and y R←− Zp.

• Compute parameters Ti as Ti = gti for ∀i ∈ U and Y as Y = e(g, g)y.

Then public parameters PP is published as;

PP = (T1, T2, . . . , Tn, Y )

Master key MK is;

MK = (t1, t2, . . . , tn, y)

24



Encryption (PP,M,w → C): To encrypt a messageM ∈ GT with a set of attributes

w following steps are performed in the Encryption algorithm.

• Choose s ∈ Zp as a random value.

• Compute ciphertext components Ci for ∀i ∈ w as Ci = T si .

• Compute ciphertext component C ′ as C ′ = MY s.

Then ciphertext C is published as;

C = (w,C ′, {Ci}∀i∈w)

Key Generation (MK, T → DK): This algorithm creates a decryption key DK

such that user with key DK is can decrypt the ciphertext that is encrypted under

attribute set w, if and only if T (w) = 1. To create such key following steps are

performed in the Key Generation algorithm.

• Choose a polynomial qx for every node x of the tree T . Starting from the root

node r, these polynomials are chosen in a top to bottom as follows:

– For each node x, dx is the degree of the polynomial qx.

– For root node r; set qr(0) = y and dr = kr − 1, then define polynomial qr

randomly.

– For a node x that is not a root node; set qx(0) = qparent(x)(index(x)) and

dx = kx − 1, then define polynomial qx randomly.

• Compute secret values Dx for every leaf node x as;

Dx = g
qx(0)
ti

The set of above secret values is the decryption key DK.

DK = (T , {Dx}∀i=att(x))

Decryption (C,DK,PP ): To decrypt the ciphertext C with the decryption key DK

Decryption algorithm works in a recursive manner.
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• Define a recursive algorithm DecryptNode(C,DK, x) which outputs a group

element of GT or ⊥ where x is a node in the tree T .

– If x is a leaf node and i = att(x) then:

DecryptNode(C,DK, x) =


e(Dx, Ci) = e(g

qx(0)
ti , gs·ti) = e(g, g)s·qx(0)...

...if i ∈ w
⊥ otherwise

– If x is a non-leaf node; for all nodes z that are children of x, then call the

algorithm DecryptNode again as Fz = DecryptNode(C,DK, z). Let

Sx be an arbitrary set of child nodes z such that Fz 6=⊥ and |Sx| = kx.

∗ If there exists no such set, then the node x is not satisfied, i.e.

DecryptNode(C,DK, x) =⊥

∗ Otherwise,

Fx =
∏
z∈Sx

Fz
∆i,S′x

(0), i = index(z), S ′x = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(e(g, g)s·qz(0))∆i,S′x
(0)

=
∏
z∈Sx

(e(g, g)s·qparent(z)(index(z)))∆i,S′x
(0)

=
∏
z∈Sx

e(g, g)s·qx(i)·∆i,S′x
(0)

= e(g, g)s·qx(0)

• Starting from the root node r, call DecryptNode(C,DK, r) and work recur-

sively.

If attributes of the ciphertext satisfies the tree T , then

DecryptNode(C,DK, r) = e(g, g)ys = Y s. Since C ′ = MY s, message M can be

recovered simply dividing, C ′/Y s = M .

Remark 3.1. It is possible to improve efficiency of the decryption algorithm. Because

as it is described till this point, the number of pairings to decrypt will always be as

large as the number of the nodes in T . To make this process more optimal, we can

run a pre-process before making any cryptographic computations. In this pre-process,

algorithm would discover which nodes are not satisfied. Then, when performing

cryptographic computations, it does not include these nodes.
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3.2.2 Security

We know discuss the security of the KP-ABE scheme given above. Goyal et al.

[15] defines a selective-set model to prove security of the said scheme under chosen

plaintext attack.

Selective-Set Model

Assume A is the adversary and B is the challenger.

Init A chooses the set of attributes, w, to be challenged upon.

Setup B runs the Setup algorithm and resulting public parameters, PP , are given to

A.

Phase 1 A is permitted to issue multiple inquiries for private keys for many access

structures Aj , as long as w /∈ Aj for all j.

Challenge A submits messages M0 and M1 such that length of M0 is equal to

length of M1. B randomly selects a bit b ∈ {0, 1}, and encrypts Mb with w. Resulting

ciphertext C is given to A.

Phase 2 Phase 1 is done again.

Guess The adversary outputs a guess b′.

The advantage of A in this game is defined as Pr[b′ = b]− 1
2
.

Definition 3.3 ([15]). If advantage in the Selective-Set game given above for all poly-

nomial time adversaries are at most negligible then a KP-ABE scheme is secure in

the Selective-Set model of security.

Goyal et al. [15] stated that the security of this scheme in the Selective-Set model

reduces to the hardness of the d-BDH assumption given in Definition 2.5.

Theorem 3.2 ([15]). If an adversary can break the scheme in the Selective-Set Model,

then a simulator can be constructed to play the d-BDH game with a non-negligible

advantage.

Proof of the Theorem 3.2 can be seen in [15].
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3.2.3 Efficiency

• In encryption algorithm, the number of exponentiations will be linear with num-

ber of attributes in the w, because of the {Ci}i∈w where Ci = T si .

• Efficiency of decryption algorithm already been discussed in Subsection 3.2.1.

• The number of elements in the user’s private key grows linearly with the num-

ber of leaf nodes in T , because i = att(x) means that i is a leaf node where

DK = (T , {Dx}i=att(x)).

• The number of elements in PP grows linearly with the size of the attribute

universe, i.e. |U|, because PP = (T1, T2, . . . , Tn, Y ) where Ti = gti for ∀i ∈
U .

• The number of elements in the ciphertext, grows linearly with the number of

attributes in the set w, because C = (w,C ′ = MY s, {Ci}i∈w).

3.2.4 Secure Cloud Storage System Suitability Analysis

Now we look at if [15] KP-ABE scheme is suitable to use in Kamara-Lauter crypto-

graphic cloud storage scheme according to the conditions given in Section 1.1.

• Since there is a large universe construction given in [15], we can say that it is

compatible with global scale construction. Although it is important to note that

this scheme is not scalable.

• There is fine grained access control, provided by access tree.

• Decryption is inefficient, although ways to improve efficiency of decryption

given in Subsection 3.2.1

• In this scheme there is one trusted party which is responsible for key generation.

If we use this scheme in the cryptographic cloud storage system this trusted

party most likely reside in the storage provider, then confidentiality property is

compromised because storage provider has access to the unique keys.
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3.2.5 KP-ABE with Non-monotonic Access Structure

Unlike monotonic access structures, non-monotonic access structures use NOT gates

in addition to AND, OR and threshold gates. A scheme for KP-ABE with Non-

monotonic access structures was proposed by Ostrovsky, Sahai and Waters in [20].

We will not examine this scheme further because of the inefficiencies that come with

using negative attributes.

Assume there are several positive and negative attributes in the ciphertext, but neg-

ative attributes are useless in describing the ciphertext while raising ciphertext over-

head. In large universe constructions, such as global scale secure cloud storage sys-

tems, storing the such ciphertexts will be problematic.

3.3 Ciphertext Policy Attribute Based Encryption

In this section, we examine a CP-ABE scheme Bethencourt, Sahai and Waters intro-

duced in [3]. In this scheme, a users have private keys that are affiliated with a set

of attributes. These attributes are expressed as strings. While encrypting a message

M , user A needs to establish an access structure over attributes. Then user B is able

to decrypt the ciphertext if and only if B’s attributes satisfy the ciphertext’s access

structure.

This CP-ABE scheme comprise of four main algorithms and an optional algorithm

(Delegate):

1. Setup is an algorithm that takes an implicit security parameter κ as an input

and it gives the public parameters denoted by PP and a master key denoted by

MK as outputs.

2. Encryption is an algorithm that takes public parameters PP , a messageM and

access structure A, that is defined over attribute universe U , as inputs. It gives

the ciphertext CT , which also contains access structure A, as output.

3. Key Generation is an algorithm that takes the master key MK and a set of

attributes S inputs. It gives a private decryption key DK as outputs.
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4. Decryption algorithm takes public parameters PP , ciphertextCT and a private

decryption key DK for a attribute set S as inputs. If attribute set S satisfies

A then decryption will be successful, then the algorithm gives message M as

output. Otherwise, decryption will fail.

5. Delegate algorithm takes a private decryption key DK for a attribute set S and

a set S̃ ⊆ S as inputs. It gives a secret key D̃K for the set of attributes S̃ as

outputs.

3.3.1 Construction of the CP-ABE scheme [3]

In this scheme, same as the FIBE scheme discussed in Section 3.1 and KP-ABE

scheme disccussed in Section 3.1, Bethencourt et al. consider the prime order bilin-

ear map definition given in Definition 2.4 and Lagrange Coefficient given in Defini-

tion 2.2.

Let the size of the groups G and GT that are defined in Definition 2.4 be determined

by a security parameter, κ.

In this scheme, Bethencourt et al. employ access structures defined in Definition 2.1,

where attributes represent the parties and access structure A consists of attributes, and

access tree T defined in KP-ABE scheme Definition 3.2.

Finally, in this scheme Bethencourt et al. also use a hash function H : {0, 1}∗ → G

which is a random oracle that maps each attribute to a random element of G.

Setup (κ→ PP,MK): Following steps are performed in this algorithm.

• Choose a bilinear group G with G = |p| where p is a prime order and G = 〈g〉.

• Choose α, β ∈ Zp as two random values.

• Compute h = gβ , f = g1/β and gα.

Then the public parameters is published as:

PP = (G, g, h, f, e(g, g)α)
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And the master key is:

MK = (β, gα)

Encrypt (PP,M, T → CT ): To encrypt a message M ∈ GT under access tree T
following steps are performed in the Encryption algorithm.

• Choose a polynomial denoted by qx for every node x of the tree T . Starting

from the root node r, these polynomials are chosen as follows:

– For each node x, deg(qx) = dx.

– For root node r; set qr(0) = y and dr = kr − 1, then define polynomial qr

randomly.

– For a node x that is not a root node; set qx(0) = qparent(x)(index(x)) and

dx = kx − 1, then define polynomial qx randomly.

• Compute C̃ = Me(g, g)αy, C = hy

• Let,W be set of leaf nodes in T . Then compute the values ∀w ∈ W Cw : gqw(0),

C ′w = H(att(w))qw(0).

Then ciphertext CT is:

CT = (T , C̃, C, {Cw}∀w∈W , {C ′w}∀w∈W )

Key Generation (MK,S → DK): To create a private decryption key for the at-

tribute set S following steps are performed in the Key Generation algorithm.

• Choose r ∈ Zp as a random value.

• For every attribute s in the attribute set S, choose rs ∈ Zp.

• Compute D = g(α+r)/β .

• For ∀s ∈ S, compute Ds = gr ·H(s)rs and D′s = grs .

Then private decryption key is:

DK = (D, {Ds}∀s∈S, {D′s}∀s∈S)
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.

Delegate (DK, S̃ → D̃K): S̃ is an attribute set such that S̃ ⊆ S then following steps

are performed in the delegate algorithm.

• Choose random values r̃ and r̃k ∈ S̃.

• Compute D̃ = Df r̃.

• For ∀k ∈ S̃ compute D̃k = Dkg
r̃ ·H(k)r̃k and D̃′k = D′kg

r̃k .

Resulting private decryption key for the attribute set S̃ is:

D̃K = (D̃, {D̃k}∀k∈S̃, {D̃
′
k}∀k∈S̃)

Decryption (CT , DK): The ciphertext CT is decrypted with the key DK in a recur-

sive manner.

• Define a recursive algorithm DecryptNode(CT,DK, x).

– If x is a leaf node and i = att(x) where i ∈ S then:

DecryptNode(CT,DK, x) =
e(Di, Cx)

e(D′i, C
′
x)

=
e(gr cotH(i)ri , hqx(0))

e(gri , H(i)qx(0))

= e(g, g)rqx(0)

If i /∈ S then DecryptNode(CT,DK, x) =⊥

– If x is a non-leaf node, then DecryptNode(CT,DK, x) then:

∗ For each node z where parent(z) = x callDecryptNode(CT,DK, z)

and store the outputs in Fz.

∗ Let Sx be a set of child nodes such that Fz 6=⊥ and |Sx| = kx.

· If no such and kx = 0 then the node is not satisfied and

DecryptNode(CT,DK, x) =⊥.
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· Otherwise,

Fx =
∏
z∈Sx

Fz
∆i,S′x

(0), i = index(z), S ′x = {index(z) : z ∈ Sx}

=
∏
z∈Sx

(e(g, g)r·qz(0))∆i,S′x
(0)

=
∏
z∈Sx

(e(g, g)r·qparent(z)(index(z)))∆i,S′x
(0)

=
∏
z∈Sx

e(g, g)r·qx(i)·∆i,S′x
(0)

= e(g, g)r·qx(0)

Then return Fx = e(g, g)r·qx(0)

• If the tree T is satisfied by S, setA = DecryptNode(CT,DK, r) = e(g, g)rqr(0)

= e(g, g)ry.

• Finally, decrypt CT by:

C̃/(e(C,D)/A) = C̃/(e(hy, g(α+r)/β)/e(g, g)ry) = M

As the Decryption algorithm of the KP-ABE scheme, it is possible to improve effi-

ciency of the decryption algorithm of this CP-ABE scheme.

3.3.2 Security

We know discuss the security of the CP-ABE scheme given above. Bethencourt et al.

[3] defines a security model to prove security of the said scheme under.

Security Model for CP-ABE

Assume A is the adversary and B is the challenger.

Init A chooses an access structure, A∗ to be challenged upon.

Setup B runs the Setup algorithm and gives the resulting public parameters, PP , to

the adversary A .

Phase 1 A can issue multiple inquiries for private keys corresponding to the sets of
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attributes S1, . . . , Sq1 , as long as none of these sets satisfies A∗.

Challenge A submits messagesM0 andM1 such that length ofM0 is equal to length

of M1. B randomly selects a bit b ∈ {0, 1}, and encrypts Mb with A∗. Resulting ci-

phertext CT is given to A.

Phase 2 Repeat Phase 1 with sets of attributes Sq1+1, . . . , Sq while the same restric-

tions still in place.

Guess A outputs a guess b′ about which message is encrypted.

The advantage of A in this game is defined as Pr[b′ = b]− 1
2
.

Definition 3.4. A CP-ABE scheme is secure in the Security Model for CP-ABE if all

polynomial time adversaries have at most a negligible advantage.

While proving the security of this CP-ABE scheme, Bethencourt et al. use the generic

bilinear group model of [7] and the random oracle model of [2]. They claim that no

efficient adversary that acts generically on the groups G,GT can break this scheme

with any reasonable probability.

Definition 3.5 (The generic bilinear group model [7]). Consider two random en-

codings ψ, ψT of the additive group Fp, i.e. injective maps ψ, ψT : Fp → {0, 1}m

where m > 3log(p). G = {ψ(x) : x ∈ Fp} and GT = {ψT (x) : x ∈ Fp}. We are

given oracles to compute the induced group action onG,GT and an oracle to compute

a non-degenerate bilinear map e : G × G → GT . A random oracle that serves as a

hash function H is given to us. We refer G as a generic bilinear group.

Theorem 3.3 ([3]). Let ψ, ψT , G,GT be defined as above. For any adversary A,

let q be a bound on the total number of group elements it receives from inquiries it

makes to the oracles for the hash function, groups G,GT , bilinear map e and from its

interaction with the CP-ABE security game. Then the advantage of adversary A in

CP-ABE security game is O(q2/p).

Proof of the Theorem 3.3 can be seen in [3].

Note that, this is a relatively weak security model. Later, Waters presented three more

CP-ABE schemes in [25] with non-interactive assumptions: Decisional q-Parallel

Bilinear Diffie-Hellman Exponent Assumption gicen in Definition 2.7, Decisional
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Bilinear Diffie-Hellman (d-BDH) Assumption given in Definition 2.5 and q-Bilinear

Diffie-Hellman Exponent Assumption gicen in Definition 2.8.

3.3.3 Efficiency

• In encryption algorithm, for each leaf node of the access tree T , two exponen-

tiations are needed. (Let, W be set of leaf nodes in T . ∀w ∈ W Cw = gqw(0),

C ′w = H(att(w))qw(0))

• In key generation algorithm, two exponentiations are required for each attribute

of the user. (s ∈ S, Ds = gr ·H(s)rs and D′s = grs)

• The ciphertext CT has two group elements for each leaf of the tree T . (Let, W

be set of leaf nodes in T . {Cw}∀w∈W , {C ′w}∀w∈W )

• Private key DK has two group elements for every attribute in S. ({Ds}∀s∈S ,

{D′s}∀s∈S)

• Efficiency of the decryption algorithm largely depends on the construction of

the access tree T as it is. It can require two pairings for every leaf of T that

is matched with a private key attribute and one exponentiation algorithm visits

during its path to such nodes.

3.3.4 Secure Cloud Storage System Suitability Analysis

Now we look at if [3] CP-ABE scheme is suitable to use in Kamara-Lauter crypto-

graphic cloud storage scheme according to the conditions given in Section 1.1.

• Large universe construction is possible. Although it is important to note that

this scheme is not scalable.

• There is fine grained access control.

• Decryption is inefficient, because decryption algorithm visits every node of

access tree T , whether it is necessary or not.
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• In this scheme there is one trusted party which is responsible for key generation.

If we use this scheme in the cryptographic cloud storage system this trusted

party most likely reside in the storage provider, then confidentiality property is

compromised because storge provider has access to the unique keys.

3.4 Multi-Authority Attribute Based Encryption

In this section, we will first look at Multi-Authority Attribute Based Encryption

(MABE) scheme proposed by Chase in [11], then will examine the improved MABE

scheme proposed by Chase and Chow [12].

MABE scheme, proposed by Chase in [11], is based pn the FIBE scheme proposed

by Sahai and Waters [21]. In this scheme, Chase introduced two techniques to realize

a multi-authority scheme. These techniques are:

• Global Identifier (GID): This scheme uses GID’s so that, no user can claim

another user’s identifier and all attribute authorities can verify a user’s identifier.

• Central Authority (CA): CA is used to provide synchronization between at-

tribute authorities. It should be noted that, CA holds master key of the whole

system and it is a trusted authority. Essentially, CA can decrypt any message

encrypted with this scheme.

We will not examine this scheme any further because existence of a central authority

with capabilities given above creates a discrepancy with the one of the main purposes

of a multi-authority scheme, which are providing scalability and eliminating central

trusted authority. In regards to suitability with cloud storage system; existence of CA

also compromises confidentiality property of a cryptographic cloud storage system.

Chase and Chow [12] later improved Chase’s earlier work [11] and proposed a MABE

scheme without the central authority. In addition to removing central authority Chase

and Chow also aimed to design a scheme with user privacy.

In this scheme there are multiple attribute authorities (AA), multiple users and a set

of public parameters available for anyone.
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• If a user wants to decrypt a message, they go to attribute authorities, prove that

they are authorized to subset of attributes controlled by each authority and ask

for the decryption keys that corresponds to these attributes. The authorities

separately use the key generation algorithm and give back the decryption keys

they get to the user.

• If a user wants to encrypt a message, they use the public parameters and a

attribute set they choose in the encryption algorithm.

It is assumed that all attribute sets can be divided into N disjoint sets, controlled by

the N different AA.

This MABE scheme made up of four algorithms:

1. Setup, is an algorithm that takes security parameter κ and number of authorities

N as inputs. It gives system parameters params which includes the threshold

values {dk}k∈{1,...,N}, public key pk and secret key sk pairs (pkk, skk) for each

attribute authority k ∈ {1, . . . , N} as outputs.

2. Key Generation, is an algorithm that takes attribute authority k’s secret key

skk, users GID, attribute set handled by the authority k, Ak, as inputs. It gives

a decryption key for the user with identityGID that corresponds to the attribute

set Ak.

3. Encryption algorithm takes set of attributes Ak and a message M as inputs. It

gives ciphertext C as output.

4. Decryption algorithm takes the decryption keys and ciphertext C as inputs. ıf

user has a sufficient set of decryption keys for each authority k, then decrypts

C and gives M as an output. Otherwise, decryption fails.

We will not examine this scheme any further either. Because, even though need for

central authority is eliminated, setting the number of attribute authorities to N from

the very start and not being able to increase it later on shows that this scheme is not

scalable which is one of main purposes of designing a multi-authority scheme.
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3.5 Multi-Authority Ciphertext Policy Attribute Based Encryption Scheme

In this section, we examine Multi-Authority CP-ABE scheme introduced by Lewko

and Waters [18]. In this scheme we employ Access Structure given in Definition 2.1,

Linear Secret Sharing Scheme (LSSS) given in Definition 2.13 and Composite Order

Bilinear Groups with order N = p1p2p3 given in Definition 2.12.

This Multi-Authority CP-ABE scheme comprises of five algorithms:

1. Universal Setup, algorithm takes in the security parameter κ as an input and it

gives the universal public parameters UP as output.

2. Authority Setup, is an algorithm that each authority runs separately. It takes

UP as an input and gives authority’s secret key that is denoted by SK and

public key that is denoted by PK as outputs.

3. Encryption, is an algorithm that takes in message M , an access matrix A that

has n rows and l columns with mapping ρ denoted by (A, ρ), universal public

parameters UP and the set of public keys of other authorities {PK} as inputs.

It gives the ciphertext C as output.

4. Key Generation, algorithm takes an identifier ID, the universal public param-

eters UP , an attribute i that is controlled by an authority and the secret key SK

for the same authority as inputs. It gives a key for this attribute-identifier pair

{i, ID}, denoted by Ki,ID, as output.

5. Decryption, is an algorithm that takes in universal public parameters UP , the

ciphertext C and group of keys that correspond to the i, ID pairs all with the

same identifier ID. If group of attributes i satisfies A that corresponds to the

ciphertext, the algorithm gives message M as an output.

Definition 3.6 ([18]). A multi-authority CP-ABE is said to be correct if whenever

UP , C (obtained from encryption of M ), {Ki,ID} for a set of attributes satisfying the

access structure of the ciphertext, Decrypt(C,UP, {Ki,ID}) = M

Different from schemes we have examined so far, this scheme uses a composite order

bilinear group. Specifically, it uses bilinear group G with |G| = N = p1p2p3 where
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p1, p2, p3 three distinct primes. G has subgroups Gp1 , Gp2 , Gp3 with |Gp1| = p1,

|Gp2 | = p2 and |Gp3| = p3. In this scheme, all system is enclosed in the subgroup

Gp1 except for the random oracle H. H maps identifiers to random group elements of

G. Subgroups are only used for the proof of security of this scheme which employs

the dual system encryption technique.

In the dual system there are two types of keys and two types of ciphertexts: nor-

mal and semi functional. While normal keys and ciphertexts has elements from the

subgroup of order p1, semi-functional keys and ciphertexts has elements from the

subgroups of order p2 and p3. Then we can say that, semi-functional space is formed

by the subgroups Gp2 and Gp3 and they are orthogonal to the subgroup Gp1 .

To provide collusion resistance, this scheme uses the universal identifier (ID). Col-

lusion resistance makes use of the linear reconstruction property (given in Defini-

tion 2.14) and works as follows:

• To blind the message M , encryption algorithm uses e(g1, g1)s where s is a

random value in ZN and g1 is a generator of Gp1 .

• Then s is split into shares λx according to the LSSS matrix and value 0 is split

into shares wx.

• In order to find the blinding factor e(g1, g1)s, decryptor must acquire the shares

of s. To do that decrpytor must pair key elements Ki,ID with the ciphertext

elements. To do this, decryptor will use the terms of the form e(g1,H(ID))wx .

• If the set of keys decryptor has satisfies the access structure, these extra terms

e(g1,H(ID))wx will cancel out, because wx’s are the shares of 0.

Note that, if two different users with identifiers ID1 and ID2 try to collude; terms

e(g1,H(ID1))wx1 and e(g1,H(ID2))wx2 will not cancel out. Therefore, blinding fac-

tor e(g1, g1)s can not be recovered and decryptor can not successfully decrypt the

ciphertext.
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Construction of Multi-Authority CP-ABE Scheme [18]

Let G be a bilinear group of composite order |G| = N = p1p2p3 where p1, p2, p3 are

distinct primes. System is enclosed in the subgroup Gp1 in G. Subgroups Gp2 and

Gp3 of G are used in the security proof, which is done using dual system encryption

technique.

Universal Setup (λ→ UP ): A bilinear group G with |G| = N = p1p2p3 is chosen.

Universal public parameters UP = (N, g1) is published. Description of the hash

function H : {0, 1}∗ → G, where H is a random oracle that maps every ID to an

element of G is also published.

Authority Setup (UP → PK, SK): Assume Authority Setup algorithm is ran by

authority O. For each attribute i controlled by the authority O, O chooses random

elements αi, yi ∈ ZN , then;

• Publishes public key as, PK = {e(g1, g1)αi , gyi1 : ∀i}.

• Keeps the secret key, SK = {αi, yi : ∀i}

Every authority runs Authority Setup algorithm.

Encryption (M, (A, ρ), UP, {PK} → C): Encryption algorithm first chooses a ran-

dom value s ∈ ZN . Then a random vector v ∈ ZlN is chosen up to the constraint that

v has s as its first entry. Where Ax is the xth row of A, Ax · v is denoted by λx. Then

a random vector w ∈ ZlN is chosen up to the constraint that it has 0 as its first entry.

Let wx denote Ax · w. Finally it chooses rx ∈ ZN for each row Ax of A. After all

elements are chosen, following computations will be made:

C0 = Me(g1, g1)s

C1,x = e(g1, g1)λxe(g1, g1)αρ(x)rx , : ∀x

C2,x = grx1 , ∀x

C3,x = g
yρ(x)rx
1 gwx1 , : ∀x

Then ciphertext C is, C = {C0, {C1,x}∀x, {C2,x}∀x, {C3,x}∀x}
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Key Generation (ID, i, SK,UP → Ki,ID): Assume user with a identity ID wants

to create a key for their ID and attribute i that belongs to an authority O. Then

authority O computes:

Ki,ID = gαi1 H(ID)yi

Then sends Ki,ID to the user who has the universal identifier ID.

Decryption (C, {Ki,ID}, UP → M): Before performing decryption steps on the

ciphertext C, decryptor needs to compute the hash function H(ID) first. If decryptor

has {Kρ(x),ID} for a subset of rows Ax of A such that (1, 0, . . . , 0) is in the span of

these rows, then for each such x decryptor does the following computations:

C1,x · e(H(ID), C3,x)/e(Kρ(x),ID, C2,x) = e(g1, g1)λxe(H(ID), g1)wx

Then the constant cx ∈ ZN is chosen up to the constraint that
∑

x cxAx = (1, 0, . . . , 0)

by the decryptor. Then following computations are made:∏
x

(e(g1, g1)λxe(H(ID), g1)wx)cx = e(g1, g1)s

Note that, this computations work because λx = Ax ·v where v · (1, 0, . . . , 0) = s and

wx = Ax · w where w · (1, 0, . . . , 0) = 0. Finally M can be obtained by performing

one final division as: C0/e(g1, g1)s = M · e(g1, g1)s/e(g1, g1)s = M

3.5.1 Security

We now discuss the security of the Multi-Authority CP-ABE scheme given above.

Lewko and Waters gave the following game played by a challenger and an adversary.

In this game they assume adversary can corrupt authorities only statically and make

queries adaptively.

Multi-Authority CP-ABE Security Game: GameReal

AssumeA is the adversary. Let the set of authorities be denoted by S and the universe

of attributes be denoted by U . Each attribute is controlled by only one authority and

every authority can be responsible for multiple attributes.
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Setup: First universal setup is completed and universal public parameters UP are

published. Then attacker A specifies a set of corrupt authorities S ′ such that S ′ ⊆ S.

The challenger employs the authority setup to acquire public key-secret key pairs, i.e.

(PK, SK), for every non-corrupt authority in S − S ′. Then gives these public keys

he collected to A.

Key Query Phase 1: A submits attribute-identity pairs (i, ID), where attribute i is

controlled by a non-corrupt authority, to the challenger. The challengers responds by

giving the corresponding key Ki,ID to the A.

Challenge: A specifies an access matrix (A, ρ) and messages M0,M1 and. Let

subset of rows of A, which are labeled with attributes belonging to corrupt authorities,

is denoted by V . Let subset of rows of A which are labeled with by attributes i A
has queried pairs (i, ID) in the Key Query Phase 1, denoted by VID for each ID. For

every ID, it is required that V ∪ VID not include (1, 0, . . . , 0). The challenger must

be given public keys of corrupt authorities who controls at least one attribute appear

in the labeling ρ by attacker A.

Key Query Phase 2: A submits additional key queries (i, ID) that does not breach

the constraints on the access matrix (A, ρ).

Guess: A announces a guess b′.

A’s advantage in this game is defined as Pr[b′ = b]− 1
2
.

Definition 3.7 ([18]). A multi-authority CP-ABE scheme is secure against static cor-

ruption of authorities if all polynomial time adversaries have at most a negligible

advantage in the security game given above.

Complexity Assumptions [18]

Lewko and Waters defined complexity assumptions to prove security of their multi-

authority CP-ABE scheme. These assumptions designed for a bilinear group G with

|G| = N = p1p2p3 where p1, p2, p3 are distinct primes defined in Definition 2.12.

While defining these assumptions, we will use the notations given below:
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• Gp1p2 denotes the subgroup of G with Gp1p2 = p1p2.

• g1
R←− Gp1 means that g1 is chosen as a random generator of Gp1 .

• T1
R←− G means that T1 is chosen as a random generator of G.

Assumption 3.4 (Subgroup Decision Problem for 3 Primes). Given a group genera-

tor G, define following distribution:

G = (N,G,GT , e)
R←− G

g1
R←− Gp1

D = (G, g1)

T1
R←− G, T2

R←− Gp1

The advantage of an algorithm B in breaking Assumption 3.1 defined as;

Adv1G,B(λ) = |Pr[B(D,T1) = 1]− Pr[B(D,T2) = 1]|

T1 can be written uniquely as a product of; an element of G1 called Gp1 part of T1, an

element of G2 called Gp2 part of T1 and an element of G3 called Gp3 part of T1.

Definition 3.8. G satisfies Assumption 3.1 if for any polynomial algorithmB Adv1G,B(λ)

is a negligible function of λ.

Assumption 3.5. Given a group generator G, define following distribution:

G = (N,G,GT , e)
R←− G

g1, X1
R←− Gp1 , X2

R←− Gp2 , g3
R←− Gp3

D = (G, g1, g3, X1X2)

T1
R←− Gp1 , T2

R←− Gp1p2

The advantage of an algorithm B in breaking Assumption 3.2 defined as;

Adv2G,B(λ) = |Pr[B(D,T1) = 1]− Pr[B(D,T2) = 1]|

Definition 3.9. G satisfies Assumption 3.2 if for any polynomial algorithmB Adv2G,B(λ)

is a negligible function of λ.
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Assumption 3.6. Given a group generator G, define following distribution:

G = (N,G,GT , e)
R←− G

g1, X1
R←− Gp1 , Y2

R←− Gp2 , X3, Y3
R←− Gp3

D = (G, g1, X1X3, Y2Y3)

T1
R←− Gp1p2 , T2

R←− Gp1p3

The advantage of an algorithm B in breaking Assumption 3.3 defined as;

Adv3G,B(λ) = |Pr[B(D,T1) = 1]− Pr[B(D,T2) = 1]|

Definition 3.10. G satisfies Assumption 3.3 if Adv3G,B(λ) is a negligible function of

λ for any polynomial algorithm B.

Assumption 3.7. Given a group generator G, define following distribution:

G = (N,G,GT , e)
R←− G

g1
R←− Gp1 , g2

R←− Gp2 , g3
R←− Gp3 , a, b, c, d

R←− ZN

D = (G, g1, g2, g3, g
a
1 , g

b
1g
b
3, g

c
1, g

ac
1 g

d
3)

T1
R←− Gp1p2 , T2

R←− Gp1p3

The advantage of an algorithm B in breaking Assumption 3.4 defined as;

Adv4G,B(λ) = |Pr[B(D,T1) = 1]− Pr[B(D,T2) = 1]|

Definition 3.11. G satisfies Assumption 3.4 if Adv4G,B(λ) is a negligible function of

λ for any polynomial algorithm B.

Security Definition [18]

Lewko and Waters prove security of their scheme using a form of dual system encryp-

tion technique. The proof of this scheme uses a hybrid argument over a sequence of

games where challenge normal ciphertexts and normal keys are changed to be semi-

functional.
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Now we give definition of sequence of games defined in [18] by Lewko and Waters.

In these definitions, we will assume an attribute i can belong to only one authority,

i.e. the row labeling ρ of the (A, ρ) must be injective.

• Real security game is denoted by GameReal.

• GameReal′ differs from GameReal only as the random oracle H is defined as

H : {0, 1}∗ → Gp1 instead of H : {0, 1}∗ → G.

In addition to terms from subgroup Gp1 , semi-functional ciphertexts also contain

terms from subgroups Gp2 and Gp3 . In addition terms from subgroup Gp1 , semi-

functional keys of Type 1 contain terms from Gp2 and semi-functional keys of Type

2 contains terms from Gp3 . So if we try to decrypt a semi-functional ciphertext with

semi-functional key of Type 1, Gp2 terms of ciphertext and key will be paired with

each other which will prevent successful decryption. Similarly if we try to decrypt a

semi-functional ciphertext with semi-functional key of Type 2, Gp3 terms of cipher-

text and key will be paired with each other which will prevent successful decryption.

While describing the semi-functional ciphertexts and keys, for each attribute i first

random values zi, ti ∈ ZN are fixed and these values do not differ for different users.

B denotes the subset of rows of A that corresponds to the attributes belong to the cor-

rupt authorities. B denotes the subset of rows of A that corresponds to the attributes

belong to the non-corrupt authorities.

Semi-functional ciphertext created by performing following steps:

• Obtain normal ciphertext, C0, C1,x, C2,x, C3,x for every x by running the en-

cryption algorithm.

• Random vectors u2, u3 ∈ ZlN are chosen then δx and σx defined as δx = Ax ·u2,

σx = Ax · u3 for every row Ax of A.

• For every Ax ∈ B, random exponents γx, ψx ∈ ZN are chosen.

Then semi-functional ciphertexts formed as:
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C ′1,x = C1,x

C ′2,x = C2,x · gγx2 · g
ψx
3

C ′3,x = C3,x · g
δx+γx·zρ(x)
2 · gσx+ψx·tρ(x)

3

∀x s.t.Ax ∈ B

C ′1,x = C1,x

C ′2,x = C2,x

C ′3,x = C3,x · gδx2 · gσx3

 ∀x s.t.Ax ∈ B

Key that belongs to the user with identity ID, is actually a collection of values

H(ID), {Ki,ID}∀i∈J where J is the set of attributes that belong to non-corrupt au-

thority requested by the attacker through Key Query Phase 1 and Key Query Phase 2

of the game.

For an ID, semi-funtional keys can be two types: Type 1 and Type 2. Before semi-

functional key for an ID is created, assume H(ID) ∈ Gp1 and choose c R←− ZN .

Semi-functional key of Type 1 can be obtained by following steps:

• Before Semi-functional key of Type 1 is created we first need to define: H(ID)′ =

H(ID)gc2.

• Secondly we need to create a normal key Ki,ID.

• Lastly Semi-functional key of Type 1 is set as, K ′i,ID = Ki,IDg
czi
2 .

Semi-functional key of Type 2 can be obtained by following steps:

• Before Semi-functional key of Type 2 is created we first need to define: H(ID)′ =

H(ID)gc3.

• Secondly we need to create a normal key Ki,ID.

• Lastly Semi-functional key of Type 1 is set as, K ′i,ID = Ki,IDg
cti
3

Let q be the number of identities ID for which the attacker has queried for the

pair Ki,ID. We define Game0, Gamej,1 and Gamej,2 for each j from 1 to q and

GameFinal as follows:
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• Game0 is similar to GameReal′ , except that a semi-functional ciphertext is

given to the attacker.

• Gamej,1 is similar to Game0, except that,

– For the first j− 1 identities that are queried, semi-functional keys of Type

2 are received.

– For the jth queried identity is semi-functional key of Type 1 is received.

– After the first j queried identities, remaining keys that are received are

normal.

• Gamej,2 is similar to Game0, except that,

– For the first j queried identities, semi-functional keys of Type 2 are re-

ceived.

– After the first j queried identities, remaining keys that are received are

normal.

Notice that, in Gameq,2, all received keys are semi-functional keys of Type 2.

• In GameFinal, where all keys are semi-functional keys of Type 2, and the ci-

phertext is a semi-functional ciphertext of a random message. Note that the

attacker has advantage 0 in this game.

With following Lemmas, Lewko and Waters show these games are indistinguishable.

The proof of security relies on the limit that ρ is injective, i.e. each attribute is used

at only once in the A.

Lemma 3.8 ([18]). Assume there is a polynomial time algorithmB thusGameRealAdvB

−GameReal′AdvB = ε. A polynomial time algorithm A with advantage ε in breaking

Assumption 3.4 can be constructed.

Lemma 3.9 ([18]). Assume there is a polynomial time algorithmB thusGameReal′AdvB

−Game0AdvB = ε. A polynomial time algorithmA with advantage ε in breaking As-

sumption 3.4 can be constructed.

Lemma 3.10 ([18]). Assume there is a polynomial time algorithmB thusGamej−1,2AdvB

−Gamej,1AdvB = ε. A polynomial time algorithm A with advantage ε in breaking

Assumption 3.5 can be constructed.
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Lemma 3.11 ([18]). Assume there is a polynomial time algorithmB thusGamej,1AdvB

−Gamej,2AdvB = ε. A polynomial time algorithm A with advantage ε in breaking

Assumption 3.6 can be constructed.

Lemma 3.12 ([18]). Assume there is a polynomial time algorithmB thusGameq,2AdvB

−GameFinalAdvB = ε. A polynomial time algorithmA with advantage ε in breaking

Assumption 3.7 can be constructed.

Proves of these lemmas can be seen in [18].

While executing dual system encryption technique to explain the security of their

scheme, Lewko and Waters made some claims about which results will be achieved

if decryption is performed with following key and ciphertext pairs;

• Normal keys and semi-functional ciphertexts

• Semi-functional keys and normal ciphertexts

• Semi-functional keys and semi functional ciphertexts

Claim 3.13. Normal keys can decrypt semi-functional ciphertexts.

Proof of Claim 3.13. Normal key for identity ID and attribute i:

Ki,ID = gαi1 H(ID)yi

Semi-functional ciphertexts have two types.

(i) Semi-functional ciphertext for rows of A that corresponds to the attributes belong

to the corrupt authorities, i.e. ρ(x) maps to the attribute i which belongs to a corrupt

authority:

C ′1,x = C1,x = e(g1, g1)αρ(x)rx+λx

C ′2,x = C2,x · gγx2 · g
ψx
3 = grx1 · g

γx
2 · g

ψx
3

C ′3,x = C3,x · g
δx+γx·zρ(x)
2 · gσx+ψx·tρ(x)

3 = g
wx+rx·yρ(x)
1 · gδx+γx·zρ(x)

2 · gσx+ψx·tρ(x)
3

∀x
∀x such that Ax ∈ B.
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Then if we perform the computations according to the first part of the decryption

algorithm, we will get the following results:

Cx =
C ′1,x · e(H(ID), C ′3,x)

e(Kρ(x),ID, C ′2,x)

=
e(g1, g1)αρ(x)rx+λx · e(H(ID), g

wx+rx·yρ(x)
1 · gδx+γx·zρ(x)

2 · gσx+ψx·tρ(x)
3

e(g
αρ(x)
1 H(ID)yρ(x) , grx1 · g

γx
2 · g

ψx
3 )

= e(g1, g1)λx · e(H(ID), g1)wx·

e(H(ID), g2)δx+γx(zρ(x)−yρ(x)) · e(H(ID), g3)σx+ψx(tρ(x)−yρ(x))·

e(g1, g2)−γxαρ(x)e(g1, g3)−ψxαρ(x)

Remember that, in the Universal Setup of the construction hash function is defined

as H : {0, 1}∗ → G. But while discussing security of their scheme hash function

is defined as H : {0, 1}∗ → Gp1 instead of H : {0, 1}∗ → G. So we know that

H(ID) ∈ Gp1 , g1 ∈ Gp1 , g2 ∈ Gp2 and g3 ∈ Gp3 . By composite order bilin-

ear group definition given in Definition 2.10 we know that e(g1, g2) = e(g1, g3) =

e(H(ID), g2) = e(H(ID), g3) = 1 where 1 denotes to the identity element of GT .

Then,

Cx = e(g1, g1)λx · e(H(ID), g1)wx

(ii) Semi-functional ciphertext for rows of A that corresponds to the attributes belong

to the non-corrupt authorities:

C ′1,x = C1,x = e(g1, g1)αρ(x)rx+λx

C ′2,x = C2,x = grx1

C ′3,x = C3,x · gδx2 · gσx3 = g
wx+rx·yρ(x)
1 · gδx2 · gσx3

 ∀x s.t.Ax ∈ B

Then if we perform decryption with this normal key and semi-functional ciphertext,

we will get:

Cx =
C ′1,x · e(H(ID), C ′3,x)

e(Kρ(x),ID, C ′2,x)

=
e(g1, g1)αρ(x)rx+λx · e(H(ID), g

wx+rx·yρ(x)
1 · gδx2 · gσx3 )

e(g
αρ(x)
1 H(ID)yρ(x) , grx1 )

= e(g1, g1)λx · e(H(ID), g1)wx · e(H(ID), g2)δx · e(H(ID), g3)σx
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Since H(ID) ∈ Gp1 , g1 ∈ Gp1 , g2 ∈ Gp2 and g3 ∈ Gp3 , by composite order

bilinear group definition given in Definition 2.10 we know that e(H(ID), g2) =

e(H(ID), g3) = 1 where 1 denotes to the identity element of GT . Then,

Cx = e(g1, g1)λx · e(H(ID), g1)wx

Finally we need to perform the computations of the second part of the decryption al-

gorithm, i.e.
∏

x(Cx)
cx . Since there are no extra elements, for both cases, decryption

will be successful. So claim 1 is true.

Claim 3.14. Semi-functional keys can decrypt normal ciphertexts.

Proof of Claim 3.14. Components of the normal ciphertext are:

C0 = Me(g1, g1)s

C1,x = e(g1, g1)λxe(g1, g1)αρ(x)rx

C2,x = grx1

C3,x = g
yρ(x)rx
1 gwx1


∀x

There are two types of semi-functional keys; Type 1 and Type 2.

(i) Consider Type 1 Semi-functional Key.

K ′i,ID = Ki,IDg
czi
2 = gαi1 H(ID)yigczi2

where H ′(ID) = H(ID)gc2.

Then if we perform first part of the decryption algorithm with normal ciphertext and

Type 1 Semi-functional Key, we will get:

Cx =
C1,x · e(H ′(ID), C3,x)

e(K ′ρ(x),ID, C2,x)

=
e(g1, g1)λx · e(H(ID), g1)wxe(g1, g2)cyρ(x)rx+cwx

e(g1, g2)czρ(x)rx

= e(g1, g1)λx · e(H(ID), g1)wx · e(g1, g2)cwx · e(g1, g2)crx(yρ(x)−zρ(x))
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Since H(ID) ∈ Gp1 , g1 ∈ Gp1 , g2 ∈ Gp2 and g3 ∈ Gp3 , by composite order bilinear

group definition given in Definition 2.10 we know that e(g1, g2) = 1 where 1 denotes

to the identity element of GT . Then,

Cx = e(g1, g1)λx · e(H(ID), g1)wx

Finally we need to complete decryption by calculating
∏

x(Cx) since there are no ex-

tra elements decryption will be successful as
∏

x(Cx)
cx = e(g1, g1)s andC0/e(g1, g1)s

= M .

(ii) Consider Type 2 Semi-functional Key.

K ′i,ID = Ki,IDg
cti
3 = gαi1 H(ID)yigcti3

where H ′(ID) = H(ID)gc3.

Then if we perform first part of the decryption with normal ciphertext and Type 2

Semi-functional Key, we will get:

Cx =
C1,x · e(H ′(ID), C3,x)

e(K ′ρ(x),ID, C2,x)

=
e(g1, g1)λx · e(H(ID), g1)wxe(g1, g3)cyρ(x)rx+cwx

e(g1, g3)ctρ(x)rx

= e(g1, g1)λx · e(H(ID), g1)wx · e(g1, g3)cwx · e(g1, g3)crx(yρ(x)−tρ(x))

Since H(ID) ∈ Gp1 , g1 ∈ Gp1 , g2 ∈ Gp2 and g3 ∈ Gp3 , by composite order bilinear

group definition given in Definition 2.10 we know that e(g1, g3) = 1 where 1 denotes

to the identity element of GT . Then,

Cx = e(g1, g1)λx · e(H(ID), g1)wx

Like we did before, finally we need to complete decryption by calculating
∏

x(Cx)
cx

since there are no extra elements decryption will be successful as
∏

x(Cx)
cx = e(g1, g1)s

and C0/e(g1, g1)s = M .

Decryption is successful for both cases, then we can conclude that Claim 3.14 is

true.
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Previously we explained that Lewko and Waters used hybrid argument over array of

games, where ciphertext is challenged to be semi-functional then keys are changed

to be semi-functional gradually. To prove that these games are not distinguishable, it

must be certain that simulator cannot detect the form of the key being turned normal

to semi-functional by trying to decrypt a semi-functional ciphertext.

Lewko and Waters claimed to prevent this by only allowing simulator to make a chal-

lenge ciphertext and key pairs that are nominally semi-functional, i.e. the key and

ciphertext both have semi-functional elements that cancel each other out during the

decryption.

Lewko and Waters made two following claims while discussing security of their

scheme.

Claim 3.15. When Type 1 semi-functional key is used to decrypt a semi-functional ci-

phertext, successful decryption is prevented by extra terms e(g2, g2)cδx . Apart from

if the values δx are shares of 0, decryption will be successful because the semi-

functional ciphertext is nominally semi-functional.

Proof of Claim 3.15. Type 1 Semi-functional Key is:

K ′i,ID = Ki,IDg
czi
2 = gαi1 H(ID)yigczi2

where H ′(ID) = H(ID)gc2.

(i) Semi-functional ciphertext for rows of A that corresponds to the attributes belong

to the corrupt authorities:

C ′1,x = C1,x = e(g1, g1)αρ(x)rx+λx

C ′2,x = C2,x · gγx2 · g
ψx
3 = grx1 · g

γx
2 · g

ψx
3

C ′3,x = C3,x · g
δx+γx·zρ(x)
2 · gσx+ψx·tρ(x)

3 = g
wx+rx·yρ(x)
1 · gδx+γx·zρ(x)

2 · gσx+ψx·tρ(x)
3

∀x

∀x such that Ax ∈ B.

Then if we perform decryption with Type 1 semi-functional key of and semi-functional
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ciphertext, we will get:

Cx =
C ′1,x · e(H ′(ID), C ′3,x)

e(K ′ρ(x),ID, C
′
2,x)

=
e(g1, g1)αρ(x)rx+λx · e(H(ID)gc2, g

wx+rx·yρ(x)
1 · gδx+γx·zρ(x)

2 · gσx+ψx·tρ(x)
3 )

e(g
αρ(x)
1 H(ID)yρ(x)g

czρ(x)
2 , grx1 · g

γx
2 · g

ψx
3 )

= e(g1, g1)λx · e(H(ID), g1)wx

· e(H(ID), g2)δx+γx·(zρ(x)−yρ(x)) · e(H(ID), g3)σx+ψx·(tρ(x)−yρ(x))

· e(g1, g2)cwx−γxαρ(x)+crx(yρ(x)−zρ(x)) · e(g1, g3)−ψxαρ(x)

· e(g2, g2)cδx · e(g2, g3)cσx+cψx(tρ(x)−zρ(x))

We know that H(ID) ∈ Gp1 , g1 ∈ Gp1 , g2 ∈ Gp2 and g3 ∈ Gp3 , by composite

order bilinear group definition given in Definition 2.10 we know that e(g1, g2) =

e(g1, g3) = e(g2, g3) = e(H(ID), g2) = e(H(ID), g3) = 1 where 1 denotes to the

identity element of GT . Then,

Cx = e(g1, g1)λx · e(H(ID), g1)wx · e(g2, g2)cδx

(ii) Semi-functional ciphertext for rows of A that corresponds to the attributes belong

to the non-corrupt authorities:

C ′1,x = C1,x = e(g1, g1)αρ(x)rx+λx

C ′2,x = C2,x = grx1

C ′3,x = C3,x · gδx2 · gσx3 = g
wx+rx·yρ(x)
1 · gδx2 · gσx3

 ∀x s.t.Ax ∈ B

Then if we perform decryption with Type 1 semi-functional key and semi-functional

ciphertext, we will get:

Cx =
C ′1,x · e(H ′(ID), C ′3,x)

e(K ′ρ(x),ID, C
′
2,x)

=
e(g1, g1)αρ(x)rx+λx · e(H(ID)gc2, g

wx+rx·yρ(x)
1 · gδx2 · gσx3

e(g
αρ(x)
1 H(ID)yρ(x)g

czρ(x)
2 , grx1 )

= e(g1, g1)λx · e(H(ID), g1)wx · e(H(ID), g2)δx · e(H(ID), g3)σx

· e(g2, g1)cwx+crx(yρ(x)−zρ(x)) · e(g2, g2)cδx · e(g2, g3)cσx
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We know that H(ID) ∈ Gp1 , g1 ∈ Gp1 , g2 ∈ Gp2 and g3 ∈ Gp3 , by composite order

bilinear group definition given in Definition 2.10 we know that e(g1, g2) = e(g2, g3) =

e(H(ID), g2) = e(H(ID), g3) = 1where 1 denotes to the identity element of GT .

Then,

Cx = e(g1, g1)λx · e(H(ID), g1)wx · e(g2, g2)cδx

While, performing decryption with Type 1 semi-functional key and semi-functional

ciphertext for both corrupt and non-corrupt authorities, even before performing the

last step of the decryption, it is obvious that e(g2, g2)cδx will prevent these decryptions

from completing successfully. But if the values δx are shares of 0, then when we

perform
∏

x(Cx)
cx terms e(g2, g2)cδx will be eliminated, then it can be seen that these

decryptions will be successful. So we can say that Claim 3.15 is true.

Claim 3.16. When Type 2 semi-functional key is used to decrypt a semi-functional

ciphertext, successful decryption is prevented by extra terms e(g3, g3)cσx. Apart from

if the values σx are shares of 0, decryption will be successful because the semi-

functional ciphertext is nominally semi-functional.

Proof of Claim 3.16. Semi-functional Key of Type 2 is:

K ′i,ID = Ki,IDg
cti
3 = gαi1 H(ID)yigcti3

where H ′(ID) = H(ID)gc3.

(i) Semi-functional ciphertext for rows of A that corresponds to the attributes belong

to the corrupt authorities:

C ′1,x = C1,x = e(g1, g1)αρ(x)rx+λx

C ′2,x = C2,x · gγx2 · g
ψx
3 = grx1 · g

γx
2 · g

ψx
3

C ′3,x = C3,x · g
δx+γx·zρ(x)
2 · gσx+ψx·tρ(x)

3 = g
wx+rx·yρ(x)
1 · gδx+γx·zρ(x)

2 · gσx+ψx·tρ(x)
3

∀x

∀x such that Ax ∈ B.

Then if we perform decryption with Type 2 semi-functional key and semi-functional
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ciphertext, we will get:

Cx =
C ′1,x · e(H ′(ID), C ′3,x)

e(K ′ρ(x),ID, C
′
2,x)

=
e(g1, g1)αρ(x)rx+λx · e(H(ID)gc3, g

wx+rx·yρ(x)
1 · gδx+γx·zρ(x)

2 · gσx+ψx·tρ(x)
3 )

e(g
αρ(x)
1 H(ID)yρ(x)g

ctρ(x)
3 , grx1 · g

γx
2 · g

ψx
3 )

= e(g1, g1)λx · e(H(ID), g1)wx

· e(H(ID), g2)δx+γx·(zρ(x)−yρ(x)) · e(H(ID), g3)σx+ψx·(tρ(x)−yρ(x))

· e(g1, g2)−γxαρ(x) · e(g1, g3)cwx−γxαρ(x)+crx(yρ(x)−tρ(x))−ψxαρ(x)

· e(g2, g3)cδx+cγx(zρ(x)−tρ(x)) · e(g3, g3)cσx

We know that H(ID) ∈ Gp1 , g1 ∈ Gp1 , g2 ∈ Gp2 and g3 ∈ Gp3 , by composite

order bilinear group definition given in Definition 2.10 we know that e(g1, g2) =

e(g1, g3) = e(g2, g3) = e(H(ID), g2) = e(H(ID), g3) = 1 where 1 denotes to the

identity element of GT . Then,

Cx = e(g1, g1)λx · e(H(ID), g1)wx · e(g3, g3)cσx

(ii) Semi-functional ciphertext for rows of A that corresponds to the attributes belong

to the non-corrupt authorities:

C ′1,x = C1,x = e(g1, g1)αρ(x)rx+λx

C ′2,x = C2,x = grx1

C ′3,x = C3,x · gδx2 · gσx3 = g
wx+rx·yρ(x)
1 · gδx2 · gσx3

 ∀x s.t.Ax ∈ B

Then if we perform decryption with Type 2 semi-functional key and semi-functional

ciphertext, we will get:

Cx =
C ′1,x · e(H ′(ID), C ′3,x)

e(K ′ρ(x),ID, C
′
2,x)

=
e(g1, g1)αρ(x)rx+λx · e(H(ID)gc3, g

wx+rx·yρ(x)
1 · gδx2 · gσx3 )

e(g
αρ(x)
1 H(ID)yρ(x)g

ctρ(x)
3 , grx1 )

= e(g1, g1)λx · e(H(ID), g1)wx

· e(H(ID), g2)δx · e(H(ID), g3)σx

· e(g1, g3)cwx+crx(yρ(x)−tρ(x)) · e(g2, g3)cδx · e(g3, g3)cσx

We know that H(ID) ∈ Gp1 , g1 ∈ Gp1 , g2 ∈ Gp2 and g3 ∈ Gp3 , by composite order

bilinear group definition given in Definition 2.10 we know that e(g1, g3) = e(g2, g3) =
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e(H(ID), g2) = e(H(ID), g3) = 1 where 1 denotes to the identity element of GT .

Then,

Cx = e(g1, g1)λx · e(H(ID), g1)wx · e(g3, g3)cσx

While, performing decryption with semi-functional key of Type 2 for semi-functional

ciphertext for both corrupt and non-corrupt authorities, even before performing the

last step of the decryption, it is obvious that e(g3, g3)cσx will prevent these decryptions

from completing successfully. But if the values σx are shares of 0, then when we

perform
∏

x(Cx)
cx terms e(g3, g3)cσx will be eliminated, then it can be seen that these

decryptions will be successful. So we can say that Claim 3.16 is true.

Claim 3.17. Semi-functional keys can not decrypt semi-functional ciphertexts.

Proof of Claim 3.17. While we tried to prove Claim 3.15 and Claim 3.16, we have

seen that,

• If we try to decrypt semi-functional ciphertext for rows of A that corresponds

to the attributes belong to the corrupt authorities with Semi-functional key of

Type 1 decryption will fail (unless δ is shares of 0). (See Proof of Claim 3.15)

• If we try to decrypt semi-functional ciphertext for rows of A that corresponds to

the attributes belong to the non-corrupt authorities with Semi-functional key of

Type 1 decryption will fail (unless δ is shares of 0). (See Proof of Claim 3.15)

• If we try to decrypt semi-functional ciphertext for rows of A that corresponds

to the attributes belong to the corrupt authorities with Semi-functional key of

Type 2 decryption will fail (unless σ is shares of 0). (See Proof of Claim 3.16)

• If we try to decrypt semi-functional ciphertext for rows of A that corresponds to

the attributes belong to the non-corrupt authorities with Semi-functional key of

Type 2 decryption will fail (unless σ is shares of 0). (See Proof of Claim 3.16)

Therefore, we can say that Claim 3.17 is true and semi-functional keys can not decrypt

semi-functional ciphertexts.
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3.5.2 Efficiency

• In encryption algorithm, for every row x of A two exponentiations are needed.

• While generating a key for the a ID, Key generation algorithm performs one

exponentiations for each attribute i that belongs to an authority.

• The number of group elements in authorities public key grows linearly with the

number of attributes associated with the said authority.

3.5.3 Secure Cloud Storage System Suitability Analysis

Now we look at if [18] Multi Authority CP-ABE scheme is suitable to use in Kamara-

Lauter cryptographic cloud storage scheme according to the conditions given in Sec-

tion 1.1.

• Large universe construction is possible. This algorithm is scalable, because at

any time new attribute authorities can added to the system.

• There is fine grained access control.

• Decryption is efficient.

• This scheme is decentralized, that is storage provider does not have access to

the keys, so confidentiality property of secure cloud storage system is not com-

promised.
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CHAPTER 4

MULTI-AUTHORITY CP-ABE SCHEME WITH PRIME

ORDER BILINEAR GROUP SETTING

When we look at the Attribute Based Encryption schemes given in the previous chap-

ter it is clear that most suitable scheme to use in secure cloud storage scheme ac-

cess control is multi-authority CP-ABE scheme proposed by Lewko and Waters [18].

However, creating prime order variant of this system can lead to a more efficient sys-

tem via faster group operations. In this Chapter, we will examine how such a system

can be created.

In [14] Freeman identified two properties of composite order bilinear groups that are

used in pairing based cryptosystems as "projecting property" and "canceling prop-

erty". Out of these two properties Multi-Authority CP-ABE scheme proposed by

Lewko and Waters and discussed in Section 3.5 relies on canceling property of the

composite order bilinear maps.

Considering the composite order bilinear group definition given in Definition 2.10,

since subgroups Gp1 , Gp2 , . . . , Gpm of G are orthogonal for the bilinear map e : G×
G → GT then for elements t ∈ Gpx and s ∈ Gpy e(t, s) = 1 where 1 denotes to

the identity element of GT as long as x 6= y. If we look specifically at scheme given

in Section 3.5 and Definition 2.12 then we have g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 and

e(g1, g2) = e(g1, g3) = e(g2, g3) = 1 where 1 denotes to the identity element of GT .

In [17] Lewko identified another property of composite order bilinear groups that is

used in pairing based cryptosystems as "parameter hiding" and noted that this prop-

erty is often used together with canceling property.
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In multi-authority CP-ABE given in [18] Lewko and Waters used subgroup decision

assumption defined over composite order bilinear groups. In [17] Lewko shows that

effects of subgroup decision assumption can be imitated by subspace assumption over

prime order bilinear groups given in Definition 2.16. Then showed that subspace as-

sumption is implied by the Decisional Linear Assumption given in Definition 2.9.

Then we can assume that, we can develop a prime order bilinear group version of

Multi-Authority CP-ABE Scheme given in Section 3.5 using subspace assumption.

For such scheme, we will need a further generalized version of the subspace assump-

tion.

Definition 4.1 (Generalized Subspace Assumption). Considering the groups and

bilinear map definition given in Definition 2.4. Given a group generator G we define

the following distribution:

G = (p,G,GT , e)
R←− G, (B1,B∗1), (B2,B∗2), . . . , (Bm,B∗m)

R←− Dual(Znp )

g
R←− G, η, β, τ1, τ2, τ3, µ1, µ2, µ3

R←− Zp

U1,i = gµ1b1,i+µ2b(k+1),i+µ3b(2k+1),i

U2,i = gµ1b2,i+µ2b(k+2),i+µ3b(2k+2),i

...

Uk,i = gµ1bk,i+µ2b2k,i+µ3b3k,i


∀i ∈ [m]

V1,i = gτ1ηb
∗
1,i+τ2βb

∗
(k+1),i

V2,i = gτ1ηb
∗
2,i+τ2βb

∗
(k+2),i

...

Vk,i = gτ1ηb
∗
k,i+τ2βb

∗
2k,i


∀i ∈ [m]

W1,i = gτ1ηb
∗
1,i+τ2βb

∗
(k+1),i

+τ3b∗(2k+1),i

W2,i = gτ1ηb
∗
2,i+τ2βb

∗
(k+2),i

+τ3b∗(2k+2),i

...

Wk,i = gτ1ηb
∗
k,i+τ2βb

∗
2k,i+τ3b

∗
3k,i


∀i ∈ [m]

D = ({gb1,i , gb2,i , . . . , gb2k,i , gb(3k+1),i , . . . , gbn,i , gηb
∗
1,i , . . . , gηb

∗
k,i , gβb

∗
(k+1),i , . . . , gβb

∗
2k,i}∀i∈[m]
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{gb
∗
(2k+1),i , . . . , gb

∗
n,i}∀i∈[m], {U1,i, U2,i, . . . , Uk,i}∀i∈[m], µ3)

We assume that for any probabilistic polynomial time algorithm B with output in

{0, 1},

AdvG,B = |Pr[B(D, {V1,i, . . . , Vk,i}∀i∈U)] = 1−Pr[B(D, {W1,i, . . . ,Wk,i}∀i∈U) = 1]|

is negligible in security parameter κ.

Assume U denotes to the attribute universe and |U| = m. For every attribute i in the

universe U , we should have dual bases involved in the subspace assumption and these

bases can be denoted by;

(B1,B∗1), (B2,B∗2), . . . , (Bm,B∗m) ∈ Dual(Z12
p )

where Bi = (b1,i, b2,i, . . . , b12,i) and B∗i = (b∗1,i, b
∗
2,i, . . . , b

∗
12,i). The subspace assump-

tion with n = 12 and k = 2 and |U| = m dual orthogonal bases (one for each attribute

i).

We can use b∗1,i, . . . , b
∗
4,i to create normal keys and normal cihertexts (Like we used

Gp1 elements in scheme given in Section 3.5) and use them in the encryption and

decryption processes. Then we can use b∗5,i, . . . , b
∗
12,i in creating semi-functional keys

and semi-functional ciphertexts (Like we used Gp2 , Gp3 elements in scheme given in

Section 3.5) and use them to show security of this scheme.
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CHAPTER 5

CONCLUSION

Using cloud storage services can be beneficial for enterprises and government orga-

nizations. Because they can evade costs of having and maintaining private storage

infrastructure while providing data sharing and availability, reliability and efficient

retrieval of the data. However, because of the need for confidentiality and integrity of

the data, these enterprises and government organizations need secure cloud storage

services.

We can use attribute based encryption schemes to provide access control in such se-

cure cloud storage systems. With ABE schemes, only users with necessary attributes

can access the unique key that can decrypt the data.

There are many ABE schemes that were proposed over the years. While choosing

an ABE scheme to use in a secure cloud storage system we need to make sure that,

it is compatible with global scale construction and scalable, has fine grained access

control, has efficient decryption and it maintains the confidentiality property of the

cloud storage system.

After examining several ABE schemes, we came to the conclusion that multi-authority

CP-ABE scheme presented by Lewko and Waters [18] provides these properties. But

because these scheme uses composite order bilinear groups, we can improve of its

performance by creating a version of it that uses prime order bilinear groups. We

presented some thoughts on how such scheme can be designed in Chapter 4.
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