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ABSTRACT 

 

SINGLE-IMAGE BAYESIAN RESTORATION AND MULTI-IMAGE 

SUPER-RESOLUTION RESTORATION FOR B-MODE ULTRASOUND IMAGES 

USING AN ACCURATE SYSTEM MODEL 

 

Cüneyitoğlu Özkul, Mine 

Ph.D, Department of Health Informatics 

Supervisor: Prof. Dr. Ünal Erkan Mumcuoğlu 

 

24.07.2019, 100 pages 

 

Medical imaging is an essential part of diagnosis and intervention/surgery planning in 

modern medicine. Compared to other medical imaging modalities, ultrasound provides a 

variety of diagnostic advantages. The imaging equipment is less expensive and more 

portable. There is no known harm to human tissue, therefore, it is applicable in almost any 

medical field safely. However, ultrasound image quality is usually poorer compared to 

other modalities. If the image quality of medical ultrasound is improved, it will be 

beneficial for clinical usage. This makes the research on this subject an increasingly 

important field, both academically and commercially. In this thesis, image quality 

improvement was aimed. Both single and multi-frame, in-plane, freehand, 2D, B-mode 

ultrasound scan data was used for this purpose. Non-rigid image registration, Bayesian 

image restoration and super-resolution methods, along with a detailed study on statistical 

modelling of the speckle was employed. Tissue-mimicking resolution phantoms were 

used to characterize the clinical imaging system. The methods were then tested on a tissue-

mimicking breast phantom and on various superficial tissue images collected from 

volunteers. The methods developed were compared to the well-known image restoration 

and filtering methods in the literature. Relevant objective image quality evaluation metrics 

were used to measure overall improvements. Additionally, expert opinions were obtained 

and evaluated using visual grading analysis. The proposed methods have the drawback of 

increased computation time. However, the prominent contribution of this study is the 

improvement in image quality according to the results of objective evaluation and 

opinions of experts. If high-end image processing hardware is used to reduce 

implementation time, the proposed methods may be useful for clinical applications. 

Keywords: Ultrasound, Image Restoration, Super-Resolution, Speckle Suppression   
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ÖZ 

 

 

B-MOD ULTRASON GÖRÜNTÜLERI ÜZERINDE HASSAS SISTEM MODELI 

KULLANARAK TEK-GÖRÜNTÜLÜ BAYESÇI ONARMA VE ÇOK-GÖRÜNTÜLÜ 

ÇÖZÜNÜRLÜK-ÜSTÜ ONARMA 

 

Cüneyitoğlu Özkul, Mine 

Doktora, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Prof. Dr. Ünal Erkan Mumcuoğlu 

 

24.07.2019, 100 sayfa 

 

Tıbbi görüntüleme, modern tıp kapsamında, tanı ve girişimsel müdahale planlamanın 

önemli bir parçası haline gelmiştir. Tıbbi ultrasonografi, diğer görüntüleme yöntemlerine 

kıyasla, önemli klinik avantajlara sahiptir. Tarama için gereken ekipman daha düşük 

maliyetli ve kolay taşınabilir özelliktedir. Yöntemin görüntüleme yapılan kişiye bilinen 

bir zararı yoktur; yöntem hemen her alanda güvenle uygulanabilmektedir. Ancak tıbbi 

ultrasonografi ile elde edilen görüntü kalitesi, diğer görüntüleme yöntemleri ile elde edilen 

görüntülere kıyasla genellikle daha düşük kalitededir. Görüntü kalitesinde artış, klinik 

kullanımda fayda sağlayacaktır. Bu sebeple, tıbbi ultrasonografide görüntü kalitesinin 

arttırılması konusu, gün geçtikçe, hem akademik, hem de ticari açıdan önemli bir 

araştırma alanı haline gelmektedir. Bu tez kapsamında, ultrason görüntü kalitesi artırımı 

hedeflenmiştir. Bu amaçla, hem tek hem de kesit-içi, serbest-elle toplanan çoklu 2B, B-

mod görüntüler kullanılmıştır. Katı olmayan görüntü çakıştırma ve tek-görüntülü Bayesçi 

ve çok-görüntülü çözünürlük-üstü onarma yöntemleri, benek örüntüsü üzerine detaylı 

istatistiksel bir çalışma ile birleştirilmiştir. Görüntüleme sistemi karakterizasyonunda 

gerçekçi doku fantomundan veri toplanmıştır.  Önerilen yöntemler, gerçekçi meme 

fantomlarında ve gönüllülerden toplanan yüzeyel doku görüntülerinde test edilmiştir. 

Önerilen yöntemler, literatürdeki yaygın görüntü onarma ve filtreleme yöntemleri ile 

kıyaslanmıştır. İyileşme miktarının değerlendirilmesinde, uygun nesnel ölçütler 

kullanılmıştır. Buna ek olarak, uzman görüşlerinin değerlendirilmesinde görsel puanlama 

çözümlemesi uygulanmıştır. Önerilen yöntemler, hesaplama süresi açısından 

dezavantajlıdır. Ancak çalışmanın öne çıkan katkısı, görüntü kalitesinde nesnel ölçütler 

ve uzman görüşüne göre artış sağlanmış olmasıdır. Yüksek kapasiteli görüntü işleme 

donanımı kullanılarak hesaplama süresi azaltılırsa, önerilen yöntemler klinik 

uygulamalarda kullanışlı hale gelebilir. 

Anahtar Sözcükler: Tıbbi Ultrasonografi, Görüntü Onarma, Çözünürlük-Üstü, Benek 
Gürültüsü Azaltılması   
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CHAPTER 1 

CHAPTER 

1. INTRODUCTION 

 

1.1. Motivation 

From clinical applications to intervention/surgery planning, medical imaging is an 

essential part of medical practice. Compared to other modalities such as MRI, CT, PET, 

medical ultrasound provides many benefits. The equipment is less expensive, there is no 

harm known to human tissue, such that ultrasound can even be used safely in obstetrics. 

This makes image quality improvement in medical ultrasound research very important, in 

both academic and commercial context.  

Ultrasound imaging research has been going on for several decades. However, in 

ultrasound literature and research, there are various subjects that are not covered entirely. 

One such example is the spatial correlation of speckle in clinical ultrasound images which 

is an interesting area that is not quite examined except in a limited number of works. 

Ultrasound speckle occurs due to imaging physics when tissue is examined. This 

phenomenon degrades image quality significantly.    

Image restoration aims to improve image quality, given an image formation model. Super-

resolution, which is a powerful image restoration method, was proposed for recovering 

spatial frequencies that are beyond diffraction limit that is determined by imaging physics. 

Multi-image super-resolution is one way to apply this by observing a scene from many 

different views and making use of data obtained. This is another research area that is not 

quite covered for clinical ultrasound images. Bayesian approach allows the statistics to be 

incorporated in the system model, which, in several cases, leads to improved accuracy. 

The potential of super-resolution in ultrasound had been examined in a few works and 

some improvement in image quality was presented in those examples which seemed 

promising for further applications.  

Availability of high-end electronic equipment (i.e. Graphical Processing Units - GPUs) 

make implementation of some image processing algorithms possible. In this thesis, 

improvement of diagnostic image quality of 2D images is aimed, implementing above-

mentioned techniques using computational power of GPU when necessary. The 

motivation was to provide output that has significant clinical value and help to define 

potential applications in medicine. 
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1.2 Physics of Ultrasound  

Medical ultrasound is an imaging technique that utilizes longitudinal, high frequency 

sound waves that are able to penetrate through live tissue. Sound waves travel with a 

varying speed (1400-1600 m/s, Shung et.al, 1992) in structures that form live tissue, such 

as fat, muscle, cartilage and so on. Speed of sound (c) is related to frequency (f) and 

wavelength (λ) through the well-known wave equation: 

 𝑐 = 𝜆𝑓 (1) 

In case of liver tissue as an example, the speed of sound is 1570 m/s (Shung et.al., 1992). 

A sound wave with 1 MHz central frequency is supposed to have 1570/1000000 = 1.57 

mm wavelength, which, in theory, enables imaging with that resolution.  

 

 

 
 

Figure 1: Huygens’ principle, illustration of phase, constructive and destructive interference of waves. 

Figures were previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

 

Huygens' principle states that, pressure emitted from an aperture of finite size is, in fact, 

the superposition of infinitesimal sources on its surface, as illustrated in Figure 1a.  (Shung 

et.al, 1992). Interference is summation of waves. Related to their phase 𝜙, the summation 

of waves forms constructive or destructive interference, as illustrated in Figure 1b,1c,1d).  

The sum of two blue waves of different phases is shown as the red wave. The amplitude 

of the red wave is higher than blue waves in the first case and lower in the second case. 

This is called diffraction phenomenon, which describes the shape of the beam emitted 

from an aperture as well (Szabo, 2004). All emitted 3D spherical waves from the 

transducer surface interfere with each other and an acoustic radiation pattern of pressure 

(in Pascal units), as illustrated in Figure 2, is formed. This figure is formed using Field II 

simulator, (Jensen & Svendsen, 1992; Jensen, 1996) with 4 MHz center frequency and 32 

transducer elements, single focus at 60 mm. All of these parameters are explained in the 

following paragraphs. 
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Figure 2: Acoustic radiation pattern of transmitted pressure formed using Field II simulator (Jensen and 

Svendsen, 1992; Jensen, 1996) in dB scale. The pressure is calculated for each point on a grid on x-z axis 

on 30x145 mm area. The grid starts at -10 mm and ends in +10 mm in lateral axis divided by 0.25 mm 

intervals and starts at +5 mm and ends at +150 mm depth divided by 2.45 mm intervals. Single focus is 

placed at 60 mm depth. Figure was previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

 

The sound beam transmitter through finite aperture can be reflected, refracted, absorbed 

and scattered (Figure 3). Among those, the reflected signals from tissue interfaces (where 

tissue properties vary) are utilized in medical ultrasound imaging. However, all of these 

cases that sound beam faces should be considered and examined in case of image 

formation. 

 

 

Figure 3: Types of interaction of sound beam with the tissue. Figures were previously published in 

(Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

 



4 

 

The most important type of reflection is the specular reflection, which occurs when the 

beam is reflected through the same angle as the surface normal. Refraction of sound is 

similar to the refraction phenomenon in optics; it occurs when there is difference between 

characteristic impedance of two tissues (Shung et.al, 1993). The characteristic impedance 

(Z) is defined as follows:  

 𝑍 = 𝜌𝑐 (2) 

where density (ρ) and speed of sound (c) is involved. As the sound beam is refracted 

through tissue, its angle varies with respect to surface normal, depending on the 

characteristic impedance values of the tissue layers. The elements that convert one form 

of energy to other is called transducers. Ultrasonography gel is applied to surface that is 

intended to be imaged. The transducer is a rigid body and the gel fills the gaps and allows 

no air. This prevents undesired reflections and high impedance difference between 

transducer surface and the tissue.  

The above model assumes tissue as layers with varying characteristic impedance and the 

sound beam interaction occur in tissue interfaces. In reality, the small structures that form 

layers of tissue may not have homogenous characteristic impedance. This inhomogeneity 

of tissue results in scattering. The sound beam hits structures smaller than wavelength and 

make random reflections. This also enables the inner structures within layers of tissue to 

be imaged. 

In ultrasound images of tissue, a large number of scattering structures result in random 

constructive and destructive interference of sound waves. It results in a granular texture 

with random bright and dark spots called speckle (Burckhardt, 1978). As observed in 

Figure 4, speckle exists all over the ultrasound images. On homogenous areas, the signal 

level is expected to be constant and the granular pattern is considered as speckle noise. A 

sample area that is assumed to be homogenous is zoomed in for a tissue-mimicking 

ultrasound phantom image. In Figure 4b, the cross section from human thyroid is 

presented. Again, the granular pattern is observed, and the anatomical structures are 

overlaid with this pattern.  

Understanding the mechanism behind speckle formation is an essential part of ultrasound 

imaging. For this reason, there is detailed information presented in a subsection devoted 

to this subject. 

Sound beam is eventually absorbed within tissue as it travels deeper. The sound energy 

first transferred to kinetic energy and causes the tissue molecules to vibrate. Then, it is 

converted into heat energy and this heat is dissipated in tissue. If the tissue is exposed to 

high levels of sound energy, the heat generation may be detrimental to health of tissue 

cells. Therefore, power of sound energy in terms of (Watt/cm2) should be controlled 

(Shung et.al, 1992). Moreover, the mechanical waves travelling through the tissue cause 

compression and rarefaction. This results in formation of bubbles. When the formed 
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bubbles burst, the tissue is harmed. This effect is called cavitation. In order to avoid this 

phenomenon, the power of sound energy must be considered carefully.  

A pulse with short duration is sent from a transducer that transmits an electrical signal into 

mechanical vibration. As this pulse travels into depth of the tissue, a portion of it is 

reflected back from scattering surfaces. These reflected echoes are then collected using 

transducers (usually the same transducers that have converted the electrical signal into 

mechanical vibration), that, this time, convert pressure changes on the tissue surface due 

to reflected waves back to electrical signals. The backscatter amplitude measured as 

electrical signal is directly related to the pressure fluctuations in the transducer interface. 

After that, envelope detection is implemented on the acquired signal and the output is log 

compressed for human visual range. This is called pulse-echo imaging. A thin strip into 

depth of the tissue is formed which is called an A-line, shown in Figure 5a. This signal 

holds information regarding the tissue reflectivity along a single line.  

The absorption phenomenon results in reduced signal levels from deeper tissue and 

therefore, the image becomes darker. Although compensated as much as possible in image 

acquisition setup, this effect appears distinctly on US images. 

 

 

Figure 4: Sample ultrasound images to observe speckle phenomenon (a) Sample region extracted from a 

tissue-mimicking resolution phantom; (b) Human thyroid image. 

 

The reflective property of targets inside tissue is called echogenicity. If the signal 

amplitude received from a specified region is higher than a reference value is called 

hyperechoic region and if the amplitude is lower, it is called hypoechoic region. If there is 

no echo signal from the area, it is called anechoic region. Samples of targets with varying 

echogenicity is presented in Figure 5b, 5c. 
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Figure 5: (a) Illustration of A-Lines, Samples of varying echogenicity from tissue-mimicking breast 

phantom. Figure was previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018); (b) Hyperechoic 

(breast mass) target; (c) Hypoechoic (cyst) target.  

 

1.3.     Ultrasound Image Model and Resolution 

When the angular frequency 𝜔0 and the wave number k is defined with respect to a single 

frequency 𝑓0,  

 𝜔0 = 2𝜋𝑓0 (3) 

 𝑘 =
2𝜋

𝜆
    or    𝑘 =

𝜔0

𝑐
 (4) 

 

the pressure radiation pattern by a point at the center of the aperture can be modeled as 

follows, (O'Donnell, 1999), 

 

 𝑝(𝑅, 𝜃) =
𝑒𝑖𝑘𝑅

𝑅
𝑐𝑜𝑠𝜃 (5)  

 

where 𝜃 is the angle from the normal to the radiating surface, R is the distance, illustrated 

in Figure 6. As R increases, the pressure decreases. Note that the complex frequency 

equation Re{eikR} = cos(kR) is preferred here to model the physical system with single 

frequency.  

 

The cosine term is for the angle of deviation from the normal to the aperture surface. This 

term can be omitted by only considering the θ angles that are normal to the aperture 

surface.  
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For a point source on the active transducer aperture, the distance from every point (𝑅, 𝜃)   

can be written as:  

 

 𝑑(𝑥) = √(𝑥 − 𝑅𝑠𝑖𝑛𝜃)2 + 𝑅2𝑐𝑜𝑠2𝜃 (6)  

 

and this relation is simplified to 

 

 𝑑(𝑥) = 𝑅√1 −
2𝑥

𝑅
𝑠𝑖𝑛𝜃 +

𝑥2

𝑅2
 . (7)  

 

In order to reduce mathematical complexity for further operations, a Taylor series 

expansion up to second order is applied to Equation (7). In Figure 6, let the total aperture 

size D=2a (from -a to a), if the ratio f# = 
Range

Aperture Diameter
  is larger than 2, Fresnel 

approximation can be made (O'Donnell, 1999), (Szabo, 2004). 

 

 

 

 
 

Figure 6: Distance function from a point to transducer surface is defined. Figure was previously published 

in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

 

Fresnel approximation allows higher order terms including the third order term to be 

omitted (Szabo, 2004). Finally, the distance function takes the following form: 

 

 𝑑(𝑥) = 𝑅 − 𝑥 𝑠𝑖𝑛𝜃 +
𝑥2𝑐𝑜𝑠2𝜃

2𝑅
 . (8)  
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The net pressure P(R,θ) at (R,θ) for the full aperture can be obtained by placing R=d(x) 

in Equation (5) and integrating in the [-a,a] interval: 

 

 

 𝑝(𝑅, 𝜃) = ∫
𝑒𝑖𝑘𝑑(𝑥)

d(x)

𝑎

−𝑎
𝑑𝑥 = ∫

𝑒
𝑖𝑘(𝑅−𝑥 𝑠𝑖𝑛𝜃+

𝑥2𝑐𝑜𝑠2𝜃
2𝑅

)

(𝑅−𝑥 𝑠𝑖𝑛𝜃+
𝑥2𝑐𝑜𝑠2𝜃

2𝑅
)

𝑎

−𝑎
𝑑𝑥 . (9)  

 

By considering only the near normal angles, the 𝑐𝑜𝑠𝜃 term in Equation (5) can be omitted. 

For the terms in the denominator, R term is dominant, hence, the other terms can be 

neglected (This is not possible the denominator, since 𝑥 term is significant in the phase 

term). The net pressure can be written as (O'Donnell, 1999): 

 

 

 𝑝(𝑅, 𝜃) =
𝑒𝑖𝑘𝑅

𝑅
∫ 𝑒

𝑖𝑘𝑥2

2𝑅 𝑒−𝑖𝑘𝑥𝑠𝑖𝑛𝜃𝑎

−𝑎
𝑑𝑥 . (10)  

 

There are three dimensions contributing to the image, as shown in Figure 7. The resolution 

in these directions are called lateral, axial and elevational. The factors that determine 

resolution in these directions are examined in the following paragraphs. The resolution is 

related the to point spread function (PSF) of an imaging system. This is a function that 

measures the ability to resolve point targets (Szabo, 2004). Full-width-half-maximum 

(FWHM) for ultrasound is defined as the length where the reduction of 6 dB in height of 

the pulse to peak value. In 3D, it becomes a spherical region and called as resolution cell. 

1.3.1. Lateral Resolution.  We define k'= ksin θ and a rectangular aperture function, 

including the phase term related to distance as  𝐴(𝑥) = 𝑒
𝑖𝑘𝑥2

2𝑅 𝑟𝑒𝑐𝑡(
𝑥

𝑎
)  . Inserting the 

aperture function to Equation (10) (O'Donnell, 1999): 

 

 

 𝑝(𝑅, 𝜃) =
𝑒𝑖𝑘𝑅

𝑅
∫ 𝐴(𝑥)𝑒−𝑖𝑘′𝑥𝑑𝑥 =

𝑒𝑖𝑘𝑅

𝑅
𝐵𝑅(𝑘′)

∞

−∞
. (11)  

 

In Equation (11), k’ term represents angular effect (since for small angles sin θ = θ). In 

that case, the overall pressure at point (𝑅, 𝜃) expressed as BR(k'), the angular spectrum 

(Fourier Transform, ℑ{A(x)}) of the aperture function times the pressure of a point source 

at the center. The term 𝑒
𝑖𝑘𝑥2

2𝑅  is called focusing term and its undesired effect is removed via 

focusing. The details on focusing is explained in the following paragraphs. Note that as 

the aperture size increases (i.e. 𝑎 gets larger) pressure distribution along 𝜃 gets narrower. 
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Also, as 𝑓0 increases, beam pattern gets narrower. The lateral resolution of the system 

depends on two factors; center frequency f0 and apodization, A(x). 

 

 

 

Figure 7: Ultrasound image axes, resolution cell and full-width-half-maximum (FWHM). Figures were 

previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

 

A generalization of Equation (11) can be made by weighting the aperture with a function 

�̃�(𝑥) (ℑ is the Fourier transform): 

 

 �̃�(𝑥) = �̃�(𝑥)𝑟𝑒𝑐𝑡(
𝑥

𝑎
)  → 𝐵𝑅(𝑘′) = ℑ𝑘′[�̃�(𝑥)]. (12)  

At this point, it should be noticed that the radiation pattern is the product of point source 

positioned at the center of the aperture and the anguar spectrum 𝐵𝑅(𝑘′). This means that 

both the radiation pattern and the lateral PSF is controlled by the aperture function, 

(O'Donnell, 1999).  

The pulse-echo imaging can be modeled simply with a transmit aperture function with 

angular spectrum BR
t(k'), a receive aperture function with angular spectrum BR

r(k') and a 

scattering distribution for acoustic source, ηR(k'). The pressure pattern is convolved with 

scattering distribution and then detected by the receive pattern, p(R,θ)=(eikR/R) BR
r(k'). All 

these are combined into the following model, where * is the convolution operator: 

 𝑆𝑅 =
𝑒2𝑖𝑘𝑅

𝑅2
[𝐵𝑅

𝑡 (𝑘′) ∗ 𝜂𝑅(𝑘′)]𝐵𝑅
𝑟(𝑘′). (13)  

In here, SR is the pulse-echo response at range for transmit and receive apertures R, 

(O'Donnell, 1999). This expression can be rearranged, 

 

 𝑆𝑅 =
𝑒2𝑖𝑘𝑅

𝑅2
[𝐵𝑅

𝑡 (𝑘′)𝐵𝑅
𝑟(𝑘′)] ∗  𝜂𝑅(𝑘′). (14)  
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using the reciprocity as convolution is a linear operation. The angular spectrum of transmit 

aperture function BR
t(k') and angular spectrum of receive aperture function BR

r(k') is 

combined into BR(k'), 

 

 𝑆𝑅 =
𝑒𝑖2𝑘𝑅

𝑅2
[𝐵𝑅(𝑘′) ∗  𝜂𝑅(𝑘′)] (15)  

and 𝐵𝑅(𝑘′) is expressed as: 

 

 𝐵𝑅(𝑘′) = 𝐵𝑅
𝑡 (𝑘′)𝐵𝑅

𝑟(𝑘′) =  ℑ[�̃�(𝑥)] = ℑ[�̃�𝑡(𝑥) ∗ �̃�𝑟(𝑥)]. (16)  

 

In here, Ã(x) is called the equivalent aperture function for the pulse-echo system, which is 

a convolution of transmit and receive aperture functions, (O'Donnell, 1999).   

Since the lateral PSF is related to transmit and receive aperture functions, these functions 

can be adjusted for better resolution. The goals for enhancing the lateral resolution are: 

1- 𝐵𝑅(𝑘′) = 𝛿(𝑘′) 

2- 𝑆𝑅 → 𝑆𝑅(𝑘0) = 𝛿(𝑘′ − 𝑘0)𝜂𝑅(𝑘0) 

where 𝛿(. ) is the dirac delta function. 

First goal is to have an equivalent aperture function, as close to delta-function as much as 

possible. In that case, the output signal is going to simply be proportional to the scattering 

function. The second goal is to satisfy this proportionality still, if the beam is moved 

normal to primary beam direction. There is the parabolic phase term, kx2/2R, in the 

aperture functions that would hinder these goals. However, since this is a range dependent 

term, applying the above mentioned focusing scheme with phased arrays is effective to 

avoid this issue (O'Donnell, 1999).  

The beam plots with selected aperture functions are illustrated in Figure 8 for clarifying 

these statements. The figure is formed for a 4 MHz beam, 10 mm width aperture sampled 

with 128 elements, 30 mm transmit and receive focus and imaging at 30 mm depth. The 

transmit and receive aperture functions are selected to be the same apodization functions; 

rectangular, Hamming and cosine. In the figure, it is observed that the rectangular 

apodization yields the most narrow angle, however, it results in high side lobes which 

produce spurious signals that produce artifacts in the image (Shung et.al., 1992). On the 

other hand, the beam plot with Hamming window shows reduced side lobes but a wider 

main lobe. There is a tradeoff between having a sharp beam and low side lobes. A midway 

between these can be the cosine window, as shown in  Figure 8. Beamplots at several 

depths for the same aperture are inserted into imaging range of an example transducer in 
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Figure 9. The lateral resolution defined by -6dB reduction is illustrated as the yellow 

region in the figure.  

 

 

 

 

 

 

 

 

 

 

Figure 8: The beam plot for the selected transmit and receive aperture function and the apodization. 

Figures were previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

 

 

1.3.2.     Axial Resolution. When R is the total distance travelled by a pressure wave, c is 

the average speed of sound in the medium and t is the total time passed between the firing 

and return of the wave back to transducer, then, there is a simple relationship between 

these variables: 

 

 𝑡 =
2𝑅

𝑐
 (17)  

Axial resolution or range resolution depends on spatial extent of the transmitted pulse τc 

where τ is the pulse width and c is the speed of sound in the medium. Pulse width is 

multiplication of wavelength 𝜔0 and number of cycles in the pulse. The ultrasound waves 

attenuate as they penetrate into depth of the tissue. High frequencies penetrate more than 

low frequencies, therefore, there is a tradeoff between resolution and depth penetration. 

 

1.3.3.     Resolution in Elevation. Focusing in elevation depends on transducer thickness. 

In 1D arrays, there is a constant lens attached to the transducer surface. This leads to 

mechanical focusing at a single depth and elevational resolution gets worse outside that 

single focal depth, as illustrated in Figure 10a. For this reason, depending on the depth of 

the region of interest, probes with different types of mechanical focus in elevation are 

designed and used. 
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1.3.4.     Linear Pulse Echo Model for US. When all the scatterers are assumed to lie on 

the same plane, the linear pulse-echo model of the imaging system can be formed as 

follows, (O'Donnell, 1999; Jensen, 2002):  

 

 𝑆(𝑡, 𝑘𝑚
′ ) =

1

𝑅2 ∫∫ 𝜂(𝑅, 𝑘′)[ 𝐴(𝑡 −
2𝑅

𝑐
) 𝑒𝑖𝜔0(𝑡−

2𝑅

𝑐
) 𝐵𝑅(𝑘𝑚

′ − 𝑘′)] 𝑑𝑅 𝑑𝑘′ (18)  

where η(R,k') is a 2D scattering function, S(t,k'm) is the time samples at beam pointed in 

direction defined by k'm, 𝐴(𝑡 −
2𝑅

𝑐
) is the apodization function and 

1

𝑅2  is the range 

dependent gain compensation term. Referring to equations (3) and (4), as f0 is increased, 

k increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Beam plots at several depths form the curve that defines overall lateral resolution (yellow area) 

for a single focus placed at 30 mm. Figure was previously published in (Cüneyitoğlu Özkul & 

Mumcuoğlu, 2018). 
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Figure 10: (a) Mechanical focusing in elevation; (b) Focusing; (c) Steering. Figure was previously 

published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

1.4.    Focusing and B-Mode Image Formation 

In modern ultrasonic imaging systems, the aperture is formed by many transducer 

elements in array form, as shown in Figure 5a, Figure 10b, 10c, Figure 11. The distance 

between centers of the transducer elements is called pitch and the gap between elements 

is called kerf, as illustrated in Figure 11. This allows the active aperture to be adjusted 

flexibly; the elements can be fired in desired groups such that the aperture size can be 

changed, an apodization function and beamforming can be introduced.  

 

 

Figure 11: Array of transducers and other essential parts and dimensions in an ultrasound probe. Figure 

was previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 
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Assuming a scatterer at depth d, there is a slight difference in the total distance between 

the array elements' interface and the scatterer as illustrated in Figure 10b. This results in 

delayed arrival of reflected waves to different elements in the transducer surface. Focusing 

is available by adjustment of time delay schemes, while transmitting and receiving the 

pulse, such that there can be focus inserted on a specific point. The emitted acoustic 

pressure field shown in Figure 3 is calculated for a focused beam at 60 mm depth. 

Moreover, the delays for the array elements can be adjusted such that the steering of the 

emitted beam is controlled to view a specific region of interest in any place in range, as 

shown in Figure 10c.  

 

In modern ultrasound systems, the desired transmit beam shape is formed by the time 

delays, however, the receive focus is dynamically swept. This scheme called dynamic 

receive focusing, allows catching the reflections from any depth instantly (Shung et.al., 

1992). To sum up, by manipulating the time delays, focusing on a specific area can be 

achieved by an array of transducers, as illustrated in Figure 10b and 10c as different timing 

schemes. Combining the A-lines obtained, a B-mode ultrasound image is formed. B stands 

for the “brightness”, the gray level intensities in the scan converted image. All of these 

operations are available in real-time, in today’s technology. 

 

Steps of B-Mode image formation is given in Figure 12 as schematics. As stated above, 

formation of every A-line requires at least one transmit-receive operation (There is 

multiple transmit-receive required in case of multiple focusing, this imporves lateral 

resolution while reducing time resolution, since additional transmit-receive operations 

cost time). Apodization is applied to each channel by amplitude modulated pulses and 

beamforming is applied to the specified depth. After transmitting the signal, each 

transducer is switched to receive mode. As stated in previous paragraphs, sound waves 

are absorbed within tissue, therefore, the signal amplitude of the signals that are received 

from depth is reduced. In order to comply with this situation, echo signals are amplified 

according to their assumed depth. The signals from deeper tissues are amplified more; this 

operation is called time-gain compensation. After receive beamforming (dynamic receive 

focusing), demodulation, envelope detection of in-phase and quadrature (IQ) data and 

harmonics filtering steps, a high dynamic range analytic signal is obtained. This signal is 

then log-compressed for human visual range and scan conversion (which involves 

interpolation to convert the A-lines to the rectangular screen pixels) is applied to fit into 

display screen properly. The output is a gray level image where the intensity is nonlinearly 

mapped to echogenicity of targets. Modern ultrasound devices often make these mapping 

adjustments available and customizable based on user preference. This basically results in 

changes in image contrast.  
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Figure 12: Steps of B-Mode image formation. Figure was previously published in (Cüneyitoğlu Özkul & 

Mumcuoğlu, 2018). 

 

1.5.    Image Model for B-Mode Images 

Equation (18) is a widely accepted model for IQ data (Chen & Parker, 2017). When �⃗� is 

assumed to be the envelope-detected signal before log-compression step, the echo signal 

can be modelled as follows, (Wagner et. al., 1983; Tay et. al., 2010): 

 �⃗� = (ℎ⃗⃗ ∗ �⃗�)�⃗⃗�𝑚 (19) 

In here, �⃗� stands for the recorded signal, ℎ⃗⃗ is the point spread function of the imaging 

system, ‘*’ symbol is the convolution operation and �⃗⃗�𝑚 is the multiplicative noise term 

(speckle). After envelope detection, the echo signal becomes absolute valued, therefore, 

the log-compression step is applicable. 

When the envelope detection and log-compression is applied to Equation (19), the 

following expression is obtained: 

 log(|𝑦|⃗⃗⃗⃗⃗⃗ ) = log(|ℎ⃗⃗ ∗ 𝑥|⃗⃗⃗⃗ ) + log (|�⃗⃗�𝑚|). (20) 
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Ideally, the deconvolution and the restoration operations are better performed on IQ data, 

but this was not available for this study. The data is acquired from the clinical ultrasound 

device as the B-mode video stream only. In literature, modelling the displayed B-mode 

image as a linear degradation model as the following is a common practice (Tay et. al., 

2010; Yang et. al., 2007; Yang et. al., 2009; Wang et. al., 2009; Dai et. al., 2009; Jensen 

et. al., 1993):  

 �⃗� = ℎ⃗⃗ ∗ �⃗� + �⃗⃗� (21) 

for some additive noise, �⃗⃗�. In �⃗�, the effect of speckle and electronic noise is also included. 

In this work, the linear degradation model in Equation (21) is used for restoration of B-

mode images. 

1.6.    Ultrasound Speckle and Correlation 

As briefly mentioned above, as a result of scattering, the granular pattern observed in 

ultrasound images is called speckle. Speckle phenomenon occurs due to wave interactions. 

In addition to medical imaging, speckle phenomenon is observed in several other forms 

of imaging such as astronomy, synthetic aperture radar (SAR) and laser illuminated 

surfaces where there is coherence of sound or light waves. Speckle in astronomical 

imaging occurs due to observing through the inhomogeneous atmosphere, whereas the 

source of speckle in SAR and medical imaging is the scatterers that are much smaller than 

one wavelength (Goodman, 2007). In medical ultrasonography, the source of speckle is 

considered as the inhomogeneities in the different types of tissues such as the changes in 

density, compressibility due to underlying cell structure, (Jensen, 2002). A grainy pattern 

is formed due to constructive and destructive interference of sound waves (see Figure 1c, 

1d) scattering from subresolution scatterers within these structures as the individual 

signals with scatter are superpositioned (Goodman, 1996) to form the ultrasound image. 

Speckle phenomena differs from typical random noise with some of its intriguing 

properties. First of all, it is a part of the signal and although mostly considered as noise, 

some useful information about the physical properties of the underlying tissue may be 

derived from its appearance. There is plenty of research conducted (Bharti et. al., 2017), 

where the texture of speckle is examined for tissue characterization purpose. Statistical 

properties of speckle are utilized in another area called speckle tracking, described in 

section 1.7 in detail. 

1.6.1.   Statistics of Speckle. Coherence is a physical phenomenon related to waves. Ideal 

coherence of waves occurs when their wavelength is equal but phases are different, which 

can be illustrated as in Figure 1b. In other words, monochromatic waves of any phase can 

be stated as an example of this phenomenon (Goodman, 1996). A random walk is defined 

as a set of discrete steps in different directions, in which magnitude of every step takes a 

non-negative value, (Barlett, 1955). Putting these two definitions together, the speckle in 
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polarized monochromatic light is described as a random walk in the complex plane and 

the literature is mostly based upon this fundamental explanation, (Goodman, 2007). 

The waves can be expressed as waves in phasor notation, where 𝑎𝑖 is the amplitude and 𝜃𝑖 

is the phase of the 𝑖𝑡ℎ wave. When summed, A is the resultant phasor, A is the total 

amplitude, θ is the resulting phase and N is the number of scatterers (Goodman, 2007): 

2.  𝑨 = 𝐴𝑒𝑗𝜃 =
1

√𝑁
∑ 𝒂𝒊 =𝑁

𝑖=1
1

√𝑁
∑ 𝑎𝑖𝑒

𝑗𝜃𝑖𝑁
𝑖=1  (22) 

Under the assumption that there are a very large number of scatterers, the Central Limit 

Theorem is applicable (Goodman, 2007). In here, the phasor amplitudes and the phases 

are random in the interval [-π,π]. In addition to that, amplitude and the phase are 

statistically independent from each other. The real and the imaginary parts of the resultant 

phasor is expressed and their relationship to A, θ is defined. The standard deviations for 

the real and imaginary parts are assumed to be equal and joint probability density function 

for the resultant phasor is written. For the mathematical details, the work of Goodman 

(2007) can be viewed.  

Integrating in the [-π, π] interval, the marginal statistics of A can be obtained. These are 

known as Rayleigh statistics, when is A treated as a random variable and σ being a scale 

parameter of the distribution (Wagner et. al., 1983; Goodman, 2007): 

3.  𝑃𝐴(A) = ∫ 𝑃𝐴,𝜃(A, θ)dθ =
𝐴

𝜎2 𝑒
−

𝐴2

2𝜎2   s. t. A ∈ ℝ+𝜋

−𝜋
    (23) 

As mentioned with reasons in the above paragraphs, the Rayleigh distribution requires 

large number of scatterers per resolution cell (Burckhardt, 1978; Wagner et. al., 1983). In 

Wagner et.al. (1983), scatterer size of 20-150 µm and number of particles per resolution 

cell 10-200-500 is studied.  

Speckle observed with Rayleigh statistics is named fully developed speckle in the literature 

(Wagner et. al., 1983). However, there are some factors that can cause deviations from 

Rayleigh statistics, which are stated by Tuthill et.al., (1988), Klein (2012) as: 

 

• Fewer number of scatterers per resolution cell 

• The necessity for a limitation of signal bandwidth 

• Envelope detection operation  

• Log compression, scan conversion (interpolations etc.) operations 

• Application of speckle reduction algorithms on B-mode images 

• Presence of a coherent component  

 

As the number of scatterers decrease, there are deviations from Rayleigh statistics, which 

is usually the case with real tissue as stated in Tuthill et.al. (1988). In Tuthill’s work, the 

distribution, the amplitude and periodicity of scatterers and their effect on B-mode 

statistics is examined in detail (Dutt, 1995). The existence of a coherent component may 
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occur due to periodicity of the scatters or specular scattering from surfaces like bones 

(Dutt, 1995). This adds periodic components to the random phasor model explained 

above. This case can be modeled as the addition of a constant real component to the 

resultant phasor.  

 

The Rayleigh distribution is, in fact, a specialization of a broader set of distributions called 

Rician distibutions (Goodman, 2007). With a constant coherent component, the speckle 

yields a Rician distribution. Jakeman and Pusey (1978) proposed the K-distribution model 

for scattering. In the work of Dutt (1995), the K-distribution is examined in detail as a 

distribution parameter can directly be related to the underlying speckle distribution. 

Another distribution, named Homodyned-K, can be applied to the case where there is both 

sparse number of scatterers per resolution cell and a constant phasor term. Nakagami 

model proposed by Nakagami (1960) was shown to be specifically more powerful for the 

RF data (Klein, 2012). Furthermore, by modifying the parameters of this distribution, all 

of the previously described scatter models can be obtained.  

Rician of Inverse Gaussian (RiIG) distribution suggested by Eltoft (2005) was shown to 

model the ultrasound amplitude statistics effectively. This model is claimed to consist of 

terms that roughly correspond to the phenomena named as “diffuse” and “coherent” 

scattering. Diffuse scattering is considered the pure random part of scattering, which is 

the result of the convolution of a point spread function with itself (Wagner et.al., 1983) 

and coherent scattering is due to strong and periodic reflectors which result in a Rician 

distribution (Goodman, 2007). RiIG distribution is a compound distribution. A compound 

distribution is a probability distribution of a random variable with variance set to another 

random variable with another probability distribution. Making use of this concept, RiIG 

models the diffuse scattering with an inverse Gaussian distribution and the coherent 

scattering with a Rician distribution.  

Although being a rather complex probability distribution, RiIG is more flexible with three 

parameters and it appears to be the best fitting distribution to the ultrasound amplitude 

among all in literature. Referring to Eltoft (2005), the coherent scattering is not covered 

by Rayleigh or K distribution. Rician distribution does not have enough parameters to 

model the dispersion. In the work by Eltoft (2006), it is also compared to Nakagami 

distribution. In this work, it is also claimed to be successful in the estimation of parameters 

more accurately with a few samples, which is another benefit of this model. 

As stated above, speckle pattern significantly reduces the performance of ultrasonic 

imaging. In order to obtain a better signal to noise ratio, contrast to noise ratio or improved 

boundaries of distinctive objects such as tumors, there are several methods applied as real-

time or post-processing to acquired ultrasound frames such as compounding and speckle 

filtering. The above-mentioned statistical models can be utilized for designing of efficient 

filters. A selected set of these are mentioned in the following paragraphs.  

1.6.2.   Speckle Filtering. Filtering of the speckle pattern has widely been applied, since 

the emergence of the modern ultrasound. Median filtering (Loupas et. al., 1989), several 
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variations of anisotropic filtering (Perona & Malik, 1990), wavelet-based filtering (see the 

review paper by Sudarshan et. al. (2016)), Wiener filtering (WF) (Achim et. al., 2001; 

Pižurica et.al., 2003), variations of bilateral filtering (BF) (Tomasi & Manduchi 1998) are 

popular as filtering approaches. Commercial systems have ultrasound machines with 

speckle reduction applied in real time such as SRI (Speckle Reduction Imaging) system 

by General Electric (Garra, 2005). Filtering approach, however, may have a side effect of 

too much smoothing which may result in loss in details of boundaries and edges as 

illustrated in Figure 13.  

 

Figure 13: (a) Original human thyroid image; (b) 3x3 Kernel median filtered image; (c) 5x5 Kernel median 

filtered image. Some anatomical details are lost due to undesired smoothing of edges as a result of filtering 

operation. Figures were previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

 

 

Figure 14: (a) Original human thyroid image; (b) 3x3 Kernel adaptive Lee filtered image; (c) 5x5 Kernel 

adaptive Lee filtered image. Some anatomical details are lost due to undesired smoothing of edges as a result 

of filtering operation. Figures were previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 
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Based on the well-known work of Perona & Malik (1990), speckle reducing anisotropic 

diffusion yields successful results in terms of speckle suppression while preserving edges 

(Yu and Acton, 2002; Aja-Fernandez and Alberola-Lopez, 2006). It is a technique based 

on modelling the image formation as a diffusion process. Defining a diffusion equation 

that is related to direction (anisotropic) and some conduction coefficient, the best estimate 

that is updated for each iteration is to be found. In the original paper, two different 

estimations of the gradient magnitude with different edge response characteristics are 

proposed.  One option favors high contrast edges over low contrast ones, whereas the other 

option favors wide regions over smaller ones (Perona & Malik, 1990). 

Another well-known noise suppression method for ultrasound images is the BF. The filter 

weights are defined depending upon the Euclidean distance of pixels. In addition to that, 

BF involves non-local properties such as the intensity difference of the pixels. This results 

in a good edge response as well as an efficient noise suppression scheme (Tomasi & 

Manduchi 1998; Vanithamani & Umamaheswari, 2014). In (Afsham et. al., 2015), non-

local means filter is applied for denoising ultrasound images in a probabilistic manner, 

making use of RiIG distribution, mentioned in the above paragraphs. 

Mean square error between the degraded ideal image and the observed image can be 

minimized. It can be expressed as an estimator in the following form (Gonzalez & Woods, 

2001):  

                                                              �⃗⃗�2 = 𝐸[(�⃗� − ℎ ∗ �⃗�)2]  (24)                                                                           

As adaptive filtering schemes, there are also Lee filter (Lee, 1980) and Kuan filter (Kuan 

et. al., 1985). These filters assume the signal and noise as uncorrelated Gaussian 

distributions. For an [𝑚 𝑥 𝑛] pixel area, each image pixel 𝑖, 𝑗, a local sample mean µ𝑙 , 

local sample variance 𝜎𝑙
2 is calculated. The pixel values 𝑥𝑖,𝑗

𝑛  are iteratively updated for 𝑛𝑡ℎ 

iteration with the following scheme (Kuan et. al., 1985): 

                                                 𝑥𝑖,𝑗
𝑛 = µ𝑙 +

𝜎𝑛
2+𝜎𝑙

2

𝜎𝑛
2 𝑥𝑖,𝑗                        (25) 

using the previous pixel value 𝑥𝑖,𝑗 and including the noise variance 𝜎𝑛
2. In Figure 14, sample 

images using [3𝑥3] and [5𝑥5] windows. As window size gets larger, the sample mean and 

variances are more accurate, however, this time, the edges are suppressed too much.  

WF is also based on the minimum mean square estimator. When images are transferred to 

frequency domain, the following filter can be derived (Gonzalez & Woods, 2001):  

 

                                   �̂�(𝑢, 𝑣) =
1

𝐻(𝑢,𝑣)

𝐻(𝑢,𝑣)2

𝐻(𝑢,𝑣)2+
𝑁(𝑢,𝑣)2

𝑋(𝑢,𝑣)2

𝑌(𝑢, 𝑣) (26)                                                    
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In here, 𝐻(𝑢, 𝑣)  is the blur function, 𝑌(𝑢, 𝑣)  is the observed image, 𝑁(𝑢, 𝑣)   is the noise 

spectrum estimate in frequency domain. Although WF is quite fast since it is applied in 

frequency domain as a set of matrix multiplication operations, estimation of noise 

spectrum 𝑁(𝑢, 𝑣) can be challenging, depending on the noise characteristics.  

1.6.3.   Compounding. Making use of multiple looks to the same scene is quite common 

in applications suffering from speckle such as synthetic aperture radar (Soergel, 2010).  

Being a powerful compounding procedure, speckle pattern's decorrelation occurs with a 

change of viewing angle and summing the signals in these slightly changing scenes. This 

is due to cancellation of random walk phasor sums as the number of looks increased. In 

(Burckhardt, 1978), it is stated that the decorrelation between two looks occur when the 

transducer is moved by half of its width. The improvement of SNR is stated to be expected 

as sqrt(N) where N is the number of looks (Burckhardt, 1978) and to demonstrate that, an 

open shutter technique and a summation of amplitudes is made use of for the experiments 

and the increase in SNR is tabulated for multiple looks at the scene.  

Making use of multiple decorrelated frames belonging to the same scene have become a 

commercially adopted approach as well like GE Cross Beam technology (Garra, 2005). In 

(Krucker et. al., 2002), spatial compounding of several images is applied for speckle 

reduction. Motion based spatial compounding is also proven useful; in (Yoshikawa et.al., 

2006), it is combined with non-rigid warping estimation implemented in real time and 

added to consequent frames as a weighting factor. The speckle can also be eliminated by 

sampling at different frequencies. Wu et. al., (2014) employ frequency compounding to 

8,10,12,13 MHz images, compared to actual strain measurements in a porcine tendon and 

a breast phantom. The work by Yoon et. al., (2013) frequency equalized compounding 

was implemented to enhance the contrast. Both spatial and frequency compounding is 

applied in the work of Tsakalakis, (2015). Split spectrum processing is applied in 

(Tsakalakis, 2015; Taxt & Jirik, 2004) which is another frequency compounding method 

from constructing images by using various close frequencies existing in the received echo.  

1.6.4.   Correlation of Speckle. Spatial correlation is evident in speckle images. However, 

the number of papers on this subject is quite limited. In (Tsuzurugi & Okada, 2002) a 

Bayesian scheme was implemented. In (Tilley et. al., 2015; Zheng et. al., 2018), blur in x-

ray detectors were considered. In (Mellor & Brady, 2005), spatial correlation of speckle 

was involved in registration scheme while estimating the displacement of the noise field 

in the Demons algorithm mentioned in Section 1.8. 

In (Baselice et. al., 2015a), WF (Equation (24)), was used with a correlated noise spectrum 

estimate on ultrasound images. In (Baselice et. al., 2015b), iterative WF was applied to 

synthetic aperture radar images.  
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1.7.    Volumetric Ultrasound 

Ultrasound volume data can be obtained either by a 2D probe (Shekhar & Zagrodsky, 

2002; Mercier et. al., 2013) or with a sensor integration to a standard 2D system using a 

1D probe (Ijaz et. al., 2010).  

1.7.1.   Freehand Imaging in Ultrasound.  The term freehand ultrasound usually refers to 

a tracked probe with a sensor with tracking with making use of speckle pattern 

decorrelation without sensors, or a combination of both (Gee et. al., 2003; Blackall et. al., 

2003; Afsham et. al., 2014) and reconstructing a volume for better visualization and 

resolution improvement in elevation.  

Out-of-plane motion can be stated as translation in elevation, tilt around lateral and yaw 

around axial, as illustrated in Figure 15. Managing the out-of-plane transform can either 

be done with an external position sensor or in a sensorless manner. In (Treece et. al., 2002), 

an optical tracker is used to estimate the out of plane motion for guaranteeing the accuracy 

of position data in a large scale. The sensorless approach, usually named speckle tracking 

utilizes the decorrelation of speckle patterns. In the work of Ijaz et.al. (2010), a hybrid 

approach (including both inertial sensors and speckle decorrelation) is adopted with rigid 

registration and speckle tracking, similar to techniques in Gee et.al. (2003).  

In integrating a sensor to a standard 2D system, the selected sensors vary; all solutions 

have various advantages and disadvantages. The works in earlier literature make use of 

electromagnetic trackers (Rohling et. al., 1998; Gee et. al., 2003; Huang et. al., 2005; 

Huang & Zheng, 2008). Optical tracking is another option for obtaining probe orientations 

(Blackall et. al., 2005; Treece et. al., 2002). However, optical tracking systems and 

infrared trackers have the disadvantage of being in the line of sight with the operation, 

they are still a popular option in more recent works (Hartov et. al., 2010; Laporte & Arbel, 

2011; Solberg et. al., 2011). Although electromagnetic trackers do not have the 

disadvantage of being in line of sight, these types of sensors are reported to be affected 

from metal equipment that is commonly used in surgery.  

In the work of Hossack et. al. (2002), a specially designed probe head with extra 

transducers for tracking is used, which is another interesting approach to the tracking 

problem. This type of systems requires a larger probe area which may lead to contact 

problems to the tissue.  

Precise mechanical systems with optical encoders are another alternative for motion 

tracking (Huang et. al., 2013; Toonkum, 2011; Laporte & Arbel, 2011). The work of 

Harris et. al. (2010), employ a hybrid approach of IR sensor, orientation and position 

sensor altogether. Recently, with the technological development of inertial measurement 

units mounted on a regular 2D probe is of interest as well (Ijaz et. al., 2010). Inertial 

measurement units include accelerometers for measurement of translations, gyroscopes 

for measurement of rotations and magnetometers for correction. The position information 

is derived from an accelerometer via double integration, in which small errors in 
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measurement collects into a significant cumulative error called drift, as time increases. 

This can be corrected with magnetometers with a process called augmentation. All three 

type of sensors can be packed into a small micro electromechanical (MEMS) device for 

convenient usage.  

1.7.2.   Speckle Tracking. First presented in the paper of Chen et. al. (1997), speckle 

tracking is an interesting method that utilizes the speckle phenomenon, which in fact turns 

an undesired situation into an advantage. The amount of correlation is related to separation 

distance for consecutive frames. This correlation can be found by the Normalized Cross-

Correlation (NCC) or Pearson Correlation Coefficient, which is in fact covariance of two 

data sets, normalized by sample standard deviations (Papoulis, 2002): 

     𝑁𝐶𝐶 =
𝐸[(𝐼1−µ1)(𝐼2−µ2)]

𝜎1𝜎2
=

1

𝑀

1

𝑁
∑ ∑

(𝐼1(𝑖,𝑗)−µ1)(𝐼2(𝑖,𝑗)−µ2)]

𝜎1𝜎2

𝑁
𝑗=1

𝑀
𝑖=1  (27) 

In here, 𝐼1 and 𝐼2 stand for the observed images. The mean and standard deviations of 

consecutive frames are denoted by the usual symbols µ1, µ2, 𝜎1, 𝜎2 and subscripts for the 

corresponding images with numbers. Speckle tracking scheme was implemented in this 

study for checking the in-plane assumption in freehand scan. 

Mostly used for determining the separation in elevation, there is also correlation available 

for lateral and axial distance, reported in (Gee et.al., 2006). Since correlation fades away 

within large intervals, slight movements can be handled only, which is usually 2 mm in 

elevation direction. The speckle tracking procedure is illustrated in Figure 16. This figure 

also gives a hint about how pitch and yaw angle of the probe can be estimated; the image 

is divided into patches. Then, a line is fit via regression methods such as least squares for 

estimating the distance.  

1.7.3.   Volume Reconstruction. When each frame obtained is registered into its proper 

location, a global volume can be constructed for the related anatomy, in a uniform grid of 

proper size. Since the data is obtained freehand, there would be missing voxels due to 

irregular hand motion. These gaps can be filled with various reconstruction methods listed 

in Solberg et.al. (2011), such as Voxel Nearest Neighbor (VNN), where the nearest 

intensity value is assigned to missing voxel value or interpolating between 2D slice values. 

More sophisticated reconstruction procedure can be applied such as elliptical 3D kernels 

related to resolution cell of the system, (Solberg et.al., 2011) for smoother and more 

realistic transitions.  

The output of reconstruction using speckle tracking is illustrated in Figure 15b. The 

volume is visualized in MITK, Medical Imaging Interaction Toolkit developed by German 

Cancer Research Association, (2019) environment. The ROI is healthy human thyroid. 
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1.8.    In-Plane Registration of Ultrasound Images 

The image registration is usually formulated as a target (anchor, reference) image that is 

to be kept still and a source image that is to be registered onto the target, according to 

selected techniques. The affine transform of an image includes translation, rotation, 

scaling and shear. Rigid transform can be stated as a subset of affine transforms which 

include only translation and rotation. Scaling and shearing include a deformation of 

volume, such that the model and optimization are more complex for a complete affine 

transform compared to rigid only motion. In affine transforms, parallel lines remain 

straight after transform. However, a subset of non-rigid transforms generally called elastic 

or curved, do not have such a constraint at all. They rather have constraints from their 

physical model or other geometrical fitting functions to control points. All those types of 

transforms mentioned are illustrated in Figure 17. 

 

 

Figure 15: Ultrasound scan data in 3D (a) Illustration of scanning axes, in-plane and out-of-plane motion. 
Figure was previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018); (b) 3D Reconstruction of 

human thyroid using speckle tracking method, visualized using MITK, (2019). 
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Figure 16: Speckle tracking scheme illustrated (a) Reading elevation estimate from speckle decorrelation 

curve; (b) Estimating pitch from the patches of the same rows. Yaw can be estimated from the patches of 

the same columns. Figures were previously published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

All of the transforms of source volume, mentioned here have the general form below, 

where �⃗�𝑡  is target volume and �⃗�𝑠 is the source volume in 3D vector notation from origin to 

center of the voxel and 𝑇 is the transformation matrix: 

                               �⃗�𝑡 = 𝑇�⃗�𝑠.                                                            (28) 

 

 

Figure 17: Types of transforms (a) Original image; (b) Result of rigid transformation; (c) Result of affine 

transform; (d) Result of non-rigid transform. Figures were previously published in (Cüneyitoğlu Özkul & 

Mumcuoğlu, 2018). 

 

In ultrasonic imaging, a considerable amount of pressure is applied to tissue, in order to 

achieve good acoustic coupling, as stated in Section 1.2. For this reason, there is some 

amount tissue of tissue motion, due to the pressure applied. The layers of the tissue have 

highly varying amounts of stiffness (i.e. one layer may appear to be very soft and elastic 

and other may appear to be very dense and thick) combined with irregular geometry of 

tissue parts. Therefore, the subregions of ROI are compressed in a very complex manner, 
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depending on underlying tissue stiffness. Moreover, there is always slight motion due to 

patient movement and breathing.  There can also be pulsatile motion, in case the ROI 

includes arteries.  

In (Schneider et. al., 2012), for ultrasound, it is assumed that for a smaller field of interest, 

the transform can be considered as rigid. Since rigid transform has only few variables to 

determine, this is especially important for the real time applications. A rough estimate of 

symmetric matching is conducted based on the common features of source and target 

images and then, Random Sample Consensus (RANSAC) method is applied to obtain 

transformation matrix. This method (Fischler & Bolles, 1989), is based on geometry for 

removing outliers by applying least squares fit to randomly selected pairs of data. In the 

work of Banerjee et. al. (2015), no rotations are assumed for the search, only in-plane 

translations are considered as motion. In (Hossack et. al., 2002), a quaternion-based 

approach in 3D is applied to match two consecutive images based on image decorrelation. 

In (Vandewalle et. al., 2006), a rigid registration algorithm in frequency domain, based on 

Fourier transform properties on translation and rotation, for obtaining image shifts and 

rotations is proposed. The unaliased parts of the spectrum of the low-resolution images 

are used for registration. 

Another interesting pair of studies involving rigid transformation (Treece et.al., 2002;  

Gee et.al., 2003), relates the amount of nonlinear warping of tissue to the motion of the 

scanning hand. In (Treece et.al., 2002), the optical tracker data is used to estimate out-of-

plane motion under the assumption of the uniform elasticity of tissue during the scan. A 

rigid transform with rotation and translation is applied for in-plane motion. Making use of 

this, the probe pressure is corrected for each slide in elevation direction. In (Gee et.al., 

2003), the orientation information obtained from the electromagnetic tracking device is 

used directly to correct the nonlinearity and then a rigid transform only including 

translation in 3 dimensions and assuming no rotation. This way, the time required for non-

rigid transform that is computationally much more complex, is reduced.  

In addition to rigid, affine transform based on similar points is a region of interest (ROI) 

called inliers are applied in Banerjee et.al. (2015). These inliers are selected as the points 

with minimum geometric distance when one-to-one correspondence between the points 

of selected regions of source and the target volume, the results are compared to the non-

rigid registrations obtained from RANSAC (Fischler & Bolles, 1989) and elastix (Klein 

et. al., 2010). In (Krucker et. al., 2002), a sub-volume based, elastic transformation is 

applied (Liu et. al., 2013) with connectivity analysis with thin plate splines, which is a 

form of radial basis functions (Fitzpatrick et. al., 2008). 

Insight Segmentation and Registration Toolkit (ITK) for medical applications is a cross 

platform software that has various registration methods in a built-in manner (Ibanez et.al., 

2003) and further applications can be built upon the fundamentals presented by this 

package. To illustrate, elastix (Klein et.al., 2010), is an open source package for intensity-

based registration, using ITK. A set of parametric non-rigid multiresolution, radial basis 

function based thin plate or B-spline approaches are available for input images. A physical 
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model related to the nature of the motion can be incorporated to the registration procedure. 

In the work of Blackall et.al. (2005), rigid registration is first applied according to the 

probe translation obtained from the optical tracker. After that, a non-rigid transform is 

applied for compensation of the respiratory motion model via B-splines. In (Lu et. al., 

2010), a viscous fluid model is used for obtaining the displacement vector that employ 

conservation of mass, momentum and energy and form partial differential equations to be 

solved. 

Block matching algorithm used in registration for medical applications is common (Cifor 

et.al., 2013; Banerjee et.al., 2015), for compensating the respiratory motion. A common 

block matching scheme contains a stationary and a moving window in for specific search 

purpose for the best match according to a predefined similarity metric. In (Mercier et.al., 

2013), cross correlation with a 3D search window and is reported giving the best 

performance among all other metrics. In (Cifor et.al., 2013; Banerjee et.al., 2015), 

normalized cross correlation is used. Normalized mutual information metric is reported to 

be effective especially for volumes with small overlap (Cifor et.al., 2013; Banerjee et.al., 

2015; Ijaz et.al., 2010). Mutual information is shown to be effective as a similarity 

measure for inter modality registration (Krucker et.al., 2002; Shekhar & Zagrodsky 2002), 

however it is costly to find joint histogram. Other metrics may be preferred for US to US 

registration. In (Ijaz et.al., 2010), another similarity metric called Kolmogorov’s distance 

is used and compared with normalized mutual information. This is reported to be less 

effective compared to normalized mutual information. In this work, it is also stated that 

32 histogram bins are the most efficient in calculating pdf for that particular application. 

Work by Morin et. al. (2015) employ Bilinear Deformable Block Matching scheme 

method used in elastography and bicubic interpolation to obtain sub-pixel accuracy. 

In image processing and computer vision literature, a set of procedures are defined and 

very commonly used for finding the distinctive features that are resiliently invariant to 

changes of view in 3D, illumination and noise (Lowe, 2004). These features called SIFT 

features employ Difference of Gaussians which is in fact used as a band pass filter 

applicable to feature detection on varying scale spaces. SIFT features used in various 3D 

ultrasound volume registration studies (Ni et. al., 2009; Lu et. al., 2010; Schneider et. al., 

2012). In (Ni et.al., 2009), the performance is improved by detecting both corners and 

blobs in the images. In (Schneider et.al., 2012), a feature symmetric matching with 

Euclidean norm of vector differences was used and RANSAC algorithm was implemented 

to remove outliers, using one scale space.  

The Demons algorithm proposed by Thirion (1998), is a non-parametric, non-rigid 

registration method. In this method, the image displacement is modelled as a diffusion 

process based on optical flow methodology (Barron et. al., 1994) and this is introduced by 

regularization using simple Gaussian smoothing. In (Vercauteren et. al., 2009), the 

proposed method is improved further to provide an efficient non-parametric image 

registration algorithm based on diffeomorphic transformations. Having the diffeomorphic 

property means that the transformation operation (i.e. the operation applied in Equation 

(28)) and its inverse are smooth and differentiable.   
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In (Pennec et. al., 1999), the application of diffeomorphic demons algorithm, to medical 

field was examined in detail, especially in 3D ultrasound images. In this work, the main 

advantages of the of the algorithm was stated as being fast and effective. The improvement 

in segmentation performance was shown both on synthetic and real images. In selected 

works on ultrasound registration (Mellor & Brady, 2005; Liu et. al., 2013) variants of 

demons algorithm were proposed and implemented.  

1.9.    Bayesian Image Restoration  

Image restoration, in general, aims to recover the effects of image degradation (blur and 

additive/multiplicative noise) that occurs in all imaging processes (Gonzalez & Woods, 

2001). The blur may occur due to motion or due to imaging physics. As mentioned in 

section 1.5, the point spread function determines the imaging system resolution and 

therefore represents the image degradation. By applying various methods named as 

deconvolution in literature, the imaging blur is aimed to be reduced as much as possible 

(Campisi & Egiazarian, 2007). 

There are blind and non-blind deconvolution methods in literature. In blind deconvolution, 

image degradation (PSF) is estimated simultaneously with the underlying tissue 

reflectivity. On the other hand, the non-blind deconvolution methods make use of 

estimated or measured PSF. Since the PSF is derived from the imaging system properties, 

generally more successful results are reported.   

As a non-blind method, a typical image observation model can be expressed in matrix 

multiplication form using the following linear mathematical model similar to Equation 

(21):  

                         �⃗� =  𝐷𝐵 �⃗� +  �⃗⃗�                                                              (29) 

where �⃗� is the original high-resolution image, �⃗� is the observed image vector, 𝐵 is the 

matrix modeling image degradation (resolution) in the form of convolution, 𝐷  is the 

decimation matrix which represents high resolution (HR) to low resolution (LR) 

transformation, and �⃗⃗� is the additive noise. For simplicity, the decimation and blur matrix 

in Equation (29) can be combined into a single matrix 𝐴 = 𝐷𝐵. 

Bayesian image restoration is based on statistical modelling of the image formation 

process. Each pixel of the observed and ideal image is assumed to be a random variable, 

with the value drawn from a probability distribution. From the Bayes rule:  

                                                 𝑃(�⃗�|�⃗�) =
𝑃(�⃗⃗�|�⃗�)𝑃(�⃗�)

𝑃(�⃗⃗�)
                                                       (30) 

where the 𝑃(�⃗�|�⃗�) which is posterior image, given the prior 𝑃(�⃗�) and the likelihood 𝑃(�⃗�|�⃗�). 

Maximum likelihood (ML) estimator is as follows: 
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                                                �̂�𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥�⃗�𝑃(�⃗�|�⃗�)                                 (31) 

The likelihood function is assumed to be (�⃗� − ℎ ∗ �⃗�). When the values of this function are 

assumed to be drawn from a Gaussian distribution, the following expression can be 

formed, (Duda et. al., 2001): 

                                  𝑃(�⃗�|�⃗�) =
1

√2𝜋 |𝐶−1|
𝑒𝑥𝑝−(�⃗⃗�−𝐴 �⃗�)𝑇𝐶−1(�⃗⃗�−𝐴 �⃗�)                     (32) 

where 𝐶−1 is the inverse of sample autocorrelation matrix. The ML estimator can be 

expressed for Gaussian distributed likelihood function as follows: 

                        x̂⃗⃗𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥�⃗� {
1

√2𝜋 |𝐶−1|
𝑒𝑥𝑝−(�⃗⃗�−𝐴 �⃗�)𝑇𝐶−1(�⃗⃗�−𝐴 �⃗�)}       (33) 

 

Since logarithm function is monotonically increasing, optima of the logarithm of any 

expression is the same as the optima of the original function. Therefore, maximizing the 

log likelihood instead of direct likelihood is a common practice (Duda et. al., 2001). The 

minus sign is eliminated by converting the maximization operation to minimization. 

Therefore, the ML estimate becomes (Elad & Feuer, 1997; Duda et. al., 2001): 

log (x̂⃗⃗𝑀𝐿)= 𝑎𝑟𝑔𝑚𝑖𝑛�⃗�{(�⃗� − 𝐴 �⃗�)𝑇𝐶−1(�⃗� − 𝐴 �⃗�)}.                           (34) 

The output of this minimization operation is expected to deconvolve the observed image. 

However, ML Solution yields noisy results (Elad & Feuer, 1997; Duda et. al., 2001; 

Campisi & Egiazarian, 2007). For this case, when Bayes rule is considered, maximizing 

the posterior probability yields Maximum a-Posteriori (MAP) estimator: 

                                          x̂⃗⃗𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥�⃗�𝑃(�⃗�|�⃗�)𝑃(�⃗�)                                           (35) 

For selection of prior probability 𝑃(�⃗�), Markov Random Field (MRF) assumption can be 

made (Rue & Held, 2005). This assumes the values of pixels in a defined neighborhood 

of one pixel (called cliques) are related locally. In this case, Gibbs distribution is obtained 

(Campisi & Egiazarian, 2007):     

                                                        𝑃(�⃗�) =
1

𝑍
𝑒−𝛾𝑔(�⃗�)                                           (36) 

Here, 𝑔(�⃗�) is named as clique potential and 𝑍 is a normalization coefficient. The clique 

potential can be defined as first norm (Michailovich & Adam, 2005; Michailovich & 

Tannenbaum; Alessandrini et. al., 2011): 

                                                𝑔(�⃗�) = ∑ ∑
|𝑥𝑖−𝑥𝑗|

𝑑𝑖,𝑗

8
𝑗=1

𝑁
𝑖=1                                   (37) 
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where i index is for each pixel in the image, j is the neighbors of pixel i and 𝑑𝑖,𝑗 stands for 

the distance between pixels i and j. This potential can be defined as second norm as well 

(Michailovich & Adam, 2005; Michailovich & Tannenbaum; Alessandrini et. al., 2011): 

                                       𝑔(�⃗�) = ∑ √∑
(𝑥𝑖−𝑥𝑗)

2

𝑑𝑖,𝑗

8
𝑗=1

𝑁
𝑖=1                       (38) 

Selection of either first or second norm as prior results in different restoration output. 

Second norm penalizes the local differences between pixels more, compared to first norm.  

MAP estimate is obtained by involving 𝑔(�⃗�) defined in Equation (38), as follows:  

                   x̂⃗⃗𝑀𝐴𝑃 =  𝑎𝑟𝑔𝑚𝑖𝑛�⃗�{(�⃗� − 𝐴 �⃗�)𝑇𝐶−1(�⃗� − 𝐴 �⃗�) + λ 𝑔(�⃗�)}.               (39) 

In here, 𝜆 is named as the prior coefficient and it determines the amount of regularization. 

1.10.   Super-Resolution Restoration 

Super-resolution is restoring the information related to spatial frequencies higher than 

those readily available in the sampled image. The resolution of an imaging system depends 

on the diffraction phenomenon, which is explained briefly in Section 1.2. Super-resolution 

usually refers to recover information beyond diffraction limit of the imaging system. The 

minimum resolvable entity size is defined by the diffraction limit of the system and a 

system that is able to produce as good outputs as the theoretical limit defined by diffraction 

is called diffraction-limited, (Born & Wolf, 1999). In the case of ultrasound, the frames 

obtained represent the underlying anatomy, by noisy, blurred images with diffraction-

limited resolution. In general, this limited resolution is referred to as low-resolution 

images and the high-resolution image is referred to an estimate of ideal image. 

A general model for multi-image super-resolution can be stated as following (Elad & 

Feuer, 1997), 

                    �⃗�𝑘 = 𝐷𝑘𝐵𝑘𝑇𝑘 �⃗� +  �⃗⃗�𝑘                       0<k<K                          (40)  

where  �⃗�𝑘 is the observed low-resolution image, 𝐷𝑘 is a down-sampling matrix, 𝐵𝑘 is a 

blurring matrix (that can be implemented in a space variant manner, if needed) as a result 

of PSF, 𝑇𝑘 is a warping or transformation matrix which can either be rigid or non-rigid, 

�⃗⃗�𝑘 is imaging noise for kth observation and �⃗� the high-resolution image to be estimated 

(ideal image). This scheme is illustrated in Figure 18.  

There are several ways to achieve multi-image super-resolution restoration according to 

the model proposed in Equation (40). The literature about ultrasound multi-image super-

resolution is divided mainly into two main categories: beamforming-based methods and 

motion-based methods. Beamforming-based methods include obtaining different views 

from an ultrasound imaging in beamforming step. The selected ROI can be viewed many 
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times from varying angles by changing the active transducer elements and focusing 

scheme. This type of imaging requires access to beamforming scheme of the transducer, 

which was not available in our research.  

Motion-based methods to make use of many noisy, blurred and low-resolution samples 

obtained from slightly different point of views. Such a set of images provide sufficient 

information for applying super-resolution (Elad & Feuer, 1997) were proven to be 

effective in video processing. A high-resolution image is to be obtained with the data 

provided from these samples. 

Several other popular super-resolution algorithms are also present in literature, including 

(Papoulis, 1975; Gerchberg, 1974), Projection onto Convex Sets (POCS) (Youla, 1978), 

Iterative Back Projection (IBP) (Irani & Peleg, 1991), Robust Super Resolution (Zomet 

et. al., 2001), Normalized Convolution (Pham et. al., 2006). These algorithms make use 

of models different than Equation (40). The ultrasound applications of these methods are 

briefly mentioned in the following paragraphs. 

1.10.1.   Beamforming Based Work. In this approach, the transformation matrix 𝑇𝑘 in 

Equation (40) is determined for each view obtained from the applied focusing scheme. 

Depending on the transducer geometry, this matrix is calculated only once. In the work of 

(Taxt & Jirik, 2004), the first and the second harmonic signals were combined with the 

original image with a space variant deconvolution scheme in cepstral domain for PSF 

estimation. This estimate was then used for Wiener deconvolution. Second harmonic 

signal had less blur and noise and have different characteristics compared to first harmonic 

image, and had valuable information (Taxt & Jirik, 2004). Moreover, speckle pattern is 

different between two images which allows more efficient compounding results. The 

transducer elements in the probe were divided into two groups in receiving, which allowed 

imaging the slightly different directions.  

O'Reilly & Hynynen (2013) applied super-resolution to aberration corrected low 

frequency (612 kHz center) intracranial ultrasound imaging, for better resolution of 

microbubbles in blood flow. Frames were obtained for different focal areas by 

systematically changing the transmit focus and a volume is reconstructed with 440 frames. 

3D Gaussians were fitted to observed microbubbles within an uncertainty limit.  

In (Ellis et. al., 2010), Diffuse Time-domain Optimized Near-field Estimator (dTONE) 

was used to model the scatterer points as diffuse sources. In this method, random 

hypothetical targets were assumed in the ROI. For each target, a hypothetical spatial 

impulse response was calculated and the results were involved in a MAP scheme by 

solving for real target positions and amplitudes, given the observed images. dTONE 

algorithm was proposed as an adaptive beamforming algorithm that was designed for 

medical ultrasound. Adaptive beamforming algorithms reduced the undesired effects of 

interference by weighting of the off-axis signals. The weighting and delaying scheme in 

dTONE was determined by the response obtained for each hypothetical target. 
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In (Labyed & Huang, 2013), the transducer elements' phase response was examined and 

a phase coherent pseudospectrum that reduces noise was calculated. Multiple Signal 

Classification (MUSIC) algorithm based on singular value decomposition of interelement 

response matrix, is applied. With the proposed phase coherent MUSIC method, the phase 

response of transducer elements was utilized to obtain super-resolved image. This phase 

response was obtained experimentally. In (Huang et. al., 2013), impressive results on 

breast microcalcifications with the proposed PC-MUSIC method were presented. In all of 

these works, the ultrasound probe was held stationary and no motion was considered.  

In the studies (Clement & Hynynen, 2004; Clement et. al., 2005), a backprojected 

reconstruction method was proposed. First, an initial guess about the size and the location 

of the object to be imaged was made. The source's size, location, magnitude was inferred 

with an iterative procedure by convolving it with the undisturbed field that was measured 

a-priori. Many such guesses images were convolved with the prior measurement to form 

candidate images. The image having the spectrum that matched to the uncorrected image 

most was accepted among all these candidate images, which was obtained by an 

optimization procedure. This method was applied to only objects at focus. The undisturbed 

beam and the transfer function were assumed to be known for the related frequencies. The 

slight movements between undisturbed and the observed images were corrected by 

autocorrelation. In the work of Tsakalakis (2015), a transducer array was designed in Field 

II simulator (Jensen & Svendsen, 1992; Jensen, 1996). Frenquency and spatial based 

multi-image super-resolution was applied to those synthetic images and improvement in 

image quality was reported. 

A different point of view was proposed by Parker (2012), for digitally sampled ultrasound 

signals. An excitation pulse that was stable and invertible with respect to Z transform was 

used. This way, the received echoes were able to be inverse filtered by applying 

deconvolution. Initially, the results were tested on synthetic Field II images (Parker, 

2012). This method was then applied to pulses in lateral direction only (Chen & Parker, 

2016). Finally, the received signal was modelled as separable for axial and lateral 

directions and 2D stabilized inverses were defined under some assumptions (Chen & 

Parker, 2017). The improvement in resolution is notable, however, there is the drawback 

of increased speckle variance.  

1.10.2.   Motion Based Works. Estimation of motion introduced by the freehand probe 

transformations or by tissue movement such as cardiac cycles or respiration, is an 

integrated part of this type of super-resolution approach (Irani & Peleg, 1991; Elad & 

Feuer, 1997). In the study of Nandi & Mukhopadhyay, (2011), the probe motion was 

simulated with a sine function. The proposed radial super-resolution algorithm was 

applied to polar images before scan conversion, corrupted with different types of noise.  

The works of Morin et.al., (2015) a delicate motion estimation with bilinear deformable 

block matching, followed by interpolation to a high-resolution grid by cubic interpolation 

and deblurring was stated as a super-resolution approach. However, deblurring was not 
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implemented in the proposed paper. In Morin et.al., (2015) and Morin et.al., (2012), there 

was only registration and sub-pixel interpolation applied. The aim was to obtain high 

resolution data and contrast to noise ratio improvement. In (Morin et.al., 2013), a total-

variation based minimization procedure was implemented. In this work, a space invariant 

blur function was stated to be used for simplicity.  

 

 

 

Figure 18: Super-resolution scheme with model presented in Equation (40). Figures were previously 

published in (Cüneyitoğlu Özkul & Mumcuoğlu, 2018). 

 

Wu et. al. (2014), make use of normalized convolution applied to super-resolution (Pham 

et. al., 2006) which was a method based on projections onto a set of basis functions, mostly 

polynomials, for irregularly sampled data. Tissue was compressed and recorded frames 

are divided into patches for rigid registration in frequency domain by method of 

Vandewalle et.al. (2006). In this work, first frequency compounding, then super-

resolution applied and this process was reversed. Overall improvements reported, both in 

terms of CNR and visually, with no significant difference in application order. Strain was 

measured from obtained videos and compared to motion estimation results from super-

resolution.  

Wang (2009), made use of robust super resolution method proposed by Zomet et.al. 

(2001). In these study, rigid registration by Vandewalle et.al., (2006) was used with 
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Gaussian kernel for deblurring. MAP approach was applied for 𝑃(�⃗�|�⃗�𝑘)  for 𝑘𝑡ℎ 

observation with Gaussian noise with zero mean. The ultrasound resolution cell was 

assumed equal at all depths. Synthetic images were created by convolution, one in vivo 

image shown for demonstration. Super-resoloution was shown to be effective on 

ultrasound images, compared to speckle filtering with reduced granularity in images. 

There was some commercial interest in medical ultrasound super-resoloution as well. In 

Wang et. al. (2014) with the original assignee being Siemens Aktiengesellschaft, a wavelet 

based super-resoloution approach was patented to be useful in several modalities 

including ultrasound, MRI and CT in general. Wavelet representation of images provided 

sparsity and multiresolution by representing the signal in different wavelet bases. 

Ultrasound specific super-resolution patents by Hitachi Medical Corporation and Hitachi 

Aloka Medical (Kotaki et. al., 2011; Baba, 2013) proposed to make use of iterated 

backprojection in real time image formation.  

Yang et. al. (2009), applied anisotropic diffusion (Perona & Malik, 1990) as regularization 

term for super-resolution. PSF was estimated with homomorphic transformation and then, 

a restoration scheme was applied. In Yang (2004), rigid registration and Huber Markov 

random fields for regularization were used. In (Yang et.al.,  2006; Yang et. al., 2009) and 

in MIAMI Fuse software (Meyer et. al., 1997) affine and thin plate spline-based 

registration were preferred.  

All of the above-mentioned medical ultrasound super-resolution studies are listed in Table 

1. The related details of all the mentioned super-resolution methods are explained in 

Methods Chapter. 

 

Table 1: Most of the works including super-resolution in medical ultrasound are listed. 

 Data SR Method Probe Motion and 
Registration Algorithm 

Blur Model and 
Deconvolution Scheme 

Taxt & Jirik (2004) 
 

3 clinical datasets with 
first & second harmonic 
images, obtained from 
kidney, heart, and 
pancreas 

2D homomorphic PSF 
estimation, Wiener 
deconvolution  

Through beamforming  PSF estimated in 
complex cepstrum , WF 
within each patch for first 
and second harmonics 
separately 

Clement & Hynynen 
(2004), 
Clement et.al. (2005) 

Phantom with nylon wire 
and human hair 

Backprojected 
reconstruction method is 
proposed 

Through beamforming, 
autocorrelation used for 
correction of undesired, 
slight movements 

Transfer function for 
nondissipative, 
homogenous medium 
estimated 

Ellis et. al. (2009) 
dTONE 

Synthetic US images 
produced by DELFI 
ultrasound simulation 
tool, Ellis (2007), 100 
realizations of white 
noise added 

Proposed dTONE 
algortihm,  based on a 
MAP estimation 
technique with a well-
defined system model. 
Able to work with single 
realization of data. 

Through beamforming  Diffuse target model in a  
5×5 non-overlapping 
region 

Parker (2012) 
Chen & Parker 
(2017, 2018) 

Synthetic images with 
random scatterers 
resulting in Rayleigh 
statistics for conventional 
pulsed ultrasound 

Inverse filter based 
approach is proposed 

Through beamforming Convolution model is not 
used, an invertible stable 
pulse is used for 
excitation 
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Table 2 - Continued: Most of the works including super-resolution in medical ultrasound is listed. 

Reilly et. al. (2013),  
Hynynen et. al. 
(2013) 

440 images captured 
through the ex-vivo 
human skull to form 
volume 

Gaussian fitting, 
maximum pixel 
projection 

Through beamforming 3D Gaussian  

Tsakalakis (2015) 2D images, 3D volumes 
generated with Field II 

Weighting based method 
proposed 

Through beamforming PSF calculated from 
Field II simulations 

Yang (2004), Yang 
et. al. (2007), Yang 
et. al. (2009) 

4 in-plane images with 
slight motion  

Diffusion SR 
reconstruction, MAP 
based, pixel 
compounding 

Only in-plane motion, 
rigid registration Yang 
(2004), Yang et. al. 
(2006) 
3D registration MIAMI 
Fuse Meyer et.al. 1997,  
in Yang et. al. (2009) 

PSF estimated with 
homomorphic 
transformation  

Wang et. al. (2009)  Synthetic image created 
by convolution, one in 
vivo image shown for 
demonstration 

MAP based with 
anisotropic diffusion 
term for regularization,  
Robust super-resolution, 
the method proposed by 
Zomet et.al. (2001) 

Rigid registration, 
Vandewalle et. al. (2006)  

Gaussian kernel 

Nandi & 
Mukopadyay 
(2011a), 
(2011b) 

Simulated motion with a 
sine function, polar 
images before scan 
conversion, corrupted 
with different types of 
noise 

Radial superresolution 
(2011b) 

Known motion for 
simulated images 

Not mentioned 

Kotaki et. al. (2011) Presented as an 
invention applicable to 
real time scan conversion 
process 

Iterated backprojection 
with stabilization terms 

Any optical flow 
algorithm 

Not mentioned 

Morin et. al. (2012a), 
(2012b), (2013), 
(2015) 

1-15 Synthetic images 
with Field II (2015), 
(2012a),(2013) 
2-15 in vivo thyroid 
images with a malignant 
tumor delineated by a 
specialist (2015), (2012a) 

Motion estimation 
followed by image 
reconstruction and 
deblurring 
(2015), (2012b) 

Non-rigid: Bilinear 
Deformable Block 
Matching (2015), 
(2012a) 

Found in an iterative 
manner with total 
variation minimization 
approach and alternating 
direction method of 
multipliers for solving the 
optimization equation 
(2012a),(2013) 

Labyed, Huang et. 
al. (2013a) 
(2013b) 

1-Tissue mimicking 
phantoms for measuring 
phase response and 
validating the proposed 
method, (2013a) 
2-Clinical study  on 
breast tissue with 
microcalcifications, 
(2013b)  

Phase Coherent  
Multiple Signal 
Classification (PC-
MUSIC Method) is 
proposed 

No motion (Impulse 
response based 
approach) 

Impulse response 
calculated for transducer 
elements' surfaces 

Baba et. al. (2013) Presented as an 
invention applicable to 
real time scan conversion 
process 

Iterated backprojection Cross-correlation based 
block matching between 
adjacent frames 

Not mentioned 

Wu et. al. (2014) 4 Frames are used to get 
HR image 

Normalized convolution 
by Pham et.al. (2006) 

Rigid registration, 
Vandewalle et. al. (2006) 

Total variation based, 
Pham et.al. (2006) 

 

1.11.   Image Quality Assesment 

There are two types of visual grading in the literature: Visual Grading Analysis (VGA) 

(Shin et. al., 2018; Månsson, 2000; Magnus et. al., 2008) and Image Criteria (IC) 

(Månsson, 2000). In both methods, the scores are summed and averaged. VGA contains 

some scale of points given to an image, whereas, IC involves yes/no questions only. VGA 
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can be conducted in a relative or absolute manner. In absolute VGA, the experts are 

randomly exposed to images and rate their quality with a scale (i.e. 1-5 from very bad to 

very good), (Shin et. al., 2018; Månsson, 2000; Magnus et. al., 2008). In relative VGA, 

an image is compared with a reference image using the following scale: 

• Clearly inferior to (-2) 

• Slightly inferior to (-1) 

• Equal to (0) 

• Slightly better than (+1) 

• Clearly better than (+2) 

 

For the same reference image, different algorithms and / or parameters can be applied and 

the results can be evaluated using ANOVA. In relative VGA, ROC curves can also be 

formed based on success rates (Magnus et. al., 2008). 

In image criteria (IC) evaluation, yes/no questions are prepared for the image set. The 

obtained results are stated to be more reliable in terms of statistics (Månsson, 2000). As 

the sample size is increased, the results are guaranteed to approach to the mean.     

The type of questions and the methodology is well-defined in CT or MR imaging. There 

are pages of EU guidelines or British standards available. However, for ultrasound 

imaging, although there are samples of such evaluations (Tinberg, 2000), to the best of 

our knowledge, there are no common standards defined. 

1.12.   Aims and Scope of the Thesis 

In this thesis, the aim was to improve diagnostic ultrasound image quality, by means of 

Bayesian multi-image super-resolution. In order to back up the findings of the study, 

objective evaluation criteria such as improvement in contrast to noise ratio (CNR) was 

used. This is to be supported by analyses that reflect usefulness of the applied algorithms 

in clinic, such as VGA.  

The blurring effect of imaging system was modelled as accurately as possible by 

measuring PSF. Examination of effects of spatial correlation is an essential part of this 

thesis. The spatial correlation is measured experimentally, and the statistics is assumed to 

be Gaussian. The other models that are mentioned above (Rayleigh, Rician, Nakagami, 

RiIG) assume the probability distribution of speckle to be independent and identically 

distributed (IID). Forming a model that involves correlation requires quite challenging set 

of mathematical operations. Gaussian distribution was used for simplicity.  

Amount of speckle decorrelation was also measured in elevation direction and the result 

of this study was used to check in-plane assumption of multi-image data. In this thesis, 

the methods mentioned were applied to 2D images only, in order to observe the effect of 
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spatial correlation in single-image Bayesian restoration and multi-image Bayesian super-

resolution.  

The success rates were especially focused on for targets of various sizes. This is an 

important aspect, since the tissue that is required to be imaged usually contains targets of 

various size and echogenicity. For this reason, a controlled testing and objective 

evaluation scheme was implemented. Later on, the results were backed up by radiologists’ 

evaluations as well. 
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CHAPTER 2 

 

2. METHOD 

2.1.   Data Collection 

All the B-Mode ultrasound data was collected from Department of Radiology, TOBB-

ETÜ Hospital. In this work, 2D image processing using in-plane images was 

implemented. Collected images were used for measuring the system parameters such as 

PSF and autocorrelation matrix.  

2.1.1.   Image Parameters. All of the 2D ultrasound images were acquired from GE Logiq 

P6 ultrasound system, using 11L linear probe and the focal depth adjusted to 20 mm. All 

of the targets were selected as superficial tissue, for simplicity and preliminary validation. 

Acquired images were from 40x40 mm area, but depending on ROI, images were clipped 

(i.e. parts with no data). Images approximately around 200x200 pixels were processed.  

When the ultrasound image scale was converted into pixels, one pixel corresponded to 90 

µm in axial and lateral directions. All the relevant details related to image acquisition are 

listed in Table 2.  

Table 3: Imaging System Parameters  

GE Logiq P6  

Probe: 11L 

Type: Linear 

Focal Depth: 20 mm 

Imaging Area: 40x40 mm 

Processed Image Size: 200 x 200 px. (approx.) 

Format: wmv 

Frame Rate: 30 fps 

Centre Frequency: 13 Mhz 
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2.1.2.   In-Plane Movement and 2D Data Collection. For 2D multi-image super-resolution, 

in-plane assumption was made, therefore the acquired images were supposed to remain 

in-plane, as much as possible. The probe was moved laterally to be in-plane axis. 

Consecutive video frames were collected with freehand motion (5 images from ROI 

selected from cine loop). To avoid motion blur and not to violate the in-plane assumption, 

the freehand movement was slow and controlled. The in-plane assumption was verified 

using speckle-tracking methods. The details can be found in Section 2.2. 

 

2.1.3.   Tissue-Mimicking Phantom Data. For PSF measurement, “Multi-purpose multi-

tissue” CIRS-040GSE tissue-mimicking resolution phantom was used (Figure 19). Later 

on, for objective evaluation of some algorithms, CIRS-044 tissue-mimicking resolution 

phantom was available (Figure 20). Tissue-mimicking phantoms are usually made of 

Zerdine material (Zerhouni & Rachedine, 1990). Speed of sound is 1540 m/s for this 

material. The resulting US image is speckled and quite realistic. 

These particular box-shaped phantoms are usually used for periodic checking and 

calibrating the resolution of ultrasound machines that are used in clinic. They have 

geometric targets with various echogenicity and size, placed in known locations. As 

observed in Figure 19b and Figure 20b, the echogenicity of the background is very 

heterogenous like real tissue and its mean value varies considerably.  

 

 

Figure 19: Tissue-mimicking resolution phantom CIRS 040GSE (a) Drawing of all imaged area from 

CIRS Tissue Simulation & Phantom Technology (2019); (b) Selected 300x300 pixels (27x27 mm) region 

from acquired images. The radii of the anechoic targets are stated to vary along elevation, this is why the 

target to the left side differs from drawing. 

 

Both of the phantoms contain high echogenicity (>15 dB) nylon wires of 80 µm diameter 

(seen on Figure 20b). Anechoic targets appearing as black circular shaped in Figure 19b 

in CIRS 040GSE phantom are stepped cylinders. Their diameters vary between 1.3 - 10.0 

mm. The anechoic and hyperechoic targets in CIRS 044 (Figure 20b) have 2 mm diameter. 
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In addition to tissue-mimicking resolution phantoms, data was also collected from multi-

modality biopsy and sonographic trainer breast phantom (CIRS 073). Sample images 

obtained from this phantom are illustrated in Figure 21. It contains hyperechoic spherical 

(Figure 21a), 10-15 anechoic cystic (Figure 21b) spiculated targets and 100-300 

micrometer microcalcifications (Figure-21c).  

 

Figure 20: Tissue-mimicking resolution phantom CIRS 044 (a) Picture of imaged area; (b) Selected 

180x180 pixels (16.2x16.2 mm) region. 

 

Figure 21:  Tissue-mimicking breast phantom CIRS 073 (a) Hyperechoic spherical; (b) 10-15 anechoic 

cystic; (c) 100-300 micrometer microcalcifications. 

 

2.1.4.   Human Data. Informed consent from all volunteers and written permission of 

TOBB-ETÜ Hospital was taken for all of the mentioned work. The 2D scanned body parts 

are listed as follows: 

- Thyroid with moderate Hashimoto’s thyroiditis condition  

- Glands with systemic lupus erythematosus  

o Submandibular gland 

o Parotid glands  

o Lymph nodule 
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      - Healthy hand tendon 

The images are presented in Figure 22.  

 

 

Figure 22: B-Mode images collected from volunteers (a-d-e) Breast phantom; (b-c-j) Human thyroid; (f) 

Human lymph nodule; (g) Human submandibular gland; (h) Human parotis gland; (i) Human hand tendon. 

 

2.1.5.   Data Preparation. The recorded videos contain ruler and gray level scale 

information. 450x450 pixel B-mode image area with tissue data was extracted from 

recorded videos. Video frames contain red, green and blue channels which have the same 

value; therefore, the output image is always a gray level tone and the color information is 

redundant. The channel information was compressed into one gray level value. The 

acquired wmv data is signed integer [0,255], this was converted to floating point data in 

the range [0,1] with single precision. The 2D image data was saved as MATLAB® 

matrices with appropriate naming convention.  

2.2.   Speckle Tracking 

In order to implement the speckle tracking scheme mentioned in subsection 1.7.2, a 

precise mechanical setup was designed. This setup was used to scan the tissue-mimicking 

phantom along elevation. After this step, the decorrelation curve was measured. 

2.2.1.   1D Scanning Mechanical Setup. In order to measure the system specific 

decorrelation and estimate resolution cell size in elevation, a robust mechanical setup with 

one degree of freedom was used. This system was first designed as a solid model (in 

Solidworks® 2008). Shown in Figure 23a, probe holder part (marked red) was 

manufactured using 3D printer.  
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The overall system was designed to minimize the moment arm between the actuator and 

the touching point of the phantom with the surface of the transducer probe where the force 

was applied. The accuracy of 10 μm was a challenging task, and could be easily lost due 

to mechanical vibrations with movement. The unwanted mechanical vibrations were 

mostly expected to occur due to improper mounting. In order to reduce friction, the bridge 

height could be adjusted easily with T-shaped nuts sliding inside sigma profile canals. The 

overall assembling was made with spring nuts which also improved rigidity. MODESIS 

company also provided extensive aid on manufacturing process. The manufactured system 

is shown in Figure 23b. Overall setup installed in TOBB-ETÜ Hospital Radiology service 

is shown in Figure 24. 

 

 

Figure 23: The designed system for 1D scanning (a) Computer aided design of 1D scanning system in 

Solidworks® 2008 environment – Red part: 3D printed probe holder, blue part: ultrasound probe, white 

box: bounding box for tissue-mimicking phantom; (b) Manufactured and assembled system; (c) Simple 

control interface program written in C#. 

 

Ultrasound probe was mounted rigidly on the setup. The system was controlled by a 

software interface (shown in Figure 23c) that moves the probe at given constant intervals 

in milliseconds. The precise linear actuator made calibration moves with the limit switch 

at home position (0 position) at each data acquisition sequence. The moves for calibration 

were oscillatory (back and forth) around the 0 position and the actuator movement 

converged to the desired position.  

The mechanical setup was able to produce precise motion of 10 μm which allows to plot 

a finer correlation graphic. The data from the ultrasound system was recorded as video. 

The calibration movement mentioned above was distinct in the videos. After the 

calibration move, the constant step movements with 10 μm step size started. Since there 
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was no absolute position, the video frames were extracted as soon as the constant 

movement was started. The frame rate was 30 for the ultrasound system and was given 

constant intervals of 100 ms, there were 3 frames obtained for each position.  

 

 

Figure 24: 1D Mechanical scanning setup installed in TOBB-ETÜ Hospital, Department of Radiology. 

 

2.2.2.   Algorithms and Measurements. As stated previously, the correlation of consecutive 

frames was estimated via the Pearson correlation coefficient, given in Equation (27). 

There is also a theoretical model available for expressing the correlation of two 

consecutive slices. Since the correlation of two frames is due to speckle, the correlation 

coefficient is stated to be expressed using Rayleigh statistics (Wagner et. al., 1983; Gee 

et. al., 2006). The theoretical Rayleigh correlation is found by: 

     λ2 = exp
(
−δ2

σ2 ) (42) 
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In this expression,  λ2  stand for the theoretical correlation value, δ is the distance between 

consecutive frames and σ is the resolution cell size.  

If the distance between measurements is fixed and known, with equating the sample 

correlation value obtained from equation (27) to 𝜆2 value in equation (42), the resolution 

cell size (σ) that varies with depth can also be estimated. 50x50 patches were extracted 

(as shown in Figure 25) from the data collected from speckle-only areas of the tissue-

mimicking phantom, using the above-mentioned 1D mechanical scanning setup (from 

6.75 mm to 24.75 mm depth). The average of 5 patches were used for measurement of 

correlation for each row. The decorrelation measured at every 10 μm with respect to first 

frame is plotted in Figure 26. The average resolution cell size σ was found to be 0.26 mm. 

The Rayleigh correlation corresponding to this σ is shown with dark blue solid line in 

Figure 26. 

In (Afsham et. al., 2014), the theoretical correlation in elevation from a more complicated 

data model called “Rician of Inverse Gaussian distribution” was derived, which was 

claimed to fit ultrasound data better. Their results seem considerably better compared to 

other works in literature. This model had been discussed and examined for some time in 

earlier stages of the thesis, but a simpler model was found to be adequate, for both speckle 

tracking and restoration purposes.  

 

Figure 25: Patches extracted from speckle-only areas of the tissue-mimicking phantom. 
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2.3.   Bayesian Restoration and Super Resolution 

In this work, single-image Bayesian restoration and multi-image Bayesian super-

resolution methods were implemented on 2D B-mode ultrasound. In this procedure, 

correlated Gaussian assumption was used for noise (speckle). A single-image Bayesian 

restoration scheme (BR-CG) as well as a Bayesian multi-image super-resolution 

restoration scheme are proposed (BSRR-CG).  

 

 

 

Figure 26: Speckle decorrelation curve measured for Logiq P6 system, using the 1D mechanical scanning 

setup. 

 

2.3.1.   Single-Image Restoration. The image model given in Equation (29) can be 

implemented using a Bayesian scheme. BR-CG method can be implemented using an 

appropriate 𝐶  matrix for spatial correlation. In this work, the spatial correlation was 

assumed to be Gaussian and measured experimentally as sample autocorrelation matrix, 

as details explained in Section 2.4. Gaussian probability density function in Equation (32) 

is compared to the sample histogram of ultrasound speckle acquired from B-mode imaging 

system. It was considered due to its simplicity for modelling spatial correlation, although 

it does not fit exactly (shown in Figure 27). The results were compared to BR-UG method, 

the case with no spatial correlation (𝐶 matrix being identity).  

2.3.2.   Multi-Image Super-Resolution Restoration. As mentioned in Section 2.1, there 

were multiple images acquired from ROI for both in-plane and out-of-plane movement of 
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the ultrasound probe. In order to implement a multi-image scheme, the 𝐾 observations are 

inserted into matrix form and the following expression is obtained (Elad & Feuer, 1997): 

 

                [

�⃗�1

�⃗�2

…
�⃗�𝐾

] =  [

𝐷1𝐵1𝑇1

𝐷2𝐵2𝑇2

…
𝐷𝐾𝐵𝐾𝑇𝐾

] �⃗� + [

�⃗⃗�1

�⃗⃗�2

…
�⃗⃗�𝐾

] = [

𝐴1

𝐴2

…
𝐴𝐾

] �⃗� + [

�⃗⃗�1

�⃗⃗�2

…
�⃗⃗�𝐾

]        0 < 𝑘 < 𝐾            (41) 

where the number of rows is 𝐾 times that of the single-image case and 𝐴 = 𝐷𝑘𝐵𝑘𝑇𝑘 for 

simplicity. 

In Section 1.10, multi-image Bayesian super-resolution works using the model in 

Equation (39) were mentioned. The spatial correlation of speckle was not involved in 

those works. In this study, using identity 𝐶 matrix method is abbreviated as BSRR-UG 

and compared to proposed method with spatial correlation involved, namely the BSRR-

CG method. The minimization problem stated in Equation (39) was solved for multiple 

images. 

2.4.   Application of the Methods 

In order to implement Equation (39), measurement of imaging system blur and 

autocorrelation are required. The details regarding those measurements are stated in the 

following paragraphs. Then, the optimization scheme is explained.  

2.4.1.   Measurement of Point Spread Function. PSF was estimated using the tissue-

mimicking phantom by implementing the image observation method (Gonzalez & Woods, 

2001). A small sub-image was extracted from tissue-mimicking phantom with the known 

simple structure (80 µm diameter hyperechoic nylon wire with point cross-section, see 

Section 2.1 for details). The PSF was assumed to be invariant along the image and through 

the depth. Its Fourier transform 𝐻𝑠(𝑢, 𝑣) was estimated by 

 

                𝐻𝑠(𝑢, 𝑣) =
𝐺𝑠(𝑢,𝑣)

�̂�𝑠(𝑢,𝑣)
                                            (42) 

 

using Fourier transform 𝐺𝑠(𝑢, 𝑣) of the observed degraded image. The ideal image 

estimate was �̂�𝑠(𝑢, 𝑣) which was expected to be one-pixel dot with amplitude higher than 

15 dB) and this was converted back to spatial domain.  

The cross sections from resulting PSF is shown in Figure 28. FWHM is marked with blue 

lines. It is observed that the tails do not approach to zero. Assumed PSF is marked using 
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red lines. Red lines along axial are 4 pixels away from peak. Red lines along lateral are 9 

pixels away from peak. This corresponds to 0.72 mm extent of PSF along axial and 1.62 

mm extent along lateral. Trimming the PSF sharply is expected to result in heavy artifacts 

in deconvolution operation. The end values of the assumed PSF are approximately 1/3 of 

the peak value. The effect of longer extent or filling the end of PSF smoothly was 

examined briefly using the image restoration code. No significant change was observed 

between restoration results with slightly different PSFs (PSF with longer extent and with 

smooth ending to zero value). For this reason, the observed PSF with the given extent was 

taken as is. 

Along elevation, there are no structure changes for imaging, since the nylon point targets 

are in fact cylindrical. For this reason, a Gaussian PSF shape is estimated based on 

correlation measurement in elevation. PSF extent along elevation is estimated as 37 pixels 

(3.33 mm). The 3D point spread function estimate is visualized as a 3D volume in Figure 

29, using MITK, (2019). 

 

 

Figure 27: Histogram of speckle from tissue-mimicking breast phantom compared to Gaussian PDF 

(µ=0.32, σ=0.03). 
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Figure 28: Cross sections from the PSF estimates. Along axial and lateral directions, image observation 

method using tissue-mimicking phantom data was used. Blue lines mark FWHM and red lines mark the 

extent of the PSF. 

 

2.4.2.   Measurement of Autocorrelation Matrix. The elements of autocorrelation matrix 

for a volume I of size MxN can be measured from samples by the following expression: 

                         𝑅𝑝,𝑞 =
1

𝑀

1

𝑁
 ∑ ∑ (𝐼(𝑖, 𝑗) − µ)(𝐼(𝑖 + 𝑝, 𝑗 + 𝑞) − µ)𝑁

𝑗=1
𝑀
𝑖=1                          (43) 

for each shift p, q and put into raster scanned pixel order representation. 98 non-

overlapping patches were used for more accurate estimation. Maximum correlation 

lengths (10% of the peak) were calculated as 3 pixel shifts along axial direction and 8 

pixels along lateral direction, respectively.  

If a 2 pixel shift is assumed along axial and lateral directions, a sample 5x5 correlation 

matrix 𝑅𝑖,𝑗  is represented in spatial coordinates as follows: 

                  𝑅𝑝,𝑞 =

[
 
 
 
 
 
𝑅(−2,−2) 𝑅(−1,−2) 𝑅(0,−2) 𝑅(1,−2) 𝑅(2,−2)

𝑅(−2,−1) 𝑅(−1,−1) 𝑅(0,−1) 𝑅(1,−1) 𝑅(2,−1)

𝑅(−2,0) 𝑅(−1,0) 𝑅(0,0) 𝑅(1,0) 𝑅(2,0)

𝑅(−2,1) 𝑅(−1,1) 𝑅(0,1) 𝑅(1,1) 𝑅(2,1)

𝑅(−2,2) 𝑅(−1,2) 𝑅(0,2) 𝑅(1,2) 𝑅(2,2) ]
 
 
 
 
 

                            (44) 

 

The images are represented as vectors in Equation (40). The corresponding autocorrelation 

matrix C in Equation (40) is to be represented in raster scanned order. The C matrix is 

formed in a symmetric, banded structure using the shift indices: 
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     𝐶 =

[
 
 
 
 
 
 
𝑅(0,0) 𝑅(1,0) 𝑅(2,0) 𝑅(1,−2) 𝑅(−1,−1) 𝑅(1,0) … 0 0

𝑅(0,−1) 𝑅(0,0) 𝑅(1,0) 𝑅(2,0) 𝑅(1,−2) 𝑅(−1,−1) 𝑅(1,0) … 0

𝑅(0,−2) 𝑅(0,−1) 𝑅(0,0) 𝑅(1,0) 𝑅(1,0) 0 0 … 0

… … … 𝑅(0,0) … … … … …

0 … 𝑅(−2,−2) 𝑅(−2,−1) … … … 𝑅(0,0) 𝑅(0,1)

0 0 … 𝑅(−2,−2) 𝑅(−2,−1) … … … 𝑅(0,0)]
 
 
 
 
 
 

             (45) 

 

2.4.3.   Regularization. Markov Random Field (MRF) assumption (Rue & Held, 2005) 

was made for the acquired B-mode images and Gibbs prior was used. As mentioned in 

Section 2.3, second norm was preferred for clique potential, since it suppresses the noisy 

effect of outliers. The prior term penalizes squared intensity difference between the center 

pixel (i) and its 8 neighbors in 2D, where d is the distance between the neighboring (ith 

and 𝑗𝑡ℎ) pixels.  

 

 

Figure 29: Visualization of 3D PSF using MITK. Along elevation, a Gaussian PSF shape was assumed. 

 

2.4.4.   Estimation of Transformation. Multi-image super-resolution requires estimation 

of displacement matrix T.  Various rigid, affine and non-rigid methods were mentioned in 

above paragraphs (Section 1.8). Among those, rigid registration in frequency domain by 

(Vandewalle et. al., 2006), block matching and landmark based SIFT (Lowe, 2004) was 
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examined at preliminary trials. As stated in Section 1.8, the tissue motion may be very 

complex due to varying tissue stiffness, patient motion and pulsation of arteries. Rigid 

registration did not yield adequate accuracy. Standard block matching algorithm (as 

explained in Section 1.8) using mean square error and various sizes of search windows 

and mean square error as similarity metric was implemented. The resulting displacement 

field was quite inconsistent with the transducer movement, again due to complex tissue 

motion. A sample displacement field is visualized in Figure 30 for block size equal to 30 

pixels and search window size equal to 15 pixels for an image size of 234 x 250 pixels. 

Displacement estimation on shallower parts are consistent with the transducer motion. 

However, estimated movement of each block for the deeper tissue appears to be tangled. 

Considering these results, more sophisticated schemes (mentioned in Section 1.8) listed 

in literature, such as the work of Cifor et.al. (2013), Banerjee et.al. (2015), Morin et.al. 

(2015) should be implemented to acquire improved results. This requires condensed 

research on the image registration subject. This kind of direction was considered out of 

the scope of the thesis. Implementing SIFT features was also evaluated as being very 

computationally costly.  

 

Figure 30: Estimation of transducer movement using block matching (block size: 30 pixels, search 

window size: 15 pixels, image size: 234x250) (a) Source image; (b) Target Image; (c) Estimated 

displacement vector for each block visualized using red arrows. 

 

After evaluating the alternatives briefly, diffeomorphic demons algorithm proposed by 

Vercauteren et. al. (2009), based on (Thirion, 1998) was used in this study. This method 

is very fast (1.21 seconds for a 360x360 image) as a build-in MATLAB® (2017a) function 

and found quite efficient for registration purpose. The displacement field 𝑣𝑘 of the 𝑘𝑡ℎ 

image was estimated as follows  

                                     𝑣𝑘 =
(�⃗⃗�𝑘−�⃗⃗�1)𝛻�⃗⃗�𝑘

‖𝛻�⃗⃗�𝑘‖2+(�⃗⃗�𝑘−�⃗⃗�1)2
                                            (46) 
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where 𝛻�⃗�𝑘 represent the gradient of �⃗�𝑘 and ‖𝛻�⃗�𝑘‖
2 is the second norm of the gradient 

image. The difference between fixed and moving images was minimized with an iterative 

procedure.  

2.4.5.   Optimization. BR-UG, BR-CG, BSRR-UG, BSRR-CG methods were 

implemented using a gradient descent-based method. Gradient descent optimization can 

be formulated as follows: 

                                                       �⃗�𝑛𝑒𝑤 = �⃗� − 𝛼𝛻 �⃗� .                                                  (47) 

In here, 𝛼 is the step size and 𝛻 stands for the derivative operation. Optimal step size can 

be obtained with line search at each iteration. Cost function in Equation (39) is calculated 

for �⃗� ={-1,0,1} and its minima is found by quadratic fitting. This yields the optimal step 

size, 𝛼𝑜𝑝𝑡 . Using this step size, the ideal image estimate is updated using �⃗�𝑛𝑒𝑤 = �⃗� −

𝛼𝑜𝑝𝑡𝛻 �⃗�. 

The derivative of the likelihood function was obtained analytically. The derivative of the 

Gibbs prior was obtained numerically in 2D by implementing finite differences. The 

derivative is expressed as follows: 

     𝛻�⃗� = 𝐴𝑇(�⃗� − 𝐴 �⃗�)𝑇𝐶−1(�⃗� − 𝐴 �⃗�) +  𝛻𝑔(�⃗�).                            (48) 

When Gibbs distribution stated in Equation (38) using second norm is assumed, by 

minimizing the following cost function, the ideal image estimate �⃗� can be obtained: 

𝑎𝑟𝑔𝑚𝑖𝑛�⃗�   ((�⃗� − 𝐴 �⃗�)𝑇𝐶−1(�⃗� − 𝐴 �⃗�) + λ ∑ ∑
(𝑥𝑖−𝑥𝑗)

2 

𝑑𝑖𝑗

8
𝑗=1

𝑁
𝑖=1 )      (49) 

λ controls the relative weight of the two terms and N is the total number of image pixels. 

The optimization procedure was stopped when cost function did not decrease anymore. 

For implementing BR-CG and BSRR-CG methods, the inverse matrix operation for non-

identity 𝐶 in Equation (39) is required. This operation is not directly tractable since it 

demands very large memory (𝑁2𝑥𝑁2 matrix for 𝑁𝑥𝑁 image). Since 𝐶 matrix is banded 

and sparse, matrix multiplication can be applied via circular shifting. An inner 

optimization scheme can be implemented by assigning  �⃗� = 𝐶−1(�⃗� − 𝐴 �⃗�) , and finding 

vector �⃗�  by means of iteratively minimizing ‖𝐶�⃗� − (�⃗� −  𝐴 �⃗�)‖2
2  by using gradient-

descent algorithm. A similar approach was followed in Tilley et. al. (2015). 

As observed, there are zero values which correspond to points beyond correlation length 

in Equation (45). This sparsity is used to avoid unnecessary multiply by zero operation. 

The  autocorrelation Circular shifting was implemented on GPU (CUDA, NVIDIA GTX 

1050) with considerably less computational burden. Correlation between images was not 

considered for multi-image super-resolution restoration. 
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The sample cross section of autocorrelation of the residual (�⃗� −  𝐴 �⃗�) and decorrelated 

residual 𝐶−1(�⃗� −  𝐴 �⃗�)  is shown in Figure 31. The correlation was observed to be 

reduced. 

NVIDIA GTX 1050 has 2 GB memory and 640 cores. The processed images were stored 

as float type variables which allocate 4 bytes in memory for each pixel, in C++ context. 

The correlation operation was implemented using 32 grids, 16 blocks. The operation was 

implemented in 16 parts. This meant that the optimisation operations could be 

implemented 16 times faster by using a higher capacity GPU with full parallelisation. This 

would result in a calculation time of under two minutes. 

 

Figure 31: Autocorrelation was observed to be reduced by the inner optimization scheme mentioned in 

Optimization section (2.4.5). 

2.5.   Generation of Synthetic Phantoms 

An image processing algorithm generally has a set of parameters that yields optimum 

output and a parameter optimization scheme is required for acquiring the most efficient 

results from an algorithm. In case of Bayesian restoration methods mentioned, it is the 

prior coefficient λ in Equation (39). In order to implement such parameter optimization 

procedure, a synthetic phantom with known geometric targets was used. In (Morin et. al., 

2015; Baselice et. al., 2018; Wang et. al., 2009) Field II ultrasound image (Jensen & 

Svendsen, 1992; Jensen, 1996) was used for this purpose.  

In this study, for implementation of algorithms an image with different sized targets (1-2 

mm in lateral and 0.5-1.5 mm in axial) (Figure 32) was created. These targets were 

convolved with the measured system PSF. After that, randomly generated correlated noise 

was added. For super-resolution methods, the targets and the same random set of scatterers 



54 

 

were rigidly transformed within a small range: (axial: 0.057±0.0205 mm, lateral: 

0.3825±0.0946, roll: 0.5375±0.1750) to obtain five ideal images. Finally, the resulting 

ideal images were convolved with the PSF and noise was added. Samples of synthetic 

speckle and the speckle from tissue-mimicking phantom are shown Figure 33, and the 

statistics are tabulated in Table 3 to demonstrate their similarity.      

 

 

Figure 32: 2D Synthetic phantom (a) Ideal image; (b) Synthetically generated phantom image 

 

 

Figure 33: Visual comparison of tissue-mimicking phantom speckle (a) to synthetically created speckle; 

(b) Statistics are given in Table 3. 
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Table 4: Statistics of the real and synthetic speckle (256x256 pixels)  

 

 

 

 

2.6.   Comparative Study 

In this work, comparative study on 2D data was conducted. For objective evaluation and 

VGA, the performance of BR-CG and BSRR-UG were compared to common speckle 

filtering methods (WF, BF, AD).  

The important algorithm parameter is the diffusion coefficient κ for AD. In original paper, 

there were two functions offered as diffusion model. The first option was stated to favor 

high contrast edges over low contrast ones and the second one was to favor larger regions 

over smaller ones. For both options, using 8 neighbors, κ was scanned between [0.0025, 

0.2000] with an interval of 0.0025.  

WF was implemented using MATLAB® (2017a) built-in deconvwnr function. As an 

input, PSF and noise to signal ratio (NSR) is required to be fed. NSR was supplied to the 

script in a range of [0.00, 0.50], with an interval of 0.01.  

Code from Mathworks (Lanman, 2018) was used for implementing BF. Three parameters 

need to be adjusted for this algorithm. First one (w), is the half-size of the filter window 

(approx. size of the PSF). The second one is the standard deviation of the spatial domain 

(l) scanned in the range 2-50, since it is related with the minimum target size (22 pixels in 

lateral and 11 pixels in axial). Finally, standard deviation of the intensity domain was 

required to be selected and this value was taken as 0.0325, according to the standard 

deviation of speckle (Table 1). 

For all the Bayesian methods implemented (BR-UG, BR-CG, BSRR-UG and BSRR-CG), 

the only parameter for optimization is the coefficient of the prior term (λ), in Equation 

(39). Higher values of λ results in suppressing the speckle better but at the same time 

smoothing the image, including edges. On the other hand, low λ values result in 

deconvolution being more dominant (edges are sharpened, and speckle is emphasized). 

2.7.   Objective Evaluation 

Objective evaluation using mathematical measures is essential in optimal parameter 

selection and evaluation of the output of image processing algorithms. For this purpose, 

well-accepted metrics in literature were used.   

 Standard Dev. Min.Value Max.Value 

Real Speckle 0.032 -0.122 0.135 

Synthetic 

Speckle 
0.033 -0.112 0.139 
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2.7.1.    Peak Signal to Noise Ratio (PSNR). In the case of phantom images, 𝑥𝑖, the ideal 

image with geometric targets (Figure 32a) was known and the amount of error of estimated 

�̂�𝑖  from ground truth as mean square error (MSE) could be measured:  

                                    𝑀𝑆𝐸 =
1

𝑁
∑  (�̂�𝑖 − 𝑥𝑖)

2𝑁
𝑖                                            (50) 

 

PSNR is based on mapping the mean square error to decibel scale: 

   𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔
255

𝑀𝑆𝐸
 [𝑑𝐵]                               (51) 

 

2.7.2.    Constrast to Noise Ratio (CNR). Contrast to noise ratio (CNR) is another common 

measure for evaluation (Baselice et. al., 2018; Morin et. al., 2015; Yang et. al., 2009; 

Wang et. al., 2009): 

     

                                              𝐶𝑁𝑅 =
|µ𝑖−µ𝑜|

√𝜎𝑖
2+𝜎𝑜

2
                                                   (52) 

 

     

where µ𝑖 and µ𝑜 are the mean values and 𝜎𝑖
2 and 𝜎𝑜

2 variances of pixels inside and outside 

of interest respectively. In this expression, the term in the numerator (|µ𝑖 − µ𝑜|), stands 

for contrast. The term in the denominator (√𝜎𝑖
2 + 𝜎𝑜

2) is for measuring the amount of 

noise.  

 

2.7.3.    Normalized Information Density (NID). The normalized information density 

(NID) (Üstüner & Holley, 2003), is another objective evaluation metric that is expressed 

with the following terms: 

                                            𝑁𝐼𝐷 =
1

2𝑆𝜎𝑠
2                                                         (53) 

 

 

where 𝜎𝑠
2 is the variance of the speckle and S is the average speckle size, found by the 

following formula: 

  

                                           𝑆 =  ∫ 𝛶(𝜉)𝑑𝜉
−∞

+∞
                                                    (54) 
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where  𝛶 is the peak normalized autocovariance function (for fully developed speckle).  

2.8.   Implementation of VGA 

In this study, VGA (described in Section 1.11) was implemented to get an initial clinical 

response from radiology experts. Clinically relevant questions were prepared with the help 

of radiology experts. Outputs of the seven methods (AD, BF, WF, BR-UG, BR-CG, 

BSRR-UG, BSRR-CG) were presented randomly at the same scene with the observed 

images. A browser-based interface (Figure 34) with radio buttons assigned to each score 

was prepared for this purpose. The interface program was prepared using node.js and 

JavaScript. The questions were recorded and read from a text file. The output was logged 

automatically to a text file. The text files were generated for each radiologist number 

selected in the beginning of the program (as shown in Figure 34a).  

Opinions of five radiology experts were collected. Appropriate monitors (approved for 

medical standards) were used. The details of implementation of VGA are presented in 

section 3.3 with the selected cases. The rest of the cases are presented in Appendix I along 

with average scores per method.  

5 radiology experts were asked to evaluate 10 images by answering 13 questions that are 

relevant to diagnostic purposes. The questions were also prepared by radiology experts. 

The participants were asked to score the algorithm output images with respect to the raw 

image by: 

• The observability of granular coarsening for thyroid gland and breast phantom, 

• The sharpness of contour for cystic and hyperechoic nodular structures in breast 

phantom and lymph nodule, 

• The contour quality of thyroid gland, 

• The observability of heterogenicity for submandibular and parotid glands, 

• The observability of microcalcifications for breast phantom, 

• Peripheral tissue contour and homogeneity for hand tendon, 

• The sharpness of subcutaneous fat tissue for lymph nodule 

 

The sequence of images was presented in the same random order and with no consecutive 

appearance of the same cases. The experts who were involved in the study had little or no 

prior opinion about the effect of the algorithms applied. They were not notified about 

which image processing algorithm was applied to each image. The questions that 

correspond to some selected cases are presented in section 3.3. The rest of the questions 

for the cases are presented in Appendix I. The questions were addressed in Turkish, 

however, their translation to English is also presented in the related sections. 

Age of radiologists involved in evaluation is 49.8 ± 10.2, and years of experience is 19.6 

± 9.0. The monitors used for evaluation of the images were approved for medical standards 
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and regularly used for radiological examination. The average overall evaluation time of 

radiologists for 70 cases (10 images x 7 methods) was about 30 minutes.  

 

 

 
Figure 34: Browser based interface designed for image quality assessment study (a) Starting the program 

by setting the user number; (b) Processed image (right) is compared to the reference image (left). Clinically 

relevant questions were prepared, the scores were selected by using radio buttons. 
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CHAPTER 3 

 

3. RESULTS 

3.1.    Synthetic Phantom and Parameter Optimization 

Synthetic phantom study was conducted to determine the optimal values of algorithm 

parameters. The parameters for the selected algorithms are explained in section 2.6 in 

detail.  

 

Optimal parameter selection is essential to establish the balance between regularization 

effect and edge sharpening. One such example is presented for BSRR-CG algorithm in 

Figure 35. For the given input image, the output is observed to change dramatically for λ 

values. For each algorithm, each metric (PSNR, CNR and NID) was calculated for a set 

of parameters within a meaningful interval, as shown in Figures 36-42. These intervals 

are given in Table 4, in the first column. According to those values, Figure 35c (λ=0.00) 

correspond to ML estimate, Figure 35d (λ=0.09) correspond to optimal value, Figure 35e 

(λ=1.00) correspond to smoothing more than necessary.   

 

The parameters to be optimized for the selected algorithms are listed as follows: 

 

AD: Diffusion coefficient (κ) 

        Diffusion model (Option 1 / Option 2) 

BF: Half-size of the filter window (w) 

        Standard deviation of the spatial domain (l) 

 WF: Noise to signal ratio (NSR) 

 BR-UG: Prior coefficient (λ) 

BR-CG: Prior coefficient (λ) 

BSRR-UG: Prior coefficient (λ) 

BSRR-CG: Prior coefficient (λ). 
 

When the Figures 36-42 were examined, there are peaks observed at different points for 

PSNR, CNR and NID. Parameter optimization is challenging since there is more than one 

alternative and a consistent selection should be made. Peak NID values usually appeared 

to be between peak CNR and PSNR values. Peak CNR values tended to favor sharper 

edged results while peak PSNR appeared for lower smoother images. For AD and BF, 
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there was more than one parameter to be optimized. Therefore, all of the values described 

in section 2.6 were examined.  

 

NID metric is stated to be independent of object size (Üstüner & Holley, 2003). This is 

very important, especially for real tissue where the target size varies considerably. 

Considering these advantages of NID, the parameter that resulted in highest NID was 

selected. According to Table 4, BSRR-CG yielded highest NID, however difference is 

small compared to the rest of the results of the other methods.  

 

 

 
Table 5: Algorithm run times for all the methods are presented in Table 5, for processing a 300×300 image. 

As observed, the BSRR-CG run time was considerably longer, compared to other methods (19.3 min), this 

is due to inner optimization scheme, explained in Subsection 2.4.5. Table 5: Optimal parameters for each 

method on a realistic synthetic phantom were obtained for the given metrics (third, fourth and fifth columns). 

The best values among all algorithms for each metric are shown with bold face. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods Optimal parameters 

(For maximum NID value) 

PSNR CNR NID 

Observed Image - 17.04 0.40 0.33 

AD κ=0.0225, 8 neighbor, opt.1 
17.05 0.42 0.33 

BF 
w=28, l=30,𝜎𝑠𝑝𝑒 =0.035 

17.07 0.42 0.33 

WF NSR=0.04 17.78 0.47 0.44 

BR-UG λ=0.009 
18.03 0.49 0.54 

BR-CG λ=0.009 
18.00 0.48 0.54 

BSRR-UG λ=0.10 
18.08 0.50 0.51 

BSRR-CG λ=0.09 
17.66 0.46 0.58 
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Table 6: Algorithm run times for 300x300 images.   

 AD BF WF BR-UG BR-CG BSRR-UG BSRR-CG 

Algorithm Run 

Time (sec) 

0.30 3.34 0.09 0.90 16.7 14.3 1154.4  

(19.23 min.) 

 

 

 

 

 

 
 
Figure 35: Parameter optimization scheme on synthetic phantom (a) Ideal image; (b) Observed image; (c) 

BSRR-CG result for λ=0.00 (Corresponds to ML estimator); (d) BSRR-CG result for λ=0.09; (e) BSRR-CG 

result for λ=1.00.   

 

 

3.2.   Objective Evaluation 

CNR measurements on 2 mm hyperechoic and cystic targets and two high echogenicity 

nylon wires close to each other were conducted. The background of tissue-mimicking 

phantom is quite heterogenous with varying intensity.  A healthy measurement for average 

speckle size was not available. For this reason, NID could not be used on the tissue-

mimicking phantom. 

The CNR measurements are listed in Table 7 and processed images are presented in Figure 

44. Although AD yielded highest CNR results for 2 mm targets (11.6% for cystic target 

and 16.9% for hyperechoic target); the smaller targets (nylon wires) were suppressed as if 

they were noise.  

BF had the best results for nylon wires, but it failed to improve CNR for the 2 mm 

hyperechoic target. In BF, contrast improvement was not obtained, this may be due to the 

fact that there is no deconvolution model involved in this method. BF resulted in 

insignificant improvement for cystic target (3.5%).     
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In case of BR-CG to BR-UG, there was no significant advantage observed. Both methods 

improved contrast (|µ𝑖 − µ𝑜|) for 2 mm targets; at the same time they increased the 

standard deviation of speckle. Therefore overall, these methods failed to improve CNR.  

Similar to BR-UG and BR-CG, WF and BSRR-UG improved contrast but emphasized the 

speckle, as observed in Figure 44. Again, due to increase in standard deviation of noise, 

CNR was not increased. 

BSRR-CG method resulted in consistent (5-10%) CNR improvements for all tissue-

mimicking phantom targets (Table 7). Noise suppression and contrast improvement were 

observed simultaneously. The rest of the methods failed to improve CNR consistently for 

varying targets. This may be listed as a prominent property of the proposed BSRR-CG 

method. 

 

 

Table 7: The CNR measurements are tabulated. AD yielded highest CNR results for 2 mm targets; however 

smaller targets such as nylon wires were suppressed. BF had the highest results for nylon wire targets, 

however, did not show such performance for 2 mm hyperechoic targets. Best CNR results value shown in 

bold face. BF and Bayesian methods perform better for smaller targets. WF and Bayesian methods improve 

contrast, but, at the same time, increase standard deviation of noise (except BSRR-CG). They result in poor 

CNR improvement for larger targets. The improvement of BSRR-CG is consistent. 

 

 

 

Methods CNR  

(2 mm Cystic target) 

CNR  

(2 mm Hyperechoic target) 

CNR 

(Nylon wires with high 

echogenicity) 

Observed Image 1.91 1.82 2.59 

AD  2.13 (11.6%) 2.12 (16.9%) 2.52 (-2.7%) 

BF  1.97 (3.5%) 1.62 (-10.9%) 2.75 (6.4%) 

WF 1.70 (-10.9%) 1.59 (-12.4%) 2.22 (-14.4%) 

BR-UG  1.88 (-1.3%) 1.64 (-9.8%) 2.65 (2.5%) 

BR-CG  1.77 (-7.4%) 1.72 (-5.3%) 2.67 (3.3%) 

BSRR-UG  1.90 (-0.3%) 1.75 (-3.6%) 2.60 (0.3%) 

BSRR-CG  2.02 (6.2%) 2.00 (9.9%)  2.72 (5.3%) 
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Figure 36: Parameter optimization for AD, using synthetic phantom with respect to objective evaluation 

metrics. 

 

 

Figure 37: Parameter optimization for BF, using synthetic phantom with respect to objective evaluation 

metrics. 

 

Figure 38: Parameter optimization for WF, using synthetic phantom with respect to objective evaluation 

metrics. 

 

 



64 

 

 

Figure 39: Parameter optimization for BR-UG, using synthetic phantom with respect to objective 

evaluation metrics. 

 

 

 

Figure 40: Parameter optimization for BR-CG, using synthetic phantom with respect to objective 

evaluation metrics. 

 

 

Figure 41: Parameter optimization for BSRR-UG, using synthetic phantom with respect to objective 

evaluation metrics. 
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Figure 42: Parameter optimization for BSRR-CG, using synthetic phantom with respect to objective 

evaluation metrics. 

 

 

Figure 43: Synthetic phantom study results using the parameters in Table 4 (HR image size: 300x300 pixels) 

(a) Ideal image; (b) Synthetic phantom image (The effects of system blurring, and speckle involved); Results 

of restoration (c) AD; (d) BF; (e) WF; (f) BR-UG; (g) BR-CG; (h) BSRR-UG; (i) BSRR-CG. 
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Figure 44: Algorithms applied on tissue-mimicking resolution phantom images (HR image size: 400x400 

pixels). There are 2 mm cylindrical cystic target, 2 mm cylindrical, high echogenicity target and 2 nylon 

wires with very echogenicity higher than 15 dB. The algorithms are applied using the parameters in Table 

4; (a) Observed image; Restoration results of (b) AD; (c) BF; (d) WF; (e) BR-UG; (f) BR-CG; (g) BSRR-

UG; (h) BSRR-CG; (i) Areas marked for CNR measurement. Inside of inclusion are marked with red 

contours, outside of inclusion are marked with blue contours.  
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3.3.   VGA and Radiologist Evaluations 

Ten images in total were processed for this study and these were presented to radiologists 

as ten cases.  Two of them are presented in Figure 46-47 and the rest of them are presented 

in APPENDIX A. The questions asked and the average of scores are given right after the 

corresponding figure.  

Individual radiologist scores as well as the average score are presented in Table 7. As 

observed in this table, BSRR-CG had highest scores from two radiologists (0.69 and 1.00). 

BSRR-CG and BSRR-UG took equal scores from one radiologist (0.46). BSRR-UG had 

highest score from one radiologist (1.00) and BSRR-CG followed it with the closest score 

(0.85). AD had highest score from one radiologist (2.00). 

The bin counts of each score given to each method for all 13 questions are given in Figure 

45. The preferences of individual radiologists vary. In general, counts of negative scores 

of the BSRR-UG and BSRR-CG methods were low. BF and WF generally received mixed 

scores. The perception of all the Bayesian methods was either neutral or positive in 

general.  

As observed (Table 7), the scores of AD was negative in general, except for one 

radiologist. The radiologist who favored AD most was observed to generally give good 

scores on images that had higher levels of speckle suppression. The other four radiologists 

commented that they preferred images that look similar to original and with sharpening of 

smaller details as much as possible, rather than images with high speckle suppression.  

Emphasis on granular coarsening is stated to have clinical importance by radiology 

experts. Granular coarsening is observed in breast phantom and thyroid images for the 

given images. BSRR-UG and WF was observed to perform best results for these cases.  

For questions related to sharpening of edges (sharpening of nodule contours, clarity of 

cyst, sharpness of subcutaneous tissue), BF and BSRR-CG was observed to yield highest 

scores. Heterogeneity is an important feature for gland images. BSRR-UG, BSRR-CG 

was observed to perform better than other methods in those cases.  
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Table 8: VGA results are tabulated for each method and each radiologist over 13 questions (in the range [-

2, 2]). Highest values are shown in bold face. The last column stands for the average scores. 

 

 

 

Figure 45: Bin counts for scores were obtained from radiology experts’ answers (presented above) for the 

evaluated methods, using VGA. The highest number of positive scores was for BSRR-CG. The opinion 

was mixed about AD and BF.  

 

 

Methods Rad. 1 Rad. 2 Rad. 3 Rad. 4 Rad. 5 Avg. 

Score 

AD -2.00 2.00 -1.69 -1.15 -1.00 -0.77 

BF -0.85 1.84 -0.76 -0.23 0.23 0.05 

WF -0.15 1.69 0.53 0.08 0.00 0.43 

BR-UG 0.08 1.46 0.23 0.38 0.39 0.51 

BR-CG -0.30 1.23 0.38 0.08 0.39 0.36 

BSRR-UG 
 

0.46 1.23 1.00 0.31 0.69 0.74 

BSRR-CG 0.46 1.15 0.85 0.69 1.00 0.83 
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Case 2 - Human Thyroid 

 

 

Figure 46: Restoration results of human thyroid image (HR image size: 440x440 pixels), using the 

parameters in Table-4 (a) Observed image; Restoration results of (b) AD; (c) BF; (d) WF; (e) BR-UG; 

(f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 

 

 

Case 2 - Question 1: 

 

Eng: How do you score the amount of increase in thyroid contour image quality? 

Tr: Tiroid konturu görüntü kalitesi ne ölçüde artmıştır? 

 

Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-0.8 0.4 0.8 1.2 0.4 0.6 1.2 
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Case 6 – Human Lymph Nodule 

 

 

Figure 47: Case 6 - Restoration results of human lymph nodule (volunteer with systemic lupus 

erythematosus), using the parameters in Table-4 (HR image size: 510x510 pixels) (a) Observed image; 

Restoration results of (b) AD; (c) BF; (d) WF; (e) BR-UG; (f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 

 

 

Case 6 - Question 1: 

 

Eng: How do you score the amount of improvement of sharpness of subcutaneous 

tissue?  

Tr: Cilt altı yağ dokusu keskinliği ne ölçüde iyileşmiştir? 

 

Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-1.0 0.2 0.0 0.8 0.2 0.6 1.6 
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Case 6 - Question 2: 

 

Eng: How do you score the amount of increase in sharpening of the nodule contour? 

Tr: Nodül kontur keskinliği ne ölçüde belirginleşmiştir?" 

 

Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-1.0 0.0 0.4 0.8 0.2 0.4 1.6 
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CHAPTER 4 

 

4. CONCLUSION 

4.1.    Summary of the Work 

In this thesis, ways to improve B-mode ultrasound image quality were sought. The effects 

of imaging system blur and spatial correlation were incorporated into the restoration 

model. Both the imaging system PSF and the autocorrelation matrix were measured 

experimentally. Bayesian approach was implemented for single-image restoration (BR-

UG, BR-CG) and multi-image super-resolution restoration (BSRR-UG, BSRR-CG). This 

way, statistics of ultrasound B-mode data were incorporated into the model. Using an 

imaging system model, synthetic phantom images were generated. These images were 

used for parameter optimization. To find the optimal regularization coefficient, various 

metrics such as NID, CNR and PSNR were evaluated.   

A brief speckle-tracking study was conducted placing and fixing the ultrasound probe on 

a precise 1D mechanical arm. Speckle decorrelation curve was formed for the imaging 

system. This curve was then used for checking the in-plane assumption of multiple images 

collected for super-resolution methods.  

Data was collected from tissue-mimicking resolution phantoms, breast phantom and 

samples from volunteers (with informed consent). Human data was collected from various 

superficial tissue, thyroid and other glands around neck and hand tendon. Tissue-

mimicking resolution phantom data was used to measure CNR for targets with various 

sizes and echogenicities.  

For comparative evaluation, common methods for image quality improvement (AD, BF 

and WF) were selected and implemented. The same procedure for parameter optimization 

was implemented for these methods. CNR values were compared with the proposed 

methods. Samples from tissue-mimicking breast phantom and superficial tissue images 

from volunteers were used for VGA.  

The proposed BSRR-CG method may have potential for clinical applicability. The 

findings of the study (results of objective evaluation and VGA) are presented in the 

Discussion Section, in detail, along with the possible clinical usage options. Then, in 

Conclusion and Future Work Section, a set of possible further studies related to this work 

are examined and discussed. 
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4.2.    Discussion 

Spatial correlation in ultrasound images was examined in a very limited number of studies 

in literature. In addition to that, it is noticed that the effect of target size and the change in 

objective evaluation metrics with varying target size were not comprehensively examined. 

In (Wang, 2009), in-plane multi-image super-resolution was conducted and CNR, MSE 

was measured solely on Field II images. In (Dai et. al., 2009), an intima region was 

segmented and CNR was measured. In Yang et.al (2007, 2009), cystic regions from tissue-

mimicking breast phantom was used for CNR measurement.  

In this study, CNR results acquired from a tissue-mimicking resolution phantom revealed 

that the proposed BSRR-CG method results in consistent improvements for varying target 

sizes. Most of the other methods yield successful results for a particular size (i.e. larger or 

smaller), and yield unsuccessful results for the rest. This inconsistency is a drawback for 

clinical applications since the target size varies considerably.  

In the works of Parker (2012), Parker and Chen, (2016, 2017), an increase in contrast was 

emphasized, however, the increase of variance of noise was not examined. As the amount 

of deconvolution is increased, the increase in noise variance is inevitable. Therefore, some 

regularization term has to be introduced, and its coefficient is to be selected carefully 

(considering this trade-off between sharpening of the edges, contrast enhancement and 

increase in noise variance, due to high frequency emphasis of deconvolution operation). 

This is also demonstrated in Figure 35. Using a ML estimator, the edges can be recovered 

very effectively, yet the noise gets emphasized. Speckle shrunk in high amounts; however, 

it became spiky and its variance was increased. Among similar studies in literature, a 

detailed parameter selection scheme similar to ours was not mentioned in such detail. 

Another contribution of this study was the evaluations done by the radiology experts using 

VGA. There are a very limited number studies that examine expert response to the restored 

/ filtered images. Clinically relevant questions were used for evaluations and the restored 

images were evaluated for a variety of clinical cases. 

Both objective evaluations and VGA showed that single-image Bayesian restoration 

methods (BR-CG and BR-UG) did not result in noticeable improvements. On the other 

hand, involving spatial correlation in multi-image super-resolution resulted in 

considerable improvements for all metrics. Both BSRR-UG and BSRR-CG resulted in 

contrast enhancement. As mentioned in the above paragraphs, the noise variance is usually 

increased when the deconvolution operation is conducted. In case of BSRR-CG, the noise 

variance increased less than BSRR-UG. This results in higher CNR results. The 

radiologists’ evaluations (VGA results) showed that this trait of BSRR-CG was 

noticeable.  

BR-CG and BSRR-CG methods were implemented using a mid-range GPU (NVIDIA 

GTX 1050). As stated in Section 2.4, using a higher capacity GPU, full parallelisation can 
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be possible, reducing the estimated calculation time to under two minutes (16 times 

faster).   

4.3.    Conclusion and Future Work 

In this study, the improvement of 2D B-mode ultrasound image quality was evaluated 

from many aspects, in a Bayesian framework. A meticulous literature survey on 

ultrasound deconvolution, multi-image super-resolution and spatial correlation was 

conducted. It should be considered that the methods proposed were applied as post-

processing operations. A further improvement would be to apply the methods in real-time, 

as a part of image acquisition process. 

Another improvement would be achieved by using IQ data instead of B-Mode data (which 

is acquired after envelope detection, log-compression and scan conversion operations). IQ 

data would fit the proposed linear model better and the underlying physics in image 

formation process. 

 

The method proposed here can be extended to other image settings and to deeper tissue 

by using a depth-dependent PSF. One such method is to apply depth dependent 

deconvolution, such as the one proposed by Adam and Michailovich, (2001). The methods 

proposed can also be extended to other imaging systems and probes. This can be done by 

updating the PSF and correlation matrix. The methods described in Section 2.4 can be 

implemented for this purpose or other methods for measuring PSF and autocorrelation 

may be used.  The results of an earlier study (Şener et.al., 2016) showed that an 

approximately selected PSF and correlation matrix can result in considerable 

improvements in image restoration. 

 

All the methods mentioned can also be extended to 3D by replacing images with volumes. 

Only requirement to extend the models to 3D is to consider the increased computing 

demand. 3D data has many advantages over 2D cross-sections. However, it is quite costly 

and low resolution, when acquired using 2D transducer arrays. Acquiring volume data 

from freehand 2D cross sections and 1D probes using a tracking sensor or by 

implementing speckle tracking scheme would be a strong alternative to 2D arrays, since 

2D arrays available in current technology are low resolution. However, it is quite 

challenging to properly reconstruct the exact volume because of the drift due to 

measurement errors. Moreover, 3D registration of two reconstructed volumes is another 

interesting yet difficult problem to be solved. 

 

The proposed BSRR-CG method yielded a consistent improvement for various targets and 

tissue, while other methods that were involved in the comparative study lacked such 

consistency. This consistency is considered to be a useful property for real-life cases. 

Further investigation is essential to determine the extent of the contribution of this method 

for clinical applications more accurately. The number of experts involved in the study 

should be larger.  
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Acquisition of multiple images from the same imaging plane is a challenging problem due 

to tissue motion. Irregular force on probe, tissue movement due to pulsation of large 

arteries and cardiac related input, motion due to breathing, and its effects on image should 

all be examined in detail. In this work, very small movement of probe was forced while 

collecting freehand data. Non-rigid image registration between each frame was 

implemented to compensate for motion. More effective methods such as respiratory or 

ECG gating can be coupled with the current scheme for a better compensation 

performance. 
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APPENDICES 

 

APPENDIX A 

 

QUESTIONS & RADIOLOGIST SCORES 

 

Case 1 - Breast Phantom Hyperechoic Target 

 

 

Figure 48: Case 1 - Restoration results of breast phantom hyperechoic target, using the parameters in 

Table-4 (HR image size: 400x400 pixels) (a) Observed image; Restoration results of (b) AD; (c) BF; 

(d) WF; (e) BR-UG; (f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 
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Case 1 - Question 1 

 

Eng: How do you score the amount of improvement in granular coarsening?  

Tr: Granüler kabalaşma ne ölçüde belirginleşmiştir?   

 

Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-0.8 -0.4 0.8 0.4 0.8 1.4 1.0 

 

 

 

 

Case 1 - Question 2: 

 

Eng: How do you score the amount of increase in sharpening of the nodule contour? 

Tr: Nodül kontur keskinliği ne ölçüde belirginleşmiştir?" 

 

Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

0.2 0.6 0.0 -0.4 0.2 0.6 -0.2 
 

 

 

 

Case 2 - Human Thyroid 

 

This case is presented in section 3.3. 
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Case 3 – Human Thyroid 

 

 

Figure 49: Case 3 - Restoration results of human thyroid image, using the parameters in Table-4 (HR 

image size: 400x400 pixels) (a) Observed image; Restoration results of (b) AD; (c) BF; (d) WF; (e) 

BR-UG; (f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 

 

Case 3 - Question 1: 

 

Eng: How do you score the amount of improvement in granular coarsening?  

Tr: Granüler kabalaşma ne ölçüde belirginleşmiştir?   

 

Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-1.2 -1.2 0.6 0.4 0.4 1.2 0.6 

 

 

 



92 

 

 

 

Case 4 – Breast Phantom Hypoechoic Target 

 

 

Figure 50: Case 4 - Restoration results of breast phantom hyperechoic target, using the parameters in 

Table-4 (HR image size: 400x400 pixels) (a) Observed image; Restoration results of (b) AD; (c) BF; 

(d) WF; (e) BR-UG; (f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 

 

Case 4 - Question 1: 

 

Eng: How do you score the amount of improvement of the clarity of the cyst?  

Tr: Kist ne ölçüde belirginleşmiştir?  

 

Average Scores: 

 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-0.4 0.6 0.6 0.0 0.2 0.2 0.8 
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Case 5 – Breast Phantom Microcalcifications 

 

 

Figure 51: Case 5 - Restoration results of breast phantom microcalcification, using the parameters in 

Table-4 (HR image size: 400x400 pixels) (a) Observed image; Restoration results of (b) AD; (c) BF; 

(d) WF; (e) BR-UG; (f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 

 

Case 5 - Question 1: 

 

Eng: How do you score the amount of improvement in observability of the 

microcalcifications?  

Tr: Mikrokalsifikasyonların gözlemlenebilirliği ne kadar artmıştır? 

Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

0.0 0.4 0.8 0.4 0.2 1.2 0.8 
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Case 6 – Human Lymph Nodule 

 

This case is presented in section 3.3. 

 

 

 

Case 7 – Human Submandibular Gland 

 

 

Figure 52: Case 7 - Restoration results of human submandibular gland (volunteer with systemic lupus 

erythematosus), using the parameters in Table-4 (HR image size: 510x510 pixels)  (a) Observed image; 

Restoration results of (b) AD; (c) BF; (d) WF; (e) BR-UG; (f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 

Case 7 - Question 1: 

 

Eng: How do you score the amount of increase in observability of heterogeneity in 

submandibular gland? 

Tr: Submandibular bezdeki heterojenite gözlemlenebilirliği ne kadar artmıştır? 
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Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-1.2 -0.4 0.0 1.2 0.8 0.8 1.2 

 

 

 

 

 

 Case 8 – Human Parotis Gland 

 

 

Figure 53: Case 8 – Restoration results of human parotis gland (volunteer with systemic lupus 

erythematosus), using the parameters in Table-4 (HR image size: 400x400 pixels) (a) Observed image; 

Restoration results of (b) AD; (c) BF; (d) WF; € BR-UG; (f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 
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Case 8 – Question 1: 

 

Eng: How do you score the amount of increase in observability of heterogeneity in 

parotis gland? 

Tr: Parotis bezindeki heterojenite gözlemlenebilirliği ne kadar artmıştır? 

 

Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-1.2 -0.2 -0.4 0.6 0.6 1.0 0.8 

 

 

 

 

  Case 9 – Human Hand Tendon 

 

 

Figure 54: Case 9 - Restoration results of human healthy human tendon (hand), using the parameters in 

Table-4 (HR image size: 400x400 pixels) (a) Observed image; Restoration results of (b) AD; (c) BF; 

(d) WF; (e) BR-UG; (f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 
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Case 9 – Question 1: 

 

Eng: How do you score the amount of increase clarity of the tendon peripheral tissue 

transition? 

Tr: Tendon çevre doku geçişi ne ölçüde belirginleşmiştir? 

 

Average Scores: 

 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-0.8 0.4 0.8 0.2 0.2 1.2 0.4 

 

 

Case 9 – Question 2: 

 

Eng: How do you score the amount of increase in homogeneity of the tendon? 

Tr: Tendon homojenitesi ne ölçüde artmıştır? 

 

Average Scores: 

 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-0.8 0.2 0.0 0.4 0.2 -0.2 0.0 
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Case 10 – Human Thyroid 

 

 

 

Figure 55: Case 10 - Restoration results of human thyroid image, using the parameters in Table-4 (HR 

image size: 400x400 pixels) (a) Observed image; Restoration results of (b) AD; (c) BF; (d) WF; (e) 

BR-UG; (f) BR-CG; (g) BSRR-UG; (h) BSRR-CG. 

 

Case 10 – Question 1: 

 

Eng: How do you score the amount of improvement in granular coarsening?  

Tr: Granüler kabalaşma ne ölçüde belirginleşmiştir?   

 

Average Scores: 

AD BF WF BR-UG BR-CG BSRR-

UG 

BSRR-

CG 

-1.0 0.0 1.2 0.6 0.2 0.6 1.0 
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