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ABSTRACT 

 
TESTING NATURAL SELECTION ON POLYGENIC TRAIT-ASSOCIATED 

ALLELES IN ANATOLIA USING NEOLITHIC AND PRESENT-DAY HUMAN 
GENOMES  

 

Fer, Evrim 
MSc., Department of Bioinformatics 

Supervisor: Assoc. Prof. Dr. Mehmet Somel 
 

July 2019, 63 pages 
The Neolithic transition, which started approximately 10,000 year ago in west Eurasia and 
introduced sedentary life style and food production, led to major shifts in the human diet. 
Previous studies have reported strong selection signals on genes related to processing of 
plant-based diets (Buckley et al., 2017; Harris et al., 2019) or the consumption of dairy 
products (Schlebusch et al., 2013). With the advent of archeogenomics studies, genetic 
signatures of such adaptations have also been supported using DNA data from ancient 
populations (Mathieson et al., 2015). In this study, polygenic adaptations in Anatolia after 
the Neolithic transition were investigated by comparing Neolithic and modern-day 
genome sequence data. First, we chose 40 mainly polygenic traits previously subject to 
selection studies. For 6651 single nucleotide polymorphisms (SNPs) associated with these 
traits, we compared the genetic distance between Neolithic Anatolian (n=36) and present-
day Anatolian (n=16) individuals, measured using the FST statistic, with SNPs in 
evolutionary neutral regions. Then, frequency changes of alleles that elevating phenotypes 
were studied, to test for a common direction of allele-frequency change affecting these 
traits. Finally, a population branch statistic (PBS) approach was applied to detect 
adaptation signals specific to the modern-day Anatolia in comparison to Neolithic 
Anatolia and an outgroup population. We found that the frequency of alleles related to 
GWAS traits broadly linked to lipid metabolism to be more differentiated between 
Neolithic and present-day Anatolia, than neutrally expected. Directionality analyses also 
suggested that such traits might have been driven by selection. Consistently, the genes 
showing the highest differentiation along the modern Anatolia branch in the PBS analysis 
were frequently associated with lipid metabolism. Our results imply that lipid metabolism-
related traits may have been subject to selective pressures in the last 10,000 years. 
 
Keywords: Ancient DNA, Neolithic Transition, Polygenic Adaptation, FST, Population 
Branch Statistic 
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ÖZ 

 
ANADOLU’DA NEOLİTİK VE GÜNÜMÜZ İNSAN GENOMLARININ 
KARŞILAŞTIRILMASIYLA POLİGENİK ÖZELLİKLERLE İLİŞKİLİ 

ALELLER ÜZERİNDE DOĞAL SEÇİLİM TESPİTİ 
 

Fer, Evrim 
Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Doç. Dr. Mehmet Somel 
 

Temmuz 2019, 63 sayfa 
Yaklaşık 10,000 yıl önce batı Avrasya’da başlayan Neolitik Geçiş de yerleşik yaşam 
şeklini ve insan beslenmesindeki büyük değişimlerden birini insan hayatına katmıştır. 
Birçok çalışmada, modern popülasyonlar üzerinden bitkisel beslenmeye dayalı (Buckley 
vd., 2017; Harris vd., 2019), hayvan evcilleştirmesi sonucunda süt ürünlerinin kullanımına 
dayalı (Schlebusch vd., 2013) genlerde adaptasyon tespit edilmiştir. Gelişen 
arkeogenomik çalışmaları sayesinde, bu adaptasyonlar antik DNA analizleriyle 
desteklenmektedir (Mathieson vd., 2015). Bu çalışmada, Neolitik sonrası Anadolu’daki 
poligenik adaptasyonlar, Neolitik ve modern DNA karşılaştırmasıyla incelenmiştir. İlk 
olarak, beslenme, bağışıklık ve başka kompleks özellikleri içeren 40 poligenik özellik 
belirlenmiştir. Bu özelliklerle ilişkili 6651 tek nükleotit polimorfizmi (TNP) için Neolitik 
(n=36) ve günümüz (n=16) Anadolu bireylerinin arasında genetik uzaklıklar FST istatistiği 
kullanılarak hesaplanmış ve genomda seçilimden direkt etkilenmeyen bölgelerle 
karşılaştırılmıştır. Daha sonra, bu özelliklere artırıcı etkisi bulunan risk alelleri belirlenmiş 
ve frekans değişimleri incelenerek ortak bir doğrultunun varlığına bakılmıştır. Son olarak, 
Neolitik ve modern Anadolu ve bir dış popülasyon kullanılarak popülasyon dal istatistiği 
yöntemi ile genom boyu seçilim analizi yapılmış ve modern Anadolu dalına özgü seçilim 
sinyalleri tespit edilmeye çalışılmıştır. Sonuç olarak, yağ metabolizmasıyla ilişkili alel 
frekanslarının nötral bölgelere göre önemli ölçüde değiştiği görülmüş ve doğrultu analizi 
de bu özelliklerde seçilime bağlı bir değişim olabileceğini göstermiştir. Ayrıca genom-
boyu analizinde modern Anadolu dalında yüksek farklılık gösteren bölgelerin lipid 
metabolizmasıyla ilgili olabileceği bulunmuştur. 
 
Anahtar Sözcükler: Antik DNA, Neolitik Geçiş, Poligenik Adaptasyon, FST, Popülasyon 
Dal İstatistiği 
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CHAPTER 1 

CHAPTER 

1.INTRODUCTION 

After the out-of-Africa dispersal starting about 60-100,000 years ago 
(Demenocal & Stringer, 2016), human populations started to colonize various 
environments in the new continents they encountered, from cold climates to 
deserts or low altitudes to high mountains. Despite of all the difficulties that they 
encountered, humans could adapt and occupied even extreme environments 
(Jeong & Di Rienzo, 2014). In addition to changes in the physical environment, 
cultural and dietary transitions have also occurred in time. In human history, 
there are two major diet-shifts, which are the farming diets first starting in the 
Neolithic Period (~10,500 years ago before present in west Eurasia) and 
processed diets starting with industrialization approximately around 1850 CE 
(Adler et al., 2013). During the Neolithic, humans adapted to farming, stock 
breeding and sedentary life, which are thought to have led to diverse 
physiological and morphological changes, including vitamin deficiencies and 
changes in tooth and facial bone morphologies, as well as the introduction of 
new pathogens due to close intimacy to animals and the easy spread of pathogens 
in complex large communities (Armelagos, Goodman, & Jacobs, 1991; Larsen, 
2006; Latham, 2013).  

In the last 15 years, we saw major developments in genomics technologies that 
today enable the generation and analysis of high-throughput data from many 
individuals at the same time. This advanced technology is used in a wide range 
of fields, including disease diagnosis (Lefterova, Suarez, Banaei, & Pinsky, 
2015), for the detection of variant association between phenotypic traits and 
diseases (Luo, Boerwinkle, & Xiong, 2011), or in population genetics to explore 
indirect signatures of evolutionary mechanisms (Fumagalli, Vieira, Linderoth, 
& Nielsen, 2014). Using high-throughput sequences of modern populations and 
statistical tests, previous studies have been compiling a comprehensive list of 
selection signatures involving human adaptive traits. For instance, there are 
notable studies identifying signatures of recent selection, such as lactose 
tolerance in adulthood in Europe that was likely a response to the widespread 
consumption of milk (Schlebusch et al., 2013); convergent evolution of light 
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skin pigmentation in Europeans (Wilde et al., 2014) and East Asians (Deng & 
Xu, 2018); high altitude adaptation in Andean (Bigham et al., 2010), Ethiopian 
(Alkorta-Aranburu et al., 2012) and Tibetian (Xu et al., 2011; Yi et al., 2010) 
highlanders.  

Ancient DNA, meanwhile, adds another perspective to human population 
genetic studies, by revealing demographic histories of past populations, 
admixture of modern human populations and archaic hominins, describing 
relatedness between the individuals found at the same excavation sites, as well 
as shedding light on complex selective processes (Slatkin & Racimo, 2016). 
With the archeogenomics revolution, adaptations to new conditions can now be 
detected in various populations using ancient DNA.  For instance, the genotypes 
of derived alleles for light skin pigmentation and lactose persistence were 
observed in ancient European populations and an increase in their frequencies 
was shown by comparison of pre- and post-Neolithic periods' populations 
(Allentoft et al., 2015; Gamba et al., 2014; Mathieson et al., 2015; Olalde et al., 
2015). In addition, genome-wide selection scan analysis using ancient genomic 
data also revealed that alleles associated with fatty acid metabolism (Buckley et 
al., 2017; Harris et al., 2019; Mathieson et al., 2015; S. Mathieson & Mathieson, 
2018), immunity gene clusters including interleukin (Gelabert, Olalde, De-Dios, 
& Civit, 2017) and major histocompatibility complex (MHC) (Mathieson et al., 
2015), and vitamin D production (Mathieson et al., 2015) to be subject to 
positive selection. However, those studies mainly focused on West European or 
East Asian populations. Comprehensive selection analyses to detect adaptation 
and adaptive phenotypic changes are still missing for most world populations, 
including Anatolian (or generally, west Asian) populations. 

The main aim of this study was detection of adaptive phenotypic changes in 
Anatolia over the last ~10,000 years. Specifically, I aimed to investigate 
polygenic adaptation signatures in the genomes of Anatolian populations taking 
advantage of ancient DNA data. For this goal, variants associated with 40 
phenotypic traits were collected and their alleles determined in publicly available 
Neolithic Anatolian and modern Turkish individuals’ genomes. For these 
variants, the genetic distance between ancient and modern Anatolia was 
calculated using the FST statistic and significantly differentiated traits were 
determined in comparison to SNPs in neutral regions. Then, for each trait, the 
frequencies of alleles with an increasing effect on that trait were compared 
between ancient and modern samples to test if there is a common direction of 
frequency change for the alleles with the same effect. Finally, another FST-based 
method called the population branch statistic (PBS) was used to detect specific 
genes that might be have differentiated on the modern Anatolia branch, 
indicative of positive selection.   
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In Chapter 2, I first explain the mechanisms that change allele frequencies in 
populations. I go on to review current approaches for selection detection and 
provide examples from human genome analyses. Lastly, I discuss the usage of 
variant-trait associations estimated in genome-wide association studies 
(GWAS).  

In Chapter 3, the methodology of the present study is outlined starting from 
sample collection and trait-associated SNP collection, direction analysis of the 
alleles, and selection analysis using FST-based methods. 

In Chapter 4, I present my results while discussing their contribution to selection 
studies in Anatolia. The significantly changed traits according to both FST and 
directionality analysis results are mostly associated with lipid metabolism. PBS 
analysis also reveals that there is a selection signal on chromosome 12 where the 
genes associated with cholesterol are located.  

In Chapter 5, I discuss my results and how much they are consistent with the 
literature. The limitations and possible further analyses are also mentioned in 
this chapter.  
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CHAPTER 2 

 

2.LITERATURE REVIEW 

 

 

2.1. Main Mechanisms Driving Allele Frequency Changes   

Allele frequency is the quantity measuring how much an allele is common or 
rare in a population (Futuyma, 2013). In small-scale evolution processes, 
changes in allele frequencies within and between the populations are mainly 
caused by the three major evolutionary forces, which are genetic drift, gene flow 
and natural selection, where mutations are the source of new alleles (Andrews, 
2010). As a null hypothesis, the Hardy-Weinberg model describes how genotype 
frequencies should appear given allele frequencies, when the drivers of evolution 
do not act on populations (Bergstrom & Dugatkin, 2012). If the observed 
genotype frequencies violate the Hardy-Weinberg model and/or when allele 
frequencies are directly found to change over time, the problem becomes 
inferring which evolutionary forces may have contributed to this violation.  

Genetic drift. Neutral drift is one of these processes causing random 
fluctuations in allele frequencies in a population, representing a sampling effect 
and occurring independent of natural selection (Bergstrom & Dugatkin, 2012). 
As the allele frequencies fluctuate randomly, some alleles may be fixed (reach 
frequency 100%) and others lost (reach frequency 0%) over time, a process that 
leads to decrease in heterozygosity in the population (Bergstrom & Dugatkin, 
2012; Nielsen & Slatkin, 2013). Thus, the frequency of a new allele can increase 
or even become fixed in a population without natural selection or migration 
taking effect (Jobling, Hurles, & Tyler-Smith, 2004). As genetic drift occurs 
stochastically, allele frequency change will follow different paths in different 
populations. For example, imagine two sister populations, recently isolated, that 
both carry A and a alleles for a locus at some point. After certain number of 
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generations, the frequency of A allele may go to fixation in one population if the 
individuals with the A allele produce more offspring due to random factors 
independent of the allele itself and A fixes, while the individuals with the a allele 
reproduce more in the other population leading to fixation of the a allele in this 
latter population. As a result, these sister populations will genetically diverge 
from each other due to random allele frequency changes (Bergstrom & Dugatkin, 
2012; Nielsen & Slatkin, 2013). The magnitude of genetic drift varies according 
to population size (Jobling et al., 2004). In small populations, an allele can be 
fixed or lost very rapidly, while alleles may persist at similar frequencies for a 
long time in large populations as illustrated in Figure 2.1. 

Kimura’s neutral theory of molecular evolution (Kimura, 1983) proposes that 
majority of the genomic variation is shaped by genetic drift and positive 
selection is playing a minor role in molecular evolution and in shaping overall 
molecular diversity (Booker, Jackson, & Keightley, 2017; Nielsen & Slatkin, 
2013).  

Today, the neutral theory maintains a central role in molecular evolution 
research, and neutral models representing drift are the main null hypothesis in 
selection studies (Nielsen & Slatkin, 2013). According to this approach, if the 
observed data does not obey to neutral hypothesis, which can be tested using a 
number of statistical tests, only then can more complicated demographic 
processes (e.g. admixture) or natural selection be considered a plausible 
alternative (Booker et al., 2017; Nielsen & Slatkin, 2013; Vitti, Grossman, & 
Sabeti, 2013).  

Gene flow. New alleles can be introduced into a population by migration from 
another population carrying different allele frequencies. Gene flow only occurs 
when migrants reproduce and contribute to the gene pool of the new population 
(Jobling et al., 2004). Gene flow is capable of changing allele frequencies of sub-
populations leading to a loss of differentiation among populations due to 
increased genomic similarity (Bergstrom & Dugatkin, 2012; Jobling et al., 2004; 
Nielsen & Slatkin, 2013).  

Notably, genetic drift and gene flow are processes that affect all loci in the 
genome in roughly the same way, whereas natural selection will affect different 
loci more or less independently, depending on their fitness effect (Futuyma, 
2013).  
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Figure 2.1. The result of simulations showing neutral evolution at biallelic loci 
in populations of different population sizes, with allele frequencies each starting 
from 0.5 and evolving under the effect of genetic drift.  

Natural selection. In natural selection models, certain genotypes that have 
higher or lower chances of survival and reproduction, or fitness, are more 
frequently or less frequently passed to the next generations and increase or 
decrease in the population over time (Vitti et al., 2013). Mutations that create 
alleles with harmful effects on the organism and reduce fitness are subject to 
negative selection, also called as purifying selection (Thiltgen, dos Reis, & 
Goldstein, 2017). On the other hand, alleles that increase fitness undergo positive 
selection (Vitti et al., 2013). Thus, the frequency of an advantageous allele is 
expected to eventually go to fixation in a population due to positive directional 
selection, all else being equal (Vitti et al., 2013). These types of natural selection 
can act on 'de novo' as well as standing variants, and are expected to decrease 
variation in the population over time due to selective sweep effect which is the 
genetic hitchhiking of genomic background near to a strongly selected allele 
(Nielsen & Slatkin, 2013).  

A third general type of natural selection is called balancing selection, which 
differs from positive and negative selection by maintaining both alleles in the 
population in the long term. In one such model, the heterozygote genotype has 
higher fitness than both homozygotes, a process called over-dominant selection, 
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causing both alleles to remain in the population (Jobling et al., 2004). Another 
type of balancing selection that preserves variation is negative frequency-
dependent selection, which arises when the rare genotype has higher fitness. 
Through frequency dependent selection, an intermediate allele frequency will be 
maintained in the long term, achieved when fitness becomes high at low 
genotype frequencies, and vice versa (Vitti et al., 2013).  

One of main interests of molecular population genetics and evolutionary biology 
is to reveal which type of evolutionary mechanism acts on the genome and 
results with allele frequency change (Hancock & Di Rienzo, 2008). Numerous 
statistical methods have been developed to differentiate those three mechanisms 
from each other (Thiltgen et al., 2017). Most of these are specialized in detecting 
positive selection signatures, since these are the basis and evidence of 
adaptation; moreover positive directional selection increases intra and 
interspecific population variability when the populations are adapted to different 
selection regimes (Nielsen, 2005).  

2.2. Widely Used Methods to Detect Selection in Genomic Data 

2.2.1. Detection of selection in macroevolutionary events 
 
Approaches for detecting selection from genomic data can be divided into two 
modes, selection at the macroevolutionary scale and at the microevolutionary 
scale. Macroevolutionary changes are investigated between species and higher 
levels of taxonomic classification, rather than within species (Vitti et al., 2013). 
The methods developed for studying species divergence include Ka/Ks ratio test 
for the genic regions (Hurst, 2002), the McDonald-Kreitman (MK) test 
(McDonald & Kreitman, 1991) and the Hudson-Kreitman-Agaudé (HKA) test 
(Hudson, Kreitman, & Aguadé, 1987).  
 
The Ka/Ks ratio, also known as the dN/dS ratio, compares the nonsynonymous 
substitution rate (dN, i.e. substitutions that code for a different amino acid) and 
synonymous substitution rate (dS, i.e. substitutions that code for the same amino 
acid) from aligned genomic regions of different species (Nielsen & Slatkin, 
2013; Vitti et al., 2013a). Note that synonymous substitutions here are assumed 
to be neutrally evolving. Under neutral conditions, where nonsynonymous 
substitutions would also be neutrally evolving, this ratio is supposed to be equal 
to 1 (dN/dS =1) while natural selection violates this expectation (Kryazhimskiy & 
Plotkin, 2008). A dN/dS ratio greater than 1 (dN/dS >1) means that for the peptide 
in question, the nonsynonymous substitution rate was greater than the 
synonymous rate, even though the former nonsynonymous substitutions change 
the amino acid sequence and protein functionality. An interpretation of this 
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pattern is that such new nonsynonymous alleles may have been subject to 
positive selection due to their advantageous effect and fixed faster than neutral 
synonymous substitutions (Hurst, 2002). In contrast, a ratio lower than 1 (dN/dS 
<1) indicates negative selection, since protein changing mutations are less likely 
to remain in the genome and the protein sequence is kept as it is (Hurst, 2002). 
Unfortunately, this method is only able to detect selection on coding regions and 
recurrent selection events on a locus; it has no power to detect selection on a 
single mutation or in a noncoding region (Nielsen & Slatkin, 2013).  

Another method is the McDonald-Kreitman (MK) test, which calculates the 
same nonsynonymous rate to synonymous rate ratio for both between and within 
species differences (Vitti et al., 2013). Under neutrality, the ratio of polymorphic 
and fixed nonsynonymous sites are expected to be equal to that ratio at 
synonymous sites (Egea, Casillas, & Barbadilla, 2008; Nielsen & Slatkin, 2013). 
If the ratio at fixed sites exceeds the ratio at polymorphic sites, this shows a 
positive selection signal, while the opposite pattern is evidence for negative 
selection (Egea et al., 2008; Nielsen & Slatkin, 2013). For example, Le Corre et 
al. (2002) compared the fixed and polymorphic sites for FRI gene that is 
responsible for flowering time between Arabidopsis thaliana and Arabidopsis 
lyrata species and showed that first exon of this gene has high heterogeneity 
between the species and might be under a functional selection (Le Corre, Roux, 
& Reboud, 2002). One potential disadvantage of MK test might be that the 
number of segregating (i.e. polymorphic) sites depends on the sample size. For 
example, a slightly deleterious allele can be counted as fixed in a small sample 
while it contributes as a polymorphism in a large sample (Walsh & Lynch, 
2018). 

Similar to the MK test, the HKA test also compares polymorphic and fixed 
positions across two loci for both intra and interspecies divergence (Vitti et al., 
2013). Unlike the MK test, calculation of the expected number of fixed and 
segregating sites depends on the effective population size, sample size and 
divergence time (Nielsen & Slatkin, 2013). As an example of the HKA method, 
Nachman and Crowell (2000) tested the statistical significance of the genetic 
variation in two introns of the Duchenne muscular dystrophy (Dmd) gene in 
human populations in comparison to chimpanzee. Using the HKA test, they 
showed that there is a decrease in variability around intron 7 that could be due 
to a selective sweep (Nachman & Crowell, 2000). 

 
2.2.2. Detection of selection in microevolutionary events 
 
Selection analyses at microevolutionary scales mainly focus on variations within 
populations. Since a beneficial allele may reach high frequencies and even 
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fixation under positive selection in a short time, the methods to detect selection 
mostly investigate frequency changes of alleles but can also be linkage 
disequilibrium-based (Vitti et al., 2013). Some methods use the site frequency 
spectrum (SFS) (Nielsen, 2005) or specific statistics such as Tajima’s D (Tajima, 
1989), FST (Weir & Cockerham, 1984; Wright, 1965), and the population branch 
statistic (Yi et al., 2010); these statistics rely on the distribution of the allele 
frequencies in the population (Vitti et al., 2013). SFS-based methods, such as 
composite likelihood (Zhu & Bustamante, 2005), use information about allele 
frequencies across the genome. Under neutral conditions, alleles that segregate 
at high frequencies are rare, compared to alleles that segregate at low 
frequencies, and thus SFS profiles are usually right-tailed (Figure 2.2). However, 
if a locus is under purifying selection, alleles at this locus will segregate at lower 
frequencies than neutral, and SFS will be skewed to the left; a locus that has 
undergone directional selection will behave just the opposite, and advantageous 
alleles at such a locus will segregate at higher frequencies than neutral, and have 
a right-skewed SFS (Nielsen, 2005). This right-skewed SFS is seen more 
strongly when there is a selective sweep signal in the population. Figure 2.2 
shows the expected site frequency spectrum model under neutrality, negative 
and positive selection and selective sweep, using 10 individuals and different 
selection coefficients (Nielsen, 2005; Nielsen & Slatkin, 2013). According to 
this, there is an excess for both positive selection and selective sweep at high 
frequencies in comparison to neutrality, while no frequency is observed at high 
frequency sites under negative selection, since the deleterious mutations cannot 
segregate in the population (Nielsen & Slatkin, 2013). 

 

Figure 2.2. The expected site frequency spectrum of 20 chromosomes for 10 
diploid individuals under neutrality, negative selection, positive selection and 
selective sweep models. The figure was taken from Nielsen & Slatkin, (2013). 
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Tajima’s D is another method to test deviation of allele frequencies from 
neutrality. This method uses pairwise genome comparisons to calculate the 
average number of differences, called Tajima’s estimator (θT) and number of 
segregating sites called Watterson’s estimator (θW) (Nielsen & Slatkin, 2013; 
Tajima, 1989). Under neutrality, these two estimators should be equal to each 
other and Tajima’s D will be 0. However, θW will be higher than θT when a locus 
undergoes a selective sweep or negative selection, since allele frequencies will 
be shifted toward lower values (with more singleton sites) and there will be few 
pairwise differences for a certain number of segregating sites (Korneliussen, 
Moltke, Albrechtsen, & Nielsen, 2013; Nielsen & Slatkin, 2013). On the other 
hand, negative Tajima’s D values can be an indication of population expansion 
since the number of singletons will be increase with the increasing population 
size (Vitti et al., 2013), although this would be expected to affect the whole 
genome and not be locus-specific. 

Evolutionary mechanisms that change allele frequencies may lead to genetic 
differentiation among populations. To measure such differentiation, Wright’s 
FST (Wright, 1965) statistic was initially introduced, but later, different 
estimators such as Weir-Cockerham’s FST  (Weir & Cockerham, 1984), Nei’s FST  
(Nei, 1986), Hudson’s FST (Hudson et al., 1987) were developed. Wright and 
Weir-Cockerham FST  are defined as ratio of the probability of heterozygosity of 
randomly selected gametes from one population to the probability for the total 
population, but total population is assumed as combination of two populations 
in Wright’s FST, while the total population is referred to as the most recent 
common ancestral population in Weir-Cockerham’s FST definition, thus it 
measures the ratio the variance between two populations to the variance in the 
ancestral population (Bhatia, Patterson, Sankararaman, & Price, 2013). 

The FST  score ranges between 0 and 1, where lower values indicate population 
similarity and higher values indicate differentiation. Sometimes negative FST 
values can be calculated but this occurs due to an overestimation of FST when 
the populations are not differentiated or weakly differentiated (Willing, Dreyer, 
& Van Oosterhout, 2012). In addition, FST can be found very high due to 
overestimation again when the sample sizes of the populations are very different 
(Bhatia et al., 2013). In selection analysis, the values in the upper tail of the FST 
distribution are sometimes considered as putatively under selection (Berg & 
Coop, 2014; Bhatia et al., 2013). To distinguish gene flow, genetic drift and 
selection for causing high population differentiation, the regions with high FST 
values are compared with neutral regions since gene flow and genetic drift affect 
whole genome equally (Futuyma, 2013; Nielsen & Slatkin, 2013). 

For example, FST estimates calculated between modern populations using whole 
genomes are found to average 0.111 for European and East Asian populations 
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and 0.156 for European and West African populations (Bhatia et al., 2013), as it 
is known that human populations differentiated after the out-of-Africa process 
mainly by genetic drift (López, van Dorp, & Hellenthal, 2015). However, FST 
estimates calculated specific to a locus may be higher between these populations. 
For instance Bersaglieri et al., (2004) detected high FST  scores around the LCT 
gene in comparison to genome-wide markers in European populations as a 
possible selection signal. Different evolutionary forces may shape FST 
distributions, such that FST  differences may arise between genic and non-genic 
regions due to selection or FST may vary due to complex demographic history 
(Bhatia et al., 2013). Weir-Cockerham’s and Nei’s FST estimators are widely 
used (Bhatia et al., 2013) but in the present study Weir-Cockerham’s estimator 
is used to calculate FST estimates of single SNPs, although there is a possibility 
that it may give high FST scores when the sample sizes of the populations are 
very different (Bhatia et al., 2013; Weir & Cockerham, 1984). Unlike Weir-
Cockerham’s FST, Nei’s FST is not sensitive to sample size but gives 
overestimated values (Bhatia et al., 2013).  

Pairwise FST can be used to measure which regions of the genome are most 
differentiated between two populations, and thus may be affected by natural 
selection; however, pairwise FST analysis does not reveal whether each 
population has diverged equally since their last common ancestor, or one 
population has diverged more, which could be expected under directional 
selection (Yi et al., 2010). To detect the specific branch that may have diverged 
more, a method based on FST, but including a third distant population, or 
outgroup, can be used. This method is called the population branch statistic 
(PBS) and is widely used in selection analysis (Fumagalli et al., 2015; Harris et 
al., 2019; Schlebusch et al., 2013; Yi et al., 2010). It was first used in the study 
by Yi et al. (2010) for detection of high altitude adaption-related alleles in the 
Tibetan population. To find which genes are responsible for this adaptation, the 
authors compared the Tibetan population with a close Han Chinese population 
and a distant Danish population using exome sequencing of 50 genes. Using PBS 
analysis they discovered the EPAS1 gene that appears to have differentiated 
specifically in the Tibetan population, indicating positive selection, and has a 
significant role in hypoxia response (Yi et al., 2010). Again using PBS, another 
study detected selection on the ancestral FADS haplotype in Native Americans, 
and the selected allele was interpreted as causing inefficient fatty acid 
metabolism compared to other human populations (Harris et al., 2019). Since 
this method can detect selection successfully, it was used in this study to identify 
regions under selection on the modern Anatolia branch.  

Linkage-based methods detect selection and recent selective sweep events using 
haplotype information (Vitti et al., 2013). Extended haplotype homozygosity 
(EHH) is one of these method that detects stretches of homozygosity around the 
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putatively selected allele since neighboring regions are affected by evolutionary 
forces due to linkage disequilibrium (Vitti et al., 2013; Zhong, Lange, Papp, & 
Fan, 2010). Similarly, cross-population extended haplotype homozygosity (XP-
EHH) compares populations for the extent of haplotype lengths and takes into 
account variation in recombination rates between populations in detecting fixed 
sweeps (Vitti et al., 2013). Another method called integrated haplotype score 
(iHS) measures the amount of EHH for an ancestral allele relative to derived 
allele on a locus, within the same population (Voight, Kudaravalli, Wen, & 
Pritchard, 2006). Among them iHS has been suggested to be the strongest 
method to detect incomplete selective sweeps (Vitti et al., 2013). 

2.3. Selection Studies Using Ancient DNA 

Increasing numbers of high quality genomic datasets being published enables 
studying selection on various organisms. Using the methods explained in the 
previous section, many recent selection events can be effectively discovered. On 
the other hand, even though it is often hard to isolate and sequence DNA from 
highly degraded ancient organic material, massively parallel sequencing 
technology has allowed ancient genome studies to be successfully performed 
(Marciniak & Perry, 2017).  

Many ancient genome studies focus on the demographic history of populations 
and their migrations. In addition, the combination of ancient and modern genome 
sequences is significantly helping with the detection and timing of human 
adaptations (Jeong & Di Rienzo, 2014). For example, signals of adaptation and 
convergent evolution of light skin pigmentation in European and East Asian 
populations had been long examined in several studies using modern genetic 
data (Lamason, 2005; Makova & Norton, 2005; Rana et al., 1999), but the 
origins of these mutations were difficult to pinpoint. Recently, using ancient 
genomics, an increase in the frequency of derived alleles for light skin 
pigmentation were shown in ancient European individuals, some starting during 
the Hunter-gatherer period while others starting during Early Neolithic 
(Mathieson et al., 2015). To track change in allele frequencies over time, some 
studies have genotyped ancient individuals from several time periods for the 
same variant or genomic region. For instance, (Gelabert et al., (2017) used 224 
ancient Eurasian individuals from eight different periods, ranging from Upper 
Palaeolithic to the Post-Roman era, and detected genetic differences and 
selection signals on IL-10 and ATP2B4 genes that are related to immunity and 
resistance to malaria. These investigations based on different time series have 
also revealed the effect of dietary-shifts and life-style transitions, such as the 
Neolithic transition that introduced food production and thus reliance on specific 
plant or animal products. For example, adaptation to lactose tolerance at some 
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point after the start of milk consumption in European populations was 
discovered in modern populations by Bersaglieri et al., (2004). Bersaglieri et al. 
(2004), used 28,440 markers around LCT gene and compared FST of these 
markers with the genome-wide FST distribution using modern populations 
including European Americans, African Americans, East Asians, Scandinavians 
and other Europeans (Bersaglieri et al., 2004). They found high frequency 
differences around the LCT gene among populations and interpreted this as 
evidence of selection on this loci in Europe. Meanwhile, they estimated this 
selection should have occurred within the last 10,000 years. Recently, using 
genome data from 230 ancient Eurasian individuals, Mathieson et al. (2015) 
showed that the strong increase in Central / North Europe in the frequency of the 
derived allele for lactase persistence, rs4988235, on the LCT gene, occurred only 
within the last 4,000 years. In another example of possible diet-related selection, 
derived haplotypes on FADS1 and FADS2 genes, related to more efficient 
desaturase enzymes, and that had been previously reported to show signatures 
of selection in various populations including Europeans, Asians and Africans 
(Harris et al., 2019), were compared between the genomes of Bronze Age and 
present-day Europeans, which supported the view that this gene was under 
selection in Europe (Buckley et al., 2017). At the same time, Mathieson and 
Mathieson showed that selection on the FADS1/FADS2 genes is more recent 
than the dairy-related adaptations on the LCT/MCM6 locus and selection on 
FADS1/FADS2 may have occurred after the late Bronze Age rather than directly 
after the Neolithic Period (Mathieson & Mathieson, 2018). 

2.4. Use of SNP-Trait Associations from Genome-Wide Association 
Studies in Selection Scans 

When a phenotype is determined by only a single gene or locus it is called a 
Mendelian trait (Jeong & Di Rienzo, 2014). However, many human traits are 
influenced by large number of loci, called polygenic traits (Berg & Coop, 2014). 
These include important physiological characters, such as metabolism or life-
history traits, and some may have been shaped by directional selection. In recent 
decades, large numbers of associations between marker loci and complex traits, 
which are controlled by many different genes and the environment, have been 
discovered using genome-wide association studies (GWAS) (Buniello et al., 
2019; Welter et al., 2014). Therefore, GWAS are an important source for the 
population and quantitative geneticist to study evolution and genetic diversity in 
the short and long time scales at the phenotypic level (Berg & Coop, 2014). 
However, studying locus-based selection of polygenic traits carries the 
disadvantage that, because many loci have small effect sizes on the trait, each 
locus usually gives only a weak selection signal. Because of this weakness, most 
of the time it is impossible to identify signatures of selection at an individual 



15 
 

locus against the whole genome background (Berg & Coop, 2014). Therefore, 
phenotype-based analysis, using the combined signal of all variants associated 
with a complex trait, is more powerful to detect selection in the genome than 
classical scans that focus on single loci.  

In recent years, multiple studies have investigated polygenic adaptation 
combining GWAS data with population genomic datasets. These include studies 
focused on specific polygenic and Mendelian traits or identified traits as a result 
of genome-wide scans like body height (Berg & Coop, 2014; Zhang, Muglia, 
Chakraborty, Akey, & Williams, 2013), skin pigmentation (Berg & Coop, 2014; 
Mathieson et al., 2015), type 1 and type 2 diabetes (Zhang et al., 2013), body 
mass index (Berg & Coop, 2014; Zhang et al., 2013), obesity (Myles, Davison, 
Barrett, Stoneking, & Timpson, 2008), fatty acid measurement (Buckley et al., 
2017; Harris et al., 2019), total cholesterol, HDL, LDL, triglycerides (Zhang et 
al., 2013), vitamin D (Mathieson et al., 2015), blood type (Gelabert et al., 2017), 
IL-10 (Gelabert et al., 2017) and MHC (Mathieson et al., 2015) and have 
identified signatures of positive selection in different populations for these traits.   

Even though GWAS provides information about the genetic architecture of 
traits, the discovered variants may not be universal. There is huge heterogeneity 
for the variant-trait associations among populations (Berg & Coop, 2014; Myles 
et al., 2008; Wojcik et al., 2019). Especially, identified risk alleles may vary 
among populations since the frequencies of the specific alleles may differ. For 
example, an allele at low frequencies may appear not related to a trait in one 
population while the same allele, at higher frequency in another population, may 
show significant relation to the same trait in this latter group (Wojcik et al., 
2019). Furthermore, differences in the genetic background may also influence 
associations. Therefore, risk alleles found in one population do not account for 
all humans (Myles et al., 2008). In consideration of this variation, it is important 
to choose variant associations based on the studied population and sample size 
when studying polygenic adaptations (Wojcik et al., 2019). 

In the present study, we focused on several, mainly polygenic phenotypes that 
we hypothesized could be under selection in Anatolia since the Neolithic 
transition. We thus investigated the frequency changes of trait-associated alleles 
between Neolithic and present-day Anatolia populations. Using pairwise FST and 
FST-based PBS methods, the most strongly differentiated traits, representing 
candidates for directional selection, were determined for the Anatolian human 
population.   
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CHAPTER 3 

 

3.MATERIALS AND METHODS 

 

 

In this chapter, the methodology of the study is explained, including the 
collection of samples, compiling the list of phenotype-associated SNPs, SNP 
calling from DNA sequences, allele frequency comparison between Neolithic 
and modern Anatolian populations, and selection analysis using FST-based 
statistics. 

3.1.    Genome Data 

Published ancient and modern DNA genome sequence data was used in this 
study. In total, 36 ancient samples from Neolithic Period (8300 – 6200 BCE) 
from various locations in west and central Anatolia and 16 present-day 
individuals from the Turkish population were included for analysis. The 
information about their locations, time periods, median of genome coverages, 
the number of individuals and source studies are summarized in Table 3.1. 
Neolithic DNA samples were collected from various studies that used different 
sequencing approaches. Data for 20 individuals from Barcın Höyük and 4 
individuals from Menteşe Höyük had been primarily derived using a SNP 
capture approach that targeted ~1240,000 (1240K) SNPs (Lazaridis, 2016; 
Mathieson et al., 2015). Two Barcın Höyük individuals (Hofmanová et al., 2016) 
and one individual from Kumtepe (Omrak et al., 2016), sequenced with whole-
genome shotgun sequencing, were also included. Finally, data from 4 individuals 
from Boncuklu Höyük and 5 individuals from Tepecik-Çiftlik (Kılınç et al., 
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2016), generated using shotgun sequencing and the whole-genome capture 
approach, were included. In the present study, we used BAM files of Neolithic 
DNA datasets after their FASTQ files had been aligned by CompEvo Lab to 
NCBI build GRCh37/UCSC hg19 (assembly Feb. 2009, version hs37d5) human 
reference genome using bwa software (v0.7.15) (H. Li & Durbin, 2009) with 
parameters “-aln -n 0.01 -o 2” in single-end mode and with the seed disabled 
using “–l 16500”. 

Table 3.1: A summary description of samples used in this study, including 
location, historical period, range and medians of genome coverages, number of 
individuals (N), and data source. 

Location Period Range of 
Coverage 

(X) 

Median 
of 

Coverage 
(X) 

N Source 

Boncuklu 
Höyük 

10300-
9950 BP 

0.03-6.68 0.20 4 Kılınç et al., 
2016 

Tepecik-
Çiftlik 
Höyük 

8750-
8212 BP 

0.02-0.72 0.47 5 Kılınç et al., 
2016 

Barcın 
Höyük 

8500-
7600 BP 

0.03-6.28 0.15 22 Mathieson 
et al., 2015; 
Lazaridis et 
al., 2016; 
Hofmanová 
et al., 2016 

Menteşe 
Höyük 

8400-
7600 BP 

0.003-0.03 0.017 4 Mathieson 
et al., 2015 

Kumtepe 
Höyük 

7000-
6700 BP 

0.1 0.1 1 Omrak et al., 
2016 

Turkey Present 32-48 36.45 16 Alkan et al., 
2014 
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For the modern-day dataset, sequences of 16 individuals from different regions 
of Turkey (Alkan et al., 2014) were used. Modern-day sequences were 
previously aligned by Seven Bridges Ankara team members to the NCBI build 
GRCh37/UCSC hg19 (assembly Feb. 2009) human reference genome and 
genotyped. Here, I used genomic variant calling format files (gVCFs) generated 
separately for each individual; these files contain genotypes of each detected site 
in the genome. 

3.2.    SNP List 

3.2.1. Trait-associated SNPs 
 
In this study, I chose 40 phenotypes that I hypothesized to have frequency 
changes over the last 10,000 years in Anatolia. These phenotypes are mostly 
composed of the traits that were previously investigated and identified in ancient 
DNA as explained in Section 2.4 of Literature Review. Therefore, the traits that 
I hypothesized for changing are mainly associated with metabolism (eg. fatty 
acid measurement, insulin measurement etc.), immunity (eg. basophil count, 
serum IgE measurement, interleukin measurement, etc.), externally observable 
traits (eg. eye color, skin color, hair color, etc.) and complex diseases (eg. 
obesity, type-1 diabetes, type-2 diabetes, etc.). SNPs of 38 of the phenotypes 
were downloaded from 3616 phenotype of GWAS Catalog. The list of SNPs 
associated with two Mendelian phenotypes (lactose intolerance and blood type) 
were retrieved from the OMIM and SNPedia databases. The genomic locations 
of those latter SNPs were retrieved from dbSNP. The final number of SNPs for 
each of the studied phenotypes ranged from 5 to 1379. A detailed summary about 
the SNP numbers and source databases for each phenotype are provided in 
Appendix A. 

To determine genotype and phenotype relations, Genome-Wide Association 
Studies (GWAS) are being ever commonly used for complex phenotypic traits 
and clinical conditions, owing to advances in genotyping and sequencing 
technologies in recent decades (Buniello et al., 2019). The results of these studies 
are stored and provided to the users via various databases. GWAS Catalog 
(https://www.ebi.ac.uk/gwas/home) is one of these databases that enables users 
to access published SNP-trait associations that can be easily searched, visualized 
and integrated with other resources. GWAS Catalog provides significant SNP-
trait associations that were discovered from meta-data of various populations 
including Africans, South and East Asians, Europeans, Hispanic-Latin 
Americans (Buniello et al., 2019; Welter et al., 2014). After all eligible GWA 
studies are identified from the literature and assessed by the curators they can be 
accessed in GWAS Catalog (Buniello et al., 2019; Welter et al., 2014). Here we 
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used the GWAS Catalog as a main source to collect information on trait-
associated SNPs, including chromosomal location and effect size of alleles. For 
the phenotypes that were studied here but not found in the GWAS Catalog, 
SNPedia, dbSNP and OMIM databases were used to obtain the required 
information of trait-associated SNPs. SNPedia 
(https://www.snpedia.com/index.php/SNPedia) also stores variant information 
likewise GWAS Catalog (Cariaso & Lennon, 2012). However, the variants are 
not clustered based on phenotypes. It only presents the genotypes and their 
effects retrieved from published studies. Therefore it was used to detect the 
effect of the trait-associated SNPs that could not be retrieved from GWAS 
Catalog. Online Mendelian Inheritance in Man (OMIM; 
https://www.omim.org/), which is a platform where variants among more than 
15,000 genes can be searched with respect to their relations to any Mendelian 
disorders or phenotypes (Amberger et al., 2011; Amberger et al., 2015; 
Amberger et al., 2019; Amberger & Hamosh , 2017; McKusick, 2007), was used 
to find SNPs related to the traits absent in GWAS Catalog. Another database that 
contains variants is dbSNP (https://www.ncbi.nlm.nih.gov/snp/), which is a tool 
of NCBI, National Center for Biotechnology Information (Sherry et al., 2001). 
dbSNP has a collection of many variants including SNPs, small-scale multi-base 
deletions or insertions, retroposable element insertions and short tandem repeats 
(STR). In this study, dbSNP was only used to retrieve genomic positions of the 
SNPs associated with the traits that were not found in GWAS Catalog. 

From GWAS Catalog, the SNPs were downloaded in TSV file format, including 
information such as date of the published article, name and link of the published 
study, disease trait, mapped gene, SNP ID, chromosome number, chromosomal 
position, risk allele, p-value and effect of the risk allele on phenotype. The 
downloaded SNPs were first filtered based on association p-values (p < 10-8) 
since this threshold is determined as a standard for identifying common variants 
after Bonferroni correction (Fadista, Manning, Florez, & Groop, 2016). After 
that, the chromosome number, position and SNP IDs were stored in separate 
BED files for each phenotype, to be used during the SNP calling step. Further, 
information about the SNPs including ID, chromosome number, position, risk 
allele and effect of the risk allele were saved in other BED files to be used for 
further directionality analysis.  

Chromosome numbers and positions of the SNPs retrieved from GWAS Catalog 
were based on the NCBI build GRCh38/UCSC hg38 (assembly Dec . 2013) 
human reference genome. Since the BAM files of DNA sequences were aligned 
to NCBI build GRCh37/UCSC hg19 (assembly Feb. 2009), all the SNP positions 
in both BED files were mapped to NCBI build GRCh37/UCSC hg19 (assembly 
Feb. 2009) reference genome positions using liftOver software 
(https://genome.sph.umich.edu/wiki/LiftOver) (Hinrichs et al., 2006)  and the 
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hg38ToHg19.over.chain.gz chain file, which was downloaded from 
https://genome.sph.umich.edu/wiki/LiftOver on December 17, 2018 and 
provides the mapping information between hg38 and hg19 reference genome 
positions.  

The SNPs associated with lactose intolerance and blood type were retrieved from 
OMIM and SNPedia databases. The chromosome number and positions 
according to GRCh37 human reference genome were retrieved from dbSNP. The 
risk alleles and their effects on the phenotypes were taken from SNPedia if 
applicable and this information was stored in separate BED files, as above.  

 
3.2.2. SNPs in neutral regions 
 
To investigate whether SNPs associated with any trait may have evolved under 
natural selection, the frequency of trait associated alleles were compared with 
the frequency of alleles explored in neutral regions. Those regions were 
determined using the Neutral Region Explorer (NRE) tool 
(http://nre.cb.bscb.cornell.edu/nre/index.html) (Arbiza, Zhong, & Keinan, 2012) 
The NRE tool has been developed to explore neutral regions on the hg19 
reference genome by excluding certain genomic regions. In this study, the 
locations of known genes, repeated elements, gene boundaries, copy number 
variations (CNVs), spliced expressed sequence tags (ESTs) and self-chains were 
excluded. I mainly used default parameters, and chose a minimum region size of 
200 basepairs (bp), set the recombination rate as 0.9 centiMorgan/Megabase 
(cM/Mb), used the HapMap genetic map (Belmont et al., 2003), estimating 
human diversity using the “CEU” (i.e. Utah Residents (CEPH) with Northern 
and Western European Ancestry) population including all individuals, choosing 
the “strict” version of Repeat Masker (Smit, Hubley & Green,1996-2010), and 
setting the minimum background selection coefficient as 0.95. Meanwhile I 
modified a number of parameters, including the distance to the nearest gene, 
which was set to 1000 bp, and chromosome numbers, which were set as all 
autosomes (i.e. chromosomes 1-22). In addition, I selected parameters for the 
regions of simple repeats that contain a set of repetitive elements, using Repeat 
Masker v3.2.7 (Smit, Hubley & Green1996-2010) that contains the full set of 
Repeat Masker Regions, and a multiple alignment of 46 mammals (Blanchette 
et al., 2004; Karolchik et al., 2003; Siepel et al., 2005) that contains conserved 
genomic elements across the mammalian phylogeny to overlap with the 
identified neutral regions.   

When a search is performed, the NRE tool returns a table that includes minimum, 
first quartile, median, mean, third quartile and maximum values of length, 
percentage of simple repeats, percentage of conservation, percentage of Repeat 
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Masker regions, distance to genes in cM and bp, recombination rate, genetic 
diversity levels and background selection estimates for the identified neutral 
regions. Since I aimed to choose neutral positions, which should be independent 
of any effect from functional regions, I only retained as “neutral” those regions 
with a conservation rate lower than the mean of the conservation rate of all 
neutral regions identified. To obtain a list of locations and SNP IDs for neutral 
SNPs, the chosen “neutral” regions were intersected with 30,761,499 SNP 
positions using bedtools intersect (Quinlan & Hall, 2010) from the 1000 
Genome Project Consortium phase3 (Auton et al., 2015), and called based on 
the NCBI build GRCh37/UCSC hg19 (assembly Feb. 2009) human reference 
genome. As a result of this intersection 1,192,246 neutral SNPs were determined 
to be used in downstream analyses. 

3.3.    Data Processing  

3.3.1. SNP calling  from ancient DNA sequencing data 
 
To calculate frequency change of each phenotype-associated SNP, SNPs were 
called from BAM files of ancient individuals. BAM files are the binary format 
for storing the information of reads that aligned to a reference genome (Heng Li 
et al., 2009). Each line in the BAM file composed of read name, chromosome, 
start position, matched read sequence, quality and alignment tags (The 
SAM/BAM Format Specification Working Group, 2019). Before SNP calling, 
each BAM file of ancient individuals were in silico trimmed, since the transitions 
at 3’-ends and 5’-ends are not reliable and real SNPs might be confounded with 
deamination patterns frequently observed in ancient DNA (Dabney et al., 2013; 
Lamnidis et al., 2018). To eliminate this problem, 10 positions from the ends of 
each read were converted to “N” and quality to “!” using the trimBam function 
of bamUtil software (v1.0.14) (Jun, Wing, Abecasis, & Kang, 2015). Next, the 
SNP positions were called using samtools (v1.4.1) (Li et al., 2009) mpileup from 
the reads with minimum base quality (-Q) 30 and mapping quality (-q) 30. The 
output BCF file was converted to VCF format using bcftools (v1.4.1) (Li, 2011).  

Most ancient genomes we use have genome coverage <1; in other words, the 
polymorphic sites we study are usually sequenced once (represented by one 
read), if at all. For such low coverage genomes we cannot detect both alleles of 
an individual at diploid sites, and the genotypes cannot be called with confidence 
(Schraiber, 2018). Generally, this problem is overcome in ancient DNA studies 
using the so-called pseudo-haploidization procedure, which ensures that all 
analysed individuals’ genotypes are inferred with the same confidence, 
irrespective of the genome coverage. Ancient genotypes are computationally 
haploidized by randomly sampling a single read from each covered sited or 
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randomly selecting one of the alleles at heterozygous sites (Allentoft et al., 2015; 
Fu et al., 2015; Haak et al., 2015; Iosif Lazaridis, 2016; I. Mathieson et al., 2015; 
Schraiber, 2018; Skoglund et al., 2012). In this analysis I performed pseudo-
haploidization for each ancient sample after the genotyping, using a Python 
(v3.5.2) code. This code finds the heterozygote genotypes for each SNP, chooses 
one of the alleles randomly and writes the selected allele as a homozygote 
genotype.  

 

3.3.2. SNP calling  from modern data 
 
Modern-day Anatolian genomic polymorphism data was obtained from the 
Turkish Genome Project, collected and sequenced from 16 volunteer individuals 
(Alkan et al., 2014). These individuals represent different cities of Turkey 
including Ankara, Artvin, Erzincan, Erzurum, Hatay, Isparta, Istanbul, Izmir, 
Kayseri, Konya, Mersin, Muğla, Nevşehir, Ordu, Sinop and Van. I used genome-
wide variant call format files (gVCF) that contain genotypes of all positions in 
each individual’s genome. The variants of phenotypes were called from each 
individual’s gVCF file using GATK (v3.7-0-gcfedb67) (McKenna et al., 2010) 
GenotypeGVCFs function.   

3.4. Population Genetic Analysis  

3.4.1. FST analysis  
 
FST is a widely used statistic in population genetics to measure genetic 
differences between two populations. Despite its widespread use, there are 
different descriptions and estimation ways for FST. Here, Weir-Cockerham’s FST 
estimator (Weir & Cockerham, 1984) was used to calculate genetic distances 
between Neolithic and modern Anatolian individuals. This estimator is based on 
estimating the ratio of subpopulation variance and total variance, by 
incorporating the sample sizes in the case of two populations and biallelic SNPs, 
and subtraction from one with the following formula: 

F"#		%& = 1 −
*	 +,	+-	+,.	+-

	 ,
+,	.	+-	/	-

[	1,	2,	(4	5	2,	)	7	1-	2-(4	5	2-)]
+,	+-
+,	.	+-

(2,	5	2-)-79*	
+,	+-
+,	.	+-

	54: ,
+,.	+-	/	-

[	1,	2,(4	52,	)7	1-	2-(452-)]	
   (3.1) 

 

where n1 and n2 indicate the population sizes while p1 and p2 indicate allele 
frequencies for each population. FST varies between 0 and 1, where the more 
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similar the populations, the closer will be FST to 0, and the more genetically 
distant, the closer will it be to 1. We calculated Weir-Cockerham’s FST using 
vcftools (v0.1.17) (Danecek et al., 2011). vcftools calculates FST from a single 
VCF file including all individuals from both populations. Thus we first 
intersected ancient and modern VCF files for each phenotype using bcftools isec 
(v1.4.1) (Li, 2011), which returned two separate outputs including shared 
positions from each VCF file. Then, those genotypes of common positions were 
merged into one single VCF file using the vcf-merge (vcftools v0.1.17) (Danecek 
et al., 2011) software. After that, FST could be calculated using the final merged 
VCF file.  

We calculated FST in two ways. (a) FST values for each SNP were calculated 
separately with vcftools (v0.1.17) (Danecek et al., 2011) using the parameters “-
-weir-fst-pop ancient.txt --weir-fst-pop modern.txt” to specify which individuals 
belong to which population, without giving any window size. (b) We calculated 
FST across genomic windows to account for linkage between neighboring SNPs. 
Specifically, we calculated the mean FST of the SNPs within 200 kilobase pair 
(kbp) window sizes by including the “--window-size 200000” parameter to the 
same code before. This window size was chosen since it has been suggested that 
recombination hotspots occur approximately every 200 kbp in the human 
genome (McVean et al., 2004). This window size would then ensure the relative 
independence of windows from each other. 

 
3.4.2. Allele frequencies and directionality  
 
The directions of allele frequency changes of the SNPs were examined to 
determine if the allele frequency of all alleles that have a significant association 
and positive effect size on the trait tend to change consistently from the Neolithic 
Period to the present. The information on risk alleles and their effects were 
collected from TSV files downloaded from the GWAS Catalog (Welter et al., 
2014) into a separate BED file. For the traits that could not be found in the 
GWAS Catalog, the relevant information was obtained from SNPedia and 
OMIM databases. If a risk allele had a decreasing effect, the other allele was 
assumed to have an increasing effect. Allele frequencies of risk alleles from both 
Neolithic and modern-day populations were calculated using the vcftools 
(v0.1.17) (Danecek et al., 2011) “--freq” parameter. After that, those frequencies 
were compared for each increasing allele in R (v3.5.0, https://www.r-
project.org/). To test the significance of allele frequency changes between 
ancient and modern samples, the Student’s paired t-test was used and the 
“Benjamini-Hochberg” multiple testing correction method applied on the 40 p-
values for all traits, using the R “stats” package functions (v3.5.0).  
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3.5. Selection Analysis 

3.5.1. Trait-associated vs. neutral SNPs 
 
To test if there are significant changes in allele frequency for SNPs associated 
with specific traits, the distribution of FST values of SNPs associated with each 
trait were compared with SNPs in neutral regions. We performed these 
comparisons both using individuals SNPs’ FST values and also using 200 kbp 
window FST calculations, and the results were described using boxplots in R. 
Since the sample sizes of the SNPs were not equal and the FST values were not 
normally distributed, we used the Mann-Whitney U test (Mann & Whitney, 
1947) in R (v3.5.0) as a non-parametric test to compare each trait with neutral 
regions separately. We then determined significantly changed traits that had p-
values lower than 0.05 (p-value < 0.05) after the application of “Benjamini-
Hochberg” multiple test correction method.  

 
3.5.2. Population Branch Statistic  
 
As another way to investigate genetic changes between Neolithic and present-
day Anatolian populations, we performed an additional selection analysis. Here 
the goal was to detect regions that may have differentiated specifically in the 
modern-day Turkish population, using the population branch statistic 
(PBS). Basically, this test statistic is a derivative of FST designed to take 
advantage of an outgroup population to identify differentiation on a specific 
population branch (Yi et al., 2010). It is known as a strong method to detect 
selection among the given populations. The PBS score was calculated following 
Yi et al. (2010). Specifically, the FST values calculated between pairwise 
populations were transformed into T, which estimates divergence time (or 
branch length) scaled by the population size, with the formula:  

                                                  𝑇 = −log	(1 − 𝐹"#	)                                        (3.2) 

This value is calculated between the first and second populations (TP1P2), first 
and third populations (TP1P3), and second and third populations (TP2P3), 
respectively. Then a PBS score is calculated as:  

																																																		𝑃𝐵𝑆 = #C,C-7#C,CD5#C-CD

*
                                     (3.3) 

To detect any region that is highly differentiated from the Neolithic Period to 
present, and thus could be under selection, a PBS analysis was performed 
comparing 16 individuals from the modern-day Turkish population (TGP), 36 
Neolithic Anatolian individuals (Table 3.1), and 16 Yoruba individuals of 
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modern-day Nigeria (YRI) from the 1000 Genome Project phase3 (Auton et al., 
2015). The 27,586,575 positions from 1000 Genome Project phase3 (Auton et 
al., 2015) were called from BAM files of Neolithic individuals and TGP gVCF 
files. Then, the data in separate VCF files (for each population) were merged 
and FST was calculated between the following pairs of populations: TGP-
Neolithic Anatolia, TGP-YRI, Neolithic Anatolia-YRI, using vcftools (v0.1.17) 
(Danecek et al., 2011)  with parameters “--window-size 50000” and “--window-
step 10000” for 27,586,575 SNPs. For each SNP FST values were converted to T 
values between modern and Neolithic Anatolia (TMN), between modern Anatolia 
and YRI (TMY) and between Neolithic Anatolia and YRI (TNY) according to 
formula (3.2) in R (v3.5.0). Next, PBS scores of each SNP was calculated 
according to formula (3.3).  

To verify our approach, we also performed a positive control, testing for a known 
case of positive selection signature specific to North Europe (Schlebusch et al., 
2013). For this, we used data from Utah Residents (CEPH) of Northern and 
Western European ancestry (CEU), individuals from Toscani in Italy (TSI) and 
individuals from Luhya in Webuye, Kenya (LWK) from the 1000 Genome 
Project phase3 (Auton et al., 2015). From the 1000 Genome Project phase3 
(Auton et al., 2015) VCF file, we randomly sampled 16 individuals belonging to 
these three populations. Any position including at least one missing genotype 
was discarded using “--max-missing 1.0” parameter of vcftools (v0.1.17) 
(Danecek et al., 2011) and separated into VCFs include genotypes of pairwise 
populations. The FST and PBS scores were calculated with the same parameters 
as explained above with R (v3.5.0) code using 7,134,475 SNPs.  

In both PBS analyses, scores higher than 1.0 (PBS > 1.0) were listed since those 
values are found in the 99.9% percentile of empirical distribution. To find which 
genes overlapping with such high PBS score regions, the genomic positions for 
each high PBS score SNP was searched in the UCSC hg19 (assembly Feb. 2009) 
human reference genome using the UCSC Genome Browser (Kent et al., 2002). 
Then, gene names retrieved from the browser were searched in GWAS Catalog 
to find associated functions. 
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CHAPTER 4 

 

4.RESULTS 

 

 

4.1.  Significant SNP Associations and Effect Type Information  

A list of trait-associated SNPs were collected as reported in section 3.2.1 of 
Material and Methods. The list of 40 traits, chosen to be tested for possible 
frequency change over the last 10,000 years in Anatolia, is given in Appendix 
A. From NHGRI-EBI GWAS Catalog, 11,849 trait-associated SNPs were 
downloaded in total. After p-value filtering (p<10-8) and duplicate removal, 6651 
SNPs remained. Of these, 6616 of them could be called from Neolithic DNA 
sequences while 6340 of them could be found from the present-day individuals’ 
genotyped dataset. The information of the effect of risk allele (increasing or 
decreasing the trait) was available for 5235 of these. 

4.2.  FST Comparisons Suggest Loci Related to Lipid Metabolism Have 
Changed Significantly  

We first asked whether alleles associated with specific phenotypes may have 
changed in their frequencies more than alleles in neutral regions, which represent 
change as a result of genetic drift (Kimura, 1983) or population admixture. Trait-
associated and neutral SNPs were called from Neolithic Anatolia (n=36) and 
modern-day Turkish (n=16) genomes. Note that here we assume some degree of 
population continuity in Anatolia, and thus Neolithic individuals are assumed as 
among the ancestors of the modern population, although not necessarily the only 
ancestors, which is supported by demographic analyses (Damgaard et al., 2018; 
Feldman et al., 2019).  
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As a result of genotype calling, the number of individuals with missing 
genotypes in ancient data ranged from 5 to 36 (13% to 100%, median = 86%), 
while all 16 individuals were successfully genotyped in the modern population 
for 6340 SNPs. After genotyping, to detect allele frequency changes, we used 
Weir-Cockerham’s FST (Weir & Cockerham, 1984), which is a measure of 
population differentiation also commonly used in studies on recent positive 
selection. FST was estimated between Neolithic Anatolian individuals and the 
modern Turkish population using vcftools (v0.1.17) (Danecek et al., 2011), for 
each SNP. Then, for each phenotype, FST  estimates for trait-associated SNPs 
were compared with the FST estimates of neutral SNPs, using a two-sided Mann-
Whitney U test (Mann & Whitney, 1947). The results of this non-parametric test 
were adjusted using the “Benjamini-Hochberg” (BH) multiple test correction 
method. 

FST of neutral SNPs ranged between 0 and 1, with a median of 0 and a mean of 
0.075, shown with a vertical red dashed line in Figure 4.1. FST distributions of 
trait-associated SNPs and SNPs in neutral regions are shown in the same figure 
with boxplots colored blue and gray, respectively. Three of these 40 tested traits 
showed significantly different FST distributions than neutral: trans fatty acid 
measurement (p-value = 6.3E-08), body mass index (p-value = 5.1E-06) and 
waist-hip ratio (p-value =1.9E-03); with median 0.08, 0.01, 0.03 and mean 0.14, 
0.08, 0.09 respectively. These traits are indicated with red color in Figure 4.1. 
All of the significant traits had higher mean FST values in comparison to mean 
FST of the neutral SNPs. As higher-than-neutral FST values may suggest that the 
changes in allele frequency is adaptive (Myles et al., 2007), our results imply 
that there could be a polygenic adaptation signal on these traits, differentiating 
Neolithic and modern populations. Trans fatty acid measurement is directly 
related to the lipid metabolism and regulation of conversion between small and 
large chain fatty acids, and genes in this pathway have been shown to be subject 
to selection in human populations (Harris et al., 2019; S. Mathieson & 
Mathieson, 2018). Body mass index (BMI) is defined as a measure for body fat 
based on height and weight (WHO, 2008). Similar to BMI, waist-hip ratio is an 
additional measure for distribution of fat, calculated by dividing circumference 
of the waist to the hip (WHO, 2008). Both BMI and waist-hip ratio are 
considered as indicators for risk of many diseases including obesity, 
cardiovascular diseases, diabetes and stroke (WHO, 2008). Notably, all these 
three traits have an association with fat and lipid metabolism. Therefore, 
assuming Neolithic Anatolians were ancestral to the modern Turkish population, 
this differentiation should have happened during the last 10,000 years, after the 
adoption of farming. Our result may thus suggest that lipid metabolism in 
Anatolian populations became adapted to the transitions in the diet. 
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In the analysis presented in Figure 4.1, all trait associated SNPs were treated 
independently, ignoring linkage. To ensure independence of observations for 
both trait-associated and neutral SNPs, the same FST analysis was performed but 
this time using the mean FST values of trait-associated or neutral SNPs within 
non-overlapping 200 kbp windows. The mean FST of neutral SNPs decreased 
from 0.075 to 0.047 (Figure 4.2). After comparisons using the Mann-Whitney U 
test (Mann & Whitney, 1947) and Benjamini-Hochberg multiple test correction, 
23 of 40 traits were found more or less differentiated than neutral regions shown 
with red boxplots in Figure 4.2. Of these 23 significant traits, 6 traits had lower 
mean FST values than neutral mean while the remaining had higher mean FST 
values. The significant traits were basophil count (p-value = 3.6E-06), body 
height (p-value = 3.9E-07), body mass index (p-value = 2.3E-08), calcium 
measurement (p-value = 1.1E-02), fatty acid measurement (p-value = 1E-05), 
HDL (p-value= 3.1E-03), hemoglobin measurement (p-value = 2.1E-02), IL-2 
(p-value = 2E-02), IL-4 (p-value = 1.7E-02), IL-5 (p-value = 2.5E-03), IL-6 (p-
value = 1.1E-02), IL-8 (p-value=2.5E-02), IL-9 (p-value = 1.1E-02), IL-10 (p-
value = 1.2E-05), IL-13 (p-value = 6.2E-04), IL-17 (p-value = 5.6E-04), insulin 
measurement (p-value = 2.2E-04), LDL (p-value = 2.2E-04), obesity (p-value = 
1.5E-03), total cholesterol measurement (p-value = 8.3E-05), trans fatty acid 
measurement (p-value = 2.1E-07), triglyceride measurement (p-value = 2.8E-
07), type-2 diabetes (p-value = 7.5E-05) and vitamin D measurement (p-value = 
2.1E-02). Notably, body mass index and trans fatty acid measurement were again 
found as significantly differentiated, as in the previous FST  analysis, while waist-
hip ratio was not significant (p-value > 0.05) (Figure 4.1). 

This time, mean FST of some significant traits, including insulin measurement 
and multiple immunity-related traits (e.g. IL-4, IL-5, IL-8, IL-9, IL-10 and IL-
17), were lower than the mean of neutral SNPs. If the allele frequencies 
associated with these traits indeed did not change as much as in neutral regions, 
this could suggest negative selection on these traits. On the other hand, there 
were some traits, namely basophil count, body height, body mass index, calcium 
measurement, fatty acid measurement, hemoglobin measurement, HDL, IL-2, 
IL-6, LDL, obesity, total cholesterol measurement, trans fatty acid measurement, 
triglyceride measurement, type-2 diabetes, vitamin D measurement, that 
displayed significantly higher mean FST values than neutral mean FST. This group 
mostly consists of metabolism- and diet-related traits, except IL-2 and IL-6.  

Consequently, taken together with the results depicted in Figure 4.1, these results 
imply that diet might have been the strong force in adaptively shaping human 
genomic variation in Anatolia over the last 10,000 years.  

 



31 
 

Fi
gu

re
 4

.2
. M

ea
n 

F S
T 

di
st

rib
ut

io
ns

 o
f 

th
e 

tra
it-

as
so

ci
at

ed
 a

nd
 n

eu
tra

l S
N

Ps
 w

ith
in

 2
00

 k
bp

 w
in

do
w

s. 
Th

e 
tra

its
 w

er
e 

so
rte

d 
ac

co
rd

in
g 

to
 th

e 
m

ea
n 

F S
T 

sh
ow

n 
as

 d
ia

m
on

ds
. T

he
 r

ed
 d

as
he

d 
ve

rti
ca

l l
in

e 
in

di
ca

te
s 

th
e 

m
ea

n 
F S

T 
of

 n
eu

tra
l S

N
Ps

 a
t t

he
 

bo
tto

m
 o

f t
he

 p
lo

t. 
Th

e 
tra

its
 in

di
ca

te
d 

w
ith

 re
d 

bo
xp

lo
ts

 w
er

e 
si

gn
ifi

ca
nt

ly
 d

iff
er

en
t a

cc
or

di
ng

 to
 th

e 
M

an
n-

W
hi

tn
ey

 U
 T

es
t. 

A
ll 

th
e 

p-
va

lu
es

 w
er

e 
ad

ju
st

ed
 u

si
ng

 B
en

ja
m

in
i-H

oc
hb

er
g 

m
ul

tip
le

 te
st

 c
or

re
ct

io
n.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

4.3.  Direction Analysis Shows that Alleles Elevating Trans Fatty Acid 
Levels Have Decreased in Frequency in Anatolia 

We next asked whether allele frequency changes between Neolithic and present-
day Anatolia could indicate a directional change in phenotypic values, which 
could be expected under directional selection. For this, we specifically studied 
frequency changes in alleles associated with each trait that increase the value of 
the trait, as explained in Section 3.4.2 of Material and Methods. The frequencies 
of increased alleles were compared between Neolithic Anatolian (n=36) and 
modern Turkish (n=16) populations using a paired t-test.  

Out of 40 tested traits for which we could find 5235 alleles with known effect, 
we identified three displaying consistent frequency changes for trait-elevating 
alleles between Neolithic and modern-day Anatolian populations: fatty acid 
measurement (nominal p-value = 3.5E-05), trans fatty acid measurement 
(nominal p-value = 7.7E-09) and triglyceride measurement (nominal p-value = 
3.3E-03). Figure 4.3 shows the boxplots and strip charts of the comparisons for 
these significantly changed traits. In all three cases, we found decreased allele 
frequencies for alleles that elevated trait values. There is only one common SNP 
for these three traits, which is on chromosome 11 at position 61571477, on the 
FADS1 gene. 
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Figure 4.3. Historical allele frequency changes for trait-elevating alleles 
associated with fatty acid measurement, trans fatty acid measurement and 
triglyceride measurement. Left panel boxplots show the frequency distributions 
for Neolithic Anatolia (dark orange) and modern-day Anatolia human 
populations (yellow). Right panel strip charts show each allele separately, 
describing the direction of frequency change by lines. 
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4.4.  Population Branch Statistic Can Successfully Detect a Known 
Selection Signal in Central Europe 

In this study, our aim was to find traits that may have evolved under positive 
selection in Anatolian populations as a result of diet and life-style alterations. In 
the previous sections, we investigated such candidate traits using FST analysis, 
comparing Neolithic and present-day Anatolia. However, FST only measures 
differentiation, not change in time. To infer positive selection over time given 
differentiation between these two populations, we need to additionally assume 
that Neolithic Anatolians are direct ancestors of modern-day Anatolians, which 
is not fully accurate (Feldman et al., 2019). Alternatively, we may infer 
differentiation over time using an outgroup population to both Neolithic and 
modern-day Anatolians, such as a sub-Saharan African population (López et al., 
2015). This selection scan method is known as the population branch statistic 
(PBS) (Yi et al., 2010). PBS compares genetic distances among three 
populations, including two close ones and one distant population, or outgroup. 
Genetic distances are again measured using FST calculated pairwise between 
each population pair. Using these three pairwise comparisons, PBS measures 
how much the branch specific to the population of interest has differentiated. 
Population-specific differentiation that is higher at a single locus compared to 
the genome background can be interpreted as a signal of positive selection.  

We first sought to confirm the efficacy of the PBS method using a known case 
of positive selection, using limited sample sizes as in our Anatolian datasets. We 
chose lactase persistence as positive control, where the LCT gene has been 
shown to have undergone strong selection in North and Central European 
populations. Recently, using 1000 Genomes data, Schlebusch et al., (2013) 
confirmed that the CEU (Central European descent) population displays a 
selection signature around the LCT and MCM6 locus, while TSI (Italy) and LWK 
(Kenya) populations did not. We thus calculated PBS values as explained in 
detail in Section 3.5.2 of Material and Methods, calculating PBS for 50,000 kbp 
windows size and 10,000 kbp window steps across the genome. PBS analysis 
was performed using CEU (n=16), TSI (n=16) and LWK (n=16) populations 
from the 1000 Genome Project phase3 (Auton et al., 2015) dataset to detect the 
same selection signal close to the LCT and MCM6 gene region in CEU, which 
was the focal population.  
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Figure 4.4. Manhattan plot for PBS analysis between CEU-TSI-LWK (n=16 for 
each) populations, with CEU as the focal population. The peak at the 
chromosome 2 belonged to LCT/MCM6 gene region, which is responsible of 
lactase persistence. 

The distribution of PBS values, displayed in Figure 4.4, revealed a unique peak 
on chromosome 2, consistent with a selection signal in that region in Central 
European descendants. The 15 SNPs with the highest PBS scores which  are 
found in the 99.9% percentile of empirical distribution and the gene names 
overlapping those SNPs are shown in Table 4.1. This single region includes LCT, 
consistent with earlier reports (Bersaglieri et al., 2004; Itan, Powell, Beaumont, 
Burger, & Thomas, 2009; Schlebusch et al., 2013). Therefore, we concluded that 
the PBS analysis could detect a known selection signal successfully, even with 
highly modest sample sizes.  
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Table 4.1. The list of top 15 PBS values for the CEU branch. The chromosome 
number (chr), position, overlapping gene names, p-value and related functions 
are also listed. Genomic locations are given according to NCBI build GRCh 37 
human reference genome. 

Chr Position PBS Gene 
Name 

p-Value Function 

2 136658345 1.392 - 1.73E-07 - 

2 136633771 1.315 MCM6 1.04E-06 Blood protein 
measurement 

2 136670298 1.315 DARS 1.04E-06 Blood protein 
measurement, 
leukocyte count, 
neutrophil count 

2 136685228 1.315 DARS 1.04E-06 Blood protein 
measurement, 
leukocyte count, 
neutrophil count 

2 136696138 1.315 DARS 1.04E-06 Blood protein 
measurement, 
leukocyte count, 
neutrophil count 

2 136740900 1.315 DARS 1.04E-06 Blood protein 
measurement, 
leukocyte count, 
neutrophil count 

2 136617805 1.268 MCM6 1.2E-06 Blood protein 
measurement 

2 136569848 1.239 LCT 2.5E-06 Lactose 
persistence, blood 
protein 
measurement 

2 136575199 1.239 LCT 2.5E-06 Lactose 
persistence, blood 
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protein 
measurement 

2 136576577 1.239 LCT 2.5E-06 Lactose 
persistence, blood 
protein 
measurement 

2 136578536 1.239 LCT 2.5E-06 Lactose 
persistence, blood 
protein 
measurement 

2 136580287 1.239 LCT 2.5E-06 Lactose 
persistence, blood 
protein 
measurement 

2 136583192 1.239 LCT 2.5E-06 Lactose 
persistence, blood 
protein 
measurement 

2 136586958 1.239 LCT 2.5E-06 Lactose 
persistence, blood 
protein 
measurement 

2 136588478 1.239 LCT 2.5E-06 Lactose 
persistence, blood 
protein 
measurement 
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4.5.   Population Branch Statistic Detects Signals on Cholesterol Related 
Traits in Anatolia 

In the previous section, we demonstrated that PBS analysis can be used to detect 
a known genomic selection signal on the CEU population branch, using modest 
sample sizes. We now turned to study selection signals on the branch of modern 
Turkish population (n=16) by comparing this with Neolithic Anatolian 
individuals (n=36) and using the Sub-Saharan Yoruba (YRI, n=16) from the 
1000 Genome Project phase3 (Auton et al., 2015) as outgroup. We used the same 
method and formula to calculate PBS scores as explained in Section 3.5.2 of 
Material and Methods Chapter. 

 

Figure 4.5. Manhattan plot for PBS analysis between modern-day Turkish 
(n=16)–Neolithic Anatolia (n=36) and YRI (n=16) populations, with the 
modern-day Turkish as focal population. The genes with the highest four PBS 
values were labeled on the plot. 

The PBS score distribution, shown in Figure 4.5, revealed several peak points at 
chromosomes 5, 9, 10 and 12, overlapping with the genes GUSBP3, 
LOC101927827, PTPN20 and ZNF605/ZNF26, respectively. The gene names, 
the related functions and the positions of highest 15 PBS values are given in 
Table 4.2. 
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Table 4.2. The list of top 15 PBS values for the modern-day Turkish population 
branch. The chromosome number (chr), position, gene names, p-values and 
functional information obtained from the GWAS Catalog are listed. Genomic 
locations are given according to NCBI build GRCh 37 human reference genome. 

Chr Position PBS Gene 
Name 

p-Value Function 

12 13352000
1-

13357000
0 

1.597 ZNF605 

 ZNF26 

 

 

3.7E-06 Antisaccade 
response 
measurement, 

prostate carcinoma, 
total cholesterol 
measurement, 
triglyceride 
measurement, LDL, 
HDL, cholesterol 
measurement 

9 44340001-
44390000 

1.557 LOC10192
7827 

7.4E-06 - 

5 68930001-
68980000 

1.289 GUSBP3 

 

1.5E-05 (pseudo gene) 

Systolic blood 
pressure, IL-18  

5 68940001-
68990000 

1.289 GUSBP3 

 

1.5E-05 (pseudo gene) 

Systolic blood 
pressure, IL-18  

10 48690001-
48740000 

1.238 PTPN20 1.8E-05 DNA methylation, 
response to high fat 
food intake, 
triglyceride change 
measurement, 
mosquito bite 
reaction, diet 
measurement 
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10 17970001-
18020000 

1.225 MRC1 2.2E-05 Blood protein 
measurement, 
aspartate 
aminotransferase 
measurement, 
osteoarthiritis 
biomarker 
measurement, 
childhood agressive 
behaviour 
measurement 

9 43970001-
44020000 

1.206 CNN2P4 

CYP4F60P 

3.7E-05 (pseudo gene) 

9 43980001-
44030000 

1.206 CNN2P4 

CYP4F60P 

3.7E-05 (pseudo gene) 

 

9 43990001-
44040000 

1.206 CNN2P4 

CYP4F60P 

3.7E-05 (pseudo gene) 

 

9 44000001-
44050000 

1.206 CYP4F60P 

SNX18P5 

3.7E-05 (pseudo gene) 

 

6 58780001-
58830000 

1.202 - 4.1E-05 - 

9 66080001-
66130000 

1.099 RP11-
93P10.3 

4.1E-05 (pseudo gene) 

 

9 66090001-
66140000 

1.099 - 4.1E-05 - 

9 66100001-
66150000 

1.099 - 4.1E-05 - 

9 66070001-
66120000 

1.089 RP11-
93P10.3 

5.2E-05 (pseudo gene) 
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ZNF605 and ZNF26, two neighboring genes located on chromosome 12, had the 
highest PBS score. According to GWAS Catalog, ZNF605 is associated with 
antisaccade response measurement while ZNF26 is related to prostate 
carcinoma, total cholesterol measurement, triglyceride measurement, LDL, 
HDL, cholesterol measurement as an enhancer according to GWAS Catalog. 
Both ZNF605 and ZNF26 are act as enhancer on a neighbouring allele in 
rs12423664 that is in the intron of FBRSL1 (Fibrosin-like 1) gene and this locus 
is identified as associated with triglyceride level and coronary artery disease in 
a study by Siewert & Voight (2018). Therefore, ZNF605 and ZNF26 may have 
a relation with the fat metabolism. The second highest PBS score belonged to 
the hypothetical gene LOC101927827. The third and fourth ones were located 
on the GUSBP3 pseudo-gene, related to systolic pressure and IL-18 
measurement according to GWAS Catalog. This gene may not have a direct 
effect on IL-18 measurement but it is close to OCLN gene that is associated with 
IL-18 measurement directly as identified in the study of Ahola-Olli et al., 2017. 
The sixth highest PBS value overlapped with the gene PTPN20 that has a role in 
DNA methylation, response to high fat food intake, triglyceride change 
measurement, mosquito bite reaction and diet measurement with a near gene 
GDF10 (Wojczynski et al., 2015). The next one, MRC1 is a gene linked with 
blood protein measurement, aspartate aminotransferase measurement, 
osteoarthiritis biomarker measurement, childhood aggressive behaviour 
measurement in East Asian populations (Kamatani et al., 2010). The remaining 
genes, CNN2P4, CYP4F60P, SNX18P5 and RP11-93P10.3, listed in Table 4.2, 
were pseudogenes that do not have relation to any phenotype according to 
GWAS Catalog.  

Although the genes with the highest PBS values appeared associated with 
various traits, we noticed that cholesterol, fat intake and diet were recurrently 
emerging. While we cannot perform a formal enrichment test using as small 
sample sizes as here, it is remarkable that these traits also coincide with the 
previous results based on FST analysis (Figure 4.1 and 4.2), which also indicated 
that lipid metabolism may have been be under positive selection in Anatolia. 
Overall, both FST and PBS results support the notion that dietary, and 
specifically, lipid-related processes, underwent selection in the Anatolian 
population, or perhaps across west Eurasia or west Asia, after the Neolithic 
Period. 
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CHAPTER 5 

 

5. DISCUSSION 

As human populations expanded to a wide range of environments after out-of-
Africa migrations, the novel physical and cultural environments increased the 
potential of positive selection and local adaptations (Jeong & Di Rienzo, 2014; 
Myles et al., 2007; Vallender & Lahn, 2004; Vatsiou, Bazin, & Gaggiotti, 2016). 
Similar evolutionary changes are thought to have occurred after Neolithization, 
the era of agriculture and sedentary life, that started in the Fertile Crescent in the 
Middle East region about 12,000 years ago and spread to other regions of West 
Eurasia and North Africa step by step (Bellwood, 2005; Lazaridis, 2016; 
Mathieson et al., 2015). These changes are assumed to have led to new selective 
pressures related to different pathogen exposures and dietary transformations 
(Latham, 2013; Jeong & Di Rienzo, 2014; Vallender & Lahn, 2004; Vatsiou et 
al., 2016). During or at some point after Neolithic transitions (in west Eurasia, 
east Asia, or the Americas), some of these farming populations, who started to 
extensively plant carbohydrate-rich wheat, rice, or maize, are thought to have 
shifted to more plant-based diets, and also to have started to eat more easily 
chewable and more cooked foods, on average. As a result, morphological 
changes in tooth and facial bones and nutritional deficiencies like vitamin A, 
vitamin B12 and zinc deficiency have been observed until present time 
compared to hunter-gatherers (Larsen, 2006; Latham, 2013). Besides dietary 
change, post-Neolithic humans started to maintain more complex communities, 
which led to large settlements and eventually cities (Larsen, 2006). This caused 
an environment suitable for pathogens, since pathogens need large and crowded 
host populations to spread from person to person easily (Armelagos et al., 1991; 
Latham, 2013). Moreover, increased intimacy with animals during the 
domestication process introduced new pathogens from animals to humans 
(Armelagos et al., 1991). The human immune system is thought to have 
coevolved against these pathogens that evolved after the Neolithic transitions.  
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In this study, the effect of the diet and life-style changes on populations in 
Anatolia was examined by studying the frequency changes of alleles associated 
with different traits, between the Neolithic Period (c.8500–6000 BCE) and 
present-day populations. The main purpose of the present study was to detect 
which type of phenotypes have been genetically changed as a result of human 
life alterations. In addition, we tried to detect possible selection signals on the 
studied phenotypes by comparing those traits with neutral regions. For this we 
used FST comparisons between Neolithic and modern-day Anatolian samples, 
assuming that the different time periods represent different population in the 
same area. In selection studies, FST statistics are widely used to measure 
interpopulation or interspecies genetic distances per locus (Berg & Coop, 2014; 
Myles, Davison, Barrett, Stoneking, & Timpson, 2008; Myles et al., 2007; Vitti 
et al., 2013). As a result of such comparisons, if certain parts of the genome are 
found to have much higher FST values compared to the rest of the genome or to 
neutral regions, this may indicate that those genes or variants have differentiated 
through non-random processes between the populations or species (Myles et al., 
2007). Such differences can thus be a signal of adaptive changes. Meanwhile, 
neutral events such as gene flow from another population can also cause high 
differentiation between populations or over time. Here, we tried to control for 
such change due to gene flow by comparing trait-associated allele frequencies 
with the allele frequencies in neutral regions, since gene flow is supposed to 
affect whole genome roughly in the same way (Futuyma, 2013). 

In our study, we focused on 40 pre-chosen traits for their possible roles in 
metabolism, immunity. Among these we found three traits to be more 
differentiated than neutral loci using this FST comparison approach between trait-
associated and neutral SNPs: trans fatty acid measurement, body mass index, 
and waist-hip ratio (Figure 4.1). In a second approach, using mean FST values 
calculated within 200 kbp windows, we found 23 traits to be significantly 
differentiated than neutral (Figure 4.2). Especially, among those traits that were 
significantly more differentiated than neutral (and candidate targets for past 
positive selection), we found body mass index, fatty acid measurement, trans 
fatty acid measurement, HDL, LDL, triglyceride measurement, type-2 diabetes 
and obesity (Figure 4.2). The general trend indicated selection on fat 
metabolism-related alleles. Moreover, PBS analysis performed to detect 
selection on the modern-day Anatolia branch revealed that genes with the 
highest PBS scores, ZNF605 and ZNF26, were also associated with fat 
metabolism (Figure 4.5, Table 4.2). Since a positive control PBS analysis was 
able to detect a known selection signal (Figure 4.4) with the same type of small 
sample sizes, the PBS between Neolithic Anatolia, modern-day Anatolia and 
YRI, with the given modest sample sizes, was considered reliable. In addition, a 
directionality analysis that examined the direction of frequency changes of 
alleles with common effects on each trait showed that the frequencies of alleles 
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that increase fat metabolism-related trait values were significantly and 
consistently shifted toward lower values between ancient and modern-day 
Anatolian populations (Figure 4.3), and again, the only traits that attained 
significance were these lipid metabolism-related groups.  

Consequently, the overall results in the present study suggested that variants 
regulating fat metabolism might be under positive selection due to dietary shifts 
after Neolithization. In the literature, this type of selection on lipid metabolism 
was also reported, especially on the FADS1/FADS2 genes responsible for the 
production of the enzyme named fatty acid desaturase (FADS). This enzyme 
catalyzes short-chained polyunsaturated fatty acids (PUFA) to long-chained 
PUFAs, which is an essential step in human physiology since LC-PUFAs and 
their metabolites are crucial for many biological processes, including brain 
development, innate immunity and energy regulation (Buckley et al., 2017; 
Harris et al., 2019; S. Mathieson & Mathieson, 2018). However, Mathieson & 
Mathieson (2018) argue that the selection on the lipid metabolism does not 
coincide with the Neolithic transition, but they suggest this change in 
FADS1/FADS2 genes have been mostly caused by more recent changes in diet 
due to industrialization or efficiency of the selection due to increased population 
size during the Bronze Age (Buckley et al., 2017; S. Mathieson & Mathieson, 
2018). In future analysis, more samples from different time periods (e.g. Bronze 
Age and Iron Age) can be added to examine if the observed change in lipid 
metabolism has started during the Neolithic Period or more recently. Also, the 
same analysis can be performed for neighboring regions of Anatolia including 
East Mediterranean and West Eurasian populations to show if this is an 
adaptation that belongs to a wider region of human populations. 

Previous studies suggest that the selection on lipid metabolism or some diseases 
like cardiovascular diseases, type-2 diabetes and obesity can be explained with 
the “Thrifty Genotype Hypothesis” (Berg & Coop, 2014; Neel, 1962; Vatsiou et 
al., 2016), which assumes that the genes associated with those diseases have 
evolved under positive selection to store fat and carbohydrates in periods of food 
scarcity (Berg & Coop, 2014; Myles et al., 2008; Neel, 1962; Vatsiou et al., 
2016). This hypothesis can be an explanation for the frequency changes in the 
traits related to lipid metabolism, cardiovascular and metabolic diseases in this 
study. On the other hand, we showed that alleles elevating lipid-associated traits 
have decreased in frequency in time; thus, lipid storage capacities might also be 
reduced. However, the decreasing and elevating effect of the risk-alleles should 
be investigated in detail to understand what kind of decreasing or increasing 
effect is observed at the phenotype level. Alternative to this analysis, the 
directionality of derived allele frequencies can be examined rather than effect of 
the risk-alleles.  
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FST comparisons also indicated that there were significant differences in some 
immunity-related and diet-related traits relative to neutral loci, including IL-2, 
IL-6, basophil count, calcium measurement, hemoglobin measurement, body 
height, and vitamin D measurement (Figure 4.2). Moreover, IL-18 was identified 
as a possible candidate of positive selection along the modern-day Anatolia 
branch in the PBS analysis (Figure 4.5), even though the joint set of SNPs 
associated with IL-18 were not found to significantly differentiate in time more 
than neutral SNPs (Figure 4.2). In fact, many of the immunity traits including 
IL-4, IL-5, IL-8, IL-9, IL-17 (Figure 4.2) were less differentiated in time than 
neutral SNPs. In this case, the effect of negative or balancing selection can be 
considered. This appears surprising as large changes in the immune system have 
been hypothesized in response to the Neolithic shift in lifestyles (Reher, Key, 
Andrés, & Kelso, 2019; Vatsiou et al., 2016). Among the 17 immunity-related 
phenotypes, only three of them were significantly more differentiated and one 
of them had a selection signal according to PBS analysis. This could be a result 
of not including more diverse types of immunity-related traits into the analysis. 
For instance, to study immunity changes after the Neolithic Period, MHC-related 
variants can also be included, since MHC genes are known as the most diverse 
gene sets in the genome, influenced by adaptation to different pathogens (Key, 
Teixeira, de Filippo, & Andrés, 2014; Meyer & Thomson, 2001; Reher et al., 
2019). In this study, we could not include MHC-associated alleles due to limited 
information on MHC variants in GWAS Catalog, OMIM or SNPedia. In further 
analysis, MHC-associated SNPs can be determined and included through more 
extensive literature search.  

Despite their potential, current-day ancient DNA studies suffer from certain 
limitations involving the use of sequence data from highly degraded and 
damaged DNA. First of all, it is difficult to obtain endogenous DNA from 
ancient especially from the Anatolian Neolithic, since it is highly fragmented 
and degraded as a result of DNA decay after the death of the organism, which 
happens particularly rapidly in temperate regions (Prüfer et al., 2010). Therefore, 
the endogenous DNA can be isolated and sequenced at low amounts and at low 
coverages with high rates of missing nucleotides. Moreover, the signatures of 
post-mortem damage like deamination that causes C to T and G to A conversions 
affect the accuracy of the sequencing (Sawyer, Krause, Guschanski, Savolainen, 
& Pääbo, 2012). Most of the time those transitions are excluded from the 
analysis, especially if they are seen at the end of the reads, which limits 
information (Prüfer et al., 2010). Low-coverage data cannot enable diploid 
genotype calling and genotypes can be skewed to reference alleles (Prüfer et al., 
2010; Schubert et al., 2012). To overcome these problems in low coverage 
aDNA analyses, sampling a random read to obtain a haploid genotype call is 
used as a widespread solution (Allentoft et al., 2015; Fu et al., 2016; Haak et al., 
2015; Lazaridis, 2016; Mathieson et al., 2015; Skoglund et al., 2012) 
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Alternatively, genotype likelihood-based population allele frequencies can also 
be calculated from insufficient diploid calls using counts of sequences of each 
site (I. Mathieson et al., 2015; Racimo, Renaud, & Slatkin, 2016; Schraiber, 
2018). Furthermore, if certain genotypes cannot be called, then those regions can 
be predicted by the imputation method, which uses modern haplotype data and 
linkage information between the sites (Berg & Coop, 2014; Buckley et al., 2017; 
Gamba et al., 2014; Gelabert et al., 2017; Martiniano et al., 2017).  

In this study, we used diploid genotype calling, and then subjected the data to 
pseudo-haploidization, and the observed allele frequencies from pseudo-haploid 
samples were used to compare with modern samples, instead of using genotype 
likelihood. However, pseudo-haploidization unavoidably leads to information 
loss (Schraiber, 2018). In addition, many target SNPs could not be called from 
ancient samples due to low coverage. Therefore, the calculated frequencies were 
not the best possible representation of Neolithic Anatolian populations. In 
further analysis, genotype likelihood and imputation methods can be performed 
on ancient samples to increase the power of comparisons between modern and 
ancient samples.  

The main part of this study was the collection of trait-associated SNPs from 
different databases that store variant-phenotype associations. SNPs associated 
with 38 of 40  phenotypes were downloaded from GWAS Catalog, which 
provides accession to various SNP-trait associations found in the literature 
(Buniello et al., 2019; Welter et al., 2014). However, there are more than 3000 
traits in GWAS Catalog, which makes difficult to analyze all of them. Therefore 
a new system can be followed to group GWAS traits based on the ontology. 
Then, the frequencies of GWAS alleles can be considered to select neutral alleles 
having equal frequency in the modern population. Moreover, GWAS were 
determined from different populations including Africans, Europeans, East 
Asians or Latin/Hispanic American, etc. Previous studies have shown that SNP-
trait associations or risk-alleles show high heterogeneity and differ from 
population to population (Ioannidis, Ntzani, & Trikalinos, 2004; Myles et al., 
2008). Also, most of the SNP-trait associations are based on samples of 
European ancestry (Wojcik et al., 2019). As a result of this, GWAS results may 
contain false positives when the same associations are used for different 
populations (Berg & Coop, 2014; Wojcik et al., 2019). In this study, association 
of all downloaded SNPs were found in different populations, but not in 
Anatolian populations. Thus, the allele frequency and directionality comparisons 
using those SNPs may include false positives. To eliminate those false positives, 
downloaded SNPs can be filtered according to the population by selecting ones 
closer to Anatolia.  
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In summary, this study showed that selection signals involving lipid metabolism 
genes can be detected in Anatolia, using either polygenic selection signatures 
with trait-associated SNPs, or genome-wide PBS analysis Our results suggest 
that after Neolithization, dietary shifts may have had a greater impact on the 
human genome in Anatolia rather than immunity. However, in future work, more 
phenotypes should be included not to miss out other regions that could have 
evolved under recent selective pressures. In the further studies, candidate genes 
under positive selection should be identified with the examination of other 
candidate regions. This may provide a more extensive perspective on how life-
style shifts shaped the human genome. 
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APPENDICES 

 

APPENDIX A 

 

TRAIT-ASSOCIATED SNPS 

 

Table A: The studied traits and the source database to download them with the number 
of SNPs that are associated with the traits 
 

Traits Source SNP Count 

Basophil count GWAS 484 

Blood type SNPedia, OMIM, 
dbSNP 

10 

Body height GWAS 770 

Body mass index GWAS 1379 

Calcium measurement GWAS 54 

Eye color GWAS 45 

Fatty acid measurement GWAS 150 

Hair color GWAS 28 

Hair morphology GWAS 18 

Hemoglobin measurement GWAS 207 

High density lipoprotein (HDL) GWAS 440 
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Insuline measurement GWAS 20 

Interleukin 1-beta measurement (IL-
1BETA) 

GWAS 24 

Interleukin 2 measurement (IL-2) GWAS 26 

Interleukin 4 measurement (IL-4) GWAS 24 

Interleukin 5 measurement (IL-5) GWAS 18 

Interleukin 6 measurement (IL-6) GWAS 68 

Interleukin 7 measurement (IL-7) GWAS 23 

Interleukin 8 measurement (IL-8) GWAS 23 

Interleukin 9 measurement (IL-9) GWAS 25 

Interleukin 10 measurement (IL-10) GWAS 46 

Interleukin 12 measurement (IL-12) GWAS 37 

Interleukin 13 measurement (IL-13) GWAS 33 

Interleukin 16 measurement (IL-16) GWAS 23 

Interleukin 17 measurement (IL-17) GWAS 34 

Interleukin 18 measurement (IL-18) GWAS 48 

Lactose intolerance SNPedia, OMIM, 
dbSNP 

5 

Low density lipoprotein (LDL) GWAS 277 

Obesity GWAS 141 

Serum IgE measurement GWAS 27 

Serum IgG measurement GWAS 13 

Skin pigmentation GWAS 53 

Total cholesterol measurement GWAS 338 
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Trans fatty acid measurement GWAS 127 

Triglyceride measurement GWAS 383 

Type-1 diabetes mellitus GWAS 232 

Type-2 diabetes mellitus GWAS 797 

Vitamin B12 measurement GWAS 24 

Vitamin D measurement GWAS 53 

Waist-hip ratio GWAS 139 

 


