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ABSTRACT 

 
DE NOVO SNP CALLING AND DEMOGRAPHIC INFERENCE USING TRIO 

GENOME DATA 
 
 

Bozlak, Elif 
MSc., Department of Bioinformatics 

Supervisor: Asst. Prof. Dr. Aybar Can Acar 
Co-Supervisor: Assoc. Prof. Dr. Mehmet Somel  

 
July 2019, 99 pages 

 
De novo mutations are novel mutations which are found in the offspring but not the parents 
and do not obey the Mendelian inheritance rules. Determining how many de novo 
mutations occur is important for genetic studies since they help to understand the 
evolutionary history of populations. In this thesis, we aim to examine de novo mutations 
that occur within one generation in domestic horses and make estimations on horse 
demographic history. We used DNA-sequencing data produced by next-generation 
sequencing technologies from trio data of three different horse breeds: Lipizzaner, 
Noriker, Haflinger. After quality checks and mapping of the raw data we called genomic 
variants with three different variant calling algorithms. We filtered all variants depending 
on their qualities to detect de novo candidates and the final 50 de novo candidates were 
tested using Sanger resequencing. About 40% of the candidate variants could be validated. 
We found a higher number of true positives in highly covered Lipizzaner (n=13) data, 
while a lower number of true positives in the low covered Noriker (n=3) and Haflinger 
(n=5) data, showing the importance of sequencing coverage to detect true de novo 
mutations. In addition, we used the Pairwise Sequentially Markovian Coalescent (PSMC) 
model and performed runs of homozygosity (ROH) analyses to estimate demographic 
history. Both PSMC and ROH results were coherent with previous studies. All in all, we 
had an idea for the minimum coverage threshold and quality of whole genome sequencing 
data, to determine de novo mutations and to estimate population demography. 

 

Keywords: Whole genome sequencing, de novo mutation, Variant calling, Mutation rate, 
Demography analysis 
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ÖZ 

 
TRIO VERİSİ İLE DE NOVO SNP ÇAĞIRMA VE DEMOGRAFİK GEÇMİŞ 

ANALİZİ 

 
Bozlak, Elif 

Yüksek Lisans, Biyoenformatik Bölümü 
Tez Yöneticisi: Dr. Öğr. Üyesi Aybar Can Acar 

Tez Eşyöneticisi: Doç. Dr. Mehmet Somel 
 

Temmuz 2019, 99 sayfa 
 

De novo mutasyonlar ebeveynlerde görülmezken yavruda ortaya çıkan ve Mendel kalıtım 
kurallarına uymayan mutasyonlardır. Popülasyonların evrimsel tarihlerinin 
anlaşılmasında yardımcı oldukları için de novo mutasyonaların sayılarının tespit edilmesi 
genetik çalışmalar için önemlidir. Bu tezde evcil atlarda bir jenerasyonda ortaya çıkan de 
novo mutasyonları tespit etmeyi ve atların demografik tarihleri üzerine tahminler yapmayı 
hedefledik. Çalışmada üç farklı at türü (Lipizzaner, Noriker ve Haflinger) için yeni nesil 
sekanslama teknolojisi ile üretilen üçleme DNA sekans verilerini kullandık. Ham verinin 
kalite kontrolü ve hizalanmasından sonra, üç farklı varyant çağırma algoritması kullanarak 
genomik varyantları çağırdık. Tüm varyantları kalitelerine göre filtreledik ve seçilen 50 
varyantı Sanger sekanslama ile laboratuarda test ettik. Test edilen varyantların yaklaşık 
olarak %40’ı valide edildi. Yüksek okuma derinliğine sahip Lipizzaner (n=13) türündeki 
gerçek pozitif sayısını yüksek, düşük okuma derinliğine sahip Noriker (n=3) ve Haflinger 
(n=5) türlerindekileri ise daha düşük sayıda bulduk. Sonuçlar gerçek pozitif de novo 
mutasyonların tespit edilmesinde okuma derinliğinin önemini gösterdi. Ek olarak 
elimizdeki at popülasyonlarının demografik tarihleri hakkında tahmin yürütmek için 
PSMC modeli oluşturduk ve ROH analizi yaptık. PSMC ve ROH sonuçları önceki 
çalışmalarla uyumlu sonuçlar verdi. Sonuç olarak tüm genom sekanslama verisi ile de 
novo mutasyon tespiti ve popülasyon demografisi tahmini yapabilmek için gereken 
minimum veri okuması ve kalitesi hakkında fikir sahibi olduk. 

Anahtar Sözcükler: Tüm genom sekanslama, de novo mutasyon, Varyasyon çağırma, 
Mutasyon oranı, Demografi analizi   
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CHAPTER 1 

CHAPTER 

1.INTRODUCTION 

 

Since horses were domesticated 5000 years ago, they have become a companion to 
humankind in different areas including transportation, agricultural activities, and wars 
(Anthony, 2016; Kuderna et al., 2017). Besides these physical advantages, the emotional 
connection between horses and humans cannot be ignored (Lanata, Guidi, Valenza, 
Baragli, & Scilingo, 2016). Moreover the domestication of the horses followed by 
intensive breeding is a very strong example of artificial selection (Zhang et al., 2018), 
making the evolutionary history of the horse tempting to investigate. Indeed, horses are 
also chosen as a model organism for the order Perissodactyla (Jagannathan et al., 2018; 
Wade et al., 2009).  

Because of all these reasons above, horses are one of the most well-studied mammals in 
genetic terms. An updated reference genome of the domestic horse (Equus caballus) has 
recently been released by Kalbfleisch and colleagues (Kalbfleisch et al., 2018). After the 
release of the updated reference, Jagannathan et al. created a comprehensive variation 
panel for the modern domestic horse, Equus caballus (Jagannathan et al., 2018). In this 
thesis, we will be analyzing genomic data from modern horses using these resources. 

The subject of the thesis will be genetics of three well studied modern horse breeds, 
namely the Lipizzaner, Noriker and Haflinger. What is common for these horses is that, 
they all are Austrian breeds. Lipizzaner horses are bred, among other studs, in the Piber 
stud in Austria and they are selected for dressage performance in the Spanish Riding 
School (Grilz-Seger et al., 2019). The Noriker is an Austrian draft horse breed and bred 
for agricultural purposes in the Alps (Druml et al., 2018). And the last breed, which is 
known as the youngest horse of Austria, is the Haflinger (Druml et al., 2018).  

The thesis focuses on the identification of germline ‘de novo’ mutations. ‘De novo’ 
mutations represent novel mutations occurring in one generation. They are one of the 
driving sources of gaining new variants throughout generations (Campbell & Eichler, 
2013) and they are one of the main contributors of several genetic diseases (Jin et al., 
2017). ‘De novo’ mutations are studied from several different aspects in population 
genetics, as mutation rate per generation is important to study evolutionary history of 
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populations (Smeds, Qvarnström, & Ellegren, 2016; Tatsumoto et al., 2017). Hence 
bioinformaticians have spent intense effort on  developing ‘de novo’ mutation detection 
pipelines and algorithms (Acuna-Hidalgo, Veltman, & Hoischen, 2016; Francioli et al., 
2017).  

There are two main ways of calculating the ‘de novo’ mutation rate, either using 
phylogenetic distance methods or directly detecting ‘de novo’ mutation candidates in one 
generation (Campbell & Eichler, 2013). For the well-studied genomes such as that of 
human, the mutation rate has been calculated via both methods. This provides accuracy in 
population and medical genetics analyses that depend on the mutation rate. For horses, the 
only estimate yet has been made by Orlando et al., who calculated the mutation rate for 
the domestic horse with the phylogenetic distance method. The authors used comparative 
genomics data from different Equus caballus genomes and a donkey genome to estimate 
the mutation rate (Orlando et al., 2013). Although this rate was used in different horse 
studies later, there is no mutation rate estimated using ‘de novo’ mutations for the horse. 
Providing such an estimate is my main motivation in this thesis.  

One application of such rate estimates is in evolutionary demography. Population 
demography analysis attempts to understand past and present population dynamics, such 
as bottlenecks, migrations or inbreeding levels (Nielsen & Slatkin, 2013). One way of 
doing this is using genomic data, and this approach is frequently used to make estimation 
for the structures of the populations in the past. Pairwise Sequentially Markovian 
Coalescent (PSMC) is one of these methods to make estimations about population history 
from genomic data. The algorithm makes estimates of the effective population size at 
different time points from a single diploid genome  (Li & Durbin, 2011). PSMC analysis 
has been recently used to study horse demographic history as well. Different PSMC 
studies on horse genomes gave consistent results with each other (Orlando et al., 2013; 
Schubert et al., 2014). More specifically, these found a decrease in the horse effective 
population size in the Last Interglacial Period followed by a peak after the Last Glacial 
Period. The mutation rate used in these studies was again that estimated by Orlando and 
colleagues (Orlando et al., 2013; Schubert et al., 2014).  

Another method used to estimate demographic history is runs of homozygosity (ROH). 
The results of ROH analysis allow inferences on the amount of inbreeding and presence 
of bottlenecks in a population in the recent past (Ceballos, Joshi, Clark, Ramsay, & 
Wilson, 2018; Kirin et al., 2010). Previous works have studied the three horse populations 
in this study (Austrian Lipizzaner, Noriker and Haflinger) using both pedigree and ROH 
analyses, and found higher inbreeding in Lipizzaner and Haflinger than in Noriker horses 
(Druml, Baumung, & Sölkner, 2009; Grilz-Seger et al., 2019, 2018). 

In this thesis we analyzed NGS data of trios from the three different domestic horse 
populations mentioned above. We used data collected from trios, consisting of a mother, 
a father and an offspring from each of these three breeds. The data were produced by the 
research group of Dr. Barbara Wallner, Institute of Animal Breeding and Genetics, 
University of Veterinary Medicine Vienna. The main aim of this study was to detect ‘de 
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novo’ mutations that are found only in the offspring of these breeds. ‘De novo’ mutations 
were predicted and mutation rates per generation were inferred for the domestic horse. 
This study is thus the first to calculate horse mutation rate per generation, inferred from 
genome-wide ‘de novo’ mutations. We further used the data to make demographic 
estimations for demography of these three populations using PSMC and ROH analyses, 
and the results were compared with those of the previous studies.  

The second chapter of the thesis describes the importance of ‘de novo’ mutations in the 
fields of genetics and bioinformatics, as well as giving examples of mutation rate estimates 
and their calculation methodologies. Besides, we compare the different bioinformatics 
algorithms that we used for the analyses, especially for variant calling. Finally, we 
mention working strategies of PSMC and ROH methods and findings from different 
studies for domestic horse populations. 

The third chapter explains our methodology to analyze whole-genome NGS data in detail 
to detect ‘de novo’ mutations produced in one generation. Here we used different calling 
algorithms and two different reference genomes. The chapter also details how we 
performed PSMC and ROH analysis. 

The fourth and fifth chapters describe our results and compare them with previous studies. 
Then, we make inferences on stability of our results and discuss possible limitations and 
future directions. 
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CHAPTER 2 

 

2.LITERATURE REVIEW 

 

 

2.1. Mutation rates  and ‘de novo’ mutations in evolutionary studies 

Germline mutations are one of the fundamental forces of evolutionary mechanisms due to 
the their contribution to the variation pool of populations (Loewe & Hill, 2010). Besides, 
they are also one of the causes of heritable and complex diseases (Shendure & Akey, 
2015). These properties necessitate making accurate predictions on mutation rates 
(Narasimhan et al., 2017; Shendure & Akey, 2015). In addition to some recent population 
genetic methods, there are two main ways of estimating mutation rates.  The first one is 
calculating mutation rates based on phylogenic distances. In this method, comparative 
genomic data from two lineages with known splitting time (based on the fossil record) is 
used to calculate the nucleotide divergence between the two. This divergence can then be 
used to estimate the per generation substitution rate, which can also be used as the per 
generation mutation rate. This approach is based on the neutral theory of molecular 
evolution, which states that for neutral loci, the substitution rate should be equal to the 
mutation rate (Nielsen & Slatkin, 2013). Furthermore, it assumes that the generation time 
is known and fixed for the lineages in question. The other method for calculating the 
mutation rate is using 'de novo' mutations. In this approach, direct calculations from 
genomic data of a trio (including mother, father and offspring data) is used and the number 
of mutations only observed in the offspring is divided by the genome length (Campbell & 
Eichler, 2013; Narasimhan et al., 2017; Shendure & Akey, 2015).  

There are several studies for mammals which have used the phylogenetic distance method 
for mutation rate calculations. For instance, the mutation rate was estimated as ~2e-08 per 
base per generation for human and nonhuman primates by considering divergence 
between neutral sites in their genomes following the above approach (Mikkelsen et al., 
2005; Shendure & Akey, 2015). The rate has been reestimated as 1e-09 per base per year 
with the same method in different studies (Prüfer et al., 2012) by assuming the divergence 
time between human and chimpanzee as 6-7 million years ago (Ma). For the domestic 



6 
 

horse, Orlando et al. estimated the mutation rate per generation with the phylogenetic 
distance method (Orlando et al., 2013). They estimated the mutation rate as 7.2e-09 per 
site per generation by comparing horse and donkey, and assuming that donkey and horse 
diverged 4-4.5 Ma (Janečka et al., 2018; Jónsson et al., 2014). Both primate and equid 
phylogenetic mutation rate estimates thus appear roughly within the same order of 
magnitude (the estimate for equids being midway between different estimates for 
primates).  

Although the phylogenetic distance method has been frequently used in many different 
studies to estimate the mutation rate, scientists have pointed out multiple weaknesses of 
this method. Tatsumoto et al. suggested that different factors such as generation time, 
effective population size, rate of heterogeneity causes uncertainty in results when using 
the phylogenetic approach (Tatsumoto et al., 2017). Francioli and his team also argued for 
the disadvantages of the method because different selection mechanisms are effective on 
different populations and species, and across different regions of the genome, and 
therefore identifying truly neutral regions will not be straightforward (Francioli et al., 
2014).  

Given these problems of the mutation rate estimation based on phylogenetic distance, and 
thanks to the availability of high throughput (next generation) sequencing technologies, 
scientists in recent years have started making direct estimates of the mutation rate by ‘de 
novo’ mutations scans. These studies use high quality whole genome data from trios (for 
sexually reproducing species) produced by next generation sequencing. To date, mutation 
rate estimations from 'de novo' mutations have been made in a few mammalian species, 
such as humans, chimpanzee and mouse. While some studies compared different families 
of the same population (Francioli et al., 2014; Jónsson et al., 2017), others focused on 
families from different populations (Conrad et al., 2011). For example, Jonsson and 
colleagues worked with a large genomic data dataset compromising 1,548 human trios 
from Iceland. They made estimations on the 'de novo' mutation rate in one generation and 
they estimated the rate as 1.28e-08 per base per generation. Meanwhile, Francioli and 
colleagues analyzed genomic data from 250 Dutch parent-offspring families including 
trios and twin-parent families, and they calculated mutation rates for different parts of the 
human genome to understand possible explanations for the different mutation rates. 
Conrad and colleagues calculated and compared mutation rates inferred from trios of 
European descent (u=1.17e-08 bp/gen) and Yoruban descent (u=0.97e-08 bp/gen) and 
found possible sources for the differences between two populations. In addition to human 
studies, nowadays 'de novo' mutation studies are also being conducted in other mammalian 
species. Tatsumoto et al. produced ultra-deep sequencing data for a chimpanzee trio to 
calculate 'de novo' mutation rate for the chimpanzees, and they estimated this as 1.48e-08 
per site per generation (Tatsumoto et al., 2017). Another popular mammal subjecting for 
mutation rate calculations is mice (Mus musculus). Uchimura and colleagues calculated 
the germline mutation rate for mice is 5.4e-09 bp/gen (Uchimura et al., 2015) and Lindsay 
and colleagues calculated the rate as 3.9e-09 (Lindsay, Rahbari, Kaplanis, Keane, & 
Hurles, 2016). Both rates were calculated using the number of ‘de novo’ mutations 
detected in the offspring but not in the mouse population of interest. Intriguingly, the 
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mutation rate of humans appeared almost 2 to 3 times higher than the mouse. This 
difference has been explained, by Lindsay and colleagues, by the larger effective 
population size of the mouse (and thus stronger selection for high fidelity DNA copying) 
when compared with the human (Lindsay et al., 2016). Notably, the resulting rates from 
these studies were comparable with each other irrespective of populations and species, 
and also consistent with the rates that were calculated with the phylogenetic distance 
methods for human, all being on the order of ~1e-08 bp/gen.  

Narasimhan and colleagues have discussed possible reasons for the discrepancies between 
mutation rates estimated with the two different methods (phylogenetic distance vs. direct 
estimations from ‘de novo’ mutations). They suggested different explanations such as i) 
sample size (including number of individuals used in the study or number of true ‘de novo’ 
mutations); ii) using only mutations seen in one generation; iii) effect of paternal age; iv) 
genomes of diseased individuals (Narasimhan et al., 2017). Additionally, Conrad et al. 
showed that, although mutation rates were calculated with the same methods in different 
trios of same species, differences in these rates could also be observed (Conrad et al., 
2011). They suggested different reasons for this difference. The first one is variation due 
to differences in genetic background and selection dynamics among individual. For 
instance, although it is accepted that more mutations are occurring in the paternal lineages 
(Haldane, 1947), Conrad et al. found a different pattern in one of their studied families. In 
this family a higher percentage of ‘de novo’ mutations derived from the maternal lineage. 
The second possible reason is the age of parents. This idea is also supported by different 
studies. Kong and team showed that the increasing age of the father results in an increase 
in the number of ‘de novo’ mutations occurring in one generation (Kong et al., 2012), a 
conclusion also supported by Francioli et al. (Francioli et al., 2014). In addition to these 
reasons, Francioli et al. found that different genomic regions could have different 
mutations rates. This can create a bias in mutation rate estimates from whole genome data 
depending on the distribution of number of reads mapped along the genome.  

2.2. Importance of data amount and quality in next-generation sequencing 
analysis 

2.2.1. Quality of whole-genome data 

Different studies show the importance of sequencing depth in detecting true ‘de novo’ 
mutations. Tatsumoto and team estimated mutation rate with their ultra-deep high-quality 
sequencing data (Tatsumoto et al., 2017). To do this, they validated their candidate ‘de 
novo’ SNPs by Sanger sequencing. They categorized their data as 30x, 60x, 90x and 120x 
groups, dependent on the sequencing depth. Then they took the 90x and 120x candidate 
lists and found all true positive mutations (n=32) in the shared list of the two categories. 
On the other hand, there were 9 candidates found only in 90x data, and these were all 
detected as false positives in Sanger analysis. Based on these results, they suggested that 
even 90x coverage is not enough to eliminate all false positives. According to this study, 
determining true positive ‘de novo’ SNPs, which includes eliminating false positives and 
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avoiding false negatives, can only be revealed with ultra-deep covered data (Tatsumoto et 
al., 2017). 'De novo' mutation studies in human trios have also supported these results. 
Jonsson et al. used data with an average of 35x coverage and Conrad et al. used data 
greater than 22x coverage, and their mutation rate estimates per generation (1.28e-08 in 
Jonsson et al. and ~1.2e-08 in Conrad et al.) were consistent with each other (Conrad et 
al., 2011; Jónsson et al., 2017). Although, Tatsumoto et al. suggested that these coverages 
are not sufficient to detect ‘de novo’ mutations, Jonsson detected on average 70.3 ‘de 
novo’ mutations in 1548 families trio data and Conrad detected 49 and 35 ‘de novo’ 
mutations in the two trios they worked with. This is an indication of uncertainty about the 
lower data thresholds to detect ‘de novo’ mutations. 

2.2.2. Quality of reference genome 

The quality of the reference genome is another factor that affects mapping rates, variant 
calls and consequently ‘de novo’ mutation rate estimates (Kalbfleisch et al., 2018; Li & 
Wren, 2014). An increase in the mapping rates was seen in the updated human reference 
genome from GRCh38 when compared with GRCh37 (Guo et al., 2017). Besides this 
increase in the mapping, Guo et al. also detected fewer number of SNVs in the GRCh38. 
They explained the reason for this lower number of variants using GRCh38 by fewer false 
positive variants due to quality of new reference. In addition, Li and Wren compared 
human references GRCh37 and GRCh38 in their analysis and showed the effects of 
different parameters in variant calling (Li & Wren, 2014). They also found fewer false 
positive variants when using the updated reference. 

In the case of horse, the first high-quality reference assembly for the domestic horse, 
EquCab2, was released by Wade et al. (Wade et al., 2009). The updated version of the 
Equus caballus reference genome was recently published in 2018. The data which were 
used to construct the updated reference was derived from the same Biosample, the female 
Thoroughbred ‘Twilight’. In the updated version of the reference genome EquCab3 
different sequencing and assembly technologies were used. In the updated reference 
genome, the number of non-N bases on the chromosomes were increased to 2.41 Giga 
base (Gb) from 2.33 Gb in EquCab2. Besides, the gaps in the incorporated chromosomes 
decreased 10-fold in the EquCab3. To test the updated reference, whole genome 
sequencing data from two Thoroughbred male horses were mapped to both EquCab2 and 
EquCab3 references (Kalbfleisch et al., 2018). These authors found an increased number 
of mapped reads and properly paired mapped reads on the EquCab3 mapped data when 
compared to that of EquCab2. Kalbfleisch et al. suggested that this might be a result of 
the improvement in the updated genome in several ways, such as containing fewer gaps 
(Kalbfleisch et al., 2018). All in all, these comparative studies suggest that an updated 
reference genome that includes deep coverage high throughput sequencing data, may 
provide more accurate results. 
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2.2.3. Quality and properties of existing variation panels 

The importance of variation panels in the ‘de novo’ mutation detection workflows was 
previously mentioned by Romero and colleagues (Gómez-Romero et al., 2018). These 
authors suggested that, because there is a low probability for the occurrence of 
independent ‘de novo’ mutations at the same position in different individuals, standing 
variation can be used to eliminate false positives, which leads then to more accurate ‘de 
novo’ mutation estimates. They filtered their candidates in the study, based on this idea. 
In the recent past, 50k, 70k and 670k SNV variation panels were produced for targeted 
genotyping arrays with previous reference genomes of the domestic horse (McCoy & 
McCue, 2014; McCue et al., 2012; Schaefer et al., 2017). A variation panel produced from 
whole genome sequencing data of 88 horses from different breeds was recently released 
(Jagannathan et al., 2018). In this panel the updated version of the reference (EquCab3) 
was used as reference genome. Jagannathan et al. called approximately 23.5 million SNVs 
in this study. This newly constructed horse variation panel based on EquCab3 by 
Jagannathan et al. can also be used as an efficient tool to eliminate false positives to detect 
true ‘de novo’ candidates in horse trios. 

2.3.Analyzing high throughput sequencing data for ‘de novo’ mutation detection 

2.3.1. Differences among variant calling algorithms 

There are several tools developed to find variations from the reference genome and 
variations among different individuals. In recent years multiple studies have compared the 
performances of different variant callers.  Poplin et al. has recently reviewed different 
variant calling algorithms and compared their performances (Poplin et al., 2017). These 
algorithms can be split into two main groups. One group finds mismatches between the 
subject individual and the reference genome. These are called ‘pileup’ callers, and 
SAMtools (Li et al., 2009) and GATK’s UnifiedGenotyper (UG) (Depristo et al., 2011) 
are examples of this group. Despite their high sensitivity, these algorithms have some 
weak points caused by using a reference sequence to find variants (Rimmer et al., 2014) 
or considering one position at a time during variant calling process (Garrison & Marth, 
2012; Rimmer et al., 2014). The other group of variant caller algorithms are called 
assembly-based algorithms; these basically construct haplotypes by creating de Bruijn-
like graphs. Platypus (Rimmer et al., 2014), GATK’s HaplotypeCaller (HC) (Poplin et al., 
2017) and FreeBayes (Garrison & Marth, 2012) are examples of this group of variant 
callers (Poplin et al., 2017; Xu, 2018). These tools first assemble reads locally and produce 
candidate haplotypes; then they estimate likelihood of haplotypes by aligning the reads to 
the haplotypes one by one and counting them. The advantages of these latter algorithms 
becomes most obvious in highly variable genomic regions, because they do not depend 
on local alignment as ‘pileup callers’ do, which causes mistakes in this high variable 
regions (Li & Wren, 2014; Poplin et al., 2017; Rimmer et al., 2014). In addition, assembly-
based algorithms can detect the co-existence of different variants at the same time (Xu, 
2018). Poplin and team compared variant callers including both types of algorithms 
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(‘pileup’ and assembly-based) and among four algorithms, namely GATK’s 
HaplotypeCaller (HC), GATK’s UnifiedGenotyper (UG), Platypus, SAMtools, they 
found the highest sensitivity in HC. The authors also suggested that assembly-based 
algorithms give more accurate results. Another idea that is also proposed in the 
HaplotypeCaller’s paper is that calling variants jointly in multiple individuals improves 
accuracy of the calling results, especially for the regions with low coverage (Poplin et al., 
2017; Rimmer et al., 2014), but such joint calling results in the production of more 
complex de Bruijn graphs, so it needs more computational power (Poplin et al., 2017). 
HaplotypeCaller, Platypus and FreeBayes try to solve this computational complexity in 
the algorithms while they make haplotype-based variant calling.   

Sandmann and colleagues used and compared GATK’s HC, Platypus and FreeBayes 
besides other variant callers on their targeted Illumina HiSeq data (Sandmann et al., 2017). 
The main aim of their study was to produce a fast pipeline to use in clinical applications 
to identify both rare and common variants. After analyzing their data with different variant 
calling algorithms, they reported that Freebayes is the most sensitive among these three 
variant callers, despite reporting many false positive variants. They further reported that 
the accuracy of Platypus’s results depends on allele frequency of the variant and that of 
HaplotypeCaller depends on the type of platform, specifically whether HiSeq or NextSeq 
was used to produce the data (Sandmann et al., 2017).  

Some algorithms like PhaseByTransmission (PBT) (Francioli et al., 2017) are designed to 
directly use known pedigree information of trio data and possibly allele frequency in the 
population, which can be further used to detect ‘de novo’ mutations. PBT calculates 
posterior probabilities of each candidate variant and outputs a list of candidates (Francioli 
et al., 2017). Francioli and team compared their PBT algorithm with other ‘de novo’ 
detection tools, namely DeNovoGear (Ramu et al., 2013) and TrioDeNovo (Wei et al., 
2015). They found consistent results using high coverage data, but they found PBT results 
to be more accurate using relatively low coverage data downsampled to 15x. On the other 
hand, PBT found many false positive ‘de novo’ candidates which could not be validated 
in the low coverage data (2-20x) in all trio members. 

2.3.2. Importance of filtering variants 

Filtering variant lists produced by calling algorithms is a mandatory step to eliminate false 
positive variants as much as possible. Li and Wren made a comprehensive analysis to 
show how the filtering steps affects the quality of analysis (Li & Wren, 2014). They used 
FreeBayes, GATK UnifiedGenotyper, Platypus and GATK HaplotypeCaller for variant 
calling in their analysis and they filtered their data depending on different parameters: 
low-complexity regions, maximum depth, allele balance, double strand filter, Fisher 
strand filter, quality filter. The authors found that although the low complexity region filter 
is the most effective filter to eliminate false positive heterozygous variants overall, when 
using data aligned with the BWA-mem, the maximum depth filter is the most effective 
filter among other filters. The other parameters gave different result for the different call 
sets (Li & Wren, 2014). One of the other well-accepted filtering strategies is GATK’s hard 
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filtering strategy which is suggested by Summa and colleagues (De Summa et al., 2017). 
These authors tried to identify parameters for 7 standard GATK filters followed by a 
classification tree to decide correct variants. 

Besides the general filters mentioned above, there are several other strategies to detect ‘de 
novo’ mutations using genomic variation data. Jonsson et al. used minimum depth, allele 
balance and genotype likelihood parameters in their works to define their ‘de novo’ 
mutation candidates (Jónsson et al., 2017). Tatsumoto et al. also used read depth and allele 
balance in their ‘de novo’ SNV defining strategy (Tatsumoto et al., 2017). Li and Wren 
mentioned the importance of depth and allele balance in filtering (Li & Wren, 2014). 
While positions having low depth (depending on the study) are not significant, positions 
with high depth are not efficient for the detection of true ‘de novos’ (Jónsson et al., 2017; 
Li & Wren, 2014; Tatsumoto et al., 2017). Allele balance filter is also meaningful to 
eliminate mutations which show low proportions of alternative allele to reference allele 
counts, which is indicative of technical errors (Li & Wren, 2014). 

2.4.Demography analysis in Equus caballus 

Different estimations on demography such as population size, migration, inbreeding or 
history of divergence could be made with population genetics data (Nielsen & Slatkin, 
2013). With the increase in the amount and abundance of genomic data, new methods are 
being developed to make estimations on the demographic history of populations. 
Estimating evolutionary trees or making cluster analysis between individuals of a 
population could be some examples for demography analysis. Here we used two 
population genetics methods, pairwise sequentially Markovian coalescent (PSMC) and 
runs of homozygosity (ROH), to study horse demographic history. 

2.4.1. Pairwise Sequentially Markovian Coalescent (PSMC) 

PSMC is a haplotype-based method to make estimations on population demography from 
genomic information (Chen, 2015; Li & Durbin, 2011). The main idea behind the method 
is that, using whole genome diploid sequence data from a single individual, changes in 
past effective population sizes can be estimated. It uses the proportion of heterozygote 
sites in a genomic segment separated from other segments by ancestral recombination 
events and infers the local time to the most recent common ancestor (TMRCA) by using 
a Hidden Markov Model (HMM). In this HMM model the observation is the diploid 
sequence of an individual and the hidden states are the TMRCA and ancestral 
recombination events, the latter represented by transitions. The parameters that are 
necessary for the calculations are mutation rate, recombination rate and generation time 
in the population, which are estimated from the data using an expectation-maximization 
algorithm. Results of the analysis of human whole genome data provides estimates of the 
changes in the population size between 20 kya to 3 Mya. Getting information for a larger 
time period is also possible but Li and Durbin suggested that it will not be giving accurate 
results (Li & Durbin, 2011).  
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There are different studies which investigated horse demography by the PSMC method. 
Orlando and colleagues studied genomes of an ancient horse, five modern domestic 
horses, a Przewalski’s horse and a donkey with PSMC analysis. First, they calculated a 
mutation rate for the horse genome as 7.2e-09 per site per generation by aligning genome 
sequences of the horse and the donkey. They assumed 8 years generation time for the 
horses. Then they performed PSMC analysis using the calculated mutation rate and 
generation time. They made estimations for the last 2My of the horse population (Orlando 
et al., 2013). Their results suggested that the horse population size reached a minimum 
around 125 kya before present, a time period that coincides with the Last Interglacial 
Period. On the other hand, the population size reached the maximum level between 25-50 
kya, which corresponds to climatic changes fruitful for the vegetation after the Last 
Glacial Maximum (Lorenzen et al., 2011). Schubert and team also made PSMC analysis 
for the horses by using parameters from Orlando et al.’s 2013 study. They analyzed 
another two ancient horse genomes, again together with domestic and Przewalski’s horse 
genomes, to detect signals of domestication by using whole genomes of the horses and 
found patterns similar to the findings of Orlando and colleagues’ study (Schubert et al., 
2014). 

Although the PSMC analysis gives highly accurate estimations, Orlando et al. also 
detected a bias in the result for low coverage data (<20x) (Orlando et al., 2013). 
Nadachowska-Brzyska and colleagues also mentioned the impact of data coverage in the 
PSMC analysis. They analyzed 200 individuals from four different flycatcher species and 
made PSMC analysis to have idea of demographic history of their populations. They found 
that their results are much more consistent using data from individuals having at least 18x 
mean coverage and applying a 10x coverage filter per-site. They suggested to perform 
PSMC analysis using this approach (Nadachowska-Brzyska, Burri, Smeds, & Ellegren, 
2016). 

2.4.2. Runs of homozygosity (ROH) 

Calculating runs of homozygosity is another technique to detect bottlenecks and 
inbreeding rate in populations. The idea underlying this technique comes from the 
distribution of autozygous sites in genomes. Broman and Weber proposed the idea that 
these sites are not evenly distributed in the genome, but they are dispersed in the form of 
runs, or tracks (Broman & Weber, 1999; McQuillan et al., 2008). Cebellos and team 
recently discussed the relationship between ROH sites and population dynamics in a 
review (Ceballos et al., 2018). First, they showed that the length and distribution of ROHs 
in a genome are related with population size. The relationship occurs such that smaller 
populations have longer and more ROHs than larger populations. Then the authors 
explained how different processes affect the distribution of ROHs. Admixture events 
cause decrease in the length and number of ROHs, whereas bottlenecks lead to an increase 
in the number of ROHs but usually keep the length relatively short. Inbreeding is shown 
to result in an increase in the number of very long ROHs. If a population both went through 
a bottleneck and exercised inbreeding, the individuals will show both many short ROHs 
and some very long ROHs (Ceballos et al., 2018). 
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The horse (Equus caballus) is well studied for ROHs by many different groups. Grilz-
Seger et al. made ROH analysis with four different sub-populations of Lipizzaner horses 
(Grilz-Seger et al., 2019). One of the conclusions the authors reached is Austrian 
Lipizzaner being more inbred than other Lipizzaner populations. They showed that 
cumulative ROHs (FROH) in different lengths was almost twice in the Austrian Lipizzaners 
compared to Croatian, Hungarian, and Slovakian Lipizzaners. In addition, the number of 
long ROHs (>4Mb) were two to ten times higher in Austrian compared to the other 
Lipizzaners. Based on these results they suggested Austrian Lipizzaners are more inbred 
and bottlenecked (Grilz-Seger et al., 2019). Furthermore, they estimated inbreeding 
coefficients from ROH data, and these estimates were also consistent with the inbreeding 
coefficients calculated by pedigree analysis for the Austrian Lipizzaner (Zechner et al., 
2002). Grilz-Seger therefore suggested that the Austrian Lipizzaner is the most inbred 
sub-population among Lipizzaners. In addition to the ROH analysis, Druml et al. analyzed 
pedigree data of Austrian Noriker horses and they suggested that inbreeding in Austrian 
Noriker is lower than Austrian Lipizzaner (Druml et al., 2009). However, the inbreeding 
coefficient calculated for the Austrian Haflinger, which was calculated by Druml and team 
in 2018, was much higher and similar to the one observed in the Austrian Lipizzaner 
(Druml et al., 2018; Grilz-Seger et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

 

 

 

CHAPTER 3 

 

3.MATERIALS AND METHODS 

 

 

Here, we explain the methodologies using in this study, which covers whole genome 
sequencing data analysis including read mapping and variant calling, as well as 
demography analysis. 

3.1.   Next Generation Sequencing Data 

Whole-genome Illumina Next Generation Sequencing (NGS) data for three family trios 
(in total nine horses) from different breeds were provided by Dr. Barbara Wallner, 
Institute of Animal Breeding and Genetics, University of Veterinary Medicine in Vienna, 
Austria. All trios include mother, father and a male offspring. Trio 1 were three purebred 
Lipizzan horses, trio 2 purebred Noriker horses and trio 3 purebred Haflinger horses. 
Whole blood samples of each individual were collected for NGS data generation in 2012. 

NGS data was generated in different years and on different platforms. The Lipizzaner trio 
was sequenced by HiSeq2000 at BGI (Beijing Genomics Institute) in 2013, whereas the 
Haflinger and Noriker data were produced by HiSeqV4 at the Core Facility for 
Sequencing at the Vienna BioCenter (CSF) in 2015. The data consist of paired-end reads. 
Read length in Lipizzaner reads was 90 base pairs (bp), whereas the read length in Noriker 
and Haflinger reads was 125 bp. General information about the data is given in Table 3.1 
below.  

Haflinger and Noriker data were provided as unmapped BAM files, while Lipizzaner data 
in FASTQ format. Before starting the quality analysis of raw files, all BAM files were 
sorted with SAMtools (Li et al., 2009) (see Appendix A for version and command line 
usage of the tool) and converted to paired-end FASTQ files by BEDTools' (Quinlan & 
Hall, 2010) (see Appendix A) ‘bamtofastq’ algorithm. 
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Table 3.1: General information of individuals and provided data formats of each individual. Some of the 
individuals were sequenced on multiple lanes. 

 

3.2.    First Data Analysis 

3.2.1. Quality control and trimming of FASTQ files 

Quality controls of the FASTQ files from each sample were performed with FastQC 
(Andrews, 2015) (see Appendix A). Then, all reads were quality-trimmed with 
Trimmomatic (Bolger, Lohse, & Usadel, 2014) (see Appendix A) using the following 
parameters: “TRAILING:10, MINLEN:50, SLIDINGWINDOW:5:20”. These parameters 
were chosen due to the low-quality reads, some of which were under Phred score of 30 
towards the end of the reads. Next, the quality of all trimmed FASTQ files was 
reinvestigated using FastQC. To visualize FastQC results, the MultiQC software (Ewels, 
Magnusson, Lundin, & Käller, 2016) (see Appendix A), which creates a report by 
summarizing FastQC results, was used.  

3.2.2. Mapping reads to the reference genomes 

First, reference genomes EquCab2 (Wade et al, 2009) and EquCab3 (Kalbfleish et al., 
2018) were indexed with BWA (Li & Durbin, 2010) using the ‘bwtsw’ algorithm. Then 
the ‘mem’ (Li, 2013) algorithm of the BWA, which shows high performance in mapping 
of long reads was used for mapping reads to the reference genomes. As for some 

Sample ID Breed Pedigree 
Number of 
sequencing 

lanes 

Initial file 
format 

111 Lipizzaner Son 3 FASTQ 

113 Lipizzaner Father 3 FASTQ 

166 Lipizzaner Mother 4 FASTQ 

BW-352 Noriker Father 2 BAM 

BW-353 Noriker Mother 1 BAM 

BW-354 Noriker Son 1 BAM 

BW-355 Haflinger Father 1 BAM 

BW-356 Haflinger Mother 2 BAM 

BW-357 Haflinger Son 1 BAM 
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individuals the FASTQ data was derived from different sequencing lanes (see Table 3.1), 
data from each lane were mapped to the references separately. SAM files were obtained 
at the end of the mapping, which were converted to binary BAM files with the SAMtools' 
‘view’ algorithm and these BAM files were sorted with the SAMtools' ‘sort’ algorithm. 
For individuals with more than one lane sequenced, each lane was treated in the same way 
and then data from different lanes were merged with the SAMtools' ‘merge’ algorithm to 
create a merged BAM file, which contains data from separate lanes. These BAM files 
were sorted again, and only properly paired reads were chosen with the SAMtools' ‘view’ 
algorithm using the parameters: “-F 4 -f 2 –h”. Duplicate reads were removed by the 
MarkDuplicates algorithm of Picard Tools with the “REMOVE_DUPLICATES=TRUE” 
parameter. At the last step, reads that were under quality score 20 were filtered out with 
SAMtools' ‘view’ again, with the ‘–q 20’ parameter. Insert sizes of the produced BAM 
files that were mapped to the EquCab3 were calculated by Picard Tools’s 
CollectInsertSizeMetrics function. Finalized BAM files were indexed with SAMtools. 
Versions of all tools and their command line usages were given in Appendix Table A.A.1 
and A.A.2. 

3.2.3. Calculating mapping coverage 

Coverages of the mapped BAM files were calculated with the ‘genomecov’ function of 
BEDtools (see Appendix A) for each horse. Then, the mean mapping on autosomal 
chromosomes for each individual and also for each trio were calculated in R (see Table 
A.A.1 for version).  

To identify positions within a certain depth range, positional coverages of each individual 
were also calculated using the same function of BEDtools with the “–d” parameter (see 
Appendix A). The resulting coverage files were separated into chromosomes by UNIX 
command-line functions. Then, an R code that checked whether a certain position was 
within the given depth range in each member of the respective trio was written. The 
thresholds were set to 10 to 30 reads for EquCab2 mapped data, and 10 to two times mean 
coverage of the respective trio in the EquCab3 mapped data (Li & Wren, 2014). 

3.3.    Variant calling 

Three different algorithms were used to call variants including single nucleotide variants 
(SNV) and insertion-deletion variants (INDEL) in both references. These were i) GATK's 
‘HaplotypeCaller’ (Poplin et al., 2017) function, ii) Platypus' (Rimmer et al., 2014)  
‘callVariants’ function, and iii) the Freebayes (Garrison & Marth, 2012) algorithm (see 
Appendix A for version and command line usage of the tool). Default parameters of each 
callers were used, and members of the same trio were given to the callers at once while 
performing variant calling. The output variant calling file (VCF) of each algorithm 
included all variants detected in the trio horses when compared to the reference genome. 
At the end of variant calling step, six different VCF files had been generated per trio, one 
from GATK, one from Platypus and one from Freebayes, for each reference. 
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3.3.1. Workflow for determining candidate ‘de novo’ mutations 

In the next step, different filters were applied to detect ‘de novo’ mutations, which we 
define as occurring in the offspring and not found in the parents. To predict ‘de novo’ 
mutation candidates, a custom Python (see Appendix Table A.A.1 for the version) code 
was written. The code parsed each variant in the VCF file line by line. First, it checked 
the variant for any undetermined genotype among the three individuals. Such variants 
were filtered out. In next step, the code compared the offspring’s genotype with its 
parents’ genotype. Table 3.2 shows all of the conditions that were chosen as a ‘de novo’ 
candidate in the offspring. The first four rows of the table show the homozygous cases 
and last two rows show the heterozygous cases in the offspring. 

Table 3.2: ‘de novo’ candidate patterns extracted from VCF files. 

Offspring Parent 1 Parent 2 

0/0 1/0 1/1 

0/0 1/1 1/0 

1/1 0/0 1/0 

1/1 1/0 0/0 

0/1 0/0 0/0 

0/1 1/1 1/1 

 

After choosing ‘de novo’ candidates, chrX, chrUn, chrM, and INDELs (insertions and 
deletions) were removed by another Python code. At the end, the output files contained 
SNV ‘de novo’ candidates which are located on the autosomal chromosomes. For the final 
‘de novo’ list for each trio, ‘de novo’ SNP candidates called by three different variant 
calling algorithms were considered. For this we generated BED files from the VCF files 
using Bedtools (see Appendix A) and then the ‘intersect’ function of Bedtools to choose 
shared variants. These final position files were converted into VCF files with a Python 
script. While creating VCF files from BED files, genotype information for VCF files was 
derived from the GATK variant file of each related trio. 

For the next filtering steps, the GATK tool was used. First, the allele balance of each 
variant was calculated by the ‘VariantAnnotator’ function, with the ‘-A 
AlleleBalanceBySample’ parameter. Then GATK hard filtering (De Summa et al., 2017) 
was applied to the VCF data using ‘VariantFiltration’ function with the given parameters: 
“QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum < -12.5, ReadPosRankSum 
< -8.0, QUAL < 30, AC > 4”. ‘de novo’ candidates that passed filtering were kept and 
heterozygous candidates in each offspring were selected among these with the ‘.isHet()’ 
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function. The last two columns of Table 3.2 show the possible allele distribution of 
selected variants among trio individuals. In the last step, the genotype statistics (including 
GT, AD, DP, GQ and PL) of individuals in each trio were filtered with ‘VariantFiltration’ 
and ‘--genotypeFilterExpression’ functions. Filtering parameters for genotypes were: AB 
< 0.3 || AB > 0.75, GQ < 40.0 (Jónsson et al., 2017; Maretty et al., 2017). For the depth 
(DP) filtering, we required depth between 10x and 30x for the EquCab2 mapped data. In 
EquCab3 mapped data, we changed the threshold and we required lower and upper 
thresholds between 10x and 2 times of breed mean coverage, respectively (Li & Wren, 
2014). Analysis steps are shown in Figure 3.1 as four main parts (Mapping, Variant 
Calling, Filtering, Comparison). Versions of tools and their command line usages are 
given in Appendix Table A.A.1 and A.A.2. 

 

3.3.2. Determining candidate ‘de novo’ mutations with GATK PhaseByTransmission 
(PBT) algorithm 

To test the results of the workflow in section 3.3.1, GATK’s PhaseByTransmission 
(Francioli et al., 2017) algorithm, which predicts candidate ‘de novo’ mutations, was 
implemented as an alternative strategy. The function was run with the Lipizzaner variants 
from three different algorithms (GATK HaplotypeCaller, Platypus and Freebayes) 
separately. The ‘--MendelianViolationsFile’ parameter was added to obtain candidate ‘de 
novo’ mutations as a list. Shared ‘de novo’ candidates from the three different calling 
algorithms were selected. GATK’s PhaseByTransmission (see Appendix A) algorithm 
was applied only for the Lipizzan trio and in the next step (3.3.3) the resulting list of ‘de 
novo’ candidates was compared to the ones’ predicted with the custom approach described 
in 3.3.1 (workflow for determining candidate ‘de novo’ mutations). 

3.3.3. Comparing different variant lists 
In the next step, ‘de novo’ candidates determined by the workflow described in subsection 
3.3.1 for both references were compared with each other and with Jagannathan and 
colleagues’ (Jagannathan et al., 2018) domestic horse variant list including 23.5 million 
SNVs. Candidates that were shared between lists and candidates unique to only one list 
were determined. At the same time, ‘de novo’ candidates produced by the PBT algorithm 
(see subsection 3.3.2) were compared to the finalized lists of both references and also to 
the Jagannathans and colleagues’ variant list. As coordinates of ‘de novo’ variants were 
different between reference versions, the positions needed to be converted to each other 
for the comparisons. This conversion was performed with the Remap (see Appendix Table 
A.A.1 for the version) algorithm provided by NCBI.  
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Figure 3.1: Workflow for detecting ‘de novo’ mutation candidates. There were four main parts which were 
mapping, variant calling, filtering and comparison with different variant lists. Main functions for filtering 
and their details are given in blue boxes.     
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3.4. Laboratory validation of EquCab2 candidates 

All ‘de novo’ candidates predicted were checked in the IGV Genome Browser (see Table 
A.A.1). Based on this visual check, the most promising 50 ‘de novo’ candidates were 
chosen in total for laboratory validation by Sanger resequencing. The panel consisted of 
20 ‘de novo’ variants in the Lipizzan trio (%39 of all Lipizzaner ‘de novo’ candidates), 
14 in the Noriker trio (%24 of all Noriker ‘de novo’ candidates) and 16 in the Haflinger 
trio (%27 of aall Haflinger candidates). Validation candidates are given in Table A.C.2 in 
Appendix C.  

For each ‘de novo’ variant, flanking primers were designed for Sanger resequencing. 
Primers flanking the selected variants were designed using the web tool Primer3 (see 
Table A.A.1). Primer information is given in Appendix C, Table A.C.2. 

Laboratory validation were made by Doris Rigler and Eva Michaelis at Institute of Animal 
Breeding and Genetics, University of Veterinary Medicine Vienna. Briefly, PCR 
amplification was performed using genomic DNA from each member of the respective 
trio (mother, father, son) as template. PCR reactions were carried out in a 20 µl volume 
containing 2µl genomic DNA (5 – 20 ng/µl), 0.5 µM of each primer, 1.5 mM MgCl and 
1 x PCR buffer, 200 µM each dNTP and 0.1 U Taq DNA polymerase (Agrobiogen). The 
DNA was initially denatured at 95°C for 5 min, followed by 35 cycles of 30 s at 95°C, 30 
s at annealing temperature (Supplementary Table S2) and 40 s at 72°C. After the 35 cycles, 
a final extension for 4 min at 72°C was performed. PCR products were visualized on a 2% 
agarose gel and purified using a QIAquick PCR purification kit. The concentration of the 
products was checked on a 2% agarose gel using the DNA ladder and then sent for Sanger 
sequencing to LGC genomics®. Results were visualized using the program Codon Code 
Aligner (see Table A.A.1). Laboratory validation were made by Doris Rigler and Eva 
Michaelis. 

3.5. Mutation rate estimation 

The number of truly validated ‘de novo’ mutations in EquCab2 mapped data were used to 
calculate an estimate of the mutation rate in one generation. To calculate the rate, the 
number of true ‘de novo’ mutations for each trio was divided by length of genome that 
was covered with the given thresholds in that trio (Data Analysis Part 3) as seen in the 
Equation 1. Overlapping genome sizes (bp) for each trio were calculated by multiplying 
overlapping genome percentages with two times of autosomal genome length 
(2,242,939,370 bp in EquCab2). 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑖𝑛	𝑜𝑛𝑒	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

= 	
#	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑑𝑒	𝑛𝑜𝑣𝑜	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

%	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑔𝑒𝑛𝑜𝑚𝑒	𝑠𝑖𝑧𝑒 × 𝑔𝑒𝑛𝑜𝑚𝑒	𝑙𝑒𝑛𝑔𝑡ℎ × 2 (1) 
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3.6. Estimation of demographic history and runs of homozygosity 

Pairwise Sequentially Markovian Coalescent (PSMC) analysis (Li & Durbin, 2011) was 
applied to estimate the demographic history of the breeds investigated. First, diploid 
consensus sequences were obtained from filtered (quality filtering and duplicate removal) 
versions of the BAM files (Data Analysis Part 2) mapped to the EquCab3 reference. 
SAMtools’ ‘mpileup’ function with -C50 parameter and Bcftools (see Appendix A) were 
used to obtain these consensus sequences. While creating consensus sequences, a depth 
filter was applied to each trio again. The lower and upper thresholds were 10x to 2 times 
the mean trio coverage for each individual, respectively.  In the next step, input files for 
the PSMC analysis were prepared with the ‘q2psmcfa’ function. The analysis was made 
with the suggested simulation parameters: “-N25 -t15 -r5 -p ‘4+25*2+4+6’", from the 
previous horse data analysis by Orlando and colleagues. Then, plots were drawn in R 
using the suggested generation time (8 years) and horse mutation rate (7.242e-09) from 
Orlando et al. (Orlando et al., 2013). 

To estimate runs of homozygosity (ROH), variant files produced from EquCab3-mapped 
data by GATK HaplotypeCaller were used. Only the variants on the autosomal 
chromosomes were used in the analysis. ROHs were identified by PLINK (Purcell et al., 
2007) (see Appendix A) with parameters: “--homozyg --homozyg-kb 500 --homozyg-snp 
50 --homozyg-window-snp 50 --homozyg-window-het 3 --homozyg-window-missing 3 -
-homozyg-window-threshold 0.05 --homozyg-density 50”. 
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CHAPTER 4 

 

4.RESULTS 

 

4.1.Primary data analysis and quality-based trimming 

The total number of paired-end reads of each individual's raw data is given in Table 4.1. 
Whereas Haflinger BW-356 had the highest number of total reads in the data, Haflinger 
BW-357 had the lowest. The quality of raw reads was checked with FastQC and visualized 
with MultiQC. In Figure 4.1, the number of reads in different lanes are shown. Most of 
the Noriker and Haflinger lanes had a high amount of duplicates. 

Table 4.1: The total number of reads in the raw fastq files for each individual. The same number of reads 
exist for both pairs. 

Sample ID Pedigree Number of raw PE reads 

111 Lip. Son 317,112,113 

113 Lip. Dad 325,516,763 

166 Lip. Mom 298,406,535 

BW-352 Nor. Dad 365,143,936 

BW-353 Nor. Mom 298,670,837 

BW-354 Nor. Son 313,454,280 

BW-355 Haf. Dad 313,514,763 

BW-356 Haf. Mom 451,365,261 

BW-357 Haf. Son 296,405,435 
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Figure 4.1: The number of paired-end reads in each lane. In the leftmost column, individual IDs and 
pedigree information for the lane are given. The proportion of duplicate (black) and unique (blue) reads for 
each lane are shown. 

The number of reads and the mean Phred scores of different lanes are shown in Figure 
4.2. While most of the reads increased for Noriker and Haflinger trios have very high 
mean Phred scores, in the Lipizzaner lanes the mean Phred score has a mode around 38 
with few reads having qualities above 38.  

 

Figure 4.2: Mean Phred scores vs the number of reads of each lane. Most of the reads were above the mean 
Phred score of 30. 

Figure 4.3 shows the distribution of each lane’s mean Phred score at each nucleotide 
position. In the untrimmed data, the Lipizzaner parents’ (113 and 166) reads had low 
Phred scores. Trimming parameters were thus chosen based on these low-quality lanes. 
After trimming, Phred scores were all over 30, throughout the read length. Length of the 
Lipizzaner reads were cut down to 81-86 base pairs (bp) from 90 bp, while Noriker and 
Haflinger reads were shortened to 99-113 bp from 120-125 bp. 
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Figure 4.3: Mean Phred scores of each lane before (left) and after (right) trimming. After the trimming, 
reads with Phred score below 30 (red lines) for a position disappeared from data. 

4.2.Mapping to the reference 

The trimmed reads of each individual were mapped to the EquCab2 and EquCab3 
reference genomes with BWA software. Different lanes that belonged to the same 
individual were merged into a single file. After that, the mapping files were filtered in 
order to remove unmapped reads and eliminate reads that were not properly paired and/or 
duplicated. In Table 4.2, the number of mapped reads in the raw data and in the filtered 
BAM files (i.e. properly paired and unique reads) are shown.  

Table 4.2: The total number of reads for each individual, including both forward and reverse reads. BW-
356 had the highest number of reads in the raw file, but after filtering this decreased dramatically, similar 
to the others. In the filtered data, the Lipizzan trio had the highest number of mapped reads. 

Sample 
ID 

Pedigree 
info 

Total # of reads in raw files Total # of mapped reads in 
filtered files (EQ2/EQ3) 

111 Lip. Son 623366802 484898968/483215006 

113 Lip. Dad 638708842 508612572/506977451 

166 Lip. Mom 589312668 462960147/462505385 

BW-352 Nor. Dad 699268926 303403168/303337894 

BW-353 Nor. Mom 565506312 250130763/249834086 

BW-354 Nor. Son 613144358 215904593/215968466 

BW-355 Haf. Dad 613058170 291787760/291333599 

BW-356 Haf. Mom 878454846 300332316/300064570 

BW-357 Haf. Son 554469431 256835380/256756131 
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Mapping percentages of raw reads for different lanes are given in Table 4.3. Lipizzaners 
had the highest mapping rates (and properly paired read percentages) in both reference 
genomes while Norikers have the lowest.  

Insert sizes of the final BAM files that were mapped to the EquCab3 reference were also 
calculated:  Mean insert sizes were found as 475 bp in Lipizzaner, 308 bp in Noriker and 
317 bp in Haflinger, and their medians were found as 476 bp, 306 bp and 316 bp 
respectively, in the finalized bam files. 

4.3.Mapping coverage on autosomal chromosomes 

Mean coverages on autosomal chromosomes of each individual are given in Table 4.4. 
All calculations were made for both reference genomes (EquCab 2 and 3). The Lipizzaner 
trio had the highest mean coverages, while Noriker individuals had the lowest. 

Overlapping genomic regions which are in between threshold coverage values were 
calculated. The low and high thresholds were selected as 10 and 30, respectively, in 
EquCab2. In EquCab3, the low and high coverage thresholds were selected as 10 and 
twice the breed mean coverage, respectively. The lowest genomic size lying between these 
thresholds was calculated in the Noriker son (BW-354), whereas the highest was 
calculated in the Lipizzaner dad (113) for both references (see Table 4.4). Therefore, the 
Noriker trio had the lowest proportion of regions in the genome which were between the 
threshold values in all three trio-members and the Lipizzan trio had the highest proportion 
(Bold boxes in Table 4.4). 
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Table 4.3: Percentages of mapping and properly paired reads in each lane. Percentages were higher in the 
EquCab3 mapped data.   

Sample ID Pedigree 
info 

Lane % mapping 

(EQ2, EQ3) 

% prop.  

paired (EQ2, EQ3) 

111 Lip. Son 120619_I186_FCC0YD5ACXX_L4_SZA
XPI009908 

97.63, 98.04 94.53, 95.10 

111 Lip. Son 120619_I186_FCC0YD5ACXX_L5_SZA
XPI009908 

97.72, 98.13 94.69, 95.27 

111 Lip. Son 120603_I481_FCC0U78ACXX_L3_SZAX
PI009908 

98.04, 98.45 95.23, 95.82 

113 Lip. Dad 120619_I186_FCC0YD5ACXX_L4_SZA
XPI009909 

97.68, 98.11 94.46, 95.07 

113 Lip. Dad 120619_I186_FCC0YD5ACXX_L5_SZA
XPI009909 

97.76, 98.20 94.61, 95.23 

113 Lip. Dad 120603_I481_FCC0U78ACXX_L4_SZAX
PI009909 

97.66, 98.09 94.42, 95.03 

166 Lip. Mom 120619_I186_FCC0YD5ACXX_L4_SZA
XPI009902 

97.66, 98.10 93.92, 94.45 

166 Lip. Mom 120708_I878_FCC1076ACXX_L1_SZAX
PI009902 

98.43, 98.89 95.30, 95.87 

166 Lip. Mom 120603_I481_FCC0U78ACXX_L1_SZAX
PI009902 

98.12, 98.58 94.68, 95.25 

166 Lip. Mom 120619_I186_FCC0YD5ACXX_L5_SZA
XPI009902 

97.76, 98.20 94.10, 94.62 

BW-352 Nor. Dad 28244_GAGTGG_C7U2HANXX_4_2015
1203B_20151203 

93.75, 94.15 87.51, 87.92 

BW-352 Nor. Dad C7190ANXX_7_20150623B_20150629 94.00, 94.57 85.66, 86.21 

BW-353 Nor. 
Mom 

C7190ANXX_8_20150623B_20150629 93.18, 93.70 85.57, 86.09 

BW-354 Nor. Son C717VANXX_5_20150707B_20150711 95.12, 95.67 88.17, 88.72 

BW-355 Haf. Dad C717VANXX_7_20150707B_20150711 94.96, 95.47 89.10, 89.62 

BW-356 Haf. 
Mom 

C717VANXX_6_20150707B_20150711 94.88, 95.44 89.24, 89.87 

BW-356 Haf. 
Mom 

28248_GTGAAA_C7U2HANXX_4_2015
1203B_20151203 

94.20, 94.64 88.50, 88.99 

BW-357 Haf. Son C719TANXX_1_20150710B_20150715 95.06, 95.58 88.23, 88.76 
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Table 4.4: Mean coverages and the percentages among genome in between depth thresholds. While 10-30 
depth thresholds were used in the EquCab2 data, 10 to 2 times breeds mean coverages of each trio were 
used in the EquCab3 mapped data. 

 

Sample 
ID 

Pedigree 
info 

Mean 
Genome 

Coverage 
(EquCab2) 

% of 
genome 
between 
10-30 DP 

(EquCab2) 

Overlapping 
genome size 
in 10-30 DP 
(EquCab2) 

Mean 
Genome 

Coverage 
(EquCab3) 

% of 
genome 
between 

10-
34/24/27 

DP 
(EquCab3) 

Overlapping 
genome size 

in 
10-34/24/27 

DP 
(EquCab3) 

111 Lip. Son 17.32 88.17  17.16 88.11  

113 Lip. Dad 18.05 88.25 71.6 17.89 88.86 
73.96 

166 Lip. 
Mom 15.96 81.68  15.87 81.86  

BW-
352 Nor. Dad 14.23 83.62  14.16 80.60  

BW-
353 

Nor. 
Mom 11.36 66.01 37.43 11.29 64.89 

35.53 

BW-
354 Nor. Son 10.21 56.02  10.17 55.30  

BW-
355 Haf. Dad 13.73 81.34  13.65 80.02  

BW-
356 

Haf. 
Mom 13.92 81.99 56.46 13.83 80.54 

54.96 

BW-
357 Haf. Son 12.16 71.949  12.11 71.02  

 

4.4. ‘de novo’ mutation candidates 

For detecting ‘de novo’ mutation candidates, the three main steps are mapping, variant 
calling, and filtering. These are followed by a comparison of the resulting variation lists 
(‘de novo’ candidate lists based on EquCab2 and EquCab3, Jagannathan’s variation panel, 
PBT ‘de novo’ candidates). Figure 4.4 shows the whole ‘de novo’ candidate detection 
workflow and the number of variants after each step. The same workflow was applied to 
both EquCab2 and EquCab3 mapped data, and both results were given in the figure 
respectively in each box. 

4.4.1. Variant calls on EquCab2 and EquCab3 

Three different algorithms were used to call variants in trios as shown in the variant calling 
part of Figure 4.4. GATK found the highest number of variants in all trios for both 
reference genomes, but the number of variants found in the updated horse genome release 
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EquCab3 was lower. The initial numbers given at the output of the variant calling step in 
Figure 4.4 include both SNVs and indels. 

4.4.2. Filtering variants to detect ‘de novo’ mutation candidates 

The filtering of the variants was started by finding ‘de novo’ candidates with a Python 
script (see Materials and Methods part 3.3.1) and eliminating variant calls on 
chromosomes X, M and Un, and also insertions and deletions (INDELs). At this point, the 
number of ‘de novo’ mutation candidates were highest in the results of the Freebayes 
algorithm, among the three algorithms, for each trio and for both reference genomes (see 
Figure A.B.1 and Figure A.B.2 in Appendix B). In the next step, shared candidates were 
extracted between three algorithms and the highest number of common candidates were 
found between the GATK HaploTypeCaller and FreeBayes as seen in Appendix B, again 
for both reference genomes. On the other hand, the intersection of candidates between the 
three algorithms was highest in the Noriker trio and lowest in the Lipizzan trio.  

Subsequently, variants were filtered based on different properties (heterozygosity, quality, 
etc.) as can be seen in the filtering part of Figure 4.4. At the end of the filtering, 51, 58 
and 59 ‘de novo’ candidates in EquCab2 mapped data, and 69, 45 and 55 candidates in 
EquCab3 mapped data were predicted in the Lippizaner, Noriker and Haflinger trios, 
respectively. Because different depth thresholds were applied to the variants at the last 
step of filtering, the minimum and the maximum number of resulting ‘de novo’ candidates 
were different in over trios and reference genomes. Detailed information of all ‘de novo’ 
candidates from the two reference genomes for the three trios is given in Table A.C.1 in 
Appendix C. 

4.4.3. Comparing finalized candidates from different lists 

In the last step of the workflow (Figure 4.4), finalized candidate lists from EquCab2 and 
EquCab3 and the common variant list from Jagannathan and colleagues (Jagannathan et 
al., 2018) which was created by 88 horses from EquCab3 reference genome were 
compared. Figure 4.5 shows the results of the comparison. Detailed information on ‘de 
novo’ SNPs is provided in the Table A.C.1. Candidates were also compared with the 
results from ‘de novo’ mutation detection algorithm PhaseByTransmission in GATK. 
Finalized ‘de novo’ candidates were examined in the IGV Genome Browser and chosen 
ones validated in the laboratory (see the subsection 4.5 titled Laboratory Validation of ‘de 
novo’ Candidates below). 

a) Comparing to Jagannathan’s common variant panel 
38, 27, and 30 shared ‘de novo’ mutations were found between EquCab2 and EquCab3, 
respectively in Lipizzan, Noriker and Haflinger trios. Most of these ‘de novo’ mutation 
candidates were also found in the Jagannathan variation panel as seen in Figure 4.5. In 
particular, only 14 Lipizzaner, 5 Noriker, and 12 Haflinger ‘de novo’ variants did not 
appear in Jagannathan's horse population variation list. Positions and detailed comparison 
results of all these mutations were given in Table A.C.1. 



30 
 

 

 

Figure 4.4: Shows analysis steps and the number of remaining mutations after each step. Blue boxes show 
the steps of the analysis, whereas green, yellow and grey boxes show the number of mutations in different 
breeds and different references after each step. 
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Figure 4.5: Comparison of finalized lists from the two reference genomes and published common variants. 
The highest number of shared mutations between the EquCab2 and EquCab3 genomes were found in the 
Lipizzan trio. Total number of mutations in a set are given below the name of the set. 

b) Comparing to the PhaseByTransmission result 
‘De novo’ candidates in the Lippizaner trio were also predicted using the GATK 
PhaseByTransmission algorithm. Only 5 different candidates were detected at the 
intersection of the three different variant calling algorithms (GATK HaplotypeCaller, 
Freebayes, Platypus). These five variants were heterozygous in the offspring and 
homozygous for the identical allele in both parents. Positions and coverages of these five 
‘de novo’ candidates are shown in Appendix C, Table A.C.2. Neither of these candidates 
were found in the EquCab2 or EquCab3 ‘de novo’ candidates generated in our custom 
workflow above, but three of them were found among Jagannathan's common variants. 

4.5. Laboratory validation of ‘de novo’ candidates 

Candidate ‘de novo’ mutations revealed after the filtering steps, as explained above, from 
EquCab2 mapped data (51 Lipizzan-, 58 Noriker- and 59 Haflinger-variants) were 
visually checked in the IGV Genome Browser. Candidates that were located near other 
variants were eliminated and 50 candidate variants (20 in Lipizzaner, 14 in Noriker, 16 in 
Haflinger) were selected for independent lab validation. Detailed information of the 
validated variants is given in Table A.C.3, in Appendix C. For the chosen variants, locus-
specific flanking primers were designed and a PCR product was amplified in mother (M), 
father (F) and son (S) and these were sequenced with Sanger technology.  

The results of validation are shown in Table 4.5. 13 out of the 20 the Lipizzaner (around 
%65 of all tested candidates), 3 out of 14 the Noriker (around %21 of all tested candidates) 
and 5 out of 16 the Haflinger (around %31 of all tested candidates) candidates were 
successfully validated. In 5 Lipizzaner, 4 Noriker and 4 Haflinger candidates the putative 
‘de novo’ allele was also detected in one of the parents. Some of the candidates could not 
be validated at all because Sanger sequencing did not produce good results in those 
positions (given in the Missing row in Table 4.5). Finally, some of the positions did not 
show the ‘de novo’ allele as observed in the NGS data. These are called ‘No SNV’ in 
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Table 4.5. IGV screenshots and Sanger validation results of a true ‘de novo’ mutation, a 
position that was not found as a variation in Sanger sequencing (i.e. ‘no SNV’) and a ‘de 
novo’ candidate that was also detected in the parents are, both shown in Appendix D. 

Table 4.5: Results of laboratory validation. While some of the SNPs could not be detected with validation, 
some of them were also found in the parents. The highest proportion of true ‘de novo’ mutations were 
detected in the Lipizzan trio. 

 Lippizaner Noriker Haflinger 

Total number of 
validated SNVs 20 14 16 

Missing (bad 
Sanger 

sequence) 
1 1 2 

SNV found also 
in parents 5 4 4 

No SNV 1 6 5 

Validated ‘de 
novo’ variant 13 3 5 

% of truly 
validated 

candidates 
~%65 ~%21 ~%31 

 

 

Figure 4.6 shows the distribution of validation results and the comparison of three variant 
lists in addition to Figure 4.5. The 5 Lipizzaner, 2 Noriker and 3 Haflinger ‘de novo’ SNPs 
that were found also in the parents in the validation result were also found in the 
Jagannathan's variants. Besides, except one in Lipizzaner, all of the true positive ‘de novo’ 
mutations were detected in both EquCab2 and EquCab3 mapped data (see also Figure 
4.6).  
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Figure 4.6: Comparison of three variant lists including validation results of EquCab2 mapped data. Grey 
label refers to SNPs which also determined in one of the parents in validation, orange label refers to bad 
Sanger sequenced positions, yellow label refers to variants not validated as SNP in Sanger results and green 
labels refers to validated ‘de novo’ variants. Except one, all true ‘de novo’ mutations are in the intersection 
of EquCab2 and EquCab3 mapped data and they are not seen in the Jagannathan’s variants. 

4.6. ‘de novo’ mutation rate 

The number of true ‘de novo’ mutations detected on the EquCab2 mapped data was used 
to calculate mutation rate in one generation (see Materials and Methods, part 6). To 
calculate mutation rates overlapping genome percentages (71.6 in Lipizzaner, 37.43 in 
Noriker and 56.46 in Haflinger) in the 10 to 30 depth threshold values were used as 
genome sizes and these revealed rates of ~ 4e-09 bp/gen, ~1.7e-09 bp/gen and ~1.9e-09 
bp/gen bp/gen in Lippizaner, Noriker and Haflinger trios, respectively. Detailed 
calculation steps are given in the Materials and Methods. 

4.7. Estimation of demographic history and runs of homozygosity 

To estimate the demographic history of the three populations, a Pairwise Sequentially 
Markovian Coalescent (PSMC) analysis was performed. The resulting PSMC graph is 
shown in Figure 4.7. All nine horses from three different breeds showed a similar pattern. 
There was a dramatic decrease in the effective population size around 500,000 years 
before present and the effective population size reached its maximum level around 
120,000 years ago. The logarithmic version of the PSMC graph is given in Appendix E, 
Figure A.E.1. 

The histograms showing the distribution of homozygous runs over lengths of runs are 
given in Figure 4.8. As evident from the figure, and as is expected, the number of runs 
decreased when the length of the run increased. The three Lippizan horses had the highest 
mean number of homozygous runs for each histogram bin, whereas the Haflingers had the 
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lowest. In general, the distribution of the Haflinger and Noriker trios’ runs of 
homozygosity were closer to each other, when compared with the Lippizaner trio. 

 

 

Figure 4.7: PSMC results for nine horses from three breeds as a function of time before present and effective 
population size. E.g., 2e+06 in the x-axis is equal to 2 million years before present. 
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Figure 4.8: Distribution of homozygous runs for different length intervals. The x-axis refers to length of 
homozygous runs in megabases, the y-axis shows number of homozygous runs. 
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CHAPTER 5 

 

5. DISCUSSION 

In this thesis, we analyzed whole genome sequencing data of three horse trios. We 
designed a workflow to determine ‘de novo’ mutations accurately. We then calculated the 
mutation rate per generation with these ‘de novo’ mutations and compared this to the 
mutation rates from previous studies. Additionally, we made estimations regarding the 
demographic history of the three horse breeds by using PSMC and ROH analysis and 
compared results with previous studies.  

5.1.Data, mapping, coverages and variant calling in different reference genomes 

Some of the NGS sequencing lanes in the Noriker and Haflinger samples, produced by 
Vienna BioCenter (CSF) in 2015, had high numbers of duplicate reads. There are four 
main reasons for a duplicated read i) biological duplication (repeat regions), ii) PCR 
duplications, iii) optical duplicates which are the duplicated reads occur by accepting large 
clusters as two different clusters by mistake or by a local re-clustering of the original 
library polymer during bridge amplification, iv) ExAmp duplicates (Hadfield, 2016). Any 
of these can cause duplicate reads in Illumina sequencing. In our case, the main reason for 
having a high number of duplicates in some lanes in the Noriker and Haflinger data is 
assumed to be optical duplication, due to the sequencer used; HiSeq 2500 run mode HiSeq 
SBS V4. It has been suggested that it is more likely to have optical duplicates with this 
particular device and run mode (Hadfield, 2016).  

When we compared mapping results between the EquCab2 and EquCab3 references, 
while the number of mapped reads after filtering were lower in EquCab3 mappings (Table 
3-2), mapping percentages were increased in EquCab3 compared to EquCab2 mappings 
(Table 3-3). The increase in mapping ratio for the updated reference genome was also 
shown by Kalbfleisch and colleagues (Kalbfleisch et al., 2018). Besides mapping 
percentages, the number of properly paired reads also increased in the EquCab3 mappings. 
When we called variants with three different algorithms, we observed a decrease in the 
number of variant calls in the EquCab3 mapped data. This decrease in the number of 
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variants implies that false positive variants called in the earlier genome version (EquCab2) 
are now eliminated, as suggested in Guo et al., 2017. 

The mean mapping coverage of each individual and overlapping genomic regions (i.e. 
regions where all members of a trio have coverage in between given thresholds) in each 
trio also differed between reference genomes (Table 4.4). The difference in the percentage 
of the overlapping genomic regions was mainly due to different covering thresholds being 
applied for the two different reference genomes (see 3.2.3). These changes in the threshold 
levels resulted in a wider depth range in the Lipizzaner trio in EquCab3 (threshold is 10 
to 34 instead of 10 to 30 in EquCab2) and accordingly a larger percentage of the genome 
falling into this category in EquCab3. In contrast, a narrower range in EquCab3 in the 
Noriker (threshold is 10 to 24 instead of 10 to 30) and Haflinger (threshold is 10 to 27 
instead of 10 to 30) lead to a decrease in percentages. 

5.2.Variant calling with different algorithms and filtering 

We performed variant calling with three different algorithms (GATK HC, Platypus, 
Freebayes). GATK HC revealed the highest number of variants among them as seen in 
Figure 4.4. In the first step of filtering, we chose ‘de novo’ mutation candidates which 
show patterns as given in Table 2.2. Most variants were eliminated in this step as shown 
in Figure A.B.1 and A.B.2. This is expected because most variants are not expected to be 
‘de novo’ candidates. In the next step, by eliminating the X, and Un chromosomes and the 
indels we lost almost half of the ‘de novo’ candidates. After this elimination, remaining 
candidates from three different algorithms were compared with each other to find shared 
ones. We observed that FreeBayes found the highest number of unique candidates which 
were not detected by any other algorithms, in the Noriker (83,593 in EQ2, 83,857 in EQ3) 
and Haflinger (56,279 in EQ2, 57,822 in EQ3) breeds (see Figures A.B.1 and A.B.2). 
GATK HC found the second-highest number of unique candidates in these trios. One 
reason for having the higher number of unique mutations called with different algorithms 
in Noriker and Haflinger could be the low sequencing coverage of some individuals in 
these trios. Tatsumoto et al., 2017 also suggests that false-positive variant prediction is 
more likely to occur in low coverage data. We also compared the intersection of the 
number of candidates detected by different algorithms pairwise and found the highest 
number of intersecting ‘de novo’ candidates among Freebayes and GATK HC, for both 
reference genomes and for each trio. Because this intersection did not include the 
candidates shared by all three of the algorithms, we speculate that most of these were 
false-positives, given that Platypus has a lower false-positive rate. We also found that the 
Lipizzan trio had the lowest number of mutations in the pairwise intersections of different 
algorithms as well as at the intersection of all three algorithms. This is consistent with the 
expectation of fewer false positives with the higher coverage of the Lipizzan data; fewer 
candidates that are more accurate are observed. 

GATK Hard Filtering parameters were suggested by Summa et al. (De Summa et al., 
2017) to detect the qualified variations among all variations. Around 15 % of the 
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candidates were filtered out in each trio and each reference with hard filtering. Selecting 
heterozygote ‘de novo’ candidates among all patterns (Table 2.2) also caused a dramatic 
decrease in the number of candidate ‘de novo’ mutations. To see a ‘de novo’ mutation 
having a homozygous allele pair in the offspring (see first four rows in Table 2.2), one of 
the parents should carry the same homozygous allele with the offspring and the other 
parent should be heterozygous at that position. This is a vanishingly low probability 
because it requires independent mutations in the offspring and one of the parents, or a 
back mutation (a mutation at the same position as a previous mutation that reverts the 
change of the former back to the reference allele), at that same position. Likewise, when 
the offspring is heterozygous (0/1) at a position, having homozygous alternative alleles 
(1/1) in the parents also means that a back mutation occurred in the position (see the last 
row of Table 2-2). Due to the extremely low probabilities of the aforementioned events, 
we speculate that only candidate ‘de novo’ patterns where the offspring is heterozygous 
(0/1), while the parents carry the homozygous reference allele (0/0) (see the fifth row of 
Table 2-2), have a chance to be a real ‘de novo’ mutation. We therefore focused on this 
pattern, applied filtering to choose this pattern among all ‘de novo’ patterns, and saw a 
dramatic decrease in the number of candidates. By eliminating the other patterns we 
speculate that we must have eliminated of most of the false positive candidates (e.g. due 
to sequencing errors) in our data. 

We finally filtered candidates for allele balance and depth, as suggested in several studies 
(Jónsson et al., 2017; Tatsumoto et al., 2017). In EquCab2 data, we filtered for ‘de novo’ 
candidates with 10 to 30 read depth values and we got the lowest number of candidates in 
Lipizzaner trio (51), whereas higher numbers in Noriker (58) and Haflinger (59) trios. 
Because the lowest overlapping regions between 10 to 30 depth values were found in the 
Noriker, followed by the Haflinger trios, we speculate that a higher number of false 
positives in the ‘de novo’ candidate list of Noriker and Haflinger trios caused this 
observation. We therefore changed the depth thresholds from 10 to two times mean 
coverages of the respective trios when analyzing the EquCab3 mapped data. Because 
mean coverage is lower in Noriker and Haflinger trios, their upper thresholds were thus 
also lower (24 for Noriker, 27 for Haflinger), while Lippizzaner had a higher upper 
threshold (34). These changes in the threshold caused an increase in the number of ‘de 
novo’ candidates in the Lipizzaner (69) list and decrease in Noriker (45) and Haflinger 
(55) trios. This shows that setting the upper limit as a function of the mean lowers the 
probability of false positives (see Figure 4.5) especially in low covered trios (Noriker and 
Haflinger). Keeping depth filtering as a function of mean was also suggested by Li and 
Wren (Li & Wren, 2014)  When we compared the number of ‘de novo’ candidates with 
the numbers in other mammalian studies (Conrad et al., 2011; Jónsson et al., 2017; 
Tatsumoto et al., 2017), we saw that they were comparable. 

5.3.Interpretation of ‘de novo’ candidates and Sanger validation results 

We compared the candidate lists from EquCab2 and EquCab3 mapped data and found the 
highest number of shared mutations in Lipizzaner (38) and the lowest in Noriker (27) 
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(Figure 4.5). We expected that intersecting candidates on two independent callings using 
different reference genomes were the best candidates for true ‘de novo’ mutations. 
Besides, to get a feeling how many of false positive candidates are still in our list, we 
compared the candidates to a recently published horse variation dataset given in 
Jagannathan et al. (Figure 4.5) (Jagannathan et al., 2018). For our purposes, the 
Jagannathan panel serves as a database for standing variation in the Central European 
horse population. We found a remarkable overlap especially in the Noriker and Haflinger 
‘de novos’ as shown in the Figure 4.5. Possible explanations for this observation are 
sequencing errors or low coverage sequencing of parents’ data. Because heterozygosity in 
one parent was not detected with Illumina sequencing, some variants falsely give a ‘de 
novo’ mutation pattern after filtering. We saw this ratio was higher in the Noriker (22 out 
of the 27 ‘denovo’ variants also in Jagannathan dataset) data than in the Lipizzaner (24 
out of 38) and Haflinger (18 out of 30) data. These results support our hypothesis of a 
higher amount of false positives in the lower coverage Noriker trio.   

We performed Sanger resequencing for a selected set of ‘de novo’ mutations after 
checking all candidates in the IGV Genome Browser for both parents and offspring. 
Results of laboratory validation allowed us, on the one hand, to infer the validity and true 
number of our ‘de novo’ predictions, and on the other hand, they illuminate possible 
scenarios leading to false positive candidates. For example, i) Some could be sequencing 
errors in the offspring and we called them ‘no SNP’ in the validation results. ii) The 
putative ‘de novo’ allele was also detected in one of the parents with Sanger sequencing. 
These positions were most probably not called with Illumina sequencing because of the 
low coverage. We called these ‘SNP also in parent’. iii) ‘de novo’ candidates that could 
not be confirmed with Sanger sequences, due to inconclusive Sanger results, were 
classified as ‘bad Sanger sequence’. Such errors occur when the position is in for example 
in a duplicated regions in the genome, as suggested in the Tatsumoto et al., or the PCR 
amplicon for Sanger sequencing was not locus specific; iv) Finally, true ‘de novo’ 
mutations that were validated successfully and the ‘de novo’ allele was detected only in 
the offspring by both NGS and Sanger sequencing.  

Validation results (Table 4.5) were consistent with the data quality. Ratio of truly 
validated mutations was 13/20, 3/14 and 5/16 in Lipizzaner, Noriker and Haflinger trios 
respectively. The results clearly showed that, sufficient read coverage is essential to detect 
true positive mutations. We expected this result because we had the of the highest mean 
coverage in the Lipizzaner (~17x) and the lowest in the Noriker (~12x) data. Tatsumoto 
et al. suggested that even 30x and 60x coverages are not enough to detect all ‘de novo’ 
mutations in a trio data (Tatsumoto et al., 2017). Although our data was not nearly that 
deeply covered, with our custom filters we have reduced the number of false positives and 
detected a healthy number of ‘de novo’ mutations which are true positive.  

We make two inferences from our results at this point: First, Lipizzaner data coverage is 
at the edge of the coverage necessary to reliably detect a sufficient number of true ‘de 
novo’ mutations. Second, our workflow still gives partially accurate results, in spite of the 
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low coverage. To sum up, having genomic data with at least 17x mean coverage and 
applying well-adjusted depth thresholds could be the most important steps in finding true 
‘de novo’ mutations.  

Number of candidates and true positives also correlate with the size of the genomic regions 
that were considered for analysis. The Lipizzaner trio had the largest genomic area 
(71,60% in EquCab2) within the thresholds, whereas Noriker had the lowest (37.43% in 
EquCab2). Based on this, we expect to find more candidates and true ‘de novos’ in 
Lipizzaner, and less in Noriker. Figure 5.1 shows the relation between scanned regions 
(1.605 x 109 Mb in Lipizzaner, 0.839 x 109Mb in Noriker and 1.266 x 109 Mb in 
Haflinger) and true positive mutations (13 in Lipizzaner, 3 in Noriker and 5 in Haflinger). 

 

Figure 5.1: Percentages of overlapping genomic regions that were covered between 10-30 in EquCab2 in 
the respective trio and number of true ‘de novo’ mutations. 

We also checked the distribution of the validation results among EquCab2, EquCab3 and 
the variant dataset from Jagannathan et. al. We found that all of true ‘de novo’ mutations, 
except one, in Lipizzaner were detected in both EquCab2 and EquCab3 mapped data but 
not in the Jagannathan variation panel, as expected (Figure 4.6). We found that many of 
the candidates which were classified as ‘SNP also found in parents’ were also in the 
Jagannathan data. Seeing these variants already in the Jagannathan data is further proof 
that Illumina sequencing missed heterozygous alleles in the parents due to very low 
sequencing coverage. None of the ‘no SNP’ positions were found in the Jagannathan’s 
variation list. This was expected and is another confirmation that these positions are 
sequencing errors in the offspring. 

5.4.Mutation rate differences 

We calculated a ‘de novo’ mutation rate to be 4.05 per billion sites per generation for the 
Lippizaner, 1.79 for the Noriker, and 1.97 for the Haflinger trio, by dividing number of 
true positive ‘de novo’ mutations detected in each trio with 2 times overlapping genomic 
area of the respective trio in 10-30 coverage thresholds. We compared these ratios with 
human, chimpanzee and mouse rates which were calculated with the same equations. 
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When we compare these rates with the germ line ‘de novo’ mutation rate of human which 
is 1.29e-08  (Jónsson et al., 2017) our rates are almost 3 to 6 times smaller than the human 
rate. In the chimpanzee case the mutation rate was calculated as 1.48e-08 (Tatsumoto et 
al., 2017) and our Lippizzan rate was almost 4, Noriker rate was almost 9, and Haflinger 
rate was almost 8 times smaller than chimpanzee rate. When we compared the estimated 
horse rates with the mouse mutation rate estimates, ranging from 3.9e-09 (Lindsay et al., 
2016) to 5.4e-09 bp/gen (Uchimura et al., 2015), our rates appeared comparable with 
them. Besides, when we compared the estimated rates with the mutation rate calculated 
for horses by phylogenetic distance method which is 7.2e-09 bp/gen (Orlando et al., 2013), 
we could say that we estimate the rate at least in the same decimals. One possible reason 
of the difference between phylogenetic and 'de novo' rates could be the false negative ‘de 
novo’ mutations that we missed during the analysis because of our data quality. However, 
other explanations are also possible (see Introduction). 

When we compared different mutation rates between our three horse trios, we found the 
highest rates in the Lipizzaner whereas Noriker and Haflinger rates were lower and closer 
to each other. We speculate that the main reason for this difference is again the quality of 
the sequencing data. We had the highest coverage in the Lipizzaner trio, and thus the most 
accurate ‘de novo’ mutation rate is the one calculated from Lipizzaner data. Other 
possibilities of getting different rates could be fathers’ age (Francioli et al., 2014; Kong et 
al., 2012) and background effects differing between families (Conrad et al., 2011). 

5.5.Estimations on population history 

5.5.1. PSMC 

To estimate the demographic history of Equus caballus, we performed PSMC analysis. 
Results of the analysis revealed patterns similar to the ones presented by Orlando et al., 
2013 and Schubert et al., 2014. The horse effective population size reached a minimum 
value between 100 to 130 thousand years (kyr) before present in our data. Orlando et al. 
found the same decrease 125 kyr before present, and they suggested that the Last 
Interglacial Period was the reason for this decrease. This decrease is followed by a peak 
in the effective population size in our findings, as well as in Orlando et al., 2013. This 
peak is thought to have developed due to the environmental changes after the Last Glacial 
Maximum (Lorenzen et al., 2011). However, although this timeline is consistent with our 
findings, there are still some differences in the timeline vs. effective population size 
patterns of our nine horses. One reason for this could be, again, the low mean coverage of 
our data. Nadachowska-Brzyska and colleagues have suggested that the PSMC method is 
not able to produce reliable models under 18x mean coverage, and our mean coverages in 
EquCab3 mapped data ranged between 10.17 and 17.89 (Nadachowska-Brzyska et al., 
2016). The difference between mean coverages could also explain the differences in the 
models of different individuals. Despite these differences, we suggested that taking the 
regions in between 10 to 2 times mean coverage threshold (Li & Wren, 2014) provides 
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consistent pattern among individuals and with the other studies (Orlando et al., 2013; 
Schubert et al., 2014). 

5.5.2. Runs of homozygosity analysis (ROH) 

We also performed a ‘runs of homozygosity’ analysis on our data to estimate population 
histories of the three different Austrian breeds in our study. Ceballos and colleagues 
suggested that inbred populations have a higher number of longer ROHs than outbred 
populations. They also suggested that if the population has a high number of shorter runs 
and along with some longer ROHs, it is possible that the population is both inbred and 
bottlenecked (Ceballos et al., 2018). When we interpreted our results from this point of 
view, we saw that the Lipizzaner trio is more inbred than the Noriker and Haflinger trios. 
Previous studies have found higher inbreeding in Austrian Lipizzaners with respect to 
other Lipizzaners (Grilz-Seger et al., 2019), and more inbreeding in Lipizzaners as 
compared to Norikers (Druml et al., 2009). Additionally, no appreciable difference 
between Lipizzaner and Haflinger populations in inbreeding was reported (Grilz-Seger et 
al., 2019).  

Our ROH results which showed a low number of long ROHs (>4Mb) and high number of 
short ROHs (<2Mb) in Noriker and Haflinger trios, suggest less inbreeding in recent 
generations when compared with Lipizzaners (Ceballos et al., 2018). The conclusion of 
more inbreeding in Lipizzaner compared to Noriker is also supported by Druml et al., 
2009. On the other hand, more inbreeding in Lipizzaner than Haflinger was not reported 
previously. This could be an effect of coverage differences in our data or might reflect 
variation within these breeds. 

5.6.Future work and conclusion 

We only validated candidate mutations from EquCab2 mapped data, but in addition we 
defined new possible candidate ‘de novo’ mutations called on EquCab3 only, which were 
not found in Jagannathan’s data set (green labeled candidates in Appendix Table A.C.1). 
These ‘de novo’ candidates should be validated as well. While validating them in the 
future, besides taking the blood sample used for Illumina sequencing as a source for 
Sanger validation, another somatic tissue also could be used to distinguish true germ line 
‘de novo’ mutations from somatic ‘de novo’ mutations. Only if the same ‘de novo’ 
mutations are validated in the other somatic cells, we can be definitely sure that they are 
germ line and not somatic cell mutations (Tatsumoto et al., 2017). 

The statistical power of ‘de novo’ mutation detection workflows should also be measured 
in terms of false negative rate. To calculate false negative rate, we would need to estimate 
‘de novo’ mutation candidates with another data set which have also validated true ‘de 
novo’ mutations. By trying our workflow on such a more deeply sequenced data we could 
have an estimate on false negative rate, and thus could obtain a more accurate mutation 
rate per generation for horse. For this aim we can analyze publicly available genomic 
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datasets, which include truly validated ‘de novo’ mutations (Francioli et al., 2014), in 
order to test its reliability. Another option could be analyzing the 'Genome in a Bottle' data 
set which includes deep coverage (~300x) human trio data (Zook et al., 2016), and we 
could compare verified ‘de novo’ mutations from this data set with ‘de novo’ mutations 
estimated from our workflow (Zook et al., 2018) and using the same coverages as in the 
horse data.  

The demographic analysis could also be enriched, e.g. by calculating the inbreeding 
coefficient (FROH) from ROH data, by dividing average length of ROHs to autosomal 
genome size (McQuillan et al., 2008), and comparing these estimates with other studies’ 
outcomes (Druml et al., 2009; Grilz-Seger et al., 2019). 

In conclusion, our data is at the very low-end coverage compared to many other studies 
for 'de novo' mutation estimation. Nevertheless, we were able to analyze this data to get 
as much information out of it as possible. We were able to detect a significant number of 
the true ‘de novo’ mutations from trio data with our workflow, and this was the 
achievement of our workflow for ‘de novo’ mutation detection. On the other hand, PSMC 
and ROH results were consistent with previous studies in most cases. Our study thus 
provided insight into the minimum data quality needed for such analyses. 
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APPENDICES 

 

APPENDIX A 

 

USED TOOLS 

 
Table A.A.1: Programs and their versions that used in the analysis. 

Program Version 

SAMtools 1.4 

Bedtools 2.25.0 

FastQC 0.11.5 

MultiQC v1.7.dev0 

Trimmomatic 0.36 

Picard Tools 1.119 

R 3.2 

GATK 3.8-0 

Freebayes v0.9.10-3-g47a713e 

Python 2.7, 3 

Remap 2.1 

IGV 2.4.10 

Primer3 v0.4.0 

Codon Code Aligner 3.0.1 

Bcftools 1.9 

Vcftools 0.1.13 

Plink 1.07 
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Table A.A.2: Usage purposes and command line usages of each tool. 

Tool/Algorithm Process Command line 

SAMtools Sorting samtools sort @2 input.bam –o output.bam 

BEDtools Converting bam 
file to fastq file 

bedtools bamtofastq –i input.bam –fq read1.fq –fq2 
read.fq 

FastQC FatsQC analysis fastqc –o . –f fastq input.fq.gz –t 5 

Trimmomatic Trimming data 

trimmomatic-0.36.jar PE -threads 6 read1.fq.gz 
read2.fq.gz read1_paired.fq.gz 

read1_unpaired.fq.gz read2_paired.fq.gz 
read2_unpaired.fq.gz TRAILING:10 MINLEN:50 

SLIDINGWINDOW:5:20 

MultiQC Reporting 
FastQC results multiqc . 

bwa Indexing 
reference bwa index -a bwtsw reference.fa 

bwa Mapping files to 
the reference 

bwa mem -R '@RG\tID:laneID\tSM:horseID' -M -t 
8 reference.fa read1.fq.gz read2.fq.gz > 

mappedFile.sam 

SAMtools Convert sam to 
bam 

samtools view -b –S mappedFile.sam > 
mappedFile.bam 

SAMtools Merging different 
lanes 

samtools merge merged.bam lane1.bam lane2.bam 
lane3.bam 

SAMtools Taking properly 
paired reads 

samtools view –B –F 4 -f 2 –h input.bam > 
output.bam 

Picard Tools Removing 
duplicates 

java -jar MarkDuplicates.jar I=inpıt.bam 
O=output.bam METRICS_FILE=metrics.txt 

REMOVE_DUPLICATES=TRUE 

SAMtools Filtering reads for 
quality samtools view –q 20 –b input.bam > output.bam 

Picard Tools Calculating insert 
sizes 

java -jar CollectInsertSizeMetrics.jar I=input.bam 
O=insert_size_metrics.txt 

H=insert_size_histogram.pdf M=0.5 

SAMtools Indexing bam 
files samtools index input.bam 
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Bedtools 
Calculating 

genomic 
coverages 

bedtools genomecov –ibam input.bam –g 
reference.fa > output.txt 

Bedtools 
Calculating 
positional 
coverages 

bedtools genomecov –ibam input.bam –g 
reference.fa –d > output.txt 

GATK 
HaploTypeCaller Calling variants 

java -jar GenomeAnalysisTK.jar –T 
HaplotypeCaller 

--(fix_misencoded_quality_scores) -R reference.fa -
I son.bam -I father.bam  -I mother.bam -o 

variants.vcf 

Platypus Calling variants 
python Platypus.py callVariants --

bamFiles=son.bam,father.bam,mother.bam --
refFile=reference.fa --output=variants.vcf 

Freebayes Calling variants freebayes –f reference.fa –L bamList.txt > 
variants.vcf 

Bedtools Intersecting bed 
files 

Bedtools intersect –a file1.bed –b file2.bed > 
file3.bed 

GATK 
VariantAnnotator 

Annotating 
variants 

java -jar GenomeAnalysisTK.jar –T 
VariantAnnotator 

--(fix_misencoded_quality_scores) -R reference.fa -
I trioBams.list –V variants.vcf –o 

annotatedvaariatns.vcf –A AlleleBalanceBySample 

GATK 
VariantFiltration 

Filtering variants 
in vcf 

java -jar GenomeAnalysisTK.jar –T 
VariantFiltration -R reference.fa –V variants.vcf --
filterExpression "QD < 2.0 || MQ < 40.0  ||  FS > 

60.0 || SOR > 3.0 || MQRankSum < -12.5 || 
ReadPosRankSum < -8.0 || QUAL < 30  || AC > 4 " 

--filterName "my_snp_filter –o output.vcf 

 

GATK 

SelectVariants 

Selecting 
heterozygous 

variants 

java -jar GenomeAnalysisTK.jar –T SelectVariants 
-R reference.fa –V variants.vcf -select 

'vc.getGenotype("horseID").isHet()' –o output.vcf 



56 
 

GATK 
VariantFiltration 

Filtering 
genotype of 

different 
idividuals in vcf 

java -jar GenomeAnalysisTK.jar –T 
VariantFiltration -R reference.fa –V variants.vcf 

--genotypeFilterExpression "AB < 0.3 || AB > 0.75" 

--genotypeFilterName "AB_filter" 

--genotypeFilterExpression "DP > 34/24/27 || DP < 
10" 

--genotypeFilterName "DP_filter" 

--genotypeFilterExpression "GQ < 40.0" 

--genotypeFilterName "GQ_filter" 

-o output.vcf 

GATK 
PhaseByTransmission 

Calling de novo 
candidates 

java -jar GenomeAnalysisTK.jar –T 
PhaseByTransmission -R reference.fa –V 

variants.vcf 

--MendelianViolationsFile mendelianViolations -
ped trio.ped -o output.vcf 

SAMtools, Bcftools 
Preparing 
consensus 

sequences for 
psmc 

samtools mpileup -C50 –uf reference.fa input.bam | 
bcftools call –c - | vcfutils.pl vcf2fq –d 10 –D 

34/24/27 | gzip > output.fq.gz 

PSMC Converting fastq 
to psmcfa fq2psmcfa -q20 file.fq.gz > file.psmcfa 

PSMC Psmc analysis psmc -N25 -t15 -r5 -p "4+25*2+4+6" –o 
output.psmc input.psmcfa 

Vcftools Converting vcf 
top link format vcftools --vcf input.vcf --out output --plink 

Plink 
Converting file to 

Plink’s bed 
format 

plink --noweb --horse --file input --out output --
make-bed 

Plink Roh analysis 

plink --noweb --horse --bfile inputFile --homozyg --
homozyg-kb 500 --homozyg-snp 50 --homozyg-

window-snp 50 --homozyg-window-het 3 --
homozyg-window-missing 3 --homozyg-window-

threshold 0.05 --homozyg-density 50 
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APPENDIX B 

 

FILTERING DETAILS 

 

 

Figure A.B.1: Detailed results of first filtering step in Figure 4.4 for EQ2 mapped data. 
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Figure A.B.2: Detailed results of first filtering step in Figure 4.4 for EQ3 mapped data. 
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APPENDIX C 

 

DETAILED INFORMATION ABOUT DE NOVO CANDIDATES 

 

 

Table A.C.1: Position and comparison information of all candidate ‘de novo’ mutations. Some of the reads 
mapped in one genome version (for example EquCab2) were mapped more then one position in the other 
genome verison (EquCab3). Such mutations (red labeled) were detected in the multiple positions when the 
position converted to the other reference version. The mutations in the fully red written rows cause 
inconsistency between comparison (EQ2, EQ3 and Jagannathan’s panel) results. The choosen mutations for 
lab validation were indicated in the last coulmn. Green labeled candidates were choosen for future validation 
depending on their coexistence in both reference mapped data and not existence in Jagannathan data. 

TRIO 
EQ2 

chr 
EQ2 pos EQ3 chr EQ3 pos Ref Alt 

Found or 
not found 

in EQ3 

In 
Jagannathan 

data 

Sanger 
validation 

done 

LIP chr1 15859530 chr1 15978254 C G found no yes 

LIP chr1 15864504 chr1 15983228 G T found no yes 

LIP chr1 68664504 chr1 69214531 A C found no yes 

LIP chr10 82141638 chr10 83318763 G A found no yes 

LIP chr13 27768579 chr13 28928832 T G found no yes 

LIP chr19 43987271 chr19 46744475 C T found no yes 

LIP chr2 49697936 chr2 49938684 G T found no yes 

LIP chr2 69806759 chr2 70279783 A C found no yes 

LIP chr4 96806258 chr4 96948867 C T found no yes 

LIP chr5 95223175 chr5 92308816 G A found no yes 

LIP chr8 29308865 chr8 31918931 G A found no yes 
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LIP chr8 83490000 chr8 86977321 G A found no yes 

LIP chr9 40934406 chr9 42581656 T A found no yes 

LIP chr1 10431748 chr1 10544851 G A found no no 

LIP chr17 29582244 chr17 29483913 G A found yes yes 

LIP chr26 33187017 chr26 34447304 T C found yes yes 

LIP chr30 4510951 chr30 4795900 C T found yes yes 

LIP chr4 47113988 chr4 47285204 A T found yes yes 

LIP chr4 95252068 chr4 95364574 A T found yes yes 

LIP chr9 3085222 chr9 3118093 C A found yes yes 

LIP chr1 122283468 chr1 123426208 A C found yes no 

LIP chr14 52250726 chr14 51556138 C T found yes no 

LIP chr14 53324326 chr14 52653121 A G found yes no 

LIP chr17 16573635 chr17 16642725 T C found yes no 

LIP chr18 15530280 chr18 15595862 T A found yes no 

LIP chr2 4044657 chr2 4059259 A C found yes no 

LIP chr2 76393138 chr2 76471715 G C found yes no 

LIP chr2 107860807 chr2 108203154 A C found yes no 

LIP chr20 29358869 chr20 30270730 C T found yes no 

LIP chr22 573161 chr22 619278 A G found yes no 

LIP chr22 23971258 chr22 24676750 A G found yes no 

LIP chr22 23971258 NW_019646
087.1 8781 A G not found yes yes 

LIP chr26 40048597 chr26 41317337 A T found yes no 

LIP chr3 81356650 chr3 83166511 G A found yes no 

LIP chr31 2013281 chr31 8651746 T C found yes no 

LIP chr4 9684807 chr4 9719703 C G found yes no 

LIP chr5 30402947 chr5 27642878 A C found yes no 

LIP chr7 44303415 chr7 45561401 A C found yes no 

LIP chr7 77372524 chr7 79547823 T G found yes no 

LIP chr14 296600 NW_019643
582.1 163072 T G not found no yes 
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LIP chr18 56233143 chr18 56332502 C T not found no yes 

LIP chr2 13626858 chr2 13676181 G C not found no yes 

LIP chr1 115504590 NW_019646
122.1 28415 T C not found no no 

LIP chr1 115504590 chr1 116526282 T C not found no no 

LIP chr1 115504590 chr1 116643212 T C not found no no 

LIP chr15 18516837 NW_019643
418.1 116109 T G not found no no 

LIP chr15 18516837 NW_019643
394.1 211146 T G not found no no 

LIP chr15 18516837 chr15 19197504 T G not found no no 

LIP chr18 9517699 chr18 9673823 G C not found no no 

LIP chr2 86268 chr2 80336 A C not found no no 

LIP chr2 26636712 chr2 26706669 G A not found yes yes 

LIP chr21 1082137 chr21 133290 G T not found yes no 

LIP chr7 53003749 chr7 55021516 A G not found yes no 

LIP chr7 53003761 chr7 55021528 G T not found yes no 

LIP chr8 1656435 chr8 3462742 C T not found yes no 

LIP chr8 4013962 chr8 6017687 A C not found yes no 

LiP chr1 113086506 chr1 114032630 C G just in 
EquCab3 no no 

LiP chr1 163121631 chr1 165088722 C T just in 
EquCab3 no no 

LiP chr11 60729384 chr11 61092938 C G just in 
EquCab3 yes no 

LiP chr13 12281767 chr13 12591780 T A just in 
EquCab3 yes no 

LiP chr14 53281174 chr14 52609933 G T just in 
EquCab3 yes no 

LiP noalign noalign chr15 14765848 C T just in 
EquCab3 no no 

LiP noalign noalign chr16 40321052 C G just in 
EquCab3 no no 

LiP noalign noalign chr16 40321063 C T just in 
EquCab3 no no 

LiP chr18 98589 chr17 112172 T C just in 
EquCab3 yes no 
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LiP chr17 22409571 chr17 22310438 A G just in 
EquCab3 no no 

LiP chr2 63488928 chr2 63948251 C T just in 
EquCab3 yes no 

LiP chr20 30303426 chr20 31215223 A G just in 
EquCab3 no no 

LiP chr20 41448335 chr20 42348483 C G just in 
EquCab3 no no 

LiP scaffold_8
8 538547 chr21 762973 T C just in 

EquCab3 yes no 

LiP scaffold_1
90 742 chr21 762973 T C just in 

EquCab3 yes no 

LiP chr21 1345122 chr21 1955710 G A just in 
EquCab3 yes no 

LiP chr21 46651305 chr21 47934770 T C just in 
EquCab3 no no 

LiP scaffold_1
17 54314 chr24 207208 C G just in 

EquCab3 yes no 

LiP scaffold_1
17 54302 chr24 207220 G C just in 

EquCab3 yes no 

LiP chr24 3434129 chr24 3299008 T C just in 
EquCab3 no no 

LiP chr26 39072509 chr26 40344282 T C just in 
EquCab3 yes no 

LiP scaffold_1
80 61745 chr29 552846 C T just in 

EquCab3 yes no 

LiP chr3 85720365 chr3 87844985 G A just in 
EquCab3 no no 

LiP chr4 89013190 chr4 89127688 A G just in 
EquCab3 yes no 

LiP chr5 6347982 chr5 6363111 G A just in 
EquCab3 no no 

LiP chr5 49245871 chr5 45822661 G C just in 
EquCab3 yes no 

LiP noalign noalign chr6 28015944 G T just in 
EquCab3 yes no 

LiP chr8 82614 chr8 1810043 A T just in 
EquCab3 yes no 

LiP scaffold_1
87 8272 chr8 1897212 G A just in 

EquCab3 no no 

LiP scaffold_1
03 55207 chr8 1990358 G C just in 

EquCab3 yes no 
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LiP scaffold_1
07 177061 chr8 1990358 G C just in 

EquCab3 yes no 

LiP chr8 1768323 chr8 3580793 C T just in 
EquCab3 yes no 

LiP chr8 2072691 chr8 3580793 C T just in 
EquCab3 yes no 

LiP chr8 2177024 chr8 4179490 T C just in 
EquCab3 yes no 

NOR chr11 7649446 chr11 7638666 C T found no yes 

NOR chr17 20005831 chr17 19909100 C T found no yes 

NOR chr18 21015205 chr18 21081929 C G found no yes 

NOR chr8 31590451 chr8 34654749 C G found no yes 

NOR chr23 8657794 chr23 8072201 A G found no no 

NOR chr1 115297935 chr1 116319664 C T found yes yes 

NOR chr10 21323697 chr10 21613706 C A found yes yes 

NOR chr11 38548898 chr11 38843410 C T found yes yes 

NOR chr17 4565574 chr17 4636020 G C found yes yes 

NOR chr29 1231244 chr29 2241954 C A found yes yes 

NOR chr7 64671737 chr7 66853582 T C found yes yes 

NOR chr11 41767183 chr11 42088312 C T found yes no 

NOR chr16 2803472 chr16 4274662 G C found yes no 

NOR chr19 36357963 chr19 38941787 G A found yes no 

NOR chr19 36796471 chr19 39380133 A T found yes no 

NOR chr19 58455252 chr19 61335678 C T found yes no 

NOR chr20 1889151 chr20 2144556 C T found yes no 

NOR chr20 24456926 chr20 25180104 A G found yes no 

NOR chr21 1018747 chr21 204090 C G found yes no 

NOR chr21 2605508 chr21 3228070 A T found yes no 

NOR chr21 31429891 chr21 32453825 T A found yes no 

NOR chr22 43893158 chr22 44860978 C T found yes no 

NOR chr31 16751314 chr31 16791438 A G found yes no 

NOR chr8 3702372 chr8 5726905 G T found yes no 
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NOR chr8 4890346 chr8 7004112 A T found yes no 

NOR chr8 4890346 chr8 5851711 A T not found no no 

NOR chr8 11081101 chr8 13296362 G A found yes no 

NOR chr8 11081113 chr8 13296374 C T found yes no 

NOR chr23 199384 NW_019644
111.1 13075 C G not found no no 

NOR chr23 252882 NW_019644
035.1 7983 C T not found no no 

NOR chr14 473741 NW_019643
582.1 34819 T A not found yes no 

NOR chr27 596466 NW_019645
822.1 25127 T G not found no no 

NOR chr27 596466 NW_019643
525.1 46174 T G not found no no 

NOR chr27 596466 chr27 598908 T G not found no no 

 
NOR chr8 1799905 chr8 3612240 C T not found no yes 

NOR chr8 2565803 chr8 4567587 T G not found no no 

 
NOR chr6 3270286 chr6 2944071 T C not found no yes 

NOR chr23 7864535 NW_019643
688.1 274190 G A not found yes no 

NOR chr14 9869853 chr14 9098133 A C not found no no 

NOR chr12 12435069 chr26 15321210 C T not found no no 

NOR chr10 13100245 chr10 13279495 G A not found yes no 

NOR chr10 13100245 chr10 13110832 G A not found yes no 

NOR chr10 14126430 NW_019644
715.1 18830 A T not found yes no 

NOR chr10 14126430 chr10 14310057 A T not found yes no 

 
NOR chr10 14151126 chr10 14333736 G T not found yes yes 

NOR chr12 17455667 chr12 20972468 C T not found no yes 

NOR chr12 17467671 chr12 20984465 C G not found no yes 

NOR chr28 20549421 chr28 21592630 C T not found no no 

NOR chr12 22821184 chr12 26369633 C T not found no no 

NOR chr10 23731364 chr10 24166815 T C not found no yes 

NOR chr11 25089146 chr11 25163875 C A not found no  
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NOR chr20 32276595 NW_019645
272.1 15516 T C not found no yes 

NOR chr20 32276595 NW_019644
819.1 52034 T C not found no no 

 
NOR chr20 32276595 chr20 33276510 T C not found no no 

 
NOR chr20 32276595 chr20 33139015 T C not found no no 

 
NOR chr22 36838245 chr22 37737690 T C not found yes no 

 
NOR chr23 40878726 chr23 40553043 G A not found no yes 

NOR chr23 40878771 chr23 40553088 C T not found no no 

 
NOR chr11 41656509 chr11 41981138 T A not found no no 

 
NOR chr7 43560898 chr7 44599012 T C not found yes yes 

NOR chr1 44584336 chr1 44944788 G A not found yes no 

NOR chr1 44584336 chr1 44913757 G A not found yes no 

NOR chr8 49612506 chr8 52686429 G T not found no yes 

NOR chr16 65435532 chr16 67018600 T C not found no no 

NOR chr3 97439027 chr3 99255299 A G not found no no 

NOR chr1 155138900 NW_019646
251.1 75746 G C not found no yes 

NOR chr1 155138900 NW_019643
074.1 75753 G C not found no no 

NOR chr1 155138915 NW_019646
251.1 75761 T C not found no no 

NOR chr1 155138915 NW_019643
074.1 75768 T C not found no no 

NOR chr1 114280422 chr1 115300895 A C just in 
EquCab3 yes no 

NOR chr1 114234815 chr1 115300895 A C just in 
EquCab3 yes no 

NOR chr1 157856346 chr1 159473532 A G just in 
EquCab3 yes no 

NOR chr11 41636525 chr11 41934046 C T just in 
EquCab3 yes no 

NOR chr12 12410783 chr12 12632000 A G just in 
EquCab3 yes no 

NOR chr12 17467709 chr12 20984503 C T just in 
EquCab3 no no 
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NOR chr12 17368623 chr12 20984503 C T just in 
EquCab3 no no 

NOR chr12 17356600 chr12 21028811 C T just in 
EquCab3 no no 

NOR chr12 17356726 chr12 21028937 T A just in 
EquCab3 no no 

NOR chr12 32767000 chr12 35488348 C T just in 
EquCab3 yes no 

NOR chr13 8283509 chr13 8571371 A G just in 
EquCab3 no no 

NOR scaffold_2
94 47503 chr13 9212502 C T just in 

EquCab3 yes no 

NOR chr14 963402 chr14 209691 C T just in 
EquCab3 yes no 

NOR chr14 9078851 chr14 8307528 A C just in 
EquCab3 no no 

NOR chr14 92099865 chr14 92754738 T A just in 
EquCab3 no no 

NOR scaffold_3
40 31703 chr15 35289 T C just in 

EquCab3 yes no 

NOR chr18 71216313 chr18 71333930 C T just in 
EquCab3 no no 

NOR scaffold_1
31 79348 chr21 173964 G A just in 

EquCab3 yes no 

NOR chr24 294298 chr24 153809 T A just in 
EquCab3 yes no 

NOR chr24 38138711 chr24 38509801 G A just in 
EquCab3 no no 

NOR chr26 227587 chr26 617551 A G just in 
EquCab3 no no 

NOR scaffold_11
1 37009 chr27 568230 A G just in 

EquCab3 yes no 

NOR chr28 35964604 chr28 37095887 G A just in 
EquCab3 yes no 

NOR chr28 35990989 chr28 37113509 T C just in 
EquCab3 yes no 

NOR scaffold_9
3 491312 chr29 891655 A G just in 

EquCab3 yes no 

NOR chr14 565989 chr29 1875093 C T just in 
EquCab3 no no 

NOR chr29 770364 chr29 1875093 C T just in 
EquCab3 no no 
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HAF chr10 59172497 chr10 60310985 G A called no yes 

HAF chr17 1685198 chr17 1753762 T C called no yes 

HAF chr2 100761774 chr2 101097784 G T called no yes 

HAF chr3 53100714 chr3 54576398 C A called no yes 

HAF chr4 44983704 chr4 45153777 G A called no yes 

HAF chr5 21907765 chr5 19148516 A G called no yes 

HAF chr5 53320088 chr5 49896738 T C called no yes 

HAF chr7 91483698 chr7 93696413 T G called no yes 

HAF chr14 4822552 chr14 4058364 C T called no 
no 

 

HAF chr22 27863665 chr22 28768316 T C called no no 

HAF chr5 16057269 chr19 3035926 T A called no no 

HAF chr6 79058078 chr6 80225422 T C called no no 

HAF chr8 32485953 chr8 35525782 C T called no no 

HAF chr1 120334435 chr1 121468596 T C called yes yes 

HAF chr12 13784646 chr12 14498413 T A called yes yes 

HAF chr14 4827882 chr14 4063623 T C called yes yes 

HAF chr16 2815931 chr16 4288452 T C called yes yes 

HAF chr20 29311733 chr20 30220575 C T called yes yes 

HAF chr12 13825556 chr12 14539782 G A called yes no 

HAF chr13 19811302 chr13 20890984 A G called yes no 

HAF chr14 4827896 chr14 4063637 A C called yes no 

HAF chr17 39695905 chr17 39599876 T C called yes no 

HAF chr18 4152059 chr18 4122138 A G called yes no 

HAF chr20 26396785 chr20 27301180 A T called yes no 

HAF chr21 49759250 chr21 51009814 C G called yes no 

HAF chr22 552168 chr22 598289 G A called yes no 

HAF chr31 16997011 chr31 17040610 T C called yes no 

HAF chr6 13857585 chr6 13645648 T C called yes no 

HAF chr6 38444589 chr6 39579282 T G called yes no 
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HAF chr6 38444606 chr6 39579299 A G called yes no 

HAF chr7 9200806 chr7 9677163 A G called yes no 

HAF chr25 4135 NW_019642
813.1 331601 G A not called no no 

HAF chr18 52005 chr18 65931 C T not called no yes 

HAF chr18 52005 chr17 47646 C T not called no 
no 

 

HAF chr24 540464 chr24 405239 A G not called yes yes 

HAF chr11 1039845 chr11 1041777 G C not called no no 

HAF chr19 4938297 chr19 7325062 C A not called yes no 

HAF chr10 7931916 chr10 8047442 G A not called no yes 

HAF chr23 8139725 NW_019643
688.1 553562 C T not called yes no 

HAF chr18 9582002 chr18 9033716 A G not called no no 

HAF chr18 9582002 chr18 12909306 A G not called no no 

HAF chr12 14048779 chr12 14953906 C T not called no no 

HAF chr12 14048779 chr12 14934992 C T not called no no 

HAF chr12 14048779 chr12 14879021 C T not called yes no 

HAF chr12 15029981 NW_019642
075.1 5881 T C not called no no 

HAF chr13 19315749 chr13 20396513 C T not called yes no 

HAF chr22 24976358 chr22 25875039 G A not called no no 

HAF chr22 24976376 chr22 25875057 C T not called yes yes 

HAF chr26 32427893 chr26 33689194 T C not called no no 

HAF chr26 32427893 chr26 33752767 T C not called no no 

HAF chr26 32427893 chr26 33673583 T C not called no no 

HAF chr7 34653199 chr7 35818941 A G not called yes no 

HAF chr7 34653210 chr7 35818952 A G not called yes no 

HAF chr2 42919845 chr2 43141745 G T not called no no 

HAF chr5 48921158 chr5 45470619 T C not called no no 

HAF chr3 54907512 chr3 56379955 C T not called no yes 
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HAF chr6 58762174 NW_019642
687.1 11347 C G not called no no 

HAF chr7 59514418 chr7 61694002 T C not called no no 

HAF chr11 60756515 chr11 61120069 G T not called no no 

HAF chr18 65542248 chr18 65657094 A G not called no no 

HAF chr6 78694433 chr6 79861978 C T not called yes no 

HAF chr14 92829544 chr14 93591845 C A not called no no 

HAF chr14 92829544 chr14 93486571 C A not called yes no 

HAF chr14 92870205 chr14 93560815 G A not called no yes 

HAF chr1 143424677 chr1 144891989 C A not called no yes 

HAF chr1 162587371 chr1 164688749 T C not called no no 

HAF chr1 163046056 chr1 165012407 G A just in 
EquCab3 no no 

HAF chr11 52232188 chr11 52582710 A G just in 
EquCab3 yes no 

HAF chr11 52232228 chr11 52582750 C T just in 
EquCab3 no no 

HAF chr11 60729070 chr11 61092624 C A just in 
EquCab3 yes no 

HAF chr12 31057784 chr12 34882799 T C just in 
EquCab3 yes no 

HAF chr13 18159913 chr13 19237651 A C just in 
EquCab3 yes no 

HAF chr13 18160181 chr13 19237678 A G just in 
EquCab3 yes no 

HAF chr13 21927948 chr13 23558006 A C just in 
EquCab3 yes no 

HAF chr13 26958570 chr13 26404373 G A just in 
EquCab3 yes no 

HAF chr18 13036153 chr18 12929475 G A just in 
EquCab3 yes no 

HAF chr2 34726954 chr2 34906791 G C just in 
EquCab3 no no 

HAF chr20 31048188 chr20 31912373 G T just in 
EquCab3 yes no 

HAF scaffold_2
24 5223 chr20 51466011 T G just in 

EquCab3 yes no 
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HAF scaffold_8
8 561709 chr21 788265 G A just in 

EquCab3 yes no 

HAF scaffold_1
11 31059 chr24 51881 T A just in 

EquCab3 no no 

HAF chr14 673521 chr24 291480 A T just in 
EquCab3 no no 

HAF chr24 455123 chr24 314661 A C just in 
EquCab3 no no 

HAF scaffold_8
5 1123414 chr27 26964 C T just in 

EquCab3 yes no 

HAF scaffold_1
80 27440 chr27 26964 C T just in 

EquCab3 yes no 

HAF scaffold_1
96 74869 chr27 79930 C A just in 

EquCab3 yes no 

HAF noalign noalign chr28 18454 A G just in 
EquCab3 yes no 

HAF chr6 38004787 chr6 39063395 T A just in 
EquCab3 yes no 

HAF chr6 38004798 chr6 39063406 A G just in 
EquCab3 yes no 

HAF scaffold_8
3 413845 chr6 86814340 A G just in 

EquCab3 yes no 

HAF chr8 70163030 chr8 73645663 A C just in 
EquCab3 no no 

HAF chr9 38880815 chr9 40536852 C T just in 
EquCab3 yes no 

 

Table A.C.2: Detailed information of ‘de novo’ candidates obtained from GATK’s PhaseByTransmission 
(PBT) algorithm in Lipizzaner trio. 111, 113 and 166 were the sample IDs of Lipizzaner son, father, and 
mother respectively. 

TRIO EQ2 
chr 

EQ2 pos EQ3 
chr 

EQ3 pos Ref Alt Depth  

(111/ 

113/ 

166) 

Found in EQ2 
finalized 
candidate list 
of Lip 

Found in EQ2 
finalized 
candidate list 
of Lip 

Found in 
Jagannathan’s 
variations 

LIP chr12 14923621 chr26 15298236 T C 75/135/142 not found not found not found 

LIP chr12 30138931 chr12 33942154 C A 42/37/31 not found not found found 

LIP chr26 14842365 chr26 15341895 A C 45/83/73 not found not found found 

LIP chr26 14842365 chr12 12626648 A C 45/83/73 not found not found not found 



71 
 

LIP chr31 16520917 chr31 16561393 T C 453/368/326 not found not found found 

LIP chr7 98533779 NW_
0196
4348
7.1 

4355 G A 29/62/93 not found not found not found 

 

Table A.C.3: Detailed information of variants which were validated in the laboratory. Primer sequences 
and sequences produced by Sanger resequencing were seen.  

TRIO EQ2 
chr 

EQ2 pos Sanger 
result 

Category Variant in brakcets [] 
including flanking 
region 

Primer 
forward 
ID 

Primer 
forward 
seq. 

Primer 
reverse 
ID 

Primer 
reverse 
seq. 

amplicon 
length 
(bp) 

LIP chr1 15859530 SNP 
validated 

True_deno
vo variant 

ataccctgtttcccctattactaa
catcttacattagtatggtacattt
gttacaattaatgacccagtattg
atccattattagtaactaaagtcc
atagcttattcagattcccttagtt
tttacctaatgtcccttttctgtttt
gggatcccatccaggacacca
cattagatttagttgtgatgtctcc
ttaggctcctcttggctgtgaca
gtttccaagacttcccttgtttttg
atgaccttgacagttttgaggag
tcctggtattttgaggactatatt
gtaggatgacc[c/g]tctcttg
gaatttgtctgatgtttttctcagg
atttgactgaggttatgggttttg
ggaagatcacagaggcaaagc
accatttgcatcacatcgtatca
aaggcacctgctatcagcttgat
ctatgattgttgatgttgatctttat
cgcttggctgaagtggtgttggt
caagtttctccactgcagagtta
ctttttctcctcctcctttccatact
gtactccttggaaagaaatctac
acatagcctactcctaaggagt
aggggtggggggttatgctcca
tctcattgaggg 

chr1:158
59420fw
d 

CTCCTT
AGGCTC
CTCTTG
GC 

chr1:15
859705r
ev 

TTGAC
CAACA
CCACT
TCAGC 

286 

LIP chr1 15864504 SNP 
validated 

True_deno
vo variant 

atagttaatgatgttgaacatcttt
tcatgtgcctgttggccatctgta
tattttctttggagaaatatctgtt
caggtcttttgcccagttttttaat
tgggttgttggtttttctgttgttga
tttgtatgagttctttgtatattttg
actcttaaccccttatcaatatat
ggtttgcaaatatcttctctctatt
gttaggctgtctttttgttttgttga
tggtttcctttgctgtgtagaagc
tttttactttggtgtagaccaattt
gtttattttttctattgtttccctt[g/
t]cctggtcagacagggtacttg
aaaatatgctgctaagactaatg
tcaaagagcgtactgcctatgtt
ttcttctagaagttttatggtttca
ggtcttacattcaaatctttaatcc
attttgagttaatttttgtgtatggt
gtaagataatagtccactttcatt
cttttgcatgtggctgtccagtttt
cccaacaccatgtattgaagag
actttcctttctccattgtaccttct
taactctcttgtcaaaaattagct
gtccatgtgctggccccgtagc
caagtgcttaagtt 

chr1:158
64504.f 

aatatctgttc
aggtcttttgc
c 

chr1:15
864504.
r 

ctacggg
gccagca
catg 

524 
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LIP chr1 68664504 SNP 
validated 

True_deno
vo variant 

tgaagattggctacaaatgttag
ctcaggtgtcaatcttaaaaaaa
aataaaattagaattaagtttttat
tcaaatatggtttattagagataa
tttatctggcatcaaactattgca
taaagcatacgtgaggtaatctt
ttaatgataaatacaaacacagt
cagcccagatcttcctagacttt
gtaatacttttgtaatactagcatt
aaagatagtaatgaagtgttcttt
gaaaaagctgttccataaccaa
atatttgggaaacactgagtaaa
acaaagtaaaatacatta[a/c]
aaaaatgcaagactccctctga
gattcaaatattaatttgttaatatt
tatttgtattagttatctattgctat
gtaacaaattgttttaaaatagtg
gctaaaaacaacaaggaatagt
gaatgctgcttacagtttctgtgg
gtcaggaatttgtgagcagcttg
gttgaggggctctggctcaggg
tctctcacagagggacagtcca
gctgttggctggggaagcccc
atctgaaggcttgactggggct
ggaggaaccacttccaagatg
cctcactcacttggttggcaagt
tg 

chr1:686
64364fw
d 

ACAGTC
AGCCCA
GATCTT
CC 

chr1:68
664677r
ev 

CTCAA
CCAAG
CTGCT
CACAA 

314 

LIP chr1
0 

82141638 SNP 
validated 

True_deno
vo variant 

acaattctaagataaaggcattc
ctatgcaaaccgttaattgtaaa
aatgaaagacagaaatagcaa
aagtggtcacaggcacaatagt
gtacattacagcatattcttggct
tttatacatacttgaaattttccat
aatttaaaatgagttaaacttcaa
atgaaaaagtacatttttctgaat
actgaggatcacgtgccctgtta
agagtcttattttttaaacagagt
aagcagctctaaatggaaacaa
aacccaaataagcattaatctta
actagttggctcaaatagttac[
g/a]tctgtggaacaagaaaaa
aaatttccaactgcatcacgttg
gtgattaaaaagcatttttatcgc
tccagaaggtacaggtgtttctc
aattctaaaatggaaacagcac
gtgcccagactgctgatatgca
aaagtttgtcgtatcaaggaaac
acaggatttatgagtcttgactc
acataagtctcaaacgtcttgtg
cttgttcagaggcaaatagaag
gtcccaataaaaagagttcagg
agaagaaagaagtcacacactt
tcctccctagcaattcacatcaa
gatagggaat 

chr10:82
141528f
wd 

AGGATC
ACGTGC
CCTGTT
AA 

chr10:8
2141853
rev 

TGCCT
CTGAA
CAAGC
ACAA
G 

326 

LIP chr1
3 

27768579 SNP 
validated 

True_deno
vo variant 

agaagacatttggactctctgg
ggctcattttcctcatctgtaaaa
tggggctatgatagttcctacct
cactgggctactgaaaggatta
aatgggttaatccacataaagc
atacagaaagacccgcctctag
aaaacaactgctcaatgtggctt
cattatcatcaccaccatcatcat
ccttgttgtaactctgtgcacag
atgttatattttcttaatgtaaattc
ctaaaaataaaatgactaggcc
aaaagatatgatttttgatatatg
acagtctgatcagcaatggaga
t[t/g]tattataattatgacaagtt
ggtaagttgttttctcctgcggg
gacccccgtgagtggtctgtgg
gtctggagacacattttaagatc
aggttcatccacgtcgtccccg
cttctgtttcattaggcacagatg
ctcctgaacggtcccgagcctg

chr13:27
768420f
wd 

ACTGCT
CAATGT
GGCTTC
AT 

chr13:2
7768809
rev 

CATTG
CTCCT
TCCGT
TCCTT 

390 
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ttttactctcctacgttatattcac
caccctagacttcttaaagatcc
cgcaggaaggaacggaagga
gcaatgcaggtggcggtggat
gtggaggttctgctcccggcgt
gtcctggacagagcgacctcc
gaggaaagcaca 

LIP chr1
9 

43987271 SNP 
validated 

True_deno
vo variant 

ggttattcctctgtgaatgcgact
taggctgcttttttcctccctagc
cagtctgttcacccttcattatctt
tgttctcttcctattttcacagtttc
ttttttaaagattggcacctgagc
taacaactgttgctaatctttttttt
tttttagctttttctccccaatccc
cccagaacatagttgtatatttta
gttgtgggtccttctagttgtggg
atgtgggacaccgcctcaacat
ggcctaacgagcagtgccatgt
ccgcacccaggatccgaaccc
tgggccgccaaag[c/t]ggaa
tgcgcagacttagccactcggc
cacagggccagcccctgttttc
agtttctttccttctttttatcttccc
taaatgcccttctctctgttttttct
ctttctctgattttttgtcctcagtc
tccttaccagtggttctggaact
attgagtattccagaccagctga
aggggttgatttgtgctggtcag
gcctgagggcaggaagatcca
tcctgtttggaggcctggaccct
ctgtggcccaagccatttgcttt
ggctttttcctagtaatgagatgg
gagggctgcctcc 

chr19:43
987179f
wd 

CTTCTA
GTTGTG
GGATGT
GGG 

chr19:4
3987567
rev 

GCAGC
CCTCC
CATCT
CATTA 

389 

LIP chr2 49697936 no SNP 
 

gacaaacctttagctagagtca
ccaagaaaaaaagagagaag
gctcaaataaataaaatcaaaa
atgaaagaggagagattacaa
gggacacctcagaaatgcaaa
agatgataagagaatactatga
aaagctatacggcaacaaattg
gataatatagaagaaatggata
aattcttagaaacatacaaccttc
caaaactggaccaagaagatgt
agaaaatttgaatagaccaatca
ccagtaaggagatcaaaacag
caatcaaaaacctcccaaaaaa
caaaagtccagggcca[g/t]a
tggcttccctggtgaattctacc
aaacattcaaagaagacttaata
cctatccttctcaaactcttccaa
aagattgaagaggaggggag
gcttcctaactcattctacgaag
ccaagatcattctgataccaaaa
ccagacaaggacaacacaaaa
aaaacaaaattacaggccaata
tcactgaacatcgatgcaaaaat
cctcaacaaaacactagcaaat
cgaatacgataatacattaaaaa
gatcatacatcatgatcaagcg
ggtttcattccagggatgcagg
gatggttc 

chr2:496
97936.f 

aggagagat
tacaaggga
cacc 

chr2:49
697936.
r 

cctggaat
gaaaccc
gcttg 

516 

LIP chr2 69806759 SNP 
validated 

True_deno
vo variant 

accatctgatgacttctcttttctc
tgtgatgcaagagacaagccat
ctgccaaaaatgaagataagg
gtctgaaatttaaggtgagtaga
aaatgttagaaacagttattgtg
gaatgcagtgcagcaagctga
ccacggaaatgtagcaggtttg
ctggacagtgaagggctaactg
agattggaggtaataaatttaaa
agtggttccaatctgacttcttgc
gtgttggccaggaacaataatg

chr2:698
06611fw
d 

GTTTGC
TGGACA
GTGAAG
GG 

chr2:69
806944r
ev 

ATGTC
GGAC
ACCTA
CCACA
G 

334 
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tgcctggatgaagacttcagga
ttcttccagaacaatgagatgaa
gacagag[a/c]agcaaggaa
atctgtaatgttgacagcaattat
ggaaataaagaattagagaatc
tggggccagccgggtggtgca
gcggttatgtgcgcatgttccgc
atcagtggcctggggttcgccg
gtttggatcccgggttgggacg
tagcaccgcttggcacgccatg
ctgtggtaggtgtccgacatata
aagtagaggaagatgggcacg
gatgttagctcagggccagtctt
cctcagcaaaaagaggaagatt
ggcagcagttagtttagggcta
atcatcctaaaacaaaaaaaaa
ag 

LIP chr4 96806258 SNP 
validated 

True_deno
vo variant 

tatgaaaacagaacgctgccac
ttataagctgggacaaagacct
cagacaaagaccttgcctacgg
gactgtggtgaggactgatgag
acaactcaatcttcaaagataca
tgaacctaagctactagtatgtat
tacagtactttcatatgagcagct
cctaataggttctagaccttgta
ggctatactatgtgtaagggtaa
tgagctactgatcttagattaatg
ttttccccaggctcttctctgtctt
cgtataaaagcagcaagtggct
tggatctgcttttgcctaggaaa
g[c/t]gactgcagtgtcctcctc
aggcatatagacacaggtgtgc
agttagttcttgcccttgaggac
agcacgtatgagaggatcttttg
taggattttagactgtcccttccc
ttggcaggcagagcaattccctt
gagctccagagccttcaacag
gaatttgaagttagcgaacctgc
ttgggaaggccaggagcctttg
accaagatttgtagggaagaaa
gttcactgaaaacctcaaaggg
gatgcccccgtgaggaaggca
caaatctgagctagggacctgg
gttcaatataaagg 

chr4:968
06023fw
d 

GGACTG
TGGTGA
GGACTG
AT 

chr4:96
806387r
ev 

GAATT
GCTCT
GCCTG
CCAAG 

365 

LIP chr5 95223175 SNP 
validated 

True_deno
vo variant 

acagcatgggagaaaatatttg
cacaccatatgtctgataagga
gttaatatccaaaatatataaag
aactcatacaactcaatagcca
aagaacaaataatccaattaaa
aatgggcaaaggatctgaaca
gacatttttccaaagaaaacata
caaatggccaacagggacttg
caaaggtgctcaacatcactaat
caccacagaaatgcaaatcaaa
accacagtgcgatatcacctcc
cacctgtcagaacggcttatca
aaaagacaagaggtagcaaat
gctggtaaggatgc[g/a]gag
aaaagggaacccatatacactg
ttagtgagaatgtaaaatggtgt
ggccattatggaaaacagtatg
gcagtttcttaaaaaattaaaaat
tgaactaccatgtgatccagca
atcccactcctgggaatacatca
gaaggaaaagaaatcagtatct
cgaaggggtatctatacaccca
tgttcactgcagcattattcacaa
tagctaataaatggaaacaacct
aggtgtctattgaaaagatgaat
ggataaagatgtggtggaatatt
attcagccaggagaaagaaag
aaa 

chr5:952
23058fw
d 

GCTCAA
CATCAC
TAATCA
CCACA 

chr5:95
223302r
ev 

AGGA
GTGGG
ATTGC
TGGAT
C 

245 
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LIP chr8 29308865 SNP 
validated 

True_deno
vo variant 

tctccgtgtgctctcgggcccgt
ccacgtggacatggagtggac
gtgtctgagcttcctcaccaggt
ggggcttcaggacagcggacg
gctcacgtggcagttcacaggg
cagggccagcgccgggctgg
gcagggcagaggtccacagct
tcacctctgccctcctccatcga
tgacccgccacaaaagcccag
cccgctgccaggggagggac
acaggctccacctcctgatggg
gggaaggttctagaagagatca
ctgcctccgtctttggaagcaca
atctgcgccctggagtac[g/a]
tgaggaaggtgagattctggaa
ggaaacgtgtgctgcagagca
gggttcagcagacgagggcca
cagaccggatcctgcctcctgtt
tctgcagatgagtgcagtcggg
ccacagccacacccgtccacg
cacacgctgccctgtggctgct
cccaacgtggcccggaggcta
cagtgcctactgtctggcctga
gcaatggggagaaatacacac
tggtcgctgcccaggttcccga
cacggagcctgagggccctcg
taatctcccgagggaccggca
cggcaggagctcacacgcgg 

chr8:293
08598fw
d 

ATGGAG
TGGACG
TGTCTG
AG 

chr8:29
308957r
ev 

GCAG
AAAC
AGGA
GGCA
GGAT 

360 

LIP chr8 83490000 SNP 
validated 

True_deno
vo variant 

tggcatgagatttcatcacagga
cttagaaggatgctcaatttaaa
acttatacattcttatttctggaat
gttccatttaattttttcagaccta
agttgaccacgggtaactgaaa
ccgcagaaagcaagggggct
ctactgtatgtagagtactctca
gaactgctcactgctctattctgt
gtagggattcggaagcccagg
ttccacttacagttctgcacaaa
acagtccccatgcggttcagcc
tatcattagttaaagcagcagaa
aggacgagatctctaagtcaatt
cca[g/a]ttcattttgagactttt
atctgcaaagaagtatgagaac
ttctttttccatctcttccaaattttg
ccctatttgtgactttgtattgaat
tgaataggaaagaaaaccatga
aggatttttgtcaaagagggata
caatggccttctttgctttgatgtt
gggtgctgatcagggaagaaa
tatcacccagcatctgcaacca
ctgactgatggaaatcagttcttt
gattcctctcttattgtctccatga
gtcactgcccagatgagagtct
catgcaaaaattagtcacagag
taa 

chr8:834
89881fw
d 

CTGTGT
AGGGAT
TCGGAA
GC 

chr8:83
490270r
ev 

CTCAT
CTGGG
CAGTG
ACTCA 

390 

LIP chr9 40934406 SNP 
validated 

True_deno
vo variant 

tatatagccatgccaatcaatca
ataagttttaagatatctcaaaag
aaaattagttagaaaattatgtca
aaaaaggttttatcataatagag
attaacattttttaagaatatgtatt
ctccttcaggatattcccaatga
aagtaatctggccaaaattaaaa
ttatcaaattgcaagattgaaaat
aaattttagagactattatattcc
ggcagatcatgcctcaagcga
attgctttcagcttctccacttcaa
tctttgctcttagcagctcttcttct
agttgctgccttct[t/a]ttcaat
ccatccctcttctcctgaacatat
aatcccaaatttttttgattttctaa
aattatctgatgttcctctttcagc
atttgcagaatctgaggatcata
ccctaattgtgacctaaagcgtt
ctccactctcatgctgaaaaaaa

chr9:409
34241fw
d 

CCCAAT
GAAAGT
AATCTG
GCCA 

chr9:40
934622r
ev 

GCCGT
CACTT
TCCTC
TGTTG 

382 
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tcatctctccgtgggatagaaga
tggagacgatgctattctcatat
caacagaggaaagtgacggc
gacaaagatctttccgtaacgtg
cactaattcatgttcttctctttgct
ctaaagtatcactttgttgagaat
ttaaaaccagt 

LIP chr1
7 

29582244 SNP also 
in parent 

 
ccttattcctgattttataggttgtt
gcatcctccgttaggagcagct
cattgtgatattgaagaattgctg
caagaagatgacacaaacgca
caagggtttaggtacacaactg
gataactcaataaatgtggttga
atgttacagtaatggcgctgctg
aatcatatttccctctatctacac
cctctattatttctcttccacattg
actctggccttggctgtgtgactt
gctttgggaacagggcattaac
aaatgtgacccaagcagaggc
atgacaaatactttctcatcagg[
g/a]ccccatctcttgctgcttttg
gaatacagccactatgtgaaga
agtctcctgacctgctggcaac
agacggcccagctgacagcca
gcaacattcatcagacgtgtga
atgatgcttagactaaccagcc
ccattgcagctgatggataacta
tagaaacatgagtgaccccag
gtcagactagaaaaggaacctc
ccagctgagctcagcccaaatt
gctgacccacagaatcagagc
aaataaaatgatagatatttaag
ccattaaatattggattgatatgt
agcaaaagatactt 

chr17:29
582244.f 

ggttgttgca
tcctccgtta 

chr17:2
9582244
.r 

tgctctgat
tctgtggg
tca 

524 

LIP chr2
6 

33187017 SNP also 
in parent 

 
aaatacacatctacgattgttatg
tcttctcaatgaagtcaccccttt
atcattatctttatcttttctaactct
ttgtcttgaagtctgttttattggat
gttaataaagtcattccaaccttc
ttaagcttactgtttgcatggtata
tctttttccatccttttacttttaagc
tatctatgtctttttctttttttaaag
gaggtagtcctttgtttgaaatttt
ttttcttcctaaagccccagtatat
agttgtataacctagttacaagt
ggttctagttcttctatgtggga[t
/c]gccaccacagcagggcttg
atgcacacagtacataggtctgt
gcccaggatccgaaccagcaa
accccgggctgccaaagcaga
gcatgagaacttaacccctcag
ccacagggccggccccctatct
gtgtctttttaattaaagtgtgtcc
taaagagaacatacactcaggt
cttgcttttctgtttaatccattctg
acattctctgccttttaactgcag
ggcttagtccattatcatttaatgt
aattactgataaggctgaattag
gtctaccattctgttcatttttggtt
t 

chr26:33
187017.f 

cttaagctta
ctgtttgcatg
gt 

chr26:3
3187017
.r 

tgataatg
gactaagc
cctgca 

421 

LIP chr3
0 

4510951 SNP also 
in parent 

 
cctttgaccctggacatctgacc
ccagccaactgccaccaaggc
tactccaacctccagtgtgctag
gattctagaacaagcccagctc
caactgtcactctgagtgtggcc
tggcctggcctccctgagcctg
tttcctcgtctggaaagggtgag
tcctcccctccctcacagggtct
ctgaggactcctgccatgaccg
tcatcactgccctcccctcaccc
ctccagggggagcagggcag
aaagctccgcatgctcctctccc

chr30:45
10951.f 

ttgaccctgg
acatctgacc 

chr30:4
510951.
r 

ggatgggt
gttaggtg
agca 

445 
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cgcttttagcccatcacccccct
tgaggcctg[c/t]gccacagg
accatcatgcctgcatctccccg
atgaggagacagaggcccaac
aggggcagcgagctgctcagg
gccacagaggagaggccactt
gcccctcccagccagaggccc
tgttctcatgtgctcacctaacac
ccatccccacccctgaccgga
gccctgtgccctcagttctcagg
tgtgtccttggccgagacgtgg
atggagagggcggggtgtcct
gggagcctgggtgagtggctc
ctgcccggcccaggccctgga
gagtctggcccccaggctgga
acggaggccac 

LIP chr4 47113988 SNP also 
in parent 

 
atatgaagcccaaaaaccaatc
ctagggaacaaaatcaagtaca
gtgaacagaaagaattctaaca
ggtgcacatggaaagggcata
gatgtaatgaatgttttgatgatc
ttcccagtctccctccttgaaga
ctaaaacacttattcctctagctg
ttggaaatattgatgactcacaa
cagctgggcagggaagagcct
ctttgccctaggtcacagtttctc
ccagggagcagctcacatccat
taactgatcaattgaagataaaa
gacttggctttctttgcttcaaca
attac[a/t]ctcatgggccttct
ggttctagagctccccatggga
tcagctgtggcctttttcgagatt
tcattaaaaagcaactcttctcaa
tccaatttccttcactccctcact
ggtttgataccaataaacttcctg
cctttaactctccatctcagaatc
ttttttccagggaacttgacctga
aacaatatgctttgggagccca
gagctggggttgaatccaagca
atttaacttgctatgtgaccttgg
gttttttagtctcctcagcctctgt
cagcaaaaaatagtaatatgag
ggcaa 

chr4:471
13988.f 

cccagtctcc
ctccttgaag 

chr4:47
113988.
r 

acccaag
gtcacata
gcaagt 

440 

LIP chr4 95252068 SNP also 
in parent 

 
ttttactcagcatatggctcttga
gatgcatccaagttgttacatgt
atcaatagctcattttttttcttttat
tgctgagtagcattccatgacat
ggatgtgccacagtttccttagc
cattcgcctattataggacatttt
ggttgtttctgtttctttttttacaat
tacaagtaaagcagctatacatt
aacatttacagaactctgtgtgg
atgtaagtgctcgtttctctggga
taaatttatgcccaggagtgaga
ttgttgggctacaacataaatata
ttcttatttttt[a/t]aagacagtg
ccaaatttattttctggagtggtt
gcacctctttatattcccagagat
tcatttttaataccagtgatttcaa
ctacatgtaacattccacgttgtc
atgtccataacacgcatgcgaa
tgactaaaagaatagaaacctg
gtagactcagagagtttttctttg
gatgcttttgaactcttgtcttcag
aaatatttgaattctgtctaacctt
tatctaactggaggtctgcctctt
caatgttaccatcactggctgtt
gctgtctgcatgcttgtgtcagc
cgtcct 

chr4:952
52068.f 

tggctcttga
gatgcatcca 

chr4:95
252068.
r 

tgacacaa
gcatgca
gacag 

581 
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LIP chr9 3085222 SNP also 
in parent 

 
ttgatcttctgaaattgttttatga
cattattaagaaatcgccatgga
ccagttaattagctcaactagttc
tttcacaaacatacgctaaagct
attcaacatcaaaattctctgcat
tatttaaatatgttgaagtcacttc
cagtatttgcccagaagtcatga
aattatatatgtatatttgcatgtct
gtgtatgtctgtatacatacatgt
atgtatatatgaatatgtgtgtgtt
tatgcatgaagatatttacgtgtg
tgcacatatatatatataacttata
catacgtat[c/a]aaaacataa
aatacatatacataaaaagtttaa
aataactttacagaaacaaaaa
aagtcaagtccaatgcttgttta
gggcaaaactgaatccagagt
cccaagccttagcacattcaca
ctctccagctagaaagatctcat
gtcgaaacaatgaagggtcca
cagcacttgtgctgaattaaggc
aaaggaggcaggaactctttct
actgttggatgcattgcatgcctt
tctttatcagcaagccttttcaaa
caactgtcccttagctcattattc
agatttgccacctaggag 

chr9:308
5222.f 

gccatggac
cagttaatta
gct 

chr9:30
85222.r 

gctggag
agtgtgaa
tgtgc 

393 

LIP chr7 77372524 bad sanger 
seq 

 
cctttaatcagcccatttttgcttg
aaatttatattatttctaatattcta
cctttcgcacaatgcttcaatga
acatcacttacggactctttactt
actggtttgaatatttctgttgga
gaaatttatgtcaccatcacgtc
aaaagacatgtctatgtttaactt
tgatagattctgtaacgttagtct
ctcaaaatcctgaacagtttcatt
tccatcgatagtttcattgacaac
ataagcaataaagatatgatca
gtatccgatgaagctaaattaca
tgcaatgtaatatc[t/g]atatg
gcctatgcattgatttccatatct
cactaataataataataaataatt
tagtatatgatctctacaagaaa
ctttattagtactttatacatgtttt
ctcatttaatcttcacatctggcta
tgtttgcacaacttttatggctga
gaaaaagcagaatatttaattat
ctgaaggctatacagttagtaag
tgatagagcctgaatttgaatcc
aagaagctgactttacagctgat
agctgtttcttgtgtctgaatttctt
atggatcaaaataatttcctcaat
aaaatcc 

chr14:29
6600.f 

gcttcaatga
acatcactta
cgg 

chr14:2
96600.r 

cagccata
aaagttgt
gcaaaca 

389 

LIP chr1
4 

296600 no SNP 
 

aactggaccaaggagatgtag
aaaatttgaatagactgatcacc
agtaaggagatcgaaacagca
attaaaaacctcccaaaaaataa
aagtccaggaccagatggcttc
cctagtgaattctaccaaacatt
caaagaagacttaatgcctatcc
ttgtcaaactcttccaaaaaattg
aagaggaggggaggcttccta
actccttctacaaagcaaacatt
atcctgataccaaaaccagaca
aggacaacacaaaaaaagaaa
attataggccaatatcactgatg
cacatcgatg[c/t]aaaaatcct
caacaaaatactagcaaatcga
atacaacaatacattaaaaagat
catacatcatgatcaagtgggtt
tcattccggggatgcagggatg
gttcaacatgcgcaaatctatca
acgtgatacaccacattaacaa
aatgaagaataaaaatcacatg
atcatctcaatagatgcagaga

chr18:56
233143.f 

actggacca
aggagatgt
aga 

chr18:5
6233143
.r 

gttgaacc
atccctgc
atcc 

408 
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aagcatttgacaagatacagca
tccattttatgataaaaactctaa
ataaaatgggtatagaaggaaa
atacctcaacataataaaggcc
atatatgacaaacccaccgcaa 

LIP chr1
8 

56233143 SNP 
validated 

 
ttaagacttttttttggtgaggaa
gattggccctaacatccatgcc
aatcttccaatttgtatgtggggc
actgccacagcatgggttaata
agccatgtgtgggtctgcacct
gagatccaaatctgtgaaccct
gggccgccaaagtgggctgca
caaatttaacgactacaccacc
aggccagcccaagactttctctt
ttgaacccatttagcacatatttg
agcgtctggtatattgccatgca
ttcttccaggtactagagacaca
gcaggaaacaaatatcgccgtt
ctcctg[g/c]agtaatgttctca
ttgaggacaagacagacaaca
atcaaataaaatgagctacattt
atagggcggggggaagtggtt
aaattcatgtgctctgcttcagtg
gcccagggttcatgggtatgga
ccacacactgctcagcaagcc
aagctgtggcagcatcccacat
aacaaaacagagaaagattact
acaggtgtcagctcagggataa
tcttccccaccaaaaagaaaaa
aggtttatgtcagattgagggat
aaagagaaaaaaaaaacatgg
gtaaaggatagagcctggagg
ga 

chr2:136
26700fw
d 

CCAAAG
TGGGCT
GCACAA
AT 

chr2:13
627064r
ev 

CCTGA
GCTGA
CACCT
GTAGT 

365 

LIP chr2 86268 SNP also 
in parent 

 
ggggaggggctgggagagag
taacacagcgggtgtttgagtct
ggctctgggcaggggaggga
cagtgacagccttggactgtgg
ggacaggacggtctctctgaga
tgggaccttagagttgagacctt
gatgacaggatggaggacaga
gcagctagtcctgcctcagggg
gcgggggaggctccaaggag
gaggggaccccggatctactc
ctgaggatgcttggaatgcacc
aggtggagagaggaagagaat
ccagacaaggagacaggagc
aaaggcccagagcggtgcag
gtc[g/a]catcctgttggggaa
tgtgtacgtggtcggaagtggg
gctggaagtgccctggggctg
catgtgacagacctgagatctgt
gctaaagagatggggcaccac
cctaagggaggggttcttccga
aatgtttaagcagtgcggagcc
gcccctctgaggagcatgcgct
ctgacgcctgaggcccctcca
gcactgggtctctgtgagccgg
acccgcagagactgttggcttg
agcccagtgaaagctggacgc
taatggacttgtactcaaataga
ctgactgtcatgaaatcctggg
g 

chr2:266
36712.f 

ggaggaca
gagcagcta
gtc 

chr2:26
636712.
r 

acaagtcc
attagcgt
ccag 

428 

LIP chr2 26636712 SNP also 
in parent 

 
gtcttggggacaggaaaccttg
ctccagttcactgtaagtgtgct
attcttggtgttgcctatgctctg
agatttgaaattgaaaaactcag
acttagaaaaacttaaaacaaat
taacctacgtaaaactagcttttt
ctcttggtgcacatttctgtgaat
attaactcttgtgtgggtttacgt
agctgccataatgatcaggatat
agaacagctccatcacccccaa

chr22:23
971258.f 

ggaaacctt
gctccagttc
a 

chr22:2
3971258
.r 

ccctgcag
tttgtgag
gaac 

515 
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aaccccttcttcccgctcttttata
gtcacaccctcccccactcact
gatctgctctctgtcactacc[a/
g]tttgtcaaagacccgggctgt
ggaaacgcaaaagctttctctct
gcttctgccaaagttgcccttcct
tgaagccacagggctgcatgtt
ccactgccccaagcagggcag
gagtcgtggggcgtgaggaaa
cgtggaaggacacgccgctca
catttggagacagtgttttccac
gttggtgacgtcaatgccttccc
tatgtgttcctcacaaactgcag
ggggtgccctttgcttcccacat
atcagtgtggctgtggttgacag
cctttactggtatcatttttgtgaa
tcaaggg 

           

NOR chr1
1 

7649446 SNP also 
in parent 

 
gcctcccctggctcatccaaat
gctccaagatattaactgagac
aaaagattgagacagtagaaac
agatcaggcaaatatgtccatg
aaactctatcttaaggagaactt
gacttctttctgtgtctttatgatgt
aaatttgctgctcccatcttctcta
ggacctgagagccattctttgaa
atacaaatgtttcttagaaactag
ttcattttgtattgcacctgattcat
aacaaaaatttaacgtcttgtctg
tgtctacctgtgtgtttatgtgtgt
ctagatgtatgttata[c/t]atgt
gtgatattttacccctggatggta
tggccaaaattaaaagctctgttt
aactgtcttaaagcaagtgcttat
gtaaattctaaatgtagtagaaat
taacccaatgtcttttaagttaac
atgatatagattaatctttggtaa
atgaaaagtttaagtttgttggttt
gattgaaaaaaagacatgtcctt
agagttgtcggtgtttgactatg
atgcagacatgcagcctgggtt
tactagtcagacaagctcatgtt
gtctgtcagaaatttgtcagcaa
aataatagcttta 

chr11:38
548898.f 

gctcccatct
tctctaggac
c 

chr11:3
8548898
.r 

actagtaa
acccagg
ctgca 

405 

NOR chr1
7 

20005831 SNP 
validated 

True_deno
vo variant 

actacctgatccctccagaattt
ggaaacctagtaagtgagtgag
tatgattatttcattgcaatatagtt
atttgcataagttcaatgagaatc
tgttctccttgtaacaggacaca
attggaaacattggttatcttaag
aaagctttgactggaatgtcata
tttgagagaaacatacagactc
agatatgacaatactgcctttga
ggaataaggttgactttctggaa
ataaagccacttggaaatatgg
gcctggtaccttatttacagaga
gagattccagcaatcttacctg[
g/c]taagtaaggaagcttgctt
atttggcaggtgcaaggagcct
caaaatattttggggaatatcaa
gagaagagagaaattcaccga
aatctaaggtattgcgggcaag
gcctgatggtacaaatccttggc
ttggctttcctggcctcaagagg
tctttaaagttcaatctgaggttc
cccataaaaaattccagcaaag
caaatttaagagcctgtatgatc
aattgctattcttgttgcactcatg
taaataattggcccaagtttattg
aaacgaaacttattttgcaaacc
aattag 

chr17:45
65574.f 

tggaaaccta
gtaagtgagt
gag 

chr17:4
565574.
r 

acctcttg
aggccag
gaaag 

435 
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NOR chr1
8 

21015205 SNP 
validated 

True_deno
vo variant 

gctggcccttggtatacccttttt
atcctcagtcttttgcaaagagat
agagaaggtcagtattgtagca
atgtggcatgagagagagcaa
gctagggatccaactgcttcata
aatacgatatggcctatttctaat
tttttaagcacagttgttcccccc
attcatctcacttctagagattct
gtcatgtaagtcagattaatcctt
ggcttttgctatttccagactgca
attaaatattttctttgatttgtttaa
tccttaacctcttgtccattggtta
atggcttccaaact[c/g]ttgac
accattctgttctttcccattagct
taatgtgttaaggagtcaaaaag
attttattgaagttttaaagggaa
gaaaagtatattcatgtttccact
ctgccttctttacctggaagttca
gctaatttatatttattatgtaaata
ccttcctaagtgaagtatggaaa
tttttttgccaaaattgtagaatgt
tttctattgtgtgttagcatgctat
gtgcacttaacaacatgtcgctg
ggtgaaataaaaacaattatgc
ataaatgcttcctttagtaccagc
tggctat 

chr18:21
015205.f 

gagagcaag
ctagggatc
ca 

chr18:2
1015205
.r 

cacccag
cgacatgt
tgtta 

471 

NOR chr8 31590451 SNP 
validated 

True_deno
vo variant 

gggccaaaccccccctccccc
tccgttagaaatggtactacatta
tcctactattttatgtaaaactgat
cttaaaaataaccgctagatgg
caataaggcataaaatgtaggt
ctggcaagaggacacccattaa
tagttcaaaggggcaagaaga
gaagctggctcctcacagatgc
tcaacgcctccctctcccttggc
atccccgaaggatcctagaagc
tgtggctcaccatggtggtggt
ggcttcatggggctggggtaca
gggacatgaggagaaaggcg
cagcagagaagc[c/g]tcaga
gagtgaaatgaacgtgagcttt
ggaatttgacagccctgagtttg
tctttgctctgtcactcattggata
tgggatctcggatgaagtgcttg
actttgggggcctcggtttctcc
acccttgaaacggtaacattaat
acctcattcatagggcgtgatga
ggatcaactgagatgatgtatg
aacagcaccttgtatgggaaag
gtgcttaagaaatggctgctagt
acagggccaagatttgttatctg
aaacccttggggccagatttgtt
tcagaattcagaattttcaa 

chr8:315
90451.f 

accgctagat
ggcaataag
g 

chr8:31
590451.
r 

atcttggc
cctgtact
agca 

470 

NOR chr1 115297935 no SNP 
 

ttatatatgtaccaccttgggatg
cagttaaaatatctaacgccatt
ctattttgaagaacagtctttccc
attcaagacattttagtatttaata
agactattctttcttgactatcatt
aagggcttgttgagtaaatttagt
caggacttctatatgtgatatga
catcctctagccccaaagaagc
aacaaatatagccataggtggc
cataccggtggaacactgaatg
agcccatctggccttaaagaga
agaagattggcaactggtgtta
gctcagtgtgaatccttccttg[c
/t]atccaagggaagctccggg
tgcagtgttttagccatccaggc
agtagccaaggctagagatttg
ttccacatgaccaccaagttcca
ttaggagccacccaataaatgc
ttggcctttgagaccagtctgttc
caaatcaatcactttctttaagtat
gatagtattctgaaaaccttaaat

chr1:115
297935.f 

ctctagcccc
aaagaagca
ac 

chr1:11
5297935
.r 

gaccagg
tctgtattct
cgac 

396 
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ggaacattataaaataggtatac
agtttaagcattacaaaggtttaa
atgaggagctacaaggtcgag
aatacagacctggtctggagtct
tgggacagctgtctacaacaga
tgccg 

NOR chr1
0 

21323697 bad sanger 
seq 

 
gtccacttctatccatcctcccaa
gggaaatgagtgtacatgtcca
tcaaaggccatgtacaaaaagg
ttctaacagctttattcacaacag
ccaaaagctgggcttaacacaa
atgtccatcggcatcaaatgag
ctcaagaaacagtggtatattca
tacgatgaaataatacactgtag
tcaacagtcagccacagacac
gctcaagaatatggtgagatttt
acagacaaaatgttgaggaaaa
gaagacaggtacgaaagagtc
ccatgctgcaggattccatatac
tgaaattc[c/a]tagcaccaaa
ataactaattagtgatgataaatg
tgagaatattggtttctctaacca
tagaacatatggactgagacgt
agtatagctcgtgtcacatggaa
aaactgtctagaatatggaaaa
catttaacgtatacaccttgaaat
gggtggtagtttcacaaaaatat
atatctgtatttctatatctgcacc
tgtctgtctgtctgtctatctatat
atatatttattgcaccacaattaa
gactagtggactttggaaccact
tcaataaaaaggcaaaaatagt
gcatttgca 

chr10:21
323697.f 

tccatcggca
tcaaatgagc 

chr10:2
1323697
.r 

agacaga
cagacag
acaggtg 

400 

NOR chr1
1 

38548898 bad sanger 
seq 

 
tcccttgcccttgcttttcatttcc
ctgtttcctttctcctttagacaaa
cagggtctgcagggagatgga
ttctccctgggttttgggtttgga
gctctgctaaggtcttgggaaa
gggccacacttgccggcaggt
ctgctgtctcgagcaggtgctg
aggcttctgtcgctccagaagg
acactttttggaccaaggatgtg
ggcctcctggccaggagtctag
gtggatgaaagcatcagcagg
acctccccaggtttggggagag
gagacctgttcatgcacaggtg
ggccgggg[c/t]gggggaag
ggagagcaggcggctttgata
aggatgaaacaaaatgaatgtg
ttttcaaacttttccccaggcccc
agcaggattctgcaaaactgta
atcccattttgtaaatagacgga
attgtctctctctctcttttttttaac
ccactggagatgcaaggccag
ctactgtctctcctctctgtctctc
tcaatacaaatgacaaaatggg
aagggaagctgcccgtttgtcc
cgatgagcgatgcggtaagtg
aggtgcagggcggtgtcggtc
ccagaggcctgttctcttggt 

chr11:76
49446.f 

ggtctgcag
ggagatgga
tt 

chr11:7
649446.
r 

agtagctg
gccttgca
tctc 

423 

NOR chr1
7 

4565574 bad sanger 
seq 

 
gtaaacataacctgtgcacatttt
gtcaaatcagtgacatttctagg
taggaagtttgaaaaccatcaa
agattctaggacacacaggatg
gtggtttaggcaaatctttgctg
gatgatcatttatcaattcctttcc
cctttgtcattatgaaattgcaag
actttctgaagaatcattagatag
aggaacatactaattccattcctt
atagaatgacaggtaggataat
gcagaatataagaaaagtactt
attctccagaattggcaaaatgg

chr17:20
005831.f 

caggatggt
ggtttaggca
a 

chr17:2
0005831
.r 

aagccaa
cctcgtgt
gtttg 

416 
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cagcaaagtgataaccatctac
[c/t]ctgactggctccctgtcaa
aagttacatagccttcctggcttc
accctcttacatatctgagtgatc
tttttaaatacaaacctggtcaaa
tcccttggcagaacacccccctt
cagctttgcatccttctggaattg
taacctgtgtgctcagccatttg
gaactgccattgttcccaaacac
acgaggttggcttacatctccac
gacttaatgctgtcccaatgctt
gtctgtctgcttagggaacacct
gccaatcttaagagaccaagct
caaggtgatgctgtgaagcctt
atc 

NOR chr2
9 

1231244 SNP also 
in parent 

 
tgttccaggaaagggacacgg
ggagagacagtaggcgtccac
accaggcgagacaaaaccag
gtgagcccagaggagggagg
tagagaaccaggcggactccc
aggagccaagggcggtctccc
ccctccctctgacccaggacct
ggccggccgtccctccccctcc
ttccgaccctggacccggccg
gccatccctcacgctccctccc
acgcgtgacccaaccggccgt
ccctcccccgccctccgaccc
gggacgcggcctgctgtccctc
ctcctccctctggttgttcctctc
c[c/a]gcacctctgagagcag
ggagcccagacacacgcagtg
tgcacagcaggcagcctctctg
agcctgagacagccgccagg
gctgccccccgccgctgggta
gcggagacagaggggatgga
gggaccgagaagcagtgtgca
gcccgcgagccccgcgcccc
ggccctcgaggacagcgcccc
gcaggcctcagcggacacgg
cgggccagggccgcgccgcc
gcccggaaggctgtccgggac
ccatgcccgggctcagggcgc
gtctcccctgggagcggccctg
cccgcagtcctccg 

chr29:12
31244.f 

gggagaga
cagtaggcg
tc 

chr29:1
231244.
r 

ccctccat
cccctctg
tct 

426 

NOR chr7 64671737 SNP also 
in parent 

 
tcacagtcccaataggaaaaaa
ttgccatgttaaaattagacaatt
caaggtgggttcaataaggagt
tgatctaaaatggtgtggacac
gagtgcacagtaactgagggct
aatgacagtgagatgcgccatc
cttcagcctggagtgaggagg
agggaaatgttactggaagcag
gaaggaaagagaactatagag
ccaactgtcttagaaggttagtg
atgttggtagagggacatagcc
tgtctgaggccaccctacaggg
agggagagtgccacaacttga
ctcccttcctttca[t/c]ccctct
catctcctgctggggcacccctt
ggccaaaccaaccagaaacta
gaggaagggagactcgatgtt
accgacaaagggcagagagc
agagtggaaagggataaagtg
aatccgcaagggcaagcaaaa
gatgttcagcccaaacaaaccc
tttatttaaagcccatctgtttgct
ggaaacacataggaatgaaatt
gtttccaccctggagggagcta
cagtcaacagagagtttggaga
aaagtaagctacaaaggagttc
ccaaccctgagaatgccataag
gaatttattt 

chr7:646
71737.f 

ggctaatga
cagtgagat
gcg 

chr7:64
671737.
r 

tccttatgg
cattctca
gggt 

487 
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NOR chr1
4 

473741 no SNP 
 

ttttaggctggttaattttaaaact
acagatgagaagcaggctcca
aggggtggaatttgcttgctcttt
gttgggaggcatttgcatttgtg
gggggaacctccatctgtgga
gatgtctccctctctgtgccagg
gggaagagggatggccttgtct
ctggaaacttttaatggggaag
gcaagaacttaagttggttacttt
ctggcaacctcatgtaactgattt
agggtggtggcttctggccttta
cttaatctgatttgattcttatctaa
aagatgtgggaccacccaatg
g[c/t]cagaccccacctgcact
gataccattttaacttttttccatgt
tctttcctttgtcttgtaaagagat
ggctcacatacctatgccttaaa
tttagccttactctccacccacgt
tggcagcagaagcgggggca
gcacctcctcctgcccatgggt
cctgtccccatgctcttccacac
tattctctaaataaaagagcact
accgccagatcttgagagtaca
agaaatctttctttcgactcctcg
gctcactgaccccgcatcacac
tgacaaataaaaatggcaagta
ataggat 

chr8:179
9905.f 

gggtggaatt
tgcttgctct 

chr8:17
99905.r 

tcaagatc
tggcggta
gtgc 

473 

NOR chr2
7 

596466 no SNP 
 

aagcagaaagagaaattaaga
atacaatcccatttgctattgaaa
caaaaagaatagaatacctagg
aataaacttaaccaaagaggtg
aaagatctctacactgaaaactg
taaaatattgttgaaagaaattga
agaagacacacagaaatggaa
agatattctgtgctcttggattgg
aagaattaacatcattaaaatgt
ccatacttcctaaagcaatctac
agattcaacacaatccctatcaa
agttccaacaacatttttcacag
aaatagaacaaagaatcctaaa
attta[t/c]atggaacaacaaaa
gaccccgaatagccaaaggatt
cctgagaaaaaagaacaaagc
tggagatagcacactccttgatt
tcaaaataaactacaaagccat
agtaaccaaaacagcatagtac
tggcacaaaaacagacacaca
aatcaatggaacagaatcgaga
gcccagaaataaacccaaacat
ttatggacagctaatattcgaca
agggagccaagagcatacgat
ggagaaaggagaggctcttca
ataaatggtgttgggaaaacta
gacagacacatgcaaaagaat
gaa 

chr6:327
0286.f 

ctgtgctcttg
gattggaag
a 

chr6:32
70286.r 

ctgtctagt
tttcccaac
acca 

420 

NOR chr1
0 

13100245 SNP also 
in parent 

 
gccacacctcttatctccacacc
atatctcgctctctgttttggccat
ttttctgtttcccccggctcataa
agctgcacaaaggcaggtgca
gtgggatctagggtgcctggca
cacagcagatgctccataaacc
ttgaatgaagcctatgggtcccc
ctgtgccagctctactctcagcc
ctttgcatggactatcgagtctat
ccacacgaccacccagcaagg
taggtagtattattgctcccagttt
tcagaaggggaaaacaaggca
cagaaagaagaagagttgggtt
taga[g/t]ctccaggtgtgaag
ggaactgggcaggaaagcag
ggacaatccagggtggggaag
cctgggccccagcgcagggg
ccatacctcttgcacagcccac
gcacctacgtctaccaacagaa

chr10:14
151126.f 

caggtgcag
tgggatctag
g 

chr10:1
4151126
.r 

atccaacc
aagctgtc
ctga 

471 
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gcgtctcctgacacatctctcca
gcctcacacgtctgggacccaa
tcgcggtccattcaacgggtgt
ctgagccgagtttcgctgcaact
tcaacatcagtccccgttgaca
ggtcaggacagcttggttggat
gaagcagggtctgggaaagcc
agggaaacagccgtgtctgtcc
ctcc 

NOR chr1
0 

13100245 no SNP 
 

tccatatttatcagctctcctgttc
agggagtctatattcttcttaatct
cctccattgtgtttttcatctccaa
catttctgattgcttcttctttatag
tatcaagctcttttgtgatgtagct
cctgaactcattgagttctctatc
tgtattctcttttgactcattcagg
ttttatttttttgtggaagattagcc
ctgagctaacatctgccaccga
ttctcctcttcttgctgaggaaga
ctgaccctgagctaacatccat
gcccatcttcctctactttatatgt
gggagg[c/t]ccaccacagca
tggcttgacaagcgatgtgtag
gtcctcacccgggatccaaacc
agcaaaccccaggctggtgaa
gcagaatgtgcgaacttaacca
ctgcacctccgagctggcccct
cattgtgctttttaatgatagctat
tttggattctttcacatttaggtta
cagatttctgtgtctttgggattgt
tttcctggtacttgtcattttccttc
tgttctggagacttaatatatttttt
catactgctatatggtgttgattt
gtgcctccacatatagagtttcct
tcctg 

chr12:17
455667.f 

tgatgtagct
cctgaactca
ttg 

chr12:1
7455667
.r 

ggcacaa
atcaacac
catatagc 

463 

NOR chr1
0 

14126430 SNP also 
in parent 

 
gagccctaaccggcaccacat
ggacagcaagcacgcattagt
cactgagccaggtaagacccat
atgccgcctcctggagtttgctg
tccaggtttggagaggtcatcat
gcaaggaggcaggtgccagtc
accaagaagggtgtgaccaag
tgccgagaactcaaagctgttg
gagaccccaaggaaagattttt
agagaagacggcattttgaaca
ggaccccagtagaccaggcaa
atttccctggcagagatgggag
gagccaccacgcagaggaact
ggtgtgctcacagacgcc[c/g
]agaccaggaacctttgtccac
aagaatgaattctgtcctcctgg
aggtgggaggtgaagagggtg
gggaaggtaggggagtggctg
gaatcacattgctgagagctgt
gagtgccaggctggagtctga
gccttgccccatggacagcag
gaagccgtggaaagttttggag
caagacaagatgaaagccgttc
gtgagcactctgatgtctgtcttc
agacccaggtccccaggcccc
tgcaaattacccttccagcagtt
cacagaagagctgtgtttcagc
cccttgtgtatctctg 

chr12:17
467671.f 

gcaagcacg
cattagtcac
t 

chr12:1
7467671
.r 

gctcttctg
tgaactgc
tgg 

550 

NOR chr1
2 

17455667 no SNP 
 

ctcaccaagaaaaaaagagag
aaggctcaaataaatataatcag
aaacaaaagaggagagattac
aatggacacctcagaaatacaa
aagataagaagagaatattatg
aaaagctatacgccaacaaatt
ggataatctagaagaaatggat
aaattcttagaaacatacaacctt
ccaaaactggacaagaagatgt

chr10:23
731364.f 

aggagagat
tacaatggac
acct 

chr10:2
3731364
.r 

atgttgaa
ccatccct
gcac 

538 
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agaaaatttgaatagaccgatc
accagtgaggagatcgaaaca
gaaattaaaaacctcccaaaaa
ataaaagtccaggaccagatg
gcttccctggtgaat[t/c]ctac
caaacattcaaagaagacttaat
acctatccttctcaaactcttcca
aaaaattgaagaggaggagag
gcttcctaactccttctacgaag
caaacattatcctgataccaaaa
ccagacaaggacaacacaaaa
aaagaaaattacaggccaatat
cactgatgaacattgatgcaaa
aatcctcaacaaaatactagca
aatcgaatacaacaatacattaa
aaagatcatacatcatgatcaag
tgggtttcattctgggggtgcag
ggatggttcaacatccacaaag
ctat 

NOR chr2
8 

20549421 no SNP 
 

ccttctgccgtaaatacaacgac
aatgacctgttctatttagaggct
ccaccttcgtcctgaaacagaat
atccaggtgaggacaaccagg
tgtggaaccaaaaaagaaaca
cagataaacacaaagagcatct
gaccaaggcatcttttaatcaaa
ttgctgaaaactaaagagaaaa
tgttaaaagaagccatggaggg
ggcacattacatacaaaggaac
taagataagtatgtcttcaaactt
tttatcagaaaatatggaagcca
gaagaaattaaattacatctttaa
atgtac[t/c]gagagaaaaaaa
tattcaagttaaaattctaaatgc
attacaaatattatttaaaaacaa
gatgaaatgaagattatttaaaa
aaaaaagaaatcttgtcaccag
aagacatgcttgacagtagatg
ctaaaggaagttgttcagggtg
aagaaaaattacactagatgga
aaactgaatctccacaaaagaa
taaataacataacaagttatatgt
aagtaaatataaaaggatatttct
cattgttcaagttcttaaaaagaa
aaatatttgtttaaataaaagaaa
agaaaaacaaa 

chr20:32
276595.f 

acaacgaca
atgacctgtt
ct 

chr20:3
2276595
.r 

ccctgaac
aacttcctt
tagca 

435 

NOR chr2
0 

32276595 no SNP 
 

atattgcatgttctaaaaatggct
gcttcgccccttctagaggagg
agaatttatgatgttaatgaggc
aggttactttagtacaactctgcc
tgtccgctcaggtgtcattcttat
ggttgtggtctgggctggtttgg
gccagttcagagcagcagggt
ccagggcagttgttgcttagagt
ttcttcctggaacacagctgaaa
ccacaaaagctcaagactccaa
agtcattagagaaagcaatattt
gcacctttcaacaagacaagag
aattaggtcaaacacaaaaggt
taga[g/a]gttaggcaagaca
agaagagtccatgactagtgag
aagatgatccagaatgaaattta
gcatctggtgcaagatctctgg
ggaggcccatgaaactctcacc
aacaccatgcttccttcctcttac
ctctgtcccatttggccagcaag
agctattctcacagttggatcag
atgcatactcttcaattcagcca
cttggtggcaataccacagcca
ttgatgacacaccacagaggtg
ccatatctccaggaaacaccatt

chr23:40
878726.f 

agtacaactc
tgcctgtccg 

chr23:4
0878726
.r 

tgtggtgt
gtcatcaa
tggc 

457 
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cctccacttgaaacttggtgctta
ccattccctcctcc 

NOR chr2
2 

36838245 bad sanger 
seq 

 
taccaagaaggcggagatcat
aaccttgcttacaccttcggagg
caccggaatggtaggagagaa
catcgctccctcccctagagtct
gcgatcgctgcggtgcaggtc
gggaaggagtgggggagggg
ccgcgcgaccgggggatcatc
caggactcctgccgctgattca
gtggagacccgctgatggggg
gaaagcttccgtccacgggga
ccctataaatcaagggccttgg
gagaccagagaacagaactga
tctgaacccagactggtgcgtg
tgagtaacagcccctcccccc[
t/c]aacaaagccagtgggtgc
aggcatcttgccccgaaggcg
gagagctaacatgccgctctca
acccccatctagtggcgacag
gctgtaactgcaactgaattcta
ccaccatgagaaaaaaccgct
cctctaccatccagcaatttataa
aagccccagaccagaaggaa
aacaataaaaacacagaattaa
gtcctgaggacttggaattaggt
aaactaagtgatgatgaattcag
agcagctataatcaaaaaactc
aatgaggtagagagaaagata
gagaaacaagccgagttct 

chr7:435
60898.f 

accttgctta
caccttcgga 

chr7:43
560898.
r 

ttgctggat
ggtagag
gagc 

424 

NOR chr1
1 

41656509 no SNP 
 

gtcccagagttccctaacactgt
tctcattctgtctaattcttttttctc
ttttctgttctgctttggtgatttcc
tctaatcttttctctagctcactga
tccgttcttttgcttcctctactctg
ttattgagtccctctagtgaatttc
tcatttcaagtattatattcttcattt
ctgattggttcttttttatatcttcc
agttctttgctgatgtgctcactg
tgttcatccattcttctccacatat
ctgtgagcatcctcattatattttg
tttgaattctttgtcaaggag[g/t
]ttgctagtttctgtttcacttagtt
ctttttctggtgttttgtagtgttcc
cttgcttggaaagtattcctttgc
ctcctcattatgcctctttctctgt
gctgttttctttgcactaggtgag
tcggctatgtctcctgatcttgga
gaagtggccttatgtatgagatg
ccttatgaggaccagcagtgtg
cttccctctcgtcaccagaccat
aagaaccaggagtgaccccttt
gtgggttacttgtgttcttctgtg
gcagggttgctcccactgcagg
tacccagggagtgtga 

chr8:496
12506.f 

tctagctcac
tgatccgttct 

chr8:49
612506.
r 

cacactgc
tggtcctc
ataag 

408 

NOR chr1 44584336 bad sanger 
seq 

 
atcagtgatactggcctgtagtt
ctccttttttgtgctgtccttgcca
ggctttggtatcagagtgatgtt
ggcctggtagaatgtgttagaa
agtcttacatcctccctaatttttg
gttagctgaaaaggataggtatt
aaatcctccctgaatgtttggta
gaattccccaggaaagccatct
ggtcttagggttttattctttggga
tgcttttgattgctgtttcaatctct
ttccttgtgattggtctgttcagat
tgtctgtttcttcttgactcagcttt
aggaggttgtaa[g/c]agtcta
agaatttatccatttcctctaggtt
atccattttgttggcatataggttt
tcatactattctcttataatccgtt
gtatttctgtggagtctgttgttat

chr1:155
138900.f 

tcagagtgat
gttggcctgg 

chr1:15
5138900
.r 

gacaaac
ccctagcc
agact 

429 
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ttctcctctttcatttctgattttgttt
atttgagctttctctctttttttcttt
gtaagtctggctaggggtttgtc
aattttatttatcttctcaaagaac
cagctctttgtttcattgatcctttc
tactgcctcttttgtttcaatagca
tttatttctgctctgatttttattattt
ctctccctctac 

HAF chr1
0 

59172497 SNP 
Validated 

True 
denovo 
variant 

ccaagctttccccactccaccct
gtttcttcacagccctaaaagttt
gtccaaaaaagcaaagaggatt
atgtcatactcttcatgagaagtt
ctgttggctcagcttccttctgga
taaaatctaacattagttagaac
agacagtaagttcaacctttcttt
agtggatctgtttgggtttttttcc
tccttaacatctgaccacttttcct
atttggggtactccccacaggg
ccctaccaccctctaaagtggct
cagggaccagagtctccctctc
cccaccctgtgagagccag[g/
a]gtgtggggatatgaactggg
ctcgactagtcgtgtgctcctgc
ctggggccttggatctccaggg
acacaaggatacaggagttga
gaagttattctccgtgaaggcg
gcagtgccaacctagggccag
caggcacctgtggcagcatcct
ggctgcacatccctggggcatg
agtctggccatgttttcctgctgc
caggcctcccttggttccagcct
gctttccaaagctggttcttcag
ctttcctgccgattgggaggtca
ccagtatcccttcaatacagacc
attcctcccta 

chr10:59
172497.f 

actccaccct
gtttcttcaca 

chr10:5
9172497
.r 

gaaagca
ggctgga
accaag 

516 

HAF chr1
7 

1685198 no SNP  agttttcccatcaccatttgttga
aaagactttcttttctccagtgta
ggccctgagctcctttgttgaag
attagctgtccatagatgggtgg
ttttatttctgggctttcaattctgtt
ccattgatctgtgcacctgtttttg
taccagtaccatgctgttttgatt
actgtaactttgcagtatgctttg
aagtcagggactgagatgcctc
cagctttgttcttctttctcaggat
tgctttagcaattcggggtctttt
gttgccccatatgaattttaggat
tctttgttcta[t/c]ttctgtaaag
aatgtcattgggattctgactgg
gatggcattgaatctgtagattg
ctttaggtagaatggacattttac
ctatgtttattcttctgatccatgta
catgaaatgtctttccccctcttta
tgtcgtcatccatttctgtcagaa
aatccttgtaattttcattgtataa
gtctttcacttccttagttaaattc
accccgaggtattttattctttttg
ttgcgattgtgaagggtattgtgt
tccagttctttttctgttagttcctt
attagagtatagaaatgctg 

chr17:16
85198.f 

ccattgatct
gtgcacctgt 

chr17:1
685198.
r 

acaatacc
cttcacaat
cgca 

434 

HAF chr2 100761774 SNP 
Validated 

True_deno
vo variant 

aggcacagataattttaaggaa
atcaattccatttattcaacttttac
ctactcttgcctaaaattgagctg
cctgaaatatgcctgaggttga
gatgtcacaacaattccacttct
ccaactccctttaaaaatcattct
tttcccaagtataaaaagacaag
cttcttctcacctatcccagatctt
actatggcaaattgctcctgtac
atgaaaagcctctaatgtaccat
aaaaaggaacaattctaaatatt
gatggcaatatttaatttaaccaa

chr2:100
761774.f 

tgcctgaggt
tgagatgtca 

chr2:10
0761774
.r 

ccagatga
agtagggt
gcaac 

466 
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ggcatgataagcctacag[g/t]
aagacttcctggctttctttatctt
acaaatatttctgttaagagaaa
accatggtggtagaaaatgggt
atttgggtctgtgttggggtgctc
tgagttcagatatattatagagtg
gggtggcaggagttatgatcatt
tttgtctaatgtcatttcctcttcca
ttttctgatgatgtcaaagaatac
tattgagatagcaaaaagaaat
attgaagggggttgcaccctac
ttcatctgggtaacaagctcaca
gcaaggtttcatgctccatatatc
aatctcagaattcaaata 

HAF chr3 53100714 SNP 
Validated 

True_deno
vo variant 

tgtaatccaataccacattattcc
agcattggcccttgggagctctt
ccagttgcctcccatgtccatcc
aatatacacccatcattgtgggg
ttttttatgagcactttctaacttttt
gtcaggctctaggctcatcttgg
acattccctgccccagccctag
aattagctatttctccaaggagc
cctgattccttttattgaggattca
tattagaagcaaacatctggatt
cagggagtacttgttgctacca
gtgtgtcactgctctcaacagcc
ttttctctaactcacaatt[c/a]ta
cacattaatcatgagctgggctc
agctgcatggttcttgtggtctg
gactgaattcagccgatttcatct
ggacttgctcatacatctatggt
cgtctggtgggttgtcacaagtc
tttaggataaccttggttaggac
acttgagagggctgtgacctctt
tctacatggtcttctatcctccag
cacactaaactgagcttgttcat
atagtctcaggattcatagcagc
aagaacaaaaatgcacaaagt
atcttgagtccaacgatggaaa
cttacccaataatgcttgagcta 

chr3:531
00714.f 

ctcttccagtt
gcctcccat 

chr3:53
100714.
r 

tcacagcc
ctctcaag
tgtc 

419 

HAF chr4 44983704 no SNP  agacttgtgtttcacaaatagcc
ataaaaaggatcagccccacct
tccaaagcctgaaacaactgag
tgcctccatgccaagggctagc
cctcctcagctgcactcctaaga
gaactgacatcagccttgttggc
ctcaggcctatcacaactgtac
gcccctgagcctagcaaccag
ctacactgggtaccaacccaatt
aagaggacaattgcaataaga
gtgtgctaacaggcgggacca
agatggcagagtgagtggtctt
ctttgtctctcccccgtcgaatct
acaactaattg[g/a]acattcac
caattaacaaaggatatccagat
agcatctcaagacgcctaagag
tctcatactgctatacatcggaa
ggcagacggtcttccccccgg
gaggaggtggaaataggtgaa
aactctctgacccccaaccccc
gaccctcagacagcctagttcc
tgcaggaggctctcttccagca
gactcccccacagcattgccac
acacccaagggtgggagtgtg
cactcaccagcagagcgacgg
tggaaacaggtgacaacagcc
ctactcaagccccccgtgattac
acataagc 

chr4:449
83704.f 

cctcagctgc
actcctaaga 

chr4:44
983704.
r 

tgagtagg
gctgttgtc
acc 

487 

HAF chr5 21907765 bad sanger 
seq 

 ctgtttctgttgtcactttgaatag
atacctgaacatggtttcgcagt
aaactttgtttcccatctgaacaa
atgttttaaagcttttaatatttttg

chr5:219
07765.f 

cctgaacatg
gtttcgcagt 

chr5:21
907765.
r 

tccagagt
gtcagagt
cctt 

556 
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acaagcttccccccacacacaa
atattcaagtcctgaataaaagc
tttcttttgacttggaagaggag
ggaaggtttctctggggattttc
agagggcccctgggacttctca
gagaaatttgctctctttctataa
gaaaaatgctaaactaataagg
cttattttgtatgttaaattacatga
gaagcattgtcaaataa[a/g]t
aatgataaactttcttaaatggta
ttatgtaaatgagtgttattgatat
aaggattttaaaaattatctgatc
tgattgtcagccataattgtggtt
atctcaaaataattctggttagta
tctcaaaatgttatatatcacaga
catggtcaaatgtctttgtcagtt
accatttttgaatgttttgttatttg
cagagagttgctgttttactttaat
gtttttgcaaatatgtttcatctcct
gagaaattcatggaaaggactc
tgacactctggaatataggtttc
caataaac 

HAF chr5 53320088 SNP 
Validated 

True_deno
vo variant 

ggtggccacaggaacatttttta
aagcaatttttctttcctttttcatg
tataaagagcctggtacagagc
ctaacatataatgaacattaatta
aatggtagctattgttactattcta
gaactcacagaaagccatctaa
atctagaatttatttgaatttcacc
agccttcgaaattctagttatttct
gccacaaaaccttcccacacct
aattggtaaatgattagctaagg
gatagtccagatcactgctatca
ttcattttcaatctgacagaagca
caattttggagcgagt[t/c]tttt
ctctgataaaatatgtttagtgga
gtaggagtcctgtggaagtatc
ctacagaactgtgcagtggaca
tccgtcacctgtaactgccccca
tcgtttcaactgcacctctccac
attttcatatttcccacattgtgaa
tcctaccttcccaaataatttttttt
catccttatatttcctagcctcctt
gcttctagaaaacagacttctga
cttagatcttataggtcagttacc
tgagcacagtttggtttggaatg
agtttcatggggttgggcctgg
gtactggcgtgggc 

chr5:533
20088.f 

caccagcctt
cgaaattcta
gt 

chr5:53
320088.
r 

ctcattcca
aaccaaa
ctgtgc 

406 

HAF chr7 91483698 SNP 
Validated 

True_deno
vo variant 

ctccaaatctccattttcaattcta
aagggagggaacataatgggc
gttttttgtgctccatcatccttgc
tgtcactccggtctcagaggctt
cagccagtgatattcgttagaat
cgtttttgactgagaatagtgag
atctcaaaaaaataataacctaa
acaaagtacaagtttatttccttt
gcattagagaagtttggaggta
aaatggcttggaagatgtgtca
aggaagcagtatccttcttaatg
tgacttctgcgtccagggtaattt
cttggcttggcacttcagtcat[t
/g]atatttactttccaggcacca
ggagggagaaagaaaaggga
aacctttgtgactaggttttccgt
gcacctggtgttcattcaccttat
tggccggaacttagtcacaatg
ctaagctgcaaaagaaatgtaa
tcatttagctgagcaccatgctc
ccagttacaaattgggatttgttt
actaagaaaggacaaagagaa
tagatactgggaggcagagag
caatctctggcccaatttcataat
agagctgccatcgctgggttca

chr7:914
83698.f 

tcatccttgct
gtcactccg 

chr7:91
483698.
r 

cagcaact
tggacca
gtgg 

537 
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acgcccccccactggtccaagt
tgctgcggtt 

HAF chr1 120334435 no SNP 
also in 
parent 

 tgaggaaatacattgtttgtaga
agttaaaaacaattaaactgaca
aagttggtctgctctttgttatccc
cacgtgccagcaattctcaaca
atatcagtgacaaaataccaatc
agagcagactactcccactcctt
tctaagttgacctatcaatgtttc
atgaaatcaattatttaaaatatg
gaagaagaaaagataaaatgg
agtgaacagaaaggagtgcat
ctcacacagtatgagtagatact
gctttgttaaacttttgtttcagag
acagacatgcagatacacatgc
a[t/c]attggattgtagcataaa
atatacttcttactatttgtagcag
ttaaaaatgctagcaattaaaaa
tagccactgggaaagaataaa
gaccctaatgaagtggtatgca
ctgattaaagagtactagactag
gaatcagaagttttgggcttttaa
ttttggcttcgtcttcaaatgcgtt
ttgtatcttacagatatgtatgtga
aaatattttctttgttaatacaaaa
gatatttaaagaattttccaggta
tatatggaaaagatcttttcctta
ggaaaaaaatattcttcacca 

chr1:120
334435.f 

ctttgttatcc
ccacgtgcc 

chr1:12
0334435
.r 

acgcattt
gaagacg
aagcc 

424 

HAF chr1
2 

13784646 SNP also 
in parent 

 agagtgatggaactgttctgtat
cttgcttgtgtttgtggttatacaa
ctctatgggtttgtcaaatctcgc
agacttcacaccaaaaacagta
tattttactttgcatgcaaatttaa
aattcactatgtgtaatttaaaata
attttttaaatatttttgggtaaga
aagacattgctatgatgctatatt
cttaatttacaaattttacttaaac
caatttatgctgttaatcataaatt
agcaaaactttaatagagcctcc
tgtaaagagcttctagaatttgtc
caaattatta[t/a]ataattggct
ttcctgttactgactcccagtgg
ctcctttgttctagatagtttagcc
acctcttcatgaacctagcatct
cgggatcacccaagatgatcat
aagttgccaaggactacaggta
caagaaactgccctcctcagct
ccatgctacacatcattagtatg
gtcattgcaaggtgcatcctgg
cctgtcctgaaaatagaggctct
cagagacctctatcctttgctgc
ccatttgccttgtgtcatgaaag
cagcattcccacaaacttagcgt
aggcacagaggcctcc 

chr12:13
784646.f 

gtcaaatctc
gcagacttca
ca 

chr12:1
3784646
.r 

gcaaatg
ggcagca
aaggat 

489 

HAF chr1
4 

4827882 no SNP  gggattctgattgagatagcatt
gaatctgtagattgctttaggtag
tgtggacattttaactatgtttatt
cttccagtccatgtgcatggaat
gtctttccatctctttatgtcatcat
caatttctttcaagaaagtcttgt
agttttcgttgtatagatctttcac
tttcttggttaaatttatcccaagg
tattttattctttttgttgcgattgtg
aatggattgagttcttgagttctc
tttctgttagttcattgttagcgtat
agaaatgctactgatttatgtatg
ttga[t/c]tttataccctgcaact
ttgctgtagctgttgattgtttcta
atagttttcctatggattctttggg
gtttttgatatataagatcatgtcg
tctgcaaacagtgagagttttac
ttcttcgttgcctgtttggattcctt

chr14:48
27882.f 

ttcttccagtc
catgtgcat 

chr14:4
827882.
r 

caaaccc
acagcca
acatca 

525 
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ttatttctttttcccgccgaattgct
ctggccaacacctccagtactat
gttgaataagagtggtgaaagt
gggcacccttgtcttgttcctgtt
ctcagagggatggctttcagtttt
tgtccattgagtatgatgttggct
gtgggtttgtcatatat 

HAF chr1
6 

2815931 bad sanger 
seq 

 tgctgtcgattgctttaggtagta
tggacattttaactatgtgaattgt
tccaatccgtgagcatggaatat
ctttccatttctttgtgtcttcttcta
tttctctcaaccatgtcttatagttt
tcagcatacttggtctttcacttc
cttggttaaatttattcctaggtac
tttattatttttgttgcaatcgtaag
tgggattgtattcttgagttctcttt
cggctagtttgttgttagtgtata
gaaacacaactgattttcgtgaa
ttgattttgtaccctgcaactttgc
tg[t/c]agttgttgattatttctag
tagttttctggtggatttgttagg
gttttctatgtataaagctgtgtca
tctgcaaatagtgacggttttact
tctttggttccaatgtggatccctt
tgatttctttttcttgcctaattgct
ctggctaggacttccagtactgt
gtcaaatgggagtgacacgaat
gagcacccgtgtcttgttgctgtt
cttaggggatggctttcgggtttt
caccattgagtatgatgttggct
atgggttgtcatatatgacctttat
tatattgaggtatttt 

chr16:28
15931.f 

tgctgtcgatt
gctttaggt 

chr16:2
815931.
r 

gtgctcatt
cgtgtcac
tcc 

497 

HAF chr2
0 

29311733 bad sanger 
seq 

 taagcaataaaaagattattgat
gagatattttacattctttttctcat
tccttacttttcttgaaattattgtt
cttagccgccaaagggtcaga
aattccttaattttatgtcctgcca
tgtggtgactttcatccagatcc
agctatcctaggatttgctgacc
acatcaaaatcacttacgcctca
aactcgatgcaggagagagtg
agcacagagacagagctggc
gtaggaccccacctcagcttcc
tccctcctctcccagctttactcc
acccaggagcccttcatcctcct
[c/t]caatctccaggattccatg
aatctcacgaatggggagcca
gtcatgagatatataaacccag
atccccacaattcccctgcagg
aagtccttcctgaagtctgccca
ctcccattcctgctggagcctca
gtgcttccccaatagagcccca
ggtctgtgcagagggtgatcta
gagcactcttcctccctataacc
acagggctcactccctcacctc
cttcaggacttagctcaaatgtc
gcctctcaggaaagcctcccct
gaggataatatttaaaattacaa
ctagttccctcat 

chr20:29
311733.f 

tcctaggattt
gctgaccac
a 

chr20:2
9311733
.r 

aggcgac
atttgagct
aagtc 

400 

HAF chr1
8 

52005 no SNP 
also in 
parent 

 tcacctgggaagtgggccggc
tgtcaggccgtctgctctctcca
ggctcactgttaggggctcctg
ctgctggtggtccctcctcgcac
cagatgaagatcatgcctcagc
ccatgactccacagctccaacc
ccttctctttcagtccccagggc
aagccctaagtggtcagactgg
tctggggaccctgcacagaca
gcctgaggcaaggcctcccag
gggccgatgtggggctgaccc
tgtccccaggccccttggcattg
ggcatcagctctgagtcatcca

chr18:52
005.f 

agccctaagt
ggtcagact
g 

chr18:5
2005.r 

atggctgc
agagttgt
cct 

406 
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ctcagggacagtct[c/t]ccct
ctctgtgcagccagtcgcagtt
ggggcaggcagaaagcggcc
cagatggtcagccaggcaatg
gtctacccaggctggaggcag
ctagaatgtacccaggccagg
cgtgaagggcctcagtgccac
ctctgatgccatcaaggcccca
ctgtcccctggccgggtggcct
cctgggcatgcaggggcctctc
cccagtcgcacagcttcctttgg
ctcttgcaggtggttgggcggc
aggacaactctgcagccatgcc
ccacctgccgaacctgcgctga
gctcccaggactcat 

HAF chr2
4 

540464 no SNP 
also in 
parent 

 tccttttttctgtcttatgtcaattta
actcttagaacagccagaagaa
cctagaagaatagagggaaaa
ttcatcccccctctatcctatgta
gggattcaacttctaatagcaca
ttctttccagattttgagcctctgg
ccgcagtttatccatgtctgcata
tgcctgaggagaatagtatttgt
agtcggatactcatgaacaggc
gttacagattacggacgcttccc
cgtctgcggcctctgggagca
gtcaagcccacccaggcttaat
acagcagagaagggtgcaaac
at[a/g]tgctgtatcgacagtca
gtatctggagacagtaatgtga
aatggaaaaaatgttgtgagcta
ataggaaatatagataggtctct
ggccacagttcctgacacagg
actcctggaacactggtaaattc
ctaagtgccaagagcaatagaa
gcttcttttgttctaactaggtgac
tctgggtgggctcctgtgtggct
tttggatgcaggctggacacca
gaaagaccaagctgtgattaga
agcttgggatttccatgcctcctt
tctcctccaacttctctagagag
agagaggagg 

chr24:54
0464.f 

ctggccgca
gtttatccatg 

chr24:5
40464.r 

agttggag
gagaaag
gaggc 

444 

HAF chr1
0 

7931916 no SNP  cttgtcaaatgctttctctgcatct
attgagatgatcatgtggtttttgt
tcctcagtttgttgatgtggtgtat
cacgttgattgatttgtggatgtt
gaaccctcactgtgtctctggta
tgaatcccacttgatcatgatgta
tgatcctttttatgtctcgctgaat
tcgggttgccaaaattttgttgag
aatttttgcatctatgttcatcagt
gatattggcctgtagttctcctttt
ttgtgctgtccttgtcaggctttg
gtatcagagtgatgttggcctca
tagaatgt[g/a]ttaggaagtgt
tccatcttccctaattttttggaat
agcttgagaaggataggtatta
aatcctctctgaaagtttggtag
aatttcccaggaaagccatctg
gtcctggggttttattctttgggat
gcttttgattcctgtttcaatctctt
tccttgtgcttggtctattcagatt
atctgtttcttcttgactcagcttt
gggaggttgtaagagtctaaga
atttatccatttcctctaggttatc
cattttgttggtatatagtttttcat
agtgttctcttacactctgttgt 

chr10:79
31916.f 

tgttgaaccc
tcactgtgtct 

chr10:7
931916.
r 

ctcccaaa
gctgagtc
aagaag 

417 

HAF chr2
2 

24976376 bad sanger 
seq 

 ctctacagaaaccttacaagcta
ggagagattggaatgacatatt
caaaactttaaaggataaaaatc
ttcagccaagaatactctatcca
gcaaaaatatccttcagatatga

chr22:24
976376.f 

agctaggag
agattggaat
gaca 

chr22:2
4976376
.r 

tctggtgg
cctcttact
tcc 

451 
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gggaggacttaaatcctttccag
acaaacaaaagctaagggattt
tgtagccacaagacctccacta
caagaaatcctcgggaaggcc
ctcctacctgaaaaaagaaaaa
aagggagaaaggggtcacaa
aatacagagtagggagactaat
agatagaaccagaataggata
gcaaatattcaac[c/t]atagca
ttaggataaagggaaggaaatc
accaaagcaaagacaatcttatt
gctctaaccacaaactcacaac
acaagttggaataagagatgaa
aataataatttaggaggggaag
aggaaagggattgaatcagttt
aggctaaggaagtaagaggcc
accagaaaatggactatgttata
catgaggttctggatacaaactg
cagggtagccactaaactaaaa
aacagaacagagacacaaaac
ataaataaggaaaaagctaaaa
aacccagcataaaaaattgcag
aagtcaa 

HAF chr3 54907512 no SNP  agtgacctactagacaaagagt
tcaaacaaaatttcatgaggatg
ctcacagatatgggaagaaga
attgatgaacacagtgagcaca
tcagcaaagaactggaagatat
aaaaaaaattagaaatgaggaa
tagaatactggaaatgagaaatt
cactagagggactcaacagca
gaatagaggaagcagaagaac
ggatcagcgagctagatgaaa
gactagaggaaatcacccaag
cagaacacaaaagagaaaaaa
gaattagacagaatgagaaca
gtctaagggaactctggga[c/t
]aatatcaagcatgctaacatttg
gattataggtgtcccagaagga
gaagagagagacaaaggggc
ataaaatttatttgtagaaataata
gacgaaaattttcctaacatgag
gaaggaaacagacatccaagtt
caggaagcacagagagctcca
aacaagataagcccaaagagg
cccacaccaagacatattataat
taaaatgtccaaaattaaaaaca
aagagagaaccctaaaagcag
caagagaaaggccacaagtga
catataaagggaagcccatcag
gctatcagcagac 

chr3:549
07512.f 

aacggatca
gcgagctag
at 

chr3:54
907512.
r 

atatgtctt
ggtgtgg
gcct 

303 

HAF chr1
4 

92870205 no SNP  cccttggagtttcctcagtgaca
tgggggagaggagcttcttttgt
cattcataacaagcccatttcaa
ccctacctgatttatgcaatgag
gtgactccaggtggggcccct
ggatggcttcaggatggggac
cggtggccaggggatccaacc
atgtgatcagagggttggaactt
tcagccccaccccagaccttca
gggagggagaggggctgaag
gttgagttcattcacccatggcc
agtgatttagttgttcatgtctaa
gaatggaacctccataaaaccc
ctaaatgatgg[g/a]gtttgga
gagcctccttattgggtgggtgt
cacaccccagaccccacaggg
acagaagctcctacactaggga
ccgttccagacctcgcctcatgt
acctcttcatctgactgttcatgt
gtatcctttacaataaaccagta
aacttaagtgttttcctgggttct
gtgatacattctagcaaatcacg
gaagctgagggaggggtcatg

chr14:92
870205.f 

ccatgtgatc
agagggttg
g 

chr14:9
2870205
.r 

gccaccc
agacttat
gacca 

404 
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gggacccctgatttagagccag
ttggtcataagtctgggtggcaa
cctgggactcaggactgccctc
tgaactgagggctgctgtggga 

HAF chr1 143424677 no SNP  attgcctgtttttgtggttgtgtgtt
tgggttttttgataattttttttatct
ctatttatggtcattgctttcccac
ttaaataagtccctttagcatttct
tgtagaactggtttcttagtgata
aactcctttaatttttgcttgtttgg
gaagctctttatctctccttccatt
ctaaatgacagccttgatggata
gagtattcttggttgtaggtttttt
ccttttagcactttaaatatgtcgt
gccattctcttctcgcctgtagg
gtctcgactgagaagtctgctg
acag[c/a]ctgatgggcttccc
tttatatgtcacttgtggcctttct
cttgctgcttttaggattctctcttt
gtctttaattttagacattttgatta
taatatgtcttgatgtgggcctct
ttgggcttctcttgtttggagctct
ctatgcttcctgaacttggatgtc
tgtttccttcctcaggttaggaaa
attttcctctattatttcgacaaat
aaattttctgcccctttgtctctct
catctccttctgggacccctata
atccaaatgttagcacgcttgat
attgtcccagagttcc 

chr1:143
424677.f 

tggtcattgct
ttcccactt 

chr1:14
3424677
.r 

gggacaa
tatcaagc
gtgct 

535 
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APPENDIX D 

 

IGV AND SANGER VISUALS 

 

 

 

 

Figure A.D.1: IGV screenshot and Sanger result of a ‘de novo’ candidate (chr2:100761774) which was 
validated truly in BW-357 in the top and left respectively. None of the individuals except BW-357 had the 
mutation. 
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Figure A.D.2: IGV screenshot and Sanger result of a ‘de novo’ candidate (chr7:64671737) which was also 
detected in one of the parents of BW-354 in the top and left respectively. However, it seemed like parents 
do not carry the mutation in the IGV screenshot, Sanger result detected the mutation in BW-353 (Noriker 
mother). 

 

 

 

Figure A.D.3: IGV screenshot and Sanger result of a ‘de novo’ candidate (chr4:44983704) that called as 
no SNP depending on the validation result in BW-357. However, the candidate seems like a ‘de novo’ 
mutation, Sanger sequencing did not detect any variant at the position. 
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APPENDIX E 

 

LOGARITHMIC VERSION OF PSMC 

 

 

 

 

 

 

Figure A.E.1: Logarithmic version of PSMC graph. All horses showed similar patterns 
in the graph, but 111 and 113 had a larger effective population size than the other trios 
during the timeline. 


