DE NOVO SNP CALLING AND DEMOGRAPHIC INFERENCE USING TRIO GENOME DATA

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF INFORMATICS OF THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ELİF BOZLAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

IN

BIOINFORMATICS

JULY 2019

Approval of the thesis:

DE NOVO SNP CALLING AND DEMOGRAPHIC INFERENCE USING TRIO GENOME DATA

Submitted by ELİF BOZLAK in partial fulfillment of the requirements for the degree of Master of Science in the Department of Bioinformatics, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin Dean, Graduate School of Informatics, METU	
Assoc. Prof. Dr. Yeşim Aydın Son Head of Department, Health Informatics, METU	
Asst. Prof. Dr. Aybar Can Acar Supervisor, Health Informatics, METU	
Assoc. Prof. Dr. Mehmet Somel Co-Supervisor, Biological Sciences, METU	
Examining Committee Members:	
Prof. Dr. Tolga Can Computer Engineering Dept., METU	
Asst. Prof. Dr. Aybar Can Acar Health Informatics Dept., METU	
Assoc. Prof. Dr. Mehmet Somel Biological Sciences Dept., METU	
Assoc. Prof. Dr. Özlen Konu Molecular Biology and Genetics Dept., Bilkent University	
Assoc. Prof. Dr. Nurcan Tunçbağ Health Informatics Dept., METU	

Date:

29.07.2019

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name : ELİF BOZLAK

Signature : _____

ABSTRACT

DE NOVO SNP CALLING AND DEMOGRAPHIC INFERENCE USING TRIO GENOME DATA

Bozlak, Elif

MSc., Department of Bioinformatics Supervisor: Asst. Prof. Dr. Aybar Can Acar Co-Supervisor: Assoc. Prof. Dr. Mehmet Somel

July 2019, 99 pages

De novo mutations are novel mutations which are found in the offspring but not the parents and do not obey the Mendelian inheritance rules. Determining how many de novo mutations occur is important for genetic studies since they help to understand the evolutionary history of populations. In this thesis, we aim to examine de novo mutations that occur within one generation in domestic horses and make estimations on horse demographic history. We used DNA-sequencing data produced by next-generation sequencing technologies from trio data of three different horse breeds: Lipizzaner, Noriker, Haflinger. After quality checks and mapping of the raw data we called genomic variants with three different variant calling algorithms. We filtered all variants depending on their qualities to detect de novo candidates and the final 50 de novo candidates were tested using Sanger resequencing. About 40% of the candidate variants could be validated. We found a higher number of true positives in highly covered Lipizzaner (n=13) data, while a lower number of true positives in the low covered Noriker (n=3) and Haflinger (n=5) data, showing the importance of sequencing coverage to detect true de novo mutations. In addition, we used the Pairwise Sequentially Markovian Coalescent (PSMC) model and performed runs of homozygosity (ROH) analyses to estimate demographic history. Both PSMC and ROH results were coherent with previous studies. All in all, we had an idea for the minimum coverage threshold and quality of whole genome sequencing data, to determine de novo mutations and to estimate population demography.

Keywords: Whole genome sequencing, de novo mutation, Variant calling, Mutation rate, Demography analysis

TRIO VERİSİ İLE DE NOVO SNP ÇAĞIRMA VE DEMOGRAFİK GEÇMİŞ ANALİZİ

Bozlak, Elif

Yüksek Lisans, Biyoenformatik Bölümü Tez Yöneticisi: Dr. Öğr. Üyesi Aybar Can Acar Tez Eşyöneticisi: Doç. Dr. Mehmet Somel

Temmuz 2019, 99 sayfa

De novo mutasyonlar ebeveynlerde görülmezken yavruda ortaya çıkan ve Mendel kalıtım mutasyonlardır. kurallarına uvmavan Popülasyonların evrimsel tarihlerinin anlaşılmasında yardımcı oldukları için de novo mutasyonaların sayılarının tespit edilmesi genetik calısmalar için önemlidir. Bu tezde evcil atlarda bir jenerasyonda ortaya çıkan de novo mutasyonları tespit etmeyi ve atların demografik tarihleri üzerine tahminler yapmayı hedefledik. Çalışmada üç farklı at türü (Lipizzaner, Noriker ve Haflinger) için yeni nesil sekanslama teknolojisi ile üretilen üçleme DNA sekans verilerini kullandık. Ham verinin kalite kontrolü ve hizalanmasından sonra, üç farklı varyant çağırma algoritması kullanarak genomik varyantları çağırdık. Tüm varyantları kalitelerine göre filtreledik ve seçilen 50 varyantı Sanger sekanslama ile laboratuarda test ettik. Test edilen varyantların yaklaşık olarak %40'ı valide edildi. Yüksek okuma derinliğine sahip Lipizzaner (n=13) türündeki gerçek pozitif sayısını yüksek, düşük okuma derinliğine sahip Noriker (n=3) ve Haflinger (n=5) türlerindekileri ise daha düşük sayıda bulduk. Sonuçlar gerçek pozitif de novo mutasyonların tespit edilmesinde okuma derinliğinin önemini gösterdi. Ek olarak elimizdeki at popülasyonlarının demografik tarihleri hakkında tahmin yürütmek için PSMC modeli oluşturduk ve ROH analizi yaptık. PSMC ve ROH sonuçları önceki çalışmalarla uyumlu sonuçlar verdi. Sonuç olarak tüm genom sekanslama verisi ile de novo mutasyon tespiti ve popülasyon demografisi tahmini yapabilmek için gereken minimum veri okuması ve kalitesi hakkında fikir sahibi olduk.

Anahtar Sözcükler: Tüm genom sekanslama, de novo mutasyon, Varyasyon çağırma, Mutasyon oranı, Demografi analizi

To My Family

ACKNOWLEDGMENTS

First of all, I would send my profound thanks to my advisor Asst. Prof. Dr. Aybar Can Acar, my co-advisor Assoc. Prof. Dr. Mehmet Somel and my unofficial co-advisor Dr. Barbara Wallner. They never stop to support me with endless patience and concern during my master's years and they always supported me not just in my academic issues but also in the social issues.

I would also thank my thesis committee members: Prof. Dr. Tolga Can, Assoc. Prof. Dr. Özlen Konu and Assoc. Prof. Dr. Nurcan Tunçbağ, first for accepting to be in my committee and second their precious ideas during the evaluation of my study. In addition to this I owe Tolga Can for the best course that I ever take and his friendly attitudes all the time; I owe Özlen Konu for the positive energy during my thesis period; I owe Nurcan Tunçbağ for her support and trust in many different areas during my master.

I would have special thanks to Dr. Barbara Wallner for providing me the data for my study. She completely trusted and supported me during the analysis of the data. Also, many thanks to Doris Rigler and Eva Michaelis for their time in the laboratory for the validation of the findings.

I would also add my gratitude to Informatics Institute and the 'Music Within' team. Our institute is very supportive and open-minded for new ideas and I saw this attitude at firsthand. My supervisors in 'Music Within' project, Asst. Prof. Dr. Aybar Can Acar and Asst. Prof. Dr. Elif Sürer, never says no to me when I go with the project idea and they always supported me during the project. Besides, Elif Sürer gave me many different perspectives not just for the study and I learned many things from her. A special thanks to Assoc. Prof. Dr. Yeşim Aydın Son and Burcu Üntekin for sharing their data for us for the project. Besides, I would like to thank Yeşim Aydın Son for my great three years in our Bioinformatics Department. I would also thank Ali Çınar for his unrequited help which is an inspiration source to me during the 'Music Within' project. The project was unexpected but very fruitful and fed me in many different aspects during the master.

I also owe special thanks to my family who has an endless support, patience and pure love to me and my ideas all the time: to my brother Barış Bozlak for his pure-minded character, to my mother Nurten Bozlak for her endless support and balancing energy, and my father Metin Bozlak for his strong and promotive personality. There is no doubt that we always try to understand and make the best for each other as shown in my thesis period. Additionally, I believed that they give me a very range perspective on life in many different areas. I would also send my special thanks to Polat family Suyla Polat, Dilara Polat, Deniz Polat and Haşim Polat for their endless support to me and their endless energy. I can not explain how much I learned from them about life, besides all our music and art sharing. Just luckily, we met again in the Ankara and shared lots of precious moments mostly include brainstormings. Their support during my thesis and also other activities are also nonignorable.

I would have many thanks to my biggest fortunes during my master's years in METU. First, the best colleagues and besties someone can have who are Cansu Demirel, Cansu Dinçer, Evrim Fer, Gökçe Senger, Meriç Kınalı and Muazzez Çelebi Çınar. I cannot tell how I am lucky to know all of them not just in academic cases but also about our sharing on life. Second, my colleagues from the team CompEvo, especially Erinç Yurtman, Reyhan Yaka and Zeliha Gözde Turan. I learned a lot from the team during my master and they supported me all the time. Additionally, I would like to thank my two societies which are METU Capoeira and METU Classical Guitar for many different experiences and the incredible persons they earned to me. We shared many special times and overcome many difficulties with both team and I will never forget the time passed with them. I would send my special thanks to Emre Coşkuner and Burcu Çırtlık for all our special sharing and their endless supports in many different areas during these years. Finally, I would like to thank team MOMO for their promotive attitude and positive vibes during my thesis period.

In the end, I would send special thanks to our department secretary Hakan Güler for his smiling face and patience for us all the time. Because all these people are parts of METU I would send my gratitude to METU and its culture. I can say that, finally I will graduate from a school that I love. I think that METU is one of the precious sides of our country despite it changes with time. I would thank METU for giving me many new perspectives and many precious people.

TABLE OF CONTENTS

ABSTRACT	`iv
ÖZ	v
DEDICATIO	DNvi
ACKNOWL	EDGMENTS vii
TABLE OF	CONTENTSix
LIST OF TA	BLES xii
LIST OF FIG	GURES xiii
LIST OF AB	BREVIATIONSxiv
CHAPTERS	
1.INTRODU	CTION1
2.LITERAT	URE REVIEW5
2.1. Mu	tation rates and 'de novo' mutations in evolutionary studies5
2.2. Imp	portance of data amount and quality in next-generation sequencing analysis 7
2.2.1.	Quality of whole-genome data7
2.2.2.	Quality of reference genome
2.2.3.	Quality and properties of existing variation panels9
2.3. Ana	alyzing high throughput sequencing data for 'de novo' mutation detection9
2.3.1.	Differences among variant calling algorithms9
2.3.2.	Importance of filtering variants10
2.4. Der	nography analysis in <i>Equus caballus</i> 11
2.4.1.	Pairwise Sequentially Markovian Coalescent (PSMC)11
2.4.2.	Runs of homozygosity (ROH)12
3.MATERIA	LS AND METHODS
3.1. Next	Generation Sequencing Data
3.2. First	t Data Analysis16
3.2.1.	Quality control and trimming of FASTQ files16

3.2	2.2. Mapping reads to the reference genomes	16
3.2	2.3. Calculating mapping coverage	17
3.3.	Variant calling	17
3.3	.1. Workflow for determining candidate 'de novo' mutations	18
3.3 Pha	2. Determining candidate 'de novo' mutations with aseByTransmission (PBT) algorithm	GATK 19
3.3	.3. Comparing different variant lists	19
3.4.	Laboratory validation of EquCab2 candidates	21
3.5.	Mutation rate estimation	21
3.6.	Estimation of demographic history and runs of homozygosity	22
4.RESU	/LTS	23
4.1.	Primary data analysis and quality-based trimming	23
4.2.	Mapping to the reference	25
4.3.	Mapping coverage on autosomal chromosomes	26
4.4.	'de novo' mutation candidates	28
4.4	.1. Variant calls on EquCab2 and EquCab3	28
4.4	.2. Filtering variants to detect 'de novo' mutation candidates	29
4.4	.3. Comparing finalized candidates from different lists	29
4.5.	Laboratory validation of 'de novo' candidates	31
4.6.	'de novo' mutation rate	33
4.7.	Estimation of demographic history and runs of homozygosity	33
5. DI	SCUSSION	37
5.1.	Data, mapping, coverages and variant calling in different reference geno	mes.37
5.2.	Variant calling with different algorithms and filtering	
5.3.	Interpretation of 'de novo' candidates and Sanger validation results	
5.4.	Mutation rate differences	41
5.5.	Estimations on population history	42
5.5	5.1. PSMC	42
5.5	2.2. Runs of homozygosity analysis (ROH)	43
5.6.	Future work and conclusion	43
REFER	ENCES	45

APPENDICES	53
APPENDIX A	53
APPENDIX B	57
APPENDIX C	59
APPENDIX D	97
APPENDIX E	

LIST OF TABLES

Table 3.1: General information of individuals and provided data formats of each
individual16
Table 3.2: 'de novo' candidate patterns extracted from VCF files
Table 4.1: The total number of reads in the raw fastq files for each individual23
Table 4.2: The total number of reads for each individual, including both forward and
reverse reads
Table 4.3: Percentages of mapping and properly paired reads in each lane
Table 4.4: Mean coverages and the percentages among genome in between depth
thresholds
Table 4.5: Results of laboratory validation. 32
Table A.A.1: Programs and their versions that used in the analysis
Table A.A.2: Usage purposes and command line usages of each tool54
Table A.C.1: Position and comparison information of candidate 'de novo' mutations59
Table A.C.2: Detailed information of 'de novo' candidates obtained from GATK's
PhaseByTransmission (PBT) algorithm in Lipizzaner trio70
Table A.C.3: Information of variants which were validated in the laboratory71

LIST OF FIGURES

Figure 3.1: Workflow for detecting 'de novo' mutation candidates20
Figure 4.1: The number of paired-end reads in each lane
Figure 4.2: Mean Phred scores vs the number of reads of each lane
Figure 4.3: Mean Phred scores of each lane before (left) and after (right) trimming25
Figure 4.4: Analysis steps and the number of remaining mutations after each step30
Figure 4.5: Comparison of finalized lists from the two reference genomes and published
variations
Figure 4.6: Comparison of three variants file including validation results of EquCab2
mapped data
Figure 4.7: PSMC results for nine horses from three breeds as a function of time before
present and effective population size
Figure 4.8: Distribution of homozygous runs for different length intervals35
Figure 5.1: Percentages of overlapping genomic regions that were covered between 10-30
in EquCab2 in the respective trio and number of true 'de novo' mutations41
Figure A.B.1: Detailed results of filtering step in Figure 4.4 for EQ2 mapped data57
Figure A.B.2: Detailed results of filtering step in Figure 4.4 for EQ3 mapped data58
Figure A.D.1: IGV screenshot and Sanger result of a true 'de novo' candidate97
Figure A.D.2: IGV screenshot and Sanger result of a 'de novo' candidate detected also in
parents
Figure A.D.3: IGV screenshot and Sanger result of a 'de novo' candidate which is no SNP
according to validation
Figure A.E.1: Logarithmic version of PSMC graph

LIST OF ABBREVIATIONS

NGS	Next Generation Sequencing		
SNP	Single Nucleotide Polymorphism		
SNV	Single Nucleotide Variant		
PSMC	Pairwise Sequentially Markovian Coalescent		
ROH	Runs of Homozygosity		
TMRCA	Time to the most recent common ancestor		
HMM	Hidden Markov Model		
VCF	Variant call file		

CHAPTER 1

1.INTRODUCTION

Since horses were domesticated 5000 years ago, they have become a companion to humankind in different areas including transportation, agricultural activities, and wars (Anthony, 2016; Kuderna et al., 2017). Besides these physical advantages, the emotional connection between horses and humans cannot be ignored (Lanata, Guidi, Valenza, Baragli, & Scilingo, 2016). Moreover the domestication of the horses followed by intensive breeding is a very strong example of artificial selection (Zhang et al., 2018), making the evolutionary history of the horse tempting to investigate. Indeed, horses are also chosen as a model organism for the order Perissodactyla (Jagannathan et al., 2018; Wade et al., 2009).

Because of all these reasons above, horses are one of the most well-studied mammals in genetic terms. An updated reference genome of the domestic horse (*Equus caballus*) has recently been released by Kalbfleisch and colleagues (Kalbfleisch et al., 2018). After the release of the updated reference, Jagannathan et al. created a comprehensive variation panel for the modern domestic horse, *Equus caballus* (Jagannathan et al., 2018). In this thesis, we will be analyzing genomic data from modern horses using these resources.

The subject of the thesis will be genetics of three well studied modern horse breeds, namely the Lipizzaner, Noriker and Haflinger. What is common for these horses is that, they all are Austrian breeds. Lipizzaner horses are bred, among other studs, in the Piber stud in Austria and they are selected for dressage performance in the Spanish Riding School (Grilz-Seger et al., 2019). The Noriker is an Austrian draft horse breed and bred for agricultural purposes in the Alps (Druml et al., 2018). And the last breed, which is known as the youngest horse of Austria, is the Haflinger (Druml et al., 2018).

The thesis focuses on the identification of germline 'de novo' mutations. 'De novo' mutations represent novel mutations occurring in one generation. They are one of the driving sources of gaining new variants throughout generations (Campbell & Eichler, 2013) and they are one of the main contributors of several genetic diseases (Jin et al., 2017). 'De novo' mutations are studied from several different aspects in population genetics, as mutation rate per generation is important to study evolutionary history of

populations (Smeds, Qvarnström, & Ellegren, 2016; Tatsumoto et al., 2017). Hence bioinformaticians have spent intense effort on developing 'de novo' mutation detection pipelines and algorithms (Acuna-Hidalgo, Veltman, & Hoischen, 2016; Francioli et al., 2017).

There are two main ways of calculating the 'de novo' mutation rate, either using phylogenetic distance methods or directly detecting 'de novo' mutation candidates in one generation (Campbell & Eichler, 2013). For the well-studied genomes such as that of human, the mutation rate has been calculated via both methods. This provides accuracy in population and medical genetics analyses that depend on the mutation rate. For horses, the only estimate yet has been made by Orlando et al., who calculated the mutation rate for the domestic horse with the phylogenetic distance method. The authors used comparative genomics data from different *Equus caballus* genomes and a donkey genome to estimate the mutation rate (Orlando et al., 2013). Although this rate was used in different horse studies later, there is no mutation rate estimated using 'de novo' mutations for the horse. Providing such an estimate is my main motivation in this thesis.

One application of such rate estimates is in evolutionary demography. Population demography analysis attempts to understand past and present population dynamics, such as bottlenecks, migrations or inbreeding levels (Nielsen & Slatkin, 2013). One way of doing this is using genomic data, and this approach is frequently used to make estimation for the structures of the populations in the past. Pairwise Sequentially Markovian Coalescent (PSMC) is one of these methods to make estimations about population history from genomic data. The algorithm makes estimates of the effective population size at different time points from a single diploid genome (Li & Durbin, 2011). PSMC analysis has been recently used to study horse demographic history as well. Different PSMC studies on horse genomes gave consistent results with each other (Orlando et al., 2013; Schubert et al., 2014). More specifically, these found a decrease in the horse effective population size in the Last Interglacial Period followed by a peak after the Last Glacial Period. The mutation rate used in these studies was again that estimated by Orlando and colleagues (Orlando et al., 2013; Schubert et al., 2014).

Another method used to estimate demographic history is runs of homozygosity (ROH). The results of ROH analysis allow inferences on the amount of inbreeding and presence of bottlenecks in a population in the recent past (Ceballos, Joshi, Clark, Ramsay, & Wilson, 2018; Kirin et al., 2010). Previous works have studied the three horse populations in this study (Austrian Lipizzaner, Noriker and Haflinger) using both pedigree and ROH analyses, and found higher inbreeding in Lipizzaner and Haflinger than in Noriker horses (Druml, Baumung, & Sölkner, 2009; Grilz-Seger et al., 2019, 2018).

In this thesis we analyzed NGS data of trios from the three different domestic horse populations mentioned above. We used data collected from trios, consisting of a mother, a father and an offspring from each of these three breeds. The data were produced by the research group of Dr. Barbara Wallner, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna. The main aim of this study was to detect 'de novo' mutations that are found only in the offspring of these breeds. 'De novo' mutations were predicted and mutation rates per generation were inferred for the domestic horse. This study is thus the first to calculate horse mutation rate per generation, inferred from genome-wide 'de novo' mutations. We further used the data to make demographic estimations for demography of these three populations using PSMC and ROH analyses, and the results were compared with those of the previous studies.

The second chapter of the thesis describes the importance of 'de novo' mutations in the fields of genetics and bioinformatics, as well as giving examples of mutation rate estimates and their calculation methodologies. Besides, we compare the different bioinformatics algorithms that we used for the analyses, especially for variant calling. Finally, we mention working strategies of PSMC and ROH methods and findings from different studies for domestic horse populations.

The third chapter explains our methodology to analyze whole-genome NGS data in detail to detect 'de novo' mutations produced in one generation. Here we used different calling algorithms and two different reference genomes. The chapter also details how we performed PSMC and ROH analysis.

The fourth and fifth chapters describe our results and compare them with previous studies. Then, we make inferences on stability of our results and discuss possible limitations and future directions.

CHAPTER 2

2.LITERATURE REVIEW

2.1. Mutation rates and 'de novo' mutations in evolutionary studies

Germline mutations are one of the fundamental forces of evolutionary mechanisms due to the their contribution to the variation pool of populations (Loewe & Hill, 2010). Besides, they are also one of the causes of heritable and complex diseases (Shendure & Akey, 2015). These properties necessitate making accurate predictions on mutation rates (Narasimhan et al., 2017; Shendure & Akey, 2015). In addition to some recent population genetic methods, there are two main ways of estimating mutation rates. The first one is calculating mutation rates based on phylogenic distances. In this method, comparative genomic data from two lineages with known splitting time (based on the fossil record) is used to calculate the nucleotide divergence between the two. This divergence can then be used to estimate the per generation substitution rate, which can also be used as the per generation mutation rate. This approach is based on the neutral theory of molecular evolution, which states that for neutral loci, the substitution rate should be equal to the mutation rate (Nielsen & Slatkin, 2013). Furthermore, it assumes that the generation time is known and fixed for the lineages in question. The other method for calculating the mutation rate is using 'de novo' mutations. In this approach, direct calculations from genomic data of a trio (including mother, father and offspring data) is used and the number of mutations only observed in the offspring is divided by the genome length (Campbell & Eichler, 2013; Narasimhan et al., 2017; Shendure & Akey, 2015).

There are several studies for mammals which have used the phylogenetic distance method for mutation rate calculations. For instance, the mutation rate was estimated as ~2e-08 per base per generation for human and nonhuman primates by considering divergence between neutral sites in their genomes following the above approach (Mikkelsen et al., 2005; Shendure & Akey, 2015). The rate has been reestimated as 1e-09 per base per year with the same method in different studies (Prüfer et al., 2012) by assuming the divergence time between human and chimpanzee as 6-7 million years ago (Ma). For the domestic

horse, Orlando et al. estimated the mutation rate per generation with the phylogenetic distance method (Orlando et al., 2013). They estimated the mutation rate as 7.2e-09 per site per generation by comparing horse and donkey, and assuming that donkey and horse diverged 4-4.5 Ma (Janečka et al., 2018; Jónsson et al., 2014). Both primate and equid phylogenetic mutation rate estimates thus appear roughly within the same order of magnitude (the estimate for equids being midway between different estimates for primates).

Although the phylogenetic distance method has been frequently used in many different studies to estimate the mutation rate, scientists have pointed out multiple weaknesses of this method. Tatsumoto et al. suggested that different factors such as generation time, effective population size, rate of heterogeneity causes uncertainty in results when using the phylogenetic approach (Tatsumoto et al., 2017). Francioli and his team also argued for the disadvantages of the method because different selection mechanisms are effective on different populations and species, and across different regions of the genome, and therefore identifying truly neutral regions will not be straightforward (Francioli et al., 2014).

Given these problems of the mutation rate estimation based on phylogenetic distance, and thanks to the availability of high throughput (next generation) sequencing technologies, scientists in recent years have started making direct estimates of the mutation rate by 'de novo' mutations scans. These studies use high quality whole genome data from trios (for sexually reproducing species) produced by next generation sequencing. To date, mutation rate estimations from 'de novo' mutations have been made in a few mammalian species, such as humans, chimpanzee and mouse. While some studies compared different families of the same population (Francioli et al., 2014; Jónsson et al., 2017), others focused on families from different populations (Conrad et al., 2011). For example, Jonsson and colleagues worked with a large genomic data dataset compromising 1,548 human trios from Iceland. They made estimations on the 'de novo' mutation rate in one generation and they estimated the rate as 1.28e-08 per base per generation. Meanwhile, Francioli and colleagues analyzed genomic data from 250 Dutch parent-offspring families including trios and twin-parent families, and they calculated mutation rates for different parts of the human genome to understand possible explanations for the different mutation rates. Conrad and colleagues calculated and compared mutation rates inferred from trios of European descent (u=1.17e-08 bp/gen) and Yoruban descent (u=0.97e-08 bp/gen) and found possible sources for the differences between two populations. In addition to human studies, nowadays 'de novo' mutation studies are also being conducted in other mammalian species. Tatsumoto et al. produced ultra-deep sequencing data for a chimpanzee trio to calculate 'de novo' mutation rate for the chimpanzees, and they estimated this as 1.48e-08 per site per generation (Tatsumoto et al., 2017). Another popular mammal subjecting for mutation rate calculations is mice (Mus musculus). Uchimura and colleagues calculated the germline mutation rate for mice is 5.4e-09 bp/gen (Uchimura et al., 2015) and Lindsay and colleagues calculated the rate as 3.9e-09 (Lindsay, Rahbari, Kaplanis, Keane, & Hurles, 2016). Both rates were calculated using the number of 'de novo' mutations detected in the offspring but not in the mouse population of interest. Intriguingly, the

mutation rate of humans appeared almost 2 to 3 times higher than the mouse. This difference has been explained, by Lindsay and colleagues, by the larger effective population size of the mouse (and thus stronger selection for high fidelity DNA copying) when compared with the human (Lindsay et al., 2016). Notably, the resulting rates from these studies were comparable with each other irrespective of populations and species, and also consistent with the rates that were calculated with the phylogenetic distance methods for human, all being on the order of ~1e-08 bp/gen.

Narasimhan and colleagues have discussed possible reasons for the discrepancies between mutation rates estimated with the two different methods (phylogenetic distance vs. direct estimations from 'de novo' mutations). They suggested different explanations such as i) sample size (including number of individuals used in the study or number of true 'de novo' mutations); ii) using only mutations seen in one generation; iii) effect of paternal age; iv) genomes of diseased individuals (Narasimhan et al., 2017). Additionally, Conrad et al. showed that, although mutation rates were calculated with the same methods in different trios of same species, differences in these rates could also be observed (Conrad et al., 2011). They suggested different reasons for this difference. The first one is variation due to differences in genetic background and selection dynamics among individual. For instance, although it is accepted that more mutations are occurring in the paternal lineages (Haldane, 1947), Conrad et al. found a different pattern in one of their studied families. In this family a higher percentage of 'de novo' mutations derived from the maternal lineage. The second possible reason is the age of parents. This idea is also supported by different studies. Kong and team showed that the increasing age of the father results in an increase in the number of 'de novo' mutations occurring in one generation (Kong et al., 2012), a conclusion also supported by Francioli et al. (Francioli et al., 2014). In addition to these reasons, Francioli et al. found that different genomic regions could have different mutations rates. This can create a bias in mutation rate estimates from whole genome data depending on the distribution of number of reads mapped along the genome.

2.2. Importance of data amount and quality in next-generation sequencing analysis

2.2.1. Quality of whole-genome data

Different studies show the importance of sequencing depth in detecting true 'de novo' mutations. Tatsumoto and team estimated mutation rate with their ultra-deep high-quality sequencing data (Tatsumoto et al., 2017). To do this, they validated their candidate 'de novo' SNPs by Sanger sequencing. They categorized their data as 30x, 60x, 90x and 120x groups, dependent on the sequencing depth. Then they took the 90x and 120x candidate lists and found all true positive mutations (n=32) in the shared list of the two categories. On the other hand, there were 9 candidates found only in 90x data, and these were all detected as false positives in Sanger analysis. Based on these results, they suggested that even 90x coverage is not enough to eliminate all false positives. According to this study, determining true positive 'de novo' SNPs, which includes eliminating false positives and

avoiding false negatives, can only be revealed with ultra-deep covered data (Tatsumoto et al., 2017). 'De novo' mutation studies in human trios have also supported these results. Jonsson et al. used data with an average of 35x coverage and Conrad et al. used data greater than 22x coverage, and their mutation rate estimates per generation (1.28e-08 in Jonsson et al. and ~1.2e-08 in Conrad et al.) were consistent with each other (Conrad et al., 2011; Jónsson et al., 2017). Although, Tatsumoto et al. suggested that these coverages are not sufficient to detect 'de novo' mutations, Jonsson detected on average 70.3 'de novo' mutations in 1548 families trio data and Conrad detected 49 and 35 'de novo' mutations in the two trios they worked with. This is an indication of uncertainty about the lower data thresholds to detect 'de novo' mutations.

2.2.2. Quality of reference genome

The quality of the reference genome is another factor that affects mapping rates, variant calls and consequently 'de novo' mutation rate estimates (Kalbfleisch et al., 2018; Li & Wren, 2014). An increase in the mapping rates was seen in the updated human reference genome from GRCh38 when compared with GRCh37 (Guo et al., 2017). Besides this increase in the mapping, Guo et al. also detected fewer number of SNVs in the GRCh38. They explained the reason for this lower number of variants using GRCh38 by fewer false positive variants due to quality of new reference. In addition, Li and Wren compared human references GRCh37 and GRCh38 in their analysis and showed the effects of different parameters in variant calling (Li & Wren, 2014). They also found fewer false positive variants when using the updated reference.

In the case of horse, the first high-quality reference assembly for the domestic horse, EquCab2, was released by Wade et al. (Wade et al., 2009). The updated version of the Equus caballus reference genome was recently published in 2018. The data which were used to construct the updated reference was derived from the same Biosample, the female Thoroughbred 'Twilight'. In the updated version of the reference genome EquCab3 different sequencing and assembly technologies were used. In the updated reference genome, the number of non-N bases on the chromosomes were increased to 2.41 Giga base (Gb) from 2.33 Gb in EquCab2. Besides, the gaps in the incorporated chromosomes decreased 10-fold in the EquCab3. To test the updated reference, whole genome sequencing data from two Thoroughbred male horses were mapped to both EquCab2 and EquCab3 references (Kalbfleisch et al., 2018). These authors found an increased number of mapped reads and properly paired mapped reads on the EquCab3 mapped data when compared to that of EquCab2. Kalbfleisch et al. suggested that this might be a result of the improvement in the updated genome in several ways, such as containing fewer gaps (Kalbfleisch et al., 2018). All in all, these comparative studies suggest that an updated reference genome that includes deep coverage high throughput sequencing data, may provide more accurate results.

2.2.3. Quality and properties of existing variation panels

The importance of variation panels in the 'de novo' mutation detection workflows was previously mentioned by Romero and colleagues (Gómez-Romero et al., 2018). These authors suggested that, because there is a low probability for the occurrence of independent 'de novo' mutations at the same position in different individuals, standing variation can be used to eliminate false positives, which leads then to more accurate 'de novo' mutation estimates. They filtered their candidates in the study, based on this idea. In the recent past, 50k, 70k and 670k SNV variation panels were produced for targeted genotyping arrays with previous reference genomes of the domestic horse (McCoy & McCue, 2014; McCue et al., 2012; Schaefer et al., 2017). A variation panel produced from whole genome sequencing data of 88 horses from different breeds was recently released (Jagannathan et al., 2018). In this panel the updated version of the reference (EquCab3) was used as reference genome. Jagannathan et al. called approximately 23.5 million SNVs in this study. This newly constructed horse variation panel based on EquCab3 by Jagannathan et al. can also be used as an efficient tool to eliminate false positives to detect true 'de novo' candidates in horse trios.

2.3. Analyzing high throughput sequencing data for 'de novo' mutation detection

2.3.1. Differences among variant calling algorithms

There are several tools developed to find variations from the reference genome and variations among different individuals. In recent years multiple studies have compared the performances of different variant callers. Poplin et al. has recently reviewed different variant calling algorithms and compared their performances (Poplin et al., 2017). These algorithms can be split into two main groups. One group finds mismatches between the subject individual and the reference genome. These are called 'pileup' callers, and SAMtools (Li et al., 2009) and GATK's UnifiedGenotyper (UG) (Depristo et al., 2011) are examples of this group. Despite their high sensitivity, these algorithms have some weak points caused by using a reference sequence to find variants (Rimmer et al., 2014) or considering one position at a time during variant calling process (Garrison & Marth, 2012; Rimmer et al., 2014). The other group of variant caller algorithms are called assembly-based algorithms; these basically construct haplotypes by creating de Bruijnlike graphs. Platypus (Rimmer et al., 2014), GATK's HaplotypeCaller (HC) (Poplin et al., 2017) and FreeBayes (Garrison & Marth, 2012) are examples of this group of variant callers (Poplin et al., 2017; Xu, 2018). These tools first assemble reads locally and produce candidate haplotypes; then they estimate likelihood of haplotypes by aligning the reads to the haplotypes one by one and counting them. The advantages of these latter algorithms becomes most obvious in highly variable genomic regions, because they do not depend on local alignment as 'pileup callers' do, which causes mistakes in this high variable regions (Li & Wren, 2014; Poplin et al., 2017; Rimmer et al., 2014). In addition, assemblybased algorithms can detect the co-existence of different variants at the same time (Xu, 2018). Poplin and team compared variant callers including both types of algorithms

('pileup' and assembly-based) and among four algorithms, namely GATK's HaplotypeCaller (HC), GATK's UnifiedGenotyper (UG), Platypus, SAMtools, they found the highest sensitivity in HC. The authors also suggested that assembly-based algorithms give more accurate results. Another idea that is also proposed in the HaplotypeCaller's paper is that calling variants jointly in multiple individuals improves accuracy of the calling results, especially for the regions with low coverage (Poplin et al., 2017; Rimmer et al., 2014), but such joint calling results in the production of more complex de Bruijn graphs, so it needs more computational power (Poplin et al., 2017). HaplotypeCaller, Platypus and FreeBayes try to solve this computational complexity in the algorithms while they make haplotype-based variant calling.

Sandmann and colleagues used and compared GATK's HC, Platypus and FreeBayes besides other variant callers on their targeted Illumina HiSeq data (Sandmann et al., 2017). The main aim of their study was to produce a fast pipeline to use in clinical applications to identify both rare and common variants. After analyzing their data with different variant calling algorithms, they reported that Freebayes is the most sensitive among these three variant callers, despite reporting many false positive variants. They further reported that the accuracy of Platypus's results depends on allele frequency of the variant and that of HaplotypeCaller depends on the type of platform, specifically whether HiSeq or NextSeq was used to produce the data (Sandmann et al., 2017).

Some algorithms like PhaseByTransmission (PBT) (Francioli et al., 2017) are designed to directly use known pedigree information of trio data and possibly allele frequency in the population, which can be further used to detect 'de novo' mutations. PBT calculates posterior probabilities of each candidate variant and outputs a list of candidates (Francioli et al., 2017). Francioli and team compared their PBT algorithm with other 'de novo' detection tools, namely DeNovoGear (Ramu et al., 2013) and TrioDeNovo (Wei et al., 2015). They found consistent results using high coverage data, but they found PBT results to be more accurate using relatively low coverage data downsampled to 15x. On the other hand, PBT found many false positive 'de novo' candidates which could not be validated in the low coverage data (2-20x) in all trio members.

2.3.2. Importance of filtering variants

Filtering variant lists produced by calling algorithms is a mandatory step to eliminate false positive variants as much as possible. Li and Wren made a comprehensive analysis to show how the filtering steps affects the quality of analysis (Li & Wren, 2014). They used FreeBayes, GATK UnifiedGenotyper, Platypus and GATK HaplotypeCaller for variant calling in their analysis and they filtered their data depending on different parameters: low-complexity regions, maximum depth, allele balance, double strand filter, Fisher strand filter, quality filter. The authors found that although the low complexity region filter is the most effective filter to eliminate false positive heterozygous variants overall, when using data aligned with the BWA-mem, the maximum depth filter is the most effective filters. The other parameters gave different result for the different call sets (Li & Wren, 2014). One of the other well-accepted filtering strategies is GATK's hard

filtering strategy which is suggested by Summa and colleagues (De Summa et al., 2017). These authors tried to identify parameters for 7 standard GATK filters followed by a classification tree to decide correct variants.

Besides the general filters mentioned above, there are several other strategies to detect 'de novo' mutations using genomic variation data. Jonsson et al. used minimum depth, allele balance and genotype likelihood parameters in their works to define their 'de novo' mutation candidates (Jónsson et al., 2017). Tatsumoto et al. also used read depth and allele balance in their 'de novo' SNV defining strategy (Tatsumoto et al., 2017). Li and Wren mentioned the importance of depth and allele balance in filtering (Li & Wren, 2014). While positions having low depth (depending on the study) are not significant, positions with high depth are not efficient for the detection of true 'de novos' (Jónsson et al., 2017; Li & Wren, 2014; Tatsumoto et al., 2017). Allele balance filter is also meaningful to eliminate mutations which show low proportions of alternative allele to reference allele counts, which is indicative of technical errors (Li & Wren, 2014).

2.4. Demography analysis in Equus caballus

Different estimations on demography such as population size, migration, inbreeding or history of divergence could be made with population genetics data (Nielsen & Slatkin, 2013). With the increase in the amount and abundance of genomic data, new methods are being developed to make estimations on the demographic history of populations. Estimating evolutionary trees or making cluster analysis between individuals of a population could be some examples for demography analysis. Here we used two population genetics methods, pairwise sequentially Markovian coalescent (PSMC) and runs of homozygosity (ROH), to study horse demographic history.

2.4.1. Pairwise Sequentially Markovian Coalescent (PSMC)

PSMC is a haplotype-based method to make estimations on population demography from genomic information (Chen, 2015; Li & Durbin, 2011). The main idea behind the method is that, using whole genome diploid sequence data from a single individual, changes in past effective population sizes can be estimated. It uses the proportion of heterozygote sites in a genomic segment separated from other segments by ancestral recombination events and infers the local time to the most recent common ancestor (TMRCA) by using a Hidden Markov Model (HMM). In this HMM model the observation is the diploid sequence of an individual and the hidden states are the TMRCA and ancestral recombination events, the latter represented by transitions. The parameters that are necessary for the calculations are mutation rate, recombination rate and generation time in the population, which are estimated from the data using an expectation-maximization algorithm. Results of the analysis of human whole genome data provides estimates of the changes in the population size between 20 kya to 3 Mya. Getting information for a larger time period is also possible but Li and Durbin suggested that it will not be giving accurate results (Li & Durbin, 2011).

There are different studies which investigated horse demography by the PSMC method. Orlando and colleagues studied genomes of an ancient horse, five modern domestic horses, a Przewalski's horse and a donkey with PSMC analysis. First, they calculated a mutation rate for the horse genome as 7.2e-09 per site per generation by aligning genome sequences of the horse and the donkey. They assumed 8 years generation time for the horses. Then they performed PSMC analysis using the calculated mutation rate and generation time. They made estimations for the last 2My of the horse population (Orlando et al., 2013). Their results suggested that the horse population size reached a minimum around 125 kya before present, a time period that coincides with the Last Interglacial Period. On the other hand, the population size reached the maximum level between 25-50 kya, which corresponds to climatic changes fruitful for the vegetation after the Last Glacial Maximum (Lorenzen et al., 2011). Schubert and team also made PSMC analysis for the horses by using parameters from Orlando et al.'s 2013 study. They analyzed another two ancient horse genomes, again together with domestic and Przewalski's horse genomes, to detect signals of domestication by using whole genomes of the horses and found patterns similar to the findings of Orlando and colleagues' study (Schubert et al., 2014).

Although the PSMC analysis gives highly accurate estimations, Orlando et al. also detected a bias in the result for low coverage data (<20x) (Orlando et al., 2013). Nadachowska-Brzyska and colleagues also mentioned the impact of data coverage in the PSMC analysis. They analyzed 200 individuals from four different flycatcher species and made PSMC analysis to have idea of demographic history of their populations. They found that their results are much more consistent using data from individuals having at least 18x mean coverage and applying a 10x coverage filter per-site. They suggested to perform PSMC analysis using this approach (Nadachowska-Brzyska, Burri, Smeds, & Ellegren, 2016).

2.4.2. Runs of homozygosity (ROH)

Calculating runs of homozygosity is another technique to detect bottlenecks and inbreeding rate in populations. The idea underlying this technique comes from the distribution of autozygous sites in genomes. Broman and Weber proposed the idea that these sites are not evenly distributed in the genome, but they are dispersed in the form of runs, or tracks (Broman & Weber, 1999; McQuillan et al., 2008). Cebellos and team recently discussed the relationship between ROH sites and population dynamics in a review (Ceballos et al., 2018). First, they showed that the length and distribution of ROHs in a genome are related with population size. The relationship occurs such that smaller populations have longer and more ROHs than larger populations. Then the authors explained how different processes affect the distribution of ROHs. Admixture events cause decrease in the length and number of ROHs, whereas bottlenecks lead to an increase in the number of ROHs but usually keep the length relatively short. Inbreeding is shown to result in an increase in the number of very long ROHs. If a population both went through a bottleneck and exercised inbreeding, the individuals will show both many short ROHs and some very long ROHs (Ceballos et al., 2018).

The horse (Equus caballus) is well studied for ROHs by many different groups. Grilz-Seger et al. made ROH analysis with four different sub-populations of Lipizzaner horses (Grilz-Seger et al., 2019). One of the conclusions the authors reached is Austrian Lipizzaner being more inbred than other Lipizzaner populations. They showed that cumulative ROHs (F_{ROH}) in different lengths was almost twice in the Austrian Lipizzaners compared to Croatian, Hungarian, and Slovakian Lipizzaners. In addition, the number of long ROHs (>4Mb) were two to ten times higher in Austrian compared to the other Lipizzaners. Based on these results they suggested Austrian Lipizzaners are more inbred and bottlenecked (Grilz-Seger et al., 2019). Furthermore, they estimated inbreeding coefficients from ROH data, and these estimates were also consistent with the inbreeding coefficients calculated by pedigree analysis for the Austrian Lipizzaner (Zechner et al., 2002). Grilz-Seger therefore suggested that the Austrian Lipizzaner is the most inbred sub-population among Lipizzaners. In addition to the ROH analysis, Druml et al. analyzed pedigree data of Austrian Noriker horses and they suggested that inbreeding in Austrian Noriker is lower than Austrian Lipizzaner (Druml et al., 2009). However, the inbreeding coefficient calculated for the Austrian Haflinger, which was calculated by Druml and team in 2018, was much higher and similar to the one observed in the Austrian Lipizzaner (Druml et al., 2018; Grilz-Seger et al., 2019).

CHAPTER 3

3.MATERIALS AND METHODS

Here, we explain the methodologies using in this study, which covers whole genome sequencing data analysis including read mapping and variant calling, as well as demography analysis.

3.1. Next Generation Sequencing Data

Whole-genome Illumina Next Generation Sequencing (NGS) data for three family trios (in total nine horses) from different breeds were provided by Dr. Barbara Wallner, Institute of Animal Breeding and Genetics, University of Veterinary Medicine in Vienna, Austria. All trios include mother, father and a male offspring. Trio 1 were three purebred Lipizzan horses, trio 2 purebred Noriker horses and trio 3 purebred Haflinger horses. Whole blood samples of each individual were collected for NGS data generation in 2012.

NGS data was generated in different years and on different platforms. The Lipizzaner trio was sequenced by HiSeq2000 at BGI (Beijing Genomics Institute) in 2013, whereas the Haflinger and Noriker data were produced by HiSeqV4 at the Core Facility for Sequencing at the Vienna BioCenter (CSF) in 2015. The data consist of paired-end reads. Read length in Lipizzaner reads was 90 base pairs (bp), whereas the read length in Noriker and Haflinger reads was 125 bp. General information about the data is given in Table 3.1 below.

Haflinger and Noriker data were provided as unmapped BAM files, while Lipizzaner data in FASTQ format. Before starting the quality analysis of raw files, all BAM files were sorted with SAMtools (Li et al., 2009) (see Appendix A for version and command line usage of the tool) and converted to paired-end FASTQ files by BEDTools' (Quinlan & Hall, 2010) (see Appendix A) 'bamtofastq' algorithm.

Sample ID	Breed	Pedigree	Number of sequencing lanes	Initial file format
111	Lipizzaner	Son	3	FASTQ
113	Lipizzaner	Father	3	FASTQ
166	Lipizzaner	Mother	4	FASTQ
BW-352	Noriker	Father	2	BAM
BW-353	Noriker	Mother	1	BAM
BW-354	Noriker	Son	1	BAM
BW-355	Haflinger	Father	1	BAM
BW-356	Haflinger	Mother	2	BAM
BW-357	Haflinger	Son	1	BAM

Table 3.1: General information of individuals and provided data formats of each individual. Some of the individuals were sequenced on multiple lanes.

3.2. First Data Analysis

3.2.1. Quality control and trimming of FASTQ files

Quality controls of the FASTQ files from each sample were performed with FastQC (Andrews, 2015) (see Appendix A). Then, all reads were quality-trimmed with Trimmomatic (Bolger, Lohse, & Usadel, 2014) (see Appendix A) using the following parameters: "TRAILING:10, MINLEN:50, SLIDINGWINDOW:5:20". These parameters were chosen due to the low-quality reads, some of which were under Phred score of 30 towards the end of the reads. Next, the quality of all trimmed FASTQ files was reinvestigated using FastQC. To visualize FastQC results, the MultiQC software (Ewels, Magnusson, Lundin, & Käller, 2016) (see Appendix A), which creates a report by summarizing FastQC results, was used.

3.2.2. Mapping reads to the reference genomes

First, reference genomes EquCab2 (Wade et al, 2009) and EquCab3 (Kalbfleish et al., 2018) were indexed with BWA (Li & Durbin, 2010) using the 'bwtsw' algorithm. Then the 'mem' (Li, 2013) algorithm of the BWA, which shows high performance in mapping of long reads was used for mapping reads to the reference genomes. As for some

individuals the FASTQ data was derived from different sequencing lanes (see Table 3.1), data from each lane were mapped to the references separately. SAM files were obtained at the end of the mapping, which were converted to binary BAM files with the SAMtools' 'view' algorithm and these BAM files were sorted with the SAMtools' 'sort' algorithm. For individuals with more than one lane sequenced, each lane was treated in the same way and then data from different lanes were merged with the SAMtools' 'merge' algorithm to create a merged BAM file, which contains data from separate lanes. These BAM files were sorted again, and only properly paired reads were chosen with the SAMtools' 'view' algorithm using the parameters: "-F 4 -f 2 -h". Duplicate reads were removed by the MarkDuplicates algorithm of Picard Tools with the "REMOVE DUPLICATES=TRUE" parameter. At the last step, reads that were under quality score 20 were filtered out with SAMtools' 'view' again, with the '-q 20' parameter. Insert sizes of the produced BAM files that were mapped to the EquCab3 were calculated by Picard Tools's CollectInsertSizeMetrics function. Finalized BAM files were indexed with SAMtools. Versions of all tools and their command line usages were given in Appendix Table A.A.1 and A.A.2.

3.2.3. Calculating mapping coverage

Coverages of the mapped BAM files were calculated with the 'genomecov' function of BEDtools (see Appendix A) for each horse. Then, the mean mapping on autosomal chromosomes for each individual and also for each trio were calculated in R (see Table A.A.1 for version).

To identify positions within a certain depth range, positional coverages of each individual were also calculated using the same function of BEDtools with the "–d" parameter (see Appendix A). The resulting coverage files were separated into chromosomes by UNIX command-line functions. Then, an R code that checked whether a certain position was within the given depth range in each member of the respective trio was written. The thresholds were set to 10 to 30 reads for EquCab2 mapped data, and 10 to two times mean coverage of the respective trio in the EquCab3 mapped data (Li & Wren, 2014).

3.3. Variant calling

Three different algorithms were used to call variants including single nucleotide variants (SNV) and insertion-deletion variants (INDEL) in both references. These were i) GATK's 'HaplotypeCaller' (Poplin et al., 2017) function, ii) Platypus' (Rimmer et al., 2014) 'callVariants' function, and iii) the Freebayes (Garrison & Marth, 2012) algorithm (see Appendix A for version and command line usage of the tool). Default parameters of each callers were used, and members of the same trio were given to the callers at once while performing variant calling. The output variant calling file (VCF) of each algorithm included all variants detected in the trio horses when compared to the reference genome. At the end of variant calling step, six different VCF files had been generated per trio, one from GATK, one from Platypus and one from Freebayes, for each reference.

3.3.1. Workflow for determining candidate 'de novo' mutations

In the next step, different filters were applied to detect 'de novo' mutations, which we define as occurring in the offspring and not found in the parents. To predict 'de novo' mutation candidates, a custom Python (see Appendix Table A.A.1 for the version) code was written. The code parsed each variant in the VCF file line by line. First, it checked the variant for any undetermined genotype among the three individuals. Such variants were filtered out. In next step, the code compared the offspring's genotype with its parents' genotype. Table 3.2 shows all of the conditions that were chosen as a 'de novo' candidate in the offspring. The first four rows of the table show the homozygous cases and last two rows show the heterozygous cases in the offspring.

Offspring	Parent 1	Parent 2
0/0	1/0	1/1
0/0	1/1	1/0
1/1	0/0	1/0
1/1	1/0	0/0
0/1	0/0	0/0
0/1	1/1	1/1

Table 3.2: 'de novo' candidate patterns extracted from VCF files.

After choosing 'de novo' candidates, chrX, chrUn, chrM, and INDELs (insertions and deletions) were removed by another Python code. At the end, the output files contained SNV 'de novo' candidates which are located on the autosomal chromosomes. For the final 'de novo' list for each trio, 'de novo' SNP candidates called by three different variant calling algorithms were considered. For this we generated BED files from the VCF files using Bedtools (see Appendix A) and then the 'intersect' function of Bedtools to choose shared variants. These final position files were converted into VCF files with a Python script. While creating VCF files from BED files, genotype information for VCF files was derived from the GATK variant file of each related trio.

For the next filtering steps, the GATK tool was used. First, the allele balance of each variant was calculated by the 'VariantAnnotator' function, with the '-A AlleleBalanceBySample' parameter. Then GATK hard filtering (De Summa et al., 2017) was applied to the VCF data using 'VariantFiltration' function with the given parameters: "QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum < -12.5, ReadPosRankSum < -8.0, QUAL < 30, AC > 4". 'de novo' candidates that passed filtering were kept and heterozygous candidates in each offspring were selected among these with the '.isHet()'

function. The last two columns of Table 3.2 show the possible allele distribution of selected variants among trio individuals. In the last step, the genotype statistics (including GT, AD, DP, GQ and PL) of individuals in each trio were filtered with 'VariantFiltration' and '--genotypeFilterExpression' functions. Filtering parameters for genotypes were: AB < 0.3 || AB > 0.75, GQ < 40.0 (Jónsson et al., 2017; Maretty et al., 2017). For the depth (DP) filtering, we required depth between 10x and 30x for the EquCab2 mapped data. In EquCab3 mapped data, we changed the threshold and we required lower and upper thresholds between 10x and 2 times of breed mean coverage, respectively (Li & Wren, 2014). Analysis steps are shown in Figure 3.1 as four main parts (Mapping, Variant Calling, Filtering, Comparison). Versions of tools and their command line usages are given in Appendix Table A.A.1 and A.A.2.

3.3.2. Determining candidate 'de novo' mutations with GATK PhaseByTransmission (PBT) algorithm

To test the results of the workflow in section 3.3.1, GATK's PhaseByTransmission (Francioli et al., 2017) algorithm, which predicts candidate 'de novo' mutations, was implemented as an alternative strategy. The function was run with the Lipizzaner variants from three different algorithms (GATK HaplotypeCaller, Platypus and Freebayes) separately. The '--MendelianViolationsFile' parameter was added to obtain candidate 'de novo' mutations as a list. Shared 'de novo' candidates from the three different calling algorithms were selected. GATK's PhaseByTransmission (see Appendix A) algorithm was applied only for the Lipizzan trio and in the next step (3.3.3) the resulting list of 'de novo' candidates was compared to the ones' predicted with the custom approach described in 3.3.1 (workflow for determining candidate 'de novo' mutations).

3.3.3. Comparing different variant lists

In the next step, 'de novo' candidates determined by the workflow described in subsection 3.3.1 for both references were compared with each other and with Jagannathan and colleagues' (Jagannathan et al., 2018) domestic horse variant list including 23.5 million SNVs. Candidates that were shared between lists and candidates unique to only one list were determined. At the same time, 'de novo' candidates produced by the PBT algorithm (see subsection 3.3.2) were compared to the finalized lists of both references and also to the Jagannathans and colleagues' variant list. As coordinates of 'de novo' variants were different between reference versions, the positions needed to be converted to each other for the comparisons. This conversion was performed with the Remap (see Appendix Table A.A.1 for the version) algorithm provided by NCBI.

Figure 3.1: Workflow for detecting 'de novo' mutation candidates. There were four main parts which were mapping, variant calling, filtering and comparison with different variant lists. Main functions for filtering and their details are given in blue boxes.
3.4. Laboratory validation of EquCab2 candidates

All 'de novo' candidates predicted were checked in the IGV Genome Browser (see Table A.A.1). Based on this visual check, the most promising 50 'de novo' candidates were chosen in total for laboratory validation by Sanger resequencing. The panel consisted of 20 'de novo' variants in the Lipizzan trio (%39 of all Lipizzaner 'de novo' candidates), 14 in the Noriker trio (%24 of all Noriker 'de novo' candidates) and 16 in the Haflinger trio (%27 of aall Haflinger candidates). Validation candidates are given in Table A.C.2 in Appendix C.

For each 'de novo' variant, flanking primers were designed for Sanger resequencing. Primers flanking the selected variants were designed using the web tool Primer3 (see Table A.A.1). Primer information is given in Appendix C, Table A.C.2.

Laboratory validation were made by Doris Rigler and Eva Michaelis at Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna. Briefly, PCR amplification was performed using genomic DNA from each member of the respective trio (mother, father, son) as template. PCR reactions were carried out in a 20 μ l volume containing 2 μ l genomic DNA (5 – 20 ng/ μ l), 0.5 μ M of each primer, 1.5 mM MgCl and 1 x PCR buffer, 200 μ M each dNTP and 0.1 U Taq DNA polymerase (Agrobiogen). The DNA was initially denatured at 95°C for 5 min, followed by 35 cycles of 30 s at 95°C, 30 s at annealing temperature (Supplementary Table S2) and 40 s at 72°C. After the 35 cycles, a final extension for 4 min at 72°C was performed. PCR products were visualized on a 2% agarose gel and purified using a QIAquick PCR purification kit. The concentration of the products was checked on a 2% agarose gel using the DNA ladder and then sent for Sanger sequencing to LGC genomics[®]. Results were visualized using the program Codon Code Aligner (see Table A.A.1). Laboratory validation were made by Doris Rigler and Eva Michaelis.

3.5. Mutation rate estimation

The number of truly validated 'de novo' mutations in EquCab2 mapped data were used to calculate an estimate of the mutation rate in one generation. To calculate the rate, the number of true 'de novo' mutations for each trio was divided by length of genome that was covered with the given thresholds in that trio (Data Analysis Part 3) as seen in the Equation 1. Overlapping genome sizes (bp) for each trio were calculated by multiplying overlapping genome percentages with two times of autosomal genome length (2,242,939,370 bp in EquCab2).

Mutation rate in one generation

(1)
$$= \frac{\# of true de novo mutations}{\% overlapping genome size \times genome length \times 2}$$

3.6. Estimation of demographic history and runs of homozygosity

Pairwise Sequentially Markovian Coalescent (PSMC) analysis (Li & Durbin, 2011) was applied to estimate the demographic history of the breeds investigated. First, diploid consensus sequences were obtained from filtered (quality filtering and duplicate removal) versions of the BAM files (Data Analysis Part 2) mapped to the EquCab3 reference. SAMtools' 'mpileup' function with -C50 parameter and Bcftools (see Appendix A) were used to obtain these consensus sequences. While creating consensus sequences, a depth filter was applied to each trio again. The lower and upper thresholds were 10x to 2 times the mean trio coverage for each individual, respectively. In the next step, input files for the PSMC analysis were prepared with the 'q2psmcfa' function. The analysis was made with the suggested simulation parameters: "-N25 -t15 -r5 -p '4+25*2+4+6'", from the previous horse data analysis by Orlando and colleagues. Then, plots were drawn in R using the suggested generation time (8 years) and horse mutation rate (7.242e-09) from Orlando et al. (Orlando et al., 2013).

To estimate runs of homozygosity (ROH), variant files produced from EquCab3-mapped data by GATK HaplotypeCaller were used. Only the variants on the autosomal chromosomes were used in the analysis. ROHs were identified by PLINK (Purcell et al., 2007) (see Appendix A) with parameters: "--homozyg --homozyg-kb 500 --homozyg-snp 50 --homozyg-window-snp 50 --homozyg-window-het 3 --homozyg-window-missing 3 - homozyg-window-threshold 0.05 --homozyg-density 50".

CHAPTER 4

4.RESULTS

4.1.Primary data analysis and quality-based trimming

The total number of paired-end reads of each individual's raw data is given in Table 4.1. Whereas Haflinger BW-356 had the highest number of total reads in the data, Haflinger BW-357 had the lowest. The quality of raw reads was checked with FastQC and visualized with MultiQC. In Figure 4.1, the number of reads in different lanes are shown. Most of the Noriker and Haflinger lanes had a high amount of duplicates.

Table 4.1: The total number of reads in the raw fastq files for each individual. The same number of reads exist for both pairs.

Sample ID	Pedigree	Number of raw PE reads
111	Lip. Son	317,112,113
113	Lip. Dad	325,516,763
166	Lip. Mom	298,406,535
BW-352	Nor. Dad	365,143,936
BW-353	Nor. Mom	298,670,837
BW-354	Nor. Son	313,454,280
BW-355	Haf. Dad	313,514,763
BW-356	Haf. Mom	451,365,261
BW-357	Haf. Son	296,405,435

Figure 4.1: The number of paired-end reads in each lane. In the leftmost column, individual IDs and pedigree information for the lane are given. The proportion of duplicate (black) and unique (blue) reads for each lane are shown.

The number of reads and the mean Phred scores of different lanes are shown in Figure 4.2. While most of the reads increased for Noriker and Haflinger trios have very high mean Phred scores, in the Lipizzaner lanes the mean Phred score has a mode around 38 with few reads having qualities above 38.

Figure 4.2: Mean Phred scores vs the number of reads of each lane. Most of the reads were above the mean Phred score of 30.

Figure 4.3 shows the distribution of each lane's mean Phred score at each nucleotide position. In the untrimmed data, the Lipizzaner parents' (113 and 166) reads had low Phred scores. Trimming parameters were thus chosen based on these low-quality lanes. After trimming, Phred scores were all over 30, throughout the read length. Length of the Lipizzaner reads were cut down to 81-86 base pairs (bp) from 90 bp, while Noriker and Haflinger reads were shortened to 99-113 bp from 120-125 bp.

Figure 4.3: Mean Phred scores of each lane before (left) and after (right) trimming. After the trimming, reads with Phred score below 30 (red lines) for a position disappeared from data.

4.2. Mapping to the reference

The trimmed reads of each individual were mapped to the EquCab2 and EquCab3 reference genomes with BWA software. Different lanes that belonged to the same individual were merged into a single file. After that, the mapping files were filtered in order to remove unmapped reads and eliminate reads that were not properly paired and/or duplicated. In Table 4.2, the number of mapped reads in the raw data and in the filtered BAM files (i.e. properly paired and unique reads) are shown.

Table 4.2: The total number of reads for each individual, including both forward and reverse reads. BW-356 had the highest number of reads in the raw file, but after filtering this decreased dramatically, similar to the others. In the filtered data, the Lipizzan trio had the highest number of mapped reads.

Sample ID	Pedigree info	Total # of reads in raw files	Total # of mapped reads in filtered files (EQ2/EQ3)
111	Lip. Son	623366802	484898968/483215006
113	Lip. Dad	638708842	508612572/506977451
166	Lip. Mom	589312668	462960147/462505385
BW-352	Nor. Dad	699268926	303403168/303337894
BW-353	Nor. Mom	565506312	250130763/249834086
BW-354	Nor. Son	613144358	215904593/215968466
BW-355	Haf. Dad	613058170	291787760/291333599
BW-356	Haf. Mom	878454846	300332316/300064570
BW-357	Haf. Son	554469431	256835380/256756131

Mapping percentages of raw reads for different lanes are given in Table 4.3. Lipizzaners had the highest mapping rates (and properly paired read percentages) in both reference genomes while Norikers have the lowest.

Insert sizes of the final BAM files that were mapped to the EquCab3 reference were also calculated: Mean insert sizes were found as 475 bp in Lipizzaner, 308 bp in Noriker and 317 bp in Haflinger, and their medians were found as 476 bp, 306 bp and 316 bp respectively, in the finalized bam files.

4.3. Mapping coverage on autosomal chromosomes

Mean coverages on autosomal chromosomes of each individual are given in Table 4.4. All calculations were made for both reference genomes (EquCab 2 and 3). The Lipizzaner trio had the highest mean coverages, while Noriker individuals had the lowest.

Overlapping genomic regions which are in between threshold coverage values were calculated. The low and high thresholds were selected as 10 and 30, respectively, in EquCab2. In EquCab3, the low and high coverage thresholds were selected as 10 and twice the breed mean coverage, respectively. The lowest genomic size lying between these thresholds was calculated in the Noriker son (BW-354), whereas the highest was calculated in the Lipizzaner dad (113) for both references (see Table 4.4). Therefore, the Noriker trio had the lowest proportion of regions in the genome which were between the threshold values in all three trio-members and the Lipizzaner trio had the highest proportion (Bold boxes in Table 4.4).

Sample ID	Pedigree info	Lane	% mapping	% prop.
			(EQ2, EQ3)	paired (EQ2, EQ3)
111	Lip. Son	120619 1186 FCC0YD5ACXX L4 SZA XPI009908	97.63, 98.04	94.53, 95.10
111	Lip. Son	120619_I186_FCC0YD5ACXX_L5_SZA XPI009908	97.72, 98.13	94.69, 95.27
111	Lip. Son	120603_I481_FCC0U78ACXX_L3_SZAX PI009908	98.04, 98.45	95.23, 95.82
113	Lip. Dad	120619_1186_FCC0YD5ACXX_L4_SZA XP1009909	97.68, 98.11	94.46, 95.07
113	Lip. Dad	120619_1186_FCC0YD5ACXX_L5_SZA XPI009909	97.76, 98.20	94.61, 95.23
113	Lip. Dad	120603_I481_FCC0U78ACXX_L4_SZAX PI009909	97.66, 98.09	94.42, 95.03
166	Lip. Mom	120619_1186_FCC0YD5ACXX_L4_SZA XPI009902	97.66, 98.10	93.92, 94.45
166	Lip. Mom	120708_1878_FCC1076ACXX_L1_SZAX PI009902	98.43, 98.89	95.30, 95.87
166	Lip. Mom	120603 I481 FCC0U78ACXX L1 SZAX PI009902	98.12, 98.58	94.68, 95.25
166	Lip. Mom	120619_I186_FCC0YD5ACXX_L5_SZA XPI009902	97.76, 98.20	94.10, 94.62
BW-352	Nor. Dad	28244_GAGTGG_C7U2HANXX_4_2015 1203B_20151203	93.75, 94.15	87.51, 87.92
BW-352	Nor. Dad	C7190ANXX_7_20150623B_20150629	94.00, 94.57	85.66, 86.21
BW-353	Nor. Mom	C7190ANXX_8_20150623B_20150629	93.18, 93.70	85.57, 86.09
BW-354	Nor. Son	C717VANXX_5_20150707B_20150711	95.12, 95.67	88.17, 88.72
BW-355	Haf. Dad	C717VANXX_7_20150707B_20150711	94.96, 95.47	89.10, 89.62
BW-356	Haf. Mom	C717VANXX_6_20150707B_20150711	94.88, 95.44	89.24, 89.87
BW-356	Haf. Mom	28248_GTGAAA_C7U2HANXX_4_2015 1203B_20151203	94.20, 94.64	88.50, 88.99
BW-357	Haf. Son	C719TANXX_1_20150710B_20150715	95.06, 95.58	88.23, 88.76

Table 4.3: Percentages of mapping and properly paired reads in each lane. Percentages were higher in the EquCab3 mapped data.

Sample ID	Pedigree info	Mean Genome Coverage (EquCab2)	% of genome between 10-30 DP (EquCab2)	Overlapping genome size in 10-30 DP (EquCab2)	Mean Genome Coverage (EquCab3)	% of genome between 10- 34/24/27 DP (EquCab3)	Overlapping genome size in 10-34/24/27 DP (EquCab3)
111	Lip. Son	17.32	88.17		17.16	88.11	
113	Lip. Dad	18.05	88.25	71.6	17.89	88.86	73.96
166	Lip. Mom	15.96	81.68		15.87	81.86	
BW- 352	Nor. Dad	14.23	83.62		14.16	80.60	
BW- 353	Nor. Mom	11.36	66.01	37.43	11.29	64.89	35.53
BW- 354	Nor. Son	10.21	56.02		10.17	55.30	
BW- 355	Haf. Dad	13.73	81.34		13.65	80.02	
BW- 356	Haf. Mom	13.92	81.99	56.46	13.83	80.54	54.96
BW- 357	Haf. Son	12.16	71.949		12.11	71.02	

Table 4.4: Mean coverages and the percentages among genome in between depth thresholds. While 10-30 depth thresholds were used in the EquCab2 data, 10 to 2 times breeds mean coverages of each trio were used in the EquCab3 mapped data.

4.4. 'de novo' mutation candidates

For detecting 'de novo' mutation candidates, the three main steps are mapping, variant calling, and filtering. These are followed by a comparison of the resulting variation lists ('de novo' candidate lists based on EquCab2 and EquCab3, Jagannathan's variation panel, PBT 'de novo' candidates). Figure 4.4 shows the whole 'de novo' candidate detection workflow and the number of variants after each step. The same workflow was applied to both EquCab2 and EquCab3 mapped data, and both results were given in the figure respectively in each box.

4.4.1. Variant calls on EquCab2 and EquCab3

Three different algorithms were used to call variants in trios as shown in the variant calling part of Figure 4.4. GATK found the highest number of variants in all trios for both reference genomes, but the number of variants found in the updated horse genome release

EquCab3 was lower. The initial numbers given at the output of the variant calling step in Figure 4.4 include both SNVs and indels.

4.4.2. Filtering variants to detect 'de novo' mutation candidates

The filtering of the variants was started by finding 'de novo' candidates with a Python script (see Materials and Methods part 3.3.1) and eliminating variant calls on chromosomes X, M and Un, and also insertions and deletions (INDELs). At this point, the number of 'de novo' mutation candidates were highest in the results of the Freebayes algorithm, among the three algorithms, for each trio and for both reference genomes (see Figure A.B.1 and Figure A.B.2 in Appendix B). In the next step, shared candidates were extracted between three algorithms and the highest number of common candidates were found between the GATK HaploTypeCaller and FreeBayes as seen in Appendix B, again for both reference genomes. On the other hand, the intersection of candidates between the three algorithms was highest in the Noriker trio and lowest in the Lipizzan trio.

Subsequently, variants were filtered based on different properties (heterozygosity, quality, etc.) as can be seen in the filtering part of Figure 4.4. At the end of the filtering, 51, 58 and 59 'de novo' candidates in EquCab2 mapped data, and 69, 45 and 55 candidates in EquCab3 mapped data were predicted in the Lippizaner, Noriker and Haflinger trios, respectively. Because different depth thresholds were applied to the variants at the last step of filtering, the minimum and the maximum number of resulting 'de novo' candidates were different in over trios and reference genomes. Detailed information of all 'de novo' candidates from the two reference genomes for the three trios is given in Table A.C.1 in Appendix C.

4.4.3. Comparing finalized candidates from different lists

In the last step of the workflow (Figure 4.4), finalized candidate lists from EquCab2 and EquCab3 and the common variant list from Jagannathan and colleagues (Jagannathan et al., 2018) which was created by 88 horses from EquCab3 reference genome were compared. Figure 4.5 shows the results of the comparison. Detailed information on 'de novo' SNPs is provided in the Table A.C.1. Candidates were also compared with the results from 'de novo' mutation detection algorithm PhaseByTransmission in GATK. Finalized 'de novo' candidates were examined in the IGV Genome Browser and chosen ones validated in the laboratory (see the subsection 4.5 titled *Laboratory Validation of 'de novo' Candidates* below).

a) Comparing to Jagannathan's common variant panel

38, 27, and 30 shared 'de novo' mutations were found between EquCab2 and EquCab3, respectively in Lipizzan, Noriker and Haflinger trios. Most of these 'de novo' mutation candidates were also found in the Jagannathan variation panel as seen in Figure 4.5. In particular, only 14 Lipizzaner, 5 Noriker, and 12 Haflinger 'de novo' variants did not appear in Jagannathan's horse population variation list. Positions and detailed comparison results of all these mutations were given in Table A.C.1.

Figure 4.4: Shows analysis steps and the number of remaining mutations after each step. Blue boxes show the steps of the analysis, whereas green, yellow and grey boxes show the number of mutations in different breeds and different references after each step.

Figure 4.5: Comparison of finalized lists from the two reference genomes and published common variants. The highest number of shared mutations between the EquCab2 and EquCab3 genomes were found in the Lipizzan trio. Total number of mutations in a set are given below the name of the set.

b) Comparing to the PhaseByTransmission result

'De novo' candidates in the Lippizaner trio were also predicted using the GATK PhaseByTransmission algorithm. Only 5 different candidates were detected at the intersection of the three different variant calling algorithms (GATK HaplotypeCaller, Freebayes, Platypus). These five variants were heterozygous in the offspring and homozygous for the identical allele in both parents. Positions and coverages of these five 'de novo' candidates are shown in Appendix C, Table A.C.2. Neither of these candidates were found in the EquCab2 or EquCab3 'de novo' candidates generated in our custom workflow above, but three of them were found among Jagannathan's common variants.

4.5. Laboratory validation of 'de novo' candidates

Candidate 'de novo' mutations revealed after the filtering steps, as explained above, from EquCab2 mapped data (51 Lipizzan-, 58 Noriker- and 59 Haflinger-variants) were visually checked in the IGV Genome Browser. Candidates that were located near other variants were eliminated and 50 candidate variants (20 in Lipizzaner, 14 in Noriker, 16 in Haflinger) were selected for independent lab validation. Detailed information of the validated variants is given in Table A.C.3, in Appendix C. For the chosen variants, locus-specific flanking primers were designed and a PCR product was amplified in mother (M), father (F) and son (S) and these were sequenced with Sanger technology.

The results of validation are shown in Table 4.5. 13 out of the 20 the Lipizzaner (around %65 of all tested candidates), 3 out of 14 the Noriker (around %21 of all tested candidates) and 5 out of 16 the Haflinger (around %31 of all tested candidates) candidates were successfully validated. In 5 Lipizzaner, 4 Noriker and 4 Haflinger candidates the putative 'de novo' allele was also detected in one of the parents. Some of the candidates could not be validated at all because Sanger sequencing did not produce good results in those positions (given in the *Missing* row in Table 4.5). Finally, some of the positions did not show the 'de novo' allele as observed in the NGS data. These are called 'No SNV' in

Table 4.5. IGV screenshots and Sanger validation results of a true 'de novo' mutation, a position that was not found as a variation in Sanger sequencing (i.e. 'no SNV') and a 'de novo' candidate that was also detected in the parents are, both shown in Appendix D.

Table 4.5: Results of laboratory validation. While some of the SNPs could not be detected with validation, some of them were also found in the parents. The highest proportion of true 'de novo' mutations were detected in the Lipizzan trio.

	Lippizaner	Noriker	Haflinger
Total number of validated SNVs	20	14	16
Missing (bad Sanger sequence)	1	1	2
SNV found also in parents	5	4	4
No SNV	1	6	5
Validated ' <i>de</i> novo' variant	13	3	5
% of truly validated candidates	~%65	~%21	~%31

Figure 4.6 shows the distribution of validation results and the comparison of three variant lists in addition to Figure 4.5. The 5 Lipizzaner, 2 Noriker and 3 Haflinger 'de novo' SNPs that were found also in the parents in the validation result were also found in the Jagannathan's variants. Besides, except one in Lipizzaner, all of the true positive 'de novo' mutations were detected in both EquCab2 and EquCab3 mapped data (see also Figure 4.6).

Figure 4.6: Comparison of three variant lists including validation results of EquCab2 mapped data. Grey label refers to SNPs which also determined in one of the parents in validation, orange label refers to bad Sanger sequenced positions, yellow label refers to variants not validated as SNP in Sanger results and green labels refers to validated 'de novo' variants. Except one, all true 'de novo' mutations are in the intersection of EquCab2 and EquCab3 mapped data and they are not seen in the Jagannathan's variants.

4.6. 'de novo' mutation rate

The number of true 'de novo' mutations detected on the EquCab2 mapped data was used to calculate mutation rate in one generation (see Materials and Methods, part 6). To calculate mutation rates overlapping genome percentages (71.6 in Lipizzaner, 37.43 in Noriker and 56.46 in Haflinger) in the 10 to 30 depth threshold values were used as genome sizes and these revealed rates of ~ 4e-09 bp/gen, ~1.7e-09 bp/gen and ~1.9e-09 bp/gen bp/gen in Lippizaner, Noriker and Haflinger trios, respectively. Detailed calculation steps are given in the Materials and Methods.

4.7. Estimation of demographic history and runs of homozygosity

To estimate the demographic history of the three populations, a Pairwise Sequentially Markovian Coalescent (PSMC) analysis was performed. The resulting PSMC graph is shown in Figure 4.7. All nine horses from three different breeds showed a similar pattern. There was a dramatic decrease in the effective population size around 500,000 years before present and the effective population size reached its maximum level around 120,000 years ago. The logarithmic version of the PSMC graph is given in Appendix E, Figure A.E.1.

The histograms showing the distribution of homozygous runs over lengths of runs are given in Figure 4.8. As evident from the figure, and as is expected, the number of runs decreased when the length of the run increased. The three Lippizan horses had the highest mean number of homozygous runs for each histogram bin, whereas the Haflingers had the

lowest. In general, the distribution of the Haflinger and Noriker trios' runs of homozygosity were closer to each other, when compared with the Lippizaner trio.

Figure 4.7: PSMC results for nine horses from three breeds as a function of time before present and effective population size. E.g., 2e+06 in the x-axis is equal to 2 million years before present.

Figure 4.8: Distribution of homozygous runs for different length intervals. The x-axis refers to length of homozygous runs in megabases, the y-axis shows number of homozygous runs.

CHAPTER 5

5. DISCUSSION

In this thesis, we analyzed whole genome sequencing data of three horse trios. We designed a workflow to determine 'de novo' mutations accurately. We then calculated the mutation rate per generation with these 'de novo' mutations and compared this to the mutation rates from previous studies. Additionally, we made estimations regarding the demographic history of the three horse breeds by using PSMC and ROH analysis and compared results with previous studies.

5.1.Data, mapping, coverages and variant calling in different reference genomes

Some of the NGS sequencing lanes in the Noriker and Haflinger samples, produced by Vienna BioCenter (CSF) in 2015, had high numbers of duplicate reads. There are four main reasons for a duplicated read i) biological duplication (repeat regions), ii) PCR duplications, iii) optical duplicates which are the duplicated reads occur by accepting large clusters as two different clusters by mistake or by a local re-clustering of the original library polymer during bridge amplification, iv) ExAmp duplicates (Hadfield, 2016). Any of these can cause duplicate reads in Illumina sequencing. In our case, the main reason for having a high number of duplicates in some lanes in the Noriker and Haflinger data is assumed to be optical duplication, due to the sequencer used; HiSeq 2500 run mode HiSeq SBS V4. It has been suggested that it is more likely to have optical duplicates with this particular device and run mode (Hadfield, 2016).

When we compared mapping results between the EquCab2 and EquCab3 references, while the number of mapped reads after filtering were lower in EquCab3 mappings (Table 3-2), mapping percentages were increased in EquCab3 compared to EquCab2 mappings (Table 3-3). The increase in mapping ratio for the updated reference genome was also shown by Kalbfleisch and colleagues (Kalbfleisch et al., 2018). Besides mapping percentages, the number of properly paired reads also increased in the EquCab3 mappings. When we called variants with three different algorithms, we observed a decrease in the number of variant calls in the EquCab3 mapped data. This decrease in the number of

variants implies that false positive variants called in the earlier genome version (EquCab2) are now eliminated, as suggested in Guo et al., 2017.

The mean mapping coverage of each individual and overlapping genomic regions (i.e. regions where all members of a trio have coverage in between given thresholds) in each trio also differed between reference genomes (Table 4.4). The difference in the percentage of the overlapping genomic regions was mainly due to different covering thresholds being applied for the two different reference genomes (see 3.2.3). These changes in the threshold levels resulted in a wider depth range in the Lipizzaner trio in EquCab3 (threshold is 10 to 34 instead of 10 to 30 in EquCab2) and accordingly a larger percentage of the genome falling into this category in EquCab3. In contrast, a narrower range in EquCab3 in the Noriker (threshold is 10 to 24 instead of 10 to 30) and Haflinger (threshold is 10 to 27 instead of 10 to 30) lead to a decrease in percentages.

5.2. Variant calling with different algorithms and filtering

We performed variant calling with three different algorithms (GATK HC, Platypus, Freebayes). GATK HC revealed the highest number of variants among them as seen in Figure 4.4. In the first step of filtering, we chose 'de novo' mutation candidates which show patterns as given in Table 2.2. Most variants were eliminated in this step as shown in Figure A.B.1 and A.B.2. This is expected because most variants are not expected to be 'de novo' candidates. In the next step, by eliminating the X, and Un chromosomes and the indels we lost almost half of the 'de novo' candidates. After this elimination, remaining candidates from three different algorithms were compared with each other to find shared ones. We observed that FreeBayes found the highest number of unique candidates which were not detected by any other algorithms, in the Noriker (83,593 in EQ2, 83,857 in EQ3) and Haflinger (56,279 in EQ2, 57,822 in EQ3) breeds (see Figures A.B.1 and A.B.2). GATK HC found the second-highest number of unique candidates in these trios. One reason for having the higher number of unique mutations called with different algorithms in Noriker and Haflinger could be the low sequencing coverage of some individuals in these trios. Tatsumoto et al., 2017 also suggests that false-positive variant prediction is more likely to occur in low coverage data. We also compared the intersection of the number of candidates detected by different algorithms pairwise and found the highest number of intersecting 'de novo' candidates among Freebayes and GATK HC, for both reference genomes and for each trio. Because this intersection did not include the candidates shared by all three of the algorithms, we speculate that most of these were false-positives, given that Platypus has a lower false-positive rate. We also found that the Lipizzan trio had the lowest number of mutations in the pairwise intersections of different algorithms as well as at the intersection of all three algorithms. This is consistent with the expectation of fewer false positives with the higher coverage of the Lipizzan data; fewer candidates that are more accurate are observed.

GATK Hard Filtering parameters were suggested by Summa et al. (De Summa et al., 2017) to detect the qualified variations among all variations. Around 15 % of the

candidates were filtered out in each trio and each reference with hard filtering. Selecting heterozygote 'de novo' candidates among all patterns (Table 2.2) also caused a dramatic decrease in the number of candidate 'de novo' mutations. To see a 'de novo' mutation having a homozygous allele pair in the offspring (see first four rows in Table 2.2), one of the parents should carry the same homozygous allele with the offspring and the other parent should be heterozygous at that position. This is a vanishingly low probability because it requires independent mutations in the offspring and one of the parents, or a back mutation (a mutation at the same position as a previous mutation that reverts the change of the former back to the reference allele), at that same position. Likewise, when the offspring is heterozygous (0/1) at a position, having homozygous alternative alleles (1/1) in the parents also means that a back mutation occurred in the position (see the last row of Table 2-2). Due to the extremely low probabilities of the aforementioned events, we speculate that only candidate 'de novo' patterns where the offspring is heterozygous (0/1), while the parents carry the homozygous reference allele (0/0) (see the fifth row of Table 2-2), have a chance to be a real 'de novo' mutation. We therefore focused on this pattern, applied filtering to choose this pattern among all 'de novo' patterns, and saw a dramatic decrease in the number of candidates. By eliminating the other patterns we speculate that we must have eliminated of most of the false positive candidates (e.g. due to sequencing errors) in our data.

We finally filtered candidates for allele balance and depth, as suggested in several studies (Jónsson et al., 2017; Tatsumoto et al., 2017). In EquCab2 data, we filtered for 'de novo' candidates with 10 to 30 read depth values and we got the lowest number of candidates in Lipizzaner trio (51), whereas higher numbers in Noriker (58) and Haflinger (59) trios. Because the lowest overlapping regions between 10 to 30 depth values were found in the Noriker, followed by the Haflinger trios, we speculate that a higher number of false positives in the 'de novo' candidate list of Noriker and Haflinger trios caused this observation. We therefore changed the depth thresholds from 10 to two times mean coverages of the respective trios when analyzing the EquCab3 mapped data. Because mean coverage is lower in Noriker and Haflinger trios, their upper thresholds were thus also lower (24 for Noriker, 27 for Haflinger), while Lippizzaner had a higher upper threshold (34). These changes in the threshold caused an increase in the number of 'de novo' candidates in the Lipizzaner (69) list and decrease in Noriker (45) and Haflinger (55) trios. This shows that setting the upper limit as a function of the mean lowers the probability of false positives (see Figure 4.5) especially in low covered trios (Noriker and Haflinger). Keeping depth filtering as a function of mean was also suggested by Li and Wren (Li & Wren, 2014) When we compared the number of 'de novo' candidates with the numbers in other mammalian studies (Conrad et al., 2011; Jónsson et al., 2017; Tatsumoto et al., 2017), we saw that they were comparable.

5.3. Interpretation of 'de novo' candidates and Sanger validation results

We compared the candidate lists from EquCab2 and EquCab3 mapped data and found the highest number of shared mutations in Lipizzaner (38) and the lowest in Noriker (27)

(Figure 4.5). We expected that intersecting candidates on two independent callings using different reference genomes were the best candidates for true 'de novo' mutations. Besides, to get a feeling how many of false positive candidates are still in our list, we compared the candidates to a recently published horse variation dataset given in Jagannathan et al. (Figure 4.5) (Jagannathan et al., 2018). For our purposes, the Jagannathan panel serves as a database for standing variation in the Central European horse population. We found a remarkable overlap especially in the Noriker and Haflinger 'de novos' as shown in the Figure 4.5. Possible explanations for this observation are sequencing errors or low coverage sequencing of parents' data. Because heterozygosity in one parent was not detected with Illumina sequencing, some variants falsely give a 'de novo' mutation pattern after filtering. We saw this ratio was higher in the Noriker (22 out of the 27 'denovo' variants also in Jagannathan dataset) data than in the Lipizzaner (24 out of 38) and Haflinger (18 out of 30) data. These results support our hypothesis of a higher amount of false positives in the lower coverage Noriker trio.

We performed Sanger resequencing for a selected set of 'de novo' mutations after checking all candidates in the IGV Genome Browser for both parents and offspring. Results of laboratory validation allowed us, on the one hand, to infer the validity and true number of our 'de novo' predictions, and on the other hand, they illuminate possible scenarios leading to false positive candidates. For example, i) Some could be sequencing errors in the offspring and we called them 'no SNP' in the validation results. ii) The putative 'de novo' allele was also detected in one of the parents with Sanger sequencing. These positions were most probably not called with Illumina sequencing because of the low coverage. We called these 'SNP also in parent'. iii) 'de novo' candidates that could not be confirmed with Sanger sequence'. Such errors occur when the position is in for example in a duplicated regions in the genome, as suggested in the Tatsumoto et al., or the PCR amplicon for Sanger sequencing was not locus specific; iv) Finally, true 'de novo' mutations that were validated successfully and the 'de novo' allele was detected only in the offspring by both NGS and Sanger sequencing.

Validation results (Table 4.5) were consistent with the data quality. Ratio of truly validated mutations was 13/20, 3/14 and 5/16 in Lipizzaner, Noriker and Haflinger trios respectively. The results clearly showed that, sufficient read coverage is essential to detect true positive mutations. We expected this result because we had the of the highest mean coverage in the Lipizzaner (~17x) and the lowest in the Noriker (~12x) data. Tatsumoto et al. suggested that even 30x and 60x coverages are not enough to detect all 'de novo' mutations in a trio data (Tatsumoto et al., 2017). Although our data was not nearly that deeply covered, with our custom filters we have reduced the number of false positives and detected a healthy number of 'de novo' mutations which are true positive.

We make two inferences from our results at this point: First, Lipizzaner data coverage is at the edge of the coverage necessary to reliably detect a sufficient number of true 'de novo' mutations. Second, our workflow still gives partially accurate results, in spite of the low coverage. To sum up, having genomic data with at least 17x mean coverage and applying well-adjusted depth thresholds could be the most important steps in finding true 'de novo' mutations.

Number of candidates and true positives also correlate with the size of the genomic regions that were considered for analysis. The Lipizzaner trio had the largest genomic area (71,60% in EquCab2) within the thresholds, whereas Noriker had the lowest (37.43% in EquCab2). Based on this, we expect to find more candidates and true 'de novos' in Lipizzaner, and less in Noriker. Figure 5.1 shows the relation between scanned regions (1.605 x 109 Mb in Lipizzaner, 0.839 x 109Mb in Noriker and 1.266 x 109 Mb in Haflinger) and true positive mutations (13 in Lipizzaner, 3 in Noriker and 5 in Haflinger).

Figure 5.1: Percentages of overlapping genomic regions that were covered between 10-30 in EquCab2 in the respective trio and number of true 'de novo' mutations.

We also checked the distribution of the validation results among EquCab2, EquCab3 and the variant dataset from Jagannathan et. al. We found that all of true 'de novo' mutations, except one, in Lipizzaner were detected in both EquCab2 and EquCab3 mapped data but not in the Jagannathan variation panel, as expected (Figure 4.6). We found that many of the candidates which were classified as 'SNP also found in parents' were also in the Jagannathan data. Seeing these variants already in the Jagannathan data is further proof that Illumina sequencing missed heterozygous alleles in the parents due to very low sequencing coverage. None of the 'no SNP' positions were found in the Jagannathan's variation list. This was expected and is another confirmation that these positions are sequencing errors in the offspring.

5.4.Mutation rate differences

We calculated a 'de novo' mutation rate to be 4.05 per billion sites per generation for the Lippizaner, 1.79 for the Noriker, and 1.97 for the Haflinger trio, by dividing number of true positive 'de novo' mutations detected in each trio with 2 times overlapping genomic area of the respective trio in 10-30 coverage thresholds. We compared these ratios with human, chimpanzee and mouse rates which were calculated with the same equations.

When we compare these rates with the germ line 'de novo' mutation rate of human which is 1.29e-08 (Jónsson et al., 2017) our rates are almost 3 to 6 times smaller than the human rate. In the chimpanzee case the mutation rate was calculated as 1.48e-08 (Tatsumoto et al., 2017) and our Lippizzan rate was almost 4, Noriker rate was almost 9, and Haflinger rate was almost 8 times smaller than chimpanzee rate. When we compared the estimated horse rates with the mouse mutation rate estimates, ranging from 3.9e-09 (Lindsay et al., 2016) to 5.4e-09 bp/gen (Uchimura et al., 2015), our rates appeared comparable with them. Besides, when we compared the estimated rates with the mutation rate calculated for horses by phylogenetic distance method which is 7.2e-09 bp/gen (Orlando et al., 2013), we could say that we estimate the rate at least in the same decimals. One possible reason of the difference between phylogenetic and 'de novo' rates could be the false negative 'de novo' mutations that we missed during the analysis because of our data quality. However, other explanations are also possible (see Introduction).

When we compared different mutation rates between our three horse trios, we found the highest rates in the Lipizzaner whereas Noriker and Haflinger rates were lower and closer to each other. We speculate that the main reason for this difference is again the quality of the sequencing data. We had the highest coverage in the Lipizzaner trio, and thus the most accurate 'de novo' mutation rate is the one calculated from Lipizzaner data. Other possibilities of getting different rates could be fathers' age (Francioli et al., 2014; Kong et al., 2012) and background effects differing between families (Conrad et al., 2011).

5.5.Estimations on population history

5.5.1. PSMC

To estimate the demographic history of *Equus caballus*, we performed PSMC analysis. Results of the analysis revealed patterns similar to the ones presented by Orlando et al., 2013 and Schubert et al., 2014. The horse effective population size reached a minimum value between 100 to 130 thousand years (kyr) before present in our data. Orlando et al. found the same decrease 125 kyr before present, and they suggested that the Last Interglacial Period was the reason for this decrease. This decrease is followed by a peak in the effective population size in our findings, as well as in Orlando et al., 2013. This peak is thought to have developed due to the environmental changes after the Last Glacial Maximum (Lorenzen et al., 2011). However, although this timeline is consistent with our findings, there are still some differences in the timeline vs. effective population size patterns of our nine horses. One reason for this could be, again, the low mean coverage of our data. Nadachowska-Brzyska and colleagues have suggested that the PSMC method is not able to produce reliable models under 18x mean coverage, and our mean coverages in EquCab3 mapped data ranged between 10.17 and 17.89 (Nadachowska-Brzyska et al., 2016). The difference between mean coverages could also explain the differences in the models of different individuals. Despite these differences, we suggested that taking the regions in between 10 to 2 times mean coverage threshold (Li & Wren, 2014) provides

consistent pattern among individuals and with the other studies (Orlando et al., 2013; Schubert et al., 2014).

5.5.2. Runs of homozygosity analysis (ROH)

We also performed a 'runs of homozygosity' analysis on our data to estimate population histories of the three different Austrian breeds in our study. Ceballos and colleagues suggested that inbred populations have a higher number of longer ROHs than outbred populations. They also suggested that if the population has a high number of shorter runs and along with some longer ROHs, it is possible that the population is both inbred and bottlenecked (Ceballos et al., 2018). When we interpreted our results from this point of view, we saw that the Lipizzaner trio is more inbred than the Noriker and Haflinger trios. Previous studies have found higher inbreeding in Austrian Lipizzaners with respect to other Lipizzaners (Grilz-Seger et al., 2019), and more inbreeding in Lipizzaners as compared to Norikers (Druml et al., 2009). Additionally, no appreciable difference between Lipizzaner and Haflinger populations in inbreeding was reported (Grilz-Seger et al., 2019).

Our ROH results which showed a low number of long ROHs (>4Mb) and high number of short ROHs (<2Mb) in Noriker and Haflinger trios, suggest less inbreeding in recent generations when compared with Lipizzaners (Ceballos et al., 2018). The conclusion of more inbreeding in Lipizzaner compared to Noriker is also supported by Druml et al., 2009. On the other hand, more inbreeding in Lipizzaner than Haflinger was not reported previously. This could be an effect of coverage differences in our data or might reflect variation within these breeds.

5.6. Future work and conclusion

We only validated candidate mutations from EquCab2 mapped data, but in addition we defined new possible candidate 'de novo' mutations called on EquCab3 only, which were not found in Jagannathan's data set (green labeled candidates in Appendix Table A.C.1). These 'de novo' candidates should be validated as well. While validating them in the future, besides taking the blood sample used for Illumina sequencing as a source for Sanger validation, another somatic tissue also could be used to distinguish true germ line 'de novo' mutations from somatic 'de novo' mutations. Only if the same 'de novo' mutations are validated in the other somatic cells, we can be definitely sure that they are germ line and not somatic cell mutations (Tatsumoto et al., 2017).

The statistical power of 'de novo' mutation detection workflows should also be measured in terms of false negative rate. To calculate false negative rate, we would need to estimate 'de novo' mutation candidates with another data set which have also validated true 'de novo' mutations. By trying our workflow on such a more deeply sequenced data we could have an estimate on false negative rate, and thus could obtain a more accurate mutation rate per generation for horse. For this aim we can analyze publicly available genomic datasets, which include truly validated 'de novo' mutations (Francioli et al., 2014), in order to test its reliability. Another option could be analyzing the 'Genome in a Bottle' data set which includes deep coverage (\sim 300x) human trio data (Zook et al., 2016), and we could compare verified 'de novo' mutations from this data set with 'de novo' mutations estimated from our workflow (Zook et al., 2018) and using the same coverages as in the horse data.

The demographic analysis could also be enriched, e.g. by calculating the inbreeding coefficient (F_{ROH}) from ROH data, by dividing average length of ROHs to autosomal genome size (McQuillan et al., 2008), and comparing these estimates with other studies' outcomes (Druml et al., 2009; Grilz-Seger et al., 2019).

In conclusion, our data is at the very low-end coverage compared to many other studies for 'de novo' mutation estimation. Nevertheless, we were able to analyze this data to get as much information out of it as possible. We were able to detect a significant number of the true 'de novo' mutations from trio data with our workflow, and this was the achievement of our workflow for 'de novo' mutation detection. On the other hand, PSMC and ROH results were consistent with previous studies in most cases. Our study thus provided insight into the minimum data quality needed for such analyses.

REFERENCES

- Acuna-Hidalgo, R., Veltman, J. A., & Hoischen, A. (2016). New insights into the generation and role of de novo mutations in health and disease. *Genome Biology*, Vol. 17, p. 241. https://doi.org/10.1186/s13059-016-1110-1
- Andrews, S. (2015). FASTQC A Quality Control tool for High Throughput SequenceData.BabrahamInstitute.Retrievedhttp://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/3AnalysisModules/Modules/
- Anthony, D. W. (2016).The Horse in Human History . Pita Kelekna . Journal of
Anthropological Research, 66(3), 401–403.
https://doi.org/10.1086/jar.66.3.20798830
- Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics*, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
- Broman, K. W., & Weber, J. L. (1999). Long homozygous chromosomal segments in reference families from the centre d'Etude du polymorphisme humain. *American Journal of Human Genetics*, 65(6), 1493–1500. https://doi.org/10.1086/302661
- Campbell, C. D., & Eichler, E. E. (2013). Properties and rates of germline mutations in humans. *Trends in Genetics*, 29(10), 575–584. https://doi.org/10.1016/j.tig.2013.04.005
- Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M., & Wilson, J. F. (2018). Runs of homozygosity: Windows into population history and trait architecture. *Nature Reviews Genetics*, 19(4), 220–234. https://doi.org/10.1038/nrg.2017.109
- Chen, H. (2015). Population genetic studies in the genomic sequencing era. *Zoological Research*, *36*(4), 223–232. https://doi.org/10.13918/j.issn.2095-8137.2015.4.223
- Conrad, D. F., Keebler, J. E. M., Depristo, M. A., Lindsay, S. J., Zhang, Y., Casals, F., ... Awadalla, P. (2011). Variation in genome-wide mutation rates within and between human families. *Nature Genetics*, 43(7), 712–714. https://doi.org/10.1038/ng.862

De Summa, S., Malerba, G., Pinto, R., Mori, A., Mijatovic, V., & Tommasi, S. (2017).

GATK hard filtering: Tunable parameters to improve variant calling for next generation sequencing targeted gene panel data. *BMC Bioinformatics*, 18(Suppl 5). https://doi.org/10.1186/s12859-017-1537-8

- Depristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., ... Daly, M. J. (2011). A framework for variation discovery and genotyping using nextgeneration DNA sequencing data. *Nature Genetics*, 43(5), 491–501. https://doi.org/10.1038/ng.806
- Druml, T., Baumung, R., & Sölkner, J. (2009). Pedigree analysis in the Austrian Noriker draught horse: Genetic diversity and the impact of breeding for coat colour on population structure. *Journal of Animal Breeding and Genetics*, 126(5), 348–356. https://doi.org/10.1111/j.1439-0388.2008.00790.x
- Druml, T., Neuditschko, M., Grilz-Seger, G., Horna, M., Ricard, A., Mesarič, M., ... Brem, G. (2018). Population Networks Associated with Runs of Homozygosity Reveal New Insights into the Breeding History of the Haflinger Horse. *Journal of Heredity*, 109(4), 384–392. https://doi.org/10.1093/jhered/esx114
- Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis results for multiple tools and samples in a single report. *Bioinformatics*, 32(19), 3047–3048. https://doi.org/10.1093/bioinformatics/btw354
- Francioli, L. C., Cretu-Stancu, M., Garimella, K. V, Fromer, M., Kloosterman, W. P., Wijmenga, C., ... de Bakker, P. I. (2017). A framework for the detection of de novo mutations in family-based sequencing data. *European Journal of Human Genetics*, 25(2), 227–233. https://doi.org/10.1038/ejhg.2016.147
- Francioli, L. C., Menelaou, A., Pulit, S. L., Van Dijk, F., Palamara, P. F., Elbers, C. C., ... Wijmenga, C. (2014). Whole-genome sequence variation, population structure and demographic history of the Dutch population. *Nature Genetics*, 46(8), 818–825. https://doi.org/10.1038/ng.3021
- Garrison, E., & Marth, G. (2012). *Haplotype-based variant detection from short-read sequencing*. 1–9. Retrieved from http://arxiv.org/abs/1207.3907
- Gómez-Romero, L., Palacios-Flores, K., Reyes, J., García, D., Boege, M., Dávila, G., ... Palacios, R. (2018). Precise detection of de novo single nucleotide variants in human genomes. *Proceedings of the National Academy of Sciences*, 115(21), 5516–5521. https://doi.org/10.1073/pnas.1802244115
- Grilz-Seger, G., Druml, T., Neuditschko, M., Dobretsberger, M., Horna, M., & Brem, G. (2019). High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse. *BMC Genomics*, 20(1), 1–17. https://doi.org/10.1186/s12864-019-5564-x

- Grilz-Seger, G., Mesarič, M., Cotman, M., Neuditschko, M., Druml, T., & Brem, G. (2018). Runs of Homozygosity and Population History of Three Horse Breeds With Small Population Size. *Journal of Equine Veterinary Science*, 71, 27–34. https://doi.org/10.1016/j.jevs.2018.09.004
- Guo, Y., Dai, Y., Yu, H., Zhao, S., Samuels, D. C., & Shyr, Y. (2017). Improvements and impacts of GRCh38 human reference on high throughput sequencing data analysis. *Genomics*, 109(2), 83–90. https://doi.org/10.1016/j.ygeno.2017.01.005
- Hadfield, J. (2016). Increased read duplication on patterned flowcells- understanding the impact of Exclusion Amplification. Retrieved from http://core-genomics.blogspot.com/2016/05/increased-read-duplication-on-patterned.html
- Haldane, J. B. S. (1947). the Mutation Rate of the Gene for Haemophilia, and Its Segregation Ratios in Males and Females. *Annals of Eugenics*, 13(1), 262–271. https://doi.org/10.1111/j.1469-1809.1946.tb02367.x
- Jagannathan, V., Gerber, V., Rieder, S., Tetens, J., Thaller, G., Drögemüller, C., & Leeb, T. (2018). Comprehensive characterization of horse genome variation by wholegenome sequencing of 88 horses. *Animal Genetics*, (January 2019). https://doi.org/10.1111/age.12753
- Jin, Z. B., Li, Z., Liu, Z., Jiang, Y., Cai, X. B., & Wu, J. (2017). Identification of de novo germline mutations and causal genes for sporadic diseases using trio-based wholeexome/genome sequencing. *Biological Reviews*. https://doi.org/10.1111/brv.12383
- Jónsson, H., Sulem, P., Kehr, B., Kristmundsdottir, S., Zink, F., Hjartarson, E., ... Stefansson, K. (2017). Parental influence on human germline de novo mutations in 1,548 trios from Iceland. *Nature*, 549, 519. Retrieved from http://dx.doi.org/10.1038/nature24018
- Kalbfleisch, T. S., Rice, E., DePriest, M. S., Walenz, B. P., Hestand, M. S., Vermeesch, J. R., ... MacLeod, J. N. (2018). EquCab3, an Updated Reference Genome for the Domestic Horse. *BioRxiv*, (April), 306928. https://doi.org/10.1101/306928
- Kirin, M., McQuillan, R., Franklin, C. S., Campbell, H., McKeigue, P. M., & Wilson, J. F. (2010). Genomic runs of homozygosity record population history and consanguinity. *PloS One*, 5(11), e13996. https://doi.org/10.1371/journal.pone.0013996
- Kong, A., Frigge, M. L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., ... Stefansson, K. (2012). Rate of de novo mutations and the importance of father-s age to disease risk. *Nature*, 488(7412), 471–475. https://doi.org/10.1038/nature11396
- Kuderna, L. F. K., Albrechtsen, A., Thèves, C., Hofreiter, M., Rieder, S., Librado, P., ... Al-Rasheid, K. (2017). Ancient genomic changes associated with domestication of

the horse. Science, 356(6336). https://doi.org/10.1126/science.aam5298

- Lanata, A., Guidi, A., Valenza, G., Baragli, P., & Scilingo, E. P. (2016). Quantitative heartbeat coupling measures in human-horse interaction. *Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS*, 2016-Octob, 2696–2699. https://doi.org/10.1109/EMBC.2016.7591286
- Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 00(00), 1–3. Retrieved from http://arxiv.org/abs/1303.3997
- Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*, 26(5), 589–595. https://doi.org/10.1093/bioinformatics/btp698
- Li, H., & Durbin, R. (2011). Inference of human population history from individual whole-genome sequences. *Nature*, 475(7357), 493–496. https://doi.org/10.1038/nature10231
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352
- Li, H., & Wren, J. (2014). Toward better understanding of artifacts in variant calling from high-coverage samples. *Bioinformatics*, 30(20), 2843–2851. https://doi.org/10.1093/bioinformatics/btu356
- Lindsay, S. J., Rahbari, R., Kaplanis, J., Keane, T., & Hurles, M. (2016). Striking differences in patterns of germline mutation between mice and humans. *BioRxiv*, 082297. https://doi.org/10.1101/082297
- Loewe, L., & Hill, W. G. (2010). The population genetics of mutations: Good, bad and indifferent. *Philosophical Transactions of the Royal Society B: Biological Sciences*, Vol. 365, pp. 1153–1167. https://doi.org/10.1098/rstb.2009.0317
- Lorenzen, E. D., Nogués-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske, K. A., ... Willerslev, E. (2011). Species-specific responses of Late Quaternary megafauna to climate and humans. *Nature*, 479(7373), 359–364. https://doi.org/10.1038/nature10574
- Maretty, L., Jensen, J. M., Petersen, B., Sibbesen, J. A., Liu, S., Villesen, P., ... Schierup, M. H. (2017). Sequencing and de novo assembly of 150 genomes from Denmark as a population reference. *Nature*, 548(7665), 87–91. https://doi.org/10.1038/nature23264
- McCoy, A. M., & McCue, M. E. (2014). Validation of imputation between equine genotyping arrays. *Animal Genetics*, Vol. 45, p. 153.

https://doi.org/10.1111/age.12093

- McCue, M. E., Bannasch, D. L., Petersen, J. L., Gurr, J., Bailey, E., Binns, M. M., ...
 Mickelson, J. R. (2012). A high density SNP array for the domestic horse and extant Perissodactyla: Utility for association mapping, genetic diversity, and phylogeny studies. *PLoS Genetics*, 8(1), 1002451. https://doi.org/10.1371/journal.pgen.1002451
- McQuillan, R., Leutenegger, A. L., Abdel-Rahman, R., Franklin, C. S., Pericic, M., Barac-Lauc, L., ... Wilson, J. F. (2008). Runs of Homozygosity in European Populations. *American Journal of Human Genetics*, 83(3), 359–372. https://doi.org/10.1016/j.ajhg.2008.08.007
- Mikkelsen, T. S., Hillier, L. W., Eichler, E. E., Zody, M. C., Jaffe, D. B., Yang, S. P., ... Waterston, R. H. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. *Nature*, 437(7055), 69–87. https://doi.org/10.1038/nature04072
- Nadachowska-Brzyska, K., Burri, R., Smeds, L., & Ellegren, H. (2016). PSMC analysis of effective population sizes in molecular ecology and its application to black-andwhite Ficedula flycatchers. *Molecular Ecology*, 25(5), 1058–1072. https://doi.org/10.1111/mec.13540
- Narasimhan, V. M., Rahbari, R., Scally, A., Wuster, A., Mason, D., Xue, Y., ... Durbin, R. (2017). Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes. *Nature Communications*, 8(1). https://doi.org/10.1038/s41467-017-00323-y
- Nielsen, R., & Slatkin, M. (2013). An Introduction to Population Genetics Theory and Applications. Sinauer Associates.
- Orlando, L., Ginolhac, A., Zhang, G., Froese, D., Albrechtsen, A., Stiller, M., ... Willerslev, E. (2013). Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. *Nature*, 499(7456), 74–78. https://doi.org/10.1038/nature12323
- Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., Auwera, G. A. Van der, ... Banks, E. (2017). Scaling accurate genetic variant discovery to tens of thousands of samples. *BioRxiv*, 201178. https://doi.org/10.1101/201178
- Prüfer, K., Munch, K., Hellmann, I., Akagi, K., Miller, J. R., Walenz, B., ... Pääbo, S. (2012). The bonobo genome compared with the chimpanzee and human genomes. *Nature*, 486(7404), 527–531. https://doi.org/10.1038/nature11128
- Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., ... Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-

based linkage analyses. American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795

- Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. *Bioinformatics*, 26(6), 841–842. https://doi.org/10.1093/bioinformatics/btq033
- Ramu, A., Noordam, M. J., Schwartz, R. S., Wuster, A., Hurles, M. E., Cartwright, R. A., & Conrad, D. F. (2013). DeNovoGear: De novo indel and point mutation discovery and phasing. *Nature Methods*, 10(10), 985–987. https://doi.org/10.1038/nmeth.2611
- Rimmer, A., Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R. F., Wilkie, A. O. M., ... Lunter, G. (2014). Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. *Nature Genetics*, 46(8), 912– 918. https://doi.org/10.1038/ng.3036
- Sandmann, S., De Graaf, A. O., Karimi, M., Van Der Reijden, B. A., Hellström-Lindberg, E., Jansen, J. H., & Dugas, M. (2017). Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data. *Scientific Reports*, 7, 1–12. https://doi.org/10.1038/srep43169
- Schaefer, R. J., Schubert, M., Bailey, E., Bannasch, D. L., Barrey, E., Bar-Gal, G. K., ... McCue, M. E. (2017). Developing a 670k genotyping array to tag ~2M SNPs across 24 horse breeds. *BMC Genomics*, 18(1). https://doi.org/10.1186/s12864-017-3943-8
- Schubert, M., Jónsson, H., Chang, D., Der Sarkissian, C., Ermini, L., Ginolhac, A., ... Orlando, L. (2014). Prehistoric genomes reveal the genetic foundation and cost of horse domestication. *Proceedings of the National Academy of Sciences of the United States of America*, 111(52), E5661-9. https://doi.org/10.1073/pnas.1416991111
- Shendure, J., & Akey, J. M. (2015). The origins, determinants, and consequences of human mutations. *Science*, Vol. 349, pp. 1478–1483. https://doi.org/10.1126/science.aaa9119
- Smeds, L., Qvarnström, A., & Ellegren, H. (2016). Direct estimate of the rate of germline mutation in a bird. *Genome Research*, 26(9), 1211–1218. https://doi.org/10.1101/gr.204669.116
- Tatsumoto, S., Go, Y., Fukuta, K., Noguchi, H., Hayakawa, T., Tomonaga, M., ... Fujiyama, A. (2017). Direct estimation of de novo mutation rates in a chimpanzee parent-offspring trio by ultra-deep whole genome sequencing. *Scientific Reports*, 7(1), 1–12. https://doi.org/10.1038/s41598-017-13919-7
- Uchimura, A., Higuchi, M., Minakuchi, Y., Ohno, M., Toyoda, A., Fujiyama, A., ... Yagi, T. (2015). Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. *Genome Research*,

25(8), 1125–1134. https://doi.org/10.1101/gr.186148.114

- Wade, C. M., Giulotto, E., Sigurdsson, S., Zoli, M., Gnerre, S., Imsland, F., ... Lindblad-Toh, K. (2009). Genome sequence, comparative analysis, and population genetics of the domestic horse. *Science*, 326(5954), 865–867. https://doi.org/10.1126/science.1178158
- Wei, Q., Zhan, X., Zhong, X., Liu, Y., Han, Y., Chen, W., & Li, B. (2015). A Bayesian framework for de novo mutation calling in parents-offspring trios. *Bioinformatics*, 31(9), 1375–1381. https://doi.org/10.1093/bioinformatics/btu839
- Xu, C. (2018). A review of somatic single nucleotide variant calling algorithms for nextgeneration sequencing data. *Computational and Structural Biotechnology Journal*, 16, 15–24. https://doi.org/10.1016/j.csbj.2018.01.003
- Zechner, P., Solkner, J., Bodo, I., Druml, T., Baumung, R., Achmann, R., ... Brem, G. (2002). A nalysis of diversity and population structure in the Lipizzan horse breed based on pedigree information. *Livestock Production Science*, 77, 137–146.
- Zhang, C., Ni, P., Ahmad, H. I., Gemingguli, M., Baizilaitibei, A., Gulibaheti, D., ...
 Zhao, S. (2018). Detecting the Population Structure and Scanning for Signatures of Selection in Horses (*Equus caballus*) From Whole-Genome Sequencing Data. *Evolutionary Bioinformatics*, 14, 117693431877510. https://doi.org/10.1177/1176934318775106
- Zook, J. M., Catoe, D., McDaniel, J., Vang, L., Spies, N., Sidow, A., ... Salit, M. (2016). Extensive sequencing of seven human genomes to characterize benchmark reference materials. *Scientific Data*, 3. https://doi.org/10.1038/sdata.2016.25
- Zook, J. M., McDaniel, J., Parikh, H., Heaton, H., Irvine, S. A., Trigg, L., ... Consortium, G. in a B. (2018). Reproducible integration of multiple sequencing datasets to form high-confidence SNP, indel, and reference calls for five human genome reference materials. *BioRxiv*, 281006. https://doi.org/10.1101/281006

APPENDICES

APPENDIX A

USED TOOLS

Table A.A.1: Programs and their versions that used in the analysis.

Program	Version
SAMtools	1.4
Bedtools	2.25.0
FastQC	0.11.5
MultiQC	v1.7.dev0
Trimmomatic	0.36
Picard Tools	1.119
R	3.2
GATK	3.8-0
Freebayes	v0.9.10-3-g47a713e
Python	2.7, 3
Remap	2.1
IGV	2.4.10
Primer3	v0.4.0
Codon Code Aligner	3.0.1
Bcftools	1.9
Vcftools	0.1.13
Plink	1.07

Table A.A.2:	Usage purposes a	and command	line usages of	of each tool.
1 4010 1 101 1020	obuge purposes	and commund	me usuges v	51 64611 1001.

Tool/Algorithm	Process	Command line
SAMtools	Sorting	samtools sort @2 input.bam -o output.bam
BEDtools	Converting bam file to fastq file	bedtools bamtofastq –i input.bam –fq read1.fq –fq2 read.fq
FastQC	FatsQC analysis	fastqc –o . –f fastq input.fq.gz –t 5
Trimmomatic	Trimming data	trimmomatic-0.36.jar PE -threads 6 read1.fq.gz read2.fq.gz read1_paired.fq.gz read1_unpaired.fq.gz read2_paired.fq.gz read2_unpaired.fq.gz TRAILING:10 MINLEN:50 SLIDINGWINDOW:5:20
MultiQC	Reporting FastQC results	multiqe .
bwa	Indexing reference	bwa index -a bwtsw reference.fa
bwa	Mapping files to the reference	bwa mem -R '@RG\tID:laneID\tSM:horseID' -M -t 8 reference.fa read1.fq.gz read2.fq.gz > mappedFile.sam
SAMtools	Convert sam to bam	samtools view -b –S mappedFile.sam > mappedFile.bam
SAMtools	Merging different lanes	samtools merge merged.bam lane1.bam lane2.bam lane3.bam
SAMtools	Taking properly paired reads	samtools view –B –F 4 -f 2 –h input.bam > output.bam
Picard Tools	Removing duplicates	java -jar MarkDuplicates.jar I=inpit.bam O=output.bam METRICS_FILE=metrics.txt REMOVE_DUPLICATES=TRUE
SAMtools	Filtering reads for quality	samtools view -q 20 -b input.bam > output.bam
Picard Tools	Calculating insert sizes	java -jar CollectInsertSizeMetrics.jar I=input.bam O=insert_size_metrics.txt H=insert_size_histogram.pdf M=0.5
SAMtools	Indexing bam files	samtools index input.bam

Bedtools	Calculating genomic coverages	bedtools genomecov –ibam input.bam –g reference.fa > output.txt
Bedtools	Calculating positional coverages	bedtools genomecov –ibam input.bam –g reference.fa –d > output.txt
GATK HaploTypeCaller	Calling variants	java -jar GenomeAnalysisTK.jar –T HaplotypeCaller (fix_misencoded_quality_scores) -R reference.fa - I son.bam -I father.bam -I mother.bam -o
		variants.vci
Platypus	Calling variants	python Platypus.py callVariants bamFiles=son.bam,father.bam,mother.bam refFile=reference.faoutput=variants.vcf
Freebayes	Calling variants	freebayes –f reference.fa –L bamList.txt > variants.vcf
Bedtools	Intersecting bed files	Bedtools intersect –a file1.bed –b file2.bed > file3.bed
GATK VariantAnnotator	Annotating variants	java -jar GenomeAnalysisTK.jar –T VariantAnnotator (fix_misencoded_quality_scores) -R reference.fa - I trioBams.list –V variants.vcf –o annotatedvaariatns.vcf –A AlleleBalanceBySample
GATK VariantFiltration	Filtering variants in vcf	java -jar GenomeAnalysisTK.jar –T VariantFiltration -R reference.fa –V variants.vcf filterExpression "QD < 2.0 MQ < 40.0 FS > 60.0 SOR > 3.0 MQRankSum < -12.5 ReadPosRankSum < -8.0 QUAL < 30 AC > 4 " filterName "my_snp_filter –o output.vcf
GATK SelectVariants	Selecting heterozygous variants	java -jar GenomeAnalysisTK.jar –T SelectVariants -R reference.fa –V variants.vcf -select 'vc.getGenotype("horseID").isHet()' –o output.vcf

		java -jar GenomeAnalysisTK.jar –T VariantFiltration -R reference.fa –V variants.vcf
		genotypeFilterExpression "AB < 0.3 \parallel AB > 0.75"
		genotypeFilterName "AB_filter"
GATK VerientFiltration	Filtering genotype of different	genotypeFilterExpression "DP > $34/24/27 \parallel DP < 10$ "
	idividuals in vcf	genotypeFilterName "DP_filter"
		genotypeFilterExpression "GQ < 40.0"
		genotypeFilterName "GQ_filter"
		-o output.vcf
GATK PhaseByTransmission	Calling de novo candidates	java -jar GenomeAnalysisTK.jar –T PhaseByTransmission -R reference.fa –V variants.vcf
		MendelianViolationsFile mendelianViolations - ped trio.ped -o output.vef
SAMtools, Bcftools	Preparing consensus sequences for psmc	samtools mpileup -C50 –uf reference.fa input.bam bcftools call –c - vcfutils.pl vcf2fq –d 10 –D 34/24/27 gzip > output.fq.gz
PSMC	Converting fastq to psmcfa	fq2psmcfa -q20 file.fq.gz > file.psmcfa
PSMC	Psmc analysis	psmc -N25 -t15 -r5 -p "4+25*2+4+6" –o output.psmc input.psmcfa
Vcftools	Converting vcf top link format	vcftoolsvcf input.vcfout outputplink
Plink	Converting file to Plink's bed format	plinknowebhorsefile inputout output make-bed
Plink	Roh analysis	plinknowebhorsebfile inputFilehomozyg homozyg-kb 500homozyg-snp 50homozyg- window-snp 50homozyg-window-het 3 homozyg-window-missing 3homozyg-window- threshold 0.05homozyg-density 50
APPENDIX B

FILTERING DETAILS

Figure A.B.1: Detailed results of first filtering step in Figure 4.4 for EQ2 mapped data.

Figure A.B.2: Detailed results of first filtering step in Figure 4.4 for EQ3 mapped data.

APPENDIX C

DETAILED INFORMATION ABOUT DE NOVO CANDIDATES

Table A.C.1: Position and comparison information of all candidate 'de novo' mutations. Some of the reads mapped in one genome version (for example EquCab2) were mapped more then one position in the other genome version (EquCab3). Such mutations (red labeled) were detected in the multiple positions when the position converted to the other reference version. The mutations in the fully red written rows cause inconsistency between comparison (EQ2, EQ3 and Jagannathan's panel) results. The choosen mutations for lab validation were indicated in the last coulmn. Green labeled candidates were choosen for future validation depending on their coexistence in both reference mapped data and not existence in Jagannathan data.

TRIO	EQ2 chr	EQ2 pos	EQ3 chr	EQ3 pos	Ref	Alt	Found or not found in EQ3	In Jagannathan data	Sanger validation done
LIP	chr1	15859530	chr1	15978254	С	G	found	no	yes
LIP	chr1	15864504	chr1	15983228	G	Т	found	no	yes
LIP	chr1	68664504	chr1	69214531	А	С	found	no	yes
LIP	chr10	82141638	chr10	83318763	G	А	found	no	yes
LIP	chr13	27768579	chr13	28928832	Т	G	found	no	yes
LIP	chr19	43987271	chr19	46744475	С	Т	found	no	yes
LIP	chr2	49697936	chr2	49938684	G	Т	found	no	yes
LIP	chr2	69806759	chr2	70279783	А	С	found	no	yes
LIP	chr4	96806258	chr4	96948867	С	Т	found	no	yes
LIP	chr5	95223175	chr5	92308816	G	А	found	no	yes
LIP	chr8	29308865	chr8	31918931	G	А	found	no	yes

LIP	chr8	83490000	chr8	86977321	G	А	found	no	yes
LIP	chr9	40934406	chr9	42581656	Т	А	found	no	yes
LIP	chr1	10431748	chr1	10544851	G	А	found	no	no
LIP	chr17	29582244	chr17	29483913	G	А	found	yes	yes
LIP	chr26	33187017	chr26	34447304	Т	С	found	yes	yes
LIP	chr30	4510951	chr30	4795900	С	Т	found	yes	yes
LIP	chr4	47113988	chr4	47285204	А	Т	found	yes	yes
LIP	chr4	95252068	chr4	95364574	А	Т	found	yes	yes
LIP	chr9	3085222	chr9	3118093	С	А	found	yes	yes
LIP	chr1	122283468	chr1	123426208	А	С	found	yes	no
LIP	chr14	52250726	chr14	51556138	С	Т	found	yes	no
LIP	chr14	53324326	chr14	52653121	А	G	found	yes	no
LIP	chr17	16573635	chr17	16642725	Т	С	found	yes	no
LIP	chr18	15530280	chr18	15595862	Т	А	found	yes	no
LIP	chr2	4044657	chr2	4059259	А	С	found	yes	no
LIP	chr2	76393138	chr2	76471715	G	С	found	yes	no
LIP	chr2	107860807	chr2	108203154	А	С	found	yes	no
LIP	chr20	29358869	chr20	30270730	С	Т	found	yes	no
LIP	chr22	573161	chr22	619278	А	G	found	yes	no
LIP	chr22	23971258	chr22	24676750	А	G	found	yes	no
LIP	chr22	23971258	NW_019646 087.1	8781	Α	G	not found	yes	yes
LIP	chr26	40048597	chr26	41317337	А	Т	found	yes	no
LIP	chr3	81356650	chr3	83166511	G	А	found	yes	no
LIP	chr31	2013281	chr31	8651746	Т	С	found	yes	no
LIP	chr4	9684807	chr4	9719703	С	G	found	yes	no
LIP	chr5	30402947	chr5	27642878	А	С	found	yes	no
LIP	chr7	44303415	chr7	45561401	А	С	found	yes	no
LIP	chr7	77372524	chr7	79547823	Т	G	found	yes	no
LIP	chr14	296600	NW_019643 582.1	163072	Т	G	not found	no	yes

LIP	chr18	56233143	chr18	56332502	С	Т	not found	no	yes
LIP	chr2	13626858	chr2	13676181	G	С	not found	no	yes
LIP	chr1	115504590	NW_019646 122.1	28415	Т	С	not found	no	no
LIP	chr1	115504590	chrl	116526282	Т	С	not found	no	no
LIP	chr1	115504590	chr1	116643212	Т	С	not found	no	no
LIP	chr15	18516837	NW_019643 418.1	116109	Т	G	not found	no	no
LIP	chr15	18516837	NW_019643 394.1	211146	Т	G	not found	no	no
LIP	chr15	18516837	chr15	19197504	Т	G	not found	no	no
LIP	chr18	9517699	chr18	9673823	G	С	not found	no	no
LIP	chr2	86268	chr2	80336	А	С	not found	no	no
LIP	chr2	26636712	chr2	26706669	G	А	not found	yes	yes
LIP	chr21	1082137	chr21	133290	G	Т	not found	yes	no
LIP	chr7	53003749	chr7	55021516	А	G	not found	yes	no
LIP	chr7	53003761	chr7	55021528	G	Т	not found	yes	no
LIP	chr8	1656435	chr8	3462742	С	Т	not found	yes	no
LIP	chr8	4013962	chr8	6017687	А	С	not found	yes	no
LiP	chr1	113086506	chrl	114032630	С	G	just in EquCab3	no	no
LiP	chr1	163121631	chrl	165088722	С	Т	just in EquCab3	no	no
LiP	chr11	60729384	chr11	61092938	С	G	just in EquCab3	yes	no
LiP	chr13	12281767	chr13	12591780	Т	А	just in EquCab3	yes	no
LiP	chr14	53281174	chr14	52609933	G	Т	just in EquCab3	yes	no
LiP	noalign	noalign	chr15	14765848	С	Т	just in EquCab3	no	no
LiP	noalign	noalign	chr16	40321052	С	G	just in EquCab3	no	no
LiP	noalign	noalign	chr16	40321063	С	Т	just in EquCab3	no	no
LiP	chr18	98589	chr17	112172	Т	С	just in EquCab3	yes	no

LiP	chr17	22409571	chr17	22310438	А	G	just in EquCab3	no	no
LiP	chr2	63488928	chr2	63948251	С	Т	just in EquCab3	yes	no
LiP	chr20	30303426	chr20	31215223	А	G	just in EquCab3	no	no
LiP	chr20	41448335	chr20	42348483	С	G	just in EquCab3	no	no
LiP	scaffold_8 8	538547	chr21	762973	Т	С	just in EquCab3	yes	no
LiP	scaffold_1 90	742	chr21	762973	Т	С	just in EquCab3	yes	no
LiP	chr21	1345122	chr21	1955710	G	А	just in EquCab3	yes	no
LiP	chr21	46651305	chr21	47934770	Т	С	just in EquCab3	no	no
LiP	scaffold_1 17	54314	chr24	207208	С	G	just in EquCab3	yes	no
LiP	scaffold_1 17	54302	chr24	207220	G	С	just in EquCab3	yes	no
LiP	chr24	3434129	chr24	3299008	Т	С	just in EquCab3	no	no
LiP	chr26	39072509	chr26	40344282	Т	С	just in EquCab3	yes	no
LiP	scaffold_1 80	61745	chr29	552846	С	Т	just in EquCab3	yes	no
LiP	chr3	85720365	chr3	87844985	G	А	just in EquCab3	no	no
LiP	chr4	89013190	chr4	89127688	А	G	just in EquCab3	yes	no
LiP	chr5	6347982	chr5	6363111	G	А	just in EquCab3	no	no
LiP	chr5	49245871	chr5	45822661	G	С	just in EquCab3	yes	no
LiP	noalign	noalign	chr6	28015944	G	Т	just in EquCab3	yes	no
LiP	chr8	82614	chr8	1810043	А	Т	just in EquCab3	yes	no
LiP	scaffold_1 87	8272	chr8	1897212	G	А	just in EquCab3	no	no
LiP	scaffold_1 03	55207	chr8	1990358	G	С	just in EquCab3	yes	no

LiP	scaffold_1 07	177061	chr8	1990358	G	С	just in EquCab3	yes	no
LiP	chr8	1768323	chr8	3580793	С	Т	just in EquCab3	yes	no
LiP	chr8	2072691	chr8	3580793	С	Т	just in EquCab3	yes	no
LiP	chr8	2177024	chr8	4179490	Т	С	just in EquCab3	yes	no
NOR	chr11	7649446	chr11	7638666	С	Т	found	no	yes
NOR	chr17	20005831	chr17	19909100	С	Т	found	no	yes
NOR	chr18	21015205	chr18	21081929	С	G	found	no	yes
NOR	chr8	31590451	chr8	34654749	С	G	found	no	yes
NOR	chr23	8657794	chr23	8072201	А	G	found	no	no
NOR	chr1	115297935	chr1	116319664	С	Т	found	yes	yes
NOR	chr10	21323697	chr10	21613706	С	А	found	yes	yes
NOR	chr11	38548898	chr11	38843410	С	Т	found	yes	yes
NOR	chr17	4565574	chr17	4636020	G	С	found	yes	yes
NOR	chr29	1231244	chr29	2241954	С	А	found	yes	yes
NOR	chr7	64671737	chr7	66853582	Т	С	found	yes	yes
NOR	chr11	41767183	chr11	42088312	С	Т	found	yes	no
NOR	chr16	2803472	chr16	4274662	G	С	found	yes	no
NOR	chr19	36357963	chr19	38941787	G	А	found	yes	no
NOR	chr19	36796471	chr19	39380133	А	Т	found	yes	no
NOR	chr19	58455252	chr19	61335678	С	Т	found	yes	no
NOR	chr20	1889151	chr20	2144556	С	Т	found	yes	no
NOR	chr20	24456926	chr20	25180104	А	G	found	yes	no
NOR	chr21	1018747	chr21	204090	С	G	found	yes	no
NOR	chr21	2605508	chr21	3228070	А	Т	found	yes	no
NOR	chr21	31429891	chr21	32453825	Т	А	found	yes	no
NOR	chr22	43893158	chr22	44860978	С	Т	found	yes	no
NOR	chr31	16751314	chr31	16791438	А	G	found	yes	no
NOR	chr8	3702372	chr8	5726905	G	Т	found	yes	no

NOR	chr8	4890346	chr8	7004112	Α	Т	found	yes	no
NOR	chr8	4890346	chr8	5851711	Α	Т	not found	no	no
NOR	chr8	11081101	chr8	13296362	G	А	found	yes	no
NOR	chr8	11081113	chr8	13296374	С	Т	found	yes	no
NOR	chr23	199384	NW_019644 111.1	13075	С	G	not found	no	no
NOR	chr23	252882	NW_019644 035.1	7983	С	Т	not found	no	no
NOR	chr14	473741	NW_019643 582.1	34819	Т	А	not found	yes	no
NOR	chr27	596466	NW_019645 822.1	25127	Т	G	not found	no	no
NOR	chr27	596466	NW_019643 525.1	46174	Т	G	not found	no	no
NOR	chr27	596466	chr27	598908	Т	G	not found	no	no
NOR	chr8	1799905	chr8	3612240	С	Т	not found	no	yes
NOR	chr8	2565803	chr8	4567587	Т	G	not found	no	no
NOR	chr6	3270286	chr6	2944071	Т	С	not found	no	yes
NOR	chr23	7864535	NW_019643 688.1	274190	G	А	not found	yes	no
NOR	chr14	9869853	chr14	9098133	Α	С	not found	no	no
NOR	chr12	12435069	chr26	15321210	С	Т	not found	no	no
NOR	chr10	13100245	chr10	13279495	G	А	not found	yes	no
NOR	chr10	13100245	chr10	13110832	G	А	not found	yes	no
NOR	chr10	14126430	NW_019644 715.1	18830	А	Т	not found	yes	no
NOR	chr10	14126430	chr10	14310057	А	Т	not found	yes	no
NOR	chr10	14151126	chr10	14333736	G	Т	not found	yes	yes
NOR	chr12	17455667	chr12	20972468	С	Т	not found	no	yes
NOR	chr12	17467671	chr12	20984465	С	G	not found	no	yes
NOR	chr28	20549421	chr28	21592630	С	Т	not found	no	no
NOR	chr12	22821184	chr12	26369633	С	Т	not found	no	no
NOR	chr10	23731364	chr10	24166815	Т	С	not found	no	yes
NOR	chrl l	25089146	chr11	25163875	С	А	not found	no	

NOR	chr20	32276595	NW_019645 272.1	15516	Т	С	not found	no	yes
NOR	chr20	32276595	NW_019644 819.1	52034	Т	С	not found	no	no
NOR	chr20	32276595	chr20	33276510	Т	С	not found	no	no
NOR	chr20	32276595	chr20	33139015	Т	С	not found	no	no
NOR	chr22	36838245	chr22	37737690	Т	С	not found	yes	no
NOR	chr23	40878726	chr23	40553043	G	А	not found	no	yes
NOR	chr23	40878771	chr23	40553088	С	Т	not found	no	no
NOR	chr11	41656509	chr11	41981138	Т	А	not found	no	no
NOR	chr7	43560898	chr7	44599012	Т	С	not found	yes	yes
NOR	chr1	44584336	chr1	44944788	G	А	not found	yes	no
NOR	chr1	44584336	chr1	44913757	G	А	not found	yes	no
NOR	chr8	49612506	chr8	52686429	G	Т	not found	no	yes
NOR	chr16	65435532	chr16	67018600	Т	С	not found	no	no
NOR	chr3	97439027	chr3	99255299	А	G	not found	no	no
NOR	chr1	155138900	NW_019646 251.1	75746	G	С	not found	no	yes
NOR	chr1	155138900	NW_019643 074.1	75753	G	С	not found	no	no
NOR	chrl	155138915	NW_019646 251.1	75761	Т	С	not found	no	no
NOR	chrl	155138915	NW_019643 074.1	75768	Т	С	not found	no	no
NOR	chrl	114280422	chr1	115300895	А	С	just in EquCab3	yes	no
NOR	chr1	114234815	chr1	115300895	А	С	just in EquCab3	yes	no
NOR	chr1	157856346	chr1	159473532	А	G	just in EquCab3	yes	no
NOR	chr11	41636525	chr11	41934046	С	Т	just in EquCab3	yes	no
NOR	chr12	12410783	chr12	12632000	А	G	just in EquCab3	yes	no
NOR	chr12	17467709	chr12	20984503	С	Т	just in EquCab3	no	no

NOR	chr12	17368623	chr12	20984503	С	Т	just in EquCab3	no	no
NOR	chr12	17356600	chr12	21028811	С	Т	just in EquCab3	no	no
NOR	chr12	17356726	chr12	21028937	Т	А	just in EquCab3	no	no
NOR	chr12	32767000	chr12	35488348	С	Т	just in EquCab3	yes	no
NOR	chr13	8283509	chr13	8571371	А	G	just in EquCab3	no	no
NOR	scaffold_2 94	47503	chr13	9212502	С	Т	just in EquCab3	yes	no
NOR	chr14	963402	chr14	209691	С	Т	just in EquCab3	yes	no
NOR	chr14	9078851	chr14	8307528	А	С	just in EquCab3	no	no
NOR	chr14	92099865	chr14	92754738	Т	А	just in EquCab3	no	no
NOR	scaffold_3 40	31703	chr15	35289	Т	С	just in EquCab3	yes	no
NOR	chr18	71216313	chr18	71333930	С	Т	just in EquCab3	no	no
NOR	scaffold_1 31	79348	chr21	173964	G	А	just in EquCab3	yes	no
NOR	chr24	294298	chr24	153809	Т	А	just in EquCab3	yes	no
NOR	chr24	38138711	chr24	38509801	G	А	just in EquCab3	no	no
NOR	chr26	227587	chr26	617551	А	G	just in EquCab3	no	no
NOR	scaffold 11 1	37009	chr27	568230	А	G	just in EquCab3	yes	no
NOR	chr28	35964604	chr28	37095887	G	А	just in EquCab3	yes	no
NOR	chr28	35990989	chr28	37113509	Т	С	just in EquCab3	yes	no
NOR	scaffold_9 3	491312	chr29	891655	А	G	just in EquCab3	yes	no
NOR	chr14	565989	chr29	1875093	С	Т	just in EquCab3	no	no
NOR	chr29	770364	chr29	1875093	С	Т	just in EquCab3	no	no

chr10	59172497	chr10	60310985	G	А	called	no	yes
chr17	1685198	chr17	1753762	Т	С	called	no	yes
chr2	100761774	chr2	101097784	G	Т	called	no	yes
chr3	53100714	chr3	54576398	С	Α	called	no	yes
chr4	44983704	chr4	45153777	G	А	called	no	yes
chr5	21907765	chr5	19148516	А	G	called	no	yes
chr5	53320088	chr5	49896738	Т	С	called	no	yes
chr7	91483698	chr7	93696413	Т	G	called	no	yes
chr14	4822552	chr14	4058364	С	Т	called	no	no
abr22	27862665	abr??	28768216	т	C	called		
chu5	1(0572(0	chr10	20700510	т		called	по	по
cnr5	16057269	cnr19	3035926	T	A	called	no	no
chr6	79058078	chr6	80225422	Т	с –	called	no	no
chr8	32485953	chr8	35525782	С	Т	called	no	no
chr1	120334435	chr1	121468596	Т	С	called	yes	yes
chr12	13784646	chr12	14498413	Т	А	called	yes	yes
chr14	4827882	chr14	4063623	Т	С	called	yes	yes
chr16	2815931	chr16	4288452	Т	С	called	yes	yes
chr20	29311733	chr20	30220575	С	Т	called	yes	yes
chr12	13825556	chr12	14539782	G	А	called	yes	no
chr13	19811302	chr13	20890984	А	G	called	yes	no
chr14	4827896	chr14	4063637	А	С	called	yes	no
chr17	39695905	chr17	39599876	Т	С	called	yes	no
chr18	4152059	chr18	4122138	А	G	called	yes	no
chr20	26396785	chr20	27301180	А	Т	called	yes	no
chr21	49759250	chr21	51009814	С	G	called	yes	no
chr22	552168	chr22	598289	G	А	called	yes	no
chr31	16997011	chr31	17040610	Т	С	called	yes	no
chr6	13857585	chr6	13645648	Т	С	called	yes	no
chr6	38444589	chr6	39579282	Т	G	called	yes	no
	chr10 chr17 chr2 chr3 chr4 chr5 chr5 chr7 chr14 chr22 chr6 chr8 chr8 chr1 chr12 chr14 chr12 chr14 chr12 chr14 chr12 chr14 chr12 chr14 chr12 chr14 chr12 chr14 chr12 chr13 chr14 chr12 chr13	chr10 59172497 chr17 1685198 chr2 100761774 chr3 53100714 chr4 44983704 chr5 21907765 chr5 21907765 chr5 53320088 chr4 4822552 chr22 27863665 chr2 27863665 chr2 27863665 chr2 27863665 chr2 27863665 chr2 27863665 chr2 27863665 chr2 27863665 chr2 27863665 chr3 16057269 chr6 79058078 chr10 120334435 chr11 120334435 chr12 13784646 chr13 19811302 chr14 4827896 chr13 19811302 chr14 4827896 chr17 39695905 chr18 4152059 chr20 26396785 ch	chr10 59172497 chr10 chr17 1685198 chr17 chr2 100761774 chr2 chr3 53100714 chr3 chr4 44983704 chr4 chr5 21907765 chr5 chr5 21907765 chr5 chr5 21907765 chr5 chr5 21907765 chr5 chr5 21907765 chr5 chr5 21907765 chr5 chr5 21907765 chr5 chr6 21907765 chr5 chr6 21907765 chr5 chr6 21907765 chr5 chr7 91483698 chr7 chr14 4822552 chr14 chr22 27863665 chr22 chr6 79058078 chr6 chr14 4827882 chr14 chr14 4827882 chr14 chr14 4827896 chr12 chr13 19811302 chr13<	chr10 59172497 chr10 60310985 chr17 1685198 chr17 1753762 chr2 100761774 chr2 101097784 chr3 53100714 chr3 54576398 chr4 44983704 chr4 45153777 chr5 21907765 chr5 19148516 chr5 53320088 chr5 49896738 chr14 4822552 chr14 4058364 chr22 27863665 chr22 28768316 chr5 16057269 chr19 3035926 chr6 79058078 chr6 80225422 chr12 13784646 chr12 14498413 chr14 4827882 chr14 4063623 chr14 4827882 chr14 4063623 chr14 4827882 chr14 4063623 chr16 2815931 chr16 4288452 chr13 19811302 chr13 20890984 chr14 4827896 chr14	chr10 59172497 chr10 60310985 G chr17 1685198 chr17 1753762 T chr2 100761774 chr2 101097784 G chr3 53100714 chr3 54576398 C chr4 44983704 chr4 45153777 G chr5 21907765 chr5 19148516 A chr5 53320088 chr5 49896738 T chr7 91483698 chr7 93696413 T chr7 91483698 chr7 93696413 T chr6 79058078 chr6 80225422 T chr5 16057269 chr19 3035926 T chr6 79058078 chr6 80225422 T chr8 32485953 chr8 35525782 C chr11 120334435 chr14 4063623 T chr12 13786466 chr12 14498413 T chr14	chr10 59172497 chr10 60310985 G A chr17 1685198 chr17 1753762 T C chr2 100761774 chr2 101097784 G T chr3 53100714 chr3 54576398 C A chr4 44983704 chr4 45153777 G A chr5 21907765 chr5 19148516 A G chr5 53320088 chr5 49896738 T C chr5 53320088 chr7 93696413 T G chr5 16057269 chr12 28768316 T C chr6 79058078 chr6 80225422 T C chr6 79058078 chr6 80225422 T C chr11 120334435 chr1 121468596 T C chr12 13784646 chr12 14498413 T C chr14 4	chr10 59172497 chr10 60310985 G A called chr17 1685198 chr17 1753762 T C called chr2 100761774 chr2 101097784 G T called chr3 53100714 chr3 54576398 C A called chr4 44983704 chr4 45153777 G A called chr5 53320088 chr5 19148516 A G called chr5 53320088 chr5 49896738 T C called chr7 91483698 chr7 93696413 T G called chr6 79058078 chr6 80225422 T C called chr8 32485953 chr8 35525782 C T called chr14 4827882 chr14 4063623 T C called chr14 4827882 chr14 4	chrl0 59172497 chrl0 60310985 G A called no chrl1 1685198 chrl7 1733762 T C called no chrl3 53100714 chrl3 54576398 C A called no chr4 44983704 chr4 45153777 G A called no chr4 44983704 chr4 45153777 G A called no chr5 21907765 chr5 19148516 A G called no chr5 53320088 chr5 49896738 T C called no chr7 91483698 chr7 93696413 T G called no chr14 4822552 chr4 4058364 C T called no chr12 1378466 chr12 1495876 T C called yes chr14 482782 ch

HAF	chr6	38444606	chr6	39579299	А	G	called	yes	no
HAF	chr7	9200806	chr7	9677163	А	G	called	yes	no
HAF	chr25	4135	NW_019642 813.1	331601	G	А	not called	no	no
HAF	chr18	52005	chr18	65931	С	Т	not called	no	yes
HAF	chr18	52005	chr17	47646	С	Т	not called	no	no
HAF	chr24	540464	chr24	405239	А	G	not called	yes	yes
HAF	chrl l	1039845	chr11	1041777	G	С	not called	no	no
HAF	chr19	4938297	chr19	7325062	С	А	not called	yes	no
HAF	chr10	7931916	chr10	8047442	G	А	not called	no	yes
HAF	chr23	8139725	NW_019643 688.1	553562	С	Т	not called	yes	no
HAF	chr18	9582002	chr18	9033716	А	G	not called	no	no
HAF	chr18	9582002	chr18	12909306	А	G	not called	no	no
HAF	chr12	14048779	chr12	14953906	С	Т	not called	no	no
HAF	chr12	14048779	chr12	14934992	С	Т	not called	no	no
HAF	chr12	14048779	chr12	14879021	С	Т	not called	yes	no
HAF	chr12	15029981	NW_019642 075.1	5881	Т	С	not called	no	no
HAF	chr13	19315749	chr13	20396513	С	Т	not called	yes	no
HAF	chr22	24976358	chr22	25875039	G	А	not called	no	no
HAF	chr22	24976376	chr22	25875057	С	Т	not called	yes	yes
HAF	chr26	32427893	chr26	33689194	Т	С	not called	no	no
HAF	chr26	32427893	chr26	33752767	Т	С	not called	no	no
HAF	chr26	32427893	chr26	33673583	Т	С	not called	no	no
HAF	chr7	34653199	chr7	35818941	А	G	not called	yes	no
HAF	chr7	34653210	chr7	35818952	А	G	not called	yes	no
HAF	chr2	42919845	chr2	43141745	G	Т	not called	no	no
HAF	chr5	48921158	chr5	45470619	Т	С	not called	no	no
HAF	chr3	54907512	chr3	56379955	С	Т	not called	no	yes

HAF	chr6	58762174	NW_019642 687.1	11347	С	G	not called	no	no
HAF	chr7	59514418	chr7	61694002	Т	С	not called	no	no
HAF	chr11	60756515	chr11	61120069	G	Т	not called	no	no
HAF	chr18	65542248	chr18	65657094	А	G	not called	no	no
HAF	chr6	78694433	chr6	79861978	С	Т	not called	yes	no
HAF	chr14	92829544	chr14	93591845	С	А	not called	no	no
HAF	chr14	92829544	chr14	93486571	С	А	not called	yes	no
HAF	chr14	92870205	chr14	93560815	G	А	not called	no	yes
HAF	chr1	143424677	chrl	144891989	С	А	not called	no	yes
HAF	chr1	162587371	chr1	164688749	Т	С	not called	no	no
HAF	chr l	163046056	chr1	165012407	G	А	just in EquCab3	no	no
HAF	chrll	52232188	chr11	52582710	А	G	just in EquCab3	yes	no
HAF	chr11	52232228	chr11	52582750	С	Т	just in EquCab3	no	no
HAF	chr11	60729070	chr11	61092624	С	А	just in EquCab3	yes	no
HAF	chr12	31057784	chr12	34882799	Т	С	just in EquCab3	yes	no
HAF	chr13	18159913	chr13	19237651	А	С	just in EquCab3	yes	no
HAF	chr13	18160181	chr13	19237678	А	G	just in EquCab3	yes	no
HAF	chr13	21927948	chr13	23558006	А	С	just in EquCab3	yes	no
HAF	chr13	26958570	chr13	26404373	G	А	just in EquCab3	yes	no
HAF	chr18	13036153	chr18	12929475	G	А	just in EquCab3	yes	no
HAF	chr2	34726954	chr2	34906791	G	С	just in EquCab3	no	no
HAF	chr20	31048188	chr20	31912373	G	Т	just in EquCab3	yes	no
HAF	scaffold_2 24	5223	chr20	51466011	Т	G	just in EquCab3	yes	no

HAF	scaffold_8 8	561709	chr21	788265	G	А	just in EquCab3	yes	no
HAF	scaffold_1 11	31059	chr24	51881	Т	А	just in EquCab3	no	no
HAF	chr14	673521	chr24	291480	А	Т	just in EquCab3	no	no
HAF	chr24	455123	chr24	314661	А	С	just in EquCab3	no	no
HAF	scaffold_8 5	1123414	chr27	26964	С	Т	just in EquCab3	yes	no
HAF	scaffold_1 80	27440	chr27	26964	С	Т	just in EquCab3	yes	no
HAF	scaffold_1 96	74869	chr27	79930	С	А	just in EquCab3	yes	no
HAF	noalign	noalign	chr28	18454	А	G	just in EquCab3	yes	no
HAF	chr6	38004787	chr6	39063395	Т	А	just in EquCab3	yes	no
HAF	chr6	38004798	chr6	39063406	А	G	just in EquCab3	yes	no
HAF	scaffold_8 3	413845	chr6	86814340	А	G	just in EquCab3	yes	no
HAF	chr8	70163030	chr8	73645663	А	С	just in EquCab3	no	no
HAF	chr9	38880815	chr9	40536852	С	Т	just in EquCab3	yes	no

Table A.C.2: Detailed information of 'de novo' candidates obtained from GATK's PhaseByTransmission (PBT) algorithm in Lipizzaner trio. 111, 113 and 166 were the sample IDs of Lipizzaner son, father, and mother respectively.

TRIO	EQ2 chr	EQ2 pos	EQ3 chr	EQ3 pos	Ref	Alt	Depth	Found in EQ2 finalized	Found in EQ2 finalized	Found in Jagannathan's
							(111/	candidate list of Lip	candidate list of Lip	variations
							113/			
							166)			
LIP	chr12	14923621	chr26	15298236	Т	С	75/135/142	not found	not found	not found
LIP	chr12	30138931	chr12	33942154	С	А	42/37/31	not found	not found	found
LIP	chr26	14842365	chr26	15341895	А	С	45/83/73	not found	not found	found
LIP	chr26	14842365	chr12	12626648	Α	С	45/83/73	not found	not found	not found

LIP	chr31	16520917	chr31	16561393	Т	С	453/368/326	not found	not found	found
LIP	chr7	98533779	NW_ 0196 4348 7.1	4355	G	А	29/62/93	not found	not found	not found

Table A.C.3:	Detailed inf	formation of	of variants	which	were	validated	in the	laboratory.	Primer	sequences
and sequences	produced by	y Sanger re	sequencin	g were	seen.					

TRIO	EQ2 chr	EQ2 pos	Sanger result	Category	Variant in br including region	rakcets [] flanking	Primer forward ID	Primer forward seq.	Primer reverse ID	Primer reverse seq.	amplicon length (bp)
LIP	chrl	15859530	SNP validated	True deno vo variant	ataccetgttteccec catettacattagta gttaccattaatgac atccattattagtaa atagettatteagaa tttaccatatgtac gggateccatecag cattagattagttagt ttaggetecttgg gtttgggetecag gtaggatgac gtaggatgac gaagttgetgagt accattgetagt atttgactgagta ggaagalcacaga accattgeatgat atttgatgtgag catggetggagg cgettggetgaag catgettectece gtattectece gtattectece gtattectagagt	ctattactaa tggtacattt tcccattatg ctaaagtcc ttcccttagtt ttttctgtttt ggacacca tgatgtctcc gctgtgaca ccttgtttttg aggacatattt 'g]ctcttg ttttgaggag gacatattt 'g]ctcttg ttttctcagg ttttgtctagg tttgtgtaca ccgatgaca accglatca tcagctgat ttggctttgg gcaaagc atcgftgat ttgactttat tggtgttggt gcaaggtta tttcccatact gaagttaca tcagctgat	chr1:158 59420fw d	CTCCTT AGGCTC CTCTTG GC	chr1:15 859705r ev	TTGAC CAACA CCACT TCAGC	286
LIP	chrl	15864504	SNP validated	True_deno vo variant	atagttaatgatgtta teatgtgcctgttgg tatttictttggagaa caggtcttttgccca tgggttgttggtttt tttgtatgagtctttg actettaaccectta gttaggetgtctttt tggttgcaaatacc gttaggetgtcttttt tggtttcctttgetgt tttttactttggtgag gttattttttctatggtgag gttattttttctagaagtttt gglcttacatcaaa atttgggtaattttt gtaggataatttt gtaggataatttt gtaggataatttt gtaggataatttt gtaggataatttt gtaggataatttt gtaggataatttt gtaggataatttt gtaggataatttt gtaggataatttt gtaggataatttt gtaggataatttt gacttacattgggct cccaacacatgta acttcctttctccaa gtccatgtgcggc caagtgctgggct	gaacatettt gecatetgta aatatetgtt aatatetgtt aatatetgtt aggtttttaat icitgttgttga gtatattttg utcaatatat ttetetetatt tgtttgttga ggtagaage gaacaatg tggtagaage agactaatg tggetatatgt adggtttea atetttaatee tgtgtaggt cacttteatt gttegatggt cacttteatt gttgaggg gaccaattt tttaggtttea atetttaatee tgtgtaggt cacttteatt gtgcagtttt atggtaggt cacttteatt gtgcaggtttt atggtaggt cacttteatt gtgcaggtttt atggtaggt cacttteatt gtgcaggtttt atggtaggt cacttteatt gtgcaggtttt aatggtttea aatatggttea aatatggttea aatatggttea gtcaggtttt aatggttgacttea gtcaggtttt aatggttgacttea gtcaggtttt aatggtaggt gtcaggtttt aatggttgacttea gtcaggtttt aatggttgacttea gtcaggtttt aatggttgacttea gtcaggtttt aatggttgacttea gtcaggtttt aatggttgac gtcaggttttaggt gtcaggttttaggt gtcaggtttaggt gtcaggtttaggt gtcaggtttaggt gtcaggtttaggt gtcaggtttaggt gtcaggttgac gtcaggtttaggt gtcaggttgac	chr1:158 64504.f	aatatctgttc aggtcttttgc c	chr1:15 864504. r	ctacggg gccagca catg	524

LIP	chr1	68664504	SNP validated	True_deno vo variant	tgaagattggctacaaatgttag ctcaggtgtcaatcttaaaaaa aataaaattagattaagttttat ttaattggttattagagataa tttatctggcatcaaactattgca taagcatagtgaggtaatctt ttaatgataatacaaacaagt gaatactttgtaatactagactt gaatactttgtaatactagactt gaatactttgtaatactagactt gaatagtagtaagaggtact aagatagtaagaagtgtcctt gaaaaattggtaagaacactgagtaaa acaagtaaaatacatta[a/c] aaaaatgcaagactccctctga gattacaatattaattgttaatatt tattgtattagttactattgtat gatagcaggactcctctgs ggtacaaattgtttgaaaatgg ggtaaaaacagggaaatgg ggtaaaaacagggaaagtgg gtaaaaacaggggaacactgg gtgaagagggacccgg gtgtggggggacccgg gtgtgggggaccacttccaagat gtgtgaggaaccacttggtggca gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgtgaggaaccacttccaagat gtgt	chr1:686 64364fw d	ACAGTC AGCCCA GATCTT CC	chr1:68 664677r ev	CTCAA CCAAG CTGCT CACAA	314
LIP	chr1 0	82141638	SNP validated	True_deno vo variant	acaattictaagataaaggcattc ctatgcaaaccgttaattgtaaa aagtagaagacagaaatagcaa aagtggtcacaggcacaatagt gtacattacagcatattcttggct tttatacatacttgaaatttccta aattaaaatgagtaaacttcaa atgaaagatcacgtgccctgtta agagtcttatttttaaacagagt aagcagctctaaatggaaacaa aaccaaataagcattattcta actagtggccaaatagttac[g/a]tctgtggaacaagaaaa aaatttccaactgcatcacgttg gtgattaaaatggaacagttttcc aattctaaaatggaacagtgtttcc aattctaaagtgaacagtgtttcc aatgtggctcaaatggaacca gtgcccagactgctgatatgca agagtttattaggaacag ggattaaggacagtgttgct aatgtgggaacagtgttgct ccagaaggtacaggtgtttcc aattctaaagtggaacagaaca	chr10:82 141528f wd	AGGATC ACGTGC CCTGTT AA	chr10:8 2141853 rev	TGCCT CTGAA CAAGC ACAA G	326
LIP	chr1 3	27768579	SNP validated	True_deno vo variant	agaagacatttggactctctgg ggctcattttcctcatctgtaaaa tggggctatgatagttcctacct cactgggctatgatagttcctacct cactgggctatgaaaggatta aatgggttaatccacataaagc atacagaaagaccgcctctag aaaacaactgctcaatgtggctt cattatcatcaccaccatcatcat ccttgttgtaactctgtgcacag atgttaattticttaatgtaaattc ctaaaaataaaatgactaggcc aaagatagattgttttgatatag acagtctgatcagcaatggaga t[t/g]tattataattatgacaagtt ggtaagttgttttccctgcggg gaccccgtgagtggtctgtgg gtctggagacacatttaagatc aggttatcacgcdccccc gtgagtggtcatccagtcgcccc aggtcagtcagcacggdcc	chr13:27 768420f wd	ACTGCT CAATGT GGCTTC AT	chr13:2 7768809 rev	CATTG CTCCT TCCGT TCCTT	390

					ttttactctcctacgttatattcac caccctagacttcttaaagatcc cgcaggaaggaacggaagga gcaatgcaggtggcggtggat gtggaaggttctgctcccggcgt gtcctggacagagcgacctcc gaggaaagcaca					
LIP	chr1 9	43987271	SNP validated	True_deno vo variant	ggttattectetgtgaatgegaet taggetgetttitteetectage cagtetgtteacectteattatett tgtteletteetattteacagttie tuttittaaagattggeacetgage taacaaetgttgetaatetttittti ttittagettitteteecaatee eccagaacatagttgtatattta gttgtgggeacgeetgageet tgggeegaetggeetggaeet tgggeegaettagecaetgg cacaagggeeggeagettgtte cagtettteettetttttatettee taatageettetetettttttt ettteetgattttgetetgg attgggattegggaeat gggetgagggaggaggaeteg agggetgggeggeageattg ettteettetttttttt ettteetgattttgetetgge tattgggttettggaet attgggttettggageat ggeetgaggeaggaagtee tettaecagtggtetggaaet attgggttgattgggeaggaagtee teetfaegggeeggaagaagtee teetftgggeeeaattggeetggaeeet ettgggeecaageeattggt tettggeeeaagteggaeggagagtea teetgttgggeeagaagtee teetftggggeeagaagtee teetftgggeeeageetggaeeet ettgggeecaageeatttgettt ggetttteetagtaatgagaggg gagggetgeetge	chr19:43 987179f wd	CTTCTA GTTGTG GGATGT GGG	chr19:4 3987567 rev	GCAGC CCTCC CATCT CATTA	389
LIP	chr2	49697936	no SNP		gacaaacetttagetagatea ccaagaaaaaagagagaag getcaaataaataaaaaaagagagaag ggtaaagaggagagatacaa agagacaetagaaaaagagaag aagagaagagagatacaa agatgataagagaaatactatga aaagetataeggaaaaatggata aattettagaagaaatggata aattettagaagaaatggata aattettagaagaaatggata caataagaacatacaacette caaaactggaccaagaagatgt agaaaattggaacaagacaacaa caatgaaggagatcaaaacag caatcaaaaaceteccaaaaaa caaaagtccagggcca[j/t]a tggettecetgggaatteaca aagattgaagagagagag gettectaacettecaaa aagacaggacaatcagag caagacaaggacaacaaaaa caagagacattetgataccaaaa caaaagtcagggcaa gettectaacetatcagag caagacaaggacaacaaaaa aaaacaaaattacaggecaata tcaetgaacatcgatgeaaaat ccagacaagacaatacatagaa gatacatacatgataaaaa gataacatacatgatagaagg ggtttectteecagg gatggtte	chr2:496 97936.f	aggagagat tacaaggga cacc	chr2:49 697936. r	cctggaat gaaaccc gcttg	516
LIP	chr2	69806759	SNP validated	True_deno vo variant	accatctgatgacttctctttttct tgtgatgcaagagacaagccat ctgccaaaaatgaagataagg gtctgaaatttaaggtgagtaga aaatgttagaaacagttattgtg gaatgcagtgcag	chr2:698 06611fw d	GTTTGC TGGACA GTGAAG GG	chr2:69 806944r ev	ATGTC GGAC ACCTA CCACA G	334

					tgcctggatgaagacttcagga ttcttccagaacaatgagatgaa gacagag[a/c]agcaaggaa atctgtaatgttgacagcaattat ggaaataaagaattagagaatc tggggccagccgggtggtgca gccggttatgtgcgcatgttcgccg gtttggatccggggttggcag tacagtggctggggttcgccg gtttggtaggtgccaggcag gagttagtgctaggggtcgcacg gatgtagctaggggtgccag ccgtgggaggagaaggtggcacg gatgtagctagcagagatt ggcagcagttagttagggca gatgtagctagggtagcag gatgtagctagggtaggagatt gcagcagttagttagggaa aataaggagaaagagggaagatt gcagcagtagttagttagggca atcatcctaaaacaaaaaaaaa ag					
LIP	chr4	96806258	SNP validated	True_deno vo variant	tatgaaaacagaacgctgccac ttataagctgggacaaagacct cagacaaagaccttgcctacgg gactgtggtgaggactaatgag acaactcaatcttcaagataca tgaacctaagctatagtat tacagtacttcatatgagcagct cctaataggtctagactgtagt ggctatactagtgtaggagtaa tgagctactggttctagactgtat ttticcccaggctcttctctgtctt cgtataaaagcagcagtggct tggatctgattgagaggaa g[c/t]gactgcagtgtcctcct aggcatatagacaggtgtg aggtattgagaggactttg gagtaggatttgagaggactttg gagtaggatttgagaggactttg gagtaggaggcaggagcatt gagattgagaggcaggaggag gattgagaggccaggaggag gattgagaggcaggaggag gattagaaacctgggaggag gattgagaggcaggaggag gattccccgtaggaggagga gattccccgtaggaggagga gattccccgtaggaggagga gattccccgtaggaggagga gattccccgtaggaggagga gattccccgtaggaggagga gattccccgtaggaggagga gatactgagaggagcat ggtacatataaagg gattcactgagcaggagcat ggtaccccgtaggaggagca caaactgagcaggagcatg gttcaataaaagg	chr4:968 06023fw d	GGACTG TGGTGA GGACTG AT	chr4:96 806387r ev	GAATT GCTCT GCCTG CCAAG	365
LIP	chr5	95223175	SNP validated	True_deno vo variant	acagcatgggagaaaatatttg cacaccatatgtctgataagga gttaatatccaaaatattaaag aactcatacaactcaatagcca aagaacaaataatccaatagcca aatggcaaaggactgaaca gacatttttccaaagaaacata caaatggcaaaggactgacaat caaaggtgctcaacatcactaat caccagtaggatacactca aaaggcaatgggatacactca cacctgtcagaacggcttatca aaaggcaatggagatgcaaat gaggagatgtagaaat gaaggaaccaataaagg gacaggtgtagaaggtggaaat gcggttatggaaacgattg gacaggggatcatatacactg ttagtgagaatgtaaaatggtg ggcatttctaaaaagtag gacagtttttaaaaaatggtg ggcagttcttaaaaagaatcagtatc cactgtcataggaagaatcagtatc gaagggagagagtatcataca atcccactgggatacatca gaaggaagaagaatcagtatc cagaggtatctatacacca tgttactgcagcattattcacaa tagctaataaaggaaccagtatg gaggggttcttagaaacaacta ggtgtcattggaaacaacta ggtgtcattggaaacaacta gggtatcatgaaacagaat gagaaaagagaatcagtatt ggaaggaggtggaatatt atcaccagggggatacatta aagggaacaatagggggaa aaagggaacaataggaagaagaagaa aagggaaagaatagggggaataatt gataagagagaagaagaagaagaagaa aaggaaaagagaaga	chr5:952 23058fw d	GCTCAA CATCAC TAATCA CCACA	chr5:95 223302r ev	AGGA GTGGG ATTGC TGGAT C	245

LIP	chr8	29308865	SNP validated	True_deno vo variant	tetecgtgtgetetegggecegt ceacgtggacatggagtggac gtgtetgagettecagggeggeg gegaggetteaggaeggeggegg cagggecagegegggetgg geagggeagaggteacaageg cagggecagaggteagagge cagggecagaggteacaaget teacetetgeeeteeteetaaga tgacegecacaaagecea acaggeteacaaageeag gggaaggtteagaagaga acaggeteaceatagg gggaaggtteagaagaga atetgegeetggaggaaggea atetgegeetggaggaaggea acaggetgeaggaggaaggea acaggetgeaggaggaaggea gggaacggtggetgeagaga ggaacggtgeagatetgga ggaaceggateetgeagaga cagaceggateetgeaggea caageeggaeteetgeteag caaaggetgeeetgaggeaggea caaggetgeeetggaggeaggeta caatggegagagaatacaac tggtegetgeecaggtgeaggeta caatggegaggaataacaac tggtegetgeecaggteetga caaaggageetgaggeeegga caaeggageetgagggecea acaggageetgagggeegga caaeggageetgaeggaeegga	chr8:293 08598fw d	ATGGAG TGGACG TGTCTG AG	chr8:29 308957r ev	GCAG AAAC AGGA GGCA GGAT	360
LIP	chr8	83490000	SNP validated	True_deno vo variant	tggcatgagatttcatcacagga cttagaaggatgctcaattaaa acttatacattcttatttctggaat gttccatttaatttttcagacta agttgaccacgggtaactgaa ccgcagaaagcaagggggct ctactgtatgtagagtactctca gaactgctcactgctctattctgt gtagggattcggaagcccagg ttccacttacagttctgcacag acagtcccatgcggttcagc atacattagttaaagcagcagaa aggacgagatctctaagtcaatt cca[g/a]ttcatttgagactttt atctgcaaagaagtatgagac ttcttttgcacttgtattgat gaggatttgcactgctattg ggggctgattcgtatgagaat aggacggagatctctaagtagagat ccafgcagtattgagagact ttcttttgcaaagaggaga ccafgcagtatgagaaa acagtccccatgcggttaggagaa aggacggagatctctaagtaggaga aggacggattttgcacaggaggaa aggacggattttgcacaggaggaa aggattttgcacaggaggaaa atacacccagcatctgcaacca ctgactgatggaaatcagtcttt gattcctcttattgtccagag gatccagagagagta catgacgaagaataggagaa atacaccagcatggagagaaa atacaccagaaggagagat catgacagaaattagtcacagag taa	chr8:834 89881fw d	CTGTGT AGGGAT TCGGAA GC	chr8:83 490270r ev	CTCAT CTGGG CAGTG ACTCA	390
LIP	chr9	40934406	SNP validated	True deno vo variant	tatatagccatgccaatcaatca ataagttttaagatatccaaaag aaaattagttagaaaattatgtca aaaaaggttttatcataatagag attaacatttttaagaatatgtatt ctccttcaggatattcccaatga aagtaatctggccaaaattaaaa ttatcaaattgcaagattgaaaa aaatttaggacatattattcc ggcagatcatgcctcaagcga attgcttagcgcctaagcga attgtgccttcgt/a]tcaat ccatccctctctctgaacatat aattatcgagttctcattta aattactgagttctccttta aattactgagttctctcttaa aattatcgagttctctcttaa aattatcgagttctctcttaa aattatcgagttctctttaa aattactgagttctctttaa aattactgagttctctttaa aattactgagttctctttaa	chr9:409 34241fw d	CCCAAT GAAAGT AATCTG GCCA	chr9:40 934622r ev	GCCGT CACTT TCCTC TGTTG	382

				tcatctctccgtgggatagaaga tggagacgatgctattctcatat caacagaggaaagtgacggc gacaaagatctttccgtaacgtg cactaattcatgttcttctctttgct ctaaagtatcactttgttgagaat ttaaaaccagt					
LIP	chr1 7	29582244	SNP also in parent	ccttattcctgattttataggttgtt gcatcctccgttaggagcagct catgtgatattgaagaattgctg caagaagatgacacaaacgca caagagttaggtacacaacgg gataactcaataaatgtggttga atgttacagtaatggcgctgctg aatcatatttccctctatctacae cctctattatttitcttcacaettg actctggccttggctgtgtgactt gctttggaacagggcattaac aaatgtgacccaagcagaggc atgacacatactttctcatcg[g/a]ccccatcttgtgctgtgaag agetcctgacctgctgecg gataactggccagctgacag agcacattcatcagacgtgag agcacattcatcagacgtgga atgatacagcataggtagacca gcacattcatcagacgtgag gtcagcatgagtagcaccag gtcagcattgagaaagggaattaacta tagaaacatgagtgacccag gtcagactagaaaaggaactc ccagtgagctcagccaattag gcagacattacagacgaggag aataaaatgagtgaccccag gtcagactagaaaaggaacctc ccagtgagctcagcagcaattag gcagacatagaataga	chr17:29 582244.f	ggttgttgca tcctccgtta	chr17:2 9582244 .r	tgctctgat tctgtggg tca	524
LIP	chr2 6	33187017	SNP also in parent	aaatacacatctacgattgttatg tettetcaatgaagteacecettt atettattatetttatetttitetaaetet ttgettigaagtestgtttattggat gttaataaagtestgtttattggat gttaataagtestgtttattggat tettitecategtttgeatggtat tettittecatettttaettttaage gagtaggeetttittettittettaaagt ggtgtagteetttgttgaaagt ggttetagtetttettatgtggaft /c]gecacaageaggeettg agecaggateegaaceageaa geatgagaettaaeacteagg gestgagaeettaaeacteagg ggettagteetttaatgtggte tetgettttaattaaagtgtgte taaagagaaeataaeacteagg ggettagteetttaaetgetag ggettagteetttaaetgetag ggettagteetttaaetgetag ggettagteetttaaetgetag ggetagteettaaetgetagttag ggetagteettaaetgetagttag ggetagteettaaetgetagtag ggetagteettaaetgetagttag ggetagteettaaetgetagtag ggetagteettaaetgetagtag ggetagteettaaetgetagttag ggetagteettaaetgetag ggetagteettaaetgetagtag ggetagteettaaetgetagtag ggetagteettaaetgetagtag ggetagteettaaetgetagtag ggetagteettaaetgetagtagtag ggetagteettaaetgetagtagtega ggetagteettaaetgetagtega ggetagteettaaetgetagtega ggetagteettaaetgetagtega ggetagteettagteettaaetgetagtega ggetagteettaaetgetagtega ggetagteettaaetgetagtega ggetagteettaaetgetagtega ggetagteettaaetgetagtega ggetagteettagtega ggetagteettaaetgetagtega ggetagteettagtega ggetagteettagtega ggetagteettagtega ggetagteettagtega ggetagteettagtega ggetagteettagtega ggetagtega ggetagtega ggetagtega ggetagteettagtega ggetagtega ggetagtega ggetagtega ggetagtega ggetagtega ggetagtega ggetagtega ggetagtega ggeta	chr26:33 187017.f	cttaagctta ctgtttgcatg gt	chr26:3 3187017 .r	tgataatg gactaagc cctgca	421
LIP	chr3 0	4510951	SNP also in parent	cetttgacectggacatetgace ccagecaaetgecacaagge taetecaaetgecaceaagge gattetagaaeaageceagete caaetgteaetetgagtgtggee tggeetggeetectgageetg ttteetegtetggaaaggtgag teeteeeteceteaeagggtet etgaggaeteetgeeatgaceg teateaetgeeeteeetaeee ctecagggggagaagggeag aaageteegeatgetetetee	chr30:45 10951.f	ttgaccctgg acatctgacc	chr30:4 510951. r	ggatgggt gttaggtg agca	445

				tgaggoctg[c/t]gccaccag accatcatgcctgcatctccccg atgaggagacagaggccaac agggggcagcagctgctcagg gccacagaggagagg					
LIP	chr4	47113988	SNP also in parent	atatgaagcccaaaaaccaatc ctagggaacaaaatcaagtaca gtgaacagaagaatctaaca gatgtaatgaatggaatg	chr4:471 13988.f	cccagtetee eteettgaag	chr4:47 113988. r	acccaag gtcacata gcaagt	440
LIP	chr4	95252068	SNP also in parent	ttttactcagcatatggctcttga gatgcatccagtftgttacatgt atcaatagctcatttttttttttt tgctgagtagcattccatgacat gatgtgccacagtttccttagc cattcgcctattataggacattt ggttgttctgtttcttttttat tacaagtaaagcagctatacatt aacatttacagaactctgtgtgg atgtaagtgctcgtttcttggga taaatttatgcccaggagtgaga ttgttgggctacaacataaatat ttcttattttt[a/t]aagacagtg gcaaatttatttctggagtggtt gcactctttatattcccaggagt tgatgcctaacacgcatgcgaa tgatgaacatcaggagtaca tagttgaacatccagtgtc atgtcataaagaatagaaacctg gtagactcaagagatttcttg gatgctttgaacttgtcttag atgtaaattgaactctgtcttag aaatttgaattctgtctaacctt tactaacaggaggttgccttt gatgctttgaacttgtctaactt tactaactggaggttgccttt caatgttaccatcacgtgtc atgttacatcaggagtttctttg gatgcttttgaattctgtctaactt tactaactggagtgtcgccttt caatgttaccatcacgctgtt gctgctgcatgctgttgtcagc cgtcct	chr4:952 52068.f	tggctcttga gatgcatcca	chr4:95 252068. r	tgacacaa gcatgca gacag	581

cgcttttagcccatcaccccct

LIP	chr9	3085222	SNP also in parent	tigatcttctgaaattgttttatga cattattaagaaatcgccatgga ccagttaattagctcaactagttc tttcaccaacatacgcctaaagct attcaacatcagaattccttgcat tatttaaatatgttgaagtcacttc cagtatttgcccagaagtcatga aattatatatgtatatttgcatgtct gtgtatgtctgtatacatacatgt atgtatatatgaattgtgtgttt tatgcatgaagaatttacgtgtg tgcacatatatatatataactta aatacattacat	chr9:308 5222.f	gccatggac cagttaatta gct	chr9:30 85222.r	gctggag agtgtgaa tgtgc	393
LIP	chr7	77372524	bad sanger seq	cctttaatcagcccatttttgettg aaatttatattattattattattata cctttegcacaatgetteaatga acatcacttaeggactettaett actggtttgaatatttetgtag gaaatttatgtaccateaegt aaaagacatgtetatgtttaactt tgatagattetgtaacgtteatt tecategatgtteatgtteatt tecategatgatteattgtacac gtateegatgaagetaaattaea tgecatgtaatate[t/g]atatg geetatgeattgatteattataatt tagtatatgatettaeaagaa etttattggtacttaeagaa etttattggtaettataeatttt tecategatgatteattaeatt tagtatatgatettaeaagaa etttattggtaettataeatttt tagtatagatettaataataataatt tagtatagaettaeattaea	chr14:29 6600.f	gcttcaatga acatcactta cgg	chr14:2 96600.r	cagccata aaagttgt gcaaaca	389
LIP	chrl 4	296600	no SNP	aactggaccaaggagatgtag aaaatttgaatagactgatcacc agtaaggagatcgaaacagca attaaaaacctcccaaaaaataa aagtccaggaccagatgcttc cctagtgaattctaccaaacatt caaagaagacttaatgcctatcc ttgtcaaactttccaaaaaattg aagaggaggggagg	chr18:56 233143.f	actggacca aggagatgt aga	chr18:5 6233143 .r	gttgaacc atcctgc atcc	408

				aagcatttgacaagatacagca tccattttatgataaaaactctaa ataaaatgggtatagaaggaaa atacetcaacataataaaaggcc atatatgacaaacccacegcaa					
LIP	chrl 8	56233143	SNP validated	ttaagactttttttgglaggaa gattggeeetaacateeatgee actgeeeaattggggttata ageeatgtgtgggtetgeaeet gggateeaaattaaeggetgggtegea caggeeggeeaaggtegea aggeeaggeeaagttteett ttgaaceeattgggattatg agegletggtatattgeeattg gagaacaaattegeggte caggaaacaaattegegt teetteeggeegggaaggagtggt teetteggegggggggggagtggt aaatteatgtgetetgettatg geeggggegggg	chr2:136 26700fw d	CCAAAG TGGGCT GCACAA AT	chr2:13 627064r ev	CCTGA GCTGA CACCT GTAGT	365
LIP	chr2	86268	SNP also in parent	ggggaggggctgggaggagga cagtgacagcctgggagggagga ggacaggacggtcttctgag tggacatgacggtctctctgag ggacaggacggtctctctgag ggacgggaggctcaaggag gggggggggg	chr2:266 36712.f	ggaggaca gagcagcta gtc	chr2:26 636712. r	acaagtcc attagcgt ccag	428
LIP	chr2	26636712	SNP also in parent	glottggggacaggaaacottg ctocagttoactgtaagtgtoot attottggtgttgootalgotot agatttgaaattgaaaaactag acttagaaaaacttaaaacaaat taacotacgtaaaactagottttt cottggtgcacatttotgtgaat attaactottgtgtgggtttacgt agetgocataatgatcaggatat agaacagotocatoacocccaa	chr22:23 971258.f	ggaaacctt gctccagttc a	chr22:2 3971258 .r	ccctgcag tttgtgag gaac	515

aaccccttcttcccgctcttttata gtcacaccctccccactcact gatctgctctctgtcactacc[a/ g]tttgtcaaagacccgggctgt ggaaacgcaaaagctttctctct ggatagcacaagggctgcatgtt ccactgccccaagggctgcagg gagtcgtgggggtggggaa cgtggaaggacacgccgctca catttggaagacagtgtttcccac gttggtgacgtcaatgccttccc tatgtgttcccaaaactgcag ggggtgcctttggttgacaga gcttgtggtgctggtggaca gctgtggtgggtgggtgacat gtggtgggggcgttggtgaaa atcagggg

NOR	chr1 1	7649446	SNP also in parent		gcctcccctggctcatccaaat gctccaagatattaactgagac aaaagattgagacagtagaaac agatcaggcaaatatgtccatg aaacttatcttaaggagaactt gatcticttictgtgtcttatgatgt aaattgctgctccatcttcta ggacctgagagccattcttgaa atacaaaigtttcttagaaactag ttcatttgtattgcacctgattcat aacaaaatttaacgtcttgtcg tgtctacctgtgtgtttatgtgtgt ctagatgtatgttata[c/l]atg gtgatatttaccctggatgta tggcaaattaaagaagttaagtt	chr11:38 548898.f	geteccatct tctctaggac c	chr11:3 8548898 .r	actagtaa acccagg ctgca	405
NOR	chr1 7	20005831	SNP validated	True deno vo variant	actacctgatccctccagaattt ggaaacctagtagtgagtgag tatgattatttcattgcaatatagtt attgcataagtcaatggaatc tgttctccttgtaacaggacaca attggaaacattggttatcttaag aaagcttgactggaatgtcata tttgaagaaacatacagactc agatatgacatactgccttgaa ggaataagttgacttgcattgga ataaagccacttggaagttcata tattggcaggagacatctacctg[g/c]taagtaaggaggacttcat atttggcaggtgcaaggagcct caaaatatttggggaatacaa gagagagagagaatcaccga aatctaaggtattgcggcaag gcctgdgaccaattggg gcctgdgacaatctgcctt atttggcagtgcaaggagcct caaaatatttggggaataccaa gagaagagagagaattcaccga aatctaaggtattgcgggcaag gcctadgtacaatctgggtt cccataaaaattcagtatggt ccatataaggtcatgtagtat aattggccattgtagatcaa attaaggccattgtagatcaa gaaattaaggccattgatgatcaa aattaaggccattgtagatcaa aattaaggccattattggatgatcaa aattaaggccattattggatgatcaatattgg caaatttaaggccaagttattg aaacgaaacttattttgcaacaa aattagg	chr17:45 65574.f	tggaaaccta gtaagtgagt gag	chr17:4 565574. r	acctcttg aggccag gaaag	435

NOR	chr1 8	21015205	SNP validated	True_deno vo variant	gctggcccttgglatacccttttt alcctcaglctttgcaaagagat agagaagglcagtattgfagca algtggcatgagagagcaa gctagggatccaactgcttcata aatacgatalggcctatttcaat titttaagcacagtgttccccc attcatctacttctagagattct gcatgtaagtcagattaatcctt ggctttgctattccagactgca attaaatattttcttgattgttaa tccttaacctctgtccattggtta atggttccaaact[c/g]ttgac accattcgttctttcccattggtta atggttcaagtgagtcaaaaag atttattgagtttaaggagtcaaaaag atttattgagttaaggtagataa gcaagtaattcatgttccact ctgccttcttacctggaagttca gctaatttatttattgtagata gcaaatgtagtagaagtagaaaa ttttttggtggtagcaaatgt tttctattgtgtgtagcaagtggaa gtaataaaatgttagagatggaa gtaattatattgtgtagaagtggaa gtaattatattatgtgtagaagtg gtgaaataaaaacaattgcgtg ggtgaaataaaaacaattagc tggctat	chr18:21 015205.f	gagagcaag ctagggatc ca	chr18:2 1015205 .r	cacccag cgacatgt tgtta	471
NOR	chr8	31590451	SNP validated	True_deno vo variant	gggccaaaccccccccccc tccgftagaaatggtactacatta tcctactattttatgtaaaactgat cttaaaaataaccgctagatgg caataaggcataaaatgtaggt ctggcaagaggacaccattaa tagttcaaaggggcaagaaga gaagctggctcctcacagatgc tcaacgcctccctccccttggc atccccgaaggatcctagaggc tgtggctaccatggtggggtaca gggacatgaggagaaaggcg cagcagagagc[c/g]tcag gagttgaatgaacgtgagttt ggaattgacagcctgggtttg tctttgctcgtcatcattggata tgggatccggtgagagatgat gggatcagagggcggagataa gggacatgagggggggtgag gagtgaatgaacgtgagtttg atcttgggggcctggtttctc acccttgaaacgtaacattaat acctcattcataggggcgtgaacattaat acctattcatagggcgtgagaag gggtcaactgagatgatgtag gagtcaactgagatgatgtag acaggacactgagatgatgtag acaggacactgagatgatgtatg aacagcaccttgatggcgcagattt acagggccaagatttgttatcg aacccttggggccagatttgttt tcagaattcagaatttca	chr8:315 90451.f	accgctagat ggcaataag g	chr8:31 590451. r	atcttggc cctgtact agca	470
NOR	chrl	115297935	no SNP		ttatatatgtaccaccttgggatg cagttaaaatatctaacgccatt ctattttgaagaacagtctttecc attecaagacatttagtatttaata agactattetttettgactatcatt aaggeettettaatgtgatatga catectetageeccaaagaage aacaaatatgeeataggtgg cataceggtggaacaetgagtg ggeeatetgggacaetgggtta geteagtgtgaateettettg[c /t]atecaagggaageteegg tgeagtgtttageeataeggt tgeagetgtttageeataeggt ttecaetageecaaggetagaagtttg ttecaetggeecaaggetagagtttg ttecaetggeecaaggetagagtttg ttecaetggeecaataagttee ttaggageecaecaataatgee ttaggageecaecaataatge	chr1:115 297935.f	ctctagcccc aaagaagca ac	chr1:11 5297935 .r	gaccagg tctgtattct cgac	396

ggaacattataaaataggtatac agtttaagcattacaaaggtttaa atgaggagctacaaggtcgag aatacagacctggtctggagtct tgggacagctgtctacaacaga tgccg

NOR	chr1 0	21323697	bad sanger seq	glccacttetatecatecteccaa gggaaatgagtgtacatgteca teaaaggecatgtacaaaaagg ttetaacagetttateacaaca atgtecateggeateaaeagg ccaaaaagetgggattaacaea atgtecateggeateaaeagg ctaagaaaaagtgtgtatattea taegatgaaataatacaetgtag teacagteageaaeagg geteaagaatagtgagaattt acagacaaatgttgaggaaa gaagacaggtacgaaagagte ccatgetgeaggattecatatae tgaaatte[c/a]tageaeaaa ataactaattagtgatgaaaa ataactattagtgatgaaaag ggaaatttggtteetaaeaa ataactattaggaetgaaaa ataactattaggaetgaaaa ataactattaggaetgaaaa ataactgteagaatatggaa agagaattgtteaaaaatg gggtggtagttteaaaaatat atatetgtattteetatetgaaatat gagtgtgtgttetetaeaaatat atatetgtattteatatetgeaeca tagaacaataggaecgaaaaatat atatetgtattteatatetgeaeca tagtaggetgtgtegtetteacaaaatat atatetgtagtetgetetetaeaatata atatetgtgattgaaatat gactagtggaetttggaaaaatat atatetgtgaetttggaaaaatat atatetgtgaetttggaaaaatat gactagtggaetttggaaaaatat gactagtggaetttggaaaaatat gactagtggaetttggaaaaatat gactagtggaetttggaaaaatagt geatttgea	chr10:21 323697.f	tccateggca tcaaatgagc	chr10:2 1323697 .r	agacaga cagacag acaggtg	400
NOR	chr1 1	38548898	bad sanger seq	tecettgecettgetttteatttee etgttteettteetttagacaaa cagggtetgeagggagatgga tteteeettgeagggagatgga getetgetaggttttggggtttgga ggetetgetaggtettgggaa agggecacaettgeeggeaggt etgetgteteggeteeaggatg gggettetgteggeeaggatg gggettetggeeaggatga gggatgaaagcateaggatg ggagacetgtteatgeaeaggt ggagaceaggeggetttgat aggatgaaacaaatgaatgt ggagageaggeggetttgata aggatgaaacaaatgaatgt tttteaaaettteeceaggeag attgteteteetettttttaaa attgeteteteettgetete teaatacaaatgacaaggg aagggaageaggeggttgata attgeteteteettgetete teaatacaaatgacaaatggg aagggaageagegggatgga attgeteteteettgetete ceatgageggegtteggt aagggaageagegggttgegg aaggeaggeggtteggt aagggaagetgeeggtteggt ceagageeggteeggteteggt ceagageeggtetetggt	chr11:76 49446.f	ggtctgcag ggagatgga tt	chr11:7 649446. r	agtagetg geettgea tete	423
NOR	chr1 7	4565574	bad sanger seq	gtaaacataacctgtgcacatttt gtcaaatcagtgcacatttctagg taggaagtttgaaaaccatcaa agattctaggacacacaggatg gtggtttaggcaaatcttgctg gatgatcatttatcaattcctttcc cctttgtcattatgaaatgcaag actttctgaagaatcattgatag aggaacatactaattccattcc	chr17:20 005831.f	caggatggt ggtttaggca a	chr17:2 0005831 .r	aagccaa cctcgtgt gtttg	416

				cagcaaagtgataaccatctac [c/t]ctgactggctccctgtcaa aagttacatagccttcctggcttc accctcttacatatctgagtgatc tttttaaatacaaacctggtcaaa tcccttggcagaacacccccctt cagcttgcactcttctggattg taacctgtgtgctcagcatttg gaactgccattgttgccaaacac acgaggttggcttacatctccac gacttaatgctgtcccaagctt gtcgtclgcttagggaacacct gccaatcttaagaggaccaagct caaggtgggtggctggctgaagcctt atc					
NOR	chr2 9	1231244	SNP also in parent	tgttccaggaaagggacacgg ggagagacagtaggcgtccac accaggcgagacaaaaccag gtaggccaaggaggggtccac aggagaacagtaggegtccac aggagccaagggagggtcccc aggagccaaggggggtctcc ccctccttgacccaggact ttccgacctggacccggccg gccatcctacgtcctccc cctccctctggtcccgcg gccatcctacgtcctcc cctccctctggtccg ccctccctcggtcgcg cctccctc	chr29:12 31244.f	gggagaga cagtaggcg tc	chr29:1 231244. r	ccctcat cccctag tct	426
NOR	chr7	64671737	SNP also in parent	tcacagtcccaataggaaaaaa ttgcccatgtaaaattagacaatt caaggtgggttcaataaggagt tgatctaaaatggtgtggacac gagtgcacagtaactgagggct aatgacagtgagtgagggag aggaaaatgttactggaagcag gaggaaatgttactggaagcag gaggaaatgtactgaagtaggg atgttggtagaggacatagg caactgtcttagagggacatagc tgictgagggagagtgccacaactga ctactectcettecatt/celcett catctectgetggggcaccett ggccaaacaagggcagagca aaggaaggggaggtccaacaata gagagggggggagataagtg aagtggaaagggaaactag gagaggagggagactaggg aagggaaggg	chr7:646 71737.f	ggctaatga cagtgagat gcg	chr7:64 671737. r	teettatgg cattetea gggt	487

NOR	chrl 4	473741	no SNP	tittaggctggttaatttaaaact acagatgagaagcaggctca aggggtggaattigcttgctctt gttgggggaactcattigtg gggggaactcattigtg gggggaactcattigtg gggggaactcattigtg ctggaagattaattgggaag gcaagaacttaagtgggtactt ctggaactttaatgggaag g[caagaacttaagttggttactt ctggcaactcatgtactgatt agggtggtgggtctctggcctta ctaactagttggtactt ctggcaacctatgtaactgatt agggtggtgggcacaccaatg g[c/t]cagacccaccatg gataccatttaactgattgaagat ggctacatactatgcctaaa tttagcttactcaccacgt tggcagcagaagcggggca gcaccactactgaaccacat gataccatttaaaaaagagcact accgacagatcttgagataca agaatgttttctttcgactcacac tattcctaaataaaagagcact accgccagatcttgagataca agaaattttttttccagt	chr8:179 9905.f	gggtggaatt tgettgetet	chr8:17 99905.r	tcaagatc tggcggta gtgc	473
NOR	chr2 7	596466	no SNP	aagcagaaagagaaattaaga atacaatcccatttgctattgaaa caaaaagaatagaat	chr6:327 0286.f	ctgtgctcttg gattggaag a	chr6:32 70286.r	ctgtctagt tttcccaac acca	420
NOR	chr1 0	13100245	SNP also in parent	gecacacctcttatctccacacc atatctcgctctctgttttggccat ttttctgtttcccccggctcataa agctgcacaaaggcaggtgca gtgggatctagggtgcctggca cacagcagatgctcataacc ttgaatgaagcctatgggtcccc cttgcacgactatcacctcagcc ctttgcatggactatcgagtctat ccacacgacagtgagaaacaaggca cagaaagaagaagagtgggt taggfylctccaggtggaag ggaactgggcaggaaagcag ggacatccaggtgggaag cctgggcccagccaggg gcacatccaggccagg	chr10:14 151126.f	caggtgcag tgggatctag g	chr10:1 4151126 .r	atccaacc aagctgtc ctga	471

				gcctcacacgtctgggacccaa tcgcggtccattcaacggtgt ctgagccgagtttcgctgcaact tcaacatcagtcccgttgaca ggtcaggacagcttggttggat gaagcagggtctgggaaagcc agggaaacagccgtgtctgtcc ctcc					
NOR	chrl 0	13100245	no SNP	tccatatttateagetetectgtte agggagtetatattettettaatet eeteettettattettettaatet eeteettettattettettaatet eeteettettattettettaatet eeteettettattettettaatet eeteettettattettettaatet eetgagetetttggatgagtaget eetgagetaaetattggatgetggag ttteteetttgetgaggaggag ttteteetttgetgaggaggag eegaetteettaettgetgaggag ggegag[e/t]eeaceaggatgtgag ggegaatgtgegaaettaaeea egeaaaecceaggetggtgaa geagaatgtgegaettaaeea etgaeeteegggteeeet eatgtgetttttaagatagetat tttggttetttagatagtag eagattettgetttgggatgtag tttggtettteaeatttaggta eagattettegettgegatgtagt tttggtattgetttteggtatgt ttteetggaettgeettge	chr12:17 455667.f	tgatgtagct cctgaactca ttg	chr12:1 7455667 .r	ggcacaa atcaacac catatagc	463
NOR	chr1 0	14126430	SNP also in parent	gagccctaaccggcaccacat ggacagcagcacgcattagt cactgagccaggtagagcccat atgccgcctcctggagttgctg tccaggtttggagaggtcatcat gcaaggaggcaggtgccagt accaagaagggtgtgtgaccagt tgccgggaactcaagcaggtgtg gagaccccaggaaagatttt agagaagacggcatttgaaca ggaccccagtagaccaggcaa atttcctggcaggagtgcgg gagccacacgcagaggaact ggtgtgctcacagacgcg aggtggaggtgaggt	chr12:17 467671.f	gcaagcacg cattagtcac t	chr12:1 7467671 .r	getettetg tgaactge tgg	550
NOR	chr1 2	17455667	no SNP	ctcaccaagaaaaaaagagag aaggctcaaataaatataatcag aaacaaaagaggagagattac aatggacacctcagaaatacaa aagataagaagagaatattatg aaaagctatacgccaacaaatt ggataatctagaagaaatggat aaattcttagaaacatacaaccttt ccaaaactggacaagaagatt	chr10:23 731364.f	aggagagat tacaatggac acct	chr10:2 3731364 .r	atgttgaa ccatccct gcac	538

gcgtctcctgacacatctctcca

				agaaaatttgaatagaccgatc accagtgaggagatcgaaaca gaaattaaaaactcccaaaaa ataaaagtccaggaccagatg gettccctggtgaat[t/c]ctac caaacattcaaagaagattaat acctatccttctcaaactettcca aaaaattgaagaggaggaga gettcctactcettacgaag caaacattacctgtataccaaaa acagaaaattacetgataccaaaa aaagaaaattacaggccaatat cactgatgaacattgatgcaaa aatcetaacaaatactagca aatcetaacaaatacattaa aaagatatacatcatgatcaag tgggttcaatcacatagatcaag tgggttcaatcacatcaaga ggatggttcaacatcacaaaa caaaggatggtcaacatcaaaa aaggatggttcaacatcacaaag caaacattactagatcaaag tgggttcaatcacacaaag tgggttcaacatcacaaag caaacattaccacaaag tgggttcaacatcacaaag caaacatcaaaaatacattaa					
NOR	chr2 8	20549421	no SNP	cctictgccgtaaatacaacgac aatgacctgttctatttagagget ccaccttegtcctgaaacagaat atccaggtgaggacaaccagg tgtggaaccaaaagagaaat cagataaacacaaggagat tgcgaaacaaaggacatct gaacaaggcattttaatcaaa tgctgaaaactaaaggaaaa tgttaaagaagccatggagg ggcacattacatacaaaggaa taagatagtatgtcttcaaactt tttatcagaaaatatggagcca gaagaaattaaatt	chr20:32 276595.f	acaacgaca atgacctgtt ct	chr20:3 2276595 .r	ccctgaac aacttcctt tagca	435
NOR	chr2 0	32276595	no SNP	atattgcatgttctaaaaatggct gcttcgcccttctagaggagg agaatttatgatgttaatgaggc aggttactttagtacaactetgcc tgtccgctcaggtgcattctta ggttgtgglctgggctggtttgg gccagttcagaagcagcagggt ccagggcagttgttgcttagagt ttcttcctggaacacagctgaaa ccacaaagctcaagactaaga agtcattagagaaagcaatattt gcaccttcaacagacaagag aattaggtcaagacacaaaggt tagafg/a]gttaggcaagaca agaagagtccagaatgaaattta gcacttggtgcaagatctctgg ggaggccatgaaactctcgg ggaggccatgaacttcctctac acacacaggttctcctcttac ctctgtcccattggcaagaca atgcattcaagtggatag agtattcaagatcagtggatag agtattacaagtggacaga gcatatctcaagtggatag atgcatggtgcaagacca agtaattcaagtggatag atgcatacttcaactgggatag atgcatactcttcaattcagcca cttggtggcaataccacagaggtg ccatatctcacagagagtg	chr23:40 878726.f	agtacaactc tgcctgtccg	chr23:4 0878726 .r	tgtggtgt gtcatcaa tggc	457

				cctccacttgaaacttggtgctta ccattccctcctcc					
NOR	chr2 2	36838245	bad sanger seq	taccagaaggcggagatcat aacttgcttacactteggagg caccggaatggtaggagaaa catcgtcctccccctagagte gcgatcgtgcggtgcaggte gggaaggagtggggggg ccgcgcgaccgggggatcate caggactctgccgctgatgggg gaagcttccgtccacgggg ccctataaatcaagggccttgg gagaccagagaacagaac	chr7:435 60898.f	accttegga	chr7:43 560898. r	ttgctggat ggtagag gagc	424
NOR	chr1 1	41656509	no SNP	gloccagagtlocctaacactgt totcattetgtotaattotttttoto ttttetgttotgttagtgatttoo totaatotttototagtaattoo taatotttototagtaatto taatgagtooctotagtgaatto totgttottgotgatgtgotactg agtotttgotgatgtgotactg tgttcatcattottoccacatat ctgtaggcatcotattattttg tttgaattottgtaagggeg/g/t]ttgcagttottttaacatagt cttttggaaagtattoctttgo cttoctattagcocttagtagggg gagtggcottagtatgaggg cogcatgtotoctgatctgga gaagtggcottagtatgagag cottagaggaccagcagtgtg cttacctogtacaggagtgac aagaacaggagtgaccat ggaggttgotcccaggag gaaggggttgtotcoctgatctgga gaagtggcottagtatgagagtg cottagaggaccagcagtgtg cottaggagaccagcagtgtg daccacggagtgacactgcagg daccaggagtgacactgcagg daccaggagtgacactgcagg daccaggagtgga	chr8:496 12506.f	tctagctcac tgatccgttct	chr8:49 612506. r	cacactge tggtccte ataag	408
NOR	chrl	44584336	bad sanger seq	atcagtgatactggcctgtagtt ctccttttttgtgctgtccttgcca ggctttggtacagagtgatgtt ggccttggtagaatgtgttagaa agtcttacatcctcctaatttttg gttagctgaaaaggataggtatt aaatcctccctgaatgtttggta gaattcccccggaagaccatct ggtcttagggtttattctttggga tgcttttgattggtctgttcagat ttccttgtgattggtctgttcagat tgctgtttcttcttgactcagcttt aggaggttgaa[g/c]agtcta agaatttaccattccttattggtt atccatttgttggcatataggttt tcatcattctcttatatccgtt gtatttctgtggaggttgtaa[gtt] atccatttgttggagttgtatgtt	chr1:155 138900.f	tcagagtgat gttggcctgg	chr1:15 5138900 .r	gacaaac ccctagcc agact	429

tteteettteatttetgattttgttt atttgagetttetetetttittettt glaagtetggetaggggtttgte aatttaittatetteteaaagaac cagetetttgttteattgateettte taetgeetetttgttteaatagea tttatttetgeletgattttattattt ecteceettac

HAF	chr1 0	59172497	SNP Validated	True denovo variant	ccaagctltccccactcacct gtticttcacagccctaaaagtt gtcctaaaaaagcaaagaggatt atgtcatactitcatgagaagtt ctgttggctagcticcttetgga taaaatctaacattagttagaac agacagtaagttcaacctttettt agtggatctgttggggttitttcc tccttaacattgaccactttett attlggggtactcccacaggg ccctaccacctctaaagtggct cagggacaggatctagctet ccgacacctgtggaggcag[g/ a]gtgtgggatatgaactggg ctgactagtcgtgtgtctcctgc ctggggccttggatccaggg gcagtgccaactaggggcag gcagtgccaactggggcag gagtattcccgtggggcag gagtgccaactggggcag gagtggcaatcagggcag caggcacctgtggaggcag gagtgccaactggggcag gagtggccactggggcag gagtggccactggggcag gagtggccactctgggcag gagtggccactctgggcag gtttccaagcggtgtctccagct gcttccaagggtgtgaggtca caggctccttggtggaggtca ccagtatccttcaatacagacca gtttcctgccgattgggaggtca ccagtatcccttcaatacagacc attcctcccta	chr10:59 172497.f	actccacct gtttcttcaca	chr10:5 9172497 .r	gaaagca ggctgga accaag	516
HAF	chr1 7	1685198	no SNP		agtitteccateaccattigtiga aaagaetttettiteteeagigta ggeeetgageteettigtigaag attageetgeeagiggeg tittattitetgggettieaattegtig ceatigatetgigeacetgittigatt actgtaacttigeagetggtegt aagteagggaetgagatgeette cagettigtettettiteteaggat gettigeeattegggtettit gtigeeeagiggettitt gtigeeeatggaattegagt aagteattgggattegagtg ettiageattggaategaattig ettiageatgagaategaattig ettiageatgagaategaattig ettiageatgagaategaattig ettiageatgagaategaattig ettiageatgagaategaattig ettiageatgagaategaattig ettiageatgagaatgaeattita ettigtitattettetgateagaa aateettgtaattiteattegaaa aateettgaattiteattegataatte aecegaggtattitattettittig tigegatggaaggattigat eagaatgeattigaaggatggattigt teeagttettitetgtaaaggatattiget teeagttettitetgtaaaagetg	chr17:16 85198.f	ccattgatet gtgcacctgt	chr17:1 685198. r	acaatacc cttcacaat cgca	434
HAF	chr2	100761774	SNP Validated	True_deno vo variant	aggcacagataatttaaggaa atcaattccatttattcaactttac ctactcttgcctaaaattgagctg cctgaaatatgcctgaggttga gatgtcacaacaattccacttct ccaactccctttaaaaatcattct tttcccaagtataaaaagacaag cttcttctcacctatcccagatctt actatggcaaattgctcctgtac atgaaaaggcacaattctaatatt aaaaaggaacaattctaatatt	chr2:100 761774.f	tgcctgaggt tgagatgtca	chr2:10 0761774 .r	ccagatga agtagggt gcaac	466

					ggcatgataagcctacag[g/t] aagacttcctggctttctttatctt acaatatttCtgttaagagaaa accatggtggtagaaaatgggt atttgggtctgtgtgggggtgctc tgagttcagatatattatagagtg gggtggcaggagttatgatcatt tttgtctaatgcatttcctctcca ttttctgatgatgcaaaagaata attgaagaggggtgcaccctac ttcatctgggtaacaagctcaca gcaaggtttcatgctcattatc					
HAF	chr3	53100714	SNP Validated	True_deno vo variant	fgtaatccaataccacattattcc agcattggcccttgggagctctt ccagttgccccatgtccatcc aatatacacccatcattgtgggg ttttttatgagcactttctaacttttt gtcaggctctaggctcatcttgg acattccctgcccaggcctag aattagtatttctccaaggagc cctgattccttttattgaggattca tattagaagcaaacatctggatt cagggggtattgttgctacca gtgtgtcactgctctcaacagcc ttttctctaactcacaatt[c/a]ta caacttaatcatgagctgggctc agctgcatggttcttgtggtctg gactgaattcagtcggttctg ggactgaattcagtggtgtctacatgt cgtggtgggtgtctaacatct ggattgataccttgtggaga acttggggggtgttctacagg ctgattgttcttgtgtagca acttgagagggctgtgacctctt ttctcaaggctgttctatatat atagtctcaggattcaagcag actgaacaaaatgcacaagt attgglccaacagtgaa acttgagggcgtgtcaacagtc ttaggacaaaaatgcacaagt atctggglccaacgatggaa cttacccaataatgcttgagaa	chr3:531 00714.f	ctettceagtt geeteceat	chr3:53 100714. r	tcacagce ctctcaag tgte	419
HAF	chr4	44983704	no SNP		agactigtgtticacaaatagee ataaaaaggateageeecact tecaaageetgaacaactgag tgeeteeagetgeaeteetage ecteetagetgeaeteetage geaetgeaeteetage geaetgeaet	chr4:449 83704.f	cctcagctgc actcctaaga	chr4:44 983704. r	tgagtagg gctgttgtc acc	487
HAF	chr5	21907765	bad sanger seq		ctgtttctgttgtcactttgaatag atacctgaacatggtttcgcagt aaactttgtttcccatctgaacaa atgttttaaagcttttaatatttttg	chr5:219 07765.f	cctgaacatg gtttcgcagt	chr5:21 907765. r	tccagagt gtcagagt cctt	556

acaagcttcccccacacacaa atattcaagtcctgaataaaagc tttcttttgacttggaagaggag ggaaggtttcctggggatttc agagggcccctggggatttca gagaaattgctaataaagg cttattttgtatgttaaattacatga gaagcattgtcaataa[a/g]t aatgataaactttcttaaatggta ttatgtaaaggtgttattgatat aaggattttaaatgatgtattagata tactcaaatattctggtagt tatctcaaatattctggtagt tatctcaaatgttatatacacaga catggtcaaatgtttattgatat acaggtttaaattcggttagta tctcaaaatgtttattatacaga tctaaatgtttattgtagta tctcaaaatgtttattgtagt gagagatttgcaggttttgtagta tctcaaaatgttttgtcagtt accatttttgaagttttatttgtagtt gagaaattctggtagtttctttg tgagaaattcatggaaggactc tgacactctggaatataggtttc caataaac

HAF	chr5	53320088	SNP Validated	True deno vo variant	ggtggccacaggaacattitta aagcaattittetticctitticatg tataaagagcctggtacaggc ctaacatatatgaacattaatta aatggtagctattgttactatteta gaactcacagaaagccatetaa atctagaatttattgaatticac agcettegaaattetagtatttet gccacaaaacetteccacacet aattgtaaatgattagtcagg gatagtcagtgatgaaggatte ctacaggagggggggggtt/c]ttt ctetgataaatatgtttagga gtaggegggttcagtggaaca teegteacetgtaaetgegagta atttteaatteccacattgtgaa teetacetteccaaattattittt catectaaaacetteccaattgtgaa teetacetteccaaattattittt catectaaaacetteccaattgtgaa teetacetteccaaattattittt catecttattteccacattgtgaa teetacetteccaaataattitttt catecttatttectagecteteg attteaattggeagtgtggctteg gtaggagtettgggagtgagtag teetacettecgaacaagacttega cttagatettatggteggttggcatg gagttgegtggggtgggcetgg gtactggegtgggc	chr5:533 20088.f	caccagcett cgaaatteta gt	chr5:53 320088. r	ctcattcca aaccaaa ctgtgc	406
HAF	chr7	91483698	SNP Validated	True_deno vo variant	ctccaaatctccattttcaattcta aaggagggacataatgggc gttttttgtgctccatcatccttgc tgtcactccgglctcagaggctt cagccagtgatattcgttagaat cgttttgactgagaatagtag atctcaaaaaataataacctaa acaaagtacaagtttatttccttt gcattagagaagttggaagat tgcattggaagattggaggta aaatggcttggaagatgtgca aggaggagaagtatccttcattag tgactcgglccagggtaattt cttggcttggcacttcagtcat[t /g]atatttactttccaggcacca ggagggagaaaggaaagg	chr7:914 83698.f	tcatccttgct gtcactccg	chr7:91 483698. r	cagcaact tggacca gtgg	537

HAF	chrl	120334435	no SNP also in parent	tgaggaaatacattgittgtaga agttaaaaacaattaaactgaca aagttggtctgctctttgttatccc cacgtgccagcaattctcaaca atatcagtgacaacatcaatc agagcagactactcccactectt tctaagttgacctatcaatgitte atgaaagaaagataaatgg gaggagacagaatgagtgaat ctcacacagtatgagtagataaatgg acagacagactagtgagtagatac gtttgttaaactttgtttcagag acagacatgcagatacaatgc a[t/c]attggattgtagcaataa tatactttactatttgtagcag taaaaagtctagcaattaaaa tagccatgggaaagatacatgg gaatcagagtgtagtgatac ctgattaaagagtgtagtaca gaccactagtagagtgataca gaccactagtgagatgataaa gaccatagtgagatgataca gaatcagaagtgtagtgataca gaatcagaagtgtaggatga gaatcagaagttttgggttttaa ttttggcttgtcttcaaafggta gaatcagaagttttggtgtga aaatatttcttttct	chr1:120 334435.f	ctttgttatcc ccacgtgcc	chr1:12 0334435 .r	acgcattt gaagacg aagcc	424
HAF	chr1 2	13784646	SNP also in parent	agagtgatggaactgttctgtat cttgcttgtgtttgtggttatacaa ctctatgggtttgtcaaatctcgc agacttcacaccaaaacagta tattttactttgcatgcaaattaa aattcactatgtgtatttaaata aattcactatgtgtatttaataga aagacattgctatgatggtaga aagacattgctatgatgtatatt cttaatttactaggtgataatt cttaatttactaggtgtaga agacattgctatgatggtcatatt ctaatttagtgtatattataggcctcc tgtaaagagcttctagaatttgtc caaattata[t/a]ataattggct ttccttgttactgaacctagcatct cgggatcacccaagatgatcat aagtgccaaggactacaggta caagaactgcctectcaggt ccagtacacacattatgtg gtcattgcaagtgcactagg ctccttgttactgaactaggt caagaactgccctectcagct ccagagactctagaatagggctct cagagactctacttgtgc gctgttctgaaaatagggctct cagagacctctatcttgctgc ccattgctctgtacacaaattaggt gaagaactctggtcatagaag agacatcctggtacacaaggt aggcatcccaagatgaag aggcatcccaagatgacat agggactcacaaaattagggt cagagactctatcttgctgc ccattgcctgtgtcagaaag aggcacagaggcctcc	chr12:13 784646.f	gteaaatete geagaettea ca	chr12:1 3784646 .r	gcaaatg ggcagca aaggat	489
HAF	chrl 4	4827882	no SNP	gggattctgattgagatagcatt gaatctgtagattgattagtag tgtggacatttaactatgtttatt cttccagtccatgtgcatggaat gttttccatctttatgtcatcat caatttctttcaagaaagtcttgt agtttcgttgatagatctttcac tttcttggttaatgatctttcac tttcttggttaatgatctttcag ttttcttgttgttaagtactttgagttct tttcttgttagttacttgtagcgatt agaatgctatgatttagtgt tgg[t/c]ttataccctgcaact ttgctgtagctgttgattttcta atagttttcctatggattcttgg gttttgattataagatcatgtg gttttgattataagatcatgg tttgcttgatagtattaggatttc tgctgtagctgttgattttcta atagttttcctatggattcttgg gttttgattataagatcatgtg ttctgcaacagtgagagtttac ttctcgttgcctgttggattctt	chr14:48 27882.f	ttettecagte catgtgcat	chr14:4 827882. r	caaaccc acagcca acatca	525

				ttatttettttteeegeegaattget etggecaacaceteeagtaetat gtggaataagagtggtgaaagt gggeaceettgtettgtteetgtt eteagagggatggettteagtttt tgteeattgagtatgatgttgget gtgggtttgteatatat					
HAF	chr1 6	2815931	bad sanger seq	tgctgtcgattgctttaggtagta tggacattttaactatgtgaattgt tccaatccgtgagcatggaatat ctttccattcctttgtgtctttcta ttttctttaactatgtgattt tccagctactgggttttaacttc cttggttaaatttattcctaggtac tttattatttttgttgctaatggtag tgggattgtattcttgagttcttt cggctagttgttgttgtgtgtgtag tagaatcaactgattttcgtgaa ttgttttctgtgtgattgttag tgft/clagttgtgattgttag tagttttctggtggattgtattct tcttggtcaaatggaggttttact tcttggttaaatgtaggattcctt tgtttcttgtgtcaatgtggatcctt tgtttctttgtgtcaatgtggatcctt tgtttcttgtgtgaatgtgatcctt tgtttctttgtgtcaatgtggatcctt tgtttcttttct	chr16:28 15931.f	tgctgtcgatt gctttaggt	chr16:2 815931. r	gtgctcatt cgtgtcac tcc	497
HAF	chr2 0	29311733	bad sanger seq	taagcaataaaaagattattgat gagatattttacattcttttteteat teettacttttettgaaattattgat ettageegeaaagggteaga aatteettaattttatgteelgeee agetateetaggattgeeggee gaggacatagagaaggg gagcacaggagaagggg gagcacaggageegttaetee teeeteetteeeggatteett aactegatgeaggagaggg ageacagggeeettaetteett [c/t]caateteeaggatteeatg aatteettaggattataaaaceag atteeeagaattgegggggeeta gageactteetgegggggeetea gtetggeagggggateta gageactteeteeteeeagg agteetteeteagggtgeeta gaggeeteeteetee etteeggaggggeteeta gaggeeteeteeteetee etteaggattagaaattaaaa acagggeteeteeteagg gageactteeteetaagg gtetgtgeagggggateta gageactetteeteeteaeete etteaggaattataaaattaeaa acagggeteaeteeteeteete gaggataattttaaaattaeaa ctagtteeceaatteeeteete gaggataattttaaaattaeaa ctagtteeceaattee	chr20:29 311733.f	tectaggattt getgaceae a	chr20:2 9311733 .r	aggegae atttgaget aagte	400
HAF	chrl 8	52005	no SNP also in parent	tcacctgggaagtgggccggc tgtcaggccgtctgctctctcca ggctcactgttaggggctcctg ctgctggtggtcctctctcgcac cagatgaagatcatgcctcagc ccatgactcacagctccaacc ccttcttttcagtccccaggg aagccctaagtggtcagactgg tctggggaccctgcacagaca geggccgatgtggggctgaccc tgtccccaggccatgctagactg gggcccaggccatgcatgactagctg ggcatgagcaggcctgcacc	chr18:52 005.f	agccctaagt ggtcagact g	chr18:5 2005.r	atggctgc agagttgt cct	406
				ctcagggacagtct[c/t]ccct ctctgtgcagccagtcgcagt ggggcaggcaggcaggcaggcag gtctacccaggctggaggcag ctagatggtcagccaggcagg ctgaatgtacccaggccagg					
-----	-----------	----------	-----------------------------	---	----------------------	---------------------------------	--------------------------	--------------------------------	-----
HAF	chr2 4	540464	no SNP also in parent	tccttttttctgtcttatgtcaattta actcttagaacagccagaagaa cctagaagaatagagggaaaa ttcatcccccctctatctatgta gggattcaacttctaatagccaa ttctttccagatttgagccttgg ccgcagtttatccatgtatgaccatgc gtgctaggagaatagtatttgt agtcggatactcatgaacaggc gttaagcccacccaggcttaat acagcagaagaaggtggcaaa at[a/g]tgctgtatcgacagtca gtatggaaaaatgtgtggagca ataggaaaaatgtgtgagacagtct ggccacagttcctggaacag ataggaaaaatgtgtgagacta ataggaaaaatgtgtgagact ataggaaaaatgtgtgagact gatcctggagccattcg gactctggaacactggtaatt ggccacagttcctgacacagg actcctggaacactggtaattc ctaggtgggccctgtgtgagca gctttttgtgggccctgtgtggc tttggatgcagctggacacca gaaagaccaagctgtgattaga agcttggggttccatgctcctt tctggtgggcccgtgataga agcttggggttccatgcatgaga agctgggattccatgcccttt tctccccacttctcagagag agagaggagg	chr24:54 0464.f	ctggccgca gtttatccatg	chr24:5 40464.r	agttggag gagaaag gaggc	444
HAF	chr1 0	7931916	no SNP	cttgtcaaatgctttctctgcatct attgagatgatcatgtggtttttgt tcctcagtttgttgatgtggtgtat cacgttgattgattgtggtgtat gaaccctactgtgtcttggta tgaatcccacttgatcatgatgta tgatcccacttgatcatgatgta tgatcctttttatgtctcgctgaa tcgggttgccaaattttgttgag aattttggctgtagttcatcatgt gtatcagagtgatgttggcctca tagaatgt[g/a]ltaggaagtgt tccatctcctaaagtttggta aatctctctgaaagttggta aatttccaggaagccatctg gtatcagggtttatcatcttt tcctggggttttatcttggta aatttccaggaagccatctg gtcctggggttttatcttggta gatttggtctgttcatcagtt gtcctggggttttatcttggta aatttcccaggaagccatctg gtcctggggttttatcatcagtt gctttggttgtacagttta actctttcttgactagttatccagttt gggaggttgtaagagtctaga atttatccatttcctcaggttatc catttggtgatatagtttcat agttgtatatcagtttcatcagttt gggaggttgtaagagttatc aattgttcttacactctgttgt	chr10:79 31916.f	tgttgaaccc tcactgtgtct	chr10:7 931916. r	ctcccaaa gctgagtc aagaag	417
HAF	chr2 2	24976376	bad sanger seq	ctctacagaaaccttacaagcta ggagagattggaatgacatatt caaaactttaaaggataaaaatc ttcagccaagaatactctatcca gcaaaaatatccttcaggataga	chr22:24 976376.f	agctaggag agattggaat gaca	chr22:2 4976376 .r	tctggtgg cctcttact tcc	451

				gggaggacttaaatcetttecag acaaacaaaagctaagggattt tgtagccacaagacetecaeta caagaaateeteggaaggee etectaeetgaaaaaggaggagactaat aaggagaaaggggtcacaa aatacagataggagaggag					
HAF	chr3	54907512	no SNP	agtgacctactagacaaagagt tcaaacaaatttcatgaggatg ctcaacagatatgggaagaaga attgatgaacacagtgagcaca tcagcaagaactggaagatat aaaaaaattagaaatgagaa tagaatactggaagtaggaa tagaatactggaagtaggaa tagaatactggaagtaggaa tagaatactggaaggaaggaag gaatagggaagcagaagaac ggatcagcgagctagatgaa gactagaggaatcaccaag cagaacacaaaaggaaaca gctaagggaaccagaaggaa gatatagggaactctggga[c/t]aatacaagcagtgaacaatttg gatataggtgtcccagaagga gaaggagagagacacaaggggc ataaaatttattgaaaataata gacagaagcacaagagctcca aacaagataagcccaaaggag ccccacaccaagacatattaaat taaaatgccaaattaaaaaca aagaggagaaccctaaagtg cccaacaccaagcaatttataat taaaatgcccaaagtag ccaaaaccaaagtaggcccaaaggg ccaacaccaagaagcccaaaggag ccaaaaccaaagtaggagcccaaagtga caataaagggaagcccacaagtga caataaagggaagcccacaagtga catataaagggaagcccacaagtga catataaagggaagcccacagg	chr3:549 07512.f	aacggatca gcgagctag at	chr3:54 907512. r	atatgtctt ggtgtgg gcct	303
HAF	chr1 4	92870205	no SNP	cccttggagtttcctcagtgaca tgggggagaggagcttctttgt cattcataacaagcccatttcaa coctacctgatttatgcaatgag gtgactcaggtggggcccct ggatggcttcaggatggggac cggtggccaggggatccaacc atgtgatcagagggtggacat gggagggagggggggggg	chr14:92 870205.f	ccatgtgatc agagggttg g	chr14:9 2870205 .r	gccaccc agacttat gacca	404

				gggacccctgatttagagcag ttggtcataagtotgggtggcaa cctgggactcaggactgocctc tgaactgagggctgctgtggga					
HAF	chr1	143424677	no SNP	attgectgtttttgtggtigtgtgtt tgggtttttgataatttttttact ctatttatggtcattgettteccae ttaaataagtecetttagetttectae gaagtectttagttgtttettagtgata aacteettaaattgetttettagtgata gagatetttggttgtaggtat gagatetttggttgtaggtat gagatetttggttgtaggttttt cetttageaettgatagtaggat gecattettettetegeetgag gtetegaetgagaagtetgeg acag[c/a]etgatgggettee tttatatgteaetttgatgtgggettet ttggggettettgatgttggggette ttggggetteettggaggette ttggggetteettggaggette ttggggetteettggaggette ttgtgettettgatgtggggette ttgtgetteettggaggette ttgtgetteettggaggette tatatgteaettggaggette tatatgteettggaggette tatatttegaaaa attteeteettgggageetta aaattteetgeeetttgettggagaaa attteeteettgggageeetta aaattteetgeeettggtagaaaa attteeteettgggageeetta aaattteetgeeettggtagaaa	chr1:143 424677.f	tggtcattgct ttcccactt	chr1:14 3424677 .r	gggacaa tatcaagc gtgct	535

APPENDIX D

IGV AND SANGER VISUALS

Figure A.D.1: IGV screenshot and Sanger result of a 'de novo' candidate (chr2:100761774) which was validated truly in BW-357 in the top and left respectively. None of the individuals except BW-357 had the mutation.

Figure A.D.2: IGV screenshot and Sanger result of a 'de novo' candidate (chr7:64671737) which was also detected in one of the parents of BW-354 in the top and left respectively. However, it seemed like parents do not carry the mutation in the IGV screenshot, Sanger result detected the mutation in BW-353 (Noriker mother).

Figure A.D.3: IGV screenshot and Sanger result of a 'de novo' candidate (chr4:44983704) that called as no SNP depending on the validation result in BW-357. However, the candidate seems like a 'de novo' mutation, Sanger sequencing did not detect any variant at the position.

APPENDIX E

LOGARITHMIC VERSION OF PSMC

Figure A.E.1: Logarithmic version of PSMC graph. All horses showed similar patterns in the graph, but 111 and 113 had a larger effective population size than the other trios during the timeline.