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ABSTRACT 

 

MODELING THE TUMOR SPECIFIC NETWORK REWIRING BY 

INTEGRATING ALTERNATIVE SPLICING EVENTS WITH STRUCTURAL 

INTERACTOME 

 

Demirel, Habibe Cansu 

MSc., Department of Bioinformatics 

Supervisor: Assoc. Prof. Dr. Nurcan Tunçbağ 

 

July 2019, 54 pages 

 

Alternative splicing is a post-transcriptional regulation which is important for the diversity 

of the proteome and eventually the interactome. It enables the production of multiple 

proteins from a single gene with different structures. In a network point of view, these 

structural changes can introduce new interactions or cause the loss of the existing ones. 

The variations in this mechanism has been associated with various diseases including 

cancer. In this study, we reconstructed patient specific networks with tumor specific 

protein isoforms by integrating the protein structures and the interaction losses they bring 

with. For this purpose, we collected 400 breast cancer tumors and 112 normal RNA-seq 

data from the Cancer Genome Atlas (TCGA) and found the transcripts that show increased 

expression patterns in tumor cells. We mapped these transcripts to their available protein 

isoforms found in UniProt. Additionally, we compiled a structural human interactome 

from multiple sources and aligned the missing residues on isoforms with the 

known/predicted protein interfaces to find potential interaction losses. At the end, we 

constructed two interactomes for each sample; one filtered based on the lost interfaces as 

a result of predominant isoforms (called “terminal set”) and one filtered based on the 

expression. Then, we used the same terminal set with Omics Integrator to model two sets 

of networks based on the two patient-specific interactomes. Finally, we compared the 

resulting two networks and all tumor specific networks simultaneously to reveal pathway, 

protein-protein interaction and protein patterns that can cluster the tumors according to 

their similarities. The results of our analysis will contribute to the elucidation of tumor 

mechanisms and will help for target selection and developing therapeutic strategies.  

Keywords: Alternative Splicing, Network Modelling, Multi-omics data 
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ÖZ 

 

TÜMÖRE ÖZGÜ ETKİLEŞİM AĞLARININ ALTERNATİF UÇ 

BİRLEŞTİRME OLAYLARI VE YAPISAL İNTERAKTOM KATKISIYLA 

MODELLENMESİ 

 

Demirel, Habibe Cansu 

Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Doç. Dr. Nurcan Tunçbağ 

 

Temmuz 2019, 54 sayfa 

 

Alternatif uç birleştirme proteomun ve sonrasında interaktomun çeşitliliğine katkı 

sağlayan önemli transkripsiyon sonrası mekanizmalardan biridir. Tek bir genden, farklı 

yapılara sahip birden çok proteinin üretilmesine imkan verir. Etkileşim ağları açısından 

bakıldığında ise bu yapısal değişiklikler yeni etkileşimlerin kazanılmasına ya da var olan 

etkileşimlerin kaybedilmesine yol açabilir. Alternatif uç birleştirme olaylarındaki 

değişimler kanser de dahil olmak üzere farklı hastalıklarla ilişkilendirilmiştir. Bu 

çalışmada, tümöre özgü protein izoformlarını ve bu izoformların sebep olduğu etkileşim 

kayıplarını dahil ederek hastaya özel etkileşim ağları oluşturduk. Bu amaçla, Kanser 

Genom Atlası’ndan (TCGA) elde ettiğimiz 400 meme kanseri ve 112 sağlıklı doku RNA-

seq verisini kullanarak tümör örneklerinde artmış ekspresyon gösteren transkriptleri 

bulduk. Bu transkriptleri UniProt’ta bulunan izoformlarla eşleştirdik. Ayrıca, birkaç 

kaynaktan alınan verilerle bir yapısal interaktom oluşturduk ve izoformlarda bulunan 

eksik bölgeleri bilinen ya da tahmin edilmiş protein ara yüzleriyle karşılaştırarak 

potansiyel etkileşim kayıplarını çıkardık. Böylece, her bir örnek için, biri baskın 

izoformların (terminal seti) yol açtığı etkileşim kayıplarına göre diğeriyse ekspresyona 

göre filtrelenmiş iki interaktom elde ettik. Sonrasında, Omics Integrator aracını her iki 

interaktom için aynı terminal setiyle çalıştırarak her bir örnek için iki farklı etkileşim ağı 

seti elde ettik. Son olarak çıkan iki farklı etkileşim ağını ve oluşturulan tüm etkileşim 

ağlarını karşılaştırarak hastaları benzerliklerine göre gruplandırabilecek yolak, etkileşim 

ve protein düzenlerini açığa çıkardık. Bu çalışmanın sonuçlarının tümör gelişimiyle ilgili 

mekanizmaları aydınlatması ve ayrıca kanserde hastaya özgü tedavi yöntemleri ve hedef 

seçimi ile ilgili çalışmalara katkıda bulunması beklenmektedir.  

Anahtar Sözcükler: Alternatif Uç Birleştirme, Omik Veri, Etkileşim Ağı Modellemesi   
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CHAPTER 1 

1.INTRODUCTION 

Cancer is a complex disease. Although the in vitro studies in the previous 

decades enabled us to have a strong knowledge about the nature of the cancer, 

many were short of revealing the variable interactions between the cancer cells 

with its normal environment. Now, we know that the tumors contain different 

cell types that communicate to create the heterogeneous nature of cancer 

(Hanahan & Weinberg, 2000). Tumor heterogeneity can be observed in a tumor 

with the presence of multiple genotypes and phenotypes which is called intra-

tumor heterogeneity. Inter-tumor heterogeneity, on the other hand, is observed 

when the different profiles found in different tumors belonging to the same tissue 

type (Fisher, Pusztai, & Swanton, 2013). According to World Health 

Organization (WHO), cancer is the second leading cause of death globally in 

2018 with an estimated 9.6 million mortalities. Among the cancer types, breast 

cancer is one of the most common and deadliest cancers. To decrease the severity 

of these statistics, providing adequate therapies for the cancer patients is crucial. 

However, the heterogeneity of the tumors makes this task challenging as it 

necessitates the consideration of the different regions or cell types at the same 

time. Finding mutual biomarkers or mutual biological pathways that can cluster 

a subgroup in a given tumor is an approach that can lead promising results 

(Verhaak et al., 2010). As a comprehensive database that provide cancer data 

including genomic, epigenomic, proteomic and transcriptomic analysis 

belonging to 33 tumor types from thousands of patients, TCGA (The Cancer 

Genome Atlas) is a useful starting point for such approaches (Tomczak, 

Czerwinska, & Wiznerowicz, 2015) (Kelemen et al., 2013).  

 

Alternative splicing is a process which enables the production of more than one 

mRNA variants from a single gene. Estimated to occur in more than 90 % of the 

human genes, it is one of the major contributors to the complexity of human 

proteome since the mRNA variants often translated into protein isoforms (E. T. 

Wang et al., 2008) (Pan, Shai, Lee, Frey, & Blencowe, 2008). With the 

differential inclusion or exclusion of exons, existing protein regions may be lost, 

or new regions may be gained. As a result, proteins with distinct structures and 

functions may be produced from a single gene (Nilsen & Graveley, 2010; 

Romero et al., 2006). In a broader view, the changes that alternative splicing 
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brings with can impact a wide range of mechanisms including protein 

interactions, cellular properties, protein localization and enzymatic properties 

(Kelemen et al., 2013). Over the years, alternative splicing has been associated 

with various diseases by acting through direct causing, severity modifications 

and determination of the susceptibility (G. S. Wang & Cooper, 2007). Among 

these diseases, cancer has been a frequently studied interest which resulted in 

many examples of its relationship with alternative splicing in terms of 

proliferation, motility, drug response, metastasis and oncogenesis (Skotheim & 

Nees, 2007). p53, PTEN, BRCA1 and CDC25 proteins in breast cancer 

(Okumura, Yoshida, Kitagishi, Nishimura, & Matsuda, 2011; Omenn, Yocum, 

& Menon, 2010; Tammaro, Raponi, Wilson, & Baralle, 2012) GRB7 protein in 

ovarian cancer (K. Wang et al., 2010), KLF6 in hepatocellular carcinoma 

(Hanoun et al., 2010) are among the example proteins that has been associated 

with cancer through alternative splicing events (Tang et al., 2013). Hence, 

differences in alternative splicing can be a potential biomarker and play a role in 

cancer therapy and prognosis (Yi & Tang, 2011). 

 

Protein interaction networks tend to include proteins that are high in abundance, 

conserved and from particular cellular localizations (von Mering et al., 2002). In 

addition, most of the time alternative splicing data is not represented in disease 

networks as only the reference isoform is included in networks (Corominas et 

al., 2014). However, various studies have indicated the importance of alternative 

splicing in interactome studies and to have a better understanding of diseases. 

For example, in a study focusing on autism, researchers constructed disease 

specific interaction networks by incorporating alternatively spliced variants and 

revealed that half of the interactions and 30% of the newly discovered interacting 

proteins were obtained from isoforms (Corominas et al., 2014).  In another study, 

tissue specific alternative splicing events were analyzed, and it is revealed that 

such events increase the diversity of protein interaction networks in tissues 

(Buljan et al., 2012). As a result, illuminating the effects of alternative splicing 

on protein networks is a necessity for disease studies as the changes that isoforms 

of a gene cause on a network can be as drastic as the difference between proteins 

from different genes (Yang et al., 2016).   

 

Proteins interact with each other through the interface region. The interface can 

be defined as the area where two proteins get in contact via non-covalent atomic 

interactions in their complex state. Currently, only a small portion of the known 

PPIs has at least one experimentally resolved complex state in PDB (Berman et 

al., 2000) for which the interface can be calculated using atomic distances. For 

the rest, computationally efficient and accurate methods are frequently used to 

model interactions and interfaces including PRISM (Baspinar, Cukuroglu, 

Nussinov, Keskin, & Gursoy, 2014) (Tuncbag, Gursoy, Nussinov, & Keskin, 

2011) and Interactome INSIDER (Meyer et al., 2018)  for interface predictions 
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or Interactome3D (Mosca, Ceol, & Aloy, 2013)for interaction predictions. The 

interface residues are important since they are responsible for the interactions to 

happen. The disturbances in these residues can lead to the loss of the interactions 

as exploited in the drug design studies which target protein-protein interactions.   

 

Since patient-specific analysis require detailed information if interaction 

networks, integrating different types of omics data with them is very important. 

Using reverse engineering methods to combine multiple data could allow a wider 

point of view and enable the discovery of various hidden target proteins. 

Methods that utilize such methods have been previously used to unravel cancer 

pathways (S. s. C. Huang & Fraenkel, 2009; Torkamani & Schork, 2009; Yeger-

Lotem et al., 2009). As one of these methods, Omics Integrator creates high 

confidence sub networks from a given interactome and a set of important 

proteins that are scored according to their significance such as expression values.   

 

Considering these aspects, the effect of alternative splicing on tumor specific 

interaction networks is yet to be elucidated despite some efforts. Yet, it is clear 

that using tumor specific protein isoforms to model interactions profiles and 

interaction networks could be quite important in elucidating disease 

mechanisms. In this work, we combined expression data with the interaction 

information coming from structural interactomes to reveal the network rewiring 

of tumor specific interaction networks after adapting to interaction losses that 

protein variants cause. For this purpose, we collected 400 breast cancer tumors 

and 112 normal RNA-seq data from the Cancer Genome Atlas (TCGA) and 

found the differentially expressed transcripts and found the isoforms at protein 

level. Additionally, we compiled a structural human interactome from multiple 

sources and aligned the isoforms with the known/predicted protein structures. At 

the end, we constructed a tumor-specific interactome for each sample based on 

the lost interfaces as a result of predominant isoforms. Then, we used the set of 

proteins coming from the differentially expressed transcripts with Omics 

Integrator to create two interaction networks for each sample by network 

modelling. One set of networks were created based on a reference interactome 

that is filtered by expression values while the other set were modelled using 

interactomes filtered by the lost interactions in addition to expression. Finally, 

we compared the networks coming from two conditions for each patient and also 

compared all tumor specific networks simultaneously to reveal pathway, 

protein-protein interaction and protein patterns that can cluster the tumors 

according to their similarities.    

 

In Chapter 2, we present a detailed literature review by starting with alternative 

splicing events and its relevance with the diversity of proteome and interactome 

and eventually diseases and disease networks. Then, we review a set of the most 

commonly used transcriptome analysis tools and continue with protein-protein 
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interactions, interfaces and prediction methods. At the end of the chapter, we 

recover the approaches for network modelling and the analysis of the disease 

networks.  

 

In Chapter 3, we present the steps of our methodology. We start by explaining 

the data we gathered by including the information about sequencing, isoform 

and interaction datasets. Then we continue with the methods of transcriptome 

assembly and the parsing of the resulting files. At the same time, we clarify the 

method we used to assess protein-protein interaction losses based on missing 

regions found in protein isoforms caused by alternative splicing events when 

those regions overlap with interaction interfaces. We finish the chapter by 

explaining the network construction by incorporating omics data and the 

analysis of the resulting networks.  

 

In Chapter 4, we explain our results obtained from the study. We present the 

results of the gene set enrichment analyses to reveal the involvement of the 

terminal sets in biological pathways that can cluster the patients. Discovered 

gene sets include pathways related to telomeres, gene silencing and cell cycle. 

We also include the network analyses to elucidate the rewiring patterns between 

two sets of networks created for the patients and present the most commonly 

rewired genes into the networks. The frequencies of the lost interactions between 

protein - protein, protein – DNA and protein – drug interactions are presented 

too to discover similarities between samples.  

 

Finally, we conclude the study in Chapter 5 with a short overview of the study 

and we discuss the results obtained in the previous chapter by comparing them 

with the findings obtained from literature when available. Potential future plans 

to carry this study one step further are also discussed including the proteomics 

analyses of the same samples to support our findings and extending the number 

of tumors by incorporating other cancer types to reveal similarities and 

differences between them.  
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CHAPTER 2 

2.LITERATURE REVIEW 

2.1. Alternative Splicing and Disease Relationship 

 

Splicing is a process in which introns are removed from a pre-mRNA and the 

remaining exons are combined. However, variations in this process that cause 

the production of different mRNAs are very common and they are called 

alternative splicing. Alternative splicing can occur in many ways through 

various combinations of the exons and introns. Alternative 3′ or 5′ splice sites, 

cassette alternative exons, mutually exclusive exons, alternative promoter usage 

and intron retention are among the examples (Blencowe, 2006). The number of 

mRNA variants produced as a result of alternative splicing can be as low as 2 

while it can climb as high as thousands as in the extreme example of DSCAM 

gene from Drosophila melanogaster that can produce 38,016 different mRNA 

isoforms (Nilsen & Graveley, 2010; Schmucker et al., 2000). Estimated to occur 

in more than 90 % of the human genes, it is one of the major contributors to the 

complexity of human proteome along with alternative transcription start sites, 

alternative polyadenylation, RNA editing and post translational modifications 

(Nilsen & Graveley, 2010; Pan et al., 2008; E. T. Wang et al., 2008). Through 

the changes it causes in the mRNA sequences, alternative splicing has a potential 

to change many biological dynamics including protein structures, functions, 

interactions and localizations. Hence, the relationship between alternative 

splicing and diseases such as cancer has been a frequently studied interest over 

the years. For example, neurological diseases are among the mostly associated 

diseases with alternative splicing. Studies show that brain is the organ that have 

the highest number of alternatively spliced genes and that these genes are often 

linked to neurodegenerative disorders (Johnson et al., 2009; Mills & Janitz, 

2012; Yeo, Holste, Kreiman, & Burge, 2004). In a recent study, Raj et al. 

analyzed 450 brain tissue samples from two different age groups to reveal 

hundreds of aberrant splicing events that were associated with Alzheimer’s 

disease. They also assessed the role of alternative splicing levels and the 

expression in disease by finding 21 significantly related genes among which 

some genes were already known to be associated with Alzheimer’s disease while 

some were novel genes in terms of relevance (Raj et al., 2018). Among these 

diseases, cancer has been a frequently studied interest which resulted in many 
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examples of its relationship with alternative splicing in terms of proliferation, 

motility, drug response, metastasis and oncogenesis (Skotheim & Nees, 2007). 

It is known that some alternatively spliced variants of a gene are only produced 

in cancer samples and not found in healthy tissues (Kim, Goren, & Ast, 2008). 

One famous example of the alternative splicing on cancer is SR protein 

(serine/arginine-rich proteins) SF2/ASF which is a splicing factor whose 

overexpression has been associated with cancer transformation. SF2/ASF is 

found as upregulated in some cancer types including lung, colon and breast 

cancer. The researchers showed that the overexpression of SF2/ASF causes the 

increased production of isoform-2 mRNA of protein S6 kinase-β1 (S6K1) which 

in turn acts as a proto-oncogene and enables transformation in mice. In addition, 

they used knockdown experiments to illustrate that the transformation effect can 

be reversed if the isoform-2 or the SF2/ASF were targeted (Cooper, Wan, & 

Dreyfuss, 2009; Karni et al., 2007). p53, PTEN, BRCA1 and CDC25 proteins in 

breast cancer (Okumura et al., 2011; Omenn et al., 2010; Tammaro et al., 2012), 

GRB7 protein in ovarian cancer (K. Wang et al., 2010), KLF6 in hepatocellular 

carcinoma (Hanoun et al., 2010)   are among the example proteins that has been 

associated with cancer through alternative splicing events (Tang et al., 2013). 

Hence, the changes in alternative splicing patterns can be targeted as potential 

biomarkers for cancer therapy and prognosis (Yi & Tang

 

One of the most common mechanisms that cause aberrant alternative transcripts 

is mutations. It is estimated that 15% of the all mutations that cause genetic 

diseases are associated with mRNA splicing (Srebrow & Kornblihtt, 2006). The 

point mutations that occur at splice sites can enable the production of different 

variants depending on its location on the gene. Exon skipping is one of the most 

frequent type of events that is caused by point mutations in splice sites. The 

skipping of the exon can cause the early introduction of stop codon due to a 

frameshift which may lead to a shorter mRNA that generally ends up being 

degraded due to nonsense mediated decay. If the loss of exon leads to a shorter 

mRNA without a frameshift, resulting mRNA can be translated to a shorter 

protein. Genes LKB1(Hastings et al., 2005), KIT (Chen et al., 2005), CDH17 

(X. Q. Wang et al., 2005), KLF6 (Narla et al., 2005) and BRCA1 (Pettigrew et 

al., 2005) are among the example genes which are associated with cancer due to 

presence of mutations in their splice sites (Anna & Monika, 2018). 

 

2.2.   RNA-seq Analysis for Alternative Splicing Quantification 

With the common use of RNA-seq and the vast amount of data it provides, the 

analysis of RNA-seq data using computational methods has gained popularity 

along with the tools that inspect alternative splicing. Currently, there are two 
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main approaches that are utilized to study alternative splicing using RNA-seq 

data. The first set of methods are based on the quantification of mRNA 

isoforms from sequence reads with the help of sequence alignment. The 

second set of methods, on the other hand, depend on the assessment of 

alternative splicing data from the quantification of events (Park, Pan, Zhang, 

Lin, & Xing, 2018) such as MISO (Katz, Wang, Airoldi, & Burge, 2010), 

SpliceTrap (Wu et al., 2011) and rMATS (Shen et al., 2014). Both group of 

methods have its own flows and advantages as they can be utilized depending 

on the aim of the study. For example, methods based on transcriptome 

assembly falls short when the input transcriptome is insufficient as it highly 

depends on the present information (Conesa et al., 2016). Yet, tools that can 

use a reference or enable the discovery of novel products at the same time are 

also available including Cufflinks (Trapnell et al., 2012) and StringTie (Pertea 

et al., 2015). StringTie is a fast and efficient transcriptome assembler which 

claims to give better results than its most commonly used counterparts 

including Cufflinks on both real and artificial data. It assembles the transcripts 

and produces the expression results for each transcript in terms of different 

quantification statistics using normalization methods including FPKM and 

TPM.  

2.3.   Protein – Protein Interactions and Interfaces 

Proteins are not functional on their own, rather they interact with each other.  

Almost 80% of the proteome interact to contribute in a process or a pathway or 

to form a cellular machinery (Berggard, Linse, & James, 2007). Some protein 

interactions are malfunctioning and pathogenic that may be associated with 

diseases such as cancer, neurodegenerative diseases. Proteins interact with each 

other through the interface region. The interface can be defined as the area where 

two proteins get in contact via non-covalent atomic interactions in their complex 

state. In the sequence-structure-function cascade, structure is more conserved 

than the sequence. Not all residues in the binding site contribute equally to the 

binding free energy.  Rather, some residues contribute significantly more to the 

binding free energy, called “hot spots” and provide targets for the drug design 

(Bogan & Thorn, 1998; Clackson & Wells, 1995). 

The interface region can be determined using different approaches such as 

calculation of the atomic distances, identification of the buried surface area after 

the complex formation and the Voronoi diagrams (Janin, Bahadur, & 

Chakrabarti, 2008). Currently, only a small portion of the known PPIs has at 

least one experimentally resolved complex state in PDB. For the rest, 

computationally efficient and accurate methods are frequently used. These 

predictive methods can be classified as blind docking, knowledge-based 
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modeling, evolutionary coupling (Hopf et al., 2014). In the knowledge-based 

modeling, usually a template is used to find the structural model of a PPI which 

limits the search space to predict the structural orientation of the proteins in their 

complex state. PRISM (Baspinar et al., 2014; Tuncbag et al., 2011) is a 

knowledge-based approach which depends on the assumption that if the 

complementary parts of an interface structurally match to the regions on the 

surfaces of two given target proteins, then these proteins are said to be interacting 

with each other. In evolutionary coupling approach, co-evolving residues in 

sequence are assumed to be spatially in close proximity; so that the three-

dimensional structures of the protein interactions can be identified with an 

acceptable accuracy. In blind docking, all possible orientations of the protein 

pairs are sampled if there is no prior knowledge. 

Interactome INSIDER (Meyer et al., 2018) (integrated structural interactome 

and genomic data browser) is a tool which collects the interaction data from 

multiple databases and finds the best interface for the specific interaction. If 

available, co-crystalized proteins from PDB or homology models from 

Interactome3D (Mosca et al., 2013) are used to calculate the protein-protein 

interfaces. If not, INSIDER uses a machine learning based approach called 

ECLAIR to predict the interfaces. For human interactions, it holds a vast amount 

of data by offering 121,575 high confidence interfaces. 

2.4.   Network Modelling 

Although the recent developments enabled the production of a vast amount of 

data regarding omics elements from interactomes to transcriptomes, integrating 

different types of these elements to be able to obtain meaningful results still 

remains as an important task. To overcome this problem, many approaches that 

combine these elements have been developed. Approaches that are based on 

matrix factorization, correlation, Bayesian methods and network related 

methods are among the commonly used bases for the integration of multi-omics 

data (S. Huang, Chaudhary, & Garmire, 2017). Among these methods, network 

models enable the analysis of the high-throughput data from a systems 

perspective. By integrating molecule level information with the interaction 

networks, network modelling provides a focused point of view in which 

connection between important hits, hidden contributors or specific pathways 

could be revealed (Kedaigle & Fraenkel, 2018). Omics Integrator (Tuncbag et 

al., 2016) is a software package which is composed of two tools. While Garnet 

tool identifies transcription factors associated with expression changes by 

incorporating epigenetic changes nearby expressed genes, Forest tool solves the 

prize-collecting Steiner forest problem to create subnetworks by focusing on the 

omics hits or terminal nodes provided by the user. By using the terminal list with 
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an interactome, Forest tries to create reliable subnetworks that connect the 

elements in the terminal list with the help of the prizes given to the terminals and 

the weights in the interactome. The main idea behind the algorithm is including 

as many as possible terminals and to connect these terminals with additional 

proteins while avoiding the unreliable interactions as possible. 
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CHAPTER 3 

 

3.MATERIALS AND METHODS 

 

In this chapter, we explain the methods and materials that we used to find 

predominant isoforms that cause interaction losses, to integrate them with omics 

data to reconstruct interaction networks. 

3.1.   Overview of the Pipeline 

In this study, we reconstructed patient specific signaling networks with tumor 

specific protein isoforms by integrating their 3D structures and altered 

interactions to reveal how the tumor networks are rewired. This section is 

dedicated to summarizing the overall pipeline.  First of all, we retrieved 

processed RNA-seq data of 400 breast cancer tumors and 112 normal samples 

from The Cancer Genome Atlas (TCGA) program of NCI Genomic Data 

Commons (GDC) (Grossman et al., 2016). After the detection of expressed 

transcripts using StringTie (Pertea et al., 2015), we calculated the log fold 

changes between tumor and an average of pooled normal samples for each 

patient. At the same time, we mapped the transcripts to protein isoforms with 

missing regions to detect the lost regions differing from the canonical protein 

and collected structural interactome from multiple sources (PDB, Interactome3D 

(Mosca et al., 2013), Interactome Insider(Meyer et al., 2018), PRISM(Baspinar 

et al., 2014; Tuncbag et al., 2011)). If a missing region in an isoform involves a 

known protein-protein interaction interface, the interaction is accepted as lost for 

the interactome of the samples where that isoform is present without its 

canonical counterpart. The same analysis was also performed on protein – drug 

and protein – DNA interactions.   After finding the lost protein-protein 

interactions, we ended up with two interactomes for each tumor sample. The first 

one was filtered based on the expression levels. For the second one, if a missing 

region in an isoform involves a known protein-protein interaction interface, the 

interaction is accepted as lost for the interactome of the samples where that 

isoform is present without its canonical counterpart. In this way, we prepared 

tumor specific interactomes for 400 patients. Then, we used the set of proteins 

which lost at least one interaction as the set of important targets (called “terminal 

set”) of each tumor samples. We used Omics Integrator to find the optimal 
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network that represents the input data best.  Omics Integrator reconstructs 

signaling networks by including as many of the altered proteins as possible and 

by keeping the network small since it avoids using unreliable protein-protein 

interactions. In our study, it integrates the terminal sets with the previously 

generated patient specific interactomes.   

In this way, we mapped patient specific structural data onto classical pathways 

for a rational network analysis and obtained high confidence subnetworks which 

connect the isoforms by also integrating the expression data. Finally, we 

compared the two networks created for each sample to reveal pathway, protein-

protein interaction and protein patterns that can cluster the tumors according to 

their similarities. 

 

Figure 3.1: Overall representation of the methodology.  
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3.2.    Datasets 

3.2.1. Data from TCGA 
 

The Cancer Genome Atlas (TCGA) is a public funded collaboration project 

which resulted in a database covering the data of more than 30 cancer types. A 

variety of data types are available in the atlas including raw high-throughput 

sequencing, gene and exon expression, DNA methylation, mutations and 

structural variations. TCGA data is available on The NCI's Genomic Data 

Commons (GDC) repository along with some other major programs (Grossman 

et al., 2016). For our study, we downloaded 400 RNA-Seq BAM (binary 

alignment map) files belonging to 400 breast cancer tumor samples along with 

112 RNA-seq BAM files belonging to normal tissues of some of the same 

patients.  All samples were coming from female patients and the same study of 

TCGA-BRCA. The BAM files were created by GDC using the STAR (Dobin et 

al., 2013) two-pass alignment procedure with GRCh38 reference genome after a 

quality control step. The final quality assessments were completed using Picard 

Tools. Since the aligned reads were under the controlled access data type, we 

applied for an authorization to access the data through NIH (National Institutes 

of Health) database of Genotypes and Phenotypes (dbGaP) and obtained a 

“General Research Use” access. 

3.2.2. Data from UniProt 
 

The Universal Protein Resource (UniProt) is a protein sequence and annotation 

database which holds almost 120 million protein entries belonging to different 

organisms. One of the three main databases that UniProt consists of is UniProt 

Knowledgebase (UniProtKB) and it has two arms. While the entries under 

UniProtKB/TrEMBL group are unreviewed and automatically annotated, the 

entries belonging to UniProtKB/Swiss-Prot group are curated and reviewed; 

hence, more credible. Second database is UniProt reference Clusters (UniREF) 

which includes clustered sets of sequences. The last of the three databases is The 

UniProt Archive (UniParc) that holds the protein sequences. Altogether with its 

core databases, UniProt provides a large amount of information about proteins 

including sequences, functions, interactions, locations and variants with many 

more others (UniProt, 2019). Apart from separate entries, UniProt also provides 

proteomes to enable the accession of all proteins belonging to one species. The 

results table obtained after a selection can be customized to include different 

characteristics of the selected proteins at the same time. For our analysis, we 

selected the human proteome and limited the proteins with reviewed status 

(Swiss-Prot) to obtain a reliable dataset which included 20404 entries. Then, we 
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added multiple columns to the resulting table. The selected columns were 

“Ensembl”, “Gene names (primary)” and “Gene names (synonym)”, 

“Alternative products (isoforms)” and “Alternative sequence”.  This way, we 

obtained a dataset which includes all gene names and all Ensembl transcript IDs 

that map to a reviewed protein. In addition, if there are isoforms available for a 

protein, their IDs, isoform names, the sequence changes with respect to the 

canonical isoform and the transcript names that match each isoform are also 

included in the dataset. This information is crucial for our study since we need 

to map the Ensembl transcript IDs found in the transcriptome files obtained from 

StringTie to protein isoforms in UniProt. 

3.2.3. Data for Interfaces 
 

We collected the interface data of protein-protein interactions from Interactome 

INSIDER (integrated structural interactome and genomic data browser)(Meyer 

et al., 2018) (Interactome INSIDER is a tool which collects the interaction data 

from multiple databases and finds the best interface for the specific interaction. 

If available, co-crystalized proteins from PDB or homology models from 

Interactome3D (Mosca et al., 2013)are used to calculate the protein-protein 

interfaces. If not, INSIDER uses a machine learning based approach called 

ECLAIR to predict the interfaces. We only included the 121,575 high confidence 

interfaces in our study. In addition to INSIDER, we also integrated the predicted 

interface residues obtained from PRISM (Protein Interactions by Structural 

Matching) (Baspinar et al., 2014; Tuncbag et al., 2011). PRISM predicts the 

protein-protein interactions with interfaces by using a knowledge-based 

algorithm in which it tries to match the regions of two input proteins from PDB 

with the opposite sides of a known interface. In the cases where the same 

interaction is present in both INSIDER and in PRISM, we merged the interface 

residues. From these two sources, we collected 123,182 protein-protein 

interfaces as a list of UniProt residues for each interactor in each interaction. 

Only the interfaces which are longer than 5 residues are considered in the 

analysis 

3.3. Transcriptome Assembly 

Having 400 tumor samples to be compared with 112 normal samples came with 

some disadvantages since the lack of enough normal samples combined with the 

lack of replicates made a standard differential expression analysis almost 

impossible. As the files were already aligned, the next step in the downstream 

analysis was to assemble the transcriptomes for each patient. Starting with 

aligned files prevented us from using some powerful transcriptome assemblers 
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including Kallisto (Bray, Pimentel, Melsted, & Pachter, 2016) that require the 

input files to be raw sequence file. Although the gene expression values and 

counts were already calculated using HTSeq in GDC as a part of the mRNA 

analysis pipeline, we could not use them since we needed transcript counts in 

order to continue with protein isoforms.(Anders, Pyl, & Huber, 2015) To 

calculate the transcript expression values, we used StringTie (Pertea et al., 2015). 

StringTie is a fast and efficient transcriptome assembler which claims to give 

better results than its most commonly used counterparts including Cufflinks on 

both real and artificial data. StringTie can provide different outputs according to 

the needs of the usage. The output options include a list of assembled transcripts 

where abundances using different normalization methods such as TPM and 

FPKM are available, gene abundances, input files for downstream analysis and 

merged GTF files. Although the only mandatory input of StringTie is the 

alignment file in SAM or BAM format, a reference gene annotation file in 

GTF/GFF3 format is highly recommended. In our case, it was also required since 

we needed the official transcript IDs which can be mapped to UniProt protein 

isoforms. As a reference, we used the comprehensive gene annotation GTF file 

which only covers the reference chromosomes from Gencode (Harrow et al., 

2012) release 22 (GRCh38.p2). This reference file was selected since it was the 

reference used in RNA-Seq alignments by HTSeq in GDC pipeline and release 

22 was the source of index files for the alignments completed with STAR.  

We assembled the transcriptomes for each of 512 BAM files using the -e, -G and 

-p 36 options. -e option enables reference to skip the novel transcripts which do 

not match with the reference annotation, -G option denotes the usage of a 

reference annotation and -p option sets the number of threads to be used. The 

remaining parameters were not specified so they were used as the default values. 

As a result of these runs, we obtained a Gene Transfer Format (GTF) file for 

each BAM file.  

3.4. Parsing GTF Files 

After obtaining the GTF files from StringTie for each patient, the next step was 

finding the expressed transcripts. Each GTF file contains 9 columns of 

information which are “seqname”, “source”, “feature”, “start”, “end”, “score”, 

”strand”, “frame” and “attributes” for each line which denotes an element. 

Among these, we were firstly interested in “feature” column which denotes the 

type of the element such as exon, transcript and mRNA. If the “feature” column 

of a line is “transcript”, we continued with the “attributes” column which holds 

a variety of information about the element in that line from identification 

numbers to expression values. In case of transcripts, the available information 

included “gene_id”, “transcript_id”, “REF_gene_name”, “cov”, “FPKM” and 
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“TPM”. Fragments Per Kilobase of transcript per Million fragments mapped 

(FPKM) (Trapnell et al., 2010) and Transcripts Per Million (TPM) (Li, Ruotti, 

Stewart, Thomson, & Dewey, 2010) are among commonly used RNA abundance 

measures. FPKM is a slightly modified form of reads per kilobase per million 

reads (RPKM) (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008) and it 

is better at estimating the abundance of paired-end reads (Pertea et al., 2015). 

Although both TPM and FPKM use the same normalization methods for RNA 

length and for the sequencing depth, the order or normalizations make TPM 

more comparable between samples as it shows the proportion of the reads 

mapped to a gene/transcript with respect to total number of reads. On the other 

hand, FPKM shows proportions that differ between samples which cause it to be 

inconsistent. Hence, in the following steps, we continued with TPM values.  

To find whether a transcript is expressed, after finding the “transcript” keyword 

in the “feature” column, we checked whether the TPM value of that specific 

transcript is higher than 0.1. If a transcript’s TPM value is higher than 0.1, we 

accept the transcript as expressed. This limit is set to eliminate the inclusion of 

transcripts that are detected due to measurement or biological noises. We 

calculated the logarithm to the base 2 values of TPM values belonging to the 

transcripts which surpassed the threshold.  

For 112 normal samples, we calculated the average of the logarithm to the base 

2 values of TPM values for each transcript. We preferred logarithm values over 

TPM values to be able to reduce the effects of highly expressed transcripts on 

the averages. These averages are then used to compare the values coming from 

tumor samples versus normal samples. For each GTF file belonging to 400 tumor 

samples, we extracted the list of expressed transcripts with corresponding gene 

names. Then, we calculated the log-fold-changes by subtracting the average 

logarithm value of the transcript of the normal samples from the logarithm value 

of the transcript in the sample.     

3.5. Mapping the Transcripts to Isoforms with Missing Residues 

To be able to map the transcripts to protein isoforms, we started with the list of 

transcripts with corresponding gene names and UniProt isoform IDs available if 

the transcript matches with a known alternative sequence. Isoform IDs are in the 

format of PDB ID – Number as in the example of P46736-1 and P46736-2. 

Additionally, each isoform is also given a name such as Isoform 1, Isoform 

Alpha-2 and Isoform Long. The isoform names do not necessarily match with 

the isoform IDs as the name of the isoform O75110-1 is “Isoform Long” while 

the name of the isoform P46100-1 can be “Isoform 4”. For this reason, the 

numbers or the isoform names do not give the correct information about whether 
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an isoform is canonical or not. Among the alternative sequences available for a 

protein, separating the canonical sequence from the others is important since all 

the sequence changes are stated with respect to the canonical sequence. The 

canonical isoform is selected by UniProt depending on a couple of criteria which 

consider the prevalence, similarity to orthologous sequences, the description of 

the constitution of the isoform and the length. We distinguished the canonical 

isoform from the remaining sequences by using the order of the isoforms in the 

data file the first isoform found in the alternative products section is the 

canonical isoform.   

For each protein, the event type that is responsible for the isoforms were also 

available. The event keywords consisted of “Alternative splicing”, “Alternative 

promoter usage”, “Alternative initiation” and “Ribosomal frameshifting”. If a 

protein did not cover the “Alternative splicing” keyword, we excluded the 

protein isoforms from the further analysis. The missing sequences of an isoform 

with respect to the canonical isoform is shown in the format “VAR_SEQ Start 

End Missing (in isoform X)” where Start and End indicates the beginning and 

the ending of the missing sequence and X denotes the isoform name. There may 

be multiple missing fragments for an isoform and a missing fragment can be 

valid for multiple isoforms. Apart from the missing sequences, “VAR_SEQ” 

subsection can also have the information about the sequence variations in the 

form of substitutions or insertions, but they are not included in this study. By 

parsing every line in the data file, we created a mapping of Ensembl transcript 

IDs to UniProt isoform IDs and gene names. The isoforms both include the 

canonical sequences and the alternative sequences which have missing residues. 

3.6. Finding the Potential Isoforms that Cause Interaction Losses 

After creating a mapping of transcripts to isoforms as a reference, we examined 

the transcripts in our tumor samples to find the list of the isoforms in each 

patient. To do so, we iterated over each expressed transcript extracted from the 

GTF file of a tumor sample. The isoforms that belong to the transcripts which 

comply with the conditions below are selected as the final list of isoforms and 

the interaction losses that came with the missing residues were calculated for 

them. The conditions are as follows: 

I. The Ensembl transcript ID of the patient transcript should be found 

in the transcript IDs obtained from UniProt and map to an isoform 

which has missing sequences with respect to the canonical isoform. 

II. The log-fold-change value of the transcript should be higher than 1 

which corresponds to a 2-fold difference between the original values. 
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III. If expressed, the transcript belonging to the canonical isoform should 

not have a log-fold-change value higher than 1. 

With this filtration, for each patient, we obtained the list of potential isoforms 

which can cause the loss of a protein-protein interactions due to the missing 

interface residues.   

3.7.   Finding the Interaction Losses and Modifying the Patient 

Interactomes 

As the reference interactome, we used the iREFIndex (Razick, Magklaras, & 

Donaldson, 2008)(version 13.0) network which was previously prepared for 

Omics Integrator (Tuncbag et al., 2016) to only include the gene names as 

interactors. In this interactome, every interaction is weighted using an MIScore 

which is a scoring method based on experimental data to assess the reliability of 

an edge. The scores are used by Omics Integrator program when patient specific 

interaction networks are generated. Self-interactions are removed from the 

iREFIndex interactome. Additionally, proteins including UBC, APP, ELAVL1, 

SUMO2 and CUL3 are excluded due to their nonspecific interactions with high 

number of proteins. At the same time, proteins that are extremely big in size 

including TTN, MUC16, SYNE1, NEB, MUC19, CCDC168, FSIP2, OBSCN 

and GPR98 are also removed from the reference interactome (Hristov & Singh, 

2017).  

The first step in customizing the interactomes is filtering the interactions based 

on gene expression. For each tumor sample, we removed the genes and their 

interactions from the reference interactome where the gene does not have any 

transcript that has a TPM value higher than 0.1 and is matching to the transcript 

IDs obtained from UniProt dataset. This filtration is applied so that we only 

include the genes from protein coding and expressed transcripts in the 

interactome. The interactomes generated in this step were used as the first set of 

input interactomes for the Omics Integrator runs. 

The second step in customizing the interactomes comes with mapping the 

missing regions of isoforms to the protein-protein interaction interfaces to 

remove the lost interactions. For each isoform found for each tumor sample in 

the previous step, we compared the interface residues belonging to the canonical 

sequence of the isoform with the residues that isoform is missing. If at least 5 

residues from an interface was missing in the isoform, we accepted that 

interaction as lost in case when the interactor of the isoform is also expressed in 

the patient. Such interactions are removed from the interactome obtained in the 
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first step to create a further customized interactome for each tumor sample to be 

used as the second set of input interactomes for the Omics Integrator runs. 

3.8.   Network Modelling with Omics Integrator 

 

Figure 3.2: The node statistics of a set of Omics Integrator runs for a selected 

patient. Orange bars represent the number of included terminals in each resulting 

network while the green ones represent the terminals that are excluded. The blue 

bars illustrate the number of Steiner nodes that are added to the resulting network 

by Omics Integrator.   

We used the Forest module of Omics Integrator tool to reveal hidden proteins in 

subnetworks that may have a role in the disease formation and to observe the 

network rewiring after the removal of additional interactions by integrating the 

isoforms found in previous steps. After completing many runs for each patient, 

we ordered the resulting statistics of the runs according to included number of 

terminals, sum of negative prizes and the number of hubs to get the results where 

the terminal inclusion was high while the sum of negative prizes and the number 

of hubs were low. Since the resulting top networks were similar in terms of the 

elements mentioned in the filters up to a point in both conditions as shown in 

Figure 3.2 for a selected sample, we merged the networks to be able to extract 
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an optimal consensus from the results of the runs. We merged the best 50 

networks and we included the proteins that are found in at least the half them 

with the interactions in between. The merging step was completed for both 

conditions for each tumor sample. 

Forest tool solves the prize-collecting Steiner forest problem to create 

subnetworks by focusing on the omics hits or terminal nodes provided by the 

user. By using the terminal list with an interactome, Forest tries to create reliable 

subnetworks that connect the elements in the terminal list with the help of the 

prizes given to the terminals and the weights in the interactome. The main idea 

behind the algorithm is including as many as possible terminals and to connect 

these terminals with additional proteins while avoiding the unreliable 

interactions as possible. Forest uses the prize function stated below (Equation 

1) to assign a prize to each node based on the significance value obtained from 

the user and the number of edges that node has in the interactome. While the 

significance increases the chance of a node to be included, number of edges 

decreases this probability as the bias coming from the hub nodes is unwanted in 

most cases.  

𝑝′(𝑣) =  𝛽 .  𝑝(𝑣) −  𝜇 . 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)                      (1) 

 

In this function, p(v) stands for terminal node prize where v is node and 

degree(v) is the number of connections that a node v has in the interactome. As 

scaling factor β increases, the chance of a terminal node to be included in the 

final network also increases as the impact of the node prize is boosted. On the 

other hand, second scaling factor μ decreases the chance of node’s involvement 

as a negative weight is given to the node proportional to its number of 

connections.  

In addition to the number of interactions and prize values, Forest also considers 

the weights available for each interaction in the interactome by converting them 

to costs using the function below (Equation 2):  

 𝑐(𝑒) =   1 −   𝑝(𝑒)                                                 (2) 

where cost c(e) of an edge is inversely correlated with its weight and hence 

confidence. These two functions are used in the main objective function of the 

algorithm (Equation 3) whom Forest tries to minimize.     

𝑓′(𝐹) =  ∑ 𝑝′(𝑣)  + ∑ 𝑐(𝑒)  +   𝜔 .𝑒 ∈ 𝐸𝐹 𝑣 ∉ 𝑉𝐹                      (3) 
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In the objective function, v denotes each node belonging to node set V and e 

denotes each edge from the edge set E where the prize and cost functions p’(v) 

and c(e) are stated above, respectively. k is the number of trees in the final 

network and ω is a parameter to tune the edge cost between a dummy node and 

a node in the node set. Dummy nodes are the artificial nodes introduced in the 

beginning of the run which are utilized to solve the optimization problem and 

removed in the final network.  D is an additional required parameter which 

controls the depth of the final network by limiting the maximum path length. 

With all these functions and parameters, the objective function implies that the 

algorithm has to pay a penalty for each terminal that is not included in the final 

network while it has to pay the cost of each edge that it decides to add.  

In our case, the terminals are the genes belonging to proteins that lose at least 

one protein-protein interaction due to the presence of an isoform with a missing 

sequence. As the prizes of the terminals, we used the log-fold-change values 

calculated for each transcript. If a gene has multiple transcripts that surpassed 

the log-fold-change limit explained in section 3.6, we took the average of the 

log-fold-change values. As the results of the algorithm depends on the chosen 

parameters, the recommended usage of Forest is completing multiple runs with 

different parameters to obtain the optimal result. For this reason, among the 

tuning parameters, D is set as 10 as suggested, ω is selected in the interval [1, 5], 

β is in the interval [1, 10] and μ is set as 0.005 and 0.01. With these parameters, 

we completed 100 x 2 runs for each of 400 patients using two different 

interactomes for each 100x runs. One of the interactomes were only filtered 

according to gene expression results while the other one filtered according to the 

lost interactions caused by isoforms with missing residues in addition to 

expression values. 

3.9.   Finding Drug Binding Interfaces and Interaction Losses 

In addition to the losses of protein-protein interactions due to the missing protein 

regions resulting from alternative splicing, we incorporated drug-protein 

interaction data to be able to observe potential interaction losses. To do so, we 

used to information provided by DrugPort(de Beer, Berka, Thornton, & 

Laskowski, 2014) to select the molecules to be included. DrugPort is a branch 

of PDBSum (Laskowski, Jablonska, Pravda, Varekova, & Thornton, 2018) that 

holds the information about drug molecules and nutraceuticals from DrugBank 

(Wishart et al., 2018; Wishart et al., 2006) with their target proteins and their 

presence in PDB (Berman et al., 2000). To obtain the drug and nutraceutical IDs 

available in the DrugPort, we parsed the webpage at 

https://www.ebi.ac.uk/thornton-srv/databases/drugport/data/appdrugs_pdb.dat. 

After obtaining the IDs, we used them to reach the molecule specific webpages 
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created for each molecule in the DrugPort. These pages list many properties of 

the molecules including generic names, brand names, targets, the presence of the 

drug, target and the drug-target structures in found in PDB. Then, we analyzed 

the information webpages of each drug and nutraceutical to obtain the names of 

the PDB structures that involve a drug or nutraceutical bound with its target 

protein.  Among 586 drugs and 64 nutraceuticals which are found in PDB 

database, 193 molecules had such structures. 356 human Uniprot entries were in 

contact with a drug or nutraceutical in 1319 PDB structures.   

After finding the names of the molecules, targets and the presence of the drug – 

protein complex in PDB, we continued with PDBSum to get the list of protein 

residues where the interaction occurs. PDBSum is a web server which holds the 

data about different characteristics and the analysis results of the PDB structures 

in a text-based or visual format including secondary structures, protein domains, 

protein – ligand interactions and protein – DNA interactions. Since we were 

interested in protein – drug interactions, we obtained the list of protein - ligand 

interactions for each PDB structure with the specific drug / nutraceutical that we 

found in the previous step is bound. If more than one of the same ligands are 

bound to a protein, all binding residues are considered as a single group. We did 

not include the interfaces that are shorter than 3 amino acids long.   

After obtaining the amino acid residues which are bound to a drug or 

nutraceutical for each PDB structure, we mapped these PDB residues to their 

equivalents on the Uniprot protein sequences in order to match them with the 

missing residues on alternative sequences. To do so, we used a PDB/UniProt 

Mapping server called “pdbsws” (Martin, 2005) which maps the PDB residues 

to corresponding residues in UniProt entries by aligning them. For each PDB 

structure, we modified the following URL to access the mapping directly from 

our scripts: “http://www.bioinf.org.uk/cgi-

bin/pdbsws/query.pl?plain=1&qtype=pdb&id=1yqv&all=yes”. The accessed 

webpage holds the list of residues from PDB for each chain with the 

corresponding residues in UniProt and their indices in the sequence. After 

mapping the sequences, we again compared the drug binding residues with the 

lost regions in the protein isoforms where the log-fold-change value of the 

transcript belonging to the isoform is higher than 1. In addition, the transcript 

belonging to the canonical isoform should not have a log-fold-change value 

higher than 1. As a result, we obtained the lost protein – drug or protein – 

nutraceutical interactions caused by alternative splicing. Moreover, we also 

found potentially lost interactions caused when the interactor protein is not 

expressed in the tumor sample.   
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3.10. Finding DNA Binding Interfaces and Interaction Losses 

Apart from protein – protein and protein – drug interactions, DNA – protein 

interactions constitute another important part of the interaction possibilities of 

the proteins. To be able to analyze this type of interactions, we obtained 993 

structures from PDB by using “Macromolecule Type” search criteria to select 

the files in which only proteins and DNA molecules are present without any 

RNA molecules or DNA/RNA hybrids. All structures belong to Homo sapiens 

only. Although the residues where protein – DNA interaction occurs were also 

present in PDBSum similar to protein – drug interactions, the results there were 

in visual format, thus we were unable to parse the data. To overcome this 

problem, we used the same program that is used in PDBSum, NUCPLOT 

(Luscombe, Laskowski, & Thornton, 1997).   NUCPLOT is a program that takes 

PDB files as inputs and produces both visual and text-based results about the 

residues which are involved in protein – DNA interaction. It calculates the 

hydrogen bonds, covalent interactions and the van der Waals contacts. In our 

study, we are only interested in the non-bonded van der Waals contacts. To 

calculate them, Nucplot uses a simple distance calculation method and accepts 

the interaction if the distance between an atom from the protein residue and an 

atom from DNA molecule is smaller than 3.9 Å. We obtained the text-based 

interaction results for our 993 PDB structures and matched the PDB file residues 

with corresponding Uniprot entry sequences using pdbsws in order to be able to 

map the sequence losses to protein – DNA interactions. PDB entries having 

chains that match more than one Uniprot ID (for example fusion proteins), 

interactions between hetero atoms and DNA atoms and small peptides have been 

excluded from the results. After mapping the sequences, we again compared the 

DNA binding residues with the lost regions in the protein isoforms where the 

log-fold-change value of the transcript belonging to the isoform is higher than 1. 

In addition, the transcript belonging to the canonical isoform should not have a 

log-fold-change value higher than 1. As a result, we obtained the lost protein - 

DNA interactions caused by alternative splicing. Moreover, we also found 

potentially lost interactions caused when the interactor protein is not expressed 

in the tumor sample 

3.11  Enrichment Analysis and Clustering 

To be able to observe the distribution of the terminal sets in known gene sets, 

we performed Overrepresentation Enrichment Analysis (ORA) using 

WebGestaltR (Liao, Wang, Jaehnig, Shi, & Zhang, 2019) for each tumor sample. 

WebGestaltR is an R package that is implemented from the gene analysis tool 

kit named WebGestalt. As an input set, we used the gene names that have at least 

one protein coding transcript whose log-fold-change value is higher than 1 and 
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missing residues caused at least one interaction loss. At the same time, the log-

fold-change value of the transcript coding for the canonical isoform had to be 

smaller than 1. We used "ORA" as enrichment method, "hsapiens" as organism, 

‘KEGG’ and “Reactome” pathways together with “Geneontology Biological 

Process” and “Geneontology Molecular Function” as enrichment databases, 

“mean” as collapse method, 3 as minimum number and “fdr” as significance 

method.  

After completing the ORA runs for 400 tumor samples, we extracted the 

resulting gene sets in which a subgroup of the terminals is enriched with a value 

smaller than 0.05. We removed the gene sets that are found in less than 25 

patients to be able to obtain a better representation of the gene sets and patients. 

After the removal of these gene sets, some patient samples ended up with no 

enriched gene sets, hence, they are removed too. Then we clustered the enriched 

gene sets using “pheatmap” package of R. (Kolde, 2012) 
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CHAPTER 4 

4. RESULTS 

Alternative splicing is one the processes which are responsible for the diversity 

of the proteome by enabling the production of multiple mRNAs to potentially 

code for multiple proteins. The changes and abnormalities in this process have 

been associated with diseases including cancer. In this work, we integrated the 

missing residues in protein isoforms with structural interactome information to 

observe network rewiring patterns of breast cancer tumor samples. We identified 

common protein – protein, protein – drug and protein - DNA interaction losses 

across most the patients which may indicate tumor related patterns. We also 

created two sets of networks by using Omics Integrator to extract the high 

confidence subnetworks with interactomes that are personalized for each 

sample. We then compared the networks from these two sets to identify the 

proteins that are added into networks to compensate the interaction losses caused 

by protein isoforms. 

 

4.1. Network Modeling Analysis 

4.1.1. Analysis of Interactions Belonging to Networks in which Lost 
Interactions Removed to Inspect Rewiring 

 

To be able to observe the effects of network rewiring after the removal of 

interactions lost due to isoforms, we extracted the interactions that are only 

found in second set of merged networks. The results are shown in Figure 4.1 

where the counts represent the number of patient samples that each interaction 

is observed. The most frequent interaction that is missing from the networks that 

are only filtered according expression without the integration of isoform 

information is LIG1 – RGS2 interaction. LIG1 is a gene that codes for human 

DNA ligase 1 protein. Ligases play crucial roles in DNA replication, 

recombination, and repair. Although there are multiple ligases, DNA ligase 1 

stands out with a higher participation rate in ligase activity in proliferating cells 

then its counterparts (Lindahl & Barnes, 1992). Multiple studies showed that 
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DNA ligase 1 expression rates are considerably high in malignant tumor samples 

with respect to normal benign cells where other ligases do not follow this trend 

(Jessberger et al., 1997; Montecucco et al., 1992; Signoret & David, 1986; Sun 

et al., 2001). In addition, they illustrated that the inhibition of DNA ligase 1 

could even prevent the tumor cell growth (Sun et al., 2001).  

 

Figure 4.1: The most commonly rewired interactions. These are the counts 

of the interactions which are added to the network models after we removed 

the interaction losses from the interactomes.   

4.1.2. An Example Merged Network from a Patient Obtained via Modeling 
 

After we completed two sets of Omics Integrator runs for each patient, we 

merged the resulting gene sets respectively to only include the genes that are 

robust to changes in parameters. In the merged networks, we only included the 

interactions where the nodes are observed in at least the half of the runs. Then, 

we merged the two union interactomes coming from the previous step to 

discover the nodes that are unique for each network or nodes that are found in 

both networks.  
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In the networks obtained below which are created for a randomly selected 

patient, nodes that are coming from the runs that are only filtered according to 

expression values are shown in purple color. On the other hand, the nodes that 

are included in the networks after the removal of lost interactions are represented 

in orange color. The edge colors also represent the same color annotation in 

terms of edges. The node sizes are associated with the average log-fold-change 

value of the transcripts belonging to the gene. The node shapes depict the type 

of the node whether it is a Terminal node (diamond) or a Steiner node (ellipse). 

We used Cytoscape (Shannon et al., 2003) for the network visualization 

purposes.  

 

  

Figure 4.2: Interaction network filtered by expression and lost interactions. 

The orange color represents the nodes that are specific for this network. 
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Figure 4.3: Interaction network filtered by expression. The purple color 

represents the nodes that are specific for this network. 

 

Figure 4.4: The network obtained by merging the two separate condition 

networks. Orange and purple colors represent the source network specific nodes. 

Blue nodes are mutual in both source networks.  
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4.2.   Results as Numbers 

The results of the isoform analysis and the interaction losses indicate that 

different samples show similar trends with respect to the counts. Table 4.1 

illustrates a list of results where 20 patient samples are randomly chosen. 

In this table, “Canon Genes” stands for the number of genes having transcripts 

belonging to canonical isoform and have a log-fold-change value higher than 1. 

On the other hand, “Isoform Genes” depicts the number of genes which only 

have the isoforms that have missing residues that show a higher log-fold-change 

value than 1.  “Lost PPI” stands for the number of lost protein-protein interaction 

and “Terminals” are the gene names belonging to such proteins that lost 

interactions. And finally, “Lost DNA” depicts the number of proteins that lost at 

least one protein – DNA interaction. 

Table 4.1: The counts of transcripts and lost interactions from a subset of 20 

samples. 

Canon 

Genes 

Isoform 

Genes 

Lost PPI Terminals Lost 

Drug 

Lost DNA 

2580 655 254 59 3 4 

2119 542 254 54 4 5 

2356 766 482 82 3 7 

2344 580 303 64 2 5 

3277 748 617 105 7 10 

2776 675 472 84 9 2 

2363 508 354 55 4 4 

2493 651 466 88 3 11 

1977 532 253 60 2 4 

3123 735 707 90 5 6 

2969 726 454 85 7 11 

2311 659 526 78 3 8 
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Table 4.1 (cont.)     

3438 695 545 81 3 8 

2210 585 439 74 4 6 

3022 742 699 104 10 8 

1812 562 326 66 4 4 

1459 422 185 49 5 3 

2926 731 675 86 5 4 

2703 699 588 99 4 10 

2939 768 690 96 6 9 

 

4.3.   Analysis of Terminal Nodes 

4.3.1.   The Frequency of Terminals 
 

For each patient, we determined a group of genes called terminal sets. To be 

included in this set, a gene must have at least one transcript that codes for an 

isoform having missing residues that cause an interaction loss. At the same time, 

the log-fold-change value of that transcript should be higher than 1 while the 

log-fold-change value of the transcript coding for the canonical isoform must be 

smaller than 1 in case it is expressed. We used these terminal sets as inputs for 

Omics Integrator runs. To be able to find the genes that are most commonly 

selected as terminal nodes, we calculated the frequency of each terminal. In the 

Figure 4.5, we illustrated the counts of the terminals where they are present in at 

least 150 tumor samples. According to the results, DLG3 is the most common 

gene included in the terminal sets with a count of 317. DLG3 (Discs Large 

MAGUK Scaffold Protein 3) is a membrane-associated guanylate kinase-family 

gene. Multiple studies have pointed out that it is down-regulated in several 

cancer types including glioblastoma, lung and colon cancer (Fukuhara et al., 

2003; Hanada et al., 2000; Liu et al., 2014; Makino et al., 1997). Its 

overexpression, on the other hand, has been associated with programmed cell 

death and mitotic cell cycle arrest which prevents proliferation and migration 

(Liu et al., 2014).  The two available non-canonical isoforms of DLG3 protein 

in UniProt have wide missing regions both more than 300 amino acids. The 
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finding that DLG3 is the most frequent terminal in our samples suggest that these 

isoforms showed an increased expression in tumor samples while their canonical 

isoform could not pass the log-fold-change threshold 1. These results may 

indicate a down regulation of the protein with an upregulation of potentially less 

functional or dysfunctional isoforms as suggested by the literature findings.  

 

 

Figure 4.5: Counts of the most common terminal nodes across the samples.  
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4.3.2.  Overrepresentation Enrichment Analysis (ORA) Results of Terminal Sets 
 

Since the gene names in terminal sets indicate a higher expression rate of 

isoforms and potential interaction and function losses, we are also interested in 

their inclusion in biological pathways. To be able to observe the distribution of 

the terminal sets in known gene sets, we performed Overrepresentation 

Enrichment Analysis for each tumor sample. As an input set, we used the gene 

names that have at least one protein coding transcript whose log-fold-change 

value is higher than 1 and missing residues caused at least one interaction loss.  

After completing the ORA runs for 400 tumor samples, we extracted the 

resulting gene sets in which a subgroup of the terminals is enriched with a value 

smaller than 0.05. We removed the gene sets that are found in less than 25 

patients to be able to obtain a better representation of the gene sets and patients. 

After the removal of these gene sets, some patient samples end up with no 

enriched gene sets, hence, they are removed too. In the Fig 4.6, there are 311 

patient samples and 123 gene sets which are clustered both in row-wise and 

column-wise. The results indicate that the enriched gene sets of some patients 

show very similar trends as some clusters can be pointed in the created heatmap.  

For example, there is a distinct cluster of patients that have very similar terminal 

patterns towards to the bottom of the heatmap as pointed out in Figure 4.7.  When 

we inspect the close-up figure, we observe multiple gene sets related to 

telomeres and their regulation with protein and RNA localizations. Among the 

results, “Positive Regulation of Telomere Maintenance via Telomerase” is an 

interesting result as telomerases are often associated with cancer. Studies also 

suggest that telomerases are not produced in most of the normal cells and while 

they are not accepted as the cancer drivers, their presence enables the constant 

growth in most cancer types (Shay & Wright, 2011). In addition to the cluster 

related to telomeres, gene silencing and cell cycle related gene sets are also 

enriched in the heatmap and they are found in multiple patients in similar 

patterns to cluster them.  
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Figure 4.6: The results of the Overrepresentation Enrichment Analysis in the 

form of a clustered heatmap. The intensity of the color depicts the significance 

of the enrichment as it is proportional to the negative logarithm of base 10 of 

FDR results. 
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Figure 4.7: A clustered patient sub-group. The group is enriched in telomere and 

telomerase related genes from the results of overrepresentation enrichment 

analysis.  

4.4.   The Analysis of Lost Interactions Across All Tumor Samples 

4.4.1. Protein – Protein Interactions 
 

We labelled protein- protein interactions as lost when the interface of an 

interaction was disrupted due to missing residues in either side of the interaction. 

Moreover, the log-fold-change value of the transcript coding for the isoform with 

the missing residue should be higher than 1 indicating an increased expression 

with respect to a pool of normal samples. If an isoform meets these expectations 

and its missing residues matches with a protein – protein interface, the 

expression of the canonical isoform decides whether the interaction will be 

accepted as “lost”. When the log-fold-change value belonging to canonical 

isoform is lower than 1, we accepted the interaction as “lost”, otherwise, the 

interaction was retained in the interactomes. 

As a result of the assessment of lost interactions for all samples, we found that 

12125 protein – protein interactions were classified as lost. Among these 

interactions, we were interested in the ones that are common in a high number 

of patient samples. We calculated the frequency of every lost protein-protein 

interaction and illustrated the results in Figure 4.8 for the interactions when the 

loss is present in at least 150 patient samples. 
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Figure 4.8: Most common lost protein-protein interactions. 

 

4.4.2. Protein – Drug Interactions 
 

After extracting the residues where protein-drug or protein-nutraceutical 

interaction occurs, we obtained the residues of 351 Uniprot proteins which are 

found bound to a drug in PDB. After finding the lost drug – protein interactions 

caused by the missing regions, to be able to find whether there is a similar pattern 

in the lost protein – drug interactions across the patients, we calculated the 

frequencies of each lost interaction. Since the number of drug-protein 

interactions that we obtained from DrugPort was relatively low, we expected to 

see smaller number of lost interactions in case of drugs with respect to protein – 

protein interactions. As a result, we obtained a total number of 53 unique protein 

– drug interaction losses. We only kept the interactions that are lost in at least 

ten tumor samples and visualized the count results in Figure 4.9 which is 

available below. Results indicate there are very common interaction losses found 

in more than the half of the patients which are P23526 – IPA, Q92769 – SHH, 

and Q94760 – CIR. 
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Figure 4.9: The most commonly lost protein -drug interactions across samples.  

Q92769 – SHH interaction is an interesting result as SHH or Vorinostat is an 

approved histone deacetylase inhibitor designed for the treatment of cutaneous 

T cell lymphoma (CTCL) (Bubna, 2015). Histone deacetylase 2 (HDAC2) is a 

protein belonging to histone deacetylase (HDAC) family which are responsible 

for the removal of acetyl groups from the lysine residues of histones proteins. 

Their role in deacetylation is important as they can play a role in transcriptional 

regulation, cell cycle progression and developmental events (Conte et al., 2015). 

The overexpression of HDAC2 has been previously observed in multiple cancer 

types. Inhibitors that target HDAC family such as Vorinostat have been shown 

to provide antitumor affects by enabling a range of mechanisms including 

growth arrest and apoptosis (Marchion & Munster, 2007). 

 In our results, the interactions of two HDAC proteins HDAC2 (Q92769) and 

HDAC8 (Q9BY41) with Vorinostat are expected to be disrupted in more than 

250 and 100 tumor samples respectively. This result also shows that the log-

fold-change values of the isoforms belonging to these proteins were higher than 

1 for each protein which implies an overexpression in general. In UniProt 

dataset, there is only 2 isoforms available for HDAC2. While one of them is the 
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canonical isoform, the other variant lacks the first 30 residues compared to the 

canonical.  

 

Figure 4.10: HDAC2 in complex with Vorinostat. The part shown in pink surface 

representation constitutes the interface of HDAC2 protein with Vorinostat. In 

the non-canonical isoform of the protein, the region colored gray and red will 

not be present where red region is a 2 amino acid long part of the 13 amino acid 

long interface.  Illustrated from the A chain of 4LXZ PDB structure using VMD 

(Humphrey, Dalke, & Schulten, 1996). 

According to the data available in DrugPort, there is only one PDB structure 

available which harbors HDAC2 protein bound to Vorinostat with an ID 4LXZ 

(Lauffer et al., 2013). The binding site of HDAC2 protein with Vorinostat from 

PDBSum constitutes 13 amino acid residues among which 2 of them are found 

in the missing region in non-canonical isoform. We present the 3D structure of 

HDAC2 in complex with Vorinostat in the Figure 4.10.  
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4.4.3. Protein – DNA Interactions 
 

Like protein – drug interactions, the number of available protein DNA 

interactions was very low compared to protein – protein interactions. Using the 

DNA bound proteins available in PDB, we managed to extract the DNA binding 

regions from 901 PDB structures some of which belong to the same protein.  

Hence, the number of interactions that are labelled as lost was also quite low 

respectively. Since the DNA region to which a protein is bound does not have 

specific identifier like in the drugs or protein interactions, we illustrated the 

protein – DNA interaction losses using the protein names only. Below is the 

illustration of the frequency of proteins that lost at least one DNA interaction in 

400 tumor samples if the frequency is at least 10. 

 

Figure 4.11: The counts of proteins which lost at least one interaction across 400 

tumor samples.  
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CHAPTER 5 

5.DISCUSSION 

In this study, by integrating the expression and the interface data, we model two 

different interaction networks to be able to observe the changes between them 

which hints the rewiring capabilities of networks after they are disturbed. 

Moreover, we also investigated the distribution of the lost interactions that are 

caused by the missing residues on isoforms mapping to transcripts that have a 

two-fold expression rate with respect to an average of normal samples.  

After finding the terminal proteins which cause interaction losses due to their 

predominant isoforms having missing residues, gene enrichment analysis 

showed that a subgroup of our samples is highly enriched in telomere related 

genes and can be clustered according to those genes.  Cancer is readily associated 

with telomerase activity since the preservation of telomeres are accepted as a 

crucial part of the cancer immortality while most of the normal cells cannot even 

synthesize telomerases (Forsyth, Wright, & Shay, 2002; Shay & Wright, 2011; 

Wright, Piatyszek, Rainey, Byrd, & Shay, 1996). Their enrichment in our 

samples indicate an elevated expression trend belonging to non-canonical 

isoforms. Gene silencing and the cell cycle regulation are also two other 

apparently enriched gene sets. Finding cell cycle regulation among the result is 

not surprising as in the case of telomerases since defects in the cell cycle 

regulation may prevent the controlled growth of a cell and enable overproduction 

(Foster, 2008). Previous studies have shown that mutations on the tumor 

suppressor genes could cause such defects in the cell cycle (DeVita, Hellman, & 

Rosenberg, 1997). As the variants of alternative splicing has the potential to 

induce the same effect, if a tumor suppressor loses its interactions with its 

targets, it may result in a reduced suppression impact in tumor cells. 

In addition to the terminal proteins, we were also interested in the interaction 

losses they bring with. To examine further, we calculated the frequencies of the 

most commonly interrupted interactions between proteins with proteins, drugs 

and DNA molecules. The results illustrated many interaction losses that are 

shared between a high number of patients. For example, SHH and its interaction 

with two histone deacetylases are among the most common lost interactions. 

Since SHH, or Vorinostat is used for the treatment of cutaneous T cell lymphoma 
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(CTCL), the loss of an interaction between Vorinostat and its main target 

HDAC2 could be quite troublesome in terms of therapy (Marchion & Munster, 

2007). These findings that show a missing interaction between a cancer drug and 

its target is especially important for us as it depicts the importance of 

personalized drug treatments. Since the example interaction is missing in 250 

patients, a potential usage of the mentioned drug may fail in treatment for more 

than half of the patients.  

In our study, we created two different sets of interaction networks for each 

patient to see the way the network continues after some interactions that it 

depends are no longer available. The comparison between these two sets of 

interactions showed us, although not as common as the lost interactions 

explained above, some interactions that are included in the networks after the 

alternative splicing effect is reflected are more prevalent. We found that the 

interaction between LIG1 – RGS2 was the most common interaction to be 

included in the networks where LIG1 is a ligase that is found to be highly 

expressed in malignant tumors differing from its other ligase counterparts 

(Jessberger et al., 1997; Montecucco et al., 1992; Signoret & David, 1986; Sun 

et al., 2001). Moreover, its inhibition could even prevent tumor cell growth 

according to studies (Sun et al., 2001).Finding a tumor related gene in the most 

commonly added interaction is an encouraging result although the importance 

of the specific interaction of LIG1 – RGS2 should be further investigated.  

In summary, by integrating the interaction losses alternative splicing could cause 

with the expression information, we found multiple interactions and proteins 

which can be further examined to elucidate their effects specific to breast cancer. 

In addition, we found the network rewiring patterns of many samples to observe 

how the cell can compensate the interaction losses. We believe that the results 

of our study could enable new starting points for cancer research and 

personalized treatment strategies. Yet, although findings from different analyses 

and different interactions provided us interesting results each of which could be 

further examined, they are still on the transcript level. To be able to obtain more 

reliable results to support our findings, we will integrate our study with the 

results of clinical proteomics studies of the same patients from CPTAC (The 

National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium) 

(Edwards et al., 2015; Ellis et al., 2013). Moreover, we will also include multiple 

types of tumor cells in the future researches to be able to detect the differences 

and similarities across different tumor samples.  
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