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ABSTRACT

KINEMATIC ORBIT DETERMINATION OF LOW EARTH ORBIT
SATELLITES USING GPS AND GALILEO OBSERVATIONS

Kılıç, Ozan

M.S., Department of Geodetic and Geographic Information Technologies

Supervisor: Prof. Dr. Mahmut Onur Karslıoğlu

July 2019, 87 pages

The GNSS code measurements are used to calculate the orbits of low earth orbiting

satellites. Kinematic orbit determination is an approach which is based on satellite to

satellite tracking of the GNSS receivers that are mounted onboard the satellites. This

approach of orbit determination is independent of satellite dynamics (e.g. gravity

field, air-drag etc.) and orbit characteristics (e.g. orbit height, eccentricity etc.)

and kinematic precise orbit determination can be subsequently used in gravity field

estimation procedures. Inclusion of Galileo measurements besides GPS observations

can increase the reliability, robustness and accuracy of real-time navigation system

of the spacecraft. The major aim of this thesis is to determine the orbit of a Low

Earth Orbit (LEO) satellite with Kinematic Orbit Determination approach using GPS

and Galileo observations. However, the observations from Galileo constellation are

not fully available, since the system has not reached Full Operational Capability

(FOC) yet. Hence, the corresponding observations are simulated. Real GPS data

and simulated Galileo observations are used in a Kalman Filter to estimate the

position and the velocity of a LEO satellite. An Adaptive Robust Extended Kalman
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Filter algorithm which is an extension of Kalman filter for non-linear systems is

used particularly to enhance the filter performance in terms of accuracy. To obtain

precise orbit of the satellite, the ionospheric effects are removed by taking ionosphere

free linear combination of the dual-frequency GNSS measurements. Additionally,

a Helmert variance component estimation (HVCE) is adopted for the estimation of

variance components of each GNSS sensor measurement. In order to determine the

accuracy of the estimated orbit, the results of Adaptive Robust Extended Kalman

Filter algorithm for real LEO satellite data are compared with publicly available

very precise ephemerides from Jet Propulsion Laboratory (JPL). Filter results from

simulated navigation data are also compared with the true orbit generated by the

simulation. Adaptive Robust Extended Kalman Filter algorithm is shown to provide

an improvement of more than 70 cm in 3D RMS results for 24 hours of navigation

data. In the simulation scenario, addition of simulated Galileo observations and

implementation of HVCE approach led to achieve 20 cm better 3D RMS results.

Keywords: GNSS, Galileo, kinematic orbit determination, Kalman filter, adaptive,

robust, variance component estimation
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ÖZ

GPS VE GALILEO GÖZLEMLERİ KULLANILARAK YERE YAKIN
UYDULARIN KİNEMATİK YÖRÜNGELERİNİN BELİRLENMESİ

Kılıç, Ozan

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi: Prof. Dr. Mahmut Onur Karslıoğlu

Temmuz 2019 , 87 sayfa

Yere yakın uyduların yörüngelerinin hesaplanmasında GNSS kod ölçüleri

kullanılmaktadır. Kinematik yörünge tespiti, yere yakın uyduların üzerine

yerleştirilmiş GNSS alıcılarının uydudan uyduya izleme yöntemine dayalı bir

yaklaşımdır. Yörünge tespitinde kullanılan bu yaklaşım, uydu dinamikleri ve yörünge

karakteristiklerinden bağımsızdır ve kinematik hassas yörünge tespiti gravite alanı

kestirimlerinde kullanılmaktadır. Yörünge tespitinde GPS gözlemlerine ek olarak

Galileo sistemine ait ölçülerin kullanılması uzay aracının gerçek-zamanlı navigasyon

sisteminin güvenilirliğini, sağlamlığını ve doğruluğunu arttırabilir. Bu tezin ana

hedefi yere yakın uyduların yörüngelerini, GPS ve Galileo gözlemleri kullanılarak

kinematik yörünge tespiti yaklaşımı ile belirlemektir. Fakat sistem henüz Tam

Operasyonel Yetenek (FOC) durumunda olmadığı için Galileo konumlama sisteminin

gözlemleri tamamıyla kullanılabilir değildir. Bu sebeple, bu gözlemlerin simülasyonu

gerçekleştirilmiştir. GPS verileri ve simüle edilmiş Galileo gözlemleri, alçak yörünge

uydusunun konumunu ve hızını kestirmek için Kalman Filtresinde kullanılmıştır.

Filtre performansını geliştirmek için doğrusal olmayan sistemlerde kullanılan bir
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uzantı olan, Adaptif Gürbüz Genişletilmiş Kalman Filtresi kullanılmıştır. Alçak

yörünge uydusunun yörüngesini hassas olarak elde etmek için iyonosferik etkiler,

çift-frekanslı GNSS ölçümlerinin doğrusal frekans kombinasyonu kullanılarak

elimine edilmiştir. Ayrıca, farklı GNSS sensör ölçülerininin varyans bileşenlerinin

kestirimi için Helmert Varyans Bileşeni Kestirimi (HVCE) uygulanmıştır. Hesaplanan

yörüngenin doğruluğunu belirlemek amacıyla Adaptif Gürbüz Genişletilmiş Kalman

filtreleme algoritmasının sonucunda bir alçak yörünge uydusuna ait gerçek verilerden

elde edilen kestirilmiş yörünge verileri, Jet Propulsion Laboratory (JPL) tarafından

sunulan yüksek hassasiyetli efemeris verileri ile karşılaştırılmıştır. Simüle edilmiş

verilerden elde edilen filtre sonuçları, simülasyondan üretilmiş gerçek yörünge

verileri ile karşılaştırılmıştır. Adaptif Gürbüz Genişletilmiş Kalman filtreleme

algoritması, 24 saatlik navigasyon verisi için üç boyutlu karesel ortalama hata

sonuçlarında 70 cm iyileştirme sağlamıştır. Simülasyon sonucunda elde edilmiş

Galileo gözlemlerinin veri setine eklenmesi ve HVCE yönteminin uygulanması

sonucunda ise üç boyutlu karesel ortalama hata sonuçları 20 cm geliştirilmiştir.

Anahtar Kelimeler: GNSS, Galileo, kinematik yörünge tespiti, Kalman filtresi,

adaptif, robust, varyans bileşen kestirimi
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Over the past decades, a large number of Low Earth Orbit (LEO) satellites have been

launched for scientific and commercial purposes into the orbits at the altitudes from

300 km to 2000 km. As these satellites carry advanced high resolution sensors such

as gradiometer, digital cameras or radar, there is a need for precise, accurate and

reliable position information for high quality products. Orbit determination has been

applied for various of applications such as spacecraft trajectory analysis, geolocation

of remote sensing observations, gravity field determination, sea surface topography,

radar altimetry and synthetic aperture radar based imaging.

The main objective of orbit determination is to obtain accurate state information along

the orbital path in a dynamical environment which includes relevant forces affecting

orbital motion of the satellite (Vetter, 2007). There are various external forces that

influence satellite’s motion. Gravity of the Earth, atmospheric drag, solar radiation

pressure, third-body perturbations as a direct effect of gravity of sun, moon and the

other planets, Earth and ocean tidal effects, and general relativity can be considered

as the main forces constituting the nonlinear equation of motion of the satellite. Orbit

determination comprises the solution of these equations with different techniques.

Kinematic orbit determination is a special kind of orbit determination method, which

allows state estimation independently of these forces acting on the satellite. On the

contrary to the common reduced-dynamic approach, kinematic orbit determination

is highly dependent on the observations which affect the accuracy directly. For this

reason, it can be considered as an observation driven approach.
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Orbit determination of LEO satellites requires accurate position and velocity

information. In recent years, satellite tracking systems which measure directly

the distance between the transmitter and the receiver are used to obtain these

measurements (Jäggi and Arnold, 2017). Global Positioning System (GPS) receivers

onboard the satellites are preferred as the primary tracking system due to their global

coverage, continuous tracking capability, and accurate positioning performance for

orbit determination of LEO satellites (Karslioglu et al., 2017). Accurate estimation

of satellite state parameters in real-time or off-line with post processing is possible

with GPS sensor mounted on the satellite. Using dual-frequency observations and

ground-based orbit determination algorithms, it is possible to obtain sub-meter level

accuracy for the satellites in LEO (Montenbruck et al., 2008). GPS-based orbit

determination is used in several scientific space missions such as GRACE, GOCE,

CHAMP and TOPEX/Poseidon and proved itself as a low cost, accurate and reliable

technique for orbit determination. These missions have benefited from on-board

spaceborne GPS receivers, and the measurements obtained from GPS satellites are

used as observations for orbit determination.

Besides GPS positioning, other satellite navigation systems with global coverage such

as GLONASS, Galileo and BeiDou started to provide satellite-based positioning.

Newly developed ground-based receivers are developed to be compatible with the

signals of other navigation systems. Since European navigation system Galileo,

offers a promising signal plan, its contribution to Global Navigation Satellite System

(GNSS) are studied in Basile et al. (2018). Using the multi-GNSS measurements is

considered to be more reliable and highly accurate in terms of position estimation

(Biswas et al., 2014). According to Fu et al. (2019) using combination of GPS and

Galileo observations improves positioning accuracy by almost 50 percent.

One of the most important contributions of multi-GNSS positioning is its effect in

Dilution of Precision (DOP). As the variety of GNSS satellite distribution increases,

DOP values are expected to be better. Consequently, the number of satellites is

significantly important for satellite positioning. In Capuano et al. (2013) both GPS

and Galileo constellation are analyzed in terms of geometrical availability and signal

power for MEO, GEO and HEO. Thus far, there is no accuracy information obtained

regarding to Galileo observations. Nonetheless, some simulations are performed
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Figure 1.1: Planned Galileo Constellation Credit: ESA

to generate raw GNSS data to process. Biswas et al. (2014) used hardware-based

GNSS simulator to generate measurements and proved Galileo’s contribution in a

general manner. However, the RMS results for using real navigation data were

significantly large due to simple orbit, clock modeling and reference interval used

in orbit propagation.

1.2 Motivation and Objective

GNSS-based orbit determination is widely used technique for the determination

of LEO satellite orbits. Due to its low-cost and easily applicable structure, it is

preferred among all orbit determination techniques for recent space missions. General
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information about these techniques and satellite orbits is given in Chapter 2. GNSS

positioning and its use in orbit determination, GNSS measurements and different orbit

determination algorithms are explained in Chapter 3.

The goal of this thesis is to estimate the satellite state vectors by using both GPS and

Galileo measurements. Since Galileo measurements are not completely available,

a software-defined GNSS satellite simulator is developed to generate raw Galileo

measurements. GNSS satellite simulation is detailed in Chapter 4. In order to process

the data generated from the simulator, a particular extension of Kalman filter is used

to perform accurate state estimation. Kalman filters are preferred commonly in orbit

determination due to their low computational cost and real-time compatible structure.

An Extended Kalman filter for nonlinear systems is modified in terms of adaptivity

and robustness. Adaptive Robust Extended Kalman filter is proposed by Yang (2010)

to deal with measurement outliers and system uncertainties. Since measurements

are vitally important for kinematic orbit determination, using an adaptive robust

estimation is expected to improve the filter performance. Adaptive robust estimation

is detailed in Chapter 5.

Additionally, Gao et al. (2016) proposed a Helmert Variance Component based

Adaptive Kalman Filter algorithm to be used in multi-GNSS applications. Variance

component estimation is known with weighting the observations from different

sensors, and it should be used with measurements with no outliers. Outlier detection

and removal procedure should be performed beforehand. However, it has not been

used with a robust filter which also deals with outliers. In this thesis, Variance

component estimation algorithm is integrated into a robust filter with the help of

a robust scale factor (see Chapter 5). Chapter 6 comprises the results of AREKF

approach and HVCE implementation. The results are discussed in the Chapter 6 and

concluded with a summary in Chapter 7.
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CHAPTER 2

ORBIT DETERMINATION

2.1 Satellite Orbits

A satellite orbit is the path of a satellite which is moving around another celestial

body under the main influence of gravitation. According to Newton’s law of

gravitation, gravity keeps all satellites in near circular or elliptical motion around the

earth. Satellite orbits around the earth can be defined particularly according to their

synchronicity, inclination, eccentricity, and altitude. The majority of the satellites and

the space stations take place in Low Earth Orbit (LEO) due to its accessibility in terms

of servicing and communication. Therefore, orbit determination of LEO satellites has

significant importance for space navigation.

A satellite state can be expressed in two forms. In both forms, six parameters are

needed. These parameters can be a set of elements called orbital elements which are

the scalar magnitudes and angular representations of the orbit and its orbital plane.

On the other hand, the satellite state can be defined with the state vector consists of

three components of position and velocity vectors. In this thesis, state representation

will be in state vector form with a few additional parameters.

2.2 Orbital Perturbations and Orbit Modeling

Satellite orbit modeling is the simulation of a satellite trajectory mathematically

according to its orbital motion around the Earth under gravitational and

non-gravitational forces. Modeling all these related forces is also called as force

modeling. The Keplerian orbit considers only the gravitational attraction of two
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celestial bodies. Therefore, the deviations from this orbit are commonly called

as perturbation. The perturbations due to various geopotential coefficients Jn,m,

atmospheric drag, solar radiation pressure, tidal effects, and relativistic effects are the

examples of these perturbations. The effect of these perturbations on the acceleration

of different satellites (Iridium, Lageos, GPS and TDRS) can be seen in Figure 2.1. In

this thesis, orbital perturbations are not explained in detail, since only pure geometry

is needed for kinematic orbit determination which will be defined in Section 3.2.3.

Figure 2.1: Order of magnitude of various perturbations of a satellite orbit

(Montenbruck and Gill, 2012)
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2.3 Orbit Propagation and Numerical Integration

Satellite orbit propagation is the transmission of the orbital motion of the satellite at

a time and direction using an initial position and velocity information. During orbit

propagation, a prediction procedure is performed at each time step. To obtain high

accuracy orbits, numerical methods are required for the solution of the equation of

motion.

In celestial mechanics, numerical methods are widely used to solve differential

equations. Various numerical methods such as Runge-Kutta, multistep and

extrapolation methods are developed in the past (Montenbruck, 1992). Each

numerical method has particular use for the prediction of the satellite motion.

Runge-Kutta is a stable and common method which is used in many applications.

Since an accurate prediction is not needed in kinematic orbit determination,

Runge-Kutta method can be used for numerical integration of the equation of the

orbital motion according to Newton’s law of gravitation. Owing to its simplicity, the

4th-order Runge-Kutta (RK4) method is preferred in this thesis. More information

about other numerical integration methods can be found in Montenbruck and Gill

(2012); Butcher (2016).

2.4 Fourth Order Runge-Kutta Method

For satellite orbit propagation, the 4th order Runge-Kutta method can be used for

a modest estimate. For a state vector ~x with position ~r and velocity ~v components

derivative of the state with respect to time t can be expressed with a function f :

fpt, xq “
Bx

Bt
“

ˆ

9r

:r

˙

(2.1)

where the dots denote the order of the derivative with respect to the time. The first

and the second derivative of the position are given as:

9r “ v (2.2)

and

:r “ ´
GME

r3
r (2.3)
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where G is the Earth’s gravitational constant and ME is the Earth’s mass which can

be taken as 6.67408 ˆ 10´11 m3kg´1s´2 and 5.972 ˆ 1024 kg, respectively. The

approximation of x for the next step is possible with a simple Euler step as follows:

xpt0`hq “ x0 ` fpt0, x0q ¨ h (2.4)

where h is the step size time and x0 is the initial value of x. The equation can be

rewritten with an increment function as:

xpt0`hq « x0 ` φ ¨ h (2.5)

where φ is the weighted average of the slope approximation. Expansion of Taylor

series up to 4th order is given as:

x0 ` 9x0h`
h2

2!
y2

0 `
h3

3!
y3

0 `
h4

4!
y4

0 (2.6)

Since Taylor’s method requires function differentiation for each order, Runge-Kutta

methods provide a numerical solution with evaluating the original function f , only.

Weighted average of the 4th order slope approximation can be calculated as:

φ “
1

6
pk1 ` 2k2 ` 2k3 ` k4q (2.7)

where k1, k2, k3, k4 are the slope approximations which can be given as:

k1 “ fpt0, x0q

k2 “ fpt0 `
h

2
, x0 `

hk1

2
q

k3 “ fpt0 `
h

2
, x0 `

hk2

2
q

k4 “ fpt0 ` h, x0 ` hk3q

(2.8)

The 4th order Runge-Kutta method is very well suited in terms of the complexity and

storage requirements since low-order Runge-Kutta methods are widely preferred in

onboard applications, as they are relatively fast, accurate and stable at large time steps

(Tukaram, 2014).

2.5 Orbit Determination Techniques

As it is mentioned in Section 2.1, determination of satellite orbits has a crucial role

in LEO spacecraft missions. As the number of missions increase, the feasibility of
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orbit determination becomes more important. There are various orbit determination

techniques performed depending on the mission requirements and objectives. These

techniques can be grouped under two main headings as ground-based and space-based

orbit determination techniques which are explained in the following sections.

2.5.1 Ground-Based Orbit Determination

Various ground-based techniques are developed in the past to determine satellite

orbits. Radar, laser and optical measurements are used to determine the position of

the satellite simply by measuring range and angle. Among these approaches, Satellite

Laser Ranging (SLR) is the most accurate technique with sub-cm level accuracy.

SLR is often used for validation of satellite orbits which are determined by other

techniques. The distance between satellite and ground station is calculated basically

by measuring the travel time of a laser pulse which is transmitted from the station and

reflected back to the station by the retroreflectors on the satellites (See Fig. 2.2).

Figure 2.2: Working principle of Satellite Laser Ranging (SLR) (Seeber, 2003)

Although ground-based techniques provide direct and reliable measurements, they

are not very efficient in terms of cost and time. A network of ground stations is

required to be established around the world to track the satellites continuously. The

homogeneity of the data distribution is dependent on the number of stations on the

earth. Nevertheless, ground-based orbit determination techniques are preferred to

ensure data quality and reliability (Karslioglu, 2005).
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2.5.2 Space-Based Orbit Determination

Each space-based system for orbit determination is uniquely named with respect to

the type of data acquisition method. Numerous techniques are presented in the past

such as magnetometer-based orbit determination (Psiaki et al., 1993), image-based

orbit determination (Li et al., 2017b) and GPS-based orbit determination (Yunck et al.,

1985). Although, they are not as accurate as SLR technique, the results achieved by

space-based techniques can reach up to cm-level accuracy (Montenbruck et al., 2005;

Peng and Wu, 2009). GPS-based orbit determination is the most accurate method

among space-based techniques. Due to its efficiency, GPS-based orbit determination

is mostly preferred for real-time precise positioning in LEO spacecraft missions.
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CHAPTER 3

GNSS-BASED ORBIT DETERMINATION

Global Navigation and Satellite System (GNSS) is one of the most common

positioning technique used in ground applications as well as space-based applications.

Since some of the space missions (e.g. gravity field missions) require highly accurate

orbit information, GNSS positioning provides accurate solution to determine the

satellite’s orbit. Positioning accuracy is also crucial for determination of Earth’s

gravity field. Besides gravity field determination, precise orbit products are also

important for synthetic aperture radar (SAR) imaging which is a widely used

technique in Earth observation. GNSS-based precise orbit determination is used to

deliver precise orbit products for generation of high-quality SAR images (Yoon et al.,

2009). Since Global Navigation and Satellite System (GNSS) offers global coverage,

continuous tracking capability and high accuracy, in various missions GNSS receivers

have been used onboard LEO satellites as the primary component of tracking systems

for orbit determination (Erdogan, 2011).

In GNSS-Based Orbit Determination, LEO satellite’s position is determined initially

or during the orbit by kinematic positioning. Kinematic positioning is essentially a

parameter estimation procedure to estimate the state parameters in a particular epoch.

3.1 Reference systems used and Transformations

For the definition of satellite’s orbital motion a suitable reference system needs to be

defined. In order to model observations and evaluate the results, geocentric coordinate

systems are generally used since the satellite motion refers to the Earth’s center of

mass (Seeber, 2003).
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Figure 3.1: Cartesian Coordinate System

The inertial reference system is a system where it is at rest or moves uniformly

without any acceleration. This system is the only system that the Newton’s laws

of motion are valid and is the base of the development of the theory of motion for

artificial satellites.

The space fixed inertial reference systems are either tied to extra-galactic radio

sources (e.g. stars and quasars) or extraterrestrial objects such as planets/Moon.

Hence, they are called celestial reference systems (CRS). If the motion of planets,

Moon or artificial satellites are taken into the consideration for the definition of a

CRS, it is called Dynamical CRS. However if it is defined by the extra-galactic radio

sources it is called Kinematic CRS (Seeber, 2003).

Earth-centered inertial (ECI) is commonly used coordinate system for orbit

measurements and orbit determination purposes. The origin of the coordinate system

is at the center of mass of the Earth and the axes point in fixed directions with respect

to the stars (Kaplan and Hegarty, 2017). The orbit of a space object can be modeled
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in an ECI coordinate system according to the Newton’s law of gravitation.

The Earth fixed reference system should be optimally connected to the earth crust.

To define and realize such a Conventional Terrestrial System (CTS) a Cartesian

Coordinate System (Figure 3.1) of ground stations that construct a global network

can be established.

The conventional terrestrial reference system is originated at the geo-center where

the mass of oceans and the atmosphere are taken into account. The Earth rotation

axis is assumed to be z-axis of CTS. However because the actual origin and rotation

axes of the Earth are not known, a conventional approximation for them is defined.

Since 1895 the International Latitude Service (ILS) and since 1962 the International

Polar Motion Service (IPMS) used astronomical observations to settle and maintain

these conventions (Moritz, Mueller, 1987). The conventional Terrestrial Pole (CTP)

is defined based on the mean polar axis over the period of 1900-1905, with a zero

longitude on the equator (Greenwich Mean Observatory (GMO)) (Seeber, 2003).

Earth-centered Earth-fixed (ECEF) system is mainly used to determine the position of

a ground object or a receiver. Using a coordinate system which rotates with the Earth

is more convenient in terms of representation of the position of an object relative to

the ground (Kaplan and Hegarty, 2017). The xy plane of ECEF coordinate system

coincide with the Earth’s equatorial plane. Transformation to geodetic latitude,

geodetic longitude, and geodetic height are performed with ECEF coordinates.

Every geodetic measurement method corresponds to a specific reference coordinate

system since the definition of each measurement technique differs from others.

Hence, the data they obtain is different in the context of the reference coordinate

systems. These methods do not necessarily use identical reference systems. The

measurements that are terrestrially obtained are inherently local and described in

local reference coordinate systems. To be able to handle these measurements with

the observations that are obtained by other space geodetic techniques, the relationship

between them has to be accurately defined. Sometimes the transformation parameters

between these coordinate systems are determined with lower accuracy than the

individual measurements. This can also impose an additional error to the transformed

coordinates. Thus, it is very important to establish precise transformation formulas to
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be able to transform the observations accurately from a coordinate system to another

one.

In order to obtain GNSS satellite geometry or determine the signal strength

for a receiver, elevation and azimuth angles must be calculated. However, to

obtain these quantities, positions need to be defined in a local coordinate system.

Three-dimensional cartesian vector needs to be expressed in spatial ellipsoidal

coordinates consists of geodetic latitude, longitude and height. Let ECEF cartesian

position vector defined as:

P “

»

—

—

–

x

y

z

fi

ffi

ffi

fl

(3.1)

Longitude (λ) can be calculated from two components as:

λ “ atan
´y

x

¯

(3.2)

The inverse problem of ϕ and h can be solved by iteration. However, Bowring (1985)

has given solution for geodetic latitude and height which typically converges after

two or three iterations:

ϕ “ atan

˜

z ` e12bsin3θ
a

x2 ` y2 ´ e2cos3θ

¸

(3.3)

where e and e1 refer to first and second numerical eccentricity, a and b refer to the

length of the semi-major and the semi-minor axes and θ is given as:

θ “ atan

˜

az

b
a

x2 ` y2

¸

(3.4)

And the geodetic height can be calculated as:
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h “

a

x2 ` y2

cosϕ
´N (3.5)

where N is the radius of curvature in the vertical prime, given as:

N “
a

p1´ e2sin2ϕq1{2
(3.6)

The local East, North, Up (ENU) cartesian coordinate system is used in many tracking

and navigation applications due to its practicality and simplicity compared to ECEF

or geodetic coordinates. The local ENU coordinates are formed from a plane tangent

to the Earth’s surface fixed to a specific location and hence it is sometimes known as

a local tangent or local geodetic plane. The unit vectors in local East, North and Up

directions are expressed as:

ê “ p´sinλ, cosλ, 0q

n̂ “ p´cosλsinϕ, ´sinλsinϕ, cosϕq

û “ pcosλcosϕ, sinλcosϕ, sinϕq

(3.7)

The elevation of a geographic location is its height above or below a fixed reference

point, most commonly a reference geoid, a mathematical model of the Earth’s sea

level as an equipotential gravitational surface. The term elevation is generally used

when referring to a spacecraft orbiting related to a ground station or a fixed point

on the Earth’s surface. But it is also possible to use it for two moving objects (e.g.

satellites) by defining a local coordinate system with an origin of observer’s point.

The vector from an observer (origin) to a point of interest is projected perpendicularly

onto a reference plane; the angle between the projected vector and a reference vector

on the reference plane is called the azimuth.
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Figure 3.2: Azimuth and Elevation

The elevation and azimuth of satellite in the local coordinates system (ENU) (Figure

3.2) are computed from local unit vectors as follows:

A “ arctan

ˆ

r̂ ¨ ê
r̂ ¨ n̂

˙

(3.8)

E “ arcsin pr̂ ¨ ûq (3.9)

where r̂ is the line of sight unit vector which can be calculated with the geocentric

position of the satellite (rsat) and receiver(rrec) as follows:

r̂ “
rsat ´ rrec

||rsat ´ rrec||
(3.10)

In this thesis, results are evaluated in an orbital reference system. Satellite orbital

reference system which is known as RSW Reference System is generally used in
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orbit determination to apply relative motion of the satellite with respect to the resident

space object (Zappulla and Spencer, 2013). Origin of the reference system usually

coincides with the mass center of resident space object. The axes of the reference

system are defined as Radial (R), Along-track (S) and Cross-track related to the

position vector (r) from the Earth’s center of mass and orbital direction. The Radial

axis is simply the direction of satellite position vector extended through the satellite.

The along-track (S) and the cross-track (W) axes are aligned with the orbital motion

where S is generally direction of the velocity vector abd W is the direction of normal

of the orbit plane. Since the orbits are not generally circular and the satellite is not at

apogee or perigee in an elliptical orbit all the time, S axis does not generally coincide

with the velocity vector (Erdogan, 2011). RSW reference system is illustrated in

Figure 3.3.

Figure 3.3: Satellite Orbital Reference System (RSW)
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3.1.1 GNSS Overview

3.1.2 Observables and Measurement Modeling

In GNSS data acquisition concept, the distance between satellite and receiver is called

pseudorange (Hofmann-Wellenhof et al., 2007). Since the quality of satellite and

receiver clocks are not the same and differ from the GPS Time1, a clock error arises

for both clocks. Pseudoranges are the raw observations containing these clock errors

as well as the other errors caused by different error sources such as environmental or

instrumental errors. Since signal travel is directly affected by these errors, geometric

distance between the satellite and the receiver are corrected with correction terms.

Pseudoranges can be calculated in two ways.

3.1.2.1 Code Pseudorange

A signal transmitted from a GNSS satellite carries pseudo-random code to be matched

with an identical code (replica) generated by the GNSS receiver. Signal travel time

between the satellite and the receiver is determined by the amount of the slide until

the codes are synchronized. The receiver "slides" its code continuously in time until it

is synchronized with the code from satellite (See Fig. 3.4). The amount of this slide in

the code is equal to the signal’s travel time. Code pseudoranges are calculated by the

time difference between two clocks on the satellite and the receiver. The difference

between signal transmission time on the satellite ts and the signal reception time read

by the receiver tr can be given as:

tr ´ t
s
“ ptr ` δrq ´ pt

s
` δsq “ ∆t`∆δ (3.11)

where δr and δs are the receiver and the satellite clock biases, respectively. By

multiplying Eq. 3.11 by the speed of light, code pseudoranges can be computed

as:

ρ “ cptr ´ t
s
q “ cp∆t`∆δq (3.12)

1 A continuous time scale started by the GPS Control segment on the basis of a set of atomic clocks at the
ground monitoring stations and onboard the satellites
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The main problem is that the bits (or cycles) of the pseudo random codes are so wide

they are not perfectly matched up. As a result code measurements are precise to the

meter level.

Figure 3.4: Determination of the signal traveling time by code pseudoranges

3.1.2.2 Phase Pseudorange

The carrier phase itself can be also used to measure distance between the satellite

and the receiver. The noise of the carrier phase measurements are smaller when it

is compared to code pseudoranges. Hence, the carrier phase measurements are more

precise than the code measurements. However, they are ambiguous by an unknown

integer number of wavelengths (N ). This unknown number presents after the first

lock on the signal and every time the receiver loses the lock on the signal due to the

jumps or range discontinuities, this ambiguity changes arbitrarily. The beat phase of

the phase of the received signal and receiver generated reference phase, ϕr
sptq, can be

obtained as follows:

ϕr
sptq “ ∆ϕr

sptq `N (3.13)
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where t is the time epoch with respect to initial time t0 , N is the integer ambiguity

term and ∆ϕr
sptq is the fractional part of the phase. Instantaneous fractional phase can

be measured after signal lock but the integer ambiguity, N , is unknown. This term is

also included in the phase pseudorange equation:

λφ “ ρ` c∆δ ` λN (3.14)

where λ is the wavelength of the carrier signal, ρ is the geometric range, ∆δ is the

difference between clocks and c is the speed of light.

3.1.3 Ionosphere-free Linear Combination of Observations

The ionosphere is one the most influenced error sources for GNSS signals. However,

the combination of different observation makes it possible to eliminate this error up

to 99.9 percent (Subirana et al., 2011). Dual frequency GNSS receivers can easily

combine the measurements on L1 and L2 carrier phase and generate ionosphere-free

linear combination to remove ionospheric delay. This is one of the main advantages

of dual frequency receivers. In precise GNSS applications, the ionosphere-free

linear combination of L1 and L2 phase observations is commonly used in the data

processing to remove the effects of ionospheric refraction (Hofmann-Wellenhof et al.,

2007).

When a radio wave is transmitted into an ionized layer, refraction, or bending of the

wave, occurs. This refraction is caused by an abrupt change in the velocity of the

upper part of a radio wave as it strikes or enters a new medium. The amount of

refraction that occurs depends on three main factors: (1) the density of ionization

of the layer, (2) the frequency of the radio wave, and (3) the angle at which the

wave enters the layer. The first order ionospheric effects on code and carrier-phase

measurements depend on the inverse of squared signal frequency f (Subirana et al.,

2011). Hence, it is possible with dual-frequency receivers to eliminate ionospheric

effect through a linear combination of code measurements:
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Riono´free “
f 2

1RP1 ´ f
2
2RP2

f 2
1 ´ f

2
2

(3.15)

3.1.4 Error Sources

To enhance the accuracy of the positioning using GNSS, the errors that are introduced

to the corresponding signals has to be corrected. These errors can be originated

from the environment that GNSS signal travels, or from the receiver/transponder.

The satellite clock errors, hardware errors and satellite orbit errors are categorized as

errors that are introduced by the satellite.

The errors are generally because of time delays associated with the center of phase

of the receiver/transponder clocks or travel path of the signal. The majority of the

time delays occur for both code and carrier phase measurements. However some

time delays such as wind-up, phase ambiguities are only present on carrier phase

measurements. Also the ionospheric refraction occur as a delay in code measurements

and advancing in phase measurements (Yeganehsahab, 2016).

3.2 Algorithms and Methods of Orbit Determination

Determination of satellite orbits is possible with different type of approaches.

According to the need of the application or scientific mission, state parameters

are estimated with respect to a dynamical model. This dynamic model does not

necessarily need to include dynamic properties of the satellite since the kinematic

approach uses a too simple model to be considered as a dynamic model.

3.2.1 Dynamic Orbit Determination

In this method the state parameters are estimated using an epoch-wise integration of

a sophisticated state model (i.e. Eq. 3.16) for an extended arc of observation. By

construction, the orbital trajectory is fully dependent on the underlying force models.

Dynamic force models are used to describe the equation of motion and to propagate
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the satellite’s center of mass position and velocity over time by numerical integration

techniques.

:r “ ´
GM

r3
` :rppt1, r,:r, q1, q2, ..., qdq:rce ` :rco ` :rro (3.16)

where ´GM
r3

stands for law of gravitational acceleration; r, 9r and :r are position,

velocity and acceleration vectors, respectively; :rp is the perturbing forces acting on

the satellite as a function of time, position, velocity and q1, ..., qd are the dynamical

parameters such as gravity coefficients, atmospheric drag, solar radiation pressure

etc.; :rce, :rco, :rro are centrifugal, coriolis and rotational acceleration, respectively in an

Earth-fixed frame. In this technique the errors of the force model are likely to increase

with extended period of integration time. Hence, because of imperfect modeling of

forces that act on the satellite the dynamic model is sensitive to the errors.

As real satellite trajectories are always particular solutions of an equation of motion, a

dynamic orbit representation is certainly the most natural choice for modeling orbital

motion. The dynamic model is sensitive to errors caused by the imperfect modeling

of forces influencing the satellite (Karslioglu et al., 2017).

3.2.2 Reduced-Dynamic Orbit Determination

The accuracy of the measurements, GNSS constellation and satellite geometry are

important factors that determine the accuracy of the observation models. The dynamic

and reduced-dynamic precise orbit determination are done by numerical integration

of the equation of motion and the variational equations. The integration is necessary

for obtaining the orbit itself on one hand and partial derivatives with respect to orbital

parameters on the other hand.

Pseudo-stochastic orbit modeling is a particular realization of the reduced-dynamic

orbit determination technique (Jäggi and Arnold, 2017). The attribute ‘pseudo’

distinguishes this method from stochastic orbit modeling where a satellite trajectory

is modeled as a solution of a stochastic differential equation (Jazwinski, 1970).

Pseudo-stochastic orbit modeling, in contrast, introduces additional empirical

parameters P1, ..., Pd, subsequently referred to as pseudo-stochastic orbit parameters,
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to the deterministic equation of motion (Eq. 3.16)

:r “ ´
GM

r3
` :rppt1, r,:r, q1, q2, ..., qd, P1, ..., Pdq:rce ` :rco ` :rro (3.17)

In the reduce-dynamic POD, empirical acceleration parameters are used to

compensate for dynamic modeling deficiencies. The imperfection in the

dynamical model are handled partially with estimation of empirical forces (e.g.

pseudo-stochastic pulses, piecewise constant accelerations and continuous piecewise

linear accelerations) or force field parameters (Jäggi et al., 2005). Using the fact

that the satellite tracks are particular solutions of equation of motion and taking the

geometric advantage of the GNSS observations, Wu et al. (1991) applied a pseudo

stochastic modeling as a realization for reduce-dynamic POD. The introduction

of additional parameters to the equation of motion with a-priori known statistical

properties in a deterministic manner is referred to as stochastic orbit modeling.

3.2.3 Kinematic Orbit Determination

The advances in the Global Navigation Satellite Systems, the increase in its geometric

strength and the availability of high number of observations in receivers onboard LEO

satellite make it possible to use a pure geometric approach for orbit determination.

However, the simplicity of the prediction model in this approach (Kinematic OD

in which the resulting orbit is independent of orbital perturbations) and the high

dependency in the measurements, the prediction accuracy degrades over time. Hence,

as the length of the time interval for prediction increases the accuracy of prediction

decreases.

The GNSS tracking is the only approach that makes the purely kinematic precise

orbit determination possible among all the geodetic orbit determination techniques

such as SLR, DORIS or altimetry. In this approach the estimation of kinematic

satellite positions are completely independent from the orbit altitude and forces

such as gravity, solar radiation pressure and air drag. Consequently the presence

of continuous GNSS tracking became an asset for kinematic orbit determination

which allows this method to be as accurate as (reduced-)dynamic approach (Švehla
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and Rothacher, 2002). Recently the pseudo observations obtained from the precise

kinematic orbit determination are used in new scientific methods for determination

of gravity field parameters, validation of dynamical models and computation of

atmospheric density information. The main reason that this approach gains attention

unlike other methods which need to process the observations form ground IGS

network is its low load of processing and simple and reliable algorithm (Li et al.,

2017a).

Figure 3.5: Kinematic (left), dynamic (middle), and reduced-dynamic (right) orbit

representation (Jäggi and Arnold, 2017)

Kinematic orbit determination can be utilized for various type of applications since

the receiver motion is not influenced by any dynamic condition. However, kinematic

positions are very sensitive to erroneous measurements, poor viewing geometry,

and data gaps. Kinematic positioning is therefore essentially restricted to LEO

orbit determination based on spaceborne GNSS tracking data, or to GNSS orbit

determination using tracking data of the terrestrial IGS ground network. Dynamic

and reduced-dynamic orbit determination, in contrast, make use of physical models

of the satellite motion.

The expressed orbit determination techniques can be preferred in the primary tracking

systems since the major tracking systems such as SLR, can only cover an orbital

arc with measurements. In the case of GNSS-based LEO orbit determination the

dynamic and reduced-dynamic approaches allow for some kind of ‘averaging’ the

large number of measurements from different epochs, which makes the resulting

position estimates much less prone to bad measurements and data outages. Satellite
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trajectories can therefore be reasonably well propagated across data gaps, especially

if good dynamic models are available. (Jäggi and Arnold, 2017). The representation

of these orbit determination techniques are illustrated in Figure 3.5. The relation

between the dynamic structure of the algorithms can be seen in the figure. The orbit

path in kinematic orbit determination is drawn with dashed line while the trajectories

of dynamic and reduced-dynamic methods are drawn with a continuous line which

represents the dependency on dynamic model. However, the deviations from dynamic

model are visible in kinematic and reduced-dynamic method since these methods can

be considered as more data-driven than dynamic method.
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CHAPTER 4

GNSS ORBIT SIMULATION

4.1 Overview

During last two decades, GPS-based satellite orbit determination has proven to be

a solid method for satellite navigation by numerous flight missions (Montenbruck

et al., 2010). Since there are upcoming constellations such as Galileo and BeiDou,

as it is used for ground positioning applications, multi-constellation positioning

(Multi-GNSS) became a considerable technique also for orbit determination.

Compared to GPS-only positioning, it is more likely to achieve higher positioning

accuracy using increased number of satellites and wide range of frequency bands.

In addition to GPS measurements, Galileo measurements are simulated in this thesis

by a software-defined simulator. The simulator which is developed on MATLAB

2018b consists of a set of functions to simulate the position and the velocity of both

satellites and the receiver onboard the satellite. The measurements are produced by

pseuodoranges modelled with respect to the signal structure and LEO environment.

In GNSS Simulation, calculated ECI satellite coordinates are converted to ECEF

coordinates to be written in the ephemeris file and to be masked by the elevation

angles. For the transformation between coordinate frames IERS (International Earth

Rotation and Reference Systems Service) Earth Orientation Parameters are used to

define precession, nutation, polar motion and earth rotation parameters. Long-term

EOP data is available on IERS FTP server.

27



4.2 GPS and Galileo Initial Parameters

As the second constellation in addition to GPS constellation, Galileo is chosen due

to its reliability (Hossam-E-Haider et al., 2014) and low-noise signal characteristics

(Circiu et al., 2017; Pascual et al., 2013). A set of parameters must be defined

initially to be able to obtain satellite orbits. These parameters are used in different

functions in different steps which will be explained in following sections. However

to start the simulation, there are some key parameters to be given such as constellation

name, start date and step size. First and the most important one is the constellation

name of GNSS constellations for the simulation. GPS and Galileo constellations

are priori-defined in the simulation according to IGS SP3 (The Extended Standard

Product 3 Orbit Format) products (Hilla, 2016) and Galileo Reference Constellation

on 21 November 2016 at 00:00:00 (See Table 4.1).

Table 4.1: Galileo Orbital Parameters with reference date of 21 November 2016

00:00:00 UTC (European GNSS Service Centre, 2019)

Slot Number Semi-major Axis (km) Eccentricity Inclination(deg) RAAN (deg) Argument of Perigee (deg) Mean Anomaly (deg)

B05 29599.8 0.0001 56.000 77.632 0.000 15.153

B06 29599.8 0.0001 56.000 77.632 0.000 60.153

C04 29599.8 0.0001 56.000 197.632 0.000 345.153

C05 29599.8 0.0001 56.000 197.632 0.000 30.153

B08 29599.8 0.0001 56.000 77.632 0.000 150.153

B03 29599.8 0.0001 56.000 77.632 0.000 285.153

A08 29599.8 0.0001 56.000 317.632 0.000 135.153

A05 29599.8 0.0001 56.000 317.632 0.000 0.153

C07 29599.8 0.0001 56.000 197.632 0.000 120.153

C02 29599.8 0.0001 56.000 197.632 0.000 255.153

A02 29599.8 0.0001 56.000 317.632 0.000 225.153

A06 29599.8 0.0001 56.000 317.632 0.000 45.153

C06 29599.8 0.0001 56.000 197.632 0.000 75.153

C08 29599.8 0.0001 56.000 197.632 0.000 165.153

C03 29599.8 0.0001 56.000 197.632 0.000 300.153

C01 29599.8 0.0001 56.000 197.632 0.000 210.153

A03 29599.8 0.0001 56.000 317.632 0.000 270.153

A07 29599.8 0.0001 56.000 317.632 0.000 90.153

A04 29599.8 0.0001 56.000 317.632 0.000 315.153

A01 29599.8 0.0001 56.000 317.632 0.000 180.153

B04 29599.8 0.0001 56.000 77.632 0.000 330.153

B01 29599.8 0.0001 56.000 77.632 0.000 195.153

B02 29599.8 0.0001 56.000 77.632 0.000 105.153

B07 29599.8 0.0001 56.000 77.632 0.000 240.153
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To define the date and time for the simulation, a UTC time must be inserted in the

program. The date and time will then be converted to julian date (JD), day of year

(DOY) and day of week (DOW) to be used in different outputs. Simulation step size is

related to propagation step size which determines the interval to achieve position and

velocity information. Propagation steps and types will be explained in the following

section.

4.2.1 GNSS Kinematic Positioning for Initial Coordinates

For the determination of initial coordinates of a LEO satellite, raw observations can

be used in a simple positioning algorithm. Kinematic positioning is the calculation

of the position of moving receiver on the Earth or onboard the satellite (See Fig.

4.1). A single point positioning which is also referred to as absolute positioning

technique is used to calculate receiver position with respect to the Earth’s reference

frame. At least four pseudorange measurements are required to calculate position at

a time. Broadcasted satellite positions or precise GNSS satellite positions derived

from precise orbit products and measured quantities are used to approximate position

of the receiver with least squares method. These quantities are the distance between

GNSS satellite and the receiver.

Figure 4.1: GNSS-based positioning for onboard receiver
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The distance between GNSS satellites and a GNSS receiver can be calculated with

different type of measurements. These measurements are called observables which

will be explained in Section 3.1.2. These measurements are used in parameter

estimation algorithms to calculate receiver position in an earth-fixed or inertial frame.

4.3 Two-step Propagation

To propagate orbital motion of a satellite, an initial position and velocity information

in ECI frame is needed as an initial parameter. For propagation of these quantities

numerical methods are widely used in orbital mechanics. As it is stated in the previous

chapters, due to its simplicity and stability, the 4th-order Runge-Kutta (RK4) method

is preferred in this thesis.

In GNSS Orbit Simulation, there are two different orbit types to be propagated; LEO

satellite orbit and the orbit of GNSS satellites. The propagation of these orbits are

performed in two steps. In the first step, initial state of LEO satellite with GNSS

receiver is propagated with specified step size along the orbit and at each step state

matrix is stored. In the second step, all the satellites for chosen constellation are

propagated with the same procedure and all states are stored to be masked by their

elevations according to the LEO satellite.

Although the RK4 integration is a simple and fast method, it is a coarse technique

in terms of accuracy. The propagation method which is applied in this thesis, can be

considered as a geometric approach which is independent of accelerations caused by

various perturbations. Since the outputs of two-step propagation are assumed to be

true values and are used as reference for filtered results, accuracy of the propagation

with respect to the real orbit is not crucial at this point. The position differences

between the geometrically propagated orbits and a reference orbit can be seen in

Figure 4.2. In the different studies or applications which require accurate reference

orbit, different integration methods can be used in the simulation.
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Figure 4.2: Differences between real GRACE orbit and RK4 Geometric Approach

for 24h (10s interval)

4.4 Raw Data Generation

Raw data generation is the main part of the simulation. The outputs are created and

formed with respect to additional constraints. In this thesis, only code pseudoranges

are simulated as observations. The processes will be explained respectively in the

following subsections.

4.4.1 Generation of Satellite Ephemerides

Satellite ephemerides contain position, velocity and time information at each epoch

corresponding to seconds of the day. Additionally GNSS Satellite ephemerides

provide calculated or defined clock error values in microseconds. A script is

developed to generate IGS SP3 (The Extended Standard Product 3 Orbit Format)

Ephemeris file. An example of IGS ephemeris file is shown in Fig. 4.3. The script
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collects all information from propagator and write them into a text file with the same

structure and the order of IGS SP3s. There is a unique identification for each satellite

constellation in generated ephemeris file. The intervals between the epochs are set to

15 minutes as it is in IGS products.

Figure 4.3: IGS SP3 File Format (Hilla, 2016)

Generated ephemeris files are also one of the outputs of the simulation. These files

are used later in the filtering procedure to determine LEO satellite orbits.

4.4.2 Elevation Mask

In ground positioning, generally a mask angle is defined in the receivers to eliminate

some GNSS satellites with low elevation angles. The signals coming from those

GNSS satellites are mostly weak and affected by the atmosphere due to long signal

path. For more accurate positioning, these observations need to be removed to have a

more reliable data set. This procedure is also used in GPS-based orbit determination

(Bisnath and Langley, 2001) with the same principle. Using elevation mask in this
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simulation, not only low elevation satellites are eliminated but also satellites below

horizon are prevented to be in the data set.

Figure 4.4: GNSS Simulation Elevation Mask

Propagated GNSS satellites are sifted out according to their elevations (See Fig. 4.4).

Then, masked satellite positions are used in the calculation of geometric ranges and

also in the error approximation.

The visibilities of the satellites are monitored at each epoch and Geometric Dilution of

Precision (GDOP) values are calculated and stored in an array. GDOP is a term which

is used to represent measurement precision according to the geometric distribution of

the satellites. It can be calculated from the unit vectors between the receiver and

the satellites. Let matrix X represents the directional derivatives of all the visible

satellites form a (n × 4) matrix, X, where n is the total number of visible satellites. In

case of 4 visible satellites, X matrix can be formed as:

X “

»

—

—

—

—

—

–

px1´xq
R1

py1´yq
R1

pz1´zq
R1

´1
px2´xq

R2

py2´yq
R2

pz2´zq
R2

´1
px3´xq

R3

py3´yq
R3

pz3´zq
R3

´1
px4´xq

R4

py4´yq
R4

pz4´zq
R4

´1

fi

ffi

ffi

ffi

ffi

ffi

fl

(4.1)

33



where Ri is

Ri “
a

pxi ´ xq2 ` pyi ´ yq2 ` pzi ´ zq2 (4.2)

where xi, yi, zi and x, y, z are the position vector components for each GNSS

satellites and the LEO satellite or the receiver, respectively. Taking the inverse of

normal equation matrix XTX yields a (4 × 4) matrix where the diagonal terms gives

the square of the DOP sigma values in each direction including time. The elements

of the cofactor matrix Q which is the inverse of the normal equation matrix can be

designated as follows:

Q “ pXTXq´1
“

»

—

—

—

—

—

–

σ2
x σxy σxz σxt

σxy σ2
y σyz σyt

σ2
xz σyz σ2

z σzt

σ2
xt σyt σzt σ2

t

fi

ffi

ffi

ffi

ffi

ffi

fl

(4.3)

PDOP, TDOP and GDOP can be calculated as:

PDOP “
a

σ2
x ` σ2

y ` σ2
z

TDOP “
a

σ2
t

GDOP “
a

PDOP 2
` TDOP 2

(4.4)

4.4.3 Pseudorange Calculation

Various parameters are considered to be affected on the calculation of code

pseudorange measurement. The parameters are defined according to the errors which

have impact on pseudorange calculation. These errors are either environmental or

instrumental errors. Unlike range measurement corrections being done in positioning,

in the simulation calculated delays are added to the geometric ranges as range

measurement errors. To start the process, some user-defined parameters need to be

defined. In satellite positioning pseudorange equation can be defined as follows:

p “ ρ` cpdts ´ dtrq ` drel ` dion ` dtrop ` dmp ` dKr ´ dK
s
` εP (4.5)

where

ρ is the geometric range between the satellite and the receiver,

c is the speed of electromagnetic wave,
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dts and dtr are the satellite and the receiver clock offsets from the GNSS time scale,

drel is the relativistic error,

dion is the ionospheric delay,

dtrop is the tropospheric delay,

dmp is the error due multipath,

dKr and dKs are the receiver and the satellite instrumental bias,

and εP is the receiver range measurement error in terms of white noise

Code pseudorange orbservations are contaminated by all of these errors, and the raw

observations need to be corrected by modeling each error. Hovever, some of these

errors do not interfere with the measurements in orbit determination of LEO satellites.

Since LEO satellites orbiting beyond troposphere, signals do not pass thorough the

Troposphere layer. So, tropospheric delay is not an issue in LEO orbit determination.

The multipath effect around LEO satellite can be also neglected due to near-earth

space environment. Hence, pseudorange equation for the simulation can be formed

as:

p “ ρ` cpdts ´ dtrq ` drel ` dion ` εRN ` ε (4.6)

In the equation for the simulation, εRN and ε parameters are included to deal

with random system noise errors and unmodeled random noise errors, repectively.

Calculation of the pseudoranges without noise addition is explained in Figure 4.6.

4.4.3.1 Satellite and Receiver Clock Error

One of the most important priori defined parameters is clock bias parameter. In GNSS

positioning clock errors always need to be calculated precisely to obtain accurate

positioning information. In the simulation clock errors are added to the pseudoranges

and stored in an array to be removed in the filtering procedure.

Since Galileo satellites carry Passive Hydrogen Maser (PHM) atomic clock as their

main onboard clock, it is expected to provide more accurate clock information

compared to atomic clocks used in GPS. The clock is made of an atomic resonator and

uses hydrogen atom to measure time. The Allan deviation is a measure to describe

frequency stability of clocks of oscillators. It is a well-known method to analyze
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the noise within a signal over time. Allan deviation characteristics for different clock

types are given in Figure 4.5. τ symbol is the averaging period for the Allan deviation

Figure 4.5: Allan deviation of high precision frequency standards (Tavella, 2008)

However in this thesis, there is no need to classify the clocks according to their

performances since all of the clock errors are corrected regardlessly in the filtering

procedure. Satellite clock errors either can be user-defined or can be taken from

SP3 products. To define Galileo satellite clock errors, The Multi-GNSS Experiment

(MGEX) SP3 products can be used. If there is no clock error information in SP3 for

any satellite, then clock error will be interpolated using 1-D data interpolation with

respect to the existing clock errors in SP3 file.

The clock components of GNSS receivers are the built-in quartz clocks with high

frequency offsets. The quartz clocks have approximately two orders worse frequency

stability when compared to rubidium atomic clocks (Yeh et al., 2009). Receiver clock

bias is generally estimated along with the position and velocity parameters. For the

validation of clock estimation in the filtering procedure, a priori-defined clock value

can be used in the simulation. Therefore, the receiver clock error is a user-defined

parameter and is directly added to the pseudoranges. User can specify the accuracy

of the receiver in the simulation by this parameter.
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4.4.3.2 Relativistic Error

Along with relative motion between the satellite and the receiver, post-Newtonian

theory of relativity is presented as a background in numerical treating of satellite

navigation relativistic effects. Due to orbit eccentricity, variations of velocity and

the gravitational potential cause relativistic effects on the signal between a moving

satellite with the receiver and GNSS satellite (Swatschina, 2009).

The Orbit Eccentricity Effect is a relativistic effect due to the rate of change of

eccentric anomaly and it can be corrected with a clock correction term as follows:

drel “ ´2
rsatvsat

c2
(4.7)

where rsat and vsat are the satellite position and velocity vector in an inertial frame

and c is the speed of light.

In the pseudorange calculation, relativistic errors (∆relc) are added to the geometric

ranges to take the rate of advances of the clocks onboard the satellites into account

with respect to general relativity and simulate orbital motion rigorously.

4.4.3.3 Ionosphere Error

Ionosphere can be considered as the environmental error with a greatest impact on

GNSS signals. The layer is ionized by solar radiation and consists of free electrons.

Ionosphere is a dispersive medium with respect to GNSS radio signals and the time

delay caused by the ionosphere depends on the frequency of the signal. Ionospheric

delay is a function of the Total Electron Content:

∆tiono “ 40.3
TEC

f 2
(4.8)

where f is the frequency of the signal and TEC is the Total Electron Content

p1 TECU “ 1016 electrons{m2q along the signal path. In this thesis, Klobuchar

ionospheric model (Klobuchar, 1987) is used to calculate ionospheric time delay on

each frequency. In order to calculate ionospheric delay, Klobuchar model coefficients
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α and β are required. For the simulation the coefficients are taken from broadcasted

GPS ephemeris file of the reference date of 21 November 2016.

According to the Klobuchar model algorithm the earth-centered angle is calculated

by:

ψ “
0.0137

E ` 0.11
´ 0.022 (4.9)

where E is the elevation of the GNSS satellite with respect to the LEO observer. The

latitude of the Ionospheric Pierce Point (IPP) can be calculated as follows:

φI “ φu ` ψ cosA (4.10)

where φu is geodetic latitude and A is the azimuth of the GNSS satellite with respect

to the LEO observer. If φI ą 0.416 then φI “ 0.416 and if φI ă ´0.416 then

φI “ ´0.416. The longitude of the IPP is calculated as:

λI “ λu `
ψsinA

cosφI

(4.11)

where λu is geodetic longitude. The geomagnetic latitude of the IPP is given as:

φm “ φI ` 0.064 cos pλI ´ 1.617q (4.12)

Then the local time at the IPP is computed as:

t “ 43200λI ` tGPS (4.13)

Local time t is subtracted by 86400 if t ą“ 86400. And if t ă 0, then 86400 is

added. Amplitude of ionospheric delay can be calculated as follows:

AI “

3
ÿ

n“0

αnφ
n
m (4.14)

where AI “ 0 if AI ă 0. Computed period of ionospheric delay is given by:

PI “

3
ÿ

n“0

βnφ
n
m (4.15)

where PI “ 72000 if PI ă 72000. And, computed phase of ionospheric delay in

radians is given by:

XI “
2πpt´ 50400q

PI

(4.16)
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For the mean ionospheric location, slant factor is calculated by:

F “ 1.0` 16.0p0.53´ Eq3 (4.17)

Then, the ionospheric time delay is computed by:

dionL1
“

$

’

&

’

%

”

5ˆ 10´9 `
ř3

n“0 αnφ
n
m

´

1´
X2

I

2
`

X4
I

24

¯ı

.F |XI | ă 1.57

5ˆ 10´9.F |XI | ě 1.57
(4.18)

The ionospheric delay for a different frequency can be computed by:

dionx “

ˆ

fL1

fx

˙2

dionL1
(4.19)

4.4.3.4 System Noise

Receiver system noise can be interpreted as the measurement error of the receiver.

This error directly affects the tracking performance of the GNSS receiver. The

receiver synchronizes the PRN code superimposed on a modulated carrier wave

received from a GPS satellite with a replica of the same code transmitted in the

incoming signal to estimate the traveled distance by the received signal. In order to

track the code parameters of the transmitted signal, tracking loops are used in closed

loop to estimate the noise impact in the receiving signal. In this thesis, the range error

due to thermal noise, antenna noise and measurement error noise are represented with

Receiver System Noise Error and will be added to the geometric ranges.

Signal-to-noise ratio (SNR) is a very important factor to assess the performance of the

GNSS receiver with respect to the precision of the observations. SNR is a measure

used in signal processing to analyze the level of a signal compared to its background

noise. The SNR of a modulated signal at radio and intermediate frequencies (RF and

IF) is commonly described with carrier-to-noise-power-density ratio, C{N0, which

corresponds to the power level of a signal carrier to the noise power in a 1-Hz

bandwidth. For GPS signals nominal C{N0 values are expected to be over 45 dB-Hz

and in modern receivers it is likely to experience values of 50 dB-Hz or so (Langley,

1997).

Since Galileo offers signal modulations such as BOC (Binary Offset Carrier) and

AltBOC (Alternative BOC modulation), the E5a and E5b bands can be either
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processed independently as conventional BPSK (10) signals or processed together.

This allows Galileo signals huge performance improvements in terms of tracking

noise (Sleewaegen et al., 2004).

Figure 4.7: GPS C/A and Galileo BOC(1,1) sharing the L1/E1 spectrum. The center

frequency is 1575.42 MHz (Borre, 2009)

It can be seen in Figure 4.7 that using higher frequency components on signal

multiplexing broadens the power spectral density (PSD) spectrum for BOC

modulated signals. Using spreading codes higher sample rates with larger

bandwidths, possibly increase the accuracy (Sarnadas and Ferreira, 2011).

To determine the tracking performance of the GNSS receiver C{N0 values are

approximated with respect to the elevation angles of the satellites. Then, C{N0 values

are used in code-tracking loop to estimate the range errors due to receiver noise. The

code-tracking loop or delay lock loop (DLL) jitter for an early/late one-chip-spacing

correlator can be calculated as follows:

σDLL “

d

αBLd

c{n0

„

1`
2

T c{n0



λc (4.20)

where α is the dimensionless DLL discriminator correlator factor, chosen as 0.5 for

dedicated early/late correlator; BL is the code loop noise bandwidth in Hz, chosen
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Figure 4.8: GPS C/A BPSK(1), Galileo BOC(1,1) and Galileo CBOC(6,1,1/11) code

tracking errors (Sarnadas and Ferreira, 2011)

as 0.8, c{n0 is the carrier-to-noise density ratio in dB-Hz pc{n0 “ 10
C{N0
10 q, T is the

predetection integration time in seconds, chosen as 0.02; λc is the wavelength of the

PRN code, given as 293.05 m for C/A code and 29.305 m P code; and d is correlator

spacing in chips, chosen as 0.1 in the simulation. Code tracking error is related to

chip width. Therefore, when compared to P code solution, it is expected to deal with

larger errors in C/A code solution. In the new generation GNSS receivers, the narrow

correlator spacing in chips are used. Using less than one chip reduces the error in

code tracking and allows more accurate solution.

By taking previous research and studies (Hauschild et al., 2014; Pany et al., 2003;

Eissfeller et al., 2007) into consideration minimum C{N0 values are selected as 34

for GPS and 38 for Galileo with respect to the signal powers and typical C{N0 values

for each constellation. 1-sigma errors related to C{N0 values for different modulation

processes can be seen in Figure 4.8. For a Galileo satellite transmitting the signal at
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E deg of elevation receiver system noise error is calculated as:

C{N0 “ C{N0min ` 0.235294117647059pE ´ 5q (4.21)

where C{N0min is priori-defined the minimum carrier-to-noise-density ratio that can

be achieved with respect to the constellation and E is the elevation of GNSS satellite.

Code tracing error is calculated with substituting C{N0 values in the equation 4.20.

Then, receiver system noise error is calculated by:

εRN “ σDLL . RNDr0 : 1s (4.22)

where RNDr0 : 1s is a random number generated between 0 and 1.

In addition to the receiver system noise error, to cope with the errors from unknown

sources an unmodeled random noise term ε “ RNDr0 : 0.1s m is added to the

pseudorange calculation. This error is the result of random noise which is also

dependent on satellite elevation. Errors caused by random noise are not estimated

as a parameter in the filtering procedure. However, it is possible to observe

the filter behavior in the presence of random noise contaminate the pseudorange

measurements.

Figure 4.9: System Noise Errors

System noise errors are added to the pseudoranges before the filtering procedure.

Calculation of system noise errors with respect to satellite elevation is expressed in

Figure 4.9.

4.4.3.5 True LEO Orbit

In order to compute the true orbit of a LEO satellite, calculated pseudoranges are used

in an analytical calculation of LEO orbits. Cartesian coordinates of LEO satellite
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are calculated with true range multilateration. Calculated pseudoranges from four

available satellite setup with the best GDOP value are used in the solution of the

simple geometry problem.

Figure 4.10: GNSS Trilateration (Peyret et al., 2015)

True range multilateration is a mathematical technique to calculate the position of a

moving or a stationary object fundamentally by finding the intersection of a series

of spheres. Using multiple ranges from spatially-separated known points, another

point in space can be calculated. True range multilateration, often called trilateration

method is practically applied in surveying for a solution of a simple geometry problem

of a fixed location. It is commonly preferred cost-effective positioning technique

for surveying applications. However, this simple method is extended to satellite

navigation which requires the determination of time in addition to the position (Fang,

1986). Trilateration used in GNSS is illustrated with four satellites in Figure 4.10.

In order to solve 3-D cartesian trilateration problem, various algorithms, e.g. Fang

(1986), Sirola (2010) and Bancroft (1985), were developed in the past for particular

applications.
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Figure 4.11: 3-D trilateration scenario

According to the scenario in Fig. 4.11, sphere centers corresponds to P1, P2 and P3

points represented on a x, y plane. If P is the position of an unknown point at (x, y, z),

then Pythagoras’s theorem yields the slant ranges between P and the sphere centers:

r2
1 “ x2 ` y2 ` z2

r2
2 “ px´ Uq

2 ` y2 ` z2

r2
3 “ px´ Vxq

2 ` py ´ Vyq
2 ` z2

(4.23)

where P is the point to be calculated, P1, P2 and P3 are known centers of spheres in

the x,y plane. Thus, letting V 2 “ V 2
x ` V

2
y , the coordinates of P are:

x “
r2

1 ´ r
2
2 ` U

2

2U

y “
r2

1 ´ r
2
3 ` V

2 ´ 2Vxx

2Vy

z “ ˘
a

r2
1 ´ x

2 ´ y2

(4.24)

In GNSS simulation, a mathematical technique is used in trilateration process for

the calculation of LEO positions from produced pseudorange quantities by GNSS
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satellite propagation. These LEO positions are used for the comparison of proposed

algorithms and applied techniques.

4.4.3.6 Outliers

Due to sensor malfunction, it is likely to see outliers in the observation data set. These

outliers are needed to be either excluded from the data set or weighted with robust

algorithms. In case of having limited number of measurements, removing data can

cause the system to become under-determined. Since the filtering algorithm is very

dependent on the observations in this thesis, outliers are weighted instead of being

removed from the data set.

Calculated pseudoranges are not generated from a sensor. Therefore, the observations

are free of outliers when the pseudorange calculation is completed. However, to

simulate sensor malfunction and to analyze the performance of robust filter random

outliers added to the observations. During three epochs single range measurement

in a data set is contaminated by outliers. Three levels of outlier impact are defined

as 10, 100 and 1000 km for each epoch chosen to be contaminated. The outliers

are added to the observations before generating Receiver Independent EXchange

(RINEX) observation files. The performance of the robust filter on the outliers will

be evaluated in the Chapter 6.

4.4.4 RINEX Generation

Receiver Independent Exchange Format (RINEX) is a data format includes raw

satellite navigation data. Raw measurements along with time information is provided

by this file to be post-processed by the user to obtain more accurate position.

Produced code pseudoranges by the simulation are written into a text file with the

same format of RINEX 2.20 (Gurtner and Estey, 2013) which is a special version

developed within the IGS LEO projects for space-borne GNSS receivers.

The script generates RINEX observation file (e.g. .16o) to be used as an input in the

filtering procedure. Along with SP3 file generated from the simulation observation
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Figure 4.12: RINEX observation file generated by the simulation

file is the output of the simulation. The RINEX observation file generated from GNSS

simulation is shown in Figure 4.12.
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CHAPTER 5

ADAPTIVE ROBUST KALMAN FILTERING

Two types of estimation methods are mainly used to estimate the state parameters

in orbit determination: batch least squares and recursive estimation. Although both

methods aim to minimize the errors, they have different working principles to be

used in different types of applications. Due to its batch structure, batch processing is

mainly used for post-processing applications and requires computers with high-level

performance as it brings more computational loads. In real-time applications,

recursive estimators are used to estimate the state parameters without storing all

the data and observations (Keil, 2014). The state parameters and their covariances

are estimated recursively over time using estimated parameters and their covariances

from previous epoch as the input. It is very important to use rapid algorithms in

continuous applications such as satellite navigation and autonomous control systems.

In this thesis, the Kalman Filter is applied to estimate state parameters. It is a recursive

algorithm which will be explained in the following section.

5.1 Kalman Filter

Kalman filter is a recursive algorithm which is developed by Rudolf E. Kalman. Due

to its recursive structure, Kalman Filter is widely applied in orbit determination. The

algorithm comprises two main steps called "Prediction" and "Correction". In the

prediction step, state parameters and their zero mean Gaussian noises are transferred

to the next epoch with system dynamics. This step is also called "Time Update" in

the algorithm. When the measurements are obtained, the prediction with a level of

uncertainty is corrected with the measurements using the weighted average.
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Figure 5.1: Two Step Calculation

Linear dynamic system in state space form is expressed as:

9x “ Fx` wptq (5.1)

where x is the state vector, F is the dynamic (state) matrix and w is the process or

system noise for the state vector components. For a dynamic nonlinear system model,

a linearization procedure is needed. This can be done by Taylor series approximation:

xk`1 “ xk ` 9xk∆t` :xk
∆t

2!
` . . . (5.2)

According to the dynamic model, the discrete equation can be formed as:

xk`1 “ xk ` Fxk∆t` F2xk
∆t2

2!
` . . . (5.3)

The dynamic matrix, F, can be carried to the next step either with State Transition

Matrix (Φ) or with numerical integration which is explained in Section 2.3. The state

prediction is expressed as:

xk`1 “ Φkxk (5.4)

And the state transition matrix is derived from Eq. 5.3 as follows:

Φk “ I` F∆t` F2 ∆t2

2!
` . . . (5.5)
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where I is unit matrix. The discrete-time dynamic system can be written as:

xk`1 “ Φkxk ` ωk (5.6)

If state vector components are position (x, y, z) and velocity (vx, vy, vz), then, the

dynamic matrix F can be written as:

F “

»

—

—

—

—

—

—

—

—

—

—

—

–

Bvx
Bx

Bvx
By

Bvx
Bz

Bvx
Bvx

Bvx
Bvy

Bvx
Bvz

Bvy
Bx

Bvy
By

Bvy
Bz

Bvy
Bvx

Bvy
Bvy

Bvy
Bvz

Bvz
Bx

Bvz
By

Bvz
Bz

Bvz
Bvx

Bvz
Bvy

Bvz
Bvz

Bax
Bx

Bax
By

Bax
Bz

Bax
Bvx

Bax
Bvy

Bax
Bvz

Bay
Bx

Bay
By

Bay
Bz

Bay
Bvx

Bay
Bvy

Bay
Bvz

Baz
Bx

Baz
By

Baz
Bz

Baz
Bvx

Baz
Bvy

Baz
Bvz

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.7)

In Kalman Filter, error covariances are transferred to the next epoch separately with:

Pk`1 “ ΦkPkΦ
T
k `Qk (5.8)

where Q is the noise covariance matrix of system parameters. The expected value of

Q is given by:

Q “ EpwwT
q (5.9)

Q is a positive definite diagonal matrix consisting of noise variances of state

parameters. Determination of Q matrix is very effective on the filter performance.

While a filter with a large Q is overdependent on the measurements, a filter with

a small Q is overdependent on the system model. In highly nonlinear system

applications, determination of system changes is very important. In such systems,

the noise covariance matrix of system noise is calculated adaptively. A filter with an

adaptive estimation of noise covariances is called an Adaptive Filter. Adaptive filters

will be explained in Section 5.4.

As a part of system equations, measurement model is given as:

z “ Hx` v (5.10)

where z is the observation vector and H is the measurement sensitivity (design)

matrix and v is the measurement (sensor) noise for the observations. The design
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matrix is given by:

HNˆ6 ”

„
ˆ

Bρsr
Br

˙

Nˆ3

ˆ

Bρsr
B 9r

˙

Nˆ3



(5.11)

where ρsr is the pseudorange observations from satellite to receiver and N is the

number of observations. Corrected state vector can be determined by:

pxk`1 “ sxk`1 `Kk`1rz´Hk`1sxk`1s (5.12)

where px is the estimated state vector, K is the Kalman Gain, sx is the predicted state

vector which is previously expressed in the prediction step as xk`1. Kalman gain can

be calculated by:

Kk`1 “ sPk`1Hk`1pHk`1
sPk`1H

T
k`1 `Rkq

´1 (5.13)

where sPk`1 is predicted error covariance matrix, which is previously expressed in

the prediction step as Pk`1 and Rk is the measurement noise covariance matrix

which is also a positive definite diagonal matrix which consists of noise variances

of measurements. Rk matrix can be determined if the accuracy of the measurement

sensor is known. It is challenging to set an optimal noise covariance without the

knowledge of the sensor error. There are some robust estimation methods which

include measurement covariance tuning according to the residual errors. Robust

estimation will be explained in detail in Section 5.3.

Estimated error covariance matrix of state parameters, pPk`1, can be calculated as:

pPk`1 “ pI´Kk`1Hk`1qsPk`1 (5.14)

The equations of essential Kalman filter algorithm are summarized in Table 5.1.

Essential Kalman Filter algorithm is generally used in the applications which the

state space equation represents a linear problem. However, most of the problems

in real world cannot be considered as linear. The state space equations of these

problems are nonlinear differential equations. As it is stated earlier in this section,

a linearization procedure has to be performed in order to to apply Kalman Filter in

nonlinear systems. If the nominal estimate of the state is used to define both dynamic

and measurement model functions, the algorithm is called Linearized Kalman Filter.

This can be considered as the simplest approach to Kalman filtering for nonlinear
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systems, since it uses linearization of the system model about a nominal trajectory.

This approach can be used in preliminary system analysis phase of the various mission

scenarios with several potential trajectories (Grewal et al., 2013).

If corrected state estimate is used in each step for linearization, the algorithm is called

Extended Kalman Filter which is a widely used extension of Kalman Filter. In this

thesis, the Extended Kalman Filter (EKF) algorithm is implemented. The algorithm

will be explained in the following section.

Table 5.1: Kalman Filter Algorithm

Time Update (Prediction)

sxk`1 “ Φkxk Predicted State Vector

sPk`1 “ ΦkPkΦ
T
k `Qk Predicted Error Covariance Matrix

Measurement Update (Correction)

Kk`1 “ sPk`1Hk`1pHk`1
sPk`1H

T
k`1 `Rkq

´1 Kalman Gain

pxk`1 “ sxk`1 `Kk`1rz´Hk`1sxk`1s Corrected State Vector

pPk`1 “ pI´Kk`1Hk`1qsPk`1 Corrected Error Covariance Matrix
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5.2 Extended Kalman Filter

Linearization is a very important part of the Kalman Filter for nonlinear applications.

The Extended Kalman Filter (EKF) provides an efficient linearization performance.

Thus, it is one of the most preferred algorithms for nonlinear estimation problems.

Unlike the linearized version of classical Kalman Filter equations, EKF makes use

of estimated state of each epoch for linearization (See Fig. 5.2). This allows state

estimation to be more accurate.

Figure 5.2: LKF and EKF representation

In the Extended Kalman Filter, the reference trajectory is updated at each epoch after

measurements are processed. Integration step size between measurement epochs has

to be taken small to reduce the effect of linearization error. The performance of

the filter depends on the system model as well as the quality of the measurements.

Additionally, an incorrect estimation of the initial state and initial error covariance

can lead to the divergence of the filter. The equations of Extended Kalman Filter

algorithm are summarized in Table 5.2.
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Table 5.2: Extended Kalman Filter Algorithm

Time Update (Prediction)

sxk`1 “ xk `

ż tk`1

tk

fpx, tqdt Predicted State Vector

F “ Bf
Bx

ˇ

ˇ

ˇ

x“pxptq
Dynamic Matrix

sPk`1 “ ΦkPkΦ
T
k `Qk Predicted Error Covariance Matrix

Measurement Update (Correction)

Kk`1 “ sPk`1Hk`1pHk`1
sPk`1H

T
k`1 `Rkq

´1 Kalman Gain

Hk “
Bh
Bx

ˇ

ˇ

ˇ

x“px
Design Matrix

pxk`1 “ sxk`1 `Kk`1rz´Hk`1sxk`1s Corrected State Vector

pPk`1 “ pI´Kk`1Hk`1qsPk`1 Corrected Error Covariance Matrix

Extended Kalman Filter is very useful for space-based continuous applications but

it is difficult to implement the technique in orbit determination (Vallado, 2001).

Considering the noise characteristics as zero-mean Gaussian (white) noise is not

always the best option to represent the real conditions of the signal environment since

the power spectral density of the noise may not be uniform across the frequency

spectrum. This type of frequency-dependent noise can be called colored noise. Since

the Kalman Filter usually requires white noise, modeling correlated noise is only

possible with a shaping filter. Colored noise can be generated from a white noise

passing through a shaping filter (commonly a low pass filter) (Viswanathan, 2013). In

this thesis, the noise is assumed as white noise in the filtering process.
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As it is explained in Section 5.1, determination of noise covariance matrices Q and R

is challenging all by itself. Optimal determination of these matrices may be possible

with adaptive and robust estimators. These techniques will be explained further in the

Section 5.3 and Section 5.4.

5.3 Robust Estimation

In the parameter estimation process, measurements which are obtained from the

sensor must be checked in terms of quality. The observations can contain outliers

as a result of the sensor malfunctioning. An outlier is an erratic observation which

has an abnormal distance from other values in an observation sample. Generally,

the outliers are needed to be excluded from the data set to prevent incorrect state

estimation. However in case of having limited number of measurements, removing

data can cause the system to become under-determined. This is not the most efficient

way to estimate parameters for the applications which are highly dependent on the

observations. Kinematic orbit determination is an example of such applications.

In robust algorithms, outliers are weighted with the equivalent measurement noise

covariance matrix instead of being removed from the data set. Numerous methods

are proposed in the literature to calculate equivalent measurement noise covariance

matrix such as Huber weight function (Huber and Ronchetti, 1981), Hampel function,

Tukey bi-weight function (Hampel et al., 2011) or IGGIII (Institute of Geodesy and

Geophysics) (Yang et al., 2002) function. In this thesis, M estimation based IGGIII

function is adopted to control abnormal measurements and to obtain equivalent

measurement noise covariance matrix. R can be tuned as follows:

sRki “ Rki{γki (5.15)

where sRki is tuned measurement noise covariance matrix divided by variance

inflation factor γki which can be calculated with IGGIII function as follows:

γki “

$

’

’

’

’

&

’

’

’

’

%

1 |pei| ď k0

k0
|pei|

´

k1´|pei|
k1´k0

¯

k1 ă |pei| ă k1

« 0 |pei| ą k1

(5.16)
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where pei standardized residuals computed from estimated residuals, k0 and k1 are the

constants can be chosen as k0 = 1.5 - 3.0 and k1 = 3.0 - 5.0 according to trial-and-error

based evaluation results. IGGIII function consists of three cases concerning the given

threshold constants which are chosen according to experimental results. In order to

prevent equivalent variance going to infinite, variance inflation factor can be set to the

machine epsilon in case of measurement residual, which is too large to be accepted.

In the parameter estimation procedure, estimated residuals are calculated with

corrected observations as follows:

pe “ ry ´ pys (5.17)

From statistics, sample covariance can be defined as

Q “
1

n

n´1
ÿ

i“1

pei ´ seqpei ´ seqT (5.18)

Standardized residuals can be obtained by dividing residuals to their standard

deviations as follows:

pei “
pei ´ seq

b

pei´seqT pei´seq
n´1

(5.19)

Robust filtering plays an important role in orbit determination which allows

measurements to be controlled and measurement noise covariance matrix to be tuned.

Then, Kalman gain can be recomputed with sRk as follows:

Kk`1 “ sPk`1Hk`1pHk`1
sPk`1H

T
k`1 `

sRkq
´1 (5.20)

5.4 Adaptive Kalman Filtering

Incorrect modeling of the priori noise covariance matrices of the system, Q, can

cause the filter to diverge. Since the system does not represent actual conditions

in kinematic orbit determination, the noise covariance of the system needs to be

well determined beforehand. An approach for optimal a priori noise covariance

determination is presented in Brown and Hwang (2012). For a state consists of
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PV (Position-Velocity) and clk (Clock) components, the system (process) noise

covariance can be defined as follows:

Q “

»

—

—

—

—

—

–

QPV 0 0 0

0 QPV 0 0

0 0 QPV 0

0 0 0 Qclk

fi

ffi

ffi

ffi

ffi

ffi

fl

(5.21)

where QPV and Qclk are expressed as:

QPV “

»

—

–

Sp∆t3

3

Sp∆t2

2
Sp∆t2

2

Sp∆t3

3

fi

ffi

fl

Qclk “

»

—

–

Sf∆t`
Sg∆t3

3

Sg∆t2

2
Sg∆t2

2
Sg∆t

fi

ffi

fl

(5.22)

where Sp is the power spectral amplitude for position random process, Sf and Sg

power spectral amplitudes for two white noise inputs describing clock errors for a

specific clock type. While Sp can only be determined by tests on vehicle dynamics,

Sf and Sg can be determined according to the Allan variances (Allan, 1966) of

the clock types. In Table 5.3 various types of clocks are listed with their Allan

Variance Coefficients. According to the Allan Variance coefficients, approximate

power spectral amplitudes of clock errors can be calculated as:

Sf „
h0

2
(5.23)

Sg „ 2π2h´2 (5.24)

Table 5.3: Typical Allan Variance Coefficients for Common Timing Standards

(Brown and Hwang, 2012)

Timing Standard h0 h´1 h´2

TCXO1 (low quality) 2ˆ 10´19 7ˆ 10´21 2ˆ 10´20

TCXO (high quality) 2ˆ 10´21 1ˆ 10´22 2ˆ 10´20

OCXO2 2ˆ 10´25 7ˆ 10´25 6ˆ 10´25

Rubidium 2ˆ 10´22 4.5ˆ 10´26 1ˆ 10´30

Cesium 2ˆ 10´22 5ˆ 10´27 1.5ˆ 10´33
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In practical applications, a priori estimation of the system noise covariance matrix

may not be enough to represent the system noise of a highly dynamic system. In

such systems, it is not necessary to hold system noise covariance constant. Updating

system noise covariance matrix at each step allows better estimation and prevent filter

divergence. In adaptive filtering, it is possible to balance dynamic model information

and the measurement by tuning Kalman Gain with an adaptive factor. The adaptive

gain matrix can be defined as follows:

sKk`1 “
1

αk

sPk`1Hk`1p
1

αk

Hk`1
sPk`1H

T
k`1 `Rkq

´1 (5.25)

where αk is the adaptive factor which can be calculated with two-segment function

(Yang et al., 2001b):

αk “

$

’

&

’

%

1 |∆pxk| ď c

c
|∆pxk|

|∆pxk| ą c
(5.26)

where c is a threshold constant which can be chosen in the range of 1.0 to 3.0,

|∆pxk| is a learning statistic for kinematic model errors (Yang et al., 2001a). Learning

statistic can be expressed with the difference between estimated and predicted state

information:

|∆pxk| “
}pxk ´ sxk}
a

trpsPk`1q
(5.27)

where "tr" denotes matrix trace operation and sPk`1 is the predicted covariance matrix

of the system state.

5.5 Variance Component Estimation

Since the measurement sensors from different navigation systems do not have the

same quality with respect to the differences in their signal plan, noise variances and

covariances of unique sensors are not expected to be equal. The variances for each

observation or for particular data can be posteriorly estimated by variance component

estimation based on the posteriori measurement residuals (Gao et al., 2016).
1Temperature compensated crystal oscillator
2Ovenized crystal oscillator
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In order to estimate variance components of independent observations, various

approaches are proposed in the past (Förstner, 1979; Koch, 1986; Teunissen and

Amiri-Simkooei, 2008). In this thesis, the Helmert variance component estimation

(HVCE) (Gopaul and Scherzinger, 2009) is adopted for the estimation of variance

components of each GNSS measurement. According to the HVCE algorithm,

variance factors are estimated with respect to the posteriori measurement residuals.

Then a priori measurement noise covariance matrix can be calculated according to

estimated variance factors. In Kalman filtering estimated residuals are calculated as

follows:

pe “ z´Hpx (5.28)

where z is the observation matrix, H is measurement sensitivity matrix and px is the

estimated state parameter matrix. Assuming that multi-GNSS (GPS and Galileo in

our case) measurements are available. Estimated residuals can be written in the matrix

form as:
»

–

peG

peE

fi

fl “

»

–

zG

zE

fi

fl´

»

–

HG

HE

fi

fl

px (5.29)

where the subscripts G and E denotes GPS and Galileo, respectively. It should be

noted that estimated residuals are calculated with the robust estimation of the state

vector. Variance factor estimation (Gopaul and Scherzinger, 2009) based on HVCE

theory is given as:

»

–

σ2
G

σ2
E

fi

fl “

»

–

sG,G sG,E

sE,G sE,E

fi

fl

´1 »

–

eT
GeG

eT
EeE

fi

fl (5.30)

where

si,i “ nk ´ 2trpN´1Niq ` trpN
´1NiN

´1Niq (5.31)

si,j “ sj,i “ trpN´1NiN
´1Njq (5.32)

N “ HTH, i, j “ pG,Eq (5.33)

where n is the number of available GNSS satellites. To apply variance factors which

are computed with HVCE to a robust tuned error covariance matrix, a robust scale
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factor is defined for each measurement. Robust weighting is kept constant during the

variance component estimation process by robust scale factor:
»

–

δG

δE

fi

fl “

»

–

sRG

sRE

fi

flmR0 (5.34)

where "m" stands for element-wise division operator, δ is the robust scale factor, sR is

robust tuned variance and R0 is the initial measurement error variance. With respect

to the calculated robust scale factors and estimated components, measurement noise

covariance matrix can be redefined as follows:

pRk “

»

–

σ2
GδG 0

0 σ2
EδE

fi

fl (5.35)

For each observation group, robust estimation is performed separately to estimate

measurement residuals. Robust weights are stored to calculate robust scale factor

(see Eq. 5.34) for each observation. During robust estimation procedure, outliers

are also detected and they are removed from observation set temporarily to not to

affect estimation of variance components. As the last step before variance component

estimation measurement residuals are estimated with new observation set without any

outlier.

While robust weights balance the measurements in the data set, variance components

weight two different data set with respect to each other. It is expected that VCE

absorbs robust weights if it is applied after robust estimation procedure. However,

a robust scale factor is constituted to keep robust weights constant after variance

component estimation. This factor stores robust weights in the background and apply

it again to the error covariances after VCE procedure. Robust Estimation and VCE

integration is explained in Figure 5.3 in terms of a flowchart where all the items are

related to the corresponding formulas in the chapter.

It should be noted that removal of outliers in Figure 5.3 is not a genuine outlier

detection and removal algorithm to be applied to the observation set. It only removes

outliers temporarily to estimate residuals more accurately in VCE procedure. Same

outliers are later treated with robust scale factor and included in the estimated

measurement noise covariance matrix.
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Figure 5.3: Robust Estimation and VCE Integration
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CHAPTER 6

RESULTS OF ORBIT DETERMINATION AND DATA EVALUATION

In Kalman Filtering procedure, LEO GPS navigation data obtained from L1B

Product of GRACE (The Gravity Recovery and Climate Experiment) mission is

used for the validation of Adaptive Robust Extended Kalman filter (AREKF)

approach. Data is generated by an onboard Turbo Rogue Space Receiver (TRSR)

receiver which is provided by NASA’s Jet Propulsion Laboratory (JPL). TRSR, also

known as BlackJack Receiver is a modified GPS receiver which provides parallel

dual-frequency code and cross-correlation tracking, and simultaneous data output

from GPS satellites (Kramer, 2002). GPS broadcast ephemeris files are obtained

from The Crustal Dynamics Data Information System (CDDIS) ftp server and Galileo

broadcast ephemeris files and clock information for available satellite are obtained

from MGEX products of International GNSS Service (IGS). All algorithms are

implemented on MATLAB 2018b and developed code is run in Ubuntu 18.04 which

is an open-source software operation system.

Performance of the proposed filter and the simulation is evaluated in this section.

6.1 Simulation of GPS and Galileo Orbits

Both GPS and Galileo satellite constellations are simulated according to their

corresponding IGS orbit products (Hilla, 2016) or their nominal orbital parameters

(European GNSS Service Centre, 2019). GPS orbits in eight orbital planes are

visualized in Figure 6.1. Each orbital plane has four slots for GPS satellites. It

can be seen from the figure that there are slight deviations in satellite orbits in the

same orbital planes. These deviations refer to the changes in the inclination and the
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eccentricity values of the satellite orbit by time.

Figure 6.1: Simulated GRACE and GPS Orbits

Since Galileo orbits are simulated from the nominal orbital parameters, it is not

expected to see such deviations in the orbit visualization. Eight Galileo satellites

are smoothly distributed along three different orbital planes (see Figure 6.2).

Low Earth Orbit satellite GRACE is also simulated along with GNSS constellation.

For the visualization, all orbits are represented in Earth Centred Inertial (ECI) frame.

6.2 Filter Settings

In Kalman Filter, some parameters need to be set initially to introduce the system

attitude and measurement quality to the filter. These parameters can be set by

means of measurement variance, initial error covariance matrix and system noise

covariance matrix. Measurement sensor quality and the system dynamics must be

known beforehand for better filter performance. In kinematic orbit determination

system noise parameters should be set with larger values since the system uncertainty

is assumed to be large. In order to observe general filter behavior on kinematic orbit

determination Classical Extended Kalman Filter algorithm (CEKF) is tested with real
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Figure 6.2: Simulated GRACE and Galileo Orbits

GRACE data as a first step. In CEKF, a simple 3σ technique is included as a default

outlier detection algorithm. The technique is applied in every calculation with CEKF.

Measurement sensor noise variance is considered as 1 m. Hence, measurement error

covariance matrix is given by:

R “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–
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0 0 p1q2 0 0 0 0 0

0 0 0 p1q2 0 0 0 0

0 0 0 0 p1q2 0 0 0
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fl

(6.1)

where R1,1...R3,3 are error variance in position, R4,4...R6,6 are error variance in

velocity, R7,7 is clock bias error variance and R8,8 is clock drift error variance. Initial

state vector is estimated by kinematic positioning algorithm. Initial variances of the

65



parameters are set as:

Pk0 “

»
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(6.2)

In order to determine system noise covariance matrix, power spectral amplitude for

position random process Sp is substituted in the equation 5.21 and 5.22. For power

spectral amplitude of 2, system noise covariance matrix is computed approximately

as:
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(6.3)

6.3 Orbit Comparison with CEKF and AREKF using Real GPS Observation

In advance of GNSS simulation, to test the stability and robustness of proposed

AREKF technique, a non-modified Extended Kalman Filter is run with specified

initial settings for 5 and 24 hours of GRACE navigation data with 10 seconds of data

interval. The results for each AREKF implementation are compared with real data

and positions differences in each axis between estimated and true orbit are plotted

with corresponding epoch number.
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For real navigation data, the results of filtering procedure are interpreted with

five important values; Maximum diff. for radial indicates the maximum radial

direction difference from precise orbital positions produced by NASA’s Jet Propulsion

Laboratory (JPL) for 24 hours navigation data. And RMS of differences is the RMS

value of 3D position differences from precise orbital positions by JPL along 24 hours

navigation data. Rest of the results are the average differences in each component.

Figure 6.3: Comparison between 5 hours CEKF and AREKF RMS Results for

GRACE GPS Observations from 21 Nov 2016

First, classical and improved filtering approaches are examined for 5 hours of

navigation data and the results are plotted in Figure 6.3. It is seen in the figure

that AREKF approach (shown in red) treated well to the measurements since the

peaks in CEKF approach are disappeared in AREKF approach. As it is seen in Table

6.1, the RMS of differences between estimated and true orbit decreased from 2.25

m to 1.74 m. Maximum difference of 24 meters simply shows that classical filter’s

performance for kinematic orbit determination is not accurate for each epoch. And,

more than 2 meters of the RMS of differences between the filter results and precise

orbital positions is not accurate enough to consider CEKF process successful if the

accuracy of the measurement sensor is taken into account. In order to have more

information about the approach and evaluate its reliability, same procedure is applied

for 24 hours navigation data (see Figure 6.4).
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Table 6.1: 5-h AREKF and CEKF RMS Results for GRACE Real GPS Observations

from 21 Nov 2016 (Sp “ 2, σ “ 1)

Algorithm Max. diff. for radial (m) 3D RMS of differences (m) Radial (m) Along-track (m) Cross-track (m)

CEKF 24.227 2.250 1.476 1.249 1.150

AREKF 11.594 1.738 1.207 0.932 0.834

Figure 6.4: Comparison between 24 hours CEKF and AREKF RMS Results for

GRACE GPS Observations from 21 Nov 2016

For both algorithms, RMS of differences from precise orbital positions are plotted

in Figure 6.4. The differences in AREKF approach are significantly smaller than

the classical approach. According to Table 6.2 for 24 hours of navigation data 49.2

m of maximum difference in the radial direction improved to 11.6 m and 1.6 m of

RMS of differences from precise orbital positions is obtained. More than 70 cm of

improvement in RMS of differences value shows that Adaptive Robust approach in

Kalman filtering procedure enhancing the filter performance significantly in terms of

position accuracy.
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Table 6.2: 24-h AREKF and CEKF RMS Results for GRACE Real GPS Observations

from 21 Nov 2016 (Sp “ 2, σ “ 1)

Algorithm Max. diff. for radial (m) 3D RMS of differences (m) Radial (m) Along-track (m) Cross-track (m)

CEKF 49.185 2.398 1.519 1.429 1.182

AREKF 11.607 1.611 1.057 0.913 0.803

6.4 Orbit Comparison with CEKF and AREKF using Simulated GPS and

Galileo Observation

The filter results with simulated data are also analyzed in this section to evaluate

the performance of the simulated GNSS observations and the Adaptive Robust filter

approach. Simulated GNSS observations are used in the filtering procedure as

input. Filtering performance on simulated navigation data is discussed. As it is

stated in previous chapters, Galileo measurements are weighted differently than GPS

measurements. It is expected to have better filtering performance in Galileo only orbit

determination since Galileo measurements are configured to have better accuracy.

The orbit calculated with true range multilateration is taken as a reference for all

comparisons and considered to be the true orbit. In Figure 6.5, the RMS values of

differences between this true orbit and filter results are shown in each component for

both constellations. According to the figure, Galileo-only orbit determination has a

better accuracy when compared to GPS-only orbit determination. It should be noted

that the measurement sensor noise values are not considered to be same since the

accuracy of each constellation is different with respect to the simulated observations.

Both simulated GPS and Galileo data have outliers at three epochs. It can be seen

from the figure that those outliers have no effect in the filter performance since they

are weighted by robust algorithm. In Table 6.3, the accuracy of both constellations

can be deduced. Since simulated data includes more consistent measurements, RMS

of differences between filter results and true orbit for simulated GPS constellation are

smaller than expected accuracies with predefined random measurement sensor noise

values. This shows how Kalman filter deals with random noise caused by various

error sources which affect the GNSS measurements. However, the improvement in
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Figure 6.5: Comparison between simulated GPS and Galileo data for 21 Nov 2016

Galileo results can not be seen in the table, since the epochs with limited number of

observations affected the results adversely. 5.4 m of maximum RMS difference from

true orbit for radial direction can be explained with these peaks with low amount of

observations.

Table 6.3: AREKF RMS Results for simulated GPS and Galileo Observations for 21

Nov 2016 (Sp “ 2, GPS σ “ 1.36 and Galileo σ “ 1.02)

Constellation Max. diff. for radial (m) 3D RMS of differences (m) Radial (m) Along-track (m) Cross-track (m)

GPS 2.691 1.182 0.645 0.845 0.517

Galileo 5.412 1.127 0.635 0.764 0.531

According to results for simulated data, using only Galileo measurements is an

effective way to have better orbit determination accuracy. However, the number

of visible Galileo satellites for an instant is not expected to be more than the

number of the satellites in GPS constellation until whole Galileo system reaches

fully operational status. Therefore, Galileo observations are analyzed along with GPS

measurements to evaluate the contribution of Galileo constellation.

Table 6.4 summarizes RMS values of differences from true orbit for various

approaches. First, GPS-only measurements are used with 1.36 m of measurement
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Figure 6.6: Comparison between simulated GPS-only and GPS + Galileo GRACE

data for 21 Nov 2016

sensor noise in AREKF procedure. Then, GPS and Galileo measurements are

combined with an equal measurement sensor value of 1 m. It can be seen from

the table that, combined measurements show significantly more accurate results

than GPS-only AREKF. Finally, combined measurements (also with an equal

measurement sensor value of 1 m) are weighted separately in a variance component

estimation (HVCE) procedure. And, the results show that the accuracy of AREKF is

slightly improved to 0.98 m of RMS of differences value when HVCE procedure is

implemented in the filter.

Table 6.4: RMS Results for simulated GPS-only AREKF, GPS + Galileo AREKF

and GPS + Galileo AREKF with Variance Component Estimation for 21 Nov 2016

(Sp “ 2, σ “ 1 for AREKF)

Max. diff. for radial (m) 3D RMS of differences (m) Radial (m) Along-track (m) Cross-track (m)

GPS 2.691 1.182 0.645 0.845 0.517

GPS & Galileo 2.821 1.050 0.581 0.732 0.479

GPS & Galileo - HVCE 2.468 0.984 0.547 0.685 0.447

Variance component estimation is very important addition to AREKF. Using different

sensors for data generation should be taken into account in terms of measurement

sensor noise. Therefore, using only one noise value for measurement from both
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sensor affects the filter performance. According to the HVCE algorithm, variance

factors are estimated with respect to the posteriori measurement residuals. Then a

priori measurement noise covariance matrix can be calculated according to estimated

variance factors. Kalman Filter is run with this estimated measurement noise

covariance matrix and the results are compared with regular algorithm with priori

defined measurement noise value.

Figure 6.7: Comparison between standart AREKF and AREKF with variance

component estimation for simulated GPS observations for 21 Nov 2016
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CHAPTER 7

CONCLUSIONS

7.1 Summary and Conclusions

In satellite navigation, code pseudorange observations still offer accurate positioning

solutions. Using dual-frequency observations and ground-based orbit determination

algorithms, it is possible to obtain sub-meter level accuracy for the satellites in LEO

(Montenbruck et al., 2008). As long as having sufficient number of available GNSS

satellite, a robust filtering algorithm with corrected measurements can provide a

solution with high level of accuracy.

In common tracking applications, there is no crucial need for detailed dynamic

modeling if the measurements are reliable enough. Kinematic orbit determination

has the advantage of having consistent orbit accuracy regardless of satellite altitude.

Due to its affordable computational cost, kinematic orbit determination is adopted in

this thesis. According to the results, 1.6 m of RMS value of the residual errors is

obtained with kinematic orbit determination for 24 hours of navigation data from a

LEO satellite.

A software-based GNSS constellation simulation program is developed under

MATLAB 2018b environment. Whole constellation is simulated to obtain consistent

data. Raw GNSS observations are generated through simulation. Both simulated

and real navigation data is processed with Kalman filter and the filter performance is

discussed. An extended Kalman filter is implemented with a simple dynamic system

model and it performed good performance in terms on accuracy.

A robust algorithm is applied within EKF to modify measurement error covariances
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and regain outliers in the data set instead of getting rid of them unnecessarily. Since a

simple system model is used in the prediction algorithm, system noise variances are

controlled by an adaptive algorithm to prevent the filter to diverge. AREKF approach

demonstrated that using these algorithms significantly increases orbit determination

accuracy. In the applications which are dependent on the measurements, AREKF

approach can provide accurate orbit solutions.

Additionally, Helmert Variance Component estimation is performed for weighting

different sensors. A robust algorithm integrated with variance component estimation

is presented as a new approach and its benefits are discussed. The results are improved

20 cm with addition of simulated Galileo observations and implementation of HVCE

approach. Although the improvements in the orbital positioning accuracy are not

significantly large, their effects are considerably important in space applications

which require precise orbit information, such as gravity field determination, sea

surface topography or high-quality radar imaging.

Simulated Galileo observations and their contribution in orbit determination are

analyzed. Not only their effect in visible satellite geometry, also their low noise

signal characteristics are examined. According to the simulation results, planned

number of operational satellites in the Galileo constellation is not sufficient in terms

of obtaining good GDOP values for GNSS receiver onboard LEO satellite. Although

high quality observations are obtained from Galileo constellation, the accuracy of the

orbit solution is low at some epochs due to poor satellite geometry.

7.2 Future Studies

Regarding future research about the study, some improvements and verification tests

can be done in the future. Main categories of these studies can be listed as follows:

‚ In order to obtain more accurate state estimation, phase observations can be

used in the filtering algorithm with a proper ambiguity fixing method.

‚ A backward smoothing algorithm can be applied to the AREKF approach for

further improvements in the filter.
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‚ When the Galileo satellites become fully operational, the algorithm can be

verified with real navigation data.

‚ Observations from other GNSS constellations such as Glonass or BeiDou,

can be analyzed with real data. When the data is fully available from all

constellations, the algorithm can be applied in Real-time.
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Appendix A

APPENDIX

Figure A.1: Adaptive Robust Extended Kalman Filter Flowchart
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Appendix B

APPENDIX

Figure B.1: GNSS Orbit Simulation Flowchart
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