
AN EFFICIENT AND NOVEL DETECTION TECHNIQUE FOR NEXT
GENERATION WEB-BASED EXPLOITATION KITS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS INSTITUTE

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRE SÜREN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

INFORMATION SYSTEMS

AUGUST 2019

Approval of the thesis:

AN EFFICIENT AND NOVEL DETECTION TECHNIQUE FOR NEXT
GENERATION WEB-BASED EXPLOITATION KITS

submitted by EMRE SÜREN in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Information Systems Department, Middle East
Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin
Dean, Graduate School of Informatics Institute

Prof. Dr. Yasemin Yardımcı Çetin
Head of Department, Information Systems

Prof. Dr. Nazife Baykal
Supervisor, Information Systems, METU

Assist. Prof. Dr. Pelin Angın
Co-supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Sevgi Özkan Yıldırım
Information Systems, METU

Prof. Dr. Nazife Baykal
Information Systems, METU

Prof. Dr. Kemal Bıçakçı
Computer Engineering, TOBB-ETU

Assoc. Prof. Dr. Ertan Onur
Computer Engineering, METU

Prof. Dr. Ali Aydın Selçuk
Computer Engineering, TOBB-ETU

Date: 06.08.2019

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Emre Süren

Signature :

iii

ABSTRACT

AN EFFICIENT AND NOVEL DETECTION TECHNIQUE FOR NEXT
GENERATION WEB-BASED EXPLOITATION KITS

Süren, Emre
Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Nazife Baykal

Co-Supervisor : Assist. Prof. Dr. Pelin Angın

August 2019, 107 pages

The prevalence and non-stop evolving technical sophistication of Exploit Kits (EKs)
is one of the most challenging shifts in the modern cybercrime landscape. Over the
last few years, malware infection via drive-by download attacks have been orches-
trated with EK infrastructures. An EK serves various types of malicious content via
several threat vectors for a variety of criminal attempts, which are mostly monetary-
centric. In this dissertation, an in-depth discussion of the EK philosophy and inter-
nals is provided. A content analysis is introduced for the EK families where special
context-aware properties are identified. A key observation is that while the web-
page contents have drastic differences between distinct intrusions executed through
the same EK, the patterns in URL addresses stay similar. This is due to the fact that
auto-generated URLs by EK platforms follow specific templates. This dissertation
proposes a new lightweight technique to quickly categorize unknown EK families
with high accuracy leveraging machine learning algorithms with novel URL features.
Rather than analyzing each URL individually, the proposed overall URL patterns ap-
proach examines all URLs associated with an EK infection. The method has been
evaluated with a popular and publicly available dataset that contains 240 different
real-world infection cases involving over 2250 URLs, the incidents being linked with
the 4 major EK flavors that occurred throughout the year 2016. In the experiments,
the system achieves up to 93.7% clustering accuracy and up to 100% classification
accuracy with the estimators experimented.

Keywords: Exploit Kit, Malware, URL analysis, Machine learning

iv

ÖZ

GELECEK NESİL AĞ TABANLI İSTISMAR ARAÇLARININ TESPİTİ İÇİN
ETKİLİ VE ÖZGÜN BİR TEKNİK

Süren, Emre
Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Nazife Baykal

Ortak Tez Yöneticisi : Dr. Öğr. Üyesi. Pelin Angın

Ağustos 2019 , 107 sayfa

İstismar Kitlerinin (İK) yaygınlığı ve durmaksızın gelişen teknik karmaşıklığı, mo-
dern siber suç ekosistemindeki en önemli kırlmalardan bir tanesidir. Son birkaç yıl-
dır, izinsiz yükleme saldırları vasıtasıyla yapılan zararlı yazılım enfensiyonları, İK’ler
tarafından gerçekleştirilmektedir. Bir İK, birçok türden zararlı içeriği çeşitli tehdit
vektörleri aracılığıyla, farklı saldırı teşebbüsleri için servis etmektedir, ki bir çoğu
parasal odaklıdır. Bu doktora tezinde, İK ailelerine yönelik yapılan bağlam bilinçli
içerik analizinin sonuçları ile, ki orada bağlam bilinçli öznitelikler tespit edilmiştir,
İK filozofisine ve iç yapısına dair derinlemesine bir müzakere sağlanmıştır. Anahtar
bulgu ise, farklı sızma olaylarında analiz edilen İK’lere ait ağ sayfaları bir birinden
çok farklıyken, URL adreslerindeki yapıların birbirlerine benzer olması ve otomatik
olarak üretilen URL adreslerinin kendine has bir modeli takip etmesidir. Yürürlük-
teki bu pratik, sorumlu İK örnekleri için, etkili bir sistemin geliştirilmesine olanak
sağlamıştır. Bu kapsamda, İK ailelerini hızlı ve yüksek doğrulukta kategorize etmek
için makine öğrenmesi kullanan, yeni bir ince teknik ve özgün URL öznitelik seti öne
sürülmüştür. ’Baştanbaşa URL yapıları’ tekniği, her URL adresini ayrı ayrı bağımsız
bir şekilde analiz etmek yerine, İK enfeksiyonuyla ilişkili olan bütün URL adreslerini
birlikte inceler. Metot en güncel, 2016 yılı boyunca en yaygın olan 4 İstismar Kiti va-
sıtasıyla zararlı yazılım bulaşmasıyla sonuçlanan gerçek dünya vakalarından oluşan,
2250 adetin üzerinde URL adresini kapsayan 240 farklı olayın bulunduğu muteber
bir veri kümesiyle değerlendirilmiştir. Bu sistem, % 93.7 oranına varan kesinlikte
kümeleme ve % 100.0 doğruluğa varan sınıflandırma değerlerine ulaşmaktadır.

Anahtar Kelimeler: İstismar Kiti, Kötücül yazılım, URL analizi, Makine öğrenmesi

v

To my family

vi

ACKNOWLEDGMENTS

I express my gratitude to my supervisor, Prof. Dr. Nazife Baykal, for her mentorship
through all steps of the PhD program. I also want to acknowledge my thesis com-
mittee members with respect, I would like to thank Prof. Dr. Ali Aydın Selçuk for
reserving his valuable time for my committee meetings. I am very appreciated to see
my master supervisor Prof. Dr. Sevgi Özkan Yıldırım in the meetings.

I would like to express my special thanks to my co-supervisor Assist. Prof. Pelin
Angın for her guidance through my dissertation work. She has provided me 7/24
unlimited conversation support which was invaluable for me. It is very rare to come
across and very few people have the opportunity to work with a supervisor who has
an excellent communication skill, but I did when I worked with her and it was a great
pleasure. She has supported me during authoring my articles with providing countless
valuable feedbacks, insightful paper revisions, and proofreading which allowed me to
publish them as good as possible. I have learned lots of academic experience from her
as she always shared with me and I am very happy and lucky to meet and work with
her. I would like to thank Winslab where I have visited during the last eight months
of my study and helping the other grad students was a different experience for me.

I would also like to thank my beautiful mother for her unconditional love, continuous
support and encouragement. I would like to thank my lady for believing in me, my
princes and princess for being my source of cheerfulness.

The foundation of this dissertation is totally my miraculous work life. Thanks to god,
I am fortunate to have a chance to work with quite a few exceptional talent during
my job experience in Ankara. The institutions that I have served for a decade have
provided me a challenging work environment with high competence where cyber
security is in focus. I am grateful that I can work in system security field which I have
a great passion for.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Phenomenon . 3

1.2 State-of-the-Art and Problem Definition 4

1.3 Motivation and Purpose . 5

1.4 Research Questions . 6

1.5 Proposed Methods . 6

1.6 Challenges . 7

1.7 Contributions . 8

1.8 Dissertation Outline . 9

2 FUNDAMENTALS OF EXPLOIT KITS 11

viii

2.1 Foundations of EK . 11

2.2 Understanding the EK Philosophy 13

2.2.1 Malspam . 13

2.2.2 Malvertisement . 14

2.2.3 Compromised Webpages . 15

2.2.4 Gate . 17

2.3 EK Internals and Arsenal . 18

2.3.1 Landing Page . 19

2.3.2 State-of-the-Art Exploits . 20

2.3.3 The Art of Payload . 21

2.3.4 Advanced Tactics . 22

3 CONTEXT-AWARE CONTENT ANALYSIS 25

3.1 Approach . 25

3.2 EITest Campaign . 28

3.2.1 Version 1 . 28

3.2.2 Version 2 . 29

3.2.3 Version 3 . 31

3.2.4 Version 4 . 33

3.2.5 Version 5 . 35

3.3 PseudoDarkleech Campaign . 36

3.3.1 Version 1 . 36

3.3.2 Version 2 . 37

3.3.3 Version 3 . 38

ix

3.3.4 Gate . 39

3.4 Afraidgate Campaign . 40

3.4.1 Version 1 . 41

3.4.2 Version 2 . 42

3.5 Rig EK . 43

3.6 RigV EK . 46

3.7 Angler EK . 49

3.8 Neutrino EK . 51

3.9 Challenges . 53

3.9.1 Analysis 1: pseudoDarkleech and RigV and Cerber 54

3.9.1.1 Challenge – Unrecognized objects 55

3.9.1.2 Challenge – Malformed HTML header 56

3.9.1.3 Challenge – Encrypted content 57

3.10 Key Findings . 57

4 METHODOLOGY . 63

4.1 Data Sources . 63

4.1.1 Processing Captured Files . 64

4.1.2 Label Confirmation . 65

4.2 Feature Engineering . 65

4.2.1 Feature Design . 68

4.2.2 Preprocessing Features . 69

4.3 Unsupervised Analysis Approach 69

4.3.1 Models . 70

x

4.3.2 Evaluation . 70

4.3.2.1 Performance Results 72

4.3.2.2 Error Analysis . 74

4.3.3 Discussion . 76

4.4 Supervised Analysis Approach . 77

4.4.1 Models and Experiments . 77

4.4.2 Evaluation . 78

4.4.2.1 Performance Results 78

4.4.2.2 Analysis of Features 79

4.4.2.3 Error Analysis . 80

4.4.2.4 Comparison . 80

5 RELATED WORK . 83

5.1 Source Code Analysis . 83

5.2 Machine Learning . 84

6 CONCLUSIONS . 89

6.1 Open Issues . 90

6.2 Future Opportunities . 92

6.3 Prevention & Mitigation . 92

REFERENCES . 95

APPENDICES

A GLOSSARY OF KEY CYBER SECURITY TERMS 103

CURRICULUM VITAE . 107

xi

LIST OF TABLES

TABLES

Table 2.1 Most known EK families by year 12

Table 3.1 AST information of EITest - Version 1 29

Table 3.2 AST information of EITest - Version 2 30

Table 3.3 AST information of EITest - Version 3 32

Table 3.4 AST information of EITest - Version 4 34

Table 4.1 Logical characterization of a URL 66

Table 4.2 Sample infection from RigV . 67

Table 4.3 Feature contributions to the principal components 72

Table 4.4 Similarity metrics . 73

Table 4.5 KMeans Accuracy . 74

Table 4.6 Agglomerative Accuracy . 74

Table 4.7 Cross-validation . 78

Table 4.8 Dataset for testing set . 78

Table 4.9 Comparison with the other studies 80

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Malicious spam e-mail . 14

Figure 2.2 Malicious advertisement and URL addresses 15

Figure 2.3 Gate URL . 17

Figure 2.4 Gate page content . 17

Figure 2.5 The Exploit Kit workflow . 19

Figure 3.1 Similar JavaScript code blocks 26

Figure 3.2 AST of similar JavaScript code blocks 27

Figure 3.3 EITest - Version 1 . 29

Figure 3.4 EITest - Version 2 . 30

Figure 3.5 EITest (Decoded URL) - Version 2 30

Figure 3.6 EITest - Version 3 . 31

Figure 3.7 EITest (Decoded Flash object) - Version 3 32

Figure 3.8 EITest - Version 4 . 33

Figure 3.9 EITest (Decoded JavaScript) - Version 4 34

Figure 3.10 EITest - Version 5 . 35

Figure 3.11 PseudoDarkleech Campaign - Version 1 36

xiii

Figure 3.12 PseudoDarkleech Campaign (Obfuscated) - Version 2 37

Figure 3.13 PseudoDarkleech Campaign (Deobfuscation) - Version 2 37

Figure 3.14 PseudoDarkleech Campaign (Obfuscated) - Version 3 38

Figure 3.15 PseudoDarkleech Campaign (Deobfuscation Level 1) - Version 3 38

Figure 3.16 PseudoDarkleech Campaign (Deobfuscation Level 2) - Version 3 38

Figure 3.17 PseudoDarkleech Campaign (Deobfuscated) - Version 3 39

Figure 3.18 PseudoDarkleech Campaign - Gate 1 39

Figure 3.19 PseudoDarkleech Campaign - Gate 2 40

Figure 3.20 PseudoDarkleech Campaign - Gate 3 41

Figure 3.21 Afraidgate Campaign - Version 1 41

Figure 3.22 Afraidgate Campaign Remote Source - Version 1 42

Figure 3.23 Afraidgate Campaign - Version 2 42

Figure 3.24 Afraidgate Campaign Remote Source - Version 2 42

Figure 3.25 Rig EK - Infection chain . 43

Figure 3.26 Rig EK - Redirection internals of the infection chain 43

Figure 3.27 Rig EK - Injected obfuscated malicious JavaScript 44

Figure 3.28 Rig EK - (De-obfuscated) Injected script builds and injects a script 45

Figure 3.29 Rig EK - Gate webpage returns encrypted/encoded data 45

Figure 3.30 Rig EK - Injected new script decodes EK landing URL 46

Figure 3.31 Rig EK - Injected iframe into the compromised page 46

Figure 3.32 Rig EK - Landing page contains obfuscated JavaScript code . . . 47

Figure 3.33 Rig EK - Landing page purified and deobfuscated 48

xiv

Figure 3.34 Rig EK - Flash-based exploit code 49

Figure 3.35 Rig EK - Encrypted payload . 50

Figure 3.36 Rig EK - Decrypted executable payload is Qbot malware variant 51

Figure 3.37 RigV EK - Landing page (beautified view) 52

Figure 3.38 RigV EK - 1th script is executed to build the 1th part of 1th layer 52

Figure 3.39 RigV EK - 2nd script is executed to build the 2nd part 1th layer . 53

Figure 3.40 RigV EK - 1th script is executed to build the 1th part of 2nd layer 53

Figure 3.41 RigV EK - 2nd script is executed to build the 2nd part of 2nd layer 54

Figure 3.42 RigV EK - Beautified view of the landing page, after fully executed 54

Figure 3.43 RigV EK - Encrypted payload is decrypted with the RC4 algorithm 55

Figure 3.44 Angler EK - Obfuscated strings in landing page 55

Figure 3.45 Angler EK - Deobfuscation script code blocks in landing page . 56

Figure 3.46 Angler EK - Controller script in landing page 56

Figure 3.47 Neutrino EK - Infection chain 56

Figure 3.48 Neutrino EK - Landing page 1 57

Figure 3.49 Neutrino EK - Landing page 2 58

Figure 3.50 Neutrino EK - “application/octet-stream” stream 59

Figure 3.51 Neutrino EK - The Cerber callback 59

Figure 3.52 Neutrino EK - TOR access to follow decryption instructions . . . 60

Figure 3.53 Wireshark - HTTP requests . 60

Figure 3.54 Wireshark - HTTP responses 60

Figure 3.55 Wireshark - HTTP objects . 61

xv

Figure 3.56 Wireshark - Mime-Type: application/x-msdownload 61

Figure 3.57 Wireshark - “application/x-msdownload” stream 62

Figure 3.58 Bro – HTTP requests and responses 62

Figure 4.1 Agglomerative clustering illustrated 71

Figure 4.2 KMeans contingency matrix . 75

Figure 4.3 Agglomerative contingency matrix 75

Figure 4.4 Elbow method . 76

Figure 4.5 The performance of classification models with cross validation . 79

xvi

LIST OF ABBREVIATIONS

CC Command and Control

DGA Domain Generation Algorithm

EDR Endpoint Detection and Response

EK Exploit Kit

IoC Indicators of Compromise

IDS Intrusion Detection System

IPS Intrusion Prevention System

TDS Traffic Direction System

xvii

xviii

CHAPTER 1

INTRODUCTION

The idea behind this dissertation proposal emerged in 2015, when we desired to pro-
pose a “specific efficient solution” for the “most sophisticated and prevalent attacks”
on the Web. More precisely, we wanted to avoid working on detecting traditional
attacks (e.g., port scan, brute force, DDoS, etc.), which have already been extensively
studied since 2000. Therefore, we sought after the “most sophisticated and preva-
lent” phenomenon and came across the Exploit Kits (EKs) in the World “Wild” Web.
At the same time, when we looked at the people who conduct research on EKs, we
acknowledged that there are researchers who operate special client honeypots to track
the EK families. When we reviewed these types of honeypots, we could realize that
they collect small amounts of network traffics of a high number of individual intru-
sion cases, as a consequence, the proposed solution should be suitable for such an
environment. Such intelligence mechanisms could reason out whether there is an in-
fection or not via identified IoCs along with collected evidences (e.g., network traffic
captures), but could not properly justify the origin of attack.

The objective of the study is assisting those who pursue to identify EK families to
get early threat intelligence, hence we set out to sense EK infections from the net-
work packet traces to get performance increase from day one, which is an inevitable
requirement for this environment. In other words, we do not analyze host-level ar-
tifacts. Accordingly, the question is how detection is orchestrated at network level
today. The short answer is by locating protection systems (e.g., IPS/IDS, Web/Con-
tent/URL Filters etc.) between the user devices and the Internet. Those systems get
involved transparently before the web content is delivered to the victim device and the
employed analysis technique is known as scanning for attack signatures. When these
signature databases are built and maintained the detection patterns are derived from
the “previously” detected attacks. Literally, if the browsed webpage was previously
involved in a malicious activity and a security analyst diagnosed and inserted related
information into this database, the attack can be detected. However, malware infec-
tion through EKs at present are not conducted with a single webpage access anymore,
and also the infecting URL addresses quickly change. The rationality is obvious:
avoiding the signature database which is frequently updated. Such malware infection
cases are extremely difficult for such signature-based prevention mechanisms. For
this reason, the proposed technique does not rely on such a method.

We have analyzed the generated network traffics of successful malware infections be-
longing to prevalent EK families, as a network-based methodology is proposed rather
than a host-based solution. We have realized from analysis of hundreds of attacks
that, all EKs under investigation infect via a certain chain rather than a single access

1

or independent URL accesses. More precisely, after accessing a trap URL address,
the EK infrastructure automatically redirects to another URL, it also redirects further,
and so on until the infection chain is completed. In some steps, particular controls are
executed on the client-side, where essentially EK profiles the browsing environment
(e.g., browser, plug-ins, operating system, virtual machine, installed security products
etc.) of the victim. It is vital that such characteristics also make the analysis operation
slow and harder, and the other critical challenge is that, the code making such controls
is obfuscated, encoded, encrypted and polymorphic in a stratified manner. In other
words, it is not possible to observe identical codes in different infections and this pre-
vents success of signature-based inspection systems. In order to analyze the content
of EK network traffic, firstly the webpages are carved from the network captures, then
they have to be executed in order to defuse such behaviors to make the content human-
readable and partly understandable. However, these webpages could not be executed
reliably in JavaScript interpreters and even via instantiating real browsers, since they
might require external resources. When the webpage execution is started and the
interpreter engine reaches a line, which includes a remote Web source, a separate sys-
tem should have to serve such an external content to complete successful execution.
Automating such a task is not trivial and usually requires manual intervention and
this study avoids content analysis, since efficient automation is not achieved. In short,
the EK concept is recognized as a bleeding edge and is terrifyingly complicated and
for the aforementioned reasons, we concentrated on proposing a “lightweight” intel-
ligent categorization system which will be able to identify previously “unknown” EK
families with “high accuracy”, while being “quick” in terms of computation time.
Particularly, conducting content analysis consumes large amounts of time then not
practical for such environments and if the content analysis is not a preferred way, the
remaining alternative is examining on URLs. Consequently, we started to think about
seriously to gather something informative on URL analysis. Especially, we observed
that the infection chain process usually starts from the root page of a domain address
(e.g., <domain-address>.com/) where there is no path or query parts of a URL. How-
ever, the redirected URL addresses are quite long and there is a strong indication that
domain addresses are auto-generated, in addition, path and query parts follow specific
templates. When I analyzed different cases and correlated each other, we came to that
point; across incidents from the same EKs, there are structural similarities among the
same level redirections (e.g., second redirection). This finding brought us to another
point; detecting EK-based infection by separately analyzing individual URLs is not
realistic. Accordingly, I urged to extract the URL address visited at first step and the
redirected all URLs which were accessed automatically by the victim device. By an-
alyzing all URLs together, namely analyzing the infection chain in a holistic manner
rather than individual URL analysis, we inquiry that, can we discriminate the respon-
sible EK instances now. Therefore, I hypothesize that it is possible to “efficiently”
group network traffics of EK-based infections with the “overall URL patterns” tech-
nique which is observed from the total infection chain. The efficient term corresponds
to lightweight categorization technique, quick operation, and identification of previ-
ously unknown EK families with a high accuracy. In sum, the mechanisms employed
by EKs to hide themselves and make the task of content analysis systems harder,
namely the notorious infection chain, is used to the detriment of their identification.
In other words, the EK gangsters are shot with their weapons up to a hundred percent
hit rate, which is our humble innovation.

2

In this chapter, firstly, the definition, importance, major principles, and operation
mechanisms of the phenomenon are explained briefly to support the research problem,
which is going to be investigated. Secondly, a short literature of traditional systems
with their crucial shortcomings and a clear statement which describes the problem
in detail are presented. Then, the motivation, objectives, and challenges of the study
are summarized. After that, the research question is stated and the proposed model is
described along with the hypothesis statement. Finally, this chapter is concluded with
the significance, novelties and privileged aspects of the dissertation.

1.1 Phenomenon

Cyber-attacks have been threatening Web visitors ever more with the widespread
use of the Internet, and Exploit Kits (EKs) have become one of the most disruptive
weapons for Internet crimes. The emergence and prevalent use of EK infrastructures
is one of the most dangerous developments in the cybercrime space according to Can-
nell’s report [1]. EKs exhibit the current state-of-the-art crimeware that is capable of
running in an automated fashion, achieving large-scale infection, and providing re-
mote access. Therefore, the EK phenomenon is among the principal concerns of
many security researchers and practitioners today.

In recent years, EKs have been progressively utilized for system compromise and mal-
ware propagation. These serve various types of malicious content over spear-phishing
and drive-by download attacks, in which a payload is executed on user systems after
a client-side vulnerability is exploited [2]. The drive-by download technique has had
dramatic advancements in the past couple of years. Previously, malicious webpages
were generated quickly in a simple manner. Then they evolved into frameworks, and
today sophisticated attack tools known as Exploit Kits are in the scene. EK mecha-
nisms automate the infiltration process and command and control facility of the mas-
sive number of vulnerable machines and today, they have become responsible for the
majority of client-side attacks affecting Web visitors. The most common application
on Internet-enabled devices is Web browsers, which are hot targets for EKs to infect
the victim’s system with a malware, and after exploiting a vulnerability, hackers usu-
ally steal information (e.g., credit card numbers) to directly use or encrypt private
data of the user (e.g., text documents) then asking for ransom to enable the decryption
routine. Even worse, the compromised devices can become slaves leveraged to attack
other systems without any notice. While the primary kind of attack launched through
EKs is drive-by download, click-fraud (AdFraud) and cryptocurrency-mining are also
hot alternatives.

The illustration in Figure 2.5 is a high level overview of attacks based on an EK struc-
ture that contains 5 essential steps as we identified in the content analysis part. At-
tackers utilize three major threat vectors for large-scale malware distribution, which
are compromised webpages, malicious advertising (malvertisement) and malicious
spams (malspam). This is known as a campaign and victims are drawn towards EKs
by campaigns. Particularly, today the greater part of campaigns leverage compro-
mised webpages to direct the target systems to an EK. Social networks and search
term poisoning techniques are still highly utilized to quickly disseminate the infect-
ing URLs throughout the Internet. There is an additional layer between campaigns

3

and EKs known as gate or traffic redirection system (TDS), which is deployed to tran-
sit victims from campaigns to EKs. According to the victim profile, the EK infects
the target system with a proper malware.

The starting point of a malware infection through an EK is the access of a webpage
pointing to the EK. After loading such a webpage, the EK comes into play automat-
ically. In the first step, the EK profiles the target Web browser and looks for critical
flaws. Subsequently, it exploits the vulnerabilities in order to launch a malicious pay-
load on the victim system. While doing that, the EK utilizes enhanced and stealth
techniques not to make aware the prevention systems and even savvy security ana-
lysts about the malicious behavior.

1.2 State-of-the-Art and Problem Definition

A great deal of security research in the past decade has been dedicated towards de-
tecting standalone pieces of malicious code. The high number of infection cases
and the high rate of changes in the malicious webpages ecosystem urged security
practitioners to develop automated analysis systems, known as honeyclients [3, 4, 5,
6, 7, 8]. These visit webpages and analyze their behaviors to detect the malicious
ones. High-interaction honeyclients are instrumented virtual machines that contain
real Web browsers. They visit webpages and subsequently collect artifacts on the
operating system. In case of exploitation, the instrumentation software notices newly
spawned processes, opened network connections, manipulated files or registry en-
tries, and thus detects the attack. The output of inspection is usually the blacklisted
URLs and IoCs that are fulfilled by host-based IDS/IPS or EDR technologies. The
critical point about high-interaction systems is that, understanding whether there is an
infection or not is relatively easier, possibly even for zero-day, but realizing the origin
of the attack (e.g., intrusion type, attack platform and adversarial techniques) is quite
difficult. Low-interaction honeyclients are instrumented with a headless browser that
are usually wget, curl, PhantomJS, HtmlUnit, Selenium, or a custom-implemented
Web client. They retrieve webpages and subject them to static and dynamic analyses
on the Web content. The output of examination is usually the signatures for both the
URLs and Web content that will be usable by Web content filtering systems. The
vital point about low-interaction systems is that, while a relatively quick analysis is
provided, HTML parsers and JavaScript interpreters are not as capable as real web
browsers and malicious code usually targets them to break execution (e.g., invalid
HTML tag), and consequently analysis.

Today, organized cybercrime on the Web is propagating via EKs, which smoothly
evade traditional analysis systems. IDS/IPS and Web gateway security vendors focus
on the EK complication to keep their signature database up-to-date by analyzing such
network traffics. Firstly, they usually develop regular expressions to detect infecting
contents or just blacklist the URLs. On the other hand, creating a new unique sig-
nature takes time and effort, since the signature has to be able to match all variants
of the EK family while not blocking benign webpages. However, it is not possible
to find samples of the new EKs at first attempt. Secondly, signature-based inspection
technologies require extensive maintenance in order to keep up-to-date rules against
even the minor changes on EK families. Therefore, due to the excessive number of

4

signatures, those systems are not convenient for frequently changing environments.

Nowadays, security research centers sporadically capture network packets consisting
of exploit and malware by utilizing honeypot mechanisms for early intelligence pur-
poses. In order to get notified about zero-day threats as soon as possible, they plant as
many trap systems as possible, which results in a huge volume of network traffic for
analysis. However, traditional systems are not suitable for large-scale analysis in a
reasonable amount of time. That is why researchers currently favor machine learning
for threat intelligence.

The majority of the former academic work on EKs [9, 10, 11, 12] focused on the
server-side source code of the EK families and conducted static source code analysis
mostly on PHP code. While the EK families they analyzed leaked behind the scenes,
the EK families that we analyzed have not been leaked online yet. The latter debates
[13, 14, 15] involved machine learning to detect EK traffics from webpage content
behind the attacks, however content inspection is too resource-hungry and has a high
time complexity. Moreover, existing systems focus only on detecting requests for
exploit and malware files as malicious. In addition, although binary classification as
malicious or benign still dominates the EK detection literature today, it falls short
of providing threat intelligence, since the severity of each EK (e.g., exploited vul-
nerability, distributed malware, etc.) is not the same. More precisely, not all EKs are
prevalent at the same time and not every EK is the same in terms of sophistication and
posed danger. Therefore, EK family categorization is inevitable for advanced threat
intelligence and the proposed system should be able to identify changes in EK-based
attacks efficiently.

1.3 Motivation and Purpose

In recent years, the propagation of financial attacks on end users have mostly been
caused by agile development of EKs, which has remained a relatively untouched area
in academic works. To this end, investing on EK research has the high potential to be
beneficial for a broad audience, which is the real motivation behind this research.

The global proliferation of EKs and recent advances in EK development are serious
problems and without awareness of the contemporary hacking techniques, it is not
feasible to detect the zero-day intrusions caused by these. Since security incidents
are usually interconnected, associating and correlating the individual investigations
are necessary to build the big picture, which provides invaluable understanding of
an automated cybercrime ecosystem. This includes, but is not limited to the utilized
techniques, innovations in the field, objectives of the attacks, the underlying archi-
tecture, and even groups involved behind the scenes. Thus, basically two relatively
serious reasons compose the statement of the research problem, which are prevalence
of the threat and growing technical sophistication of the Exploit Kits that urged us to
be focused on revealing the evil plans of a global threat.

In this dissertation, we address the fundamentals of large-scale exploitation for the
malware infection metaphor. The purpose of the research is to recognize the net-
work traffic of the state-of-the-art Exploit Kit families efficiently with honeypot traffic

5

analysis to simplify the work of security analysts. This study comprises the design,
development and evaluation of an original categorization method based on machine
learning techniques.

1.4 Research Questions

As current EK-based successful infection mechanisms require several network inter-
actions, it is reasonable to ask whether a “series of HTTP activities” belongs to a
specific EK family. This is the question on which we base our hypothesis for the
categorization of EK families.

Preliminary. According to our observations, firstly, all EK families have a simi-
lar workflow for malware delivery that we call EK infection chain as illustrated in
2.5. Secondly, an EK infection chain contains 5 elements which are campaign, gate,
landing page, exploit code, and malware payload. Thirdly, when we performed ex-
ploratory analysis of malware infections belonging to dominant EK variants on the
marketplace, although we initially started to identify URLs individually, we realized
from cross-incident analysis that, all EK flavors under investigation generate their
own URLs algorithmically. The key insight is that, while auto-URL-generation logic
by EK platforms provides unique URLs to bypass signature-based approaches, even
though they seem to be randomized, statistical analysis reveals that they follow cer-
tain patterns within themselves. Finally, while the patterns of any single URL in an
infection chain is not insightful yet, the overall patterns of URLs in an infection chain
expose the EK family.

In accordance with the purpose of the study, the following major challenging ques-
tions are investigated, which concentrate on two research variables: the number of
different EK families analyzed and the characteristics of each EK.

• What are the distinctive overall URL patterns that precisely characterize EK
families?

• Does characterizing previously unknown infection chains of EKs via the “over-
all URL patterns” technique present significant accuracy with very low false
alarm rate while quickly categorizing EK network traffics?

1.5 Proposed Methods

As the quality of a method directly depends on the problem set, the foundation of this
study is built on a respectable dataset that includes an up-to-date set of 240 incidents
involving over 2250 URLs from 4 prevalent EK families.

Based on our understanding of the “auto-URL-generation” logic, distinguishing fea-
tures were derived successfully via the innovative and lightweight “overall URL pat-
terns technique”. Then, a set of features was selected and both unsupervised and
supervised models were built to quickly cluster and classify EK families. Firstly,

6

we have developed unsupervised learning models to be able to mark completely new
EK incidents as unknown for more elaborate manual technical analysis. Without
relying on previous knowledge, 2 clustering models are built to group similar EK in-
fections. Secondly, we developed supervised learning models to be able to achieve
higher accuracy. In the first phase, 3 classification models learn the known types of
EK infections, then in the discrimination phase, the algorithms classify similar EK
incidents. Experiments with real-world incidents demonstrate that the proposed mod-
els are highly efficient in categorizing EK families. The assessment shows that the
stable clusterer, ZEKI [16], achieves 87.5% precision at minimum and the classifier,
I see EK (IsEK) [17], yields an accuracy rate of at least 91.6%.

In addition to URL inspection, the contents of web pages served by EK families
were also investigated. Firstly, a great number of infections were extensively an-
alyzed to reveal applied adversarial techniques (actual attack, evasion, and hiding
mechanisms), providing as much detail as possible [18]. Secondly, an in-depth con-
tent examination methodology for EK-based malware infections was conducted. The
top-down dissection method covers both static and dynamic analyses techniques,
which are primarily employed to defuse hiding mechanisms. This top-down eval-
uation could be applicable for any infection case based on EKs, even upcoming ones.
The EK family characteristics were also uncovered, particularly content features,
via the introduced context-aware content analysis, which is a different perspective
when compared to existing studies. This strategy allows to recognize even the minor
changes in EKs, to validate the labels of the data source, and to open doors for a more
powerful inspection mechanism which directly detects malicious code.

Hypothesis. Eventually, an efficient solution for categorizing EKs could rely on a
holistic approach, where the proposed novel technique is dubbed as “overall URL
patterns”. We hypothesize that the proposed lightweight system relies on URL anal-
ysis with unusual features and is based on both unsupervised and supervised machine
learning algorithms, which can quickly group unknown EK infection traffics with a
high accuracy. As a result, while the framework design of EKs fortify malware distri-
bution business and makes the Internet life harder, “ironically the advertised strengths
are their actual weakness”.

1.6 Challenges

On the course of research, primary obstacles were about the phenomenon’s itself, and
the first was experienced when processing the network packet captures with open-
source technologies. We showed that two different leading mature tools in the in-
dustry were not able to extract the same files from the traffics, since those files are
intentionally malformed (e.g., incorrect HTML header) or contain encrypted objects.
Second, although proprietary engines of Web browsers can execute distorted con-
tent and cause to infect the victim devices, the public and robust HTML parsers and
JavaScript interpreters cannot cope with such issues. Third, some captures consist of
several follow up traffics related to C&C communication, which affects discrimina-
tion models in a bad way. Finally, some infections contain more than one exploit or
more than one malware, which increase the normal chain length and also adversely
influence the accuracy.

7

The principles of content analysis rely on two techniques. Static content analysis han-
dles raw Web content, however malicious webpages mostly favor JavaScript, which
hides malicious code, and without rendering the JavaScript, malicious behaviors are
never observed. Contrarily, dynamic content analysis involves executing Web content
and then inspecting resolved content, where execution results of the JavaScript code
are observed in plain, correspondingly all obfuscation, encoding and encryption op-
erations are already automatically reversed. It could be practical to render webpages
individually, however if a webpage requires external web resources to be executed, it
turns to be unfeasible where a Web server should deliver such resources on the fly.
In a nutshell, dynamic analysis already consumes too much time when compared to
static analysis, and serving such content via a Web server brings another overhead.

Those are also the main reasons why we did not converge to produce a system that
favors content analysis. On the other hand, we spent several weeks with the URL
analysis to tweak our models and for error debugging due to such outliers. We em-
phasized the challenges of the study in several paragraphs across sections in detail
due to the subject integrity.

1.7 Contributions

Significance. Accurately categorizing similar HTTP activities that belong to preva-
lent EK families is an important task for a number of reasons: If the assignment pro-
cess is executed regularly for particular intervals, the classes that have the most num-
ber of incidents indicate the EK families getting to become prevalent. This enables
researchers to abandon studies on discontinued EKs. It is also known that signature-
based techniques turn off the rules related to unused attacks in order to achieve better
performance. In addition, tracking the new attack and evasion techniques utilized by
the attackers as close as possible brings invaluable adversarial understanding. In this
way, protection systems could be tuned better to make Internet visitors safer.

Novelties. The major contribution of this research is gaining capability of recog-
nizing even minor updates of EK families or brand new EK flavors in an automated
fashion via a novel and efficient overall URL patterns technique with unusual features
operated with both unsupervised and supervised machine learning algorithms. It is
expected that the developed lightweight tool will provide zero-day EK intelligence
quickly with a high accuracy to help security analysts and will impact the business of
the cybercriminals by early disclosing the evolution in the ecosystem.

We are also interested in the inner workings and advancements of the EK products
and conducted semi-automated context-aware content analysis. Firstly, we show how
an EK-based malware infection could be analyzed top-down in detail. Also, in the
light of extracted artifacts and the application of the systematic comparison and cor-
relation of the indicators, a solid adversarial knowledge is gained. The key findings,
previously unknown insights and trends of EK-based malware infection are summa-
rized as below. Moreover, we identified the EK family characteristics, particularly
content features, which allow a researcher to easily develop a content analysis system
based on machine learning methods to automatically extract such content features
efficiently.

8

• New attack, evasion and hiding techniques of EK families

• Uniqueness, similarities, and differences of EK families

• Significant relations among the campaigns, EK families, targeted vulnerabili-
ties, distributed malware, and threat actors

• Prevalent campaigns, EK families, exploit, and malware

• Major capabilities of the distributed malware

• Categorization strategy via context-aware strategy

Privileged Aspects. The exceptional elements of our approach are primarily related
to the data source we utilize:

• We engage a real data source rather than generating our own

• The data corpus is publicly available and stored in network packet captures
(pcap)

• The data was collected in a period of one year in 2016

• The collection consists of real-world infections from 4 prevalent live EK fami-
lies

• To the best of our knowledge, there is no publicly released research that analy-
ses the EK traffics that occurred throughout 2016

• The network traffics of malware infections through EKs are captured by de-
liberately accessing the malicious Web sources with real systems rather than
relying on honeyclients

1.8 Dissertation Outline

The rest of the dissertation is organized as follows. The foundations of EK families,
the EK philosophy, rise of EKs, EK infection phases, and the utilized mission-critical
techniques in the malware delivery process are explained in Chapter 2 . The major
findings of an in-depth examination on webpage contents served by popular EK fami-
lies are discussed in Chapter 3, which is a reprint of our first article [18]. In Chapter 4,
the developed machine learning models are evaluated and compared, then analysis of
the results is highlighted, which is a reprint of our second and third articles [17, 16].
Discussion on literature review and comparison are provided in Chapter 5. The dis-
sertation is concluded with open issues and future study opportunities in Chapter 6.

9

10

CHAPTER 2

FUNDAMENTALS OF EXPLOIT KITS

A number of EK-based malware incidents are extensively analyzed to reveal the ap-
plied adversarial techniques (actual attack, evasion, and hiding mechanisms), where
the major objective of this chapter is to master the internals of currently trending Ex-
ploit Kit players in the market. This chapter is organized as follows. Foundations of
Exploit Kit (EK) families are presented in Section 2.1 to provide a solid background.
Then, in order to gain full understanding of the EK philosophy, threat vectors are in-
troduced in Section 2.2. Infection phases are described step-by-step to demystify the
internals of the most common EK types and the utilized mission-critical techniques
in the large-scale malware delivery process are explained in Section 2.3.

2.1 Foundations of EK

An Exploit Kit (EK) is an Internet crimeware package for attackers and comprises not
only of the tools to infect machines, but also offers command and control capabilities
to orchestrate networks of infected systems along with remote access to the victims,
which allows to execute further criminal operations. The key idea behind this wild
mechanism is to automate the exploitation of client-side vulnerabilities for mass mal-
ware delivery. Not surprisingly, the toolkit is not available publicly and is not well
documented. The cornerstone which has blazed the rise of the EK ecosystem is the
private marketplace for the criminal world. To provide a better understanding of the
EK phenomenon, the ecosystem and significant characteristics are detailed below.

Black markets. In EK context, the seller of an EK is known as EK owner/devel-
oper/coder/author and the EK customers are usually called as threat actors or EK
operators. A threat actor does not develop its own EK framework, but subscribes to it
in the dark web at different prices for miscellaneous capabilities [19]. Black markets
or underground forums (e.g., dark0de) operate on an invitation-only basis to preserve
trust relationships and prevent infiltration by law enforcement and curious entities.
A potential candidate member should have a reference from an existing member and
get an invitation. In response to the offer, the candidate should send an e-document
that covers the individual’s resume highlighting previously conducted illegal activi-
ties, cyber security skills, and potential contributions to the criminal community. The
profile is submitted to the active members’ approval via a voting procedure. After
getting acceptance, the newbie criminal is able to rent an EK by paying a few thou-
sand dollars per month [20, 21, 22]. The threat actors are generally identified by the
malware they distribute.

11

EK as a service. As mentioned in the Microsoft SIR [23], commercial EK platforms
have reportedly lived since 2006 in diverse forms. The initial variants drew lim-
ited attention among novice attackers, since they required a considerable amount of
technical expertise to apply. The first release of the Blackhole EK [24] around 2010
drastically changed the conditions by eliminating the technical knowledge require-
ment to leverage the Web as a venue for illegal activities. Today, next generation EK
families have opened a new era which allowed the attackers to just rent it and easily
get started with infections by abstracting the operational complexity where they take
care of all the major engineering issues of infecting target systems. Therefore, lack
of hands-on experience is no longer a barrier for adoption of EK products anymore
and ease of use also enabled a far broader base of criminals.

EKs are commercial products and are totally maintained with the best software en-
gineering practices by professionals. Design and development of exploit, malware
and packer require different expertise and skills. Exploit developers discover new or
port publicly released Common Vulnerabilities and Exposures (CVEs)1 on an EK.
Malware authors develop new payloads or reuse by modifying existing commercial
solutions to combine into an EK. Packer specialists implement encoding and crypto-
graphic algorithms to obfuscate JavaScript code and malware. An EK architect de-
signs business logic, fingerprinting, bypass and evasion mechanisms to enhance the
EK. Those components are developed separately, but are continuously tested and in-
tegrated by streamlined processes. Plenty of blackhat groups build their licensed EK
service that is called as EK family in this research. Today, EK products are usually
developed in the Software-as-a-Service (SaaS) business model and sometimes seen
in the Platform-as-a-Service (PaaS) model, where an EK is installed on distributed
servers and generally managed from one central console.

The popularity of an EK also creates a fierce competition in the underground commu-
nity, which evokes new EK products or copycats. As an inevitable result, sooner or
later the leading EK leaves the throne to another EK. The list of notable EK families
is given in Table 2.1 [25, 26].

Table 2.1: Most known EK families by year

Older 2016 2017 2018

Angler Rig Rig Rig

Nuclear Magnitude Magnitude Magnitude

Fiesta Neutrino Neutrino Grandsoft

Sweet Orange Sundown Sundown Fallout

Undocumented EK manual. As far as is known, the source code of state-of-the-art
EK flavors are not accessible and are carefully protected [27] with commercial en-
coders (e.g., ionCube). Despite all, the sources of the Rig EK was leaked on the Web

1 cve.mitre.org

12

in a mysterious way in February 2015. This shed light on the capabilities of a con-
temporary EK and conveniently clarified the internals. This EK runs on an arbitrary
port number rather than well-known web ports (e.g., 80 or 443) and uses random
strings in URL addresses to prevent accidental indexing by search engine crawlers.
The access management console requires HTTP form-based authentication via a con-
ventional log-in page. Just after signing in with the credentials, panels appear, which
serve instant information and statistics on the basis of several criteria. An Internet
criminal controls the EK servers from the dashboards and queries several types of
information including the number of targeted devices, the machines currently under
control, breakdown for operating systems, browsers, browser plug-ins, successful ex-
ploits, live payloads, exfiltrated information, geolocation (e.g., countries), etc. [22].
In this manner, the EK dashboards act as a decision support system and help operators
forecast upcoming positions to take.

For instance, the malicious code served by the EK (e.g., fingerprinting script and
exploit) could be started to be detected by web filtering appliances or URL, domain,
and/or IP addresses could be blacklisted by IPS/IDS products, which is a known best
practice for operations deployed in the organizations all over the globe. In this case,
the generated traffic towards the attacker side sharply declines. This trend is identified
early from the instantly populated graphs.

Another example is anti-malware products identifying the payload samples. The in-
dication is realized early by the services, where multiple, up-to-date anti-malware
engines execute. One interesting fact is that, not only Internet visitors and secu-
rity analysts take advantage of these tools, but also threat actors are known to query
their malware builds from there. The EK customer comes to a conclusion regarding
whether a change is required for the malware fingerprint or not.

2.2 Understanding the EK Philosophy

Threat actors utilize three major infection vectors for large-scale malware distribution,
which are malicious spam, malicious advertising, and compromised webpages. Those
three channels are better known as a campaign. Some campaigns are named (e.g.,
EITest, Pseudo-Darkleech, Afraidgate, etc.) [28, 29, 30] by the security researchers
who first spotted them. The nicknames are usually inspired from a string value, which
frequently appears in the code. Some of the campaigns remain anonymous due to
certain reasons, particularly, short-lived and small-scale campaigns have no name.

2.2.1 Malspam

Cybercriminal groups send malicious spam e-mails that could contain directly the
malware as an attachment or a link inside the content pointing to a compromised
webpage or a malware as shown in Figure 2.1. This method is known as malspam,
which requires user contribution in order to succeed, where a victim user should open
(execute/run) the attached file or click on the link that redirects the browser automat-
ically to the EK mechanism.

13

Figure 2.1: Malicious spam e-mail

2.2.2 Malvertisement

Another notorious technique, malicious advertising, known as malvertising in short,
refers to misusing an Internet advertisement to reach a high number of targets.

Popular websites usually present advertisements to convert the high volume of visitors
to revenue in order to compensate for their free services (e.g., newspapers, real-time
financial data). On the other hand, by drawing high traffic, they are quite attractive
for attackers. Those types of websites are relatively more secure when compared
to the average Web. Thus, rather than investing the whole work power on just the
low probability of compromising these websites, Internet criminals sometimes prefer
infection via advertisements. Agreement is done over an intermediary, who is either a
compromised legitimate reseller or an underground dealer. The issued accounts allow
EK operators to upload custom designed advertisements, which are published online
via the advertising provider on high ranking websites. Threat actors carefully place
malicious code into the advertisements, so they become malvertisement. In the case
of Figure 2.2, the reputable website is not compromised, but the ad traffic silently
redirects visitors of a legitimate website to the EK in the background. The redirection
chain is quite complex, which makes detection harder and allows the infection to
stealthily fly under the radar. Moreover, those techniques cause to defeat detection
systems smoothly by disguising the tracks leading back to the attacker [31]. Recently
the online criminal world has wildly leveraged malvertisement (e.g., msn.com case
in 2015 [32] Answers.com [33], New York Times [34]) to infect a large volume of
victims.

14

Figure 2.2: Malicious advertisement and URL addresses

2.2.3 Compromised Webpages

Publishing one’s own website has been quite achievable for many in terms of cost and
effort for a long time. On the other hand, this affordability brings its own problems
related to security due to having limited knowledge in security. As a result, hacker
troops consistently scan the Internet to find new security-weak websites. After dis-
coveries, attackers abuse unprotected legitimate websites, eventually injecting a piece
of malicious script code, compromising those webpages. The technique also takes
advantage of traffic redirection from real benign websites to attacker controlled URL
addresses, which brings a kind of anonymity for the threat actor. Today, compromised
webpages are the most effective campaign for a mass malware infection.

Trigger point. Attackers usually inject a legitimate HTML element called an inline
frame (iframe) to redirect the target browser to a server from where their malicious
code is retrieved and executed. An iframe tag has a mandatory source attribute
(src) that takes any URL address as a value for loading another webpage inside the
browsed webpage at that time. Therefore, meeting with an EK through a compro-
mised webpage almost does not require victim intervention; it works automatically
in the background right after browsing the poisoned webpage. Specifically, the redi-
rected page is either an intermediary page (more commonly referred as a gate page)
or an EK landing page, where the profile of the candidate victim is explored. EK
owners tend to put those types of code blocks into the home page or most visited
pages of the compromised websites. The structure of those code blocks identifies the
campaign.

Root causes. According to our observations, the most common properties of compro-
mised websites are the weaknesses they have, which offers unauthorized access for
modifications on the file system of the web server. The prevalent problems occur due
to unpatched CMS (Content Management Systems), poor access control (Authenti-
cation & Authorization), and lack of input validation, which result in alteration of the
source code of the website [35].

Firstly, it is known that outdated versions of open-source CMS frameworks (e.g.,
WordPress 2, Joomla3, Drupal 4, etc.) have infamous vulnerabilities [36]. Especially,
their 3rd party plug-ins are more severely open to exploitation [37, 38] than the plat-
forms themselves.

2 https://wpvulndb.com/wordpresses
3 https://developer.joomla.org/security-centre.html
4 https://www.drupal.org/security

15

Secondly, administrative panels of many web (e.g., Apache, Tomcat, JBoss etc.) or
hosting (e.g., PHPMyAdmin, cPanel, Webmin, etc.) servers are available through the
Internet to make management easier. However, misconfiguration or default settings
could cause the system to fall into hands of adversaries. For example, if the access
settings for the management interface are not configured to block outside access and
the default login credentials are not changed, hackers can easily access the admin con-
sole. Another common example is that, some features of the web servers are needed
to be maintained through remote services like VNC (Virtual Network Computing),
RDP (Remote Desktop Protocol), and SSH (Secure Shell), which are frequently au-
thenticated with a username and password pair. Weak passwords are vulnerable to
dictionary or brute force attacks, where attackers manage to gain access to the sys-
tem.

Finally, present-day websites promote and encourage user generated content, which
are generally provided via writing posts. A malicious visitor can leverage inadequate
input validation to upload or inject suspicious code into benign webpages. Misus-
ing the website causes to run ambiguous JavaScript code on the browsers of other
innocent visitors, so they get redirected to adversaries. The file upload feature is also
another danger for web servers when improper controls exist, which grants a reverse
shell connection to the attacker base.

Reinforcement. Until a legitimate website owner recovers its website, a threat ac-
tor struggles to attract as many victims as possible to the compromised webpages
in order to harvest the best profit. Therefore, an EK customer sometimes employs
additional operations to increase its number of visitors. The first supplement is send-
ing malicious spam e-mails (malspam) that invite crowds to compromised webpages.
The other enrichment is misusing search engines via website rank optimization tech-
niques, which is known as Blackhat Search Engine Optimization (SEO) [39]. EK
operators adopt such a technique (e.g., keyword stuffing) to use search engines for
misevaluation that forces a jump on the rankings of the website [40]. After artificial
rank altering, compromised webpages appear on the first pages of the search engine
results, luring more victims.

Owning Websites. Cybercriminals sometimes prefer to design their own malicious
websites rather than compromising legitimate ones. However, this is relatively un-
common today due to two serious reasons. Firstly, the age of a domain address,
geolocation of an IP and domain address, historical changes for IP addresses, and
previously detected indications of malicious activities are the variables to calculate a
score, which determine the reputation of a website [41]. In the light of those realities,
newly registered websites usually have quite low prestige scores, until they prove
themselves as legitimate in the course of their lifetime. Moreover, state-of-the-art
system security devices (e.g., anti-malware), and even Web browsers leverage web
respectability in order to protect Internet residents from fast flux domains.

Secondly, recently registered websites generally have a relatively small number of
visitors. On the other hand, threat actors wish to reach a large audience. Moreover,
these websites have no rankings for search engines (e.g., Google, Bing, Yandex etc.),
hence they do not appear in the search results. EK operators do not like to lose the
leverage of search engines, which is a notable implicit additional advantage.

16

Figure 2.3: Gate URL

Figure 2.4: Gate page content

When taking rating scores, rankings in search engines, and also the development costs
into consideration, publishing one’s own deliberately malicious webpage becomes
infeasible for most certain cases. For the aforementioned reasons, hackers go for
legitimate websites having good reputation scores for compromise. In this way, they
reach widespread malware distribution networks.

APT case. Advanced persistent threat (APT) actors also utilize the malicious e-mail
technique, but it becomes targeted rather than spraying, which is known as spear-
phishing campaigns. In addition, they also compromise webpages, however they are
closely aligned to specific websites (e.g., aircraft), which are visited by corresponding
strategic users (e.g., pilots at air force). This technique is dubbed as the watering hole
attack. For these cases, nation-sponsored threat actors build custom EK that share
some similarities with the EK services in the cybercrime industry. [42].

2.2.4 Gate

Many campaigns employ an additional server between the compromised webpage and
the EK platform. This extra layer is called as gate, because it acts as a checkpoint for
the EK infrastructure. Figure 2.3 shows a webpage compromised by the Afraidgate
campaign, which contains an injected script leading to a gate URL. The content of the
widget.js is shown in Figure 2.4, which is typically a JavaScript based iframe
injection for a landing page (Nuclear EK for this case).

The gate is responsible for either just redirection or inspecting the basic profile of the
candidate victims. It simply retrieves some quickly available data about the environ-
ment of the system and then determines whether it is a suitable target or not. For

17

example, a gate could be designed to allow only a certain operating system (e.g., Win-
dows 10) and specific browser version (e.g., Internet Explorer 11). If those conditions
are met, the gate immediately redirects the target system to the EK [43, 44]. In other
words, Linux and Mac systems, Chrome and Firefox browsers are politely rejected
and redirected to a relatively innocent webpage (e.g., advertisement).

One straightforward technique to identify primitive system information is analyzing
the “User-Agent” HTTP request header. While some real evidences could be exposed
by the “User-Agent”, it could also be manipulated by a decoy victim in order to
confuse the attacker, in particular by the security analyst who aims to examine the
malicious activity.

For some cases, the redirection process to the EK is sometimes seen as a chain rather
than just one gate in order to cover the tracks and make the operation more complex
for incident response analysts. For example, the campaign relies on the legitimate
“302 Found” technique to generate a set of redirections through different domains
until reaching to the EK landing page. More precisely, the HTTP 302 response code
means that the URL is found in a different location, which is used as a web standard to
redirect a URL to a different webpage. Moreover, this multi redirection could contain
legitimate sharing services (e.g., Pastebin or Yandex Drive). In these senses, this type
of additional step is referred as a redirector or traffic direction system (TDS).

2.3 EK Internals and Arsenal

An EK is an automated toolkit that typically provides a penetration environment to
exploit Web browser vulnerabilities. Basically, an EK focuses on drive-by-download
attacks and comprises of a collection of tools leading to a malware infection in the
end. The key components of such an infection orchestration are a landing page, an
exploit, and a payload. Although each EK is the only one of its kind, the general
concept remains similar. The core of an EK framework is depicted in Figure 2.5.

An EK is never alone, it is typically operated along with a campaign. Victims are
led to EK services by campaigns; more precisely, via malspam, malvertisement, or
compromised webpages. Particularly, today the majority of campaigns leverage com-
promised webpages to direct the target systems to an EK. Social networks and search
term poisoning methods are still highly utilized to disseminate the URLs throughout
the Web. In addition to that, an intermediary that is known as the gate is frequently
deployed between a campaign and an EK. The code embedded into compromised
webpages silently redirects the browser either to a gate page or to a landing page.
The gate page is usually employed by campaigns to make the infection chain more
complicated.

Conceptually, the EK does not provide the campaign, nor the payload mechanism,
but offers a seamless integration interface for management purposes. In other words,
building a campaign framework and payload generation unit, and integrating it to the
EK is the duty of the adversary [45]. However, today these features are bundled with
EK platforms.

18

Figure 2.5: The Exploit Kit workflow

2.3.1 Landing Page

An EK initially serves a webpage, the landing page, which contains some HTML and
JavaScript code. In addition to the controls at the gate, the landing page is mainly
engaged for profiling in the background, where the attacker passively checks for pos-
sible flaws on the browser or any plug-ins to dispatch a convenient exploit. In short,
the first foothold inside the borders of an EK is the landing page.

De facto profiling techniques. Three common essential controls are applied for
enumeration. The first test is determining the browser version to scan for available
vulnerabilities. Contemporary Web browsers (e.g., Chrome, Firefox, and IE 10+)
have built-in sandbox technology which prevents the code running on the browser
(user space) from accessing operating system (kernel space) operations by isolating
the resources used during the execution. However, some workarounds still exist for
some certain cases [46], which involve escaping sandbox technologies. If there is
no suitable exploit obtained for the browser, there is also another chance, which is
abusing a browser plug-in. The second assessment is gathering plug-ins with their
versions for estimating existing bugs. In reality, the most successful infection rates
come with the weakest link in the chain, that is the plug-in (e.g., Flash, Java, and
Silverlight) vulnerabilities. By default, current EK flavors always target plug-ins first.
The final probe is identifying the operating system to deliver a device-compatible
payload. Since executable files are built for a particular architecture (e.g., Microsoft
Windows 64-bit), they often do not work on another system.

The operating system and browser version could be extracted from the “User-Agent”
HTTP request header. The plug-in versions could be retrieved by JavaScript methods
[47]. For instance, Flash version could be gained via “ActiveXObject” invoking
“ShockwaveFlash” object, the Java version could be taken from the “Content-
Type” HTTP request header, Silverlight version could be acquired by invoking the
“Silverlight.isInstalled()” method.

19

Under normal conditions, version detection is sufficient to find out the existing weak-
nesses, since which versions have which vulnerability and related exploits are con-
tinuously maintained by EK owners [22]. These profiling techniques work in no
intrusion manner, since the versions are gathered by running benign code and ana-
lyzing responses [48]. Therefore, the enumeration phase is fulfilled safely against
prevention systems.

2.3.2 State-of-the-Art Exploits

An exploit misuses vulnerable applications to provide a connection right after exe-
cution on the target system. Exploitation, which is also known as the arbitrary code
execution, results in triggering a payload. Literally, a vulnerable application runs a
malicious file, then exploit code executes and the flaw is abused, after which the threat
actor gains unauthorized access to the system.

Vulnerability. An EK contains a set of contemporary exploitation techniques that
essentially target the vulnerabilities (e.g., Use After Free, Buffer Overflow, String
Format) in browsers and their plug-ins. Today, client-side weaknesses are usually
found in Web browsers’ extensions. The majority of the exploits target the Adobe
Flash Player, Java Runtime Environment and Microsoft Silverlight respectively [27].
Vulnerabilities are also, but rarely observed directly in the browsers themselves. One
reasoning is that, security investments on browsers are higher than the add-ons due
to the marketing value, they are stronger in terms of security when compared to their
extensions. Consequently, exploitation is rather difficult against browsers, but not for
plug-in applications.

Modus operandi. In general terms, if one of the usual suspected applications could
not be fully patched or properly hardened on the target system, any vulnerable ap-
plication is enumerated in the profiling phase, and there is a related exploit in place,
the EK workflow will go on. Accordingly, the EK is going to deliver a specifically
crafted exploit code for the flaw found at once. On the other hand, if the target sys-
tem is up-to-date for common plug-ins on browsers, the landing page does not find
any defect, otherwise it is a zero-day. Then, the EK does not exhibit any malicious
behavior and kindly terminates the workflow.

Exploit format. Each exploit is tailored in a specific file format, which is recognized
and interpreted by the target application. More precisely, a Flash exploit is a Shock-
Wave Flash (SWF) file, Java exploit is a Java Archive (JAR) file, Silverlight exploit is
an Application Package (XAP) file. A Reader exploit is a Portable Document (PDF)
file, an Office exploit is a type of MS Office Document (e.g., docx, xls, etc.) and
browser exploit is an HTML file, etc. Except HTML, all the file formats are in a kind
of compression, which is understandable only for the target software. The SWF, PDF,
and XAP files are embedded into an object element of HTML and JAR files are trans-
ferred with applet tag of HTML. The only difference from a normal application file
is the injected malicious code. After the EK throws the malicious file that contains
exploit code, the browser catches it and invokes the target application automatically.

Exploit repository. The exploits are the principle module of an EK framework. A
set of exploits are kept on a repository server, where the control and maintenance are

20

fully performed by Exploit Kit owners, not by threat actors. Their responsibility is
to feed the central repository with new and up-to-date exploits [49, 50, 51] and to
modify existing exploits for escaping from detection by security products. Due to the
centralized mechanism, EK flavors are known to be the pioneer of exploiting publicly
disclosed vulnerabilities extremely quickly. This agility and reliability also proves
the proficiency of an EK, which is the primary reason why that EK is dominant in the
criminal ecosystem.

2.3.3 The Art of Payload

The objective of an EK payload is to infect a victim device with a malware. Successful
exploitation is prerequisite to kick off a malware execution. There are several types
of payload in the market [52], which are typically an executable binary file in the EK
context.

The payload is frequently developed in the form of a trojan. A downloader trojan
basically downloads and executes the actual payload. More precisely, it retrieves
an encrypted/encoded data from the EK server and decrypts it with the key. Now,
the data in plaintext format turns to be an executable binary. Finally, the first stage
payload runs the new executable, second stage payload, to infect the target system.
In other words, the downloader trojan does not perform any malicious behavior, but
the actual (second stage) payload. One other common trojan type is the dropper that
camouflages the actual payload in its body in an encrypted/encoded form. Hence,
rather than downloading the second stage payload, it simply decrypts and pulls out
the malware, and then executes it.

Payload qualification. The capabilities of the malware are directly related to the
motivation and objective of the criminal. The following is a short list that includes
some malware families delivered via EK infections. Briefly, Bot (e.g., ZeuS) turns
victims into a zombie for DDoS attacks, Banking Trojan (e.g., Limbo, Sinowal, and
Dridex) [53] steals credentials, Keylogger (e.g., iSpy) records typed keys to leak sen-
sitive information, Ransomware (e.g., TeslaCrypt, CryptXXX, and Locky) [54, 55]
encrypts files for ransom, Remote Access Trojan (e.g., LuminosityLink) establishes a
connection back to the attacker system acting as a backdoor via shellcode. Rootkit
(e.g., ZeroAccess) gets top level privileges to hide infection footprint, Spyware (e.g.,
SpyEye) accomplishes audio surveillance and finds critical documents for spying ac-
tivities. Since 2015, the most common type of malware of choice is ransomware
[20].

In general, an EK serves a predefined set of payloads (e.g., ransomware, banking
trojan, bot), but also allows the savvy threat actors to choose their own. An EK makes
it easy to define custom payload by isolating all the complexity. An EK integrates the
uploaded payload automatically to the infection mechanism, updates itself, and starts
to send this new payload. This option sometimes becomes mission-critical, since
proliferation of malware causes security products (e.g., IPS/IDS and anti-malware)
to gradually recognize them. Therefore, even if the malware stays identical in terms
of functionality, the fingerprint of the executable is changed at times. Accordingly,
this new sample is ported easily to the EK framework [21].

21

There are plenty of capabilities of malware. The most essential feature of a malware
is the persistency with which the malware remains active even after reboots. A quite
interesting aspect is country discrimination. Before the infection, if a malware unex-
pectedly looks for the regional settings (e.g., language of the operating system and
time zone) of the victim system and correspondingly if the malware does not pose its
malicious activity against the device whose region is set to a particular country (e.g.,
Russia), justifiably we can state that the author of this malware intentionally does not
want to give damage to those who understand Russian (e.g., Russian citizens) [45].

2.3.4 Advanced Tactics

There is a great deal of users who browse the Web by using the Internet connection
of their organization in daily life. In addition, the devices that belong to an institu-
tion sometimes contain more valuable data than the systems owned by an individual.
Companies have been known to deploy perimeter protection applications to minimize
security breach incidents. Therefore, a major challenge for EK owners is protection
mechanisms.

It is a known fact that security researchers frequently tweak and equip their analysis
environment, and automate the detection approach to pursue investigation by serv-
ing the fake identity. At that point, there is a strong tendency at the attacker side to
perform a few extra pre-explorations before infection. In this sense, attackers evolve
three vital strategies for stealth existence, which could be summarized as honeypot
prevention, analysis resistance, and detection avoidance. Furthermore, an EK also
promotes some sophisticated interaction protections which are direct, multi, and geo-
location access. These techniques are applied in three levels which are landing, ex-
ploit and payload to fortify achieving better infection rates eventually. Therefore, the
EK workflow sometimes becomes very complicated, making analysis quite challeng-
ing.

Honeypot prevention. An EK attempts to understand whether the target system is
a virtual environment (e.g., virtual machine, sandbox, and emulator) or not, which
is referred to as anti-vm techniques, where hardware components are probed. The
profiling code, a piece of JavaScript, could query installed modules on the target
system. In addition, due to working on the operating system, the payload fingerprints
hardware to find out virtualization related indications [56]. Anti-vm is applied for
solely keeping incident responders out of the crime scene, since virtual environments
are frequently used by security analysts while inspecting cases. On the other hand,
virtualized systems are widespread in organizations, and in response, recently some
certain EK types skip this control in order to increase the likelihood of infecting the
real target systems.

Analysis resistance. An EK also looks for specific security or analysis software on
the target system via both the landing page and payload. The victim user could be
using an anti-malware product or threat hunters diagnose an infection with programs
that are usually well-known open-source or commercial analysis tools. Detection
of any virtual machine or analysis software artifacts causes the EK not to expose any
malicious behavior and redirect the target system to a benign website or no download.

22

Detection avoidance. Hiding the actual code is another best practice of an infection.
An EK applies obfuscation, encoding and encryption techniques to dramatically de-
crease the detection possibility and makes the analysis of the actual malicious code
quite challenging at first sight. The profiling script is disguised to bypass the web
security devices (e.g., web filter, signature based IPS/IDS, blacklist) and the payload
is veiled to evade traditional security prevention mechanisms (e.g., anti-malware).
Firstly, the landing page or the payload either contains or retrieves the encrypted/en-
coded data from the EK server. Then, by inherently knowing the key (e.g., predefined
random one-byte length hexadecimal value) and encryption/encoding algorithm (e.g.,
XOR or RC4), the data is decrypted with the key by the application of the routine at
execution time. In other words, until execution, the malicious code is not available.
Moreover, the obfuscation schema, encoding and encryption functions and the keys
continuously change due to signature updates on security systems.

Direct access. The landing page, exploit and payload occasionally are not available in
direct access, but to victims who were profiled smoothly on the landing page, which
simply checks the “Referer” HTTP request header for the particular source URL. In
other words, the landing page processing mechanism is tightly associated to the cam-
paign or gate in place. For example, if a threat actor leverages compromised web-
pages as a threat vector, the landing page only welcomes the candidate victims over
the compromised webpage, otherwise it likely presents an empty response, HTTP 404
Not Found message, or redirects to a well-known benign page (e.g., google.com).

Multi access. An EK always prevents multiple visits from the same IP address to
URL addresses (e.g., landing page, exploit, and payload). The main assumption be-
hind this behavior is that an exploit has to be successful normally at its first try or
in at most a few trials, otherwise there is a trap by threat hunters. In fact, some EK
families generate single-use web resources.

Geo access. Some EK pages are not accessible from particular geo locations. More
precisely, some EK developers intentionally prevent infection of devices from IP
blocks that belong to privileged countries. This could be because a part of their EK
infrastructure is located in those countries, and they would not like to irritate legal
authorities to avoid seizure.

23

24

CHAPTER 3

CONTEXT-AWARE CONTENT ANALYSIS

The contents of web pages served by EK families were investigated, where the major
objective of this chapter is to understand EK characteristics from a systematic web
page content analysis perspective. An in-depth semi-automated content examination
methodology for EK-based malware infections is developed. The top-down dissec-
tion method covers both static and dynamic analyses techniques, which are primarily
employed to defuse hiding mechanisms. This top-down evaluation could be applied
to any infection case based on EKs, even upcoming ones. We also propose content
features with a context-aware strategy which uncovers the EK family characteristics
from webpage contents. We call this methodology context-aware content analysis,
which is a different perspective when compared to existing work. This strategy al-
lows to recognize even the minor changes of EKs, to validate the labels of the data
source, and open doors for a more powerful inspection mechanism to directly detect
malicious code.

This chapter is organized as follows: Section 3.1 explains the analysis mechanism
and the following 7 sections Section 3.2-3.8 focus on the results of the context-aware
content analysis. While Section 3.9 highlights the primary challenges we face, Sec-
tion 3.10 summarizes the major findings of the in-depth observations and discusses
our findings on content inspection.

3.1 Approach

In this part of the study, the contents of web pages served by EK brands are investi-
gated. A popular, respected and publicly accessible data source1,2 that contains 240
different real-world infection cases involving over 2250 URLs were examined. The
incidents containing malware infections are associated with the 4 major EK families
that occurred throughout the year 2016 and the other details of the data corpus are
introduced in Section 4.1. Firstly, the web resources are extracted from pcap files
and the web page contents are subjected to an elaborative inspection to character-
ize content features. A context-aware analysis enables to offer a robust inspection
mechanism that detects attacker code directly.

AST. EK authors develop an original exploit code, then apply transformations before
delivering it to each victim. In other words, while there is only one exploit code, every

1 malware-traffic-analysis.net
2 broadanalysis.net

25

victim gets a different looking code. Since EK authors do not want to reveal the origi-
nal attack code, they apply particular mechanisms to hide the JavaScript code blocks,
which is known as obfuscation. On the other hand, security analysts want to analyze
such code in order to learn advancements in the exploit ecosystem. In addition, there
is no time for analysis of duplicate or very similar malicious code. Therefore, it is
important to understand whether an obfuscated code was previously analyzed or not.
However, string matching on obfuscated code is meaningless while identifying actual
exploit code. Obfuscation makes original attack code unrecognizable and the same
deobfuscation techniques are not applicable for every case, in addition to not per-
forming well in terms of speed. Abstract Syntax Tree (AST) analysis is an intelligent
approach, which avoids deobfuscation, but promises to reduce the entropy of script
code by abstracting certain elements as shown in Figure 3.1 and Figure 3.2. The ran-
domization introduced in the variables and values are rendered useless with abstract
representations and structural or hierarchical code blocks are revealed. Therefore, it
allows to classify even highly obfuscated but similar JavaScript code blocks based on
AST fingerprints without knowing the actual attack code. We have utilized SlimIt for
AST construction, which is a Python library including a JavaScript parser, lexer, and
a tree visitor.

Figure 3.1: Similar JavaScript code blocks

26

Figure 3.2: AST of similar JavaScript code blocks

Extensive semi-automated static and dynamic analyses were conducted on the client-
side code of web pages to learn the anatomy of Exploit Kit families. The static anal-
ysis is operated with a custom developed Python script and the dynamic analysis
involves running instrumented browsers PhantomJS and HtmlUnit. Both techniques
are primarily employed in order to defuse hiding facilities. Firstly, the page redi-
rection mechanisms (e.g., JavaScript and HTML) are recognized. Then, the hiding
practices (e.g., JavaScript functions and the abstract syntax tree (AST), obfuscation
algorithm, and encoding/encryption schema) are revealed. Finally, the code devel-
opment behaviors (e.g., coding into just n-line, locating code block at the top/end of
the page, and chain of HTML tags) are reported. According to these three aspects re-
vealed with the context-aware methodology, the changes in EK products throughout
one year were observed and the subversions were coined.

As EK-based infections start via campaigns, firstly the analysis of EITest, Pseudo-
Darkleech, and Afraidgate mass malware delivery vectors are performed and then

27

the technical details of Rig, RigV, Angler and Neutrino Exploit Kit competitors are
demonstrated with important examples. The recognized EK capabilities (e.g., attack,
evasion, and hiding) from the whole analysis were given in detail in Chapter 2. In this
chapter, analysis of only a dozen samples is presented, which are carefully selected
in order to increase understanding and show how we identified those capabilities.

3.2 EITest Campaign

EITest is among the most prevalent campaigns. The EITest cases in the dataset can
be grouped into 5 different versions according to the redirection mechanism, hiding
practices, and coding behaviors used. These versions also show the modifications
during the year.

Three major page redirection techniques are identified in EITest campaigns. The first
one is a JavaScript-based iframe, the second is a JavaScript-based Flash object
and the final is an HTML-based Flash object redirection.

The JavaScript code block is usually designed in a few lines (e.g., 1 to 4) in order to
reduce noticeability and is located at the end of the web page before the body closing
HTML tag. In total, 8 different JavaScript functions are recognized from the EITest
samples and each case contains 3 or 4 methods.

At first glance, the JavaScript code blocks seem to be different (e.g., URLs, variable
names and values, width and/or height values of the HTML tags, attribute values,
etc.) for all incidents due to the polymorphic design. However, the present analysis
strategy reveals similarities across different incidents via the AST of the JavaScript
code, which is basically the generalized form of a source code. For example, every
variable name is converted to the same identifier (e.g., varName) and likewise every
variable value is converted to the same identifier (e.g., varValue). This method allows
to identify different-looking code due to polymorphism, which are actually the same
code in reality. On the other hand, some obfuscation mechanisms are too complex
to deal with (e.g., changing the locations of a piece of code), and in these cases the
length of the AST gives clues about the similarity. Although different AST hash values
might indirectly suggest additional sub versions of the campaign, a low number of
different hash (e.g., up to 5) and length values also confirm the convenience of the
characterization of the campaign on the basis of the JavaScript code block.

3.2.1 Version 1

The first version utilizes a JavaScript-based iframe without encoding or obfusca-
tion as shown in Figure 3.3. The JavaScript code block is designed in one line and
located at the end of the web page. It is surrounded by a “body” HTML tag. There
are 3 notable JavaScript functions that together indicate malicious activity:

• document.createElement(“iframe”);
• .setAttribute(“frameBorder”, “0”);
• document.body.appendChild(...);

28

Figure 3.3: EITest - Version 1

Only three different hash and length values of script code blocks are found from the
generated AST during experiments, which are given Table 3.1.

Table 3.1: AST information of EITest - Version 1

AST Hash (SHA1) AST Length

c059c3cacc8f8379015123d40672fee035c0bcac 315

3579dda435206c1e4ce62d24fda24883c6d9a6c0 333

a2477205fd42be9e53b28b5bca58738eb329f146 351

The iframe has a “src” attribute with a remote URL as the value, which points to
the landing page of an EK family. Right after accessing the campaign page, Version 1
redirects to a landing page. The domain address associates with “top” and “com” top-
level domains (TLD) and the URL address contains a 170+ character length query
excluding the path part.

These URL patterns indicate and the cross-examination found that Rig and RigV EK
families are in relation with this particular version of the EITest campaign. The obser-
vations show that there is no correlation between the AST hash values and redirected
EK versions.

3.2.2 Version 2

The second version utilizes a JavaScript-based iframe with Unicode encoding as
shown in Figure 3.4 and Figure 3.5. All JavaScript functions are in plain format, not
Unicode encoded, except for the URL. The encoded URL is statically decoded with
a custom developed Python script. In order to identify Unicode encoding the “%u[0-
9]{4}” pattern is searched in each individual script block. On average, all samples
have at least 800 Unicode characters. The JavaScript code block is designed in one
line and located at the end of the web page. It is surrounded with a “body” HTML
tag. There are 4 notable JavaScript functions that together indicate malicious activity:

• document.createElement(“iframe”);
• .setAttribute(“frameBorder”, “0”);

29

• document.body.appendChild(...);
• unescape(...);

Figure 3.4: EITest - Version 2

Figure 3.5: EITest (Decoded URL) - Version 2

Only one hash and length value of script code blocks are found from the generated
AST during experiments, which are given in Table 3.2.

Table 3.2: AST information of EITest - Version 2

AST Hash (SHA1) AST Length

9033a5caeef20598812f1aef30a6b65878084a85 350

The iframe has a “src” attribute with a remote URL as the value, which points to
the landing page of an EK family. Right after accessing the campaign page, Version
2 redirects to a landing page. The domain address associates with “top” and “com”
top-level domains (TLD) and the URL address contains a 170+ character length query
excluding the path part.

These URL patterns indicate and the cross-examination found that Rig and RigV EK
families are in relation with this particular version of the EITest campaign. The obser-
vations show that there is no correlation between the AST hash values and redirected
EK versions.

30

3.2.3 Version 3

The third version utilizes a JavaScript-based Flash object with Hex encoding as
shown in Figure 3.6 and Figure 3.7. All JavaScript functions are in plain format,
not Hex encoded, but the Flash redirector. The encoded Flash object is statically
decoded with a custom developed Python script. In order to identify the Hex encod-
ing, the “%[a-f0-9]{2}” pattern is searched in each individual script block. On
average, all samples have at least 800 Hex characters. The JavaScript code block
is designed in one line and located at the end of the web page. It is surrounded by
a “body” HTML tag. The notable JavaScript functions that together indicate
malicious activity are as follows:

• navigator.userAgent.indexOf();
• document.write(...);
• decodeURIComponent(...);
• unescape(...);
• div, object, movie, embed
• source values of the HTML elements are the same URL addresses

Figure 3.6: EITest - Version 3

Only two different hash and length values of script code blocks are found from the
generated AST during experiments, which are given in Table 3.3.

The Flash object is surrounded by a “div” HTML tag that has a “style” attribute
with a fairly specific value (e.g. ...; z-index:-1; ...opacity:0;
filter:alpha(opacity=0); -moz-opacity:0; ...). The object el-
ement has an “id” attribute that takes 5 to 7 length alpha characters as value and a

31

Figure 3.7: EITest (Decoded Flash object) - Version 3

Table 3.3: AST information of EITest - Version 3

AST Hash (SHA1) AST Length

f1cac84ce0b4248ccd171e47f48266d422f21c75 111

c0e04d0860155ff7a3b4934fd2311a8f5dc211eb 141

“codebase” attribute that includes “8,0,0,0” in value. The object element has
three parameters which are “allowsScriptAccess” that takes “always” as value,
“bgcolor” that takes “#ffffff ” as value, and “wmode” that takes “opaque” as value.

The object element has a “movie” and “embed” sub tag that have “value” and
“src” attributes respectively with the same remote URL as value, which points to a
gate redirector of EITest campaign. Right after accessing the campaign page, Version
3 redirects to a gate page. The domain address associates with “top” and “xyz” top-
level domains (TLD) and the URL address has a specific pattern with no query part,
but a path part. It contains at least 118 lower case alpha numeric characters that are
separated by a plus symbol at least four times.

The cross-examination between the AST hash values and EK is not a valid attribu-
tion, since Version 3 redirects to a campaign gate rather than an EK landing page. In
addition, Version 3 contains some exceptional infection cases. Some samples do not
include the first JavaScript function. Moreover, while some Flash objects use a do-
main with almost a 100-character length path in URL, some others use just a domain
without a path in the URL.

32

3.2.4 Version 4

The fourth version utilizes a JavaScript-based Flash object with obfuscation as shown
in Figure 3.8 and Figure 3.9. The algorithm involves a combination with a one-byte
character (e.g., x or underscore or hyphen) replacement with the percent character and
then Hex encoding. All JavaScript functions are in plain format, not obfuscated, but
the Flash object. The obfuscated Flash redirector is dynamically de-obfuscated by
executing just the individual script block in an emulated browser. In order to identify
character replacement obfuscation, the “(x_-)[a-f0-9]2” pattern is searched in
each individual script block. On average, all samples have at least 800 Hex characters.
The JavaScript code block is designed in one line and located at the end of the web
page. It is surrounded by a “body” HTML tag. The notable JavaScript functions that
together indicate malicious activity are as follows:

• navigator.userAgent.indexOf();
• document.write(...);
• decodeURIComponent(...);
• replace();
• div, object, movie, embed
• source values of the HTML elements are the same URL addresses

Figure 3.8: EITest - Version 4

Only one hash and length value of script code blocks are found from the generated
AST during experiments, which are given in Table 3.4.

The Flash object is surrounded by a “div” HTML tag that has the “style” attribute
with a fairly specific value (e.g. ...; z-index:-1; ...opacity:0;
filter:alpha(opacity=0); -moz-opacity:0; ...). The object el-
ement has an “id” attribute that takes a 5 to 7 length alpha characters as value and
the “codebase” attribute that includes “8,0,0,0” in value. The object element

33

Figure 3.9: EITest (Decoded JavaScript) - Version 4

Table 3.4: AST information of EITest - Version 4

AST Hash (SHA1) AST Length

9f0c2a8e4c98c45f4a5ff0d2839ccfe2f8e69e23 184

has three parameters, which are “allowsScriptAccess” that takes “always” as
value, “bgcolor” that takes “#ffffff ” as value, and “wmode” that takes “opaque” as
value.

The object element has a “movie” and “embed” sub tag that have “value” and
“src” attributes respectively with the same remote domain rather than a URL as
value, which points to a gate redirector of EITest campaign. Right after accessing the
campaign page, Version 4 redirects to a gate page. The domain address associates
with “top” and “xyz” top-level domains (TLD) and the URL address contains only the
domain address, where there is no path or query part.

The cross-examination between the AST hash value and EK is not a valid attribution,
since Version 4 redirects to a campaign gate rather than an EK landing page.

34

3.2.5 Version 5

The fifth version utilizes an HTML-based Flash object without encoding or obfusca-
tion as shown in Figure 3.10. The HTML code block is designed in four lines and
located at the end of the web page. It is surrounded by a “body” and a “div” HTML
tag.

• div, object, movie, embed
• source values of the HTML elements are the same URL addresses

Figure 3.10: EITest - Version 5

At first glance, the HTML code block seems to be different for all incidents due
to the polymorphic design. Generating an AST for an HTML code is not sensible,
hence revealing similarities across different incidents is not possible. Characterization
convenience of the campaign on the basis of malicious HTML code could not be
provided for this case. However, Version 5 shares some significant properties with
the Flash object of Version 3 and 4, therefore it stands on a strong basis.

The Flash redirector is surrounded by a “div” HTML tag that has the “style” at-
tribute with a fairly specific value (e.g. ...;z-index:-1;...opacity:0
; filter:alpha(opacity=0); -moz-opacity:0; ...). The object el-
ement has an “id” attribute that takes a 5 to 7 alpha characters as value and the
“codebase” attribute that includes “8,0,0,0” in value. The object element has
three parameters, which are “allowsScriptAccess” that takes “always” as value,
“bgcolor” that takes “#ffffff” as value, and “wmode” that takes “opaque”
as value.

The object element has a “movie” and “embed” sub tag that have “value”
and “src” attributes respectively with the same remote URL, which points to a gate
redirector of the EITest campaign. Right after accessing the campaign page, Version 5
redirects to a gate page. The domain address associates with “top” and “xyz” top-level
domains (TLD) and the URL address has a specific pattern where there is no query
part, but a path part. It contains at least 96 lowercase alpha numeric characters that
are separated by a hyphen symbol at least two times.

The cross-examination between the AST hash value and EK is not a valid attribution,
since Version 5 is HTML-based and do not have a JavaScript AST hash value.

35

3.3 PseudoDarkleech Campaign

The PseudoDarkleech cases in the dataset can be grouped into 3 different versions
according to the redirection mechanism, hiding practices, and coding behaviors used.
These versions also show the modifications during the year.

Two major page redirection techniques are identified in pseudoDarkleech campaigns.
The first one is a JavaScript-based iframe and the other is an HTML-based iframe
redirection.

3.3.1 Version 1

The first version utilizes HTML-based iframe without encoding or obfuscation as
shown in Figure 3.11. The HTML code block is designed in a few lines (4 to 7 lines)
and located at the start or middle of the webpage. It usually starts with a “span”
tag that has a “style” attribute containing position related keys and values (e.g.,
position, width, height, and top). There are sometimes 1 or 2 invalid tags, actually
random strings between 2 to 7 in length, which are positioned as child of the “span”
tag. There is rarely 1 more invalid tag that is located as the sibling of the “span” tag.
After that tag, there is a “noscript” tag and between the 2 invalid tags there is an
iframe.

• head, span, style
• iframe
• noscript
• invalid tags

Figure 3.11: PseudoDarkleech Campaign - Version 1

The iframe has a “src” attribute with a remote URL as the value, which points to
the landing page of an EK family. Right after accessing the campaign page, Version
1 redirects to a landing page. The URL patterns indicate and the cross-examination
found that Rig and RigV EK families are in relation with this particular version of
the PseudoDarkleech campaign. Since Version 1 is HTML-based, AST analysis is not
valid.

It is also known that EITest gate similarly uses invalid HTML tags.

36

3.3.2 Version 2

The second version utilizes a JavaScript-based iframe with custom encoding as
shown in Figure 3.12 and Figure 3.13. All JavaScript functions are in obfuscated
format.

There are two consecutive “div” tags, the first one is a space delimited string con-
taining at least 1300 characters and the second one is star delimited integers contain-
ing at least 2100 characters. The code block is located at the beginning of the web
page and contains at least 170 lines. The obfuscated iframe redirector is dynamically
de-obfuscated by executing the whole page in an emulated browser.

Figure 3.12: PseudoDarkleech Campaign (Obfuscated) - Version 2

Figure 3.13: PseudoDarkleech Campaign (Deobfuscation) - Version 2

The iframe has a “src” attribute with a remote URL as the value, which points to
the landing page of an EK family. Right after accessing the campaign page, Version
2 redirects to a landing page. The URL patterns indicate and the cross-examination

37

found that Angler EK family is in relation with this particular version of the Pseudo-
Darkleech campaign. Since Version 2 is HTML-based, AST analysis is not valid.

3.3.3 Version 3

The third version utilizes a JavaScript-based iframewith custom encoding as shown
in Figure 3.14, Figure 3.15, Figure 3.16, and Figure 3.17. All JavaScript functions
are in obfuscated format.

Figure 3.14: PseudoDarkleech Campaign (Obfuscated) - Version 3

Figure 3.15: PseudoDarkleech Campaign (Deobfuscation Level 1) - Version 3

There is one “div” or “span” tag which contains a 3500 to 12000 characters long
string and delimited by a space and a dash character. The code block is located at
the beginning of the web page and designed in just one line. The complex iframe
redirector contains 3000 to 10000 characters and is dynamically de-obfuscated by
executing the whole page in an emulated browser.

Figure 3.16: PseudoDarkleech Campaign (Deobfuscation Level 2) - Version 3

38

Figure 3.17: PseudoDarkleech Campaign (Deobfuscated) - Version 3

The iframe has a “src” attribute with a remote URL as the value, which points to
the landing page of an EK family. Right after accessing the campaign page, Version
3 redirects to a landing page. The URL patterns indicate and the cross-examination
found that Angler EK family is in relation with this particular version of the Pseudo-
Darkleech campaign. Since Version 3 is HTML-based, AST analysis is not valid.

3.3.4 Gate

The HTML code patterns in the beginning of the first HTTP response of the sample,
shown in Figure 3.18, indicates a compromised webpage within pseudoDarkleech
campaign. The gate checks the browser and the environment as shown in Figure 3.19.
If the gate detects any unwanted behavior, it shows a well-known error page rather
than redirecting the victim to the landing page of the EK shown in Figure 3.20.

Figure 3.18: PseudoDarkleech Campaign - Gate 1

39

Figure 3.19: PseudoDarkleech Campaign - Gate 2

3.4 Afraidgate Campaign

The Afraidgate cases in the dataset can be grouped into 2 different versions according
to the redirection mechanism, hiding practices, and coding behaviors used. These
versions also show the modifications during the year.

Only one page redirection technique is identified in Afraidgate campaigns, which is
a JavaScript-based iframe redirection.

40

Figure 3.20: PseudoDarkleech Campaign - Gate 3

3.4.1 Version 1

The first version utilizes a JavaScript-based iframe without encoding or obfus-
cation as shown in Figure 3.21. A remote JavaScript source file is included via a
script tag which is placed at a random line and appears usually after the body tag
or is located on the first line. The JavaScript file contains only one function, which is
document.write that contains an iframe surrounded by two div tags as shown
in Figure 3.22. The outer div tag has a “style” attribute, which is initialized with a
negative number to prevent the visibility of iframe. The closing iframe is designed
as i’+’frame to break HTML parsers and mislead detection systems that rely on
string search.

Figure 3.21: Afraidgate Campaign - Version 1

41

Figure 3.22: Afraidgate Campaign Remote Source - Version 1

3.4.2 Version 2

The second version also utilizes a JavaScript-based iframe without encoding or
obfuscation as shown in Figure 3.23. A remote JavaScript source file is included via
a script tag, which is placed at a random line and appears usually after the body
tag or is located on the last line. The JavaScript file contains only one function which
is document.write that contains an iframe surrounded by two div tags as
shown in Figure 3.24. The outer div tag has a “style” attribute which is initialized
with a negative number to prevent the visibility of iframe. Before and after the
iframe there is an anchor tag a. The closing iframe is designed as ifra’+’ame
to break HTML parsers and mislead detection systems that rely on string search.

Figure 3.23: Afraidgate Campaign - Version 2

Figure 3.24: Afraidgate Campaign Remote Source - Version 2

42

3.5 Rig EK

In the following sample, there are some artifacts that indicate an infection through
Rig EK triggered right after browsing a compromised webpage redirecting to an ex-
ploit that is designed for Flash and subsequently delivering an encrypted executable
payload that is the infamous Qbot malware (Figure 3.25).

Figure 3.25: Rig EK - Infection chain

Challenge. According to the analysis, both HTTP requests to the gate and Rig EK
landing page have the same URL in the Referer HTTP header that belongs to the
compromised webpage (Figure 3.26). Moreover, signs of the gate and Rig EK landing
URL do not exist implicitly in the compromised webpage. Furthermore, the gate
webpage contains only encoded data, not HTML code or JavaScript (Figure 3.29).

Figure 3.26: Rig EK - Redirection internals of the infection chain

A possible mechanism is as follows: Rig EK appended a malicious script into a well-

43

known legitimate JavaScript library jQuery, then uploaded it to the script directory
of the compromised web server (Figure 3.27). After that, the attacker injected an
HTML code line into the original source of the home page that refers to that implanted
script library. We come to this conclusion due to the fact that the functions in the
jQuery library are never referenced from the compromised web page. Obviously, this
technique is applied for disguise from the analyst.

Figure 3.27: Rig EK - Injected obfuscated malicious JavaScript

The malicious script is obfuscated (Figure 3.27) and designed to dynamically build
and inject a new script (Figure 3.30) that loads the gate page (Figure 3.29) firstly.
The filename part of the gate URL (e.g., nfvviewforumag.php) is formed by adding
two to three randomly generated letters as prefix (e.g., nfv) and suffix (e.g., ag) to
a static string “viewforum” (Figure 3.28). The gate page returns encoded data that
is held in a static variable named “main_color_handle” (Figure 3.29), where
contrary to common belief, the gate page does not redirect to the EK landing page
for this particular scenario. After returning the encoded data, the injected new script
(Figure 3.30) decodes it to the EK landing URL by removing all characters except
[0-9] and [a-fA-F], after that, applies Hex to ASCII conversion to the whole
that forms the EK landing URL (Figure 3.30). Then, the malicious script dynamically
prepares an iframe, (Figure 3.31), sets the EK landing URL as the source, and injects
the iframe into a new div object (Figure 3.31).

Exploit. The EK landing page (Figure 3.32) is automatically loaded via the iframe
(Figure 3.33) and brings a Flash-based exploit code (Figure 3.34) and then retrieves
an encrypted payload (Figure 3.35).

Payload. One repetitive string, “vwMKCwwA”, is observed in the static code analysis
of the encrypted payload (Figure 3.35). According to our examination, the string is
determined as the encryption key and the algorithm confirmed as the famous XOR,
which together encrypt the payload. Therefore, the XOR function is applied to raw

44

Figure 3.28: Rig EK - (De-obfuscated) Injected script builds and injects a script

Figure 3.29: Rig EK - Gate webpage returns encrypted/encoded data

encrypted data with the encryption key, which results in an executable file and the
identity of the decrypted executable payload is also validated from public sources,
where it is a Qbot malware variant (Figure 3.36). The major capability of Qbot is
credential theft, which acts like a trojan by stealing passwords, sessions, and sensitive
information. While Qbot is also equipped with several anti-VM capabilities, it is also
able to spread to removable drives and shared files. It interacts to C&C servers over
HTTP(S) and exfiltrates stolen data through FTP.

45

Figure 3.30: Rig EK - Injected new script decodes EK landing URL

Figure 3.31: Rig EK - Injected iframe into the compromised page

3.6 RigV EK

In the following sample, there are some artifacts that indicate an infection through
RigV EK triggered right after browsing a compromised webpage redirecting to an
exploit that is designed for Flash and subsequently delivering an encrypted executable
payload that is the infamous Cerber malware.

The landing page has two JavaScript blocks, which are heavily obfuscated as shown
in Figure 3.37.

Right after the first script block is executed (Figure 3.37), the following embedded
script is generated, which has a 17.000+ characters long string in one line as shown
in Figure 3.38.

46

Figure 3.32: Rig EK - Landing page contains obfuscated JavaScript code

Subsequently, the second script block (Figure 3.37) is executed, then the following
embedded script is generated that has a 2.000+ characters long string in one line as
shown in Figure 3.39. Both script code blocks in the first layer have similarities in
terms of code structure.

For sure, the newly generated script blocks in the first layer (Figure 3.38 and Fig-
ure 3.39) are also executed and again new script blocks are built. After the first script
in the first layer (Figure 3.38) is executed (particularly the k() and l() functions),
the following script is generated, which has 291 lines of code, a 2.000+ characters
long string on one line, and also a function call (htedfgsss()), which takes two param-
eters including a URL and a 10-character long string (gexywoaxor) as shown in
Figure 3.40.

The patterns in the URL indicate the Rig EK (particularly RigV). Moreover, one of
the encrypted binary files is downloaded via this URL address and the 10-character
string is the decryption key.

Subsequently, the second script block in the first layer (Figure 3.39) is executed, then

47

Figure 3.33: Rig EK - Landing page purified and deobfuscated

the following embedded script is generated as shown in Figure 3.41. It has two similar
function calls to the first script in the second layer (Figure 3.40). One of them takes
two parameters, which are the payload URL and a 10-character long decryption key
string (gexywoaxor). This function encodes both values into one 600+ characters
long string. The third function in here has a specific name that takes two parameters,
generates a Flash object and embeds it to the final HTML page. The first parameter
is the URL address of the flash exploit file and the other parameter is the previously
encoded 600+ characters long string. This value is decoded inside the Flash file to
retrieve the payload, if the exploitation becomes successful.

After fully executing the script code blocks, the final HTML page has an object ele-
ment that runs a Flash exploit as shown in Figure 3.42.

Exploit. The Flash file analysis shows that, the 600+ characters long parameter is

48

Figure 3.34: Rig EK - Flash-based exploit code

decoded by applying a custom algorithm with the decryption key of the payload to
reveal the payload URL address.

Payload. Then the retrieved binary file is decrypted with the decryption key that
is “gexywoaxor” by application of the RC4 algorithm as shown in Figure 3.43.
For this case, the payload is directly the malware, which is a ransomware variant of
Cerber.

3.7 Angler EK

In the following sample, there are some artifacts that indicate an infection through
Angler EK within the EITest campaign triggered right after browsing a compromised
webpage redirecting to an exploit that is designed for Flash and subsequently de-
livering an encrypted executable payload that is the infamous HydraCrypt malware
(Figure 3.44).

Angler contains 4 div elements, which have too long obfuscated and delimited
strings and contains 4 script that deobfuscate those strings. There is also one

49

Figure 3.35: Rig EK - Encrypted payload

50

Figure 3.36: Rig EK - Decrypted executable payload is Qbot malware variant

heavily obfuscated script, which calls these 4 script and combines the plain text
outputs, which creates a new HTML page as shown in Figure 3.45 and Figure 3.46.

3.8 Neutrino EK

In the following sample, there are some artifacts that indicate an infection through
Neutrino EK within the pseudoDarkleech campaign triggered right after browsing a
compromised webpage redirecting to an exploit that is designed for Flash and sub-
sequently delivering an encrypted executable payload that is the infamous CryptMIC
malware (Figure 3.47). PseudoDarkleech injects an iframe leading to Neutrino EK.

According to the analysis, there is no interlayer (gate/redirecting page), and the cam-
paign directly leads to the Neutrino EK landing page (Figure 3.48) and the landing
URL does exist implicitly in the compromised webpage. The EK landing page is au-
tomatically loaded via an iframe and brings interestingly a static and unobfuscated
Flash-based exploit code (Figure 3.49). Then, it retrieves an executable encrypt-
ed/encoded payload, which is a CryptMIC malware variant (Figure 3.50). Although
CrypMIC interacts with its C&C server on TCP port 443 (Figure 3.51), communica-
tion is custom encoded and plain text, not HTTPS (Figure 3.52). The files (text and
HTML) for asking ransom are delivered in clear text during the post-infection traffic .

51

Figure 3.37: RigV EK - Landing page (beautified view)

Figure 3.38: RigV EK - 1th script is executed to build the 1th part of 1th layer

The major capability of CryptMIC is not only encrypting files but also stealing them.
It acts like a “private stealer” by exfiltration of various data, especially Bitcoins.

Landing. PseudoDarkleech injects an iframe into the compromised page leading to
the Neutrino EK. The landing page has an HTML flash object, which is not obfus-
cated.

Exploit. Neutrino EK sends the malicious Flash file containing exploit code.

52

Figure 3.39: RigV EK - 2nd script is executed to build the 2nd part 1th layer

Figure 3.40: RigV EK - 1th script is executed to build the 1th part of 2nd layer

Payload. For some cases (e.g., 2016-08-30-traffic-analysis-exercise) Wireshark is
able to identify encrypted binary files as objects but misidentifies the content type, in
this case the payload is encrypted CryptMIC ransomware variant in Figure 3.50.

C&C Activity. CryptMIC interacts with its C&C server on port 443, but in plain text.

3.9 Challenges

The challenges with the infection analysis approach are explained in this section.

53

Figure 3.41: RigV EK - 2nd script is executed to build the 2nd part of 2nd layer

Figure 3.42: RigV EK - Beautified view of the landing page, after fully executed

3.9.1 Analysis 1: pseudoDarkleech and RigV and Cerber

In one sample (2016-12-13-pseudoDarkleech-Rig-V-sends-Cerber-ransomware.pcap)
the threat actor orchestrates the pseudoDarkleech campaign in order to infect victims
with the Cerber ransomware via the RigV Exploit Kit. There are 11 HTTP requests, 2
POST requests, and 3 different domains in the infection chain, in Figure 3.53. How-
ever, only 8 responses appear at first sight in Figure 3.54. In addition, 8 HTTP Objects
are shown in the export list in Figure 3.55.

54

Figure 3.43: RigV EK - Encrypted payload is decrypted with the RC4 algorithm

Figure 3.44: Angler EK - Obfuscated strings in landing page

3.9.1.1 Challenge – Unrecognized objects

Although HTTP objects confirm HTTP responses, as a rule there should be 11 re-
sponses in total. As is known, a malware infection contains payload that is a bi-
nary file and the content type of the payload is observed as “application/octet-stream,
application/x-msdownload, application/x-executable, etc” in the network. However,
there is no such object here. Therefore, the unrecognized 3 objects could be revealed
by looking for the “application/x-msdownload” mime type in Figure 3.56. One sig-
nificant point is that Wireshark can identify the protocol as TCP rather than HTTP.

The contents of a TCP stream that delivers the executable are shown Figure 3.57. A

55

Figure 3.45: Angler EK - Deobfuscation script code blocks in landing page

Figure 3.46: Angler EK - Controller script in landing page

Figure 3.47: Neutrino EK - Infection chain

striking matter here is the packet header, which starts with the “=<i C” string; at first
sight this is weird and totally unusual. Such a content type usually contains a PE
header, which starts with the “MZ” signature. Therefore, the unknown file header is
a strong indication of encryption/encoding. In reality, a malware infection frequently
contains an encrypted binary file, so this is an expected symptom, in this case the
payload is an encrypted Cerber ransomware variant.

3.9.1.2 Challenge – Malformed HTML header

The same packet capture is also analyzed with the Bro IDS in Figure 3.58. The first
HTTP request has a content type “text/plain”. However, as Wireshark shows, its mime
type is “text/html”. This web page has a broken HTML structure at the header section
of the code. This is due to the injection of the malicious script code blocks by the

56

Figure 3.48: Neutrino EK - Landing page 1

threat actors, which are the starting points of the infection. The content detection
signature of the Bro IDS could not identify the malformed HTML file because of
checking only the particular patterns at the beginning of the file. This mechanism is
also intentionally applied to break the honeyclients and emulators which heavily rely
on HTML parser (e.g., HtmlUnit) for automated analysis.

3.9.1.3 Challenge – Encrypted content

For this case, the advantage of the Bro IDS over Wireshark is that it extracts three
encrypted binary files pretty well. On the other hand, Bro is not able to identify
the content types of the encrypted binaries . Despite the fact that it is not possible
to verify the actual content type without decryption, for these encryption issues, the
content type of the HTTP response header could be used to determine the file type.
However, Bro never relies on those headers due to manipulation risk. Finally, Bro
does not give the content type of the HTTP responses that has the 302 status code.
Those responses are not only empty, but also redirect to another page.

A known tool, CapTipper and Dpkt, also presents similar results with a usable output
except extracting three binary files.

3.10 Key Findings

Context-aware content analysis mainly identifies that the JavaScript functions are not
suspicious when they are alone, however when they are seen together with a particular
order, they indicate malicious behavior. This idea is also supported via the AST hash

57

Figure 3.49: Neutrino EK - Landing page 2

and value analysis. The findings make clear how powerful EKs work while bypassing
contemporary security countermeasures.

The major observations are that while the employed standard techniques (e.g., ob-
fuscation) do not expose explicit malicious behavior, they diminish the opportunity
for researchers to catch them. While obfuscation was frequently changed to avoid
AV detection, the actual exploit code changes occasionally especially when a new
vulnerability is publicly disclosed. Additionally, the advanced features of EK prod-
ucts are primarily designed for stealth execution, e.g., if the EK detects an anomaly
(e.g., virtual environment), it certainly breaks the infection workflow. According to
analysis results, most common exploits in use are designed for Adobe Flash Player,
Java Runtime Environment, Microsoft Silverlight, Internet Explorer and Edge respec-

58

Figure 3.50: Neutrino EK - “application/octet-stream” stream

Figure 3.51: Neutrino EK - The Cerber callback

tively. Currently, the most prevalent malware families bundled with EK services are
ransomware, banking trojan, backdoor, bot, and spyware. This study confirms that
the dominant players in the EK criminal marketplace today are proficient in three key
fields: (a) The density of evolving profiling, obfuscation, encryption, and encoding
techniques to evade detection and disrupt analysis; (b) the speed of new exploit adop-
tion after a new vulnerability is publicly disclosed; and (c) the level of automation in
business processes managed through a simple management interface and quality of
analytics (e.g., statistics and graphs) about ongoing infections to support decision-
making. One special note is that security vendors who specialize in web intrusion

59

Figure 3.52: Neutrino EK - TOR access to follow decryption instructions

Figure 3.53: Wireshark - HTTP requests

Figure 3.54: Wireshark - HTTP responses

detection produce software for their customers. However, in their research labora-
tory, they do not follow the new attacks with the software they sell. They design more
lightweight and intelligent systems to dive into high volumes of network traffic. In
parallel with that, we recall the objective of the research, which is to help security
analysts rather than directly protecting end-users. Moreover, as presented, the inten-
sively explained significant challenges render automated analysis inefficient. To this
end, we reason that rather than a solution based on content analysis, we need more
lightweight approaches.

60

Figure 3.55: Wireshark - HTTP objects

Figure 3.56: Wireshark - Mime-Type: application/x-msdownload

61

Figure 3.57: Wireshark - “application/x-msdownload” stream

Figure 3.58: Bro – HTTP requests and responses

62

CHAPTER 4

METHODOLOGY

According to our findings, there are two key discoveries about EK characteristics.
Firstly, all EK families have a similar workflow for malware delivery as illustrated
in Figure 2.5. More precisely, infections contain 5 elements that are campaign, gate,
landing page, exploit, and malware. Secondly, each component in an infection chain
follows particular templates. For instance, the length of URLs fall within specific
boundaries, URLs contain a peculiar number of query keys, and their values have
tailored formats. One of the novelties of this study is leveraging the overall URL
patterns embedded in HTTP interactions between EK servers and victim machines to
identify classes of EKs. Specifically, instead of analyzing each URL independently,
the goal is to inspect all URLs, which are posted automatically after one click and
without any user consent, together. The structures in the workflow allow to charac-
terize EK flavors to a certain extent. After evaluating the statistical differences in
the URLs of entire infection chains, we identified the auto-URL-generation logic and
with the help of our novel technique, we were able to design distinguishing features
that cover each EK family. Conclusively, the approach takes advantage of machine
learning methods, where both unsupervised and supervised models are built for the
discrimination of network traffics that belong to EK-based infections.

This chapter is organized as follows. The superiority of the data source, which is a
privileged aspect of this study, and the challenges we faced with the data processing
are described in Section 4.1. A comprehensive technical explanation of the methodol-
ogy of how we determine novel features appears in Section 4.2. The implementation
details of the unsupervised models are presented in Section 4.3 and supervised models
are shown in Section 4.4, where the experiment design (e.g., sampling strategy), the
feature selection details, evaluation (e.g., cross validation), comparison, and analysis
of the results are given.

4.1 Data Sources

Access to real-world EK data is usually restricted to companies, government agencies
and research institutions that have had their systems intentionally exposed to these at-
tacks, and not made available publicly. To the best of our knowledge, Kafeine1 and
Bradly Duncan2 are the top contributors of open source EK research data. Kafeine is
usually the first expert, who realizes totally new types of campaigns and EK families.

1 malware.dontneedcoffee.net
2 malware-traffic-analysis.net

63

The major contribution of Bradly Duncan is the captured network traffic files, which
are shared on his website. On the other hand, generating our own data corpus may
seem to be another option. Although this is not impossible, the task is quite diffi-
cult with some drawbacks. The advantages of using a community-driven data corpus
over generating our own are that it enables proof of the study quality, provides ac-
ceptability by a larger audience, opens doors for future researchers to compare their
own results and offers high quality in the data utilized. To this end, the primary data
source of this study is the full packet captures shared by Bradly Duncan, which is an
advantage of the introduced study, while other researchers depend on private datasets.
The origin of the traffics are the incidents that have resulted in malware infection af-
ter exploiting a client-side vulnerability through various EK products. The network
captures are stored in the industry standard pcap file format and are available via the
public website. It is crucial that all the samples were generated during 2016, hence
this study totally represents one year, which is also another exclusive aspect when
compared to other researches. The EKs exhibit a significant evolution in a longer pe-
riod of time, which makes detection difficult. We also include a data corpus3 shared
from a website for testing purposes.

The network traffics were sniffed while intentionally visiting the compromised web-
page that causes malware infection through an EK at the end. The communication be-
tween the victim system and EK infrastructure is provided via real operating system
and real browser personalities, contrary to the mentioned related work that usually
rely on honeyclients.

It is imperative that such a study conducts offline analysis, since campaigns and pages
hosted by EKs quickly disappear. In addition, offline analysis provides two benefits,
which are repeatable experiments and acknowledgment of a broad audience. On the
contrary, online analysis is not as dependable, since EKs’ behavior usually depend
on client profiles and EKs do not give the same response for every request. While
exploits and malware change according to the victim environment, EKs present be-
nign behaviors for certain end-user platforms. Therefore, while a researcher gets an
infection, some other could get normal Web browsing. In that case, the evaluation
and comparisons would not be fair.

One of the tremendous challenges of this study is extracting the actual dataset, which
will be consumed by machine learning algorithms. The confirmation of the true labels
and processing pcap files are just two of those.

4.1.1 Processing Captured Files

We utilized two widely common tools to process pcap files in order to cross-check
the results of one with the other. At first, the Tshark library that is the command
line interface behind the well-known network packet capture and analysis tool Wire-
shark4 was utilized. The second tool executed is Bro5, which has been developed
and maintained by the International Computer Science Institute at the University of

3 broadanalysis.net
4 www.wireshark.org
5 www.bro.org

64

California at Berkeley and supported by the US National Science Foundation (NSF).
The objective is extracting HTTP traffic (URL and related metadata) and HTTP files,
and assigning general labels to each URL. Although we focus on just URLs, the page
contents were also extracted in order to be sure there is really a malware infection
after exploitation.

The first challenge is experienced when processing the network packet captures with
Wireshark and Bro. For some cases, they could not extract the same files from the
traffics, since those files are intentionally malformed (e.g., incorrect HTML header)
or contain encrypted objects. Secondly, some infections consist of more than one ex-
ploit and malware, which increments the normal infection chain length and negatively
affects the accuracy of the discrimination models. Finally some capture files contain
a lot of follow up traffic related to C&C communication, which also degrades model
performances. Those are also the certain arguments why we did not agree on content
analysis. On the other hand, several weeks were spent for adjusting our models and
error debugging due to such outliers.

4.1.2 Label Confirmation

Firstly, although the dataset provider is definitely reliable, all pcap files were man-
ually analyzed and labels were confirmed. The training dataset comprises of all the
incidents that happened throughout 2016 and the total number of pcap files is 189.
There are 30 incidents containing malicious spam (malspam), which are out of scope.
The EKs that have a small number of incidents such as Sundown EK (5), Magnitude
EK (3), and KaiXin EK (2) were removed. There is one pcap file that has an infec-
tion from both Angler and Rig, which was discarded. Finally, 4 pcap files were also
removed, where they contained EK-data-dump, Dridex, ISC-diary, and a malicious
Android application. In total, 45 pcap files were discarded and the remaining set con-
tains 144 infections from Rig, RigV, Angler and Neutrino Exploit Kit families that
correspond to 1456 URLs. The test dataset covers the incidents that also happened
during 2016. The total number of pcap files here is 96. The infections belong to Rig,
RigV and Neutrino EK flavors that involve 818 URLs.

The pcap files that contain corrupted HTML, exploit, or malware files due to several
reasons (e.g., network fragmentation) were not discarded, although we are not able
to recover them with industry standard tools by default settings, since we wanted to
validate that the incidents under investigation execute at least one exploit and mal-
ware. In addition, we consider only the URLs in the infection chain rather than page
contents, thus there is no problem with invalid files.

4.2 Feature Engineering

A URL address is a string that is placed to access resources hosted on the Web. There
are three logical parts in a URL, which are hostname, path and query as shown in
Table 4.1.

According to our key observations through manual EK analysis, there are signifi-

65

cant structural patterns across EK infections. Firstly, an attack usually starts with a
campaign page, where the URL address does not contain path or query parts. Next,
landing page, exploit and malware files are served from the same domain address and
frequently the URLs are relatively long. Finally, after malware is executed on the
victim system, a reverse connection is established for command and control (C&C)
activity via a third domain address that contains just a path in the URL without a
query field.

Table 4.1: Logical characterization of a URL

URL Format <domain name>.<top level domain>/<path>/<query>

Sample URL abc.mydomain.com/path1/path2/page.html?param1=val1&

param2=val2

Hostname abc.mydomain.com

Path /path1/path2/page.html

Query ?param1=val1¶m2=val2

The dominant characteristics of Neutrino EK infections are that the lengths of the
URLs are not very long and not very short, URLs usually do not have a query part,
and the path segment includes lots of dash characters. The incidents also have two
specific characteristics. First, some chains start with a URL without any path or query,
then follow 4 URLs from the same domain address that have only the path field. Some
other cases start with a URL ending with a JavaScript filename, then follow 4 URLs
from the same domain address, after that one URL with a key-value pair in the query
region appears, and finally one IP address is accessed ending with a filename for the
C&C process.

The dominant characteristics of Angler EK infections are that the lengths of the URLs
are long, there are at least a bunch of URLs per chain, URLs usually have lots of
key-value pairs in the query part. The incidents also have two particular character-
istics. First, some chains start with a URL without any path or query, then follow 5
to 7 URLs from the same domain address with or without path field, and after that
a command and control URL with a filename and key-value pair in the query seg-
ment appears. Second, while a set of the cases contain many URLs for command and
control purposes, the other cases access IP addresses with a filename for C&C traffic.

The dominant characteristics of Rig EK infections are that the lengths of the URLs
are long, including lots of dashes or underscores. The chains start with a URL without
any path or query, then sometimes follow one or two URLs from the same domain
address, where the first one has no filename but a path part, the next URL has a file-
name with a path segment, followed by 3 or 4 URLs from the same domain address,
where the first one has no filename but a query field, and the next 2 URLs have a
filename with a query region. Finally, one IP address or domain is accessed, ending
with a relatively short path for C&C efforts.

Some versions of Rig EK infections have a slight difference. The lengths of the URLs

66

are long. The chains start with a URL without any path or query, then follow 3 URLs
from the same domain address, where the first one has no filename but one key-value
pair in the query part including lots of dashes or underscores, the next two URLs
have a filename with one key-value pair in the query field including lots of dashes or
underscores. Finally, one IP or domain address is accessed ending with a relatively
short path for C&C services.

The dominant characteristics of RigV EK infections are that the lengths of the URLs
are long. The chains start with a URL without any path or query, follow 3 or 4 URLs
from the same domain address, where URLs have no filename but 6 key-value pairs
in the query parts including lots of dashes or underscores. Finally, one IP address or
domain is accessed, ending with a relatively short path for (C&C) functions.

Table 4.2: Sample infection from RigV

Functionality URL Address

Campaign joellipman.com/

Landing Page add.ibeattheclockatticktock.com/?aqs=yandex.74p77.406f4y2&

oq=CelqA8fMlKbsDOVbj3BOJLQ1mz48OVAkWpP2uikLTzB_

IhJeH9CW9UU4HupE&sourceid=yandex&es_sm=100&q=z3rQ

MvXcJwDQDoTGMvrESLtEMU_OHkKK2OH_783VCZ39JHT

1vvHPRAP2tgW &ie=Windows-1251

Exploit add.ibeattheclockatticktock.com/?ie=Windows-

1251&q=z37QMvXcJwDQDoTDMvrESLt

EMU_OH0KK2OH_783VCZz9JHT1vvHPRAPwtgWCel&es_

sm=129&sourceid=chrome &aqs=chrome.125x57.406a8x0&oq=q

A8fMlKbsDOVbj3BOJLQBmz48OVAkWpP2rikLTzB_IhJeH_C

WMYgpD_6LWU7dt

Malware add.ibeattheclockatticktock.com/?aqs=edge.122a103.406k4r4&

sourceid=edge&es_sm=91 &q=w3bQMvXcJxfQFYbGMvLDSK

NbNkbWHViPxoyG9MildZ-qZGX_k7rDfF-

qoV_cCgWRxfE&oq=qfLZQNQHo3kHVeQMwyocLVVtA9vqo

3UTQmkKYg5CE-BzZZQhF-qKSELk93VzFkrFUcw&ie=UTF-

8

C&C Activity ffoqr3ug7m726zou.ihuk7s.top/0123-4567-89AB-CDEF-

0123?iframe

In addition to the gained insights from the anatomic appearance of EK infections,

67

we also identified internal concrete structures in URLs. For the sake of clarity, we
support our claim with an example contained in the dataset as shown in Table 4.2.
For this EK family, RigV; the landing page, exploit, and malware URLs have a query
part, but do not have a path field. There are 6 key-value pairs in the query seg-
ment and their order changes across URLs. While the query keys are also almost the
same among different incidents, the values of the keys are diverse, which are also
almost unique among different incidents. More precisely, for this particular infec-
tion, there is a 5-character key (’es_sm’) and its value is a 2 or 3-digit integer (e.g.,
for exploit URL ’129’). There is a 9-character key (’source_id’) and its value has a
pattern that indicates the browser vendor (e.g., for malware URL ’edge’). There is a
2-character key (’ie’) and its value (e.g., for landing page URL ’Windows-1251’) has
a pattern that indicates the character encoding. There is a 3-character key (’aqs’) and
its value (e.g., for exploit URL ’chrome.125x57.406a8x0’) has a pattern that has the
browser vendor, a dot, a two or three-digit number, a lowercase character, a two or
three-digit number, a dot, a two or three-digit number, a lowercase character, a digit,
a lowercase character, and a digit. There is a 2-character key (’oq’) and its value
(e.g., for malware URL ’w3bQMvXcJxfQFYbGMvLDSKNbNkbWHViPxoyG9MildZ-
qZGX_k7rDfF-qoV_cCgWRxfE’) has a pattern that is a minimum 60, maximum 67
characters long mixed case alpha-numeric string containing at least one dash or under-
score special character. There is a 1-character key (’q’) and its value (e.g., for exploit
URL ’z3rQMvXcJwDQDoTGMvrESLtEMU_OHkKK2OH_783VCZ39JHT1vvHPRA
P2tgW’) has a pattern that is minimum 59, maximum 67 characters long, mixed case
alpha-numeric string containing at least one dash or underscore special character.

4.2.1 Feature Design

Naturally, researchers frequently favor attributes that are commonly observed in ma-
licious activities to increase detection accuracy. While this attitude makes sense, it
is also known that attackers tend to utilize those common attributes similar to benign
use in order to confuse detection mechanisms. Therefore, relying on mathematical
models while deriving features makes a model more durable. Secondly, particularly
when the attributes are not directly related to malicious code, the effectiveness of
this idea becomes more obvious. This is valid in our concept where URL addresses
actually do not infect, but the webpage content does.

The integral issue here is designing the attributes for the machine learning algorithms
and coding them into numerical values. The most obvious technique could be search-
ing for the patterns mentioned above. For example, whether the given URL has 6
key-value pairs in the query part or whether the given URL contains a 5-character key
that has a two or three-digit number. The aforementioned technique involves pattern
searching that is usually conducted with regular expressions. Such an approach is
applied to detect just the target object, no less or no more, to prevent excessive search
space. Therefore, we deduce that in order to be less affected from the high poten-
tial changes in URL patterns, we should follow an intelligent approach that employs
statistics. Counting tokens, measuring lengths, and calculating minimum and max-
imum values appears to be the optimal solution. Such mathematical operations are
many times more efficient than pattern searching in terms of the time taken and speed
of action.

68

Dataset. With respect to quantifying the patterns in URLs, firstly we measure the path
length, count the path tokens, and calculate the maximum, minimum and average of
those tokens. Basically, in this way, a 20-character path that has one token is discrim-
inated from a 20-character path that has five tokens. Secondly, we apply the same
logic to the query part, but the key-value pairs are computed separately. Likewise,
in order to differentiate EKs more reliably, counting the particular special characters,
dash and underscore, is also taken into account to recognize the minor changes of EK
families. The extracted features include the following: Path Length, Query Length,
Count of Path Tokens, Path Minimum Length, Path Maximum Length, Path Average
Length, Path Sum Length, Count of Query Key Tokens, Query Key Minimum Length,
Query Key Maximum Length, Query Key Average Length, Query Key Sum Length,
Count of Query Value Tokens, Query Value Minimum Length, Query Value Maximum
Length, Query Value Average Length, Query Value Sum Length, Count of Special
Characters, Count of URLs, and Count of Unique domain addresses.

A custom Python-based script was developed to extract features, especially statistics
from the full URL addresses. The feature design decision is based on the analysis
drawn from the live EK families that are hosted on the World Wide Web. The at-
tributes were derived from 144 incidents of 4 distinct, currently dominant EK flavors.
After the labels of the dataset were manually verified, 20 features were extracted for
each infection chains. The output of the script is the actual dataset that will be sub-
jected to machine learning where clustering and classification algorithms are applied
to enable processing for high speed and accuracy.

4.2.2 Preprocessing Features

In order to build accurate machine learning models, the raw dataset was purified, as
in the first try, the algorithms could not perform well. It is considered that transform-
ing actual values of features into an explicit representation could improve machine
learning estimators. In this scope, four common scaling methods were evaluated,
which are maximum and minimum scaler, standard scaler, standard normalizer, and
binarizer. Experiments showed that the standard scaler performs best on the training
dataset.

4.3 Unsupervised Analysis Approach

As the dissertation proposes a new technique to reveal zero-day EK families, an unsu-
pervised machine learning method is taken on board for the solution. As the zero-day
paradigm refers to a previously unknown fact by definition, we utilize an exploratory
data analysis technique to get an intuition about the structure of the dataset at first.
Clustering is defined as identifying certain subgroups in the dataset, where the sam-
ples in the same cluster are very similar and this approach is executed to group EK
flavors based on URL features.

69

4.3.1 Models

Environment & Instruments. Using the features extracted on the sanitized dataset,
the scikit-learn machine learning API [57] is adopted to build clustering models. Sev-
eral clustering algorithms have been experimented with, however some algorithms
(e.g., Mean Shift, Spectral Clustering, Affinity Propagation, Birch etc.) are not well-
executed. In addition, as the DBSCAN, OPTICS, and OneClassSVM algorithms were
primarily developed for outlier detection and Feature Agglomeration is offered for
merging features rather than samples, they are not taken into consideration. In this
study, we keep our focus on EK detection rather than the individual successes of
machine learning algorithms, as replacing machine learning algorithms is quite eas-
ier than designing a method for detection. Therefore, we have selected 2 algorithms
known for their high performance in terms of accuracy and execution time at pre-
elimination stage, which are KMeans and Agglomerative Clustering.

KMeans. Initially, the EK clustering problem is assumed as “Expectation- Maximiza-
tion” where a centroid-based algorithm, KMeans, is a good candidate for the solution.
KMeans assigns samples to a cluster, where the sum of the squared distances between
the samples and the centroid is kept at the minimum. Less variation within clusters
means they contain more homogeneous samples.

Agglomerative Clustering. Secondly, hierarchical clustering builds nested clusters
by merging or splitting them successively, where the hierarchy of clusters is repre-
sented as a tree as shown in Figure 4.1. This does not require to specify the number of
clusters and can determine the number from the dataset. It also allows to select what
number of clusters provides the best fit for the data. Therefore, choosing Agglomer-
ative as the full unsupervised algorithm is a sensible option. The linkage criteria is
the metric used for the merge strategy and the algorithm is not sensitive to the type
of distance metric, where all work equally well whereas the choice of the distance
metric is critical for other clustering algorithms.

Feature Compression. The clustering algorithms are adversely affected from similar
or worthless features, as we experienced in our experiments. A data dimensionality
reduction technique, Principal Component Analysis (PCA), is utilized to decompose
our features into a set of independent and uncorrelated components that explain a
maximum amount of the variance. The 20-feature dataset is transformed into a com-
pressed form, and an empirical evaluation shows that 5 dimensions together explain
%85 of the variance. The contributions of each feature to each component is given in
Table 4.3, where the absolute magnitude threshold was taken as 0.276 experimentally.

4.3.2 Evaluation

This section discusses the evaluation of an efficient clustering method by the applica-
tion of machine learning techniques for the state-of-the-art EK traffic discrimination.
The accuracy of the estimators is assessed with special methods and the misclustered
samples are properly justified.

Unlike simply calculating the precision and recall of supervised classification, eval-

70

A B

C

D E

F

A B

C

D E

F

A B

C

D E

F

A B

C

D E

F

A B

C

D E

F

A B

C

D E

F

A B C D E FD
is

ta
nc

e
th

re
sh

ol
d

N
um

ber of clusters

Cluster 1: A B C
Cluster 2: D E F

Figure 4.1: Agglomerative clustering illustrated

71

Table 4.3: Feature contributions to the principal components

Component Most Valuable Features

PC-1 PathLen, QryLen, CPTokens, PSum, QKeyMax, QKeyAvg,

QValMax, QValAvg, QValSum

PC-2 CQKeyTokens, QKeySum, CQValTokens

PC-3 PMax, PAvg, CSpecChar, CUnqDomain

PC-4 CPTokens, PMin, PAvg, QKeySum, CURL, CUnqDomain

PC-5 PMax, PAvg, QKeyMin, QKeySum, QValMin, CUnqDomain

uating the performance of a clustering algorithm is quite tricky. Several metrics are
employed, which primarily measure the similarity of samples belonging to the same
class or similarity of the true clustering and the predicted one. In clustering methods,
the notion of similarity is perceived as the closeness of a sample to the centroid of
the cluster. Hence, uniformity of the classes within the dataset could be evaluated ac-
cording to a similarity measure (e.g., euclidean distance, cosine distance, Manhattan
distance or correlation-based distance). The euclidean similarity measure is favored
for this study, which best fits this specific problem.

In principal, clustering is considered an unsupervised learning model contrary to su-
pervised learning, since the ground truth is not available to compare the predictions
to the true labels to evaluate its accuracy. For a dissertation study, providing per-
formance evaluations is inevitable to present the success of the work. Therefore, a
labeled dataset is utilized to learn how clustering algorithms fit and a separate dataset
is utilized to understand how they are used for prediction.

4.3.2.1 Performance Results

The calculated metrics to highlight how well the model performs are explained in Ta-
ble 4.4. Adjusted Random Index measures the similarity of two samples by ignoring
permutations and with chance normalization. Adjusted/Normalized Mutual Informa-
tion Scores measures the agreement of the two samples by ignoring permutations. For
both metrics, the perfect index is 1.

By using conditional entropy analysis, the following 3 metrics are calculated, where
the perfect score is 1. Homogeneity is the rate of each cluster containing only mem-
bers of a single class. Completeness is the rate of all members of a certain group
being predicted as in the same cluster. V-measure is the harmonic mean of Homo-
geneity and Completeness and is also equivalent to Normalized Mutual Information
Score.

Fowlkes-Mallows Scores calculate the geometric mean of the pairwise precision and
recall. Where True Positive is the number of pair of samples that belong to the same

72

clusters in both the true labels and the predicted labels, False Positive is the number
of pair of samples that belong to the same clusters in the true labels and not in the
predicted labels, and False Negative is the number of pair of samples that belong in
the same clusters in the predicted labels and not in the true labels. A score closer to 1
indicates a good similarity between two clusters.

Table 4.4: Similarity metrics

Metric KMeans Agglomerative

Adjusted Random Index 0.873 0.777

Adjusted Mutual Index 0.857 0.771

Normalized Mutual Index 0.865 0.786

Mutual Index 1.166 1.052

Homogeneity 0.861 0.776

Completeness 0.869 0.795

V Measure 0.865 0.786

Fowlkes Mallows 0.906 0.837

Silhouette 0.340 0.338

Calinski Harabaz 65.49 63.08

When the ground truth labels are not available, the inputs and predicted labels are used
to calculate some consistency metrics. Silhouette Score is the mean distance between
a sample and all other points in the same class, and the mean distance between a
sample and all other points in the next nearest cluster together compose the silhouette
value. It determines the degree of separation between clusters. When the coefficients
are close to 1, the sample is far away from the other clusters. When the silhouette
average score is greater than 0.5 and the horizontal value of clusters have higher
than the average score, the number is interpreted as good. The vertical height of the
silhouette plot indicates the cluster size. Calinski-Harabasz Index is the ratio of the
between-clusters dispersion mean and the within-cluster dispersion.

Contingency Matrix reports the intersection cardinality for every true and predicted
cluster pair, where the samples are independent and identically distributed and one
does not need to account for some instances not being clustered.

KMeans handles the shape of the dataset smoothly and performs better with 93.7%
average accuracy as shown in Table 4.5. In addition, K-means inherently forces a
cluster to contain only closer samples, it causes far-away samples to be a new cluster.
Therefore, it allows to expose completely new EK families.

On the other hand, our dataset has also a partially hierarchical structure. We un-
derstand this from the Agglomerative clustering performance, where it can recover
this formation with 87.5% average accuracy as shown in Table 4.6, while most of

73

Table 4.5: KMeans Accuracy

Precision Recall F1-score

Angler 0.79 0.97 0.87

Neutrino 0.97 1.00 0.99

Rig 1.00 0.98 0.99

RigV 1.00 0.75 0.86

Micro avg 0.94 0.94 0.94

Macro avg 0.94 0.92 0.93

Weighted avg 0.95 0.94 0.94

Table 4.6: Agglomerative Accuracy

Precision Recall F1-score

0.68 0.81 0.74

0.85 1.00 0.92

1.00 0.98 0.99

1.00 0.61 0.76

0.88 0.88 0.88

0.88 0.85 0.85

0.89 0.88 0.87

the other clustering algorithms cannot achieve it. However, the accuracy is not as
good as KMeans and Agglomerative clustering is computationally expensive due to
time complexity when providing such an advantage, unlike the linear complexity of
KMeans.

4.3.2.2 Error Analysis

The model based on KMeans misclustered 9 samples as shown in Figure 4.2, where
7 RigV samples were predicted as Angler, 1 Rig sample classified as Angler, and 1
Angler sample classified as Neutrino.

When the cluster sizes are not balanced, Kmeans performance worsens. By giving
more weight to the larger clusters, it tries to prevent variance per cluster, which causes
to allow samples being away from the centroid. In this case, smaller sized clusters are
embedded into bigger clusters and are totally lost. On the other hand, in order to create
for the stated number of clusters, it partitions bigger clusters wrongly. Therefore, if
the number of infection cases belonging to specific EKs increases in an unbalanced
manner, the detection rate dramatically falls both in terms of false positive and false
negative. This possibility is always valid, since some EK families sweep competitors
and become prominent. Identifying new small clusters and assigning more weight
to them could be a solution, but that is not a trivial process. Secondly, KMeans is
sensitive to outliers and this domain naturally has outlier samples.

The model based on Agglomerative clustering misclustered 18 samples as shown in
Figure 4.3, where 11 RigV samples were predicted as Angler, 1 Rig sample classified
as Angler, and 6 Angler samples classified as Neutrino. Consistently, the error pairs
are the same as those of KMeans.

74

Figure 4.2: KMeans contingency matrix

Figure 4.3: Agglomerative contingency matrix

75

Figure 4.4: Elbow method

4.3.3 Discussion

There are some certain challenges while working with unsupervised learning meth-
ods. Some algorithms are semi-supervised, requiring human feedback, where unsu-
pervised methods assign random labels and start clustering randomly in each execu-
tion. The techniques to overcome these circumstances are explained in this part.

The first challenge is that, some unsupervised methods cannot learn the number of
clusters from the dataset (e.g., KMeans) and require assistance. The best number
of groups could be found by experimenting with the Elbow method. The method
determines the alternative cluster numbers based on the error sum of the squared
distance (SSE) between samples and their assigned centroid (arithmetic mean of all
the samples assigned to that cluster). The values when the SSE curve starts to forge
an elbow are interpreted as promising cluster numbers. Our dataset is utilized to
evaluate the SSE across different values of cluster numbers and the graph in Figure 4.4
shows that candidates are 2, 3 and 4. As a result, although KMeans does not learn
the number of clusters from the dataset, it exposes SSE values, which is usable to
determine cluster number and has worked pretty well for our EK cases.

Another challenge is that unsupervised methods use random labels, so we convert
these notions carefully to actual labels. Clustering algorithms randomly start opera-
tion, where the fitted labels (clustering results) change in different executions of the
algorithm. We forced the algorithms to process samples in a particular order while

76

clustering to make experiments repeatable and consistent. Some algorithms do not
allow such options and some custom ways are required to circumvent that, which is
why we use 2 algorithms for this study.

4.4 Supervised Analysis Approach

As the dissertation proposes significant accuracy while discriminating EK families, a
supervised machine learning method is taken on board as a promising solution. Clas-
sification is defined as identifying certain classes in the dataset, where the samples in
the same class are very similar. Classifier models are built by learning known samples
from a training dataset and then the gained knowledge is applied to predict the class
of new observations. This approach is executed to group EK flavors based on URL
features.

4.4.1 Models and Experiments

Environment & Instruments. Using the features extracted on the sanitized dataset,
the scikit-learn machine learning API [57] is adopted to build classification mod-
els. Several classifiers have been experimented with, however some algorithms (e.g.,
Linear and Logistic Regression, Stochastic Gradient Descent, Decision Trees, Naive
Bayes etc.) are not well-optimized. In this study, we keep our focus on EK detec-
tion rather than the individual successes of machine learning algorithms, as replacing
machine learning algorithms is quite easier than designing a method for detection.
Therefore, we have selected 3 algorithms known for their high performance in terms
of accuracy and execution time at pre-elimination stage, which are KNN (K-Nearest
Neighbor), SVM (Support Vector Machine), and GBC (Gradient Boosting Classifier).

Hyper-parameter Optimization. Principally, machine learning methods follow for-
mulations. KNN, SVM, and GBC have variables called hyper-parameters, which
could be tuned for better performance. In order to reach capability limits of the meth-
ods, the hyper-parameters are optimized based on the training dataset. The same
stratified 5-fold cross validation process is applied for all three algorithms, in the
optimization process.

KNN. The hyper-parameter of KNN is k, which is the number of neighbors. The
range for k is chosen as the odd numbers between 1 and 15. For every value of the
hyper-parameter, 5-fold cross validation is applied. The optimum value of the hyper-
parameter k is 5.

SVM. The hyper-parameter set for SVM is cost and class weight while the SVM ker-
nel is linear. The hyper-parameter set for the SVM is cost, class weight and gamma
while the SVM kernel is rbf. For every value of hyper-parameters, 5-fold cross vali-
dation is applied by the grid optimization technique. The best hyper-parameter set is
that when the kernel is rbf, cost is 10, gamma is 0.001 and class weight is none.

GBC. The hyper-parameter set for GBC is learning rate, number of estimators, and
subsample. For every value of hyper-parameters, 5-fold cross validation is applied by

77

Table 4.7: Cross-validation

EK Label # Infections # URLs

Angler 31 267

Neutrino 33 216

Rig 52 350

RigV 28 188

Total 144 1021

Table 4.8: Dataset for testing set

EK Label # Infections # URLs

Neutrino 35 221

Rig 55 386

RigV 6 41

Total 96 648

the random search optimization technique. The best hyper-parameter set is learning
rate is 0.8, number of estimators is 400, and subsample is 1.

Training. The goal of the training step is to evaluate designed features that are de-
rived from the URL characterization of EKs. Using tuned hyper-parameters for 3
supervised learning methods, customized KNN, SVM, and GBC models are built and
the labeled dataset is used to train the classification models. 5-fold cross validation,
shown in Table 4.7, is utilized for each algorithm to measure the performance.

Testing. The aim of the testing phase is to measure the accuracy of the classifiers,
while classification models group unknown infection chains according to their EK
family. The Table 4.8 summarizes the breakdown of infections in the test set.

4.4.2 Evaluation

This section discusses the evaluation of an efficient classification method by the ap-
plication of machine learning techniques for the state-of-the-art EK traffic detection.
The accuracy of the estimators is assessed, the significance of the derived features
is questioned via the cross-validation results and the misclassified samples are prop-
erly justified. The comparison of the studies that apply similar techniques is also
extensively presented.

4.4.2.1 Performance Results

Our approach leverages the patterns of URLs appearing in infections based on EKs
and the core of the proposed technique is the analysis of the URLs belonging to an
incident altogether. The classification models were developed using 3 supervised
learning algorithms (KNN, SVM, and GBC) and evaluated to decide which estimator
is more suitable for EK discrimination. The first metric is the accuracy on the training
dataset using 5-fold cross validation and the performance of these classifiers for the
training phase is illustrated in Figure 4.5.

The second metric is the accuracy of the designed models on the test set, which was
obtained from a completely different source that enables to verify the quality of the

78

Figure 4.5: The performance of classification models with cross validation

models effectively. In the testing phase, the trained classifiers were independently
executed and KNN, SVM, and GBC achieved 90.6%, 88.5%, 98.9% classification
accuracy respectively. When we optimize our dataset by discarding much of the
C&C communication traffics, the models performed better and KNN, SVM, and GBC
achieved 95.8%, 91.6%, 100.0% classification accuracy respectively. It is sensible to
get a hundred percent accuracy, since we manually checked nearly 2000 URLs and
discarded also unrelated file types (e.g., txt, images, some JavaScript, etc.).

4.4.2.2 Analysis of Features

Although KNN and SVM do not expose the importance order of the features, GBC
provides such information, where the model gains more power. The rank of the fea-
ture gains is: Count of Query Key Tokens, Query Value Maximum Length, Count of
Query Value Tokens, Query Length, Path Sum Length, Query Value Average Length,
Path Average Length, Count of Special Characters, Query Key Maximum Length,
Path Length, Path Maximum Length, Query Value Sum Length, Path Minimum Length,
Query Key Sum Length. When the models were tested with the top 5 features among
the ranked 14 features, promising results were obtained, however even a small accu-
racy decrease is not tolerated by us. On the other hand, the remaining 6 features Count
of Path Tokens, Query Key Minimum Length, Query Key Average Length, Query Value
Minimum Length, Count of URLs, and Count of Unique domain address were not
leveraged by GBC. However, we observed performance decrease for KNN and SVM
when these 6 features were removed, where we implicitly deduce that they are utilized
somehow. Ultimately, all features were kept.

79

Table 4.9: Comparison with the other studies

Study Accuracy Features Algorithms

[13] TPR: 99.9%

FPR: 0.001% FNR: N/A 30 Page content J48 Decision Tree

[14] TPR: 95% 8 Page content

FPR: N/A FNR: N/A and URL Weighted Jaccard Index

[15] TPR: N/A

FPR: 0.03 FNR: %5 Page content DBSCAN

[58] TPR: 75%-85%

FPR: N/A FNR: N/A 6 URL Naive Bayes and K-means

[59] TPR: 97%

FPR: N/A FNR: N/A 9 URL Random Forest

Ours TPR: 100.0%

FPR: N/A FNR: N/A 20 URL Gradient Boosting

4.4.2.3 Error Analysis

The model based on GBC detects previously not seen EK infections better than the
other two algorithms. Only 1 sample was misclassified by the model. An infection
from Rig was predicted as Angler by the classifier. SVM misclassified 11 samples
and 9 of them were also misclassified by KNN. However, it is easy to justify these
decisions. This is because there are uncommon command and control activities in
these infections that cause many paths and tokens. Removing duplicate URLs that
are usually seen in command and control activity could be a solution here, as well as
discarding the URLs that exceed a limited number of URLs per chain.

4.4.2.4 Comparison

Although EKs have been researched for the past years, studies dedicated to EK de-
tection are quite limited. Moreover, while our study utilizes machine learning for
detection, other works mainly apply custom techniques. The results of the current
analysis and literature is compared in Table 4.9 to give an overall idea. Webwin-
now [13] evaluated 5 binary classifiers and J48 performed better. In comparison,
our study also utilizes unsupervised methods with multi-family categorization. While
Kizzle [15] utilized DBSCAN for clustering web content individually, particularly
JavaScript code blocks, the number of features is not a valid criteria for their model
and only false negative rate (FNR) is reported. When compared to our lightweight
study, their method is quite time consuming, due to the examination of page contents

80

rather than solely utilizing URL addresses. Taylor et al. [14] employed Weighted
Jaccard Index and also inspected both URLs and page content. Jagannatha [58] only
tried Naive Bayes in combination with K-means and IsEK performs better in terms of
accuracy. Sandnes [59] experimented with 3 classifiers and Random Forest achieved
the best score and the model is only able to detect samples being malicious or not. On
the other hand, our proposed method discriminates the particular EK families with a
high accuracy.

81

82

CHAPTER 5

RELATED WORK

This chapter provides an extensive discussion on literature review and challenges.

5.1 Source Code Analysis

The first studies on EKs have focused on analysis of the source code of EK families, in
which researchers installed EKs from sources to their lab environment for inspection.
The dataset contained in each work is partly similar, covers different sets of EKs and
back then frequently prominent ones.

Grier et al. [9] conducted a study on the emergence of the “Exploit-as-a-Service”
model for the drive-by download landscape. Their dataset contained 77,000 mali-
cious URLs taken from Google Safe Browsing and a blacklist provider. According to
their research results, in total, over 10,000 unique executable files were delivered and
dynamic analysis of those binaries led to 32 families of malware. In addition, several
prominent types of malware are delivered even by an individual EK.

Kotov and Massacci analyzed the source code of 30 (partly inactive) different EK
types to understand major behaviors and operational skills [10]. The preliminary
analysis indicated that the major functionalities of EKs are managing exploits, evad-
ing detection mechanisms, and command and control. The manual examination con-
cluded that 82% of the EKs apply obfuscation techniques. A handful of well-known
vulnerabilities are targeted rather than launching zero-day exploits or sophisticated
attacks.

Allodi et al. performed experiments (MalwareLab) with the source code of 10 EKs
to reveal the resilience to changes of targeted systems, particularly operating system,
browser, and plug-ins [11]. They deployed EKs in a controlled sandbox environment
and experienced that some EK frameworks support the latest exploits, where cyber-
criminals achieve a higher infection rate in a small amount of time at the expense of
short appearance on the market. On the other hand, some EK families prefer to serve
more stable exploits, where attackers get a lower but steadier infection pace over time.

De Maio et al. executed an analysis, PExy, on the source code of over 50 EKs in
37 families to recognize the conditions, which makes redirections to certain exploit
and malware samples [12]. They also worked with EKs in off-line mode in their
laboratories and via automated static source code analysis, where they produced all
combinations of HTTP request parameters (in particular URL and User-Agents) that

83

cause an EK to trigger an infection. Their goal is to achieve as many different types
of exploits as possible and to reveal a potential 0-day exploit, if one exists. In this
way, they retrieved 279 exploit samples including variants. They also understood the
internals by showing that most of the EKs reuse source code from other EKs and even
a new EK usually is based on another EK.

There is an uncommon but justifiable study that follows a counter-offensive strat-
egy for combating cybercrime launched through EKs. However, hunting in the wild
requires adversarial capabilities for incident responders. Offensive countermeasures
could bring a vital advantage in the ongoing battle against cyber wars. Taking down
EKs is totally not only an impressive but also a provocative approach, so it should be
executed under legal authority and law-enforcement control. Eshete et al. conducted
an analysis, EKHunter, on the source code to detect the vulnerabilities of 30 EKs sys-
tematically [60]. This methodology elaborates that white-hat hackers could attack,
compromise and deactivate the EKs that are under criminal control. They operated
on the same EKs as their previous study. They also setup EKs in a virtualized envi-
ronment. As per the findings, 16 of the EKs contain 180 vulnerabilities and 6 of them
could be remotely exploitable.

5.2 Machine Learning

While accessing the source code of the current EKs is not realistic, getting the EK
network traffics could be feasible. Therefore, detection of EK network traffics is vital
today. The following list of studies involve machine learning or statistics to detect
EK traffics that are behind the attacks and our study also focuses on EK families from
this perspective.

Eshete and Venkatakrishnan [13] analyzed samples of 38 EKs, WebWinnow, and
identified content and structural features to model a set of classifiers. They locally
installed EKs in a controlled setting and partly supported the dataset with 11 live
EKs that were reported by the URLQuery1 service. They labeled all URLs as EK
rather than EK families. Their model was built with 500 benign and 500 EK URLs
to detect EK traffics. They trained the binary classifier with 1117 benign and 512 EK
URLs. Actually the final objective of WebWinnow converges with PExy, which is to
reinforce existing detection systems.

Taylor et al. developed a method to categorize EK flavors by detecting structural pat-
terns in HTTP traffic [14]. Initially, they represented interactions between the victim
browser and EK servers known as EK trees. In the detection process, their model
builds a candidate tree from the request-response pairs of new infections and finds
similar EK products with the Weighted Jaccard Index. During the analysis period,
they build their own dataset by capturing 3800 hours of real-world traffic via a hon-
eyclient, which includes 28 EK instances. The comparison with the state-of-the-art
techniques shows that while the system gets similar true positive rates, it reduces false
positive rates by four orders of magnitude. The details of the patented application is
discussed in his dissertation [61].

1 urlquery.net

84

Stock et al. offered a prevention mechanism, Kizzle, in contrast to previous studies,
which was specifically designed to identify four major EKs (Angler, Rig, Nuclear,
SweetOrange) as they evolve over time and produce signatures that can be applied to
anti-virus engines or plug-ins of a Web browser [15]. The main objective is to auto-
generate host-based structural signatures by the DBSCAN machine learning algorithm
within hours for detecting the superficial but frequent changes. They also observe that
all JavaScript code served by EKs apply obfuscation and EK families re-use exploits
from each other. While the packed view of the JavaScript code is unique across
incidents, unpacked code is quite common (e.g., actual fingerprinting and CVE code).
They generated the dataset in a four-week period in August 2014. The evaluation
showed that the false negative rates are under 5%, while false positive rates are under
0.03%.

There are also some studies where authors observe the EK phenomenon from different
angles.

Jayasinghe et al. [62] detected drive-by download attacks at runtime using lightweight
dynamic analysis of the bytecode stream generated by a Web browser during page
content execution. They collected their dataset from forums that publish new URLs,
which deliver malware. The approach extracted Opcode call sequences as features
from the JavaScript engine of the Web browser, which generates Opcodes as a part of
the rendering process for each webpage. They utilized Naive Bayes, Support Vector
Machines (SVM) and decision tree as binary classifiers and SVM achieved the best
score with almost %95 accuracy.

Nappa et al. [63] identified drive-by download attacks by clustering exploit servers
belonging to 2 different EKs based on 7 features related to the served exploits and
distributed malware. They utilized two clustering algorithms, which are partitioning
around medoids and an aggressive clustering algorithm. According to the analysis,
they observed a highly polymorphic ecosystem, where both exploit and malware files
were packed differently in order not to be detected from the same file hash. They also
made their generated dataset available to academic researches.

Arseni [64] analyzed the network traffic generated by EKs where URL patterns from
n-grams, exploit size and type, and JavaScript syntax in landing page were selected as
features for 3 classifiers (Naive Bayes, Random Tree, Decision Tree). The accuracy
of the combined model is 90% on the dataset, which was taken from the source that
we also use. It contained 526 infection cases belonging to 7 EK families, which
occurred during 2013-2015.

Channegowda [65] used 3 methods for analyzing the obfuscated JavaScript code em-
ployed by EKs to avoid detection. The dataset contained 6,630 JavaScript files col-
lected from UrlQuery.com over a time period of 8 months. According to their results
entropy analysis is not a good measure, since EKs already apply anti-entropy tech-
niques. Normalized compression distance (NCD) clusters obfuscated JavaScript code
from plain JavaScript. However, it is not able to discriminate them on EK family ba-
sis. Jaccard similarity index clusters obfuscated code better than NCD, however it is
not able to draw a clear line between plain JavaScript.

Sood et al. [66] conducted a comparative study for 10 EKs and found 3 victim profil-
ing methods, which were User-agent-based fingerprinting, HTML Document Object

85

Model (DOM)-based fingerprinting, and IP-based geolocation tagging. There were
4 JavaScript-based attack techniques for drive-by download which were obfuscation,
redirection, content injection on the fly, and domain address generation algorithm
(DGA).

Takata et al. [67] proposed a method, MineSpider, which analyzes JavaScript code
relevant to browser fingerprinting and redirection functionality, then reveals URLs in
the webpage by executing the extracted redirection code with the Rhino JavaScript
interpreter. MineSpider was implemented in a browser emulator HtmlUnit that can
emulate an Internet Explorer 6 browser on Windows XP SP2 and Java Runtime En-
vironment (JRE), Acrobat PDF, and Flash Player browser plug-ins for automatically
extracting URLs from webpages independently from the analysis environment. Their
malicious dataset contained over 19,000 URL addresses and was captured during a
three-year period with the high-interaction honeyclient Marionette. MineSpider ex-
tracted 30,000 URLs in a few seconds by applying program slicing to JavaScript code
inside the malicious wabpages that were previously detected as drive-by download at-
tacks from 9 EK families.

Aldwairi et al. [68] tested 23 machine learning classifiers using a dataset of 5435
webpages containing drive-by download attacks and based on the detection accuracy
they selected the top five to build the detection model. They extracted 26 content fea-
tures without executing the webpage and reduced the feature vector size to 15. The
Bagged Trees binary classifier achieved the highest accuracy with 90%. The disad-
vantage of the study is that although malicious content is triggered via JavaScript,
they do not render page content. The method provides execution time gains, however
essential dynamic features are not considered.

Jagannatha [58] proposed a two-layer detection scheme for EKs and processed a Bro-
IDS HTTP log of 1000 samples generated by a third party in 2012. Naive Bayes
was applied for binary classification and then K-means was utilized for clustering EK
families. The 36 features were reduced to 6 attributes and achieved 99% supervised
and 75% unsupervised accuracy for 400 reserved samples. While this research does
not work with network traffic, it relies on quite basic features, does not benefit from
structural patterns in URLs and ignores content features.

Sandnes [59] extracted the URL addresses from the output of an IDS for EK activ-
ity detection. The system can detect the sample as either benign or malicious rather
than detecting the EK family. A custom dataset was built for experiments by rely-
ing on the domain addresses, which were previously associated with an EK activity
and triggered IDS alerts related to EK signatures. The SVM, Random Forest, and
Naive Bayes classifiers were utilized with 9 features, where the Random Forest model
achieved the best accuracy with 97%.

Paraskevi [69] compares the existing solutions and discusses the application of deep
learning for EK detection in her thesis. However, the lack of a real-word dataset did
not allow her to conduct experiments.

Raunak and Krishnan [70] showed how a sample is manually analyzed rather than
proposing a detection mechanism for EKs. They have conducted a superficial analysis
for an infection case delivered by Rig EK in 2016. They extract page contents with
Wireshark and briefly discuss the code inside.

86

Analogy. As first studies involve source code analysis, we believe that source code
analysis is not feasible to represent such a complex structure in a controlled envi-
ronment. At the very least, a real-world infection requires several redirections. In
addition, the number of visits and the accessed domain addresses quickly change
in order to evade detection systems. Although sometimes domain addresses do not
change, full URLs are designed for single use. For instance, EK platforms invoke sev-
eral defensive mechanisms, (e.g., when some redirection does not access the required
resource, EK terminates the chain). Hence, designing an artificial EK environment to
make it similar to real will not work well in practice. As the source code of the recent
EKs are not available to the public yet, in our first study, Know Your EK [18], the web-
page contents of EK families were explored. Our second research, ZEKI [16], focuses
on unsupervised models and third research, IsEK [17], focuses on supervised models
which leverage URL components of EKs. Our latter two works are similar to the lat-
est three studies [13, 14, 15], which try to distinguish between EK types using HTTP
traffic. The approach in Kizzle [15] is closer to ours where unsupervised methods are
employed and the EK families appearing in their evaluation significantly overlap with
our EK set. On the other hand, their feature set is only based on page content and they
report that their clustering approach inherently requires large amounts of data. Some
aspects of WebWinnow [13], such as the use of URL features are also similar to our
work. Unfortunately, WebWinnow requires a sandbox environment to extract basic
content features and it is not easy to build an identical one for fair comparison. In ad-
dition, the honeyclient technology usage in WebWinnow breaks scalability. However,
we base our methodology on lightweight analysis with machine learning and utilize
simple mathematical calculations and avoid using regular expressions while extract-
ing URL features. Moreover, our method relies on multi-family classification, which
is more informative when compared to their favored binary classification. In a nut-
shell, the proposed technique performs faster and is scalable via customized machine
learning algorithms and does not require massive data. The developed models are
accurate, performing over 87% precision for unsupervised algorithms (e.g., KMeans,
Agglomerative) and achieving over about 91% for 3 supervised algorithms (e.g., KNN,
SVM, GBC), which is an evidence that our approach is estimator independent. It is
important to note that only URLs are leveraged to achieve such a capability.

87

88

CHAPTER 6

CONCLUSIONS

In this chapter, firstly, the primary findings are summarized briefly. Secondly, evasion
possibility of the method, limitation and delimitation of the research are presented
in Section 6.1. Then, lessons learned, further improvement notes, and future work
directions are outlined in Section 6.3. Finally, this chapter is concluded with the
potential prevention and mitigation strategies in Section 6.2.

The ubiquitous use of Web browsers in daily life in the past decade has generated an
immense opportunity for the emergence of sophisticated crimeware. Cyber attacks
are increasingly dangerous for Web visitors and the Exploit Kit (EK) phenomenon
has become a devastating arsenal for Internet crimes, currently being the most trend-
ing infection mechanism for attacks targeting Web browsers. The distribution of the
infecting URL addresses are fueled via social media and search engine results. An
EK serves various types of malicious content over mass malicious e-mail, malicious
advertisements on top global websites, and compromised webpages, which draw high
volumes of traffic. An EK typically exploits client-side vulnerabilities when accessed
and various techniques are utilized to infect the victim systems with a malware. An
EK infects victim machines for numerous criminal efforts, such as crypto-mining
to stack cash, encrypting office documents (e.g., word, spreadsheet, text, etc.) to
demand ransom, stealing financial information (e.g., banking passwords) to directly
use, and even turning a machine into a zombie for instrumenting further attacks (e.g.,
distributed denial of service).

The past decade has witnessed the introduction of the “Exploit Kits” philosophy by
the online criminal world in order to make new exploits easy to adapt for attacks as
new vulnerabilities are found. Reportedly, an EK deployment does not require hack-
ing expertise anymore. The adversary only needs to learn the infection business logic
and the EK service handles all other technical details. The EK architectures have a
standardized interface that makes application of attacks programmable, where the EK
APIs incorporate multiple exploits and malware in their repository that are seamless
to extend and configure. The Exploit Kit phenomenon remains a serious threat for the
Web residents due to the fact that they are able to quickly adapt to changing condi-
tions and further, turn them into an advantage. Whenever a vulnerability is disclosed
publicly, EK owners develop corresponding exploits and integrate them into their ar-
senal. Beyond that, they are frequently faster than the Web users, who need to patch
the application. Even worse, exceptional EK authors could also exploit vulnerabilities
before vendors release a patch or discover zero-day vulnerabilities. Ultimately, EK
products serve all those capabilities with a user-friendly interface for the threat actors.
Overall, in this cat and mouse game, the threat actors will always have the advantage,

89

since they make the opening gambit and the window of malware distribution is wide
open until the campaign is revealed.

This research proposes a lightweight discrimination system for the network traffics
of Exploit Kit families. By using only the URL characteristics of a complete infec-
tion chain, our novel overall URL patterns technique reasons about the likelihood of
a sequence of HTTP interactions belonging to a specific EK. Our implementation is
evaluated on a real-world dataset collected by a pioneer researcher on EK. In par-
ticular, our empirical results show that the unsupervised model ZEKI clusters a set
of unknown EK-based infection traffics quickly achieving between 87.5% - 93.7%
precision and our supervised model IsEK classifies EK families achieving between
91.6% - 100% significant accuracy and with very low misclassification rate [17]. An
individual URL analysis could not reason about whether a set of HTTP traces belong
to an EK infection or not, since every URL does not reflect an EK pattern. For ex-
ample, some URLs do not contain either the path or query, i.e. they are just domain
addresses and previously never seen in a malicious activity, which also makes them
blacklist-free. On the other hand, the proposed novel overall URL patterns technique
is highly efficient in discriminating EK families. The results validate our hypothe-
sis that EK infections largely tend to have hidden patterns in URLs, which are only
discovered via the analysis of overall URLs, which are responsible for a successful
malware infection. The proposed method differs from two similar studies: the sys-
tem in [13] that combines both URL and content features with binary classification
methods and the work of [15] that clusters only the Web contents individually.

It is conjectured that such an agile solution will help security analysts, who work
with bulk data collected by honeypots, by providing early threat intelligence feed
(e.g., evolved attack techniques), discovery of zero-day attacks, creating obstacles
for cyber criminals, and increasing the workload of EK engineers. In addition, Web
browsers could benefit from the results by applying domain/IP blacklists1 to protect
their consumers. Moreover, search engine operators can promote such methods to
prevent indexing URLs leading to EK infrastructures even in case of applied blackhat
search engine optimization (SEO), i.e. the search term poisoning attack.

In addition to URL analysis, a context-aware content analysis is also introduced,
which enabled us to find out the new attack, evasion, and hiding methods utilized
in EKs [18]. Moreover, we also recognized the content features, which enable a re-
searcher to develop a content analysis system based on machine learning, when one
finds an efficient way to automatically extract such features. Furthermore, the key
findings, unknown insights and trends of the EK ecosystem are highlighted by the
systematic comparison and correlation of the indicators extracted from the content
analysis. The knowledge we gained were presented to show how an EK-based mal-
ware infection could be demystified.

6.1 Open Issues

Limitations. During the experiments, we have evaluated plenty of URL features, but
selected the attributes that are easiest to extract in terms of processing time. Some

1 safebrowsing.google.com

90

of the notable properties that are discarded due to the mentioned reason include total
number of HTTP GET and POST requests, total number of redirections, total num-
ber of distinct domain addresses, total number of unique country codes on domain
addresses, total number of unique Top Level Domains (TLDs), total number of dis-
tinct files downloaded onto the victim system involved in the infection chain, count of
some notorious mime-types (e.g., Shockwave file, Octet-stream, plain text), total bytes
of downloaded content onto the victim system. While our technique is based on the
extraction complexity, the decision criteria could rely on purely a feature selection
algorithm (e.g., Information Gain) in order to get better accuracy while reducing the
number of features.

Primarily, an open source data repository is utilized to test our hypothesis and the
dataset is the work of a respectful EK researcher, who captures and shares the network
packets of real incidents. Although a representative amount of data is gathered for the
experiments, the sample size is still limited, just like most other studies. We have 240
real world cases containing over 2250 URLs in our data corpus and we have done
several attempts and connections in order to expand our data source, but could not
succeed. However, it is obvious that a network traffic which contains today’s exploit
and malware pair is invaluable and failing to find such a large corpus makes sense and
is tolerable in this context.

While we have conducted and presented the results of context-aware content analy-
sis in detail, we resisted for a long time to be able to conduct content analysis in a
completely automated way. However, the challenges, which are the complexity of
infection mechanism (e.g., stratified obfuscation, encoding and encryption), calling
remote resources on the execution time, and the malformed HTML and JavaScript
files did not allow us to do that efficiently.

Delimitation. The scope of this study is limited to the analysis of the currently promi-
nent EK families. One major reason is that, those kits pose greater danger than the
others. More precisely, the short-lived, small-scale, unobserved, or inefficient EK fla-
vors are out of scope. In addition, two more EK families (Sundown and Magnitude)
contained in the dataset were not included in the analysis due to the low number of
samples.

Plenty of supervised and unsupervised machine learning models were built for the
experiments. However, the results of 2 unsupervised and 3 supervised algorithms are
reported, since others could not be optimized or made workable and we had already
satisfactory results. A data scientist could also make these algorithms be practical
as an alternative. In addition, these reported algorithms could be modeled with an
ensemble approach (e.g., Majority Voting) which could form a more robust system.
Furthermore, unsupervised models could be integrated to supervised models and op-
erated successively.

Evasion. The major advantage of the EK infrastructures is its framework design,
which allows large scale malware propagation. However, our research revealed that
this fabricated logic is also their weakness. Since auto-URL-generation logic follows
templates, which is a target for models based on machine learning techniques. On the
other hand, if EK authors agree on not using full URL addresses with patterns, namely
if they use only domain addresses, detection will be easier even for the traditional

91

signature-based systems. As a result, some advantages and drawbacks makes it a
trade-off. It is not easy to bypass our unsupervised and supervised methods together,
unless adversarial machine learning techniques are applied.

6.2 Future Opportunities

During the painful automated content-analysis attempts, a shortcoming of industry-
wide mature open-source tools was observed, where they did not reflect similar be-
haviors for the same network traffics. Therefore, firstly an optimized version of these
tools could be adapted for malicious network traffic analysis. Secondly, as this study
also presents, distinctive context-aware content features that can precisely character-
ize EK flavors, the unique features of each EK family, and the major similarities and
differences between EKs; future research could focus on developing a machine learn-
ing model which favors context-aware content features. In order to do that, firstly a
tool to efficiently extract such features should be developed.

Lessons learned. Since next-generation prevention systems will likely rely on arti-
ficial intelligence, attacks that poison machine learning models are expected to be in
the scene in the near future. Exploit Kit for mobile and Exploit Kit for IoT are also
expected to become more prevalent. No matter what, if you know the threat actor
and know yourself, you need not fear the upcoming brand new EK attacks in any
field. For EK literature, we conclude by adjusting the wise saying: There are known
knowns; that is to say currently we know something about EKs. We also know there
are known unknowns; there is something and we are sure at the moment, we do not
have any information about those EKs. Finally, the unknown unknowns; we are not
even aware of some EKs yet.

6.3 Prevention & Mitigation

Finally, I would also like to express some strategies for prevention for the devastating
effects of this increasingly popular threat.

From the defensive prevention perspective: Although leading EK families chase up
zero-day vulnerabilities for which no security fixes exist, the remaining majority of
EK flavors go after flaws for which patches have already been released [45]. The
reason why they do not depend on zero-day is that, many systems unfortunately are
not made up-to-date on time. Otherwise, every EK would have had zero-day in or-
der to survive. Although not every EK author discovers brand new vulnerability and
exploit pairs, this does not mean the EK contains obsolete exploits. Right after a
bug is publicly disclosed, EK authors quickly integrate highly stable exploits under
an easy-to-use and almost fully automated interface. Therefore, for the sake of the
Pareto principal, users should enable auto-update features of the operating system,
browsers, and their plug-ins at the very least. On the other hand, as proven by experi-
ence, patching large networks is a quite challenging issue, where the more users keep
up with the security patches, the more they continue to remain secure. It is definitely
a race condition, where the winner stays secure for a while and the loser gets imme-

92

diately infected. On the other hand, waiting for a patch is not a silver bullet, since
sometimes fixes are not released along with the public disclosure of the vulnerabili-
ties. A most notable incident was the Hacking Team [71] breach, where two zero-day
exploits affecting Adobe Flash Player were revealed. Just a few hours later, Angler
EK [72] integrated the related two exploits, however patches were hardly developed
2 and 4 days later respectively. This clearly means that relying on a single mitigation
strategy will inevitably fail.

Secondly, while updating a system on time is obviously not a silver bullet, not using
an anti-exploit/malware product doubles the trouble. Therefore, users can also take
into account a second step where, even beyond installing traditional anti-malware
applications, they could favor products that claim to apply artificial intelligence solu-
tions (e.g., anomaly-based dynamic detection, user behavior analysis, big data secu-
rity analytics solutions, etc.) rather than static methods (e.g., signatures and hashes).
This additional prevention increases the detection chance by getting the exploit caught
somehow (e.g., generic detection patterns or anomaly) as suspicious.

Thirdly, end users could prefer to disable or limit the unnecessary or unused features
of Web browsers (e.g., plug-ins). In addition, blocking advertisement contents is a
good practice to indirectly prevent malvertisement threat vector, while reducing the
network utilization.

From the proactive prevention perspective: Enterprise environments should involve
getting early threat intelligence feeds. Firstly, automated scheduled vulnerability
scans could be conducted to find out the systems that have not received the relevant
patch yet and then to isolate them. Secondly, it is vital to keep the existing prevention
systems qualified for the upcoming new incidents, hence getting samples of the latest
versions of EK families is inevitable to increase sensitivity of the prevention systems.

From the offensive prevention perspective: As previously mentioned, attackers are
capable of infecting popular websites and according to our knowledge, the root cause
is the compromised web pages. Two complementary approaches could be dedicated,
which are abolishing the root cause and eradicating the poison. More precisely, de-
tecting those web pages on the Web before the EK owners is an option. Tracking
EK authors (not struggling with threat actors) and acting counter-offensive by taking
down the EK infrastructures in cooperation with legal authorities is the other effective
option.

93

94

REFERENCES

[1] J. Cannell, “Tools of the Trade: Exploit Kits,” 2013. https://blog.mal
warebytes.com/cybercrime/2013/02/tools-of-the-trade-
exploit-kits/ [Online; accessed on February 25, 2019].

[2] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose, “All Your iFRAMEs
Point to Us,” in Proc. of the 17th Usenix Conference on Security Symposium
(SEC’08), San Jose, California, USA, pp. 1–16, USENIX Association, July
2008.

[3] Y. Wang, D. Beck, X. Jiang, and R. Roussev, “Automated Web Patrol with
Strider HoneyMonkeys: Finding Web Sites that Exploit Browser Vulnerabil-
ities,” in Proc. of the 13th Annual Network and Distributed System Security
Symposium (NDSS’06), San Diego, California, USA, p. 35–49, Internet Society,
February 2006.

[4] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu, “The
Ghost in the Browser Analysis of Web-based Malware,” in Proc. of the 1st
Usenix Workshop on Hot Topics in Understanding Botnets (HotBots’07), Cam-
bridge, Massachusetts, USA, p. 4, USENIX Association, April 2007.

[5] C. Seifert, I. Welch, and P. Komisarczuk, “HoneyC - The Low-Interaction Client
Honeypot,” in Proc. of the New Zealand Computer Science Research Student
Conference, Waikato University, Hamilton, New Zealand, pp. 1–9, NZCSRCS,
April 2007.

[6] A. Moshchuk, T. Bragin, D. Deville, S. Gribble, and H. Levy, “SpyProxy:
Execution-based Detection of Malicious Web Content,” in Proc. of the 16th
Usenix Conference on Security Symposium (SEC’07), Boston, Massachusetts,
USA, pp. 1–16, USENIX Association, August 2007.

[7] J. Nazario, “A Virtual Client Honeypot,” in Proc. of the 2nd Usenix Workshop on
Large-Scale Exploits and Emergent Threats (LEET’09), Boston, Massachusetts,
USA, pp. 911–919, USENIX Association, April 2009.

[8] J. Zhang, C. Seifert, W. Lee, and J. Stokes, “ARROW: Generating Signatures
to Detect Drive-By Downloads,” in Proc. of the 20th International Conference
on World Wide Web (WWW’11), Hyderabad, India, pp. 187–196, ACM, March
2011.

[9] C. Grier, A. Pitsillidis, N. Provos, M. Rafique, M. Rajab, C. Rossow, K. Thomas,
V. Paxson, S. Savage, G. Voelker, and et al, “Manufacturing Compromise: The
Emergence of Exploit-as-a-Service,” in Proc. of the 19th ACM Conference on
Computer and Communications Security (CCS’12), Raleigh, North Carolina,
USA, p. 821–832, ACM, October 2012.

95

https://blog.malwarebytes.com/cybercrime/2013/02/tools-of-the-trade-exploit-kits/
https://blog.malwarebytes.com/cybercrime/2013/02/tools-of-the-trade-exploit-kits/
https://blog.malwarebytes.com/cybercrime/2013/02/tools-of-the-trade-exploit-kits/

[10] V. Kotov and F. Massacci, “Anatomy of Exploit Kits: Preliminary Analysis of
Exploit Kits as Software Artefacts,” in Proc. of the 5th International Sympo-
sium on Engineering Secure Software and Systems (ESSoS’13), Paris, France,
p. 181–196, LNCS Springer, March 2013.

[11] L. Allodi, V. Kotov, and F. Massacci, “MalwareLab: Experimentation with Cy-
bercrime Attack Tools,” in Proc. of the 6th Usenix Workshop on Cyber Secu-
rity Experimentation and Test (CSET’13), Washington, D.C., USA, pp. 1–8,
USENIX Association, August 2013.

[12] G. De Maio, A. Kapravelos, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“PExy: The Other Side of Exploit Kits,” in Proc. of the 11th International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’14), Egham, UK, pp. 132–151, LNCS Springer, July 2014.

[13] B. Eshete and V. Venkatakrishnan, “WebWinnow: Leveraging Exploit Kit
Workflows to Detect Malicious URLs,” in Proc. of the 4th ACM Conference
on Data and Application Security and Privacy (CODASPY’14), San Antonio,
Texas, USA, pp. 305–312, ACM, March 2014.

[14] T. Taylor, X. Hu, T. Wang, J. Jang, M. Stoecklin, F. Monrose, and R. Sailer, “De-
tecting Malicious Exploit Kits using Tree-based Similarity Searches,” in Proc.
of the 6th ACM Conference on Data and Application Security and Privacy (CO-
DASPY’16), San Antonio, Texas, USA, pp. 255–266, ACM, March 2016.

[15] B. Stock, B. Livshits, and B. Zorn, “Kizzle: A Signature Compiler for Detecting
Exploit Kits,” in Proc. of the 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’16), Toulouse, France, p. 455–466,
IEEE Computer Society, July 2016.

[16] E. Suren and P. Angin, “ZEKI: Unsupervised Zero-day Exploit Kit Intelligence,”
in Unpublished, p. 15, August 2019.

[17] E. Suren, P. Angin, and N. Baykal, “I see EK: A Lightweight Technique to
Reveal Exploit Kit family by Overall URL Patterns of Infection Chains,” Turkish
Journal of Electrical Engineering & Computer Sciences, vol. 27, pp. 1–1, June
2019.

[18] E. Suren and P. Angin, “Know Your EK: A Content and Workflow Analysis Ap-
proach for Exploit Kits,” Journal of Internet Services and Information Security,
vol. 9, pp. 24–47, February 2019.

[19] L. Allodi, M. Corradin, and F. Massacci, “Then and Now: On the Maturity
of the Cybercrime Markets The Lesson That Black-Hat Marketeers Learned,”
IEEE Transactions on Emerging Topics in Computing, vol. 4, pp. 35–46, Jan-
uary 2016.

[20] CheckPoint, “Inside Nuclear’s Core: Analyzing the Nuclear Exploit Kit Infras-
tructure – Part I,” 2016. https://blog.checkpoint.com/wp-con
tent/uploads/2016/04/Inside-Nuclear-1-2.pdf [Online;
accessed on February 25, 2019].

96

https://blog.checkpoint.com/wp-content/uploads/2016/04/Inside-Nuclear-1-2.pdf
https://blog.checkpoint.com/wp-content/uploads/2016/04/Inside-Nuclear-1-2.pdf

[21] PaloAlto, “Exploit Kits Getting in by Any Means Necessary,” 2016. https:
//www.paloaltonetworks.com/apps/pan/public/downloadR
esource?pagePath=/content/pan/en_US/resources/resear
ch/exploit-kits [Online; accessed on February 25, 2019].

[22] CERT-UK, “Demystifying the Exploit Kit,” 2015. https://www.ncsc.g
ov.uk/content/files/protected_files/guidance_files/D
emystifying-the-exploit-kit.pdf [Online; accessed on February
25, 2019].

[23] Microsoft, “Microsoft Security Intelligence Report,” Tech. Rep. 21, Microsoft,
2016. https://www.microsoft.com/en-us/security/operati
ons/security-intelligence-report [Online; accessed on February
25, 2019].

[24] F. Howard, “Exploring the Blackhole Exploit Kit,” 2012. https://sophos
news.files.wordpress.com/2012/03/blackhole_paper_mar
2012.pdf [Online; accessed on February 25, 2019].

[25] J. Segura, “Exploit Kits: Winter 2018 Review,” 2018. https://blog.mal
warebytes.com/threat-analysis/2018/03/exploit-kits-w
inter-2018-review/ [Online; accessed on February 25, 2019].

[26] K. Security, “Wild Wild West 2016,” 2016. http://www.kahusecurity
.com/posts/wild_wild_west_11-2016.html [Online; accessed on
February 25, 2019].

[27] J. Jones, “State of Web Exploits,” in Black Hat Conference, USA, 2012. http:
//media.blackhat.com/bh-us-12/Briefings/Jones/BH_U
S_12_Jones_State_Web_Exploits_Slides.pdf [Online; accessed
on February 25, 2019].

[28] B. Duncan, “How the EITest Campaign’s Path to Angler EK Evolved Over
Time,” 2016. https://unit42.paloaltonetworks.com/unit
42-how-the-eltest-campaigns-path-to-angler-ek-evolve
d-over-time/ [Online; accessed on February 25, 2019].

[29] B. Duncan, “Campaign Evolution: Darkleech to Pseudo-Darkleech and Be-
yond,” 2016. https://unit42.paloaltonetworks.com/unit
42-campaign-evolution-darkleech-to-pseudo-darkleech-
and-beyond/ [Online; accessed on February 25, 2019].

[30] B. Duncan, “Afraidgate: Major Exploit Kit Campaign Swaps Locky Ran-
somware for CryptXXX,” 2016. https://unit42.paloaltonetwo
rks.com/afraidgate-major-exploit-kit-campaign-swaps-
locky-ransomware-for-cryptxxx/ [Online; accessed on February
25, 2019].

[31] J. Segura, “Large Malvertising Campaign Goes (Almost) Undetected,” 2015.
https://blog.malwarebytes.com/threat-analysis/2015/0
9/large-malvertising-campaign-goes-almost-undetected
/ [Online; accessed on February 25, 2019].

97

https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/research/exploit-kits
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/research/exploit-kits
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/research/exploit-kits
https://www.paloaltonetworks.com/apps/pan/public/downloadResource?pagePath=/content/pan/en_US/resources/research/exploit-kits
https://www.ncsc.gov.uk/content/files/protected_files/guidance_files/Demystifying-the-exploit-kit.pdf
https://www.ncsc.gov.uk/content/files/protected_files/guidance_files/Demystifying-the-exploit-kit.pdf
https://www.ncsc.gov.uk/content/files/protected_files/guidance_files/Demystifying-the-exploit-kit.pdf
https://www.microsoft.com/en-us/security/operations/security-intelligence-report
https://www.microsoft.com/en-us/security/operations/security-intelligence-report
https://sophosnews.files.wordpress.com/2012/03/blackhole_paper_mar2012.pdf
https://sophosnews.files.wordpress.com/2012/03/blackhole_paper_mar2012.pdf
https://sophosnews.files.wordpress.com/2012/03/blackhole_paper_mar2012.pdf
https://blog.malwarebytes.com/threat-analysis/2018/03/exploit-kits-winter-2018-review/
https://blog.malwarebytes.com/threat-analysis/2018/03/exploit-kits-winter-2018-review/
https://blog.malwarebytes.com/threat-analysis/2018/03/exploit-kits-winter-2018-review/
http://www.kahusecurity.com/posts/wild_wild_west_11-2016.html
http://www.kahusecurity.com/posts/wild_wild_west_11-2016.html
http://media.blackhat.com/bh-us-12/Briefings/Jones/BH_US_12_Jones_State_Web_Exploits_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/Jones/BH_US_12_Jones_State_Web_Exploits_Slides.pdf
http://media.blackhat.com/bh-us-12/Briefings/Jones/BH_US_12_Jones_State_Web_Exploits_Slides.pdf
https://unit42.paloaltonetworks.com/unit42-how-the-eltest-campaigns-path-to-angler-ek-evolved-over-time/
https://unit42.paloaltonetworks.com/unit42-how-the-eltest-campaigns-path-to-angler-ek-evolved-over-time/
https://unit42.paloaltonetworks.com/unit42-how-the-eltest-campaigns-path-to-angler-ek-evolved-over-time/
https://unit42.paloaltonetworks.com/unit42-campaign-evolution-darkleech-to-pseudo-darkleech-and-beyond/
https://unit42.paloaltonetworks.com/unit42-campaign-evolution-darkleech-to-pseudo-darkleech-and-beyond/
https://unit42.paloaltonetworks.com/unit42-campaign-evolution-darkleech-to-pseudo-darkleech-and-beyond/
https://unit42.paloaltonetworks.com/afraidgate-major-exploit-kit-campaign-swaps-locky-ransomware-for-cryptxxx/
https://unit42.paloaltonetworks.com/afraidgate-major-exploit-kit-campaign-swaps-locky-ransomware-for-cryptxxx/
https://unit42.paloaltonetworks.com/afraidgate-major-exploit-kit-campaign-swaps-locky-ransomware-for-cryptxxx/
https://blog.malwarebytes.com/threat-analysis/2015/09/large-malvertising-campaign-goes-almost-undetected/
https://blog.malwarebytes.com/threat-analysis/2015/09/large-malvertising-campaign-goes-almost-undetected/
https://blog.malwarebytes.com/threat-analysis/2015/09/large-malvertising-campaign-goes-almost-undetected/

[32] J. Segura, “Angler Exploit Kit Strikes on MSN.com via Malvertising Cam-
paign,” 2016. https://blog.malwarebytes.com/threat-ana
lysis/2015/08/angler-exploit-kit-strikes-on-msn-co
m-via-malvertising-campaign/ [Online; accessed on February 25,
2019].

[33] D. Chechik, S. Kenin, and R. Kogan, “Angler Takes Malvertising to New
Heights,” 2016. https://www.trustwave.com/en-us/resour
ces/blogs/spiderlabs-blog/angler-takes-malvertising-
to-new-heights/ [Online; accessed on February 25, 2019].

[34] J. Segura, “Large Angler Malvertising Campaign Hits Top Publishers,” 2016.
https://blog.malwarebytes.com/threat-analysis/2016/0
3/large-angler-malvertising-campaign-hits-top-publis
hers/ [Online; accessed on February 25, 2019].

[35] OWASP, “TOP 10 - 2017: The Ten Most Critical Web Application Security
Risks,” tech. rep., OWASP, 2017. https://www.owasp.org/images
/7/72/OWASP_Top_10-2017_(en).pdf.pdf [Online; accessed on
February 25, 2019].

[36] R. Abela, “More Than 70% of WordPress Installations are Vulnerable,” 2013.
https://www.wpwhitesecurity.com/statistics-70-percen
t-wordpress-installations-vulnerable/ [Online; accessed on
February 25, 2019].

[37] D. Cid, “RevSlider Vulnerability Leads To Massive WordPress SoakSoak Com-
promise,” 2014. https://blog.sucuri.net/2014/12/revslide
r-vulnerability-leads-to-massive-wordpress-soaksoak-
compromise.html [Online; accessed on February 25, 2019].

[38] M. Maunder, “Top 50 Most Attacked WordPress Plugins This Week,” 2016.
https://www.wordfence.com/blog/2016/08/top-50-atta
cked-wordpress-plugins-week/ [Online; accessed on February 25,
2019].

[39] D. Y. Wang, S. Savage, and G. M. Voelker, “Juice: A Longitudinal Study of
an SEO Botnet,” in Proc. of the 20th Annual Network and Distributed System
Security Symposium (NDSS’13), San Diego, California, USA, p. 17, Internet
Society, February 2013.

[40] K. Du, H. Yang, Z. Li, H. Duan, and K. Zhang, “The Ever-changing Labyrinth:
A Large-scale Analysis of Wildcard DNS Powered Blackhat SEO,” in Proc. of
the 25th USENIX Conference on Security Symposium (SEC’16), Austin, Texas,
USA, pp. 245–262, USENIX Association, August 2016.

[41] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, “EXPOSURE: Find-
ing Malicious Domains Using Passive DNS Analysis,” ACM Transactions on
Information and System Security, vol. 16, pp. 1–28, April 2014.

[42] C. Mannon, “LightsOut EK Targets Energy Sector,” 2014. https://www.
zscaler.com/blogs/research/lightsout-ek-targets-ener
gy-sector [Online; accessed on February 25, 2019].

98

https://blog.malwarebytes.com/threat-analysis/2015/08/angler-exploit-kit-strikes-on-msn-com-via-malvertising-campaign/
https://blog.malwarebytes.com/threat-analysis/2015/08/angler-exploit-kit-strikes-on-msn-com-via-malvertising-campaign/
https://blog.malwarebytes.com/threat-analysis/2015/08/angler-exploit-kit-strikes-on-msn-com-via-malvertising-campaign/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/angler-takes-malvertising-to-new-heights/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/angler-takes-malvertising-to-new-heights/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/angler-takes-malvertising-to-new-heights/
https://blog.malwarebytes.com/threat-analysis/2016/03/large-angler-malvertising-campaign-hits-top-publishers/
https://blog.malwarebytes.com/threat-analysis/2016/03/large-angler-malvertising-campaign-hits-top-publishers/
https://blog.malwarebytes.com/threat-analysis/2016/03/large-angler-malvertising-campaign-hits-top-publishers/
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_(en).pdf.pdf
https://www.wpwhitesecurity.com/statistics-70-percent-wordpress-installations-vulnerable/
https://www.wpwhitesecurity.com/statistics-70-percent-wordpress-installations-vulnerable/
https://blog.sucuri.net/2014/12/revslider-vulnerability-leads-to-massive-wordpress-soaksoak-compromise.html
https://blog.sucuri.net/2014/12/revslider-vulnerability-leads-to-massive-wordpress-soaksoak-compromise.html
https://blog.sucuri.net/2014/12/revslider-vulnerability-leads-to-massive-wordpress-soaksoak-compromise.html
https://www.wordfence.com/blog/2016/08/top-50-attacked-wordpress-plugins-week/
https://www.wordfence.com/blog/2016/08/top-50-attacked-wordpress-plugins-week/
https://www.zscaler.com/blogs/research/lightsout-ek-targets-energy-sector
https://www.zscaler.com/blogs/research/lightsout-ek-targets-energy-sector
https://www.zscaler.com/blogs/research/lightsout-ek-targets-energy-sector

[43] B. Duncan, “Understanding Angler Exploit Kit - Part 1: Exploit Kit Fundamen-
tals,” 2016. https://unit42.paloaltonetworks.com/unit42-u
nderstanding-angler-exploit-kit-part-1-exploit-kit-f
undamentals/ [Online; accessed on February 25, 2019].

[44] B. Duncan, “Understanding Angler Exploit Kit - Part 2: Examining Angler EK,”
2016. https://unit42.paloaltonetworks.com/unit42-under
standing-angler-exploit-kit-part-2-examining-angler-
ek/ [Online; accessed on February 25, 2019].

[45] B. Blaze, “The Botnet Wars: A Q&A,” 2010. https://bartblaze.blog
spot.com.tr/2010/10/botnet-wars-q.html [Online; accessed on
February 25, 2019].

[46] M. Grassi and Q. He, “Escaping the Sandbox by not Breaking It,” in DefCon
Conference, USA, 2016. https://papers.put.as/papers/macosx/
2016/sandbox_defcon.pdf [Online; accessed on February 25, 2019].

[47] E. Gerds, “PluginDetect,” 2016. http://www.pinlady.net/PluginDe
tect/ [Online; accessed on February 25, 2019].

[48] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the Crowd: an Analy-
sis of the Effectiveness of Browser Fingerprinting at Large Scale,” in Proc. of the
27th International Conference on World Wide Web (WWW’18), Lyon, France,
pp. 309–318, ACM, April 2018.

[49] Kafeine, “CVE-2015-5119 (HackingTeam 0d - Flash up to 18.0.0.194) and Ex-
ploit Kits,” 2015. https://malware.dontneedcoffee.com/2015/
07/hackingteam-flash-0d-cve-2015-xxxx-and.html [Online;
accessed on February 25, 2019].

[50] M. Mimoso, “Angler Exploit Kit Attacks Silverlight Vulnerability,” 2016. ht
tps://threatpost.com/new-silverlight-attacks-appear-
in-angler-exploit-kit/116409/ [Online; accessed on February 25,
2019].

[51] S. Sudeep and C. Dan, “CVE-2015-2419 – Internet Explorer Double-Free in
Angler EK,” 2015. https://www.fireeye.com/blog/threat-re
search/2015/08/cve-2015-2419_inte.html [Online; accessed on
February 25, 2019].

[52] O. Security, “Payloads - Metasploit Unleashed.” https://www.offensiv
e-security.com/metasploit-unleashed/payloads/ [Online;
accessed on February 25, 2019].

[53] Kafeine, “Locky Ransomware: Dridex Actors Get In The Game,” 2016. http
s://www.proofpoint.com/us/threat-insight/post/Dridex
-Actors-Get-In-the-Ransomware-Game-With-Locky [Online;
accessed on February 25, 2019].

[54] Kafeine, “CryptXXX: New Ransomware From the Actors Behind Reveton,
Dropping Via Angler,” 2016. https://www.proofpoint.com/us/
threat-insight/post/cryptxxx-new-ransomware-actors-b

99

https://unit42.paloaltonetworks.com/unit42-understanding-angler-exploit-kit-part-1-exploit-kit-fundamentals/
https://unit42.paloaltonetworks.com/unit42-understanding-angler-exploit-kit-part-1-exploit-kit-fundamentals/
https://unit42.paloaltonetworks.com/unit42-understanding-angler-exploit-kit-part-1-exploit-kit-fundamentals/
https://unit42.paloaltonetworks.com/unit42-understanding-angler-exploit-kit-part-2-examining-angler-ek/
https://unit42.paloaltonetworks.com/unit42-understanding-angler-exploit-kit-part-2-examining-angler-ek/
https://unit42.paloaltonetworks.com/unit42-understanding-angler-exploit-kit-part-2-examining-angler-ek/
https://bartblaze.blogspot.com.tr/2010/10/botnet-wars-q.html
https://bartblaze.blogspot.com.tr/2010/10/botnet-wars-q.html
https://papers.put.as/papers/macosx/2016/sandbox_defcon.pdf
https://papers.put.as/papers/macosx/2016/sandbox_defcon.pdf
http://www.pinlady.net/PluginDetect/
http://www.pinlady.net/PluginDetect/
https://malware.dontneedcoffee.com/2015/07/hackingteam-flash-0d-cve-2015-xxxx-and.html
https://malware.dontneedcoffee.com/2015/07/hackingteam-flash-0d-cve-2015-xxxx-and.html
https://threatpost.com/new-silverlight-attacks-appear-in-angler-exploit-kit/116409/
https://threatpost.com/new-silverlight-attacks-appear-in-angler-exploit-kit/116409/
https://threatpost.com/new-silverlight-attacks-appear-in-angler-exploit-kit/116409/
https://www.fireeye.com/blog/threat-research/2015/08/cve-2015-2419_inte.html
https://www.fireeye.com/blog/threat-research/2015/08/cve-2015-2419_inte.html
https://www.offensive-security.com/metasploit-unleashed/payloads/
https://www.offensive-security.com/metasploit-unleashed/payloads/
https://www.proofpoint.com/us/threat-insight/post/Dridex-Actors-Get-In-the-Ransomware-Game-With-Locky
https://www.proofpoint.com/us/threat-insight/post/Dridex-Actors-Get-In-the-Ransomware-Game-With-Locky
https://www.proofpoint.com/us/threat-insight/post/Dridex-Actors-Get-In-the-Ransomware-Game-With-Locky
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-new-ransomware-actors-behind-reveton-dropping-angler
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-new-ransomware-actors-behind-reveton-dropping-angler
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-new-ransomware-actors-behind-reveton-dropping-angler
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-new-ransomware-actors-behind-reveton-dropping-angler

ehind-reveton-dropping-angler [Online; accessed on February 25,
2019].

[55] Kafeine, “CryptXXX Ransomware - Version 3.100,” 2016. https://www.
proofpoint.com/us/threat-insight/post/cryptxxx-ranso
mware-learns-samba-other-new-tricks-with-version3100
[Online; accessed on February 25, 2019].

[56] R. Rubira Branco, G. Negreira Barbosa, and P. Drimel Neto, “Scientific but
Not Academical Overview of Malware Anti-Debugging, Anti-Disassembly and
Anti- VM Technologies,” in Black Hat Conference, USA, 2012. https://
media.blackhat.com/bh-us-12/Briefings/Branco/BH_U
S_12_Branco_Scientific_Academic_WP.pdf [Online; accessed on
February 25, 2019].

[57] F. Pedregosa and G. Varoquaux, Scikit-learn: Machine learning in Python.
2011.

[58] P. Jagannatha, “Detecting Exploit Kits using Machine Learning,” msc, Univer-
sity of Twente, Twente, Holland, 2016.

[59] J. Sandnes, “Applying Machine Learning for Detecting Exploit Kit Traffic,”
msc, University of Oslo, Oslo, Norway, 2017.

[60] B. Eshete, A. Alhuzali, M. Monshizadeh, P. A. Porras, V. N. Venkatakrishnan,
and V. Yegneswaran, “EKHunter: A Counter-Offensive Toolkit for Exploit Kit
Infiltration,” in Proc. of the 22th Annual Network and Distributed System Secu-
rity Symposium (NDSS’15), San Diego, California, USA, p. 11, Internet Society,
February 2015.

[61] T. Taylor, Using Context to Improve Network-based Exploit Kit Detection. Phd,
University of North Carolina, Chapel Hill, USA, 2016.

[62] G. Jayasinghe, J. Culpepper, and P. Bertok, “Efficient and Effective Realtime
Prediction of Drive-by Download Attacks,” Journal of Network and Computer
Applications, vol. 38, pp. 135–49, February 2014.

[63] A. Nappa, M. Rafique, and J. Caballero, “The MALICIA Dataset: Identifica-
tion and Analysis of Drive-by Download Operations,” International Journal of
Information Security, vol. 14, pp. 15–33, February 2015.

[64] S. Arseni, “HYPER-SIFT: Multi-Family Analysis and Detection of Exploit
Kits,” msc, University of Illinois, Chicago, USA, 2015.

[65] D. Channegowda, “Exploratory Analysis of Exploit Kit JavaScript,” msc, Uni-
versity of Maryland, Baltimore County, USA, 2015.

[66] A. Sood and S. Zeadally, “Drive-by Download Attacks: A Comparative Study,”
IT Professional, vol. 18, pp. 18–25, September 2016.

[67] Y. Takata, M. Akiyama, T. Yagi, T. Hariu, and S. Goto, “MineSpider: Extract-
ing Hidden URLs Behind Evasive Drive-by Download Attacks,” IEICE Trans-
actions on Information and Systems, vol. 99, pp. 860–872, April 2016.

100

https://www.proofpoint.com/us/threat-insight/post/cryptxxx-new-ransomware-actors-behind-reveton-dropping-angler
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-new-ransomware-actors-behind-reveton-dropping-angler
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-new-ransomware-actors-behind-reveton-dropping-angler
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-ransomware-learns-samba-other-new-tricks-with-version3100
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-ransomware-learns-samba-other-new-tricks-with-version3100
https://www.proofpoint.com/us/threat-insight/post/cryptxxx-ransomware-learns-samba-other-new-tricks-with-version3100
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_WP.pdf

[68] M. Aldwairi, M. Hasan, and Z. Balbahaith, “Detection of Drive-by Download
Attacks using Machine Learning Approach,” International Journal of Informa-
tion Security and Privacy, vol. 11, pp. 16–28, April 2017.

[69] T. Paraskevi, “Classification of Exploit Kits,” msc, University of Piraeus, Pi-
raeus, Greece, 2015.

[70] P. Raunak and P. Krishnan, “Network Detection of Ransomware Delivered by
Exploit Kit,” ARPN Journal of Engineering and Applied Sciences, vol. 12,
pp. 3885–3889, 2017.

[71] P. Pi, “Unpatched Flash Player Flaw, More POCs Found in Hacking Team
Leak,” 2015. https://blog.trendmicro.com/trendlabs-se
curity-intelligence/unpatched-flash-player-flaws-m
ore-pocs-found-in-hacking-team-leak/ [Online; accessed on
February 25, 2019].

[72] F. Howard, “A Closer Look at the Angler Exploit Kit,” 2016. https://news
.sophos.com/en-us/2015/07/21/a-closer-look-at-the-an
gler-exploit-kit/ [Online; accessed on February 25, 2019].

101

https://blog.trendmicro.com/trendlabs-security-intelligence/unpatched-flash-player-flaws-more-pocs-found-in-hacking-team-leak/
https://blog.trendmicro.com/trendlabs-security-intelligence/unpatched-flash-player-flaws-more-pocs-found-in-hacking-team-leak/
https://blog.trendmicro.com/trendlabs-security-intelligence/unpatched-flash-player-flaws-more-pocs-found-in-hacking-team-leak/
https://news.sophos.com/en-us/2015/07/21/a-closer-look-at-the-angler-exploit-kit/
https://news.sophos.com/en-us/2015/07/21/a-closer-look-at-the-angler-exploit-kit/
https://news.sophos.com/en-us/2015/07/21/a-closer-look-at-the-angler-exploit-kit/

102

APPENDIX A

GLOSSARY OF KEY CYBER SECURITY TERMS

System Usually refers to operating system, sometimes attributes to applica-
tion, and rarely indicates hardware.

Attack A series of malicious activities against target system to compromise.
Compromise Gaining unauthorized access to a targeted system.
Target Digital/electronic systems ranges from personal computer devices

(e.g., desktop, mobile/smart phone etc.) to servers and computer
network infrastructures. Frequently used in the form of "target sys-
tem". In social engineering context, it is either a single end user or a
group. Used in the form of "targeted attack" or "target system/user".

Victim Compromised system by an adversary. The victim user refers to
client (end user) of the target system.

Zombie A system that has been compromised by an adversary via a type of
malicious code (e.g., malware). It differs from victim term as zom-
bie is also a botnet member that is remotely controlled and leveraged
to execute malicious commands against another targets.

Botnet Consists of a large scale compromised systems, zombie army, that
are leveraged to operate remote commands such as send spam or
malware or flood a network for a denial of service attack.

Command &
Control (CC)

A centralized server managed by an adversary who controls and
sends commands to a botnet/compromised system that reports back.

Adversary Individual, group, or government (state-sponsored) who violates or
has intent to breach systems for malicious purposes (e.g. financial
gain, activism, espionage). It is also called as attacker, cybercrimi-
nal, or Internet-criminal.

Hacker The entitle of finding and exploiting the vulnerabilities in systems,
typically in software.

Actor Mostly a criminal group (or might be an individual) behind an Ex-
ploit Kit (EK) and/or malware. It is also called as operator. Fre-
quently used in the form of "threat actor".

Infection Gaining access or taking full control of the target system. Frequently
used in the form of "infected system" or "malware infection".

Vulnerability A weakness (bug) or an unintended flaw in computer systems, espe-
cially in an application or operating system, which could be misused
(exploited) by hackers. Most known vulnerabilities are Use After
Free, Buffer Overflow, and String Format.

103

Bug An error or flaw causing a program or system to produce an invalid
or unexpected result due to insufficient or erroneous logic (i.e. at-
tempt to divide by zero).

Exploit A piece of malicious code that triggers an attack to abuse a vulner-
ability. Successful exploitation gives the ability to execute arbitrary
code that is known as the payload. It is designed to gain unautho-
rized access into the target system.

Payload It is the instrument to infect target system with a malware. It is a
component of the exploit that usually downloads and executes the
actual malware. This type is also known as downloader trojan. On
the other hand, some kinds extract the actual malware from their
body rather than downloading. This form is also known as dropper.

Shellcode A piece of code starts a command prompt in compromised system
that gives an attacker command and control facility. It is placed into
the payload of an exploit. Most known variant is reverse shell.

Malware Right after successful exploitation, the system of the threat actor
(e.g., EK) sends an executable code (an .exe or .dll file for Windows
systems) to infect target system. This is also known as the second-
stage, or follow up, or final payload delivered by the EK. Attackers
define what they want (e.g., alter or exfiltrate some data on target
system) with malware. Besides that, it could also misuse vulnerabil-
ities of the underlying operating system of the target. The malware
distributed by the EK usually identifies the threat actors. Currently
the primary malware families are trojan (e.g., downloader, dropper,
remote access, key-logger), back door (e.g., reverse shell), and ran-
somware (e.g., CryptoLocker).

Watering Hole Watering hole is a targeted attack strategy, in which the target is
a specific group (organization, industry, or region). The attacker
observes the websites often visited by the members of the group,
and injects exploit resulting in malware infection.

Spear Phishing Spear phishing is a targeted attack where a fake narrative is sent as
email by impersonating a trusted identity, in order to steal confiden-
tial information (i.e., credentials) which enables to infiltrate systems.

Exploit kit (EK) A framework serves latest or brand-new exploits to automatically
misuse vulnerabilities in the Web browsers and their extensions (e.g.,
Flash, Java, Silverlight, etc.) to infect a target system without the
victim consent.

Zero-day The day a brand new vulnerability is made publicly known. In par-
ticular, zero-day exploit refers to an exploit which is never seen be-
fore and there is no patch for it.

Campaign A series of attacks established over an infrastructure to direct vic-
tims to an EK. The primary types of campaigns are malspam, com-
promised webpages, and malvertisement. The major symptoms that
identify a campaign are the redirection chain between the attacker
and victim just before meeting on an EK and the patterns of the
URLs or injected JavaScript code into compromised webpages.

104

Gate Additional layer between campaign and an EK where a webpage
contains some special HTML and JavaScript code in order to redi-
rect target system to the EK. The gate is designed for checking the
profile of candidate victim. It retrieves information about the envi-
ronment of the target system in order to determine whether it is a
suitable target or not. It is also known as redirector.

Landing page A webpage contains some special HTML and JavaScript code that
is initially served by an EK while introducing to a victim candidate.

Persistence /
Persistent

After infection, a malware tries to stay live in the target system even
across reboot.

Ransomware It is a type of malware that encrypts the files in target system then
demands ransom in order to decrypt. In this time, the primary mem-
bers of this family are Cerber, CryptoWall, TeslaCrypt, CryptXXX.

Trojan A software that appears to be legitimate, however in reality it triggers
a malware. It is sometimes armed to evade security mechanisms.

AdFraud /
Click-fraud

A fraudulent method used by criminal groups to increase advertising
revenue.

Backdoor After the compromise of a target system, a port is opened and/or a
user credentials created for persistence to give an attacker access to
the system. It also bypasses existing security mechanisms.

CVE (Common
Vulnerabilities
and Exposures)

The database of unique codes, common names and details of pub-
licly disclosed system vulnerabilities and known exploits which is
managed by Mitre.

Patch A small update is released by a software owner that fixes bugs.
Algorithm A sequence of instructions is designed in a logic for problem-solving

or calculation that is often implemented by a programming language.
Obfuscation Converting source codes (e.g. HTML, JavaScript, or malware bi-

nary) into a complex format to make both humans and automated
detection systems difficult to understand the actual intent of the code.

Plain-text Original data that is interpretable by a human or program without
applying any transformation (encryption or decryption).

Cipher-text Encrypted data that is made interpretable by a human or program
after applying decryption algorithm.

Decryption A cryptographic algorithm is applied on encrypted data (cipher-text)
to get original (plain-text) data back.

Encryption A cryptographic algorithm is applied on original (plain-text) data to
produce encrypted data (cipher-text).

IPS/IDS A generalized security solution to prevent both web users and web
servers from any network-based attacks.

Web filter A specialized security solution to prevent web users from malicious
web pages.

WAF A specialized security solution to prevent web servers from web
based attacks (e.g., SQL Injection).

105

106

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Suren, Emre
Contact: emre.suren@metu.edu.tr

EDUCATION

Year University Department & Degree
2014-2019 Middle East Technical University Information Systems, PhD
2012-2014 Middle East Technical University Information Systems, MS
2002-2007 Hacettepe University Computer Engineering, BS

PROFESSIONAL EXPERIENCE

Year Place Position
2013-2017 HAVELSAN Senior Engineer
2011-2013 TUBITAK Researcher

PUBLICATIONS

[1] E. Suren and P. Angin. ZEKI: Unsupervised Zero-day Exploit Kit Intelligence.
(Unpublished). 2019

[2] E. Suren, P. Angin, N. Baykal. I see EK: A Lightweight Technique to Reveal
Exploit Kit family by Overall URL Patterns of Infection Chains. Turkish Journal of
Electrical Engineering & Computer Sciences. 2019

[3] E. Suren and P. Angin. Know Your EK: A Content and Workflow Analysis Ap-
proach for Exploit Kits. Journal of Internet Services and Information Security. 2019

107

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Phenomenon
	State-of-the-Art and Problem Definition
	Motivation and Purpose
	Research Questions
	Proposed Methods
	Challenges
	Contributions
	Dissertation Outline

	Fundamentals of Exploit Kits
	Foundations of EK
	Understanding the EK Philosophy
	Malspam
	Malvertisement
	Compromised Webpages
	Gate

	EK Internals and Arsenal
	Landing Page
	State-of-the-Art Exploits
	The Art of Payload
	Advanced Tactics

	Context-aware Content Analysis
	Approach
	EITest Campaign
	Version 1
	Version 2
	Version 3
	Version 4
	Version 5

	PseudoDarkleech Campaign
	Version 1
	Version 2
	Version 3
	Gate

	Afraidgate Campaign
	Version 1
	Version 2

	Rig EK
	RigV EK
	Angler EK
	Neutrino EK
	Challenges
	Analysis 1: pseudoDarkleech and RigV and Cerber
	Challenge – Unrecognized objects
	Challenge – Malformed HTML header
	Challenge – Encrypted content

	Key Findings

	Methodology
	Data Sources
	Processing Captured Files
	Label Confirmation

	Feature Engineering
	Feature Design
	Preprocessing Features

	Unsupervised Analysis Approach
	Models
	Evaluation
	Performance Results
	Error Analysis

	Discussion

	Supervised Analysis Approach
	Models and Experiments
	Evaluation
	Performance Results
	Analysis of Features
	Error Analysis
	Comparison

	Related Work
	Source Code Analysis
	Machine Learning

	Conclusions
	Open Issues
	Future Opportunities
	Prevention & Mitigation

	REFERENCES
	Glossary of Key Cyber Security Terms
	CURRICULUM VITAE

