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ABSTRACT 

 
PERFORMANCE EVALUATION OF LIGHTWEIGHT CRYPTOGRAPHIC 

ALGORITHMS FOR INTERNET OF THINGS SECURITY 

 

Polat, Selahattin 

MSc., Department of Cybersecurity 

Supervisors: Prof. Dr. Nazife Baykal, Assist. Prof. Dr. Tolga Yalcin 

 

July 2019, 42 pages 

 

Widespread deployment of mobile and embedded devices in everyday use has brought up 
not only new concepts and application areas such as Internet-of-Things (IoT) but also 
several security and privacy problems. In theory, it is possible to mitigate most of these 
problems by implementing well-known and standardized security algorithms and 
techniques on IoT devices. However, in practice, it is rather difficult, if not impossible, to 
implement standard security algorithms on these devices due to their limited resources 
and processing power. Instead, algorithms specifically tailored for such devices, which 
are also known as lightweight algorithms, are favored. In this thesis, we will investigate 
the suitability and adaptability of the lightweight cryptographic algorithms on IoT devices, 
and compare their implementations with those of standard algorithms. We will realize our 
implementations on the Arduino Uno, which is widely used in several embedded 
applications and preferred as a target development platform for its low price-performance 
ratio. We will mainly focus on block ciphers and hash functions, which are the 
fundamental components of many cryptographic protocols. Among these protocols, 
Internet Protocol Security (IPSec) suite and DTLS are perhaps from the most well-known 
and commonly used ones. With our study, we plan to provide results that may be 
guidelines for existing and future lightweight implementations of IPSec, DTLS and other 
security protocols on IoT devices. 

Keywords: IoT security, lightweight cryptography, block ciphers, hash functions, Arduino 

Uno. 
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ÖZ 

NESNELERİN INTERNETİ GÜVENLİĞİ İÇİN HAFİF KRİPTO 

ALGORİTMALARININ PERFORMANS DEĞERLENDİRMESİ 

 

 

Polat, Selahattin 

Yüksek Lisans, Siber Güvenlik Bölümü 

Tez Yöneticisi: Prof. Dr. Nazife Baykal, Yrd. Doç. Dr. Tolga Yalcin 

 

Temmuz 2019, 42 sayfa 

 

Mobil ve gömülü sistemlerin günlük hayattaki yaygın kullanımı, Nesnelerin İnterneti gibi 

yeni kavram ve uygulama alanlarının yanında birçok yeni güvenlik ve gizlilik sorunlarını 

da beraberinde getirmiştir. Geniş boyuttaki internet alanında, uygun güvenlik 

çözümlerinin kullanımıyla söz konusu problemlerin birçoğunun üstesinden gelinebilinir. 

Bununla birlikte, gömülü sistemlerin sınırlı kaynakları ve işlemci gücü, standart güvenlik 

algoritmalarının bu cihazlara gerçeklenmesini imkânsız olmamakla birlikte uygulanabilir 

olmaktan çıkarmaktadır. Bu tezde, hafif kripto algoritmalarının uygunluğu ve 

uyumluluğunu inceleyip, Nesnelerin İnterneti cihazlarındaki performanslarını standart 

algoritmalarla karşılaştıracağız. Algoritma uygulamamızı, birçok gömülü sistemde yaygın 

olarak kullanılan ve düşük fiyat ve performans oranı nedeniyle hedef platform olarak 

tercih edilen Arduino Uno üzerinde gerçekleştireceğiz. Araştırmamızda kripto 

protokollerinin temel bileşenini oluşturan blok şifreler üzerine odaklanacağız. Internet 

Protolü Güvenliği (IPsec) suiti ve Datagram Taşıma Katmanı Güvenliği (DTLS) 

protokolleri bunlar arasında en çok bilinen ve ortak olarak kullanılanlardandır. 

Çalışmamızla, Nesnelerin İnterneti cihazlarındaki mevcut ve gelecek hafif IPsec ve DTLS 

ve diğer güvenlik protokollerinin gerçeklemeleri için rehber olacak sonuçlar sağlamayı 

hedefliyoruz. 

  

Anahtar Sözcükler : Nesnelerin İnterneti güvenliği, hafif kriptoloji, blok şifreler, özet 

fonksiyonlar, Arduino Uno 
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CHAPTER 1 

CHAPTER  

1. INTRODUCTION 

 

When Time Berners-Lee introduced Wold Wide Web at CERN in Switzerland in the 

1980s (A short history of the Web, 2019), he probably had no idea that his invention would 

eventually lead to a world where even kinder garden kids would be playing with Internet 

tablets and their parents would be using smart phones with much higher processing power 

than the supercomputers of his time. It is without a doubt that information technology has 

developed with an unprecedented speed and changed our lives in a way that even the 

wildest science fiction movies could not have predicted. Start Trek communicators lack 

the ultra-high definition (UHD) display capability, which is almost standard to any 

middle-to-high range smart-phone we use today (Star Trek (film), 2019). We can do 

almost anything from the comfort of our homes, from buying groceries to the most 

complex banking operations, thanks to the advances in information technology within the 

last two decades. It is like a fairy tale of technology. 

However, as with all fairy tails, there is a dark side to this one as well: This much 

advancement has also brought unconceivable problems with it, security being the primary 

problem. There is almost no single day without news of a new Internet fraud scheme. We 

all are now somehow familiar with terms like hacker/hacking, virus, spyware, phishing, 

spam, etc., which either had a completely different meaning before Internet, or didn’t exist 

at all (Cambridge Dictionary, 2019). 

Fortunately for the end users, and unfortunately for the people who are trying to maintain 

security, the Internet as we know it is not the end. It is just the beginning. The next step in 

this connectivity dream (or nightmare) is connecting “things”! At first, we were more than 

happy with high-speed Internet on our computers. Then came the mobile Internet on our 

phones, tablets and smart phones, which made us even happier. But it hasn’t stopped there. 

Now, scientists and engineers are connecting everything to the Internet, whereas this 

everything includes home appliances (to build “smart homes” of the future), medical 
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devices (for real-time patient-monitoring), transportation vehicles (not just for monitoring 

but also for smart/autonomous driving), buildings, manufacturing lines, agricultural 

facilities, etc. The list goes on forever… Soon we will be able to monitor a bottle of orange 

juice through its evolution from a single seed all the way to its bottling and arriving at the 

neighborhood (or even online) market. Smart devices like Amazon’s Alexa already 

performs science-fiction-like tasks on a daily basis: It wakes up its owner, turns on his/her 

favorite music, and while he/she is taking the morning shower, turns on the toaster 

(Getting Started with the Alexa Skills Kit, 2019). This new evolution is known as the 

Internet-of-Things (IoT). 

This all sounds so fancy and unbelievable. But it is already reality, in a way a scary reality. 

No one wants his/her Alexa to be hacked, sending his/her banking information, or even 

simply morning home videos to third parties, nor wants the toaster to start a home fire. 

With the “classical” Internet, it is somewhat easier to handle. Cryptographic algorithms 

and security procedures have been developed in parallel with the Internet technologies. 

The processing capacity of modern computers are more than enough to handle even the 

most complex cryptographic algorithms. Furthermore, developers of Internet had foreseen 

future security problems and have developed Internet Protocol Security (IPSec) suite in 

parallel (K.Seo, 2005). 

Unfortunately, it is hard to say the same for IoT environments, which mostly consist of 

resource-constrained devices. No manufacturer wants to put a processor into the toaster, 

if the processor’s price is more expensive than, or even close to, that of the toaster. As a 

natural consequence of their environments and usage scenarios, IoT devices have limited 

capabilities and resources in terms of processing power, memory and battery. Most of 

these devices do not even have any security support, which is unacceptable! 

Cryptographic algorithms and security schemes which can cope with the limited 

capabilities of these devices are necessary. This brings us to the notion of “lightweight 

security”. 

1.1. Lightweight Security 

As its name implies, lightweight security deals with the same security concerns as its 

conventional counterpart, however in a reduced, i.e. “lightweight”, capacity. It too covers 

a wide range of topics including both cryptographic algorithms and protocols. Despite 

being a relatively new topic, it has been attracting researchers, thanks to the rapid 

deployment of IoT. The main question in field is to achieve “sufficient” level of security 

given the limited capability of the target platform, which in fact is a challenging target. 

Conventionally, security within an algorithm is ensured by the complexity of the 

underlying security algorithms and hence the corresponding operations. These operations 

do not only require heavy processing, but are also memory and storage consuming. 

Clearly, it is a practical impossibility to provide any of these on an IoT platform. New 
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algorithms and approaches have to be introduced. This alone is also not sufficient. 

Implementation of these algorithms have to be optimized for certain platforms. 

1.2. Motivation 

Optimized implementation of lightweight security schemes is the main focus of our study. 

However, we limit our focus only to cryptography part of lightweight security, i.e. 

lightweight cryptography. It too is a very wide subject, and covers both hardware and 

software implementations. While there has been tremendous amount of research study and 

even commercial work done on hardware implementations (Nemati, et al., 2015). 

Software part is somehow neglected, at least in relative terms. Most of the software 

development in lightweight cryptography is on asymmetric algorithms (Hosseinzadeh J. 

H., 2016). Symmetric algorithms are not as thoroughly investigated. Therefore, we will 

only focus on software implementations of lightweight symmetric cryptography, which 

covers both lightweight block ciphers and hash functions. 

Software implementation of a lightweight cryptographic algorithm requires selection of 

a certain platform or a family of platforms. In our case, we made a bold decision to go 

with a very cheap device and see the limits of resource efficiency and performance we can 

reach. We selected Arduino Uno as our development platform and implemented all our 

algorithms on this platform. 

Algorithm selection was also another challenge for us. While it is a relatively new subject 

that covers only the last decade, lightweight cryptography has become overly popular and 

countless algorithms has been developed by cryptographers all around the globe. While 

some algorithms specifically targeted certain products, like mCrypton from Samsung 

(Lim C.H., 2006), some of them were developed for solely scientific curiosity in an effort 

to challenge existing algorithms in terms of a certain optimization target. In fact, NIST 

has recently launched a lightweight cryptography competition in an effort to end this chaos 

and standardize a lightweight algorithm or a family of algorithms for IoT applications 

(Lightweight Cryptography, 2019). 

With our study, we aim to provide guidelines to researchers and designers, who may want 

or need to explore capabilities and requirements of software implementations of 

symmetric cryptography algorithms on IoT platforms. Therefore, we tried to select a set 

of algorithms, which have attracted highest attention from the cryptography community 

and have been intensively implemented on different platforms. We hope that our 

implementations on this selection of algorithms will also provide guidelines for the NIST 

competition. 

1.3. Thesis Organization 

In Chapter 2, we give a brief summary of security protocols that are used for Internet of 

Things. This is crucial for a better understanding of the in-depth literature review of 
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lightweight security schemes presented In Chapter 3 together with lightweight security 

considerations. A detailed definition of IoT and security solutions for IoT are also 

introduced in this chapter. An overview of the algorithms implemented in this thesis is 

given as well.  

It is followed by Chapter 4, where we explain our evaluation methodology, together with 

information regarding the implementation platform, namely Arduino Uno board. Research 

and implementation methodology for the target algorithms and the benchmarking criteria 

as well as implementation details (libraries used, parameters set, etc.) are also discussed 

in this chapter. 

In Chapter 5, implementation results are presented and resource evaluations are made with 

respect to these results. 

Finally, in Chapter 6, we summarize our conclusions, challenges and limitations we have 

faced, and possible directions for future research 
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CHAPTER 2 

 

2. SECURITY FOR THE INTERNET OF THINGS 

 

Internet of Things (IoT) will be the future of Internet, which will connect not only 

traditional computers, but also countless number of devices (things) we use in our daily 

lives ranging from tablets, smart phones to the smallest appliances at home. Most of the 

IPv6 network traffic will be initiated by IoT, maybe not in terms of average packet size, 

but number of packets for sure (Raza, 2013). IoT will be the means to combine several 

smart/dummy things with the help of Internet to constitute a smart synergy between 

humans and objects which surrounds them. Furthermore, cloud services will constitute to 

an indispensable part of IoT by incorporating data collected from “things” used everyday 

users and enterprises into the limitless collective of information and knowledge (Ray, 

2016). Data mining algorithms will mine this data and make right decisions for the 

systems and services (Chovatiya, 2017). 

It is practically impossible to have an exact numbers of devices that connect to the Internet 

every day. Even predictions vary considerably. Figure 1 depicts figures by statista.com, 

according to which, 75.44 billion IoT devices are predicted to be installed between 2015 

and 2025 (Internet of Things (IoT) connected devices installed base worldwide from 2015 

to 2025 (in billions), 2019). International Data Corporation (IDC) forecasts IoT spending 

reaching up to $1.2 trillion in 2022. (IDC Forecasts Worldwide Technology Spending on 

the Internet of Things to Reach $1.2 Trillion in 2022, 2019) 

 

http://www.idc.com/
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Figure 1. Number of IoT connected devices 

2.1 IoT Definitions 

The term “Internet of Things (IoT)” was first used by Kevin Ashton, a technologist from 

England and also the co-founder of the Auto-ID Center at the Massachusetts Institute of 

Technology,  in 1999 (Kramp T., 2013). It has seen been the widely accepted terms for 

ubiquitous computing devices and even formal definitions have been made by 

standardization organizations. 

According to IETF, “Internet of Things is the network of physical objects or "things" 

embedded with electronics, software, sensors, and connectivity to enable objects to 

exchange data with the manufacturer, operator and/or other connected devices.” 

Gartner defines IoT as “the network of physical objects that contain embedded technology 

communicate and sense or interact with their internal states or the external environment” 

(The Internet of Things, 2019). 
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United Nations’ information and communication agency ITU defines the IoT as 

“ubiquitous network” which is consist of networks and networked devices “available 

anywhere, anytime, by anything and anyone” (History of IEEE, 2019). 

 

Figure 2. IoT Three-tiered Architecture. 

 

Institute of Electrical and Electronics Engineers (IEEE) devised IoT as “Internet of Things 

envisioning a self-configuring, adaptive, complex network that interconnects ’things’ to 

the Internet through the use of standard communication protocols and stated a three-tier 

architecture of IoT as shown in Figure 2 (The Internet of Things, 2019). According to 

IEEE, the interconnected things have physical or virtual representation in the digital 

world, sensing/actuation capability, a programmability feature and are uniquely 

identifiable. The representation contains information including the thing’s identity, status, 

location or any other business, social or privately relevant information. The things offer 

services, with or without human intervention, through the exploitation of unique 

identification, data capture and communication, and actuation capability. The service is 

exploited through the use of intelligent interfaces and is made available anywhere, 

anytime, and for anything taking security into consideration.” Figure 3 is a depiction of 

this definition. (Towards a definition of the Internet of Things (IoT), 2019). 

2.2 IoT Protocol Stack for Constrained Devices 

Many standardization groups and organizations made efforts to standardize the IoT 

protocols such as World Wide Web Consortium (W3C), Internet Engineering Task Force 

(IETF), Institute of Electrical and Electronics Engineers (IEEE) and the European 

Telecommunications Standards Institute (ETSI) (A. Al-Fuqaha, 2015). In this section, we 

will summarize these protocols, and give detailed information for the ones chosen within 

the scope of this thesis. 
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Figure 3. Features and scope of an IoT system. 

  

Table 1 gives a high level picture of the de-facto IoT protocol stack according to Internet 

Protocol (TCP/IP) Suite. 

Internet Protocol  

(TCP/IP) Layers 

IoT Protocols IoT Security 

Protocols 

Application  
COAP,MQTT, AMQP, 

XMPP, HTTP 
User-defined 

Transport  UDP DTLS 

Network  
Routing RPL RPL security 

Encapsulation  6LoWPAN IPv6 IPsec 

Link  IEEE 802.15.4 802.15.4 security 

Table 1. De-facto IoT Protocol Stack 
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2.3 The Constrained Application Protocol (CoAP) 

CoAP is a web protocol designed by Internet Engineering Task Force (IETF) for 

constrained devices and networks. By constrained devices, usually 8 bit MCUs with tiny 

RAM and ROM are referred to. CoAP make transfer of data for such devices. It is not just 

a compressed version of HTTP. It does more than that by fulfilling special requirements 

such as scarce power, memory, small processing resources and machine-to-machine 

communication of IoT devices. CoAP uses UDP as transport layer protocol. It has URI 

and Content-type support. The protocol ensures asynchronous message exchanges. With 

the use of   Datagram Transport Layer Security (DTLS), CoAP can be secured at the 

transport layer (Shelby, 2014). 

 

Figure 4. Publish/subscribe process utilized by MQTT. 

2.4 Message Queuing Telemetry Transport (MQTT) 

MQTT is a data centric message transfer protocol with a client-server topology for the 

machine-to-machine communication. It uses publish and subscribe pattern to determine 

the unicast, multicast and broadcast message distribution. Data is sent from device to a 

broker and published to the client by the broker. Figure 4 shows the publish/subscribe 

process of MQTT protocol. It is a lightweight message transfer protocol thanks to small 

overhead and low exchanged data.  MQTT was originally designed by IBM, but now it is 

an open protocol (Andrew Banks, 2019). There are also application protocols such as 

XMPP, AMQP, HTTP, AMQP and DDS, for which a comparison is given in Table 2 

which will help to give a general understanding of these protocols (A. Al-Fuqaha, 2015). 

2.5 Datagram Transport Layer Security (DTLS) 

DTLS protocol is used to secure the transport layer. It ensures security and privacy of 

applications. DTLS is a variety of Transport Layer Security (TLS) protocol. While it 

guarantees similar security, it also protects the datagram semantics. DTLS protocol builds 



   

 

10 

 

on the idea of “TLS over datagram transport”. TLS uses TCP, while DTLS instead uses 

UDP, which in fact is the main designing reason of DTLS in the presence of TLS. DTLS 

protocol uses cipher suites and cryptographic algorithms to enhance privacy 

(N.Modadugu, 2012). 

2.6 IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) 

RPL is an IPv6 routing protocol for Low-Power and Lossy Networks (LLNs) which is 

introduced by IETF in March 2012. RPL is designed to work in LLNs which utilizes 

constrained devices as both nodes and routers. The protocol makes routing possible in 

environments with high loss and low data rates. RPL is constructed for one-to-one, one-

to-many or many-to-one traffic types. There are security fields in RPL protocol which 

ensures integrity and replay protection. These additional fields allow security features 

such as confidentiality and delay protection (T. Winter, 2012) (Negi, 2017). 

2.7 IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) 

6LoWPAN is an adaptation protocol between IPv6 and Low-Power and Lossy Networks 

(LLNs) which is designed by IETF. It enables transmission of IPv6 packets to the LLNs, 

specifically IEEE 802.15.4. The starting point of the protocol was the opinion that IP 

should be implemented on all networks and devices, so that all information systems can 

be connected with one protocol. The protocol fragments the big IPv6 packets, compresses 

header – sometimes even 4 bytes, in order to make them suitable for IEEE 802.15.4.   

6LoWPAN is designed according to “pay as you use” principle. The packet size is 

adjusted with respect to amount of transmitted data. This idea will help the constrained 

devices that sends just small packets to serve longer time periods (Mulligan, 2007) (G. 

Montenegro, 2007). 

2.8 Internet Protocol Security (IPsec) 

IPsec is a group of protocols and services that ensures the security of IP layer. These 

services and protocols fulfill several security requirements. Security provided to the 

communication at the IP layer also ensures security at the upper layers. This is one of the 

main advantages of the IPsec solution. 

IPsec provides privacy with encryption, ensures the integrity of the message, prevents 

replay attacks, facilitates exchange of Public Key Infrastructure (PKI) keys and 

negotiation of security parameters. The protocol supports two security modes–transport 

and tunnel, for different network scenarios. In order to provide these services, IPsec uses 

three main protocols: 
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 IPsec Authentication Header (AH) - provides integrity and authentication, 

 IPsec Encapsulation Security Payload (ESP) – provides encryption for privacy, 

 Internet Key Exchange (IKE) – protocol to exchange keys and decide on security 

associations. 

These three protocols use several other sub protocols to provide mentioned services. 

(K.Seo, 2005) (S.Kent, IP Authentication Header, 2005) (S.Kent, IP Encapsulating 

Security Payload, 2005) (S.Kent, "Internet Key Exchange Protocol Version 2 (IKEv2)", 

RFC7296, 2014). 

2.9 IEEE 802.15.4 Standard for Low-Rate Wireless Networks 

802.15.4 is a wireless standard developed by The Institute of Electrical and Electronics 

Engineers (IEEE) for the transmission of data through low data rate and low power 

consumption wireless personal area networks (WPANs). The standard describes the 

physical (PHY) and media access control (MAC) layer of the Open Systems 

Interconnection (OSI) model for WPANs. While PHY specifies modulation, frequency, 

power and other remaining specifications of the link, MAC describes the data scheme.  

802.15.4 standard defines some subcategories for different application areas including 

industrial applications, active (battery powered) radio-frequency identification (RFID) 

uses, smart utility networks (SUNs) and various other country-specific applications.  It is 

the de-facto wireless standard for WPANs. (IEEE Standard for Low-Rate Wireless 

Networks, 2016) 

2.10. Security Solution Implementations for IoT 

We introduced the protocol stack for IoT at the above. Now we will have a look to the 

security solutions and their implementations. IoT needs multi-layer security solutions to 

provide confidentiality, integrity and authentication. To provide these security 

requirements, there are standardized solutions; IEEE 802.15.4 Security, IPsec, DTLS. 

2.10.1. IEEE 802.15.4 Security Implementations 

It has a security sublayer which provides node-to-node security at the link layer (IEEE 

Standard for Low-Rate Wireless Networks, 2016). This standard uses Advanced 

Encryption Standard [AES] cipher suites for security services.  Hui Lin implemented 

IEEE 802.15.4 security services in his study and showed the practicability of the standard 

(Lin, 2014). But implementing the just IEEE 802.15.4 security services just provides 

node-to-node security and for each node the same procedure is repeated. IEEE 802.15.4 
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Security doesn’t provide an end-to-end security for the system and not replace network 

and transport layer security solutions. 

2.10.2. IPsec Implementations 

IPsec ensures end-to-end security for IoT. However, in its original form, it is a “heavy” 

protocol for the IoT. As a result, there has been considerable research in order to come up 

with optimized implementations which will reduce IPsec’s heavy burden on constrained 

devices. 

In a study where Raza et al implemented a lightweight version of IPsec, he presents a 

specification for AH and ESP headers and concluded that lightweight IPsec is feasible for 

WLANs. He further asserts that using lightweight IPsec is a better alternative than IEEE 

802.15.4 security services (S. Raza S. D., 2011). 

Glissa and Meddeb proposed a new security protocol implemented at adaptation layer-

6LoWPAN and ensures end-to-end security like IPsec. They named it 6LowPSec. The 

protocol constitutes end-to-end security channel between nodes and the 6LoWPAN 

Border Router (6LBR) by using IEEE 802.15.4 security services (Glissa, 2018). 

2.10.3. DTLS Implementations 

Raza and others also implemented lightweight DTLS for the CoAPs. They compressed 

DTLS header and showed the possibility of using this for the CoAPs (S. Raza H. S., 2013). 

In another study, Capossele reported performance improvements in DTLS 

implementations on constrained networks. (A. Capossele, 2015) 

2.10.4. Other Implementations 

In addition to standard DTLS and IPsec solutions, there are also a few niche ones. Ukil 

proposes a different solution from them, where they designed a lightweight security 

scheme providing object security based authentication and key management. 

Implementation results show that their scheme is much more feasible than DTLS and 

IPsec (Bose, 2014). 

In (De Rubertis, 2013), the authors compared the performance of IPsec and DTLS with 

different benchmarks. Their results show that DTLS has higher resource use compared to 

IPsec. They concluded IPsec to be more suitable for constrained networks and devices 

than DTLS. 

In another study by Raza and others, IPsec and IEEE 802.15.4 security services 

performance are compared. They found that IPsec performs better than EEE 802.15.4 

security services (Shahid Raza, 2012).  
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CHAPTER 3 

 

3. LIGHTWEIGHT SECURITY SCHEMES 

 

In the recent years, in parallel with the increasing popularity of IoT, researchers have 

steadily increased their efforts to come up with novel schemes which will reduce the heavy 

resource burden of security on constrained networks and devices. In fact, this had led to 

the birth of what-is-known-as “lightweight security”. While initial efforts were on the 

lightweight implementation of standard schemes, the last decade has seen countless 

number of new security algorithms (ciphers, hash functions, etc.) specifically tailored for 

lightweight security. They have proved to have several advantages over standard schemes 

in terms of resources usage, cost, implementation ease and lifetime. 

3.1. Lightweight Block Ciphers 

Conventional cryptography is developed for the computers and devices that have no 

resource computation problem. However, IoT devices have completely different 

requirements. They should be cost and power/energy effective, which in turn means 

resource-constrained. Such constraints are, by nature, contradictory with the 

specifications of conventional cryptographic algorithms, whose main target is to provide 

high security at all costs. The main focus of lightweight cryptography is to solve this 

problem (William J. Buchanan, 2017). 

Lightweight cryptography is, in simple terms, the art of designing algorithms that ensures 

ample security using limited resources. Some lightweight algorithms are optimized for 

software implementations while some others for hardware implementations. As stated 

earlier, countless lightweight algorithms have already been introduced, with new ones 

being introduced every year. In our study, we chose the most popular ones for evaluation 

on Arduino Uno platform. We have also implemented standard algorithms like AES, 

MD-5 and SHA for a fair comparison between standard and lightweight algorithm. 
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Table 2 depicts main characteristics of our choice of lightweight block ciphers. In the rest 

of this chapter, we will briefly introduce these algorithms. 

 

Algorithm Year 
Block size 

(bit) 

Key Size    

(bit) 
Rounds 

 Structure 

Type 

Target 

Platform  

AES 1998 128 128/192/256 10/12/14 SPN SW, HW 

Simon / 

Speck 
2013 

32 64 32 

Feistel SW, HW 

48 72/96 36 

64 96/128 42/44 

96 96/144 52/54 

128 128/192/256 68/69/72 

Roadrunner 2015 64 80/128 10/12 Feistel SW 

Present 2007 64 80 31 SPN HW 

Rectangle 2015 64 80 / 128 24/28/32 SPN SW,HW 

Pride 2014 64 128 20 SPN SW 

SparX 2016 64/128 128/256 24/32/40 Feistel SW 

RC5 1994 64 128 20 Feistel SW,HW 

LED 2011 64 80 48 SPN HW,SW 

Lblock 2011 64 80 32 Feistel HW,SW 

Fantomas 2014 128 128 12 SPN SW 

Skinny 2016 
64 64/128/192 32/36/40  

SPN HW,SW 
128 128/256/384 40/48/56 

Table 2. Look-up Table for the Main Characteristics of the Lightweight Block 

Ciphers 

3.1.1. Advanced Encryption Standard (AES) 

AES is the block cipher algorithm standard by National Institute of Standards and 

Technology (NIST). It is based on the Rijndael algorithm. AES encrypts/decrypts 128-bit 

wide blocks of data using either 128, 192 or 256-bit long keys. It uses 

Substitution-Permutation Network (SPN) construction. AES is optimized for both 

software and hardware implementations (NIST, 2001). 

AES encryption and decryption relies on a round and inverse round function, respectively. 

Four different steps are performed within the round function. First step is called SubBytes, 

where each byte within the data block is substituted with another byte using a lookup table, 
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also known as a substitution box, S-box in short. For the second and third steps, 16 bytes 

of data are organized in a 4-by-4 matrix. In the second step, ShiftRows(), each row in this 

matrix is rotated by a different amount, whereas in the third step, MixColumns(), each 

column of the state is mixed with other columns for maximum diffusion. These two steps 

constitute the permutation layer, whereas the first step is the substitution layer. In the last 

step, AddRoundKey(), a round key is added to the state. All these functions are executed 

in each round except the last one, where MixColumns() is skipped. 

Number of rounds to be executed for each block of data depends on the key size. It is 10, 

12 and 14 for 128, 192 and 256 bits of key, respectively. The round keys are generated 

from the original key through a process known as key expansion, which can be either 

performed in parallel with encryption or done in advance. Exact inverses of these 

functions are executed for decryption (NIST, 2001). 

3.1.2. SIMON and SPECK 

Simon and Speck are lightweight block cipher algorithms designed by National Security 

Agency (NSA). The algorithms are the result of a project aims to present the world a 

flexible, secure and analyzable lightweight crypto (LWC) algorithms. They use Feistel 

Network structure and have good performance both on software and hardware. 

Simon is specifically optimized for hardware implementations, whereas Speck is 

optimized for software platforms. They have several block and key length options. It is 

possible to choose from 32, 48, 64, 96, 128 bits of block length and 64, 72, 96, 128, 144, 

192, 256 bits of key length depending on the requirements and needs of the target 

application. Similar to AES, round numbers depend on the chosen block and key length 

(32, 36, 42, 44, 52, 68, 69, 72). The Simon round uses bitwise XOR, bitwise AND and 

left circular shift operations. The Speck round uses bitwise XOR, addition modulo 2n and 

left circular shift operations. Addition is replaced with subtraction in decryption. Simon 

and Speck family algorithms have been specifically designed to have very simple round 

operations (R. Beaulieu, 2015). 

3.1.3. RoadRunneR 

RoadRunneR is a software efficient LW block cipher developed by Baysal et al. The 

design goals of the developers are low decryption overhead, efficiency in 8-bit CPUs and 

provable security. The algorithm has 64 bits of block length and 80 or 128 bits of key 

length. The number of rounds is either 10 or 12 for the key length of 80 or 128 bits, 

respectively. It too uses a Feistel Network structure as well as SPN type functions. 

RoadRunneR uses bitslice S-box, bitwise XOR, shift and rotate operations. (Şahin, 2015) 



   

 

16 

 

3.1.4. Present 

Present is a hardware-oriented lightweight block cipher developed by Bogdanov et al in 

2007. The algorithm has 64 bits of block length and 80 or 128 bits of key length. It has 

SPN type structure with 31 rounds. The round function includes bitwise XOR, S-box layer 

and bitwise permutation. International Organization for Standardization (ISO) specified 

this algorithm as the standard lightweight block cipher in 2012 (A., 2007) (ONeill, 2012). 

3.1.5. Rectangle 

Rectangle is both hardware and software friendly lightweight block cipher designed by 

Zhang et al. The designers’ idea was to come up with an algorithm that is lightweight and 

fast by using bit-slice techniques. It has an SPN structure. Rectangle algorithm’s block 

length is 64 bits and key lengths are 80 and 128 bits with 24, 28 and 32 rounds. The 

algorithm introduces new kind of S-box and a new model of permutation layer.   

Rectangle’s contribution to the LWC is the adaptation of bit-slice techniques, ensuring 

fast and cost-effective software and hardware implementations (Zhang, 2015). 

3.1.6. Pride 

Pride is a software-oriented lightweight block cipher developed by Albrecht et al in 2014.  

The authors have concentrated on the design of linear layer to come up with a 

software-efficient algorithm. Pride has an SPN structure and uses 64 bits of data block 

and 128 bits of key with 20 rounds. The algorithm has the most efficient software 

implementation in 8-bit micro-controllers compared to all other lightweight block ciphers 

(Albrecht M.R., 2014), except NSA’s Speck. 

3.1.7. SparX 

SparX is an ARX (Addition, Rotation, XOR) based block cipher. It is designed with newly 

presented “long trail design strategy” (LTS) instead of “wide trail design strategy” (WTS) 

in 2016. WTS designs use efficient and small substitution boxes (s-boxes) and costly 

linear layers while new LTS design uses big (ARX-based) s-boxes and light linear layers.  

32-bit S-boxes are used in Sparx. The algorithm uses 64 bits of data and 128 bits of key 

with 3 rounds each with 8 steps; 128 bits of data and 128 bits of key with 4 rounds each 

with 8 steps; or 128 bits of data and 256 bits of key with 4 rounds each with 10 steps (Dinu 

D. &., 2016) (Sehrawat, 2018). 
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3.1.8. RC5 

RC5 uses ARX two-branched Feistel-Network structure. Rives presented this algorithm 

back in 1994. It can be implemented on both software and hardware but it was especially 

optimized for software implementations. The algorithm is word-oriented meaning that all 

operations take place on words. Data-dependent rotations is the main attribute of this 

algorithm. The block length can be 32, 64 or 128 bits. It can have different key lengths. 

And round numbers can be chosen according to tradeoff between security and speed (R.L., 

1995). 

3.1.9. LED 

Also known as Lightweight Encryption Device, LED has an SPN structure. The authors 

aimed an algorithm that has solid hardware and feasible software implementation.  It uses 

cryptographic operations similar to AES, such as MixColumnSerial, ShiftRows and 

SubCells. The SubCell function’s S-box is the same as PRESENT’s. The algorithm has 

simple key expansion model. The block length is 64 bits and key lengths are 64, 80 and 

128 bits (Guo, 2011). 

3.1.10.LBlock 

LBlock is a type of Feistel Network structure. It is stated that the algorithm can be 

implemented feasibly not only on hardware but also on software platforms, especially 

8-bit MCUs. The algorithm has 64-bit block and 80-bit key length with 32 rounds. The 

round function consists of substitution layer, permutation layers. These layers include 

4-bit S-box, 32-bit permutations and shift operations (Wu W., 2011). 

3.1.11.Fantomas 

Fantomas is an LWC block cipher algorithm designed to provide security especially 

against side-channel attacks. It is an algorithm from LS-designs family. LS-designs are a 

combination of L-boxes (look-up table) and S-boxes. Their target implementation areas 

are both hardware and software (especially 8-bit MCUs). The algorithm has 128 bits of 

block and 128 bits of key length with 12 rounds (Vincent Grosso, 2014). 

3.1.12. Skinny 

Skinny is a block cipher family designed to challenge with the SIMON algorithm. It uses 

another input with the key to bolster the security against the known attacks. The algorithm 

has an SPN structure. It includes a light diffusion layer and key schedule.  The designers 

asserts that Skinny has strong resistance against differential, linear and side-channel 

attacks compared to the NSA designed Simon block cipher family. The authors of the 
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algorithm is stated that the algorithm has one of the best performance for ASIC 

implementations. It’s block lengths are 64 and 128 bits. And key lengths change between 

64 and 384 bits. (Beierle, et al., 2016) 

3.2. Hash Functions 

Security algorithms must also provide authentication functionality (to ensure 

confidentiality and integrity) in addition to encryption. This is achieved by use of 

cryptographic hash functions and hash based message authentication codes (HMAC). As 

in block ciphers, there have been recent studies to design lightweight versions of these 

protocols. However, they are mostly still in infant mode. In our study, we will be focusing 

only on the standard hash functions and their use in HMAC. 

3.2.1. MD-5 

MD-5 is a hash algorithm standardized in RFC-1321 (Request for Comment) in 1992.  Its 

design principles are similar to those of its predecessor MD-4. MD-5 takes message or 

data and processes it in 512 bits wide blocks. If data length is smaller than 512 bits, it is 

padded using a predefined scheme. Afterwards, each 512 bits wide block is processed 

using 4 rounds of operations. Upon completion of processing of all blocks, a 128 bits wide 

message digest output is generated. The algorithm assures that if the data changes, so will 

the message digest with a high probability (Rivest, 1992). But, because of the collision 

attacks conducted on the algorithm, it is not anymore safe to use MD-5 (Wang X., 2005). 

3.2.2. US Secure Hash Algorithm 1 (SHA-1) 

SHA-1 is a hash algorithm standardized in RFC-3174 in 2001. SHA-1’s design principles 

are similar to MD-4 and MD-5. SHA-1 also processes data in 512 bits wide blocks and 

uses a padding scheme for smaller blocks. SHA-1 algorithm uses 80 rounds to process 

each data block. In the end, a 160 bits wide message digest is output. It too assures change 

of message digest with the smallest change in data with high probability (D. Eastlake, 

2001). According to a collision attack announced by Google Security Blog, SHA-1 is not 

safe anymore (Marc Stevens (CWI Amsterdam), 2019). 

3.2.3. SHA-256 

SHA-256 is a hash algorithm standardized as the US Secure Hash Algorithm Suite (SHA 

and HMAC-SHA) in RFC-4634 in 2006, and later adopted by NIST. It processes 512 bits 

wide data blocks and produces 256 bits wide message digest. The algorithm assures that 

if the data changes, so will the message digest with a high probability (Eastlake 3rd, 2006). 
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3.2.4. SHA-3 (KECCAK) 

NIST started a new hash algorithm process in 2005. Later they announced o competition 

for the SHA-3 Cryptographic Hash Algorithm in 2007. This process was completed in 

2012 and KECCAK was announced as the winner of the competition. 

KECCAK uses a sponge construction structure. The SHA-3 family has 4 hash and 2 

extendable-output functions (XOF). The hash functions are SHA3-224, SHA3-256, 

SHA3-384 and SHA3-512, whereas the extendable-output functions (XOF) are 

SHAKE-128 and SHAKE-256. XOF’s output message digest can be expanded to different 

lengths. SHAKE functions’ numbers (128 and 256) illustrate the security strengths that 

provides (Dworkin, 2015). 

3.2.5. Keyed-Hashing for Message Authentication (HMAC) 

Integrity is one of the three information security goals CIA (Confidentiality, Integrity and 

Availability). HMAC provides the integrity feature with help of a secret key and a hash 

algorithm. HMAC is a protocol for calculating an authentication code over the given data 

with hash function and a secret key. It protocol uses bunch of bitwise XOR operation, 

concatenation and hash functions. HMAC’s main strength is the simplicity of producing 

output from input and difficulty of producing input from output (Krawczyk, 1997). 
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CHAPTER 4 

 

4. EVALUATION METHODOLOGY 

 

In this chapter, we present our research methodology for evaluation of lightweight 

cryptographic algorithms. We explain our choice of evaluation platform, algorithms and 

benchmarking criteria. We also give implementation details. 

4.1. Choice of Implementation Platform 

One of the main objectives of our thesis is to determine the feasibility of using LWC on 

the resource-constrained devices that is working on LLNs. For this, we wanted to use a 

very low-cost and easily obtainable platform with sufficient resources and computational 

capacity. After consideration of several platforms, we decided to realize our 

implementations on the Arduino platform, which is widely used in several embedded 

applications and preferred as a target development platform for its easy programming and 

open source platform. There are countless resources for Arduino for bugs and errors. For 

cost purposes, we chose the cheapest Arduino board, i.e. Arduino Uno, which offers a 

decent price-performance ratio. 

4.1.1. Arduino Platform 

Arduino is an open-source platform used to read input and outputs with the help of sensors 

and use these for activating something or publish it someone. It is developed as an easy 

tool in Ivrea Interaction Design Institute for the students and faculty who have no 

programming or electronics background. It has three main elements: Arduino board, 

Arduino programming language and Arduino Integrated Development Environment 

(IDE). 
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Arduino’s main advantages are simple programming, inexpensive hardware, 

cross-platform support, open source and extensible software and hardware. The open-

source software and hardware developed by community have already made it the platform 

of choice for resource constrained devices, IoT applications, 3D printing and wearables 

(What is Arduino?, 2019). 

4.1.2. Arduino Uno Board 

Arduino Uno is a microcontroller board based on ATmega328. It has 6 analog input pins, 

14 digital I/O pins (of which 6 provide PWM output), 32 KB (of which 0.5 KB used by 

bootloader) Flash memory, 2 KB SRAM, 1 KB EEPROM, 16 MHz clock speed, a USB 

connection, a power jack, an ICSP header and a reset button. Its supply voltage is between 

4.5-5.5 V. The ATmega328 uses a Harvard architecture. The board can be connected to a 

computer with a USB cable, which also powers the board. Alternatively, it can be powered 

using an external adapter or even by a battery. Uno is the best starter board for Arduino 

platforms. (Arduino Uno Rev3, 2019). 

4.2 Bench-marking criteria for Block Ciphers 

There have been various studies on the evaluation of lightweight ciphers. Hosseinzadeh 

et al made a comprehensive survey in this area. They used cost, speed and efficiency as 

the benchmarking criteria to evaluate the performance of lightweight ciphers. For 

hardware implementation, they measured the cost in terms of the gate count, whereas 

memory usage and code size were used as the criteria for software implementation. The 

authors put the speed criteria of algorithms as the number of clock cycles per block and 

the number of cycles per byte encryption for both software and hardware implementations. 

Their speed bench-marking criteria are throughput and low latency (Hosseinzadeh J. &., 

2016). 

In a similar study made by Dinu et al, a bench-marking framework named as Fair 

Evaluation of Lightweight Cryptographic Systems (FELICS) was presented. It targeted 

lightweight block and stream ciphers on 8-bit AVR, 16-bit MSP and 32-bit ARM micro-

controllers. The framework has a pure interface. It is free, open-source and flexible. The 

bench-marking criteria are code size, RAM consumption, and the execution time (number 

of CPU clock cycles spent on executing a given operation (Dinu D. A., 2015). 

Rinne et al also made a performance analysis research. Their research was done on an 

8-bit AVR micro-controller with ATmega128 MCU. Their performance criteria was 

memory usage (total code size in flash) and encryption and decryption in measured CPU 

cycles (Rinne, 2007). 

In our study, we used a combination of the previous works and decided to use the 

following bench-marking criteria: 
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1. Code size: Size of the all code uploaded to the Arduino board. The code size is 

taken from Arduino IDE. Binary sketch size parameter is equal to the code size of 

all total functions (Key schedule() + Encryption() + Decryption() ) .  

2. RAM usage: SRAM usage of an algorithm is important as these algorithms work 

on resource-constrained environments. Exceeding of the SRAM’s capacity results 

in malfunction of the program. We determine the used SRAM with the help of a 

function that calculate the size between the heap and the stack.  

3. Execution Time: It presents the total time for “encryption+decryption+key 

schedule” for one block of data. We measure this by subtracting the time after the 

operation from the time before the operation. 

4. Throughput: It is calculated using the following formula: 

  Throughput = Data (in bytes) / (end time - start time) 

4.3. Selection of Cryptographic Algorithms 

AES is the de-facto standard block cipher algorithm. Most of the protocol suites used by 

governmental, commercial and private organizations utilize it to provide security to their 

information systems. It is the logical choice as the reference benchmarking algorithm. As 

a result, it was the first algorithm we implemented on Arduino Uno in our study. 

We can briefly summarize our reasoning for choice of other lightweight block cipher 

algorithms as follows: 

 Simon and Speck: For being the NSA lightweight block ciphers,  

 Roadrunner: For being a new family of ciphers, efficient in both software and 
hardware implementations, especially developed by Turkish researchers, 

 Present: For being one of the frontiers of lightweight block ciphers, the de-facto 
standard as the ultra-lightweight block cipher, and the official ISO lightweight 
block cipher standard, 

 Rectangle: For being the contributor to the lightweight block cipher community 
in the adaptation of bit-slice techniques and being both hardware and software 
friendly, 

 Pride: For being a cipher specifically designed for efficient software 
implementation on 8-bit micro-controllers,  

 SparX: For being the first cipher designed with newly presented “long trail design 
strategy” (LTS) instead of “wide trail design strategy” (WTS),  

 RC5: For being the block cipher algorithm used in Third Generation of wireless 
mobile telecommunications technology (3G), 
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 LED: For its similarity to AES with a lightweight twist, 

 Lblock: For having efficient software implementation on 8-bit micro-controllers 
and assertion of enough security margin for known attacks,  

 Fantomas: For providing security especially against side-channel attacks and 
having efficient software implementation on 8-bit micro-controllers. 

 Skinny: For its competition with Simon. 

We also implemented the hash algorithms; MD5, SHA-1, SHA-256 and SHA3 (Keccak), 

HMAC algorithms; HMAC-MD5, HMAC-SHA1, HMAC-SHA256. These are the 

algorithms used in standard security solutions such as 802.15.4 security services, IPsec 

and DTLS. We wanted to demonstrate feasibility (or lack thereof) of implementing these 

algorithms on Arduino Uno. 

4.4. Code Implementation 

The high number of algorithms we wanted to implement on Arduino Uno board made it 

impractical for us to implement all codes from scratch. Instead, we opted to use existing 

libraries where possible. 

Out of the two prominent alternatives, the libraries written by AVR-Crypto-Lib (AVR-

Crypto-Lib, 2019) included hash, HMAC and some of the block cipher algorithms we 

wanted to evaluate. However, several of our target block cipher algorithms’ were missing. 

The other alternative was the FELICS project libraries. FELICS is a project of CryptoLUX 

research group of the University of Luxembourg. It consists of a broad choice of algorithm 

implementations. Furthermore, the libraries have different versions tailored for different 

environments and hardware. Some algorithms have up to 35 different versions. The codes 

are written both in C and ASM.  All block cipher algorithms we chose in our thesis have 

already been included in the project. We used the library versions which is written in C 

and not tailored for performance improvement (Welcome to the CryptoLUX Wiki, 2019). 

The FELICS libraries were better organized and reportedly more code-efficient. Hence, 

we decided to go with a hybrid approach. We used the block cipher codes from FELICS 

libraries, and hash and HMAC codes from AVR-Crypto-Lib libraries. 

We then adapted those codes to Arduino platform. In doing so, we had to write some codes 

almost from scratch. Most of the time, we had to go into low-level details in order to obtain 

optimized code. In our conversion process, we utilized the Arduino IDE, which also 

allowed us to measure our benchmarking criteria via its built-in functions. 
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CHAPTER 5 

 

5. EVALUATION RESULTS 

 

In this chapter we present the evaluation results of our implementations on Arduino Uno. 

We follow the criteria and organization presented in the previous chapter. We start with 

the block ciphers and continue with hash functions and HMAC. 

5.1. Evaluation of Lightweight Block Ciphers 

In this section, we present our evaluation results for lightweight ciphers with respect to 

code size, RAM usage, execution time and throughput. 

5.1.1. Evaluation of Code Sizes 

Table 3 depicts the code sizes of algorithms. The ciphers we have evaluated use 10-19 

percent of Arduino Uno’s 32256 bytes of flash memory. Speck has the smallest code size 

with 3330 bytes (10% flash memory usage). It is followed by Simon and Pride. Fantomas 

has the largest code size use with 6000 bytes (19% flash memory usage). 

Surprisingly, AES’s code size is 4760 bytes (15%), very close to the minimum figures 

used by lightweight ciphers. This, in fact, shows how well it has been designed to be 

suitable for both hardware and software platforms. 

When we look at the whole picture, we see that, even with the largest code size use, there 

is still enough memory space left for other applications on Arduino Uno. In fact, it is safe 

to conclude that Arduino Uno flash memory capacity is sufficient for much more complex 

operations, e.g. an IoT protocol stack. 

We present our results graphically in Figure 5. 
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Algorithm 
Block Size 

(bits) 

Key Size    

(bits) 

Total Code 

Size  (bytes) 

Remaining Flash 

(bytes) 

Usage Percentage 

(%) 

AES 128 128 4766 27490 15 

Simon  64 96 3780 28476 12 

Speck 64 96 3330 28926 10 

Roadrunner 64 80 3918 28338 12 

Present 64 80 5010 27246 16 

Rectangle 64 80  3916 28340 12 

Pride 64 128 3830 28426 12 

SparX 64 128 4504 27752 14 

RC5 64 128 4190 28066 13 

LED 64 80 4620 27636 14 

Lblock 64 80 4500 27756 14 

Fantomas 128 128 6000 26256 19 

Skinny 64 128 4550 27706 14 

Average - - 4378 27878 14 

Table 3. Code Size of Lightweight Block Ciphers 

      

 

Figure 5. Block Cipher Code Sizes in Bytes on Arduino Uno 
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5.1.2. Evaluation of SRAM Usage 

In Table 4, it can be seen that the usage percentage of SRAM fluctuates between 21-30%. 

LED and Speck, with its 21 percent usage is the least SRAM using algorithms. Roadrunner 

and Fantomas are the second and third best, respectively. AES, Present, Rectangle and 

Lblock are 30%, making them the most SRAM consuming algorithms. The graphical 

representation of the SRAM usage of algorithms are presented in Figure 6. 

 

Algorithm 

Block 

Size 

(bit) 

Key 

Size 

(bit) 

Used 

SRAM     

(bytes) 

Remaining 

Space  

(bytes) 

Usage 

Percentage 

(%) 

AES 128 128 622 1426 30 

Simon  64 96 495 1553 24 

Speck 64 96 428 1620 21 

Roadrunner 64 80 441 1607 22 

Present 64 80 604 1444 30 

Rectangle 64 80  615 1433 30 

Pride 64 128 575 1473 28 

SparX 64 128 617 1431 30 

RC5 64 128 601 1447 29 

LED 64 80 425 1623 21 

Lblock 64 80 617 1431 30 

Fantomas 128 128 448 1600 22 

Skinny 64 128 545 1503 27 

AVERAGE - - 541 1507 27 

Table 4. SRAM Usage 

 

Even the highest SRAM consuming algorithms use only 30% of the whole SRAM, leaving 

70-80% for other applications. As in the code size, lightweight block cipher algorithms 

leave more than enough space in SRAM for other applications. 
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Figure 6. SRAM Usage of Lightweight Block Ciphers 

 

5.1.3. Evaluation of Execution Time 

As stated earlier, being the de-facto block cipher for information systems community, we 

used AES as the main benchmark for other block ciphers. Looking at the execution times 

given in Table 5, we see AES to be in the middle. As we mentioned in the previous 

sections, AES is not really designed for constrained devices. In the table, Speck is the 

most efficient block cipher of all with an average execution time of 0.004 ms for 1 bit 

data. Skinny and Fantomas are second and third lowest ones, respectively. 

Present is the worst one with an execution time of 2.019 ms followed by LED with an 

execution time of 1.199 ms. Speck block cipher is 9 times more efficient than the standard 

AES algorithm, which means that confidentiality can be provided nine times more 

efficiently with it. While there will be other concerns for confidentiality, this is an 

important indicator. The graphical representation of the execution time of algorithms 

(excluding Present, LED and RC5) are presented in Figure 7. 

There are important execution time differences between these block ciphers. The ratio 

between best and worst performance is 2.018 / 0.004 = 504. Even if the two ciphers with 

the worst execution time – Present and LED – are excluded, the ratio is still quite high, 

i.e. 0.172 / 0.004 = 43. It is important to note that shorter execution time means shorter 

time of operation, which directly corresponds to longer battery time and/or life time for 

the devices. Considering this fact, the given ratios are rather considerable. They also 

indicate the importance of choosing the appropriate cipher for the target application.  
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Algorithm 
Block 

Size (bit) 

Encryption 

Time (ms) 

Decryption 

Time (ms) 

Key 

Schedule 

Time 

(ms) 

Total  

Execution 

Time (ms) 

Execution 

Time per 

bit (ms) 

AES 128 1.67 2.57  0.16 4.40 0.034 

Simon  64 0.75 0.73 0.74 2.22 0.035 

Speck 64 0.08 0.09 0.11 0.28 0.004 

Roadrunner 64 0.52 0.52 0.06 1.10 0.017 

Present 64 64.00 62.8 2.44 129.24 2.019 

Rectangle 64 0.44 0.39 0.63 1.46 0.023 

Pride 64 0.36 0.37 0.24 0.97 0.015 

SparX 64 0.40 0.37 0.20 0.97 0.015 

RC5 64 0.69 0.70 9.61 11.00 0.172 

LED 64 39.30 37.39 0.03 76.72 1.199 

Lblock 64 0.40 0.37 0.20 0.97 0.015 

Fantomas 128 0.59 0.63 0.01 1.23 0.010 

Skinny 64 0.16 0.17 0.28 0.61 0.010 

Table 5. Execution Time of Chosen Block Ciphers 

 

 

Figure 7. Execution Time (Per Bit) of Lightweight Block Ciphers 
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5.1.4. Evaluation of Throughput 

Throughput values are directly proportional to the execution times. In Table 6, it can be 

seen that Speck has the highest throughput value with the 28.58 bytes/ms .Skinny and 

Fantomas have the second and the third highest values with 13.11 bytes/ms and 13.01 

bytes/ms. Present has the lowest throughput value with 0.06 bytes/ms and is followed by 

LED with 0.10 bytes/ms. The graphical representation of the throughput of algorithms 

(excluding Present and LED) are given in Figure 8. 

 

Algorithm 
Data Size 

(bytes) 

Total Execution 

Time (ms) 

Throughput 

(bytes/ms) 

AES 16 4.40 3.64 

Simon  8 2.22 3.60 

Speck 8 0.28 28.58 

Roadrunner 8 1.10 7.27 

Present 8 129.24 0.06 

Rectangle 8 1.46 5.48 

Pride 8 0.97 8.25 

SparX 8 0.97 8.25 

RC5 8 11.00 0.73 

LED 8 76.72 0.10 

Lblock 8 0.97 8.25 

Fantomas 16 1.23 13.01 

Skinny 8 0.61 13.11 

Table 6. Throughput of Chosen Block Ciphers 

 

As seen in the Table-6, the amounts of difference between the best and the worst values 

is considerable, i.e. 476. The ratio between de-facto standard block cipher AES and best 

throughput value Speck is 28.58 / 3.64 = 8. The previous power consumption and life time 

discussion also holds for throughput.  
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Figure 8. Throughput (bytes/ms) of Lightweight Block Ciphers 

 

5.1.5. Overall Evaluation 

Table 7 shows an overall comparison of all block ciphers with respect to all criteria. In 

summary, flash memory usage percentage for the total code sizes varies between 10-19%, 

whereas the SRAM memory usage is between 21-30%. It is safe to say that, even with the 

most memory consuming cipher, there will be no issues in terms of flash memory and/or 

SRAM usage, even on a simple platform like Arduino Uno. They do not need to be 

considered as number one priority. 

However, the same cannot be said for the execution times and hence throughput. The ratio 

between the best and worst performance is larger than 43, and can be as high as 504 when 

worst cases are considered. The same ratios reflect to throughput as well. Clearly, 

throughput is a much higher priority. As noted before, it directly affects the overall 

operation time and hence power consumption. Therefore, choice of the right cipher for 

IoT applications is imperative for a longer lasting battery life. 

It is no surprise that Speck block cipher has the best performance for almost all criteria 

(see Table 7), as it has originally been designed for lightweight software applications. 

Skinny has the second-best execution time; and it is also good in SRAM usage. Fantomas 

has the third-best execution time. However, it has the biggest code size with the 19 percent 

and 6000 bytes flash memory usage.  

 

0

5

10

15

20

25

30

35

Throughput

Throughput



   

 

32 

 

Algorithm 

Total 

Code 

Size  

(bytes) 

Code Size 

Percentage 

(%) 

Used 

SRAM     

(bytes) 

SRAM 

Percentage 

(%) 

Execution 

Time 

(ms/bit) 

Throughput  

(bytes/ms) 

AES 4766 15 622 30 0.034 3.64 

Simon  3780 12 495 24 0.035 3.60 

Speck 3330 10 428 21 0.004 28.58 

Roadrunner 3918 12 441 22 0.017 7.27 

Present 5010 16 604 30 2.019 0.06 

Rectangle 3916 12 615 30 0.023 5.48 

Pride 3830 12 575 28 0.015 8.25 

SparX 4504 14 617 30 0.015 8.25 

RC5 4190 13 601 29 0.172 0.73 

LED 4620 14 425 21 1.199 0.10 

Lblock 4500 14 617 30 0.015 8.25 

Fantomas 6000 19 448 22 0.010 13.01 

Skinny 4550 14 545 27 0.010 13.11 

Table 7. Overall Comparison of Block Ciphers 

5.2. Evaluation of Hash Functions and HMAC 

As we mentioned before, while block ciphers provide confidentiality, hash functions and 

HMAC provide integrity and authentication. Any evaluation related to IoT systems should 

include these functions and be targeted for constrained-devices. In our study, we have 

performed evaluation for the hash functions, whose general characteristics are given in 

Table 8. 

Algorithm Block Size (bits) Message-Digest 

Size (bits) 

MD5 512 128 

SHA-1 512 160 

SHA-256 512 256 

SHA3-224  144 × 8 = 1152  224 

SHA3-256  136 × 8 = 1088  256 

Table 8. Hash Functions Characteristics 
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In Table 9, we can see the implementation results of the conventional hash functions and 

HMACs. Total code size percentage values are between 15-20%. SRAM usage percentage 

is between 16-30% and execution times are between 2.73–50.36 ms. 

MD5 and SHA-1 hash functions do not provide dependable security according to the 

results of the latest attacks. Therefore, if a comparison is done, with these insecure 

algorithms are excluded, the execution times are considerably high with respect to those 

of block cipher algorithms. 

It is to be expected, as these algorithms are developed for powerful computers and servers 

which do not have resource problems. The conventional hash functions should also be 

replace with lightweight ones in order to comply with the resource requirements of 

constrained-devices. 

Algorithm 

Total Code 

Size  

(bytes) 

Code 

Percentage 

(%) 

Used 

SRAM 

(bytes) 

SRAM 

Percentage 

(%) 

Execution 

Time (ms) 

MD5 5468 17 418 20 2.73 

HMAC-MD5 6212 19 590 29 10.98 

SHA-1  4864 15 373 18 5.20 

HMAC-SHA-1 6060 19 624 30 20.84 

SHA-256 5826 18 424 20 12.22 

HMAC-SHA-256 6550 20 584 29 48.81 

SHA3-224 5946 18 334 16 50.35 

SHA3-256 5946 18 334 16 50.36 

Table 9. HMAC and Hash Functions Results 
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CHAPTER 6 

 

6. CONCLUSION AND FUTURE WORK 

 

In this thesis, we investigated the feasibility of lightweight block ciphers and hash 

functions on Arduino Uno. We have evaluated a chosen set of ciphers and hash functions 

using a predefined benchmarking criteria. While the chosen ciphers were mostly 

lightweight ones (except AES), the hash functions were conventional ones. 

The choice of Arduino Uno was done intentionally in order to demonstrate the suitability 

and feasibility (or the opposite) of the chosen algorithms to provide security in IoT 

applications. 

As can be seen in our results, none of the ciphers we have evaluated (even the standard 

AES) does not have any Flash and/or SRAM memory problems on the target platform. 

With below 20% usage, all ciphers leave enough memory space for other operations. It is 

safe to conclude that Arduino Uno is a suitable platform for lightweight block cipher based 

security applications. And choosing the suitable block cipher algorithm is very important. 

Because there are considerable performance differences between algorithms that effects 

the battery and lifetime of the devices. 

However, security of an IoT application does not only rely on a block cipher, which is 

limited to providing only confidentiality in its pure form. Hash functions and HMAC 

should also be considered for applications where confidentiality and integrity services are 

required for the IoT device. Therefore, we have extended our investigation to hash 

functions. However, due to lack of lightweight libraries for these functions, we were 

limited to using conventional functions. Unexpectedly, we have observed huge differences 

in performance in the implementation of those functions compared to block ciphers. 
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6.1. Limitations 

Our study focuses on the resource usage of lightweight block ciphers and other 

conventional cryptographic algorithms. We benchmarked the performance of the 

algorithms. But providing security to a system is not just about the best performance. It 

depends on the strength of a cryptographic algorithm against different attacks. In our 

research, we didn’t make any research about the security strength of an algorithm. Instead, 

we relied on the security claims of the designers. 

6.2. Future Works 

As pointed out earlier, we used conventional hash functions. Furthermore, we did not 

consider any integrated solution. We only focused on standalone performance. There have 

already been studies to make lightweight versions of security protocols that is used to 

provide security to the constrained-devices working on LLNs. In the future, we plan to 

extend our research to cover both lightweight hash functions and lightweight security 

protocols specifically targeting IoT devices. 

It would be not just interesting but also informative to replace conventional crypto 

protocols used on IPsec, DTLS and 802.15.4 security services with their lightweight 

counterparts and evaluate their performance on constrained devices. 

We also encourage future researchers to include countermeasures against side-channel 

attacks and evaluate their effects on the overall performance. 
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