

PERFORMANCE EVALUATION OF LIGHTWEIGHT CRYPTOGRAPHIC

ALGORITHMS FOR INTERNET OF THINGS SECURITY

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SELAHATTİN POLAT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF CYBER SECURITY

JULY 2019

Approval of the thesis:

PERFORMANCE EVALUATION OF LIGHTWEIGHT CRYPTOGRAPHIC

ALGORITHMS FOR INTERNET OF THINGS SECURITY

Submitted by SELAHATTIN POLAT in partial fulfillment of the requirements for the degree of

Master of Science in Cyber Security Department, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin

Dean, Graduate School of Informatics

Assoc.Prof. Dr. Aysu Betin Can

Head of Department, Cyber Security

Prof. Dr. Nazife Baykal

Supervisor, Information Systems, METU

Assist. Prof. Dr. Tolga Yalçın
Co-Supervisor, SICCS, Northern Arizona University, USA

Examining Committee Members:

Assoc.Prof. Dr. Cengiz ACARTÜRK

Cognitive Science Dept., METU

Prof. Dr. Nazife Baykal
Information Systems, METU

Asst.Prof. Aybar Can Acar

Medical Informatics Dept., METU

Assoc.Prof. Dr. Sedat Akleylek

Computer Engineering Dept., OMU

Asst.Prof. Dr. Murat Perit Çakır

Cognitive Science Dept., METU

Date: 26.07.2019

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Selahattin POLAT

Signature :

iv

ABSTRACT

PERFORMANCE EVALUATION OF LIGHTWEIGHT CRYPTOGRAPHIC

ALGORITHMS FOR INTERNET OF THINGS SECURITY

Polat, Selahattin

MSc., Department of Cybersecurity

Supervisors: Prof. Dr. Nazife Baykal, Assist. Prof. Dr. Tolga Yalcin

July 2019, 42 pages

Widespread deployment of mobile and embedded devices in everyday use has brought up
not only new concepts and application areas such as Internet-of-Things (IoT) but also
several security and privacy problems. In theory, it is possible to mitigate most of these
problems by implementing well-known and standardized security algorithms and
techniques on IoT devices. However, in practice, it is rather difficult, if not impossible, to
implement standard security algorithms on these devices due to their limited resources
and processing power. Instead, algorithms specifically tailored for such devices, which
are also known as lightweight algorithms, are favored. In this thesis, we will investigate
the suitability and adaptability of the lightweight cryptographic algorithms on IoT devices,
and compare their implementations with those of standard algorithms. We will realize our
implementations on the Arduino Uno, which is widely used in several embedded
applications and preferred as a target development platform for its low price-performance
ratio. We will mainly focus on block ciphers and hash functions, which are the
fundamental components of many cryptographic protocols. Among these protocols,
Internet Protocol Security (IPSec) suite and DTLS are perhaps from the most well-known
and commonly used ones. With our study, we plan to provide results that may be
guidelines for existing and future lightweight implementations of IPSec, DTLS and other
security protocols on IoT devices.

Keywords: IoT security, lightweight cryptography, block ciphers, hash functions, Arduino

Uno.

v

ÖZ

NESNELERİN INTERNETİ GÜVENLİĞİ İÇİN HAFİF KRİPTO

ALGORİTMALARININ PERFORMANS DEĞERLENDİRMESİ

Polat, Selahattin

Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi: Prof. Dr. Nazife Baykal, Yrd. Doç. Dr. Tolga Yalcin

Temmuz 2019, 42 sayfa

Mobil ve gömülü sistemlerin günlük hayattaki yaygın kullanımı, Nesnelerin İnterneti gibi

yeni kavram ve uygulama alanlarının yanında birçok yeni güvenlik ve gizlilik sorunlarını

da beraberinde getirmiştir. Geniş boyuttaki internet alanında, uygun güvenlik

çözümlerinin kullanımıyla söz konusu problemlerin birçoğunun üstesinden gelinebilinir.

Bununla birlikte, gömülü sistemlerin sınırlı kaynakları ve işlemci gücü, standart güvenlik

algoritmalarının bu cihazlara gerçeklenmesini imkânsız olmamakla birlikte uygulanabilir

olmaktan çıkarmaktadır. Bu tezde, hafif kripto algoritmalarının uygunluğu ve

uyumluluğunu inceleyip, Nesnelerin İnterneti cihazlarındaki performanslarını standart

algoritmalarla karşılaştıracağız. Algoritma uygulamamızı, birçok gömülü sistemde yaygın

olarak kullanılan ve düşük fiyat ve performans oranı nedeniyle hedef platform olarak

tercih edilen Arduino Uno üzerinde gerçekleştireceğiz. Araştırmamızda kripto

protokollerinin temel bileşenini oluşturan blok şifreler üzerine odaklanacağız. Internet

Protolü Güvenliği (IPsec) suiti ve Datagram Taşıma Katmanı Güvenliği (DTLS)

protokolleri bunlar arasında en çok bilinen ve ortak olarak kullanılanlardandır.

Çalışmamızla, Nesnelerin İnterneti cihazlarındaki mevcut ve gelecek hafif IPsec ve DTLS

ve diğer güvenlik protokollerinin gerçeklemeleri için rehber olacak sonuçlar sağlamayı

hedefliyoruz.

Anahtar Sözcükler : Nesnelerin İnterneti güvenliği, hafif kriptoloji, blok şifreler, özet

fonksiyonlar, Arduino Uno

vi

DEDICATION

To my lovely wife, pretty girl and my little son,

In memory of my decent lost, my mother Sultan

To my big and beloved family.

vii

ACKNOWLEDGMENTS

First of all, I would like to express to gratitude to my supervisors Prof. Dr. Nazife Baykal,

Assist. Prof. Dr. Tolga Yalcin for their supports throughout my METU education process.

Besides my supervisors, I would like to thank to the all good METU family. I learned lots

of things from METU.

I also would like to thank to the Turkish Army and devote my study to the founder of

Turkish Republic Mustafa Kemal ATATURK who remarks the science as the true mentor

in life, his comrades and colleagues.

Besides all these thanks, I owe a special thanks and gratitude to the Dr. Tolga Yalcin. This

thesis is the result of his relentless support to me.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

DEDICATION .. vi

ACKNOWLEDGMENTS... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

LIST OF ABBREVIATIONS .. xiii

CHAPTER ... 1

1. INTRODUCTION ... 1

1.1. Lightweight Security ... 2

1.2. Motivation ... 3

1.3. Thesis Organization ... 3

2. SECURITY FOR THE INTERNET OF THINGS .. 5

2.1 IoT Definitions .. 6

2.2 IoT Protocol Stack for Constrained Devices ... 7

2.3 The Constrained Application Protocol (CoAP) ... 9

2.4 Message Queuing Telemetry Transport (MQTT) ... 9

2.5 Datagram Transport Layer Security (DTLS) .. 9

2.6 IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) 10

2.7 IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) 10

2.8 Internet Protocol Security (IPsec) ... 10

2.9 IEEE 802.15.4 Standard for Low-Rate Wireless Networks 11

2.10. Security Solution Implementations for IoT ... 11

2.10.1. IEEE 802.15.4 Security Implementations .. 11

2.10.2. IPsec Implementations ... 12

2.10.3. DTLS Implementations .. 12

2.10.4. Other Implementations ... 12

3. LIGHTWEIGHT SECURITY SCHEMES .. 13

3.1. Lightweight Block Ciphers ... 13

ix

3.1.1. Advanced Encryption Standard (AES) .. 14

3.1.2. SIMON and SPECK .. 15

3.1.3. RoadRunneR ... 15

3.1.4. Present ... 16

3.1.5. Rectangle ... 16

3.1.6. Pride ... 16

3.1.7. SparX ... 16

3.1.8. RC5 .. 17

3.1.9. LED ... 17

3.1.10.LBlock ... 17

3.1.11.Fantomas ... 17

3.1.12. Skinny .. 17

3.2. Hash Functions .. 18

3.2.1. MD-5 ... 18

3.2.2. US Secure Hash Algorithm 1 (SHA-1) ... 18

3.2.3. SHA-256 .. 18

3.2.4. SHA-3 (KECCAK) .. 19

3.2.5. Keyed-Hashing for Message Authentication (HMAC) 19

4. EVALUATION METHODOLOGY .. 21

4.1. Choice of Implementation Platform .. 21

4.1.1. Arduino Platform ... 21

4.1.2. Arduino Uno Board ... 22

4.2 Bench-marking criteria for Block Ciphers .. 22

4.3. Selection of Cryptographic Algorithms .. 23

4.4. Code Implementation .. 24

5. EVALUATION RESULTS ... 25

5.1. Evaluation of Lightweight Block Ciphers ... 25

5.1.1. Evaluation of Code Sizes .. 25

5.1.2. Evaluation of SRAM Usage .. 27

5.1.3. Evaluation of Execution Time ... 28

5.1.4. Evaluation of Throughput ... 30

5.1.5. Overall Evaluation ... 31

5.2. Evaluation of Hash Functions and HMAC .. 32

6. CONCLUSION AND FUTURE WORK .. 35

6.1. Limitations ... 36

x

6.2. Future Works ... 36

REFERENCES ... 37

xi

LIST OF TABLES

Table 1. De-facto IoT Protocol Stack .. 8

Table 2. Look-up Table for the Main Characteristics of the Lightweight Block Ciphers14
Table 3. Code Size of Lightweight Block Ciphers .. 26
Table 4. SRAM Usage ... 27
Table 5. Execution Time of Chosen Block Ciphers ... 29
Table 6. Throughput of Chosen Block Ciphers ... 30

Table 7. Overall Comparison of Block Ciphers ... 32
Table 8. Hash Functions Characteristics .. 32

Table 9. HMAC and Hash Functions Results .. 33

xii

LIST OF FIGURES

Figure 1. Number of IoT connected devices .. 6

Figure 2. IoT Three-tiered Architecture.. ... 7
Figure 3. Features and scope of an IoT system.. .. 8
Figure 4. Publish/subscribe process utilized by MQTT.. ... 9
Figure 5. Block Cipher Code Sizes in Bytes on Arduino Uno .. 26
Figure 6. SRAM Usage of Lightweight Block Ciphers ... 28

Figure 7. Execution Time (Per Bit) of Lightweight Block Ciphers 29
Figure 8. Throughput (bytes/ms) of Lightweight Block Ciphers 31

xiii

LIST OF ABBREVIATIONS

3G Third Generation of Wireless Mobile Telecommunications Technology

6LBR 6LoWPAN Border Router

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

AES Advanced Encryption Standard

AH Authentication Header

AMQP Advanced Message Queuing Protocol

ARM Advanced RISC Machines

ARX Modular Addition, Rotation, Xor

ASM Assembly Language

CIA Confidentiality, Integrity, Availability

COAP Constrained Application Protocol

CPU Central Processing Unit

DDS Data Distribution Service

DTLS Datagram Transport Layer Security

EEPROM Electrically Erasable Programmable Read-Only Memory

ESP Encapsulation Security Payload

ETSI European Telecommunications Standards Institute

FELICS Fair Evaluation of Lightweight Cryptographic Systems

HMAC Hash Based Message Authentication Code

HTTP Software Development Kit

HW Hardware

ICSP In Circuit Serial Programming

ID Identity

IDC International Data Corporation

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IoT Internet of Things

IP Internet Protocol

IPsec Internet Protocol Security

IPv6 Internet Protocol version 6

ISO International Organization for Standardization

ITU International Telecommunication Union

I/O Input / Output

KB Kilobyte

LED Lightweight Encryption Device

xiv

LLN Low-Power and Lossy Network

LTS Long Trail Design Strategy

LWC Lightweight Cryptography

MAC Media Access Control

MCU MicroController Unit

MD4 Message Digest Algorithm 4

MD5 Message Digest Algorithm 5

MHZ Megahertz

MQTT Message Queuing Telemetry Transport

NIST National Institute of Standards and Technology

NSA National Security Agency

OSI Open Systems Interconnection

PDA Personal Digital Assistant

PHY Physical

PKI Public Key Infrastructure

PWM Pulse Width Modulation

RAM Random-Access Memory

RFC Request For Comment

RFID Radio-Frequency Identification

ROM Read-Only Memory

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks

SHA US Secure Hash Algorithm

SPN Substitution-Permutation Network

SRAM Static Random-Access Memory

SSL Secure Sockets Layer

SUN Smart Utility Networks

SW Software

S-BOX Substitution Boxes

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URI Uniform Resource Identifier

USB Universal Serial Bus

W3C World Wide Web Consortium

WPAN Wireless Personal Area Networks

WTS Wide Trail Design Strategy

XMPP Extensible Messaging and Presence Protocol

1

CHAPTER 1

CHAPTER

1. INTRODUCTION

When Time Berners-Lee introduced Wold Wide Web at CERN in Switzerland in the

1980s (A short history of the Web, 2019), he probably had no idea that his invention would

eventually lead to a world where even kinder garden kids would be playing with Internet

tablets and their parents would be using smart phones with much higher processing power

than the supercomputers of his time. It is without a doubt that information technology has

developed with an unprecedented speed and changed our lives in a way that even the

wildest science fiction movies could not have predicted. Start Trek communicators lack

the ultra-high definition (UHD) display capability, which is almost standard to any

middle-to-high range smart-phone we use today (Star Trek (film), 2019). We can do

almost anything from the comfort of our homes, from buying groceries to the most

complex banking operations, thanks to the advances in information technology within the

last two decades. It is like a fairy tale of technology.

However, as with all fairy tails, there is a dark side to this one as well: This much

advancement has also brought unconceivable problems with it, security being the primary

problem. There is almost no single day without news of a new Internet fraud scheme. We

all are now somehow familiar with terms like hacker/hacking, virus, spyware, phishing,

spam, etc., which either had a completely different meaning before Internet, or didn’t exist

at all (Cambridge Dictionary, 2019).

Fortunately for the end users, and unfortunately for the people who are trying to maintain

security, the Internet as we know it is not the end. It is just the beginning. The next step in

this connectivity dream (or nightmare) is connecting “things”! At first, we were more than

happy with high-speed Internet on our computers. Then came the mobile Internet on our

phones, tablets and smart phones, which made us even happier. But it hasn’t stopped there.

Now, scientists and engineers are connecting everything to the Internet, whereas this

everything includes home appliances (to build “smart homes” of the future), medical

2

devices (for real-time patient-monitoring), transportation vehicles (not just for monitoring

but also for smart/autonomous driving), buildings, manufacturing lines, agricultural

facilities, etc. The list goes on forever… Soon we will be able to monitor a bottle of orange

juice through its evolution from a single seed all the way to its bottling and arriving at the

neighborhood (or even online) market. Smart devices like Amazon’s Alexa already

performs science-fiction-like tasks on a daily basis: It wakes up its owner, turns on his/her

favorite music, and while he/she is taking the morning shower, turns on the toaster

(Getting Started with the Alexa Skills Kit, 2019). This new evolution is known as the

Internet-of-Things (IoT).

This all sounds so fancy and unbelievable. But it is already reality, in a way a scary reality.

No one wants his/her Alexa to be hacked, sending his/her banking information, or even

simply morning home videos to third parties, nor wants the toaster to start a home fire.

With the “classical” Internet, it is somewhat easier to handle. Cryptographic algorithms

and security procedures have been developed in parallel with the Internet technologies.

The processing capacity of modern computers are more than enough to handle even the

most complex cryptographic algorithms. Furthermore, developers of Internet had foreseen

future security problems and have developed Internet Protocol Security (IPSec) suite in

parallel (K.Seo, 2005).

Unfortunately, it is hard to say the same for IoT environments, which mostly consist of

resource-constrained devices. No manufacturer wants to put a processor into the toaster,

if the processor’s price is more expensive than, or even close to, that of the toaster. As a

natural consequence of their environments and usage scenarios, IoT devices have limited

capabilities and resources in terms of processing power, memory and battery. Most of

these devices do not even have any security support, which is unacceptable!

Cryptographic algorithms and security schemes which can cope with the limited

capabilities of these devices are necessary. This brings us to the notion of “lightweight

security”.

1.1. Lightweight Security

As its name implies, lightweight security deals with the same security concerns as its

conventional counterpart, however in a reduced, i.e. “lightweight”, capacity. It too covers

a wide range of topics including both cryptographic algorithms and protocols. Despite

being a relatively new topic, it has been attracting researchers, thanks to the rapid

deployment of IoT. The main question in field is to achieve “sufficient” level of security

given the limited capability of the target platform, which in fact is a challenging target.

Conventionally, security within an algorithm is ensured by the complexity of the

underlying security algorithms and hence the corresponding operations. These operations

do not only require heavy processing, but are also memory and storage consuming.

Clearly, it is a practical impossibility to provide any of these on an IoT platform. New

3

algorithms and approaches have to be introduced. This alone is also not sufficient.

Implementation of these algorithms have to be optimized for certain platforms.

1.2. Motivation

Optimized implementation of lightweight security schemes is the main focus of our study.

However, we limit our focus only to cryptography part of lightweight security, i.e.

lightweight cryptography. It too is a very wide subject, and covers both hardware and

software implementations. While there has been tremendous amount of research study and

even commercial work done on hardware implementations (Nemati, et al., 2015).

Software part is somehow neglected, at least in relative terms. Most of the software

development in lightweight cryptography is on asymmetric algorithms (Hosseinzadeh J.

H., 2016). Symmetric algorithms are not as thoroughly investigated. Therefore, we will

only focus on software implementations of lightweight symmetric cryptography, which

covers both lightweight block ciphers and hash functions.

Software implementation of a lightweight cryptographic algorithm requires selection of

a certain platform or a family of platforms. In our case, we made a bold decision to go

with a very cheap device and see the limits of resource efficiency and performance we can

reach. We selected Arduino Uno as our development platform and implemented all our

algorithms on this platform.

Algorithm selection was also another challenge for us. While it is a relatively new subject

that covers only the last decade, lightweight cryptography has become overly popular and

countless algorithms has been developed by cryptographers all around the globe. While

some algorithms specifically targeted certain products, like mCrypton from Samsung

(Lim C.H., 2006), some of them were developed for solely scientific curiosity in an effort

to challenge existing algorithms in terms of a certain optimization target. In fact, NIST

has recently launched a lightweight cryptography competition in an effort to end this chaos

and standardize a lightweight algorithm or a family of algorithms for IoT applications

(Lightweight Cryptography, 2019).

With our study, we aim to provide guidelines to researchers and designers, who may want

or need to explore capabilities and requirements of software implementations of

symmetric cryptography algorithms on IoT platforms. Therefore, we tried to select a set

of algorithms, which have attracted highest attention from the cryptography community

and have been intensively implemented on different platforms. We hope that our

implementations on this selection of algorithms will also provide guidelines for the NIST

competition.

1.3. Thesis Organization

In Chapter 2, we give a brief summary of security protocols that are used for Internet of

Things. This is crucial for a better understanding of the in-depth literature review of

4

lightweight security schemes presented In Chapter 3 together with lightweight security

considerations. A detailed definition of IoT and security solutions for IoT are also

introduced in this chapter. An overview of the algorithms implemented in this thesis is

given as well.

It is followed by Chapter 4, where we explain our evaluation methodology, together with

information regarding the implementation platform, namely Arduino Uno board. Research

and implementation methodology for the target algorithms and the benchmarking criteria

as well as implementation details (libraries used, parameters set, etc.) are also discussed

in this chapter.

In Chapter 5, implementation results are presented and resource evaluations are made with

respect to these results.

Finally, in Chapter 6, we summarize our conclusions, challenges and limitations we have

faced, and possible directions for future research

5

CHAPTER 2

2. SECURITY FOR THE INTERNET OF THINGS

Internet of Things (IoT) will be the future of Internet, which will connect not only

traditional computers, but also countless number of devices (things) we use in our daily

lives ranging from tablets, smart phones to the smallest appliances at home. Most of the

IPv6 network traffic will be initiated by IoT, maybe not in terms of average packet size,

but number of packets for sure (Raza, 2013). IoT will be the means to combine several

smart/dummy things with the help of Internet to constitute a smart synergy between

humans and objects which surrounds them. Furthermore, cloud services will constitute to

an indispensable part of IoT by incorporating data collected from “things” used everyday

users and enterprises into the limitless collective of information and knowledge (Ray,

2016). Data mining algorithms will mine this data and make right decisions for the

systems and services (Chovatiya, 2017).

It is practically impossible to have an exact numbers of devices that connect to the Internet

every day. Even predictions vary considerably. Figure 1 depicts figures by statista.com,

according to which, 75.44 billion IoT devices are predicted to be installed between 2015

and 2025 (Internet of Things (IoT) connected devices installed base worldwide from 2015

to 2025 (in billions), 2019). International Data Corporation (IDC) forecasts IoT spending

reaching up to $1.2 trillion in 2022. (IDC Forecasts Worldwide Technology Spending on

the Internet of Things to Reach $1.2 Trillion in 2022, 2019)

http://www.idc.com/

6

Figure 1. Number of IoT connected devices

2.1 IoT Definitions

The term “Internet of Things (IoT)” was first used by Kevin Ashton, a technologist from

England and also the co-founder of the Auto-ID Center at the Massachusetts Institute of

Technology, in 1999 (Kramp T., 2013). It has seen been the widely accepted terms for

ubiquitous computing devices and even formal definitions have been made by

standardization organizations.

According to IETF, “Internet of Things is the network of physical objects or "things"

embedded with electronics, software, sensors, and connectivity to enable objects to

exchange data with the manufacturer, operator and/or other connected devices.”

Gartner defines IoT as “the network of physical objects that contain embedded technology

communicate and sense or interact with their internal states or the external environment”

(The Internet of Things, 2019).

7

United Nations’ information and communication agency ITU defines the IoT as

“ubiquitous network” which is consist of networks and networked devices “available

anywhere, anytime, by anything and anyone” (History of IEEE, 2019).

Figure 2. IoT Three-tiered Architecture.

Institute of Electrical and Electronics Engineers (IEEE) devised IoT as “Internet of Things

envisioning a self-configuring, adaptive, complex network that interconnects ’things’ to

the Internet through the use of standard communication protocols and stated a three-tier

architecture of IoT as shown in Figure 2 (The Internet of Things, 2019). According to

IEEE, the interconnected things have physical or virtual representation in the digital

world, sensing/actuation capability, a programmability feature and are uniquely

identifiable. The representation contains information including the thing’s identity, status,

location or any other business, social or privately relevant information. The things offer

services, with or without human intervention, through the exploitation of unique

identification, data capture and communication, and actuation capability. The service is

exploited through the use of intelligent interfaces and is made available anywhere,

anytime, and for anything taking security into consideration.” Figure 3 is a depiction of

this definition. (Towards a definition of the Internet of Things (IoT), 2019).

2.2 IoT Protocol Stack for Constrained Devices

Many standardization groups and organizations made efforts to standardize the IoT

protocols such as World Wide Web Consortium (W3C), Internet Engineering Task Force

(IETF), Institute of Electrical and Electronics Engineers (IEEE) and the European

Telecommunications Standards Institute (ETSI) (A. Al-Fuqaha, 2015). In this section, we

will summarize these protocols, and give detailed information for the ones chosen within

the scope of this thesis.

8

Figure 3. Features and scope of an IoT system.

Table 1 gives a high level picture of the de-facto IoT protocol stack according to Internet

Protocol (TCP/IP) Suite.

Internet Protocol

(TCP/IP) Layers

IoT Protocols IoT Security

Protocols

Application
COAP,MQTT, AMQP,

XMPP, HTTP
User-defined

Transport UDP DTLS

Network
Routing RPL RPL security

Encapsulation 6LoWPAN IPv6 IPsec

Link IEEE 802.15.4 802.15.4 security

Table 1. De-facto IoT Protocol Stack

9

2.3 The Constrained Application Protocol (CoAP)

CoAP is a web protocol designed by Internet Engineering Task Force (IETF) for

constrained devices and networks. By constrained devices, usually 8 bit MCUs with tiny

RAM and ROM are referred to. CoAP make transfer of data for such devices. It is not just

a compressed version of HTTP. It does more than that by fulfilling special requirements

such as scarce power, memory, small processing resources and machine-to-machine

communication of IoT devices. CoAP uses UDP as transport layer protocol. It has URI

and Content-type support. The protocol ensures asynchronous message exchanges. With

the use of Datagram Transport Layer Security (DTLS), CoAP can be secured at the

transport layer (Shelby, 2014).

Figure 4. Publish/subscribe process utilized by MQTT.

2.4 Message Queuing Telemetry Transport (MQTT)

MQTT is a data centric message transfer protocol with a client-server topology for the

machine-to-machine communication. It uses publish and subscribe pattern to determine

the unicast, multicast and broadcast message distribution. Data is sent from device to a

broker and published to the client by the broker. Figure 4 shows the publish/subscribe

process of MQTT protocol. It is a lightweight message transfer protocol thanks to small

overhead and low exchanged data. MQTT was originally designed by IBM, but now it is

an open protocol (Andrew Banks, 2019). There are also application protocols such as

XMPP, AMQP, HTTP, AMQP and DDS, for which a comparison is given in Table 2

which will help to give a general understanding of these protocols (A. Al-Fuqaha, 2015).

2.5 Datagram Transport Layer Security (DTLS)

DTLS protocol is used to secure the transport layer. It ensures security and privacy of

applications. DTLS is a variety of Transport Layer Security (TLS) protocol. While it

guarantees similar security, it also protects the datagram semantics. DTLS protocol builds

10

on the idea of “TLS over datagram transport”. TLS uses TCP, while DTLS instead uses

UDP, which in fact is the main designing reason of DTLS in the presence of TLS. DTLS

protocol uses cipher suites and cryptographic algorithms to enhance privacy

(N.Modadugu, 2012).

2.6 IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL)

RPL is an IPv6 routing protocol for Low-Power and Lossy Networks (LLNs) which is

introduced by IETF in March 2012. RPL is designed to work in LLNs which utilizes

constrained devices as both nodes and routers. The protocol makes routing possible in

environments with high loss and low data rates. RPL is constructed for one-to-one, one-

to-many or many-to-one traffic types. There are security fields in RPL protocol which

ensures integrity and replay protection. These additional fields allow security features

such as confidentiality and delay protection (T. Winter, 2012) (Negi, 2017).

2.7 IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN)

6LoWPAN is an adaptation protocol between IPv6 and Low-Power and Lossy Networks

(LLNs) which is designed by IETF. It enables transmission of IPv6 packets to the LLNs,

specifically IEEE 802.15.4. The starting point of the protocol was the opinion that IP

should be implemented on all networks and devices, so that all information systems can

be connected with one protocol. The protocol fragments the big IPv6 packets, compresses

header – sometimes even 4 bytes, in order to make them suitable for IEEE 802.15.4.

6LoWPAN is designed according to “pay as you use” principle. The packet size is

adjusted with respect to amount of transmitted data. This idea will help the constrained

devices that sends just small packets to serve longer time periods (Mulligan, 2007) (G.

Montenegro, 2007).

2.8 Internet Protocol Security (IPsec)

IPsec is a group of protocols and services that ensures the security of IP layer. These

services and protocols fulfill several security requirements. Security provided to the

communication at the IP layer also ensures security at the upper layers. This is one of the

main advantages of the IPsec solution.

IPsec provides privacy with encryption, ensures the integrity of the message, prevents

replay attacks, facilitates exchange of Public Key Infrastructure (PKI) keys and

negotiation of security parameters. The protocol supports two security modes–transport

and tunnel, for different network scenarios. In order to provide these services, IPsec uses

three main protocols:

11

 IPsec Authentication Header (AH) - provides integrity and authentication,

 IPsec Encapsulation Security Payload (ESP) – provides encryption for privacy,

 Internet Key Exchange (IKE) – protocol to exchange keys and decide on security

associations.

These three protocols use several other sub protocols to provide mentioned services.

(K.Seo, 2005) (S.Kent, IP Authentication Header, 2005) (S.Kent, IP Encapsulating

Security Payload, 2005) (S.Kent, "Internet Key Exchange Protocol Version 2 (IKEv2)",

RFC7296, 2014).

2.9 IEEE 802.15.4 Standard for Low-Rate Wireless Networks

802.15.4 is a wireless standard developed by The Institute of Electrical and Electronics

Engineers (IEEE) for the transmission of data through low data rate and low power

consumption wireless personal area networks (WPANs). The standard describes the

physical (PHY) and media access control (MAC) layer of the Open Systems

Interconnection (OSI) model for WPANs. While PHY specifies modulation, frequency,

power and other remaining specifications of the link, MAC describes the data scheme.

802.15.4 standard defines some subcategories for different application areas including

industrial applications, active (battery powered) radio-frequency identification (RFID)

uses, smart utility networks (SUNs) and various other country-specific applications. It is

the de-facto wireless standard for WPANs. (IEEE Standard for Low-Rate Wireless

Networks, 2016)

2.10. Security Solution Implementations for IoT

We introduced the protocol stack for IoT at the above. Now we will have a look to the

security solutions and their implementations. IoT needs multi-layer security solutions to

provide confidentiality, integrity and authentication. To provide these security

requirements, there are standardized solutions; IEEE 802.15.4 Security, IPsec, DTLS.

2.10.1. IEEE 802.15.4 Security Implementations

It has a security sublayer which provides node-to-node security at the link layer (IEEE

Standard for Low-Rate Wireless Networks, 2016). This standard uses Advanced

Encryption Standard [AES] cipher suites for security services. Hui Lin implemented

IEEE 802.15.4 security services in his study and showed the practicability of the standard

(Lin, 2014). But implementing the just IEEE 802.15.4 security services just provides

node-to-node security and for each node the same procedure is repeated. IEEE 802.15.4

12

Security doesn’t provide an end-to-end security for the system and not replace network

and transport layer security solutions.

2.10.2. IPsec Implementations

IPsec ensures end-to-end security for IoT. However, in its original form, it is a “heavy”

protocol for the IoT. As a result, there has been considerable research in order to come up

with optimized implementations which will reduce IPsec’s heavy burden on constrained

devices.

In a study where Raza et al implemented a lightweight version of IPsec, he presents a

specification for AH and ESP headers and concluded that lightweight IPsec is feasible for

WLANs. He further asserts that using lightweight IPsec is a better alternative than IEEE

802.15.4 security services (S. Raza S. D., 2011).

Glissa and Meddeb proposed a new security protocol implemented at adaptation layer-

6LoWPAN and ensures end-to-end security like IPsec. They named it 6LowPSec. The

protocol constitutes end-to-end security channel between nodes and the 6LoWPAN

Border Router (6LBR) by using IEEE 802.15.4 security services (Glissa, 2018).

2.10.3. DTLS Implementations

Raza and others also implemented lightweight DTLS for the CoAPs. They compressed

DTLS header and showed the possibility of using this for the CoAPs (S. Raza H. S., 2013).

In another study, Capossele reported performance improvements in DTLS

implementations on constrained networks. (A. Capossele, 2015)

2.10.4. Other Implementations

In addition to standard DTLS and IPsec solutions, there are also a few niche ones. Ukil

proposes a different solution from them, where they designed a lightweight security

scheme providing object security based authentication and key management.

Implementation results show that their scheme is much more feasible than DTLS and

IPsec (Bose, 2014).

In (De Rubertis, 2013), the authors compared the performance of IPsec and DTLS with

different benchmarks. Their results show that DTLS has higher resource use compared to

IPsec. They concluded IPsec to be more suitable for constrained networks and devices

than DTLS.

In another study by Raza and others, IPsec and IEEE 802.15.4 security services

performance are compared. They found that IPsec performs better than EEE 802.15.4

security services (Shahid Raza, 2012).

13

CHAPTER 3

3. LIGHTWEIGHT SECURITY SCHEMES

In the recent years, in parallel with the increasing popularity of IoT, researchers have

steadily increased their efforts to come up with novel schemes which will reduce the heavy

resource burden of security on constrained networks and devices. In fact, this had led to

the birth of what-is-known-as “lightweight security”. While initial efforts were on the

lightweight implementation of standard schemes, the last decade has seen countless

number of new security algorithms (ciphers, hash functions, etc.) specifically tailored for

lightweight security. They have proved to have several advantages over standard schemes

in terms of resources usage, cost, implementation ease and lifetime.

3.1. Lightweight Block Ciphers

Conventional cryptography is developed for the computers and devices that have no

resource computation problem. However, IoT devices have completely different

requirements. They should be cost and power/energy effective, which in turn means

resource-constrained. Such constraints are, by nature, contradictory with the

specifications of conventional cryptographic algorithms, whose main target is to provide

high security at all costs. The main focus of lightweight cryptography is to solve this

problem (William J. Buchanan, 2017).

Lightweight cryptography is, in simple terms, the art of designing algorithms that ensures

ample security using limited resources. Some lightweight algorithms are optimized for

software implementations while some others for hardware implementations. As stated

earlier, countless lightweight algorithms have already been introduced, with new ones

being introduced every year. In our study, we chose the most popular ones for evaluation

on Arduino Uno platform. We have also implemented standard algorithms like AES,

MD-5 and SHA for a fair comparison between standard and lightweight algorithm.

14

Table 2 depicts main characteristics of our choice of lightweight block ciphers. In the rest

of this chapter, we will briefly introduce these algorithms.

Algorithm Year
Block size

(bit)

Key Size

(bit)
Rounds

 Structure

Type

Target

Platform

AES 1998 128 128/192/256 10/12/14 SPN SW, HW

Simon /

Speck
2013

32 64 32

Feistel SW, HW

48 72/96 36

64 96/128 42/44

96 96/144 52/54

128 128/192/256 68/69/72

Roadrunner 2015 64 80/128 10/12 Feistel SW

Present 2007 64 80 31 SPN HW

Rectangle 2015 64 80 / 128 24/28/32 SPN SW,HW

Pride 2014 64 128 20 SPN SW

SparX 2016 64/128 128/256 24/32/40 Feistel SW

RC5 1994 64 128 20 Feistel SW,HW

LED 2011 64 80 48 SPN HW,SW

Lblock 2011 64 80 32 Feistel HW,SW

Fantomas 2014 128 128 12 SPN SW

Skinny 2016
64 64/128/192 32/36/40

SPN HW,SW
128 128/256/384 40/48/56

Table 2. Look-up Table for the Main Characteristics of the Lightweight Block

Ciphers

3.1.1. Advanced Encryption Standard (AES)

AES is the block cipher algorithm standard by National Institute of Standards and

Technology (NIST). It is based on the Rijndael algorithm. AES encrypts/decrypts 128-bit

wide blocks of data using either 128, 192 or 256-bit long keys. It uses

Substitution-Permutation Network (SPN) construction. AES is optimized for both

software and hardware implementations (NIST, 2001).

AES encryption and decryption relies on a round and inverse round function, respectively.

Four different steps are performed within the round function. First step is called SubBytes,

where each byte within the data block is substituted with another byte using a lookup table,

15

also known as a substitution box, S-box in short. For the second and third steps, 16 bytes

of data are organized in a 4-by-4 matrix. In the second step, ShiftRows(), each row in this

matrix is rotated by a different amount, whereas in the third step, MixColumns(), each

column of the state is mixed with other columns for maximum diffusion. These two steps

constitute the permutation layer, whereas the first step is the substitution layer. In the last

step, AddRoundKey(), a round key is added to the state. All these functions are executed

in each round except the last one, where MixColumns() is skipped.

Number of rounds to be executed for each block of data depends on the key size. It is 10,

12 and 14 for 128, 192 and 256 bits of key, respectively. The round keys are generated

from the original key through a process known as key expansion, which can be either

performed in parallel with encryption or done in advance. Exact inverses of these

functions are executed for decryption (NIST, 2001).

3.1.2. SIMON and SPECK

Simon and Speck are lightweight block cipher algorithms designed by National Security

Agency (NSA). The algorithms are the result of a project aims to present the world a

flexible, secure and analyzable lightweight crypto (LWC) algorithms. They use Feistel

Network structure and have good performance both on software and hardware.

Simon is specifically optimized for hardware implementations, whereas Speck is

optimized for software platforms. They have several block and key length options. It is

possible to choose from 32, 48, 64, 96, 128 bits of block length and 64, 72, 96, 128, 144,

192, 256 bits of key length depending on the requirements and needs of the target

application. Similar to AES, round numbers depend on the chosen block and key length

(32, 36, 42, 44, 52, 68, 69, 72). The Simon round uses bitwise XOR, bitwise AND and

left circular shift operations. The Speck round uses bitwise XOR, addition modulo 2n and

left circular shift operations. Addition is replaced with subtraction in decryption. Simon

and Speck family algorithms have been specifically designed to have very simple round

operations (R. Beaulieu, 2015).

3.1.3. RoadRunneR

RoadRunneR is a software efficient LW block cipher developed by Baysal et al. The

design goals of the developers are low decryption overhead, efficiency in 8-bit CPUs and

provable security. The algorithm has 64 bits of block length and 80 or 128 bits of key

length. The number of rounds is either 10 or 12 for the key length of 80 or 128 bits,

respectively. It too uses a Feistel Network structure as well as SPN type functions.

RoadRunneR uses bitslice S-box, bitwise XOR, shift and rotate operations. (Şahin, 2015)

16

3.1.4. Present

Present is a hardware-oriented lightweight block cipher developed by Bogdanov et al in

2007. The algorithm has 64 bits of block length and 80 or 128 bits of key length. It has

SPN type structure with 31 rounds. The round function includes bitwise XOR, S-box layer

and bitwise permutation. International Organization for Standardization (ISO) specified

this algorithm as the standard lightweight block cipher in 2012 (A., 2007) (ONeill, 2012).

3.1.5. Rectangle

Rectangle is both hardware and software friendly lightweight block cipher designed by

Zhang et al. The designers’ idea was to come up with an algorithm that is lightweight and

fast by using bit-slice techniques. It has an SPN structure. Rectangle algorithm’s block

length is 64 bits and key lengths are 80 and 128 bits with 24, 28 and 32 rounds. The

algorithm introduces new kind of S-box and a new model of permutation layer.

Rectangle’s contribution to the LWC is the adaptation of bit-slice techniques, ensuring

fast and cost-effective software and hardware implementations (Zhang, 2015).

3.1.6. Pride

Pride is a software-oriented lightweight block cipher developed by Albrecht et al in 2014.

The authors have concentrated on the design of linear layer to come up with a

software-efficient algorithm. Pride has an SPN structure and uses 64 bits of data block

and 128 bits of key with 20 rounds. The algorithm has the most efficient software

implementation in 8-bit micro-controllers compared to all other lightweight block ciphers

(Albrecht M.R., 2014), except NSA’s Speck.

3.1.7. SparX

SparX is an ARX (Addition, Rotation, XOR) based block cipher. It is designed with newly

presented “long trail design strategy” (LTS) instead of “wide trail design strategy” (WTS)

in 2016. WTS designs use efficient and small substitution boxes (s-boxes) and costly

linear layers while new LTS design uses big (ARX-based) s-boxes and light linear layers.

32-bit S-boxes are used in Sparx. The algorithm uses 64 bits of data and 128 bits of key

with 3 rounds each with 8 steps; 128 bits of data and 128 bits of key with 4 rounds each

with 8 steps; or 128 bits of data and 256 bits of key with 4 rounds each with 10 steps (Dinu

D. &., 2016) (Sehrawat, 2018).

17

3.1.8. RC5

RC5 uses ARX two-branched Feistel-Network structure. Rives presented this algorithm

back in 1994. It can be implemented on both software and hardware but it was especially

optimized for software implementations. The algorithm is word-oriented meaning that all

operations take place on words. Data-dependent rotations is the main attribute of this

algorithm. The block length can be 32, 64 or 128 bits. It can have different key lengths.

And round numbers can be chosen according to tradeoff between security and speed (R.L.,

1995).

3.1.9. LED

Also known as Lightweight Encryption Device, LED has an SPN structure. The authors

aimed an algorithm that has solid hardware and feasible software implementation. It uses

cryptographic operations similar to AES, such as MixColumnSerial, ShiftRows and

SubCells. The SubCell function’s S-box is the same as PRESENT’s. The algorithm has

simple key expansion model. The block length is 64 bits and key lengths are 64, 80 and

128 bits (Guo, 2011).

3.1.10.LBlock

LBlock is a type of Feistel Network structure. It is stated that the algorithm can be

implemented feasibly not only on hardware but also on software platforms, especially

8-bit MCUs. The algorithm has 64-bit block and 80-bit key length with 32 rounds. The

round function consists of substitution layer, permutation layers. These layers include

4-bit S-box, 32-bit permutations and shift operations (Wu W., 2011).

3.1.11.Fantomas

Fantomas is an LWC block cipher algorithm designed to provide security especially

against side-channel attacks. It is an algorithm from LS-designs family. LS-designs are a

combination of L-boxes (look-up table) and S-boxes. Their target implementation areas

are both hardware and software (especially 8-bit MCUs). The algorithm has 128 bits of

block and 128 bits of key length with 12 rounds (Vincent Grosso, 2014).

3.1.12. Skinny

Skinny is a block cipher family designed to challenge with the SIMON algorithm. It uses

another input with the key to bolster the security against the known attacks. The algorithm

has an SPN structure. It includes a light diffusion layer and key schedule. The designers

asserts that Skinny has strong resistance against differential, linear and side-channel

attacks compared to the NSA designed Simon block cipher family. The authors of the

18

algorithm is stated that the algorithm has one of the best performance for ASIC

implementations. It’s block lengths are 64 and 128 bits. And key lengths change between

64 and 384 bits. (Beierle, et al., 2016)

3.2. Hash Functions

Security algorithms must also provide authentication functionality (to ensure

confidentiality and integrity) in addition to encryption. This is achieved by use of

cryptographic hash functions and hash based message authentication codes (HMAC). As

in block ciphers, there have been recent studies to design lightweight versions of these

protocols. However, they are mostly still in infant mode. In our study, we will be focusing

only on the standard hash functions and their use in HMAC.

3.2.1. MD-5

MD-5 is a hash algorithm standardized in RFC-1321 (Request for Comment) in 1992. Its

design principles are similar to those of its predecessor MD-4. MD-5 takes message or

data and processes it in 512 bits wide blocks. If data length is smaller than 512 bits, it is

padded using a predefined scheme. Afterwards, each 512 bits wide block is processed

using 4 rounds of operations. Upon completion of processing of all blocks, a 128 bits wide

message digest output is generated. The algorithm assures that if the data changes, so will

the message digest with a high probability (Rivest, 1992). But, because of the collision

attacks conducted on the algorithm, it is not anymore safe to use MD-5 (Wang X., 2005).

3.2.2. US Secure Hash Algorithm 1 (SHA-1)

SHA-1 is a hash algorithm standardized in RFC-3174 in 2001. SHA-1’s design principles

are similar to MD-4 and MD-5. SHA-1 also processes data in 512 bits wide blocks and

uses a padding scheme for smaller blocks. SHA-1 algorithm uses 80 rounds to process

each data block. In the end, a 160 bits wide message digest is output. It too assures change

of message digest with the smallest change in data with high probability (D. Eastlake,

2001). According to a collision attack announced by Google Security Blog, SHA-1 is not

safe anymore (Marc Stevens (CWI Amsterdam), 2019).

3.2.3. SHA-256

SHA-256 is a hash algorithm standardized as the US Secure Hash Algorithm Suite (SHA

and HMAC-SHA) in RFC-4634 in 2006, and later adopted by NIST. It processes 512 bits

wide data blocks and produces 256 bits wide message digest. The algorithm assures that

if the data changes, so will the message digest with a high probability (Eastlake 3rd, 2006).

19

3.2.4. SHA-3 (KECCAK)

NIST started a new hash algorithm process in 2005. Later they announced o competition

for the SHA-3 Cryptographic Hash Algorithm in 2007. This process was completed in

2012 and KECCAK was announced as the winner of the competition.

KECCAK uses a sponge construction structure. The SHA-3 family has 4 hash and 2

extendable-output functions (XOF). The hash functions are SHA3-224, SHA3-256,

SHA3-384 and SHA3-512, whereas the extendable-output functions (XOF) are

SHAKE-128 and SHAKE-256. XOF’s output message digest can be expanded to different

lengths. SHAKE functions’ numbers (128 and 256) illustrate the security strengths that

provides (Dworkin, 2015).

3.2.5. Keyed-Hashing for Message Authentication (HMAC)

Integrity is one of the three information security goals CIA (Confidentiality, Integrity and

Availability). HMAC provides the integrity feature with help of a secret key and a hash

algorithm. HMAC is a protocol for calculating an authentication code over the given data

with hash function and a secret key. It protocol uses bunch of bitwise XOR operation,

concatenation and hash functions. HMAC’s main strength is the simplicity of producing

output from input and difficulty of producing input from output (Krawczyk, 1997).

20

21

CHAPTER 4

4. EVALUATION METHODOLOGY

In this chapter, we present our research methodology for evaluation of lightweight

cryptographic algorithms. We explain our choice of evaluation platform, algorithms and

benchmarking criteria. We also give implementation details.

4.1. Choice of Implementation Platform

One of the main objectives of our thesis is to determine the feasibility of using LWC on

the resource-constrained devices that is working on LLNs. For this, we wanted to use a

very low-cost and easily obtainable platform with sufficient resources and computational

capacity. After consideration of several platforms, we decided to realize our

implementations on the Arduino platform, which is widely used in several embedded

applications and preferred as a target development platform for its easy programming and

open source platform. There are countless resources for Arduino for bugs and errors. For

cost purposes, we chose the cheapest Arduino board, i.e. Arduino Uno, which offers a

decent price-performance ratio.

4.1.1. Arduino Platform

Arduino is an open-source platform used to read input and outputs with the help of sensors

and use these for activating something or publish it someone. It is developed as an easy

tool in Ivrea Interaction Design Institute for the students and faculty who have no

programming or electronics background. It has three main elements: Arduino board,

Arduino programming language and Arduino Integrated Development Environment

(IDE).

22

Arduino’s main advantages are simple programming, inexpensive hardware,

cross-platform support, open source and extensible software and hardware. The open-

source software and hardware developed by community have already made it the platform

of choice for resource constrained devices, IoT applications, 3D printing and wearables

(What is Arduino?, 2019).

4.1.2. Arduino Uno Board

Arduino Uno is a microcontroller board based on ATmega328. It has 6 analog input pins,

14 digital I/O pins (of which 6 provide PWM output), 32 KB (of which 0.5 KB used by

bootloader) Flash memory, 2 KB SRAM, 1 KB EEPROM, 16 MHz clock speed, a USB

connection, a power jack, an ICSP header and a reset button. Its supply voltage is between

4.5-5.5 V. The ATmega328 uses a Harvard architecture. The board can be connected to a

computer with a USB cable, which also powers the board. Alternatively, it can be powered

using an external adapter or even by a battery. Uno is the best starter board for Arduino

platforms. (Arduino Uno Rev3, 2019).

4.2 Bench-marking criteria for Block Ciphers

There have been various studies on the evaluation of lightweight ciphers. Hosseinzadeh

et al made a comprehensive survey in this area. They used cost, speed and efficiency as

the benchmarking criteria to evaluate the performance of lightweight ciphers. For

hardware implementation, they measured the cost in terms of the gate count, whereas

memory usage and code size were used as the criteria for software implementation. The

authors put the speed criteria of algorithms as the number of clock cycles per block and

the number of cycles per byte encryption for both software and hardware implementations.

Their speed bench-marking criteria are throughput and low latency (Hosseinzadeh J. &.,

2016).

In a similar study made by Dinu et al, a bench-marking framework named as Fair

Evaluation of Lightweight Cryptographic Systems (FELICS) was presented. It targeted

lightweight block and stream ciphers on 8-bit AVR, 16-bit MSP and 32-bit ARM micro-

controllers. The framework has a pure interface. It is free, open-source and flexible. The

bench-marking criteria are code size, RAM consumption, and the execution time (number

of CPU clock cycles spent on executing a given operation (Dinu D. A., 2015).

Rinne et al also made a performance analysis research. Their research was done on an

8-bit AVR micro-controller with ATmega128 MCU. Their performance criteria was

memory usage (total code size in flash) and encryption and decryption in measured CPU

cycles (Rinne, 2007).

In our study, we used a combination of the previous works and decided to use the

following bench-marking criteria:

23

1. Code size: Size of the all code uploaded to the Arduino board. The code size is

taken from Arduino IDE. Binary sketch size parameter is equal to the code size of

all total functions (Key schedule() + Encryption() + Decryption()) .

2. RAM usage: SRAM usage of an algorithm is important as these algorithms work

on resource-constrained environments. Exceeding of the SRAM’s capacity results

in malfunction of the program. We determine the used SRAM with the help of a

function that calculate the size between the heap and the stack.

3. Execution Time: It presents the total time for “encryption+decryption+key

schedule” for one block of data. We measure this by subtracting the time after the

operation from the time before the operation.

4. Throughput: It is calculated using the following formula:

 Throughput = Data (in bytes) / (end time - start time)

4.3. Selection of Cryptographic Algorithms

AES is the de-facto standard block cipher algorithm. Most of the protocol suites used by

governmental, commercial and private organizations utilize it to provide security to their

information systems. It is the logical choice as the reference benchmarking algorithm. As

a result, it was the first algorithm we implemented on Arduino Uno in our study.

We can briefly summarize our reasoning for choice of other lightweight block cipher

algorithms as follows:

 Simon and Speck: For being the NSA lightweight block ciphers,

 Roadrunner: For being a new family of ciphers, efficient in both software and
hardware implementations, especially developed by Turkish researchers,

 Present: For being one of the frontiers of lightweight block ciphers, the de-facto
standard as the ultra-lightweight block cipher, and the official ISO lightweight
block cipher standard,

 Rectangle: For being the contributor to the lightweight block cipher community
in the adaptation of bit-slice techniques and being both hardware and software
friendly,

 Pride: For being a cipher specifically designed for efficient software
implementation on 8-bit micro-controllers,

 SparX: For being the first cipher designed with newly presented “long trail design
strategy” (LTS) instead of “wide trail design strategy” (WTS),

 RC5: For being the block cipher algorithm used in Third Generation of wireless
mobile telecommunications technology (3G),

24

 LED: For its similarity to AES with a lightweight twist,

 Lblock: For having efficient software implementation on 8-bit micro-controllers
and assertion of enough security margin for known attacks,

 Fantomas: For providing security especially against side-channel attacks and
having efficient software implementation on 8-bit micro-controllers.

 Skinny: For its competition with Simon.

We also implemented the hash algorithms; MD5, SHA-1, SHA-256 and SHA3 (Keccak),

HMAC algorithms; HMAC-MD5, HMAC-SHA1, HMAC-SHA256. These are the

algorithms used in standard security solutions such as 802.15.4 security services, IPsec

and DTLS. We wanted to demonstrate feasibility (or lack thereof) of implementing these

algorithms on Arduino Uno.

4.4. Code Implementation

The high number of algorithms we wanted to implement on Arduino Uno board made it

impractical for us to implement all codes from scratch. Instead, we opted to use existing

libraries where possible.

Out of the two prominent alternatives, the libraries written by AVR-Crypto-Lib (AVR-

Crypto-Lib, 2019) included hash, HMAC and some of the block cipher algorithms we

wanted to evaluate. However, several of our target block cipher algorithms’ were missing.

The other alternative was the FELICS project libraries. FELICS is a project of CryptoLUX

research group of the University of Luxembourg. It consists of a broad choice of algorithm

implementations. Furthermore, the libraries have different versions tailored for different

environments and hardware. Some algorithms have up to 35 different versions. The codes

are written both in C and ASM. All block cipher algorithms we chose in our thesis have

already been included in the project. We used the library versions which is written in C

and not tailored for performance improvement (Welcome to the CryptoLUX Wiki, 2019).

The FELICS libraries were better organized and reportedly more code-efficient. Hence,

we decided to go with a hybrid approach. We used the block cipher codes from FELICS

libraries, and hash and HMAC codes from AVR-Crypto-Lib libraries.

We then adapted those codes to Arduino platform. In doing so, we had to write some codes

almost from scratch. Most of the time, we had to go into low-level details in order to obtain

optimized code. In our conversion process, we utilized the Arduino IDE, which also

allowed us to measure our benchmarking criteria via its built-in functions.

25

CHAPTER 5

5. EVALUATION RESULTS

In this chapter we present the evaluation results of our implementations on Arduino Uno.

We follow the criteria and organization presented in the previous chapter. We start with

the block ciphers and continue with hash functions and HMAC.

5.1. Evaluation of Lightweight Block Ciphers

In this section, we present our evaluation results for lightweight ciphers with respect to

code size, RAM usage, execution time and throughput.

5.1.1. Evaluation of Code Sizes

Table 3 depicts the code sizes of algorithms. The ciphers we have evaluated use 10-19

percent of Arduino Uno’s 32256 bytes of flash memory. Speck has the smallest code size

with 3330 bytes (10% flash memory usage). It is followed by Simon and Pride. Fantomas

has the largest code size use with 6000 bytes (19% flash memory usage).

Surprisingly, AES’s code size is 4760 bytes (15%), very close to the minimum figures

used by lightweight ciphers. This, in fact, shows how well it has been designed to be

suitable for both hardware and software platforms.

When we look at the whole picture, we see that, even with the largest code size use, there

is still enough memory space left for other applications on Arduino Uno. In fact, it is safe

to conclude that Arduino Uno flash memory capacity is sufficient for much more complex

operations, e.g. an IoT protocol stack.

We present our results graphically in Figure 5.

26

Algorithm
Block Size

(bits)

Key Size

(bits)

Total Code

Size (bytes)

Remaining Flash

(bytes)

Usage Percentage

(%)

AES 128 128 4766 27490 15

Simon 64 96 3780 28476 12

Speck 64 96 3330 28926 10

Roadrunner 64 80 3918 28338 12

Present 64 80 5010 27246 16

Rectangle 64 80 3916 28340 12

Pride 64 128 3830 28426 12

SparX 64 128 4504 27752 14

RC5 64 128 4190 28066 13

LED 64 80 4620 27636 14

Lblock 64 80 4500 27756 14

Fantomas 128 128 6000 26256 19

Skinny 64 128 4550 27706 14

Average - - 4378 27878 14

Table 3. Code Size of Lightweight Block Ciphers

Figure 5. Block Cipher Code Sizes in Bytes on Arduino Uno

0

1000

2000

3000

4000

5000

6000

7000

Code Sizes

Code Sizes

27

5.1.2. Evaluation of SRAM Usage

In Table 4, it can be seen that the usage percentage of SRAM fluctuates between 21-30%.

LED and Speck, with its 21 percent usage is the least SRAM using algorithms. Roadrunner

and Fantomas are the second and third best, respectively. AES, Present, Rectangle and

Lblock are 30%, making them the most SRAM consuming algorithms. The graphical

representation of the SRAM usage of algorithms are presented in Figure 6.

Algorithm

Block

Size

(bit)

Key

Size

(bit)

Used

SRAM

(bytes)

Remaining

Space

(bytes)

Usage

Percentage

(%)

AES 128 128 622 1426 30

Simon 64 96 495 1553 24

Speck 64 96 428 1620 21

Roadrunner 64 80 441 1607 22

Present 64 80 604 1444 30

Rectangle 64 80 615 1433 30

Pride 64 128 575 1473 28

SparX 64 128 617 1431 30

RC5 64 128 601 1447 29

LED 64 80 425 1623 21

Lblock 64 80 617 1431 30

Fantomas 128 128 448 1600 22

Skinny 64 128 545 1503 27

AVERAGE - - 541 1507 27

Table 4. SRAM Usage

Even the highest SRAM consuming algorithms use only 30% of the whole SRAM, leaving

70-80% for other applications. As in the code size, lightweight block cipher algorithms

leave more than enough space in SRAM for other applications.

28

Figure 6. SRAM Usage of Lightweight Block Ciphers

5.1.3. Evaluation of Execution Time

As stated earlier, being the de-facto block cipher for information systems community, we

used AES as the main benchmark for other block ciphers. Looking at the execution times

given in Table 5, we see AES to be in the middle. As we mentioned in the previous

sections, AES is not really designed for constrained devices. In the table, Speck is the

most efficient block cipher of all with an average execution time of 0.004 ms for 1 bit

data. Skinny and Fantomas are second and third lowest ones, respectively.

Present is the worst one with an execution time of 2.019 ms followed by LED with an

execution time of 1.199 ms. Speck block cipher is 9 times more efficient than the standard

AES algorithm, which means that confidentiality can be provided nine times more

efficiently with it. While there will be other concerns for confidentiality, this is an

important indicator. The graphical representation of the execution time of algorithms

(excluding Present, LED and RC5) are presented in Figure 7.

There are important execution time differences between these block ciphers. The ratio

between best and worst performance is 2.018 / 0.004 = 504. Even if the two ciphers with

the worst execution time – Present and LED – are excluded, the ratio is still quite high,

i.e. 0.172 / 0.004 = 43. It is important to note that shorter execution time means shorter

time of operation, which directly corresponds to longer battery time and/or life time for

the devices. Considering this fact, the given ratios are rather considerable. They also

indicate the importance of choosing the appropriate cipher for the target application.

0

100

200

300

400

500

600

700

SRAM

SRAM

29

Algorithm
Block

Size (bit)

Encryption

Time (ms)

Decryption

Time (ms)

Key

Schedule

Time

(ms)

Total

Execution

Time (ms)

Execution

Time per

bit (ms)

AES 128 1.67 2.57 0.16 4.40 0.034

Simon 64 0.75 0.73 0.74 2.22 0.035

Speck 64 0.08 0.09 0.11 0.28 0.004

Roadrunner 64 0.52 0.52 0.06 1.10 0.017

Present 64 64.00 62.8 2.44 129.24 2.019

Rectangle 64 0.44 0.39 0.63 1.46 0.023

Pride 64 0.36 0.37 0.24 0.97 0.015

SparX 64 0.40 0.37 0.20 0.97 0.015

RC5 64 0.69 0.70 9.61 11.00 0.172

LED 64 39.30 37.39 0.03 76.72 1.199

Lblock 64 0.40 0.37 0.20 0.97 0.015

Fantomas 128 0.59 0.63 0.01 1.23 0.010

Skinny 64 0.16 0.17 0.28 0.61 0.010

Table 5. Execution Time of Chosen Block Ciphers

Figure 7. Execution Time (Per Bit) of Lightweight Block Ciphers

Execution Time

Execution Time

30

5.1.4. Evaluation of Throughput

Throughput values are directly proportional to the execution times. In Table 6, it can be

seen that Speck has the highest throughput value with the 28.58 bytes/ms .Skinny and

Fantomas have the second and the third highest values with 13.11 bytes/ms and 13.01

bytes/ms. Present has the lowest throughput value with 0.06 bytes/ms and is followed by

LED with 0.10 bytes/ms. The graphical representation of the throughput of algorithms

(excluding Present and LED) are given in Figure 8.

Algorithm
Data Size

(bytes)

Total Execution

Time (ms)

Throughput

(bytes/ms)

AES 16 4.40 3.64

Simon 8 2.22 3.60

Speck 8 0.28 28.58

Roadrunner 8 1.10 7.27

Present 8 129.24 0.06

Rectangle 8 1.46 5.48

Pride 8 0.97 8.25

SparX 8 0.97 8.25

RC5 8 11.00 0.73

LED 8 76.72 0.10

Lblock 8 0.97 8.25

Fantomas 16 1.23 13.01

Skinny 8 0.61 13.11

Table 6. Throughput of Chosen Block Ciphers

As seen in the Table-6, the amounts of difference between the best and the worst values

is considerable, i.e. 476. The ratio between de-facto standard block cipher AES and best

throughput value Speck is 28.58 / 3.64 = 8. The previous power consumption and life time

discussion also holds for throughput.

31

Figure 8. Throughput (bytes/ms) of Lightweight Block Ciphers

5.1.5. Overall Evaluation

Table 7 shows an overall comparison of all block ciphers with respect to all criteria. In

summary, flash memory usage percentage for the total code sizes varies between 10-19%,

whereas the SRAM memory usage is between 21-30%. It is safe to say that, even with the

most memory consuming cipher, there will be no issues in terms of flash memory and/or

SRAM usage, even on a simple platform like Arduino Uno. They do not need to be

considered as number one priority.

However, the same cannot be said for the execution times and hence throughput. The ratio

between the best and worst performance is larger than 43, and can be as high as 504 when

worst cases are considered. The same ratios reflect to throughput as well. Clearly,

throughput is a much higher priority. As noted before, it directly affects the overall

operation time and hence power consumption. Therefore, choice of the right cipher for

IoT applications is imperative for a longer lasting battery life.

It is no surprise that Speck block cipher has the best performance for almost all criteria

(see Table 7), as it has originally been designed for lightweight software applications.

Skinny has the second-best execution time; and it is also good in SRAM usage. Fantomas

has the third-best execution time. However, it has the biggest code size with the 19 percent

and 6000 bytes flash memory usage.

0

5

10

15

20

25

30

35

Throughput

Throughput

32

Algorithm

Total

Code

Size

(bytes)

Code Size

Percentage

(%)

Used

SRAM

(bytes)

SRAM

Percentage

(%)

Execution

Time

(ms/bit)

Throughput

(bytes/ms)

AES 4766 15 622 30 0.034 3.64

Simon 3780 12 495 24 0.035 3.60

Speck 3330 10 428 21 0.004 28.58

Roadrunner 3918 12 441 22 0.017 7.27

Present 5010 16 604 30 2.019 0.06

Rectangle 3916 12 615 30 0.023 5.48

Pride 3830 12 575 28 0.015 8.25

SparX 4504 14 617 30 0.015 8.25

RC5 4190 13 601 29 0.172 0.73

LED 4620 14 425 21 1.199 0.10

Lblock 4500 14 617 30 0.015 8.25

Fantomas 6000 19 448 22 0.010 13.01

Skinny 4550 14 545 27 0.010 13.11

Table 7. Overall Comparison of Block Ciphers

5.2. Evaluation of Hash Functions and HMAC

As we mentioned before, while block ciphers provide confidentiality, hash functions and

HMAC provide integrity and authentication. Any evaluation related to IoT systems should

include these functions and be targeted for constrained-devices. In our study, we have

performed evaluation for the hash functions, whose general characteristics are given in

Table 8.

Algorithm Block Size (bits) Message-Digest

Size (bits)

MD5 512 128

SHA-1 512 160

SHA-256 512 256

SHA3-224 144 × 8 = 1152 224

SHA3-256 136 × 8 = 1088 256

Table 8. Hash Functions Characteristics

33

In Table 9, we can see the implementation results of the conventional hash functions and

HMACs. Total code size percentage values are between 15-20%. SRAM usage percentage

is between 16-30% and execution times are between 2.73–50.36 ms.

MD5 and SHA-1 hash functions do not provide dependable security according to the

results of the latest attacks. Therefore, if a comparison is done, with these insecure

algorithms are excluded, the execution times are considerably high with respect to those

of block cipher algorithms.

It is to be expected, as these algorithms are developed for powerful computers and servers

which do not have resource problems. The conventional hash functions should also be

replace with lightweight ones in order to comply with the resource requirements of

constrained-devices.

Algorithm

Total Code

Size

(bytes)

Code

Percentage

(%)

Used

SRAM

(bytes)

SRAM

Percentage

(%)

Execution

Time (ms)

MD5 5468 17 418 20 2.73

HMAC-MD5 6212 19 590 29 10.98

SHA-1 4864 15 373 18 5.20

HMAC-SHA-1 6060 19 624 30 20.84

SHA-256 5826 18 424 20 12.22

HMAC-SHA-256 6550 20 584 29 48.81

SHA3-224 5946 18 334 16 50.35

SHA3-256 5946 18 334 16 50.36

Table 9. HMAC and Hash Functions Results

34

35

CHAPTER 6

6. CONCLUSION AND FUTURE WORK

In this thesis, we investigated the feasibility of lightweight block ciphers and hash

functions on Arduino Uno. We have evaluated a chosen set of ciphers and hash functions

using a predefined benchmarking criteria. While the chosen ciphers were mostly

lightweight ones (except AES), the hash functions were conventional ones.

The choice of Arduino Uno was done intentionally in order to demonstrate the suitability

and feasibility (or the opposite) of the chosen algorithms to provide security in IoT

applications.

As can be seen in our results, none of the ciphers we have evaluated (even the standard

AES) does not have any Flash and/or SRAM memory problems on the target platform.

With below 20% usage, all ciphers leave enough memory space for other operations. It is

safe to conclude that Arduino Uno is a suitable platform for lightweight block cipher based

security applications. And choosing the suitable block cipher algorithm is very important.

Because there are considerable performance differences between algorithms that effects

the battery and lifetime of the devices.

However, security of an IoT application does not only rely on a block cipher, which is

limited to providing only confidentiality in its pure form. Hash functions and HMAC

should also be considered for applications where confidentiality and integrity services are

required for the IoT device. Therefore, we have extended our investigation to hash

functions. However, due to lack of lightweight libraries for these functions, we were

limited to using conventional functions. Unexpectedly, we have observed huge differences

in performance in the implementation of those functions compared to block ciphers.

36

6.1. Limitations

Our study focuses on the resource usage of lightweight block ciphers and other

conventional cryptographic algorithms. We benchmarked the performance of the

algorithms. But providing security to a system is not just about the best performance. It

depends on the strength of a cryptographic algorithm against different attacks. In our

research, we didn’t make any research about the security strength of an algorithm. Instead,

we relied on the security claims of the designers.

6.2. Future Works

As pointed out earlier, we used conventional hash functions. Furthermore, we did not

consider any integrated solution. We only focused on standalone performance. There have

already been studies to make lightweight versions of security protocols that is used to

provide security to the constrained-devices working on LLNs. In the future, we plan to

extend our research to cover both lightweight hash functions and lightweight security

protocols specifically targeting IoT devices.

It would be not just interesting but also informative to replace conventional crypto

protocols used on IPsec, DTLS and 802.15.4 security services with their lightweight

counterparts and evaluate their performance on constrained devices.

We also encourage future researchers to include countermeasures against side-channel

attacks and evaluate their effects on the overall performance.

37

REFERENCES

A short history of the Web. (2019, June 01). Retrieved from

https://home.cern/science/computing/birth-web/short-history-web

A. Al-Fuqaha, M. G. (2015). Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Communications Surveys & Tutorials, 17(4),

2347 - 2376. doi:10.1109/COMST.2015.2444095

A. Capossele, V. C. (2015). Security as a CoAP resource: An optimized DTLS

implementation for the IoT. IEEE International Conference on Communications

(ICC), (pp. 549-554). London.

A., B. (2007). PRESENT: An Ultra-Lightweight Block Cipher. International Workshop

on Cryptographic Hardware and Embedded Systems (pp. 450-466). Berlin,

Heidelberg: Springer. doi:https://doi.org/10.1007/978-3-540-74735-2_31

Albrecht M.R., D. B. (2014). Block Ciphers – Focus on the Linear Layer (feat. PRIDE).

Advances in Cryptology – CRYPTO 2014 (pp. 57-76). Berlin, Heidelberg:

Springer, Berlin, Heidelberg.

Andrew Banks, E. B. (2019, March 07). MQTT Version 5.0. MQTT Version 5.0. Retrieved

from https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

Arduino Uno Rev3. (2019, April 22). Retrieved from https://store.arduino.cc/usa/arduino-

uno-rev3

AVR-Crypto-Lib. (2019, April 22). Retrieved from https://wiki.das-labor.org/w/AVR-

Crypto-Lib/en

Beierle, C., Gregor, L., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., & Sim, S. M.

(2016). The SKINNY Family of Block Ciphers and Its Low-Latency Variant

MANTIS. In Advances in Cryptology -- CRYPTO 2016 (pp. 123--153). Berlin,

Heidelberg: Springer Berlin Heidelberg.

38

Bose, A. U. (2014). Lightweight security scheme for IoT applications using CoAP.

International Journal of Pervasive Computing and Communications, Vol. 10, 372-

392.

Cambridge Dictionary. (2019, June 01). Retrieved from https://dictionary.cambridge.org/

Chovatiya, F. &. (2017). A Research Direction on Data Mining with IOT. 2nd

International Conference on ICT for Intelligent System. Ahmedabad : Springer

Proceedings.

D. Eastlake, 3. ,. (2001). US Secure Hash Algorithm 1 (SHA1). RFC 3174. IETF.

De Rubertis, A. &. (2013). Performance evaluation of end-to-end security protocols in an

Internet of Things. 21st International Conference on Software,

Telecommunications and Computer Networks. Primosten: IEEE.

Dinu, D. &. (2016). Design Strategies for ARX with Provable Bounds: Sparx and LAX.

Advances in Cryptology – ASIACRYPT 2016 (pp. 484-513). Berlin, Heidelberg:

Springer.

Dinu, D. A. (2015). FELICS - Fair Evaluation of Lightweight Cryptographic Systems.

NIST Workshop on Lightweight Cryptography 2015. NIST.

Dworkin, M. J. (2015, August). SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions. (NIST FIPS) - 202. Federal Inf. Process. Stds.

Eastlake 3rd, D. a. (2006, July). US Secure Hash Algorithms (SHA and HMAC-SHA).

RFC 4634. IETF.

G. Montenegro, N. K. (2007, September). Transmission of IPv6 Packets over IEEE

802.15.4 Networks. "Transmission of IPv6 Packets over IEEE 802.15.4

Networks", RFC4944. IETF. Retrieved from , https://tools.ietf.org/html/rfc4944

Getting Started with the Alexa Skills Kit. (2019, June 02). Retrieved from

https://developer.amazon.com/en-US/alexa/alexa-skills-kit/start

Glissa, G. &. (2018). 6LowPSec: An end-to-end security protocol for 6LoWPAN. Ad Hoc

Networks, 100-112. doi:https://doi.org/10.1016/j.adhoc.2018.01.013.

Guo, J. P. (2011). The LED block cipher. In Cryptographic Hardware and Embedded

Systems–CHES 2011 (pp. 326-341). Berlin, Heidelberg: Springer.

History of IEEE. (2019, April 08). Retrieved from https://www.ieee.org/about/ieee-

history.html

39

Hosseinzadeh, J. &. (2016). A Comprehensive Survey on Evaluation of Lightweight

Symmetric Ciphers: Hardware and Software Implementation. Advances in

Computer Science : an International Journal, 31-41.

Hosseinzadeh, J. H. (2016). A Comprehensive Survey on Evaluation of Lightweight

Symmetric Ciphers: Hardware and Software Implementation. Advances in

Computer Science : an International Journal.

IDC Forecasts Worldwide Technology Spending on the Internet of Things to Reach $1.2

Trillion in 2022. (2019, April 15). Retrieved from

https://www.idc.com/getdoc.jsp?containerId=prUS43994118

IEEE Standard for Low-Rate Wireless Networks. (2016, April 22). (1-709). IEEE.

Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025

(in billions). (2019, April 15). Retrieved from

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/

K.Seo, S. a. (2005, December). Security Architecture for the Internet Protocol. "Security

Architecture for the Internet Protocol", RFC4301. IETF. Retrieved from

https://tools.ietf.org/html/rfc4301

Kramp T., v. K. (2013). Introduction to the Internet of Things. In v. K. Kramp T., Enabling

Things to Talk (pp. 1-10). Berlin, Heidelberg: Springer.

Krawczyk, H. B. (1997, February). HMAC: Keyed-Hashing for Message Authentication.

RFC 2104. IETF.

Lightweight Cryptography. (2019, June 02). Retrieved from

https://csrc.nist.gov/projects/lightweight-cryptography

Lim C.H., K. T. (2006). A Lightweight Block Cipher for Security of Low-Cost RFID Tags

and Sensors. Springer.

Lin, H. (2014). A Practical Approach to Provide Security in IEEE 802.15.4 Wireless

Sensor Network. Applied Mechanics and Materials, 568-570.

Marc Stevens (CWI Amsterdam), E. B. (2019, April 20). Announcing the first SHA1

collision. Retrieved from https://security.googleblog.com/2017/02/announcing-

first-sha1-collision.html

Mulligan, G. (2007). The 6LoWPAN architecture. In Proceedings of the 4th workshop on

Embedded networked sensors (EmNets '07) (pp. 78-82). New York: ACM.

doi:http://dx.doi.org/10.1145/1278972.1278992

40

N.Modadugu, E. a. (2012, January). Datagram Transport Layer Security Version 1.2.

"Datagram Transport Layer Security Version 1.2", RFC6347. IETF. Retrieved

from https://tools.ietf.org/html/rfc6347

Negi, S. U. (2017). Internet of Things and RPL routing protocol: A study and evaluation.

2017 International Conference on Computer Communication and Informatics

(ICCCI) (pp. 1-7). Coimbatore: IEEE.

Nemati, A., Soheil, F., Arash, A., Saeed, H., Majid, A., & Shahpour, A. (2015). An

efficient hardware implementation of few lightweight block cipher. In 2015 The

International Symposium on Artificial Intelligence and Signal Processing (AISP)

(pp. 273-278). Mashhad.

NIST. (2001). NIST FIPS: Advanced Encryption Standard (AES). Federal Information

Processing Standards Publication, 197.

ONeill, N. H. (2012). Hardware Comparison of the ISO/IEC 29192-2 Block Ciphers. 2012

IEEE Computer Society Annual Symposium on VLSI (pp. 57-62). Amherst: MA.

R. Beaulieu, S. T.-C. (2015). The SIMON and SPECK lightweight block ciphers. 2015

52nd ACM/EDAC/IEEE Design Automation Conference (DAC), (pp. 1-6). San

Francisco.

R.L., R. (1995). The RC5 encryption algorithm. Lecture Notes in Computer Science (pp.

86-96). Berlin, Heidelberg: Springer.

Ray, P. P. (2016). A Survey of IoT Cloud Platforms. Future Computing and Informatics

Journal, 135-46.

Raza, S. (2013). Lightweight Security Solutions for the Internet of Things. Malardalen

University Press Dissertations, 139.

Rinne, S. E. (2007). Performance Analysis of Contemporary Lightweight Block Ciphers

on 8-bit Microcontrollers.

Rivest, R. (1992, April). The MD5 Message-Digest Algorithm, . RFC1321. IETF.

S. Raza, H. S. (2013). Lithe: Lightweight Secure CoAP for the Internet of Things. IEEE

Sensors Journal, 3711-3720.

S. Raza, S. D. (2011). Securing communication in 6LoWPAN with compressed IPsec.

2011 International Conference on Distributed Computing in Sensor Systems and

Workshops (DCOSS), (pp. 1-8). Barcelona.

S.Kent. (2005, December). IP Authentication Header. "IP Authentication Header",

RFC4302. Retrieved from https://tools.ietf.org/html/rfc4302

41

S.Kent. (2005, December). IP Encapsulating Security Payload. Retrieved from

https://tools.ietf.org/html/rfc4303

S.Kent. (2014, October). "Internet Key Exchange Protocol Version 2 (IKEv2)", RFC7296.

IETF. Retrieved from https://tools.ietf.org/html/rfc7296

Sehrawat, D. a. (2018). Lightweight Block Ciphers for IoT based applications : A Review.

International Journal of Applied Engineering Research, 2258-2270.

Shahid Raza, S. D. (2012). Secure Communication for the Internet of Things - A

Comparison of Link-Layer Security and IPsec for 6LoWPAN. Journal of Security

and Communication Networks.

Shelby, Z. H. (2014, June). The Constrained Application Protocol (CoAP). Internet

Engineering Task Force (IETF). doi:10.17487/RFC7252

Star Trek (film). (2019, June 01). Retrieved from

https://en.wikipedia.org/wiki/Star_Trek_(film)

Şahin, A. B. (2015). RoadRunneR: A Small and Fast Bitslice Block Cipher for Low Cost

8-Bit Processors. In Revised Selected Papers of the 4th International Workshop on

Lightweight Cryptography for Security and Privacy - Volume 9542.

T. Winter, P. T. (2012, March). RPL: IPv6 Routing Protocol for Low-Power and Lossy

Networks. "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks",

RFC6550. IETF. Retrieved from https://tools.ietf.org/html/rfc6550

The Internet of Things. (2019, April 08). Retrieved from www.ietf.org:

https://www.ietf.org/topics/iot/

The Internet of Things. (2019, April 08). Retrieved from https://www.gartner.com/it-

glossary/internet-of-things/

Towards a definition of the Internet of Things (IoT). (2019, April 08). Retrieved from

https://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_

Things_Revision1_27MAY15.pdf

Vincent Grosso, G. L.-X. (2014). LS-Designs: Bitslice Encryption for Efficient Masked

Software Implementations. Fast Software Encryption - 20th International

Workshop. London.

Wang X., Y. H. (2005). How to Break MD5 and Other Hash Functions. Advances in

Cryptology – EUROCRYPT 2005. Berlin, Heidelberg: Springer.

Welcome to the CryptoLUX Wiki. (2019, April 22). Retrieved from

https://www.cryptolux.org/index.php/Homes

42

What is Arduino? (2019, April 22). Retrieved from

https://www.arduino.cc/en/Guide/Introduction

William J. Buchanan, S. L. (2017). Lightweight cryptography methods. Journal of Cyber

Security Technology, 187-201.

Wu W., Z. L. (2011). LBlock: A Lightweight Block Cipher. Applied Cryptography and

Network Security. ACNS 2011 (pp. 327-344). Berlin, Heidelberg: Springer.

Zhang, W. &. (2015). - RECTANGLE: a bit-slice lightweight block cipher suitable for

multiple platforms. Science China Information Sciences, 1-15.

42

TEZ İZİN FORMU / THESIS PERMISSION FORM

ENSTİTÜ / INSTITUTE

Fen Bilimleri Enstitüsü / Graduate School of Natural Sciences

Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences

Uygulamalı Matematik Enstitüsü / Graduate School of Mathematics

Enformatik Enstitüsü / Graduate School of Informatics

Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences

YAZARIN / AUTHOR

Soyadı / Surname : ..

Adı / Name : ...

Bölümü/Department : ...

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) :

..

..

TEZİN TÜRÜ Yüksek Lisans / Master Doktora / PhD

1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work

immediately for access worldwide.

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent

and/or proprietary purposes for a period of two year. *

3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period

of six months. *

* Enstitü Yönetim Kurulu Kararının basılı kopyası tezle birlikte kütüphaneye teslim

edilecektir. A copy of the Decision of the Institute Administrative Committee will be

delivered to the library together with the printed thesis.

Yazarın imzası / Signature Tarih / Date

