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ABSTRACT

EVALUATING URBAN GROWTH TRENDS BY USING SLEUTH MODEL:
A CASE STUDY IN ADANA

Çapan, Hüseyin

M.S., Department of Geodetic and Geographic Information Technologies

Supervisor: Prof. Dr. Zuhal Akyürek

July 2019, 125 pages

In this study, various urban growth scenarios are simulated for Adana city by us-

ing SLEUTH urban growth model. In addition, the impact of the planned road in

2020 was investigated. The results of this study were compared with other SLEUTH

model applications using a SLEUTH-specific comparison method. SLEUTH is a

cellular automata simulation model developed for urban growth modelling. It is writ-

ten in the C language and has an open source library. Since its first occurrence as

an urban growth model, SLEUTH model has become the most popular one. It has

been applied to more than 50 cities, with various scales, around the world. Supe-

riority of the SLEUTH against other cellular automata approaches has been proven

in some studies in the literature. Adana has the most fertile lands in Turkey, but it

has been facing with immigration and rapid urbanization problems. Landsat imagery

acquired in 1990, 2001, 2006, 2011 and 2016 for Adana are used as input dataset for

the SLEUTH model. Urban plan for 2016 has been obtained from official sources

in order to create a basis for the scenarios. Urbanization in 2050 is estimated using

three scenarios representing current trends, and green areas being fully and partially
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protected. Model sensitivity has been discussed and the changes in the impervious

surfaces in the area are obtained. Prediction results show that the model responds

each scenario in a different manner. Between 2016 and 2050 percent urban area in-

crease for the first scenario is 120%, for the second scenario it is 62% and for the last

and most protective third scenario, 50% increase in urban areas have been predicted.

Detailed urbanization analyses have been performed to find green and agricultural

area losses due to urbanization in the future.

Keywords: Urbanization, Urban growth modelling, SLEUTH, Supervised classifica-

tion
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ÖZ

KENTSEL BÜYÜME TRENDLERİNİN SLEUTH MODELİ İLE
DEĞERLENDİRİLMESİ: ADANA’DA BİR DURUM ÇALIŞMASI

Çapan, Hüseyin

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi: Prof. Dr. Zuhal Akyürek

Temmuz 2019 , 125 sayfa

Bu çalışmada, SLEUTH kentsel büyüme modeli kullanılarak Adana için çeşitli kent-

sel büyüme senaryoları simüle edilmiştir. Ayrıca 2020 yılında yapılması planlanan

yolun etkisi araştırılmıştır. Bu çalışmadan elde edilen sonuçlar, SLEUTH’e özgü bir

karşılaştırma yöntemi kullanılarak diğer SLEUTH modeli uygulamalarıyla karşılaş-

tırılmıştır. SLEUTH, kentsel büyüme modellemesi için geliştirilen bir hücresel oto-

mata simülasyon modelidir. C dilinde yazılmış ve açık kaynak kodlu bir kütüphaneye

sahiptir. Kentsel bir büyüme modeli olarak ilk ortaya çıkışından bu yana SLEUTH,

en popüler kentsel büyüme modeli haline geldi. Dünyada çeşitli ölçeklerde 50’den

fazla şehre uygulandı ve farklı sürümleri geliştirildi. SLEUTH’nin diğer hücresel oto-

mata yaklaşımlarına karşı üstünlüğü de literatürdeki bazı çalışmalarda kanıtlanmıştır.

Adana, Türkiye’nin en verimli topraklarına sahiptir, ancak göç ve hızlı kentleşme so-

runları ile karşı karşıyadır. Adana için 1990, 2001, 2006, 2011 ve 2016 yıllarında elde

edilen Landsat görüntüleri SLEUTH modeli için girdi veri kümesi olarak kullanılmış-

tır. Senaryolar için bir temel oluşturmak amacıyla 2016 yılına ait kentsel plan resmi

kaynaklardan alınmıştır. 2050 yılındaki kentleşme tahmini, mevcut eğilimleri, kısmi
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korumayı ve tam korumayı temsil eden üç senaryo kullanılarak gerçekleştirilmiştir.

Model duyarlılığı tartışılmış ve bölgedeki geçirimsiz yüzeylerdeki değişiklikler elde

edilmiştir. Tahmin sonuçları, modelin her senaryoya farklı bir şekilde yanıt verdi-

ğini göstermektedir. 2016 ve 2050 yılları arasında kentsel alanlarda birinci senaryoda

%120 , ikinci senaryoda %62 en son ve en koruyucu üçüncü senaryoda yüzde %50

artış gözlenmiştir. Gelecekte kentleşme nedeniyle yeşil ve tarımsal alan kayıplarını

bulmak için ayrıntılı kentleşme analizleri yapılmıştır.

Anahtar Kelimeler: Kentleşme, Kentsel Büyüme Modeli, SLEUTH, Kontrollü Sınıf-

landırma
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CHAPTER 1

INTRODUCTION

Due to the rapid urbanization in the last few decades, environmental and ecological

problems have become more visible and have threatened both humans and wild habi-

tat. Population trends in the past and the projection according to the United Nations,

Population Division (UN, 2017) can be seen in Figure 1.1. In 2008 for the first time

in history, number of people living in urban areas has exceeded the number of peo-

ple living in the rural areas. It has been estimated that 70% of world population will

be living in cities by 2050 (UN, 2017). Cities embody a lot of things that people

need. Various job opportunities, better health care and social facilities are making

cities charming than rural areas on the people’s perspective. Especially after indus-

trial revolution, migration to cities has become a global phenomenon. But since the

urbanization is an irrevocable process, accurate future planning is a must. Otherwise

results of bad decisions will be transferred from generation to generation and became

tangled.

Usually urbanization process converts natural lands to agriculture first, then agricul-

tural land becomes urban ones (Clarke et al., 1996). When the urbanization process

reaches natural borders such as water or steep land, vertical urbanization increases

and agricultural areas become more vulnerable to illegal constructions. In this study,

urbanization is defined as the expansion of the city in the horizontal direction.

Keith C. Clarke describes urbanization as conversion of natural to artificial land cover

characterized by human settlements and workplaces (Clarke et al., 1997). He also

states that urbanization speed will be so fast that, people from North America and

Europe will not be able to recognize places of their childhood. According to United

Nations Department of Economic and Social Affairs, Population Division; world pop-
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Figure 1.1: Population change between 1950 and 2050 (United Nations, 2016)

ulation increase will be concentrated in urban areas. Additionally to these estimations

even if population increase stopped, a deceleration in urbanization would not be guar-

anteed. Some cities in Europe and North America which have a balanced population

growth shows no sign of slowing down in urbanization speed.

On global scale most populated ten cities as of 2016 are as follows (United Nations,

2016);

1. Tokyo, Japan (38 millions)

2. Delhi, India (26 millions)

3. Shanghai, China (24 millions)

4. Mumbai, India (21 millions)

5. São Paulo, Brazil (21 millions)

6. Beijing, China (21 millions)

7. Mexico City, Mexico (21 millions)

8. Osaka, Japan (20 millions)

9. Cairo, Egypt (19 millions)

10. New York-Newark, USA (18 millions)
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In 2030 populations of all these cities are expected to rise, except Tokyo. Istanbul

with its 14 million inhabitants, as the most crowded city of Turkey, is the 15th most

crowded city in the world by 2016. According to TUIK data Istanbul’s population has

risen with average 19% annually, between 2007 and 2015. Istanbul’s population is

expected to be around 17 million by 2030 (UN, 2016). Relation between population

and urbanization is very tight in developing countries like Turkey. In high income

countries, rates of urban land expansion are slower and increasingly related to Gross

Domestic Product (GDP) growth (Seto et al., 2000).

In Turkey, due to rapid urbanization after 1950’s, slum housing has become a major

problem for both citizens and the government. Some laws have been enacted to le-

galize illegal buildings and unplanned squatter areas. In 1983, because of unplanned

urbanization for many years, the law of 2981 was enacted (Prime Ministry Legisla-

tion Development and Publication, 1986). With this law, illegal slum buildings turned

into apartments until the end of 2000’s (Komurcuoglu, 2013). Because of the periodic

recurring zoning laws and policies that encourage migration to the cities, urbanization

trend is expected to continue countrywide in the future.

Adana, being the 5th most populated city of Turkey has shown a 10% population

increase between 2007 and 2015. With this rate Adana has the 15th fastest increase of

population in Turkey.

Majority of the urbanization studies focused on specific models like ecological mod-

elling, land use transportation (LUT) models, cellular automata (CA)-based mod-

els, agent-based models (ABMs), integrated models, urban economic models (Li

and Gong, 2016). Within all these approaches CA-based models have been exten-

sively utilized due to their simplicity, flexibility and intuitiveness (Santé et al., 2010).

Among all cellular automata based approaches the most remarkable one is SLEUTH

according to some comparative studies (Berberoglu et al., 2016). SLEUTH is an

acronym consisting of initials of slope, land-use, excluded, urban, transportation and

hill-shade representing the inputs of the model. These models are important because

in many developing countries, urban expansion is observed on primary agricultural

land (Seto et al., 2000). Land-use changes must be carefully planned to protect this

natural economic source.
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Aim of this study is building a SLEUTH land-use model to simulate urban growth

of Adana and calibrating the patterns to illuminate the growth pattern of Adana and

presenting the applicability of SLEUTH to predict the urban development. This study

is important in several aspects; first, it shows that urbanization scenario comparison

using SLEUTH model can create very detailed spatial information. Secondly, the

urbanization pattern of Adana was defined by the comparison of the applications of

the model at different scales in different geographies. Thirdly, this study shows that

the size of the SLEUTH model is important for the consistency of the model.

In Chapter 2 historical evolution of the urban modelling has been discussed and first

examples of the urban modelling are investigated. The shortcomings in the first mod-

els and inaccuracies in city modeling approaches are discussed. New generation mod-

els from the literature are also investigated. Detailed information about the SLEUTH

urbanization model can also be found in this section. In Chapter 3, materials and

methodology used to train SLEUTH urban model has been explained. Preparation of

three different urban scenarios from the urban plans and satellite imagery classifica-

tions has been discussed in this chapter. In Chapter 4, the approach in selecting the

coefficients between the phases of the SLEUTH urbanization model and the prepara-

tion of the computer environment are explained. In Chapter 5, SLEUTH urban model

results are investigated for each scenario, the effect of planned road in year 2020 for

the year 2050 is revealed and SLEUTH model results of this study are compared with

other studies such as Hawaii and Tampa. In chapter 6, conclusions are presented.
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CHAPTER 2

HISTORY OF URBAN GROWTH DETECTION AND PREDICTION

2.1 Monitoring of Urbanization by Remote Sensing

The number of urbanization tracking studies by means of remote sensing has peaked

in 70’s and then decreased over the time. However, remote sensing studies are still a

popular topic due to technological progresses. Google’s Ngram Viewer could provide

insight about the interest raising over the time about a keyword. How the total num-

ber of research topics have changed through the years on ‘Urbanization’ and ‘Remote

Sensing’ fields can be seen in Figure 2.1. Blue line represents the number of remote

sensing books and publications and red line represents the number of the urbaniza-

tion books and publications over the given period. From this chart one can under-

stand, from the beginning of this century till mid-2000’s urbanization mentioned and

many books about urbanization have been published. From mid-1970’s until now it

seems to be it is losing popularity. Remote sensing on the other hand has become

very popular when first remote sensing satellites were sent to the space. Through

the 1960’s urbanization has earned exponential popularity until 1975. Remote sens-

ing researches increased slightly, after the mid-1960’s. Technological breakthroughs

forced by the cold war has a positive effect on the space science and evolving sensors

and low-cost rockets helped scientists to obtain massive data about the Earth.

Despite today’s technological progresses, some problems are keeping researchers

busy for a long time. The most prominent problem is the mixed pixel problem.

Mixed pixels occur when satellite’s IFOV (Instantaneous Field of View) covers more

than one land cover type (Choodarathnakara et al., 2012). Ideally, it is expected that

one pixel represents one land cover type, but when the satellite’s spatial resolution is
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Figure 2.1: Urbanization and remote sensing publications from 1950 to 2008

according to Google Ngram search (Google, 2019) (Y axis is percentage of

publications contains the key words)

not enough to understand the difference, pixels are mixed, and numerical counterpart

of that pixel is a mixture of two or more land cover type. Remote sensing provides a

unique data source for the urbanization studies. The data with high spatial and tempo-

ral resolution guide us to understand the development of urbanization. Classification

techniques are used to derive information from the remote sensing data. Classifica-

tion assigns the land-use classes to pixels according to their digital number values.

Accurate classification is a key factor for a better spatial prediction.

Different classification approaches can be used for satellite image processing but fun-

damentally there can be two way of assigning the classes to the pixels such as;

1. Hard Classification

Class memberships are strict, each pixel is assigned to its closest statistical

cluster.

2. Soft Classification

Soft classification assigns membership of the pixels to each class. For example,

a pure pixel contains only forest land type has a 0% water membership, 100%

forest membership and 0% urban membership. If this pixel was mixed with

urban and forest, memberships could have changed such as; 2% Water, 60%

Forest and 38% Urban.
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Shackelford and Davis (2003) have compared traditional maximum-likelihood clas-

sification with hierarchical fuzzy classification with a high-resolution imagery for de-

tecting and distinguishing the urbanized areas. Due to complexity of the urban areas

it is hard to distinguish features like buildings, asphalt etc. In their study Shackelford

and Davis have used Ikonos imagery, a commercial high-resolution satellite imagery,

of Columbia, Missouri. Before the classification they have orthorectified the image

and applied a colour normalization method to fuse PAN data to MS bands. Maxi-

mum likelihood classification was done with seven classes; Road, Building, Grass,

Tree, Bare Soil, Water and Shadow. Shadow class was used to minimize problem

of shaded pixels in the urban environment. In Shackelford and Davis’s study, it has

been clearly stated that conventional classification techniques produce high amount

of error even with high spatial resolution satellite imagery. Fuzzy membership calcu-

lation of hardly distinguishable areas as grass-tree, road-building and water-shadow

increases the accuracy of the classification (Shackelford and Davis, 2003). But the

SLEUTH model requires only urban areas for future urbanization predictions. There-

fore, generally distinction between road and settlements is not very important. Other

SLEUTH studies in the literature such as Yakup et al. (2018), Agyemang and Silva

(2019), Saxena and Jat (2019), Sahana et al. (2018) also use hard classification of

Landsat imagery to train SLEUTH model due to it’s simplicity.

2.2 Urban Growth Modelling Approaches

Urban growth modelling is a popular research field and applications all around the

world can be found at various scales. Because, an urban growth model that can make

dependable projections and predictions is valuable for both scientific and administra-

tive purposes (Berling-Wolff and Wu, 2004). Politicians, policy makers, city planners

and finally public can benefit from such a model. Model results can be used by deci-

sion makers as a supportive source or different scenarios can be simulated to analyse

different policies. Urbanization modelling is only a specialized version of modelling

frameworks. Once the modelling framework has been established, not just urbaniza-

tion but many natural or anthropogenic processes such as; hydrological, infectious

diseases and wildfires can also be modelled.
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First urban models aimed to model some specific features such as transportation and

employment. Theory behind these models were gravity theory, linear or optimizing

mathematics and analysis of molecular behaviour. Due to costly procedures and grand

expectations that couldn’t be satisfied, first urbanization models were disappointment,

even state support was withdrawn (Lee, 1973). Independent of the study field, these

first unsuccessful attempts were the basis for all future modelling work (Berling-

Wolff and Wu, 2004). Eighties and nineties are referred to as the renaissance of

the city modelling due to increased spatial data resources and advanced computers

(Dietzel and Clarke, 2004). In this era modelling results began to be more consistent

and accurate.

2.2.1 Pioneers of Urban Growth Modelling

Roots of urban growth modelling goes back to 60’s. Traffic problem, caused by in-

creasing number of vehicles, and concerns of federal government about urban prob-

lems gave a birth to demand for more scientific highway impact statements. The

complexity and size of the problem forced decision makers to approach the problem

scientifically.

Early pioneers of the urban modelling have sought to model either to predict the

economic and size relationships between cities or to discover the internal social and

economic patterns within the limits of the city (Clarke et al., 1997). For some specific

reasons these early systems didn’t work as expected and most of them were not able

to pass the experimental phase.

Very valuable information learned from the failure of the first systems. Lessons

learned from the failures have helped researchers to build better models in the fu-

ture. Procedural mistakes according to Lee (1973) are:

1. Excessive Comprehensive Modelling

Excessive expectations from the models have resulted with abnormal scopes.

Models tried to simulate huge and complicated systems at once and results

were expected to answer problems from distinct fields. Evolving computers

and algorithms have a big share on these big expectations. Every additional
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layer increase uncertainty and it was realized that our understanding about ur-

banization doesn’t evolve as we stack different data layers on a model.

2. Rough Modelling Assumptions

While the models need huge datasets to provide highly detailed information,

decision makers need much coarser data to support decision process. For ex-

ample, when planning a trade centre, planners don’t need to use a land-use

model. These kind of changes can be done with less effort and much less data.

Models should have been very specific about what they are modelling.

3. Glutton Data Models

Regardless of what was modelled, any realistic model needed large data sets.

Collecting these datasets for each application could be very time consuming.

This can be avoided if the scope of the model is narrowed down. To narrow the

scope, the results sought should be determined from the beginning.

4. Complexity of Modelling

Since modelling has many variables and internal connections between the vari-

ables, it has a complex structure. Number of possible interactions between

terms increases by square of the term quantity. For example from this formula;

n ∗ (n − 1), if we have twenty variables, there are 380 possible interactions if

bilateral interaction is allowed. Predefining which variables can interact with

each other can reduce the number of interactions between terms, even so rela-

tions must be aggregated to understand the effects of the relations.

5. Insisting on False Assumptions About Model Behaviour

The behavioural estimation of the model could be misleading, even for the ones

who designed the model. Unforeseen relations between variables may alter the

results. These relations aren’t explicit and hard to define.

6. Extreme Dependence on Computers

Creating models using huge datasets can be accomplished only by using com-

puters. Back in 60’s programming wasn’t a widespread practice as it is today.

Writing a program or debugging was a real deal. Besides difficulties of pro-

gramming, calculation reliability of the computers was not accurately known.

Numerical errors produced by algebraic and repeating operations such matrix
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inversion must be handled. But desperately, computers that day couldn’t even

approach single-digit accuracy.

The problems listed above are not specific to urban growth modelling but modelling

problems in general. First decade of urban growth modelling started with optimism

and grand expectations. As the models tested and results begin to emerge, expec-

tations are lowered, and fundamentals of modelling began to be questioned. Re-

searchers have realized that size and complexity of urban model have profound in-

fluence on knowledge gained from the model. Although there aren’t many clear lim-

its, the knowledge gained from the model is transformed from information about

urbanization structure to information about large model information as the size and

complexity of the system increase (Lee, 1973). CATS (Chicago Area Transporta-

tion Study) in 1960 and Detroit Metropolitan Area Transportation Study in 1955 are

examples of early urban models.

2.2.2 New Generation Modelling Approaches

The first models aimed to model specific economic activities by displaying narrowly

comprehensive approaches. One of the popular approaches was central place theorem

which fundamentally assumes each household travels to closest centre to satisfy their

needs. This approach has been abandoned in the new generations, as it is possible

to apply very few sectors and has simple assumptions about human behaviour. As

urban growth modelling evolves as a research area, different approach ideas were put

forward.

The maximum entropy approach began to be used in transportation and urbanization

models since the 1970’s. Entropy maximizing systems proved some entities about

urbanization, which are thought to be separated, were related (Berling-Wolff and Wu,

2004). As a result; entropy maximizing systems have undergone internal fractures.

But characteristics of the new models were shaped by two things; lessons learned

from the failure of the first systems and computer revolution. Modularity were kept in

the forefront and some algebraic problems that thought to be unsolvable or unpractical

to solve was solvable due to increased computing power. Examples of new generation
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models are FUTURES (Meentemeyer et al., 2013) and GeoSOS-FLUS (Liu et al.,

2017). These models use the stochastic patch-growing algorithm and an improved

cellular automata allocation, respectively.

2.3 Urban Growth Model SLEUTH

Urban growth model SLEUTH was first published in 1996 by K.C Clarke (Clarke

et al., 1996). Principles of this model were based on Clarke’s previous work about

wildfires. The model introduced in this very first paper was relied on cellular automata

and Monte Carlo simulations. Purpose of this paper was to see if it is possible to

predict urban growth with a self-modifying cellular automata model. SLEUTH works

in growth cycles and in every cycle, it assigns statistical values to each pixel. Cycles

are years in real life. Calculation of these statistical values are triggered by initial

values. These values are commonly called coefficients. SLEUTH coefficients are;

Slope, Land-cover, Exclusion, Urbanization, Transformation and Hillshade. Then

five factors control the behaviour of the system;

1. Diffusion (Factor of overall outward dispersiveness)

2. Breed (This factor specifies if a new growth pixel will start its own growth

cycle.)

3. Spread (Controls how much organic expansion occurs from existing settle-

ments.)

4. Slope (A resistance factor, influences settlements growth through steeper envi-

ronment.)

5. Road Gravity (A factor that attracts new settlements along the roads.)

In the demo scenario file, which can be found inside the SLEUTH model files, self-

modification parameters are written. The values of these parameters are found after

long studies as Clarke has stated in his SLEUTH video (Clarke, 2016).

SLEUTH model have been calibrated for vast range of cities and accuracy assess-

ments have been done. It accepts images in GIF format and outputs are also in the
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same format. Clarke states they’ve selected GIF as their main input format because it

is easier to read and write. In future, different formats are planned to be added such

as GEOTIFF and PNG.

Because of its popularity (Li and Gong, 2016) and reliability (Berberoglu et al., 2016)

when compared to the other models, SLEUTH model was applied to almost all ma-

jor cities of the United States as well as some of the European, African and Asian

cities. Applications had different purposes such as determining the likelihood of ur-

ban growth around the waste disposal sites and investigating effects of different urban

growth scenarios. Different methodologies were developed to understand outcomes

of SLEUTH model. For example Sahana et al. (2018) have used an urban sprawl

matrix method to understand urban sprawl in the sub-regions. Saxena and Jat (2019)

have modified the self-modification parameters of the SLEUTH in order to success-

fully capture heterogeneous urban growth in the Pushkar Town in India. They’ve suc-

cessfully modified the model and stated that self-modification parameters play more

important role in the areas which urbanization is fragmented. Critical low and crit-

ical high of self-modifying parameters are adjusted accordingly and calibration has

been run. It was understood that cities with different forms of urbanization should

have different self-modification parameters. Agyemang and Silva (2019) have tested

SLEUTH model’s sensitivity against a very rapid and spontaneously urbanizing Accra

city-region in Ghana. Their study suggested SLEUTH model can be used as decision

tool even in overwhelmingly irregular urbanizing areas. In another attempt to predict

future urbanization and modelling land-cover change in İstanbul, Yakup et al. (2018)

have used SLEUTH model and found if precautions are not taken, all green areas near

Sancaktepe district will become urban by 2070. SLEUTH model was also used by

Nucci et al. (2016) to study urbanization in Mashhad city after Islamic Revolution

of Iran. Findings in this study suggest that Mashhad is facing rapid urbanization and

proposed solutions for the possible urbanization challenges may be experienced in

the future.
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2.3.1 Cellular Automata

Original idea of the cellular automaton dates back to 1940’s. Two scientist of Los

Alamos National Laboratory, Stanislaw Ulam and John von Neumann have laid the

foundations (Berling-Wolff and Wu, 2004). Self-replication problems have driven

scientist search about cellular automata. In 1970 Martin Gardner, an American math-

ematician and science writer has published John Conway’s studies about cellular au-

tomata in a popular science magazine. Two-dimensional cellular automaton become

widely known in early computer society after this publication. Generally cellular au-

tomata have similar rules. For example; a simple two-dimensional cellular automaton

consists of four primary components;

1. State

The state of the cell at a given time. For example, if the system is replicating

urbanization, states of the cells could be; urban and non-urban.

2. Cells

Keeps the track of spatial state of states. They can be thought as scenes of

satellite imagery.

3. Neighbourhoods

Neighbourhoods define spatial relation between cells.

4. Transition Rules

Transition rules define the characteristic of replicated system. For instance;

well-known two-state cellular automata, Conway’s Game of Life has the fol-

lowing transition rules;

• Any live cell with fewer than two live neighbours dies. (Underpopulation)

• Any live cell with two or three live neighbours lives on to the next gener-

ation.

• Any live cell with more than three living neighbours are kept.

• Any dead cell with exactly three live neighbours becomes a live cell.

An example of how neighbours and states are defined in cellular automata can be seen

in Figure 2.2.
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Figure 2.2: Simple 2-D cellular automata (Schiffman, 2019)

Cellular Automaton based on iterative Monte Carlo simulations forms the main frame-

work of SLEUTH. Stephen Wolfram stated on cellular automata; “This universality

implies that many details of the construction of a cellular automaton are irrelevant

in determining its quantitative behaviour. Thus, complex physical and biological

systems may lie in the same universality classes as the idealized models provided

by cellular automata. Knowledge of cellular automaton behaviour may then yield

rather general results on the behaviour of complex natural systems” (Wolfram, 1984).

Complex phenomena could have similar evolving patterns as simple phenomena and

cellular automata could help us to understand their behaviour.

2.3.2 SLEUTH model coefficients

Applications cover many continents and areas with different geographical structure,

also different satellite imagery with various spatial resolution have been used by re-

searchers such as Sevik (2006), Silva and Clarke (2002) and Berberoglu et al. (2016).

These studies have helped researchers to answer some fundamental questions about

SLEUTH model. One mind-stirring question is how the input satellite imagery’s reso-
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lution affects the simulation accuracy and Silva and Clarke (2002) have answered this

question in their research. Their conclusion was that the results with high resolution

imagery did not affect the simulation accuracy. Since urbanization is a phenomenon

affecting large areas, trying to catch small changes did not contribute much to the

model (Dietzel and Clarke, 2004). Another important question is about the perfor-

mance of the cellular automata approach. This question was answered by Berberoglu

et al. (2016) by comparing different modelling approaches such as artificial neural

networks, regression tree, markov chain and the SLEUTH model. His findings show

SLEUTH model performs best across all urban modelling approaches. Another com-

plicated question is assessment of SLEUTH’s metrics that are used to measure good-

ness of fit. These metrics are;

1. Product

Multiplication of all scores.

2. Compare

Modelled population for final year/actual population for final year.

3. Population

Least squares regression score for modelled urbanization compared to actual

urbanization for the control years

4. Edges

Least square regression score for modelled urban edge count compared to actual

urban edge count for the control years.

5. Clusters

Clusters Least squares regression score for modelled urban clustering compared

to known urban clustering for the control years

6. Cluster Size

Least squares regression score for modelled average urban cluster size com-

pared to known average urban cluster size for the control years

7. Lee-Salee

A shape index, a measurement of spatial fit between the model’s growth and
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the known urban extent for the control years

8. Slope

Least squares regression of average slope for modelled urbanized cells com-

pared to average slope of known urban cells for the control years

9. % Urban

Least squares regression of percent of available pixels urbanized compared to

the urbanized pixels for the control years

10. X-mean

Least squares regression of average xvalues for modelled urbanized cells com-

pared to average xvalues of known urban cells for the control years

11. Y-mean

Least squares regression of average yvalues for modeled urbanized cells com-

pared to average yvalues of known urban cells for the control years

12. Rad

Least squares regression of standard radius of the urban distribution, i.e. nor-

malized standard deviation in x and y

13. F-Match

A proportion of goodness of fit across landuse classes.(Only if land-use and

land cover is being modelled)

For each calibration run, SLEUTH calibrates these metrics according to the input

data. On each run calibration parameter range gets narrower. Also, the parameters

of the prior calibration run are reviewed and parameters of the next run are deter-

mined except the coarse calibration. Researchers have used different parameters on

the above to determine best fit values for the calibration (Dietzel and Clarke, 2007).

These different pre-acceptances prevented the formation of a consensus about as-

sessment of the SLEUTH metrics. Dietzel and Clarke (2007) have eliminated the

confusion by creating a metric specified for the SLEUTH by testing the effect of each

metric. Growth rules of SLEUTH are explained in the equations below:
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1. Spontaneous Growth Rule

Determines possibility of random urbanization of the cells in cellular automata

framework. Spontaneous growth is a function of dispersion and slope coeffi-

cients. Formulation of the rule can be seen in Equation 2.1. A random number

is used in spontaneous growth function so that stochasticity of the process is

ensured.

U(i, j, t+ 1) = F (dispersion coef., slope coef., U(i, j, t), random) (2.1)

2. New Spreading Centre Growth Rule

Determines newly urbanized pixel’s possibility of becoming new spreading

centre. Breed and slope coefficients define the probability of each new urban-

ized pixel to become new spreading centre. At least two neighbouring pixels

should be available for urbanization for this process. Slope coefficient is used

to determine if adjacent pixels are available for urbanization. A random num-

ber is used in this function too, so that stochasticity of the process is ensured.

This rule doesn’t affect excluded areas and already urbanized cells.

3. Edge Growth Rule

Edge growth determines urbanization near the growing centres. Spread and

slope coefficients are variables of edge growth function. Formulation of this

rule can be seen in Equation 2.2. In the Equation 2.2, U(k, l) defines neighbour

pixels.

U(i, j, t+ 1) = F (spread coef., slope coef., U(i, j, t), U(k, l), random) (2.2)

4. Road Influenced Growth Rule

Road influenced growth is determined by the existing and future road layers and

breed, road gravity, dispersion and slope coefficients. If a road pixel is found

in vicinity of the selected pixel, a temporary urban cell is placed. Vicinity

of the pixels are determined by road gravity coefficient. Later this temporary

pixel is randomly selecting new pixels along the road, this process is called

road trip. Through the walk number of steps are conducted and at the last step
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temporary pixel becomes permanently urban. In Equation 2.3 R(m,n) is a road

pixel, U(k,l) and U(i,j) are urban pixels.

U ′(k, l, t+ 1) = F (U(i, j, t+ 1), road gravity coef., R(m,n), random) (2.3)

At the end of the random walk, new urban spreading centre can be defined by

the formula in Equation 2.4;

U ′′′(i, j, t+ 1) = F (U ′(p, q, t+ 1), R(m,n), slope coef., random) (2.4)

Two neighbouring cells can be urbanized with the function in Equation 2.5.

U ′′′′(i, j, t+ 1) = F (U ′′′(p, q, t+ 1), U(k, l, t+ 1), slope coef., random (2.5)

2.3.3 Self-modifying Cellular Automata

Self-modifying is a distinctive feature of SLEUTH. It refers to preventing uncon-

trolled exponential growth as system increases in overall size. System modifies itself

to the circumstances it generates (Clarke et al., 1997). SLEUTH decreases multiplier

factors every subsequent growth cycle (Clarke et al., 1996). In SLEUTH, subsequent

growth cycles are years. SLEUTH takes all the main factors that affect urbanization

as input and provides scientifically comparable predictions about the future urbaniza-

tion. Coefficient values produced by SLEUTH simulations are considered as DNA of

the regions (Clarke et al., 2007). Just like in a laboratory environment, urbanization

of different cities can be examined and the comparisons between them can be made.

How urbanization can be different within the framework of different rules or effect of

different environmental factors can be predicted by SLEUTH simulations.
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CHAPTER 3

MATERIALS AND METHODOLOGY

3.1 Study Area Definition

Resting on the western end of the fertile crescent, Adana has been a very charming

place for agricultural activities through the history. Geography, soil type and abun-

dance of wetlands are main reasons for this unique feature. Today Adana still has

the most fertile lands in Turkey but also facing with immigration and rapid urbaniza-

tion in the last few decades. Figure 3.1 shows the study area and Figure 3.2 gives

insights about Adana’s population change through years. Turkish Statistical Institute

(TÜİK) publishes historical data about population of provinces, but urban and rural

populations can be found separately only before the year 2000. The data after year

2000 include only the total population. Figure 3.2 shows that Adana is not exception

about what is happening on global scale; urban population is on the rise. Study region

defined with a rectangular box can be seen in Figure 3.3.

Although the study area does not completely cover the provincial boundaries, it in-

cludes about 80% of the population of Adana. Urbanization is clustered in the south-

ern part where the highway and agricultural areas exist.
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Figure 3.1: Adana administrative boundaries with the study area

Figure 3.2: Adana population change (TUIK, 2018)
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While selecting study area, city centre is positioned in the middle of the study area.

Most of the agricultural areas which are spread through the south part of the city

have been included too. Northern side of study area consists of mostly dam lake and

mountains meaning urbanization is naturally limited in this part.

3.2 Methodology

In this section, data sources used in this study and methodologies used to extract

information from the input data are explained. Flowchart of SLEUTH application

can be seen in Figure 3.4.

Figure 3.4: Flowchart of SLEUTH

3.2.1 Data Sources Used in the Study

I. Satellite Imagery

In this study Landsat images were used to obtain land cover information of the

study area. Landsat has wide usage by urban researchers and data library in-

cludes 30 years of satellite imagery. Practical data access making it superior to

other non-commercial earth observation satellites. Landsat imagery has 30 me-

ters spatial resolution in colour bands and 15 meter spatial resolution in panchro-
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matic band. Since urbanization/imperviousness phenomena affects wide areas

as discussed in Section 2.3, its spatial resolution is found sufficient for this study.

Landsat images on Worldwide Reference System path number 175 and row

number 34 are downloaded from USGS Earth Explorer web site. Landsat 5

(29-Aug 1990, 24-July 2006, 20-June 2011, 20-Aug 2016) and Landsat 7 (18-

July 2001) data acquired in summer time are used to create urban growth model

input data in this study. Also, a Landsat 8 (27-Sep 2018) imagery has been used

as validation data for the model predictions. Time-line of the spatio-temporal

data used in this study can be seen in Figure 3.5.

II. Approved Plans of Adana

In Turkey planning process of cities and regions follows a procedure. Firstly

1/25.000 Landscape plans are prepared, then based on this plan 1/5.000 or

1/2.000 scale plans are prepared and finally 1/1.000 scale development plans are

prepared. As the scale grows, plans become more detailed. Plans are prepared

in separated sections. Each section can be prepared by a different company and

thus causes notation differences. Using plan data directly in a GIS software is

nearly impossible. Layer aggregation is a solution for the multiple layers and

different notations in plans. Aggregated version of 1/5.000 scale plan can be

seen in Figure 3.6. SLEUTH’s Excluded areas are obtained from these urban

plans.
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III. Digital Elevation Model

Digital Elevation Model (DEM) data was downloaded from USGS’s web-site.

Resolution of this data is 1 arc second i.e., roughly 30 meters. The DEM is

produced from downloaded SRTM data using ArcGIS. It can be seen in Figure

3.7. Hillshade and slope layers are calculated from this DEM data.

IV. Road Data

Road data are digitized from master plans. If road layer is prepared correctly,

SLEUTH can handle distinct types of roads. 1/1000 scale plans contain road

width information and road widths vary from 5 meter to 100 meter. Only the

roads which are 10 meter or broader are digitized because smaller roads are do

not have a significant effect on urbanization. Small roads usually can be seen in

already urbanized areas. Road data can be seen in Figure 3.7.

26



Fi
gu

re
3.

7:
In

pu
tD

at
a

L
ay

er
s

of
SL

E
U

T
H

(F
ir

st
ro

w
:U

rb
an

la
ye

rs
fr

om
19

90
to

20
11

,s
ec

on
d

ro
w

:2
01

6
ur

ba
n

la
ye

ra
nd

ro
ad

la
ye

rs
fr

om

20
06

to
20

20
,t

hi
rd

ro
w

:s
lo

pe
,h

ill
sh

ad
e

an
d

ex
cl

ud
ed

ar
ea

la
ye

r)

27



3.2.2 Processing Steps of Satellite Imagery

Satellite imagery used in this study needs to be processed before being used in the

SLEUTH model. Basically, all imagery have been clipped according to the study

area extent and digital numbers were transformed to top of atmosphere reflectance

values in order to have comparable values among years. After the transformation,

the imagery were classified using both supervised and unsupervised classification.

Finally, accuracy assessment has been applied to the classified images.

I. Transformation of Digital Numbers to Top of Atmosphere Reflectance

Image files downloaded from USGS web site are already processed in various

levels. This process includes corrections such as; geographic correction, radio-

metric correction and inter-calibration of other Landsat instruments. Corrected

data subjected to a quality test and classified as Tier1(T1), Tier2(T2) or Real-

Time(RT). Tier1 is the available data that having the highest data quality. Scenes

can’t meet quality of Tier1 are classified as Tier2. Scenes newly acquired and

processed with predicted values are classified as RealTime data. The highest

quality data level is also divided within itself into six groups. Figure 3.8 shows

the classification of Landsat data according to their quality.

L1T and L1TP are the top-class processing levels in Tier1. All image files which

are used in this study are L1T class. Each Landsat data distributed through the
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USGS web site is a compressed file which contains each individual band as an

image file and a metadata file in the text format. Images are expressed as digital

numbers. These numbers may differ from satellite to satellite due to radiometric

characteristic of the sensors. Angle of the Sun is another factor that affects these

numbers. The effect of the angle of the Sun can be investigated by comparing the

pixel value of the same pixel in the imagery acquired in different times with the

same satellite sensors. When looking at these images by stacking RGB bands

on top of each other by an image processing software, such as ENVI, scenes

look normal but when the pixel values investigated, they have high values (in

thousands). Even the pixels representing the same area in different scenes have

very different DN values provided that the areas do not change. Different DN

values in different imagery may cause classification problems.

Table 3.1: Comparison of DN values of the same pixel

Acquistion

Year
Sensor Red Band Green Band Blue Band

2018 Landsat 8 OLI 8105 8591 9037

2016 Landsat 8 OLI 8391 9651 10479

2006 Landsat 5 TM 22 31 81

It is possible to find each variable from the metadata file of the downloaded

Landsat scene. Transformation methodology for TM and ETM sensors used

in Landsat 5 and Landsat 7 is available in Yale University’s Centre of Earth

Observation web site (Yale University, Center for Earth Observation, 2018) and

29

Table 3.1 shows the cursor location values of three Landsat images. First two

data are from Landsat OLI 8 sensor, the last one is from Landsat 5 TM sensor.

Digital number transformation to top of atmosphere reflectance transformation

for Landsat 5 and Landsat 7 imagery can be done automatically through an

ENVI module called ENVI Landsat Calibration. But Landsat 8 imagery can’t

be automatically transformed. However, manual transformation can be done

by using the following transformation methodology given in web site of USGS

(USGS, 2018b).



given in Equation 3.1.

ρ′λ = MρQcal +Aρ (3.1)

Definition of the variables in the equation 3.1 are as follows;

• ρ′λ is TOA planetary reflectance, without correction for solar angle.

• Mρ is band-specific multiplicative rescaling factor from the metadata

• Qcal is quantized and calibrated standard product pixel values (DN).

• Aρ is band-specific additive rescaling factor from the metadata.

Before the transformation, value of the same pixel in five images can be seen in

Table 3.2.

Table 3.2: Value of a pixel in different images before calibration

Acquistion

Year
Sensor Red Band Green Band Blue Band

1990 Landsat 5 TM 17 30 81

2001 Landsat 5 TM 42 60 82

2006 Landsat 5 TM 23 30 79

2011 Landsat 7 TM 20 30 79

2016 Landsat 8 OLI 7453 8901 10141

After the transformation, values for the same pixel can be seen in Table 3.3;

30

Landsat 7 and Landsat 5 data are automatically converted by using metadata

file. Landsat 8 image is converted manually using formula in USGS’s web site

(USGS, 2018a).



Table 3.3: Value of a pixel in different images after calibration

Acquistion

Year
Sensor Red Band Green Band Blue Band

1990 Landsat 5 TM 0.057624 0.091639 0.120769

2001 Landsat 5 TM 0.043372 0.077817 0.104778

2006 Landsat 5 TM 0.057345 0.088103 0.118629

2011 Landsat 7 TM 0.0675508 0.113544 0.143870

2016 Landsat 8 OLI 0.042032 0.082162 0.109381

Since a successful calibration has been done, all pixel values are normalized and

pixel values in the same location have similar values.

II. Classification of Satellite Imagery

Before the classification, all satellite images are clipped according to the study

area domain. Study area is defined in ENVI and it is exported as ESRI’s shape-

file format. There is no ideal classification of land use and land cover, and it is

unlikely that one could ever be developed (Anderson, 1976).

All satellite imagery are classified using supervised classification with the maxi-

mum likelihood method. Parametric methods such as maximum likelihood clas-

sification and unsupervised clustering assume that remote sensing data are nor-

mally distributed and require the knowledge about the forms of the underlying

class density functions (Duda et al., 2001). Since a priori knowledge about the

study area already acquired, training pixels are chosen based on this knowledge.

Useful thematic information may be obtained using supervised classification al-

gorithms if the general steps are understood and applied (Beitzel et al., 2005).

General steps used to extract thematic land-cover information from digital re-

mote sensing data can be seen in Figure 3.9.
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Figure 3.9: General Steps to Extract Thematic Land-Cover Information from Digital

Remote Sensor Data (Anderson, 1976)

SLEUTH model can predict only urbanized areas, not the urban classes. Ur-

ban classes are needed only when land cover transition in the past are wanted

to be modelled. In this study land cover transition are not studied and there-

fore traditional classification methods are used instead of intensive and complex
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classification methods.

The study area is defined according to the planned area of the city. Possible

land classes in satellite imagery scene are visually investigated and 11 classes

are determined in the scene;

1. Green1: Forest areas especially on high altitudes in the scene.

2. Green2: Coniferous trees especially planted in graveyards.

3. Green3: City parks.

4. Urban1: Dense urbanization areas.

5. Urban2: Roads.

6. Urban3: Industrial areas. These areas are brighter than the residential areas.

7. Bareland1: White calcareous soil.

8. Bareland2: Brown soil.

9. Agriculture: Agricultural areas.

10. Dried Agriculture: Agricultural areas but dried.

11. Ploughed soil: Not green but agricultural soil according to plans and visual

interpretation.

Only water class is missing in the above classification list because this class

can be more accurately extracted from satellite image by using unsupervised

classification. ISODATA classification with 20 classes have been applied to all

satellite imagery. Water mask created from this classification is applied to the

images on supervised classification.

Results are visually investigated and problematic areas are inspected. If visual

inspection seemed to be successful, qualitative confidence has been built, which

means statistical measurement can be made. Statistical measurement can be

done using GIS programs. Classification accuracy assessment must be done

rigorously in order to avoid bias in the results. Accuracy assessment can be

done easily with ENVI, but this is a black box operation where user can only

give an input classification image and retrieve resulting confusion matrix that

ENVI creates. In this study, manual accuracy assessment has been applied to

each classification result in Quantum GIS.
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For each classification result random samples are created in ENVI within the

classification areas. When creating random samples, stratified random sampling

option is selected because stratified random sampling is considered as the most

efficient sampling way in remote sensing applications (Jensen, 2005). Advan-

tage of the stratified sampling is; even the smallest proportion of classes could

have samples because this method divides classified image into strata (classified

areas) and collects samples from these areas. If complete random sampling were

chosen, random samples may not represent small classification areas.

In manual accuracy assessment multinomial distribution formula has been used.

Before collecting the samples, a 7x7 median filter has been applied to the classi-

fied image and classification is aggregated according to Anderson’s Classifica-

tion Scheme (Anderson, 1976). This schema can be seen in Figure 3.10. When

this schema has been applied to classification, class numbers are reduced to five

classes. Each class in classification and city plans has a corresponding class in

Anderson Schema except wild life; these areas include both forest and barren

land. When the plans are being made both actual land usage and desired land

usage are considered. Sample pixels inside the plan areas such as military, no-

urban, archaeology and wild-life have been carefully examined. Classification

of 2016 imagery and aggregated 2016 plans can be seen in Figure 3.11.
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Sample size (N) derived from a multinomial distribution is based on equation

3.2;

N =
(B ∗ πi ∗ (1− πi))

(bi)2
(3.2)

• Where πi is the proportion of a population in the ith class out of K classes

that has the proportion closest to 50%. In this study agriculture has the

proportion closest to fifty percent of the scene.

• bi is the desired precision. (5% in this case)

• B is the chi square distribution. B = x2 ∗ (1− (α
k
)) where α is confidence

interval, k is the number of classes.

According to Jensen (2005) 95% confidence interval might be unrealistic. Re-

laxing the confidence interval to 85% is a standard procedure for many land-use

and land-cover mapping products.

According to these assumptions sampling quantity should be as below;

• 1− (α
k
) = 1− (0.15/6) = 0.975

• π2
i (0.975) = 5.02

• N = 5.02∗0.44∗(1−0.44)
(0,05)2

≈ 494

• 494
5
≈ 100 samples for each class.

Distribution of sample points and classification result can be seen in Figure 3.12.
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In the next step all the sample points and sampling polygons are loaded into Post-

greSQL to quantitatively check if the sample points are inside their own sample poly-

gons. This is an important check because if a sampling point is inside the sampling

polygon of its own class, the bias can’t be avoided. Classification information written

to sample polygons using Point Sampling Tool plug-in of Quantum GIS.

Having both random points and their classification results of each sample point, it is

possible to prepare the confusion matrix. Confusion matrices compare two sources

of information; pixels or polygons in a remote sensing-derived classification map and

ground reference test information.

Relationship between these two sets of information is commonly summarized in an

error matrix. All values are copied to Microsoft Excel, and the confusion matrix is

prepared according to description of Jensen (2005). Plans are accepted as ground

truth data and accuracy assessment made without any interference to plans. Detailed

information about classification accuracy assessments of the satellite imagery can be

found in Appendix A.

Kappa coefficients and overall accuracy results of the confusion matrices are given in

Appendix B.

3.2.3 Assessment of the Classification Results

Final products of classifications can be seen in Figure 3.13. Confusion matrices for

the classification of the years 1990, 2001, 2006, 2011, 2016 and 2018 can be seen in

the Tables 3.4 - 3.9, respectively. In these tables class quantities are shown in percent.

When the confusion matrices were examined, there was no systematic error.

Comparison table of classifications can be seen in Table 3.10. According to Anderson

(1976), accuracy statistics over 85% are adequate. Accuracy assessment result of the

2016 image is relatively low when compared to the other classifications. Main reason

for this is the correctness of the ground truth data gathered from the actual city plans.

As it has been discussed in classification section of the 2016 image, plans represent

“desired” and “predicted” land uses. Illegal urbanization and bare agricultural areas

are the two important factors causing lower classification accuracy.
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Table 3.4: Classification Accuracy of the 1990 Imagery (A: Agriculture, B:

Bareland, F: Forest, U: Urban, W: Water)

PREDICTED

R
E

FE
R

E
N

C
E

A B F U W Total %Correct %Error

A 18 1.4 0.4 0.2 0 20 90 10

B 0 18.2 0.4 1.4 0 20 91 9

F 0 0 19.4 0.6 0 20 97 3

U 2 0 1.2 16.8 0 20 84 16

W 0 0 0 0 20 20 100 0

Total 20 19.6 21.4 19 20 100 92.4

%Correct 90 92.9 90.7 88.4 100 Kappa:0.91

%Error 10 7.1 9.3 11.6 0

Table 3.5: Classification accuracy of the 2001 imagery (A: Agriculture, B: Bareland,

F: Forest, U: Urban, W: Water)

PREDICTED

A B F U W Total % Correct % Error

R
E

FE
R

E
N

C
E

A 16 3.4 0.2 0.4 0 20 80 20

B 0 18.6 1.2 0.2 0 20 93 7

F 0 0.2 19.6 0.2 0 20 98 2

U 0 0 1 19 0 20 95 5

W 0 0 0 0 20 20 100 0

Total 16 22.2 22 19.8 20 100 93.2

% Correct 100 83.8 89.1 96.0 100

% Error 0 16.2 10.9 4.0 0 Kappa:0.92
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Table 3.6: Classification accuracy of the 2006 imagery (A: Agriculture, B: Bareland,

F: Forest, U: Urban, W: Water)

PREDICTED

A B F U W Total % Correct % Error

R
E

FE
R

E
N

C
E

A 15.4 3.8 0.4 0.4 0 20 77 23

B 0.4 18.4 0.6 0.6 0 20 92 8

F 0.6 0.2 19.2 0 0 20 96 4

U 0.8 1 2 16.2 0 20 81 19

W 0 0 0 0 20 20 100 0

Total 17.2 23.4 22.2 17.2 20 100 89.2

% Correct 89.5 78.6 86.5 94.2 100

% Error 10.5 21.4 13.5 5.8 0 Kappa:0.87

Table 3.7: Classification accuracy of the 2011 imagery (A: Agriculture, B: Bareland,

F: Forest, U: Urban, W: Water)

PREDICTED

A B F U W Total % Correct % Error
R

E
FE

R
E

N
C

E
A 15.2 2 2.6 0.2 0 20 76 24

B 1.8 17 1.2 0 0 20 85 15

F 0.4 0.4 19.2 0 0 20 96 4

U 0.2 0.4 0.6 18.8 0 20 94 6

W 0.2 0 0 0 19.8 20 99 1

Total 17.8 19.8 23.6 19 19.8 100 90

% Correct 85.4 85.9 81.4 98.9 100

% Error 14.6 14.1 18.6 1.1 0 Kappa:0.88
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Table 3.8: Classification accuracy of the 2016 imagery (A: Agriculture, B: Bareland,

F: Forest, U: Urban, W: Water)

PREDICTED

A B F U W Total % Correct % Error

R
E

FE
R

E
N

C
E

A 19.2 0.2 0 0.6 0 20 96 4

B 3.2 16 0.8 0 0 20 80 20

F 5.4 1 10.8 2.2 0.6 20 54 46

U 2 0.8 1 16.2 0 20 81 19

W 0.8 0 0.6 0 18.6 20 93 7

Total 30.6 18 13.2 19 19.2 100 80.8

% Correct 62.7 88.9 81.8 85.3 96.9

% Error 37.3 11.1 18.2 14.7 3.1 Kappa:0.76

Table 3.9: Classification accuracy of the 2018 imagery (A: Agriculture, B: Bareland,

F: Forest, U: Urban, W: Water)

PREDICTED

A B F U W Total % Correct % Error

R
E

FE
R

E
N

C
E

A 19.4 0.4 0 0.2 0 20 97 3

B 1.8 17.8 0.2 0.2 0 20 89 11

F 4 0.8 14.6 0.4 0.2 20 73 27

U 0.6 0.4 0.8 18.2 0 20 91 9

W 0 0.6 0.4 0.4 18.6 20 93 7

Total 25.8 20 16 19.4 18.8 100 88.6

% Correct 75.2 89.0 91.3 93.8 98.9

% Error 24.8 11.0 8.8 6.2 1.1 Kappa:0.86
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Table 3.10: Comparison table of classification accuracies

Year Overall Accuracy Kappa Coefficient Satellite

1990 %92 %91 LANDSAT_5

2001 %93 %92 LANDSAT_7

2006 %89 %87 LANDSAT_5

2011 %90 %88 LANDSAT_5

2016 %80 %76 LANDSAT_8

2018 %87 %86 LANDSAT_8

In Table 3.10, 2018 imagery classification result is also presented because additionally

Landsat imagery obtained in 2018 is used in the study to validate the model results.

Same point locations are used in terms of accuracy for all the satellite images. Prior

to the preparation of the SLEUTH input data, three critical issues were highlighted;

• Gross change of water levels through the years

Since there is a large dam reservoir in the scene, water levels change depending

on the season. Selected Landsat scenes are close to each other seasonally, so

that seasonal colour changes are minimized. Though, water levels are related

to drought and water use in the area. Water masks are investigated to find

out the one contains the largest water body. Even though visual interpretation

shows 2011 image contains largest water body, to verify that, statistics of all

water masks are calculated to find which scene contains the largest water body.

Quantity of water pixels on each scene can be seen in Table 3.11.

Table 3.11: Quantity of water pixels in each satellite image

Year Quantity of Water Pixels

1990 41207

2001 31340

2006 36325

2011 49416

2016 43012
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According to this comparison, water mask obtained from the classification of

the image taken on 20-June 2011 is applied to all the images.

• Shady pixels over urban areas

On the USGS’s web site users are allowed to select cloudiness percentage of

the imagery. Minimum percentage range can be selected between 0% - 10%.

In some cases this option works but it only calculates the percentage cloud

coverage of the area not the location of the clouds. If all clouds cumulated over

the urban areas even with a cloudiness less then 10%, satellite image scene

classification process becomes tangled. In this study, shady pixels over the

urban areas are misclassified with water areas when the first satellite imagery

data sets were selected. To overcome the problem; the problematic imagery

was reclassified to find out cloudy areas but even after successfully finding the

shady pixels, assigning these pixels to a class creates another problem. In this

perspective a different set of satellite imagery has been chosen for every cloudy

scene. While selecting new imagery, images were visually interpreted to avoid

cumulated clouds over urban areas.

• Urban pixels that become non-urban over the next years

A cumulative approach was developed to have consistent urban layers. This

case considered as a problem because SLEUTH behave abnormally when urban

areas become non-urban (Clarke, 2016). Also, possibility of transition from

urban to green area is very low especially in developing countries like Turkey,

where housing continuously increases. This phenomenon has been discussed in

Chapter 3.1. All imagery after 1990 have been compared with previous image

(e.g. 2001 compared with 1990, 2006 compared with 2001 etc.). If a pixel is

urban at first, then become agriculture, green, bare land or water, this pixel is

most likely misclassified and marked as disagreed pixels. Disagreed pixels are

considered as non-urban. Agreed pixels of 2001, 2006, 2011, 2016 are found.

Flow chart of the method can be seen in Figure 3.14.
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3.2.4 Model Validation with 2018 Landsat Imagery

SLEUTH creates prediction results for each year between prediction start and pre-

diction stop dates. 2050 prediction results contain a prediction layer for every year

between 2016 and 2050. Predictions of 2030 and 2050 have created two prediction

results for the year 2018 and predictions are identical both numerically and visually.

2018 Prediction gives 331705 urban pixels in 2018, though 2018 classification con-

tains 296686 urban pixels. Model predicts 11% more urban pixels. This result can be

associated to model performance, uncertainty of input data or urbanization prediction

threshold used in the study. (Chaudhuri and Clarke, 2014). In this study 90% and

above urbanization probabilities are accepted as urban. If a higher threshold value

was selected less urbanization could have been observed.

3.2.5 Analysis of Actual City Plans

While city plans keep a record of the land use in the city, they also guide the planned

use in the future. In Turkey, spatial plans construction regulation and zoning laws

guide city planning process. City plans contain land use function of both the existing

and planned land. Information about roads, hazardous areas and protection areas can

also be derived from the plans. In this study 1/5.000 scale master building plans are

used. Some areas inside the study area don’t have a master building plan by the time.

Planning information of these areas are derived from 1/25.000 scale environmental

plans. Eventually all plans are combined. 1/25.000 and 1/5.000 scale plans those are

currently used in Adana have been obtained from Adana Municipality. These plans

are dated back to 2012 but they were kept up to date by revisions.

Since the plans are tendered region by region, each tendering region has different

annotation of areas. Because each region is prepared by a different company hence

naming convention may be different. For example; protected agricultural lands are

called PL_TARIM_NITELIGI_KORUNACAK_ALAN in one region, but in

another region, they are called PL_TNKA. At the end when all layers assembled to-

gether there are lots of layer names. Combining different named layers is a laborious

work but is a must because otherwise excluded layers can’t be obtained.
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Names of all layers are assessed with a municipality planner and the same areas with

different layers are combined. After the layer arrangement, number of the layers are

reduced to 12 from 129. Final state of the arranged layers is given in Figure 3.6.

3.2.6 Extraction of the Roads from Plans

Detailed information about roads can be derived from the city plans. Unfortunately,

road layers on the plans are in CAD format. Only road widths are written between

the cadastre islands. In order to use the road layer in SLEUTH, roads are digitized

by creating lines between cadastre islands. Vicinity of roads are naturally suitable

for urbanization because of their accessibility (Clarke et al., 1997). When predicting

future urbanization, SLEUTH urban model takes road influenced growth into account

by using road layers belonging to different years. In order to simulate this effect,

factor called road-gravity is used inside the SLEUTH’s simulation framework (Clarke

et al., 1997). Wider roads affect the road influenced growth more than thinner ones.

Only roads wider than 10 meters were digitized from the urban plans. Road notation

in plans can be seen in Figure 3.15.

Figure 3.15: Road widths notation in the master plan

48



These layers are transformed to shapefile in Quantum GIS and rasterized for the study

area. After the digitization, 18 different road types appeared. These roads are clas-

sified into four classes according to Indian National Programme on Technology En-

hanced Learning urban transportation planning online course notes (Arasan, 2014).

There are four main types of roads according to their importance;

• Arterial Roads

• Secondary or sub-arterial roads

• Local Roads

• Other Roads

According to this information, all roads are classified into four classes. After shapefile

conversion of CAD data, numbers from one to four are given to the roads according to

their importance. Number one is arterial and four is other roads. This information is

written to new column in shapefile that contains road data. In QGIS, vector to raster

conversion is applied to the file. Digitized roads can be seen in Figure 3.16. Road

aggregation schema can be seen in Appendix C.
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Road layer contains both actual and planned roads because data were taken from a

master plan. To use this road data in SLEUTH, temporal changes must be considered.

Classifying digitized road data into three groups according to their existence in the

past and present is the way to create road layers.

Google Earth provides historical data very quickly. All vector road data opened in

Google Earth’s desktop application and by using the time bar, oldest data sets are

used to eliminate non-existing roads by that time. For this study area, oldest Google

Earth tiles were dated back to 2006. All roads which don’t exist by 2006 are deleted

and vector layer is re-digitized to obtain 2006 roads layer. Same procedure applied

to vector road data for the year 2016. Roads of 2006 and 2016 can be seen in Figure

3.7.

Roads that currently do not exist are planned to be finished by 2020. These roads can

be seen in Figure 3.7. Finally, three road layers are prepared for 2006, 2016 and 2020

in GIF format.

3.2.7 Extraction of the Excluded Areas from Actual City Plans

City plans those are obtained from Adana Municipality are used to obtain the ex-

cluded areas. Layers are selected and rasterized in Quantum GIS. SLEUTH model

accepts values between 0 and 100 on excluded layer files. If pixel value is 100, that

pixel is considered as under 100% protection against urbanization. If an area is under

partial protection, according to its protection level a value between 0 and 100 can also

be given. In this study three different scenario files are prepared.

In the first scenario; water bodies, military and civil airports, cemeteries and military

zones are protected from urbanization. This scenario is the most flexible one in terms

of protection. On the contrary; forest, green and agricultural areas are not protected.

First scenario file can be seen in Appendix D.

Second scenario is used to see how model behave under partial protection. In this

scenario additionally to the first scenario agricultural areas are taken under 100%

protection. Also, forest areas and afforestation areas are taken under partial protec-

tion. Pixel values of forest areas are set to 60% and afforestation areas pixel values

51



area set to 80% protection for these areas respectively. The file of this scenario can

be seen in Appendix D.

In the third scenario, excluded areas include all farming areas (agriculture and marginal

agriculture), all green areas. This is the strictest scenario because most urbanization

vulnerable areas like marginal agriculture and afforestation are under 100% protec-

tion. Scenario file can be seen in Appendix D. Excluded areas of three scenarios

are given in Figure 3.18. Using these scenario files future predictions can be done.

SLEUTH requires a exclusion layer to be used in calibration phases. Which means

it calculates the on going trends using this layer. One can use the same layer in pre-

diction after calibration or it can be changed to predict distinct future scenarios. In

this study all agricultural areas, parks, military areas, airports, forests and water bod-

ies are protected from urbanization. This protection schema is presented in the third

scenario. So, the third scenario file has been used in calibration phase, then for predic-

tions other two exclusion files (scenarios) are used as input to see effects of different

protection schemas on urbanization.

Figure 3.17: Slope map of the study area
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3.2.8 Preparation of the Slope and Hillshade Layers

SLEUTH model takes shape of the Earth into account when modelling urbanization.

Because of construction costs; areas with high slope will urbanize relatively slower

than areas with a lower slope. When preparing the SLEUTH’s scenario file, it is

also possible to limit urbanization above a specific slope. In this study slope values

above 25% considered as the maximum slope for urbanization. When preparing the

slope layer to be used in the SLEUTH, like the other layers it must be prepared as

8-bit unsigned integer. Crucial point about the slope layer is; slope values must be in

percent.

Study area coincides with two scenes in SRTM scenes. The two scenes are down-

loaded and combined. Combined scenes are sub-setted in ENVI according to study

area. Slope layer has been visualized as hillshade to give a better perspective about

the study area. DEM of the study area can be seen in Figure 3.17.

3.2.9 Resampling the Layers

All layers have 30 meters spatial resolution as default. Regardless of their default

resolution, input layers must be re-sampled to half and quarter resolution to be used

in SLEUTH model. In this case original resolution have been resampled to 60 meters

and 120 meters using nearest neighbourhood method. Examples of the resampled

layer of the third scenario can be seen in Figure 3.19.
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Figure 3.18: Scenario files used in prediction phase(from up to down; first, second

and third scenario respectively)
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3.2.10 Converting Raster Layers to GIF format

Conversion of TIFF to GIF was done with IDL but could also be done in ArcGIS or

Quantum GIS. In IDL it is possible to write GIF’s with a short script like in Figure

3.20.

Figure 3.20: Simple IDL Script to Write Images in GIF Format

3.2.11 Renaming the Input Layers

Input data naming is important for the SLEUTH since dates are read from file names.

Naming format has been described in detail in SLEUTH’s web site (Clarke, 2018).

< location > .urban. < date > .[< userinfo >].gif (3.3)

In this convention location is relative folder path, date is four-digit year, user info

is optional user data. All data are also named according to this convention. Table

showing the reorganized layer names can be seen in Appendix E.
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CHAPTER 4

URBAN GROWTH ANALYSES

In this chapter, preparation of the environment where SLEUTH was run, calibration

phases and selection of required coefficients on each phase are explained in detail.

4.1 Preparation of Computer Environment for Model Run

As described in official web site of SLEUTH; SLEUTH model is written in the C

language under UNIX and uses standard C compiler (gcc). Running SLEUTH can be

a challenge if the running environment isn’t set properly.

One option for running SLEUTH is using Cygwin on Windows environment. Cyg-

win is an enormous collection of GNU and Open Source tools which provide similar

functionalities of Linux (Anonymous, 2018). Cygwin contains lots of packages for

various purposes. Selecting appropriate packages is a vital step.

Another option is setting a Linux environment individually and running the com-

mands in this environment. This environment can be attained on a virtual machine

such as Oracle VM or by rebooting a computer. After the reboot or running the virtual

machine, libraries must be updated using Linux commands.

In this study a cloud computer from Amazon Web Services is used. Cloud machines

provide high performance and stability rather than local machines. Especially long

lasting final calibration took more than three days. An electric interruption during

the calibration could result restarting the calibration. Also, performances of cloud

machine can be increased easily. Model of the Kali Linux distribution is selected as

T2.medium model. All updates are installed. GCC version of the machine was gcc
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(Debian 7.3.0-5). SLEUTH files copied to the machine and the libraries compiled as

explained in SLEUTH web site (Clarke, 2018).

4.2 Data Validation and Selecting Coefficient Ranges

Running SLEUTH model to make predictions about future can be achieved through

a rigorous calibration phase.

Over the years SLEUTH model has been using various parameters to determine these

values from control_stats.log file. When there was no clear consensus on which

metrics to use on calibration phase, SLEUTH users have used different metrics to

assess statistics created by SLEUTH. Most popular ones are Lee-Salee, compare,

population, weighted sum of all metrics (Dietzel and Clarke, 2004). In 2007 Dietzel

and Clarke have published an article about how to calculate best metrics for SLEUTH

calibration. They have noted only eight of the metrics that SLEUTH created through

the calibration has influence over the results (Dietzel and Clarke, 2004).

These metrics are;

1. Compare

Ratio of modelled and actual population (urbanization in SLEUTH).

2. Population

Least squares regression score for modelled urbanization compared to actual

urbanization for the control years

3. Edges

Least square regression score for the modelled urban edge count compared to

actual urban edge count for the control years.

4. Clusters

Clusters Least squares regression score for the modelled urban clustering com-

pared to known urban clustering for the control years
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5. Slope

Least squares regression of average slope for modelled urbanized cells com-

pared to average slope of known urban cells for the control years

6. X-mean

Least squares regression of average xvalues for modeled urbanized cells com-

pared to average xvalues of known urban cells for the control years

7. Y-mean

Least squares regression of average yvalues for modeled urbanized cells com-

pared to average yvalues of known urban cells for the control years

8. F-Match

A proportion of goodness of fit across landuse classes. (Only if land-use and

land cover is being modelled)

Cluster Size, Lee-Salee, Urban and Rad metrics are not effective in SLEUTH cali-

bration. Without the non-effective metrics, a metric called Optimum Sleuth Metric

(OSM) is calculated using the formula in Equation 4.1;

OSM = compare ∗ pop ∗ edges ∗ clusters ∗ slope ∗ xmean ∗ ymean (4.1)

Using OSM is a good approach when evaluating the coefficient ranges because it is

a special statistics that is created only for assessing the SLEUTH results and met-

rics that don’t affect SLEUTH calibration have been excluded when calculating the

SLEUTH metric. Through the calibration phase five coefficient values are re-evaluated

in Monte-Carlo Simulations, to compare the evaluated statistics Pearson r2 statistics

is used. One can calculate OSM by downloading and compiling source code from

SLEUTH web page or by a formula by an assistance program such as Microsoft Ex-

cel. Formula for OSM can be found in the readdata3.c file.

To ensure the validation of the input data a test mode run has been performed and

input data has been validated. Importance of the test phase is; it allows users to see

if there is any problem with the input data. On the test run user can get a feedback

about whether SLEUTH data have been prepared correctly or not. Data which are not
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copied with the output folder means that program can’t read that specific file. In this

case, this data must be specifically examined and corrected. Before the calibration

phase a test-run has been performed to the input data by using data with the lowest

resolution. Since test run takes less than 5 minutes, a low Monte Carlo iteration

number, such as five, can be selected.

4.3 Calibration Phase

SLEUTH has three calibration phases;

1. Coarse Calibration

Calibration coefficients are evaluated on a wide range and step value. Start,

stop and step values for all coefficients on the coarse calibration are selected

as; START_V ALUE = 0, STOP_V ALUE = 100, STEP_V ALUE = 25

After each calibration phase, ranges get narrower. During the coarse calibration

lowest resolution inputs are used. This phase has the shortest duration. In this

study coarse calibration lasted 2 hours on average for a data of 378x352 size.

2. Fine Calibration

Coarse calibration narrows down the coefficient ranges and these narrow downed

values are used in the fine calibration. During the fine calibration mid resolu-

tion inputs are used. In this fine coarse calibration lasted 6 hours on average for

a data of 756x753 size.

3. Final Calibration

Fine calibration results are used, and a narrower interval and a smaller step

value selected for each coefficient. This is the phase that takes the longest

time. In this study final calibration lasted five days on average for a data of

1512x1406 size.

On the calibration phase, five coefficients that control four type of growth rule are

calculated. These rules are mentioned in Chapter 2.3, detailed information can be

found in Section 2.3.
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4.3.1 Coarse Calibration of Input Data

Images which have been re-sampled to 120 meters are used in coarse calibration. Be-

fore running the prepared scenario; input directory is specified, input image names are

written where output files’ flags are set to true. As defaultWRITE_COEFF_FILE,

WRITE_AV G_FILE,WRITE_STD_DEV _FILE andLOGGING flags were

already true as default. These flags are kept as default.

Only WRITE_MEMORY _MAP flag is changed and set to true so that in case of

memory heap problem logs can be assessed. Output files are coefficient logs of the

cellular automata framework life cycles. Prediction start and stop dates are selected

as 2016 and 2030 respectively. For the first run prediction date has been set to 2030

then 2021 urban prediction has been used with scenarios to predict 2050. Monte

Carlo iterations flag has been set to five. Coarse calibration coefficient values are left

default. Coefficients can be seen in Table 4.1.

On each calibration step after the coarse calibration, Optimum SLEUTH Metric val-

ues are calculated using control_stats.log file using readdata3.c file. This file cal-

culates OSM values and creates a file which contains coefficients with highest OSM

values. In SLEUTH’s web site; it’s recommended to select ranges according to mini-

mum and maximum values of the first ten rows with the highest OSM value (Clarke,

2001).

Table 4.1: Coarse calibration coefficients

Coefficient Type START STEP STOP

Diffusion Parameter 0 25 100

Breed Parameter 0 25 100

Spread Parameter 0 25 100

Slope Parameter 0 25 100

Road Parameter 0 25 100

The OSM values obtained from these parameters are given in Table 4.2.
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Table 4.2: Top ten coefficients with highest OSM values of coarse calibration

OSM Diffusion Breed Spread Slope Road

0.08690265 1 75 50 50 50

0.07092816 1 75 25 50 25

0.06378988 1 75 25 50 75

0.05659298 1 75 25 50 100

0.05626166 1 100 25 50 100

0.05587526 1 75 50 50 25

0.05527364 1 100 50 50 50

0.05514022 1 100 50 75 75

0.05446653 1 100 50 50 100

0.05292995 1 100 50 50 1

4.3.2 Fine Calibration of Input Data

OSM values are calculated using control_stats.log file inside the output directory. A

C program can be downloaded from SLEUTH’s web site named readdata3 which can

calculate OSM values automatically. Like SLEUTH this program must be compiled

in Linux using "make" command. This program writes coefficient values of first 50

set of runs with the highest OSM. Result of the calibration can be seen in Table 4.3.

Table 4.3: Fine calibration coefficients

Coefficient Type START STEP STOP

Diffusion Parameter 1 6 25

Breed Parameter 75 5 100

Spread Parameter 25 5 50

Slope Parameter 25 5 50

Road Parameter 25 15 100

Top ten coefficients with highest OSM values of the fine calibration are given in Table
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4.4.

Table 4.4: Top ten coefficients with highest OSM values of fine calibration

OSM Diffusion Breed Spread Slope Road

0.052319 7 90 45 25 55

0.051949 7 75 50 25 55

0.051278 7 80 45 25 100

0.050757 7 100 45 25 25

0.050196 7 80 50 25 85

0.049978 7 90 40 25 85

0.049929 7 75 50 30 70

0.049748 7 100 45 25 55

0.049713 7 80 40 25 70

0.049668 7 100 45 25 100

4.3.3 Final Calibration of Input Data

Similar to previous calibration, first ten rows with highest OSM values are selected

from the previous calibration result and calibration is run.

Table 4.5: Final calibration coefficients

Coefficient Type START STEP STOP

Diffusion Parameter 2 2 12

Breed Parameter 80 4 100

Spread Parameter 40 2 50

Slope Parameter 25 1 30

Road Parameter 25 15 100

Top ten coefficients with highest OSM values of the final calibration are given in

Table 4.6.
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Table 4.6: Top ten coefficients with highest OSM values of final calibration

OSM Diffusion Breed Spread Slope Road

0.04856685 4 80 50 26 70

0.04840338 4 88 50 25 70

0.04819809 4 80 48 25 100

0.04789131 4 84 48 25 70

0.04784823 4 80 50 25 25

0.04780863 4 80 50 25 40

0.04774734 4 80 48 25 70

0.04771273 4 80 50 25 85

0.04759206 4 80 50 26 25

0.04754788 4 80 50 25 55

When the final calibration ends; calibration phase is over. Forecasting and predic-

tion phases follow the calibration phase. Calibration phase finds best coefficients that

can simulate historical growth in the region. Self-qualification feature may alter co-

efficient values at the start date of the simulation. Though, at the forecasting phase,

stop date coefficients from best calibrated coefficients are used. Forecasting phase

produces a single set of coefficients for the last calibration year and this value can be

used for prediction. When random variability of the model is considered, then aver-

aged coefficient results of multiple Monte-Carlo iterations can be used to get more

robust forecasting coefficients.

4.4 Forecasting Phase

Self-modification alters the coefficients while running Monte-Carlo simulations be-

tween START-DATE to STOP-DATE. Since the aim of the calibrations is finding the

best initial coefficient values for the study area with given historical data; final cali-

bration coefficients are used to find single STOP-DATE values for each coefficient.

Unlike the previous steps, start and stop values are settled to the same value and step

values are selected as one. So, the coefficient probability interval becomes the nar-
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rowest. Forecasting phase doesn’t produce any visual products. Initial values for

forecasting phase coefficients can be seen in Table 4.7.

Table 4.7: Forecasting coefficients

Coefficient Type START STEP STOP

Diffusion Parameter 4 1 4

Breed Parameter 80 1 80

Spread Parameter 50 1 50

Slope Parameter 25 1 25

Road Parameter 70 1 70

4.5 Prediction Phase

Prediction phase produces final products of the future urbanization estimations with

calibrated parameters. This phase can be run with any random parameters selected

by the user but result would be irrelevant if parameters are not calibrated. Calibration

creates best fitting values for the study areas, thus best prediction results can be de-

rived only by calibration. For this study, best fitting parameters of the prediction can

be seen in Table 4.8.

Table 4.8: Prediction best-fitting coefficients

Coefficient Type Best Fitting Value

Diffusion 5

Breed 100

Spread 64

Slope 1

Road 72

Prediction phase has been run for each scenario individually. Also, to be able to

have more consistent results, predictions for 2030 have been made for each scenario

without 2020 road layer. Then with 2020 road data, each scenario file has been used

65



to predict 2050 urbanization.

From the information in paragraph above, prediction phase considered as composed

of two steps; 2030 prediction and 2050 prediction. In order to use 2020 road data in

the estimations, such a method was followed. SLEUTH model does not read data that

is not within the date range of urban inputs. The purpose is to create a future urban

layer which dated to 2020 or a later date. Then with new produced urban layer and

2020 road layer prediction range expanded to 2050. Flow chart of of prediction phase

can be seen in Figure 4.1.

Three scenarios and prediction results according to these scenarios for the year 2050

are depicted in Figures 4.2 - 4.4. In the figures below only 2050 predictions are

included to avoid presenting too many figures. Intermediate process result of 2030

urbanization without road layer can be seen in Appendix G. Colours in prediction

maps present probability of urbanization of the pixels. Pixels that have an urban-

ization probability of less than 50% are shown transparent on the map. Legend for

probability maps can be seen in beneath the figures.
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Figure 4.1: Flow chart of prediction phase
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CHAPTER 5

DISCUSSION OF THE RESULTS

In this chapter, outcomes of the predictions are discussed but before that, all prob-

ability maps are processed, pixels which have an urbanization probability over 90%

are considered as urbanized in 2050. SLEUTH produces predictions in GIF format,

to be able to process these images, all 2050 probability maps are transformed to TIF

format. The effect of new planned road of 2020 to urbanization is also discussed in

this chapter.

5.1 Assessment of First Scenario Results for 2050 Prediction

As the least strict scenario; visually, most urbanization is observed in the first sce-

nario. Statistically, 1084186 pixels (51% of the study area) are expected to be urban

in 2050. 732819 of 1084186 urban pixels are new urbanized areas. Urban area mask

can be seen in Figure 5.1.

New urban pixels are also found by calculating difference map between 2050 predic-

tion and 2016 classification urban pixels. New urbanization can be seen spreading

homogenic through the scene. Small urban spreading centres on the North side of the

city and non-urban pixels near the urban pixels are spread unimpeded. Recently ur-

banized areas prediction for the year 2050 for the first scenario can be seen in Figure

5.2.
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Figure 5.1: 2050 urbanization prediction for the first scenario

Figure 5.2: Recently urbanized pixels for the first scenario

Another important information is the transition of the pixels between agriculture to
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urban or green areas to urban. Using ENVI’s band math option, how many agriculture

and green pixels are transformed to urban are found. In Figure 5.3 urbanization on

agricultural and green areas can be seen. Quantities on different areas can be also

seen in Table 5.1. Percent urbanization of classes are calculated by dividing number

of transformed pixels to the total quantity of pixels in the scene.
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Table 5.1: Urbanization quantities of non-urban areas in the first scenario

Transition Pixel Quantity Kilometer Sq. Percent Urbanization of Class

Agriculture to Urban 292862 ∼263.58 31.57%

Green to Urban 91252 ∼82.13 58.72%

Bareland to Urban 348705 ∼313.84 52.42%

Total 732819 ∼659.54 34.47%

5.2 Assessment of Second Scenario Results for 2050 Prediction

Second scenario has partial conservation on forest and afforestation areas. Marginal

agriculture is not protected. Detailed description about second scenario can be found

in, Section 3.2.7. Visually, less urbanization is observed when compared to the first

scenario. 887665 pixels or 41.76% of the study area is expected to be urban in 2050.

541662 of 887665 pixels are new urbanization. Predicted urban area mask can be

seen in Figure 5.4.

Figure 5.4: 2050 Urbanization prediction for the second scenario
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Figure 5.5: Recently urbanized pixels for the second scenario

Protected areas can be clearly seen in the Figure 5.5. Agricultural areas and green

areas mostly protected but the green sides in the North part of the study area converted

into urban due to partial 60% protection. Another noteworthy point is urbanization on

the south, near planned road, even under protection. Unprotected areas are similarly

urbanized in all three scenarios.

Urbanization effect on agricultural and green areas can be seen in Figure 5.6. Quan-

titative analysis for second scenario can be seen in Table 5.2.

Table 5.2: Urbanization quantities of non-urban areas for the second scenario

Transition Pixel Quantity Kilometer Sq. Urbanization as Percent

Agriculture to Urban 222597 ∼200.33 24%

Green to Urban 52383 ∼47.14 33.71%

Bareland to Urban 266682 ∼240.01 40.09%

Total 541662 ∼487.50 25.45%
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5.3 Assessment of Third Scenario Results for 2050 Prediction

Third scenario is the strictest scenario, regardless of their type all green, agricultural

areas with necessary protection areas such as water and military areas are under pro-

tection. Urban mask of prediction result can be seen in Figure 5.7. Recently urbanized

pixels can be seen in Figure 5.8.

Figure 5.7: Agriculture and green area loss against urbanization highlighted for the

third scenario
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Figure 5.8: Recently urbanized pixels for the third scenario

Planned 2020 highway leads urbanization within its vicinity even under full protec-

tion. Unprotected areas are similarly urbanized as in the other scenarios. Urbanization

in agriculture and green areas can be seen in Figure 5.9. Quantitative analysis of the

third scenario can be seen in Table 5.3.

Table 5.3: Urbanization quantities of non-urban areas in the third scenario

Transition Pixel Quantity Kilometer Sq. Urbanization as Percent

Agriculture to Urban 219293 ∼197.36 23.64%

Green to Urban 51067 ∼45.96 32.86%

Bareland to Urban 227904 ∼205.12 34.26%

Total 498264 ∼448.44 23.44%
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According to these results comparative urbanization predictions can be found in the

Table 5.4.

Table 5.4: Quantities of agriculture, green and bareland losses against urban by 2050

for each scenario

Scenario/Transition
Agriculture

to Urban

Green

to Urban

Bareland

to Urban
Total

Scenario 1 292862 91252 348705 732819

Scenario 2 222597 52383 266682 541662

Scenario 3 219293 51067 227904 498264

When all these quantities compared, it can be understood that strict protection sce-

nario can protect the agricultural and green areas relatively better then partial protec-

tion or no-protection scenarios. Green area loss is relatively less than agriculture and

bareland areas. Main reason of having less loss of green areas are due to being located

in steep and higher locations. Urbanization is rather harder in steep and higher areas.

In contrast to forest areas, agricultural and bareland areas are more flat and has lower

altitude. Urbanization is focused on these areas.

In all scenarios agriculture to urban transformation has been observed in different

volumes. Even in the most strict scenario (third scenario) agricultural areas near to

urban edge has been swallowed substantially by urban construction. Therefore future

land use planning should emphasize farmland protection to avoid the urbanization

taking over high quality farmland.

When these forecast maps are examined together with a current map that showing

the settlements, an important point emerges; continuous expansion of urbanization in

rural areas. When there is no restriction, current urban areas spread their vicinity over

the time. Self-modifying feature of the SLEUTH model slows down the urbanization

to avoid an exponential growth but linear increase forces urban areas to spread. Com-

parison of the second scenario prediction for the year 2050 with current settlements

can be seen in the Figure 5.10. These scenes are selected outside of the protection

area. They are are located at the southern part of the study area where agricultural
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activities are intense.

The number of the habitants of these settlements varies between 100 to 3000 (TUIK,

2018). These small settlements have agricultural areas within them and rural roads

connects them. Estimates of urbanization show that the agricultural areas between

the distant settlements are becoming urbanized and gradually connect these small

settlements. This prediction seems to be unrealistic. Due to immigration, population

in these areas decreases or slightly increases over the time. Urbanization dynamics of

these areas are different from the planned areas. Since there is only one type of urban

class in SLEUTH model, all urban pixels in the scene are treated in the same way.

However, the spread of rural settlements and the spread of urbanized areas cannot be

expected to be the same.

Modelling the sprawl of urbanized and rural areas separately could provide better

modelling of settlements with two different behaviours in one scene. The fact that

the urban layer has two classes as rural and non-rural instead of being binary can

provide a solution to this situation. Instead of the city layer prepared for SLEUTH

model being binary, if rural and urban settlements can be expressed individually this

problem can be overcome.

Partial and full protection scenarios produced almost similar results. From 2020 to

2050 urbanization changes on every decade for each scenario can be seen in Figure

5.11. Urbanization quantities comparison of the scenarios can be seen in Figure 5.12.
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From Figure 5.13, it can be understood that partial and full protection scenarios pro-

tect the green areas most.

Figure 5.13: Quantitively comparing of scenario predictions

5.4 Investigation of Road Layer Effect for Year 2030

Urban layer coverage is between 1990 and 2016. Input data of five years in this

period are used to predict urbanization patterns. In other words, SLEUTH fills the

gaps between input data years. Road layer 2020 is out of coverage and can’t be used

directly for calculations. SLEUTH works by taking into account only the layers that

dated between the dates of the urban layers. Using 2020 road data could only be

possible if an urban layer of 2020 or a later date is given as an input. Future urban

layer can be created using SLEUTH with existing data. Running the prediction to any

year later than 2020 and using predicted urban layer as input for another prediction

could be a method for predicting effects of a future (planned) road layer.

In order to obtain a future urban layer to use 2020 road layer; existing urban data

(from 1990 to 2016) used to predict year 2030. SLEUTH creates outputs for each

year from the recent urban data (2016) to a specified prediction date (e.g: 2030).

Products of this prediction are used in 2050 predictions. Eventually, two layers for
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2030 are obtained, one without road data and one with the road data. Comparison of

two layers can be seen in Figure 5.14.

Figure 5.14: 2030 Prediction with and without planned road

In this study all predictions are aggregated and binary maps are created for predictions

according to a threshold which is 90% or above probability of urbanization. When this

threshold is applied to the prediction maps, two binary images are obtained. Compar-

ison of these imagery showed slight differences in terms of urbanization. 2020 road

layer’s effect to 2030 predictions is insignificant. Neither a cumulation on the vicin-

ity of planned road nor a general increase in study area were observed. Decreasing

threshold value could have been created a difference but for this study 90% urbaniza-

tion probability is considered as an acceptable threshold. Road effect become visible

in 2050 prediction even with 90% probability threshold.

According to predictions road layer effect become significant after the year 2030.

Each scenario reacts differently as expected; in the first scenario significant urbaniza-

tion begin to form in year 2031, in the second and third scenarios significant urban-

ization begin to form in year 2034. These urbanization changes for eight year periods
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can be seen in Figures 5.15 - 5.17.

Figure 5.15: Road effect on urbanization in the first scenario from 2030 to 2037

Figure 5.16: Road effect on urbanization in the second scenario from 2034 to 2041
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Figure 5.17: Road effect on urbanization in the third scenario from 2034 to 2041

5.5 Comparison of the Study Results with Other SLEUTH Applications

All predictions until this point are the results of a compact prediction framework.

Comparing these results with other SLEUTH applications or establishing a logical

relation between the applications is not an easy task due to large number of parame-

ters. Each region has it’s own characteristic urbanization pattern due to environmental

factors. Even so, five parameters that SLEUTH model produces can capture the ur-

banization pattern of the area when it is calibrated successfully (Dietzel and Clarke,

2007).

Gazulis and Clarke (2006) offered a method which considers SLEUTH coefficients

as DNA of modelling region. With this approach urbanization patterns of the cities

can be compared and classifications according to these patterns can be made. First

inter-city comparison of the SLEUTH application were made by Dietzel and Clarke

(2007). In the study, they’ve used parameter values of 21 SLEUTH applications that

have been known by the time. In their study they’ve pointed cities located near the sea

coast in North America show similar urbanization patterns, cities in countries which

apply a very careful planning process such as Netherlands, show very low diffusion
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parameters.

Instead of parametric comparison like Dietzel and Clarke (2007), a similar approach

in the study of Gazulis and Clarke (2006) has been adopted. Four sample input layers

prepared as input for petri-dish experiment. Explanation of input data can be seen

below;

1. Urban layer

Consist of only one urban pixel in the middle of the image.

2. Slope Layer

Test data generated using Gaussian point spread function. Value interval be-

tween 0-100. Slope value increases through the edges.

3. Road Layer

Each middle pixel on the rows marked as road.

4. Excluded Layer

Input extent divided into two areas as North and South from the middle. Pixels

inside the Northern part marked 50% resistive to urbanization. Southern parts

shows no resistance to urbanization.

Since Gazulis and Clarke (2006) don’t make any clear statement about the size of

input layers, each input layer is prepared in 1001x1001 size. These layers can be seen

in Figure 5.18. Results of the studies in Turkey have been compared with the method.

Only, prediction best fitting values are taken from the studies (please look at the Table

5.5). Using the prediction values and synthetic data, SLEUTH was run in prediction

mode.

Petri-dish experiment comparison of this study with Tampa and Oahu can be seen in

Figure 5.20. When the Berberoglu’s and Sevik’s SLEUTH applications in Turkey in-

vestigated, these applications showed a different characteristics when compared with

this study. In both studies even after 100 years of prediction run, pixels couldn’t reach

urbanization probability higher than 50%. Petri-dish experiment results of these two

studies are not shown with the other studies. They can be seen separately in Figure

5.21, because their petri-dish experiment results have different (lower) probability
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Figure 5.18: Synthetic input data for prediction comparison

range. SLEUTH creates output images for each year at the prediction range. These

images only show pixels with urbanization probability higher than 50%.
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These prediction coefficients are important because they show which coefficient type

is more effective on urbanization of a city. From these coefficients urbanization pat-

terns of cities can be compared. Breed coefficient seems to be the most efficient

coefficient for the urbanization of Adana, in contrast to the prior study, in which

spread coefficient seems to be the most effective coefficient. This change could be

explained by the change of the urbanization characteristics in the area or the differ-

ence of the study area extend. Prior study area for Adana includes smaller area extent

which includes mostly planned areas. Since the urbanization is constrained, to by the

planned area extent less urbanization is observed and coefficients for this area have

been changed accordingly. Study area extents are compared in Figure 5.19, shaded

area refers to prior study area. Besides the breed coefficient, spread and road gravity

seemed to be important for Adana. Diffusion and slope have the least effect. Urban

edges are not necessarily become urban, instead randomly selected new urban spread

centres will urbanize the unprotected areas.

Figure 5.19: Comparison of study area extents of this study and prior study (Shaded

area is prior study area)
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Figure 5.21: Previous Adana study (Berberoglu et al., 2016) and Antalya (Sevik,

2006) studies urbanization characteristics

5.6 Discussion of 2018 Data Verification

As stated in the Section 3.2.4, a validation method was applied and 11% more ur-

banization was detected for 2018. To be able to run a validation process that uses

the probability maps generated by the SLEUTH model, a threshold range must be

determined. This threshold value makes it possible to generate a binary map from a

probability map. In this study, as previously mentioned, the urbanization probability

threshold value was determined as 90%. In this case, if a higher value is selected, an

urbanization of less than 11% can be predicted.
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CHAPTER 6

CONCLUSIONS

In this chapter, the common and non-common aspects of this study with other studies

in the literature are discussed and how the results obtained in this study can be used

in future is explained.

Based on the growth of Adana province in 26 years, starting from 1990 to 2016,

urbanization predictions for the year 2050 are obtained for each of three scenarios.

These predictions are the results of a two dimensional space and predictions about

vertical urbanization is not a matter of SLEUTH application. The effects of vertical

urbanization have not been discussed in this study, since horizontal urbanization is the

main reason for the disappearance of agricultural and green areas around the cities.

SLEUTH urban growth model predicted the 2018 urbanization using the data between

1990-2016 11% more compared to the classification image of 2018.

Model validation with a 2018 satellite image of the SLEUTH model increased con-

fidence to the model indicating that the model gives realistic results. Slightly more

(11%) urbanization observed in 2018 prediction when compared to the classification

results. There could be two different reasons responsible for this over-prediction;

classification accuracy or self-modification parameters. In a future research; self-

modification parameters can be edited for the study area.

According to predictions; urbanization is observed on three types of land classes;

agriculture, green and bareland. Bareland is the most affected class from the urban-

ization. After barelands, agricultural areas are the second most affected land class.

Loss of agricultural areas could also have an economical impact because of crops

grown in that part of soil. If urbanization continue with the ongoing trends (with-
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out any restriction like in Scenario 1) 264 km2 agricultural area and 82 km2 green

area will become urban by 2050. If agricultural areas and green areas are partially

protected (e.g: urbanization is forbidden, but no strict control) 200 km2 agricultural

area and 47 km2 green area will become urban by 2050. Finally, if urbanization is

fully restricted on green, agricultural areas 197 km2 agricultural area and 46 km2

area will become urban by 2050. Although the urbanization of agricultural and green

areas under full protection is expected to be impossible, urbanization restriction is

applied only inside the planned areas. As a result, unplanned areas continued to be

urbanized.

As Clarke (2016) points out, the meticulous preparation and adaptation of the data

has been the most labour-intensive part of using SLEUTH model. If satellite imagery

classification and preparation of input raster layers could have been done easily or

retrieved from a pre-prepared data source, researchers can spend more time on model

behaviour. High Resolution Layers (HRL) at this point could be an option if urbaniza-

tion after 2006 is going to be modelled in Europe. HRL is prepared using Sentinel-1

and Sentinel-2 data. Impervious area layer of HRL data can be used as urban layer in

SLEUTH. Though if agricultural and green area loss is aimed to be found; satellite

imagery classification must be done for the study area.

One of the issues that confuses the mind of the SLEUTH researchers most is deter-

mination of calibration parameters. In this study, similar to other academic studies,

OSM has been used as a calibration metric. Comparison of this study’s outcomes

with other SLEUTH applications has been done using Gazulis and Clarke (2006)’s

methodology. Similar experiments are carried out using the prediction parameters

of the other SLEUTH studies. As a result of these experiments, it was revealed that

Adana is one of the cities with road dependent growth pattern. Same experiments

have been repeated for the Oahu and Tampa data from Gazulis and Clarke (2006)’s

study to verify experiments correctness. Results showed that the algorithm works cor-

rectly. For the previous studies conducted by Sevik (2006) in Antalya and Berberoglu

et al. (2016) in Adana, the same petri-dish test was carried out, but the urbanization

was very low. Therefore, the cumulative urbanization results of the applications in-

stead of the urbanization prediction maps obtained in 25-year periods are added to

the study.
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This study shows the possible impact of the road planned to be constructed in 2020 in

terms of urbanization to agricultural and green areas and the extent to which the same

areas can be affected under different growth scenarios. The results of the study were

generally in the expected direction. After the road is constructed in 2020, a small

amount of urbanization is observed around the new road, even in a fully preserved

scenario. As expected; in the third most conservative scenario, minimum urbaniza-

tion is observed; urbanization is suppressed. In the case of no protection, more ur-

banization is observed compared to the maximum protection scenario. Unexpected

results are also obtained; for example, in the second scenario, where there is partially

protected areas, more urbanization is observed when compared to the no-protection

scenario.

One of the important results of this study is that urban sprawl trend in urban areas

affects the urban sprawl trend in rural areas. As discussed in the Chapter 5.3, when

a scene selected which has both urban and rural settlements is selected urbanization

trends are mixed together. Urban and rural areas do not urbanize in the same way.

The fact that the results of the previous study Berberoglu et al. (2016) in Adana are

different from the results of this study can be shown as evidence for this situation.

As shown in the Figure 5.19 previous study has been done in a smaller part of the

region. This shows two important points; first, if the SLEUTH model studies in the

same region are to be compared, the same study extents should be selected. Secondly,

the city layer of the SLEUTH model has two different classes, urban and rural, con-

sidering different urbanization behaviour of these classes may lead to more accurate

results.

Similar studies to this one can be applied to other major cities such as Ankara, İstan-

bul and İzmir to find urbanization characteristics of these cities. Possible agricultural

and green area losses at the edges of these cities can be forecasted and used in plan-

ning and decision making. To protect the ecological environment and promoting sus-

tainable development of the region, relevant decision makers should create effective

strategies to control urban sprawl.
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APPENDIX A

CONFUSION MATRICES OF CLASSIFIED SATELLITE IMAGERY

Table A.1: Confusion Matrix of Classification Result of 2018 Imagery

class Agriculture Bareland Forest Urban Water Row Total

Agriculture 97 2 0 1 0 100

Bareland 9 89 1 1 0 100

Forest 20 4 73 2 1 100

Urban 3 2 4 91 0 100

Water 0 3 2 2 93 100

Column Total 129 100 80 97 94 500

Table A.2: Confusion Matrix of Classification Result of 2016 Imagery

class Agriculture Bareland Forest Urban Water Row Total

Agriculture 96 1 0 3 0 100

Bareland 16 80 4 0 0 100

Forest 27 5 54 11 3 100

Urban 10 4 5 81 0 100

Water 4 0 3 0 93 100

Column Total 153 90 66 95 96 500
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Table A.3: Confusion Matrix of Classification Result of 2011 Imagery

class Agriculture Bareland Forest Urban Water Row Total

Agriculture 76 10 13 1 0 100

Bareland 9 85 6 0 0 100

Forest 2 2 96 0 0 100

Urban 1 2 3 94 0 100

Water 1 0 0 0 99 100

Column Total 89 99 118 95 99 500

Table A.4: Confusion Matrix of Classification Result of 2006 Imagery

class Agriculture Bareland Forest Urban Water Row Total

Agriculture 77 19 2 2 0 100

Bareland 2 92 3 3 0 100

Forest 3 1 96 0 0 100

Urban 4 5 10 81 0 100

Water 0 0 0 0 100 100

Column Total 86 117 111 86 100 500

Table A.5: Confusion Matrix of Classification Result of 2001 Imagery

class Agriculture Bareland Forest Urban Water Row Total

Agriculture 80 17 1 2 0 100

Bareland 0 93 6 1 0 100

Forest 0 1 98 1 0 100

Urban 0 0 5 95 0 100

Water 0 0 0 0 100 100

Column Total 80 111 110 99 100 500
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Table A.6: Confusion Matrix of Classification Result of 1990 Imagery

Class Agriculture Bareland Forest Urban Water Row Total

Agriculture 90 7 2 1 0 100

Bare land 0 91 2 7 0 100

Forest 0 0 97 3 0 100

Urban 10 0 6 84 0 100

Water 0 0 0 0 100 100

Column Total 100 98 107 95 100 500
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APPENDIX B

OVERALL ACCURACY ASSESSMENT TABLES OF SATELLITE

IMAGERY

Table B.1: Overall Accuracy Report of 2018 Classification

overall acc. class producers acc User’s accuracy

0.87 agriculture 0.75 0.97

bareland 0.89 0.89

Kappa forest 0.91 0.73

0.86 urban 0.94 0.91

water 0.99 0.93

Table B.2: Overall Accuracy Report of 2016 Classification

Overall Accuracy Class Type Producer’s Accuracy User’s Accuracy

0.81 agriculture 0.63 0.96

bare land 0.89 0.8

Kappa forest 0.81 0.54

0.76 urban 0.85 0.81

water 0.97 0.93
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Table B.3: Overall Accuracy Report of 2011 Classification

overall acc. class type producers accuracy user’s accuracy

0.9 agriculture 0.85 0.76

bare land 0.86 0.85

forest 0.81 0.96

kappa urban 0.99 0.94

0.88 water 1 0.99

Table B.4: Overall Accuracy Report of 2006 Classification

overall acc. Class Data producer’s accuracy user’s accuracy

0.89 agriculture 0.90 0.77

bareland 0.79 0.92

kappa forest 0.86 0.96

0.87 urban 0.94 0.81

water 1 1

Table B.5: Overall Accuracy Report of 2001 Classification

overall acc. Class Producers Accuracy User’s Accuracy

0.93 agriculture 1 0.8

bareland 0.84 0.93

kappa forest 0.89 0.98

0.92 urban 0.96 0.95

water 1 1
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Table B.6: Overall Accuracy Report of 1990 Classification

Overall Accuracy Producers Accuracy Accuracy

0.92 agriculture 0.9 0.9

bareland 0.93 0.91

kappa forest 0.91 0.97

0.91 urban 0.88 0.84

water 1 1
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APPENDIX C

ROAD AGGREGATION SCHEMA

Figure C.1: Aggregation Schema of Roads
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APPENDIX D

SCENARIO FILES

Figure D.1: First Scenario File
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Figure D.2: Second Scenario File

Figure D.3: Third Scenario File
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APPENDIX E

FILE NAMES ACCORDING TO SLEUTH NAMING CONVENTION

Figure E.1: Reorganized Layer Names According to SLEUTH Naming Style
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APPENDIX F

CALIBRATION COEFFICIENTS (OSM) OF COARSE, FINE AND FINAL

CALIBRATION
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Figure F.1: Coarse Calibration Coefficients with Highest OSM Values
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Figure F.2: Fine Calibration Coefficients with Highest OSM Values
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Figure F.3: Final Calibration Coefficients with Highest OSM Values
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APPENDIX G

2030 PREDICTIONS

Figure G.1: 2030 Prediction Without 2020 Road Layer
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