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ABSTRACT 

 

TRANSIENT SIGNAL DETECTION IN CONTINUOUS GPS COORDINATE 
TIME SERIES USING EMPIRICAL MODE DECOMPOSITION AND 

PRINCIPAL COMPONENT ANALYSIS 
 

Özdemir, Soner 
Doctor of Philosophy, Geodetic and Geographic Information Technologies 

Supervisor: Prof. Dr. Mahmut Onur Karslıoğlu 
 

June 2019, 171 pages 

 

Continuous Global Positioning System (GPS) coordinate time series might be exposed 

to tectonic and non-tectonic transient signals as well as the persistent signals such as 

secular rates and seasonal motions. Transient signal detection becomes challenging 

when the targeted signal is weak and buried in the noise. Incoherency of the transient 

signal in space and large number of sites in the GPS network make the detection even 

more complicated. We propose a new approach based on Empirical Mode 

Decomposition (EMD) and Principal Component Analysis (PCA) in this study to 

detect tectonically-driven transient signals. Thanks to the adaptive nature of EMD, we 

did not make any a priori assumptions about the type of the colored noise present in 

the time series, and suppressed the white noise by means of the filtering properties of 

the EMD method. We utilized PCA to recognize the coherent but localized transient 

signals in space. The main geographic area of interest is Turkey. We focused on 

analyzing the data collected in CORS-TR network, which is a real-time kinematic type 

permanent network in Turkey, and making the time series employable in tectonic 

monitoring. We demonstrated the existence of Common Mode Error (CME) at CORS-

TR sites and reduced it for further investigations. We proved the capability of our 

method by successfully detecting the slow slip events in Cascadia, the transient 
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inflation at Akutan volcano, Alaska, and the postseismic deformation following the 

October 23, 2011 Van earthquake, Turkey. 

 

Keywords: Transient Signal, GPS, EMD, PCA, CORS-TR  

 



 
 

vii 
 

ÖZ 

 

DENEYSEL MOD AYRIŞTIRMA VE TEMEL BİLEŞENLER ANALİZİ İLE 
SÜREKLİ GPS KOORDİNAT ZAMAN SERİLERİNDE GEÇİCİ SİNYAL 

TESPİTİ 
 

Özdemir, Soner 
Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Danışmanı: Prof. Dr. Mahmut Onur Karslıoğlu 
 

Temmuz 2019, 171 sayfa 

 

Sürekli Küresel Konumlama Sistemi (GPS) koordinat zaman serileri, doğrusal hız ve 

mevsimsel hareketler gibi varlığı süreklilik arz eden sinyaller kadar, tektonik veya 

başka etkenlerden kaynaklanan geçici sinyaller de içerebilmektedir. Hedeflenen geçici 

sinyalin zayıf ve gürültünün içinde gömülü olması, tespitini zorlaştırmaktadır. Bu 

sinyallerin mekansal olarak tutarlılık göstermemesi ve GPS ağında fazla sayıda 

istasyon bulunması durumu daha da güçleştirmektedir. Bu çalışmada, GPS zaman 

serilerinde tektonik kaynaklı zayıf sinyallerin tespiti için Deneysel Mod Ayrıştırma 

(EMD) ve Temel Bileşenler Analizi (TBA) tabanlı yeni bir yaklaşım önerilmektedir. 

EMD’nin adaptif yapısı sayesinde, zaman serilerinde mevcut olan renkli gürültünün 

türü hakkında varsayımda bulunma zorunluluğu olmamakta, yöntemin filtreleme 

özellikleri sayesinde beyaz gürültü bastırılabilmektedir. TBA, mekansal olarak sınırlı 

bir bölgede tutarlı bir şekilde varlığını gösteren geçici sinyalleri tespit edebilmektedir. 

Coğrafi olarak temel ilgi alanı Türkiye’dir. TUSAGA-Aktif ağında toplanan verilerin 

analiz edilmesine ve üretilen zaman serilerinin tektonik izleme amaçlı kullanılabilir 

hale getirilmesine odaklanılmıştır. TUSAGA-Aktif istasyonlarında Ortak Mod 

Hatasının (CME) varlığı tespit edilerek giderilmiştir. Önerilen yöntemin yetenekleri, 

Cascadia bölgesindeki yavaş atım olaylarının (SSE), Akutan Volkanı’ndaki (Alaska) 
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şişmenin ve 23 Ekim 2011 tarihli Van depreminin ardından TUSAGA-Aktif 

istasyonlarında meydana gelen postsismik deformasyonun başarılı şekilde tespit 

edilmesiyle ortaya konmuştur. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

This study is about detecting transient signals in Global Positioning System (GPS) 

coordinate time series (hereinafter referred to as “GPS time series”). To this end, ~ 

10-year-long data from Turkish National Permanent GNSS Network-Active (CORS-

TR), which consists of homogeneously distributed permanent reference stations, are 

analyzed carefully and GPS time series are generated. Empirical Mode 

Decomposition (EMD) and Principal Component Analysis (PCA) are used to enhance 

the signal-to-noise ratio of the time series in time and space domain, respectively. 

Capability of the method is demonstrated through applications to known real transient 

signals. The motivation, objectives, and the thesis outline are described in the next 

subsections. 

 

 

1.1 Motivation 

 

GPS is the oldest of the Global Navigation Satellite Systems (GNSS). Since the launch 

of the first satellite by the United States in 1978 for military purposes primarily, it has 

become an indispensable tool in a wide range of applications calling for real-time 

positioning, navigation or timing (PNT), such as surveying, mapping, aviation etc. 

Very roughly, distance vectors between a GPS receiver and at least four GPS satellites 

in view are calculated and intersected to determine the location of the receiver in three 

dimensions.  
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Space segment of the system has been modernized over the past decades with new 

generation satellites which possess extended capabilities. There are 31 operational 

satellites in the constellation as of January 9, 2019 (https://www.gps.gov/) to ensure 

the simultaneous visibility of at least four satellites at any time, anywhere on Earth. 

The accuracy and reliability of GPS-derived locations might be increased by 

incorporating satellite-based augmentation systems, such as Wide Area Augmentation 

System (WAAS) and European Geostationary Navigation Overlay Service (EGNOS), 

or ground based augmentation systems, such as Local-Area Augmentation System 

(LAAS), which transmit additional parameters to the receivers to be used in the 

correction of the calculated positions.  

 

Improvements on the side of the user segment were also significant. Instrumental 

development in the receivers and antennas, combinations of GPS observables, 

mitigating the effects of the error sources through proper modeling etc. made 

contribution in gaining the highest precision. In addition, International GNSS Service 

(IGS) (http://www.igs.org/) which is affiliated to International Association of 

Geodesy (IAG) (http://www.iag-aig.org/), provides high-quality data and data 

products, such as satellite orbits, Earth Rotation Parameters (ERPs), global ionosphere 

maps, which are essential for PNT applications. IGS also contributes to the 

International Terrestrial Reference Frame (ITRF) (Altamimi et al., 2016) which 

provides an accurate datum to which almost all global and regional networks tied. 

ITRF is generated by combining the long-term solutions from IGS (Dow et al., 2009), 

the International Very Long Baseline Interferometry (VLBI) Service (IVS) (Schuh 

and Behrend, 2012), the International Dopler Orbitograpghy and Radiopositioning 

Integrated by Satellite (DORIS) Service (IDS) (Willis et al., 2010), and the 

International Laser Ranging Service (ILRS) (Pearlman et al., 2002). 

 

https://www.gps.gov/
http://www.igs.org/
http://www.iag-aig.org/
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Conventional horizontal and vertical control networks which were generally formed 

by trilateration and spirit leveling measurements mostly gave their places to unified 

GPS/GNSS networks today, thanks to the three dimensional nature of the satellite 

systems. GPS receivers and antennas are easily transported and unaffected by the 

atmospheric conditions, and visibility between sites is not required. Currently, it is 

possible to obtain the coordinates of a point with millimeter level precision. However, 

it is mainly due to its relative inexpensiveness that GPS became popular among above 

mentioned space geodetic techniques (Segall and Davies, 1997). When used together, 

its relatively high spatial and temporal resolution might add value to the findings of 

strainmeters and Interferometric Synthetic Aperture Radar (InSAR), respectively. It 

has been widely used as a versatile tool in the studies of various physical processes 

such as, dynamic ground motions (e.g., Grapenthin and Freymueller, 2011; Geng et 

al., 2016; Huang et al., 2017), plate motions (e.g., Kreemer et.al., 2014; Prawirodirdjo 

and Bock, 2004), polar motion (e.g., Dong et al., 2002), volcano deformation (e.g., Ji 

and Herring, 2011; Freymueller and Kaufman, 2010), coseismic ionospheric 

disturbance (e.g., Liu and Jin, 2019), earthquake studies (e.g., Larson, 2009; Tanaka 

et al., 2018) and hydrology (e.g., King et al., 2007; Tregoning et al., 2009). 

 

Considering the advantages, and the achievements reached with reasonable budgets, 

continuously operating GPS/GNSS networks with various scales have been 

established increasingly. Such networks are utilized in geophysical studies 

successfully. The global IGS network consists of more than 500 GPS/GNSS stations. 

To monitor actively deforming areas, specially designed regional networks are formed 

such as Plate Boundary Observatory (PBO) in the United States and GPS Earth 

Observatory Network (GEONET) in Japan. Both networks have over 1000 stations. 

Recently, a real-time kinematic (RTK) network (CORS-TR) consists of 158 reference 

stations (as of May 1, 2019) has been established in Turkey and in Turkish Republic 

of Northern Cyprus.  
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Although the main purpose of the CORS-TR network is to provide correction 

parameters to the rovers in the field, static data collected at the reference stations 

might also be useful for tectonic studies. On the other hand, although having been 

situated at the intersection of major tectonic plates and being abundant of crustal 

deformation, Turkey is deprived of any national-scale continuous GPS/GNSS 

network specifically designed for tectonic studies. Thus, assessing the availability of 

CORS-TR in crustal deformation studies is important. 

 

Although higher-rate samplings can be studied (e.g., Bock et al., 2004; Larson et al., 

2007), processing the continuous GPS data daily and getting one position estimate per 

day for each station is common. These estimates together form coordinate time series 

in each of the three dimensions. Changes in the daily coordinates of stations are the 

results of noise and several signals riding on a secular velocity that might or might not 

be related to the tectonics.   

 

The station velocity is assumed to be linear due to tectonic plate motion. Annual and 

semi-annual signals can bias the velocity estimates (Blewitt and Lavallee, 2002). 

These quasi-seasonal signals might be originated from (1) surface mass redistributions 

due to, e.g., ocean tide and atmospheric loadings, (2) thermal reasons such as bedrock 

thermal expansion, and (3) various errors due to e.g., satellite orbit and atmosphere 

models (Dong et al., 2002). Due to the aliasing effects of diurnal and semi-diurnal 

signals (Penna et al., 2007), sinusoids of constant amplitude might not represent the 

seasonal signals perfectly (Bennet, 2008).  

 

Discontinuities due to, e.g., updates in processing strategy (e.g., changing from 

relative to absolute antenna phase center corrections), equipment changes (of antenna, 

radome etc.) which might also result in noise changes, and coseismic displacements 

are also often in GPS time series. Outliers due to, e.g., adverse atmospheric conditions 
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might contaminate the time series (Ostini, 2012). Most outlier detection algorithms 

assume a model of the patterns in the data, and decide whether a data point is an outlier 

according to the level of the deviations from these patterns (Aggarwal, 2015). Time 

series might suffer from data gaps due to various reasons such as receiver 

malfunctions and problems in power supply. The interpolated data can lead to 

spurious conclusions, as the data gap becomes longer. Non-tectonic effects might be 

seen due to, e.g., environmental changes around the antenna, vandalism, heavy snow 

load on the antenna.  

 

Transient signals from tectonic origins, which are of main interest in this thesis, might 

also exist in the time series. Studies about tectonic transients include, e.g., postseismic 

deformation (e.g., Savage and Langbein, 2008; Xu et al., 2019; Gunawan et al., 2019), 

hydrologic deformation (e.g., Ji and Herring, 2012; Silverii et al., 2019), volcanic 

inflation (e.g., Chang et al., 2007; Ji et al., 2017) and slow slip events (e.g., Szeliga et 

al., 2008; Vergnolle et al., 2010). 

 

It is important to have knowledge of the noise characteristics in GPS time series to 

evaluate the significance of the detected transient signals. It has been shown in several 

studies that GPS time series contain temporally correlated noise (e.g., Zhang et al., 

1997; Mao et al., 1999; Williams et al., 2004; Beavan, 2005; Amiri-Simkooei et al., 

2007; Langbein, 2008; Santamaria-Gomez et al., 2011; Wang et al., 2011). Power 

spectra, 𝑆(𝑓), of the noise in GPS time series obey a power-law model well (e.g., 

Wiliams et al., 2004) as: 

 

𝑆(𝑓) ≅ 1/𝑓𝛼,     (1.1) 
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where 𝑓 is frequency, and 𝛼 is spectral index (Mandelbrot and Van Ness, 1968; 

Agnew, 1992). When noise is white, 𝛼 = 0; while flicker noise and random-walk 

correspond to 𝛼 = 1 and 𝛼 = 2, respectively. According to Zhang et al. (1997) and 

Mao et al. (1999), combination of white and flicker noise is the best choice to describe 

the noise in GPS time series. Williams et al. (2004) states the more varied nature of 

the spectral index in regional solutions. Langbein (2008) found that either flicker or 

random-walk noise can represent one-half of the time series examined from 236 GPS 

sites. Flicker plus random-walk, power law, first-order Gauss-Markov plus random 

walk, power law plus broadband, and seasonal noise were the descriptors of the noise 

in the remaining time series.  

 

Possible site-specific sources of correlated noise might be due to, e.g., satellite 

geometry, multipath, and monument instability. Random-walk type errors are 

introduced to the time series due to the random motion of the monuments with respect 

to the deeper crust (Johnson and Agnew, 1995). Anchoring to more than 10-m depth 

might mitigate the monument instability (Wyatt, 1989). However, most of the CORS-

TR stations are installed on the roofs or terraces of buildings, considering operational 

convenience. 

 

In addition to the temporally correlated noise, GPS time series are also exposed to 

spatially correlated noise. Since such noise is common to the sites in the network 

rather than being site-specific, it is called “Common Mode Error” (CME). Possible 

causes of CME might be errors of satellite orbits and reference frame (Wdowinski et 

al., 1997; Dong et al., 2006). CME can be reduced by regional filtering approach 

(Wdowinski et al., 1997) in which epochwise mean values of the stacked residuals are 

removed from the individual positions. This approach works well when the 

assumption of spatial uniformity of CME holds. It is equivalent to translating the 

origin of the network in three diemensions (Dong et al., 2006). Spatiotemporal 
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filtering of Dong et al. (2006) utilizes PCA and Karhunen-Loeve expansion and 

allows non-uniformity in the estimation of CME. Transforming the reference frame 

by a seven-parameter Helmert transformation into a regional reference frame using 

fiducial local sites is another approach to suppress the CME (Ji and Herring, 2011).  

 

In a network, a tectonic transient often reveals itself in multiple sites. However, since 

the sites to be investigated in transient signal detection are not known a priori, 

inspecting all sites becomes challenging as the network size grows. Yet, especially in 

noisy data, the weakness of the transient is the major difficulty in detection. Hence, 

signal-to-noise ratio (SNR) of the original signal must be improved. This can be 

achieved by suppressing the noise. To this end, the level and the stochastic nature of 

the noise must be determined well. However, there is no ubiquitous noise model for 

GPS time series since the correlated noise is site-specific as aforementioned. Based 

on their findings on the majority of the time series they inspect, researchers try to 

reach an approximation. Since the validity of these approximations are arguable, the 

methods of adaptive data-driven Empirical Mode Decomposition (EMD) (Huang et 

al., 1998), its noise-assisted version Ensemble Empirical Mode Decomposition 

(EEMD) (Wu and Huang, 2009) and Complete EEMD with Adaptive Noise 

(CEEMDAN) (Torres et al., 2011), which is the complete variant of EEMD, are 

applied here, for denoising the GPS residual time series. Hereby, no a priori 

assumptions are made about the noise like, e.g., in Ji and Herring (2011), where they 

used a first-order Gauss-Markov (FOGM) process to account for temporally 

correlated noise and transients, due to its easy implementation in Kalman filters. 

 

EMD decomposes the noisy signal into amplitude and frequency modulated Intrinsic 

Mode Functions (IMFs). Each IMF contains higher frequency oscillations than the 

following IMF components. Denoising properties of EMD were reported in, e.g., Wu 

and Huang (2004), Flandrin et al. (2004, 2005) and Boudraa and Cexus (2006). Since 
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then, signal denoising through EMD was applied in various fields (e.g., Weng et al., 

2006; Khaldi et al., 2008; Tsolis and Xenos, 2009). Lately, Li et al. (2018) combined 

CEEMD and Wavelet-Transform (WT) based multiscale multiway Principal 

Component Analysis (Li et al., 2017) for denoising GNSS time series. 

 

Fractional Brownian motion (fBm) has long-range, temporal and spatial correlation 

unlike the classical Brownian motion with independent increments. This makes fBm 

a convenient model for complex natural processes such as long GPS time series. The 

Fractional Gaussian noise, fGn, (Mandelbrot and Van Ness, 1968) is the increment 

process of fBm and a widely used model for broadband noise with no dominant 

frequency band. The self-similarity parameter Hurst index (H), determines the 

statistical properties of fGn. When H = 0.5, the process is uncorrelated. If H < 0.5, 

the process shows short-range dependence, while it exhibits long-range dependence 

if H > 0.5. The relationship between H and 𝛼  (spectral index of power-law model) is 

as follows (Schroeder, 2009): 

 

𝛼 = 2𝐻 − 1,     (1.2) 

 

where 𝛼 ≤ 2. Flandrin et al. (2004) carried out extensive simulations and examined 

the behavior of IMF energies in noise-only situations (where 0.1 ≤ H ≤ 0.9). From 

this point of view, the residuals are denoised in this study by subtracting only the IMFs 

whose Hurst indexes are below or equal to 0.5 (white noise). It is not attempted to 

remove the IMFs with higher H indexes which correspond to colored noise, to avoid 

losing also the traces of the transients. 

 

The Common Mode Error (CME) is first reduced by applying a reference frame 

transformation. To discriminate between the site-specific colored noise and the 
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transients in the denoised residual time series, the spatial coherence of the transients 

is seeked. Principal Component Analysis (PCA) (e.g., Jolliffe, 2002; Abdi and 

Williams, 2010) is applied to the denoised residuals to detect this coherence. PCA 

transforms the time series into linearly uncorrelated principal components (PCs). 

Considering also the reduction of the CME beforehand, it is expected to catch the 

coherent transients in the first PC which has the largest variance, and a χ2 value 

significantly inconsistent with the simply random noise. 

 

The spectrum of time series analysis methods is very wide (see, e.g., 

https://en.wikipedia.org/wiki/Time_series). There are tens of methods which are used 

for various purposes such as, forecasting, classification and prediction, as well as 

signal detection. The primary motivation of this study is to develop a novel method 

which combines the high-precision GPS analysis, Empirical Mode Decomposition 

and Principal Component Analysis to detect the tectonically driven transient signals 

in GPS time series, effectively. High-precision GPS analysis sets the basis for weak 

and transient signal detection by modeling the other signals which can mask the 

targeted signal. The adaptive nature of EMD makes it possible to improve the SNR 

effectively without the a priori assumptions about the data. The patterns which are 

normally not easily discernible in the original data can be identified by PCA. The 

developed method can be used by Earth science community for tectonic monitoring 

where the weak transient signals are of significance. 

 

1.2 Objectives 

 

We primarily aim at realizing a tool for transient signal detection in GPS coordinate 

time series. This is going to be achieved by reducing CME and improving the signal-

to-noise ratio both in time and space domain without making any assumption about 

https://en.wikipedia.org/wiki/Time_series
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the noise characteristics of the targeted time series. The following research objectives 

are considered to reach this goal: 

 

 Daily GPS phase data from CORS-TR stations are going to be processed with 

the high-precision analysis techniques, and the coordinate time series in north, 

east and up directions are going to be generated. Known signals such as secular 

velocities, seasonal signals, coseismic displacements due to known 

earthquakes, non-tectonic signals due to, e.g., antenna change, are going to be 

determined. Outliers are going to be removed and data gaps are going to be 

interpolated. Precise velocities and uncertainties of the sites are going to be 

estimated. 

 

 Sufficient number of homogenously distributed local stations with low 

coordinate and velocity uncertainties are going to be selected. Based on the 

coordinates of these stations, reference frame of the time series is going to be 

transformed into a regional frame by using a seven parameter Helmert 

Tranformation, and CME is going to be reduced. 

 

 GPS time series are going to be detrended, considering the secular rates and 

seasonal signals. Residual signals are going to be denoised using Empirical 

Mode Decomposition.  

 

 Transient signals are going to be investigated in the denoised residuals by 

decomposing them into principal components using Principal Component 

Analysis.  
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 Detection capability of the proposed method is going to be displayed on slow 

slip events in Cascadia, a known transient in Plate Boundary Observatory 

(PBO) network due to inflation at Akutan volcano, Alaska, and on postseismic 

deformation at CORS-TR sites after October 23, 2011 Van earthquake.  

 

1.3 Thesis Outline 

 

The structure of the thesis is as follows: 

 

 Chapter 1, Introduction: The motivation, objectives and thesis outline are 

introduced. 

 

 Chapter 2, The Global Positioning System and Coordinate Time Series: 

Theoretical bases of high-precision GPS analysis are presented. Examples of 

common signals in GPS time series, and noise characteristics are also 

displayed.  

 

 Chapter 3, Empirical Mode Decomposition: Fundamentals of Empirical 

Mode Decomposition (EMD) method are introduced. Problematic areas of 

EMD are touched. Signal denoising approach is presented. 

 

 Chapter 4, Principal Component Analysis: Mathematical foundations of 

Principal Component Analysis (PCA) are given. 

 

 Chapter 5, Applications: Details and results in the processing of CORS-TR 

GPS data are illustrated. Common mode error is reduced. Detection capability 
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of the proposed method is shown on previously known transient signals in 

Cascadia, Alaska and Turkey. 

 

 Chapter 6, Conclusions: Discussion, conclusions and future work are 

included. 
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CHAPTER 2 

 

 

GLOBAL POSITIONING SYSTEM AND COORDINATE TIME SERIES 

 

 

 

The Global Positioning System (GPS) segments and GPS signals are first presented 

in the next subsections. GPS observables and positioning principles are explained 

afterwards. Data processing software used and high-precision positioning standards 

are introduced next. Examples of various signals seen in the time series of the station 

positions, as well as the noise characteristics are illustrated in the end.   

 

 

2.1 GPS Segments 

 

2.1.1 Space Segment 

 

The space segment includes 31 operational GPS satellites (as of January 9, 2019). 

These satellites rotate around the Earth in almost circular orbits of approximately 

26600 km radius with the Earth’s centre of mass being at the centre. They transmit 

signals towards the Earth using microwaves, which are used for ranging between the 

satellites and the receiver. Signals are encoded with the navigation messages which 

include orbit parameters (broadcast ephemeris) to be used in the calculation of the 

satellites’ positions. In high-precision analysis, more precise orbit information is used, 

supplied by, e.g., International GNSS Service (IGS). 
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The design of the GPS constellation has some consequences, desirable or not. First of 

all, anytime and anywhere on the Earth, at least four satellites are visible. On the other 

hand, a GPS satellite completes its revolution in the orbit in approximately 11 h 58 

min. Satellites are placed in six fixed orbital planes with 55° inclination over the 

equator. Therefore, same set of satellites are observed by a user at the same location 

everyday with a 4 min. delay. Such geometry can cause repeating errors, such as 

multipath interference which is due to signals reflected by the objects around the 

antenna. Since the observations are biased consistently, coordinate repeatibilities are 

not intriguing, although the accuracy is degraded. Fixed orbital planes with 55° 

inclination also causes GPS satellites never rise above 55° elevation at the poles, which 

leads to lower vertical positioning accuracy at these regions (Blewitt, 2009). 

 

2.1.2 Control Segment 

 

The control segment monitors the satellite orbits and the health of the satellites, 

maintains GPS time, predicts and updates satellite ephemerides and clock parameters 

(Misra and Enge, 2006). It consists of several globally distributed monitor stations 

(MS), a master control station (MCS) with an alternate, and ground antennas (GA). 

 

Monitor stations determine the range data by tracking the GPS satellites. They send 

the observations together with the local atmospheric data to the master control station. 

Using these data, master control station computes the satellite positions and satellite 

clock behaviors, and forms the navigation message, which later uplinked to the 

satellites by ground antennas. This process is shown in Figure 2.1. 
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2.1.3 User Segment 

 

The user segment includes GPS receivers and antennas, as well as the software used 

for data processing. A GPS receiver collects signals from the satellites and convert 

them to the observables which are used in the calculation of the positions. They can 

be classified according to various criteria, such as available data-type, channel 

realizations and intended use. Design of the geodetic antennas generally serves for 

high-precision, such that they receive both L1 and L2 carriers which can be used 

together in the removal of ionospheric effect, and can be protected against multipath. 

 

 

Figure 2.1. Navigation message cycle (Seeber, 2003) 

 

Generally, scientific software packages are used in post-processing mode in the 

applications which require ultrahigh-precision. Such softwares, in addition to the 

employment of an accurate observation model, have extended capabilities in modeling 

and incorporating many phenomena which might affect positioning precision. Three 

widely used packages are as follows:  
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 GAMIT-GLOBK software, Massachusetts Institute of Technology (MIT), 

USA (Herring et al., 2018), 

 BERNESE software, Astronomical Institute, University of Bern, Switzerland 

(Dach et al., 2015), 

 GIPSY-OASIS II software, Jet Propulsion Laboratory (JPL), California 

Institute of Technology, USA (Zumberge et al, 1997). 

 

2.2 GPS Signal Structure 

 

The fundamental frequency of GPS signals is 10.23 MHz, provided by the precise 

atomic clocks. Two main L-band carrier signals are generated from this signal: 

 

 L1: 154 x 10.23 = 1575.42 MHz 

 L2: 120 x 10.23 = 1227.60 MHz 

 

As of January, 2019, twelve operational Block IIF satellites, launched between 2010 

and 2016, transmit also L5 signal of 1176 MHz. The carriers are encoded with 

information using binary digits (code) showing whether the signal remains unchanged 

(0) or flipped by 180° (1). There exist C/A (coarse acquisition) code transmitted at 

1.023 Mpbs on L1 channel and P (precise) code transmitted at 10.23 Mpbs on both L1 

and L2 channel. Both codes (with different resolution) convey satellite clock time of 

signal transmission. L2 carriers from the satellites, launched since 2005, are also 

encoded with L2C code. The navigation message which contains information about 

orbital parameters, ionosphere, satellite clock corrections, satellite health status and 

almanac, is encoded on L1 channel and transmitted at 50 bps. 
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2.3 GPS Observables and Parameter Estimation 

 

2.3.1 Code Pseudorange Observable 

 

Determining the position of a point with GPS mainly depends on measuring distances 

(ranges) to the satellites of known positions. However, these ranges cannot be 

measured directly by the GPS receivers. Instead, signal’s time of flight between 

transmission from the satellite and reception in the receiver is measured. To this end, 

the receiver generates the replica of the satellite-specific C/A and P codes, compares 

them with the incoming codes by cross-correlation, and computes the time delay 

required in the alignment of the codes. This time measurement is multiplied by the 

speed of light (299792458 m/s), and the so-called pseudorange is obtained. The term 

‘pseudo’ is due to the bias in the range introduced by the receiver’s clock. Although 

this bias is receiver-specific, it is the same for all satellites in view. Thus it can be 

estimated together with the three unknown coordinates of the receiver in the 

positioning solution. The information about much smaller errors in the satellite clocks 

are transmitted through navigation messages.  

 

The basic equation of a pseudorange to the satellite s is: 

 

𝑃𝑠(𝑡) = (𝑡 − 𝑡𝑠)𝑐 + 𝑐𝜏 − 𝑐𝜏𝑠 

=  𝜌𝑠(𝑡, 𝑡𝑠) + 𝑐𝜏 − 𝑐𝜏𝑠,       (2.1) 

 

where 𝑡 is the time of signal reception, 𝑡𝑠 is the time of signal transmission, 𝜏 is the 

receiver clock bias, 𝜏𝑠 is the satellite clock bias, 𝑐 is the speed of light, and 𝜌𝑠(𝑡, 𝑡𝑠) 

is the range (geometric distance) which can be written from Pythagoras Theorem as: 
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𝜌𝑠(𝑡, 𝑡𝑠) =  √(𝑥𝑠(𝑡𝑠) − 𝑥(𝑡))2 + (𝑦𝑠(𝑡𝑠) − 𝑦(𝑡))2 + (𝑧𝑠(𝑡𝑠) − 𝑧(𝑡))2, (2.2) 

 

where 𝑥, 𝑦 and 𝑧 are the receiver coordinates, whereas 𝑥𝑠, 𝑦𝑠 and 𝑧𝑠 are the satellite 

coordinates. Satellite coordinates and satellite clock bias are computed by means of 

the navigation message. Hence, the three components of the receiver’s position and 

the receiver clock bias are the unknowns left. Therefore, observation equations for at 

least four satellites in view are formed to calculate the unkowns. Code pseudorange 

observation model might be improved more by including the signal delay due to 

troposhere (𝑍𝐴
𝑗
) and ionosphere (𝐼𝐴

𝑗
) (Blewitt, 2002): 

 

𝑃𝐴
𝑗(𝑇𝐴) = 𝑐(𝑇𝐴 − 𝑇𝑗) = 𝜌𝐴

𝑗
(𝑡𝐴, 𝑡𝑗) + 𝑐𝜏𝐴 − 𝑐𝑡𝑗 + 𝑍𝐴

𝑗
+ 𝐼𝐴

𝑗
 , (2.3) 

 

where subscript A indicates the receiever quantities, and superscript j indicates the 

satellite quantities. 

 

2.3.2 Carrier Phase Observable 

 

Carrier phase observable is used to reach higher precision in positioning. It is the 

difference between the phases of the incoming carrier and a reference signal generated 

by the receiver. The meaning of phase (φ) is illustrated in Figure 2.2. Carrier phase 

observable is multiplied by the wavelength of the carrier, and a biased distance to the 

satellite is obtained. The observation model is similar to that of the code pseudorange: 

 

𝐿𝐴
𝑗 (𝑇𝐴) ≡ 𝜆0𝜙𝐴

𝑗(𝑇𝐴)  

= 𝜌𝐴
𝑗

(𝑡𝐴, 𝑡𝑗) + 𝑐𝜏𝐴 − 𝑐𝑡𝑗 + 𝑍𝐴
𝑗

− 𝐼𝐴
𝑗

+ 𝐵𝐴
𝑗
,   (2.4) 
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Figure 2.2. The definition of the phase (Blewitt, 2002) 

 

 

where λ is the wavelength of the carrier 𝐿𝐴, and  𝐵𝐴
𝑗
 is the carrier phase bias (Blewitt, 

2002) as follows: 

 

𝐵𝐴
𝑗

≡ 𝜆0(𝜑0𝐴 − 𝜑0
𝑗

− 𝑁𝐴
𝑗
),    (2.5) 

 

where 𝑁𝐴
𝑗
 is the integer number of cycles (wavelengths) between the satellite and the 

receiver, which is ambiguous initially, since only the fractional phase is recorded 

rather than the total phase. Ambiguity resolution techniques are used to resolve this 

bias (for an overview of ambiguity resolution techniques, see, e.g., Hoffman-

Wellenhof et al. (2008)). The integer ambiguity can be modeled as constant for all 

measurements, for the receiver counts the full signal oscillations since the first 

measurement.  However, if the lock on a satellite is lost for any reason, the count of 

the complete cycles is restarted, and a new integer ambiguity is introduced. The name 

of this integer discontinuity is “cycle-slip”. Cycle-slips can be removed by, e.g., triple-
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differencing (e.g., Seeber, 2003; Hoffman-Wellenhof et al., 2008). For the sake of 

integrity, let us now explain the differencing techniques.  

 

The observation model of a carrier phase between the receiver A and satellite j has 

already been introduced. A similar carrier phase can be formed between the receiver 

B and the same satellite j. The single difference phase ∆𝐿𝐴
𝑗

 is the difference between 

these two phase observables: 

 

   ∆𝐿𝐴
𝑗

≡ 𝐿𝐴
𝑗

− 𝐿𝐵
𝑗

   

= ∆𝜌𝐴𝐵
𝑗

+ 𝑐∆𝜏𝐴𝐵 + ∆𝑍𝐴𝐵
𝑗

− ∆𝐼𝐴𝐵
𝑗

+ ∆𝐵𝐴𝐵
𝑗

.   (2.6) 

 

As can be seen, the parameter relating to the satellite clock bias is eliminated in the 

above equation, which is actually the purpose of single differencing. 

 

The above single difference phase can also be constructed for another satellite k. If 

the difference between these two single difference phases is taken, the double 

difference phase is reached: 

 

          𝛻∆𝐿𝐴𝐵
𝑗𝑘

≡ ∆𝐿𝐴𝐵
𝑗

− ∆𝐿𝐴𝐵
𝑘   

= 𝛻∆𝜌𝐴𝐵
𝑗𝑘

+ 𝛻∆𝑍𝐴𝐵
𝑗𝑘

− 𝛻∆𝐼𝐴𝐵
𝑗𝑘

+ 𝛻∆𝐵𝐴𝐵
𝑗𝑘

.  (2.7) 

 

The aim of generating double differences is to eliminate receiver clock bias, as the 

above equation exhibits clearly. 

 

Assuming that the integer ambiguity remains constant between epochs, triple 

differencing can be used to eliminate the ambiguity (Blewitt, 2002). Triple difference 
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phase is the difference between two double difference phase at two successive epochs 

(i, i+1): 

 

       𝛿(𝑖, 𝑖 + 1)𝛻∆𝐿𝐴𝐵
𝑗𝑘

≡ 𝛻∆𝐿𝐴𝐵
𝑗𝑘 (𝑖 + 1) − 𝛻∆𝐿𝐴𝐵

𝑗𝑘 (𝑖)  

= 𝛿(𝑖, 𝑖 + 1)𝛻∆𝜌𝐴𝐵
𝑗𝑘 (𝑖) + 𝛿(𝑖, 𝑖 + 1)𝛻∆𝑍𝐴𝐵

𝑗𝑘 (𝑖)  

−𝛿(𝑖, 𝑖 + 1)𝛻∆𝐼𝐴𝐵
𝑗𝑘(𝑖) .           (2.8) 

 

Note also the negative sign of the ionospheric delay in carrier phase observations, due 

to the increase in the phase velocity. The ionospheric refraction bias can be eliminated 

by constructing a linear combinaton (LC) of the carrier phases (so-called ionosphere-

free combination): 

 

𝐿𝐶 =  
𝑓1

2𝐿1 − 𝑓2
2𝐿2

(𝑓1
2𝑓2

2)
 

≅ 2.546𝐿1 − 1.546𝐿2,   (2.9) 

 

where 𝑓1 = 154 and 𝑓2 = 120. 

 

Combinations cannot eliminate the tropospheric delay, since it is frequency-

independent. The influence of the troposhere on the observed ranges is usually 

expressed by dry and wet components. The distribution of the water vapor in the 

atmosphere governs the wet portion. The main contributor to the total tropospheric 

refraction is the dry component (Seeber, 2003). Futher information about the available 

models for the troposheric delay can be found in, e.g., (Mendes and Langley, 1994, 

1999). 
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2.3.3 Least Squares Estimation 

 

To determine the unknowns (e.g., the receiver coordinates and the receiver clock bias), 

the observation equations are linearized first, followed by applying ordinary least-

squares analysis. The linearized model between the observations (𝒚) and the 

unknowns (𝜷), and the stochastic part of the model (together called Gauss-Markoff 

model) can be written as: 

 

𝜟𝒚𝒏𝒙𝟏 + 𝒆𝒏𝒙𝟏 =  𝑿𝒏𝒙𝒖𝜟𝜷𝒏𝒙𝟏,   (2.10) 

𝑫(𝒚) = 𝜎2𝑷−1,    (2.11) 

 

where 𝜟𝒚 is the reduced observations (prefit residuals) vector, 𝒆 is the random 

observation errors vector, 𝑿 is the coefficient matrix formed by taking the partial 

derivatives of the function according to the unkowns, 𝜟𝜷 is the correction vector of 

the unkowns, 𝑫(𝒚) is the covariance matrix of the observations, P is the data weight 

matrix, 𝜎2 is the variance of unit weight, n is the number of linearly independent 

double differenced data, u is the number of the unkowns. Corrections to the unkowns 

are calculated using the least squares estimation method (details of the least squares 

estimation can be found in, e.g., Koch, 1999): 

 

𝜟�̂� = (𝑿𝑻𝑷𝑿)−𝟏𝑿𝑻𝑷𝜟𝒚.    (2.12) 

 

Adjusted parameters and corrected observations are obtained as follows: 

 

�̂� = 𝜷0 + 𝛥�̂� ,    (2.13) 

�̂� = 𝑿�̂�.     (2.14) 
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Estimated residuals (postfit residuals) are the differences between the original 

observations and the corrected observations: 

 

�̂� = 𝒚 − �̂�.     (2.15) 

 

The covariance matrix of the estimated parameters is: 

 

𝑫(�̂�) = �̂�0
2(𝑿𝑻𝑷𝑿)−𝟏,    (2.16) 

 

where the variance scale factor, which is a measure of fitting, is: 

 

�̂�0
2 =

�̂�𝑻𝑷�̂�

𝑛−𝑢
 .     (2.17) 

 

2.4 High-precision GPS Positioning 

 

Measuring pseudoranges at a single station to the satellites in view (which is called 

absolute positioning) enables users to reach only couple meters of positioning 

accuracy. The Precise Point Positioning (PPP) technique, which relies on the dual-

frequency measurements at a single station and precise GPS orbit and clock products, 

has been used successfully to achieve centimeter/decimeter level of accuracy (e.g., 

Zumberge et al., 1997; Gao and Shen, 2002), and applied in various areas (e.g., Kuo 

et al., 2012; Li et al., 2015). PPP is implemented in post-processing mode 

conventionally, due to the latency of the precise products provided by IGS and several 

other agencies. Real-time PPP is a hot topic in the geodetic community, and IGS 

provides precise orbit and clock products through its Real-Time Service (RTS) since 
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2013 via NTRIP (Network Transport of Radio Technical Commission for Maritime 

(RTCM) via Internet Protocol) (Colombo, 2008), to contribute real-time applications.  

 

Absolute positioning with PPP using precise orbit and clock products (1), relative 

positioning of networks using precise orbits, but estimating the clock biases (2), and 

relative positioning of networks by double-differenced observations, using again 

precise orbits (3), all produce similar results of high-precision and therefore are 

common in geophysical studies (Blewitt, 2009). The points taken into consideration 

in high-precision GPS analysis are summarized as follows: 

 

 For geodetic applications precise satellite orbits and clocks are needed. These 

data might be obtained from the dedicated services such as IGS which is the 

fruit of an international collaboration. As of May 2019, the claimed accuracies 

of the IGS GPS products are given in Table 2.1. 

 Dual-frequency GPS receivers are required to eliminate the ionospheric delay 

errors, by combining the carrier phases appropriately. 

 Simultaneous observations at different ground stations are needed to construct 

differenced data which might be used in, e.g., cancelling out the receiver clock 

bias. 

 Positioning precision increases with longer observation sessions (Eckl et al., 

2001; Soler et al., 2006; Firuzabadi and King, 2011). Since the measurements 

are uninterrupted in permanent GPS stations, positions can be determined 

using the data with sub-daily intervals. However, it is common to estimate the 

positions by using 24-h data packages (and generally with 30-s data sampling) 

in geophysical studies. 
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Table 2.1. IGS GPS products (http://www.igs.org/products) 

Type Accuracy Latency Updates 
Sample 

Interval 

Broadcast 

orbits ~100 cm 

real time -- daily 
Sat. clocks 

~5 

ns    RMS  

~2.5 ns 

SDev 

Ultra-Rapid 

(predicted half) 

orbits ~5 cm 

real time 
at 03, 09, 15, 21 

UTC 
15 min 

Sat. clocks 

~3 

ns    RMS  

~1.5 ns 

SDev 

Ultra-Rapid 

(observed half) 

orbits ~3 cm 

3 - 9 hours 
at 03, 09, 15, 21 

UTC 
15 min 

Sat. clocks 

~150 ps 

RMS  

~50 ps SDev 

Rapid 

orbits ~2.5 cm 

17 - 41 

hours 
at 17 UTC daily 

15 min 

Sat. & Stn. 

clocks 

~75 ps 

RMS  5 min 

~25 ps SDev 

Final 

orbits ~2.5 cm 

12 - 18 

days 
every Thursday 

15 min 

Sat. & Stn. 

clocks 

~75 ps 

RMS  
Sat.: 30s  

~20 ps SDev Stn.: 5 min 

Note 1: Orbit accuracies are 1D mean RMS values over the three XYZ geocentric components. IGS accuracy 

limits, except for predicted orbits, are based on comparisons with independent laser ranging results and 

discontinuities between consecutive days. The precision is better. 

Note 2: The accuracy (neglecting any contributions from internal instrumental delays, which must be calibrated 

separately) of all clocks is expressed relative to the IGS timescale, which is linearly aligned to GPS time in one-

day segments. The standard deviation (SDev) values are computed by removing a separate bias for each satellite 

and station clock, whereas this is not done for the RMS values. 

 

 A sophisticated geodetic software is used in the estimation of the model 

parameters. It utilizes an accurate observation model and considers modeling 

of, e.g., Earth rotation, atmosphere, solid Earth and ocean tides, atmospheric 

pressure loading, antenna phase center variations. It must also detect and 

correct the cycle-slips, and resolve the integer ambiguities. 

http://www.igs.org/products
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2.5 GPS Time Series 

 

Processing the data and computing the station coordinates daily is the initial step of 

producing the time series. Geodetic time series might serve in reflecting phenomena 

related to oceanography, hydrology, glaciology, meteorology, and geophysics which 

are the sciences having close connection to geodesy (Torge and Müller, 2012). 

Changes in the position are the consequences and interactions of the tectonic or non-

tectonic factors as well as the correlated noise, revealing themselves in the time series 

with miscellaneous characteristics. Various types of signals which are commonly 

present in GPS time series are displayed in this subsection. Examples are from CORS-

TR time series which are the main interest of this thesis. 

 

The most immanent pattern, especially in the horizontal components of the time 

series, is the secular velocities originated mostly from the constant motions of the 

rigid plates according to the plate tectonic theory (e.g., Tomecek, 2009). The reasons 

of the vertical velocities are not so clear. High rates in the vertical component are often 

indicatives of local events. Annual and semi-annual seasonal signals might be present 

in the time series due to, e.g., ocean tide and atmospheric loadings (see Figure 2.3). 

 

There might exist discontinuities due to, e.g., updates in processing strategy or 

equipment changes (antenna, radome etc.). Outliers due to systematic errors, e.g., 

adverse atmospheric conditions, might contaminate the time series. Time series might 

suffer from data gaps due to various reasons, such as receiver malfunctions and 

problems in power supply (see Figure 2.4). 

 



 

 

27 

 

 

Figure 2.3. Daily GPS time series of (a) ADIY and (b) MUGL stations. Secular velocities are shown 

by the line fits. Often, seasonal signals exist in the time series as can be seen in (b). 

 

 

Figure 2.4. (a) The offset highlighted by the arrow in the east component of ANKR station occured 

due to antenna and receiver change. (b) Outliers and data gap are shown in the time series of HALP 

station. 
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In addition to these common patterns, there might be also tectonically driven transient 

signals. In Figure 2.5, the coseismic displacement and postseismic deformation 

following the October 23, 2011 Van earthquake at MURA station, and hydrologic 

deformation at ADAN station which is located very close to Seyhan River (< 500m) 

and correlated with the water level change at the Seyhan Dam (Ozdemir et al., 2017) 

are presented. 

 

 

Figure 2.5. (a) Coseismic displacement and postseismic deformation observed at MURA 

station following October 23, 2011 Van earthquake, (b) Hydrologic deformation observed at 

ADAN station correlated with the water level change at the nearby Seyhan Dam. 

 

The time series of KNY1 station is displayed in Figure 2.6, which suffers from the 

land subsidence in Konya, detected also by Ustun et al. (2015). Its intolerable up 

velocity is about 6.5 cm/yr. 
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Figure 2.6. Time series of KNY1 station whose up velocity is about 6.5 cm/yr, indicative of 

a possible land subsidence. 

 

Tectonics is not the only source of transient signals in GPS time series. Many non-

tectonic signals, due to such as human interaction, antenna malfunction, changes in 

the environment around the antenna, repeating heavy snow cover during winters, 

multipath, water vapor effect in summers may also affect the time series. In Figure 

2.7, the effect of the repeating multipath during summer seasons at BTMN station is 

demonstrated. It is also shown in the same figure the time series of EMIR station 

which deviates from its regular pattern during late 2013, since a lightning rod had 

been mounted on the mast (see Figure 2.8) of this site. Time series returned to its 

former pattern after the removal of the rod at January 09, 2014. 
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Figure 2.7. (a) Time series of BTMN station showing repeating signal during summer 

season due to multipath, (b) The effect of a lightning rod mounted on the mast of the GPS 

antenna of EMIR station (see also Figure 2.8). 

 

 

Figure 2.8. Lightning rod mounted on the mast of the GPS antenna at EMIR station. 



 

 

31 

 

There might be also obvious signals in the time series whose sources could not have 

been discovered yet. Two such signals at INEB and SEMD stations are presented in 

Figure 2.9, respectively. INEB station had been relocated twice, due to a repeating 

pattern occuring every year between June and late October. A severe jump happens at 

the beginning of 2016 at SEMD station, very similar to a coseismic displacement. 

However, no earthquake has been detected which can cause such a displacement on 

these days. 

 

 

Figure 2.9. (a) Time series of INEB station showing unkown repeating signal between June 

and late October every year, (b) Unkown displacements (indicated by an arrow) seen in the 

time series of SEMD station. 

 

In addition to these several types of signals, GPS time series also contain temporally 

and spatially correlated noise. Contrary to what is believed previously, studies in the 
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last two decades have shown that noise in GPS time series cannot be assumed simply 

white in time, but also exhibits colored characteristics (e.g., Zhang et al., 1997; Mao 

et al., 1999; Williams et al., 2004; Beavan, 2005; Amiri-Simkooei et al., 2007; 

Langbein, 2008; Santamaria-Gomez et al., 2011; Wang et al., 2011). Although reasons 

of correlated noise are not so clear, satellite geometry, multipath, and monument 

instability might be regarded as the possible sources.  

 

Power spectra, 𝑆(𝑓), of the noise in GPS time series obey a power-law model well 

(e.g., Wiliams et al., 2004) as: 

 

𝑆(𝑓) ≅ 1/𝑓𝛼,     (2.18) 

 

where 𝑓 is frequency, and 𝛼 is spectral index (Mandelbrot and Van Ness, 1968; 

Agnew, 1992). When noise is white, 𝛼 = 0, while flicker noise and random-walk 

correspond to 𝛼 = 1 and 𝛼 = 2, respectively. According to Zhang et al. (1997) and 

Mao et al. (1999), combination of white and flicker noise is the best choice to describe 

the noise in GPS time series. Williams et al. (2004) states the more varied nature of 

the spectral index in regional solutions, possibly due to local conditions. Langbein 

(2008) found that either flicker or random-walk noise can represent one-half of the 

time series examined from 236 GPS sites. Flicker plus random-walk, power law, first-

order Gauss-Markov plus random walk, power law plus broadband, and seasonal 

noise were the descriptors of the noise in the remaining time series (see Table 2.2). 

 

GPS time series suffer from the spatially correlated noise, in addition to the temporally 

correlated noise. Such noise is also called “Common Mode Error” (CME). Possible 

causes of CME might be errors of satellite orbits and reference frame. (Wdowinski et 

al., 1997; Dong et al., 2006). CME can be reduced by spatial filtering approach 



 

 

33 

 

(Wdowinski et al., 1997) in which epochwise mean values of the stacked residuals are 

removed from the individual positions. This approach works well when the 

assumption of spatial uniformity of CME holds. Spatial filtering was improved more 

in later studies by taking into account the correlations and distances between 

neighboring sites (e.g., Nikolaidis, 2002; Tian and Shen, 2016). However, spatial 

scale of CME could not be described well. 

 

Table 2.2. Best noise model for Southern California Integrated GPS Network (SGIN) and 

Southern part of the Basin and Range Geodetic Network (SBAR). (Table from Langbein 

(2008)). 

 
FL: flicker; RW: random-walk; PL: power law; FLRW: flicker + random-walk; FOGMRW: 

first-order Gauss-Markov + random-walk; BPPL: band-pass + power law 

 

Spatiotemporal filtering of Dong et al. (2006) utilizes PCA and Karhunen-Loeve 

expansion and allows non-uniformity in the estimation of CME. PCA and its modified 

versions later were used widely in spatiotemporal filtering (e.g., Shen et al., 2014; He 

et al., 2015; Li et al., 2015). However, PCA results need to be studied visually further, 

and contamination might exist between Principal Components (PCs) which might 

cause preventing the detection of the subtle geophysical transients in the initial PCs. 

Lately, Liu et al. (2018) filtered GPS vertical time series in Antarctica more by using 

Independent Component Analysis (ICA) in addition to PCA.  
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Another approach to minimize CME is to transform the reference frame by a Helmert 

transformation into a regional reference frame using fiducial local sites (Szeliga et al., 

2004; Melbourne et al., 2005; Ji and Herring, 2011). These methods, by mitigating 

CME, facilitate the detection of the transient signals and are extensively employed in 

the geodetic studies (e.g., Lin et al., 2010; Ji and Herring, 2012; Jiang et al., 2012; 

Blewitt et al., 2013). 
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CHAPTER 3 

 

 

EMPIRICAL MODE DECOMPOSITION 

 

 

 

Fundamentals of the original Empirical Mode Decomposition (EMD) method are first 

introduced in this chapter. Since it is an experimental approach as its name implies, 

and hence lacks exact mathematical description, it depends on pre-determined 

parameters. This may result in obtaining unstable results. These problematic areas are 

presented in the next subsections. Some improved versions of EMD, such as 

Ensemble EMD (EEMD), Complementary Ensemble EMD (CEEMD), Complete 

Ensemble EMD with Adaptive Noise (CEEMDAN) are mentioned afterward. Finally, 

the approach of denoising/detrending signals using EMD is explained. 

 

 

3.1 Motivation 

 

Empirical Mode Decomposition (EMD) emerged in Huang et al. (1998), as a 

preprocessing phase of the nonstationary and nonlinear data which results in Intrinsic 

Mode Functions (IMFs). Hilbert Spectral Analysis (HSA) is applied to the IMFs 

afterwards to obtain the instantaneous frequencies as functions of time, and to 

construct the amplitude-frequency-time distribution (Hilbert Spectrum) of the data. 

EMD and HSA together are called Hilbert-Huang Transform (HHT).  
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Conventional data analysis methods, such as spectral analysis (e.g., Priestly, 1981), 

mostly assume that the underlying process is linear and stationary. A linear function 

𝑓(𝑥) satisfies additivity and homogeneity properties, respectively: 

 

𝑓(𝑥1 + 𝑥2) = 𝑓(𝑥1) + 𝑓(𝑥2) ,   (3.1) 

𝑓(𝛼𝑥) =  𝛼𝑓(𝑥),     (3.2) 

 

for all scalar α, where 𝑥 is the independent variable. Such a function can be portrayed 

as a straight line, graphically. Stationary processes exhibit constant statistical 

properties (e.g., mean and variance) over selected time intervals. Such processes can 

be analyzed successfully based on a well-established mathematical theory. Thus, 

spectral analysis mainly assumes and deals with the stationary processes. However, 

real-world phenomena, which are generally output of unstable systems, obey this 

strong assumption very rarely. To cope up with the non-stationarity, data are tried to 

be transformed into some stationary form, traditionally. For example, data might be 

detrended by using, e.g., a polynomial fit. Yet, the nature of the non-stationarity is 

generally much more complex which cannot be explained by a simple trend.   

 

Fourier spectral analysis, which is a dominant method in data analysis, requires 

linearity and stationarity, and uses pre-determined sines and cosines as basis 

functions. Each non-zero Fourier coefficient of the Fourier Transform (FT) displays 

a global uniform harmonic component. Local characteristics, due to the non-

stationarity of the signal, cause spurious harmonics and hence energy spreading in the 

spectrum. Being mathematically sensible does not always bring the pyhsical sense.   

 

Several time-frequency analysis methods have been proposed to overcome the 

weakness of Fourier analysis on non-stationary data such as, the spectogram (short-
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time Fourier Transform) method (Oppenheim et al., 1999), the wavelet analysis 

(Daubechies, 1992; Mallat, 2009), the Wigner-Ville distribution (Cohen, 1995; 

Boashash, 2003), evolutionary spectrum (Priestly, 1981) and the empirical orthogonal 

function expansion  (EOF) (Vautard and Ghil, 1989). A comparison between Fourier, 

wavelet (the two widely used data analysis methods) and HHT analyses is given in 

Table 3.1. Other miscellaneous methods can be found in, e.g., Brockwell and Davis 

(1991). Among these methods, only the EOF provides expansion basis a posteriori, 

that is, derived from the data. However, the linearity and stationarity of the EOF 

components are not guaranteed. For a discussion about the limitations of these 

methods see, e.g., Huang et al. (1998), Hou and Shi (2011, 2013a, 2013b). The 

breakthrough in adaptive non-stationary data analysis was the introduction of the 

Hilbert spectral representation through EMD (Huang et al., 1998) first, and later 

through wavelet projection which is suitable for nonstationary but linear time series 

(Olhede and Walden, 2004). 

 

Table 3.1. Comparison of HHT with Fourier and Wavelet Analyses (Table from Huang and 

Wu, 2008). 

 Fourier Wavelet HHT 

Basis a priori a priori a posteriori adaptive 

Frequency 
convolution over  

global domain,     

uncertainty 

convolution over 

global domain,     

uncertainty 

differentiation over 

local domain,    

certainty 

Presentation 
energy in frequency 

space 
energy in time-

frequency space 
energy in time-

frequency space 

Nonlinearity no no yes 

Nonstationarity no yes yes 

Feature extraction no 
discrete, no; 

continuous, yes 
yes 

Theoretical base 
complete 

mathematical theory 
complete 

mathematical theory 
empirical 
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EMD provides a complete, local and adaptive basis for the expansion of the non-

linear/non-stationary data. Orthogonality is not a necessary condition of the EMD, for 

it is considered in linear systems. Since the local behavior of the non-stationary data 

evolves over the time (the “non-stationary” is called sometimes also “evolutionary”), 

studying the “instantaneous frequency” of the signal is important. Instantaneous 

frequency (w) can be described as the derivative of the phase (θ) of the analytical 

signal (which is a complex-valued function with no negative frequency components): 

 

𝑤 =  
𝑑𝜃(𝑡)

𝑑𝑡
 .     (3.3) 

 

Therefore, the data must be made analytical first. This can be accomplished through 

the Hilbert Transform. For the sake of integrity, it is now demonstrated how to 

generate an analytic signal (AS). Hilbert Transform y(t) of a function x(t) for all t is: 

 

 

𝑦(𝑡) =  
1

𝜋
𝑃 ∫

𝑥(𝜏)

𝑡−𝜏

+∞

−∞
𝑑𝜏,    (3.4) 

 

where the Cauchy principal value P expands the class of functions for which the 

integral exists when 𝜏 = 𝑡. Hilbert Transform in the time domain is the convolution 

of x(t) with the operator 1/πt, that is, it filters x(t) by a filter 1/πt. Since the convolution 

in the time domain is equivalent to the multiplication in the frequency domain, the 

Fourier Transforms of x(t) and 1/πt are multiplied. By applying Inverse Fourier 

Transform to the product, the Hilbert Transform y(t) can be obtained.  x(t) and y(t) 

form the complex conjugate pair, so the analytic signal z(t) is: 

 

𝑧(𝑡) = 𝑥(𝑡) +  𝑖𝑦(𝑡) = 𝑎(𝑡)𝑒𝑖𝜃(𝑡),   (3.5) 
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where 𝑖 =  √−1 . The instantaneous amplitude a(t) and the instantaneous phase θ(t) 

can be computed as: 

 

𝑎(𝑡) =  √𝑥2(𝑡) + 𝑦2(𝑡),    (3.6) 

𝜃(𝑡) =  𝑡𝑎𝑛−1 𝑦(𝑡)

𝑥(𝑡)
 .     (3.7) 

 

Both amplitude and frequency are expressed as functions of time, as can be seen 

explicitly above. This satisfies the locality requirement of the decomposition of the 

non-linear and non-stationary data. 

 

The real part of the Fourier Transform of the data must not have negative freuqency. 

Otherwise, the instantaneous frequency is meaningless (Gabor, 1946; Bedrosian, 

1963; Boashash 1992). Huang et al. (1998) illustrated the justification of this 

restriction by examining the phase and instantaneous frequency of a simple 𝑥(𝑡) =

 𝛼 + sin 𝑡 function for the different values of α (see Figure 3.1). 

 

When α = 0, the phase function is a straight line, and the instantaneous frequency is 

constant. If 0 < α < 1, the centre of the circle of unit radius (the phase plot) is still 

inside the circle, though the phase function and the instantaneous frequency are 

different from that of α = 0 condition. If α > 1, the centre is no longer inside the circle, 

and thus negative (meaningless) phase and instantaneous frequency values are 

displayed. This evaluation provided the motivation leading to the Empirical Mode 

Decomposition, that is, expressing the data as a sum of a small number of a posteriori 

Intrinsic Mode Functions which are restricted to be symmetric with respect to the zero 

mean level, and hence have physically meaningful instantaneous frequencies obtained 

through Hilbert Transform. 
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3.2 Empirical Mode Decomposition 

 

An Intrinsic Mode Function satisfies two requirements according to the original 

definition: 

 

 The number of extrema and the number of zero crossings are equal or differ 

by one. 

 The mean value of the upper and the lower envelopes defined by the local 

maxima and minima, respectively, is zero at any point. 

 

 

Figure 3.1. For α = 0, 0 < α < 1, and α > 1 (corresponding to a, b, and c, respectively) in 

𝑥(𝑡) =  𝛼 + sin 𝑡; (a) the phase planes, (b) the unwrapped phase functions, (c) the 

instantaneous frequencies (Figure from Huang et al., 1998). 
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The procedure to reduce data into the IMFs is called Empirical Mode Decomposition. 

The reduction is accomplished through an iterative process known as “sifting”. The 

EMD algorithm applied to a given signal x(t) is illustrated in Table 3.2. 

 

Table 3.2. The EMD algorithm 

1. Detect all local maxima and minima in x(t). 

2. Form the upper (𝑒𝑚𝑎𝑥(𝑡)) and lower (𝑒𝑚𝑖𝑛(𝑡)) envelopes by connecting the 

maxima and minima with a cubic spline, respectively. 

3. Calculate the mean of the envelopes: 𝑚(𝑡) = (𝑒𝑚𝑖𝑛(𝑡) +  𝑒𝑚𝑎𝑥(𝑡))/2. 

4. Extract the detail: 𝑥(𝑡) = 𝑥(𝑡) −  𝑚(𝑡). 

5. Repeat steps 1-4 (sifting) until the detail x(t) is an IMF (𝑖𝑚𝑓𝑗(𝑡)) according 

to a stopping criterion. 

6. Subtract the attained IMF from the data: 𝑥(𝑡) = 𝑥(𝑡) −  (𝑖𝑚𝑓𝑗(𝑡)). 

7. If x(t) has more than one extremum, return to step 1. Otherwise, the 

decomposition is finished, and x(t) is the residue 𝑟𝑛(t). 

 

Finally, the original signal is expressed as follows: 

 

𝑥(𝑡) =  ∑ 𝑖𝑚𝑓𝑗(𝑡) +  𝑟𝑛(𝑡)𝑛
𝑗=1 .   (3.8) 

 

The sifting process is illustrated in Figure 3.2a-c graphically, using the weekly east 

offsets of AFYN station in the CORS-TR network. To enhance the visibility, only the 

data between 2009 and 2012 are displayed, after detrending through the subtraction 

of a simple linear trend (see Fig. 3.2a).  The upper and the lower envelopes are shown 

in dashed lines, their mean in red dot-dashed line, and the original data in solid line in 

Figure 3.2b. The difference between the data and the mean of the envelopes is given 

in Figure 3.2c. As highlighted by a red circle, there still exists local minimum above 



 

 

42 

 

the zero mean line. Thus, sifting process is repeated until the detail signal shown in 

Figure 3.2c ensures the requirements of an IMF mentioned above. 

 

 

Figure 3.2. The sifting procedure: (a) the east offsets of AFYN station, (b) the upper and 

lower envelopes in dashed lines, their mean in red dot-dashed line, and the data in solid line, 

(c) the difference between the data and the mean of the envelopes. 
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The selected criterion to stop the sifting process for jth IMF in Huang et al. (1998) 

depends on the size of the standard deviation (SD) calculated from the two consecutive 

siftings: 

 

𝑆𝐷 =  ∑ [
|(ℎ𝑗(𝑘−1)(𝑡)−ℎ𝑗(𝑘)(𝑡))|

2

ℎ𝑗(𝑘−1)
2 (𝑡)

]𝑇
𝑡=0 ,   (3.9) 

 

where T is the total number of the data points, and h is the remaining detail of the kth 

sifting. The value of SD is recommended to be between 0.2 and 0.3. The overall EMD 

process stops when the final residue can no longer produce an IMF, that is, either it is 

a monotonic function or it possesses only a single extremum. Typically, the total 

number of IMFs is around 𝑙𝑜𝑔2𝑁 with N being the total number of the data points 

(Flandrin et al., 2004; Wu and Huang, 2005), and is also generally linked to the level 

of the noise (Flandrin et al., 2004). The resulting IMFs, as well as the residual from 

AFYN data are given in Figure 3.3. 

 

3.3 Limitations of the Empirical Mode Decomposition 

 

Since the Empirical Mode Decomposition is deprived of a definite mathematical 

foundation, its soundness and effectiveness only could have been validated 

empirically. The uniqueness of the decomposition results is not guaranteed since, e.g., 

the selected stopping criterion in the sifting process, the interpolation technique used 

in the formation of the envelopes and the method of handling boundary effects might 

change the obtained IMFs. These open problems are touched now. 
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3.3.1 Mathematical Foundation 

 

The lack of theoretical foundation of the EMD is the main reason of the other 

complications mentioned in the following subsections. Principles or laws, and the 

validity of the results can only be deduced with a mathematical foundation (Huang 

and Wu, 2008). Until then, user-selected parameters render EMD an optimization 

issue. Chen et al. (2006) tried to express the EMD analytically by replacing the cubic 

spline with B-spline. Recently, significant developments have been made in EMD 

mathematics which can be seen as the most exciting breakthroughs since the 

introduction of the EMD (Huang and Shen, 2014).  

 

Figure 3.3. AFYN data and its EMD components. 
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Daubechiesa et al. (2011) introduced the mathematical framework of an EMD-like 

method where they used synchrosqueezed wavelet transforms in constructing the 

components (see also Wu et al., 2011). Hou and Shi (2011, 2013a, 2013b), inspired 

by EMD and compressed sensing theory (Donoho, 2006), decomposed an arbitrary 

function into IMFs using a nonlinear optimization process based on sparsity, and 

justified that EMD is a generalization of the Fourier expansion (Huang and Shen, 

2014). Since their method is based on a solid mathematical formulation, pre-defined 

numerical parameters, such as the number of the siftings are not included in the 

method and hence do not effect the performance. Moreover, their method is more 

robust to the noise and end effects. 

 

3.3.2 Envelope Interpolation 

 

Traditionally, natural cubic splines are used in the formation of the envelopes. 

Overshoots and undershoots of the interpolation which can be seen, e.g., at the 

beginning of 2009 in Figure 3.2b, might cause the generation of new extrema. A gentle 

hump on a slope which is, e.g., highlighted by a red circle in Figure 3.2a, might turn 

into an extrema after the sifting (see the same time location in Figure 3.2c). In 

addition, the envelopes might intersect the original data. Such problems affect the IMF 

estimation. To alleviate these problems, Huang et al. (1998) used the taut spline, but 

the improvement was minor. Rilling et al. (2003) states that the number of the siftings 

might increase due to the utilization of linear or polynomial interpolation and thus the 

data might be over-decomposed. Chen et al. (2006) proposed to use B-spline to 

alleviate the creation of extra extrema by cubic spline. Time-consuming higher-order 

splines might introduce additional length scales and result in slow or non-convergence 

(Huang and Wu, 2008). Which spline suits EMD best is still an open question. 
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3.3.3 Boundary Effects 

 

Since the characteristics of the first and the last data points of the original signal are 

not known (whether they are extrema or not), and the envelopes are needed to be 

extended to cover the whole data range, large swing problems of cubic splines might 

occur at the ends. Gradual influence of the end swings through the sifting process can 

distort the results. Precious data are lost near the ends if a windowing procedure is 

applied to deal with the end effects. Instead, Huang et al. (1998) extended the data 

beyond the real range by adding artificial waves at both ends, defined by the two 

consecutive extreme values nearest to the boundary. Prediction of the non-linear and 

non-stationary time series beyond the real span is challenging. Various methods have 

been proposed to handle the end effects in EMD process such as, data flipping (mirror) 

(Rilling et al., 2003), support vector regression machine (Cheng et al., 2005), 

improved slope (Wu and Qu, 2008), artificial neural networks (Xun and Yan, 2008), 

gray prediction model (He et al., 2012) and wavelet denoising (Yan and Lu, 2014). 

 

3.3.4 Stopping Criterion 

 

The number of siftings in the IMF production is determined by the stopping criterion. 

Every round of sifting makes the upper and lower envelopes more symmetric which 

is a desirable condition. However, the exact symmetry can only be reached when the 

envelopes become constant lines which causes the removal of the meaningful 

amplitude fluctuations. This yields to pure frequency modulated IMFs only. On the 

other hand, too few siftings might generate components that do not approximate an 

IMF sufficiently. Therefore, a wisely limited number of siftings is required. The 

commonly used stopping criteria might be grouped as follows: 
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 Cauchy type criterion (Huang et al., 1998) as described in section 3.2, and its 

variants (Shen et al., 2005; Huang and Wu, 2008). 

 S-number criterion (Huang et al., 1999, 2003) where the equality of the 

numbers of zero-crossings and extrema holds for S consecutive times. A 

typical value of 3 ≤ 𝑆 ≤ 5 has been proved successful in Huang et al. (2003). 

 Fixed sifting number criterion (Wu and Huang, 2004, 2005, 2009). Wu and 

Huang (2010) states that fixing the sifting number to 10 makes EMD similar 

to an adaptive dyadic filter bank. 

 

Obviously, Cauchy type criteria has nothing to do with the definition of the IMF, and 

deciding on the value of SD is subjective. Further, it is not certain whether the IMFs 

will have same numbers of zero crossings and extrema. To overcome these 

shortcomings, the S-number criterion was proposed. 

 

3.3.5 Confidence Limit and Statistical Significance 

  

Since the stopping criterion, splines, and boundary conditions all have a changing 

effect on the decomposition results, it is desirable to have a confidence limit for EMD 

to assess the sensitivity of the input signal to the sifting process. Huang et al. (2003) 

examined the coherence of the decompositions by changing the S number. Hereby, it 

is possible to study the statistical distribution of the yielding IMF sets and obtain a 

quantiative confidence limit. However, this is a limited approach, since the effects of 

the other parameters, such as spline interpolation and boundary conditions, on the 

uniqueness of the IMFs, remain untreated. 

 

Flandrin et al. (2004, 2005, 2014) and Flandrin and Gonçalves (2004), by studying 

the Fourier spectra of the IMFs of various fractional Gaussian noise, and Wu and 
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Huang (2004, 2005), by inspecting the white noise, discovered that EMD behaves as 

a dyadic filter bank. Flandrin et al. (2005) applied EMD on the extensive Monte Carlo 

simulations of the fractional Gaussian noise, and determined the theoretical 

distribution of the energy of the resulting IMFs and their corresponding 95% and 99% 

confidence limits. From this point of view, any IMF above these limits should contain 

significant information statistically.  

 

3.3.6 Missing Data Points 

 

Locality is one of the most attractive properties of EMD. When applied to equally 

spaced and sufficiently long real-world data, EMD can help making physical 

interpretations through meaningful instantaneous frequencies and their exact time 

locations. However, true interpretations might be hindered by the existence of the 

missing data points which is very common in the nonsynthetic signals (e.g., due to the 

receiver malfunction in the GPS coordinate time series). Since there is no solution for 

predicting the values originated from a non-linear/non-stationary process, we are 

imposed on two unsatisfactory approaches: (1) to cut and paste all the data points next 

to each other as if there is no gap, and (2) to interpolate the missing values as properly 

as possible. 

 

The inappropriateness of the first approach is apparent, since the time information of 

the local behaviors is lost, which is against the philosophy of the EMD method. As 

for the second approach, the interpolation technique used is important. A linear 

interpolation, for example, causes constant frequency during the corresponding 

period. A polynomial or a spline interpolation neither creates nor removes any scales 

(if the undershoots and overshoots are not counted), however, they might lead to large 

swings as the data gap becomes larger. When the missing values occur especially in 

the local extrema, envelopes cannot be formed properly, and thus EMD results are 
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distorted.  Barnhart et al. (2011, 2012) applied EMD to complete data segments only, 

and adapted a mirroring approach for the data gaps. Kim and Oh (2016) proposed self-

consistency (Tarpey and Flury, 1996) as an imputation method of the missing values 

before decomposing the signal with the EMD. 

 

3.3.7 Mode Mixing 

 

Mode mixing is a severe limitation of the EMD and might occur if: 

 

 very disparate oscillations are present in a single IMF or, 

 very similar oscillations are present in different IMFs. 

 

It is a consequence of signal intermittency (Huang et al., 1998), and signals having 

frequencies too close, cannot be seperated. Thus, IMFs might loose their physical 

meaning. An example of mode mixing is illustrated in Figure 3.4, by giving the 

comparison of the decomposition results of Remote Sensing Systems (RSS) T2, the 

channel 2 tropospheric temperature of the microwave sounding unit (Mears et al., 

2003), and of the University of Alabama at Huntsville (UAH) T2, an alternative 

analysis of the same channel 2 tropospheric temperature of the microwave sounding 

unit (Christy et al., 2000). Since there is only minor difference between these two 

input signals, they can be seen as their perturbed versions with low level of random 

noise. Decompositions are significantly different due to the mode mixing (Huang and 

Wu, 2008). Which decomposition to opt for is an immediate question, and the answer 

is ambiguous.  
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Figure 3.4. Significantly different decomposition results of very similar input signals due to 

mode mixing (Blue lines correspond to RSS T2, red lines correspond to UAH T2, see the 

explanation in the text). (Figure from Huang and Wu, 2008). 

 

 

3.4 Methodological Improvements 

 

Other than the advances in EMD mathematics, some methodological developments 

have also been made by devising the noise-assisted versions of EMD. These variants 

of EMD are presented in the following subsections. 
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3.4.1 Ensemble Empirical Mode Decomposition 

 

Since mode (scale) mixing can be counted as the most critical problem of EMD, 

Ensemble Empirical Mode Decomposition (EEMD) approach (Wu and Huang 2005, 

2009), which alleviates this problem, might be acknowledged as the most significant 

methodological improvement to EMD. EEMD was inspired by the noise added 

analyses such as those in Flandrin et al. (2005). The basic idea depends on applying 

EMD to the white noise added versions of the original signal. The ensemble means of 

the resulting IMFs are accepted as the true IMF components. The EEMD algorithm is 

given in Table 3.3. 

 

Table 3.3. The EEMD algorithm 

1. Add white noise of finite amplitude to the input signal. 

2. Apply traditional EMD to the signal obtained in step 1. 

3. Repeat step 1-2 for a large number of times, by adding different sets of white 

noise. 

4.  Calculate the ensemble means of the corresponding IMFs. 

 

 

EEMD intuition is straightforward, that is, white noise sets cancel each other out, and 

only the true components persist in the ensemble mean. A dyadic filter bank consists 

of a number of band-pass filters having a constant shape like, e.g., a Gaussian 

distribution. Neighbouring filters, for example in a decreasing order, cover half of the 

frequency range of the preceding filter. There might be overlapped frequency ranges 

of the filters. Finite magnitude noise makes EMD behave as a truly dyadic filter bank 

(Wu and Huang, 2009), and provides the uniqueness of the decomposition. IMFs 
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generated from the same data, presented previously in Figure 3.4, by using the EEMD 

are displayed in Figure 3.5. It is seen that EEMD diminished the mode mixing largely. 

 

 

 

Figure 3.5. EEMD results of the data presented in Figure 3.4 (Blue lines correspond to RSS 

T2, red lines correspond to UAH T2, see the explanation in the text). For both 

decompositions, the ensemble number is 100, and the added noise has an amplitude of 0.2 of 

that of the standard deviation of the corresponding data (Figure from Huang and Wu, 2008). 
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3.4.2 Complementary Ensemble Empirical Mode Decomposition (CEEMD) 

and Complete Ensemble Empirical Mode Decomposition with Adaptive 

Noise (CEEMDAN) 

 

Ensemble Empirical Mode Decomposition, while resolving the mode mixing 

problem, causes the decomposition to be incomplete, that is, the input signal cannot 

be reconstructed by summing up the resulting IMFs and the residue perfectly, due to 

the residual noise introduced, especially when the number of ensemble is not 

sufficiently large. In addition, different number of IMFs might be generated from the 

different realizations of signal plus noise, and thus averaging might be flawed.  

 

The Complementary Ensemble Empirical Mode Decomposition (CEEMD) method 

proposed by Yeh et al. (2010), deals with the reconstruction problem well. In this 

method, noise is added to the input signal in pairs (positive and negative), i.e., there 

are two sets of mixtures: one with positive noise, one with negative noise. The final 

IMFs are the ensembles of the IMFs with these noises. Although CEEMD removes 

the residue of the added white noises, and hence makes the decomposition complete, 

problem of generating different number of IMFs from different realizations continues. 

 

Another variant of EEMD is the Complete Ensemble Empirical Mode Decomposition 

with Adaptive Noise (CEEMDAN), proposed by Torres et al. (2011) and Colominas 

et al. (2012). In traditional EEMD, every realization of the signal plus white noise is 

decomposed independently from the other realizations. CEEMD makes a connection 

between these realizations and the original data. Initially, the first IMF is computed 

as it is done in the traditional EEMD. This IMF is subracted from the original data, 

and a residue is obtained. After that, residue plus noise realizations are made, and 

EEMD is applied to these realizations. Second IMF is the average of the first modes 
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of these decompositions. A new residue is attained by subtracting the second IMF 

from the former residue, this time. These steps are iterated until the residue cannot be 

decomposed further. CEEMDAN achieves a negligible reconstruction error and 

solves the problem of the generation of the different number of IMFs due to the 

different noise realizations (Colominas et al., 2014). 

 

3.5 Signal Denoising with EMD 

 

Denoising with EMD mainly depends on the filtering properties of the method, 

reported in, e.g., Rilling et al. (2003), Wu and Huang (2004), Flandrin and Gonçalves 

(2004), Flandrin et al. (2004, 2005, 2014), who examined the Fourier spectra of IMFs 

of fractional Gaussian noise and came to the conclusion that EMD behaves as a dyadic 

filter bank. Wu and Huang (2010) and Wang et al. (2010) state that this behavior is 

valid only when the number of siftings is fixed to 10, and the increasing number of 

siftings causes the ratio of mean frequency between the neighboring IMFs to decrease 

below 2. In this section, we focus on the denoising procedure described in Flandrin et 

al. (2004, 2005, 2014). 

 

The movements originating from the Brownian motion are random. However, the 

Fractional Brownian motion (fBm) has long-range, temporal and spatial correlation 

unlike the classical Brownian motion with independent increments. This makes fBm 

a convenient model for complex natural processes. The Fractional Gaussian noise, 

fGn, (Mandelbrot and Van Ness, 1968) is the increment process of fBm and a widely 

used model for broadband noise with no dominant frequency band. The self-similarity 

parameter Hurst (H) index (0 < H < 1), determines the statistical properties of fGn, 

whose autocorrelation sequence is: 
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𝑟𝐻[𝑘] =  
𝜎2

2
(|𝑘 − 1|2𝐻 −  2|𝑘|2𝐻 +  |𝑘 + 1|2𝐻).  ( 3.10) 

 

When H = 0.5, the process is uncorrelated. If H < 0.5, the process shows short-range 

dependence, while it exhibits long-range dependence if H > 0.5. The relationship 

between H and 𝛼  (spectral index of power-law model) is as follows (Schroeder, 

1992): 

 

𝛼 = 2𝐻 − 1,     (3.11) 

 

where 𝛼 ≤ 2. Flandrin et al. (2004, 2005) and Flandrin and Gonçalves (2004) carried 

out extensive simulations and examined the Fourier spectra of IMFs in noise-only 

situations (where 0.1 ≤ H ≤ 0.9). They found that, excluding the spectra of the first 

IMFs (modes), the spectra of all modes of any fGn appear to be the same, when they 

are scaled appropriately (see Figure 3.6). Moreover, decrease in the number of zero-

crossings (which can be used to express the mean frequency), as the order of the 

modes increases is around 2, and can be approximated as: 

 

𝜌𝐻  ≈ 2.01 + 0.2(𝐻 − 0.5) +  0.12(𝐻 − 0.5)2.  (3.12) 

 

Furthermore, it has been demonstrated that the IMFs log-variance is a function of the 

IMF index, controlled by the Hurst index (see Figure 3.7): 

 

𝑙𝑜𝑔2𝑉𝐻[𝑘] =  𝑙𝑜𝑔2𝑉𝐻[2] + 2(𝐻 − 1)(𝑘 − 2)𝑙𝑜𝑔2𝜌𝐻, (3.13) 

 

for 𝑘 ≥ 2. 
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Hereby, the Hurst index for a fGn process can be estimated as: 

 

�̂� = 1 +
𝑘𝐻

2
,     (3.14) 

 

where 𝑘𝐻 is the slope of the corresponding straight line in Figure 3.7. For a 

comparison of Hurst estimators see, e.g., Rea et al. (2009).  

 

 

Figure 3.6. Rescaled spectra of IMF components between 2 and 6 (Figure from Flandrin, 

2005). 
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Figure 3.7. Estimated IMF log-variance controlled by the Hurst index, and fitted straight 

lines. The error bars correspond to the standard deviations associated with the realizations 

(Figure from Flandrin, 2005). 

 

The variability of the variance estimate is indicated with the observed standard 

deviation (vertical bars) in Figure 3.7, which is a rough approach. For a greater 

appreciation, the experimental mean, median and various confidence intervals for H 

= 0.2, 0.5 and 0.8 are displayed in Figure 3.8. 

 

By examining the logarithm of the relative confidence intervals, the following formula 

has been suggested: 

𝑙𝑜𝑔2 (𝑙𝑜𝑔2 (
𝑇𝐻[𝑘]

𝑊𝐻[𝑘]
)) = 𝑎𝐻𝑘 + 𝑏𝐻,   (3.15) 
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where 𝑊𝐻[𝑘] and 𝑇𝐻[𝑘] are the H-dependent variations of the IMF energy and mean 

period, respectively. 𝑇𝐻[𝑘] can be estimated as follows (Rilling et al., 2005): 

 

�̂�𝐻[𝑘] =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑧𝑒𝑟𝑜𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑧𝑒𝑟𝑜𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔𝑠−1
 .  (3.16) 

 

The relation between VH[k] and T̂H[k] is illustrated in Figure 3.9. 

 

 

Figure 3.8. For H = 0.2, 0.5 and 0.8, the statistical characteristics (mean, median, confidence 

intervals) of the estimated IMF variances, together with the linear models presented 

previously in Figure 3.6 (Figure from Flandrin, 2005). 

 

The confidence interval parameters, 𝑎𝐻 and 𝑏𝐻, which were deduced from the 

simulations, are given in Table 3.4. 
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Table 3.4. Confidence interval parameters (Table from Flandrin, 2005) 

 

 

 

 

Figure 3.9. The relation between 𝑉𝐻[𝑘] (IMF variance) and �̂�𝐻[𝑘] (mean period) (Figure 

from Rilling et al., 2005). 
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Finally, taking into account these considerations, the denoising procedure can be 

summarized as follows: 

 

1. Estimate the noise level first, assuming it is mostly in the first IMF, by 

computing: 

 

�̂�𝐻[1] =  ∑ 𝑖𝑚𝑓1
2[𝑛]𝑁

𝑛=1 ,   (3.17) 

 

where N is the data length. 

 

2. Estimate the noise only model by computing the subsequent values of 𝑊𝐻[𝑘] : 

 

�̂�𝐻[𝑘] = 𝐶𝐻𝜌𝐻
−2(1−𝐻)𝑘

,   (3.18) 

 

where 𝑘 ≥ 2 and 𝐶𝐻 = �̂�𝐻[1]/𝛽𝐻 by using 𝛽𝐻 values from Table 3.4. 

 

3. Estimate the corresponding model for the chosen confidence interval by using 

(3.15) and Table 3.4. 

 

4. Compare the IMF energies by using the confidence interval as a threshold. 

 

5. Compute a partial reconstruction by summing up only the residual and those 

IMFs whose energy exceeds the threshold. 

 

The above explained procedure is used in this study to improve the SNR of the GPS 

coordinate time series by suppressing the white noise. This is accomplished by 

removing the IMFs whose energies are inside the 95% confidence interval of H = 0.5. 
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CHAPTER 4 

 

 

PRINCIPAL COMPONENT ANALYSIS 

 

 

 

Principal Component Analysis (PCA) is one of the oldest and widely used statistical 

technique in the analysis of multivariate data sets. In this chapter, we present the 

formulations of PCA briefly, together with a general framework of its application.  

 

 

4.1 Introduction 

 

PCA was introduced by Pearson (1901) first, and later developed by Hotelling (1933). 

It has several other names (although there might be minor differences between them), 

including Karhunen-Loeve Transform, Hotelling Transform, Factor Analysis, 

Empirical Orthogonal Functions.  

 

There are two main purposes of PCA: (1) identifying the patterns, which are normally 

not easily discernible in the original data, and (2) reducing the dimensionality, like 

e.g., compressing a hyperspectral image, by sacrificing only little and insignificant 

information. To accomplish these, PCA uses a orthogonal transformation, which 

transforms the possibly correlated variables to linearly uncorrelated variables 

(principal components). These principal components are in an order with respect to 

the variations (information) they convey of the original variables. The PCA of a n 

(observations) by p (variables) data matrix 𝑿 results in min(𝑛 − 1, 𝑝) number of 

distinct principal components (PCs). Each PC is a linear combination of the original 
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variables with same length, and orthogonal to (and thus uncorrelated with) the 

preceding PCs. 

 

Though the application spectrum of PCA is very wide, the method is not devoid of 

limitations, which are mostly due to (1) the large amount of missing data and outliers, 

and (2) the mixed nature of the data. Although there are studies to generalize PCA 

method to cope up with these difficulties (see e.g., Vidal, 2016), it is focused here on 

the classical PCA method, whose details can be found in general textbooks (e.g., 

Jackson, 1991; Jolliffe, 2002) and tutorials (e.g., Smith, 2002; Shlens, 2005). These 

references also provide necessary algebraic proofs which are not included here, such 

as the equality of the inverse of an orthogonal matrix and its transpose, and 

diagonalization of a symmetric matrix by a matrix of its orthonormal eigenvectors, 

for a complete understanding of the underlying math. 

 

4.2 Principal Components Transformation 

 

The eigenvalue decomposition of the data covariance matrix (1), or the singular value 

decomposition (SVD) of the data matrix (2) can be used in the implementation of 

PCA. Usually, the data matrix is normalized in an initial step, i.e., it is centered, and 

sometimes also divided by the standard deviations of the variables, to prevent biased 

results, due to the large differences between the ranges of the individual variables. 

Assume that 𝑿 is a n (observations) by p (variables), centered data matrix. The p by p 

covariance matrix 𝑪 of the data matrix is: 

 

 𝑪 = 𝑿𝑇𝑿/(𝑛 − 1)    (4.1) 
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The covariance matrix describes the scatter of the data about the mean and the 

correlations between the variables. It is a symmetric matrix, and can be diagonalized 

as: 

 

𝑪 = 𝑽𝑳𝑽𝑇,     (4.2) 

 

where 𝑽 is a matrix consists of eigenvectors in its columns, and 𝑳 is a matrix having 

eigenvalues 𝜆𝑖 on the diagonal, in decreasing order. To be complete, the eigenvector 

𝒗 of a square matrix 𝑨 is a non-zero vector that, when it is multiplied by 𝑨, it is only 

scaled by a scalar value λ, and does not change direction:  

 

𝑨𝒗 = 𝜆𝒗,     (4.3) 

 

where the scalar 𝜆 is the eigenvalue associated with the eigenvector 𝒗.  

 

The eigenvectors of the covariance matrix of the data are the principal directions of 

the data, and the projections of the data on these directions, 𝑿𝑽, are called principal 

components or scores. Principal components are linear combinations of the original 

variables, and they are uncorrelated. Since principal directions are just a rotation of 

the original directions, the principal components transform is classified as a rotational 

transform.  The most variance (information) of the data is in the first principal 

direction, and the least variance is in the last principal direction. Eigenvalues display 

the variances in the direction of the respective PCs. When we rank the eigenvectors 

with respect to their associated eigenvalues from highest to lowest, the principal 

components are in the order of significance. 

 

Similarly, the singular value decomposition of 𝑿 is: 
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𝑿 = 𝑼𝑺𝑽𝑇,     (4.4) 

 

where 𝑼 is a unitary matrix, and 𝑺 is a matrix having singular values 𝑠𝑖 on the 

diagonal. So: 

 

𝑪 =
𝑽𝑺𝑼𝑇𝑼𝑺𝑽𝑇

𝑛−1
= 𝑽

𝑺2

𝑛−1
𝑽𝑇,    (4.5) 

 

which means that right singular vectors 𝑽 are principal directions, and the relation 

between the singular values and the eigenvalues of the covariance matrix is: 

 

𝜆𝑖 =
𝑠𝑖

2

𝑛−1
 .     (4.6) 

 

The principal components are: 

 

𝑿𝑽 = 𝑼𝑺𝑽𝑇𝑽 = 𝑼𝑺 .    (4.7) 

 

The original data can be reconstructed by: 

 

𝑿 = 𝑿𝑽𝑽𝑇 = 𝑼𝑺𝑽𝑇 .    (4.8) 

 

Having the principal components and associated eigenvalues in hand, the percentage 

of the total variance explained by each PC can be computed via dividing the 

eigenvalue of each component by the sum of the eigenvalues. These explanation 

percentages of the PCs can be viewed, e.g., on a scree plot, and which PCs to retain is 

decided. The higher the percentage, the more significant is the corresponding PC. The 
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matrix of the eigenvectors of the selected PCs is named feature vector. Finally, the 

new data set can be derived as: 

 

𝑭𝒊𝒏𝒂𝒍𝑫𝒂𝒕𝒂 = 𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑽𝒆𝒄𝒕𝒐𝒓𝑇𝑿𝑇,   (4.9) 

 

or similarly, by selecting m first columns of 𝑼, and m by m upper-left part of 𝑺: 

 

𝑭𝒊𝒏𝒂𝒍𝑫𝒂𝒕𝒂 = 𝑼𝑛𝑥𝑚𝑺𝑚𝑥𝑚.    (4.10) 

 

The flowchart of the whole PCA procedure, using the eigenvalue decomposition of 

the covariance matrix of the data, is summarized in Table 4.1. 

 

Table 4.1. Flowchart of the PCA, using eigenvalue decomposition of the data covariance 

matrix. 

Step 1 Organize the data. 

Step 2 Subtract the mean. 

Step 3 Calculate the covariance matrix. 

Step 4 Calculate the eigenvectors and eigenvalues of the covariance matrix. 

Step 5 Choose the components to be retained and form the feature vector. 

Step 6 Derive the new data set. 

 

 

PCA is used in this study to detect the tectonically driven transient signals in GPS 

time series. These transients are common to many but not all time series. 
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CHAPTER 5 

 

 

GPS ANALYSES AND TRANSIENT SIGNAL DETECTION 

 

 

 

The theory and the background information underlying the transient signal detection 

through the high-precision analysis of GPS data, Empirical Mode Decomposition, and 

Principal Component Analysis, are provided in the previous chapters. The daily GPS 

data from Turkish National Permanent GNSS Network-Active (CORS-TR), which 

has critical importance in Turkey due to the lack of any other countrywide permanent 

GNSS network, specifically designed for tectonic studies, are processed in this chapter 

first. Considering the state-of-the-art approaches, models and products, reliable 

coordinate time series are generated. Secular velocities, seasonal signals, offsets, 

known signals, data gaps, noise, outliers etc. are determined, and the precise 

coordinates and the velocities of the stations are estimated.  

 

Taking into consideration the uncertainties, homogeneity and various performance 

criteria, a sufficient number of local stations are selected, and the solutions (time 

series) are expressed in a Turkey-fixed reference frame based on the coordinates of 

the selected stations. This way, the effect of Common Mode Error, which might hinder 

the detection of the transient signals, is diminished. Such a procedure has been 

implemented for the first time in the literature in the analyses of CORS-TR stations. 

Ensemble Empirical Mode Decomposition (EEMD) is applied to the precise and 

CME-reduced time series afterward, and the white noise in the time series is 

suppressed.  
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Transient signals are searched in the denoised signals by seeking spatial coherence 

through Principal Component Analysis. The significance of the detected signals is 

determined by looking for systematic temporal patterns, and by assessing the 

largeness of the eigenvalues and 𝜒2 values of the first PCs. The detection capability 

of the transient signal detection method is demonstrated on: (1) renowned slow slip 

events in Cascadia, (2) inflation at Akutan volcano, and (3) post-seismic deformation 

at CORS-TR sites, after October 23, 2011 Van earthquake. 

 

5.1 High-precision GPS Analyses 

 

5.1.1 Introduction 

 

The Global Positioning System (GPS) is a versatile tool widely utilized in diversified 

applications, calling for positioning with different levels of accuracies. Today, even a 

simple hand-held GPS receiver may provide three dimensional coordinates of a point 

with a couple meters level of precision, which is sufficient for many ordinary everyday 

needs, such as navigation. However, geodesy, geodynamics, geophysics, i.e., Earth 

sciences, mostly do need very high level of positioning precision (cm, mm, or even 

sub-mm level).  To reach this goal, receivers with extended capabilities, long-duration 

GPS observations, sophisticated software, auxiliary products etc. are exploited.  

 

Since the Earth is a kind of living organism covered with moving (which is believed 

to be due to the convection currents) tectonic plates, a point fixed to a plate cannot be 

assumed stable. The motion of the point is the consequences of the motion of the plate 

on which the point is placed, the interactions between the plates, the atmospherical 

and tidal loadings, noise, and of many other local effects which can be transient or 

persistent. Often, this is an inverse problem, since the contributions of these effects to 

the motion of the point cannot be measured directly. Rather, they are deduced and 
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modeled from the actual motion (velocity) of the point, which is estimated through 

the repeated GPS observations over time. 

 

Traditionally, the velocity of a geodetic point is estimated by processing the episodic 

(campaign type) GPS measurements which are carried out with appropriate time 

intervals. Dense networks consist of campaign points provide velocity fields with high 

spatial resolution. Geodetic velocity fields (through which, e.g., strain analyses are 

realized) are commonly used in geophyscial studies in Anatolia, such as in 

determining the plate motions and in monitoring the tectonic deformations (e.g, Kahle 

et al., 2000; Nyst and Thatcher, 2004; Reilinger et al., 2006; Aktuğ et al., 2009, 2013, 

2016; Ozener et al., 2010). 

 

Permanent GPS/GNSS networks which consist of stations at which positioning 

signals are collected continuously, have been increasingly established, especially after 

1990s. Compared to campaign-type, permanent-type positions and velocities are 

generally more reliable and have lower uncertainties. Despite being one of the most 

tectonically active area on the Earth, Turkey lacks any national-scale, dense 

permanent GPS/GNSS network aiming at tectonic monitoring, unfortunately. High 

costs of long-term operation and maintanence of such a network is probably the 

primary reason of this lacking. Although there are some micro-geodetic networks, 

such as Turkish National Permanent GNSS Network (Kılıçoğlu et al., 2003), they 

concentrate on some designated region with limited number of stations.  

 

On the other hand, a homogeneous national scale Real Time Kinematic (RTK) type 

permanent network, CORS-TR, (http://www.tusaga-aktif.gov.tr/ 

Map/SensorMap.aspx; http://cors-tr.iku.edu.tr/corstr_projeozetigenel.htm) has been 

established since 2008 in Turkey. The distribution of the CORS-TR sites, together 

with the general tectonic setting in Anatolia (McClusky et al., 2000; Emre et al., 2013) 

http://www.tusaga-aktif.gov.tr/%20Map/SensorMap.aspx
http://www.tusaga-aktif.gov.tr/%20Map/SensorMap.aspx
http://cors-tr.iku.edu.tr/corstr_projeozetigenel.htm
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is displayed in Figure 5.1. The main purpose of CORS-TR system is to provide RTK 

corrections to the users on the field, and hereby to ensure cm-level coordinate 

precision. Since the large-scale map production is officially based on the CORS-TR-

derived cooordinates in Turkey, it has become extremely popular, especially in the 

cadastral studies. As of June, 2019, there are ~11.500 users registered on the system. 

Besides, the system is being augmented by the addition of new reference stations. For 

example, 12 new reference stations have been installed during 2019. Therefore, to 

ensure the reliability and the stability of the system, and to make the coordinate time 

series and velocities employable in the tectonic studies (considering the lacking of any 

other such network) which necessitates ultra-high precision, processing the CORS-

TR GPS data and the time series with high-quality standards is of utmost importance. 

In addition to the developments in the GPS satellites’ and receivers’ technology, GPS 

data processing strategies have also been evolved with the inclusion of the new 

models, products and approaches. Whenever a severe effect on the results due to a 

mismodeled or unmodeled phenomenon is discovered, reprocessing of the whole data 

set might be needed, which can be very time consuming. 

 

Hence, a thorough investigation about the performances of the CORS-TR reference 

stations has been carried out and a high-precision GPS data analysis strategy has been 

developed within the scope of a project supported by Scientific and Technological 

Research Council of Turkey (TUBITAK) under the grant number 113Y511 

(Karslıoğlu et al., 2017). 

 

5.1.2 CORS-TR Data 

 

CORS-TR network stations had been installed between June 28, 2008 and June 30, 

2011 in Turkey and in Turkish Republic of Northern Cyprus (TRNC). It consists of 

146 homogeneously distributed permanent GNSS stations, originally. But as of June 



 

 

71 

 

2019, this number reached 158 with the addition of 12 new stations in 2019 (see Figure 

5.1). Inter-station distances decrease down to ~100 km, and increase up to ~40 km in 

some regions. Yet, the average distance between the stations is ~70 km. 141 stations 

are installed on top of the buildings, and 17 stations are on the ground (see Figure 5.2) 

 

 

Figure 5.1. 158 CORS-TR stations (as of June, 2019) and general tectonic setting in 

Anatolia. KTJ, Karlıova Triple Junction. Major tectonic structures are adapted from 

McClusky et al., 2000 and Emre et al., 2013. 

 

 

Figure 5.2. CORS-TR monument types: (a) terrace (EDIR), (b) roof (KUTA), (c) ground 

(AFYN). 
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CORS-TR data are being processed routinely (see e.g., Ozdemir et al. 2011) in 

General Directorate of Mapping (GDM), who is the responsible institution of 

calculating the precise coordinates and velocities of the stations. The daily GPS data 

collected at CORS-TR stations between June 28, 2008 and January 01, 2015 (see 

Ozdemir, 2016) are processed first in this study. Results are compared with those 

generated in GDM. It has been proved that the strategy used here produces superior 

results (since then, the developed strategy has also been adopted by GDM). Later, we 

increased the number of the IGS sites (which tie the solutions to a global frame) 

included in the analyses from 12 to 22 (to reach even more robust results), and 

reprocessed the whole data set between June 28, 2008 and March 17, 2018 (see 

Ozdemir and Karslıoğlu 2019). 

 

5.1.3 GPS Data Processing 

 

Since we have a network that is large in geographic extent, we first appointed the 

stations to a number of sub-groups to increase the speed of the data processing. To 

this end, we formed five sub-groups considering base lengths by using the “netsel” 

subnetting program (Herring et al., 2018a). The study area was spaced with a 1x1 

degree graticule. The sum of the reciprocals of the distances to the stations was 

assigned as a density value to each grid point. The grid point with the largest density 

value was selected as the centre of the first sub-group to which 50 closest stations 

were assigned. The procedure was applied to the remaining stations iteratively, and 

four sub-groups were formed. To tie these groups, a fifth group was created which is 

composed of several common stations.  

 

In addition, for the reference frame definition, 12 IGS stations (ADIS, ANKR, BUCU, 

GRAS, GRAZ, KOSG, NICO, NOT1, POLV, POTS, RAMO, ZECK) were included 

in all groups. The number of the IGS stations was increased to 22 (ANKR, ARTU, 
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BOR1, CRAO, GLSV, GRAZ, ISTA, KIT3, MATE, NICO, NOT1, POLV, POL2, 

POTS, RAMO, TUBI, VILL, WSRT, WTZR, YEBE, ZIMM, ZWE2) in the second 

round of processing (Ozdemir and Karslıoğlu, 2019), taking into account the 

geographic coverage and repeatabilities. The IGS sites included in the analyses are 

displayed in Figure 5.3. 

 

We processed the GPS phase data by using GAMIT (GPS Analysis at MIT) software 

[release 10.61 (Herring et al. 2015a)], and produced the solutions including the 

parameter estimates and the corresponding variance-covariance matrices. These 

solutions were later combined by using the GLOBK (Global Kalman filter VLBI and 

GPS analysis program) software (Herring et al., 2015b), to generate the time series 

and to estimate the final positions and the velocities. 

 

Relative positioning was implemented in the analyses by using the single and double 

differenced phase data. Correlations due to differencing were taking into account 

(Schaffrin and Bock, 1988). Triple differenced phases were used only to get the 

preliminary estimates of the parameters and to detect the cycle slips. Unrepaired cycle 

slips were included in the adjustment as extra parameters to be estimated. Differencing 

techniques and their purposes are explained in Chapter 2. On the other hand, relative 

positioning including clock estimation (without eliminating the clock bias through 

differencing) was used to compute the undifferenced phase residuals through which 

the atmospheric and ionospheric slant delays can be monitored. 

 

We used the Melbourne-Wübbena combination (Melbourne, 1985; Wubbena, 1985) 

to resolve the L1-L2 cycles first, and then L1 cycles, and fixed the ambiguities to 

integers. Unresolved ambiguities were left as real-valued estimates.  
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IGS reprocessed final orbits (SP3 final) were used for the satellite positions. The 

accuracy and the latency of these orbits are ~2.5 cm, and 12-18 days, respectively (see 

Table 2.1). In addition to the initial positions and the velocities of the satellites, the 

gravitational and the non-gravitational forces acting on the satellites must be modeled 

to accurately describe the trajectories. The positions of the satellites as a function of 

time were generated by numerical integration.  

 

 

Figure 5.3. IGS sites included in the analyses 

 

The phase and code pseudo-range observations may change due to the variations in 

the phase centers of the antennas, both at the satellite and receiver stations. Thus, for 

satellite antenna phase center corrections, nadir angle-dependent absolute phase 

center variations (PCVs) were used. For gorund antenna phase center corrections, 

elevation and azimuth-dependent absolute phase center variations were incorporated. 
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The model of Bar-Sever (Bar-Sever, 1995) was applied to account for the yaw-axis 

attitude of the satellites. 

 

For zenith hydrostatic delays and mapping functions (to extend the delays to other 

elevation angles), Vienna Mapping Function 1 (Boehm et al., 2006) grid files were 

used. The first order effects of the ionosphere were reduced to negligible levels, by 

using the combinations of the phase measurements. Higher order ionospheric effects 

were neglected. These effects are worthy of regard at the equatorial zones mainly 

(Petrie et al., 2010). 

 

To consider the atmospherical loading, we included the non-tidal atmospherical 

loading files (Tregoning and Watson, 2009). Following the 2010 IERS (International 

Earth Rotation and Reference Systems Service) conventions (Gerard and Luzum, 

2010), we took account of the solid Earth and pole tide corrections. For the ocean tide 

loading corrections, we used FES2004 tide model (Lyard et al., 2006). 

 

The functional model between the parameters (relative positions of the stations and 

tropospheric zenith delays, and associated variance-covariance matrices) and the 

measurements (double differenced phase observations) were established through a 

weighted least squares algorithm. Since this model is non-linear, we produced two 

solutions. We received the a priori coordinates of the stations with a precision up to 

one meter in the first solution, and we examined the residuals. We realized the second 

solution with the updated coordinates. We applied loose constraints to the final 

estimates (10 m for coordinates, 0.5 m for zenith delays), not to bias the combinations 

which are realized later by GLOBK. The details of the analyses and the processing 

strategy can also be found in Ozdemir and Karslıoğlu (2019) and in 

http://www.epncb.oma.be/_densification/analysiscentres.php. 

 

http://www.epncb.oma.be/_densification/analysiscentres.php
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5.1.4 Quality Assessment 

 

5.1.4.1 Satellite Visibility 

 

We calculated the average number of satellites observed, for at least one hour per day 

for each station. AGRD is the station with the largest average number of satellites 

observed daily (9.74). Stations with the poorest satellite visibility are given in Table 

5.1. We examined the environmental conditions of these stations and detected the 

presence of large natural barriers which can block the GPS signals. This can be also 

seen in the sky plots (satellite visibility graphics) which display the phase residuals. 

Temporary or constant high residuals are generally due to tropospheric fluctuations, 

or multipath, respectively. It is seen in Figure 5.4 that a hill located on the west side 

of the CATK station obstructs the GPS signals at the lower elevation angles. No 

considerable degrading effect of the satellite visibility was detected on the position 

estimates of the stations listed in Table 5.1.  

 

 

Figure 5.4. The sky plot (yellow: positive residuals, green: negative residuals) of the CATK 

station, and the hill blocking the GPS signals. 
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Table 5.1. CORS-TR stations which have the poorest satellite visibility (Table from 

Ozdemir, 2016). 

Station Average number of satellites observed daily 

CATK 7,47 

SIRT 7,89 

GUMU 7,94 

FEEK 8,06 

GIRS 8,14 

 

 

5.1.4.2 Antenna Phase Center Models 

 

The GPS observations are referred to the antenna phase centre which does not 

necessarily concides with the geometric centre of the antenna. We plotted the LC 

phase residuals as a function of time for each station to see whether there is a problem 

in the antenna phase center models. Such a plot is given in Figure 5.5. It is seen that 

the residuals are distributed normally with a low level of noise, decreasing with the 

increase of the elevation angle.  

 

 

Figure 5.5. LC phase residuals vs. elevation angles for EDIR station. 
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A problematic plot is illustrated in Figure 5.6, where the residuals display a systematic 

pattern, possibly due to the misidentification of the antenna.We examined the LC 

phase residuals of all the CORS-TR stations. No bias was detected originating from 

the antenna phase center problems. 

 

 

Figure 5.6. LC phase residuals showing bad pattern (Figure from Herring (2012)). 

 

5.1.4.3 One-way LC Phase Residuals 

 

For each station, we calculated the averages and the standard deviations of the daily 

LC phase residuls’ RMS (root mean square) values to evaluate the quality of the basic 

observables used in the estimation of the parameters. Typically we expect to have 

values between 3 and 9 mm. Although values between 10 and 15 mm are high, the 

noise can still be considered as acceptable. Values greater than 15 mm might be due 

to receiver problems, multipath, bad weather conditions, short data span, bad a priori 

coordinates (Herring et al., 2018). We present the histogram of the mean RMS of the 

LC phase residuals in Figure 5.7. We see that, although there are some CORS-TR 

stations with high level of noise, all RMS values are below 15 mm. We give the 

stations which have the highest RMS values in Table 5.2. As expected consequently, 

the daily coordinate uncertainties of these stations are also high. 
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Figure 5.7. The histogram of the mean RMS of the LC phase residuals. (Figure from 

Ozdemir (2016)). 

 

 

Table 5.2. The highest mean RMS values and associated standard deviations. 

STATION 
Mean RMS of LC 

residuals 

Standard Deviation of LC 

residuals 

DATC 13.62 1.92 

AYD1 12.60 1.52 

RDIY 12.37 1.12 

IPS1 12.30 2.01 

HAT1 12.29 2.66 

RZE1 12.22 1.96 

MUR1 12.06 1.09 

SIRT 11.94 1.44 
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5.1.4.4 Multipath 

 

We obtained the daily multipath values (mp1 and mp2) in meters for the L1 and L2 

signals collected at each station, by using the TEQC software (Estey et al., 1999). 

Later we calculated the mean values of the multipaths for the analysis period. 

Multipaths stay ≥ 3𝜎 away from the means were also examined to see whether the 

outliers are constant or temporary. In Table 5.3, we give the stations which are 

exposed to high multipath effects. 

 

Table 5.3. Stations with the highest multipaths (Table from Ozdemir (2016)) 

STATION 
MEAN 

MP1 

# 

MP1 

OUTLIER 

STATION 
MEAN 

MP2 

# 

MP2 

OUTLIER 

BTMN 0,7782 156 BTMN 0,7829 157 

BAYB 0,5524 5 BAYB 0,5695 8 

GIRS 0,4766 20 KAYS 0,5538 5 

KIRS 0,4722 34 ERZR 0,5432 12 

RDIY 0,4633 16 ANRK 0,5168 27 

AKDG 0,4529 30 RDIY 0,5144 20 

 

We plotted the multipaths at BTMN station as a function of time (see Figure 5.8), to 

understand the behavior of the multipaths. High multipath values are not constant, but 

concentrated in the summer seasons. This is also the explanation of the high number 

of outliers seen at BTMN station in the Table 5.3. This situation also causes high 

uncertainties in the coordinates of the station in the summer months.  

 

5.1.4.5 Proximity to the Active Faults 

 

We investigated the closeness of the CORS-TR stations to the active faults presented 

in Figure 5.1. The motion of the stations very close to the faults might be governed 
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mainly by the creep rates along the faults. In Table 5.4, the stations within 2 km of the 

active faults are listed.  

 

Table 5.4. The stations within 2 km of the active faults (Table from Karslıoğlu et al. (2017)) 

YENC MUGL BURS HATA ERZI SEMD 

KIKA DENI ESKS MARA BING OZAL 

IZMI DINA IZMT TOKA ERZR  

AYDI KUTA HEND RDIY HAKK  

 

 

 

Figure 5.8. The multipaths at the BTMN station as a function of time. (Figure from 

Ozdemir, 2016). 
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5.1.5 Time Series Analysis 

 

We generated the time series twice. The first set of time series are in a global frame. 

The purposes of the first generation are to (1) detect and clean the outliers, (2) handle 

the jumps due to known or unknown signals, (3) manage the data gaps considering 

their lengths (to interpolate or to divide the time series into pieces), (4) examine the 

repeatabilities and evaluate the precision of the results, and (5) obtain the random walk 

noise models. Following the optimization of these processes, precise coordinates and 

velocities, and associated realistic uncertainties were estimated. The second set of 

time series were expressed in a regional frame based on the coordinates of the 

carefully selected local sites, for the purpose of reducing Common Mode Error.  

 

To express the daily solutions in the International Terrestrial Reference Frame 2008 

(ITRF2008) (Altamimi et al., 2011), a six-parameter transformation (3 translation and 

3 rotation parameters) was performed. The transformation parameters were estimated 

iteratively (in four iterations). In each iteration, the IGS sites with high uncertainties 

and discordant with the published ITRF2008 coordinates were eliminated in the 

stabilization. The obtained RMS values in reference frame definition are demonstrated 

in Figure 5.9, together with those obtained through the GDM’s old strategy (which 

was abandoned in 2015). In the old strategy, the refence frame was defined through 

the “global stabilization” method, where the regional solutions were combined with 

the global solutions analyzed by the SOPAC (Scripps Orbit and Permanent Array 

Center, http://sopac-csrc.ucsd.edu/) analysis centers. The RMS values are around 2 

mm, and the improvement with respect to the old strategy is clear.  

 

We scrutinized the daily coordinate uncertainties of the stations. In Table 5.5, stations 

with the highest mean coordinate uncertainties are presented. We achieved also 

improvements with our strategy in the daily coordinate uncertainties of the stations. 

http://sopac-csrc.ucsd.edu/
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An example of this improvement is shown in Figure 5.10, where the daily 

uncertainties of IZMI station are displayed. 

 

Table 5.5. Stations which have high mean (M) daily coordinate uncertainties in mm. 

STATION 
EAST 

M (σ) 

EAST 

σ (σ) 
STATION 

NORTH 

M (σ) 

NORTH 

σ (σ) 
STATION 

UP 

M (σ) 

UP 

σ (σ) 

SIRT 3,16 0,48 SIRT 3,67 0,48 SIRT 16,85 2,37 

DATC 3,10 0,54 DATC 3,34 0,49 DATC 13,23 2,18 

DATC 2,78 0,37 RDIY 3,03 0,29 CATK 11,12 1,48 

AYD1 2,71 0,33 DATC 2,98 0,39 ANRK 11,07 8,70 

RDIY 2,60 0,26 ARTV 2,95 0,34 RDIY 10,99 1,12 

DIYB 2,60 0,27 RZE1 2,94 0,46 DATC 10,95 1,45 

MURA 2,58 0,36 MURA 2,90 0,39 CATK 10,75 1,38 

MUR1 2,56 0,26 DIYB 2,85 0,28 ARTV 10,65 1,28 

IPS1 2,56 0,37 AYD1 2,84 0,35 MURA 10,63 1,36 

CATK 2,55 0,34 TRBN 2,83 0,67 SEMD 10,49 1,48 

RZE1 2,52 0,40 MUR1 2,81 0,28 AYD1 10,47 1,33 

SEMD 2,52 0,41 IPS1 2,80 0,34 DIYB 10,32 1,05 

HAT1 2,49 0,24 TVAN 2,80 0,57 MUR1 10,32 1,07 

TRBN 2,49 0,64 CATK 2,78 0,35 IPS1 10,18 1,38 

CATK 2,49 0,34 MURA 2,75 0,29 TVAN 10,13 2,34 

 

 

Figure 5.9. The RMS values obtained in the reference frame definition (red: obtained 

through the old strategy which was abandoned in 2015, blue: obtained through the new 

strategy). 
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Figure 5.10. The daily coordinate uncertainties of IZMI station obtained with the old (green) 

and the new (blue) strategy, (a) north, (b) east, (c) up components (Figure from Karslıoğlu et 

al., 2017). 

 

We present the means of the daily uncertainties during the analysis period in Figure 

5.11. Decrease in the uncertainties of all sites with respect to the old strategy is clearly 

seen. 

 

One of the statistical measures of goodness of fit is the WRMS (Weighted Root Mean 

Sqaure) which expresses how the individual observations (e.g., daily coordinate 

estimates) are distributed about a fit (might be obtained e.g., with a linear regression) 

to the observations. Thus, it gives an opinion about the precision (repeatabilities) of 

the observations. WRMS is defined as, 
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where N is the number of the observations, 𝑒𝑖 is the ith residual, and 𝜎𝑖 is the 

uncertainty of the ith observation (Spinler et al., 2010). The histograms of the 

repeatabilities of all sites are displayed in Figure 5.12. The final coordinate and 

velocity estimates of the sites with high repeatabilities (especially > 3 𝑚𝑚) are of 

high uncertainties. 

 

 

 

Figure 5.11. Daily coordinate uncertainties of all CORS-TR stations (red: old strategy, 

yellow: new strategy) for the (a) north, (b) east, and (c) up components (Figure from 

Karslıoğlu et al., 2017). 
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Figure 5.12. Repeatabilities (obtained after cleaning the outliers) of the north (top-left) and 

the east (bottom-right) components of the CORS-TR stations (Figure from Ozdemir and 

Karslıoğlu, 2019). 

 

 

After the inspection of the generated time series, we detected that 24 sites experienced 

coseismic displacements due to five earthquakes with magnitudes over 6.0 (see Table 

5.6 and Figure 5.13). Antenna mast at the site DIYB was raised up on November 04, 

2011. The data between July 15, 2013 and January 09, 2014 at the EMIR station were 

excluded. The lightning rod mounted on the antenna mast between these days caused 

anomalous behavior in the time series. On the other hand, unknown sources led to 

trend changes in the time series of 9 stations (AFYN, ANKR, DATC, EDIR, GYUR, 

RZE1, SARV, SEMD, ZONG). 35 stations have been replaced due to mostly 

operational reasons during the analysis period. 
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Table 5.6. Sites experienced coseismic displacements during the analysis period (Table from 

Ozdemir and Karslıoğlu, 2019). 

  Epicenter       

Earthquake λ* φ* Date M Affected CORS-TR Sites 

Elazig 39.99 38.86 08.03.2011 6.1 BING 

Van 43.51 38.72 23.10.2011 7.1 AGRD, BASK, CATK, HAKK,                       

HORS, IGIR, KRS1, MURA, OZAL,   

SEMD, SIRN, TVAN, VAAN  

Gokceada 25.39 40.29 24.05.2014 6.9 AYVL, BALK, CANA, IPSA, YENC 

Karaburun 26.37 38.93 12.06.2017 6.3 AYVL, CESM 

Gokova 27.41 36.93 20.07.2017 6.6 AYD1, DATC, DIDI 

* Longitude and latitude in decimal degrees  

(Earthquake information is from USGS earthquake catalog) 

 

 

 

 

Figure 5.13. The earthquakes (red circles) and the affected CORS-TR sites (blue triangles) 
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Detecting the outliers in GPS time series visually is common. However this is a 

subjective and very time-consuming approach which necessitates deep experience. 

We first detected and cleaned the daily solutions which have uncertainties over 10 cm 

as outliers. Later, we calculated the inter-quartile ranges (IQR) of the time series 

which were detrended by using the iteratively reweighted least squares (IRLS) 

algorithm. Lower (LB) and upper (UP) bounds were calculated as follows, 

 

𝐿𝐵 = 𝑄1 − 𝛼/2 ∗ 𝐼𝑄𝑅 ,    (5.2) 

𝑈𝐵 = 𝑄3 + 𝛼/2 ∗ 𝐼𝑄𝑅 ,    (5.3) 

 

where 𝑄1 and 𝑄3 are the lower and upper quartiles, respectively (Tukey 1977).  Daily 

solutions beyond these bounds were removed also as outliers. To avoid removing the 

informative data, which might be a part of e.g., some periodic or nonperiodic signals 

existent in the time series, rather than being outliers, only the extreme outliers were 

cleaned by selecting 𝛼 as 6 (resulted in 1.22% data removal). If we had selected  𝛼 as 

3 (which is equivalent to retaining data within about ±3.0σ ), we would have removed 

5.42% of the data in total. The outlier detection is illustrated in Figure 5.14. 
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Figure 5.14. The outlier detection in the north, east and up components (from top to bottom) 

of ZONG station , (a) the original time series and the trend, (b) detected outliers, (c) cleaned 

time series. 

 

Several studies have shown that noise in GPS time series cannot be assumed simply 

white in time, but also exhibits colored characteristics (e.g., Zhang et al., 1997; Mao 

et al., 1999; Williams et al., 2004; Beavan, 2005; Amiri-Simkooei et al., 2007; 

Langbein, 2008; Santamaria-Gomez et al., 2011; Wang et al., 2011). Pure white noise 

assumption leads to unrealistically optimistic uncertainties of the parameters. We used 

the time series residuals to attain the random walk noise models by using the “realistic 

sigma” algorithm (Herring, 2003), which were later implemented in the GLOBK 

software in the parameter estimation. With the realistic sigma model, the averages of 

the residuals for each coordinate component are calculated for increasingly growing 

time intervals. The increase in the 𝜒2/𝑑𝑜𝑓 (𝑑𝑜𝑓 : degrees of freedom) values are 

computed for these averages and the correlation time is estimated. In a white noise 
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assumption, 𝜒2/𝑑𝑜𝑓 values are independent of the time averages. However, we see 

in GPS time series that the change in these values are correlated with time (see Figure 

5.15). 

 

 

Figure 5.15. The realistic sigma curve (green) for the north component of BAYB station. 

 

 

5.1.6 Overview of Analysis Results 

 

CORS-TR system is gaining growing importance in Turkey. Today, the cadastral 

works realized based on the CORS-TR derived coordinates are recognized officially 

by General Directorate of Land Registry and Cadastre (GDLRC). Although the 

subscription to the system is not free of charge, it has become an indispensable tool 

especially for the land surveyors, since it provides cm-level precision in a couple of 
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minutes without long lasting GPS surveys. On the other hand, static GNSS data 

collected at base stations might be utilized in various Earth science studies. Thus, the 

quality of the observations collected at the reference stations must be determined well, 

and the coordinates and velocities of the stations must be estimated precisely.  

 

These studies are carried out in General Directorate of Mapping (GDM) since the 

establishment of the system (late 2008s). However the GPS analysis strategies evolve 

over time, and those adopted in GDM have never been tested and validated externally. 

Hence, we processed the whole CORS-TR GPS data set twice independently within 

the scope of a project supported by Scientific and Technological Research Council of 

Turkey (TUBITAK) under the grant number 113Y511 (Karslıoğlu et al., 2017). Since 

the superiority of our approach has been proven, it has been also adopted in GDM. 

The main differences between the strategies are summarized in Table 5.7. 

 

The daily uncertainties of the coordinates have been lowered with the new strategy. 

The RMS values in the reference frame definition have been decreased. The time-

consuming subjective outlier detection phase has been eliminated. By accounting for 

the random walk noise models, realistic velocity uncertainties have been obtained. 

The problematic stations with high WRMS values and/or poor receiver performance 

have been reported. Many of these stations (such as, ADAN, DENI, KAPN, INEB, 

MALZ) have been relocated later by GDLRC. The time series have been expressed in 

a regional frame based on the selected fiducial CORS-TR stations which have low 

uncertainties and are homogeneously distributed. Hereby we reduced the daily 

dispersion on the time series (to be demonstrated in the following sections). Such 

CME-reduced CORS-TR time series were generated for the first time in the literature. 
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Table 5.7. Comparison of the GPS analysis strategies between General Directorate of 

Mapping and this study. 

 GDM This study 

subnetting visual base-length based 

zenith hydrostatic delays GPT2 VMF1 

atmospherical loading neglected considered 

satellite orbits estimated fixed 

reference frame definition global stabilization regional stabilization 

outlier detection visual automatic  

noise white white + random walk 

 

 

5.1.7 Velocity Field 

 

The reference frame for the coordinate and velocity estimation was defined through a 

12-parameter (3 rotations, 3 translations and their rates) transformation, by imposing 

general constraints (Dong et al., 1998) on the positions and velocities of the IGS 

stations. The transformation parameters were estimated by minimizing the residuals 

of the IGS stations with respect to ITRF2008. An iterative least squares estimation 

was used, and the height components were downweighted by 10 in variance. We 

obtained 2.4 mm and 0.3 mm/yr post-fit RMS values for the coordinates and velocities 

of the IGS stations, respectively.  

 

Pre-earthquake and post-earthquake velocities were estimated seperately for the 

stations listed in Table 5.6. For these stations, we accepted the velocities which were 

derived from a longer data span as the final velocity estimates. Only the sites having 

over 2.5 yrs of data were included in the velocity solution, since the velocity estimates 

from shorter data span can be biased largely due to the annual signals (Blewitt and 

Lavallee, 2002). To view the velocities with respect to Eurasian tectonic block near 
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our network which suits better for geophysical interpretation, we used the rotation 

vector from ITRF2008 (no-net-rotation) to Eurasia reference frame considered by 

Altamimi et al. (2012). The resulting CORS-TR velocity field is illustrated in Figure 

5.16.  

 

 

 

Figure 5.16. The Eurasia-fixed CORS-TR velocity field. Error ellipses at 95% confidence 

level. 

 

We introduced the variance scale factor (�̂�0
2) as a conventional measure of goodness-

of-fit in Chapter 2. It is calculated by using the estimated residuals �̂�: 

 

�̂�0
2 =

�̂�𝑻𝑷�̂�

𝑛−𝑢
 ,     (5.4) 
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where 𝑷 is the weight matrix, 𝑛 is the number of the observations, and 𝑢 is the number 

of the parameters. The properly weighted and independent random observations yield 

�̂�0
2 to be 1.0, ideally. If our assumption about the covariances of the observations is 

correct, �̂�𝑻𝑷�̂� random variable would be 𝜒2 (chi-square) variable, and equal to the 

degrees of freedom (𝑛 − 𝑢). The NRMS (normalized root mean square) is just the 

square root of the variance scale factor, and can be calculated explicitly as: 

 

𝑁𝑅𝑀𝑆 = [
1

𝑁−1
∑

𝑒𝑖
2

𝜎𝑖
2

𝑁
𝑖=1 ]

1/2

,    (5.5) 

 

where 𝑁 is the number of data, 𝑒𝑖 is the ith residual, and 𝜎𝑖 is the uncertainty of the 

ith data point. NRMS of 1.0 shows a consistency between the data, model and the 

assumed observation uncertainties. Values greater than 1.0 indicate that either there 

are rough errors in the observations, or the associated covariances are worse than we 

assumed. Values lesser than 1.0 imply that the covariances are actually better than we 

assumed. We demonstrate the improvements we achieved in the NRMS values of the 

velocity estimates of the IGS sites which were used in the reference frame definition, 

by incorporating the random walk noise models, in Table 5.8.  

 

Table 5.8. NRMS values of the velocity estimates of the IGS sites used in the reference 

frame definition. 

 NRMS 

 East North Up 

white noise 29.52 21.95 16.52 

white + random walk 2.58 2.38 2.02 
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After the first round of processing between June 28, 2008 and January 01, 2015, we 

validated our results externally. To this end, we re-estimated the coordinates and 

velocities of the included stations by applying tight constraints on the coordinates and 

the velocities of the six IGS stations (ANKR, NICO, NOT1, GRAS, POLV, RAMO). 

In the selection of these IGS sites, we considered their coordinate uncertainties in the 

solution published by IGS (IGb08.snx). We compared the coordinates of the other 

loosely constrained IGS sites (ADIS, BUCU, GRAZ, POTS, ZECK) in our solution 

later to those published by IGS in ITRF2008 at the epoch 2005.0. We present the 

obtained differences in the cartesian coordinates, which are mostly about couple mm, 

in Table 5.9.  

 

Table 5.9. Differences in cartesian coordinates of the selected IGS sites between our and 

IGS solutions. 

Station ∆𝑿(𝒎𝒎) ∆𝒀(𝒎𝒎) ∆𝒁(𝒎𝒎) 

ADIS 1.44 2.13 1.92 

BUCU 0.49 1.75 2.19 

GRAZ 0.87 2.11 1.11 

POTS 4.74 5.08 9.85 

ZECK 3.26 2.65 0.04 

 

 

 

5.1.8 Common Mode Error Reduction 

 

GPS time series suffer from spatially correlated noise. Such noise is also called 

“Common Mode Error” (CME). Possible causes of CME might be errors of satellite 

orbits and reference frame. (Wdowinski et al., 1997; Dong et al., 2006). It originates 

most likely from the nontectonic sources, since its extent is large in space. CME can 
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be reduced by stacking/filtering approach (Wdowinski et al., 1997) in which 

epochwise mean values of the stacked residuals are removed from the individual 

positions. This approach works well when the assumption of spatial uniformity of 

CME holds. Spatial filtering was improved more in later studies by taking into account 

the correlations and distances between neighboring sites (e.g., Nikolaidis, 2002; Tian 

and Shen, 2016). However, spatial scale of the CME could not be described well. This 

approach bears the risk of filtering also e.g., slow slips, which might be common to 

all sites in the study area. 

 

Spatiotemporal filtering of Dong et al. (2006) utilizes PCA and allows non-uniformity 

in the estimation of CME. PCA and its modified versions later were used widely in 

spatiotemporal filtering (e.g., Shen et al., 2014; He et al., 2015; Li et al., 2015). 

However, PCA results need to be studied visually further, and contamination might 

exist between Principal Components (PCs), due to the orthogonality in PCA, which 

might cause preventing the detection of the subtle geophysical transients in the initial 

PCs. Another approach to minimize the CME is to transform the reference frame by 

a Helmert transformation into a regional reference frame using fiducial local sites 

(Szeliga et al., 2004; Melbourne et al, 2005; Ji and Herring, 2011). These methods 

which mitigate the CME, facilitate the detection of the transient signals and have been 

employed in many geodetic studies (e.g., Lin et al., 2010; Ji and Herring, 2012; Jiang 

et al., 2012; Blewitt et al., 2013). 

 

We reduced the CME in our time series by translation, rotation and scaling of our 

network (seven-parameter Helmert transformation). We transformed data in the 

Eurasia-fixed system into those in a regional frame. We inspected the precise velocity 

field (see Figure 5.16) which was derived by the techniques explained in the previous 

sections, and selected 78 CORS-TR stations, whose horizontal and vertical velocity 

uncertainties are below 0.2 mm/yr and 0.4 mm/yr, respectively. These stations were 
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used as the reference frame sites at each epoch, depending on their data availability. 

Selected CORS-TR sites for the reference frame definition are displayed in Figure 

5.17. 

 

 

Figure 5.17. 78 CORS-TR stations used the regional reference frame definition 

 

Daily coordinate time series are modeled with a constant velocity, seasonal terms, and 

random colored noise: 

 

𝑥(𝑡) = 𝑥0 + 𝑣𝑡 + 𝐴1 𝑠𝑖𝑛(𝑤1𝑡 + 𝜙1) + 𝐴2 𝑠𝑖𝑛(𝑤2𝑡 + 𝜙2) + 𝜀 , (5.6) 

 

where 𝑥(𝑡) is the observed position at the time 𝑡, 𝑥0 is the initial position, 𝑣 is the 

linear velocity, 𝐴1,2, 𝑤1,2, 𝜙1,2 are the amplitudes, periods and phases of the annual 

and semi-annual motions, and 𝜀 is the residual. 

 

We detrended the Eurasia-fixed and the regional time series by accounting for the 

linear velocities, seasonal terms, displacements due to large earthquakes, and obtained 
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the residuals. On the other hand, we also applied a stacking/filtering approach to the 

detrended Eurasia-fixed time series. We stacked the available individual residuals of 

each station and calculated their averages at each epoch: 

 

   𝑅(𝑑) =
∑ 𝑅𝑖(𝑑)𝑁

𝑖=1

𝑁
,     (5.7) 

 

where 𝑅(𝑑) is the average of the residuals for day d, and N is the number of the 

stations which have a solution on day d. The time series were filtered by subtracting 

the averages from the individual residuals: 

 

�̂�𝑠(𝑑) = 𝑂𝑠(𝑑) − 𝑅(𝑑),    (5.8) 

 

where �̂�𝑠(𝑑) is the filtered residual of the station s on day d, and 𝑂𝑠(𝑑) is the residual 

of the station s on day d before filtering.   

 

As an example, we demonstrate the reduction in the daily dispersion (σ), by means of 

the common-mode correction on the north, east and up components of ADIY station 

in Figure 5.18. In Table 5.10, we display the average improvements in the dispersions 

after the application to all CORS-TR stations. The overall dispersions were decreased 

through reference frame transformation by 13%, 17% and 12% in the north, east and 

up components, respectively. We used the CME reduced time series through reference 

frame transformation for further investigations. 

 

 

 

 



 

 

99 

 

Table 5.10. The overall daily dispersion in the original and common-mode corrected time 

series. 

 Standard Deviation (mm) 

 North East Up 

Original 2.01 2.04 5.04 

Stacking/filtering 1.79 1.74 4.53 

Regional frame 1.75 1.69 4.43 

 

 

5.2 Transient Signal Detection 

 

At present, weak signal detection (WSD) is of great significance in signal processing. 

WSD refers to an approach which is used to detect and recover the useful (but weak) 

signal which is usually buried in noise. The “weak” here might have two meanings: 

(1) compared with that of the noise, the amplitude of the signal in search is low (low 

signal-to-noise ratio (SNR)), and (2) the absolute amplitude of the signal in search is 

very small to be detected. 

 

Since the signals are of endlessly varied nature, the success of the WSD methods 

depends on the signal properties. Thus, there are tens of various techniques, such as 

fast fourier transform, wavelet transform, filtering, correlation detection, lock-in 

amplifier, sparse decomposition, chaotic osciallator, differential oscillator, neural 

networks, higher-order statistics, stochastic resonance etc. The vast majority of the 

WSD algorithms focus on improving the SNR. 
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Figure 5.18. The original (blue) and the CME corrected (through stacking/filtering (red), 

and regional frame transformation (black)) time series of ADIY station (top: north, middle: 

east, bottom: up components). 
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A transient signal in GPS time series is also a weak signal which we cannot detect 

from the actual data. On the other hand, to investigate all time series in a large GPS 

network one by one is hard. Since the GPS time series include outliers, data gaps, 

offsets, secular rates, annual and semi-annual signals, spatially and temporally 

correlated noise, environmental and anthropogenic effects etc., first, it is good to 

define the characteristics of the transients we are looking for. The features of the 

transient signals we are searching for can be summarized as follows: 

 

 Their temporal patterns are not similar to those originate from constant 

motions (e.g., linear plate motions and seasonal signals), 

 Their temporal patterns are different from a stochastic noise model, 

 They are coherent (seen in multiple sites) in space, 

 They are localized (not seen in all sites) in space, 

 Their models are of diversified nature that usually cannot be parameterized. 

 

Considering the above statements, it should be also noted that: 

 

 The duration of the data span may be shorter than the temporal extent of the 

transient signal. Hence, a transient signal might seem to exist persistently in 

the time series, 

 There might be propagating transient signals due to, e.g., slow slip events, 

which are not coherent in space, 

 The geographic extent of a transient might be larger than the GPS network 

size, 

 The spatially correlated CME might not be distributed uniformly in space and 

in time. 
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To detect the transient signals having the characteristics listed above, we first 

processed the GPS data collected at the stations with ultra-high precision analysis 

techniques explained in section 5.1. We detected and cleaned the outliers. Later we 

estimated the precise coordinate and velocity field, and diminished the CME using a 

reference frame transformation by translation, rotation and scaling of the network. We 

subtracted the known signals from the time series, such as, secular velocities, annual 

and semi-annual signals and offsets (due to earthquakes, antenna and receiver 

changes). Hereby, we obtained the CME-suppressed residual time series which 

contain the noise (white and colored) and the possible transients.  

 

Afterwards, to enhance the SNR in time, we applied Ensemble Empirical Mode 

Decomposition (EEMD) with the library provided by Luukko et al (2015), and later 

denoised the residual time series with the denoising procedure explained in Chapter 

3. We used cubic splines with the “not-a-knot” end conditions (Wu and Huang, 2009) 

in envelope interpolation. If the number of extrema is only 2, we used linear 

interpolation, and if it is only 3, we used polynomial interpolation. To reduce the end 

effects, we added additional extrema to the ends of the data using linear interpolation 

of the previous two extrema (Wu and Huang, 2009). We  fixed the number of siftings 

to 10 to promote the dyadic filter bank property of the EMD. The missing data were 

interpolated using a linear plus seasonal trend. We created an emsemble of a thousand 

white noise (amplitude of 0.2 of the standard deviation of the corresponding data) 

added signals, and applied EMD to each of them. The averages of the resulting IMFs 

were accepted as the true IMFs. An example of the decomposition is illustrated in 

Figure 5.19 where we used the east component of the ERGN station as the input 

signal. 
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Figure 5.19. EEMD decomposition of the ERGN east component. 

 

As explained previously, the sifting process generates zero references for each IMF, 

except the residue. So, the signal consists in a slowly varying trend superimposed to 

a fluctuating process. Thus, observing the cumulative sum of the standardized means 

of the IMFs starting from the first IMF (which has the highest frequency), and 
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identifying the point where it significantly departs from zero is the first appraoch that 

comes to mind to detect the components of the trend. 

 

In Figure 5.20 we present the evolution of the standardized means of the EEMD 

results of the ERGN east component. It is seen that after the fifth IMF (detection 

point), the cumulative sum of the standardized means of the IMFs deviates 

significantly from zero. Hence, the trend can be constructed by summing up the IMFs 

with higher indices (6, 7, 8, 9, 10, 11, 12) after the detection point. 

 

 

Figure 5.20. Cumulative sum of the standardized means of the EEMD IMF components of 

the ERGN east component. Addition of sixth standardized mean causes significant deviation 

from the zero line. 
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However this is a rough and subjective approach. There is not any strict way of 

determining the “significant” level of deviation from the zero line. GPS time series 

are of miscellaneous nature. Too loose a threshold might lead to the exclusion of the 

IMFs which are actually components of the trend, and the obtained trend might have 

been contaminated by the noise due to a tight threshold.  

 

As a more precise model, we plotted the logarithm of the variances of the estimated 

IMFs as a function of the IMF index, and compared them to the IMF statistics in noise 

only situations, which are controlled by the Hurst index (H) and presented in Flandrin 

et al. (2004, 2005, 2014). We denoised the signals by keeping only the IMFs whose 

variances exceed the 95% confidence interval determined for H = 0.5 (white noise). 

The details of the denoising algorithm can be found in Section 3.5. In Figure 5.21, we 

illustrate the identification of the significance of the IMFs obtained by the EEMD of 

the ERGN east displacements. It is seen that the IMFs with 5, 6, 7, 8, 9, 10 and 12 

indices are considered significant. In Figure 5.22, we display the denoising results of 

both standardized mean and IMF statistics methods. 
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Figure 5.21. The logarithm of the estimated EEMD variances of the ERGN east component, 

as a function of the IMF index, and the confidence intervals for the three values of H (0.2, 

0.5, 0.8) 

 

The noise in the GPS time series is correlated in time. Since this correlation is mostly 

site specific, it is not usually possible to describe the noise in the time series with a 

single model or with a single combination of the models (although there are 

generalizations to some degree, see section 2.5). The advantage of the signal denoising 

using EMD stems from the adaptive nature of the algorithm. Since the method is fully 

data-driven, a pre-determined model about the noise is not assumed, which might be 

inappropriate. Here we chose H as 0.5, which corresponds to white noise, in 

determining the thresholds for denoising. Because choosing a higher H, might cause 
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suppressing also the transient signals which we are looking for, in addition to the 

correlated noise. To discriminate between the correlated noise and the transient 

signals, we rely on the coherence of the transients in space. We incorporated the 

Principal Component Analysis to detect this coherency. 

 

 

Figure 5.22. Denoising of the ERGN east time series (blue dots), by using standardized 

means (green line) and IMF statistics (red line).  

 

In the final step of our transient signal detection approach, we utilized the Principal 

Component Analysis (PCA). We first formed a n by p data matrix 𝑿. The element 𝑥𝑖𝑗 

of the data matrix corresponds to the ith sample of the jth variable. Here, samples are 

the timely EEMD-based denoised residuals of the original coordinate time series, and 

the variables are the direction coordinates (i.e., north, east, up). Column vectors of the 
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data matrix can be composed of only north, east or up components of the stations, or 

a combination of the north and east components (i.e., horizontal component). A row 

vector is composed of the residuals measured at different sites but at the same epoch. 

We then normalized the data matrix by subtracting the average of each variable from 

the associated samples.  

 

Later we applied classical PCA to the data matrix (see Chapter 4 for details) and 

obtained the p by p eigenvalue (L) and the eigenvector (A) matrices of the covariance 

matrix of the data matrix. The principal components (Z) are the projections of the data 

on the principal directions (eigenvectors), i.e., Z = XA, where 𝑧𝑖𝑗 is the ith sample of 

the jth PC. The PCs have the units of the original variables. When we rank the 

eigenvectors with respect to their associated eigenvalues from highest to lowest, the 

principal components are in the order of significance. 

 

To detect the transient signals, we investigated the systematic temporal patterns in the 

PCs, especially in the first PC. To determine the significance of the detected transient 

signal, we examined how much of the total data variance is explained by the 

associated eigenvalue (i.e., variance explanation percentage (VEP): eigenvalue of the 

associated component*100/overall sum of the eigenvalues). We also calculated the 

rate between the variance explanation percentages of the first and second PCs 

(𝑉𝐸𝑃𝑅 = 𝑉𝐸𝑃1/𝑉𝐸𝑃2). Lastly, we investigated the deviation of the 𝜒𝑑𝑜𝑓
2  values of 

the components from 1.0 (which corresponds to simply random noise). 

 

We demonstrate the capability of our method in the Cascadia subduction zone, located 

in the Pacific Northwest first, by detecting the slow slip events. Since these events are 

also detectable from the actual GPS data, we primarily aimed at showing the SNR 

improvement of our approach. Secondly, we applied our algorithm to the Alaskan 
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GPS time series to detect the transient inflation at Akutan volcano. Since the transient 

is aseismic (that is, it cannot be associated with earthquakes), and has low SNR, it 

cannot be identified in the original data. Finally, we exhibit the effect of the CME 

reduction in the detection of the postseismic deformation after the October 23, 2011 

Van earthquake. 

 

5.2.1 Slow Slip Events in Cascadia 

 

Slow slip events (SSEs) are regular displacement episodes that occur in up to months, 

in contrast to the immediate co-seismic displacements due to a typical earthquake. 

They were first discovered through continuous GPS measurements at Nankai (Japan) 

and Cascadia subduction zones (Hirose et al., 1999; Dragert et al., 2001). Later it was 

discovered that SSEs are correlated with the non-volcanic tremors (Obara, 2002). 

Since then, correlated episodic tremor and SSE phenomena together have been called 

Episodic Tremor and Slip (ETS) (Rogers and Dragert, 2003; Obara et al., 2004). The 

Cascadia subduction zone is convergent plate boundary where the Explorer, Juan de 

Fuca and Gorda plates move to the east and slide below continental North American 

Plate (see Figure 5.23). 
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Figure 5.23. Tectonic map of Cascadia. Triangles denote volcanoes (Figure from Gomberg, 

2010, which is modified from Wells and Simpson, 2001). 

 

 

Today, there is an extensive collection of studies about the SSEs in Cascadia (e.g., 

Schmidt and Gao, 2010; Dragert and Wang, 2011; Bartlow et al., 2011; Schmalzle et 

al., 2014; Haines et al., 2019). The SSEs at the Cascadia subduction zone recur every 

10-19 months (Brudzinski and Allen, 2007; Szeliga et al., 2008). The recurrence and 

the correlation with the tremor activity are illustrated in Figure 5.24. 
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Figure 5.24. The east motion (relative to stable North America) of the Victoria (British 

Columbia) station in a sawtooth fashion, and the tremor activity (Figure from Gomberg, 

2010, which is updated from Rogers and Dragert, 2003).  

 

The previously detected slow slips and episodic tremors between 2007 and 2009 are 

displayed in Figure 5.25. To apply our detection method, we have downloaded the 

available daily GPS position data at 10 stations (ALBH, NEAH, SC02, SEDR, P436, 

P438, SEAT, KTBW, PCOL, TWHL) of Plate Boundary Observatory (PBO) network 

located in the Washington State section of the Cascadia zone from the PBO archives 

(https://www.unavco.org/data/gps-gnss/gps-gnss.html). These stations experienced 

both 2007 and 2008 SSEs during approximately the same time periods (i.e, SSE 

signals were not propagated). 

https://www.unavco.org/data/gps-gnss/gps-gnss.html
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Figure 5.25. The 2007 and 2008 ETS events (gray vertical lines) observed in the (a) east 

motions of the GPS sites, (b) seismic-wave amplitudes (Figure from Gomberg, 2010).  
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The locations of the selected sites are displayed in Figure 5.26. Considering the data 

gaps, we used the displacement data in the east direction between November 01, 2006 

and January 01, 2009. We interpolated the missing values by using piecewise cubic 

hermite interpolating polynomial. Later, we detrended the data by accounting for the 

secular rates and seasonal components.  

 

We present the stacked residuals in Figure 5.27. The time locations of the SSEs are 

highlighted with vertical red blocks. The maximum displacements are about 7 mm. 

 

 

 

Figure 5.26. The locations (green squares) of the selected sites for transient signal detection 

(https://www.unavco.org/data/gps-gnss/data-access-

methods/dai2/app/dai2.html#grouping=PBO;scope=Station;sampleRate=normal;groupingM

od=contains).  

 

https://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#grouping=PBO;scope=Station;sampleRate=normal;groupingMod=contains
https://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#grouping=PBO;scope=Station;sampleRate=normal;groupingMod=contains
https://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html#grouping=PBO;scope=Station;sampleRate=normal;groupingMod=contains
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Next, to reduce CME (if present), we applied the stacking/filtering approach explained 

in Section 5.1.8 to the residuals. The resulting time series are displayed in Figure 5.28. 

Later, without attempting to reduce CME by filtering, we improved the SNR of the 

residual time series by suppressing the white noise using Ensemble Empirical Mode 

Decomposition. The white noise reduced time series are presented in Figure 5.29. 

 

To be able to show the improvements brought by our method and to make comparison, 

we first applied PCA directly to the detrended, and to the filtered residuals shown in 

Figure 5.27 and Figure 5.28, respectively.  

 

 

Figure 5.27. The detrended GPS time series used in the transient signal detection. The time 

locations of the SSEs are highlighted with vertical red blocks. 
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Figure 5.28. The filtered GPS time series used in the transient signal detection. The time 

locations of the SSEs are highlighted with vertical red blocks. 

 

Figure 5.29. The SNR-improved GPS time series used in the transient signal detection. The 

time locations of the SSEs are highlighted with vertical red blocks. 
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In the last step we applied PCA to the residual time series whose SNR values were 

improved by suppressing the white noise using the EEMD. The obtained first PCs 

through the analyses of all three sets of time series are plotted in Figure 5.30. As 

mentioned in section 5.1.8, the stacking/filtering approach for the purpose of common 

mode correction is risky in transient signal detection studies. Since the average of the 

residuals are subtracted from the individual positions, the common signals like SSEs 

(especially when the number of the time series is small and the SSEs are present in 

the majority of the time series) might also be removed as common mode errors. This 

is clearly seen in both the filtered time series (see Figure 5.28) and PCA results (see 

Figure 5.30).  

 

 

 

Figure 5.30. The first PCs from the PCA applied to the original detrended time series, 

regional filtered residuals, and SNR-improved residuals (blue, red, and black dots, 

respectively). The time locations of the SSEs are highlighted with vertical red blocks. 
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Since the SSEs here are even detectable in the raw time series, their temporal patterns 

are also obvious in the first PC (from the PCA of the original residual time series) at 

the beginnig of 2007 and through the mid-2008 (emphasized by red vertical columns). 

First PCs are the only PCs having systematic temporal patterns. Thus, other PCs are 

not presented here.  

 

We demonstrate the refinements in the PCA results after the implementation of our 

method by illustrating the variance explanation percentages (VEPs) in a scree plot. In 

Figure 5.31, the first seven out of ten VEPs (77.45%, 5.46%, 4.03%, 3.06%, 2.45%, 

2.29%, 1.70%, 1.51%, 1.18%, 0.78%) of the PCs obtained from the raw time series 

are displayed. The figure shows only the first seven PCs since they explain 95% of 

the total variance. The only clear break is between the first and the second PCs 

(𝑉𝐸𝑃𝑅 =
𝑉𝐸𝑃1

𝑉𝐸𝑃2 = 13.97). However, it might be hard to explain the variation in the 

data only with the first PC when its VEP is not suffciently high. This is what happened 

when we filtered the time series before PCA. In Figure 5.32, we display the scree plot 

of the PC VEPs (24.25%, 22.08%, 12.44%, 10.19%, 9.32%, 6.99%, 6.11%, 5.48%, 

3.15%, 0.01%) obtained from the filtered data. Eight of the ten PCs are needed to 

explain the 95% of the variation. First PC has a VEP of 24.25%, and the VEPR is only 

1.10. There is not any clear break between the PCs. 
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Figure 5.31. The percent variability explained by the PCs obtained from the original 

detrended time series (see the explanation in the text). The blue curve is the cumulative sum 

curve of the VEPs. 

 

Figure 5.32. The percent variability explained by the PCs obtained from the filtered time 

series (see the explanation in the text). The blue curve is the cumulative sum curve of the 

VEPs. 
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On the other hand, the PC VEPs (87.52%, 5.12%, 2.33%, 1.82%, 1.03%, 0.83%, 

0.52%, 0.36%, 0.27%, 0.20%) of the denoised residual time series exhibit the 

significant increase in the first PC VEP (from 77.45% to 87.52%), and hence the 

extended capability of detecting the spatially coherent transient signals. The break 

between the first and the second PC is more distinct (VEPR = 17.09, increased 22.33% 

in comparison to the raw series). Furthermore, only the first four PCs are capable of 

explaining the 95% of the total variability.  

 

 

 

Figure 5.33. The percent variability explained by the PCs obtained from the SNR-improved 

residual time series (see the explanation in the text). The blue curve is the cumulative sum 

curve of the VEPs. 
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5.2.2 Transient inflation at Akutan Volcano 

 

We now demonstrate the capability of our method by attempting to detect a more 

subtle transient signal which cannot be easily identified in the raw time series, due to 

its aseismic nature, low SNR, spatially and temporally correlated noise, and large 

number of sites in the network. 

 

The Aleutian Arc in the Alaska state of the United States is a large volcanic arc formed 

due to the subduction of the Pacific Plate beneath the North American Plate (see 

Figure 5.23). One of the most active volcanoes in the arc is Akutan Volcano which 

also frequently produces low-level eruptive activity (localized steam and ash 

emissions), with the latest being in 1992 (Miller et al., 1998). Small inflation events 

at the volcano in 2008 (Ji and Herring, 2011; Li et al., 2016), in 2011 (Walwer et al., 

2016; Ji et al., 2017), in 2014 and 2016 (Ji et al., 2017) were discovered using the 

continuous GPS data. These events might be due to the magma accumulation in a 

shallow reservoir. We aimed at detecting the transient signal occured during 2008. Ji 

and Herring (2011) used a Mogi point source (Mogi, 1958) to model the displacements 

(transients) they detected in the GPS time series by using Kalman filtering and PCA, 

and estimated the location of the Mogi source as being at a shallow depth (~3.9 km 

below sea level) near the volcano summit.  

 

We have downloaded the daily GPS data in Stable North America Reference Frame 

(SNARF) of 151 Alaska sites between 130°W-175°W and 50°N-75°N from 

https://www.unavco.org/data/gps-gnss/gps-gnss.html.  Since the wavelength of the 

CME is longer than the size of Alaska and may hide the 2008 inflation (Ji and Herring, 

2011), we aligned the data to a regional reference frame to diminish the spatially 

correlated noise. In the reference frame definition, we used the sites whose horizontal 

and vertical velocity uncertainties are below 0.45 mm/yr and 0.9 mm/yr, respectively. 

https://www.unavco.org/data/gps-gnss/gps-gnss.html
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Later, we removed the linear rates and periodic terms from the time series. For 

uniform site distribution as much as possible, and for more samples in time, the 3-

year time interval between 2007 and 2010 was selected. The sites used in the transient 

signal detection exercise are displayed in Figure 5.34. We applied PCA first directly 

to the downloaded raw (but detrended) time series. Afterwards, we applied PCA to 

the CME-suppressed and SNR-improved time series. The comparison of the results 

over VEPs is illustrated in Figure 5.35. The VEP of the first PC increased from 

17.95% to 30.80%, and VEPR increased from 1.87 to 3.28. Further, the first 10 PCs 

of the CME-suppressed and SNR-improved time series can explain 75.46% of the 

variability, while the first 10 PCs of the raw time series can explain 60.95% of the 

total variance,  

 

 

Figure 5.34. The Alaska sites (red pentagons) used in the transient signal detection exercise. 
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Figure 5.35. The percent variability explained by the PCs obtained from the raw (red) and 

CME-suppressed-SNR-improved time series (blue). The blue curves are the cumulative sum 

curves of the VEPs. 

 

The resulting first PC obtained by using our method is displayed in Figure 5.36. It 

reveals a transient event during the first half of 2008. 

 

 

Figure 5.36. The first principal component of the CME-reduced-SNR-improved time series. 
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We then isolated the detected signal by including in the PCA only the sites located in 

the Akutan Island (see Figure 5.37), and the time interval (October 01, 2007 – October 

01, 2008) experiencing the transient signal. 

 

 

 

Figure 5.37. The 7 sites on the Akutan Island used in the analysis. 

 

 

Figure 5.38 shows the first and the second horizontal PCs of the CME-suppressed and 

SNR-improved time series of the 7 sites located in the Akutan Island. The first PC is 

the only PC having a systematic temporal pattern among all PCs. 
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Figure 5.38. The first (blue) and second horizontal (red) PCs of the CME-suppressed and 

SNR-improved time series of the 7 sites located in the Akutan Island. The period 

experienced the transient signal is highlighted with a green column. 

 

 

We present the VEPs of the resulting PCs in Figure 5.39. Compared to the Figure 

5.35, increase in the VEP of the first PC is substantial (from 30.80% to 83.05%). The 

break between the first and the second PCs is distinct (VEPR is 14.67). The first 5 PCs 

(out of 14 PCs) explain the 96.54% of the total variance.   

 

The transient signal we detected cannot be easily identified in the raw GPS position 

time series. Its maximum horizontal displacement is ~9 mm (Ji and Herring, 2011). It 

is an aseismic signal since it is not associated with the seismicity. Ji and Herring 

(2011) detected the same transient signal by using exactly the same set of 7 stations 

in the Akutan Island. Their approach is to apply Kalman filtering to improve the SNR 

in the time domain before PCA. They could obtain a VEP of 64.5% for the first PC. 
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Therefore, we think that our method, by applying the data-adaptive Ensemble 

Empirical Mode Decomposition in denoising the time series,  suppresses the noise 

more successfully and produces superior results. 

 

 

Figure 5.39. The percent variability explained by the horizontal PCs of the 7 Akutan sites, 

after the implementation of our method. The blue curve is the cumulative sum curve of the 

VEPs. 

 

 

5.2.3 Postseismic deformation following the October 23, 2011 Van earthquake 

 

The earthquake happened in eastern Turkey (north of the city of Van, the eastern edge 

of Lake Van) on October 23, 2011 is the largest earthquake (𝑀𝑤  7.1 - United States 

Geological Survey (USGS) earth catalogue) occured in Turkey, since the 

establishment of the CORS-TR Network. Continuous GPS data are used in the 

earthquake studies to investigate the interseismic, coseismic and postseismic motions 

(see e.g., Tiryakioğlu et al., 2017) of the geodetic points, in addition to the 
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interferometric synthetic aperture radar (InSAR), seismology and satellite imagery 

which are utilized in constraining the fault parameters (e.g., Elliot et al., 2013). 

Determination and modeling of these motions are needed to obtain precise and reliable 

velocity fields which are the basis of the strain analyses.   

 

Ozdemir and Karslıoğlu (2019) reported 13 CORS-TR stations (AGRD, BASK, 

CATK, HAKK, HORS, IGIR, KRS1, MURA, OZAL, SEMD, SIRN, TVAN and 

VAAN) that have experienced coseismic displacements following the Van 

earthquake. How far a point on the surface from the earthquake epicenter which 

experiences displacement and following deformation depends on many parameters, 

such as eartquake magnitude, fault type and fault geometry.  

 

Often, closer sites to the epicenter are exposed to larger displacements, and the size 

of the displacement decreases as the distance between the site and the epicenter 

increases. Thus, coseismic and postseismic motions can be easily identified in the 

long-term continuous GPS time series of the stations located closer to the epicenter, 

even through a simple visual inspection (see Figure 5.40). However, the farther the 

distance between the site and the epicenter becomes, the more advanced techniques 

are needed to detect the existence and the level of the deformation. 
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Figure 5.40. The coseismic and postseismic motions of VAAN (left) and MURA (right) in a 

Eurasia-fixed system due to the Van earthquake (purple vertical line). 

 

 

Since we are looking for coherent transient signals in space, it is important to see such 

signals in multiple sites. However, considering the average inter-station distance 

between the CORS-TR sites which is about 70 km, it is not easy to detect a transient 

signal whose geographic extent is small. Therefore, we demonstrate the capability of 

our method on the detection of the postseismic deformation subjected to multiple sites 

following the destructive Van earthquake.  
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Figure 5.41. The horizontal residual time series of ARDH (left), ERZR (middle) and UDER 

(right) stations before (top) and after (bottom) the coseismic correction. The dashed purple 

vertical lines indicates the time of the Van earthquake. 

 

We used the time series in the regional frame (i.e., CME-reduced time series) 

transformed from the Eurasia-fixed system (see the procedure explained in the section 

5.1.8). In addition to the 13 stations reported in Ozdemir and Karslıoğlu (2019), we 

detected very low-size coseismic displacements (≤ 5 𝑚𝑚) in the residual time series 

of ARDH, ERZR and UDER stations, which cannot be seen in the raw position time 

series. However, we could not detect any postseismic deformation visually at these 

sites, after removing the coseismic displacements. The horizontal residual time series 

of these stations before and after the coseismic correction are displayed in Figure 5.41. 
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In order not to bias the results due to large deformations observed at close stations to 

the earthquake epicenter, we did not include the closest VAAN, OZAL and MURA 

stations in our exercises. We used the 13 stations exposed to coseismic displacements 

and presented in Figure 5.42 in our transient signal detection analysis. We did not 

include MALZ station due to its high repeatabilities (North: 9.8 mm, East: 13.1 mm). 

To isolate the signal in time, we selected the time interval between August 01, 2011 

and June 29, 2012. We interpolated the missing values by using piecewise cubic 

hermite interpolating polynomial. 

 

 

Figure 5.42. CORS-TR stations used in the transient signal detection exercise (blue 

triangles), other CORS-TR stations (green pentagons) and the epicenter of the Van 

earthquake (red star).  

 

We illustrate in Figure 5.43 the first and the second PCs obtained from the PCA 

applied to the raw residual time series, and the first PC obtained from the PCA applied 

to the CME-reduced-SNR-improved time series. It is seen that the first PC from the 

raw series shows approximately random behavior. However the first PC from the 
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CME-reduced-SNR-improved series has a systematically increasing temporal pattern 

which might be associated with the postseismic deformation. 

 

 

Figure 5.43. The first (green circles) and the second (red circles) PCs obtained from the 

PCA applied to the raw residual time series, and the first (blue filled circles) PC obtained 

from the PCA applied to the CME-reduced-SNR-improved time series. Red vertical line 

indicates the time of the Van earthquake. 

 

Figure 5.44 displays the VEPs of the resulting PCs from both PCA. After applying 

our method, the VEP of the first PC increased from 34.10% to 58.13%. The break 

between the first and the second PCs is more distinct (VEPR increased from 1.68 to 

3.38). The first 9 PCs (out of 26 PCs) from our method explain the 95.50% of the total 

variance. The explanation percentage of the first 9 PCs from the raw time series is 

83.04%.  
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It should be noted that the size and the duration of the postseismic deformation are 

not the same for all 13 sites included in the analysis. It is likely that the closer sites to 

the epicenter experience more severe and longer deformations. It is demonstrated, 

e.g., in Figure 5.41 that the distant ARDH, UDER and ERZR stations reveal negligible 

deformation (possibly below current GPS resolution), and thus they might add simply 

random noise, instead of information, to the obtained PCs. Analyzing only the closer 

4 stations to the epicenter (BASK, CATK, TVAN, AGRD) with our method produces 

a first PC which explains the 75.12% of the data variability. 

  

 

Figure 5.44. The VEPs of the resulting PCs from PCA of both the raw time series (blue) and 

the CME-reduced-SNR-improved time series (red). The blue curve is the cumulative sum 

curve of the VEPs. 

 

Figure 5.43 proves the existence of CME in the CORS-TR time series. The largest PC 

of the raw residual time series (VEP: 34.10%, 𝜒𝑑𝑜𝑓
2 = 34.51) shows the CME whose 
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temporal pattern is not only non-systematic but also non-random. The spatial pattern 

of the first PC is displayed in Figure 5.45 which looks relatively uniform over the 

stations.  

 

It is not possible to detect the transient signal in the first PC. To suppress CME, the 

first PC can be ignored, and the second PC might be examined. Although it explains 

only the 20.32% of the total variance, the second PC could catch the transient signal 

by showing a systematic increase after the earthquake. In addition, its 𝜒𝑑𝑜𝑓
2  value of 

20.56 is significantly inconsistent with the simply random noise (𝜒𝑑𝑜𝑓
2 = 1.0). But the 

temporal pattern of the second PC is still noisy, which might be related to the 

contamination by the first PC due to the orthogonality in PCA. 

 

 

Figure 5.45. The spatial pattern of the first PC of the raw residual time series which looks 

relatively uniform over the stations. 

 



 

 

133 

 

On the other hand, aligning the data to a regional reference frame has successfully 

reduced the spatially correlated noise. We present the spatial pattern of the first PC 

which was obtained after applying PCA to the CME-corrected and SNR-improved 

(with Ensemble Empirical Mode Decomposition) time series in Figure 5.46. The 

spatial pattern of the first PC looks non-uniform. Both first PCs have large coefficients 

(loadings) at the sites closer to the earthquake epicenter (see Figure 5.42). 

 

 

Figure 5.46. The spatial pattern of the first PC which was obtained after applying PCA to 

the CME-corrected and SNR-improved (with Ensemble Empirical Mode Decomposition) 

time series. 
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CHAPTER 6 

 

 

DISCUSSION, CONCLUSIONS AND FUTURE WORK 

 

 

 

6.1 Discussion 

 

The main goal of the CORS-TR system is to provide RTK corrections to make users 

achieve positioning within the tolerance of couple centimeters. Although the stations 

were installed on the large and low-rise buildings where possible, to reduce the 

oscillation effects of the building, the priority in site selection was given to several 

other design parameters such as, homogeneity, being in urban areas (to increase the 

population coverage), easy logistics, security, 7/24 power and internet supply etc. 

(Uzel et al., 2012). Thus, the utilization of the CORS-TR sites in tectonic monitoring 

necessitates very careful and precise GPS data analysis. Many sites are exposed to 

local effects such as ADAN, BTMN, HAKK, INEB, INE1, KNY1, MALZ, MUUS 

(Ozdemir, 2016; Ozdemir et al., 2017; Ozdemir and Karslıoglu, 2019). Sites having 

high WRMS values (see Figure 5.12) must be treated with care. Such stations can 

dominate the Principal Components due to their large site-specific noise.  

 

The velocity estimates of the sites with short data span (below 2.5 yrs) can be biased 

largely due to the annual signals (Blewitt and Lavallee, 2002). Hence, these sites 

should not be included in the fiducial sites list which is used in the definition of the 

regional reference frame, for the purpose of CME reduction.  
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Since the Empirical Mode Decomposition is deprived of a definite mathematical 

foundation, its soundness and effectiveness only could have been validated 

empirically. The uniqueness of the decomposition results is not guaranteed. Selected 

stopping criterion in the sifting process, interpolation technique used in the formation 

of the envelopes, method of handling boundary effects, and mode mixing might 

change the obtained IMFs (see section 3.3). 

 

It is common to have missing data in the GPS time series due to, e.g., receiver 

malfunction and problems in power supply. In addition, anomalous daily coordinate 

solutions might have been deleted as outliers. Often, there is not any robust solution 

for predicting the missing values in non-linear/non-stationary process. However, both 

EMD and PCA (in our approach) require the included time series to be full and of the 

same length. Thus, the missing values have to be interpolated. The interpolation 

technique used has a gross effect on the decomposition, especially when the data gap 

is large. It might lead to large swings which can distort the results largely. On the 

other hand, the interpolated data might cause over-smoothed PCs. 

 

The complex nature of the geophysical signals might complicate the transient signal 

detection. The large-scale signals may go unnoticed due to their non-localized PC 

patterns in comparatively small-scale networks. Such signals might not be seperated 

from the CMEs easily. There might be overlapped or distinct multiple transient signals 

in the time series. The larger signals can hide the smaller signals in such cases. There 

might be propagating transient signals originating from the same source but 

incoherent in space and time, such as slow slip events observed at multiple sites at 

different epochs and/or during different time segments. Propagating signals can reveal 

themselves in multiple PCs.  
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It should be kept in mind that we estimate the initial trend (i.e., secular rates and 

seasonal signals), which is removed from the time series before applying our method, 

by accounting for the whole data, including the transient signals. This might decrease 

the detection capability of the method. For example, in the SSE detection exercise 

presented in section 5.2.1, estimating the SSEs by offsets and excluding them from 

the trend estimation, might produce sharper systematic patterns in the PCs. However, 

the primary goal of the transient signal detection is to detect the previously 

unrecognized transient signals.  

 

EMD is a data-driven adaptive method which is more suitable than the classical 

methods such as Fourier Transformation, for the decomposition of the non-linear/non-

stationary time series. We could apply EMD directly to the original position time 

series, instead of the residual time series which are obtained by removing the steady 

motions, for denoising purposes. However, the obtained non-linear trend (i.e., 

denoised signal)  would have been dominated by the steady motions so strongly (e.g., 

the counter-clockwise rotation of the western Anatolia with respect to the fixed 

Eurasia reaches up to 3 cm/yr, see Figure 5.16) that it would be impossible to detect 

the transient signals whose magnitudes are a couple of millimeters. Our intention in 

initial trending is to remove the strong “known” signals which can mask the transient 

signals. 

 

It should be noted that the tectonic transient signals which have been detected in this 

study with the developed method are the signals which have been already discovered 

(and associated with the source mechanisms) with different approaches in the 

literature. We only demonstrate here the detection capability of our method in the GPS 

time series. Driving forces underlying the transients must be investigated further and 

other supporting evidences must be searched. For example, slow slip events detected 

in the GPS time series are generally correlated with the seismic tremor activity.  
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Detection of this correlation at Alaskan sites, or relating the inflation events at Akutan 

Volcano to magma accumulation would give physical sense to the detected transients 

in the GPS time series. 

 

6.2 Conclusions 

 

This study is about detecting transient signals in continuous GPS coordinate time 

series. To this end, we developed a novel method which combines the Empirical Mode 

Decomposition (EMD) and Principal Component Analysis (PCA). EMD improves the 

signal-to-noise ratio (SNR) in time by filtering out the white noise in the time series. 

PCA improves the SNR in space by considering the spatial coherence of the transient 

signals. Our main interest is the tectonically-driven transient signals. The main 

geographic area of interest is Turkey, where major tectonic plates meet and that is 

abundant of diversified deformation. Since Turkey lacks a countrywide continuous 

GPS network specifically designed for tectonic monitoring, we first focus on 

analyzing the data collected in CORS-TR network, which has been established lately 

to serve for cadastral studies primarily by supplying Real-Time-Kinematic (RTK) 

positioning, with high-precision techniques. Hereby, we investigate the convenience 

of the generated CORS-TR time series for tectonic studies, and prepare the data for 

transient signal detection. Our transient signal detection method for CORS-TR 

network can be summarized in general as follows: 

 

 Processing the GPS data with high-precision techniques and generating the 

time series, 

 Reducing the Common Mode Error (CME) by aligning the data to a regional 

reference frame, 



 

 

139 

 

 Assessing the quality of the time series and determining the appropriate sites 

for tectonic monitoring, 

 Removing the dominant secular rates and seasonal motions from the time 

series, 

 Suppressing the white noise in the residual time series by means of the filtering 

properties of the EMD method, 

 Applying PCA to the selected sites and seeking for the spatial coherence of 

the transient signals. 

 

We demonstrate the capability of our method in detecting the relatively weak transient 

signals with also applications to real data sets obtained from Plate Boundary 

Observatory (PBO) archives. 

 

Turkish National Permanent GNSS Network-Active (CORS-TR), is the one and only 

countrywide permanent GNSS network in Turkey. The main purpose of the CORS-

TR system is to provide RTK corrections to the users on the field, and hereby to ensure 

cm-level coordinate precision. Since the large-scale map production is officially based 

on the CORS-TR-derived cooordinates in Turkey, it has become extremely popular, 

especially in the cadastral studies. As of June, 2019, there are ~11.500 users registered 

on the system. According to the “Large Scale Maps and Map Information Production 

Regulation (LSMMIPR)”, the coordinates obtained in the works related to large scale 

map applications have to be estimated in a national datum called Turkish National 

Reference Frame (TUREF). TUREF is a reference frame that coincides with the 

International Reference Frame 1996 (ITF96) at epoch 2005.0 (Aktuğ et al., 2011). 

Thus, although CORS-TR users on the field collect GPS data at the current epoch, the 

system provides them with the coordinates at epoch 2005.0. This is accomplished by 

using the velocities of the reference CORS-TR stations nearby. Hence, if the velocities 
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of the CORS-TR base stations are not correct or consistent with their vicinity, users 

will have erroneous coordinates at epoch 2005.0. Therefore, to ensure the reliability 

and the stability of the system, and to make the coordinate time series and velocities 

employable in the tectonic studies, CORS-TR data were processed with the state-of-

the-art approaches, models and products. Findings and suggestions were presented 

and the problematic sites were reported in a national conference (Ozdemir et al., 

2017). Some of these sites have been relocated, consequently.  

 

The data collected at CORS-TR stations are processed in GDM routinely. The GPS 

analysis strategies evolve over time, and those adopted in GDM have never been 

tested and validated externally. Hence, we processed the whole CORS-TR GPS data 

set twice independently. Since the superiority of our approach has been proven, it has 

also been adopted in GDM. The daily uncertainties of the coordinates have been 

lowered with the new strategy. The RMS values in the reference frame definition have 

been decreased.  

 

Taking into consideration the uncertainties, homogeneity and various performance 

criteria, a sufficient number of local stations were selected, and the solutions (time 

series) were expressed in a Turkey-fixed reference frame based on the coordinates of 

the selected stations. This way, the effect of Common Mode Error, which might hinder 

the detection of the transient signals, is diminished. Such a procedure has been 

implemented for the first time in the literature in the analyses of CORS-TR stations. 

We proved the existence of CME in CORS-TR stations by applying our method to the 

time series both in Eurasia-fixed and regional reference frames, and by comparing the 

results. Generated precise velocity fields were published in national and international 

journals (Ozdemir, 2016, Ozdemir and Karslıoğlu, 2019). 
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The secular rates and seasonal motions were removed from the precise and CME-

reduced time series. Ensemble Empirical Mode Decomposition (EEMD) was applied 

to the residual time series. Since it is an experimental approach as its name implies, 

and hence lacks of exact mathematical description, it depends on pre-determined 

parameters. This may result in obtaining unstable results. We presented the effects of 

the user-defined parameters on the obtained results in an international conference 

(Ozdemir and Karslıoğlu, 2015). GPS time series may contain white and various kinds 

of colored noise. Thanks to the adaptive nature of the EMD, we did not make any a 

priori assumptions about the tpye of the noise present in the time series. We 

suppressed the white noise by means of the filtering properties of the EMD method.  

 

We decomposed the precise, CME-reduced, steady motions-removed, white noise-

suppressed time series into uncorrelated and variance maximizing principal 

components (PCs) by employing PCA. Amplitudes of the PCs and eigenvectors were 

examined for temporal variations and spatial distributions, respectively. The 

significance of the detected signals is determined by looking for systematic temporal 

patterns, and by assessing the largeness of the eigenvalues and 𝜒2 values of the 

foremost PCs. 

 

We demonstrated the capability of our method in the Cascadia subduction zone, 

located in the Pacific Northwest first, by detecting the slow slip events. We applied 

our method to 10 stations located in the Washington State section of the Cascadia 

zone, which experienced both 2007 and 2008 SSEs during approximately the same 

time periods. The SSEs have been detected successfully.  Since these events are also 

detectable from the actual GPS data, we primarily aimed at showing the SNR 

improvement of our approach.  
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Secondly, we applied our algorithm to the Alaskan GPS time series to detect the 

transient inflation at Akutan volcano. Since the transient signal is aseismic (that is, it 

cannot be associated with earthquakes), and has low SNR, it cannot be identified in 

the original data. We detected the transient signal and demonstrated the superiority of 

our method against the one proposed by Ji and Herring (2011), who originally 

discovered the transient inflation at Akutan volcano. 

 

Finally, we showed the capability of our method by detecting the postseismic 

deformation at CORS-TR sites following the October 23, 2011 Van earthquake. We 

used the far-field stations from the earthquake epicenter in order not to be dominated 

by the closer stations in the first PCs, which experienced large displacements. We 

proved the existence of CME in the CORS-TR time series and exhibited the effect of 

CME reduction in the detection of the postseismic deformation. 

 

We conclude that the transient signal detection method proposed in this thesis can 

successfully detect the relatively weak tectonically-driven trasient signals buried in 

noise in continuous GPS time series. It has high potential to be used especially in the 

geophysical studies where non-linear/non-stationary real-world signals are commonly 

investigated. 

 

6.3 Future work 

 

Transient signal detection by generating precise coordinate time series, reducing 

common mode errors, removing steady motions, suppressing white noise with EMD, 

and decomposing into principal components with PCA has been successfully 

implemented in this thesis. However, following further developments in the transient 

signal detection are envisaged: 
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 The measure of signal coherence in the principal components has been realized 

by visually evaluating the temporal patterns and the spatial distribution of the 

eigenvectors. A more quantiative threshold (in addition to the variance 

explanation percentages) in signal detection might contribute to the robustness 

of the developed method.  

 

 The adaptiveness of EMD to the input data saves us from making erroneous 

assumptions about the type of the noise present in the time series, in the 

denoising procedure. However, considering the lacking of a firm mathematical 

foundation for EMD, denoising results might be unstable due to several 

predefined parameters. Recently, significant developments have been made in 

EMD mathematics which can be seen as the most exciting breakthroughs since 

the introduction of the EMD. These developments should be followed closely, 

and user intervention should be minimized in the EMD process. 

 

 We have searched the postseismic deformation following 23 October, 2011 

Van earthquake at the CORS-TR stations. The effects of the other large 

earthquakes such as March 08, 2011 Elazig earthquake, May 24, 2014 

Gokceada earthquake, June 12, 2017 Karaburun earthquake and July 20, 2017 

Gokova earthquake at the CORS-TR stations might also be investigated. 

 

 Since PCA considers spatial coherence, as the number of the stations which 

record the same transient signal increases, PCA tends to display the signal in 

the foremost PCs. Introducing PCA only the more localized transient signals 

in time and space increases the chances of detecting the transients. Thus, a 

search algorithm might be developed which maximizes the variance 
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explanation percentages by using a sliding window in time, and by seeking the 

stations of highest spatial coherence. 

 

 All time series included in PCA have unit weight. A weighting algorithm 

which considers the repeatabilites of the original position time series and the 

uncertainties of the daily solutions might be injected to the PCA. 
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