
BB-PLUS: AN EFFICIENT APPROACH FOR SUBGRAPH ISOMORPHISM
PROBLEM IN BIG GRAPH DATABASES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EZGI TAŞKOMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2019

Approval of the thesis:

BB-PLUS: AN EFFICIENT APPROACH FOR SUBGRAPH ISOMORPHISM
PROBLEM IN BIG GRAPH DATABASES

submitted by EZGI TAŞKOMAZ in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Adnan Yazıcı
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Ahmet Coşar
Computer Engineering, UTAA

Prof. Dr. Adnan Yazıcı
Computer Engineering, METU

Assoc. Prof. Dr. Ahmet Oğuz Akyüz
Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Ezgi Taşkomaz

Signature :

iv

ABSTRACT

BB-PLUS: AN EFFICIENT APPROACH FOR SUBGRAPH ISOMORPHISM
PROBLEM IN BIG GRAPH DATABASES

Taşkomaz, Ezgi

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan Yazıcı

June 2019, 138 pages

Graph databases are flexible NoSQL databases used to efficiently store and query

complex dataset. The problem of subgraph isomorphism, finding a pattern in a given

graph, is one of the biggest problem of graph databases. Therefore, the goal of this

study is to introduce a new approach called BB-Plus, which consists of heuristics to

find best matching order using the volatility and size of the database, the type and

size of the query as an input in order to improve the performance of the queries. BB-

Plus approach trims candidate nodes at high level and effectively reduces the size of

the problem. The approach is implemented using the Java programming language and

graph data structures of Neo4j GDBMS and compared to the state-of-the-art subgraph

isomorphism algorithms, namely BB-Graph, Cypher, DualIso, GraphQL, TurboIso

and VF3 with three different dataset within the same programming environment. The

results of the performance tests show that BB-Plus is an average on 10%, 37% and

4% faster than the other algorithms based on different queries in public WorldCup,

Pokec and non-public Population dataset, respectively.

v

Keywords: Subgraph Isomorpishm Problem, Matching Order Selection, Graph Database,

Neo4j

vi

ÖZ

BB-PLUS: BÜYÜK ÇİZGE VERİTABANLARINDA ALTÇİZGE
EŞYAPILILIK PROBLEMİNE ETKİN BİR YAKLAŞIM

Taşkomaz, Ezgi

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Adnan Yazıcı

Haziran 2019 , 138 sayfa

Çizge veritabanları, karmaşık veri setlerini daha etkin bir şekilde depolama ve sorgu-

lamada kullanılan esnek NoSQL veritabanlarıdır. Altçizge eşyapılılık problemi yani

verilen bir çizgede örüntülerin bulunması ise çizge veritabanlarındaki en büyük prob-

lemlerden biridir. Bu nedenle bu çalışmanın amacı, sorgunun performanasını artırmak

için veritabanın büyüyklüğü, değişkenliği, sorgunun büyüklüğü ve tipini girdi olarak

alan sezgisel yöntemler kullanarak en iyi eşleşen sırayı bulan BB-Plus adında yeni bir

yaklaşım sunmaktır. BB-Plus, üst seviyelerde aday düğümlerin eler ve arama uzayının

boyutunun düşürür. Yaklaşım, Java programlama dili ve Neo4j çizge veri yapılarını

kullanılarak geliştirilmiştir ve aynı programlama ortamında üç farklı boyutta veri seti

kullanılarak güncel altçizge eşyapılılık algoritmaları olan BB-Graph, Cypher, Du-

alIso, GraphQl, TurboIso ve VF3 ile karşılaştırılmıştır. BB-Plus, farklı sorgular baz

alındığında diğer algoritmalardan kullanıma açık WorldCup, Pokec ve kullanıma açık

olmayan Population veritabanlarında sırasıyla ortalama %10, %37 ve %4 daha hızlı

çalışmaktadır.

vii

Anahtar Kelimeler: Altçizge Eşyapılılık Problemi, Eşleşen Sıra Seçimi, Çizge Veri

tabanı, Neo4j

viii

To my family and friends

ix

ACKNOWLEDGMENTS

First of all, I would like to thank and express my special appreciation and gratitude

to my thesis advisor, Prof. Dr. Adnan YAZICI, for his supervision, patience and

encouragement throughout the research. He always keeps me motivated to explore

new ideas and solutions in my research and contributed to this work with his great

experience, knowledge and energy.

I would like to thank Merve Asiler for allowing me to improve her work. I wish to

express my sincere gratitude to her for being always open to share her experience on

the area, to guide me in exploring new ideas and never hesitate to spending time with

me to improve my work.

In addition, I want to thank my company TÜBİTAK for supporting me to continue my

studies. I would like to thank my colleagues in my project and especially to my old

teammates, Anıl Özberk, Fatma Emül, Murat Burak Yıldırım and Nazlı Ece Uykur,

who never stop supporting me and staying motivated at all times.

I would like to thank especially KALE YAZILIM A.Ş. for sharing their Population

dataset which is very important for me to complete my experiments. I would like to

thank Başar DALKILIÇ for his help and finding quick solutions to my problems with

the dataset.

Finally, I would like to thank my family: my mother Yüksel TAŞKOMAZ, my father

Erkan TAŞKOMAZ and my sister Özge TAŞKOMAZ. Words cannot express how

grateful I am for their support, love and sacrifices that they have made throughout

my life. They deserve a special thanks for their limitless support and encouragement.

This work would not have been possible without them.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xix

LIST OF ABBREVIATIONS . xxiii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Contributions and Novelties . 5

1.3 The Outline of the Thesis . 6

2 BACKGROUND AND RELATED WORK 7

2.1 Graph Databases . 7

2.1.1 Comparison of Graph Databases 10

2.2 Centrality Measures in Graphs . 12

2.2.1 Degree Centrality . 12

2.2.2 Closeness Centrality . 13

xi

2.2.3 Betweenness Centrality . 16

2.2.4 Eigenvector Centrality . 18

2.3 The Subgraph Isomorphism Problem 20

2.4 The Subgraph Isomorphism Algorithms 21

2.4.1 Ullmann’s Algorithm . 22

2.4.2 VF2 . 23

2.4.3 QuickSI . 23

2.4.4 GraphQL . 24

2.4.5 GADDI . 24

2.4.6 SUMMA . 25

2.4.7 SPath . 26

2.4.8 TurboIso . 26

2.4.9 DualIso . 28

2.4.10 BB-GRAPH . 30

2.4.11 VF2-Plus . 37

2.4.12 VF3 . 38

2.5 Matching Order Selection in the Subgraph Isomorpishm Problem . . 40

3 BB-PLUS:AN APPROACH FOR SUBGRAPH ISOMORPHISM IN BIG
GRAPH DATABASE . 41

3.1 Matching Order Selection Based On Degree Centrality 51

3.2 Matching Order Selection Based On Closeness Centrality 57

3.3 Matching Order Selection Based On Betweenness Centrality 62

3.4 Matching Order Selection Based On Eigenvector Centrality 67

xii

3.5 Matching Order Selection Based On Hybrid Centrality 73

3.6 Matching Order Selection Based On Candidate Node Selection 75

3.7 Comparison of Matching Order Selection Methods 84

3.7.1 Based on Their Creation Methods 84

3.7.2 Based on the Type of Queries 87

3.7.3 Based on the Volatility of Databases 87

3.8 Determining Matching Order Selection Methods 87

4 EXPERIMENTS AND RESULTS . 90

4.1 The Dataset . 90

4.2 The System Configuration . 92

4.3 Queries . 92

4.4 Experiments on the Databases . 93

4.4.1 Experiments on the WorldCup Database 93

4.4.2 Experiments on the Pokec Database 102

4.4.3 Experiments on the Population Database 109

4.5 Discussions on the Experimental Results 115

5 CONCLUSION AND FUTURE WORK 119

5.1 Conclusion . 119

5.2 Future Work . 120

REFERENCES . 121

APPENDICES

A APPENDIX 1 . 125

xiii

A.1 Matching Order Training Dataset 125

A.2 Matching Order Test Dataset . 135

A.3 Query Results of Subgraph Isomorpishm Algorithms on WorldCup
Database . 137

xiv

LIST OF TABLES

TABLES

Table 1.1 Matching Order Selection Usage in the Literature 4

Table 2.1 Comparison of graph database management systems 11

Table 2.2 Distance matrix of example query graph G 15

Table 2.3 Calculating closeness centrality of example query graph G 15

Table 2.4 Calculating betweenness centrality of example query graph G 17

Table 2.5 Adjacency matrix of example query graph Q 17

Table 2.6 Comparison of subgraph isomorphism algorithms 39

Table 3.1 Distance matrix of query graph Q 59

Table 3.2 Calculating closeness centrality of example query graph G 59

Table 3.3 Calculating betweenness centrality of example query graph G 64

Table 3.4 Adjacency matrix of query graph Q 69

Table 3.5 FilterByLabel method applies to Q 80

Table 3.6 FilterByRelationship method applies to Q 80

Table 3.7 Information about Determining Matching Order Dataset 88

Table 3.8 Attributes of Determining Matching Order Dataset 89

Table 3.9 Detailed Accuracy for each Matching Order Selection Method . . . 89

xv

Table 3.10 Confusion Matrix for each Matching Order Selection Method 89

Table 4.1 Statistics of the WorldCup, Pokec and Population Graph Databases . 92

Table 4.2 The queries and their BB-Graph representation on WorldCup database

[1] . 94

Table 4.3 The query results for the WorldCup Database 99

Table 4.4 Matching Order of Different Methods for the WorldCup Database . 99

Table 4.5 The process time for calculating matching order selection on World-

CupDB . 100

Table 4.6 The query results with different matching orders on WorldCupDB . 100

Table 4.7 Total process time without calculating matching order on World-

CupDB . 100

Table 4.8 ANOVA results of the effects of state-of-the-art subgraph isomor-

phism algorithms on subgraph isomorpishm problem 101

Table 4.9 ANOVA results of the effects of state-of-the-art subgraph isomor-

phism algorithms on subgraph isomorpishm problem 101

Table 4.10 The queries and their BB-Graph representation on Pokec Database . 102

Table 4.11 The query results for the Pokec Database 106

Table 4.12 The query results with different matching orders on Pokec Database 106

Table 4.13 Total process time for calculating matching order in the Pokec Database106

Table 4.14 The total process time without calculating matching order selection . 107

Table 4.15 Matching Order of Different Methods for the Pokec Database 107

Table 4.16 The queries and their BB-Graph representation on Population Database

[1] . 108

Table 4.17 The query results for the Population Database 113

xvi

Table 4.18 The query results with different matching orders on Population Database113

Table 4.19 The Total Process Time for Calculating Matching Order in the Pop-

ulation Database . 113

Table 4.20 The total process time without calculating matching order selection

in the Population Database . 114

Table 4.21 Matching Order of Different Methods for the Population Database . 114

Table 4.22 Comparison of the BB-Plus approach with other subgraph isomor-

phism algorithms . 118

Table A.1 Training Data for Determining Matching Order (1) 125

Table A.2 Training Data for Determining Matching Order (2) 126

Table A.3 Training Data for Determining Matching Order (3) 127

Table A.4 Training Data for Determining Matching Order (4) 128

Table A.5 Training Data for Determining Matching Order (5) 129

Table A.6 Training Data for Determining Matching Order (6) 130

Table A.7 Training Data for Determining Matching Order (7) 131

Table A.8 Training Data for Determining Matching Order (8) 132

Table A.9 Training Data for Determining Matching Order (9) 133

Table A.10Training Data for Determining Matching Order (10) 134

Table A.11Test Data for Determining Matching Order (1) 135

Table A.12Test Data for Determining Matching Order (2) 136

Table A.13Query Results of Subgraph Isomorpishm Algorithms on WorldCup

Database (Part-1) . 137

xvii

Table A.14Query Results of Subgraph Isomorpishm Algorithms on WorldCup

Database (Part-2) . 138

xviii

LIST OF FIGURES

FIGURES

Figure 2.1 Library Graph Database Example 7

Figure 2.2 Library Relational Database Example 8

Figure 2.3 Example graph G for calculating centrality measures 12

Figure 2.4 Calculating eigenvector centrality of example query graph G . . 19

Figure 2.5 Example for Subgraph Isomorphism Problem 20

Figure 2.6 Example for Filtering and Verification Algorithms - Closure

Tree [2] . 21

Figure 2.7 An Example for the working process of BB-Graph (Part-1) . . . 35

Figure 2.8 An Example for the working process of BB-Graph (Part-2) . . . 36

Figure 2.9 The Importance of Matching Order Selection in the Subgraph

Isomorpishm Problem [3] . 40

Figure 3.1 Decision Tree for Determining Best Matching Order 42

Figure 3.2 Flowchart of the BB-Plus Approach 43

Figure 3.3 An Example of Difference of BB-Plus from the algorithms . . . 49

Figure 3.4 The Example Query Graph . 50

Figure 3.5 The Example Data Graph . 50

Figure 3.6 Calculating Degree Centrality for Query Graph Q (Part-1) 53

xix

Figure 3.7 Calculating Degree Centrality for Query Graph Q (Part-2) 54

Figure 3.8 An Example of Creating Matching Order with Degree Centrality

Method (Part-1) . 55

Figure 3.9 An Example of Creating Matching Order with Degree Centrality

Method (Part-2) . 56

Figure 3.10 Finding Matches for Q in G with the BB-Graph 57

Figure 3.11 An Example of Creating Matching Order with Closeness Cen-

trality Method (Part-1) . 60

Figure 3.12 An Example of Creating Matching Order with Closeness Cen-

trality Method (Part-2) . 61

Figure 3.13 An Example of Finding All Exact Matches with BB-Graph . . . 62

Figure 3.14 An Example of Creating Matching Order with Betweenness Cen-

trality Method (Part-1) . 65

Figure 3.15 An Example of Creating Matching Order with Betweenness Cen-

trality Method (Part-1) . 66

Figure 3.16 An Example of Finding All Exact Matches with the BB-Graph . 67

Figure 3.17 Calculation of Eigenvector Centrality for each Node 70

Figure 3.18 An Example of Creating Matching Order with Eigenvector Cen-

trality Method (Part-1) . 71

Figure 3.19 An Example of Creating Matching Order with Eigenvector Cen-

trality Method (Part-1) . 72

Figure 3.20 An Example of Finding All Exact Matches with the BB-Graph . 73

Figure 3.21 An Example of with the MosBasedOnCNS (Part-1) 82

Figure 3.22 An Example of with the MosBasedOnCNS (Part-2) 83

xx

Figure 3.23 An Example of Finding All Exact Matches with the MosBase-

dOnCNS . 83

Figure 3.24 Example Query Graph for Comparison of the Improved BB-

Graph Algorithms based on Matching Order 85

Figure 3.25 Example Data Graph 1 for Comparison of the Improved BB-

Graph Algorithms based on Matching Order 85

Figure 3.26 Example Data Graph 2 for Comparison of the Improved BB-

Graph Algorithms based on Matching Order 86

Figure 4.1 The Data Model for WorldCup dataset 91

Figure 4.2 The Data Model for Pokec dataset 91

Figure 4.3 The System Architecture . 93

Figure 4.4 The Query1 for WorldCup dataset 95

Figure 4.5 The Query2 for WorldCup dataset 95

Figure 4.6 The Query3 for WorldCup dataset 96

Figure 4.7 The Query4 for WorldCup dataset 97

Figure 4.8 The Query5 for WorldCup dataset 98

Figure 4.9 The Query1 for Pokec dataset 103

Figure 4.10 The Query2 for Pokec dataset 103

Figure 4.11 The Query3 for Pokec dataset 104

Figure 4.12 The Query4 for Pokec dataset 105

Figure 4.13 The Query1 for Population dataset 109

Figure 4.14 The Query2 for Population dataset 110

Figure 4.15 The Query3 for Population dataset 111

xxi

Figure 4.16 The Query4 for Population dataset 111

Figure 4.17 The Query5 for Population dataset 112

xxii

LIST OF ABBREVIATIONS

DB Database

GDBMS Graph Database Management System

BB Branch-and-Bound

DC Degree Centrality

CC Closeness Centrality

BC Betweenness Centrality

EC Eigenvector Centrality

CNS Candidate Node Selection

CES Candidate Edge Selection

DFS Depth First Search

BFS Breadth First Search

CR Candidate Region

NEC Neighborhood Equivalence Class

s.t. Such That

i.e. In Other Words

e.g. For Example

query node/vertex Node/Vertex In Query Graph

data node/vertex Node/Vertex In Data Graph

query edge/relationship Edge/Relationship In Query Graph

database edge/relationship Edge/Relationship In Data Graph

xxiii

xxiv

CHAPTER 1

INTRODUCTION

Over the past decade, the amount of data collected has increased with technological

developments and all research done in computer science. With social networks, e-

commerce websites, web applications, bioinformatics, communication, etc., we pro-

duce "Big Data", which is complex, useful, structured/unstructured, very fast with

questionable veracity [4].

With the rise of Big Data, NoSQL databases have been created to effectively manage

Big Data in order to overcome limitations of the relational database model such as

fixed schema or data with a consistent structure [5]. NoSQL databases, which are

document, key-value, column store and graph databases, have their own advantages

and disadvantages of solving different Big Data problems with their different data

models [6].

Column stores (e.g., Cassandra, MariaDB, ClickHouse) are highly scalable, fast data-

bases that store data by each column, unlike relational databases, which store data by

each row. Therefore, they are good at aggregation queries, big-data analysis, and

data mining applications. Document stores (e.g., MongoDB, CouchDB, Couchbase)

are schemaless, flexible and highly available databases that can store, retrieve or man-

age large volumes of unstructured/semi-structured data in documents in XML, JSON,

YAML, PDF etc. format and execute queries rapidly with their strong indexing capa-

bilities. Key-value stores (e.g., Riak, DynamoDB, BerkeleyDB) are schemaless and

capable of mass storage databases that keep data as key-value pairs as simple hash

tables. Therefore, they can offer operational simplicity, fast lookups, and high con-

currency. Additionally, they are good at horizontal scaling comparing to the other

NoSQL databases. [7].

1

Graph databases (e.g., Neo4j, OrientDB) are flexible databases that use basic graph

structures to store and query complex data sets, such as graphs [5]. They are good for

frequently modified schemas, recursive queries, semantic search and queries with ex-

pensive join operations in complex and highly connected entities. However, GDMBSs

are not as mature as relational database management systems. As a result, they do

not have a feature-rich environment and a standard query language. In addition, the

graph databases introduce high-memory consumption. Therefore, they should instead

be used for more complex database applications rather than for very large sets. [8].

The subgraph isomorphism problem is an NP-Complete problem that can simply be

described as detection of the patterns of a query graph in a data graph. The sub-

graph isomorphism is used in many areas like pattern recognition, computer vision,

computer-aided design, image processing, biocomputing, graph grammars and trans-

formation. Subgraph isomorphism problem plays a big role when we try to execute

a query to find a pattern in a graph database. Therefore, the approach to solving the

problem can directly affect the query performance of the big graph databases [1].

1.1 Motivation

In the literature, there are two types of techniques used in subgraph isomorphism al-

gorithms, filtering-and-verification and branch-and-bound techniques. The filtering-

and-verification technique aims to decrease the number of candidate dataset by creat-

ing an index of small graphs (features) and then eliminates irrelevant candidate data

nodes with respect to indexed features. GraphGrep [9], GIndex [10], Labeled Walk

Index (LWI) [11], Closure-Tree [2], Graph Decomposition Indexing [12], TreePi [13],

TreeDelta [14] are based on the filtering-and-verification algorithm. On the other

hand, the branch-and-bound technique find matching candidate data node for each

query node in the graph by following branches connected to the matching the query

and data node in the graph database. If the algorithm matches with all constraints,

it continues the search, but if it does not match any data node, the algorithm back-

tracks and returns to the previous match [15]. VF2 [16], QuickSI [15], GADDI [17],

GraphQL [18], SPath [19], TurboIso [3], DualIso [20], BB-Graph [1] and VF3 [21]

are the most known and efficient branch-and-bound algorithms in the literature.

2

The existing algorithms of these two techniques have some problems with finding

exact matches in big graph databases. More specifically, the filtering-and-verification

techniques are designed for graphs with multiple parts and they are incapable of find-

ing all exact matches in the graph databases. On the other hand, the branch-and-

bound (BB) techniques can find all the exact matches. However, they are not effective

for large datasets due to the recursive calls. Although most BB-based algorithms have

introduced their own pruning methods, they are not efficient enough to eliminate mis-

match patterns in higher levels; therefore, they must look in all the nodes and all

edges. Additionally, using large data structures or customizing indexes increase the

memory consumption. The BB-Graph [1] algorithm was developed based on these

application problems by introducing its own pruning method using the Neo4j’s graph

data structures. It searches for exact matches from a starting node and continues to

search for nodes connected to the already matching nodes. It has been proven that

BB-Graph works with large data sets. However, complex queries cause performance

issues in big graph databases.

In order to improve the performance of branch-and-bound algorithms, we examined

all the subgraph isomorphism algorithms existing in the literature. We realized that

all of these algorithms use various approaches to efficiently search for patterns in a

data graph. However, the matching order selection methods have generally not been

considered to improve query performance in large sets of graph databases. Defining

a good matching order helps algorithms to find patterns in fewer attempts. There-

fore, we examine matching order selection methods of all the algorithms in the lit-

erature as shown in Table 1.1. Only GraphQl, QuickSI, TurboIso, VF2 and its de-

scendants VF2Plus and VF3 algorithms indicate matching order selection to able to

execute queries more efficiently. GraphQl always selects a query node with the small-

est candidate size connected to the query nodes already matching in each iteration.

QuickSI uses a minimum spanning tree called QI-Sequence to order the nodes based

on their label frequency. TurboIso searches for neighborhood equivalence class for

each query node and then applies a selection order to them. On the other hand, VF2,

VF2Plus and VF3 introduce a "node exploration sequence" which first uses the rarest

and the most constrained nodes when searching for patterns [18, 15, 3, 22, 21].

3

Table 1.1: Matching Order Selection Usage in the Literature

Algorithm Matching Order Selection Method

QuickSI QI-Sequence

GraphQl Candidate Size For Query Nodes

SPath Candidate Size of the Path

Turboiso Candidate Region Exploration

VF2, VF2-Plus, VF3 Node Exploration Sequence

Motivated by this, we introduced the BB-Plus approach that consists of heuristics

for automatically selecting the best matching order selection method using volatility

(real-time and historical) and size of the database, size and type of query (path, cyclic

and others) as an input to improve the performance of subgraph isomorpishm queries.

The BB-Plus executes time efficient queries in large graph dataset by using these

heuristics to find the best matching order that eliminates redundant candidate nodes

at high level in order to reduce the search space.

Within the scope of this study, we first offered five matching order selection method to

improve the performance of subgraph isomorphism algorithms. Four of the selection

methods were developed using fundamental measures of the graph centrality, such

as the degree, closeness, betweenness and eigenvector centrality. The other one was

developed based on candidate node size. Each of them can be applied to any subgraph

isomorpishm algorithm to increase the query performance.

After developing these five matching order selection method, we decided to combine

these matching order selection methods to a branch and bound algorithm. We choose

BB-Graph algorithm because it gives the best performance among all the state-of-the-

art subgraph isomorphism algorithm. Therefore, Matching Order Based On Degree

Centrality, Matching Order Based On Closeness Centrality, Matching Order Based

On Betweenness Centrality, Matching Order Based On Eigenvector Centrality and

Matching Order Based On Candidate Node Selection methods are emerged and we

examined their performance against various queries and with different dataset. We

see that some methods give greater results in some queries and decide to create rules

for determining the matching order selection method automatically for different query

types.

4

We used decision tree in the process of generating rules for determining the matching

order selection method. Decision tree created some rules based on the volatility and

size of database, size and type of query as attributes and best matching order selection

methods as output in the queries. Therefore, we used these rules to introduce our

approach the BB-Plus. The BB-Plus decides which matching order selection method

should use while executing a subgraph isomorphism query according to these rules.

1.2 Contributions and Novelties

The main contributions of this thesis are:

1. We introduced a new approach called BB-Plus that consists of heuristics for au-

tomatically selecting the best matching order selection method volatility (real-

time, historical etc.) and size of the database, size and type of query (path,

cyclic, recursive etc.) as an input to improve the performance of subgraph iso-

morpishm queries. It combines the best aspects of five different matching order

selection methods along with BB-Graph algorithm.

2. In order to improve the performance of subgraph isomorphism algorithms, we

offered five different matching order selection methods called Degree Central-

ity, Closeness Centrality, Betweenness Centrality, Eigenvector Centrality and

Candidate Node Selection. We compared these matching order selection meth-

ods and found their strengths and weaknesses in different types of database and

queries. Therefore, we generated basic rules that decide which matching order

selection method to use in which query or databases and we used these rules

while developing the BB-Plus approach.

3. We compared the state-of-the-art subgraph isomorphism algorithms in the liter-

ature such as GraphQl, DualIso, TurboIso, VF3, BB-Graph and Neo4j’s Cypher

using the same programming language and graph data structures (for storing

nodes, edges and properties or indexing etc.) of Neo4j’s graph database with

our approach BB-Plus. A number of experiments have been performed in three

different dataset. Most of the queries, the BB-Plus performs better than other

algorithms.

5

1.3 The Outline of the Thesis

Organization of the rest of this thesis is as in the following:

Chapter 2 presents the background and the related work on the subgraph isomorphism

algorithms. Chapter 3 presents our approach, which is called the BB-Plus, and how its

developed using different matching order selection methods. Chapter 4 presents the

experimental results of the comparison of the state-of-the-art subgraph isomorphism

algoritmhs, GraphQl, DualIso, TurboIso, VF3, BB-Graph and Neo4j’s Cypher, with

our approach, BB-Plus. Finally, the conclusion and future work are given in Chapter

5.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Graph Databases

Graph database is a database that uses graph data structures for semantic queries like

nodes, edges and properties to represent and store data. On the other hand, graph

database management system (GDBMS) are used to manage graph databases. Graph

databases employ nodes, edges and their properties. Nodes represents entities that we

want to keep track and edges connect each nodes. With properties, we can keep infor-

mation on both nodes and edges [5]. Library graph database is given as an example

in Figure 2.1. In this example, we see that graph databases keep nodes such as books,

persons etc. and its properties such as name, title etc., edges such as wrote, purchased

etc. and its properties such as date etc.

PERSON
Name: J.K
Rowling

BOOK
Title: Harry

Potter

PERSON
Name: Ian

James

PERSON
Name: J. R.
R. Tolkien

PERSON
Name: Alan

Gates

BOOK
Title: Lord

of the Rings

WROTE

WROTE

PURCHASED
Date: 03-02-2011

PURCHASED
Date: 03-02-2011

PURCHASED
Date: 03-02-2011

Figure 2.1: Library Graph Database Example

7

Graph databases built on three essential properties. Firstly, they use property graph

as a data model [23]. Secondly, they use path traversal as a query language. Lastly,

they satisfies index-free adjacency for physical level organization.

Index-free adjacency means there is no global or external index are needed for search-

ing the existence of an edge between two nodes. Therefore, no index lookups are

required in graph databases [24]. As shown in Figure 2.2, if we want to find "People

who writes Harry Potter" in the example Library Relational Database, we need to cre-

ate three indexes for "Title" attribute in "Book" table, "BookId" attribute in "Writes"

table and "Id" attribute in "Person" table. However, in the graph databases, we only

need an index to find the root node which is a book with title "Harry Potter" in our

example an then just do traversal to find the people who writes it.

Id Name

1 J.K. Rowling

2 J.R. Tolkien

3 Edgar Allan Poe

.. ..

4 George Orwell

Id Title

1 Harry Potter

2 Lord of the Rings

3 1984

.. ..

4 Animal Farm

PersonId BookId

1 1

2 2

4 3

.. ..

4 4

PERSON WRITES

BOOK

Figure 2.2: Library Relational Database Example

8

We need to consider using graph databases rather than relational database when we

have a large and complex data set, expensive join operations, our data is highly con-

nected (e.g. social networks) or in a recommendation systems (e.g. Netflix) [8].

Graph databases are good at managing ad-hoc and changing data with evolving schemas,

recursive queries, semantic search and managing data set within graph structure,

graph traversal or graph like queries (e.g. shortest path between two given nodes

in a graph) [8].

Although graph databases have great features, they have some existing issues. Mod-

eling a graph database and migrating data, queries, indexes etc. from an existing

database is a big problem because there is no well-defined way to do it. Addition-

ally, some of graph databases are lack of fully ACID properties and standard query

language. On the other hand, relational databases are more mature than the graph

databases and they have feature rich environment. Therefore, graph databases create

trust issues for large businesses. Lastly, their memory consumption is high when they

compare to other databases [25].

Graph databases are used in different applications in social, information, technologi-

cal and biological networks [5, 6]. Graph databases are mostly used in social networks

because it is easy to represent people, groups and their relationships like friendship

etc. with graph data structures. Additionally, graph databases are used for social

network analysis [26].

Graph databases are also used in recommendation systems to recommend a product,

user etc. to its users by predicting based on user data. Associations between items

or users can be easily defined as a graph model and recommendation can be done

by graph traversal. For example, Google uses graph database to show relevant ads,

Facebook uses for friend suggestions and Amazon uses to recommend products [27].

In bioinformatics, graph databases are used for modelling metabolic pathways, chem-

ical structures, genes, proteins and enzims etc. For example, Bio4j is using graph

database to store and query proteins [28].

Also in technological networks like Geographic Information Systems or spatial databases,

graph databases can be used for geographic, topological and metric operations [26].

9

2.1.1 Comparison of Graph Databases

Although most of the GDBMSs exist for less than ten years and developments are still

coming within their roadmaps, they provide different capabilities and features [6].

Neo4j, AllegroGraph and Sones have their own query language, which are Cypher,

SPARQL and GraphQL respectively. The others usually use SQL-based language for

querying [6].

Each graph database can use different data structures to represent data. For example,

Hypergraph and SonesDB use hypergraph to store data [5] that is useful in knowledge

representation, artificial intelligence and bioinformatics [29]. OrientDB, Allegro-

Graph and ArangoDB are multi-model databases that can use different data models

for solving different problems. For example, ArangoDB is also a RDF store database

that makes it meet with the Semantic Web standards [5].

Most of the graph databases use master/slave architecture for replication. When a

slave needs to write, it needs to synchronize with the master to preserve consistency

[30]. These updates will be eventually visible to other slaves by master node that

could lead master node to bottleneck. OrientDB solves the bottleneck problem by

multi-master (master-master) replication. In OrientDB, all the nodes in the cluster

are master so they can both read and write. This also allows each cluster to scale up

horizontally [31].

All of the graph databases use different data structure for indexing as shown in Table

2.1. However, they usually use a text search engine called Apache’s Lucene for full

text indexing.

Triggering feature only comes up with Neo4j, OrientDB, Titan and AllegroGraph for

catching events. Graph databases have high throughput like other NoSQL databases

so using triggering could also create performance problems.

Geospatial queries are available on Neo4j, OrienDB, Titan, AllegroGraph and ArangoDB.

Neo4j and Titan have external geospatial libraries to handle geospatial queries that

are called Neo4j Spatial and Titan Geo respectively. OrientDB, Titan and ArangoDB

have spatial indexes to faster geospatial queries.

10

Table 2.1: Comparison of graph database management systems

N
eo

4j
O

ri
en

tD
b

Ti
ta

n
A

lle
gr

oG
ra

ph
A

ra
ng

oD
B

In
fin

ite
G

ra
ph

D
at

ab
as

e
M

od
el

G
D

B
M

S
D

oc
um

en
tS

to
re

G
D

B
M

S
G

D
B

M
S

R
D

F
St

or
e

G
D

B
M

S

D
oc

um
en

tS
to

re

G
D

B
M

S

K
ey

-v
al

ue
st

or
e

G
D

B
M

S

Y
ea

r
20

07
20

10
20

12
20

04
20

12
20

10

Pr
ic

e
M

in
12

K
/Y

ea
r

Fr
ee

Fr
ee

C
om

m
er

ci
al

Fr
ee

C
om

m
er

ci
al

Q
ue

ry
L

an
gu

ag
e

C
yp

he
r

SQ
L

-B
as

ed
G

re
m

lin
SP

A
R

Q
L

G
re

m
lin

G
re

m
lin

Tr
ig

er
ri

ng
E

ve
nt

H
an

dl
er

H
oo

ks
E

ve
nt

G
ra

ph
Y

es
-

-

In
de

xi
ng

Sc
he

m
a

In
de

xe
s

L
eg

ac
y

In
de

xe
s

L
uc

en
e

Fu
ll

Te
xt

In
de

xi
ng

SB
-T

re
e

In
de

x

H
as

h
In

de
x

L
uc

en
e

Fu
ll

Te
xt

In
de

x

L
uc

en
e

Sp
at

ia
l

In
de

x

G
ra

ph
In

de
xe

s

V
er

te
x-

C
en

tr
ic

In
de

xe
s

L
uc

en
e

Fu
ll

Te
xt

In
de

x

L
uc

en
e

Sp
at

ia
l

In
de

x

So
lr

Te
xt

In
de

xi
ng

H
as

h
In

de
x

Sk
ip

lis
tI

nd
ex

G
eo

In
de

x

Fu
ll

Te
xt

In
de

x

-

Pr
op

er
ty

G
ra

ph
Y

es
Y

es
Y

es
N

o
(R

D
F)

Y
es

Y
es

R
ep

lic
at

io
n

M
as

te
r/

Sl
av

e
M

ul
ti

M
as

te
r

M
as

te
r/

Sl
av

e
M

as
te

r/
Sl

av
e

M
as

te
r/

Sl
av

e
M

as
te

r/
Sl

av
e

Pa
rt

iti
on

in
g

N
o

Sh
ar

di
ng

B
al

an
ce

d
Pa

rt
iti

on
in

g
w

ith
Fe

de
ra

tio
n

Sh
ar

di
ng

Sh
ar

di
ng

C
on

si
st

en
cy

Fu
lly

A
C

ID
Fu

lly
A

C
ID

A
C

ID
or

E
ve

nt
ua

lly

C
on

si
st

en
t

A
C

ID
A

C
ID

Fu
lly

A
C

ID

Su
pp

or
te

d

Pr
og

ra
m

m
in

g

L
an

gu
ag

es

.N
et

,C
lo

ju
re

,G
o,

G
ro

ov
y,

Ja
va

,

Pe
rl

,P
H

P,
Py

ht
on

,

Ja
va

Sc
ri

pt
,R

ub
y

.N
et

,C
,C

Sh
ar

p,

C
lo

ju
re

,J
av

a,
Sc

al
a

Ja
va

Sc
ri

pt
,P

H
P,

Py
ht

on
,R

ub
y,

Sc
al

a

C
lo

ju
re

,J
av

a,

Py
ht

on

C
Sh

ar
p,

C
lo

ju
re

,

Ja
va

,L
is

p,
Pe

rl
,

Py
ht

on
,R

ub
y,

Sc
al

a

C
Sh

ar
p,

Ja
va

,

Ja
va

Sc
ri

pt
,P

H
P,

Py
th

on
,R

ub
y,

C
lo

ju
re

Ja
va

,B
lu

ep
ri

nt
s

Se
cu

ri
ty

-

U
se

ra
nd

ro
le

au
th

en
tic

at
io

n

R
ec

or
d

le
ve

ls
ec

ur
ity

U
se

ra
ut

he
nt

ifi
ca

tio
n

R
ex

st
er

G
ra

ph
Se

rv
er

U
se

r

au
th

en
tifi

ca
tio

n
-

-

M
ap

R
ed

uc
e

B
at

ch
Im

po
rt

er
Y

es
Y

es
(v

ia
Fa

nu
s)

N
o

N
o

Y
es

G
eo

sp
at

ia
lQ

ue
ri

es
N

eo
4j

Sp
at

ia
l

Y
es

Ti
ta

n
G

eo
SP

A
R

K
Q

L
Y

es
N

o

11

2.2 Centrality Measures in Graphs

Centrality is a quantative measure that determines the most important (or central)

node in a graph. The most central node can be changed based on how a node is

identified as the most important. The most important node could be node with largest

degree or the one that closest to the other nodes or the one that most shortest paths pass

through or the one that has dominant eigenvector. With different centrality measures,

we can detect different properties of a graph. Degree, betweenness, closeness and

eigenvector centralities are one of most popular centrality measures in the literature.

A B

F

C D

E

Figure 2.3: Example graph G for calculating centrality measures

2.2.1 Degree Centrality

Degree centrality is the first and the simplest centrality measure that defines the im-

portance of a node based on its degree that can be calculated with the number of

incoming and outgoing edges of nodes. If the node’s degree is bigger than the degree

of other nodes, then the importance of the node is higher than the other nodes. Degree

centrality is good at searching for most connected nodes or the nodes with most in-

formation that can easily connect with other nodes in a graph. The pseudo code [32]

for calculating degree centrality for graph is given in Algorithm 1.

12

Algorithm 1 DegreeCentrality
Input: Q : Query graph

Output: Cd(Q) : Degree Centrality values for nodes of graph Q

1: procedure DEGREECENTRALITY(Q)

2: Cd(Q)← ∅
3: for i from 1 to |Q|> do

4: for j from 1 to |Q|> do

5: if matrix[i][j] != 0 then

6: degree[i] + +

7: Cd(vi) = degree[i] + +

8: Push Cd(vi) to Cd(Q)

9: return Cd(Q)

Degree Centrality can also be expressed as in Equation 21. According to the equation,

the degree centrality of a node can be calculated with incoming and outgoing edges

that touches to the node which can be also describes as degree of the node.

Cdegree(vk) = degree(vk) (21)

Let’s calculate degree centrality for each nodes in graphG. Therefore, we need to find

the degrees of each node which are 2, 3, 2, 3, 3, 1 for A,B,C,D,E, F respectively.

2.2.2 Closeness Centrality

Closeness centrality is determined for each node in the connected graph based on their

closeness to other nodes in the graph that can be calculated with sum of the shortest

paths between the node and the other nodes. If a node is more central, then its distance

between the other nodes is lower than the other nodes in the graph. With closeness

information of graph, we can determine the time for nodes to spread information from

itself to the all other nodes. Therefore, it is good at searching for nodes that deploy in

the best location to easily affect other nodes in the graph. The pseudo code [32] for

calculating betweenness centrality for graph is given in Algorithm 3.

13

Algorithm 2 ClosenessCentrality
Input: Q : Query graph

Output: Cc(Q) : Closeness Centrality values for nodes of graph Q

1: procedure CLOSENESSCENTRALITY(Q)

2: Cc(Q)← ∅
3: for i from 1 to |Q|> do

4: Path[i] = Execute Dijkstra(i)

5: for j from 1 to |Q|> do

6: PathLength[i] += Path[i][j]

7: Cc(vi) = 1/PathLength[i]

8: Push Cc(vi) to Cc(Q)

9: return Cc(Q)

Closeness Centrality can also be expressed as in Equation 22. According to the equa-

tion, to find closeness value of node k (vk), we need to find the distance between vk

and all other nodes (d(vi, vk)) in the graph and normalize it.

Ccloseness(vk) =
1∑N

i d(vi, vk)
(22)

Let’s calculate the closeness value of each nodes in graph G. To do that we need find

the shortest distance between all the nodes as in Table 2.2. For example; the distance

between node E and all the other nodes is 2, 1, 2, 3, 1, respectively. Therefore, the

closeness value of E can be obtained by dividing total distance (9) by 1 which is

0.11. The closeness value for all the other nodes can be seen in Table 2.3.

14

Table 2.2: Distance matrix of example query graph G

A B C D E F

A - 1 1 2 2 3

B 1 - 2 1 1 2

C 1 2 - 1 2 3

D 2 1 1 - 1 2

E 2 1 2 3 - 1

F 3 2 3 2 1 -

Table 2.3: Calculating closeness centrality of example query graph G

Nodes (v)
Total # of shortest paths between

v and the other nodes
Cc(v) (Closeness Centrality of v)

A 1 + 1 + 2 + 2 + 3 = 9 1 / 9 = 0.10

B 1 + 2 + 1 + 1 + 2 = 7 1 / 7 = 0.14

C 1 + 2 + 1 + 2 + 3 = 9 1 / 9 = 0.11

D 2 + 1 + 1 + 1 + 2 = 7 1 / 7 = 0.14

E 2 + 1 + 2 + 3 + 1 = 9 1 / 9 = 0.11

F 3 + 2 + 3 + 2 + 1 = 11 1 / 11 = 0.09

15

2.2.3 Betweenness Centrality

Betweenness centrality is defined by how many times a node is included on the short-

est path that is calculated among all the nodes in a graph. The most important node in

the betweenness centrality acts as a bridge between all the nodes in a graph. There-

fore, it is good at defining a node that most affect the flow in a graph. The pseudo

code [32] for calculating betweenness centrality for graph is given in Algorithm 3.

Algorithm 3 BetweennessCentrality
Input: Q : Query graph

Output: Cb(Q) : Betweenness Centrality values for nodes of graph Q

1: procedure BETWEENNESSCENTRALITY(Q)

2: Cb(Q)← ∅
3: for i from 1 to |Q|> do

4: V ectorPath[i] = Execute Dijkstra(i)

5: for j from 1 to |Q|> do

6: V ectorAllPath += Path[i][j]

7: Add Path[i] into V ectorAllPath

8: for i from 1 to |Q|> do

9: for j from 1 to V ectorAllPath.size()> do

10: if i in V ectorAllPath[j] then

11: PathNumber[i] + +

12: Cb(vi) = PathNumber[i]/2/((|Q| − 1)(|Q| − 2)/2)

13: Push Cb(vi) to Cb(Q)

14: return Cb(Q)

Betweenness Centrality can also be expressed as in Equation 23 where gij is the

number of shortest path between vi and vj and gij(vk) is the number of shortest path

between vi and vj that contains node vk.

Cbetweenness(vk) =
N∑
i

N∑
j

gij(vk)

gij
(23)

16

Table 2.4: Calculating betweenness centrality of example query graph G

Nodes (v) Shortest path passes through the node Cb(v) (Betweenness Centrality of v)

A C-B (C-A-B, C-D-B) 1 / 2 = 0.50

B A-D (A-B-D, A-C-D), A-E (A-B-E), A-F (A-B-E-F) 1 / 2 + 1 + 1 = 2.50

C A-D (A-B-D, A-C-D) 1 / 2 = 0.50

D C-B (C-A-B, C-D-B), C-E (C-D-E), C-F (C-D-E-F) 1 + 1 + 1 / 2 = 2.50

E A-F, C-F, B-F, D-F 1 + 1 + 1 + 1 = 4

F - 0

To be able to normalize the betweenness value, we need to divide results by the num-

ber of pairs of vertices not including v, which for directed graphs is (n − 1)(n − 2)

and for undirected graphs is
(n− 1)(n− 2)

2
.

Let’s calculate the betweenness value of each nodes in graph G. To do that we need

find all the shortest paths and the shortest path that contains each nodes like in Table

2.4. For example, the betweenness value of node E is calculated as for 4. Because

four shortest paths in the graph which are A − F,C − F,B − F and D − F passes

through the node E.

Table 2.5: Adjacency matrix of example query graph Q

A B C D E F

A - 1 1 0 0 0

B 1 - 0 1 1 0

C 1 0 - 1 0 0

D 0 1 1 - 1 0

E 0 1 0 1 - 1

F 0 0 0 0 1 -

17

2.2.4 Eigenvector Centrality

Eigenvector centrality is calculated for a node with its degree and the quality of its

edges between other nodes. It is more about calculating the measure of the influence

of a node in the graph. If the edges connected to nodes with high score nodes than it

consider more important than the other nodes. Additionally, Google’s PageRank and

Katz centrality measures derived from eigenvector centrality [33]. The pseudo code

[32] for calculating degree centrality for graph is given in Algorithm 4.

Algorithm 4 EigenvectorCentrality
Input: Q : Query graph

Output: Ce(Q) : Eigenvector Centrality values for nodes of graph Q

1: procedure EIGENVECTORCENTRALITY(Q)

2: Ce(Q)← ∅
3: for i from 1 to |Q|> do

4: eigenvector[i] = 1

5: for n from 1 to MaxTimes> do

6: for i from 1 to |Q|> do

7: TmpEigen[i] = 0

8: for j from 1 to |Q|> do

9: TmpEigen[i] += matrix[i][j] ∗ eigenvector[j]

10: NormSq = 0

11: for j from 1 to |Q|> do

12: NormSq = TmpEigen[i] ∗ TmpEigen[i]

13: Norm = sqrt(NormSq)

14: for j from 1 to |Q|> do

15: Eigenvector[i] = TmpEigen[i]/Norm

18

01000000

10100001

01001000

00000001

00100100

00001011

00000101

01010110

A

0)(eCIA

01000000

10100001

01001000

00000001

00100100

00001011

00000101

01010110

0

0

0

0

0

0

0

0

8

7

6

5

4

3

2

1

u

u

u

u

u

u

u

u

0

01000000

10100001

01001000

00000001

00100100

00001011

00000101

01010110

)det(

IA

 60.21 06.22 72.13 34.14 60.15 70.16 37.07 21.08

The largest eigenvalue is 2.60. So the corresponding eigenvector:

6.21000000

16.2100001

016.201000

0006.20001

00106.2100

000016.211

0000016.21

01010116.2

0

0

0

0

0

0

0

0

8

7

6

5

4

3

2

1

u

u

u

u

u

u

u

u

 66.41 32.42 60.33 97.24 38.25 60.16 25.17 01.08

The largest eigenvalue is -0.01 and the eigenvector associated to it:

13.0

35.0

24.0

21.0

27.0

46.0

39.0

54.0

 A B C D E F G H

Ce = {0.54, 0.39, 0.46, 0.27, 0.21, 0.24, 0.35, 0.13}

Figure 2.4: Calculating eigenvector centrality of example query graph G

19

Eigenvector Centrality can also be expressed as in Equation 24 where λ is a constant,

A is the adjacency matrix of a graph such that aij = 1 if node vi is connected to vj

and aij = 0 if not and xi is leading eigenvector of node vi.

Ceigenvector(vk) =
1

λ

∑
t∈G

avtxt (24)

Let’s calculate the eigenvector value of each nodes in graph G. Firstly, we need to

obtain the adjacency matrix of Q that given in Table 2.5 and then we need follow the

steps that given in Figure 2.4.

2.3 The Subgraph Isomorphism Problem

In the thesis, the graph G is defined as (V,E) where V is the set of nodes and E is the

set of edges. Lv and Pv denote the label set and property set of node v respectively.

Similarly, for an edge e =< u, v >, Le, Pe and dirue denote the label set, property set

and the direction of the edge e with respect to node u, respectively.

Given Q : (V,E) and G : (V ′, E ′), G is an exact match of Q, if there is a one-to-one

and onto function f : V ← V ′ such that Lv ⊆ Lf (v), Pv ⊆ Pf (v) ∀v ∈ Q and s =<

f(u), f(v) >∈ E ′ ∀r =< u, v >∈ E where Lr ⊆ Ls, Pr ⊆ Ps, dir
u
r = dirfs (u).

Definition: Given a query graph Q and a data graph G, the subgraph isomorphism

problems is to find all distinct exact matches of Q in G.

A

B A

C

x

A

A

B C

A

A

B

B

C

D

x

z

y

y

x q

C

z

Query Graph (Q) Data Graph (G)

Figure 2.5: Example for Subgraph Isomorphism Problem

20

The matched nodes must satisfy the label comparison and degree comparison test. In

other words, matching couple (u, u′) must satisfy Lu ⊆ L′u and u.deg ≤ u′.deg [1].

As shown in Figure 2.5, subgraph isomorpishm problem can be described as, finding

all the exact matches of query graph Q in data graph G.

2.4 The Subgraph Isomorphism Algorithms

In the literature, subgraph isomorphism algorithms are divided into filtering-and-

verification and branch-and-bound techniques according to their strategies. Filtering

and verification algorithms filter the data graph based on non-matched index of query

graph and verify the matches. They are good at reducing the candidate data nodes

and graphs with disconnected parts. However, they cannot find all exact matches of

query graph. An example for filtering and verification algorithms (Closure-Tree) is

given in Figure 2.6.

A A A A

B BB BC

C

DC D B D

CD

G1 G2 G3 G4 G5

Sample Graph Database

Sample Graph Closures

CLOSURE-TREE

A

B C

{D,x}

{A,x}

B C

D

{A,x}

B {C,D}

{C,D,x}

 C1=Closure(G1,G2) C2=Closure(G3,G4,G5) C3=Closure(C1,C2)

Figure 2.6: Example for Filtering and Verification Algorithms - Closure Tree [2]

21

On the other hand, branch and bound algorithms can find all the exact matches based

on finding candidate data nodes for each query node and continue with new query

nodes by branching from already matched query nodes. Although they are good at

finding exact matches unlike filtering-and-verification technique algortihms, they are

not computationaly efficient. Because, they search globally on the data graph and

tries to find all candidate nodes by branching on irrelevant relationships and they use

excessive memory based on the need of large data structures [1]. Therefore, prunning

and matching order selection methods are important in these kind of algorithms to

increase the performance. They eliminate irrevelant candidate nodes at early stepts

in order to find exact matches more efficiently. The comparison of the all subgraph

isomorpishm algorithms are shown in Table 2.6.

2.4.1 Ullmann’s Algorithm

Ullmann proposed the first subgraph isomorphism algorithm that introduces the es-

sential concepts of the problem and provides a basis for development of subsequent

algorithms. The algorithm uses branch and bound technique to find all exact matches

of a query graph. The algorithm is incapable to execute efficient queries on the large

datasets and cannot compete with subsequent algorithms. Becuase the algorithm is

in the immature state compared to the others and it has inadequate pruning rules and

do not apply any matching order strategies. However, it created a basic structure for

subsequent algorithms to develop new techniques to increase the query performance.

Ullmann’s algorithm filters the candidate data nodes first for each query nodes by

applying label and degree comparison tests. After finding the candidate nodes, it ran-

domly picks a start query node and continue to find matching data nodes for a query

node from randomly ordered query nodes. After finding a matching couple, the al-

gorithm applies IsJoinable procedure that controls all the relationships between the

matching query node and already matched query nodes is defined between matching

data node and already matched data nodes [34]. If the matching couple successfully

passes the procedure, then the matching couple added to the partial solution. How-

ever, the procedure fails then the algorithm backtracks and continue with the other

candidate nodes [35].

22

2.4.2 VF2

The VF2 algorithm was built on the structure of the Ullmann’s algorithm and it de-

signed to achieve better performance on large graph datasets. The algorithm uses

tree-based index structure to find all the exact matches.

The algorithm starts with an initial empty state and then adds a start query node from

given order of the input. It continues with a query node that connected to already

matched query nodes that satisfies all feasibility rules to create intermediate states.

Therefore, the algorithm does not need to apply IsJoinable procedure and can prune

out some candidate data nodes that are not connected to the already matched nodes.

Finally, the algorithm stops when it covers all the nodes in the query graph.

Although the VF2 does not apply matching order selection, it has three pruning rules

to increase the performance. The first one helps to prune out the data node that is not

connected to already matched data nodes. The second one checks that the number of

the intersection of adjacent query vertices and non-matched query vertices is bigger

than the number of the intersection of adjacent data nodes and non-matched data

nodes. The last one checks that the number of query nodes is bigger than data nodes

that can be calculated as the difference between the sum of non-matched and the

matched nodes from the adjacent nodes.

The VF2 algorithm performs better than the Ullmann’s algorithm especially the size

of query graph is bigger than twenty nodes. The execution time of finding patterns for

Ullmann algorithm increase exponentially with the size of query graph and it causes

a low performance when it compares to the VF2 algorithm [16].

2.4.3 QuickSI

The QuickSI is a subgraph isomorphism algorithm based on filtering and verifica-

tion and it uses feature-based index technique, which is called Swift-Index to reduce

computational costs and gain the ability of working on the large datasets.

Additionally, the algorithm has a matching order selection method, which called

QI-Sequence. QI-Sequence is a minimum spanning tree that can be created by the

23

weighted edges. The weight of edges can calculated by the label frequency of both

incoming and outgoing nodes based. QI-Sequence is ordered by ascending label fre-

quency. Therefore the algorithm continues with a low frequency node, both the num-

ber of recursive calls and the query execution time are decreased.

On the other hand, QuickSI applies IsJoinable procedure to able to prune out the

data vertices that has no edges between the already matched data vertices. QuickSI

is also compared with Ullmann’s algorithm and it collects query results in less time,

especially with the increasing size of query graph [15].

2.4.4 GraphQL

The GraphQL is a query language that is developed to be able to manipulate graph

databases that has attributes on both nodes and edges. GraphQL uses different prun-

ing rules and matching order selection method to increase performance.

The GraphQL algorithm use two different pruning rules that are neighborhood sig-

nature based pruning and pseudo subgraph isomorphism test based pruning. Neigh-

borhood signature based pruning ensures that labels of a query node’s neighbors are

a subset of label of candidate data node. On the other hand, pseudo isomorphism test

helps to prune out data vertex if the breadth first search tree of the query vertex is not

contained by the breadth first search tree of data vertex.

In addition to, the GraphQL also differs from other algorithms with its matching order

selection method. The algorithm always selects a query node with the smallest can-

didate size that is connected with the already matched query nodes in each iteration

of finding matches of query graph [18].

2.4.5 GADDI

The GADDI algorithm is emerged from the need for indexing large graphs in biolog-

ical data. Until the GADDI algorithm was developed, there is no algorithm that can

index large data graphs. Therefore, the algorithm uses distance based indexing that

uses neighboring discriminating substructure (NDS) distance in large graphs, which

24

can be calculated with the number of exact patterns in a partial subgraph.

The GADDI does not apply matching order selection. It starts with the first query

vertex in the input and continue with a query node that first appears in the depth-first

search.

Additionally, the GADDI has three pruning rule. Firstly, it checks the query node’s

labels is a a subset of data vertex’s labels. Secondly, it checks NDS distance of query

vertex is smaller or equal than the data vertex’s NDS distance. Finally, the third rule

checks the shortest distance between query node and its neighbors is greater than or

equal to the shortest distance between data node and its neighbors [17].

2.4.6 SUMMA

The SUMMA algorithm also noted that the database size is the biggest challange for

the subgraph isomorphism problem. The algorithm uses an novel index based struc-

ture that generates local and global indexes to reduce the disk accesses and redundant

calculations to able to execute queries in large graph datasets. Memory consumption

of the algorithm is only based on the number of nodes.

Local indexes keeps infrequent label combinations which is sorted label list by lex-

icographic order. Infrequent label combinations are better than the frequent ones.

Because, it can keep more information within less space. With local indexes, the

algorithm can determine the matching order.

As for global indexes, the algorithm prefers distance based indexing like the GADDI.

However the space complexity is high for the large graph datasets, it prefers shortest

path trees. Because the size changes linearly with the node size.

Zhang et al. compare the SUMMA algorithm with the GADDI algorithm based on

index construction time, index size, induced subgraphs and model generated graphs.

Although, it was shown that the GADDI performs better in small datasets, the SUMMA

beats the GADDI in large graphs dataset [36].

25

2.4.7 SPath

The SPath algorithm is built on a pattern based indexing structure that uses shortest

path trees as indexes to be able to handle large graph datasets like the SUMMA algo-

rithm. The algorithm divides query graph into shortest path and finds candidate paths

for them in the data graph. Then, it brings all the paths together to find all the em-

beddings. In other words, the algorithm does not match nodes with candidate nodes,

it matches paths with candidate paths at a time.

The selection order of query paths affect the query performance directly. The selec-

tion order of the SPath is about finding the most selective path that depends on the

node with smallest candidate size and size of all vertices in a path. Additionally,

the SPath applies neighborhood signature based pruning on the query path so that

neighbor data path satisfies labels of the neighbor query path.

The SPath was compared GraphQL with thousand queries and the average query pro-

cessing time for the queries are at least four times better than the GraphQl [19].

2.4.8 TurboIso

The TurboIso algorithm has emerged from low query performance of existing sub-

graph isomorphism algorithms based on lack of a good mathing order selection method.

TurboIso comes with two important concept, which are candidate region exploration

and combine and permute strategy (Comb/Perm).

Candidate region exploration procedure searches candidate regions (CR) in the data

graph and it helps to generate a matching order for each candidate region. Candi-

date region exploration exploits from neighborhood equivalence class (NEC), which

reduce the size of candidate region. The procedure finds all candidate data vertices

for each NEC node and keeps them in a candidate subregion and then, the algorithm

performs DFS in NEC tree to repeat this procedure for each ordered NEC node. The

26

matching order for each NEC node can be calculated as in Equation 25.

∑
v∈CR(P (u′),−)

(
|CR(u′, v)|
|u′.NEC|

)
(25)

Comb/Perm strategy can find combinations for the query nodes in the same NEC

instead of do permutation for all possible enumerations. However if the algorithm

detects that a combination is not going to involve in the final solution, algorithms

prunes out all the permutations for the combination.

The TurboIso algorithm was compared with QuickSI, GADDI, Spath, VF2 and algo-

rithms with large datasets like AIDS, Human, NASA dataset. According to the paper,

no algorithms other than GraphQl have completed most of the queries. Additionally,

TurboIso performs 3.22 and 1836 times better than GraphQL in NASA and Human

dataset respectively [3].

Algorithm 5 The TurboIso Algorithm
Input:: Q : query graph, G : data graph

Output: all embeddings of Q in G

1: procedure TURBOISO(Q,G)

2: us ← ChooseStartV ertex

3: Q′ ← RewriteNecTree(Q, us)

4: for all vs in v|(v ∈ V (G)) and (L(us) ⊆ L(vs)) do

5: if ExploreCR(u′s, vs, CR = FAIL) then

6: continue;

7: order ← DetermineMatchingOrder(Q′, CR)

8: UpdateState(M,F, us, vs)

9: SubgraphSearch(Q,Q′, G, order, 1)

10: RestoreState(M,F, us, vs)

27

2.4.9 DualIso

The DualIso is a tree search based algorithm that uses effiecient pruning rules to be

able to execute queries using less time and memory in large graph datasets. The

DualIso consists of two basic pruning method that are simple and dual simulation.

Simple simulation checks that if there is a neighbor data node of the matched data

node with the same label as the neighbor node’s label of the matched node as shown

in Equation 26. Simple simulation is very close to the refinement procedure of the

Ullmann’s algorithm and therefore insufficient for pruning in large graph dataset.

∀(u, u′) ∈ Eq,∀v ∈ φ(u), ∃v′ ∈ φ(u′)s.t.(v, v′) ∈ E (26)

In contrast to simple simulation, dual simulation not only controls child nodes, but

also parent nodes. For each query node, which is a neighbor of a matched query node,

it checks neighbor nodes of the data node, which has any intersection with neighbor

query node as shown in Equation 27. Dual simulation prunes out the nodes early

state, therefore it minimizes the search space and increases the query performance.

∀(u, u′) ∈ Eq,∀v′ ∈ φ(u′), ∃v ∈ φ(u)s.t.(v, v′) ∈ E (27)

Firstly, the algorithm tries to find the feasible matches of nodes by finding all data

nodes with the same label as query node and then it applies dual simulation to prune

out unwanted data nodes. Then, it tries to find matching couples with applying depth-

first search procedure until reach the maximum depth of the query graph. If the

algorithm reach an unfeasible state then it backtracks.

DualIso compared with GraphSimIso, VF2 and GraphQl with amazon-2008 and enwiki-

2018 dataset. In the experiment, the effect of dataset size, query size, labels and data

graph density was investigated and DualIso gives the best results under this circum-

stances [20].

28

Algorithm 6 The DualIso Algorithm
1: procedure DUALISO(G,Q,Φ)

2: changed← true

3: while changed do

4: changed← false

5: for all u← Vq do

6: for all u′ ← Q.adj(u) do

7: Φ′(u′)← ∅
8: for all v ← Φ do

9: Φv(u
′)← G.adj(v) ∩ Φ(u′)

10: if Φv(u
′) = ∅ then

11: remove v from Φ(u)

12: if Φ(u) = ∅ then

13: return empty Φ

14: changed← true

15: Φ′(u′)← Φ′(u′) ∪ Φv(u
′)

16: if Φ′(u′) = ∅ then

17: return empty Φ

18: if Φ′(u′) < Φ(u′) then

19: changed← true

20: Φ(u′) = Φ(u′) ∩ Φ′(u′)

21: return Φ

29

2.4.10 BB-GRAPH

The BB-Graph algorithm has emerged from inadequate pruning techniques and ex-

cessive memory usage due to the large data structure needs of other algorithms. The

BB-Graph algorithm uses branch and bound technique with backtracking strategy.

Additionaly, the algorithm has efficient memory usage because it is built on data

structures of Neo4j. The psuedo code for the algorithm is given in Algorithm 7.

Algorithm 7 The BB-Graph Algorithm
Input:: Q : query graph, G : data graph

Output: M : all embeddings of Q in G

1: procedure BBGRAPH(Q,G)

2: M ← ∅
3: us ← u0 where u0 is the first node given in the input

4: (Cu)s ← FilterByLabel(us)

5: (Cu)s ← FilterByRelationships(us, (Cu)s)

6: if us has property then

7: (Cu)s ← FilterByProperty(us, (Cu)s)

8: for all <vs ∈ (Cu)s> do

9: Mnode ← ∅, Mrel← ∅, S ← ∅
10: S.push M<us, vs >

11: Add M<us, vs > into Mnode

12: TransitionState()

13: return Cu

The algorithm starts with a query node and find its potential candidate nodes by

checking their label, degree, property and both incoming and outgoing relationships.

FilterByLabel method helps to find all candidates nodes that have the same label with

query nodes as described in Algorithm 28. After finding the candidate nodes with the

same label, the algorithm checks the incoming and outgoing edges of candidates node

are matching with the query nodes with FilterByRelationship method as described in

Algorithm 29. The method makes sure that edges of candidate nodes have the same

type and direction. This step takes linear time based on the size of candidate nodes

list. Finally, the algorithm narrows the size of candidate nodes list down by calling

30

FilterByProperty method to checks that the candidate node’s properties and their val-

ues are matched with the query nodes that described in Algorithm 30. This step calls

if the query nodes has properties, if not then the step is passed and filtering process

ends up. This step also takes linear time based on the candidate nodes list.

After finding the final candidate node list, the algorithm continue with calling the re-

ciprocal node branching process recursively to obtain new matchings. In the process,

the algorithm traverses on the other query nodes which is connected to the already

matched query nodes. The algorithm backtracks to traverse on other possible matches

on the data graph until find all the exact matches of the query graph. The branching

process is described in Algorithm 8 and 9.

Algorithm 8 Transition State
Input: S, M , Mnode, Mrel

Output: -

1: procedure TRANSITIONSTATE(S, M , Mnode, Mrel)

2: if S 6= ∅ then

3: M<u,v> = S.pop()

4: BranchAndMatch(M<u,v>)

5: S.push(M<u,v>)

6: else

7: M.add(Mnode,Mrel)

8: return

Matched query node u and graph node v is stored in M(< u, v >) stack and the

algorithm branches from M(< u, v >). But if there is another options exists for

M(< u, v >), they are handled by backtrack mechanism later.

The algorithm needs candidate relationships for node couple < u, v > to branch

from M(< u, v >) and uses FindCandidateRelationships method at this point which

is described in Algorithm 10. The method eliminate candidate relationships with

checking the direction and type of candidate graph edges that matches with query

edge.

The algorithm uses IsMatchValid method to make three types of conflict control on

M<u,v> that described in Algorithm 11. The first one checks that if ui was matched

31

Algorithm 9 Branch and Match
Input: S, Mu,v, Mnode, Mrel

Output: -

1: procedure BRANCHANDMATCH(S, Mu,v, Mnode, Mrel)

2: Ru = [relationship r of u | ∃rx ∈ Rg s.t. M < r, rx >∈Mrel]

3: if Ru 6= ∅ then

4: for ri ∈ Ru do

5: Cri = FindCandidateRelationship(Mu,v, ri)

6: indi = 0

7: sizei = |Cri |

8: i = 0

9: while i >= 0 do

10: while indi < sizei do

11: if i == |Ru| then

12: TransitionState()

13: i−−
14: Take back Mnode, Mrel and S to the previous values

15: si = Cri .get(indi)

16: indi + +

17: if IsMatchV alid(M < ri, si >,M < u, v >) then

18: i+ +

19: indi = 0

20: i−−
21: Take back Mnode, Mrel and S to the previous values

22: return

32

Algorithm 10 Find Candidate Relationships
Input: M<u,v>: The matched node that is branching

ri: The query relationship adjacent to u whose candidate are searched

Output: Cri: Set of candidate relationships for ri

1: procedure FINDCANDIDATERELATIONSHIPS(M<u,v>, ri, Cri)

2: if ri.diru == OUTGOING then

3: Cri = [si =< v, v′ > |si.type = ri.type, v
′ ∈ VG]

4: else

5: Cri = [si =< v′, v > |si.type = ri.type, v
′ ∈ VG]

6: return Cri

with vi before. The second one checks that if ui was not matched but vi is already

matched. The last one uses FilterByRelationships and FilterByProperty to checks that

two nodes is matching. After all the checks,< ui, vi > is considered as a valid match.

The algorithm continues to branch until validity of all the candidate relationship are

evaluated.

The BB-Graph algorithm offers different pruning techniques like matching node prin-

cipal for the nodes and matching relationship principal for the relationships. Match-

ing node principal ensures that all the candidate nodes of a query node has the same

label, degree and property with the query node. On the other hand, matching relation-

ship principal ensures that all the candidate edges have the same label, property and

direction with the query edge.

The BB-Graph was compared with the GraphQL and Cypher on WorldCup, Bank and

Population graph databases and it was shown that BB-Graph gives the best results

among the all databases for most of the query types [1].

The detailed working process of BB-Graph is given in Figure 2.7 and 2.8. It shows

how the algorithm finds query graph Q in data graph G, step-by-step.

33

Algorithm 11 IsMatchValid
Input: M<ri,si>: The matched relationship to be checked

M<u,v> The matched node currently being brached

Output: -

1: procedure ISMATCHVALID(M<ri,si>, M<u,v>)

2: ui = ri.getOtherNode(u)

3: ui = si.getOtherNode(u)

4: if ∃ux 6= uis.tM < ux, vi >∈Mnode then

5: return false

6: if ∃vx 6= vis.tM < ui, vx >∈Mnode then

7: return false

8: if M < ui, vx >/∈Mnode then

9: if FilterByRelationships(ui, vi 6= ∅) and FilterByProperty(ui, vi 6= ∅)
then

10: Mnode.add(M(< ui, vi >))

11: Snode.add(M(< ui, vi >))

12: else

13: return false

14: Mrel.add(M(< ri, si >))

15: return true

34

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Starts with node A

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Starts with node A (FilterByLabel)

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Starts with node A (FilterByRelationship)

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Starts with node A (find the exact match)

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node B

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node B (FilterByLabel)

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node B (find exact matches)

A

x

Figure 2.7: An Example for the working process of BB-Graph (Part-1)

35

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node C

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node C (FilterByLabel)

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node C (FilterByRelationship)

x

A

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node C (FilterByProperty)

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node C (Attempt 1 Backtracks to B)

A

x Backtracks

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node C (Attempt 2)

A

x

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Continue to branch with node C (Attempt 2: Find Exact Match)

A

z

z

 Query Graph Data Graph

A

B
C
x:a

AB
C
x:a

C
x:a

D

D

A
C
x:b

z

z

z y

w

t

z

t

BB-GRAPH
Step: Return the Exact Matches

A

x

Figure 2.8: An Example for the working process of BB-Graph (Part-2)

36

2.4.11 VF2-Plus

The VF2-Plus algorithm is an improvement of VF2 algorithm by adding new prun-

ing rules and a new matching order selection method to be able to execute query

efficiently. The algorithm aims to generate a good matching order in order to prune

infeasible branches at higher level and reduce the search space.

The algorithm introduces node exploration sequence for the matching order selection.

Node exploration sequence tries to create an order based on the rareness of each

nodes. In order to calculate their rareness, it calculates the probability of finding the

node with same label and degree in data graph for each node in the query graph. In

addition, it consider node mapping degree when defining the order. Node mapping

degree is number of edges between the remaining node of query graph and the node

in the node exploration sequence.

The VF2 algorithm applies state space exploration that starts with an empty state. A

new pair of nodes that are a candidate node from the query graph and the matched

node from data graph is added to create a new state. The algorithm applies feasibility

rules to the new state to understand whether adding a new state will create a consistent

state or not. It continues to adding new pair of nodes until there is no candidate node

left and the goal state is reached. When no pair of nodes remains, the algorithm

backtracks to the its parent state and try different pair of nodes.

There are three feasibility rules are defined in the algorithm which are “core rule”,

“1-level look-ahead rule” and “2-level look ahead rule”. Core rules satisfies that the

neighbors of matched couple nodes are needs to be matched with each other. 1-level

and 2-level look ahead rule check the number of remaining neighbors that connected

with incoming and outgoing edges, respectively [22].

37

2.4.12 VF3

The VF3 algorithm is an improvement of the VF2-Plus algorithm and it is very similar

to its ancestor methods the VF2 and VF2-Plus algorithms. VF3 differs from VF2Plus

with the way of preprocessing the query graph and selecting the next candidate cou-

ples. In the preprocessing, a tree is created based on node exploration sequence and

the edges between nodes. For selecting the next candidate couple, the algorithm se-

lects a node from node exploration sequence based on order for the query node. For

the data node, it selects a node unmatched nodes based on the neighbors of matched

query node [21].

Algorithm 12 The VF3 Algorithm
Input:: Q : query graph, G : data graph

Output: M : all embeddings of Q in G

1: procedure VF3(Q,G)

2: M ← ∅
3: Pf = ComputeProbabilities(G,Q)

4: NQ = GenerateNodeSequence(Q,Pf)

5: ClassifyNodes(Q,G)

6: (s0, Parent) = PreprocessPatternGraph(Q,NQ)

7: Match(s0, G,Q,NQ, Parent,M)

8: return M

38

Table 2.6: Comparison of subgraph isomorphism algorithms

A
ut

ho
rs

R
el

ea
se

Y
ea

r
In

de
xi

ng
Pr

un
in

g
M

et
ho

ds
M

at
ch

in
g

O
rd

er
Se

le
ct

io
n

U
llm

an
n’

s
A

lg
or

ith
m

U
llm

an
n

19
76

-
L

ab
el

co
m

pa
ri

so
n

te
st

D
eg

re
e

co
m

pa
ri

so
n

te
st

-

V
F2

C
or

de
lla

et
al

.
20

02
Tr

ee
-b

as
ed

In
de

xi
ng

-I
sJ

oi
na

bl
e

Te
st

-I
nt

er
se

ct
io

n
of

A
dj

ac
en

ta
nd

N
on

-m
at

ch
ed

Q
ue

ry
V

er
tic

es

-D
iff

er
en

ce
of

th
e

N
on

-m
at

ch
ed

an
d

M
at

ch
ed

N
od

es
fr

om
th

e
A

dj
ac

en
tN

od
es

-

Q
ui

ck
SI

Sh
an

g
et

al
.

20
08

Fe
at

ur
e-

ba
se

d
In

de
xi

ng
(S

w
if

tI
nd

ex
)

Is
Jo

in
ab

le
Te

st
Q

I-
Se

qu
en

ce

G
ra

ph
Q

L
H

e
et

al
.

20
08

L
ab

el
-b

as
ed

In
de

xi
ng

N
ei

gh
bo

rh
oo

d
Si

gn
at

ur
e-

ba
se

d
Pr

un
in

g

Ps
eu

do
Su

bg
ra

ph
Is

om
or

ph
is

m
Te

st
C

an
di

da
te

Si
ze

fo
rQ

ue
ry

N
od

e

G
A

D
D

I
Z

ha
ng

et
al

.
20

09
D

is
ta

nc
e-

ba
se

d
In

de
xi

ng
(N

D
S

D
is

ta
nc

e)

-L
ab

el
C

om
pa

ri
so

n
Te

st

-N
D

S
D

is
ta

nc
e

-S
ho

rt
es

td
is

ta
nc

e
be

tw
ee

n

no
de

s
an

d
its

ne
ig

hb
or

s

-

SU
M

M
A

Z
ha

ng
et

al
.

20
10

In
fr

eq
ue

nt
L

ab
el

C
om

bi
na

tio
n

(f
or

L
oc

al
In

de
xi

ng
)

D
is

ta
nc

e-
ba

se
d

In
de

xi
ng

(f
or

G
lo

ba
lI

nd
ex

in
g)

V
er

te
x

m
us

ta
pp

ea
ri

n

on
e

sh
or

te
st

pa
th

tr
ee

-

SP
at

h
Z

ha
o

et
al

.
20

10
Pa

tte
rn

-b
as

ed
In

de
xi

ng
(S

ho
rt

es
tP

at
h

Tr
ee

)
N

ei
gh

bo
rh

oo
d

Si
gn

at
ur

e-
ba

se
d

Pr
un

in
g

C
an

di
da

te
Si

ze
of

th
e

Pa
th

Tu
rb

oI
so

H
an

et
al

.
20

13
Pa

tte
rn

-b
as

ed
In

de
xi

ng
N

ei
gh

bo
rh

oo
d

E
qu

iv
al

en
ce

C
la

ss
C

an
di

da
te

R
eg

io
n

E
xp

lo
ra

tio
n

D
ua

lI
so

Sa
ltz

et
al

.
20

14
-

Si
m

pl
e

Si
m

ul
at

io
n

D
ua

lS
im

ul
at

io
n

-

B
B

-G
ra

ph
A

si
le

re
ta

l.
20

14
-

M
at

ch
in

g
N

od
e

Pr
in

ci
pa

l

M
at

ch
in

g
R

el
at

io
ns

hi
p

Pr
in

ci
pa

l
-

V
F2

-P
lu

s
Jü

ttn
er

et
al

.
20

16
-

C
or

e
ru

le

1-
le

ve
ll

oo
k-

ah
ea

d
ru

le

2-
le

ve
ll

oo
k-

ah
ea

d
ru

le

N
od

e
E

xp
lo

ra
tio

n
Se

qe
un

ce

V
F3

C
ar

le
tti

et
al

.
20

17
-

C
or

e
ru

le

1-
le

ve
ll

oo
k-

ah
ea

d
ru

le

2-
le

ve
ll

oo
k-

ah
ea

d
ru

le

N
od

e
E

xp
lo

ra
tio

n
Se

qe
un

ce

39

2.5 Matching Order Selection in the Subgraph Isomorpishm Problem

In subgraph isomorpishm problem, matching order selection defines the order of

query nodes that match with the candidate data nodes. Matching order selection is

critical for the subgraph isomorpishm algorithms, because it directly affects the query

performance by reducing the number attempts to find patterns in data graph.

The importance of matching order selection is shown in the figure 2.9. Let’s consider

that we have two data graphs, G1 and G2, like in the figure. If we use the matching

order O(1) = (u1, u2, u3) for G1 then it only requires three attempts to find all the

patterns. However, for G2, we need 1003 attempts to find them. On the other hand, if

we use O(2) = (u1, u2, u3), we need 1003 and 3 attempts to find patterns in data graph

G1 and G2 respectively [3].

A

B C

Query Graph (Q) Data Graph (G1) Data Graph (G2)

A A

B B BC C C

C B B C C B

u1

u2 u3

v1

v2

v3 v5

v4

v1004

v1005

w1

w2

w3 w1002

w1003 w1004

w1005

- - - - - - - - - -

Figure 2.9: The Importance of Matching Order Selection in the Subgraph Isomor-

pishm Problem [3]

In the literature, most of the algorithms do not consider matching order selection as

we mentioned before. They randomly picks a query node to find all the matching

patterns. Therefore, if we can define a good matching order selection method, we can

avoid useless computation and execute time-effecient queries.

40

CHAPTER 3

BB-PLUS:AN APPROACH FOR SUBGRAPH ISOMORPHISM IN BIG

GRAPH DATABASE

The BB-Plus approach consists of heuristics for automatically selecting the best match-

ing order selection method using information of database (volatility and size) and

query (type and size) as an input to improve the performance of subgraph isomor-

pishm queries. The BB-Plus uses these heuristics to find the best matching order that

eliminates redundant candidate nodes at high level in order to reduce the search space

and execute queries with less time in large graph datasets. The pseudocode for the

approach is given in Algorithm 13.

Algorithm 13 The BB-Plus Approach
Input: Q : All query nodes, G : All data nodes,

volatilityOfDb : Volatility of database (Historical/Real-Time)

Output: M : All embeddings of Q in G

1: procedure BBPLUS(Q, G, volatilityOfDb)

2: if IsBeforeQuery then

3: if volatilityOfDb != RealT ime then

4: StoreCandidateNodeSizes(Q,G)

5: else

6: if containsSameNode(Q) then

7: O(Q)← Q

8: else

9: O(Q)← FindMatchingOrder(Q, volatilityOfDb))

10: M ← BBGraph(O(Q), G)

11: return M

41

The rules for selecting the best matching order selection methods are created based

on experiments. We created a "Matching Order Selection" dataset based on executing

different kinds of queries on three different databases which are the WorldCup, Pokec

and Population dataset. "Matching Order Selection" dataset contains information

about queries such as size of the databases (which they are applied), size of query

(nodes and edges) and type of query. Also it contains the matching order selection

method that gives the best performance. After we obtain this dataset, we create a

decision tree using this dataset and create rules to determine best matching order

selection method based on the type and size of the query as shown in in Figure 3.1.

The details of creation of this dataset and the decision tree is given in later in Chapter

3.8.

Query
Type

Edge Size Node Size

Degree
Centrality

Closeness
Centrality

Betweenness
Centrality

Eigenvector
Centrality

Path

Cyclic

Others

<= 5>4 >5<=4

Figure 3.1: Decision Tree for Determining Best Matching Order

According to these rules, we shaped the our approach, the BB-Plus, to perform effi-

ciently based on any queries on any databases. Therefore, we divided our approach

into two parts which are before querying and executing a query which is described in

the flow chart of the approach as shown in Figure 3.2.

42

Will the query be
executed in real-time

database?

Retrieve and calculate
node size for each

node type

Apply Degree
Centrality

What is type of the
query?

Apply
Closeness
Centrality

Apply
Eigenvector
Centrality

Apply Candidate Node
Selection Without

Candidates

Start

Is the database
real-time?

Graph Database

Yes

Store candidate node
size for each node

C(Q)

C(Q)

Do nothing

Start

Before Querying

While Executing the Query

Graph Database

Retrieve candidate
node sizes

No

C(Q)

Yes

Cyclic Query
Others

Path Queries

BB-Graph

Ordered Query Nodes (O(Q))

Apply
Betweenness

Centrality

Is query graph
contains same

node that has no
properties?

Yes

No

No

Query Edge
Size <= 4

Query Node
Size <= 5

Yes

No NoYes

Figure 3.2: Flowchart of the BB-Plus Approach

43

Before querying, the approach uses the volatility of database as an input and checks

the database is real-time or not. If the database is not real-time (historical), then the

approach calls StoreCandidateNodeSizes method to retrieve and calculate the candi-

date node size for each query node and store them in the database for further uses.

Since calculating candidate node size takes a lot of time, calculating it before query-

ing helps to improving the performance of subgraph isomorpishm queries.

Algorithm 14 Store Candidate Node Sizes
Input: Q : All query nodes, G : All data nodes

Output: C(Q) : Candidate Node Size for Q

1: procedure STORECANDIDATENODE(Q,G)

2: for all <u ∈ Q> do

3: Cu ← ∅ . Cu = Candidate node size of u

4: Cu ← FilterByLabel(u,G)

5: Cu ← FilterByRelationships(u,Cu, G)

6: if u has property then

7: Cu ← FilterByProperty(u,Cu, G)

8: Push Cu to C(Q)

9: Store C(Q) in database

However, the approach does not do anything if the database is real-time. Because

candidate node size could be changing based on the volatility of the database. Based

on this, the approach does not use candidate node sizes in real-time databases. It uses

a matching order that can be easily calculated at the time of query execution.

Algorithm 15 ContainsSameNode
Input: Q : All query nodes

Output: containsSameNode: true/false

1: procedure CONTAINSSAMENODE(Q)

2: if distinctNodeLabels(Q) = 1 and distinctEdgeLabels(Q) = 1 and

nodesHasSameProperties(Q) = 1 then

3: return true

4: else

5: return false

44

While executing a query, the approach first checks if the query graph contains same

nodes with ContainsSameNode method. If all the nodes are the same then the ap-

proach does not calculate matching order. Because, if all the nodes have the same

importance and putting anyone into the first place does not change the query per-

formance. Therefore, if the approach knows all nodes are the same, then it calls

BB-Graph algorithm at the first place to find all exact matches.

If all the nodes are not the same, the approach calls Find Matching Order to look

for the volatility of database and checks if the database is real-time or not again. If

the database is not real-time, then the approach calls the Candidate Node Selection

Without Calculating Candidates which is an extension of the Candidate Node Selec-

tion that uses already calculated candidate nodes size instead of calculating candidate

node size while executing a query. Therefore, it eliminates the time for calculating

candidate node size and performs more efficient queries.

Algorithm 16 Decision Tree
Input: Q : All query nodes

Output: matchingOrder : Matching Order Selection Method (DC-BC-CC-EC)

1: procedure DECISIONTREE(Q)

2: if typeOfQuery(Q) = Path then

3: matchingOrder = DegreeCentrality

4: else if typeOfQuery(Q) = Cyclic then

5: if numberOfEdges(Q) <= 4 then

6: matchingOrder = BetweennessCentrality

7: else

8: matchingOrder = DegreeCentrality

9: else if typeOfQuery(Q) = Others then

10: if numberOfNodes(Q) <= 5 then

11: matchingOrder = ClosenessCentrality

12: else

13: matchingOrder = EigenvectorCentrality

14: return matchingOrder

45

Algorithm 17 Find Matching Order
Input: Q : All query nodes, volatilityOfDb : Volatility of database

Output: O(Q) : Ordered Query Graph

1: procedure FINDMATCHINGORDER(Q)

2: O(Q)← ∅
3: if volatilityOfDb == RealT ime then

4: if decisionTree(Q) = DegreeCentrality then

5: O(Q)←MosBasedOnDC(Q)

6: else if decisionTree(Q) = BetweennessCentrality then

7: O(Q)←MosBasedOnBC(Q)

8: else if decisionTree(Q) = ClosenessCentrality then

9: O(Q)←MosBasedOnCC(Q)

10: else

11: O(Q)←MosBasedOnEC(Q)

12: else

13: Retrieve C(Q) from database

14: O(Q)←MosBasedOnCNSWithoutCandidates(Q,C(Q))

15: return O(Q)

On the other hand, if the database is real-time, the approach calls DecisionTree to

determine matching order selection based on the type and size of the query. Deci-

sionTree method uses TypeOfQuery to determine the type of query. It uses Tarjan’s

Algorithm and IsPathQuery method to determine whether the type of query is path

query, cyclic query or the others like recursive query.

After determining the type of query, the approach calls a matching order selection

method that performs best with these query types. These matching order selection

methods does not use data graph to give an order. Therefore, these matching order

selection methods does not give more accurate order like Candidate Node Selection.

However, they can be easily calculate and give great results when they match with the

right types of query.

46

Algorithm 18 Type of Query
Input: Q : All query nodes

Output: queryType : Type of query

1: procedure TYPEOFQUERY(Q)

2: if Tarjan(Q) != ∅ then

3: queryType← Cyclic

4: else if IsPathQuery(Q) == true then

5: queryType← Path

6: else

7: queryType← Others

8: return queryType

Algorithm 19 Is Path Query
Input: Q : All query nodes

Output: isPathQuery : true/false

1: procedure ISPATHQUERY(Q)

2: N1(Q) = 0 . N0(Q) : Number of nodes that has 1 degree in Q

3: N2(Q) = 0 . N1(Q) : Number of nodes that has 2 degree in Q

4: for all <u ∈ Q> do

5: if degree(u) = 1 then N1(Q) + +

6: else if degree(u) = 2 then N2(Q) + +

7: else

8: return false

9: if N1(Q) = 2 && N2(Q) = numberOfNodes(Q)− 2 then

10: return true

11: else

12: return false

47

Therefore, if the type of query is a "path query", then the approach applies the Degree

Centrality to get ordered query graph. If the type of query is a "cyclic query", then

the approach looks for edge size of query graph. If the edge size is smaller than

four, than it applies Betweenness Centrality. If not than it applies Degree Centrality

to get ordered query graph. If the type of query is an another type of query such as

"recursive query", then the approach looks for the node size of query graph. If the

query graph node size is smaller than five, then the approach calls for the Closeness

Centrality. If not, then it calls for Eigenvector Centrality to get ordered query graph.

If we take a more closer look to TypeOfQuery method, it uses Tarjan’s Algorithm and

IsPathQuery method to determine the query type. The method first applies IsPath-

Query to check if the query is a type of path query. IsPathQuery checks the graph

that has two nodes of degree 1 and the other n-2 nodes of degree 2. If the graph

matches with that structure, then we consider our query graph is a path query. If it

is not path query, then the method uses Tarjan’s algorithm which is the most effi-

cent algorithm to find if a graph contains any cycles. If Tarjan’s Algorithm returns

any cycles, then we consider our query graph is a cyclic query. If the query graph

is not "path" or "cyclic" type, then the graph type is consider as "others". The pseu-

docode for TypeOfQuery and IsPathQuery methods can be seen in Algorithm 18 and

19, respectively.

Finally, after the approach getting the best matching order based on the information

of database and query graph, it calls for the BB-Graph algorithm with ordered query

graph to find all the exact matches. Normally, the BB-Graph algorithm does not use

matching order selection. It matches query nodes with data nodes based on the order

of nodes in the query. However, with BB-Plus approach, the algorithm works based

on a calculated matching order. Therefore, the BB-Plus approach gives better results

than BB-Graph for most of the time.

48

Let’s explain the BB-Plus approach and show its difference with other algorithms

with a simple example. Let’s assume that we have query graph Q and data graph

G1 as shown in Figure 3.3. We want to find exact matches of Q in G, which is only

(v7, v6, v8, v9, v10).

A

B C

Query Graph (Q) Data Graph (G1)

A

B DB

C C C

u1

u2 u3

v1

v2

v3 v5

v4

v6

v9

v8

D

u4

B

A

v7

D

v11

E

v10

E
u5

Figure 3.3: An Example of Difference of BB-Plus from the algorithms

First, let’s see how many attempts are required for finding exact matches of Q in G

with a branch-and-bound algorithm without calculating matching order selection. In

this situtation, the algorithm uses a random matching order such as (A − B − C −
D − E). If the algorithm uses (A − B − C −D − E) order, then it needs to search

at (v1, v2, v3, v11), (v1, v4, v5), (v1, v6, v8) and (v7, v6, v8, v9, v10). Therefore, it

requires 4 attemps to find the exact match. The algorithm loses time for cannot prun-

ning out (v1, v2, v3, v11), (v1, v4, v5) and (v1, v6, v8) at early steps of query.

On the other hand, if we use BB-Plus approach, we can exploit from matching order.

Let’s say BB-Plus approach decided to use Degree Centrality in this example. There-

fore, the approach uses (E−D−A−B−C) order. In this situation, the approach only

search for (v7, v6, v8, v9, v10) which only requires 1 attempt. (E−D−A−B−C)

order helps to pruning at early steps and query efficiently with reduced search space.

In this chapter, new matching order selection methods that we defined in the devel-

oping process of BB-Plus approach will be described and visualized with examples

using the query graph Q and data graph G which are shown in Figure 3.4 and Fig-

ure 3.5 respectively. Matching order selection methods based on Degree Centrality,

Closeness Centrality, Betweenness Centrality, Eigenvector Centrality and Candidate

Node Selection are examined in this chapter.

49

AE

B C

G

D

H

F

q

z

y

x

t w

a c

b

Figure 3.4: The Example Query Graph

A
q0

E
q4

B
q1

C
q2

G
q6

D
q3

H
q7

F
q5

q

z

y

x

t w

a c

b

G
q8

D
q9

C
q10

F
q12

G
q13

H
q14

G
q15

B
q16

A
q17

C
q18

D
q19

F
q20

z

x

a
b

b

w

t

b

w

c

c

c

y

t

w

q

G
q11

d
ca

Figure 3.5: The Example Data Graph

50

3.1 Matching Order Selection Based On Degree Centrality

We use Degree Centrality to create a matching order in order to find exact matching

couples < u, v > efficiently by combining this order with a branch-and-bound algo-

rithm. The pseudocode of calculating a Matching Order Selection based on Degree

Centrality is given in Algorithm 20.

Algorithm 20 Matching Order Selection Based On Degree Centrality
Input: Q : All query nodes, G : All data nodes

Output: O(Q) : Query nodes in matching order

1: procedure MOSBYDC(Q, G)

2: O(Q)← ∅ . O(Q) : Query nodes in matching order

3: Od(Q)← DegreeCentrality(Q) . Od(Q): List of degree of query nodes

4: Od(Q)← Sortasc(Od(Q)) . Sort Od(Q) in ascending order

5: O(Q)← CreateMatchingOrder(Od(Q))

6: return O(Q

Algorithm 21 Create Matching Order
Input: Q : Query nodes

Output: O(Q) : Ordered query nodes

1: procedure CREATEMATCHINGORDER(Q)

2: O(Q)← ∅
3: for all <u ∈ Q> do

4: nextNode← u

5: for all <u′ ∈ Q> do

6: if order(nextNode) = order(u′) then

7: if ordermin(neighbor(nextNode)) > ordermin(neighbor(u′))

then

8: nextNode← u′

9: Add nextNode to O(Q)

10: Remove nextNode from Q

11: return O(Q)

51

First, the algorithm calls the DegreeCentrality method that given in Algorithm 1 to

obtain degree centrality values for all query nodes in query graph Q. DegreeCentral-

ity looks incoming and outgoing edges of each nodes to find degrees of each nodes

and assings degree centrality value to each query node. After calling DegreeCentral-

ity, the algorithm sorts query nodes ascendingly by their degree centrality values to

obtain Od(Q) and become ready for calling the CreateMatchingOrder method which

is described in Algorithm 21. The method looks at Od(Q) and if there are nodes with

same minimum degree then the algorithm prioritize the one that has neighbor nodes

with minimum degree centrality value and creates an order that called O(Q).

The BB-Plus approach uses Matching Order Selection based on Degree Centrality

when the database is real-time and the query type is path query. Also it uses for

cyclic queries that has more than 4 edges. The approach first find a matching order

with Matching Order Selection based on Degree Centrality and then call BB-Graph

algorithm to find the exact matches efficiently. The algorithm starts with the node that

has the first place in the order and it continues to branch from first matched node in

the order that connected to the already matched query nodes. The algorithm branches

for all query nodes in the order until all of them find matches in data graph.

Let’s assume that we want to find the exact matches of Q query graph in data graph G

using the BB-Plus approach and the approach uses Matching Order Selection based

on Degree Centrality for efficient querying. The algorithm first calls DegreeCentrality

to find the degree centrality values of query nodes which are (4, 2, 3, 2, 1, 2, 3, 1) for

(A,B,C,D,E, F,G,H) as explained in Figures 3.6 and 3.7.

After finding the degrees of each query nodes, the algorithm orders the query nodes in

ascending order and obtain Od(Q) = (E,H,B,D, F, C,G,A). Because of the degree

of E and H are the same, the algorithm looks for the degree of their neighbor nodes.

Since the degree of G (the neighbor of H) is smaller than A (the neighbor of E), the

algorithm prioritize H when putting it into the order. Then, the algorithm continues

with G which is connected to H . Then it adds F , D, C, B, A and E respectively to

the order based on their degrees. Therefore, the final version of the matching order

for the algorithm is defined as O(Q) = (H,G, F,D,C,B,A,E). All the steps for

finding Matching Order based on Degree Centrality can be seen in Figure 3.8, 3.9.

52

E A G H

B C D F

E A G H

B C D F

1

Od(Q) = {}

1.Step: Apply DegreeCentrality() Matching Order Selection based on Degree Centrality

E A G H

B C D F

Od(Q) = {}

E
Dc = 1

A G H

B C D F

Od(Q) = {E(1)}

E
Dc = 1

A G H

B C D F

1 2

34

Od(Q) = {E(1)}

E
Dc = 1

A
Dc = 4

G H

B C D F

Od(Q) = {E(1),A(4)}

E
Dc = 1

A
Dc = 4

G H

B C D F

1 2

3

Od(Q) = {E(1),A(4)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H

B C D F

1

Od(Q) = {E(1),A(4),G(3)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H
Dc = 1

B C D F

Od(Q) = {E(1),A(4),G(3),H(1)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H

B C D F

Od(Q) = {E(1),A(4),G(3)}

Figure 3.6: Calculating Degree Centrality for Query Graph Q (Part-1)

53

E
Dc = 1

A
Dc = 4

G
Dc = 3

H
Dc = 1

B C D F2

1

Od(Q) = {E(1),A(4),G(3),H(1)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H
Dc = 1

B
Dc = 2

C D F

Od(Q) = {E(1),A(4),G(3),H(1),B(2)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H
Dc = 1

B
Dc = 2

C D F31

2

Od(Q) = {E(1),A(4),G(3),H(1),B(2)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H
Dc = 1

B
Dc = 2

C
Dc = 3

D F

Od(Q) = {E(1),A(4),G(3),H(1),B(2),C(3)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H
Dc = 1

B
Dc = 2

C
Dc = 3

D F21

Od(Q) = {E(1),A(4),G(3),H(1),B(2),C(3)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H
Dc = 1

B
Dc = 2

C
Dc = 3

D
Dc = 2

F

Od(Q) = {E(1),A(4),G(3),H(1),B(2),C(3),D(2)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H
Dc = 1

B
Dc = 2

C
Dc = 3

D
Dc = 2

F

1

2

Od(Q) = {E(1),A(4),G(3),H(1),B(2),C(3),D(2)}

E
Dc = 1

A
Dc = 4

G
Dc = 3

H
Dc = 1

B
Dc = 2

C
Dc = 3

D
Dc = 2

F
Dc = 1

Od(Q) = {E(1),A(4),G(3),H(1),B(2),C(3),D(2),F(1)}

Figure 3.7: Calculating Degree Centrality for Query Graph Q (Part-2)

54

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

Apply CreateMatchingOrder() Matching Order Selection based on Degree Centrality

O(Q)={} Od(Q) = {E(1),F(1),H(1),B(2),D(2),G(3),C(3),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1)} Od(Q) = {E(1),F(1),B(2),D(2),G(3),C(3),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1)} Od(Q) = {E(1),F(1),B(2),D(2),G(3),C(3),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3)} Od(Q) = {E(1),F(1),B(2),D(2),C(3),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3)} Od(Q) = {E(1),F(1),B(2),D(2),C(3),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1)} Od(Q) = {E(1),B(2),D(2),C(3),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1)} Od(Q) = {E(1),B(2),D(2),C(3),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1),D(2)} Od(Q) = {E(1),B(2),C(3),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1),D(2)} Od(Q) = {E(1),B(2),C(3),A(4)

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1),D(2),C(3)} Od(Q) = {E(1),B(2),A(4)}

Figure 3.8: An Example of Creating Matching Order with Degree Centrality Method

(Part-1)

55

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1),D(2),C(3)} Od(Q) = {E(1),B(2),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1),D(2),C(3),B(2)} Od(Q) = {E(1),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1),D(2),C(3),B(2)} Od(Q) = {E(1),A(4)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1),D(2),C(3),B(2),A(4)} Od(Q) = {E(1)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1),D(2),C(3),B(2),A(4)} Od(Q) = {E(1)}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

O(Q)={H(1),G(3),F(1),D(2),C(3),B(2),A(4),E(1)} Od(Q) = {}

E
1

A
4

G
3

H
1

B
2

C
3

D
2

F
1

The Matching Order for Q is

0(Q) = (H, G, F, D, C, B, A, E)

Figure 3.9: An Example of Creating Matching Order with Degree Centrality Method

(Part-2)

56

After finding the matching order for theQ, the approach calls the BB-Graph algorithm

with the ordered query graph O(Q) to find all the exact matches of the data graph G.

As shown in Figure 3.10, BB-Graph branches for two graphs which are G1 and G2.

Although G1 prunes out after cannot find a matching for the query node C, G2 gives

the exact solution for Q.

D
q9

F
q12

H
q14

G
q15

b wc

A
q0

E
q4

B
q1

C
q2

G
q6

D
q3

H
q7

F
q5

q

z

y

x

t w

a c

b

12

5

1 2 3 4

4 3

7

G1

G2

6

8

Figure 3.10: Finding Matches for Q in G with the BB-Graph

3.2 Matching Order Selection Based On Closeness Centrality

We use Closeness Centrality to create a matching order in order to find exact matching

couples < u, v > efficiently by combining this order with a branch-and-bound algo-

rithm. The pseudocode of calculating a Matching Order Selection based on Closeness

Centrality is given in Algorithm 22.

At the first step, the algorithm calls the ClosenessCentrality method that given in Al-

gorithm 2 to generate closeness centrality values for all query nodes. ClosenessCen-

trality calculate the sum of the shortest paths between the query node and the other

nodes to find closeness value of each query nodes and assigns the closeness central-

ity value to each query node. After calling ClosenessCentrality, the algorithm sorts

query nodes in ascending order by their closeness centrality value to obtain Oc(Q)

57

Algorithm 22 Matching Order Selection Based On Closeness Centrality
Input: Q : All query nodes, G : All data nodes

Output: O(Q) : Query nodes in matching order

1: procedure MOSBASEDONCC(Q, G)

2: O(Q)← ∅ . O(Q) : Query nodes in matching order

3: Oc(Q)← ClosenessCentrality(Q) . Oc(Q): List of query nodes that

assigned closeness value

4: Oc(Q)← Sortasc(Oc(Q)) . Sort Oc(Q) with ascending order

5: O(Q)← CreateMatchingOrder(Oc(Q))

6: return O(Q)

and become ready for calling the CreateMatchingOrder method which is described

in Algorithm 21. The method looks at Oc(Q) and if there are nodes with same min-

imum closeness value then the algorithm picks the one that has neighbor nodes with

minimum closeness centrality value and puts them into an order that called O(Q).

The BB-Plus approach uses Matching Order Selection based on Closeness Centrality

when the database is real-time and the query type is defined as others (such as recur-

sive queries) and query node size is bigger than 5. The approach first find a matching

order with Matching Order Selection based on Closeness Centrality and then call BB-

Graph algorithm to find the exact matches efficiently. The BB-Graph algorithm starts

with the node that has the first place in the order and continues to branch from it based

on the order until finding all the exact matches for the query graph in the data graph.

Let’s assume that we want to find the exact matches of Q in G using the BB-Plus

approach and the approach uses Matching Order Selection based on Closeness Cen-

trality for efficient querying. The algorithm first calls ClosenessCentrality to find the

closeness centrality values of query nodes. In order to that, the algorithm first find

shortest distance between all the nodes as shown in Table 3.1. For all the query nodes,

the algorithm calculate the total shortest distance and divide it to 1 like shown in Table

3.2. Therefore, it obtains the closeness value for the query nodes called Oc(Q) which

consists of (A,B,C,D,E, F,G,H) with (0.10, 0.07, 0.08, 0.07, 0.06, 0.07, 0.09, 0.05)

values. After obtaining the closeness centrality values for query graph Q, the algo-

rithm sortsOc(Q) in ascending order and theOc(Q) become (H,E,B,D, F, C,G,A).

58

The algorithm calls CreateMatchingOrder method to get matching order O(Q) after

obtaining theOc(Q). The algorithm first pushesH , the node with minimum closeness

value, intoO(Q) and then pushG because it is the only node that connected withH . It

continues with F which is the node with the minimum closeness value that connected

to G. The algorithm push D, C, B, A and E into O(Q) respectively with following

the minimum closeness value rule. Therefore, the final version of the matching order

for the algorithm is defined asO(Q) = (H,G, F,D,C,B,A,E). The steps for finding

Matching Order based on Closeness Centrality can be seen in Figure 3.11, 3.12.

Table 3.1: Distance matrix of query graph Q

A B C D E F G H

A - 1 1 2 1 2 1 2

B 1 - 1 2 2 3 2 3

C 1 1 - 1 2 2 2 3

D 2 2 1 - 3 1 2 3

E 1 2 2 3 - 3 2 3

F 2 3 2 1 3 - 1 2

G 1 2 2 2 2 1 - 1

H 2 3 2 3 3 2 2 -

Table 3.2: Calculating closeness centrality of example query graph G

Nodes (v)
Total # of shortest paths between

v and the other nodes
Cc(v) (Closeness Centrality of v)

A 1 + 1 + 2 + 1 + 2 + 1 + 2 = 10 1 / 10 = 0.10

B 1 + 1 + 2 + 2 + 3 + 2 + 3 = 14 1 / 14 = 0.07

C 1 + 1 + 1 + 2 + 2 + 2 + 3 = 12 1 / 12 = 0.08

D 2 + 2 + 1 + 3 + 1 + 2 + 3 = 14 1 / 14 = 0.07

E 1 + 2 + 2 + 3 + 3 + 2 + 3 = 16 1 / 16 = 0.06

F 2 + 3 + 2 + 1 + 3 + 1 + 2 = 14 1 / 14 = 0.07

G 1 + 2 + 2 + 2 + 2 + 1 + 1 = 11 1 / 11 = 0.09

H 2 + 3 + 2 + 3 + 3 + 2 + 2 = 17 1 / 17 = 0.05

59

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

Apply CreateMatchingOrder() Matching Order Selection based on Closeness Centrality

O(Q)={} Od(Q) = {E,A,G,H,B,C,D,F}

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

O(Q)={H} Od(Q) = {E,A,G,B,C,D,F}

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

O(Q)={H} Od(Q) = {E,A,G,B,C,D,F}

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

O(Q)={H,G} Od(Q) = {E,A,B,C,D,F}

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

O(Q)={H,G} Od(Q) = {E,A,B,C,D,F}

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

O(Q)={H,G,F} Od(Q) = {E,A,B,C,D}

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

O(Q)={H,G,F} Od(Q) = {E,A,B,C,D}

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

O(Q)={H,G,F,D} Od(Q) = {E,A,B,C}

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

O(Q)={H,G,F,D} Od(Q) = {E,A,B,C}

E
0.06

A
0.10

G
0.09

H
0.05

B
0.07

C
0.08

D
0.07

F
0.07

O(Q)={H,G,F,D,C} Od(Q) = {E,A,B}

A
0.10

Figure 3.11: An Example of Creating Matching Order with Closeness Centrality

Method (Part-1)

60

E

0.06

A

0.10

G

0.09

H

0.05

B

0.07

C

0.08

D

0.07

F

0.07

O(Q)={H,G,F,D,C} Od(Q) = {E,B,A}

E

0.06

A

0.10

G

0.09

H

0.05

B

0.07

C

0.08

D

0.07

F

0.07

O(Q)={H,G,F,D,C,B} Od(Q) = {E,A}

E

0.06

A

0.10

G

0.09

H

0.05

B

0.07

C

0.08

D

0.07

F

0.07

O(Q)={H,G,F,D,C,B} Od(Q) = {E,A}

E

0.06

A

0.10

G

0.09

H

0.05

B

0.07

C

0.08

D

0.07

F

0.07

O(Q)={H,G,F,D,C,B,A} Od(Q) = {E}

E

0.06

A

0.10

G

0.09

H

0.05

B

0.07

C

0.08

D

0.07

F

0.07

O(Q)={H,G,F,D,C,B,A} Od(Q) = {E}

E

0.06

A

0.10

G

0.09

H

0.05

B

0.07

C

0.08

D

0.07

F

0.07

O(Q)={H,G,F,D,C,B,A,E} Od(Q) = {}

E

0.06

A

0.10

G

0.09

H

0.05

B

0.07

C

0.08

D

0.07

F

0.07

The Matching Order for Q is

0(Q) = (H, G, F, D, C, B, A, E)

Figure 3.12: An Example of Creating Matching Order with Closeness Centrality

Method (Part-2)

61

After finding the matching order for theQ, the approach calls the BB-Graph algorithm

with ordered query graph Q(O) to find all the exact matches of the data graph G. As

shown in Figure 3.13, the approach branches for two graphs which are G1 and G2.

Although G1 prunes out after cannot find a matching for the query node C, G2 gives

the exact solution for Q.

D
q9

F
q12

H
q14

G
q15

b wc

A
q0

E
q4

B
q1

C
q2

G
q6

D
q3

H
q7

F
q5

q

z

y

x

t w

a c

b

12

5

1 2 3 4

4 3

7

G1

G2

6

8

Figure 3.13: An Example of Finding All Exact Matches with BB-Graph

3.3 Matching Order Selection Based On Betweenness Centrality

We use Betweenness Centrality to create a matching order in order to find exact

matching couples < u, v > efficiently by combining this order with a branch-and-

bound algorithm. The pseudocode of calculating a Matching Order Selection based

on Betweenness Centrality is given in Algorithm 23.

At the first step, the algorithm calls the BetweennessCentrality method that given

in Algorithm 3 to assign betweenness centrality values for all query nodes in query

graph Q. BetweennessCentrality tries to find how many times a node is included on

a shortest path that is defined among all the nodes in the query nodes and assigns this

value to each query nodes to generate betweenness centrality values.

62

Algorithm 23 Matching Order Selection Based On Betweenness Centrality
Input: Q : All query nodes, G : All data nodes

Output: O(Q) : Query nodes in matching order

1: procedure MOSBASEDONBC(Q, G)

2: O(Q)← ∅ . O(Q) : Query nodes in matching order

3: Ob(Q)← BetweennessCentrality(Q) . Ob(Q): List of query nodes that

assigned betweenness value

4: Ob(Q)← Sortasc(Ob(Q)) . Sort Ob(Q) with ascending order

5: O(Q)← CreateMatchingOrder(Ob(Q))

6: return O(Q)

After calling BetweennessCentrality, the algorithm sorts each query nodes in ascend-

ing order by their betweenness centrality value to obtainOb(Q) and become ready for

calling the CreateMatchingOrder method which is described in Algorithm 21. The

method looks at Ob(Q) and it adds a start query node with the minimum betweenness

value into matching order list O(Q) and continue to add nodes that it is connected to

the already added nodes. When adding nodes to the matching order, if the algortihm

stuck between nodes that has the same betweenness value, it selects the one that has

neighbors with the minimum betweenness value.

The BB-Plus approach uses Matching Order Selection based on Betweenness Cen-

trality when the database is real-time, the query type is defined as cyclic query with

edge size smaller than 4. The approach first find a matching order with Matching

Order Selection based on Betweenness Centrality and then call BB-Graph algorithm

to find the exact matches efficiently. The BB-Graph algorithm starts with the node

that has the first place in the order and continues to branch from it based on the order

until finding all the exact matches for the query graph in the data graph.

Let’s assume that we want to find the exact matches of Q in G using the Match-

ing Order Selection based on Closeness Centrality and BB-Graph. At the first step,

the algortihm applies the BetweennessCentrality to assign betweenness value to each

query node. In order to that, the algorithm tries to find all the shortest path in the

query graph and determine how many times a nodes pases through them which is

shown in Table 3.3. Finally, it finds the betweenness value Ob(Q) for each nodes

63

Table 3.3: Calculating betweenness centrality of example query graph G

Nodes (v) Shortest path passes through the node
Cb(v)

(Betweenness Centrality of v)

A

B-E (B-A-E), B-G (B-A-G), B-H (B-A-G-H),

C-E (C-A-E), C-G (C-A-G), C-H (C-A-G-H),

D-E (D-C-A-E), E-F (E-A-G-F), E-G (E-A-G),

E-H (E-A-G-H)

10

B - 0

C
A-D (A-C-D), B-D (B-C-D),

B-F (B-C-D-F), D-E (D-C-A-E)
4

D B-F (B-C-D-F), C-F (C-D-F) 2

E - 0

F D-G (D-F-G), D-H (D-F-G-H) 2

G
A-F (A-G-F), A-H (A-G-H), B-H (B-A-G-H),

C-H (C-A-G-H), D-H (D-F-G-H), E-F (E-A-G-F),

E-H (E-A-G-H), F-H (F-G-H)

8

H - 0

which are (21, 0, 17, 3, 0, 4, 17, 0) for (A,B,C,D,E, F,G,H) respectively. After

finding the betweenness value of query nodes, the algorithm sorts them ascendingly

by their betweenness value and put them in Ob(Q) list. Therefore, the Ob(Q) is be-

come (B,E,H,D, F, C,G,A).

The algorithm calls CreateMatchingOrder method to get matching order O(Q). Be-

cause of the similarity of betweenness value of the query nodes B,E,H , the algo-

rithm checks the minimum betweenness value of neighbours of (B,E,H) which are

(17, 21, 17) and adds B into O(Q) because B is the first node that has neighbors with

the minimum betweenness value. The algorithm keeps searching for a query node

that branching from B and continues to adding C, D, F , G, H , A, E query nodes to

O(Q) with respect to their betweenness value. The steps for finding Matching Order

based on Betweenness Centrality can be seen in Figure 3.14, 3.15.

64

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

Apply CreateMatchingOrder() Matching Order Selection based on Betweenness Centrality

O(Q)={} Od(Q) = {H,E,B,D,F,C,G,A}

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

O(Q)={B} Od(Q) = {H,E,D,F,C,G,A}

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

O(Q)={B} Od(Q) = {H,E,D,F,C,G,A}

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

O(Q)={B,C} Od(Q) = {H,E,D,F,G,A}

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

O(Q)={B,C} Od(Q) = {H,E,D,F,G,A}

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

O(Q)={B,C,D} Od(Q) = {H,E,F,G,A}

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

O(Q)={B,C,D} Od(Q) = {H,E,F,G,A}

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

O(Q)={B,C,D,F} Od(Q) = {H,E,G,A}

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

O(Q)={B,C,D,F} Od(Q) = {H,E,G,A}

E
0

A
10

G
8

H
0

B
0

C
4

D
2

F
2

O(Q)={B,C,D,F,G} Od(Q) = {H,E,A}

Figure 3.14: An Example of Creating Matching Order with Betweenness Centrality

Method (Part-1)

65

E

0

A

10

G

8

H

0

B

0

C

4

D

2

F

2

O(Q)={B,C,D,F,G} Od(Q) = {H,E,A}

E

0

A

10

G

8

H

0

B

0

C

4

D

2

F

2

O(Q)={B,C,D,F,G,H} Od(Q) = {E,A}

E

0

A

10

G

8

H

0

B

0

C

4

D

2

F

2

O(Q)={B,C,D,F,G,H} Od(Q) = {E,A}

E

0

A

10

G

8

H

0

B

0

C

4

D

2

F

2

O(Q)={B,C,D,F,G,H,A} Od(Q) = {E}

E

0

A

10

G

8

H

0

B

0

C

4

D

2

F

2

O(Q)={B,C,D,F,G,H,A} Od(Q) = {E}

E

0

A

10

G

8

H

0

B

0

C

4

D

2

F

2

O(Q)={B,C,D,F,G,H,A,E} Od(Q) = {}

E

0

A

10

G

8

H

0

B

0

C

4

D

2

F

2

The Matching Order for Q is

0(Q) = (B, C, D, F, G, H, A, E)

Figure 3.15: An Example of Creating Matching Order with Betweenness Centrality

Method (Part-1)

66

At the final step, the algorithm calls the BB-Graph algorithm with ordered query

graph O(Q) and the data graph G. As shown in Figure 3.16, the algorithm branches

for two graph which are G1 and G2. G1 prunes out after cannot find a matching for

query node A. However, all query nodes find an exact matches in G2.

C
q2

G
q6

D
q3

H
q7

F
q5

t w

c

b

B
q16

y

2 3 4

5 6

A
q0

E
q4

B
q1

C
q2

G
q6

D
q3

H
q7

F
q5

q

z

y

x

t w

a c

b

2

5

7

3

G1

G2

1

4

6

8

1

Figure 3.16: An Example of Finding All Exact Matches with the BB-Graph

3.4 Matching Order Selection Based On Eigenvector Centrality

We use Eigenvector Centrality to create a matching order in order to find similar

patterns of query graph Q in data graph G efficiently by combining this order with

a branch-and-bound algorithm. The pseudocode of calculating a Matching Order

Selection based on Eigenvector Centrality is given in Algorithm 24.

The algorithm firstly applies the EigenvectorCentrality method that is given in Algo-

rithm 4 to map eigenvector values with each query node in query graph. Eigenvector-

Centrality tries to calculate the the measure of the influence of each query node in the

graph. In order to do that, it creates and adjanceny matrix, calculates the eigenvalue

and eigenvector values for the nodes based on this matrix and assigns eigenvector

67

Algorithm 24 Matching Order Selection Based On Eigenvector Centrality
Input: Q : All query nodes, G : All data nodes

Output: O(Q) : Query nodes in matching order

1: procedure MOSBASEDONEC(Q, G)

2: O(Q)← ∅ . O(Q) : Query nodes in matching order

3: Oe(Q)← EigenvectorCentrality(Q) . Oe(Q): List of query nodes that

assigned eigenvector value

4: Oe(Q)← Sortasc(Oe(Q)) . Sort Oe(Q) with ascending order

5: O(Q)← CreateMatchingOrder(Oe(Q))

6: return O(Q)

centrality values based on the eigenvector value that comes from maximum eigen-

value.

After calling EigenvectorCentrality, the algorithm sorts each query nodes in ascend-

ing order by their eigenvector centrality value to obtain Oe(Q) and become ready for

calling the CreateMatchingOrder method which is described in Algorithm 21. The

method looks at Oe(Q) and it adds a start query node with the minimum eigenvector

value into matching order list O(Q) and continue to add nodes that it is connected to

the already added nodes. When adding nodes to the matching order, if the algortihm

stuck between nodes that has the same betweenness value, it selects the one that has

neighbors with the minimum eigenvector value.

The BB-Plus approach uses Matching Order Selection based on Eigenvector Cen-

trality when the database is real-time and the query type is defined as "others" and

the query node size is bigger than 5. The approach first find a matching order with

Matching Order Selection based on Eigenvector Centrality and then call BB-Graph

algorithm to find the exact matches efficiently. The BB-Graph algorithm starts with

the node that has the first place in the order and continues to branch from it based on

the order until finding all the exact matches for the query graph in the data graph.

For the query graph Q and data graph G example, let’s explain BB-Plus approach and

how it uses Matching Order Selection based on Eigenvector Centrality for efficient

querying. In the beginning, the algorithm calls the EigenvectorCentrality method

to find the eigenvector centrality values which is called Oe(Q) for each query node

68

which are (0.54, 0.39, 0.46, 0.27, 0.21, 0.24, 0.35, 0.35, 0.13), for (A,B,C,D,E, F,G,H)

respectively. In order to calculate eigenvector centrality, the method creates an adja-

ceny matrix for query graphQ as shown in Table 3.4 and then applies all the steps that

shown in Figure 3.17. After finding the centrality values, the algorithm sorts Oe(Q)

by ascending order and Oe(Q) becomes (H,E, F,D,G,B,A,C).

Table 3.4: Adjacency matrix of query graph Q

A B C D E F G H

A - 1 1 0 1 0 1 0

B 1 - 1 0 0 0 0 0

C 1 1 - 1 0 0 0 0

D 0 0 1 - 0 1 0 0

E 1 0 0 0 - 0 0 0

F 0 0 0 1 0 - 1 0

G 1 0 0 0 0 1 - 1

H 0 0 0 0 0 0 1 -

In order to obtain a matching order for the query graph, the algorithm applies Cre-

ateMatchingOrder and it finds O(Q) = (H,G, F,D,C,B,A,E). Similar to the other

algorithms, it looks at the Oe(Q) and change the node places based on their eigen-

vector values. Nodes with minimum eigenvector values comes first in the method.

However if the nodes have the same eigenvector centrality value, then it picks the one

that has neighbors with minimum eigenvector centrality value. Each step for finding

a matching order with the Matching Order based on Eigenvector Centrality is given

in Figure 3.18, 3.19.

Finally, the algorithm calls the BB-Graph algorithm with ordered query graph Q(Q)

and the data graph G. As shown in Figure 3.20, the algorithm braches for two graph

which are G1 and G2. G1 prunes out after cannot find a matching for query node A.

However, all query nodes find an exact matches in G2.

69

01000000

10100001

01001000

00000001

00100100

00001011

00000101

01010110

A

0)(eCIA

01000000

10100001

01001000

00000001

00100100

00001011

00000101

01010110

0

0

0

0

0

0

0

0

8

7

6

5

4

3

2

1

u

u

u

u

u

u

u

u

0

01000000

10100001

01001000

00000001

00100100

00001011

00000101

01010110

)det(

IA

 60.21 06.22 72.13 34.14 60.15 70.16 37.07 21.08

The largest eigenvalue is 2.60. So the corresponding eigenvector:

6.21000000

16.2100001

016.201000

0006.20001

00106.2100

000016.211

0000016.21

01010116.2

0

0

0

0

0

0

0

0

8

7

6

5

4

3

2

1

u

u

u

u

u

u

u

u

 66.41 32.42 60.33 97.24 38.25 60.16 25.17 01.08

The largest eigenvalue is -0.01 and the eigenvector associated to it:

13.0

35.0

24.0

21.0

27.0

46.0

39.0

54.0

 A B C D E F G H

Ce = {0.54, 0.39, 0.46, 0.27, 0.21, 0.24, 0.35, 0.13}

Figure 3.17: Calculation of Eigenvector Centrality for each Node

70

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.27

F
0.24

Apply CreateMatchingOrder() Matching Order Selection based on Eigenvector Centrality

O(Q)={} Od(Q) = {H,E,F,D,B,G,C,A}

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.07

F
0.24

O(Q)={H} Od(Q) = {E,F,D,B,G,C,A}

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.27

F
0.24

O(Q)={H} Od(Q) = {E,F,D,B,G,C,A}

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.27

F
0.24

O(Q)={H,G} Od(Q) = {E,F,D,B,C,A}

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.27

F
0.24

O(Q)={H,G} Od(Q) = {E,F,D,B,C,A}

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.27

F
0.24

O(Q)={H,G,F} Od(Q) = {E,D,B,C,A}

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.27

F
0.24

O(Q)={H,G,F} Od(Q) = {E,D,B,C,A}

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.27

F
0.24

O(Q)={H,G,F,D} Od(Q) = {E,B,C,A}

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.27

F
0.24

O(Q)={H,G,F,D} Od(Q) = {E,B,C,A}

E
0.21

A
0.54

G
0.35

H
0.13

B
0.39

C
0.46

D
0.27

F
0.24

O(Q)={H,G,F,D,C} Od(Q) = {E,B,A}

Figure 3.18: An Example of Creating Matching Order with Eigenvector Centrality

Method (Part-1)

71

E

0.21

A

0.54

G

0.35

H

0.13

B

0.39

C

0.46

D

0.27

F

0.24

O(Q)={H,G,F,D,C} Od(Q) = {E,B,A}

E

0.21

A

0.54

G

0.35

H

0.13

B

0.39

C

0.46

D

0.27

F

0.24

O(Q)={H,G,F,D,C,B} Od(Q) = {E,A}

E

0.21

A

0.54

G

0.35

H

0.13

B

0.39

C

0.46

D

0.27

F

0.24

O(Q)={H,G,F,D,C,B} Od(Q) = {E,A}

E

0.21

A

0.54

G

0.35

H

0.13

B

0.39

C

0.46

D

0.27

F

0.24

O(Q)={H,G,F,D,C,B,A} Od(Q) = {E}

E

0.21

A

0.54

G

0.35

H

0.13

B

0.39

C

0.46

D

0.27

F

0.24

O(Q)={H,G,F,D,C,B,A} Od(Q) = {E}

E

0.21

A

0.54

G

0.35

H

0.13

B

0.39

C

0.46

D

0.27

F

0.24

O(Q)={H,G,F,D,C,B,A,E} Od(Q) = {}

E

0.21

A

0.54

G

0.35

H

0.13

B

0.39

C

0.46

D

0.27

F

0.24

The Matching Order for Q is

0(Q) = (H, G, F, D, C, B, A, E)

Figure 3.19: An Example of Creating Matching Order with Eigenvector Centrality

Method (Part-1)

72

D
q9

F
q12

H
q14

G
q15

b wc

A
q0

E
q4

B
q1

C
q2

G
q6

D
q3

H
q7

F
q5

q

z

y

x

t w

a c

b

12

5

1 2 3 4

4 3

7

G1

G2

6

8

Figure 3.20: An Example of Finding All Exact Matches with the BB-Graph

3.5 Matching Order Selection Based On Hybrid Centrality

Based on the success of graph centrality measures on matching order selection, we

decided to create a new matching order selection method that combines all graph

centrality measures to improve the performance. The pseudocode of calculating a

Matching Order Selection based on Hybrid Centrality is given in Algorithm 25.

Algorithm 25 Matching Order Selection Based On Hybrid Centrality
Input: Q : All query nodes, G : All data nodes

Output: O(Q) : Query nodes in matching order

1: procedure MOSBASEDONHC(Q, G)

2: O(Q)← ∅ . O(Q) : Query nodes in matching order

3: Oh(Q)← HybridCentrality(Q) . Oh(Q): List of query nodes that

assigned hybrid value

4: Oh(Q)← Sortasc(Oh(Q)) . Sort Oh(Q) with ascending order

5: O(Q)← CreateMatchingOrder(Oh(Q))

6: return O(Q)

73

Algorithm 26 Hybrid Centrality
Input: Q : Query graph

Output: Cc(Q) : Closeness Centrality values for nodes of graph Q

1: procedure HYBRIDCENTRALITY(Q)

2: Ch(Q)← ∅
3: Od(Q)← DegreeCentrality(Q)

4: Oc(Q)← ClosenessCentrality(Q)

5: Ob(Q)← BetweennessCentrality(Q)

6: Oe(Q)← EigenvectorCentrality(Q)

7: for i from 1 to |Q|> do

8: orderd = order of ith element of Od(Q)

9: orderc = order of ith element of Oc(Q)

10: orderb = order of ith element of Ob(Q)

11: ordere = order of ith element of Oe(Q)

12: Ch(vi) = (orderd + orderc + orderb + ordere)/4

13: Push Cc(hi) to Ch(Q)

14: return Ch(Q)

The algorithm firstly applies the HybridCentrality method that is given in Algorithm

26 to collect all graph centrality values. The method calculates degree, closeness,

betweenness and eigenvector centrality values and find orders of query nodes for each

centrality value. After finding the centrality values, it get averages of them. After

calling HybridCentrality, the algorithm sorts each query nodes in ascending order

by their values to obtain Oh(Q) and then calls CreateMatchingOrder method. The

method looks at Oh(Q) and it adds a start query node with the minimum value into

matching order list O(Q) and continue to add nodes that it is connected to the already

added nodes. If there are nodes with same value, then it selects the one that has

neighbors with the minimum value.

The BB-Plus approach does not use this centrality because of its performance prob-

lem. When we are experimenting on different dataset, we see that each graph central-

ity measure fits with a spesific size and type of query. Combining them, makes them

weaker on these queries. Therefore, we do not prefer to use this centrality measure.

74

3.6 Matching Order Selection Based On Candidate Node Selection

We use Matching Order Selection Based On Candidate Node Selection to create a

matching order in order to find exact matches of Q in G efficiently by combining this

order with a branch-and-bound algorithm. The pseudocode of the Matching Order

Selection based on Candidate Node Selection is given in Algorithm 27.

Algorithm 27 Matching Order Selection Based On Candidate Node Selection
Input: Q : All query nodes, G : All data nodes,

Output: M : All embeddings of Q in G

1: procedure BBGRAPHWITHCNS(Q, G)

2: O(Q)← ∅ . O(Q) : Query nodes in matching order

3: for all <u ∈ Q> do

4: Cu ← ∅ . Cu = Candidate nodes of u

5: List(Ceu)← ∅
6: Cu ← FilterByLabel(u,G)

7: Cu ← FilterByRelationships(u,Cu, G)

8: if u has property then

9: Cu ← FilterByProperty(u,Cu, G)

10: for all <e ∈ edgesOf(u)> do

11: Ceu = createCandidateEntity(label(e), label(u))

12: for all <v ∈ edgesOf(u)> do

13: if e = v then

14: Ceu.getSize() + +

15: Push Ceu to List(Ceu)

16: Ocns(Q)← SortByCandidateEntityasc(O(Q), List(Ceu)) . Sort O(Q)

with ascending order based on Ceu

17: O(Q)← CreateMatchingOrder(O(Q))

18: M ← BBGraph(O(Q), G)

19: return M

75

In the beginning, the algorithm uses filtering methods of the BB-Graph algorithm

to obtain candidate node size for each query node. Firslty, it applies filterByLabel to

narrow the candidate node list down by finding matching labels of both query and data

nodes. The pseudo code for the filterByLabel can be found in Algorithm 28. Then, the

algorithm applies filterByRelationships to the candidate node list to eliminate the data

nodes which have not the same incoming and outgoing nodes with the query nodes.

The pseudo code for the filterByRelationships can be found in Algorithm 29. The last

step for finding candidate nodes, the algorithm uses filterByProperty to eliminate the

data nodes that have not same property value with query node’s if there is any. The

pseudo code for the filterByProperty can be found in Algorithm 30.

Algorithm 28 Filter By Label
Input:: u : Query node,

l(u) : Label of query node,

Cu : Set of candidate nodes for u

1: procedure FILTERBYLABEL(u)

2: for all <v ∈ G> do

3: if l(u) = l(v) then

4: Add v into Cu

5: return Cu

Algorithm 29 Filter By Relationship
Input: u : Query node, Cu : Candidate set for u constructed by label

Output: C∗u : Set of candidate nodes for u

1: procedure FILTERBYRELATIONSHIP(u, Cu)

2: C∗u ← ∅
3: LG ← List of groups G of the adjacent relationships of u based on

<type, direction>

4: for all <v ∈ Cu> do

5: if foreach G < type, direction > in LG, v has at least G <

type, direction > many number of adjacent relationships of type type and di-

rection direction then

6: Add v into C∗u

7: return C∗u

76

Algorithm 30 Filter By Property
Input: u : Query node,

Cu : Candidate set for u constructed by label and relationships

Output: C∗u : Set of candidate nodes for u

1: procedure FILTERBYPROPERTY(u, Cu)

2: C∗u ← ∅
3: for all <v ∈ Cu> do

4: if foreach different property p of u, v satisfies the same value conditions

as u for p then

5: Add v into C∗u

6: return C∗u

Algorithm 31 Create Candidate Entity
Input: le : Label of edge, lu : Label of node

Output: Cue : Candidate Entity

1: procedure CREATECANDIDATEENTITY(le, lu)

2: Ceu.setLabelOfEdge(le)

3: Ceu.setLabelOfNode(lu)

4: Ceu.setSize(0)

5: return Ceu

Algorithm 32 Sort By Candidate Entity
Input: O(Q) : Ordered Query Nodes, List(Ceu) : List of Candidate Entities

Output: O(Q) : Ordered Query Nodes

1: procedure SORTBYCANDIDATEENTITY(O(Q), List(Ceu))

2: List(Ceu)← Sortasc(List(Ceu))

3: for all <Ceu ∈ List(Ceu)> do

4: if !Ceu.getNodeLabel() ∈ O(Q) then

5: Push Ceu.getNodeLabel() to O(Q)

6: return O(Q)

77

After the algorithm finding the candidate node list size for query nodes, it creates

Candidate Entities for each edges of query nodes with the CreateCandidateEntity

method which can be found in Algorithm 31. It basically gives the total number of

edges (that matches query node’s labels) of candidates nodes. Each candidate entity

consists of an edge label, node label and size. After calculating candidate entities, sort

them candidate entity’s sizes with the SortByCandidateEntity method which can be

found in Algorithm 32 to obtain Ocns(Q). If a node’s candidate entity size is smaller

than the others, than it finds itself a better place at the order.

Then, CreateMatchingOrder method is called to find a matching order for the query

node. The method puts query node with minimum candidate node size first. However,

if the candidate node list size is same with another query node, then it looks at their

candidate node size of their neighbor. The method puts first the query node that has

neighbor with minimum value. Because when it is branching from the data graph,

big portion of the data nodes are eliminated at the first steps and it requires less can-

didate nodes to check in order to obtain all the matchings. Therefore, the algorithm

can eliminate redundant candidate nodes and reach to the goal state in less time by

reducing the search space.

The BB-Plus approach uses an extended version of Matching Order Selection based

on Candidate Node Selection when the database is not real-time which is called

Matching Order Selection based on Candidate Node Selection Without Candidates

and the pseudocode for the algorithm given in Algorithm 33. The approach calcu-

lates candidate node size and store it to database before querying. It calculates the

candidate node size based on filterByLabel, filterByRelationships and filterByProp-

erty. While querying it uses that candidate node size information and calls Matching

Order Selection based on Candidate Node Selection Without Candidates to create a

matching order. This algorithm calculates matching order in less time in compare to

Matching Order Selection based on Candidate Node Selection. Because, it uses al-

ready calculated candidates nodes and does not lost time for calculating them. After

finding the matching order, the approach calls BB-Graph algorithm to find the exact

matches efficiently. The BB-Graph algorithm starts with the node that has the first

place in the order and continues to branch from it based on the order until finding all

the exact matches for the query graph in the data graph.

78

Algorithm 33 Matching Order Selection based on Candidate Node Selection Without

Candidates
Input: Q : All query nodes

C(Q) : Candidate node size list of Q

Output: O(Q) : Query nodes in matching order

1: procedure MOSBASEDONCNSWITHOUTCANDIDATES(Q, C(Q))

2: O(Q)← ∅ . O(Q) : Query nodes in matching order

3: for all <u ∈ Q> do

4: Cu = Candidate node size of u from C(Q)

5: Push Cu and u to O(Q)

6: Ocns(Q)← Sortasc(O(Q)) . Sort Ocns(Q) with ascending order based on

candidate node size

7: O(Q)← CreateMatchingOrder(O(Q))

8: return O(Q)

In the example, the Matching Order Selection based on Candidate Node Selection

firstly applies FilterByLabel method as shown in Table 3.5 to get a candidate node

list. According to the table, query nodeA is matching with q0 and q17, B is matching

with q1 and q16, C is matching with q2, q10 and q18, D is matching with q3, q9 and

q19, E is matching with q4, F is matching with q5, q12 and q20, G is matching with

q6, q8, q11, q13, q15 and H is matching with q7, q14 in the data graph.

After applying the FilterByLabel method, it calls the FilterByRelationships method to

apply on the candidate node list as shown in Table 3.6. According to the table, for the

query node A, q17 is eliminated because it does not have a relationship with a node

that have label E. For the query node B, the candidate node list remains the same

because all of its relationships exits in data nodes q1 and q16. For the query node

C, q18 is eliminated because it does not have a relationship with a node that have

label B. q10 is also eliminated because it does not have a relationship with nodes that

have label A and B. For the query node D, the candidate node list remains the same

because all of its relationships exits in data nodes q3, q9 and q19. For the query node

D, the candidate node list also remains the same because all of its relationships exits

in data node q4. For the query node F , q20 is eliminated because it does not have a

79

Table 3.5: FilterByLabel method applies to Q

Nodes Candidate Node List (Nodes with same label)

A q0, q17

B q1, q16

C q2, q10, q18

D q3, q9, q19

E q4

F q5, q12, q20

G q6, q8, q11, q13, q15

H q7, q14

relationship with a node that have label G. For the query node G, q8 is eliminated

because it does not have a relationship with a node that have label A. q11 is also

eliminated because it does not have a relationship with a node that have label F . q13

is also eliminated because it does not have a relationship with a node that have labelA.

Lastly for the query nodeH , the candidate node list also remains the same because all

of its relationships exits for both data node q7 and q14. Finally, the algorithm looks

that if is there any property on any query node. Because of lack of properties, the

algorithm does not apply FilterByProperty method.

Table 3.6: FilterByRelationship method applies to Q

Nodes Incoming Relationships Outgoing Relationships Candidate Node List

A C->A A->B, A->E, A->G q0

B A->B B->C q1, q16

C B->C C->D q2

D C->D D->F q3, q9, q19

E A->E - q4

F D->F F->G q5, q12

G A->G, F->G G->H q6, q15

H G->H - q7, q14

80

After all the filtering methods, the candidates nodes size for each query node is de-

fined as (2, 2, 1, 3, 1, 1, 2, 2) for (A,B,C,D,E, F,G,H). The algorithm sorts them

in ascending order to obtain Ocns(Q) = (C,E, F,A,B,G,H,D) and calls CreateM-

atchingOrder. Therefore, it obtains O(Q) = (C,A,E,D,G, F,D,H). All the steps

for finding a matching order with the Matching Order Selection based on Candidate

Node Selection is given in Figure 3.21, 3.22.

81

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

Apply CreateMatchingOrder() Matching Order Selection based on Candidate Node Selection

O(Q)={} Od(Q) = {C,E,F,A,B,G,H,D}

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

O(Q)={C} Od(Q) = {E,F,A,B,G,H,D}

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

O(Q)={C} Od(Q) = {E,F,A,B,G,H,D}

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

O(Q)={C,A} Od(Q) = {E,F,B,G,H,D}

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

O(Q)={C,A} Od(Q) = {E,F,B,G,H,D}

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

O(Q)={C,A,E} Od(Q) = {F,B,G,H,D}

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

O(Q)={C,A,E} Od(Q) = {F,B,G,H,D}

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

O(Q)={C,A,E,B} Od(Q) = {F,G,H,D}

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

O(Q)={C,A,E,B} Od(Q) = {F,G,H,D}

E
1

A
2

G
2

H
2

B
2

C
1

D
3

F
1

O(Q)={C,A,E,B,G} Od(Q) = {F,H,D}

Figure 3.21: An Example of with the MosBasedOnCNS (Part-1)

82

E

1

A

2

G

2

H

2

B

2

C

1

D

3

F

1

O(Q)={C,A,E,B,G} Od(Q) = {F,H,D}

E

1

A

2

G

2

H

2

B

2

C

1

D

3

F

1

O(Q)={C,A,E,B,G,F} Od(Q) = {H,D}

E

1

A

2

G

2

H

2

B

2

C

1

D

3

F

1

O(Q)={C,A,E,B,G,F} Od(Q) = {H,D}

E

1

A

2

G

2

H

2

B

2

C

1

D

3

F

1

O(Q)={C,A,E,B,G,F,H} Od(Q) = {D}

E

1

A

2

G

2

H

2

B

2

C

1

D

3

F

1

O(Q)={C,A,E,B,G,F,H} Od(Q) = {D}

E

1

A

2

G

2

H

2

B

2

C

1

D

3

F

1

O(Q)={C,A,E,B,G,F,H,D} Od(Q) = {}

E

1

A

2

G

2

H

2

B

2

C

1

D

3

F

1

The Matching Order for Q is

0(Q) = (C, A, E, B, G, F, H, D)

Figure 3.22: An Example of with the MosBasedOnCNS (Part-2)

After finding the matching order, the BB-Plus approach calls the BB-Graph algorithm

with the ordered query graph O(Q) and the data graph G. As shown in Figure 3.23,

the algorithm branches for only graph G1 that contains all the exact matches for Q.

A
q0

E
q4

B
q1

C
q2

G
q6

D
q3

H
q7

F
q5

q

z

y

x

t w

a c

b

1

2
5

8

G1

4

3

6

7

Figure 3.23: An Example of Finding All Exact Matches with the MosBasedOnCNS

83

3.7 Comparison of Matching Order Selection Methods

In this chapter, all matching order selection methods are compared to each other based

on how they are created and how they act in different types of queries in different

types of databases.

3.7.1 Based on Their Creation Methods

All the matching order selection methods are distinguished from each other with their

way of creating their order. However, they can be divided into two groups according

to whether they use fundamental graph centrality measures or not.

The first group consists of the Matching Order Selection Based On Degree Centrality,

Matching Order Selection Based On Closeness Centrality, Matching Order Selection

Based On Betweenness Centrality, Matching Order Selection Based On Eigenvector

Centrality. All of them uses fundamental graph centrality measures on query graph

to find a matching order and does not consider the data graph. Their only concern is

detecting the most important nodes in query graph and then finding candidate nodes

in data graph based on the order that determined with importance of query nodes.

Their time of calculating matching order is shorter than the other group. Therefore if

they create a great matching order, they will beat the other groups. Because they do

not spend too much time create matching order and spends all time to finding exact

matches. However if they create a bad matching order because of not considering the

data graph, finding the exact matches in the data graph can take too much time and

the algorithms will lose their effectiveness.

The second group consists of Matching Order Selection Based On Candidate Node

Selection that does not use graph centrality measures. However, it work on both the

query and data graph by finding candidate nodeon the data graph for the query graph.

Because it touches the data graph, it can find a better matching order and get more

efficient results. However, the time of calculating matching order takes much time in

compare to the first group. Therefore, they can not compete with the ones in the first

group because they spend extra time for gathering candidate node to create a matching

order. On the other hand, if these candidate sizes are predefined in the database or we

84

do not consider the time for creating a matching order, it can be seen that they give

quicker results than others.

A B

C D

Figure 3.24: Example Query Graph for Comparison of the Improved BB-Graph Al-

gorithms based on Matching Order

A

q1001

B
q1003

C
q0

D

q1006

C
q1000

A

q1010

B
q1011

C
q1009

D

q1012

B
q1002

B
q1005

D

q1008

D

q1007

B
q1004

Figure 3.25: Example Data Graph 1 for Comparison of the Improved BB-Graph Al-

gorithms based on Matching Order

85

A

q1001

B
q1

D

q0

B
q1000

C
q1002

A

q1003

B
q1004

D

q1005

Figure 3.26: Example Data Graph 2 for Comparison of the Improved BB-Graph Al-

gorithms based on Matching Order

Let’s explain the effect of creating matching order with an example using example

query graph as shown in Figure 3.24 and data graphs as shown in Figure 3.25, 3.26

and take the Matching Order Selection Based On Degree Centrality from the first

group and the Matching Order Selection Based On Candidate Node Selection from

the second group. There is only one exact matches at the both data graphs.

The Matching Order Selection Based On Degree Centrality creates a matching order

C − A − B − D using query graph. This matching order is good for the example

second data graph, because it only takes 2 attemps to find the exact match. However,

for the example first data graph, 1002 attempts are required to find it.

On the other hand, the Matching Order Selection Based On Candidate Node Selection

adapts the matching order based on the data graph. It looks at the candidate node size

for the query graph and finds the matching orderA−D−B−C for the first data graph

and C −A−D−B for the second graph. Only 4 and 2 attemps are required for first

data graph and second graph respectively. Therefore the methods of second group

are good at finding a good matching order to find exact matches efficiently. However,

they can get behind the algorithms of first group like at the second graph. Because

both algorithms find the matching order but it takes more time find a matching order

for the algorithms of second group.

86

3.7.2 Based on the Type of Queries

The algorithms of first group can affected by the query types. They can give greater

performance at specific query types. For example, degree centrality gives greater

results than the others at path queries. Degree centrality also give greater results at

cyclic queries as betweenness centrality. On the other hand, closeness and eigenvector

centrality give greater results at other types of queries.

The algorithms of second group also does not affected by the query types. Because,

they adapt themselves to changing data graphs and they can act with the best perfor-

mance for the each query types as we can see from Figure 3.24, 3.25 and 3.26.

3.7.3 Based on the Volatility of Databases

Matching order selection methods of first group does not affected by the volatility of

database because they do not consider data graph while they are calculating. There-

fore, they are great when working on real-time databases.

On the other hand, matching order selection methods of second group consider both

query and data graph while they are calculating. Therefore, they spend a lot of time

for creating a matching order as we mentioned earlier. The time for creating matching

order needs to be eliminated by calculating candidate nodes or edges before querying.

If the database is real-time and changes very fast, then we cannot calculate candidate

nodes or edges before querying and the total process time querying can be increased.

3.8 Determining Matching Order Selection Methods

As we mentioned earlier, the approach uses rules to determine the best matching order

for queries that executed on any real-time databases. Graph centrality based match-

ing order selection methods are used in real-time databases. However, there is no

exact rules for which matching order selection method performs best at which query.

Therefore, we used machine learning to create rules for determining best matching

order selection method.

87

At first, we execute queries on three different databases which are the WorldCup,

Pokec and Population dataset. We execute 100 queries on the WorldCup, 50 queries

on the Pokec and 50 queries on the Population dataset for the training data set. Also

we execute 20 queries on the WorldCup, 10 queries on the Pokec and 10 queries on

the Population dataset for the test data set.

The information about training and test dataset for determining matching order se-

lection can be found in Figure 3.7 and the dataset can be found Appendix A. In both

training and test dataset, we generate different queries with different inputs that has

executed on these three dataset. As shown in Figure 2.9, eight attributes used in the

dataset which are data graph node size, data graph edge size, query graph node size,

query graph edge size, number of distinct query node label, number of distinct query

edge label, number of query node with properties and query type. We recored the best

matching order selection method for each query.

Table 3.7: Information about Determining Matching Order Dataset

Training Data Size Test Data Size] of Attributes Output Values

190 39 8

Degree Centrality

Betweenness Centrality

Closeness Centrality

Eigenvector Centrality

BB-Graph

We used Weka Software for creating decision tree based on the training and test

dataset. We applied J48 to create the decision tree as shown in Figure 3.1 and get

results for criticize its performance.

Based on the decision tree, if the query type is "path query", degree centrality gives

the best results. On the other hand, if the query type is "cyclic query", the tree

branches and look for edge sizes. If the edge size is bigger than four, then it se-

lects degree centrality again. However, if the edge size is equals or smaller than four,

then it selects betweenness centrality. Finally, if the query type is "others", then it

branches based on node size. If the node size is bigger than five, then it selects eigen-

vector centrality. If not, then it selects closeness centrality.

88

Table 3.8: Attributes of Determining Matching Order Dataset

Attributes Type

Data Graph Node Size Small, Medium, Big

Data Graph Edge Size Small, Medium, Big

Query Graph Node Size Numeric

Query Graph Edge Size Numeric

Number of Distinct Node Label Numeric

Number of Distinct Edge Label Numeric

Number of Nodes with Properties Numeric

Query Type Path, Cyclic, Others

According to the accuracy values as shown in Table 3.9, the decision tree correctly

classifies the matching order selection methods with 79.48% percentage. In addi-

tion to the accuracy values, the confusion matrix for each matching order selection

methods are given in Table 3.10.

Table 3.9: Detailed Accuracy for each Matching Order Selection Method

Precision Recall F-Measure

Degree Centrality 0.81 0.94 0.87

Betweenness Centrality 0.83 0.71 0.77

Closeness Centrality 0.75 0.67 0.70

Eigenvector Centrality 0.75 0.60 0.67

Average 0.79 0.80 0.79

Table 3.10: Confusion Matrix for each Matching Order Selection Method

Degree

Centrality

Betweenness

Centrality

Closeness

Centrality

Eigenvector

Centrality

Degree Centrality 17 1 0 0

Betweenness Centrality 2 5 0 0

Closeness Centrality 2 0 6 1

Eigenvector Centrality 0 0 2 3

89

CHAPTER 4

EXPERIMENTS AND RESULTS

In this section, the BB-Graph, Neo4j’s Cypher, DualIso, GraphQl, TurboIso, VF3 and

our approach BB-Plus are compared based on their time complexity. The algorithms

were executed with different type of queries in different graph databases that created

with importing WorldCup, Pokec and Population dataset via Neo4j GDMBS. Each

dataset were considered as both real-time and historical when running experiments.

4.1 The Dataset

The WorldCup is a publicly available dataset that contains information about matches,

players, squads, countries etc. and their relationships for all World Cup Tournaments

from 1930 to present day [37]. The Data Model for WorldCup dataset can be seen in

Figure 4.1.

The Pokec dataset is publicly available and it consists of data from Pokec which is one

of the biggest social network platform in Slovakia. The dataset contains anonymized

data from Pokec network, which is about the user’s profile like gender, age, hobbies,

interests, education, likes. Additionaly, it contains friendships relation between all

the users [38]. The Data Model for Pokec dataset can be seen in Figure 4.2.

Our last dataset, the Population dataset, is not publicly available but it has very large

and complex data to show the performance of all algorithms. The population database

is owned by Kale Yazılım. It contains anonymized population data of Turkey. It

includes personal information of people like gender, address etc. and the relationships

like mother, father, spouse between these people.

90

Graph databases are good for all the datasets because they are both large, complex

and highly connected. Especially, Population dataset needs expensive join operations

to execute queries. Therefore, all the dataset is imported to Neo4j database with using

Java API. Statistics of the WorldCup, Pokec and Population graph databases can be

seen in Table 4.1.

Figure 4.1: The Data Model for WorldCup dataset

Occupat�on

Preferences

User

L�kesProf�le

Relat�onsh�pInfo

Sports

Language

Userfr�ends

User

fr�ends

worksIn

act�veDo�ng

Sports
pass�veDo�ng

hasProf�le

look�ngFor

talks

hasL�kes

prefers

fr�ends

Figure 4.2: The Data Model for Pokec dataset

91

Table 4.1: Statistics of the WorldCup, Pokec and Population Graph Databases

WorldCupDB PokecDB PopulationDB

Size 112 MB 4.93GB 19.6 GB

of nodes 45348 1632803 70422787

of relationships 86577 30622564 77163109

of distinct node labels 12 8 14

of distinct relationship types 17 10 18

Average of # of labels per node 1 1 1

4.2 The System Configuration

All experiments were performed on a machine with Intel Core Quad Core 2,70 GHz

i7-6820HQ CPU, 32 GB DDR4 RAM and running Windows 10 operation system.

On the other hand, all the algorithms were implemented in Java programming lan-

guage on IntelliJ IDEA and using graph data structures of Neo4j GDBMS v3.4.9 via

embedded Java API. The system architecture can be seen in Figure 4.3.

4.3 Queries

In the experiments, different types of queries were executed on the databases. We

tried to use different nodes and relationships in each query to show the performance of

algorithms under different cases. The results were collected for 5 real-world queries

for the Population database, 4 real-world queries for the Pokec database and 5 real-

world queries for the WorldCup.

The queries for all the algorithms were given in BFS format like in the Asiler’s pa-

per which was explained in Section 2.4.10, except Cypher’s queries. The average

execution time was used in the experiments to algorithm’s performance, which was

calculated with repeating each queries 10 times, except the slow queries which was

repeated only one time.

92

Populat�on
Dataset

WorldCup
Dataset

Pokec
Dataset

Neo4j
GDBMS
v3.4.9

TurboIso

BB-Graph

VF3

GraphQL

BB-Plus

Cypher

JavaAPI

Pokec
Graph

Database

WorldCup
Graph

Database

Populat�on
Graph

Database

DualIso

JavaAPI �mports

Query
Results

query

returns

Figure 4.3: The System Architecture

4.4 Experiments on the Databases

In this section, queries are executed on the WorldCup, Pokec and Population databases

to evaluate the performance of all the algorithms. Especially, we repeated the same

queries in the Asiler’s paper [1] in WorldCup and Population databases to show the

improvement in time complexity. We show the performance of BB-Plus based on

historical and real-time databases. In addition, we show the performance of histori-

cal BB-Plus with or without the consideration of degree factor in CNS to show the

difference in time efficiency.

4.4.1 Experiments on the WorldCup Database

In this section, we compare the algorithms using the WorldCup database. We execute

5 different queries to evaluate the performance of each algorithm. All queries and

their BB-Graph representation can be seen in Table 4.2 and all the results are going

to discussed in this chapter.

93

Table 4.2: The queries and their BB-Graph representation on WorldCup database [1]

Q
ue

ri
es

B
B

-G
ra

ph
R

ep
re

sa
nt

at
io

n

Pl
ay

er
s

w
ho

jo
in

sq
ua

d
of

di
ff

er
en

tc
ou

nt
ri

es
(0

,1
,C

ou
nt

ry
,N

A
M

E
D

_S
Q

U
A

D
,O

U
T

G
O

IN
G

,S
qu

ad
)(

1,
2,

Sq
ua

d,
IN

_S
Q

U
A

D
,IN

C
O

M
IN

G
,P

la
ye

r)

(2
,3

,P
la

ye
r,I

N
_S

Q
U

A
D

,O
U

T
G

O
IN

G
,S

qu
ad

)(
3,

4,
Sq

ua
d,

N
A

M
E

D
_S

Q
U

A
D

,IN
C

O
M

IN
G

,C
ou

nt
ry

)

Pl
ay

er
s

w
ho

ta
ke

ro
le

as
bo

th
su

bs
tit

ut
e

an
d

ac
tiv

e
(S

TA
R

T
E

D
)i

n
th

e
sa

m
e

m
at

ch

(0
,1

,P
la

ye
r,S

TA
R

T
E

D
,O

U
T

G
O

IN
G

,P
er

fo
rm

an
ce

)(
0,

2,
Pl

ay
er

,S
U

B
ST

IT
U

T
E

,O
U

T
G

O
IN

G
,P

er
fo

rm
an

ce
)

(1
,3

,P
er

fo
rm

an
ce

,IN
_M

A
T

C
H

,O
U

T
G

O
IN

G
,M

at
ch

)(
2,

3,
Pe

rf
or

m
an

ce
,IN

_M
A

T
C

H
,O

U
T

G
O

IN
G

,M
at

ch
)

M
at

ch
es

be
tw

ee
n

th
e

sa
m

e
co

un
tr

ie
s

oc
cu

rr
ed

in
di

ff
er

en
tw

or
ld

cu
ps

(0
,1

,T
im

e,
PL

A
Y

E
D

_A
T

_T
IM

E
,IN

C
O

M
IN

G
,M

at
ch

)(
0,

2,
Ti

m
e,

PL
A

Y
E

D
_A

T
_T

IM
E

,IN
C

O
M

IN
G

,M
at

ch
)

(1
,3

,M
at

ch
,P

L
A

Y
E

D
_I

N
,IN

C
O

M
IN

G
,C

ou
nt

ry
)(

1,
4,

M
at

ch
,P

L
A

Y
E

D
_I

N
,IN

C
O

M
IN

G
,C

ou
nt

ry
)

(1
,5

,M
at

ch
,C

O
N

TA
IN

S_
M

A
T

C
H

,IN
C

O
M

IN
G

,W
or

ld
C

up
)(

2,
3,

M
at

ch
,P

L
A

Y
E

D
_I

N
,IN

C
O

M
IN

G
,C

ou
nt

ry
)

(2
,4

,M
at

ch
,P

L
A

Y
E

D
_I

N
,IN

C
O

M
IN

G
,C

ou
nt

ry
)(

2,
6,

M
at

ch
,C

O
N

TA
IN

S_
M

A
T

C
H

,IN
C

O
M

IN
G

,W
or

ld
C

up
)

C
as

es
at

w
hi

ch
tw

o
co

un
tr

ie
s

pl
ay

ed
at

le
as

t2
m

at
ch

es

(a
s

aw
ay

te
am

in
on

e
an

d
ho

m
e

te
am

in
th

e
ot

he
r)

in
th

e
sa

m
e

w
or

ld
cu

p
an

d
th

e
sa

m
e

pl
ay

er

sc
or

ed
at

le
as

t1
go

al
in

bo
th

m
at

ch
es

(0
,1

,W
or

ld
C

up
,C

O
N

TA
IN

S_
M

A
T

C
H

,O
U

T
G

O
IN

G
,M

at
ch

)(
0,

2,
W

or
ld

C
up

,C
O

N
TA

IN
S_

M
A

T
C

H
,O

U
T

G
O

IN
G

,M
at

ch
)

(1
,3

,M
at

ch
,IN

_M
A

T
C

H
,IN

C
O

M
IN

G
,P

er
fo

rm
an

ce
)(

1,
4,

M
at

ch
,H

O
M

E
_T

E
A

M
,O

U
T

G
O

IN
G

,C
ou

nt
ry

)

(1
,5

,M
at

ch
,A

W
A

Y
_T

E
A

M
,O

U
T

G
O

IN
G

,C
ou

nt
ry

)(
2,

4,
M

at
ch

,A
W

A
Y

_T
E

A
M

,O
U

T
G

O
IN

G
,C

ou
nt

ry
)

(2
,5

,M
at

ch
,H

O
M

E
_T

E
A

M
,O

U
T

G
O

IN
G

,C
ou

nt
ry

)(
2,

6,
M

at
ch

,IN
_M

A
T

C
H

,IN
C

O
M

IN
G

,P
er

fo
rm

an
ce

)

(3
,7

,P
er

fo
rm

an
ce

,S
C

O
R

E
D

_G
O

A
L

,O
U

T
G

O
IN

G
,G

oa
l)

(3
,8

,P
er

fo
rm

an
ce

,S
TA

R
T

E
D

,IN
C

O
M

IN
G

,P
la

ye
r)

(6
,8

,P
er

fo
rm

an
ce

,S
TA

R
T

E
D

,IN
C

O
M

IN
G

,P
la

ye
r)

(6
,9

,P
er

fo
rm

an
ce

,S
C

O
R

E
D

_G
O

A
L

,O
U

T
G

O
IN

G
,G

oa
l)

Pl
ay

er
s

w
ho

ta
ke

ro
le

in
an

y
m

at
ch

at
le

as
t3

w
or

ld
cu

ps

(0
,1

,P
la

ye
r,S

TA
R

T
E

D
,O

U
T

G
O

IN
G

,P
er

fo
rm

an
ce

)(
0,

2,
Pl

ay
er

,S
TA

R
T

E
D

,O
U

T
G

O
IN

G
,P

er
fo

rm
an

ce
)

(0
,3

,P
la

ye
r,S

TA
R

T
E

D
,O

U
T

G
O

IN
G

,P
er

fo
rm

an
ce

)(
1,

4,
Pe

rf
or

m
an

ce
,IN

_M
A

T
C

H
,O

U
T

G
O

IN
G

,M
at

ch
)

(2
,5

,P
er

fo
rm

an
ce

,IN
_M

A
T

C
H

,O
U

T
G

O
IN

G
,M

at
ch

)(
3,

6,
Pe

rf
or

m
an

ce
,IN

_M
A

T
C

H
,O

U
T

G
O

IN
G

,M
at

ch
)

(4
,7

,M
at

ch
,C

O
N

TA
IN

S_
M

A
T

C
H

,IN
C

O
M

IN
G

,W
or

ld
C

up
)(

5,
8,

M
at

ch
,C

O
N

TA
IN

S_
M

A
T

C
H

,IN
C

O
M

IN
G

,W
or

ld
C

up
)

(6
,9

,M
at

ch
,C

O
N

TA
IN

S_
M

A
T

C
H

,IN
C

O
M

IN
G

,W
or

ld
C

up
)

94

0
Country

Named_Squad In_Squad In_Squad Named_Squad
4

Country
3

Squad
2

Player
1

Squad

Figure 4.4: The Query1 for WorldCup dataset

In the first query, we are looking for "Player who join squad of different countries"

in the WorldCup database. The query is an example to path queries and it consists of

5 nodes and 4 edges like shown in Figure 4.4. The results for the query is shown in

Table 4.3, 4.4. According to the results, the BB-Plus approach gives the best result

among all the algorithms on both historical and real-time WorldCup database.

The BB-Plus applies Matching Order Selection Based On Candidate Node Selection

Without Candidates by using the candidate node size that is already calculated and

stored in the database. It finds the best result with (0 − 4 − 1 − 3 − 2) order on

historical WorldCup database as shown in Table 4.4.

On the other hand, the approach applies Matching Order Selection Based On Degree

Centrality, because the query can be described as path query. It finds best results with

(0− 4− 1− 2− 3) order on real-time WorldCup database as shown in Table 4.4.

0
Player

Started

In_Match

3
Match

2
Performance

1
Performance

In_Match

Subst�tute

Figure 4.5: The Query2 for WorldCup dataset

95

In the second query, we are looking for "Players who take role as both substitute and

active (STARTED) in the same match". The query is an example to cyclic queries and

it consists of 4 nodes and 4 edges like shown in Figure 4.5. The results for the query is

shown in Table 4.3, 4.4. According to the results, the BB-Plus approach gives the best

result among all the algorithms on both historical and real-time WorldCup database.

The BB-Plus applies Matching Order Selection Based On Candidate Node Selection

Without Candidates by using the candidate node size that is already calculated and

stored in the database. It finds the best result with (3− 0− 1− 2) order on historical

WorldCup database as shown in Table 4.4.

On the other hand, the approach applies Matching Order Selection Based On Be-

tweenness Centrality, because the query can be described as cyclic query and the

query edge size is smaller than four. It finds best results with (3 − 0 − 1 − 2) order

on real-time WorldCup database as shown in Table 4.4.

0
T�me

1
Match

2
Match

6
WorldCup

5
WorldCup

4
Country

3
Country

Played_At_T�me Played_At_T�me

Played_InPlayed_In

Played_InPlayed_In
Conta�ns_MatchConta�ns_Match

Figure 4.6: The Query3 for WorldCup dataset

In the third query, we are looking for "Matches between the same countries occured

in different worldcups". The query consists of 7 nodes, 8 edges and 2 cycles like

shown in Figure 4.6. The results for the query is shown in Table 4.3, 4.4. According

to the results, the BB-Plus approach gives the best result among all the algorithms on

both historical and real-time WorldCup database again.

96

The BB-Plus applies Matching Order Selection Based On Candidate Node Selection

Without Candidates on the historical WorldCup database and it finds the best result

with (5− 6− 0− 3− 4− 1− 2) order as shown in Table 4.4.

On the other hand, the approach applies Matching Order Selection Based On Degree

Centrality on real-time WorldCup database. Because the query can be described as

cyclic query and the query edge size is bigger than four. It beats other algorithms with

(5− 6− 0− 3− 4− 1− 2) order as shown in Table 4.4.

1
Match

5
Country

4
Country

9
Goal

7
Goal

6
Performance

3
Performance

2
Match

0
WorldCup

8
Player

Conta�ns_Match Conta�ns_Match

In_MatchIn_Match

Scored_Goal Scored_Goal

StartedStarted

Away_Team

Home_Team Home_Team

Away_Team

Figure 4.7: The Query4 for WorldCup dataset

In the forth query, we are looking for "Cases at which two countries played at least 2

matches (as away team in one and home team in the other) in the same world cup and

the same player scored at least 1 goal in both matches" in the WorldCup database.

The query consists of 10 nodes, 12 edges and 4 cycles like shown in Figure 4.7. The

results for the query is shown in Table 4.3, 4.4. According to the results, the BB-

Plus approach again beats all the other algorithms on both historical and real-time

WorldCup database again.

In the historical database, The BB-Plus applies Matching Order Selection Based On

Candidate Node Selection Without Candidates and finds the best result with (0− 4−
5− 1− 2− 7− 9− 8− 3− 6) order as shown in Table 4.4.

97

However in the real-time database, it applies Matching Order Selection Based On

Degree Centrality based on cyclic query type and with twelve edges and it gets the

best results with (7− 9− 0− 4− 5−−3− 6− 1− 2) order.

0
Player

1
Performance

2
Performance

3
Performance

4
Match

6
Match

5
Match

7
World_Cup

8
World_Cup

9
World_Cup

Started

Started

Started

In_Match

In_Match

In_Match

Conta�ns_Match

Conta�ns_Match

Conta�ns_Match

Figure 4.8: The Query5 for WorldCup dataset

In the final query, we are looking for "Players who take role in any match at least 3

worldcups". The query consists of 10 nodes and 9 edges like shown in Figure 4.8.

The results for the query is shown in Table 4.3, 4.4. the BB-Plus approach is the best

among all the algorithm on both real-time and historical WorldCup database again

when we look at the results.

The BB-Plus approach uses 7 − 8 − 9 − 4 − 5 − 6 − 0 − 1 − 2 − 3 order based on

Matching Order Selection Based On Candidate Node Selection Without Candidates

and beats all algorithms on historical WorldCup database as shown in Table 4.4.

On the other hand, it applies Matching Order Selection Based On Eigenvector Cen-

trality on real-time database. Because, the query type can be described as "others"

and the query node size is bigger than five. Therefore, it gets the best result with

(5− 6− 0− 3− 4− 1− 2) order in real-time WorldCup database as shown in Table

4.4.

98

Table 4.3: The query results for the WorldCup Database

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4 Query-5

Cypher 1052 10123 7851 26711 2M >

DualIso 10453 34675 35763 26311 2M >

GraphQL 24747 2M > 16082 10654 2M >

TurboIso 5116 6361 - 22072 113714

VF3 6337 2M > - 78543 2M >

BB-Graph 1050 3353 6500 11193 23754

BB-Plus (Historical)

(CNS without Degree Cons.)
602 3231 3092 10850 18121

BB-Plus (Historical) 574 3120 2990 10672 18033

BB-Plus (Real-Time) 874 3124 3180 3939 18126

Table 4.4: Matching Order of Different Methods for the WorldCup Database

Algorithm /

Query (ms)
Query-1 Query-2 Query-3 Query-4 Query-5

Degree

Centrality
0-4-1-2-3 0-1-2-3 5-6-0-3-4-1-2 7-9-0-4-5-8-3-6-1-2 7-8-9-1-2-3-4-5-6-0

Closeness

Centrality
1-3-2-0-4 3-0-1-2 0-3-4-5-6-1-2 4-5-7-9-8-0-3-6-1-2 4-5-6-0-1-2-3-7-8-9

Betweenness

Centrality
0-1-2-3-4 0-3-1-2 0-3-4-5-6-1-2 0-4-5-7-8-9-3-6-1-2 0-4-5-6-7-8-9-1-2-3

Eigenvector

Centrality
0-4-1-3-2 0-1-2-3 5-6-1-2-0-3-4 9-7-8-6-3-0-4-5-1-2 7-8-9-4-5-6-1-2-3-0

Candidate Node

Selection
0-4-1-3-2 3-0-1-2 5-6-0-3-4-1-2 0-4-5-1-2-7-9-8-3-6 7-8-9-4-5-6-0-1-2-3

99

Table 4.5: The process time for calculating matching order selection on WorldCupDB

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4 Query-5

Degree Centrality 69 68 69 64 64

Closeness Centrality 88 89 90 92 89

Betweenness Centrality 81 79 82 77 78

Eigenvector Centrality 79 78 75 87 81

Candidate Node Selection 356 855 279 1195 972

Table 4.6: The query results with different matching orders on WorldCupDB

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4 Query-5

Degree Centrality 874 3342 3260 3939 18334

Closeness Centrality 1022 9491 6392 6735 18764

Betweenness Centrality 1097 3124 6640 12586 26021

Eigenvector Centrality 1148 3339 3673 7030 18224

Candidate Node Selection 848 3314 3270 11973 19045

Table 4.7: Total process time without calculating matching order on WorldCupDB

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4 Query-5

Degree Centrality 805 3274 3191 3875 18270

Closeness Centrality 934 9402 6302 6643 18675

Betweenness Centrality 1016 3045 6558 12499 25943

Eigenvector Centrality 1069 3261 3598 6943 18743

Candidate Node Selection 492 2168 2715 10778 17985

100

We also apply ANOVA on query results of subgraph isomorphism algorithms on

WorldCup database to show the effects of state-of-the-art subgraph isomorphism al-

gorithms on subgraph isomorpishm problem. We use query results as given in Ap-

pendix A. The results are given in Table 4.8 and 4.9.

Table 4.8: ANOVA results of the effects of state-of-the-art subgraph isomorphism

algorithms on subgraph isomorpishm problem

Algorithms Count Sum Average Variance

Cypher 48 627154 13065,70833 87392902,38

DualIso 48 1812112 37752,33333 2257631713

GraphQL 35 616660 17618,85714 131615013,2

TurboIso 30 1156157 38538,56667 880991739,8

VF3 22 923757 41988,95455 445518926,9

BB-Graph 50 427307 8546,14 45323765,8

BB-Plus (Historical) 50 398677 7973,54 40869012,99

BB-Plus (Real-Time) 50 373225 7464,5 37541892,09

Table 4.9: ANOVA results of the effects of state-of-the-art subgraph isomorphism

algorithms on subgraph isomorpishm problem

Source of Variation SS df MS F P-value F-value

Between Groups 59912310167 7 8558901452 17,87 4,61376E-20 2,037793878

Within Groups 1,55659E+11 325 478949920,6

Total 2,15571E+11 332

According to the results BB-Plus (Historical) and BB-Plus (Real-Time) gives the best

results with the queries that executed on WorldCup databases. On the other hand,

TurboIso and VF3 gives the worst results.

101

4.4.2 Experiments on the Pokec Database

In this section, we compare the algorithms using the Pokec database. We execute 4

different queries to evaluate the performance of each algorithm. All queries and their

BB-Graph representation can be seen in Table 4.10 and all the results are going to

discussed in this chapter.

Table 4.10: The queries and their BB-Graph representation on Pokec Database

Q
ue

ri
es

B
B

-G
ra

ph
R

ep
re

sa
nt

at
io

n

T
he

us
er

w
ith

id
22

w
ho

ha
s

a

fr
ie

nd
sh

ip
w

ith
th

e
us

er
w

ith
id

2
(0

,1
,U

se
r&

U
se

rI
d=

2,
fr

ie
nd

s,
O

U
T

G
O

IN
G

,U
se

r&
U

se
rI

d=
22

)

T
he

us
er

lis
tw

hi
ch

co
ns

is
ts

of
pe

op
le

w
ho

is
17

ye
ar

s
ol

d
an

d

’s
tr

ed
os

ko
ls

ke
’a

te
du

ca
tio

n
le

ve
l

(0
,1

,U
se

r,w
or

ks
In

,O
U

T
G

O
IN

G
,O

cc
up

at
io

n&
E

du
ca

tio
nL

ev
el

=s
tr

ed
os

ko
ls

ke
)

(0
,2

,U
se

r,h
as

Pr
ofi

le
,O

U
T

G
O

IN
G

,p
ro

fil
e&

A
ge

=1
7)

T
he

fr
ie

nd
s

of
us

er
s

w
ho

us
ed

to

sk
at

eb
oa

rd
in

g
bu

tn
ow

pl
ay

in
g

ba
sk

et
ba

ll

(0
,1

,U
se

r,a
ct

iv
eD

oi
ng

,O
U

T
G

O
IN

G
,S

po
rt

s&
na

m
e=

ba
sk

et
ba

l)

(0
,2

,U
se

r,p
as

si
ve

D
oi

ng
,O

U
T

G
O

IN
G

,S
po

rt
s&

na
m

e=
sk

at
eb

oa
rd

in
g)

(0
,3

,U
se

r,f
ri

en
ds

,O
U

T
G

O
IN

G
,U

se
r)

T
he

pe
op

le
w

ho
ca

n
ta

lk
E

ng
lis

h

an
d

’v
ys

ok
os

ko
ls

ke
’e

du
ca

tio
n

le
ve

lt
ha

t

fr
ie

nd
s

w
ith

us
er

s
w

ho
is

al
so

at
’v

ys
ok

os
ko

ls
ke

’

ed
uc

at
io

n
le

ve
la

nd
ca

n
ta

lk
E

ng
lis

h

(0
,1

,U
se

r,w
or

ks
In

,O
U

T
G

O
IN

G
,O

cc
up

at
io

n&
E

du
ca

tio
nL

ev
el

=v
ys

ok
os

ko
ls

ke
)

(0
,2

,U
se

r,t
al

ks
,O

U
T

G
O

IN
G

,L
an

gu
ag

e&
na

m
e=

en
gl

is
h)

(0
,3

,U
se

r,f
ri

en
ds

,O
U

T
G

O
IN

G
,U

se
r)

(3
,2

,U
se

r,t
al

ks
,O

U
T

G
O

IN
G

,L
an

gu
ag

e&
na

m
e=

en
gl

is
h)

102

0
User
�d= 22

1
User
�d= 2

fr�ends

Figure 4.9: The Query1 for Pokec dataset

In the first query, we are looking for "A User with id 22 who has a friendship with the

user with id 2" in the Pokec database. The query is an example to the path queries

and it consists of 2 nodes and 1 edges like shown in Figure 4.9. The results for the

query is shown in Table 4.11 and 4.13. According to the results, the BB-Plus approach

gives the best results only on the historical Pokec database in compare to the other

algorithms.

The BB-Plus approach uses 0−1 order based on Matching Order Selection Based On

Candidate Node Selection Without Candidates and beats all algorithms on historical

Pokec database as shown in Table 4.4.

On the other hand, it applies Matching Order Selection Based On Degree Centrality

with 0 − 1 on real-time dPokec database. Because, the query type can be described

as "path query". However, the Cypher beats the BB-Plus approach and all the other

algorithms in this query. Cypher beats all the algorithms since the query is too short

and does not effected by matching order as shown in 4.13. Table 4.14 is the proof

of the BB-Plus approach is greater than Cypher algorithm, however the time that was

spending on calculating of the matching order causes to get behind of it.

0
User

1
Occupat�on

educat�onLevel=
"stredoskolske "

worksIn
2

Prof�le
Age=17

hasProf�le

Figure 4.10: The Query2 for Pokec dataset

103

In the second query, we are looking for "The user list which consists of people who is

17 years old and ’stredoskolske’ at education level" in the Pokec database. The query

is also an example to path queries and it consists of 3 nodes and 2 edges like shown in

Figure 4.10. The results for the query is shown in Table 4.11, 4.13. According to the

results, the BB-Plus approach gives the best results on both historical and real-time

Pokec database.

The BB-Plus approach uses (2 − 1 − 0) order based on Matching Order Selection

Based On Candidate Node Selection Without Candidates and beats all algorithms on

historical Pokec database as shown in Table 4.4.

On the other hand, it applies Matching Order Selection Based On Closeness Central-

ity with (2 − 1 − 0) order in real-time Pokec database based on the type of "others"

and the edge size is smaller than five and it beats all the other algorithms as shown in

Table 4.4.

0
User

1
Sports

name="basketbal "
act�veDo�ng

2
Sports
name=

"skateboard�ng "

pass�veDo�ng

3
User

fr�ends

Figure 4.11: The Query3 for Pokec dataset

In the third query, we are looking for "The friends of users who used to skateboarding

but now playing basketball". The query consists of 4 nodes and 3 edges as shown in

Figure 4.11. The results for the query is shown in Table 4.11, 4.13. According to the

results, the BB-Plus approach gives the best results on both historical and real-time

Pokec database.

104

The BB-Plus approach uses (1− 2− 3− 0) order based on Matching Order Selection

Based On Candidate Node Selection Without Candidates and beats all algorithms on

historical Pokec database as shown in Table 4.4.

On the other hand, it applies Matching Order Selection Based On Closeness Central-

ity with same order in real-time Pokec database based on the type of "others" and the

edge size is smaller than five and it beats all the other algorithms again.

0
User

1
Occupat�on

educat�onLevel=
"vysokoskolske "

worksIn

2
Language
name=
"engl�sh"

talks

3
User

talks talks

fr�ends

Figure 4.12: The Query4 for Pokec dataset

The last one is about "The people who can talk English and ’vysokoskolske’ education

level that friends with users who is also at ’vysokoskolske’ education level and can

talk English". It is a cyclic query with 4 nodes, 5 edges and 2 cycles as shown in

Figure 4.12. According to the results as shown in Table 4.11, 4.13, the BB-Plus

approach gives the best results on both historical and real-time Pokec database.

The BB-Plus approach uses (1−2−−0−3) order based on Matching Order Selection

Based On Candidate Node Selection Without Candidates and beats all algorithms on

historical Pokec database as shown in Table 4.4.

On the other hand, it applies Matching Order Selection Based On Degree Centrality

with same order in real-time Pokec database based on "cyclic" type of query and edge

size is bigger than four and it beats all the other algorithms again.

105

Table 4.11: The query results for the Pokec Database

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4

Cypher 94 2761 4873 4832

DualIso 109 30915 - 30506

GraphQL 108 - 2851 12069

TurboIso 2465 9436 7527 8124

VF3 2998 9532 8126 8576

BB-Graph 126 5940 4734 4700

BB-Plus (Historical)

(CNS without Degree Cons.)
67 2021 1758 2193

BB-Plus (Historical) 65 2006 1787 2115

BB-Plus (Real-Time) 125 2565 1752 1372

Table 4.12: The query results with different matching orders on Pokec Database

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4

Degree Centrality 125 2593 1814 1372

Closeness Centrality 127 2565 1752 1376

Betweenness Centrality 126 5465 5663 5313

Eigenvector Centrality 128 5474 5659 5633

Candidate Node Selection 126 2660 4098 3587

Table 4.13: Total process time for calculating matching order in the Pokec Database

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4

Degree Centrality 67 69 61 58

Closeness Centrality 81 85 88 82

Betweenness Centrality 75 78 79 76

Eigenvector Centrality 76 73 76 72

Candidate Node Selection 91 753 1765 1653

106

Table 4.14: The total process time without calculating matching order selection

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4

Degree Centrality 58 2524 1753 1314

Closeness Centrality 46 2480 1664 1294

Betweenness Centrality 51 5387 5585 5237

Eigenvector Centrality 52 5401 5583 5561

Candidate Node Selection 35 1907 2333 1834

Table 4.15: Matching Order of Different Methods for the Pokec Database

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4

Degree Centrality 0-1 1-2-0 1-2-3-0 1-2-0-3

Closeness Centrality 0-1 2-10 1-2-3-0 1-2-0-3

Betweenness Centrality 0-1 0-1-2 0-1-2-3 0-3-1-2

Eigenvector Centrality 0-1 0-1-2 0-1-2-3 0-3-1-2

Candidate Node Selection 0-1 2-10 1-2-3-0 1-2-0-3

107

Table 4.16: The queries and their BB-Graph representation on Population Database

[1]
Q

ue
ri

es
B

B
-G

ra
ph

R
ep

re
sa

nt
at

io
n

E
xt

en
de

d
fa

m
ili

es
co

ns
is

tin
g

of
m

ot
he

r,
fa

th
er

,

so
n

an
d

so
n’

s
w

if
e

an
d

al
ll

iv
in

g
in

th
e

sa
m

e
ad

dr
es

s

(0
,1

,P
E

R
SO

N
,S

PO
U

SE
,IN

C
O

M
IN

G
,P

E
R

SO
N

)(
0,

2,
PE

R
SO

N
,M

O
T

H
E

R
,IN

C
O

M
IN

G
,P

E
R

SO
N

)

(0
,3

,P
E

R
SO

N
,L

IV
E

S_
IN

,O
U

T
G

O
IN

G
,F

L
A

T
)(

1,
2,

PE
R

SO
N

,F
A

T
H

E
R

,IN
C

O
M

IN
G

,P
E

R
SO

N
)

(1
,3

,P
E

R
SO

N
,L

IV
E

S_
IN

,O
U

T
G

O
IN

G
,F

L
A

T
)

(2
,3

,P
E

R
SO

N
,L

IV
E

S_
IN

,O
U

T
G

O
IN

G
,F

L
A

T
)(

2,
4,

PE
R

SO
N

,S
PO

U
SE

,O
U

T
G

O
IN

G
,P

E
R

SO
N

)

(3
,4

,F
L

A
T,

L
IV

E
S_

IN
,IN

C
O

M
IN

G
,P

E
R

SO
N

)

M
ar

ri
ed

co
up

le
s

w
ho

se
m

ot
he

rs
ar

e
si

st
er

s

(0
,1

,P
E

R
SO

N
,F

A
T

H
E

R
,IN

C
O

M
IN

G
,P

E
R

SO
N

)(
0,

2,
PE

R
SO

N
,F

A
T

H
E

R
,IN

C
O

M
IN

G
,P

E
R

SO
N

)

(1
,3

,P
E

R
SO

N
,M

O
T

H
E

R
,IN

C
O

M
IN

G
,P

E
R

SO
N

)(
2,

4,
PE

R
SO

N
,M

O
T

H
E

R
,IN

C
O

M
IN

G
,P

E
R

SO
N

)

(3
,4

,P
E

R
SO

N
,E

Şİ
,O

U
T

G
O

IN
G

,P
E

R
SO

N
)

C
ou

pl
es

w
ho

se
st

at
e

re
gi

st
er

s
ar

e
di

ff
er

en
t

(0
,1

,P
E

R
SO

N
,S

PO
U

SE
,O

U
T

G
O

IN
G

,P
E

R
SO

N
)(

0,
2,

PE
R

SO
N

,M
E

M
B

E
R

_O
F,

O
U

T
G

O
IN

G
,S

TA
T

E
_R

E
G

IS
T

E
R

)

(1
,3

,P
E

R
SO

N
,M

E
M

B
E

R
_O

F,
O

U
T

G
O

IN
G

,S
TA

T
E

_R
E

G
IS

T
E

R
)

Fa
th

er
s

an
d

th
ei

rs
on

s
al

on
g

8-
de

gr
ee

-g
en

er
at

io
n

(0
,1

,P
E

R
SO

N
,F

A
T

H
E

R
,O

U
T

G
O

IN
G

,P
E

R
SO

N
)(

1,
2,

PE
R

SO
N

,F
A

T
H

E
R

,O
U

T
G

O
IN

G
,P

E
R

SO
N

)

(2
,3

,P
E

R
SO

N
,F

A
T

H
E

R
,O

U
T

G
O

IN
G

,P
E

R
SO

N
)(

3,
4,

PE
R

SO
N

,F
A

T
H

E
R

,O
U

T
G

O
IN

G
,P

E
R

SO
N

)

(4
,5

,P
E

R
SO

N
,F

A
T

H
E

R
,O

U
T

G
O

IN
G

,P
E

R
SO

N
)(

5,
6,

PE
R

SO
N

,F
A

T
H

E
R

,O
U

T
G

O
IN

G
,P

E
R

SO
N

)

(6
,7

,P
E

R
SO

N
,F

A
T

H
E

R
,O

U
T

G
O

IN
G

,P
E

R
SO

N
)

Tw
in

s
w

ho
liv

e
in

di
ff

er
en

tfl
at

s
of

th
e

sa
m

e

ap
ar

tm
en

tw
hi

ch
is

di
ff

er
en

tf
ro

m
th

e
ap

ar
tm

en
t

w
he

re
th

ei
rp

ar
en

ts
liv

e

(0
,1

,P
E

R
SO

N
,S

PO
U

SE
,O

U
T

G
O

IN
G

,P
E

R
SO

N
)(

0,
2,

PE
R

SO
N

,F
A

T
H

E
R

,IN
C

O
M

IN
G

,P
E

R
SO

N
)

(0
,3

,P
E

R
SO

N
,F

A
T

H
E

R
,IN

C
O

M
IN

G
,P

E
R

SO
N

)(
0,

4,
PE

R
SO

N
,L

IV
E

S_
IN

,O
U

T
G

O
IN

G
,F

L
A

T
)

(1
,2

,P
E

R
SO

N
,M

O
T

H
E

R
,IN

C
O

M
IN

G
,P

E
R

SO
N

)(
1,

3,
PE

R
SO

N
,M

O
T

H
E

R
,IN

C
O

M
IN

G
,P

E
R

SO
N

)

(1
,4

,P
E

R
SO

N
,L

IV
E

S_
IN

,O
U

T
G

O
IN

G
,F

L
A

T
)(

2,
5,

PE
R

SO
N

,B
O

R
N

,O
U

T
G

O
IN

G
,B

IR
T

H
_D

A
Y

)

(2
,6

,P
E

R
SO

N
,L

IV
E

S_
IN

,O
U

T
G

O
IN

G
,F

L
A

T
)(

3,
5,

PE
R

SO
N

,B
O

R
N

,O
U

T
G

O
IN

G
,B

IR
T

H
_D

A
Y

)

(3
,7

,P
E

R
SO

N
,L

IV
E

S_
IN

,O
U

T
G

O
IN

G
,F

L
A

T
)(

4,
8,

FL
A

T,
FL

A
T

_O
F_

A
PA

R
T

M
E

N
T,

O
U

T
G

O
IN

G
,A

PA
R

T
M

E
N

T
)

(6
,9

,F
L

A
T,

FL
A

T
_O

F_
A

PA
R

T
M

E
N

T,
O

U
T

G
O

IN
G

,A
PA

R
T

M
E

N
T

)(
7,

9,
FL

A
T,

FL
A

T
_O

F_
A

PA
R

T
M

E
N

T,
O

U
T

G
O

IN
G

,A
PA

R
T

M
E

N
T

)

108

4.4.3 Experiments on the Population Database

In this section, we compare the algorithms using the Population database. We execute

5 different queries to evaluate the performance of each algorithm. All queries and

their BB-Graph representation can be seen in Table 4.16 and all the results are going

to discussed in this chapter.

3
Flat

2
Person

1
Person

0
Person

4
Person

Spouse

Father

Spouse

Mother

L�ves_In L�ves_In

L�ves_InL�ves_In

Figure 4.13: The Query1 for Population dataset

First query for the population database is about finding "Extended families consisting

of mother, father, son and son’s wife and all living in the same address". It consists

of 5 nodes and 7 edges as shown in Figure 4.13. According to the results that is

given in 4.17, 4.21, the BB-Plus approach beats all the algorithms only on real-time

Population database and give close results to the winner on the historical Population

database.

The BB-Plus approach uses (0−1−2−4−3) order based on Matching Order Selection

Based On Candidate Node Selection Without Candidates on historical Pokec database

as shown in Table 4.21. However, BB-Graph algorithm gives greater result than BB-

Plus in this query with no matching order.

109

The BB-Plus approach beats all the algorithms with 4 − 0 − 1 − 2 − 3 order us-

ing Matching Order Selection Based On Degree Centrality on real-time Population

database. It chooses Degree Centrality, because the query is "cyclic" and has edges

more than four.

0
Person

4
Person

3
Person

2
Person

1
Person

Father Father

Mother Mother

Spouse

Figure 4.14: The Query2 for Population dataset

In the second query, we are trying to find "Married couples whose mothers are sis-

ters". This cyclic query consists of 5 nodes and 5 edges as shown in Figure 4.14.

Query results that is given in 4.17, 4.21 show us that the BB-Plus approach gives the

best results on both historical and real-time Population database.

The BB-Plus approach uses no matching order on both historical and real-time Popu-

lation database. Because all the nodes and edges in the query graph has the same label

and nodes has no properties. Therefore, matching order does not affect the results.

The BB-Plus approach directly calls the BB-Graph algorithm for this query and beats

all the other algorithms.

The third query is path query which is about finding "Couples whose state registers

are different" which is consists of 4 nodes and 3 edges as shown in 4.15. According

to the the query results that is given in 4.17, 4.21, the BB-Plus approach gives the best

results on both historical and real-time Population database.

110

1
Person

0
Person

0
State_Reg�ster

3
State_Reg�sterMember_Of Spouse Member_Of

Figure 4.15: The Query3 for Population dataset

The BB-Plus approach uses (2− 3− 0− 1) order based on Matching Order Selection

Based On Candidate Node Selection Without Candidates on historical Pokec database

and give greater results than the other algorithms.

The BB-Plus approach chooses Matching Order Selection Based On Degree Central-

ity, because the query is type of "path" and beats all the algorithms with 4−0−1−2−3

order on real-time Population database.

0
Person

7
Person

5
Person

3
Person

1
Person

6
Person

4
Person

2
Person

Father Father Father FatherFather Father Father

Figure 4.16: The Query4 for Population dataset

The forth query is also a path query that is searching "Fathers and their sons along

8-degree-generation". The query is structured around 8 nodes and 7 edges as shown

in 4.16. BB-Plus approach gives the best results on both historical and real-time

Population database.

The BB-Plus approach uses no matching order on both historical and real-time Pop-

ulation database also in this query. Because all the nodes and edges in the query

graph has the same label and nodes has no properties again. The BB-Plus approach

directly calls the BB-Graph algorithm for this query and beats all the other algorithms

as shown in 4.17, 4.21.

111

5
B�rthDay

7
Flat

6
Flat

2
Person

3
Person

0
Person

1
Person

4
Flat

8
Apartment

9
Apartment

Flat_Of_Apartment

L�ves_In L�ves_In

Spouse

FatherMother

Father Mother

BornBorn

L�ves_In L�ves_In

Flat_Of_ApartmentFlat_of_Apartment

Figure 4.17: The Query5 for Population dataset

The last query is a complex cyclic query for finding "Twins who live in different flats

of the same apartment which is different from the apartment where their parents live".

It consists of 10 nodes and 14 edges as shown in 4.17. The BB-Plus approach is failed

to find the results in an acceptable and the BB-Graph algorithm sits the first place for

this query without taking consideration of matching order as shown in 4.17.

112

Table 4.17: The query results for the Population Database

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4 Query-5

Cypher 33376 40234 24215 38756 2M >

DualIso 2M > 2M > 2M > 2M > 2M >

GraphQL 2M > 2M > 2M > 2M > 2M >

TurboIso 2M > 2M > 2M > 2M > 2M >

VF3 2M > 2M > 2M > 2M > 2M >

BB-Graph 31376 34405 24215 37159 86452

BB-Plus (Historical)

(CNS without Degree Cons.)
35296 34481 18873 37140 2M >

BB-Plus (Historical) 35518 34223 18873 37063 2M >

BB-Plus (Real-Time) 28436 34401 19031 37136 116863 >

Table 4.18: The query results with different matching orders on Population Database

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4 Query-5

Degree Centrality 28436 34402 19031 38521 2M >

Closeness Centrality 1M > 36325 19112 27512 2M >

Betweenness Centrality 31526 39853 26847 38984 116863

Eigenvector Centrality 28524 34458 18916 39102 2M >

Candidate Node Selection 35542 35095 19101 37172 2M >

Table 4.19: The Total Process Time for Calculating Matching Order in the Population

Database

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4 Query-5

Degree Centrality 64 57 51 51 65

Closeness Centrality 74 72 79 82 99

Betweenness Centrality 71 69 71 67 76

Eigenvector Centrality 64 72 81 70 68

Candidate Node Selection 2904 380 595 1037 10375

113

Table 4.20: The total process time without calculating matching order selection in the

Population Database

Algorithm / Query (ms) Query-1 Query-2 Query-3 Query-4 Query-5

Degree Centrality 28372 34345 18980 38470 -

Closeness Centrality - 36253 19033 27430 -

Betweenness Centrality 31455 39784 26776 38917 116787

Eigenvector Centrality 28460 34386 19053 39032 -

Candidate Node Selection 32860 34493 17838 3623 -

Table 4.21: Matching Order of Different Methods for the Population Database

Algorithm /

Query (ms)
Query-1 Query-2 Query-3 Query-4 Query-5

Degree

Centrality
4-0-1-2-3 0-1-2-3-4 2-3-0-1 0-7-1-2-3-4-5-6 8-5-6-7-9-4-0-1-2-3

Closeness

Centrality
3-2-1-0-4 0-3-4-1-2 2-3-0-1 7-0-1-2-3-4-5-6 5-8-9-2-3-0-1-4-6-7

Betweenness

Centrality
0-1-2-3-4 0-3-1-2-4 0-2-3-1 0-7-1-6-2-5-3-4 2-3-5-8-9-6-7-0-1-4

Eigenvector

Centrality
4-0-1-2-3 0-1-2-3-4 2-3-0-1 0-7-1-6-2-5-3-4 9-8-7-6-5-4-2-3-0-1

Candidate Node

Selection
0-1-2-4-3 0-1-2-3-4 2-3-0-1 0-1-2-3-4-5-6-7 5-0-1-2-3-8-9-4-6-7

114

4.5 Discussions on the Experimental Results

Concept

We propose BB-Plus approach which chooses six different matching order selection

methods automatically to improve the performance of subgraph isomorphism queries.

The new matching orders are degree centrality, closeness centrality, betweenness cen-

trality, eigenvector centrality, and selection based on candidate nodes.

Discussion

1. Performance Increase: With a great matching order, algorithms can easily

prune out the data that is not matching with query graph. Therefore, they can

reduce the search space and find matching nodes and edges efficiently using

less memory and time.

2. Performance on Different Query Types: Centrality based matching order selec-

tion methods such as Matching Order Selection Based On Degree Centrality,

Matching Order Selection Based On Closeness Centrality, the BB-Plus with

Betweenness Centrality, Matching Order Selection Based On Eigenvector Cen-

trality does not consider data graph. Although their matching order can be

easily calculated, they may found a bad matching order because they do not

consider data graph.

However, Matching Order Selection Based On Candidate Node Selection con-

siders the query and data graph. Therefore, it does not affected by the query

types and find a great matching order that fits with both the query and data

graph.

On the other hand, centrality based matching order selection methods are good

for real-time databases. Because they can be easily calculated on execution

time and they can adapt themselves to different types of queries.

115

3. Drawbacks of Matching Order Selection:

(a) Cost of Calculating Process: Calculation of matching order reduce the

performance when the the query nodes is already in best order. Because

the approach loses time for calculating the matching order to find the

same order. Therefore, BB-Graph or the other subgraph isomorphism al-

gorithms gives better results than BB-Plus approach in some experiment.

(b) Working with Poor Matching Order: Matching order increase the perfor-

mance if the order is selected based on considering both query and data

graph. When the matching order is selected poorly, the search space is

can be become bigger than the one without matching order and the time

for finding matchings can be increase.

Concept

All the algorithms in the comparison are developed using Neo4j’s graph data struc-

tures such as nodes, edges and indexes. Normally GraphQl, TurboIso and VF3 use

their own data structures to store and retrieve nodes and edges.

Discussion

1. Easy Implemantation: With Neo4j’s graph data structures, the implementation

of algorithms become easier. We do not need to develop new data structures for

each algorithm. We only need to store nodes and edges of dataset in Neo4j’s

graph database and use its methods to retrieve those when we need them in any

step of any algorithm.

2. Performance Issues: GraphQl, TurboIso and VF3, Matching Order Selection

Based On Candidate Edge Selection have performance issues based on the us-

age of Neo4j’s graph data structures. Especially, TurboIso and VF3 are affected

directly and need their own data structures in most of the queries. For example,

retrieving nodes based on an edge can be a big problem in Neo4j. There is no

efficient method defined to retrieve them. However, the data structures of Tur-

boIso and VF3 can handled this efficiently. Therefore, in most of the queries

TurboIso and VF3 does not give great results as we expected.

116

3. Fair Comparison: Eventhough TurboIso and VF3 affected by the usage Neo4j’s

graph data structures, the comparison gives fair results to us because all the

algorithms are run in the same environment using same data structures.

4. Memory Usage: All the algortihms use memory more effectively with Neo4j’s

graph data structures. They do not need extra memory for large indexing or

data storing.

5. Query Language: We can query using same query represantation for all the

algorithms. We can a query and run for all the algorithms without changing

anything on the query represantation.

Concept

Matching Order Selection Based On Candidate Node Selection faster than the other

algorithms if the candidate node size given before querying.

Discussion

Eventhough the Matching Order Selection Based On Candidate Node Selection is

good at finding good matching order and effective querying, calculating candidate

node size while querying can be take too much time and it affects the performance

of the algorithm. Therefore, the BB-Plus approach takes it into the consideration and

use the Matching Order Selection Based On Candidate Node Selection Without Can-

didates algorithm which is an extension of the Matching Order Selection Based On

Candidate Node Selection algorithm that calculate candidate node size before query-

ing in order to do not lose time in matching order calculation and query efficiently.

117

Table 4.22: Comparison of the BB-Plus approach with other subgraph isomorphism

algorithms
G

ra
ph

Q
L

Tu
rb

oI
so

D
ua

lI
so

B
B

-G
ra

ph
V

F3
B

B
-P

lu
s

Ye
ar

20
08

20
13

20
14

20
14

20
17

20
19

In
de

xi
ng

L
ab

el
-b

as
ed

In
de

xi
ng

Pa
tte

rn
-b

as
ed

In
de

xi
ng

-
-

-
-

Pr
un

ni
ng

M
et

ho
ds

N
ei

gh
bo

rh
oo

d
Si

gn
at

ur
e-

ba
se

d
Pr

un
in

g

Ps
eu

do
Su

bg
ra

ph
Is

om
or

ph
is

m
Te

st

N
ei

gh
bo

rh
oo

d

E
qu

iv
al

en
ce

C
la

ss

Si
m

pl
e

Si
m

ul
at

io
n

D
ua

lS
im

ul
at

io
n

M
at

ch
in

g
N

od
e

Pr
in

ci
pa

l

M
at

ch
in

g
R

el
at

io
ns

hi
p

Pr
in

ci
pa

l

C
or

e
ru

le

2
le

ve
lo

fl
oo

k-
ah

ea
d

ru
le

M
at

ch
in

g
N

od
e

Pr
in

ci
pa

l

M
at

ch
in

g
R

el
at

io
ns

hi
p

Pr
in

ci
pa

l

M
at

ch
in

g
O

rd
er

Se
le

ct
io

n
M

et
ho

d
C

an
di

da
te

Si
ze

fo
rQ

ue
ry

N
od

e
C

an
di

da
te

R
eg

io
n

E
xp

lo
ra

tio
n

-
-

N
od

e
E

xp
lo

ra
tio

n
Se

qe
un

ce

D
eg

re
e

C
en

tr
al

ity

C
lo

se
ne

ss
C

en
tr

al
ity

B
et

w
ee

nn
es

s
C

en
tr

al
ity

E
ig

en
ve

ct
or

C
en

tr
al

ity

C
an

di
da

te
N

od
e

Se
le

ct
io

n

Pe
rf

or
m

an
ce

on

L
ar

ge
Vo

lu
m

e

of
G

ra
ph

D
at

a

Po
or

Po
or

M
ed

iu
m

M
ed

iu
m

Po
or

G
oo

d

C
al

cu
la

tio
n

Ti
m

e

of
M

at
ch

in
g

O
rd

er

(H
is

to
ri

ca
lD

at
ab

as
e)

-
Sl

ow
-

-
Sl

ow
Sl

ow

C
al

cu
la

tio
n

Ti
m

e

of
M

at
ch

in
g

O
rd

er

(R
ea

l-T
im

e
D

at
ab

as
e)

-
Sl

ow
-

-
Sl

ow
Fa

st

To
ta

lP
ro

ce
ss

Ti
m

e
M

ed
iu

m
Sl

ow
M

ed
iu

m
M

ed
iu

m
Sl

ow
Fa

st

A
da

pt
at

io
n

to

D
iff

er
en

tT
yp

e

of
Q

ue
ri

es

Po
or

G
oo

d
Po

or
M

ed
iu

m
G

oo
d

G
oo

d

Pe
rf

or
m

an
ce

on

Pa
th

Q
ue

ri
es

M
ed

iu
m

Po
or

M
ed

iu
m

M
ed

iu
m

Po
or

G
oo

d

Pe
rf

or
m

an
ce

on

C
yc

lic
Q

ue
ri

es
M

ed
iu

m
Po

or
M

ed
iu

m
M

ed
iu

m
Po

or
G

oo
d

Pe
rf

or
m

an
ce

on

O
th

er
Q

ue
ri

es
M

ed
iu

m
Po

or
M

ed
iu

m
M

ed
iu

m
Po

or
G

oo
d

118

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we introduce new approach called the BB-Plus, which improves the

performance of the branch-and-bounnd algorithms by using different matching order

selection methods for subgraph isomorpishm queries to find the best matching order

and reduce the search space. The approach uses rules to find matching order selection

methods automatically, which are degree centrality, closeness centrality, betweenness

centrality, eigenvector centrality and candidate node selection.

We compare our BB-Plus approach with the BB-Graph, Cypher, DualIso, GraphQl,

TurboIso and VF3 algorithms with the publicly available WorldCup and Pokec datasets

and with a much larger data set of the entire population of a country, the Population

dataset. In most of the queries, our BB-Plus approach outperforms the rest of all the

algorithms for most queries in these three dataset.

On the other hand, we realize that if we do not take into account the computation time

of the matching order, the Matching Order Selection Based On Candidate Node Se-

lection gives better results than BB-Graph, Cypher, DualIso, GraphQl, TurboIso, VF3

and other matching order selection methods with branch-bound algorithms. Most of

the time, the algorithm beats or gives very close results to the other improved BB-

Graph algorithms. Therefore, we divide queries based on database that they are exe-

cuted.

119

In historical databases, we use Matching Order Selection with Candidate Node Selec-

tion Without Candidates that uses already calculated candidate node size list. How-

ever, on real-time databases, we uses graph centrality measures as matching order.

Because they can be easily calculated and they adapt themselves easily to the any

type of query. Therefore, the BB-Plus approach becomes the best algorithm among

all the algorithms on both historical and real-time databases.

In addition, we see that in some queries for some matching order selection method,

the BB-Graph algorithm (or the other algorithms) still gives better results. The reason

BB-Plus approach is worse than the BB-Graph algorithm is that the BB-Graph query

is already given in the best selection order to the algorithm. The BB-Graph does not

consider the time for calculating the order unlike ours and the others. Therefore, it

can give better results than others with the difference in processing time of computing

the matching order.

Although GraphQL does not give the worst result for a small database such as World-

Cup, it cannot handle large data sets such as Pokec and Population and gives no re-

sults in a reasonable amount of time. On the other hand, VF3, DualIso and TurboIso

consider matching order selection, they are both worse than the BB-Graph and the

BB-Plus algorithms. The reason of low performance of VF3, DualIso and TurboIso

is determined by the use of Neo4j’s graph data structures. Normally, these algorithms

use their own data structures. However, with the usage of Neo4j’s data structures,

it has become very difficult to find nodes with a corresponding relationship and we

detect that it affects their performance.

5.2 Future Work

As we pointed out in the conclusion, all the matching order selection methods used

in the BB-Plus approach are not affected by query types. Their performance is deter-

mined by the distribution of the nodes in the data graph. For future works, different

machine learning algorithms or different inputs could be used in the dataset or the size

of the dataset could be increased to determine which matching order selection meth-

ods performs best with which query types in order to improve the performance.

120

REFERENCES

[1] M. Asiler and A. Yazıcı, “Bb-graph: A new subgraph isomorphism algorithm

for efficiently querying big graph databases,” arXiv preprint arXiv:1706.06654,

2017.

[2] H. He and A. K. Singh, “Closure-tree: An index structure for graph queries,”

in 22nd International Conference on Data Engineering (ICDE’06), pp. 38–38,

IEEE, 2006.

[3] W.-S. Han, J. Lee, and J.-H. Lee, “Turbo iso: towards ultrafast and robust sub-

graph isomorphism search in large graph databases,” in Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, pp. 337–348,

ACM, 2013.

[4] P. Bhatia and B. Mallick, “Critique of wordcount blueprint by virtue of mapre-

duce postulate,” International Journal of Advanced Research in Computer and

Communication Engineer (IJARCCE), vol. 5, no. 2, 2016.

[5] R. Angles, “A comparison of current graph database models,” in IEEE 28th

International Conference on Data Engineering Workshops (ICDEW), pp. 171–

177, IEEE, 2012.

[6] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph databases,”

in 2013 International Conference on Social Computing (SocialCom), pp. 708–

715, IEEE, 2013.

[7] A. Nayak, A. Poriya, and D. Poojary, “Type of nosql databases and its compar-

ison with relational databases,” International Journal of Applied Information

Systems, vol. 5, no. 4, pp. 16–19, 2013.

[8] A. Moniruzzaman and S. A. Hossain, “Nosql database: New era of databases for

big data analytics-classification, characteristics and comparison,” arXiv preprint

arXiv:1307.0191, 2013.

121

[9] R. Giugno and D. Shasha, “Graphgrep: A fast and universal method for querying

graphs,” in Object recognition supported by user interaction for service robots,

vol. 2, pp. 112–115, IEEE, 2002.

[10] X. Yan, P. S. Yu, and J. Han, “Graph indexing: a frequent structure-based ap-

proach,” in Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, pp. 335–346, ACM, 2004.

[11] S. Srinivasa, M. Maier, M. R. Mutalikdesai, K. Gowrishankar, and P. Gopinath,

“Lwi and safari: A new index structure and query model for graph databases.,”

in COMAD, pp. 138–147, 2005.

[12] D. W. Williams, J. Huan, and W. Wang, “Graph database indexing using struc-

tured graph decomposition,” in 2007 IEEE 23rd International Conference on

Data Engineering, pp. 976–985, IEEE, 2007.

[13] S. Zhang, M. Hu, and J. Yang, “Treepi: A novel graph indexing method,” in

2007 IEEE 23rd International Conference on Data Engineering, pp. 966–975,

IEEE, 2007.

[14] P. Zhao, J. X. Yu, and P. S. Yu, “Graph indexing: tree+ delta<= graph,” in Pro-

ceedings of the 33rd international conference on Very large data bases, pp. 938–

949, VLDB Endowment, 2007.

[15] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness: an

efficient algorithm for testing subgraph isomorphism,” Proceedings of the VLDB

Endowment, vol. 1, no. 1, pp. 364–375, 2008.

[16] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph isomor-

phism algorithm for matching large graphs,” IEEE transactions on pattern anal-

ysis and machine intelligence, vol. 26, no. 10, pp. 1367–1372, 2004.

[17] S. Zhang, S. Li, and J. Yang, “Gaddi: distance index based subgraph matching

in biological networks,” in Proceedings of the 12th International Conference on

Extending Database Technology: Advances in Database Technology, pp. 192–

203, ACM, 2009.

122

[18] H. He and A. K. Singh, “Graphs-at-a-time: query language and access methods

for graph databases,” in Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, pp. 405–418, ACM, 2008.

[19] P. Zhao and J. Han, “On graph query optimization in large networks,” Proceed-

ings of the VLDB Endowment, vol. 3, no. 1-2, pp. 340–351, 2010.

[20] M. Saltz, A. Jain, A. Kothari, A. Fard, J. A. Miller, and L. Ramaswamy,

“Dualiso: An algorithm for subgraph pattern matching on very large labeled

graphs,” in Big Data (BigData Congress), 2014 IEEE International Congress

on, pp. 498–505, IEEE, 2014.

[21] V. Carletti, P. Foggia, A. Saggese, and M. Vento, “Introducing vf3: A new algo-

rithm for subgraph isomorphism,” in International Workshop on Graph-Based

Representations in Pattern Recognition, pp. 128–139, Springer, 2017.

[22] V. Carletti, P. Foggia, and M. Vento, “Vf2 plus: An improved version of vf2 for

biological graphs,” in International Workshop on Graph-Based Representations

in Pattern Recognition, pp. 168–177, Springer, 2015.

[23] M. Ciglan, A. Averbuch, and L. Hluchy, “Benchmarking traversal operations

over graph databases,” in Data Engineering Workshops (ICDEW), 2012 IEEE

28th International Conference on, pp. 186–189, IEEE, 2012.

[24] R. De Virgilio, A. Maccioni, and R. Torlone, “Converting relational to graph

databases,” in First International Workshop on Graph Data Management Expe-

riences and Systems, p. 1, ACM, 2013.

[25] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, “A compar-

ison of a graph database and a relational database: a data provenance perspec-

tive,” in Proceedings of the 48th annual Southeast regional conference, p. 42,

ACM, 2010.

[26] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM Comput-

ing Surveys (CSUR), vol. 40, no. 1, p. 1, 2008.

[27] J. J. Miller, “Graph database applications and concepts with neo4j,” in Proceed-

ings of the Southern Association for Information Systems Conference, Atlanta,

GA, USA, vol. 2324, p. 36, 2013.

123

[28] P. Pareja-Tobes, E. Pareja-Tobes, M. Manrique, E. Pareja, and R. Tobes, “Bio4j:

An open source biological data integration platform.,” in IWBBIO, p. 281, 2013.

[29] B. Iordanov, “Hypergraphdb: a generalized graph database,” in International

conference on web-age information management, pp. 25–36, Springer, 2010.

[30] H. Huang and Z. Dong, “Research on architecture and query performance based

on distributed graph database neo4j,” in Consumer Electronics, Communica-

tions and Networks (CECNet), 2013 3rd International Conference on, pp. 533–

536, IEEE, 2013.

[31] O. Manual, “Distributed architecture.” http://orientdb.com/docs/2.

1/Distributed-Architecture.html. Accessed: 2016-04-04.

[32] C. Phillips, “Centrality measures.” http://web.eecs.

utk.edu/~cphillip/cs594_spring2015_projects/

CentralityProject.pdf. Accessed: 2019-07-21.

[33] N. Matas, “Comparing network centrality measures as tools for identifying key

concepts in complex networks: A case of wikipedia.,” Journal of Digital Infor-

mation Management, vol. 15, no. 4, 2017.

[34] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee, “An in-depth comparison of

subgraph isomorphism algorithms in graph databases,” in Proceedings of the

VLDB Endowment, vol. 6, pp. 133–144, VLDB Endowment, 2012.

[35] J. R. Ullmann, “An algorithm for subgraph isomorphism,” in Journal of the ACM

(JACM), pp. 31–42, ACM, 1976.

[36] S. Zhang, S. Li, and J. Yang, “Summa: subgraph matching in massive graphs,”

in Proceedings of the 19th ACM international conference on Information and

knowledge management, pp. 1285–1288, ACM, 2010.

[37] N. Staffl, “World cup fun with neo4j.” http://worldcup.neo4j.org.

Accessed: 2018-12-08.

[38] J. Leskovec, “Pokec social network.” https://snap.stanford.edu/

data/soc-Pokec.html. Accessed: 2018-12-08.

124

http://orientdb.com/docs/2.1/Distributed-Architecture.html
http://orientdb.com/docs/2.1/Distributed-Architecture.html
http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/CentralityProject.pdf
http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/CentralityProject.pdf
http://web.eecs.utk.edu/~cphillip/cs594_spring2015_projects/CentralityProject.pdf
http://worldcup.neo4j.org
https://snap.stanford.edu/data/soc-Pokec.html
https://snap.stanford.edu/data/soc-Pokec.html

APPENDIX A

APPENDIX 1

A.1 Matching Order Training Dataset

Table A.1: Training Data for Determining Matching Order (1)

Query Dataset Data Graph

Node Size

Data Graph

Edge Size

Query

Graph

Node Size

Query

Graph

Edge Size

of Dis-

tinct Node

Label

of Dis-

tinct Edge

Label

of Nodes

with Prop-

erties

Query

Type

Best

Re-

sults

1 Players who join squad of different

countries

WorldCup Small

(45348)

Small

(86577)

5 4 3 2 0 Path DC

2 Players who take role as both sub-

stitute and starter in the same match

WorldCup Small

(45348)

Small

(86577)

4 4 3 3 0 Cyclic BC

3 Matches between the same coun-

tries occurred in different world

cups

WorldCup Small

(45348)

Small

(86577)

7 8 4 3 0 Cyclic DC

4 Cases at which two countries

played at least 2 matches (as away

team in one and home team in the

other) in the same world cup and the

same player scored at least 1 goal in

both matches

WorldCup Small

(45348)

Small

(86577)

10 12 6 6 0 Cyclic DC

5 Players who take role in any match

at least 3 world cups

WorldCup Small

(45348)

Small

(86577)

10 9 4 3 0 Others EC

6 Players who take role in any match

at least 2 world cups

WorldCup Small

(45348)

Small

(86577)

7 6 4 3 0 Others EC

7 Players scores a hat-trick as starters WorldCup Small

(45348)

Small

(86577)

5 4 3 2 0 Others CC

8 Players scores at least 5 goals as

starters

WorldCup Small

(45348)

Small

(86577)

7 6 3 2 0 Others EC

9 Countries which hosted World Cup

more than one time

WorldCup Small

(45348)

Small

(86577)

3 2 2 1 0 Path DC

10 Players who take role as substitute

and scores goal

WorldCup Small

(45348)

Small

(86577)

3 2 3 2 0 Path DC

11 Two countries played at least 2

matches (as away team in one and

home team in the other) in the same

world cup

WorldCup Small

(45348)

Small

(86577)

5 6 3 3 0 Cyclic BC

12 Players in the squad of England

Team in 1990 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others CC

13 Players in the squad of Italy Team

in 1990 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others CC

14 Players in the squad of France Team

in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others CC

125

Table A.2: Training Data for Determining Matching Order (2)

15 Players in the squad of Brazil Team

in 2002 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others CC

16 Players in the squad of England

Team in 1986 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others EC

17 Players in the squad of Italy Team

in 1982 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others CC

18 Players in the squad of Argentina

Team in 1978 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others CC

19 Players in the squad of Germany

Team in 1974 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others CC

20 Players in the squad of Brazil Team

1970 in World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others EC

21 All World Cups hosted by France WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

22 All World Cups hosted by England WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

23 All World Cups hosted by Italy WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

24 All World Cups hosted by Brazil WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

25 All matches played in San Siro Sta-

dium

WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

26 All matches played in Olympiasta-

dion Stadium

WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

27 All matches played in San Siro Sta-

dium

WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

28 All matches played in Stade de

France Stadium

WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

29 All matches played in Rose Bowl

Stadium

WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

30 Matches between France and Brazil

in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 3 3 3 Others CC

31 Matches between Germany and

Brazil in 2002 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 3 3 3 Others CC

32 Matches between Uruguay and

Brazil in 1994 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 3 3 3 Others CC

33 Matches between Italy and Brazil in

1994 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 3 3 3 Others EC

34 Matches between Italy and France

in 1994 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 3 3 3 Others CC

35 All players takes role as substi-

tute in any match that played in

Olympiastadion Stadium in any

World Cup

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 1 Others CC

36 All players takes role as substitute

in any match that played in Daegu

World Cup Stadium in any World

Cup

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 1 Others CC

37 All players takes role as substitute

in any match that played in Stade de

France Stadium in any World Cup

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 1 Others CC

38 All players takes role as substitute

in any match that played in Rose

Bowl in any World Cup

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 1 Others CC

39 All players takes role as substitute

in any match that played in San Siro

Stadium in any World Cup

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 1 Others CC

40 All matches of Brazil in a World

Cup that hosted by them

WorldCup Small

(45348)

Small

(86577)

3 4 3 4 1 Cyclic BC

126

Table A.3: Training Data for Determining Matching Order (3)

41 All matches of France in a World

Cup that hosted by them

WorldCup Small

(45348)

Small

(86577)

3 4 3 4 1 Cyclic BC

42 All matches of Argentina in a World

Cup that hosted by them

WorldCup Small

(45348)

Small

(86577)

3 4 3 4 1 Cyclic BC

43 All matches of Germany in a World

Cup that hosted by them

WorldCup Small

(45348)

Small

(86577)

3 4 3 4 1 Cyclic BC

44 All players takes role as starters and

scores a hat trick in any match that

played in San Siro Stadium

WorldCup Small

(45348)

Small

(86577)

7 6 5 4 1 Others EC

45 All players takes role as starters and

scores a hat trick in any match that

played in Olympiastadion Stadium

WorldCup Small

(45348)

Small

(86577)

7 6 5 4 1 Others EC

46 All players takes role as starters and

scores a hat trick in any match that

played in Daegu World Cup Sta-

dium

WorldCup Small

(45348)

Small

(86577)

7 6 5 4 1 Others EC

47 All players takes role as starters and

scores a hat trick in any match that

played in Stade de France Stadium

WorldCup Small

(45348)

Small

(86577)

7 6 5 4 1 Others CC

48 All players takes role as starters and

scores a hat trick in any match that

played in Rose Bowl Stadium

WorldCup Small

(45348)

Small

(86577)

7 6 5 4 1 Others EC

49 Countries scores at least 5 goals as

home team in any match at World

Cup which is hosted by the same

country

WorldCup Small

(45348)

Small

(86577)

3 3 3 3 1 Cyclic BC

50 Countries scores at least 4 goals as

home team in any match at World

Cup which is hosted by the same

country

WorldCup Small

(45348)

Small

(86577)

3 3 3 3 1 Cyclic BC

51 Countries scores at least 3 goals as

away team in any match at World

Cup which is hosted by the home

teams’ country

WorldCup Small

(45348)

Small

(86577)

4 4 3 3 1 Cyclic BC

52 World Cups hosted by at least two

countries

WorldCup Small

(45348)

Small

(86577)

3 2 2 1 0 Path DC

53 World Cups hosted by at least three

countries

WorldCup Small

(45348)

Small

(86577)

4 3 2 1 0 Others CC

54 Players who is in the squad of same

team that played at least two differ-

ent World Cup

WorldCup Small

(45348)

Small

(86577)

6 6 4 3 0 Cyclic DC

55 Players who is in the squad of same

team that played at least three dif-

ferent World Cup

WorldCup Small

(45348)

Small

(86577)

6 6 4 3 0 Cyclic DC

56 Players who is in the squad of

Brazil team that played at least two

different World Cup

WorldCup Small

(45348)

Small

(86577)

6 6 4 3 0 Cyclic DC

57 Players who is in the squad of Eng-

land team that played at least two

different World Cup

WorldCup Small

(45348)

Small

(86577)

6 6 4 3 0 Cyclic DC

58 Players who is in the squad of

France team that played at least two

different World Cup

WorldCup Small

(45348)

Small

(86577)

6 6 4 3 0 Cyclic DC

59 Players who is in the squad of Italy

team that played at least two differ-

ent World Cup

WorldCup Small

(45348)

Small

(86577)

6 6 4 3 1 Cyclic DC

127

Table A.4: Training Data for Determining Matching Order (4)

60 Players who is in the squad of Ar-

gentina team that played at least

two different World Cup

WorldCup Small

(45348)

Small

(86577)

6 6 4 3 1 Cyclic DC

61 Stadiums used for at least two

World Cups

WorldCup Small

(45348)

Small

(86577)

5 4 3 2 0 Path DC

62 Goals that Ronaldo scores in 1998

World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 2 Others CC

63 Goals that Raul scores in 1998 and

2002 World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 3 Others CC

64 Goals that Michel Platini scores in

1978, 1982 and 1986 World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 4 Others EC

65 Goals that Thierry Henry scores in

1998 and 2006 World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 3 Others CC

66 Goals that Dennis Bergkamp scores

in 1994 and 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 3 Others CC

67 Goals that Rivaldo scores in 1998

and 2002 World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 3 Others CC

68 All the goals that Pelé scores in any

World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 1 Others CC

69 All the goals that Ronaldo scores in

any World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 1 Others CC

70 All the goals that Thierry Henry

scores in any World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 1 Others CC

71 All the goals that Dennis Bergkamp

scores in any World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 1 Others EC

72 All the goals that Raul scores in any

World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 1 Others CC

73 Players bigger than 30 years old

that both take role as both substitute

and starter in the same match

WorldCup Small

(45348)

Small

(86577)

3 3 3 3 1 Others CC

74 Players bigger than 30 years old

that both take role as both substi-

tute and starter in the same match

and scores a goal

WorldCup Small

(45348)

Small

(86577)

4 4 4 4 1 Others CC

75 Players take role as starter in at least

two match in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

6 5 4 3 1 Others EC

76 Players take role as starter in at least

two match in 1994 World Cup

WorldCup Small

(45348)

Small

(86577)

6 5 4 3 1 Others CC

77 Players take role as starter in at least

two match in 1990 World Cup

WorldCup Small

(45348)

Small

(86577)

6 5 4 3 1 Others EC

78 Players take role as starter in at least

two match in 2002 World Cup

WorldCup Small

(45348)

Small

(86577)

6 5 4 3 1 Others EC

79 Players take role as starter in at least

two match in 1986 World Cup

WorldCup Small

(45348)

Small

(86577)

6 5 4 3 1 Others EC

80 All matches of Brazil as an away

team in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

3 2 3 2 2 Path DC

81 All matches of France as an away

team in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

3 2 3 2 2 Path DC

82 All matches of England as an away

team in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

3 2 3 2 2 Path DC

83 All matches of Argentina as an

away team in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

3 2 3 2 2 Path DC

84 All matches of Germany as an away

team in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

3 2 3 2 2 Path DC

128

Table A.5: Training Data for Determining Matching Order (5)

85 All World Cups that any player

scores a hat trick in any match

WorldCup Small

(45348)

Small

(86577)

5 5 3 2 1 Others CC

86 All World Cups that any player

scores at least 4 goals in any match

WorldCup Small

(45348)

Small

(86577)

8 8 5 5 1 Others EC

87 All World Cups that any player

scores at least 5 goals in any match

WorldCup Small

(45348)

Small

(86577)

4 4 5 5 1 Others CC

88 All stadiums that Final Matches are

played

WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

89 Home and away teams of final

matches of all World Cups

WorldCup Small

(45348)

Small

(86577)

4 3 3 3 1 Others CC

90 Countries played at finals of a

World Cup that is hosted by the

same country

WorldCup Small

(45348)

Small

(86577)

3 4 3 4 1 Cyclic BC

91 Countries played at semi-finals of

a World Cup that is hosted by the

same country

WorldCup Small

(45348)

Small

(86577)

3 4 3 4 1 Cyclic BC

92 Players scores at finals games WorldCup Small

(45348)

Small

(86577)

4 4 4 4 1 Others CC

93 Players scores at semi-finals games WorldCup Small

(45348)

Small

(86577)

4 4 4 4 1 Others CC

94 Players takes role as starters at 1998

World Cup Finals and score at least

one goal

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 2 Others CC

95 Players takes role as starters at 1998

World Cup Semi-Finals and score at

least one goal

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 2 Others CC

96 Players takes role as starters at 1990

World Cup Finals and score at least

one goal

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 2 Others CC

97 Players takes role as starters at 1990

World Cup Semi-Finals and score at

least one goal

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 2 Others CC

98 Players takes role as starters of

home team at 1994 World Cup Fi-

nals

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 2 Others CC

99 Players takes role as starters of

away team at 1994 World Cup Fi-

nals

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 2 Others EC

100 The user with id 22 who has a

friendship with the user with id 2

Pokec Medium

(1632803)

Medium

(30622564)

2 1 2 1 2 Path DC

101 The user with id 1 who has a friend-

ship with the user with id 131

Pokec Medium

(1632803)

Medium

(30622564)

2 1 2 1 2 Path DC

102 The user with id 8 who has a friend-

ship with the user with id 495258

Pokec Medium

(1632803)

Medium

(30622564)

2 1 2 1 2 Path DC

103 The user with id 1822 who has

a friendship with the user with id

2922

Pokec Medium

(1632803)

Medium

(30622564)

2 1 2 1 2 Path DC

104 The user with id 151 who has a

friendship with the user with id 141

Pokec Medium

(1632803)

Medium

(30622564)

2 1 2 1 2 Path DC

105 The user list which consists of peo-

ple who is 17 years old and ’stre-

doskolske’ at education level

Pokec Medium

(1632803)

Medium

(30622564)

3 2 3 2 2 Path CC

106 The user list which consists of peo-

ple who is 18 years old and ’stre-

doskolske’ at education level

Pokec Medium

(1632803)

Medium

(30622564)

3 2 3 2 2 Path DC

129

Table A.6: Training Data for Determining Matching Order (6)

107 The user list which consists of peo-

ple who is 19 years old and ’stre-

doskolske’ at education level

Pokec Medium

(1632803)

Medium

(30622564)

3 2 3 2 2 Path CC

108 The user list which consists of peo-

ple who is 20 years old and ’stre-

doskolske’ at education level

Pokec Medium

(1632803)

Medium

(30622564)

3 2 3 2 2 Path DC

109 The user list which consists of peo-

ple who is 21 years old and ’stre-

doskolske’ at education level

Pokec Medium

(1632803)

Medium

(30622564)

3 2 3 2 2 Path CC

110 The friends of users who used to

skateboarding but now playing bas-

ketball

Pokec Medium

(1632803)

Medium

(30622564)

4 3 2 3 2 Others CC

111 The friends of users who used to

squash but now playing tennis

Pokec Medium

(1632803)

Medium

(30622564)

4 3 2 3 2 Others CC

112 The friends of users who used to

tennis but now playing basketball

Pokec Medium

(1632803)

Medium

(30622564)

4 3 2 3 2 Others CC

113 The friends of users who used to

football but now playing basketball

Pokec Medium

(1632803)

Medium

(30622564)

4 3 2 3 2 Others CC

114 The friends of users who used to

basketball but now playing football

Pokec Medium

(1632803)

Medium

(30622564)

4 3 2 3 2 Others CC

115 The people who can talk ‘En-

glish’ and ’vysokoskolske’ educa-

tion level that

Pokec Medium

(1632803)

Medium

(30622564)

4 5 3 3 2 Cyclic DC

friends with users who is also at

’vysokoskolske’

education level and can talk ‘En-

glish’

116 The people who can talk ‘Ital-

ian’ and ’vysokoskolske’ education

level that

Pokec Medium

(1632803)

Medium

(30622564)

4 5 3 3 2 Cyclic DC

friends with users who is also at

’vysokoskolske’

education level and can talk ‘Ital-

ian’

117 The people who can talk ‘Span-

ish’ and ’vysokoskolske’ education

level that

Pokec Medium

(1632803)

Medium

(30622564)

4 5 3 3 2 Cyclic DC

friends with users who is also at

’vysokoskolske’

education level and can talk ‘Span-

ish’

118 The people who can talk ‘French’

and ’vysokoskolske’ education

level that

Pokec Medium

(1632803)

Medium

(30622564)

4 5 3 3 2 Cyclic BC

friends with users who is also at

’vysokoskolske’

education level and can talk

‘French’

119 The people who can talk ‘Ger-

man’ and ’vysokoskolske’ educa-

tion level that

Pokec Medium

(1632803)

Medium

(30622564)

4 5 3 3 2 Cyclic BC

friends with users who is also at

’vysokoskolske’

education level and can talk ‘Ger-

man’

120 Users talk English and play hockey

and basketball

Pokec Medium

(1632803)

Medium

(30622564)

4 3 3 3 3 Others CC

130

Table A.7: Training Data for Determining Matching Order (7)

121 Users talk French and play football

and basketball

Pokec Medium

(1632803)

Medium

(30622564)

4 3 3 3 3 Others CC

122 Users talk Italian and play tennis

and squash

Pokec Medium

(1632803)

Medium

(30622564)

4 3 3 3 3 Others CC

123 Users talk Dutch and play tennis

and basketball

Pokec Medium

(1632803)

Medium

(30622564)

4 3 3 3 3 Others CC

124 Users talks Spanish and play

hockey and tennis

Pokec Medium

(1632803)

Medium

(30622564)

4 3 3 3 3 Others EC

125 Friends play basketball Pokec Medium

(1632803)

Medium

(30622564)

3 3 2 3 1 Cyclic BC

126 Friends play hockey Pokec Medium

(1632803)

Medium

(30622564)

3 3 2 3 1 Cyclic BC

127 Friends play football Pokec Medium

(1632803)

Medium

(30622564)

3 3 2 3 1 Cyclic BC

128 Friends play tennis Pokec Medium

(1632803)

Medium

(30622564)

3 3 2 3 1 Cyclic BC

129 Friends play volleyball Pokec Medium

(1632803)

Medium

(30622564)

3 3 2 3 1 Cyclic BC

130 Friends of friends of user with id 1 Pokec Medium

(1632803)

Medium

(30622564)

3 2 1 1 1 Path DC

131 Friends of friends of user with id 2 Pokec Medium

(1632803)

Medium

(30622564)

3 2 1 1 1 Path DC

132 Friends of friends of user with id 3 Pokec Medium

(1632803)

Medium

(30622564)

3 2 1 1 1 Path DC

133 Friends of friends of user with id 4 Pokec Medium

(1632803)

Medium

(30622564)

3 2 1 1 1 Path CC

134 Friends of friends of user with id 5 Pokec Medium

(1632803)

Medium

(30622564)

3 2 1 1 1 Path DC

135 Friends both talks English and

French

Pokec Medium

(1632803)

Medium

(30622564)

3 2 2 2 2 Cyclic BC

136 Friends both talks English and Ger-

man

Pokec Medium

(1632803)

Medium

(30622564)

3 2 2 2 2 Cyclic BC

137 Friends both talks English and Slo-

vak

Pokec Medium

(1632803)

Medium

(30622564)

3 2 2 2 2 Cyclic BC

138 Friends both talks Slovak and

French

Pokec Medium

(1632803)

Medium

(30622564)

3 2 2 2 2 Cyclic BC

139 Friends both talks Slovak and Ger-

man

Pokec Medium

(1632803)

Medium

(30622564)

3 2 2 2 2 Cyclic BC

140 Female users play football and

friend with 1 female users that play

football

Pokec Medium

(1632803)

Medium

(30622564)

4 5 2 2 2 Cyclic BC

141 Female users play football and

friend with 2 female users that play

football

Pokec Medium

(1632803)

Medium

(30622564)

5 8 2 2 2 Cyclic BC

142 Female users play football and

friend with 3 female users that play

football

Pokec Medium

(1632803)

Medium

(30622564)

6 11 2 2 2 Cyclic DC

143 Female users play football and

friend with 4 female users that play

football

Pokec Medium

(1632803)

Medium

(30622564)

7 14 2 2 2 Cyclic DC

144 Female users play football and

friend with 5 female users that play

football

Pokec Medium

(1632803)

Medium

(30622564)

8 17 2 2 2 Cyclic DC

145 Users with leo zodiac and 17 years

old friends with libra zodiac and 17

years old

Pokec Medium

(1632803)

Medium

(30622564)

6 5 2 2 3 Others EC

131

Table A.8: Training Data for Determining Matching Order (8)

146 Users with virgo zodiac and 18

years old friends with libra zodiac

and 18 years old

Pokec Medium

(1632803)

Medium

(30622564)

6 5 2 2 3 Others EC

147 Users with gemini zodiac and 19

years old friends with virgo zodiac

and 19 years old

Pokec Medium

(1632803)

Medium

(30622564)

6 5 2 2 3 Others EC

148 Users with gemini zodiac and 20

years old friends with capricorn zo-

diac and 20 years old

Pokec Medium

(1632803)

Medium

(30622564)

6 5 2 2 3 Others EC

149 Users with leo zodiac and 21 years

old friends with scorpio zodiac and

21 years old

Pokec Medium

(1632803)

Medium

(30622564)

6 5 2 2 3 Others EC

150 Extended families consisting of

mother, father, son and son’s wife

and all living in the same address

Population Big

(70422787)

Big

(77163109)

5 8 2 4 0 Cyclic DC

151 Extended families consisting of

mother, father, daughter and daugh-

ter’s husband and all living in the

same address

Population Big

(70422787)

Big

(77163109)

5 8 2 4 0 Cyclic DC

152 Married couples whose mothers are

sisters

Population Big

(70422787)

Big

(77163109)

5 5 1 3 0 Cyclic BB-

Graph

153 Married couples whose fathers are

brothers

Population Big

(70422787)

Big

(77163109)

5 5 1 3 0 Cyclic BB-

Graph

154 Married couples whose mothers of

mothers are sisters

Population Big

(70422787)

Big

(77163109)

7 7 1 3 0 Cyclic BB-

Graph

155 Married couples whose fathers of

fathers are brothers

Population Big

(70422787)

Big

(77163109)

7 7 1 3 0 Cyclic BB-

Graph

156 Married couples whose state regis-

ters are different

Population Big

(70422787)

Big

(77163109)

4 3 2 2 0 Path DC

157 Sisters whose state registers are dif-

ferent

Population Big

(70422787)

Big

(77163109)

5 4 2 3 0 Path DC

158 Father and their sons along 8-

degree-generation

Population Big

(70422787)

Big

(77163109)

8 7 1 1 0 Path BB-

Graph

159 Mothers and their daughters along

8-degree-generation

Population Big

(70422787)

Big

(77163109)

8 7 1 1 0 Path BB-

Graph

160 Twins who live in different flats of

the same apartment which is differ-

ent from the apartment

Population Big

(70422787)

Big

(77163109)

9 14 4 6 0 Cyclic BC

where their parents live

161 Persons live in same flat but their

mothers are different

Population Big

(70422787)

Big

(77163109)

5 4 2 2 0 Path DC

162 Persons live in same flat but their fa-

thers and mothers are different

Population Big

(70422787)

Big

(77163109)

7 6 2 2 0 Others EC

163 Sisters live in same flat but their fa-

ther and mother lives in different

flat

Population Big

(70422787)

Big

(77163109)

6 8 2 2 0 Cyclic DC

164 Twins live in same flat but their fa-

ther and mother lives in different

flat

Population Big

(70422787)

Big

(77163109)

7 9 2 3 0 Cyclic DC

165 Divorced couples who lives in same

flat

Population Big

(70422787)

Big

(77163109)

3 3 2 2 0 Cyclic BC

166 Married couples born in same day Population Big

(70422787)

Big

(77163109)

3 3 2 2 0 Cyclic BC

167 Daughters born in same day with

her mother

Population Big

(70422787)

Big

(77163109)

3 3 2 2 0 Cyclic BC

168 Sons born in same day with her

mother

Population Big

(70422787)

Big

(77163109)

3 3 2 2 0 Cyclic BC

169 Daughters born in same day with

her father

Population Big

(70422787)

Big

(77163109)

3 3 2 2 0 Cyclic BC

132

Table A.9: Training Data for Determining Matching Order (9)

170 Mothers lives with her daughter

from ex-husband in the same apart-

ment

Population Big

(70422787)

Big

(77163109)

6 7 3 4 0 Cyclic DC

171 Mothers lives with her son from ex-

husband in the same apartment

Population Big

(70422787)

Big

(77163109)

6 7 3 4 0 Cyclic DC

172 Fathers lives with her son from ex-

wife in the same apartment

Population Big

(70422787)

Big

(77163109)

6 7 3 4 0 Cyclic DC

173 People born after 1995 and having

at least one daughter as a mother

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

174 People born after 1995 and having

at least one son as a mother

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

175 People born after 1995 and having

at least one daughter as a father

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

176 People born after 1995 and having

at least one son and one daughter as

a father

Population Big

(70422787)

Big

(77163109)

4 3 2 2 1 Others EC

177 People born after 1995 and having

at least one son and one daughter as

a mother

Population Big

(70422787)

Big

(77163109)

4 3 2 2 1 Others EC

178 Families with at least 3 children and

all (mother + father + 3 children)

living in the same address

Population Big

(70422787)

Big

(77163109)

6 11 3 4 0 Cyclic DC

179 Families with at least 4 children and

all (mother + father + 4 children)

living in the same address

Population Big

(70422787)

Big

(77163109)

7 14 3 4 0 Cyclic DC

180 People who has 2 ex-wife Population Big

(70422787)

Big

(77163109)

3 2 1 1 0 Path BB-

Graph

181 People who has 3 ex-wife Population Big

(70422787)

Big

(77163109)

4 3 1 1 0 Others BB-

Graph

182 People who has 2 ex-husband Population Big

(70422787)

Big

(77163109)

3 2 1 1 0 Path BB-

Graph

183 People who has 3 ex-husband Population Big

(70422787)

Big

(77163109)

4 3 1 1 0 Others BB-

Graph

184 Women born after 2000 and mar-

ried

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path CC

185 Women born after 2000 and does

not live in the same address with her

father

Population Big

(70422787)

Big

(77163109)

5 4 3 3 1 Others CC

186 Men born after 2000 and does not

live in the same address with his fa-

ther

Population Big

(70422787)

Big

(77163109)

5 4 3 3 1 Others CC

187 Women born after 1995 and does

not live in the same address with her

father

Population Big

(70422787)

Big

(77163109)

5 4 3 3 1 Others EC

188 Men born after 1995 and does not

live in the same address with his fa-

ther

Population Big

(70422787)

Big

(77163109)

5 4 3 3 1 Others CC

189 Women born after 2000 and got di-

vorced

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

133

Table A.10: Training Data for Determining Matching Order (10)

190 Women born after 1995 and got di-

vorced

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

191 Men born after 2000 and got di-

vorced

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

192 Men born after 1995 and got di-

vorced

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

193 Women who lives with her mother

and daughter

Population Big

(70422787)

Big

(77163109)

7 8 3 3 0 Cyclic DC

194 Women who lives with her father

and son

Population Big

(70422787)

Big

(77163109)

7 8 3 3 0 Cyclic BC

195 Men who lives with his father and

son

Population Big

(70422787)

Big

(77163109)

7 8 3 3 0 Cyclic DC

196 Men who lives with his father and

daughter

Population Big

(70422787)

Big

(77163109)

7 8 3 3 0 Cyclic DC

197 Married couples with more than 70

years old

Population Big

(70422787)

Big

(77163109)

3 3 2 2 1 Cyclic BC

198 Women who is more than 40 years

old and live her mother and father

Population Big

(70422787)

Big

(77163109)

8 7 4 5 1 Cyclic BC

199 Men who is more than 50 years old

and live her mother and father

Population Big

(70422787)

Big

(77163109)

8 7 4 5 1 Cyclic DC

200 Women who is more than 50 years

old and live her mother and father

Population Big

(70422787)

Big

(77163109)

8 7 4 5 1 Cyclic DC

134

A.2 Matching Order Test Dataset

Table A.11: Test Data for Determining Matching Order (1)

Query Dataset Data Graph

Node Size

Data Graph

Edge Size

Query

Graph

Node Size

Query

Graph

Edge Size

of Dis-

tinct Node

Label

of Dis-

tinct Edge

Label

of Nodes

with Prop-

erties

Query

Type

Best

Re-

sults

1 Players who take role in any match

at least 4 world cups

WorldCup Small

(45348)

Small

(86577)

13 12 4 3 0 Others EC

2 Players scores at least 4 goals as

starters

WorldCup Small

(45348)

Small

(86577)

6 5 3 2 0 Others EC

3 Players in the squad of Brazil Team

in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others CC

4 Players in the squad of England

Team in 1966 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 4 3 2 Others CC

5 All World Cups hosted by Germany WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

6 All matches played in Daegu World

Cup Stadium

WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

7 Matches between Sweden and

Brazil in 1994 World Cup

WorldCup Small

(45348)

Small

(86577)

4 3 3 3 3 Others CC

8 All matches of England in a World

Cup that hosted by them

WorldCup Small

(45348)

Small

(86577)

3 4 3 4 2 Cyclic BC

9 Countries scores at least 3 goals as

home team in any match at World

Cup which is hosted by the same

country

WorldCup Small

(45348)

Small

(86577)

3 3 3 3 1 Cyclic BC

10 All stadiums that Semi-Final

Matches are played

WorldCup Small

(45348)

Small

(86577)

2 1 2 1 1 Path DC

11 All players takes role as substitute

in any match that played in Estadio

Azteca Stadium in any World Cup

WorldCup Small

(45348)

Small

(86577)

5 4 5 4 1 Others CC

12 All players takes role as starters and

scores a hat trick in any match that

played in Estadio Azteca Stadium

WorldCup Small

(45348)

Small

(86577)

7 6 5 4 1 Others EC

13 Players who is in the squad of

Uruguay team that played at least

two different World Cup

WorldCup Small

(45348)

Small

(86577)

6 6 4 3 1 Cyclic DC

14 Goals that Roberto Carlos scores in

2002 World Cup

WorldCup Small

(45348)

Small

(86577)

5 5 5 5 2 Others CC

15 All matches of Uruguay as an away

team in 1998 World Cup

WorldCup Small

(45348)

Small

(86577)

3 2 3 2 2 Path DC

16 The user with id 11 who has a

friendship with the user with id 61

Pokec Medium

(1632803)

Medium

(30622564)

2 1 2 1 2 Path DC

17 Friends play baseball Pokec Medium

(1632803)

Medium

(30622564)

3 3 2 3 2 Cyclic BC

18 The people who can talk ‘Rus-

sian’ and ’vysokoskolske’ educa-

tion level that

Pokec Medium

(1632803)

Medium

(30622564)

4 5 3 3 3 Cyclic DC

135

Table A.12: Test Data for Determining Matching Order (2)

Query Dataset Data Graph

Node Size

Data Graph

Edge Size

Query

Graph

Node Size

Query

Graph

Edge Size

of Dis-

tinct Node

Label

of Dis-

tinct Edge

Label

of Nodes

with Prop-

erties

Query

Type

Best

Re-

sults

19 The friends of users who used to

basketball but now playing tennis

Pokec Medium

(1632803)

Medium

(30622564)

4 3 2 3 2 Others CC

20 The user list which consists of peo-

ple who is 20 years old and ’stre-

doskolske’ at education level

Pokec Medium

(1632803)

Medium

(30622564)

3 2 3 2 2 Path DC

21 Users talk English and play tennis

and basketball

Pokec Medium

(1632803)

Medium

(30622564)

4 3 3 3 3 Others CC

22 Friends of friends of user with id 6 Pokec Medium

(1632803)

Medium

(30622564)

3 2 1 1 1 Path DC

23 Friends both talks Slovak and Ital-

ian

Pokec Medium

(1632803)

Medium

(30622564)

3 2 2 2 2 Cyclic BC

24 Female users play football and

friend with 3 male users that play

football

Pokec Medium

(1632803)

Medium

(30622564)

7 14 2 2 3 Cyclic DC

25 Users with cancer zodiac and 21

years old friends with scorpio zo-

diac and 21 years old

Pokec Medium

(1632803)

Medium

(30622564)

6 5 2 2 2 Others EC

26 Extended families consisting of

mother, father, son, son’s wife and

children and all living in the same

address

Population Big

(70422787)

Big

(77163109)

7 10 2 4 0 Cyclic DC

27 Brothers whose state registers are

different

Population Big

(70422787)

Big

(77163109)

5 4 2 3 0 Path DC

28 Persons live in same flat but their fa-

thers are different

Population Big

(70422787)

Big

(77163109)

5 4 2 2 0 Path DC

29 Brothers live in same flat but their

father and mother lives in different

flat

Population Big

(70422787)

Big

(77163109)

6 8 2 2 0 Cyclic DC

30 Daughters born in same day with

her father

Population Big

(70422787)

Big

(77163109)

3 3 2 2 0 Cyclic BC

31 Fathers lives with her daughter from

ex-wife in the same apartment

Population Big

(70422787)

Big

(77163109)

6 7 3 4 0 Cyclic DC

32 People born after 1995 and having

at least one son as a father

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

33 Families with at least 5 children and

all (mother + father + 5 children)

living in the same address

Population Big

(70422787)

Big

(77163109)

8 17 3 4 0 Cyclic DC

34 People who has 3 ex-husband Population Big

(70422787)

Big

(77163109)

4 3 1 1 0 Others BB-

Graph

35 Men born after 2000 and married Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

36 Men born after 1997 and got di-

vorced

Population Big

(70422787)

Big

(77163109)

3 2 2 2 1 Path DC

37 Men born after 1997 and does not

live in the same address with his fa-

ther

Population Big

(70422787)

Big

(77163109)

5 4 3 3 1 Others CC

38 Men who lives with his mother and

daughter

Population Big

(70422787)

Big

(77163109)

7 8 3 3 0 Cyclic DC

39 Married couples with more than 65

years old

Population Big

(70422787)

Big

(77163109)

3 3 2 2 1 Cyclic BC

40 Men who is more than 40 years old

and live her mother and father

Population Big

(70422787)

Big

(77163109)

8 7 4 5 1 Cyclic DC

136

A.3 Query Results of Subgraph Isomorpishm Algorithms on WorldCup Database

Table A.13: Query Results of Subgraph Isomorpishm Algorithms on WorldCup

Database (Part-1)

Cypher DualIso GraphQL TurboIso VF3 BB-Graph
BB-Plus

(Historical)

BB-Plus

(Real-Time)

Query 1 1052 10453 24747 5116 6337 1050 602 874

Query 2 10123 34675 6361 3353 3231 3124

Query 3 3092 3260

Query 4 26711 26311 22072 78543 11193 10850 3939

Query 5 10654 113714 23754 18121 18224

Query 6 15243 132842 25743 21245 21382

Query 7 15234 30324 8746 4324 3874 3764

Query 8 12245 28465 7543 4121 3645 3521

Query 9 12345 27364 16237 7923 12432 3421 3127 3317

Query 10 12963 37852 8754 3682 3495 3374

Query 11 34950 36475 29845 87421 12875 12123 10874

Query 12 6745 29745 13425 3421 2983 2869

Query 13 7213 30818 14759 3874 3145 3111

Query 14 7126 30485 14743 3842 3214 3222

Query 15 6323 29845 13543 3485 2964 3097

Query 16 6983 28453 13845 3742 3125 3098

Query 17 6853 28745 13954 3632 3245 4532

Query 18 7342 31938 14756 3975 3423 3398

Query 19 7263 31634 14367 3795 3214 3211

Query 20 7163 31641 13226 3887 3874 3812

Query 21 8932 33421 17432 45632 42386 5436 4932 4873

Query 22 9321 32873 17293 39563 45684 5983 5821 6873

Query 23 9123 38742 18734 41937 43857 5743 5674 5678

Query 24 8674 35949 16384 46327 48932 5274 4984 4976

Query 25 8372 34632 18353 51345 48235 5129 4564 4485

Query 26 8234 38938 20983 48732 45973 5243 4673 4569

Query 27 8268 37945 21874 65321 55328 5283 4988 4925

Query 28 7921 29834 18274 45684 51423 5198 4873 4912

Query 29 9834 31736 17365 58732 68234 5291 5189 5211

137

Table A.14: Query Results of Subgraph Isomorpishm Algorithms on WorldCup

Database (Part-2)

Cypher DualIso GraphQL TurboIso VF3 BB-Graph
BB-Plus

(Historical)

BB-Plus

(Real-Time)

Query 30 6431 21467 11235 18365 21567 4539 4128 3875

Query 31 6648 22747 12398 20943 22774 4673 4576 4597

Query 32 5983 19834 11723 19823 20983 4555 4432 4245

Query 33 6436 21745 11986 18373 19834 4984 4698 4356

Query 34 7121 20872 11764 12764 13873 4763 4768 4759

Query 35 9746 34867 10883 7531 6537 6973

Query 36 10223 38745 12456 7432 7425 7399

Query 37 9654 37659 11345 7683 7643 7598

Query 38 9879 32746 10763 7573 7523 7511

Query 39 9435 40875 12743 7442 7228 7246

Query 40 21712 19374 38734 52495 15367 14850 14249

Query 41 20974 25748 37645 51828 14324 14214 14356

Query 42 22875 27648 41983 39857 16437 16246 16298

Query 43 21857 18736 40872 45761 15384 15224 15325

Query 44 32185 356793 22395 22390 22384

Query 45 30987 29845 21874 21876 2143

Query 46 35784 41983 22888 22654 22756

Query 47 35873 42985 23567 23123 23432

Query 48 32865 37646 19284 18723 18992

Query 49 7348 34867 63259 69383 6246 6128 6221

Query 50 7974 29874 59832 51083 6117 6001 6005

138

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Contributions and Novelties
	The Outline of the Thesis

	BACKGROUND AND RELATED WORK
	Graph Databases
	Comparison of Graph Databases

	Centrality Measures in Graphs
	Degree Centrality
	Closeness Centrality
	Betweenness Centrality
	Eigenvector Centrality

	The Subgraph Isomorphism Problem
	The Subgraph Isomorphism Algorithms
	Ullmann’s Algorithm
	VF2
	QuickSI
	GraphQL
	GADDI
	SUMMA
	SPath
	TurboIso
	DualIso
	BB-GRAPH
	VF2-Plus
	VF3

	Matching Order Selection in the Subgraph Isomorpishm Problem

	BB-PLUS:AN APPROACH FOR SUBGRAPH ISOMORPHISM IN BIG GRAPH DATABASE
	Matching Order Selection Based On Degree Centrality
	Matching Order Selection Based On Closeness Centrality
	Matching Order Selection Based On Betweenness Centrality
	Matching Order Selection Based On Eigenvector Centrality
	Matching Order Selection Based On Hybrid Centrality
	Matching Order Selection Based On Candidate Node Selection
	Comparison of Matching Order Selection Methods
	Based on Their Creation Methods
	Based on the Type of Queries
	Based on the Volatility of Databases

	Determining Matching Order Selection Methods

	EXPERIMENTS AND RESULTS
	The Dataset
	The System Configuration
	Queries
	Experiments on the Databases
	Experiments on the WorldCup Database
	Experiments on the Pokec Database
	Experiments on the Population Database

	Discussions on the Experimental Results

	CONCLUSION AND FUTURE WORK
	Conclusion
	Future Work

	REFERENCES
	Appendix 1
	Matching Order Training Dataset
	Matching Order Test Dataset
	Query Results of Subgraph Isomorpishm Algorithms on WorldCup Database

