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ABSTRACT

DEVELOPMENT OF NOVEL ANALYSIS AND RECONSTRUCTION
TECHNIQUES FOR COHERENT OPTICAL IMAGING SYSTEMS

Işıl, Çağatay

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Sevinç Figen Öktem

Co-Supervisor: Dr. Aykut Koç

July 2019, 74 pages

We develop novel analysis and reconstruction techniques for coherent optical imag-

ing systems. Firstly, we present a phase-space approach to analyze coherent imaging

systems with multiple diffracting apertures. The degrees of freedom of a coherent

imaging system can be computed from its phase-space window, which takes into ac-

count diffraction effects from all apertures. We show how the phase-space window

is linked to important imaging parameters of the system such as diffraction-limited

resolution. A single-lens system and a microscope objective design are considered

as examples to illustrate the utility of the approach. Secondly, we focus on the clas-

sical phase retrieval problem, which is a fundamental problem in coherent imaging.

Although there are several well-known phase retrieval algorithms, the reconstruction

performance is generally sensitive to initialization and measurement noise. We de-

velop two different novel phase retrieval algorithms by jointly exploiting deep neural

networks (DNNs) and traditional model-based inversion methods. The used model-

based inversion approach is the well-known hybrid-input-output (HIO) method for

phase retrieval. In the first approach, the main idea is to use a DNN in an iterative
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manner with the HIO method to improve the HIO reconstructions. Numerical results

demonstrate the effectiveness of this approach, which also has little additional compu-

tational cost compared to the HIO method. In the second approach, the main idea is to

incorporate a learning-based prior to the HIO method through plug-and-play regular-

ization. The developed method is flexible such that it can also be used with different

image priors. The performance of the second approach is illustrated with numerical

simulations. Both of the developed phase retrieval methods not only achieve state-of-

the-art reconstruction performance but also are more robust to different initialization

and noise levels.

Keywords: coherent optical imaging systems, phase-space optics, Fourier optics, in-

verse problems, phase retrieval, image reconstruction, deep learning
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ÖZ

FAZ UYUMLU OPTİK GÖRÜNTÜLEME SİSTEMLERİ İÇİN YENİLİKÇİ
ANALİZ VE GERİÇATIM YAKLAŞIMLARININ GELİŞTİRİLMESİ

Işıl, Çağatay

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Sevinç Figen Öktem

Ortak Tez Yöneticisi: Dr. Aykut Koç

Temmuz 2019 , 74 sayfa

Bu tezde faz uyumlu optik görüntüleme sistemleri için yenilikçi analiz ve geriçatım

metotları geliştirilmektedir. İlk olarak kırınıma neden olan birden fazla açıklıklı faz

uyumlu görüntüleme sistemlerini analiz etmek için bir faz-uzay yaklaşımı geliştiril-

mektedir. Bir faz uyumlu görüntüleme sisteminin serbestlik derecesi, onun birden

fazla açıklıktan gelen kırınım etkilerini içeren faz-uzay penceresini kullanılarak he-

saplanabilir. Bu çalışmada, faz-uzay penceresi kullanılarak bir sistemin önemli gö-

rüntüleme parametrelerinin nasıl elde edildiği gösterilmektedir. Geliştirilen metodun

sağladığı fayda, tek mercekli ideal bir sistem ve optik tasarımı bilinen bir mikroskop

merceği için gösterilmektedir. İkinci olarak faz uyumlu görüntüleme sistemlerindeki

temel problemlerden biri olan faz geri kazanımı problemine odaklanılmaktadır. Bu

problem için sıkça kullanılan birçok algoritma olmasına rağmen, bunların geriçatım

performansı genellikle ilklendirmeye ve ölçüm gürültüsüne bağlıdır. Bu çalışmada,

model tabanlı geleneksel metotlar ve derin sinir ağları kullanılarak iki tane yeni-

likçi faz geri kazanımı algoritması geliştirilmektedir. Kullanılan model tabanlı model,

sıkça tercih edilen karma girdi-çıktı yöntemidir. İlk yaklaşımdaki ana fikir, derin sinir
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ağlarıyla karma girdi-çıktı yöntemiyle özyinelemeli bir şekilde kullanarak geriçatım

sonuçlarını geliştirmektir. Sayısal sonuçlar, karma girdi-çıktı yöntemine göre hesap-

lama masrafı çok az daha fazla olan yaklaşımın faydalarını göstermektedir. İkinci

yaklaşımdaki ana fikir, karma girdi-çıktı yöntemi ve derin öğrenme tabanlı önsel bil-

gileri tak ve çalıştır düzenlileştirmesi yardımıyla birleştirmektir. Geliştirilen metot

farklı görüntü önsel bilgilerle de kullanılabilme esnekliğine sahiptir. Geliştirilen yak-

laşımın faydaları sayısal benzetimlerle gösterilmektedir. Geliştirilen faz gerikazanımı

yaklaşımları, hem en gelişkin geriçatım performansı göstermekte hem de farklı ilk-

lendirme ve gürültü seviyelerine karşı daha gürbüz davranmaktadır.

Anahtar Kelimeler: faz uyumlu optik görüntüleme sistemleri, faz-uzay optiği, Fourier

optiği, ters problemler, faz gerikazanımı, görüntü geriçatımı, derin öğrenme
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CHAPTER 1

INTRODUCTION

Fourier optics is an important branch of optics that provides great utility in the model-

ing and analysis of optical imaging systems [3]. If the illumination used in an imaging

system owns a property called spatial coherence, then these systems are referred as

coherent imaging systems and the light through the system is described as a spatial

distribution of complex-valued field amplitude. In fact, spatial coherence is defined

as a measure of the correlation between the phase of a light wave observed at different

spatial locations [4]. In this thesis, the focus is on coherent imaging systems.

Coherent imaging is important for several imaging applications including microscopy

and holography [3]. The reason is that using coherent light sources such as lasers

for illumination enables to measure the phase information, which has physical sig-

nificance in the study of the structure of objects. For example, phase-contrast mi-

croscopy is used to see the transparent objects, which are not seen directly. This

imaging method, which is invented by Zernike, uses coherent illumination. It con-

tains a filter that converts phase modulation to amplitude modulation. Another exam-

ple is holography, which is invented by Gabor. In holography, the phase information

is converted to amplitude modulation of another wavefront and the intensity of this

wavefront is measured [5]. Coherent illumination is predominantly used for hologra-

phy [3]. Thanks to these inventions, Zernike and Gabor were awarded Nobel prizes

in physics in 1953 and 1971, respectively.

Coherent imaging systems often contain apertures that cause diffraction. The term

diffraction was defined by Sommerfeld as "any deviation of light rays from rectilinear

paths which cannot be interpreted as reflection or refraction." [3]. Diffraction is gener-

ally studied to relate the complex amplitude distribution of a propagating wave at one
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plane to a subsequent plane. An aberration-free optical system is called diffraction-

limited because diffraction from finite-size apertures limits the spatial frequency re-

sponse of the system and consequently sets a limit for resolution. Diffraction limit

to resolution is often determined through the cutoff of the computed frequency re-

sponse, or using the shape of the point spread function (PSF), which corresponds to

the impulse response of the system,

In this thesis, firstly, a novel phase-space approach is developed to analyze diffraction-

limited coherent imaging systems with multiple diffracting apertures. The approach

is based on the concept of phase-space (space-frequency) window [6], which charac-

terizes the degrees of freedom of a coherent imaging system in the space-frequency

plane. We show how the space-frequency window is linked to important imaging

parameters of the system including cut-off frequency, diffraction-limited resolution,

effective focal length, and magnification. Different than the widely used geometrical-

optics methods for analysis, the proposed approach takes into account diffraction

effects from all apertures, and also requires a simple computation. To illustrate the

utility of the approach, a single-lens system and an objective lens of a microscope are

analyzed, and the results are confirmed with the known properties and specifications

of the inspected systems.

Coherent imaging systems consisting of lenses and other optical elements suffer from

physical limitations that result from aberrations and diffraction. Even if an optical

system is free of aberrations, there is still an ultimate limit for resolution, due to

diffraction resulting from the wave nature of the light. To reach resolution beyond

the diffraction-limit, several different techniques have been developed [3]. One such

popular approach is coherent diffractive imaging (CDI). This is a lensless imaging

technique that forms images using computational phase retrieval algorithms.

In CDI, a coherent light source is used to illuminate an object and the diffraction

pattern that corresponds to the Fourier transform of this object in the far-field is

measured. However, only the intensity of the diffraction pattern can be measured

with practical light detectors such as charge-coupled devices (CCDs) [7]. Since only

Fourier intensity measurements are available, a phase retrieval problem needs to be

solved to recover the object distribution from these measurements. CDI with an X-ray

2



source is illustrated in Fig. 1.1.

Figure 1.1: The illustration of coherent diffraction imaging with an X-ray source

The classical phase retrieval problem is the recovery of a constrained signal from

the magnitude of its Fourier transform, or equivalently from its autocorrelation. This

problem is encountered in a variety of applications in science and engineering such

as crystallography [8], microscopy [9, 10], astronomy [11], optical imaging [12, 13],

and speech processing [14]. Throughout history, many scientists were awarded Nobel

prizes for their works involving phase retrieval. For example, James Watson and

Francis Crick discovered the structure of the DNA molecule by solving this problem

from the diffraction images obtained by Rosalind Franklin. For this work, they were

awarded the 1962 Nobel prize in medicine. In 1953, Herbert Hauptman and Jerome

Karle demonstrated how to find a solution for this problem in X-ray crystallography

by using prior information about the molecules composing the crystal and then they

received the 1985 Nobel prize in chemistry.

In the second part of this thesis, the classical phase retrieval problem is studied and

two novel methods are developed for the solution of this problem. Existing phase

retrieval algorithms including the popular alternating projection-based methods [7,

15] generally lead to artifacts due to stuck in local minima or amplification of noise

in the solution. The developed methods in this thesis aim to overcome the limitations
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of these methods.

The first method is a novel deep learning-based approach that utilizes DNNs with

a model-based inversion approach. Here, the used model-based inversion approach

is the well-known hybrid input-output (HIO) method, which incorporates the physi-

cal model and the constraints into the solution, but may lead to artifacts. The main

idea in the developed method is to use a DNN in an iterative manner with the HIO

method to improve the HIO reconstructions. The developed approach consists of two

main stages: the iterative DNN-HIO stage and the final DNN stage. For the iterative

DNN-HIO stage, a DNN is trained to remove the HIO artifacts. This trained DNN is

then used iteratively with the HIO method to generate an intermediate reconstruction.

In the final stage, the intermediate reconstructions are used to train a second DNN

to remove the remaining artifacts. The performance of the developed approach is

compared with classical and state-of-the-art methods through numerical simulations.

The results demonstrate the effectiveness of our approach, which has relatively little

additional computational cost compared to HIO.

In the second approach, the main idea is to incorporate a learning-based prior to the

HIO method through plug-and-play regularization [16, 17]. Half quadratic splitting

(HQS) is used to decouple the inverse problem into two separate sub-problems con-

taining the data fidelity and prior terms [18, 19]. The sub-problem containing the

data fidelity term is solved in an ad hoc manner with the HIO method for a small

number of iterations. The other sub-problem containing the prior term is solved with

a deep learning-based denoiser. The iterative solution of these sub-problems with

a varying split parameter provides the final reconstruction. The developed method

is flexible such that it can be used with different image priors coming from differ-

ent denoisers. Moreover, this method can be used for different Fourier magnitude

measurements including coded diffraction patterns and Fourier magnitude measure-

ments. Its reconstruction performance is compared with classical and state-of-the-art

methods through numerical experiments. Both of the developed approaches achieve

state-of-the-art reconstruction performance, and also more robust to different initial-

ization and noise levels.

The thesis is organized as follows. In Chapter 2, the analysis of coherent optical
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systems with a phase-space approach is presented. The first phase retrieval approach

corresponding to a hybrid method utilizing DNNs with the HIO method is presented

in Chapter 3. The second phase retrieval approach utilizing plug-and-play priors is

developed in Chapter 4. Finally, we summarize the thesis and conclude in Chapter 5.
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CHAPTER 2

A PHASE-SPACE APPROACH TO ANALYZE COHERENT IMAGING

SYSTEMS

2.1 Introduction

Coherent imaging systems are widely analyzed using conventional approaches based

on geometrical optics [22, 3]. Although there are also many works on determining

the object-image relationship of an imaging system based on Fourier optics [22, 23,

3], to the best of our knowledge, there has been no development of a simple and

a straightforward method for quantifying the important imaging parameters such as

cut-off frequency, resolution, and effective focal length.

In this chapter, we present a simple phase-space approach to analyze coherent imag-

ing systems with multiple diffracting apertures. The approach is based on the con-

cept of phase-space (space-frequency) window [6], which characterizes the degrees

of freedom of a coherent imaging system in the space-frequency plane. We show how

the space-frequency window is linked to important imaging parameters of the system

including cut-off frequency, diffraction-limited resolution, effective focal length, and

magnification. Different than the widely used geometrical-optics methods for anal-

ysis, the proposed approach takes into account diffraction effects from all apertures,

and also requires a simple computation. To illustrate the utility of the approach, a

single-lens system and an objective lens of a microscope are analyzed, and the results

are confirmed with the known properties and specifications of the inspected systems.

Preliminary version of this approach was presented in [20].

The rest of this chapter is organized as follows. The space-frequency window is

Some parts of this chapter have been presented in [20], and also submitted for publication [21].
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described in Section 2.2. The analysis of coherent optical systems with the phase-

space approach is discussed in Section 2.3. Also, in this section, a single-lens system

and a microscope objective are analyzed. Finally, we summarize conclude in Section

2.4.

2.2 Phase-space (Space-frequency) Window

Our approach is developed for a first-order coherent imaging system (quadratic-phase

system) with the arbitrary number of apertures. Each aperture is assumed to be cen-

tered around the origin and free of obscuration. Light propagation from one aperture

to the next one through this first-order system can be modeled by a linear canonical

transform (LCT). For simplicity, we consider one-dimensional signals and systems.

In the one-dimensional case, LCT is a three-parameter family of linear integral trans-

forms, whose definition is as follows [24, 25]:

fT(x) ≡ (CTf)(x) ≡
∫ ∞
−∞

CT(x, x′)f(x′)dx′,

CT(x, x′) ≡
√

1

B
e−iπ/4eiπ(D

B
x2−2 1

B
xx′+A

B
x′2),

(21)

for B 6= 0, where fT(x) denotes the output of a first order optical system, f(x) repre-

sents the input of the system, CT is the unitary LCT operator with system parameter

matrix T = [AB;CD] and AD − BC = 1. In the trivial case B = 0, the LCT is

defined as fT(x) ≡
√
D exp(iπCDx2)f(Dx). The parameters of the LCT operator

is commonly arranged in a 2× 2 unitary matrix T = [AB; C D], which corresponds

to the ray (ABCD) matrix in geometrical optics.

Examples of LCT parameter matrices frequently encountered in imaging are the scal-

ing matrix MM , chirp multiplication matrix Qq, and chirp convolution matrix Rr,

whose general forms are given as follows [26]:

MM =

 M 0

0 1/M

 , Qq =

 1 0

−q 1

 , Rr =

1 r

0 1

 . (22)

Here the matrix MM corresponds to the scaling operation, which maps a function

f(x) into
√

1/Mf(x/M) with the scaling parameter M > 0. The matrix Qq per-

forms multiplication with a chirp function of the form exp[−iπqx2], which corre-
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sponds to refraction. For example, Qq with q = 1/λf models passage through a

thin lens of the focal length of f , and Qq with q = (n2 − n1)/λR represents refrac-

tion from a surface with spherical curvature of radius R when the refractive indices

of the input and output media are n1 and n2, respectively. Moreover, the matrix Rr

corresponds to the general convolution operation with a chirp function of the form

e−iπ/4
√

1/r exp[iπx2/r]. This models propagation through a medium of length d

and refractive index n in the Fresnel approximation when r = λd/n. An impor-

tant special case is free-space propagation with n = 1. These parameter matrices

are useful in the analysis of imaging systems because when several subsystems are

cascaded, the overall system can be characterized by a single LCT integral whose

parameters can be obtained by the multiplication of the corresponding matrices for

each subsystem.

To analyze first-order coherent imaging systems, our approach is developed based on

phase-space optics. Phase-space distributions provide the distribution of the signal

energy over space and frequency. A commonly used phase-space (space-frequency)

distribution is the Wigner distribution [24]. The space-frequency region that con-

tains the substantial portion of the energy of a signal is commonly referred as the

phase-space support of the signal. This is also related to the widely used concept

of space-bandwidth product, or equivalently the number of degrees of freedom [27].

Recently, a simple procedure has been developed [6] to compute the phase-space

(space-frequency) window of a system, which corresponds to the largest signal sup-

port in the space-frequency plane that can pass through an optical system without

any information loss. That is, when the space-frequency support of an input signal

does not lie inside the system window, the parts of the signal within the window

pass while the parts lying outside are blocked, a result that is approximately valid for

many systems of practical interest. Hence we can view the system space-frequency

window as an equivalent aperture that combines the effects of all individual aper-

tures in different planes into a single space-frequency aperture. Moreover, the area

of the space-frequency window corresponds to the degrees of freedom of the imaging

system.

The phase-space (space-frequency) window is computed using the aperture sizes of

the optical elements in the system together with the LCT parameter matrices that
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model the propagation from each aperture to the next one. This computation relies

on the fact that each aperture corresponds to a truncation of the input signal in an

oblique axis in the space-frequency plane [26]. Thus each aperture introduces a re-

striction on the signal, which can be geometrically visualized in the form of a corridor

in the space-frequency plane. Intersecting all the corridors corresponding to all the

apertures gives us the phase-space window of the system [6]. This simple procedure

is illustrated in the space-frequency plane in Fig. 2.1 for a system with four aper-

tures. Here, x represents the spatial coordinate, and σx denotes the spatial frequency

coordinate.

σx

x

−

fc

−

−fc
∆4

M4

∆1

M1

∆2

M2

∆3

M3

Figure 2.1: Illustration of the space-frequency window for a system with four limiting

apertures.

To clearly describe how the space-frequency window is computed, let us define the

input and output planes in the imaging system as z = 0 and z = d, where d is the

length of the system and z denotes the optical axis. Let L represent the total number

of apertures in the system, zj and ∆j denote the location and extent of the jth aperture

in the system, j = 1, 2, ..., L. The matrix Tj is used to denote the parameter matrix of

the system from the input to the position of the jth aperture, that is the system lying

between 0 and zj excluding the apertures. The matrix Tj can be readily computed

using the respective parameter matrices for each subsystem corresponding to different

optical processes such as refraction and propagation through a medium, as given in

Eqn. 22, together with the concatenation property of these matrices.

Let us denote the elements of the matrix Tj by Aj, Bj, Cj , and Dj . Alternative to
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the ABCD matrix, an LCT can be equivalently characterized in terms of its Iwasawa

decomposition parameters, which are required for the computation of the system win-

dow. In the Iwasawa decomposition of interest, an arbitrary LCT is decomposed into

a fractional Fourier transform (FRT) of order a, followed by scaling with magnifica-

tion M , and followed lastly by chirp multiplication with parameter q. The associated

Iwasawa decomposition parameters, a, M , and q, can be computed from the matrix

entries A,B,C, and D using the following well-known formulas [25, 26]:

a =

 2
π
arctan(B

A
), if A ≥ 0

2
π
arctan(B

A
) + 2, if A < 0

(23)

M =
√
A2 +B2 (24)

q =

 −C
A
− B/A

A2+B2 , if A 6= 0

−D
B
, if A = 0

(25)

Here the range of the arctangent lies in (−π/2, π/2], and the dimensional to dimen-

sionless conversion parameter is chosen as s = 1 in our measurement unit (i.e. me-

ters). The FRT order a in the Iwasawa decomposition begins from 0 at the input of

the system, and then monotonically increases as a function of distance [25, 26].

By denoting the Iwasawa decomposition parameters for each matrix Tj by aj,Mj

and qj , the steps for computing the phase-space (space-frequency) window at the

input plane (z = 0) are summarized as follows [6]:

1. Compute the LCT parameter matrix Tj for each aperture j = 1, 2, ..., L by

multiplying the respective parameter matrices for each subsystem correspond-

ing to different optical processes such as refraction and propagation through a

medium.

2. Compute the corresponding Iwasawa decomposition parameters aj andMj (the

fractional order and the magnification) using the formulas in Eqn. 23, 24 and

25.

3. For each aperture j, draw a corridor of width ∆j/Mj making angle (aj +

1)π/2 with the x-axis in the phase-space (space-frequency) plane. (The cor-
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ridor is explicitly defined by the following two lines: y = − cot(ajπ/2)x ±
∆j

2Mj
csc(ajπ/2).)

4. Intersect the corridors from all apertures to find the phase-space (space-frequency)

window.

2.3 Analysis of Coherent Imaging Systems

We now show how this space-frequency window can be used to analyze coherent

imaging systems. The important imaging parameters such as cut-off frequency, diffraction-

limited resolution, effective focal length, and magnification are obtained utilizing this

system window and its parameters.

Conventionally, the cut-off frequency, fc, is obtained from the optical transfer func-

tion (OTF) of the imaging system. OTF is the Fourier transform of system’s point

spread function (PSF), which corresponds to the response of the system to a point

source (namely, an impulse). In the space-frequency plane, the support of a point

source containing all spatial frequencies (i.e. impulse) is the line corresponding to

the frequency axis. As a result, the intersection of this line with the system space-

frequency window approximately provides the support of the OTF. Hence the bound-

ary of the space-frequency window on the spatial frequency axis provides the cut-off

frequency fc, as illustrated in Fig. 2.1.

The diffraction-limited resolution can be obtained from the cut-off frequency fc. In

fact, the product of diffraction-limited resolution and fc is a constant [28]. For ex-

ample, if Rayleigh criterion is used for defining the resolution ∆l, then ∆l is equal

to 0.61/fc for circular apertures and 0.5/fc for rectangular apertures in the coherent

case. Similarly, the related parameter of numerical apertureNA can be obtained from

fc as [29, 28]

NA = λfc =
0.61λ

∆l
, (26)

where the last equality holds for the circular aperture case.

As part of the space-frequency window computation, the overall LCT parameter ma-

trix, TL, of the system is obtained. Let TL = [ALBL; CLDL]. The effective focal
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length, EFL, and overall magnification, ML, of the system can be obtained from

the elements of the matrix TL. Because EFL parameter can be extracted from the

overall ray-transfer matrix of the imaging system [30], by using the relation between

the ray-transfer matrix and the LCT matrix, the parameter EFL can be obtained as

follows:

EFL = − 1

λCL
. (27)

The magnification parameter also follows from the overall system matrix TL. In fact,

the overall magnification from the input plane to any plane within the system is given

by the scaling parameter, M , of the Iwasawa decomposition of the corresponding

LCT matrix up to that plane, excluding the apertures. Hence the magnification, ML,

of the imaging system can be obtained from the scaling parameter of the matrix TL

as follows:

ML =
√
A2
L +B2

L. (28)

Using the obtained space-frequency window, one can also compute the number of

degrees of freedom of the system from the area of the system window. This corre-

sponds to the minimum number of samples required to faithfully represent the output

of this imaging system. Hence, this number is also closely related to the concept of

resolution. For example, if a detector is used to record the output image, the pixel

size of the detector can be chosen based on this. Increasing the number of degrees of

freedom of the imaging system can be one of the ultimate goals in design, which will

consequently enhance the resolution.

Phase-space window computation also reveals which apertures are limiting in the

system. In the conventional approaches, the analysis of the system is performed based

on the most limiting aperture. However, in this phase-space approach, all the limiting

apertures can be determined. The limiting apertures are the ones that determine the

space-frequency window; that is, the space-frequency window is the intersection of

the corridors defined by the limiting apertures. The apertures that do not contribute

to the final space-frequency window are non-limiting, which means that decreasing

their sizes to a certain point will not affect the imaging performance of the system.

This may provide flexibility during the design phase of the imaging system.
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2.3.1 Analysis of a Single Lens System

To illustrate the utility of the developed approach, we first analyze a simple single-

lens system and confirm the consistency of the analysis results with the well-known

properties of the system. The single-lens system involving a thin lens is illustrated in

Fig. 2.2. Here ds and di respectively denote the distances from the source and image

planes to the thin lens, and f is the focal length of the lens. The object is assumed

to have finite circular support with a diameter of Do. The aperture of the thin lens is

also assumed to be symmetric, in particular, circular-shaped with a diameter D.

Figure 2.2: Illustration of the thin lens system

To compute the space-frequency window of the thin lens system, the LCT parameter

matrices up to each aperture location zj (source plane, lens plane, and image plane)

are obtained by using the chirp multiplication matrix Qq with q = 1/λf correspond-

ing to refraction from a thin lens and the chirp convolution matrix Rr with r = λds

and r = λdi corresponding to free space propagation. The resulting matrices Tj for

each j are given by

T1 =

 1 0

0 1

 , T2 =

1 λds

0 1

 , T3 =

−di/ds 0

−1/λf −ds/di

 . (29)

Then, the Iwasawa decomposition parameters of each Tj are computed as given in

Table 2.1. When the corridors corresponding to the two apertures (i.e. the support

of the object and the lens aperture) are intersected by using these decomposition pa-

rameters together with the size of apertures, we obtain the space-frequency window

shown in Fig. 2.3.

The imaging parameters of the thin lens system are obtained from the overall system

matrix T3 and the computed system window using Eqn. 26, 27 and 28. First of all,
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σx

x

D

2λds

−

D

2λds

−D0/2

D0/2

D0

Figure 2.3: The input space-frequency window of the thin lens imaging system (the

effects of the thin lens imaging system on s(x, y) in the space-frequency plane).

Table 2.1: The Iwasawa decomposition parameters aj ,Mj and qj of each LCT system

matrix Tj for the thin lens imaging system

Tj aj Mj qj

T1 for input plane 0 1 0

T2 for thin lens plane 2
π
arctan(λds)

√
1 + (λds)2 −λds

1+(λds)2

T3 for output plane 2 di
ds

di+ds
λd2i

the cut-off frequency fc is obtained as D
2λds

from the boundary of the space-frequency

window on the frequency axis. The parameter NA of the system is also computed

as D
2ds

by inserting fc in Eqn. 26. The effective focal length EFL follows as f by

using T3 and Eqn. 27. The magnification ML is computed as di/ds using Eqn. 28.

Hence the true imaging parameters of the thin lens system can be obtained using the

developed approach. Moreover, the number of degrees of freedom of this system is

given by DDo/λds from the area of the window, and clearly all the apertures in the

system are limiting.

As another remark, note that the space-frequency window of the thin lens imaging

system is consistent with the well-known imaging formula in terms of its PSF. To
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clarify this, let us remember that the relation between the object distribution s(x, y)

on the source (input) plane and the formed image i(x, y) is given, within the Fresnel

approximation, by

i(x, y) = −ds
di

exp(iπ
x2 + y2

λdi
) (s̃(x, y) ∗ gc(x, y)) (210)

where

s̃(x, y) = s(−ds
di
x,−ds

di
y) exp(iπds

x2 + y2

λd2
i

), (211)

gc(x, y) = A(
x

λdi
,
y

λdi
) (212)

under the imaging condition:
1

f
=

1

di
+

1

ds
. (213)

Here gc(x, y) denotes the coherent optical PSF of the system, and A(x, y) represents

the Fourier transform of the aperture function of the thin lens.

To find the input system window directly from the PSF formula (Eqn. 210), we

visualize the effect of the thin lens imaging system on the input s(x, y) in the phase-

space plane. The combination of these effects will provide the overall input space-

frequency window of the system. The idea is to start with the effects of the system on

s̃(x, y) and then obtain the effect on the original input s(x, y) by using the relation in

Eqn. 211 as follows:

s(x, y) = s̃(−di
ds
x,−di

ds
y) exp(−iπx

2 + y2

λds
). (214)

In the given imaging formula, s̃(x, y) is convolved with the PSF gc(x, y). The effect

of the convolution of s̃(x, y) with gc(x, y) can be visualized as a horizontal corri-

dor in the phase-space plane as shown in Fig. 2.4a because this is equivalent to

low-pass filtering with a cut-off frequency of D
2λdi

. The effect of this convolution

on s̃(− di
ds
x,− di

ds
y) can then be obtained by scaling the corridors in Fig. 2.4a with

di/ds. These scaled corridors are shown in Fig. 2.4b. As seen from Eqn. 214, the

last operation we need to consider is chirp multiplication Qq with q = 1/λds. The

chirp multiplication leads to shearing of the space-frequency window parallel to the

frequency axis in the phase-space plane [25]. Hence the combined effects of convo-

lution, scaling and chirp multiplication can be seen in Fig. 2.4c. Finally by including

the finite support of the object (between −Do/2 and Do/2), the overall effect of the
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system on s(x, y) can be obtained as the space-frequency window given in Fig. 2.3.

This illustrates the consistency of our approach with the imaging relation of the sys-

tem obtained through diffraction computations (under Fresnel approximation). Hence

our approach can compensate the information provided by the imaging formula for a

general imaging system when such a formula is not available or difficult to obtain.

(a) The effect of the convolution with gc(x, y) on s̃(x, y) in the

space-frequency plane.

σx

x

D

2λdi

−

D

2λdi

(b) The effects of the convolution with gc(x, y) and the scaling with

−di/ds on s̃(− di
ds
x,− di

ds
y) in the space-frequency plane.

σx

x

D

2λds

−

D

2λds

(c) The effects of the convolution, the scaling, and the chirp multi-

plication Qq with q = 1/λds on s̃(− di
ds
x,− di

ds
y) exp(−iπ x

2+y2

λds
)

in the space-frequency plane.

σx

x

D

2λds

−

D

2λds

D

2
−

D

2

Figure 2.4: The effects of the operations in the PSF formula in the space-frequency

plane for a thin lens system
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2.3.2 Analysis of a Microscope Objective

We now use the space-frequency window approach to also analyze a microscope ob-

jective design [31] with 10× magnification and NA of 0.25 at the wavelength of 560

nm. The EFL of this system is 15.0028 mm. The microscope objective design

layout is given in Fig. 2.5. The design consists of two widely spaced consolidated

doublets and is known as Lister-type design [32]. The parameters of each optical el-

ement in the design are given in Table 2.2, which lists for each surface, respectively,

position, the radius of curvature, the thickness and refractive index of the following

medium, and its aperture diameter.

Figure 2.5: The layout of the microscope objective design

Table 2.2: Microscope objective design parameters

Surface Position (mm) Radius (mm) Thickness (mm) Refractive index Diameter (mm)

1 0.0000 Inf 7.6600 1.0000 1.6000

2 7.6600 21.2500 0.9700 1.6226 4.2000

3 8.6300 6.0000 3.3500 1.5238 8.0000

4 11.9800 -11.4800 8.6400 1.0000 8.0000

5 20.6200 112.2400 1.1300 1.6226 10.0000

6 21.7500 9.3800 3.5000 1.5238 10.0000

7 25.2500 -13.0900 0.3000 1.0000 10.0000

8 25.5500 Inf 155.0000 1.0000 7.7600

9 180.5500 -18.0000 – – 16.0000

To compute the space-frequency window of this microscope objective, the LCT sys-

tem parameter matrices for each aperture location zj are obtained using the matrix

Qq with q = (n2 − n1)/λR for refraction from a spherical surface and the matrix Rr

with r = λd/n for propagation through a refractive medium. The resulting space-

frequency window is shown in Fig. 2.6. This window defines the set of all input
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signals that can pass through the system without any information loss.
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Figure 2.6: The input space-frequency window for the microscope objective design

The cut-off frequency fc is obtained from the space-frequency window as 449.58

cyc/mm for the coherent imaging case. As discussed before, this can be used to de-

termine the diffraction-limited resolution and NA. Using Eqn. 26, the NA parameter

is found as 0.25, which is the same as the specified NA value of the design.

As part of the space-frequency window computation, the overall LCT parameter ma-

trix, Tobj , of the objective design is obtained as follows:

Tobj =

 −10.0534 1.2955× 10−10

−1.1902× 108 −0.0979

 . (215)

By using Eqn. 27 and 215, the EFL of the objective is computed as 15.0038, which

coincides with the specified EFL. The overall magnification of the design is also

obtained as 10.0534 using Eqn. 28 and 215. The magnification as a function of z

throughout the system is also plotted in Fig. 2.7, which also shows the final magnifi-

cation of 10×.

Using the obtained space-frequency window, one can also compute the number of

degrees of freedom of the system as 1, 358 (from the area of the window). This
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corresponds to the minimum number of samples required to faithfully represent the

output of this imaging component. Hence, if a detector is used to record the output

image, the pixel size of the detector can be chosen based on this number. Clearly, if

the design is modified to increase the number of degrees of freedom of the system,

the resolution will also get improved.

0 50 100 150 200
z(mm)

0

2

4

6

8

10

12

M

Figure 2.7: The evolution of the magnification M as a function of z for the micro-

scope objective design

Phase-space window computation also reveals that only the apertures of the first, sec-

ond and eighth surfaces are limiting as the system window is determined only by these

three apertures. The other apertures are non-limiting, which means that decreasing

their sizes to a certain point will not affect the diffraction-limited resolution of the

system.

We also analyze a modified version of this microscope objective design [31] with 10×
magnification andNA of 0.245 at the wavelength of 560 nm. TheEFL of this system

is 16.2137 mm. The microscope objective design layout is given in Fig. 2.8. The

design consists of two widely spaced consolidated doublets and is known as Lister-

type design [32]. The parameters of each optical element in the design are given in

Table 2.3, which lists for each surface, respectively, position, the radius of curvature,
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the thickness and refractive index of the following medium, and its aperture diameter.

Figure 2.8: The layout of the modified microscope objective design

Table 2.3: Modified microscope objective design parameters

Surface Position (mm) Radius (mm) Thickness (mm) Refractive index Diameter (mm)

1 0.0000 Inf 8.2700 1.0000 1.8000

2 8.2700 22.9400 1.0000 1.6226 4.4000

3 9.2700 5.9700 3.6000 1.5238 8.0000

4 12.8700 -11.7100 4.6600 1.0000 8.0000

5 17.5300 Inf 4.6600 1.0000 6.4891

6 22.1900 558.0000 1.3000 1.6226 10.0000

7 23.4900 10.5100 3.8000 1.5238 10.0000

8 27.2900 -13.3000 167.8000 1.0000 8.4000

9 195.0900 -20.0000 – – 18.0000

To compute the space-frequency window of this microscope objective, the LCT sys-

tem parameter matrices for each aperture location zj are obtained using the matrix

Qq with q = (n2 − n1)/λR for refraction from a spherical surface and the matrix Rr

with r = λd/n for propagation through a refractive medium. The resulting space-

frequency window is shown in Fig. 2.9. This window defines the set of all input

signals that can pass through the system without any information loss.

The cut-off frequency fc is obtained from the space-frequency window as 447.95

cyc/mm for the coherent imaging case. As discussed before, this can be used to de-

termine the diffraction-limited resolution and NA. Using Eqn. 26, the NA parameter

is found as 0.25, which is almost the same as the specified NA value of the design.

As part of the space-frequency window computation, the overall LCT parameter ma-
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Figure 2.9: The input space-frequency window for the modified microscope objective

design

trix, Tobj , of the objective design is obtained as follows:

Tobj =

 −10.0605 1.3765× 10−10

−1.1013× 108 −0.0979

 . (216)

By using Eqn. 27 and 216, the EFL of the objective is computed as 16.2147, which

coincides with the specified EFL. The overall magnification of the design is also

obtained as 10.0605 using Eqn. 28 and 216. The magnification as a function of z

throughout the system is also plotted in Fig. 2.10, which also shows the final magni-

fication of 10×.

Using the obtained space-frequency window, one can also compute the number of

degrees of freedom of the system as 1, 499 (from the area of the window). This

corresponds to the minimum number of samples required to faithfully represent the

output of this imaging component. Hence, if a detector is used to record the output

image, the pixel size of the detector can be chosen based on this number. Clearly, if

the design is modified to increase the number of degrees of freedom of the system,

the resolution will also get improved.

Phase-space window computation also reveals that only the apertures of the first,
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Figure 2.10: The evolution of the magnification M as a function of z for the modified

microscope objective design

second, fifth and eighth surfaces are limiting as the system window is determined

only by these four apertures. The other apertures are non-limiting, which means

that decreasing their sizes to a certain point will not affect the diffraction-limited

resolution of the system.

2.4 Conclusions

In conclusion, we have demonstrated how to analyze coherent imaging systems with

multiple diffracting apertures using the space-frequency window. The approach is

validated for a single thin lens system and a practical microscope objective design.

The developed approach will be useful for the design and analysis of imaging systems

as it is a simple and straightforward method for quantifying the important imaging

parameters.
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CHAPTER 3

DEEP LEARNING-BASED ITERATIVE RECONSTRUCTION FOR PHASE

RETRIEVAL

3.1 Introduction

The classical phase retrieval problem is one of the important inverse problems in

coherent imaging systems. It is the recovery of a constrained signal from the mag-

nitude of its Fourier transform, or equivalently from its autocorrelation. Practically,

measuring the phase of a light wave (oscillating at visible spectrum frequencies or

higher) is not straightforward. It requires additional processes such as interfering

wave with another known field [7]. However, the phase is also obtained by using

numerical methods. Under the coherent illumination, the diffraction intensity at the

far field corresponds to the Fourier magnitude of the object. This is also called co-

herent diffraction imaging (CDI). In CDI, the phase of the light can be recovered by

the solution of phase retrieval problem when prior information and Fourier magnitude

measurements are given.

This problem is encountered in a variety of applications in science and engineer-

ing such as crystallography [8], microscopy [9, 10], astronomy [11], optical imag-

ing [12, 13], and speech processing [14]. In this chapter, we consider two types of

measurements. There can be either one Fourier magnitude measurement or multiple

coded diffraction pattern (CDP) measurements. In CDP measurements, the object is

multiplied with different masks or phase plates to obtain multiple diffraction mea-

surements. This approach gives some redundancy, which helps uniqueness issues,

and additional information about the object [35]. Although a unique solution almost

Some parts of this chapter have been presented in [33], and also published [34].
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always exists for most of the practical scenarios [36], solving the phase retrieval prob-

lem is generally a difficult task because of the inherent ill-posedness and nonlinearity

involved.

Although there are several approaches developed for phase retrieval, each suffers

from different limitations. Alternating projection-based methods, including the hy-

brid input-output (HIO) algorithm, are the most commonly used methods because of

their low computational complexity and image generality [7, 15]. This class of meth-

ods alternates between the space and frequency domains by imposing the available

information in each domain through projections [7, 37, 38, 15]. However, some of

these projections involve non-convex sets, and hence convergence to the global so-

lution cannot be guaranteed. The resulting reconstructions may have artifacts and

errors mostly due to being stuck in local minima or amplification of noise in the

solution. More recent phase retrieval algorithms have been developed to overcome

some of these limitations. Examples include semi-definite programming-based ap-

proaches [39, 40, 41], regularization-based methods [42, 2, 43], and Wirtinger flow

and its variants [44].

Recently, DNNs [45] have been successfully applied for the solution of several inverse

problems in imaging [46]. There are two main approaches in exploiting DNNs for

the solution of inverse problems. In the first class of approaches, a DNN is used to

reconstruct the unknown image directly from an available measurement or from an

initial estimate obtained with a simple model-based inversion approach. Hence, these

approaches exploit DNNs either to perform direct inversion or to improve a rough

estimate that may involve artifacts or errors. For this, a DNN is trained by minimizing

a loss function between the ground truth images and the available measurements or

estimates. This approach has been utilized to solve several inverse problems [47,

48, 49, 1], including phase retrieval as encountered in holography, lensless imaging

and Fourier ptychography [50, 10, 51]. In the second class of approaches, DNNs are

utilized for the regularization of model-based inversion methods by using plug-and-

play regularization and its variants [16, 17]. In Chapter 4, this class of approaches

is discussed in more details and such a novel approach is also developed for phase

retrieval.
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In this chapter, we develop a hybrid phase retrieval algorithm that utilizes DNNs with

a model-based inversion approach. Here, the used model-based inversion approach

is the well-known HIO method, which incorporates the physical model and the con-

straints into the solution, but may lead to artifacts. The main idea in the developed

method is to use a DNN in an iterative manner with the HIO method to remove the

artifacts. The developed approach consists of two main stages: the iterative DNN-

HIO stage and the final DNN stage. For the iterative DNN-HIO stage, a DNN is

trained to remove the HIO artifacts. This trained DNN is then used iteratively with

the HIO method to generate an intermediate reconstruction. In the final stage, the

intermediate reconstructions are used to train a second DNN to remove the remain-

ing artifacts. The performance of the developed approach is compared with classical

and state-of-the-art methods through numerical simulations. The results demonstrate

the effectiveness of our approach, which has relatively little additional computational

cost compared to HIO. Our approach not only achieves state-of-the-art reconstruction

performance but also is more robust to different initialization and noise levels.

The rest of this chapter is organized as follows. The classical phase retrieval problem

is described in Section 3.2. Related work on phase retrieval and DNN-based methods

are discussed in Section 3.3. Section 3.4 presents the developed approach. The per-

formance of the approach is compared with classical and state-of-the-art methods in

Section 3.5 through simulations. Finally, we summarize the results and conclude in

Section 3.6.

3.2 Phase Retrieval Problem

In the classical phase retrieval problem, available measurements can be modeled as

y2 = |Fx|2 + w, w ∼ N(0, α2Diag(|Fx|2)) (31)

where y2 ∈ RM2 denotes the noisy Fourier intensity measurements, F is the M×M -

point DFT matrix, and x ∈ RN2 represents the unknown image of interest. Diag(|Fx|2)

is a square diagonal matrix with the elements of vector |Fx|2 on the main diagonal.

The unknown image x is assumed to be non-negative, real-valued and have finite

support. Moreover, w ∈ RM2 denotes the measurement noise, and α is a scaling pa-
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rameter that controls the signal-to-noise ratio (SNR). The noise is generally assumed

to be Poisson-distributed, and here its normal approximation [2] is used.

For two or higher dimensional real-valued discrete signals with finite support, Fourier

intensity measurements at discrete frequencies, |Fx|2, can uniquely determine the

unknown signal, x. To guarantee uniqueness, for an image with support N × N ,

the magnitude of its M ×M -point oversampled DFT with M ≥ 2N − 1 should be

provided [36]. In this work, M is chosen as 2N for simplicity.

3.3 Related Work

3.3.1 Alternating Projection Methods for Phase Retrieval

Alternating projection-based methods are widely used for phase retrieval. In the clas-

sical Gerchberg-Saxton (GS) algorithm [37], magnitude constraints are iteratively

imposed in space and Fourier domains to reconstruct the unknown signal. The er-

ror reduction (ER) algorithm is a modified version of the GS algorithm, which uses

other space domain constraints instead of the magnitude in the space domain [38].

The ER algorithm corresponds to the steepest descent method for the optimization of

‖y − |Fx|‖2 [15]. The most commonly used alternating projection-based method is

the HIO algorithm [15], which is developed based on the ER algorithm.

Similar to the ER algorithm, in the HIO method, Fourier magnitude constraint and

space domain constraints (such as support, non-negativity, and real valuedness) are

iteratively used. However, unlike ER, HIO does not force the iterates to satisfy the

constraints exactly, but it uses the iterates to eventually drive the algorithm to a solu-

tion that satisfy the constraints [15]. The HIO iterations can be expressed as follows:

xk+1[n] =

 x′k[n] for n /∈ γ
xk[n]− βx′k[n] for n ∈ γ

(32)

where

x′k = F−1

{
y � Fxk
|Fxk|

}
(33)

Here, xk ∈ RN2 is the reconstruction at the kth iteration, F−1 denotes the inverse
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DFT matrix, � represents the element-wise (Hadamard) multiplication operation, β

is a constant parameter (with a typical value of 0.9) and γ is the set of indices n for

which x′k[n] violates the space domain constraints [15]. Although the convergence

behavior of the HIO method cannot be completely analyzed, it often converges to

a reasonably good solution empirically in a wide variety of applications. However,

the HIO reconstructions may have artifacts and errors mostly due to being trapped in

local minima or amplification of noise in the solution. Variants of the HIO method

have also been proposed to improve its performance [7].

3.3.2 Deep Neural Network (DNN)-based Methods for Inverse Problems

In the last decade, DNNs have been successfully used for the solution of various

inverse problems including denoising, deconvolution, and superresolution [46]. There

are two main approaches in utilizing DNNs for solving inverse problems.

In the first class of approaches, a DNN is used to reconstruct the unknown image

directly from an available measurement or from an initial estimate obtained with

a simple model-based inversion. That is, these approaches exploit DNNs either to

solve end-to-end inverse problems or to improve a rough estimate that may have ar-

tifacts or errors. For this purpose, a DNN is trained by minimizing a loss function

using a dataset containing the ground truth images and the measurements (or the

initial estimates). In general, this approach provides a faster reconstruction than a

model-based inversion approach since it works in a non-iterative feed-forward fash-

ion to solve the problem. However, a DNN usually needs specialized training and

dataset for each inverse problem, which reduces its flexibility to handle different in-

verse problems. More importantly, this approach works successfully only when the

measurements or the initial estimates used for reconstruction are similar in appear-

ance to the ground truth images. This approach has been used to solve several inverse

problems in imaging applications such as denoising [47], deconvolution [48, 52], su-

perresolution [49, 53], tomography [1], holographic image reconstruction [10], phase

retrieval for phase objects [50], and Fourier ptychography [51].

In the second class of approaches, DNNs are utilized for the regularization of model-

based inversion methods by using plug-and-play regularization [16, 17]. This ap-
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proach is discussed with more details in Chapter 4.

3.4 DNN-based Iterative Phase Retrieval Approach

Our deep learning-based hybrid algorithm utilizes DNNs together with the HIO method.

The main idea in our approach is to use the HIO method to directly incorporate the

physical model and the constraints into the reconstruction, and DNNs to improve the

resulting HIO reconstructions. The first DNN, namely DNN-1, is trained to remove

the artifacts of the initial HIO reconstructions, and is used iteratively with the HIO

method to generate an intermediate reconstruction. Then, a second DNN, namely

DNN-2, is trained to remove the remaining artifacts after this iterative stage. The

output of DNN-2 is the final reconstruction of our method. The overall approach is

illustrated in Fig. 3.1 using representative images for the input and output of each

step. A preliminary version of this iterative approach was presented in [33].

Figure 3.1: The developed method with initialization, iterative DNN-HIO and final

DNN stages.

As shown in Fig. 3.1, the approach consists of three stages: the initialization stage,

the iterative DNN-HIO stage, and the final DNN stage. The initialization stage helps
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to achieve robustness to initialization. For this aim, the HIO reconstructions with dif-

ferent random initialization are obtained and the one that provides Fourier magnitude

closest to the given measurement is chosen as the input (initialization) for the iterative

stage. In the iterative DNN-HIO stage, a DNN and the HIO method are used itera-

tively to generate an intermediate reconstruction. This DNN is trained using the HIO

reconstruction at the output of the initialization stage with the ground truth images.

Hence this training aims to remove the HIO artifacts at the output of the initialization

stage, but this can be performed to some extent. After this iterative stage, the inter-

mediate reconstructions have less artifacts than the initial HIO reconstructions. In

the final DNN stage, the intermediate reconstructions are used with the ground truth

images to train a second DNN to remove the remaining artifacts.

As DNN architectures, the modified U-net architecture developed in [1] is used. This

architecture, which is shown in Fig. 3.2, works in a non-iterative feed-forward fashion

to solve general inverse problems in imaging. In particular, in [1], this is used to

obtain reconstructions for computed tomography. Here we use the same architecture

in an iterative manner with the HIO method to solve the phase retrieval problem.

Figure 3.2: The U-net deep neural network architecture (figure adapted from [1]), BN:

batch normalization, conv.: convolutional filter, up-conv 2.: transposed convolutional

layer with a stride of 2, ReLU: rectifier linear unit.

This architecture is the modified version of the original U-net architecture [54]. The

original U-net is developed for biomedical image segmentation and it exploits en-
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coding and decoding convolutional layers with skip connections between symmetric

downsampling and upsampling convolutional layers [46]. These features were shown

to be useful for solving many inverse problems including denoising [55], image in-

painting [56], optical flow estimation [57] and computed tomography [1]. In addition

to these features, the modified U-net architecture contains batch normalization layers

and direct skip connection between the input and output. These modifications help

the DNN to better learn the residual between the input and output images [47].

In what follows, we provide the details of each stage in our approach.

3.4.1 Initialization Stage

Due to the nonlinearity (and non-convexity) involved in the phase retrieval problem,

the reconstruction algorithms are generally sensitive to initialization. Here, to in-

crease the robustness of our approach, a particular initialization procedure described

earlier in [2] is used. In this procedure, first, the HIO method is run with m different

random initialization for a small number of k iterations. Then, the reconstruction x̂

with the lowest residual ‖y − |Fx̂|‖2
2 is used for another HIO run for a larger number

of n iterations. The final reconstruction is used as the input (initialization) for the

iterative DNN-HIO stage.

3.4.2 Iterative DNN-HIO Stage

As mentioned before, although the HIO method benefits from the physical model and

the constraints during the reconstruction process, the results may have artifacts and

errors caused mostly by the presence of noise or being stuck in local minima. In this

stage, a DNN (namely DNN-1) and the HIO method are used alternately to solve the

phase retrieval problem.

DNN-1 is trained to remove the artifacts of the HIO method after the initialization

stage. That is, DNN-1 is trained by using a dataset containing true images and their

corresponding HIO reconstructions at the output of the initialization stage. Then,

the HIO method and the trained DNN are used in an iterative manner until the re-
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constructions start to change slightly. This iterative approach aims to improve the

reconstructions by escaping from local minima and reducing artifacts.

More specifically, at the kth iteration of this stage, the last HIO reconstruction, xk,

is used as the input for DNN-1. Then, the improved reconstruction, uk, at the out-

put of DNN-1 is used as the initialization for the HIO method, which is run for a

small number of t iterations. This iterative procedure continues until the normalized

error between two consecutive DNN-1 reconstructions, i.e. ‖uk − uk−1‖2 / ‖uk‖2, is

smaller than 10−3.

As the iterations proceed, both the reconstructions of DNN-1 and HIO are improved.

In particular, the HIO method better preserves the high spatial frequencies of the

original image, which represent sudden spatial changes in the image, compared to

DNN-1, while DNN-1 provides reconstructions with less artifacts. This has two main

reasons. First, DNNs generally smooth out the high frequencies during its learning

process when they are trained with a mean squared error (MSE) based loss, which

is a common problem in DNNs [46]. Moreover, the main task of DNN-1 here is to

remove the large artifacts, which inherently comes with the side effect of smoothing

(i.e. low-pass filtering). Secondly, unlike DNN-1, the HIO method uses the avail-

able measurements together with the forward model, which helps to preserve high

frequencies, although it comes with artifacts. The final HIO reconstruction is used

as the input for the last stage in order to preserve high frequencies in the final recon-

struction.

3.4.3 Final DNN Stage

In this last stage, a second DNN (namely DNN-2) is used to improve the reconstruc-

tion of the iterative DNN-HIO stage by removing the remaining artifacts. The reason

for using a different DNN here is that DNN-1 is trained to remove the HIO artifacts

at the output of the initialization stage, but the reconstructions of the iterative DNN-

HIO stage has less artifacts than before. Therefore, training another DNN enables to

obtain improved reconstructions with better preserved high frequencies and reduced

artifacts.
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DNN-2 is trained to remove the artifacts of the iterative DNN-HIO stage. That is,

DNN-2 is trained by using a dataset containing the same ground truth images and

the corresponding HIO reconstructions at the output of the iterative DNN-HIO stage.

As mentioned before, MSE-based loss function is used for training, but different loss

functions could also be utilized to better preserve high frequencies. This trained DNN

is used in a non-iterative feed-forward fashion to obtain the final reconstruction of our

method.

3.5 Numerical Results

Here, we present numerical simulations to illustrate the effectiveness of our approach.

In particular, the reconstruction performance of the method is compared with classical

and state-of-the-art phase retrieval methods.

To compare the algorithms in terms of noise tolerance, image generality, and compu-

tational efficiency, the reconstruction performance of the developed method is investi-

gated using two different kinds of images, which are called natural and unnatural im-

ages. The unnatural images have distinct statistics from natural images. Test dataset

consists of 236 images containing 230 natural and 6 unnatural images. These include

200 test images of BSD, 24 Kodak dataset images [58], 6 natural and 6 unnatural

images taken from [2]. The unnatural image dataset consists of images acquired by

scanning electron microscopes and telescopes. Sample natural and unnatural images

from the test dataset are shown in Fig. 3.3 and 3.4 respectively. The pixel values of

all images are between 0 and 255, and all are of size 256× 256.

For training DNN-1 and DNN-2, only natural images are used. This training dataset

consists of 3000 natural images. These include 200 training and 100 validation images

of Berkeley segmentation dataset (BSD) [59], 400 selected images from validation

set of ImageNet database [60, 61], and randomly chosen 2300 images of Waterloo

Exploration Database [62].

The noisy Fourier measurements were simulated using Eqn. 31 with α = 3, resulting

in an average SNR of 31.84 dB (where SNR = 10 log(‖|Fx|2‖2 / ‖y2 − |Fx|2‖2)).

These measurements were used to obtain the initial HIO reconstructions at the output
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(a) Penguin (b) Wall (c) Men

(d) Portland Head

Light (e) House (f) Turtle

Figure 3.3: Sample natural images of size 256 x 256 from the test dataset.

(a) Butterfly Nebula (b) E. Coli

(c) Pillars of Cre-

ation

(d) Pollen (e) Tadpole Galaxy (f) Yeast

Figure 3.4: Sample unnatural images of size 256 x 256 from the test dataset. [2].

of the initialization stage. DNN-1 was trained using these reconstructions and the true

images. Likewise, DNN-2 was trained using the true images and the HIO reconstruc-

tions of the iterative DNN-HIO stage. Although only natural images were used in

training, the developed approach with the trained DNNs was tested using both natural

and unnatural images.
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Training was performed by minimizing the MSE-based loss between the true images

and the reconstructions at the output of each DNN. Stochastic gradient descent al-

gorithm with momentum was used for the optimization [63]. All computations were

done using MATLAB with MatConvNet toolbox [64] and NVIDIA Geforce GTX TI-

TAN X GPU. The total training times for DNN-1 and DNN-2 were about 38 hours

(for 251 iterations) and 51 hours (for 201 iterations), respectively.

In the initialization stage, the HIO method was first run withm = 50 different random

initialization for k = 50 iterations. Then, the reconstruction with the lowest residual

was used for another HIO run for n = 1000 iterations. The resulting reconstruction

was input to the iterative DNN-HIO stage as shown in Fig. 3.1. In this stage, each

time the HIO method was run for t = 5 iterations.

After the testing phase, the reconstructions of the developed approach were compared

with the true images using peak signal-to-noise ratio (PSNR) and the structural simi-

larity index (SSIM) [65]. For comparison, the reconstructions of the HIO method and

prDeep [2], one of the state-of-the-art deep learning-based phase retrieval algorithms,

were also obtained. Both the developed algorithm and prDeep were initialized with

the output of the initialization stage. The HIO reconstruction used for comparison

was the output of this initialization stage.

In Table 3.1, the average reconstruction performance of the algorithms for 236 test

images and 5 Monte Carlo runs are given for different amount of Poisson noise

(α = 2, 3, 4). As seen in the table, for all cases, the developed method outperforms

the HIO and prDeep methods in terms of both PSNR and SSIM, while requiring little

additional runtime compared to HIO. As another benchmark, the results at the out-

put of DNN-1 and iterative DNN-HIO stages are also provided in the table to show

performance gains obtained by the iterative approach. The results illustrate that, by

utilizing a DNN in an iterative manner with the HIO method, many of the HIO ar-

tifacts can be successfully removed while preserving the image characteristics. This

iterative approach with the additional DNN (DNN-2) is the overall method, which

provides the best reconstruction performance.

Sample reconstructions for a natural image in the test dataset are shown in Fig. 3.5.

As seen from the figures, the developed approach provides the best reconstruction
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Table 3.1: The average reconstruction and runtime performances for 236 test images

(5 Monte Carlo runs)

α = 2 (Avg. SNR: 33.39 dB) Avg. PSNR (dB) Avg. SSIM Avg. runtime (sec.)

Overall Natural Unnatural Overall Natural Unnatural

The HIO method 18.97 18.92 20.78 0.28 0.29 0.26 55.40

DNN-1 20.76 20.77 20.33 0.33 0.33 0.20 55.47

Iterative DNN-HIO 21.63 21.60 22.75 0.47 0.47 0.26 59.07

PrDeep 23.45 23.49 21.72 0.51 0.51 0.24 169.81

Developed method 23.61 23.60 24.02 0.53 0.53 0.31 59.14

α = 3 (Avg. SNR: 31.66 dB) Avg. PSNR (dB) Avg. SSIM Avg. runtime (sec.)

Overall Natural Unnatural Overall Natural Unnatural

The HIO method 18.07 18.02 19.97 0.21 0.21 0.14 55.61

DNN-1 19.69 19.68 20.06 0.26 0.26 0.18 55.69

Iterative DNN-HIO 21.07 21.03 22.82 0.41 0.42 0.25 60.29

PrDeep 22.06 22.09 20.91 0.44 0.44 0.22 171.02

Developed method 22.87 22.85 23.50 0.47 0.48 0.29 60.35

α = 4 (Avg. SNR: 30.40 dB) Avg. PSNR (dB) Avg. SSIM Avg. runtime (sec.)

Overall Natural Unnatural Overall Natural Unnatural

The HIO method 17.34 17.30 18.72 0.16 0.17 0.10 55.78

DNN-1 18.75 18.76 18.65 0.21 0.21 0.14 55.86

Iterative DNN-HIO 20.08 20.03 22.22 0.35 0.36 0.20 60.99

PrDeep 20.69 20.70 20.38 0.37 0.38 0.18 172.47

Developed method 21.80 21.77 22.79 0.41 0.41 0.25 61.05

visually as well as in terms of used quantitative image quality measures (PSNR and

SSIM). In fact, our approach generally does not introduce artifacts and errors like

the HIO and prDeep methods. As mentioned before, removing artifacts sometimes

causes the side effect of smoothing.

For the same test image, Fig. 3.6 shows several intermediate reconstructions obtained

with the developed approach. The reconstructions at the output of each stage, in-

cluding the initialization stage, iterative DNN-HIO stage, and the final DNN stage,

are shown here, together with their respective PSNR and SSIM values. These clearly

illustrate the contribution of each stage. For example, the improvement obtained with

the final DNN-2 stage can be understood by comparing the final reconstruction in

Fig. 3.6f with the reconstructions at the output of the iterative stage as given in Fig-

ures 3.6d and 3.6e. In fact, this final reconstruction is much better than all the other

reconstructions both visually and quantitatively. Moreover, to demonstrate the use-
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(a) HIO reconstruction

(PSNR:17.68, SSIM:0.32)

(b) PrDeep reconstruction

(PSNR:25.35, SSIM:0.71)

(e) Developed method

(PSNR:26.49, SSIM:0.73) (f) Ground truth

Figure 3.5: The reconstructions of the different algorithms for the "Turtle" test image

for α=3 case.
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fulness of the iterative use of HIO with DNN-1, the reconstructions obtained after

the first iteration are also provided in Figures 3.6b and 3.6c. Comparing these with

Figures 3.6d and 3.6e illustrates that, although even a single iteration helps to im-

prove the initial HIO reconstruction, iterations until convergence can provide much

significant improvement. Note that after DNN-1 (see Fig. 3.6b), the reconstruction

suffers from over-smoothing, and when this is input to HIO (see Fig. 3.6c) some high

frequency information is recovered but with artifacts. As the iterations proceed, both

over-smoothing and artifacts are reduced.

To assess the performance of different algorithms in terms of image generality, the re-

sults for both natural and unnatural test images are separately provided in Table 3.1.

As seen in the table, although the DNNs were trained by using only natural images,

the developed method shows the best reconstruction performance not only for natural

images but also for unnatural images, which have distinct statistics from natural im-

ages. In particular, the performance of the prDeep method substantially degrades for

unnatural images, as expected, since its reconstruction relies on a regularization prior

learned from natural images. To illustrate these points, sample reconstructions for an

unnatural image in the test dataset are shown in Fig. 3.7.

The developed approach also appears to be robust to different noise levels. As seen

from the table, the reconstruction performance of the approach surpasses the other

methods for different noise levels (α = 2, 4) as well, even though the DNNs were

trained only for a specific noise level (α = 3).

As mentioned before, phase retrieval algorithms are generally sensitive to initializa-

tion because of the nonlinearity involved in the problem. To illustrate the robustness

of the developed approach to different initialization and image characteristics, the

PSNR and SSIM histograms are provided in Fig. 3.8 for each method (when α = 3).

These include reconstructions obtained with 236 distinct test images and 5 Monte

Carlo runs, which means that 5 different initialization is used for each test image. As

seen from the histograms, although the histogram for the prDeep reconstructions has

more counts in higher PSNR and SSIM values, our method attains a higher average

PSNR and SSIM, as well as a smaller spread around these averages. These results

suggest that the performance of the developed approach is more robust to different
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(a) Initial HIO recons.

(PSNR:17.68, SSIM:0.32)

(b) DNN-1 recons. in the

1st iteration (PSNR:21.30,

SSIM:0.43)

(c) HIO recons. in the 1st itera-

tion (PSNR:19.47, SSIM:0.45)

(d) Final DNN-1 recons. of

the iterative DNN-HIO stage

(PSNR:24.34, SSIM:0.61)

(e) Final HIO recons. of

the iterative DNN-HIO stage

(PSNR:21.27, SSIM:0.62)

(f) Final recons. of the de-

veloped method (PSNR:26.49,

SSIM:0.73)

Figure 3.6: The intermediate reconstructions of the developed approach for the "Tur-

tle" test image for α = 3 case. These images are also used in the illustration of the

method in Fig 3.1.
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(a) HIO reconstruction

(PSNR:21.63, SSIM:0.39)

(b) PrDeep reconstruction

(PSNR:19.37, SSIM:0.41)

(e) Developed method

(PSNR:25.33, SSIM:0.67) (f) Ground truth

Figure 3.7: The reconstructions of the different algorithms for the "Pollen" test image

for α=3 case.
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initialization and image statistics compared to HIO and prDeep.
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Figure 3.8: The PSNR (left column) and SSIM (right column) histograms for the

reconstructions of the different methods for 236 test images and 5 Monte Carlo runs

for α = 3 case. Vertical dashed lines present the average PSNR and SSIM values. At

the bottom, overlapping histograms are given for each column.
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Sample reconstructions illustrating the performance of the developed approach for

different initialization are shown in Fig. 3.9. Here different HIO reconstructions of

the same image are used as an initialization for prDeep and the developed method.

As seen, for the HIO initialization with the lower PSNR and SSIM values, prDeep

reconstruction has more artifacts than the developed method. Hence, Fig. 3.8 and 3.9

together demonstrate that the developed method is more robust to initialization than

prDeep.

The average runtime of each method is also given in Table 3.1. As seen, the HIO and

the developed method are roughly three-fold faster than prDeep. In fact, the runtime

of the HIO initialization stage approximately corresponds to 92% of the runtime of

the developed method. Hence our approach not only outperforms the prDeep and HIO

methods in terms of reconstruction quality but also is computationally more efficient

than prDeep and achieves a computational efficiency almost comparable with the HIO

method.

3.6 Conclusions

In this chapter, we developed a phase retrieval approach that utilizes two DNNs with

the model-based HIO method. The key idea in the approach is the iterative use of a

DNN with the HIO method, which simultaneously incorporates the physical model

and the constraints into the solution, while avoiding the reconstruction artifacts. The

performance of the developed approach is also compared with the classical and state-

of-the-art methods through various numerical simulations. The results demonstrate

the effectiveness of our approach both in terms of reconstruction quality and com-

putational efficiency. Our approach not only achieves state-of-the-art reconstruction

performance but also is more robust to initialization, different noise levels, and im-

age statistics. Moreover, the developed approach achieves a computational efficiency

almost comparable with the HIO method.

Note that the developed method contains two DNNs, DNN-1 and DNN-2, each of

which is trained to remove HIO artifacts. That is, DNN-1 is trained to remove the

artifacts of HIO reconstructions at the output of the initialization stage, and DNN-2
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is trained to remove the artifacts of HIO reconstructions at the output of the iterative

DNN-HIO stage. These reconstructions have different amounts of artifacts, as one

can observe from the PSNR and SSIM values in Table 1. One would expect the

trained weights of these two DNNs to vastly differ since each DNN is trained to

remove different amount of HIO artifacts. To explore this, we analyzed the frequency

response of the first 64 convolution filters in each trained DNN. Almost half of these

filters in DNN-1 have similar characteristics, which effectively correspond to low pass

filters. On the other hand, DNN-2 filters have varying frequency responses, and a very

small fraction of these filters are low-pass. This indicates that the detailed differences

between the input and the desired output images (like edges) are lost more in the first

convolution filters of DNN-1 and do not propagate much through the network. This

is expected since DNN-1 is trained using inputs with larger amount of HIO artifacts.

The low-pass behavior of many of the input filters of DNN-1 can be the reason why

DNN-1 is less successful in learning the details and leads to over-smoothed images

at its output. A more detailed analysis of the filters in DNNs would provide a better

understanding of the developed approach, which will be a topic for future study.

The developed approach in this chapter has promising reconstruction. The perfor-

mance can be further improved through joint training of DNNs and the HIO method.

Recurrent neural network models [66] can also be used to improve the reconstruction.

Moreover, different loss functions for training can be utilized to improve the method.
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(a) HIO reconstruction

(PSNR:18.30, SSIM:0.21)

(b) Another HIO re-

construction (PSNR:14.65,

SSIM:0.14)

(c) PrDeep reconstruction

(PSNR:25.47, SSIM:0.50)

(d) Another prDeep re-

construction (PSNR:17.75,

SSIM:0.28)

(e) Developed method

recons. (PSNR:25.40,

SSIM:0.53)

(f) Another devel-

oped method recons.

(PSNR:19.71, SSIM:0.43)

(g) Ground truth (h) Ground truth

Figure 3.9: Each column represents the reconstructions of different algorithms with

two different initialization for "Portland Head Light" test image for α=3 case.
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CHAPTER 4

MODEL-BASED PHASE RETRIEVAL WITH PLUG-AND-PLAY PRIORS

4.1 Introduction

As explained in Chapter 3, the classical phase retrieval problem is the recovery of a

constrained signal from the magnitude of its Fourier transform, or equivalently from

its autocorrelation. In this chapter, a model-based approach using plug-and-play reg-

ularization is developed for the solution of the classical phase retrieval problem.

Recently, plug-and-play regularization [16, 17] is successfully applied to many in-

verse problems which enables to exploit image priors resulting from the state-of-

the-art denoisers. The classical regularization approach is to formulate the inverse

problem as a Maximum A Posteriori (MAP) estimation problem by using the prior

information about the unknown image. This can be considered as an optimization

problem containing data fidelity term for the physical model and a regularization term

for the prior knowledge about the unknowns. By variable-splitting techniques such as

alternating direction method of multipliers (ADMM) [67] and half quadratic splitting

(HQS) [18, 19], this problem can be divided into several sub-problems to handle the

data fidelity and regularization terms separately. The sub-problem containing regu-

larization term can be solved with any denoiser algorithm. Therefore, different type

of denoisers can be easily plugged into the method to exploit different image priors.

This plug-and-play approach has been applied to many inverse problems [17, 68].

In the last few years, DNNs, in particular DNN-based denoisers, have been uti-

lized for the regularization of model-based inversion methods by using plug-and-

play regularization and its variants [16, 17]. One of the benefits of this approach is

that DNN-based image priors can be easily exploited in different inverse problems
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while conventional use of DNNs in an end-to-end fashion requires a time-consuming

training process for different forward models in inverse problems. The regulariza-

tion with DNN-based image priors have been also applied for several inverse prob-

lems [61, 69, 70, 71] including phase retrieval [2].

In this chapter, an ad hoc model-based reconstruction method using plug-and-play

regularization is developed for the solution of the classical phase retrieval problem.

HQS is used to decouple the inverse problem into two separate sub-problems contain-

ing the data fidelity and prior terms. The sub-problem containing the data fidelity term

is solved in an ad hoc manner with the HIO method for a small number of iterations.

The other sub-problem containing the prior term is solved with a deep learning-based

denoiser. The iterative solution of these sub-problems with a varying split parameter

provides the final reconstruction. The developed method has the flexibility to be uti-

lized for different magnitude measurements including CDP measurements and over-

sampled Fourier magnitude measurements. Moreover, any denoiser algorithm, which

exploits different image priors can be easily incorporated into the developed method.

Here, we present our method for Fourier magnitude measurements. The performance

of the developed approach is compared with the classical and state-of-the-art meth-

ods through numerical simulations. The results demonstrate the effectiveness of our

approach both in terms of reconstruction accuracy and computational efficiency.

The rest of this chapter is organized as follows. Related work on phase retrieval and

plug-and-play priors for image reconstruction are discussed in Section 4.2. Section

4.3 presents the developed approach. The performance of the approach is compared

with the classical and state-of-the-art methods in Section 4.4 through simulations.

Finally, we summarize the results and conclude in Section 4.5.

4.2 Related Work

4.2.1 Hybrid Input-Output (HIO) method for Phase Retrieval

As discussed in more detail in Chapter 3, the most commonly used alternating projection-

based method is the HIO algorithm [15], which is developed based on the ER algo-
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rithm. The iterations of the HIO method can be summarized as follows:

xk+1[n] =

 x′k[n] for n /∈ γ
xk[n]− βx′k[n] for n ∈ γ

(41)

where

x′k = F−1

{
y � Fxk
|Fxk|

}
(42)

Here, xk ∈ RN2 is the reconstruction at the kth iteration, F−1 denotes the inverse

DFT matrix, � represents the element-wise (Hadamard) multiplication operation, β

is a constant parameter (with a typical value of 0.9) and γ is the set of indices n for

which x′k[n] violates the space domain constraints [15].

4.2.2 Plug-and-play Priors for Inverse Problems

The classical regularization approach is to formulate the inverse problem as a max-

imum posterior (MAP) estimation problem by using the prior statistical knowledge

about the unknown image and measurements. This corresponds to an optimization

problem containing a data fidelity term for the model and a regularization term for the

prior information about the unknowns. By variable splitting techniques, this problem

can be divided into several sub-problems to handle the data fidelity and regularization

terms separately. In particular, the sub-problem containing the prior term corresponds

to a denoising problem, which can be solved with any denoising algorithm. This is

the main idea in plug-and-play regularization [16, 17]. This regularization is a flex-

ible model-based approach since the same denoiser can be used for the solution of

different inverse problems. This approach has been applied to many inverse prob-

lems [17, 68].

There are several variable splitting techniques including alternating direction method

of multipliers (ADMM) [67] and half quadratic splitting (HQS) [18, 19], which are

utilized for plug-and-play regularization. ADMM is used for plug-and-play regular-

ization to solve several inverse problems [16, 72]. Moreover, plug-and-play regular-

ization with HQS is also applied to several inverse problems [61, 73].

Recently, DNNs are utilized for the regularization of model-based reconstruction

methods because of its success in various inverse problems [46]. In particular, DNN-
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based denoisers are used for plug-and-play regularization because they provide state-

of-the-art performance in denoising. The plug-and-play regularization with DNN-

based denoiser has been applied to many inverse problems including deconvolution,

denoising, superresolution and demosaicking [61, 69, 70, 71], as well as phase re-

trieval [2, 74].

For the classical phase retrieval problem, a variant of plug-and-play regularization has

been utilized in the PrDeep method [2]. This variant is called regularization by de-

noising (RED) [74]. By proposing a different regularization term, the RED approach

penalizes the residual difference between the unknown image and its denoised ver-

sion from an independent denoiser. Also, it penalizes the correlation between the

unknown image and this residual. PrDeep [2] method uses RED approach with a

deep learning-based denoiser to solve the classical phase retrieval problem. In this

method, the forward-backward splitting algorithm is used for the resulting optimiza-

tion problem [75]. This method is also applied to CDP measurements.

4.3 Hybrid Input-output Approach with Plug-and-play Regularization

We developed a model-based method using plug-and-play regularization for the so-

lution of the classical phase retrieval problem. The main idea is to incorporate a

learning-based prior to the HIO method through plug-and-play regularization [16,

17]. The developed method is inspired from the HQS method, which is used for

plug-and-play regularization. HQS is used to decouple the inverse problem into two

separate sub-problems containing the data fidelity and prior terms [18, 19]. The sub-

problem containing the data fidelity term is solved in an ad hoc manner with the

HIO method for a small number of iterations. The other sub-problem containing the

prior term is solved with a deep learning-based denoiser. The iterative solution of

these sub-problems with a varying split parameter provides the final reconstruction.

The developed method not only achieves state-of-the-art reconstruction performance

but also has flexibility to be utilized for different magnitude measurements including

CDP measurements and oversampled Fourier magnitude measurements. Also, any

denoiser algorithm can be easily incorporated into our method. Here we formulated

our method for Fourier magnitude measurements, however, it can also be utilized for
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CDP measurements.

In the developed method, the splitting approach in the HQS method is adapted to

use the HIO method and a denoiser algorithm together. Now, the HQS method is

explained to clarify the idea behind the developed method. A linear inverse problem

is formulated as an optimization problem by using MAP estimation. This formulation

can be given as

x̂ =argmin
x

1

2
‖y −Ax‖2 + λΦ(x) (43)

Here, y ∈ RM2 denotes the noisy measurements, A is the forward model matrix for

the inverse problem, x ∈ RN2 represents the unknown image of interest, λ denotes

the regularization parameter and Φ(x) represents the regularization function related

to the prior statistical knowledge about the unknown image x. The problem in Eqn.

43 is split into sub-problems by using HQS to utilize plug-and-play regularization.

By defining an auxiliary variable z, Eqn. 43 is reformulated as follows:

x̂ =argmin
x

1

2
‖y −Ax‖2 + λΦ(z) s.t. z = x (44)

Then HQS can be used to solve the problem in Eqn. 44 by expressing it as follows:

x̂, ẑ =argmin
x,z

1

2
‖y −Ax‖2 + λΦ(z) +

µ

2
‖x− z‖2 (45)

where µ is a non-decreasing penalty parameter which varies iteratively. The problem

in 45 can be solved by iteratively handling the following sub-problems:

xk+1 =argmin
x
‖y −Ax‖2 + µ‖x− zk‖2 (46a)

zk+1 = argmin
z

µ

2
‖z− xk+1‖2 + λΦ(z) (46b)

As seen from Eqn. 46, the data fidelity and regularization terms are split into two

sub-problems by using the HQS approach. This approach is used to solve several

linear inverse problems with deep learning-based denoisers [61]. For linear inverse

problems, the sub-problem in Eqn. 46a has a closed form solution. The second

sub-problem in Eqn. 46b corresponds to a denoising problem, which is solved with

a deep learning-based denoiser approach in [61]. Hence, instead of an analytical

regularization function, a deep learning-based denoiser approach is used. The input

of this denoiser approach is xk+1 and the output is zk+1. The denoiser networks in
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this approach are trained to solve Gaussian denoising problems with different noise

levels by using noisy images and their corresponding ground truth images.

If the HQS method is applied to the classical phase retrieval problem, the optimiza-

tion problem becomes non-convex and the sub-problem in Eqn. 46a does not have any

closed form solution for the classical phase retrieval problem. For this purpose, the

HIO method is used in the developed method although it does not exactly solve this

sub-problem. The HIO method minimizes an unknown distance between the Fourier

magnitude of the reconstruction and the noisy measurement ∆(y − |Fx|) and en-

forcing space domain constraints including non-negativity, real valuedness, and finite

support. One of the motivations for using the HIO method here is that error reduction

(ER) algorithm, which is a descendant of HIO, corresponds to the steepest descent

method for optimization of ‖y − |Fx|‖2 [15]. The HIO method is the improved ver-

sion of the ER algorithm, and also the most commonly used method for phase re-

trieval. Therefore, in the developed method, the HIO method is used to incorporate

the physical model and the constraints into the reconstruction. For each iteration, zk

is chosen as the initialization of the HIO method. As seen in HQS iterations (Eqn.

46), the µ parameter is increased with iterations since x and z should be equal to each

other at the end of the iterations. To incorporate this effect into the HIO method, the

noisy measurement y is updated at each iteration as the linear (convex) combination

of the Fourier magnitude of the current estimate zk and the measurement y:

y′k ← ηy + (1− η)|Fzk| (47)

where y′k denotes the measurements used in the HIO method at the kth iteration, the

parameter η is a non-increasing parameter which varies between [0, 1] iteratively. It

is directly related to the µ parameter. The relation is explained with details below.

The sub-problem in Eqn. 46b can be reformulated as follows:

zk+1 = argmin
z

1

2(
√
λ/µ)2

‖xk+1 − z‖2 + Φ(z) (48)

This corresponds to a Gaussian denoising sub-problem with a standard deviation

of
√
λ/µ. Therefore, any Gaussian denoiser D(·, ·) can be used to solve this sub-

problem. As a result, the developed method can be summarized as follows:

y′k ← ηy + (1− η)|Fzk| (49a)
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xk+1 = HIO(y′k, zk) (49b)

zk+1 = D(xk+1,
√
λ/µ) (49c)

Since µ is a non-decreasing parameter, σ =
√
λ/µ is a non-increasing parameter for

the denoiser. Therefore, we used the normalized σ/σmax value as η parameter for the

measurement update. The implementation of the overall method is given in Algorithm

1. In the implementation, σ is chosen as a logarithmically decreasing parameter with

iterations.

A DNN-based denoiser, which was used for plug-and-play regularization in [61], is

chosen as a denoiser algorithm for the developed method. The main reason here is

that the DNN-based denoisers have become state-of-the-art for different denoising

problems in recent years [46]. Nevertheless, different denoising algorithms can be

also easily incorporated into the developed method.

For initialization of our method, the HIO method was first run with 50 different ran-

dom initialization for 50 iterations. Then, the reconstruction with the lowest resid-

ual ‖y − |Fx̂|‖2 was used for another HIO run for 1000 iterations. The resulting

reconstruction was used as an initialization of the developed method. The overall

initialization procedure is illustrated in Fig. 4.1.

Figure 4.1: The HIO initialization procedure for the developed method and the com-

peting algorithms (Residual:‖y − |Fx̂|‖2).

4.4 Numerical Results

In this section, the effectiveness of the developed method is illustrated through nu-

merical simulations. For this, we consider the same image dataset in Chapter 3 and
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Algorithm 1 Plug and Play HIO
Input: y, K, T , β,

σ ∈ RT , which is a logarithmically decreasing vector between [σmax, σmin].
Output: x̂T

Initialization :
1: x̂0← HIO initialization procedure

Main iterations

2: for k = 0 to T − 1 do
3: η ← σ[k]/σmax

4: y′k ← ηy + (1− η)|Fx̂k|
5: for i = 0 to K − 1 do
6: x̂′k ← F−1 {y′k � Fx̂k/|Fx̂k|}
7: γ ←the set of indices for which x̂′k violates the space domain constraints (such as support

and non-negativity)

8: x̂′′k [n] =

{
x̂′k[n] for n /∈ γ

x̂k[n]− βx̂′k[n] for n ∈ γ
9: end for

10: x̂k+1← D(x̂′′k , σ[k])

11: end for
12: return x̂T

compare the reconstruction performance of the developed approach with the classical

and state-of-the-art phase retrieval methods. The effect of the method parameters on

the reconstruction performance is also investigated.

To compare the algorithms in terms of noise tolerance, image generality, and compu-

tational efficiency, the reconstruction performance is investigated using two different

kind of images, which are called natural and unnatural images.

For testing, both natural and unnatural images are used as in Chapter 3. This test

dataset consists of 236 images containing 230 natural and 6 unnatural images. These

include 200 test images of BSD, 24 Kodak dataset images [58], 6 natural and 6 unnat-

ural images taken from [2]. The unnatural image dataset consists of images acquired

by scanning electron microscopes and telescopes, as shown in Fig. 3.4. The pixel

values of all images are between 0 and 255, and all are of size 256× 256.

The noisy Fourier measurements were simulated using Eqn. 31 with α = 2, 3, 4,

resulting in an average SNR of 33.39, 31.66, 30.40 dB respectively (where SNR

= 10 log(‖|Fx|2‖2 / ‖y2 − |Fx|2‖2)). These measurements were used to obtain the

HIO reconstructions by using the initialization procedure given in Fig. 4.1. These are
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regarded as the final HIO reconstruction for comparison, and also used as an initializa-

tion for all other competing algorithms. All computations were done using MATLAB

with MatConvNet toolbox [64] and NVIDIA Geforce GTX TITAN X GPU.

The reconstructions of the developed approach were compared with the true images

using peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [65].

For comparison, the reconstructions of the HIO method and prDeep [2], one of the

state-of-the-art deep learning-based phase retrieval algorithms, were also obtained.

A DNN-based denoiser, which is developed in [61], is used as a denoiser in the de-

veloped method. The DNN architecture that is used in this denoiser contains dilated

convolution layers, batch normalization, and residual learning to increase the train-

ing and testing performance [61, 46]. This DNN architecture provides state-of-the-

art denoising performance [47]. Moreover, the plug-and-play regularization with this

denoiser achieves state-of-the-art performances in image deconvolution and superres-

olution [61]. For this denoiser model, 25 DNNs are trained for Gaussian noise level

[0, 50] with a step size of 2 for each model [61]. More details about the architecture

of these DNNs are given in [61].

To train DNNs for this denoiser, the training dataset consists of 400 images of Berke-

ley segmentation dataset (BSD) [59], 400 selected images from validation set of Im-

ageNet database [60, 61], and 4, 744 images of Waterloo Exploration Database [62].

These images were cropped into small patches of size 35×35 and N=256×4,000

patches for training. Training was performed by minimizing the mean squared er-

ror (MSE) based loss between the reconstructions at the output of each DNN and the

residue between true images and noisy images. In other words, the aim of the DNN

was to learn the residue between noisy and clean images. ADAM solver was used for

optimization [76].

In the developed method, there are several parameters including the number of HIO

iterations K, the number of total iterations T , the maximum and minimum noise

levels σmax, σmin, and β. As discussed earlier in Section 3.3.1, the parameter β in

the HIO method is set to its common value of 0.9. In fact, σmax and σmin have to

be between [0, 50] because of the chosen denoiser model. Before optimizing σmax

and σmin jointly, which are directly related to the regularization parameter λ, the
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parameters K and T are selected as 5 and 200 respectively because it is observed

that these iteration numbers are generally sufficient for the algorithm to converge.

We consider the parameter space for the search as σmax = [30, 40, 50] and σmin =

[1, 3, 5, 7]. The average reconstruction performance of the method for 236 test images

and 5 Monte Carlo runs are analyzed for the Poisson noise case with α = 3.

The average PSNR and SSIM values of the developed method are given for σmax =

[30, 40, 50] and σmin = [1, 3, 5, 7] in Fig. 4.2 and 4.3. These figures suggest that the

optimal σmax and σmin values are 40 and 5 respectively. Hence, we set σmax and σmin

to these values for the subsequent simulations.

22.029 22.237 23.02 23.013

23.007 23.179 23.917 23.696

22.993 23.014 23.71 23.366

Figure 4.2: The PSNR values for different σmax = [30, 40, 50] and σmin = [1, 3, 5, 7]

In Table 4.1, the average reconstruction performance of the algorithms for 236 test

images and 5 Monte Carlo runs are given for different amount of Poisson noise

(α = 2, 3, 4). As seen in the table, for all cases, the developed method outperforms

the HIO and prDeep methods in terms of both PSNR and SSIM, while requiring little

additional runtime compared to HIO. By utilizing the developed method, many of the

HIO artifacts can be successfully removed while preserving the image characteris-

tics. The table illustrates that the developed method provides the best reconstruction

performance.

Sample reconstructions for a natural image in the test dataset are shown in Fig. 4.4.

As seen from the figures, the developed approach provides the best reconstruction
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0.448 0.472 0.489 0.491

0.493 0.518 0.524 0.516

0.491 0.509 0.506 0.492

Figure 4.3: The SSIM values for different σmax = [30, 40, 50] and σmin = [1, 3, 5, 7]

Table 4.1: The average reconstruction and runtime performances for 236 test images

(5 Monte Carlo runs)

α = 2 (Avg. SNR: 33.39 dB) Avg. PSNR (dB) Avg. SSIM Avg. runtime (sec.)

Overall Natural Unnatural Overall Natural Unnatural

The HIO method 18.97 18.92 20.78 0.28 0.29 0.26 55.40

PrDeep 23.45 23.49 21.72 0.51 0.51 0.24 169.81

Developed method 24.87 24.86 25.56 0.57 0.57 0.33 69.83

α = 3 (Avg. SNR: 31.66 dB) Avg. PSNR (dB) Avg. SSIM Avg. runtime (sec.)

Overall Natural Unnatural Overall Natural Unnatural

The HIO method 18.07 18.02 19.97 0.21 0.21 0.14 55.61

PrDeep 22.06 22.09 20.91 0.44 0.44 0.22 171.02

Developed method 23.92 23.92 23.98 0.52 0.53 0.32 70.27

α = 4 (Avg. SNR: 30.40 dB) Avg. PSNR (dB) Avg. SSIM Avg. runtime (sec.)

Overall Natural Unnatural Overall Natural Unnatural

The HIO method 17.34 17.30 18.72 0.16 0.17 0.10 55.78

PrDeep 20.69 20.70 20.38 0.37 0.38 0.18 172.47

Developed method 22.41 22.39 23.09 0.45 0.46 0.26 70.49

visually as well as in terms of used quantitative image quality measures (PSNR and

SSIM). In fact, our approach generally does not introduce artifacts and errors like the

HIO and prDeep methods.

Another sample reconstructions for a different natural image are illustrated in Fig.

4.5. The developed approach shows the best reconstruction performance for this sam-

ple image as well.
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(a) HIO reconstruction

(PSNR:17.68, SSIM:0.32)

(b) PrDeep reconstruction

(PSNR:25.35, SSIM:0.71)

(c) Developed method

(PSNR:27.87, SSIM:0.77) (d) Ground truth

Figure 4.4: The reconstructions of the different algorithms for the "Turtle" test image

for α=3 case.

To assess the performance of different algorithms in terms of image generality, the re-

sults for both natural and unnatural test images are separately provided in Table 4.1.

Although the denoiser model in the developed method is trained with only natural

images, the developed method shows the best reconstruction performance not only

for natural images but also for unnatural images, which have distinct statistics from

natural images. In particular, the performance of the prDeep method substantially

degrades for unnatural images, as expected, since its reconstruction relies on a reg-

ularization prior learned from natural images as seen in the table. To illustrate these

points, sample reconstructions for an unnatural image in the test dataset are shown in

Fig. 4.6.

The developed approach also appears to be robust to different noise levels. As seen

from the table, the reconstruction performance of the approach surpasses the other
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(a) HIO reconstruction

(PSNR:18.30, SSIM:0.21)

(b) PrDeep reconstruction

(PSNR:25.47, SSIM:0.50)

(c) Developed method

(PSNR:29.30, SSIM:0.58) (d) Ground truth

Figure 4.5: The reconstructions of the different algorithms for a sample "Portland

Head Light" test image for α=3 case.

methods for different noise levels (α = 2, 4) as well, even though the parameters of

the developed method are optimized for α = 3.

As mentioned before, phase retrieval algorithms are generally sensitive to initializa-

tion because of the nonlinearity involved in the problem. To illustrate the robustness

of the developed approach to different initialization and image characteristics, the

PSNR and SSIM histograms are provided in Fig. 4.7 for each method (when α = 3).

These include reconstructions obtained with 236 distinct test images and 5 Monte

Carlo runs, which means that 5 different initialization is used for each test image.

As seen from the histograms, although the histogram for the prDeep reconstructions

has more counts in higher PSNR and SSIM values, our method (Plug and Play HIO)

attains a higher average PSNR and SSIM, as well as a smaller spread around these av-

erages. These results suggest that the performance of the developed approach is more
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robust to different initialization and image statistics compared to HIO and prDeep.

The average runtime of each method is also given in Table 4.1. As seen, the HIO and

the developed method are roughly 2.5-fold faster than prDeep. In fact, the runtime of

the HIO initialization stage approximately corresponds to 80% of the runtime of the

developed method. Hence our approach not only outperforms the prDeep and HIO

methods in terms of reconstruction quality, but also is computationally more efficient

than prDeep and achieves a computational efficiency almost comparable with the HIO

method.

(a) HIO reconstruction

(PSNR:21.63, SSIM:0.39)

(b) PrDeep reconstruction

(PSNR:19.37, SSIM:0.41)

(c) Developed method

(PSNR:26.28, SSIM:0.71) (d) Ground truth

Figure 4.6: The reconstructions of the different algorithms for the "Pollen" test image

for α=3 case.
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Figure 4.7: The PSNR (left column) and SSIM (right column) histograms for the

reconstructions of the different methods for 236 test images and 5 Monte Carlo runs

for α = 3 case. Vertical dashed lines present the average PSNR and SSIM values.

4.5 Conclusions

In this chapter, an ad hoc model-based reconstruction method using plug-and-play

regularization is developed for the solution of the classical phase retrieval problem.

HQS is used to decouple the inverse problem into two separate sub-problems contain-

ing the data fidelity and prior terms. The sub-problem containing the data fidelity term

is solved in an ad hoc manner with the HIO method for a small number of iterations.

The other sub-problem containing the prior term is solved with a deep learning-based
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denoiser. The iterative solution of these sub-problems with a varying split parameter

provides the final reconstruction.

Any denoiser algorithm can be incorporated into the developed method. Unlike the

use of DNNs in an end-to-end fashion, as in Chapter 3, the developed method has a

flexibility to be utilized for different magnitude measurements including CDP mea-

surements and oversampled Fourier magnitude measurements. The reconstruction

performance of the developed method is compared with the classical and state-of-

the-art approaches. The results demonstrate the effectiveness of our approach both

in terms of reconstruction accuracy and computational efficiency. As future work,

the developed method can be compared with the PrDeep algorithm when the same

denoiser models are used. A more detailed numerical analysis and mathematical rea-

soning are also left as future work.

The developed method in this chapter also provides better reconstruction performance

than the method in Chapter 3 in terms of both visual and quantitative comparison.

However, each of these developments contributes to our understanding in a different

way. This chapter illustrates that the HIO method and possibly other model-based

phase retrieval algorithms can be significantly improved by joint use of learning-based

priors through plug-and-play regularization. On the other hand, Chapter 3 illustrates

that hybrid use of DNNs with model-based methods in an end-to-end fashion can

also lead to the development of robust phase retrieval algorithms. Based on these

observations, we believe that the joint use of DNNs with model-based methods (such

as HIO) deserves further study.

62



CHAPTER 5

CONCLUSIONS

In this thesis, novel analysis and reconstruction methods are developed for coherent

imaging systems. First of all, we developed a novel analysis approach for diffraction-

limited coherent optical imaging systems. Then, the classical phase retrieval problem,

which is one of the fundamental problems in coherent imaging, is considered and two

novel reconstruction techniques are developed.

In Chapter 2, a phase-space approach, which utilizes phase-space (space-frequency)

window, is developed to analyze diffraction-limited coherent imaging systems. We

show how the phase-space window is linked to important imaging parameters of

the system including cut-off frequency, diffraction-limited resolution, effective focal

length, and magnification. Different than the widely used geometrical-optics meth-

ods for analysis, the proposed approach takes into account diffraction effects from

all apertures, and also requires a simple computation. To illustrate the utility of the

approach, a single-lens system and an objective lens of a microscope are analyzed,

and the consistency of the results with the known properties and specifications of the

inspected systems is shown.

In Chapter 3 and 4, we focus on the classical phase retrieval problem, which is a

fundamental problem in coherent imaging. Two different novel phase retrieval algo-

rithms are developed by jointly exploiting DNNs and the HIO method, which is a

traditional model-based inversion method for phase retrieval

In particular, in Chapter 3, a hybrid phase retrieval algorithm utilizing DNNs with the

HIO method is developed. The main idea in the developed method is to use a DNN in

an iterative manner with the HIO method to improve the HIO reconstructions. Then,
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a second DNN is trained to remove the remaining artifacts of the reconstructions. The

results demonstrate the effectiveness of our approach, which has relatively little addi-

tional computational cost compared to HIO. This approach has promising reconstruc-

tion performance. As future work, the performance can be further improved through

joint training of DNNs and the HIO method. Moreover, different loss functions can

be utilized for training to improve the method.

In Chapter 4, an ad hoc model-based reconstruction method using plug-and-play reg-

ularization is developed for the solution of the classical phase retrieval problem. The

main idea is to incorporate a learning-based prior to the HIO method through plug-

and-play regularization [16, 17] to obtain a flexible model-based approach for phase

retrieval. The developed method is flexible such that it can be used with different

image priors coming from different denoisers. This method also has the flexibility

to be used for different phase retrieval data including coded diffraction patterns and

Fourier magnitude measurements. The results demonstrate the effectiveness of our

approach both in terms of reconstruction accuracy and computational efficiency. As

future work, the developed method can be compared with the PrDeep algorithm when

the same denoiser models are used. A more detailed numerical analysis and mathe-

matical reasoning are also left as future work.

Although both of the developed phase retrieval approaches achieve state-of-the-art

reconstruction performance, and also more robust to different initialization and noise

levels, the developed model-based method in Chapter 4 shows better reconstruction

performance than the developed method in Chapter 3 in terms of both visual and

quantitative comparison. In fact, the main idea of the method in Chapter 3 is different

than the one in Chapter 4. Chapter 4 demonstrates that any image prior coming from

different denoiser algorithms can be used with the HIO method through plug-and-

play regularization. In particular, a deep learning-based denoiser is used to show the

reconstruction performance of the developed method in Chapter 4. Chapter 3 also

illustrates that the iterative use of the DNNs with the HIO method may play a key

role in developing more reliable algorithms for phase retrieval. Moreover, the main

ideas in Chapter 3 and 4 can even be combined to obtain a better method. As another

possible future research direction, both methods can also be tested on experimental

phase retrieval data.
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To conclude, in this thesis, novel analysis and reconstruction methods are developed

for coherent imaging systems. For the analysis of the coherent systems, phase-space

approach can be a worthy alternative because of its simple but powerful features. For

the reconstruction methods, we believe that the hybrid use of DNNs with model-based

approaches, as illustrated in Chapter 3 and 4, may play a key role in developing more

reliable algorithms for phase retrieval and nonlinear inverse problems in general.
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