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ABSTRACT

CHAOS IN YANG-MILLS MATRIX MODELS

Başkan, Kağan

M.S., Department of Physics

Supervisor: Prof. Dr. Seçkin Kürkcüoğlu

Co-Supervisor: Assoc. Prof. Dr. İsmet Yurduşen

July 2019, 81 pages

In this thesis, chaotic dynamics emerging from Yang-Mills matrix models are in-

vestigated. Firstly, we investigate the Yang-Mills two-matrix models with Chern-

Simons term using both analytical and numerical methods. In particular, we obtain

the Poincaré sections and Lyapunov exponents at several different values of the pa-

rameters of the model, revealing the detailed structure of the chaotic dynamics. In

the second part of the thesis, we focus on a massive deformation of the bosonic part

of the Banks-Fischler-Shenker-Susskind (BFSS) matrix model. Using an ansatz in-

volving fuzzy-2 and fuzzy-4 sphere configurations we determine reduced effective

Hamiltonians through which we study the emerging chaotic dynamics.

Keywords: Yang Mills Matrix Models, BFSS Matrix Model, Chern-Simons Theory

in Matrix Models, Chaos in Matrix Models
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ÖZ

YANG-MILLS MATRİS MODELLERİNDE KAOS

Başkan, Kağan

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Seçkin Kürkcüoğlu

Ortak Tez Yöneticisi: Doç. Dr. İsmet Yurduşen

Temmuz 2019 , 81 sayfa

Bu tezde Yang-Mills matris modellerinden ortaya çıkan kaotik dinamik yapılar in-

celenmiştir. İlk olarak, Chern-Simons teriminin ekli olduğu Yang-Mills iki-matris

modeli analitik ve sayısal metotlarla incelenmiştir. Modelin parametrelerinin çeşitli

değerlerinde Poincaré kesitleri ve Lyapunov üsleri elde edilerek kaotik dinamiğin

detaylı yapısı ortaya konulmuştur. Tezin ikinci kısmında, Banks-Fischler-Shenker-

Susskind (BFSS) matris modelinin bozonik kısmının kütle deformasyonlu durumla-

rına odaklanılmıştır. Fuzzy-2 ve fuzzy-4 küre konfigürasyonlarını içeren bir yaklaşım

kullanılarak indirgenmiş etkin Hamiltonianlar elde edilip bunların vasıtasıyla modelin

kaotik yapıları incelenmiştir.

Anahtar Kelimeler: Yang Mills Matris Modelleri, BFSS Matris Modeli, Matris Mo-

dellerinde Chern-Simons Teorisi, Matris Modellerinde Kaos
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port, patience and motivation. His immense knowledge have guided me throughout

my M.S. study and related research. It was a great opportunity for me to study under

his supervision.

I would also like to thank Onur Oktay for his help, illuminating discussions and col-

laboration during the process of the research.

I would like to express my gratitude to my parents. They have encouraged me during

my most difficult times and supported me continuously. This accomplishment would

not have been possible without them.

viii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BFSS MATRIX MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Bosonic Sector of the BFSS Matrix Model . . . . . . . . . . . . . . 5

2.2 The BFSS Matrix Model From Dimensional Reduction . . . . . . . . 10

2.3 Two Matrix Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Chaotic Dynamics From Poincaré Sections . . . . . . . . . . . 21

2.3.2 Chaotic Dynamics via Lyapunov Exponents . . . . . . . . . . 22

3 TWO MATRIX MODEL WITH CHERN-SIMONS TERM . . . . . . . . . 25

3.1 Chern-Simons Action . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Reduction to 0+1 dimensions . . . . . . . . . . . . . . . . . . . . . 26

3.3 Two Matrix Model with Chern-Simons Terms . . . . . . . . . . . . . 27

ix



3.4 Lagrangian and Hamiltonian Mechanics with First Order Time Deriva-
tives in the Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Hamiltonian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Coordinate Transformation . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Numerical Results and Chaos . . . . . . . . . . . . . . . . . . . . . 34

4 TWO MATRIX MODEL WITH A MASS TERM . . . . . . . . . . . . . . 41

4.1 Two matrix model with mass terms . . . . . . . . . . . . . . . . . . 41

4.1.1 Numerical Results and Chaos . . . . . . . . . . . . . . . . . . 43

5 BFSS MATRIX MODEL WITH MASS DEFORMATIONS . . . . . . . . . 47

5.1 Mass Deformed Action . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Fuzzy Two Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Fuzzy Four Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 A Configuration with Collective Time Dependence and Fuzzy 4 and
Fuzzy 2 Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Numerical Results and Chaos . . . . . . . . . . . . . . . . . . . . . 56

5.6.1 Poincaré Sections . . . . . . . . . . . . . . . . . . . . . . . . 56

5.6.2 Lyapunov Spectrum . . . . . . . . . . . . . . . . . . . . . . . 57

5.6.3 Largest Lyapunov Exponents versus Energy . . . . . . . . . . 57

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

APPENDICES

A CALCULATIONS ON CHERN-SIMONS THEORY . . . . . . . . . . . . 71

x



A.1 X Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.3 Angular Momentum Matrix for the Euler Rotation . . . . . . . . . . 74

B METHODS OF EXAMINING CHAOS . . . . . . . . . . . . . . . . . . . 77

B.1 Poincaré Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.2 Lyapunov Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



LIST OF TABLES

TABLES

Table 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xii



LIST OF FIGURES

FIGURES

Figure 2.1 Potential contours at pφ = 1 and V = 0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 7 19

Figure 2.2 Poincaré sections . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.3 Lyapunov spectrum . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.4 Lyapunov spectrum at pφ = 0 . . . . . . . . . . . . . . . . . . . 24

Figure 3.1 Poincaré sections at pφ = 1 for positive k values . . . . . . . . . 36

Figure 3.2 Poincaré sections at pφ = 1 for negative k values . . . . . . . . . 37

Figure 3.3 Poincaré sections at pφ = 2 . . . . . . . . . . . . . . . . . . . . 38

Figure 3.4 Lyapunov spectra at pφ = 0, pφ = 1 and pφ = 2 . . . . . . . . . 39

Figure 4.1 Poincaré sections at pφ = 1 . . . . . . . . . . . . . . . . . . . . 44

Figure 4.2 Lyapunov spectrum at pφ = 1 . . . . . . . . . . . . . . . . . . . 45

Figure 5.1 Poincarè sections for n = 1, 2, 3 . . . . . . . . . . . . . . . . . . 59

Figure 5.1 Poincarè sections for n = 4, 5, 6 . . . . . . . . . . . . . . . . . . 60

Figure 5.2 Lyapunov exponents vs. time for n = 1, 2, 3 . . . . . . . . . . . 61

Figure 5.2 Lyapunov exponents vs. time for n = 4, 5, 6 . . . . . . . . . . . 62

Figure 5.3 Mean largest Lyapunov exponents for different energy values . . 63

xiii



Figure B.1 Poincaré section at E = 5 . . . . . . . . . . . . . . . . . . . . 79

xiv



CHAPTER 1

INTRODUCTION

Matrix gauge theories, which are also called matrix quantum mechanics in the lit-

erature continue to attract significant attention and being explored from several per-

spectives ever since their discovery over twenty years ago. Among these, the matrix

model proposed by Banks-Fischler-Shenker-Susskind (BFSS) model[1] is essentially

supersymmetric gauge theory consisting of nine N ×N matrices and a single U(N)

gauge field, in its bosonic part, whose matrix elements depend on time only. This

model can be obtained by dimensionally reducing the N = 1 SUSY Yang-Mills the-

ory in 9+1 dimensions to zero volume, in other words to 0+1 dimensions. The BFSS

model has an important role in superstring theory and M-theory. In the context of

superstring theory it may be interpreted to describe the dynamics of N -coincident

D0-branes[1, 2, 3]. The latter are point like objects in string theory with certain prop-

erties and generalize to D-p branes with p ≤ 9 [4, 5]. Due to gauge-gravity correspon-

dence this description of the BFSS gauge theory has a gravity dual at large N , which

describes a so called blackbrane that is a string theoretical black hole[2, 3, 6, 7].

In this thesis, our focus will be on the bosonic part of the BFSS model and related

models. We will make no formal attempt to connect the developments in this work

to a broader perspective in string theory and limit ourselves to make only qualitative

remarks in that context whenever needed. As already noted, the bosonic sector of

the BFSS model consists of nine N × N Hermitian matrices and a Hermitian U(N)

(or SU(N)) gauge field. The action for the model is invariant under the SU(N)

gauge symmetry as well as a SO(9) global symmetry, which is responsible for rigidly

rotating the nine matrices among themselves. Due to the large number of interacting

degrees of freedom through a quartic Yang-Mills potential it does not seem possible
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to obtain a general solution of this model. It is possible to consider smaller matrix

models that is matrix models with less number of matrices and a smaller gauge group

by considering various degrees of freedom in the BFSS model to be frozen or motivate

such matrix models as emerging from dimensionally reducing Yang-Mills theories in

d+1-dimensions with d ≤ 9.

One of the recent focuses in this context has been to explore the chaotic dynam-

ics emerging from the BFSS and related matrix models[8, 9, 10]. In [8], the minimal

bosonic matrix model, which is a model with two 2×2 matrices and SU(2) gauge and

SO(2) global symmetry has been put under investigation. Even in this simplest case,

it does not appear possible to obtain the general solution of the equations of motion.

After transforming the model to new set of coordinates using analytical methods and

taking advantage of the gauge and global symmetries the authors of [8] have success-

fully studied the chaotic dynamics in this model by obtaining the Poincaré sections

and Lyapunov spectrum. They show how as the value of a conserved component of

angular momentum is modified from zero to non-zero values, the system evolves from

a chaotic dynamical phase to eventually a non-chaotic phase. They also comment in

what sense these results may be useful to explain the passage from black hole phase

to a no-black hole phase in the gravity dual of related models with larger number of

degrees of freedom. A considerable part of chapter 2 is devoted to the review of this

article. After these brief remarks on the recent literature we can present the main

developments contained in this thesis.

In chapter 3, we investigate how the addition of a Chern-Simons term affects the

minimal matrix model of Berenstein and Kawai[8]. To be more precise, we first

analyze in detail the structural changes in the model upon supplementing the action

with a Chern-Simons term, which is first order in time derivatives. This eventually

leads us to model physical changes in the dynamics, from chaos to no-chaos when,

in addition to the conserved component of angular momentum, the Chern-Simons

coupling is modified to assume different values. The latter can only assume values,

which are integer multiples of 1
4π

as a consequence of level quantization in the non-

abelian Chern-Simons theory[11]. We study this model by obtaining the Poincaré

sections and also by numerically evaluating the Lyapunov spectrum. These results

are obtained in collaboration with my supervisor S. Kürkcüoğlu[12]
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Consequences of the deformation of the Berenstein-Kawai model via a mass term

respecting the gauge and global symmetries are discussed in chapter 4. Poincaré

sections’ and Lyapunov spectrum’s responses to the variation of the mass parameter

are given in this chapter.

In chapter 5, we study a double mass deformation of the BFSS matrix model. In this

study, we focus on massive deformations which break the SO(9) global symmetry

down to SO(5)×SO(4) and eventually to SO(5)×SO(3)×Z2 upon choosing a cer-

tain ansatz configuration to obtain effective actions, whose chaotic dynamics can be

studied in detail. The aforementioned ansatz configuration is selected to be composed

of matrices forming fuzzy four and two spheres with collective time-dependence.

Similar ansatz involving fuzzy two spheres have been used in the work of Asano,

Kawai and Yoshida[9] studying chaos in BMN model and inspired us to consider an

ansatz with larger dimensional fuzzy spaces. By using the ansatz at several different

matrix levels we obtain a family of reduced effective actions, whose dynamics are

studied in detail. Finally, after showing the presence of chaotic dynamics by evalu-

ating the Poincaré sections and Lyapunov spectrum, we also make a numerical study

revealing that the largest exponent increases logarithmically with increasing energy in

these models. The results of this chapter are a part of results obtained in collaboration

with O. Oktay and C. Taşcı and my supervisor S. Kürkcüoğlu[13].

Chapter 6 summarizes our original findings in this thesis and states our conclusions.

Some related supplemental materials on the definition, evaluation and properties of

Poincaré sections and Lyapunov exponents are given in appendices.
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CHAPTER 2

BFSS MATRIX MODEL

In this chapter, we introduce the bosonic sector of the BFSS matrix model[1] and

present its basic features and properties. BFSS matrix model can be obtained from the

dimensional reduction of the U(N), N = 1 supersymmetric Yang-Mills theory from

9+1 dimensions to 0+1. This model holds an important place in string theory and M-

theory. Since the string theoretic foundations and features of this model are beyond

the scope of this thesis, we are going to focus mainly on the classical dynamics of

BFSS model. The simplest but yet non-integrable submodel is SU(2) 2-Yang-Mills

matrix model, i.e. the matrix model with only two 2 × 2 matrices and with SU(2)

gauge symmetry. In section 2.3 we focus on this model, and present a review of the

study of [8].

2.1 Bosonic Sector of the BFSS Matrix Model

The BFSS action has two parts, which are bosonic and fermionic. The resulting

action has SU(N) gauge symmetry and SO(9) global symmetry. In this thesis, only

the bosonic part of the model will be studied and its action is given as[2]

SBFSS =

∫
dtLBFSS , (2.1.1a)

LBFSS =
1

g2
Tr

(
1

2
(D0Xi)

2 +
1

4
[Xi, Xj]

2

)
, (2.1.1b)

where i, j = 1, ..., 9 and the bosonic degrees of freedom Xi are N×N Hermitian

matrices. g is the Yang-Mills coupling1 which has a dimension of (length)−3/2 since

1 Since we use classical physics, g only changes the energy scale. We take g = 1.
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A0, Xi are of dimension 1
length

. The covariant derivative D0 is given as

D0Xi = ∂0Xi − i[A0, Xi] , (2.1.2)

where A0 is the gauge field, which is also an N× N Hermitian matrix.

SU(N) gauge symmetry of the action in (2.1.1a) can be seen by substituting the fol-

lowing transformations

Xi → X ′i = U †XiU , (2.1.3a)

A0 → A′0 = U †A0U + iU †∂0U , (2.1.3b)

into the Lagrangian in (2.1.1b). We first show thatD0Xi transforms covariantly under

the action of the local gauge group SU(N).

D0(U †XiU) =∂0(U †XiU)− i
[
U †A0U + iU †∂0U,U

†XiU
]

=∂0(U †XiU)− i
[
U †A0U,U

†XiU
]

+
[
U †∂0U,U

†XiU
]

=(∂0U
†)XiU + U †(∂0Xi)U +���

���U †Xi(∂0U)

− iU †[A0, Xi]U + U †(∂0U)U †XiU −(((((
(((

U †XiUU
†∂0U

=(∂0U
†)XiU + U †(∂0Xi)U + U †(∂0U)U †XiU

− iU †[A0, Xi]U ,

(2.1.4)

where we used UU † = 1. Substituting the following identity

∂0(UU †) = (∂0U)U † + U(∂0U
†) = 0

⇒ U(∂0U
†) = −(∂0U)U †

⇒ ∂0U
† = −U †(∂0U)U † ,

(2.1.5)

into the last line in (2.1.4) gives

U †(∂0Xi)U − iU †[A0, Xi]U −(((((
((((U †(∂0U)U †XiU +((((

((((
(

U †(∂0U)U †XiU . (2.1.6)

Therefore, we have

Tr
1

2
(D0Xi)

2 →Tr
1

2
U †(D0Xi)UU

†(D0Xi)U

= Tr
1

2
(D0Xi)

2 ,
(2.1.7)
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where we have used the cyclicity of the trace verifying the invariance of the kinetic

term under SU(2) gauge transformations. The potential term in the Lagrangian trans-

forms under the SU(N) gauge transformations as follows

Tr
(
[Xi, Xj]

2) =
[
U †XiU,U

†XjU
]2

= Tr
([
U †XiU,U

†XjU
][
U †XiU,U

†XjU
])

= Tr
(
U †[Xi, Xj]UU

†[Xi, Xj]U
)

= Tr
(
U †[Xi, Xj]

2U
)

= Tr
(
[Xi, Xj]

2) .
(2.1.8)

Equations (2.1.7) and (2.1.8) together show that the Lagrangian LBFSS is invariant

under the SU(N) gauge transformations.

In addition to the local gauge symmetry, the action has also a global SO(9) symmetry

i.e. it is invariant under the rigid SO(9) rotations of Xi among each other. To see this

property, consider 9× 9 orthogonal matrices Rij ∈ SO(9) and the rotation

X ′i = RijXj . (2.1.9)

The covariant derivative transforms as

D0(RijXj) =∂0(RijXj)− i[A0, RijXj]

=Rij(∂0Xj − i[A0, Xj])

=Rij(D0Xj) .

(2.1.10)

Therefore, the kinetic term in the Lagrangian remains invariant under R ∈ SO(9):
1

2
D0(RijXj)D0(RikXk) =

1

2
RijRik(D0Xj)(D0Xk)

=
1

2
δjk(D0Xj)(D0Xk)

=
1

2
(D0Xj)

2 ,

(2.1.11)

where we have used the fact that RRT = RTR since R is an orthogonal matrix. The

second term in LBFSS transforms as
1

4
[RijXj, RklXl][RimXm, RknXn] =RijRklRimRkn[Xj, Xl][Xm, Xn]

=
1

4
δjmδln[Xj, Xl][Xm, Xn]

=
1

4
[Xj, Xl]

2

=
1

4
[Xi, Xj]

2 .

(2.1.12)
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In the above equation the last line is obtained after relabeling the dummy indices.

Equations (2.1.11) and (2.1.12) together indicate that the Lagrangian is invariant un-

der the SO(9) transformations.

Since there is no Ȧ0 = ∂0A0 term in the LBFSS , its equation of motion is purely

algebraic and therefore A0 is not a dynamical variable. Nevertheless, the algebraic

equation of motion of A0 imposes a constraint on the system which is usually called

the Gauss law constraint. The variation

A0 → A0 + δA0 (2.1.13)

gives the equation of motion with respect to A0 as follows

1

2
Tr(D0Xi)

2 → 1

2
Tr((∂0Xi − i[A0 + δA0, Xi])(∂0Xi − i[A0 + δA0, Xi]))

=
1

2
Tr((∂0Xi − i[A0, Xi]− i[δA0, Xi])(∂0Xi − i[A0, Xi]− i[δA0, Xi]))

=
1

2
Tr
(
(D0Xi − i[δA0, Xi])(D0Xi − i[δA0, Xi]) +O((δA0)2)

)
=

1

2
Tr(−iD0Xi[δA0, Xi]− i[δA0, Xi]D0Xi)

= Tr(−iD0Xi[δA0, Xi])

= Tr(−iD0Xi(δA0Xi −XiδA0))

= Tr(−iδA0Xi(D0Xi)− iδA0(D0Xi)Xi)

= Tr(−iδA0[Xi, D0Xi]) ,

(2.1.14)

where we have used the cyclicity of the trace while rearranging the terms. The varia-

tion of the action with respect to A0 is therefore given as

δS =

∫
dtTr(−iδA0[Xi, D0Xi]) = 0 ,

−i[Xi, D0Xi] = 0 .

(2.1.15)

This implies that the equation of motion in the A0 = 0 gauge is[
Xi, Ẋi

]
= 0 , (2.1.16)

where overdot denotes derivatives with respect to time. (2.1.16) is usually called the

Gauss law constraint, in the literature [1].

8



The BFSS equation of motion can be obtained from the following variation

Xi → Xi + δXi . (2.1.17)

The variation of the action is

δS =

∞∫
−∞

dtTr

(
1

2

d

dt
(Xi + δXi)

d

dt
(Xi + δXi) +

1

4
[Xi + δXi, Xj + δXj]

2

)
.

(2.1.18)

The first term in the variation of the action takes the form

Tr

(
1

2

d

dt
(Xi + δXi)

d

dt
(Xi + δXi)

)
= Tr

(
1

2
(Ẋi + δẊi)(Ẋj + δẊj)

)
= Tr

(
1

2
(ẊiδẊi + δẊiẊi)

)
= Tr

(
ẊiδẊi

)
,

(2.1.19)

where we have used the cyclicity of the trace and kept only the first order variations.

This equation can be further simplified by using integration by parts as follows

∞∫
−∞

dtTr
(
ẊiδẊi

)
= ẊiδXi

∣∣∣∞
−∞
−

∞∫
−∞

dtTr
(
ẌiδXi

)

= −
∞∫

−∞

dtTr
(
ẌiδXi

)
.

(2.1.20)
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To first order in δXi, the second term in the action can be written as follows

1

4
[Xi + δXi, Xj + δXj]

2

=
1

4
([Xi, Xj] + [Xi, δXj] + [δXi, Xj] + [δXi, δXj])

2

=
1

4
([Xi, Xj]([Xi, δXj] + [δXi, Xj]) + ([Xi, δXj] + [δXi, Xj])[Xi, Xj])

=
1

2
[Xi, Xj]([Xi, δXj] + [δXi, Xj])

=
1

2
(XiXj −XjXi)(XiδXj − δXjXi + δXiXj −XjδXi)

=
1

2
(XiXjXiδXj −XiXjδXjXi +XiXjδXiXj −XiXjXjδXi

−XjXiXiδXj +XjXiδXjXi −XjXiδXiXj +XjXiXjδXi)

=
1

2
δXi(XjXiXj −XiXjXj −XjXjXi +XjXiXj)

+
1

2
δXj(XiXjXi −XiXiXj −XjXiXi +XiXjXi)

= δXi(XjXiXj −XiXjXj −XjXjXi +XjXiXj)

= δXi(Xj[Xi, Xj]− [Xi, Xj]Xj)

= δXi[Xj, [Xi, Xj]] .

(2.1.21)

Since the indices i and j are dummy, we have interchanged i with j in the 9th line.

Putting the results obtained in (2.1.20) and (2.1.21) together we find that the variation

of the action becomes

δS =

∞∫
−∞

dtTr
(
δXi(−Ẍ + [Xj, [Xi, Xj]])

)
= 0 . (2.1.22)

Therefore, the BFSS equation of motion is given as

Ẍi + [[Xi, Xj], Xj] = 0 . (2.1.23)

2.2 The BFSS Matrix Model From Dimensional Reduction

In this section, the BFSS matrix model will be obtained from the dimensional reduc-

tion of pure SU(N) Yang-Mills theory in 9+1 dimensions to 0+1 dimensions[2].

In 9+1 dimensions we can work with the metric ηµν = (−1, 1, 1, ..., 1). The Yang-
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Mills action can be written as

S =
1

g2

∫
d10xTr

(
−1

4
FµνF

µν

)
, (2.2.1)

where µ, ν = 0, 1, ..., 9 and sum over repeated indices are implied. The electromag-

netic field tensor is given as

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] , (2.2.2)

where Aµ = Aµ(~x, t) = (A0(~x, t), Ai(~x, t)) for i = 1, ..., 9 is the gauge field. It

transforms under SU(N) gauge transformation as

Aµ → A′µ = U †AµU + iU †∂µU , (2.2.3)

where U = U(~x, t) ∈ SU(N). The idea of dimensional reduction from 9+1 to 0+1

dimensions can be simply explained as follows. We consider all the components of

the gauge field Aµ and all the gauge transformations U , to be independent of the

spatial coordinates xi = 1, ..., 9 and depend only on x0 = t. Thus we write Aµ ≡
Aµ(t) = (A0(t), Ai(t)) and U ≡ U(t). From (2.2.3), we see that this implies for the

spatial components Ai(t) the gauge transformations

A′i(t) = U †AiU (2.2.4)

and for A0(t) the gauge transformations are given in (2.1.3b). This shows that Ai

transform adjointly under SU(N) gauge transformations. That is, just like an adjoint

non-abelian scalar field with SU(N) gauge symmetry. Therefore, we may devise the

new notation

Aµ → (A0(t), Xi(t)) (2.2.5)

as the constituent fields. Inserting (2.2.5) to (2.2.2) we find for the components of the

electromagnetic field tensor

Fij = ∂iXj − ∂jXi − i[Xi, Xj]

= −i[Xi, Xj] ,

F0i = ∂0Xi − ∂iA0 − i[A0, Xi]

= ∂0Xi − i[A0, Xi]

= D0Xi ,

(2.2.6)

where we have used the fact that all spatial derivatives are vanishing. Thus the La-
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grangian takes the form

L = − 1

4g2
Tr(FµνF

µν) = Tr

(
− 1

4g2
(F0iF

0i + Fi0F
i0 + FijF

ij

)
= Tr

(
− 1

4g2
(2F0iF

0i + FijF
ij)

)
= Tr

(
− 1

4g2
(2(D0Xi)(−D0Xi)− [Xi, Xj]

2)

)
=

1

g2
Tr

(
1

2
(D0Xi)

2 +
1

4
[Xi, Xj]

2

)
(2.2.7)

and the action is

S =
1

g2

∫
dtTr

(
1

2
(D0Xi)

2 +
1

4
[Xi, Xj]

2

)
, (2.2.8)

which is the BFSS action that we have introduced in equation (2.1.1).

2.3 Two Matrix Model

We will now concentrate on the structure of the Yang-Mills two matrix model with

SU(2) gauge symmetry. This model can be obtained by dimensionally reducing the

pure SU(2) Yang Mills theory in 2+1 dimensions to 0+1 along the same lines as

described in the previous section or equally by considering (2.2.8) with only Xi : i =

1, 2. The Lagrangian has the form

L =
1

2
Tr
(
(D0X1)2 + (D0X2)2 + [X1, X2]2

)
, (2.3.1)

which has the SU(2) gauge symmetry and SO(2) global symmetry. X1 and X2 are

2× 2 matrices which are traceless and hermitian. Since they are in a triplet of SU(2),

we can use Pauli matrices to write X1 and X2 as

Xi = N~xi · ~σ = Nxαi σ
α

= N

 x3
i x1

i − ix2
i

x1
i + ix2

i −x3
i

 ,
(2.3.2)

where α = 1, 2, 3 and N is the normalization constant which will be determined now.

Working in the A0 = 0 gauge, N can be fixed by requiring that Tr
(
Ẋ2

1 + Ẋ2
2

)
=

12



∑
α

(ẋα1 ẋ
α
1 ) + (ẋα2 ẋ

α
2 ). To satisfy this requirement, we see that we must have

1

2
Tr
(
Ẋ2
i

)
=

1

2
N2 Tr

(
ẋαi σ

αẋβi σ
β
)

=
1

2
N2ẋαi ẋ

β
i Tr

(
σασβ

)
=

1

2
N2ẋαi ẋ

β
i 2δαβ

= N2ẋαi ẋ
α
i ,

(2.3.3)

which therefore implies that we must take N =
1√
2

. Let us now insert Xi given in

(2.3.3) into the Lagrangian (2.3.1) in the A0 = 0 gauge and evaluate the traces. This

yields

L =
1

2
Tr

((
1√
2
ẋα1σ

α

)2

+

(
1√
2
ẋβ1σ

β

)2

+

[
1√
2
xα1σ

α,
1√
2
xβ1σ

β

]2
)

=
1

2
Tr

(
1

2
(ẋα1 )2

12 +
1

2
(ẋβ2 )2

12 +

(
1

2
2iεαβγxα1x

β
2σ

γ

)2
)

=
1

2
Tr

(
1

2
(ẋα1 )2

12 +
1

2
(ẋβ2 )2

12 − (~x1 × ~x2)2
12

)
=

1

2
(~̇x1)2 +

1

2
(~̇x2)2 − (~x1 × ~x2)2 .

(2.3.4)

We see that the Lagrangian is analogous to that of two point particles with coordinates

~x1 and ~x2 of unit mass and the interaction potential is V (x1, x2) = (~x1×~x2)2. Draw-

ing from our knowledge of analytical mechanics we can write down the canonically

conjugate momenta for ~x1 and ~x2 as

~p1 :=
∂L

∂~̇x1

= ~̇x1 , ~p2 :=
∂L

∂~̇x2

= ~̇x2 . (2.3.5)

Then the Hamiltonian is found as follows

H = ~̇x · ~p− L

= ~p2
i −

1

2
~p2
i + (~x1 × ~x2)2

=
1

2
~p2
i + (~x1 × ~x2)2 .

(2.3.6)
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Using (2.3.6) we may determine the Hamiltonian’s equations of motion as

~̇p1 := −∂H
∂~x1

= 2~x2 × (~x1 × ~x2) ,

~̇p2 := −∂H
∂~x2

= −2~x2 × (~x1 × ~x2) ,

~̇x1 :=
∂H

∂~p1

= ~p1 ,

~̇x1 :=
∂H

∂~p2

= ~p2 .

(2.3.7)

Although these equations look superficially simple enough to yield the general so-

lutions, it turns out that they are still too complicated to be solved exactly. In order

to simplify the problem by taking advantage of its symmetries, we may first express

(~x1, ~x2) as a single 3× 2 matrix as

X =


x1

1 x1
2

x2
1 x2

2

x3
1 x3

2

 . (2.3.8)

We can implement the SU(2) ' SO(3) gauge symmetry of the model by left multi-

plying with D(g) ≡ R ∈ SO(3), while the right multiplication implements the rigid

SO(2) symmetry of the model. Thus we have

X =


x1

1 x1
2

x2
1 x2

2

x3
1 x3

2

 −→ RSO(3) ·


x1

1 x1
2

x2
1 x2

2

x3
1 x3

2

 ·

cos(φ) − sin(φ)

sin(φ) cos(φ)

 . (2.3.9)

We can always make a gauge transformation, that is choose D(g) ≡ RSO(3) such that

the vector ~x1 is rotated to point in the 1-direction. In other words, if we start with

~x′1 = (x1′
1 , x

2′
1 , x

3′
1 )T we can always find a gauge transformation such that ~x′1 → ~x1 =

(x1
1, 0, 0)T . This vector does not change under a SO(2) ⊂ SO(3) subgroup and that

residual gauge symmetry can be used to take ~x′2 → ~x2 = (x1
2, x

2
2, 0)T . Nevertheless,

rigid SO(2) rotations which are acting from the right on X , would allow us to keep

only the last row of X to be zero but rotates x2
1 to a non-zero value in general. The

final outcome of this analysis is that out of 6 degrees of freedom only 4 remains due

to the local and global symmetries of the problem. The question we need to answer

is whether this analysis is preserved as the system is evolving in time. To do so, we

inspect the Gauss law constraint.
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In the previous section we have determined the Gauss law constraint of the BFSS

theory in the A0 = 0 gauge as given in (2.1.16), and for the two matrix model this

takes the form [
X1, Ẋ1

]
+
[
X2, Ẋ2

]
= 0,

=
1

2

[
xα1σ

α, ẋβ1σ
β
]

+
1

2
[xµ2σ

µ, ẋν1σ
ν ] = 0

=
1

2
(2iεαβγxα1 ẋ

β
1σ

γ + 2iεµνρxµ2 ẋ
ν
2σ

ρ) = 0

= i(~x1 × ~̇x1 + ~x2 × ~̇x2) · ~σ = 0

=: i(~L1 + ~L2) · ~σ = 0 .

(2.3.10)

This implies that ~L := ~L1 + ~L2 = 0. Continuing with the point particle dynamics

interpretation of the system we can identify ~Li with the angular momentum of the ith

particle and ~L as the total angular momentum of the system. Let us, however note that

for the two matrix model described by the action (2.3.1), ~L is the generator of SU(2)

gauge transformations. Constraint equation means that the total angular momentum

is vanishing. Time derivative of ~L1 is

~̇L1 = ~̇x1 × ~p1 + ~x1 × ~̇p1

= 2~x1 × (~x2 × (~x1 × ~x2)) .
(2.3.11)

In the first line of (2.3.11), the first term is vanishing since ~̇x1 × ~p1 = ~p1 × ~p1 = 0.

The second term is found by inserting the ~̇p1 in the (2.3.7) into this equation. Since

~x1 and ~x2 are orthogonal to ~L1, (~x1 ×~x2) is aligned with ~L1. Then (~x2 × (~x1 ×~x2))

is orthogonal to ~L1. It is now obvious that ~x1 × (~x2 × (~x1 × ~x2)) is aligned with ~L1.

Equation (2.3.11) shows that ~L1 and ~̇L1 are in the same direction. That is also valid

for ~L2 since they are anti-parallel vectors.

This angular momentum analysis shows that ~x1, ~x2, ~p1 and ~p2 are orthogonal to
~L and the direction of ~L does not change in time. Therefore, the whole motion is

orthogonal to the ~L-plane. The gauge choice we previously made, taking x3
1 = x3

2 = 0

is preserved with ~L pointing in the x3-direction. Therefore, the motion is confined to

the x1 − x2 plane.

Deleting the row of zeros in (2.3.8) four dynamical degrees of freedom are arranged
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into a 2× 2 matrix.

X =

x1
1 x2

1

x1
2 x2

2

 . (2.3.12)

Since the determinant of this matrix is simply given by

det(X) = x1
1x

2
2 − x1

2x
2
1 , (2.3.13)

we see that the potential part of the Lagrangian in (2.3.4) or the Hamiltonian in (2.3.6)

can be written as follows

~x1 × ~x2 = εαβxα1x
β
2

= x1
1x

2
2 − x1

2x
2
1

= det(X) .

(2.3.14)

In order to simplify the problem it would be best if we could transform to a new

coordinate system in which the ~L = 0 constraint can be explicitly implemented. Fur-

thermore, we note that since the potential is given in terms of a cross product, the

relative angle, say θ, between the particles may be taken as one of the generalized

coordinates. After these intuitive remarks, we may take a two step approach to deter-

mine such new coordinates.

Step 1

Let us suppose that the particles are at a distance r√
2

form an arbitrarily chosen origin

and are making a relative angle θ. Then, we may write as intermediate step

X0 =
1√
2

r r cos(θ)

0 r sin(θ)

 . (2.3.15)

Step 2

X0 itself cannot be the most general form of the transformation between the old and

the new coordinates, since (2.3.15) involves only the new coordinates, while we need

two more. The remaining two degrees of freedom can be introduced by performing a

left SO(2) rotation RSO(2)(χ) and a right SO(2) rotation RSO(2)(φ) by angles χ and
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φ, respectively. Therefore, we may write this parametrization of X in (2.3.9) as

X = R(χ)X0R(φ)

=
1√
2

cos(χ) − sin(χ)

sin(χ) cos(χ)

r r cos(θ)

0 r sin(θ)

 cos(φ) sin(φ)

− sin(φ) cos(φ)

 .
(2.3.16)

This gives us the complete transformation of the coordinates (x1
1, x

2
1, x

1
2, x

2
2) to the

new coordinates (r, θ, φ, χ).

In (2.3.16), R(χ) acting from the left implements the rotations along the x3-axis by

an angle χ. Therefore, we infer that the corresponding conjugate momenta pχ = ∂L
∂χ̇

will be identified as the total angular momentum ~L of the system. The Gauss law

constraint ~L = 0 can then be implemented by taking pχ = 0 after expressing the

Hamiltonian in the new phase space variables. We will see this explicitly in what

follows.

In order to understand the purpose and meaning of the RSO(2)(φ) acting from right,

first note that it only acts on X0 as a 2 × 2 matrix and cannot possibly act on an

individual column vector. This is because, RSO(2)(φ) acts in a similar manner as

the rigid global rotations of Xi’s mixing them, except that for RSO(2)(φ) the angle

φ is in general time-dependent. Note that this does not preserve the length of the

column vectors in X0. Meanwhile, we see that neither the left nor the right rotations

change the form of the potential ~x1 × ~x2 = 1
4
r4 sin2(θ) in the new coordinates since,

det(X) = det(X0).

The new coordinates are then (r, θ, φ, χ) and the corresponding conjugate momenta

are (pr, pθ, pφ, pχ). Hamiltonian can formally be expressed as

H =
1

2
gijpipj + (det(X))2

=
1

2
g−1
ij pipj +

1

4
r4 sin2(θ) ,

(2.3.17)

where gij is the metric in the new coordinates which can be evaluated from the ex-

pression

gij = Tr
(
∂iX

†∂jX
)
. (2.3.18)
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Using equation (2.3.16), the metric gij can be explicitly written as

gij =


1 0 0 0

0 r2

2
r2 sin(θ)

2
r2

2

0 r2 sin(θ)
2

r2 r2 sin(θ)

0 r2

2
r2 sin(θ) r2

 , (2.3.19)

where the rows and columns are labeled in the order pr, pθ, pφ, pχ. We have evalu-

ated the components of gij both analytically and also using Mathematica. Using this

metric, square of the line element can be written as

ds2 = dr2 +
r2

2
dθ2 + r2 dφ2 + r2 dχ2

+ r2 sin2(θ) dθ dφ+ r2 dθ dχ+ 2r2 sin(θ) dφ dχ .

(2.3.20)

Then, the inverse metric g−1
ij is

g−1
ij =


1 0 0 0

0 4
r2

0 − 2
r2

0 0 1
r2 cos2(θ)

− sec(θ) tan(θ)
r2

0 − 2
r2
− sec(θ) tan(θ)

r2
(3−cos(2θ)) sec2(θ)

2r2

 . (2.3.21)

As we have argued previously, pχ corresponds to the total angular momentum ~L, and

therefore we set it zero in writing out the Hamiltonian (2.3.17) explicitly. Thus, we

only need the first 3× 3 block of (2.3.21) as

g−1
ij =


1 0 0

0 4
r2

0

0 0 1
r2 cos2(θ)

 (2.3.22)

and the Hamiltonian in (2.3.17) can be written as follows

H =
1

2
p2
r +

2

r2
p2
θ +

p2
φ

2r2 cos2(θ)
+

1

4
r4 sin2(θ) . (2.3.23)

Since (2.3.23) is cyclic in φ, we immediately have ṗφ = 0, meaning that pφ is con-

served, i.e. it is a constant of motion. Treating pφ a constant, we can focus on only

the phase space (r, θ, pr, pθ). There are singularities at r = 0 and θ = k π
2

where k is

an odd integer. Then the motion will be in the range θ ∈ (-π
2
, π

2
) and r > 0.
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Figure 2.1: Potential contours at pφ = 1 and V = 0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 7

The potential contours in figure 2.1, show that θ values will be in a very narrow

region around θ = 0 as we increase r for low energies. This is the region in which the

commutator of the matrices are vanishingly small. Such configurations are called flat

directions in the matrix model. They are lifted i.e. commutators do not vanish once

quantum corrections are considered. Classical trajectories can spend a lot of time in

this region and could become time consuming to compute numerically. In this region,

θ exhibit harmonic motion. To see this, we recall that the general Hamiltonian for a

simple harmonic oscillation

HS.H.O =
p2

2m
+

1

2
mw2x2 . (2.3.24)

Small angle approximation

cos(θ) ' 1− θ2

2
+ ...

sin(θ) ' θ + ...

cos−2(θ) ' 1 + θ2 + ...

(2.3.25)
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in θ-dependent part of the Hamiltonian gives us

Hθ =
2

r2
p2
θ +

p2
φ

2r2
(1 + θ2) +

1

4
r4θ2

=
2

r2
p2
θ +

(
p2
φ

2r2
+

1

4
r4

)
θ2 ,

(2.3.26)

where the binomial formula is used. From (2.3.24) and (2.3.26) we see that frequency

of oscillations in θ is

w =

√
4p2

φ

r4
+ 2r2 . (2.3.27)

Figure 2.1 shows that the motion is adiabatic in θ at large r. In general the condition

for an adiabatic motion is given as [14]

T
dλ

dt
� λ , (2.3.28)

where λ is a slowly varying parameter and T is the period of motion. In our case, we

may take the slowly varying parameter as the frequencyw, and this gives the adiabatic

condition as
ẇ

w2
� 1 (2.3.29)

using (2.3.27), this takes the form

ẇ

w2
= ṙ

−4p2
φ + r6

√
2r5
(

2p2φ
r4

+ r2
)3/2

r→∞−−−→' ṙ
1

r2
. (2.3.30)

Right hand side of (2.3.30) is vanishing at large r, then the motion is adiabatic in θ.

Thus, a term ~w ' ~r can be added to the potential to ease the numerics. Here ~ is

just a parameter which will be set to a convenient number in the next section. The

Hamiltonian can be written as follows

H =
1

2
p2
r +

2

r2
p2
θ +

p2
φ

2r2 cos2(θ)
+

1

4
r4 sin2(θ) + ~r . (2.3.31)

The Hamiltonian equations of motion are

ṙ =
∂H

∂pr
= pr ,

ṗr = −∂H
∂r

=
4

r3
p2
θ − r3 sin2(θ) +

p2
φ

r3 cos2(θ)
− ~ ,

θ̇ =
∂H

∂pθ
=

4

r2
pθ ,

ṗθ = −∂H
∂θ

= −
p2
φ tan(θ)

r2 cos2(θ)
− 1

2
r4 sin(θ) cos(θ) .

(2.3.32)
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2.3.1 Chaotic Dynamics From Poincaré Sections

Before presenting the results of Poincaré sections for this particular model, we di-

gress a moment and give a brief explanation of the meaning of Poincaré sections in

dynamical systems. Poincaré section is obtained by taking the intersection of the

phase flow and a surface of section [9, 15, 16, 17]. Therefore, N dimensional phase

space is reduced to N − 1 dimensions, and in the Hamiltonian systems it can be re-

duced further when the energy is constant. In this way, the four dimensional phase

space can be equally examined by focusing on the two dimensional Poincaré sections.

The chaotic dynamics of a system can be understood from the Poincaré sections as

follows. Randomly spread dots in Poincaré sections imply the existence of quasi pe-

riodic orbits. Contours in these figures, called as Kolmogorov, Arnold, Moser (KAM)

tori [15], correspond to the quasi periodic orbits. The more detailed explanation of

the Poincaré sections is given in appendix B.1.

In this section, we replicate the numerical results obtained by [8] using our own codes.

We examine the chaotic behavior of this model for the various values of pφ. In the

Poincaré sections, we used 25 different initial condition sets. Initially we take pr = 0

and θ = 0 as a part of the all initial condition sets. For a given energy E, r > 0 is

picked randomly so that pθ, which is

pθ =

√
r2

2

(
E −

p2
φ

2r2
− ~r

)
, (2.3.33)

takes a real value. Energy and the parameter ~ are taken to be equal to 1 and 0.1,

respectively.

Poincaré sections given in figure 2.2, which are plotted in the pr − pθ plane at the

intersection of θ = 0, show that the system is more chaotic for the lower values of

pφ. At pφ = 1, KAM tori occurring in a relatively small region show that the phase

space is quasi-periodic in this region, while the rest is fully chaotic. KAM tori grow

at pφ = 1.5 and cover significant amount of the area in the pr − pθ section. This

system appears to be fully quasi-periodic for pφ ≥ 2 . We depict the cases pφ = 2 and

pφ = 2.5 for specific examples.
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(a) pφ = 1 (b) pφ = 1.5

(c) pφ = 2 (d) pφ = 2.5

Figure 2.2: Poincaré sections

2.3.2 Chaotic Dynamics via Lyapunov Exponents

Another method for examining chaotic behavior in dynamical systems is the calcu-

lation of the Lyapunov exponents. For a given Hamiltonian system Lyapunov expo-

nents are real numbers, which measure the divergence of the phase space trajectories

starting from nearby initial conditions. There are as many Lyapunov exponents as the

number of phase space variables. A positive Lyapunov exponent signifies that trajec-

tories separated by infinitesimally separated initial conditions diverge exponentially.

This is direct indication of chaotic behavior since it describes the high sensitivity of

the system to initial conditions. One positive Lyapunov exponent is sufficient to con-
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clude that the dynamical system has chaotic behavior. For Hamiltonian systems sum

of all Lyapunov exponents is zero as a consequence of the Liouville’s theorem, which

states that the phase space volume does not change as the system evolves in time.

Further analytical details of the definition and evolution of Lyapunov exponents are

given in appendix B.2.

For consistency, in the calculation of Lyapunov exponents we pick the initial condi-

tions, energy and parameter ~ as in the Poincaré sections. Lyapunov spectrum given

in figure 2.3 are consistent with the Poincaré sections in terms of the transition from

chaotic to non-chaotic behavior. Vertical axis is the average of the largest Lyapunov

exponents which are numerically calculated for 25 different initial condition set for

each pφ and average of the 25 largest Lyapunov exponents are taken. Larger Lya-

punov exponents indicate that the system is more chaotic at those pφ values. Figure

2.3 shows that the system becomes less chaotic when we increase pφ.

Figure 2.3: Lyapunov spectrum

Number of Lyapunov exponents are equal to the degrees of freedom in the system.

In this model we have four Lyapunov exponents. One positive Lyapunov exponent is

sufficient to show that the system is chaotic. For this reason, we take only average of

the largest Lyapunov exponents in figure 2.3.

Lyapunov exponents versus time plot at pφ = 0 is given in figure 2.4. The largest

Lyapunov exponent is approximately 0.4 which is the largest value among the largest

Lyapunov exponents at different values of pφ. Therefore, it is possible to conclude
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that pφ = 0 is the most chaotic configuration. At pφ = 0, computational time for

drawing Poincaré sections is very long and the plots does not yield sufficient intersec-

tion points. Nevertheless, Lyapunov spectrum is sufficient to conclude the behavior

at pφ = 0.

Figure 2.4: Lyapunov spectrum at pφ = 0
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CHAPTER 3

TWO MATRIX MODEL WITH CHERN-SIMONS TERM

In this chapter, we will study the Yang-Mills two matrix model with the Chern-

Simons term. For completeness we start the chapter by introducing the Chern-Simons

action in 2+1 dimensions with SU(2) gauge symmetry and obtain its dimensional re-

duction to 0+1 dimensions in a manner similar to the treatment presented in section

2.3 for the BFSS matrix model. This will allow us to explicitly write down the Yang-

Mills Chern-Simons (YMCS) matrix model. We analyze the properties of this model.

In particular, we discuss the meaning of the modified Gauss law constraint and deter-

mine the Hamiltonian of the new system. Using these developments and numerical

methods we examine the chaotic dynamics emerging from this model.

3.1 Chern-Simons Action

Non-abelian Chern-Simons theory in 2+1 dimensions may be introduced by the La-

grangian [18]

LCS = κεµνρ Tr

(
Ãµ∂νÃρ +

2

3
ÃµÃνÃρ

)
. (3.1.1)

Neither the Lagrangian nor the action Scs =
∫

d3xLCS is invariant under the SU(N)

gauge symmetry. In fact, under the SU(N) action LCS changes by two terms, one

of which is of topological nature while the other is a total derivative [11]. The latter

integrates to zero under proper boundary conditions over the fields, and therefore

does not change the action SCS , while the former is proportional to an integer, as a

consequence of the topological conditions. Quantum physics, does not necessarily

require that S is invariant under gauge symmetry but it is rather eiS which is required

to be gauge invariant, and this leads to the quantization of the Chern-Simons coupling.
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For the SU(2) gauge symmetry we have κ = k
4π

, k ∈ Z[11, 18]. In LCS , Ãµ are

anti-Hermitian SU(N) gauge fields i.e. Ã†µ = −Ãµ. Denoting the anti-Hermitian

generator of SU(N) by T a we may write

Ãµ = ÃaµT
a ,

[
T a, T b

]
= fabcT c . (3.1.2)

To comply with the conventions of the previous chapter, we want to work with the

Hermitian gauge fields. We therefore would like to express (3.1.1) in terms of Her-

mitian gauge fields. To do so, we may write the Hermitian generators of SU(N) as

Sa := iT a and this gives

[
Sa, Sb

]
=
[
iT a, iT b

]
= i(i

[
T a, T b

]
)

= i(fabciT c)

= ifabcSc .

(3.1.3)

We may now express the Hermitian gauge fields Aµ in terms of the anti-Hermitian

Ãµ as

Aµ = AaµS
a

= AaµiT
a

= iÃµ .

(3.1.4)

The non-abelian Chern-Simons Lagrangian expressed in terms of the Hermitian gauge

fields Aµ takes the form

LCS = κεµνρ Tr

(
−iAµ∂ν(−iAρ) +

2

3
(−i3)AµAνAρ

)
= κεµνρ Tr

(
−Aµ∂νAρ +

2

3
iAµAνAρ

)
.

(3.1.5)

3.2 Reduction to 0+1 dimensions

Let us now focus on the Chern-Simons term with SU(2) gauge symmetry. Follow-

ing the same steps as in section 2.2, we require that all spatial derivatives in the
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Lagrangian vanish. Using the notation Aµ = (A0, Xi), i : 1, 2 we have

LCS = κTr

(
−εi0jXi∂0Xj +

2

3
i(ε0ijA0XiXj + εi0jXiA0Xj + εij0XiXjA0)

)
= κTr

(
εij(XiẊj + 2iA0XiXj)

)
,

(3.2.1)

where we used the cyclicity of the trace and wrote ε0ij = εij .

3.3 Two Matrix Model with Chern-Simons Terms

Coupling the Chern-Simons Lagrangian with the Yang-Mills two matrix model La-

grangian given in the equation (2.3.1) we have

LYMCS = Tr

(
1

2
(D0Xi)

2 +
1

4
[Xi, Xj]

2 + κεij(XiẊj + 2iA0XiXj)

)
. (3.3.1)

Let’s evaluate the variation of the action with respect to A0. We have

δSYMCS =

∫
dtTr

(
−i[Xi, D0Xj] + 2iκεijXiXj

)
. (3.3.2)

Therefore, the A0 equation of motion in the A0 = 0 gauge reads

−
[
Xi, Ẋi

]
+ 2κεijXiXj = 0 . (3.3.3)

This is the Gauss law constraint for the YMCS matrix model.

In the A0 = 0 gauge (3.3.1) becomes

LYMCS = Tr

(
1

2
(Ẋi)

2 +
1

4
[Xi, Xj]

2 + κεijXiẊj

)
. (3.3.4)

We may now express the Lagrangian using the vectors ~x1 and ~x2 introduced in the

previous chapter via the equation (2.3.2). The LYM part of the Lagrangian reads just

the same as in (2.3.4). For the LCS term we find in terms of these vectors

LCS = κTr

(
1

2
εijxαi ẋ

β
j σ

ασβ
)

= κTr

(
1

2
εijxαi ẋ

β
j (δαβ12 + iεαβγσγ)

)
= κTr

(
1

2
εij~xi · ~̇xj12

)
+ κTr

(
1

2
iεij(~xi × ~̇xj) · ~σ

)
= κεij~xi · ~̇xj

= κ(~x1 · ~̇x2 − ~x2 · ~̇x1) .

(3.3.5)
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The second term of the third line of (3.3.5) is vanishing since Tr σi = 0. The LYMCS

is then

LYMCS =
1

2
(~̇x2

1 + ~̇x2
2)− (~x1 × ~x2)2 + κ(~x1 · ~̇x2 − ~x2 · ~̇x1) . (3.3.6)

We can immediately find the conjugate momenta as

~p1 =
∂L

∂~̇x1

= ~̇x1 − κ~x2 ,

~p2 =
∂L

∂~̇x2

= ~̇x2 + κ~x1 .

(3.3.7)

Note that conjugate momenta ~p1 and ~p2 are no longer equal to the kinematical mo-

menta ~̇x1 and ~̇x2 respectively due to the presence of the Chern-Simons term which is

first order in time derivative.

The constraint equation, (3.3.3), expressed in terms of ~x1, ~x2 and their time deriva-

tives is

~x1 × ~̇x1 + ~x2 × ~̇x2 − 2κ~x1 × ~x2 = 0 . (3.3.8)

Solving for the kinematical momenta ~̇x1, ~̇x2 from (3.3.7) and inserting them in (3.3.8)

yields

~x1 × (~p1 + κ~x2) + ~x2 × (~p2 − κ~x1)− 2κ~x1 × ~x2 = 0

~x1 × ~p1 + ~x2 × ~p2 + 2κ~x1 × ~x2 − 2κ~x1 × ~x2 = 0

~L1 + ~L2 = 0 ,

(3.3.9)

where we have used ~Li = ~xi × ~pi as the standard definition of angular momentum.

This shows that the constraint equation has the same form as in (2.3.10). We will

check the direction of time derivatives of ~Li after finding the Hamiltonian in Cartesian

coordinates.

3.4 Lagrangian and Hamiltonian Mechanics with First Order Time Deriva-

tives in the Lagrangian

In order to determine the Hamiltonian corresponding to the Lagrangian (3.3.6) let us

digress a moment and inspect the structure of Lagrangians involving first order time

derivatives and the transition to the Hamiltonian dynamics in such systems.
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For a system with generalized coordinates qi and velocities q̇i, Lagrangian involving

first order time derivatives have the generic form

L =
1

2
gij q̇iq̇j + fiq̇i − V , (3.4.1)

where gij is the metric, fi is some function of the generalized coordinates i.e. fi ≡
fi(qj) and V is a potential V ≡ V (qi). Canonical momenta are evaluated as

pi =
∂L

∂q̇i
= gij q̇j + fi . (3.4.2)

In terms of pi, q̇i can be solved using the inverse metric in the form

q̇i = g−1
ij (pj − fj) ,

= gij(pj − fj) .
(3.4.3)

The Hamiltonian is found as follows

H = piq̇i − L

= pig
−1
ij (pj − fj)−

1

2
gijg

−1
ik︸ ︷︷ ︸

δjk

(pk − fk)g−1
jl (pl − fl)− fig−1

ij (pj − fj) + V

= pig
−1
ij (pj − fj)−

1

2
g−1
jl (pj − fj)(pl − fl)− fig−1

ij (pj − fj) + V

= pig
−1
ij (pj − fj)−

1

2
g−1
ij (pi − fi)(pj − fj)− fig−1

ij (pj − fj) + V

= g−1
ij (pipj − pifj −

1

2
pipj + pifj −

1

2
fifj − pifj + fifj) + V

=
1

2
g−1
ij pipj +

1

2
g−1
ij fifj − g−1

ij pifj + V ,

(3.4.4)

where we used gij = gji .

3.5 Hamiltonian Mechanics

Comparing (3.3.6) and (3.4.1) we read

gij = g−1
ij = δij ,

~qi = ~xi ,

fi = −κεijxj ,

V = (~x1 × ~x2)2 ,

(3.5.1)
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therefore the Hamiltonian is

H =
1

2
δijpipj +

1

2
δijκ

2εikxkεjlxl − δijpi(−κεjlxl) + (~x1 × ~x2)2

=
1

2
(~p2

1 + ~p2
2) +

1

2
κ2(~x2

1 + ~x2
2) + κ(~p1 · ~x2 − ~p2 · ~x1) + (~x1 × ~x2)2 .

(3.5.2)

We find that the Hamiltonian equations of motion are given as

~̇x1 =
∂H

∂~p1

= ~p1 + κ~x2 ,

~̇p1 = −∂H
∂~x1

= κ2~x1 − κ~p2 + 2~x2 × (~x1 × ~x2) ,

~̇x2 =
∂H

∂~p2

= ~p2 − κ~x1 ,

~̇p2 = −∂H
∂~x2

= κ2~x2 + κ~p1 − 2~x2 × (~x1 × ~x2) .

(3.5.3)

The time derivative of ~L1 can be found by using these equations of motion as follows

~̇L1 = ~x1 × ~̇p

= ~x1 × (κ2~x1 − κ~p2 + 2~x2 × (~x1 × ~x2))

= −κ~x1 × ~p2 + 2~x1 × (~x2 × (~x1 × ~x2)) .

(3.5.4)

The last term is the same as the one in section 2.3, it is parallel to ~L1, but the first

term does not have a definite direction. Therefore, ~̇L1 may not be parallel to ~L1. The

same situation is also valid for ~L2. Since the time derivative of ~Li and ~̇Li may not

be in the same direction, it is not possible to immediately conclude that the motion

remains confined to the x1 − x2 plane. However, we will see from our subsequent

analysis that the motion remains confined to the x1 − x2 plane.

3.6 Coordinate Transformation

Next step in our analysis is to obtain a coordinate transformation from ~x1 and ~x2 to

new variables as we did in the previous chapter in section 2.3. Compared to (2.3.15)

keeping now the zeros we may start with the 3× 2 matrix

X0 =
1√
2


r r cos(θ)

0 r sin(θ)

0 0

 . (3.6.1)
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The reason for this is that, we need to be able to rotate both columns of this matrix

by a general SO(3) rotation not just by SO(2) subgroup, since we cannot argue in

advance that motion is confined to the x1 − x2 plane. A general SO(3) rotation can

be written using Euler’s parametrization, which uses z − x − z active rotation with

the angles α, β, γ respectively and is given by[19]

R(α, β, γ) =


c(α)c(γ)− s(α)c(β)s(γ) −s(α)c(β)c(γ)− c(α)s(γ) s(α)s(β)

c(γ)s(α) + c(α)c(β)s(γ) c(α)c(β)c(γ)− s(α)s(γ) −c(α)s(β)

s(β)s(γ) s(β)c(γ) c(β)

 ,

(3.6.2)

where s and c stand for sine and cosine respectively. In order to obtain the coordinate

transformation from (~x1, ~x2), we therefore write

X =
1√
2
R(α, β, γ)


r r cos(θ)

0 r sin(θ)

0 0


 cos(φ) sin(φ)

− sin(φ) cos(φ)

 , (3.6.3)

which can be compared to the equation (2.3.16). Explicit form of the components of

the 3 × 2 matrix X are listed in the appendix A.1. The metric in these coordinate is

evaluated from gij = Tr
(
∂iX

†∂jX
)

and its components as well of those of its inverse

g−1
ij are also given in the appendix A.2.

There are six generalized coordinates (r, θ, φ, α, β, γ) and the corresponding six con-

jugate momenta given as (pr, pθ, pφ, pα, pβ, pγ). Using these generalized coordinates

and momenta and the inverse metric g−1
ij given in the appendix, we have the first term
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in the equation (3.4.4)

1

2
g−1
ij pipj =− csc2(β) cos(2γ) csc2(θ)p2

α

2r2

− csc2(β) csc2(θ)p2
α cos(2(γ + θ))

2r2

− 2 cot(β) csc(β) csc2(θ)pαpγ
r2

+
cot(β) csc(β) cos(2γ) csc2(θ)pαpγ

r2

+
cot(β) csc(β) csc2(θ)pαpγ cos(2(γ + θ))

r2

+
2 csc(β) cot(θ) csc(θ)pαpβ sin(2γ + θ)

r2

+
csc2(β) csc2(θ)p2

α

r2
+

cot2(β) csc2(θ)p2
γ

r2

−
cot2(β) cot(θ) csc(θ)p2

γ cos(2γ + θ)

r2

+
cot(θ) csc(θ)p2

β cos(2γ + θ)

r2

− 2 cot(β) cot(θ) csc(θ)pβpγ sin(2γ + θ)

r2

+
csc2(θ)p2

β

r2
− tan(θ) sec(θ)pγpφ

r2

− 2pγpθ
r2

+
sec2(θ)p2

γ

2r2
+

p2
γ

2r2

+
sec2(θ)p2

φ

2r2
+

2p2
θ

r2
+
p2
r

2
.

(3.6.4)

In order to proceed, we need to know the form of fi = −κεijxj in the new coordinates.

The function fi = fi(qj) and q̇i in the Lagrangian (3.3.6) appear as

fiq̇i ≡ κ~x1 · ~̇x2 − κ~x2 · ~̇x1 . (3.6.5)

Using the X matrix in (3.6.3) and time derivative Ẋ which is simply formed in terms

of the time derivatives of the components of X , right hand side of (3.6.5) can be

written by taking the inner products of the column vectors of X and Ẋ and can be

written in this new coordinates as

fiq̇i = −1

2
r2κ

(
2φ̇+ sin(θ)(2α̇ cos(β) + 2γ̇ + θ̇)

)
. (3.6.6)

Since fiq̇i = f1ṙ+f2θ̇+f3φ̇+f4α̇+f5β̇+f6γ̇ in the new coordinates, fi(r, θ, φ, α, β, γ),
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i : 1, ..., 6 can be readily read out from this expression as

f1 = 0 ,

f2 = −1

2
r2κ sin(θ) ,

f3 = −r2κ ,

f4 = −r2κ sin(θ) cos(β) ,

f5 = 0 ,

f6 = −r2κ sin(θ) .

(3.6.7)

This allows us to determine both the second and the third terms in the Hamiltonian.

We have for the second term

1

2
g−1
ij fifj =

1

2
r2κ2 , (3.6.8)

and for the third term
1

2
g−1
ij pifj = −pφκ . (3.6.9)

The potential term is
1

2
(~x1 × ~x2)2 =

1

4
r4 sin2(θ) , (3.6.10)

which is the same as in the case without the Chern-Simons term given in section 2.3

since the square of the cross product of vectors is a scalar and does not get affected

by any gauge rotations.

Angular momentum vector ~L for a general SO(3) rotation can be expressed in terms

of the Euler angles α, β, γ and the conjugate momenta pα, pβ and pγ as [20]

~L =


sin(α)(pγ csc(β)− pα cot(β)) + pβ cos(α)

cos(α) csc(β)(pα cos(β)− pγ) + pβ sin(α)

pα

 , (3.6.11)

whose details are given in the appendix A.3. The constraint, ~L = 0, is satisfied if

and only if pα = pβ = pγ = 0 in equation (3.6.11). Using this fact in (3.4.4), the

calculation of the Hamiltonian is significantly simplified and we find

H =
1

2
p2
r +

2

r2
p2
θ +

p2
φ

2r2 cos2(θ)
+ κpφ +

κ2r2

2
+

1

4
r4 sin2(θ) . (3.6.12)
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As noted previously, as a consequence of Chern-Simons level quantization we have

κ = k
4π

, where k is an integer. Therefore we can write (3.6.13) as

H =
1

2
p2
r +

2

r2
p2
θ +

p2
φ

2r2 cos2(θ)
+
kpφ
4π

+
k2r2

32π2
+

1

4
r4 sin2(θ) + ~r , (3.6.13)

where we have added a term ~r as in the pure Yang-Mills case since the θ-dependent

terms in the Hamiltonian does not change compared to the pure Yang-Mills theory

and therefore θ changes only adiabatically at large r. The contribution of the Chern-

Simons term to the Hamiltonian are given by the terms proportional to k. Since
∂H
∂φ

= 0, pφ remains as a constant of motion and we can concentrate on the time

evolution of the phase space variables r, θ, pr, pθ only.

Hamiltonian equations of motion are

ṙ =
∂H

∂pr
= pr ,

ṗr = −∂H
∂r

=
4p2

θ

r3
+

p2
φ

r3 cos2(θ)
− k2r

16π2
− r3 sin2(θ)− ~ ,

θ̇ =
∂H

∂pθ
=

4pθ
r2

,

ṗθ = −∂H
∂θ

= −1

2
r4 cos(θ) sin(θ)−

p2
φ tan(θ)

cos2(θ)r2
.

(3.6.14)

It is also interesting to note that the Hamiltonian can be expressed in the form

H =
1

2
p2
r +

2

r2
p2
θ +

1

2r2 cos2(θ)

(
pφ +

k

4π
r2 cos2(θ)

)2

+
1

4

(
r2 +

k2

16π2

)2

sin2(θ)− 1

4

k4

256π4
sin2(θ) + ~r .

(3.6.15)

3.7 Numerical Results and Chaos

Compared to the pure Yang-Mills matrix model Hamiltonian there is no change in

the phase space variables, they are still (r, θ, pr, pθ) while the Hamiltonian and con-

sequently the equations of motion have new contributions due to the Chern-Simons

term. We now have in addition to pφ another constant k ∈ Z which can be taken to

assume different integer values, and we probe the emerging chaotic dynamics at dif-

ferent values of pφ and k. The constants (E = 1, ~ = 0.1) and the algorithm choosing

randomly initial conditions are same as in the section 2.3.
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In the absence of the Chern-Simons term, the dynamics of the Hamiltonian (3.6.13)

becomes almost completely chaotic, as pφ → 0, while, chaos ceases to exist for

pφ ≥ 2. At pφ = 1, for instance, there is a small region in phase space filled with

quasi periodic orbits, while the rest is chaotic. Here we study how chaotic dynamics

changes for different choices of the Chern-Simons level at three different values of

pφ, which are pφ = 0, 1, 2.

The general effect of the additional terms is to reduce chaos with increasing Chern-

Simons level. At pφ = 0, we see from figure 3.4a that as |k| increases largest Lya-

punov exponent (averaged over several initial conditions) quickly approaches to zero,

indicating that the system becomes less and less chaotic as |k| increases and almost

no chaos exists for |k| > 10.

At pφ = 1, increasing the |k| values suppresses the chaos except for the values of

k = −1 to k = −4. Poincaré sections in figure 3.1 shows that the area of KAM

tori takes the larger part of the phase space for the increasing positive k values. For

negative k values in figure 3.2, the range of k that sustains chaotic dynamics is larger

but chaos eventually disappears. The same trend can be seen in figure 3.4b. Lyapunov

exponents tend to increase only slightly for k < 0 and |k| small but they start to

decrease and goes to zero at larger |k| values. In order to understand the cause of

small but interesting increase for k = −1 to k = −4 consider the following equation

E −
(
kpφ
4π

+
k2r2

32π2

)
=

1

2
p2
r +

2

r2
p2
θ +

p2
φ

2r2 cos2(θ)
+

1

4
r4 sin2(θ) + ~r . (3.7.1)

Here, we have just rearranged the equation (3.6.13) so that the right hand side of this

equation is the Hamiltonian of the pure Yang-Mills case. For −4 < k < −1 of k

values kpφ + k2r2

32π2 < 0. This has the same effect as increasing the energy of the pure

Yang-Mills case which results in an increase for the value of the Lyapunov exponents.

At pφ = 2, we do not have much chaos left in the phase space and a nonzero value of

|k| 6= 0 does not have any significant effect in this behavior as can be seen from the

plot 3.4c which gives largest Lyapunov exponents to be very small, with the maximum

values of approximately 0.03 at k = −4, and this number is not large enough to

indicate appreciable chaotic dynamics in the phase space.
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(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 3.1: Poincaré sections at pφ = 1 for positive k values

Poincaré sections in figure 3.3 are in agreement with the conclusions drawn from

the Lyapunov spectrum. Although the regions contain randomly scattered dots for

k = −1,−3,−5 as can be seen in figures 3.3c, 3.3d, 3.3e, they appear due to a

limited number of initial conditions and this does not cause an appreciable effect in

the Lyapunov spectrum.
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(a) k = −1 (b) k = −5

(c) k = −10 (d) k = −15

Figure 3.2: Poincaré sections at pφ = 1 for negative k values
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(a) k = 1 (b) k = 2

(c) k = −1 (d) k = −3

(e) k = −5 (f) k = −10

Figure 3.3: Poincaré sections at pφ = 2
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(a) pφ = 0 (b) pφ = 1

(c) pφ = 2

Figure 3.4: Lyapunov spectra at pφ = 0, pφ = 1 and pφ = 2
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CHAPTER 4

TWO MATRIX MODEL WITH A MASS TERM

In this short chapter, we examine the changes in chaotic dynamics due to a mass

deformation in the two matrix model. As we will see shortly the mass term does not

break the gauge and the global symmetries. We, therefore follow the same approach

and if necessary use results from chapter 2 to present the developments in this chapter.

4.1 Two matrix model with mass terms

Adding a mass term to the Lagrangian (2.3.1) is modified to

L =
1

2
Tr
(
(D0X1)2 + (D0X2)2 + [X1, X2]2 − µ2X2

1 − µ2X2
2

)
, (4.1.1)

where µ2 is a dimensionless parameter governing the mass deformation. Clearly,

Trµ2X2
i is invariant under both the local gauge transformations U †XiU and the

global SO(2) rigid rotations Xi → RijXj . By using equation (2.3.2), X2
i can be

expressed as

X2
i =

1

2
xαi x

β
i σ

ασβ

=
1

2
xαi x

β
i (δαβ12 + iεαβγσγ)

=
1

2
x2
i12 .

(4.1.2)

The mass term Lµ is then

Lµ = −1

2
Tr

(
µ2 1

2
~x2

112 + µ2 1

2
~x2

212

)
= −1

2
µ2(~x2

1 + ~x2
2) .

(4.1.3)
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We have expressed the Lagrangian LYM in terms of ~x1 and ~x2 in the equation (2.3.4).

Thus, the Lagrangian with the mass deformation is

L =
1

2
(~̇x1)2 +

1

2
(~̇x2)2 − (~x1 × ~x2)2 − 1

2
µ2~x2

1 −
1

2
µ2~x2

2 . (4.1.4)

This yields the Hamiltonian,

H =
1

2
~p2
i + (~x1 × ~x2)2 +

1

2
µ2~x2

1 +
1

2
µ2~x2

2

=
1

2
(~p2

i + µ2~x2
i ) + (~x1 × ~x2)2 .

(4.1.5)

Hamilton’s equations of motion are

~̇p1 := −∂H
∂~x1

= 2~x2 × (~x1 × ~x2)− µ2~x1 ,

~̇p2 := −∂H
∂~x2

= −2~x2 × (~x1 × ~x2)− µ2~x2 ,

~̇x1 :=
∂H

∂~p1

= ~p1 ,

~̇x1 :=
∂H

∂~p2

= ~p2 ,

(4.1.6)

while time derivative of the angular momentum

~̇L1 = ~̇x1 × ~p1 + ~x1 × ~̇p1

= 2~x1 × (~x2 × (~x1 × ~x2))− µ2~x1 × ~x1

= 2~x1 × (~x2 × (~x1 × ~x2)) .

(4.1.7)

Using the fact that ~L1 and ~L2 are anti parallel vectors we see that ~̇Li is in the same

direction with ~L as in the section 2.3.

Using the coordinate transformation between ~x1 and ~x2, and the new coordinates

(r, θ, φ, χ) gives simply

x2
1 + x2

2 = r2 . (4.1.8)

Therefore, the Hamiltonian in (2.3.31) is simply modified by an additive term 1
2
µ2r2

and has the form

H =
1

2
p2
r +

2

r2
p2
θ +

p2
φ

2r2 cos2(θ)
+

1

4
r4 sin2(θ) + ~r +

1

2
µ2r2 . (4.1.9)
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The Hamiltonian equations of motion are

ṙ =
∂H

∂pr
= pr ,

ṗr = −∂H
∂r

=
4

r3
p2
θ − r3 sin2(θ) +

p2
φ

r3 cos2(θ)
− ~− µ2r ,

θ̇ =
∂H

∂pθ
=

4

r2
pθ ,

ṗθ = −∂H
∂θ

= −
p2
φ tan(θ)

r2 cos2(θ)
− 1

2
r4 sin(θ) cos(θ) .

(4.1.10)

4.1.1 Numerical Results and Chaos

Effect of the mass term on the chaotic behavior of this model will be examined

through studying the Poincaré sections and the Lyapunov spectrum. Initial condi-

tions are chosen as in section 2.3 which are θ = 0, pr = 0 and r values are chosen

randomly as initially making pθ real for a given energy,

pθ =

√
r2

2

(
E −

p2
φ

2r2
− ~r − 1

2
µ2r2

)
. (4.1.11)

Energy and the constant resembling ~ are again taken to be 1 and 0.1, respectively as

in section 2.3. We take pφ fixed, at the value pφ = 1, and vary the mass parameter µ.

Figure 4.1 (a,b,c,d) show the Poincaré sections at µ = 0.15, 0.30, 0.45, 0.60 respec-

tively. In figure 4.1a, there are KAM tori around pθ = 0.8 for pr ∈ [0, 0.2]. In figure

2.2a, we have the corresponding situation without the mass term and KAM tori were

also seen around the some region in the phase space. Effect of the mass term is to

narrow down this region in the phase space. Since the areas of the KAM tori in fig-

ures 2.2a and 4.1a are approximately same and the region outside of the KAM tori

is chaotic, smaller Poincaré section means smaller chaotic region in this comparison.

This fact implies that figure 4.1a is less chaotic than figure 2.2a. Increasing µ to 0.30

in figure 4.1b does not lead to a significant difference in the pattern, but chaotic re-

gion in phase space tends to become gradually smaller. In figure 4.1c, there are more

KAM tori at various coordinates of the phase space and chaotic regions occupy less

area in Poincaré section. At µ = 0.60, KAM tori spread almost all over the phase

space, thus no chaos remains in the phase space.
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(a) µ = 0.15 (b) µ = 0.30

(c) µ = 0.45 (d) µ = 0.60

Figure 4.1: Poincaré sections at pφ = 1

Lyapunov spectrum in figure 4.2 also shows that increasing µ suppresses chaos cor-

roborating with the results inferred from the Poincaré sections. The system with mass

term becomes less chaotic than the one without the mass term as the value of the mass

parameter is increased. This can be seen by the fact that the largest Lyapunov expo-

nent at pφ = 1 in figure 2.3 is larger than the one at say µ = 0.1 in figure 4.2.
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Figure 4.2: Lyapunov spectrum at pφ = 1
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CHAPTER 5

BFSS MATRIX MODEL WITH MASS DEFORMATIONS

In this chapter, we consider a double mass deformation of the BFSS matrix model

which breaks the global SO(9) symmetry first to SO(5) × SO(4) and subsequently

down to the product group SO(5) × SO(4) × Z2. The second step here is a conse-

quence of a particular choice for an ansatz configuration composed of fuzzy four and

two spheres with collective time dependence, which allows us to specialize to effec-

tive models with 4-dimensional phase space and gives us access to study the emerging

chaotic dynamics in a simplified setting.

5.1 Mass Deformed Action

Let us consider the double mass deformation of the BFSS model, whose Lagrangian

reads

S =
1

g2

∫
dtTr

(
1

2
(D0Xi)

2 +
1

4
[Xi, Xj]

2 − 1

2
µ2

1(Xa)
2 − 1

2
µ2

2(Xb)
2

)
, (5.1.1)

where i, j = 1, ..., 9; a = 1, ..., 5 and b = 6, ..., 9. µ1 and µ2 are mass deformation

parameters. The global SO(9) gauge symmetry is broken to SO(5) × SO(4) by

the last two terms in the action. We have found the equation of motion of BFSS

matrix model in section 2.1 as explicitly given in (2.1.23). Contribution of the mass
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deformations to the equation of motion can be found as follows

Lµ1(Xa) −→Lµ1(Xa + δXa)

Tr

(
−1

2
µ2

1(Xa)
2

)
−→Tr

(
−1

2
µ2

1(Xa + δXa)
2

)
= Tr

(
−1

2
µ2

1(X2
a + 2XaδXa + (δXa)

2)

)
=Lµ1(Xa)− µ2

1 Tr(δXaXa) .

(5.1.2)

In like fashion, the variation of the second mass deformation is simply

Lµ2(Xb) = Tr

(
−1

2
µ2

2(Xb)
2

)
−→ Lµ2(Xb)− µ2

2 Tr(δXbXb) . (5.1.3)

In the A0 = 0 gauge, the equations of motion with respect to Xa and Xb are therefore

Ẍa + [[Xa, Xj], Xj] + µ2
1Xa = 0 ,

Ẍb + [[Xb, Xj], Xj] + µ2
2Xb = 0 .

(5.1.4)

Equation (5.1.4) form a rather complicated set of coupled non-linear differential equa-

tions, which cannot be easily solved. Further, the system is subject to the Gauss law

constraint
[
Xi, Ẋi

]
= 0 due to the A0 equation of motion.

In section 5.4 we propose an ansatz configuration that is formed from matrices con-

figuring fuzzy 4-spheres and fuzzy 2-spheres at several increasing matrix levels and

with collective time dependence. To motivate these developments we discuss fuzzy

2-sphere and 4-sphere in the next two sections.

5.2 Fuzzy Two Sphere

Fuzzy S2 [21] can be obtained by the quantization of the map S3 → S2. Consider

the two dimensional complex plane C2 without the origin, C2 \ {0}. The coordinates

z = (α1 + iβ1, α2 + iβ2) can be written as ξ = z
|z| , then |ξ|2 is normalized to 1. In

this way, we see that ξ can be used to describe the 3-sphere as

|ξ|2 = α2
1 + β2

1 + α2
2 + β2

2 = 1 . (5.2.1)

Consider the projection map xi(ξ) = ξ†σiξ , which is invariant under the U(1) trans-

formations ξ → ξeiθ. Clearly xi forms the components of a 3-vector ~x(ξ). Let us
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compute the norm of ~x(ξ). We have

xixi = (ξ†a(σα)abξb)(ξ
†
c(σα)cdξd)

= ξ†aξbξ
†
cξd(σα)ab(σα)cd

= ξ†aξbξ
†
cξd(δabδcd − 2εacεbd)

= ξ†aξbξ
†
cξd(−δabδcd + 2δadδbc)

= −1 + 2

= 1 ,

(5.2.2)

where α = 1, ..., 3 and a, b, c, d = 1, 2. Then xi can be understood as the coordinates

of S2 embedded in R3. This construction is called the Hopf fibration U(1) → S3 →
S2.

Quantization of S3 gives the fuzzy S3. We can obtain fuzzy S3 by replacing zi and

z∗i by annihilation operators ai and creation operators a†i , which satisfy the following

commutation relation [
aα, a

†
β

]
= δαβ . (5.2.3)

The number operator N̂ is defined as

N̂ = a†αaα . (5.2.4)

Using N̂ , ξα can be formally quantized as

ξ̂α =
1√
N̂
aα , ξ̂α

†
=

1√
N̂
a†α , (5.2.5)

for not taking the zero eigenvalue i.e. N = 0. This condition on the number operator

removes the vacuum from the Hilbert space. However, aα can create vacuum from

any |n〉 state. This complication does not arise for the quantization of the 2-sphere.

We can quantize fuzzy S2 by quantizing the S3 → S2 map as follows

x̂i = ξ̂†σiξ̂

=
1√
N̂
a†σia

1√
N̂

=
1

N̂
a†σia .

(5.2.6)

The last step follows from the fact that
[
a†iaj,

1√
N

]
= 0. Since

[
x̂i, N̂

]
= 0, x̂i can

be restricted to act on the (n + 1)-dimensional subspace of the Fock space spanned
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by the vectors

|n1, n2〉 =
(a†1)n1

√
n1!

(a†2)n2

√
n2!
|0, 0〉 , (5.2.7)

where n1 +n2 = n. Then, x̂i are linear operators on this finite-dimensional space and

act on it as (n+ 1)× (n+ 1) Hermitian matrices.

SU(2) generators Li in terms of Schwinger construction [22] are given as

Li =
1

2
a†σia (5.2.8)

and satisfy the commutation relations

[Li, Lj] = iεijkLk . (5.2.9)

The coordinates of fuzzy S2 can therefore be expressed in the form

x̂i =
2

n
Li , (5.2.10)

where 2
n

is the noncommutative scaling factor. The commutation relation of the coor-

dinates of fuzzy S2 is

[x̂i, x̂j] =
2

n
iεijkx̂k . (5.2.11)

When n goes to infinity, this commutator vanishes identically and the standard S2 is

recovered. The Casimir operator for SU(2) is L2
i and has the eigenvalues n

2

(
n
2

+ 1
)

on the spin j = n
2

representation of SU(2). We therefore have

L2
i =

n

2
(
n

2
+ 1)1n+1 (5.2.12)

on any state of a SU(2) irreducible representations with spin J = n
2
. By using this

equation, radius of fuzzy S2 is found as

x2
i =

(
2

n

)2
n

2

(n
2

+ 1
)
1n+1

=

(
1 +

2

n

)
1n+1 .

(5.2.13)

5.3 Fuzzy Four Sphere

The generators of the group SO(5) in the fundamental spinor representation with

Dynkin labels (0, 1) are

Gab = − i
4

[γa, γb] , (5.3.1)
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where a, b = 1, ..., 5, and γa are gamma matrices acting on C
4 and associated to

SO(5) group. They are defined by the anti-commutation relations {γa, γb} = 2δab

and we pick them in the following basis

γ1 = σ1 ⊗ σ1 =

 0 σ1

σ1 0

 ,

γ2 = σ1 ⊗ σ2 =

 0 σ2

σ2 0

 ,

γ3 = −σ1 ⊗ σ3 = −

 0 σ3

σ3 0

 ,

γ4 = −σ2 ⊗ 12 = i

 0 12

−12 0

 ,

γ5 = γ1γ2γ3γ4 = −σ3 ⊗ 12 =

−12 0

0 12

 ,

(5.3.2)

where σ1, σ2, σ3 are the Pauli matrices.

SO(5) commutation relations are given in the standard form in 4-dimensional spinor

representation

[Gab, Gcd] = i(δacGbd + δbdGac − δadGbc − δbcGad) . (5.3.3)

Let us form the Hilbert spaceHn as

Hn = (C4 ⊗ ...⊗ C4)sym . (5.3.4)

This is the n-fold symmetric tensor product of C4. Hn is the carrier space of the (0, n)

irreducible representations of SO(5) and has the dimension

N = dim(0, n) =
1

6
(n+ 1)(n+ 2)(n+ 3) . (5.3.5)

Fuzzy S4 [23, 24] is constructed such that its "coordinates" are matrices, Xa acting

onHn. Thus, we can define Xa as follows

Xa = (γa ⊗ 14 ⊗ ...⊗ 14 + ...+ 14 ⊗ ...⊗ 14 ⊗ γa) . (5.3.6)

Xa are N ×N Hermitian matrices with N given in (5.3.5), satisfying

XaXa = n(n+ 4)1n , (5.3.7)

εabcdeXaXbXcXd = 8(n+ 2)Xe , (5.3.8)
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where the equation (5.3.7) gives the radius of fuzzy S4 as

rn =
√
n(n+ 4) . (5.3.9)

The commutation relation of fuzzy S4 is given as

[Xa, Xb] = 4iMab , (5.3.10)

where Mab are generators of SO(5) in the (0, n) irreducible representation. They

satisfy the SO(5) algebra

[Mab,Mcd] = 4i(δacMbd + δbdMac − δadMbc − δbcMad) . (5.3.11)

The commutation relation of Mab and Xc is

[Mab, Xc] = 4i(δacXb − δbcXa) , (5.3.12)

which shows that Xa transform as vectors of SO(5).

5.4 A Configuration with Collective Time Dependence and Fuzzy 4 and Fuzzy

2 Spheres

We use fuzzy S4 and fuzzy S2 configurations to build an ansatz for the matrices Xi

(i : 1...9) with collective time dependence. In particular, we take

Xa = r(t)X̃a , a = 1, ..., 5 ,

Xb = y(t)X̃b , b = 6, ..., 8 ,

X9 = 0 ,

(5.4.1)

where r(t) and y(t) are time dependent real functions. Here X̃a are fuzzy S4 matrices

which are given in equation (5.3.6) and their dimension is given in equation (5.3.5).

X̃b are fuzzy S2 matrices which are taken as spin-j irreducible representations of

SU(2) with the dimension 2j + 1. These matrices must have the same dimension

N ×N . Thus, we have the following consistency condition

2j + 1 =
1

6
(n+ 1)(n+ 2)(n+ 3)

j =
1

12
n(n2 + 6n+ 11) ,

(5.4.2)
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for the levels (i.e. matrix sizes) of fuzzy S4 and fuzzy S2. Substituting the ansatz

(5.4.1) into the action (5.1.1) and performing the trace operation we find the corre-

sponding reduced effective action. The corresponding Lagrangians are

Ln = c1ṙ
2 + c2ẏ

2 − 8c1r
4 − c2y

4 − c1µ
2
1r

2 − c2µ
2
2y

2 − c3r
2y2 . (5.4.3)

Here we have used normalized trace TrN = 1
N

Tr. The values of the coefficients

c1, c2, c3 appearing in (5.4.3) are given in the table 5.1 at different values of n from

n = 1 to n = 6. In other words, we have obtained a family of effective actions by

using the ansatz (5.4.1) at the matrix levels N = 4, 10, 20, 35, 56, 84.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

c1 2.5 6 10.5 16 22.5 30

c2 1.88 12.38 49.88 153 391.88 881.88

c3 21 207.66 1080.38 3970.31 11691.15 29493.06

Table 5.1

Corresponding Hamiltonian is

H =
p2
r

4c1

+
p2
y

4c2

+ 8c1r
4 + c2y

4 + c1µ
2
1r

2 + c2µ
2
2y

2 + c3r
2y2 + 2c1 . (5.4.4)

The constant term 2c1 is included here to ensure that the minimum energy is zero.

Stability analysis given in the next section will reveal how the term 2c1 comes about.

The equations of motion are

ṙ =
pr
2c1

,

ẏ =
py
2c2

,

ṗr = −32c1r
3 − 2c1µ

2
1r − 2c3ry

2 ,

ṗy = −4c2y
3 − 2c2µ

2
2y − 2c3r

2y ,

(5.4.5)

which describe a non-linear system of coupled differential equations. µ1 and µ2 are

essentially free parameters. To probe the chaotic dynamics, we consider the possibil-

ity that mass parameters could also be tachyonic, in particular we focus on the choice

µ2
1 = −8 and µ2

2 = 1. Other choices can be made and can have non-trivial effects on

the chaotic dynamics, but several essential features appear to be the same.
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5.5 Stability Analysis

The fixed points of the system described by Hamiltonian (5.4.4) are found by equating

the Hamiltonian equations of motion (5.4.5) to zero:

pr
2c1

= 0 ,

py
2c2

= 0 ,

−32c1r
3 − 2c1µ

2
1r − 2c3ry

2 = 0 ,

−4c2y
3 − 2c2µ

2
2y − 2c3r

2y = 0 .

(5.5.1)

First two of the equations are trivially solved by pr = py = 0. Solutions of the

remaining two algebraic equations for r and y are found using Mathematica to be

(r, y) =

{(
0, 0
)
,
(
± 1√

2
, 0
)
,
(

0,± i√
2

)
,
(
± f1,±f2

)
,
(
± f1,∓f2

)}
, (5.5.2)

where

f1 =

√
c2(16c1 + c3)

32c1c2 − c2
3

, f2 = 2i

√
2c1(2c2 + c3)

32c1c2 − c2
3

. (5.5.3)

For the values of c1, c2, c3 given in table 5.1 for n = 1, ..., 6, f1 and f2 in (5.5.3) form

complex sets, therefore the only real solutions for r and y giving the fixed points are

(r, y, pr, py) =

{(
0, 0, 0, 0

)
,
( 1√

2
, 0, 0, 0

)
,
(
− 1√

2
, 0, 0, 0

)}
. (5.5.4)

The energies of the fixed points can be found by substituting these solutions into the

Hamiltonian

EF
1 = EF (0, 0, 0, 0) = 2c1 ,

EF
2 = EF

(
1√
2
, 0, 0, 0

)
= 0 ,

EF
3 = EF

(
− 1√

2
, 0, 0, 0

)
= 0 .

(5.5.5)

These energies are indeed the values of the potential at the critical points. We see that

without the addition of the last term 2c1 to the Hamiltonian in (5.4.4) we would have

found EF
2 = EF

3 = −2c1.

In order to study the stability of the system at these critical points, we may proceed

as follows[15]. First let us label the phase space coordinates as (x1, x2, x3, x4) =

(r, y, pr, py) for notational ease. Correspondingly left hand side of all equations in
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(5.4.5) are denoted as (ẋ1, ẋ2, ẋ3, ẋ4). From the derivatives of ẋα (α : 1, ..., 4) with

respect to xβ we may form the Jacobian matrix Jαβ = ∂ẋα
∂xβ

and it reads

J(r, y) =


0 0 1

2c1
0

0 0 0 1
2c2

J31 −4c3ry 0 0

−4c3ry J42 0 0

 , (5.5.6)

where

J31 = −96c1r
2 − 2c3y

2 + 16c1 ,

J42 = −12c2y
2 − 2c3r

2 − 2c2 .
(5.5.7)

Eigenvalues of the Jacobian Jαβ are used to determine the stability of the correspond-

ing fixed points. According to the results given in [15, 25] we have,

i) If at least one real positive eigenvalue exists, the corresponding fixed point is

unstable.

ii) If all real eigenvalues are negative, the corresponding fixed point is stable.

iii) If there are no real eigenvalues, the corresponding fixed point may be stable or

unstable depending on the higher order terms, and this is the borderline case.

The eigenvalues of Jαβ for the fixed points in (5.5.4) are

λ1 = λ(0, 0, 0, 0) = (−i, i,−2
√

2, 2
√

2) ,

λ2 = λ

(
1√
2
, 0, 0, 0

)
=

(
−4i, 4i,

−i
√

2c2 + c3√
2c2

,
i
√

2c2 + c3√
2c2

)
,

λ3 = λ

(
− 1√

2
, 0, 0, 0

)
= λ2 .

(5.5.8)

Therefore, we conclude that (0, 0, 0, 0) is an unstable fixed point while
(
± 1√

2
, 0, 0, 0

)
are borderline cases for deciding on the issue of stability as all the eigenvalues of Jαβ

are purely imaginary. Higher order analysis is required to identify the stability at

these points. Here, we are not going to pursue it further as we can extract sufficiently

illuminating results regarding the chaotic dynamics already at this level of the analy-

sis.

55



5.6 Numerical Results and Chaos

We pick the initial conditions as follows. We initially take y = 0 . Evaluating the

Hamiltonian at this point gives

H
∣∣∣
y=0

=
p2
r

4c1︸︷︷︸
k1

+
p2
y

4c2︸︷︷︸
k2

+ 8c1r
4 − 8c1r

2 + 2c1︸ ︷︷ ︸
k3

, (5.6.1)

where we divide the Hamiltonian into three parts. We pick three random numbers

giving the energy as E = k1 + k2 + k3. From these random numbers, we obtain pr

and py as

pr =
√

4c1k1 , py =
√

4c2k2 . (5.6.2)

Consequently, r is found as

r =

±
1 + 2

√
k3
8c1

2


1
2

,±

1− 2
√

k3
8c1

2


1
2

 . (5.6.3)

We choose to work with the upper sign in (5.6.3). Then we have

r1 =

1 + 2
√

k3
8c1

2


1
2

, r2 =

1− 2
√

k3
8c1

2


1
2

, (5.6.4)

where r1 is always real and r2 is either real or imaginary. When r2 is imaginary, we

take r = r1. On the other hand, when both r1, r2 are real, we randomly choose one of

them with equal probability. In this way, we choose all initial conditions as real and

positive numbers.

5.6.1 Poincaré Sections

In figure 5.1 we have plotted the Poincaré sections on pr − r plane at y = 0. The

left hand side column of the given plots i.e. figure 5.1 (a,c,e,g,i,k) show the Poincaré

sections at the energy 2c1 of the unstable critical point (0, 0, 0, 0) for n = 1, 2, ..., 6,

these energies are given respectively as E = 5, 12, 21, 32, 45, 60. We observe from

these Poincaré sections that the phase space is essentially filled by quasi periodic or-

bits and no chaotic dynamics appears. From the plots given in the right hand side i.e.
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figure 5.1 (b,d,f,h,j,l) which are at energies E = 6, 15, 22, 34, 47, 63 at n = 1, 2, ..., 6

respectively, clearly shows the transition in the system to significantly chaotic behav-

ior due to significant number of randomly spread points covering some or all of the

Poincaré sections, although there are still some KAM tori present. Plotted Poincaré

sections are due to 25 different initial condition sets. The reason of the plots not being

symmetric with respect to pr axis is due to the fact that we initially take only positive

initial conditions, and hence the motion always starts in the positive r, pr plane.

5.6.2 Lyapunov Spectrum

We also determined the Lyapunov spectrum of the system at n = 1, ..., 6 at the re-

spective fixed point energies and at energies slightly larger than these to probe the

transition of the system from non-chaotic to chaotic behavior. In figure 5.2 (a-l) time

series of the Lyapunov exponents are given. Each time series plot is the result of av-

eraging of the Lyapunov exponents over 40 randomly chosen initial conditions. The

plots given in the left hand side i.e. figure 5.2 (a,c,e,g,i,k) are the Lyapunov exponents

at the fixed point energies 2c1. We see that, all the Lyapunov exponents approach to

zero value indicating that the system is not chaotic at the fixed point energy. The

plots given in the right hand side of figure 5.2 (b,d,f,h,j,l) show that there is a positive

Lyapunov exponent which is a definitive indicator of presence of chaotic dynamics.

We also observe that the sum of the Lyapunov exponents add up to zero as is expected

from a Hamiltonian system.

5.6.3 Largest Lyapunov Exponents versus Energy

In order to understand the structure of the chaotic dynamics in these systems, we have

performed a numerical study to reveal how the largest Lyapunov exponent responds

to increase in the energy given in figure 5.3.

We find that the response of the largest Lyapunov exponent above the critical value of

the energy (i.e. above the critical energies for which they become non-zero) appears

to be changing logarithmically with energy except for n = 1. The latter is a special

case in which the dynamics is chaotic only for a particular range of energies.
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We find that the functional form

λn(E) = an log(E) + bn (5.6.5)

fits very well with the numerical results with the coefficients provided in the table

below.

n an bn

2 0.3448 −0.8369

3 0.3517 −0.7926

4 0.3716 −0.8183

5 0.5557 −2.197

6 0.5826 −2.47

Table 5.2

We see from table 5.2 that for n = 2, 3, 4 there are only slight variations in the values

of an and bn, indicating that the largest Lyapunov exponents in these models at the

levels show essentially the same universal response: to the increasing. The same

conclusions can be made for n = 5, 6. However, we cannot immediately infer if and

how this pattern could alter with increasing n, although it seems reasonable to think

that a similar logarithmic dependence of the largest Lyapunov exponents on energy

could be expected.
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(a) n = 1, E = 5 (b) n = 1, E = 6

(c) n = 2, E = 12 (d) n = 2, E = 15

(e) n = 3, E = 21 (f) n = 3, E = 22

Figure 5.1: Poincarè sections for n = 1, 2, 3
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(g) n = 4, E = 32 (h) n = 4, E = 34

(i) n = 5, E = 45 (j) n = 5, E = 47

(k) n = 6, E = 60 (l) n = 6, E = 63

Figure 5.1: Poincarè sections for n = 4, 5, 6
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(a) n = 1, E = 5 (b) n = 1, E = 6

(c) n = 2, E = 12 (d) n = 2, E = 15

(e) n = 3, E = 21 (f) n = 3, E = 22

Figure 5.2: Lyapunov exponents vs. time for n = 1, 2, 3
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(g) n = 4, E = 32 (h) n = 4, E = 34

(i) n = 5, E = 45 (j) n = 5, E = 47

(k) n = 6, E = 60 (l) n = 6, E = 63

Figure 5.2: Lyapunov exponents vs. time for n = 4, 5, 6
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

(e) n = 5 (f) n = 6

Figure 5.3: Mean largest Lyapunov exponents for different energy values
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CHAPTER 6

CONCLUSION

In this thesis we have presented the results of two original research projects. The

main theme of the works have been the exploration of chaotic dynamics emerging

from matrix gauge theories. We first gave a review of the bosonic part of the BFSS

matrix model and a related two matrix model in chapter 2. For the latter, we have re-

produced numerical analysis given in [8] using our own code and revealed the chaotic

dynamics. In particular, we have demonstrated and verified how a conserved compo-

nent of angular momentum, pφ, impact the chaotic dynamics, and how the system

ceases to transit from chaos to no-chaos as the value of pφ is modified as originally

discussed in [8].

In chapter 3 we have focused our attention on the Yang-Mills Chern-Simons matrix

model with two matrices which is a variant of the two matrix model reviewed in

chapter 2, supplemented by the Chern-Simons term. The latter is first order in time

derivatives and we presented a careful and detailed analysis of the formulation of this

model. In this model too pφ is conserved. Nevertheless, there is another parameter

in the model, namely the Chern-Simons coupling or the Chern-Simons level which

have quantized for non-abelian Chern-Simons theories. For a set of values of pφ we

analyzed how the Chern-Simons level k ∈ Z affects the chaos. From the Poincaré

sections and Lyapunov spectrum we have found that for the completely chaotic case

of pφ = 0 without the Chern-Simons term, increasing the value of |k| results in driving

the system to be less chaotic. We have seen from the largest Lyapunov exponents in

figure 3.4a that the chaos is sustained quite well in the range |k| ≤ 10, while the

system transits to non-chaotic phase for |k| ≥ 10 essentially. At pφ = 1, chaotic

dynamics of the model is still sustained at the range −6 < k < 2 of values of k as
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can be seen from the figure 3.4b. In fact, we see that there is even an increase in

chaos for −4 ≤ k ≤ −1 which is seen from figure 3.4b, and also figure 3.4c. The

reason for this new effect can already be understood from (3.7.1), which tells us that

for −4 ≤ k ≤ −1 increasing |k| amounts to increasing the energy of the two matrix

model without the Chern-Simons term, leading to larger positive Lyapunov exponents

as an indicator of more chaos.

Finally, at pφ = 2, we see that the system behaves in an almost non-chaotic manner

regardless of the value of k, and even more so with increasing values of |k|. This is

to be expected as the pure Yang-Mills model also ceases to be chaotic essentially for

pφ > 2 and the same profile is sustained for the model with the Chern-Simons term

too.

We have examined the effects of mass term on the structure of two matrix model in

chapter 4. The Poincaré sections and Lyapunov spectrum have demonstrated the fact

that increase of the mass term suppresses the chaos.

Chapter 5 has devoted to the study of a double mass deformation of the BFSS model

configurations with collective time dependence to obtain a family of effective ac-

tions in this model. After performing an analysis of the fixed points and their sta-

bility for the corresponding effective Hamiltonians we have directed our studies to

explore the transition to chaos once the system exceeds the energy of the unstable

fixed point. Poincaré sections and Lyapunov spectrum are obtained at fuzzy sphere

levels n = 1, ..., 6 and reveals the transition to chaos in these systems after the fixed

point energy is exceeded. Finally, we have shown that largest Lyapunov exponents

vary logarithmically with the energy of the system.
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APPENDIX A

CALCULATIONS ON CHERN-SIMONS THEORY

A.1 X Matrix

The result of the matrix multiplication in (3.6.3) is

X =


X11 X12

X21 X22

X31 X32

 , (A.1.1)

where the entries are

X11 =− r sin(α) cos(β) sin(γ) cos(θ) sin(φ)√
2

− r sin(α) cos(β) cos(γ) sin(θ) sin(φ)√
2

− r sin(α) cos(β) sin(γ) cos(φ)√
2

+
r cos(α) cos(γ) cos(θ) sin(φ)√

2

− r cos(α) sin(γ) sin(θ) sin(φ)√
2

+
r cos(α) cos(γ) cos(φ)√

2
,

X21 =
r cos(α) cos(β) sin(γ) cos(θ) sin(φ)√

2
+
r cos(α) cos(β) cos(γ) sin(θ) sin(φ)√

2

+
r cos(α) cos(β) sin(γ) cos(φ)√

2
− r sin(α) sin(γ) sin(θ) sin(φ)√

2
(A.1.2)

+
r sin(α) cos(γ) cos(θ) sin(φ)√

2
+
r sin(α) cos(γ) cos(φ)√

2
,

X31 =
r sin(β) sin(γ) cos(θ) sin(φ)√

2
+
r sin(β) cos(γ) sin(θ) sin(φ)√

2

+
r sin(β) sin(γ) cos(φ)√

2
,
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X12 =− r sin(α) cos(β) sin(γ) cos(θ) cos(φ)√
2

− r sin(α) cos(β) cos(γ) sin(θ) cos(φ)√
2

+
r sin(α) cos(β) sin(γ) sin(φ)√

2
+
r cos(α) cos(γ) cos(θ) cos(φ)√

2

− r cos(α) sin(γ) sin(θ) cos(φ)√
2

− r cos(α) cos(γ) sin(φ)√
2

,

X22 =
r cos(α) cos(β) sin(γ) cos(θ) cos(φ)√

2
+
r cos(α) cos(β) cos(γ) sin(θ) cos(φ)√

2

− r cos(α) cos(β) sin(γ) sin(φ)√
2

+
r sin(α) cos(γ) cos(θ) cos(φ)√

2

− r sin(α) sin(γ) sin(θ) cos(φ)√
2

− r sin(α) cos(γ) sin(φ)√
2

,

X32 =
r sin(β) sin(γ) cos(θ) cos(φ)√

2
+
r sin(β) cos(γ) sin(θ) cos(φ)√

2

− r sin(β) sin(γ) sin(φ)√
2

.

The first column of this matrix is ~x1 and the second column is ~x2. We also use this

matrix for the evaluation of the metric.

A.2 Metric

The metric of the two matrix model with Chern-Simons terms is more general than

the two matrix model metric since we have used the full Euler angles and additional

parameters appear. We have used this metric in the coordinate transformation for the

(r, θ, φ, α, β, γ) coordinates. The metric is found by the equation gij = Tr
(
∂iX

†∂jX
)

as follows

gij =



1 0 0 0 0 0

0 r2

2
1
2
r2 sin(θ) 1

2
r2 cos(β) 0 r2

2

0 1
2
r2 sin(θ) r2 r2 cos(β) sin(θ) 0 r2 sin(θ)

0 1
2
r2 cos(β) g34 g44 g45 r2 cos(β)

0 0 0 g54 g55 0

0 r2

2
r2 sin(θ) r2 cos(β) 0 r2


, (A.2.1)

where
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g34 =r2 cos(β) sin(θ) ,

g44 =− 1

8
r2 cos(2β) cos(2(γ + θ))− 1

16
r2 cos(2(β − γ))

− 1

16
r2 cos(2(β + γ)) +

1

4
r2 cos(2β)

+
1

4
r2 cos(θ) cos(2γ + θ) +

3r2

4
,

g54 =− 1

2
r2 sin(β) cos(θ) sin(2γ + θ) ,

g45 =− 1

2
r2 sin(β) cos(θ) sin(2γ + θ) ,

g55 =− 1

4
r2 cos(2(γ + θ))− 1

4
r2 cos(2γ) +

r2

2
.

(A.2.2)

The inverse metric g−1
ij = gij is

1 0 0 0 0 0

0 4
r2

0 0 0 − 2
r2

0 0 sec2(θ)
r2

0 0 − sec(θ) tan(θ)
r2

0 0 0 g44 g45 g46

0 0 0 g54 g55 g56

0 − 2
r2
− sec(θ) tan(θ)

r2
g64 g65 g66


, (A.2.3)

where

g44 = −(cos(2γ) + cos(2(γ + θ))− 2) csc2(β) csc2(θ)

r2
,

g45 =
2 cot(θ) csc(β) csc(θ) sin(2γ + θ)

r2
,

g46 =
(cos(2γ) + cos(2(γ + θ))− 2) cot(β) csc(β) csc2(θ)

r2
,

g54 =
2 cot(θ) csc(β) csc(θ) sin(2γ + θ)

r2
,

g55 =
(cos(2γ) + cos(2(γ + θ)) + 2) csc2(θ)

r2
,

g56 = −2 cot(β) cot(θ) csc(θ) sin(2γ + θ)

r2
,

g64 =
(cos(2γ) + cos(2(γ + θ))− 2) cot(β) csc(β) csc2(θ)

r2
,

g65 = −2 cot(β) cot(θ) csc(θ) sin(2γ + θ)

r2
,

g66 =
−(cos(2γ) + cos(2(γ + θ))− 2) cot2(β) csc2(θ) + sec2(θ) + 1

r2
.

(A.2.4)
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A.3 Angular Momentum Matrix for the Euler Rotation

In general angular velocities can be expressed in terms of Euler angles and their time

derivatives as [20]

w1 = γ̇ sin(α) sin(β) + β̇ cos(α) ,

w2 = β̇ sin(α)− γ̇ cos(α) sin(β) ,

w3 = α̇ + γ̇ cos(β) .

(A.3.1)

The kinetic energy for rigid body motion is

T =
1

2
Iiw

2
i

=
1

2
(I1w

2
1 + I2w

2
2 + I3w

2
3)

=I1(γ̇2 sin2(α) sin2(β) + 2β̇γ̇ sin(α) cos(α) sin(β) + β̇2 cos2(α))

+ I2(γ̇2 cos2(α) sin2(β)− 2β̇γ̇ sin(α) cos(α) sin(β) + β̇2 sin2(α))

+ I3(2α̇γ̇ cos(β) + α̇2 + γ̇2 cos2(β)) ,

(A.3.2)

where Ii are the moment of inertia with respect to the Euler angles. By using pα =

∂T
∂α̇
, pβ = ∂T

∂β̇
, pγ = ∂T

∂γ̇
we have

pα =I3 (α̇ + γ̇ cos(β)) ,

pβ =
1

2

(
2I1 cos(α)

(
γ̇ sin(α) sin(β) + β̇ cos(α)

)
+2I2 sin(α)

(
β̇ sin(α)− γ̇ cos(α) sin(β)

))
,

pγ =
1

2

(
2I1 sin(α) sin(β)

(
γ̇ sin(α) sin(β) + β̇ cos(α)

)
−2I2 cos(α) sin(β)

(
β̇ sin(α)− γ̇ cos(α) sin(β)

)
+2I3 cos(β) (α̇ + γ̇ cos(β))) .

(A.3.3)

Equation (A.3.3) can be written in matrix form as


pα

pβ

pγ

 =


0 I3 I3 cos(β)

0 A22 A23

I3 cos(β) A32 A33



α̇

β̇

γ̇

 (A.3.4)
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where

A22 = I1 cos2(α) + I2 sin2(α) ,

A23 = I1 cos(α) sin(α) sin(β)− I2 cos(α) sin(α) sin(β) ,

A32 = I1 cos(α) sin(α) sin(β)− I2 cos(α) sin(α) sin(β) ,

A33 = I3 cos2(β) + I2 cos2(α) sin2(β) + I1 sin2(α) sin2(β) .

(A.3.5)

We write (A.3.4) as P = A·Θ̇ for notational ease. The column matrix (α̇, β̇, γ̇)T = Θ̇

can be obtained from the equation Θ̇ = A−1 · P . Substituting α̇, β̇, γ̇ coming from

this equation into (A.3.1) yields w1, w2, w3 in terms of pα, pβ, pγ , and we obtain the

angular momentum Li = ∂T
∂wi

= Iiwi as follows

L1 = sin(α)(pγ csc(β)− pα cot(β)) + pβ cos(α) ,

L2 = cos(α) csc(β)(pα cos(β)− pγ) + pβ sin(α) ,

L3 =pα ,

(A.3.6)

or in the matrix form

~L =


sin(α)(pγ csc(β)− pα cot(β)) + pβ cos(α)

cos(α) csc(β)(pα cos(β)− pγ) + pβ sin(α)

pα

 . (A.3.7)
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APPENDIX B

METHODS OF EXAMINING CHAOS

B.1 Poincaré Sections

N dimensional phase space can be equivalently reduced toN−1 dimensional surface

by taking the intersection of the flow in the phase space and a surface of section, which

is called as Poincaré section[9, 15, 16, 17]. The flow of the phase space is seen as

dots in the Poincaré section. The dynamics of the system can be examined by the

pattern of these dots. In a periodic motion, the flow of the phase space intersects the

surface at the same points after a while. Different initial conditions change the place

of these points. Each flow for different initial conditions can be projected onto the

same surface of section. In this way, Poincaré sections yield more comprehensive

analysis of the dynamics. For each different initial conditions, neighboring points are

formed in a periodic motion and they all form a closed contour.

Quasi-periodic motion consists ofN ≥ 2 different frequencies such that no frequency

can be written as a linear combination of others by using rational coefficients. In other

words, ratio of the frequencies are not rational numbers, they have to be incommen-

surable. Quasi-periodic motion of N frequencies can be regarded to form a phase

space, which is an N -dimensional torus, which is also called the invariant torus in

the context of the Kolmogorov-Arnold-Moser (KAM) theorem [15, 26]. The latter

is a celebrated theorem in mathematics, which can be briefly stated as the result that

for a small enough perturbation of a Hamiltonian system, there exists invariant torus

of the perturbed system which is close enough to that of the unperturbed system.

The details and proof of this theorem are quite complicated and beyond the scope of

this thesis. Nevertheless, a simple example can briefly illustrate these remarks. If a
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Hamiltonian system of say a point particle has T 2, i.e. as it invariant torus, this means

that the particle exhibits quasi-periodic motion with frequency w1 and w2 as long as
w1

w2
is an irrational number. The latter ensures that the trajectory of the particle never

overlaps and eventually passes through every point of the invariant torus. Therefore,

quasi-periodic orbits in Poincaré sections can be seen by dots forming denser closed

contours. In this context, denser means that closed contours are like continuous lines

instead of separated dots. These contours are usually called KAM tori. On the other

hand, chaotic motion appears in Poincaré sections as randomly scattered dots.

As a simple example in which Poincaré sections can be illustrated, we may consider

the two dimensional simple harmonic oscillator with the Hamiltonian

H =
p2
x

2m
+

p2
y

2m
+

1

2
k(x2 + y2) . (B.1.1)

Let’s take m = 1
2

and k = 2, then the Hamiltonian becomes

H = p2
x + p2

y + x2 + y2 . (B.1.2)

The Hamiltonian equations of motion are given as

ẋ = 2px , ṗx = −2x , (B.1.3)

ẏ = 2py , ṗy = −2y . (B.1.4)

Equations of motion are integrable and this motion is well known to periodic. There-

fore, we naturally expect to see a closed contour in the Poincaré section provided that

sufficient number of initial conditions are used in sampling.
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Figure B.1: Poincaré section at E = 5

Taking E = 5 and selecting initial conditions such that (x, y) = (0, 0) and py =√
E2 − p2

x with px chosen randomly in the interval px ∈
[
−
√
E,
√
E
]

to make py

real and using 125 different initial conditions according to this protocol, px − py

Poincaré section is obtained and given in figure B.1.

B.2 Lyapunov Spectrum

Lyapunov exponents[9, 27, 28] measure the sensitivity of the system to given initial

conditions. Let xi(t) denote an ith. initial condition and nearby point in the phase

space be xi(t) + δxi(t) . The deviation δxi(t) can be expressed as

δxi(t) = δxi(0)eλit , i = 1, ..., N , (B.2.1)

where λi are Lyapunov exponents for N dimensional phase space. δxi(0) form an

N dimensional infinitesimal sphere in the phase space. Time evolution of the system

distorts the infinitesimal sphere into an infinitesimal ellipsoid, which δxi(t) is the ith.

principal axis.
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Lyapunov exponents are given as

λi = lim
t→∞

1

t
log

(
δxi(t)

δxi(0)

)
. (B.2.2)

Let us denote the time evolution operator as

Et = eλit . (B.2.3)

Dividing the time t into the two steps as t = t1 + t2 we have

δxi(t1 + t2) = δxi(0)Et1Et2 . (B.2.4)

Therefore, dividing the time into n equal steps such that t = n∆t gives the Lyapunov

exponents as follows

λi = lim
t→∞

1

n∆t
log

(
E∆t...E∆tδx

i(0)

δxi(0)

)
. (B.2.5)

Let vi0 be the orthonormal basis which are tangent to the trajectory of the ith. initial

condition at t = 0. Time evolution of these vectors can be obtained by vi1 = E∆tv
i
0 .

However, the vectors vi1 do not have to be orthogonal. Using the Gram-Schmidt

orthogonalization we can obtain the orthogonal set as follows

u1
1 = v1

1

ui1 = vi1 −
i−1∑
l=1

Pul1
(vi1) , i > 1 .

(B.2.6)

Pα(β) is the projection operator defined by

Pα(β) =
〈β, α〉
〈α, α〉

α , (B.2.7)

where 〈·, ·〉 is the inner product. The expansion rate of the vector vi1 can be found by

ri1 =
‖ui1‖
‖vi0‖

=
∥∥ui1∥∥ , (B.2.8)

where vii is normalized to 1. ui1 can be normalized as follows

ũi1 =
1

ri1
ui1 , (B.2.9)

This procedure defines the time evolution of one ∆t . After n∆t steps we have

λi = lim
n→∞

1

n∆t

n∑
k=1

log
(
rik
)
. (B.2.10)
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The set λi = {λ1, ..., λN} is called as Lyapunov spectrum. The highest deviation

among vik and uik occur for u1
k as a consequence of this construction. At least one

positive Lyapunov exponents is sufficient to say that the system is chaotic.
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