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ABSTRACT

CHAOS IN YANG-MILLS MATRIX MODELS

Bagkan, Kagan
M.S., Department of Physics
Supervisor: Prof. Dr. Seckin Kiirkciioglu

Co-Supervisor: Assoc. Prof. Dr. Ismet Yurdusen

July 2019, [81] pages

In this thesis, chaotic dynamics emerging from Yang-Mills matrix models are in-
vestigated. Firstly, we investigate the Yang-Mills two-matrix models with Chern-
Simons term using both analytical and numerical methods. In particular, we obtain
the Poincaré sections and Lyapunov exponents at several different values of the pa-
rameters of the model, revealing the detailed structure of the chaotic dynamics. In
the second part of the thesis, we focus on a massive deformation of the bosonic part
of the Banks-Fischler-Shenker-Susskind (BFSS) matrix model. Using an ansatz in-
volving fuzzy-2 and fuzzy-4 sphere configurations we determine reduced effective

Hamiltonians through which we study the emerging chaotic dynamics.

Keywords: Yang Mills Matrix Models, BFSS Matrix Model, Chern-Simons Theory
in Matrix Models, Chaos in Matrix Models



0z

YANG-MILLS MATRIS MODELLERINDE KAOS

Baskan, Kagan
Yiiksek Lisans, Fizik Boliimii
Tez Yoneticisi: Prof. Dr. Seckin Kiirkciioglu
Ortak Tez Yoneticisi: Dog. Dr. Ismet Yurdusen

Temmuz 2019 , 81| sayfa

Bu tezde Yang-Mills matris modellerinden ortaya cikan kaotik dinamik yapilar in-
celenmistir. {1k olarak, Chern-Simons teriminin ekli oldugu Yang-Mills iki-matris
modeli analitik ve sayisal metotlarla incelenmistir. Modelin parametrelerinin cesitli
degerlerinde Poincaré kesitleri ve Lyapunov iisleri elde edilerek kaotik dinamigin
detayli yapis1 ortaya konulmustur. Tezin ikinci kisminda, Banks-Fischler-Shenker-
Susskind (BFSS) matris modelinin bozonik kisminin kiitle deformasyonlu durumla-
rina odaklanilmistir. Fuzzy-2 ve fuzzy-4 kiire konfigiirasyonlarini igeren bir yaklagim
kullanilarak indirgenmis etkin Hamiltonianlar elde edilip bunlarin vasitasiyla modelin

kaotik yapilar1 incelenmistir.

Anahtar Kelimeler: Yang Mills Matris Modelleri, BFSS Matris Modeli, Matris Mo-

dellerinde Chern-Simons Teorisi, Matris Modellerinde Kaos
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CHAPTER 1

INTRODUCTION

Matrix gauge theories, which are also called matrix quantum mechanics in the lit-
erature continue to attract significant attention and being explored from several per-
spectives ever since their discovery over twenty years ago. Among these, the matrix
model proposed by Banks-Fischler-Shenker-Susskind (BFSS) model[1] is essentially
supersymmetric gauge theory consisting of nine N x N matrices and a single U(N)
gauge field, in its bosonic part, whose matrix elements depend on time only. This
model can be obtained by dimensionally reducing the N' = 1 SUSY Yang-Mills the-
ory in 9+1 dimensions to zero volume, in other words to 0+1 dimensions. The BFSS
model has an important role in superstring theory and M-theory. In the context of
superstring theory it may be interpreted to describe the dynamics of N-coincident
DO-branes|[|1} 2, 3]. The latter are point like objects in string theory with certain prop-
erties and generalize to D-p branes with p < 9 [4,5]. Due to gauge-gravity correspon-
dence this description of the BFSS gauge theory has a gravity dual at large /V, which
describes a so called blackbrane that is a string theoretical black hole[2, 3} 6, [7].

In this thesis, our focus will be on the bosonic part of the BFSS model and related
models. We will make no formal attempt to connect the developments in this work
to a broader perspective in string theory and limit ourselves to make only qualitative
remarks in that context whenever needed. As already noted, the bosonic sector of
the BFSS model consists of nine N x N Hermitian matrices and a Hermitian U (V)
(or SU(N)) gauge field. The action for the model is invariant under the SU(N)
gauge symmetry as well as a SO(9) global symmetry, which is responsible for rigidly
rotating the nine matrices among themselves. Due to the large number of interacting

degrees of freedom through a quartic Yang-Mills potential it does not seem possible



to obtain a general solution of this model. It is possible to consider smaller matrix
models that is matrix models with less number of matrices and a smaller gauge group
by considering various degrees of freedom in the BFSS model to be frozen or motivate
such matrix models as emerging from dimensionally reducing Yang-Mills theories in

d+1-dimensions with d < 9.

One of the recent focuses in this context has been to explore the chaotic dynam-
ics emerging from the BFSS and related matrix models[8, 9, [10]. In [8]], the minimal
bosonic matrix model, which is a model with two 2 x 2 matrices and SU (2) gauge and
SO(2) global symmetry has been put under investigation. Even in this simplest case,
it does not appear possible to obtain the general solution of the equations of motion.
After transforming the model to new set of coordinates using analytical methods and
taking advantage of the gauge and global symmetries the authors of [8] have success-
fully studied the chaotic dynamics in this model by obtaining the Poincaré sections
and Lyapunov spectrum. They show how as the value of a conserved component of
angular momentum is modified from zero to non-zero values, the system evolves from
a chaotic dynamical phase to eventually a non-chaotic phase. They also comment in
what sense these results may be useful to explain the passage from black hole phase
to a no-black hole phase in the gravity dual of related models with larger number of
degrees of freedom. A considerable part of chapter 2 is devoted to the review of this
article. After these brief remarks on the recent literature we can present the main

developments contained in this thesis.

In chapter 3, we investigate how the addition of a Chern-Simons term affects the
minimal matrix model of Berenstein and Kawai[8]. To be more precise, we first
analyze in detail the structural changes in the model upon supplementing the action
with a Chern-Simons term, which is first order in time derivatives. This eventually
leads us to model physical changes in the dynamics, from chaos to no-chaos when,
in addition to the conserved component of angular momentum, the Chern-Simons
coupling is modified to assume different values. The latter can only assume values,
which are integer multiples of ﬁ as a consequence of level quantization in the non-
abelian Chern-Simons theory[11l]. We study this model by obtaining the Poincaré
sections and also by numerically evaluating the Lyapunov spectrum. These results

are obtained in collaboration with my supervisor S. Kiirkctioglu[12]



Consequences of the deformation of the Berenstein-Kawai model via a mass term
respecting the gauge and global symmetries are discussed in chapter 4. Poincaré
sections’ and Lyapunov spectrum’s responses to the variation of the mass parameter

are given in this chapter.

In chapter 5, we study a double mass deformation of the BFSS matrix model. In this
study, we focus on massive deformations which break the SO(9) global symmetry
down to SO(5) x SO(4) and eventually to SO(5) x SO(3) x Z5 upon choosing a cer-
tain ansatz configuration to obtain effective actions, whose chaotic dynamics can be
studied in detail. The aforementioned ansatz configuration is selected to be composed
of matrices forming fuzzy four and two spheres with collective time-dependence.
Similar ansatz involving fuzzy two spheres have been used in the work of Asano,
Kawai and Yoshida[9] studying chaos in BMN model and inspired us to consider an
ansatz with larger dimensional fuzzy spaces. By using the ansatz at several different
matrix levels we obtain a family of reduced effective actions, whose dynamics are
studied in detail. Finally, after showing the presence of chaotic dynamics by evalu-
ating the Poincaré sections and Lyapunov spectrum, we also make a numerical study
revealing that the largest exponent increases logarithmically with increasing energy in
these models. The results of this chapter are a part of results obtained in collaboration

with O. Oktay and C. Tasc1 and my supervisor S. Kiirkctioglu[/13]].

Chapter 6 summarizes our original findings in this thesis and states our conclusions.
Some related supplemental materials on the definition, evaluation and properties of

Poincaré sections and Lyapunov exponents are given in appendices.






CHAPTER 2

BFSS MATRIX MODEL

In this chapter, we introduce the bosonic sector of the BFSS matrix model[1]] and
present its basic features and properties. BFSS matrix model can be obtained from the
dimensional reduction of the U(N), N' = 1 supersymmetric Yang-Mills theory from
9+1 dimensions to 0+1. This model holds an important place in string theory and M-
theory. Since the string theoretic foundations and features of this model are beyond
the scope of this thesis, we are going to focus mainly on the classical dynamics of
BFSS model. The simplest but yet non-integrable submodel is SU (2) 2-Yang-Mills
matrix model, i.e. the matrix model with only two 2 x 2 matrices and with SU(2)
gauge symmetry. In section [2.3| we focus on this model, and present a review of the

study of [8]].

2.1 Bosonic Sector of the BFSS Matrix Model

The BFSS action has two parts, which are bosonic and fermionic. The resulting
action has SU(N) gauge symmetry and SO(9) global symmetry. In this thesis, only

the bosonic part of the model will be studied and its action is given as[2]

SBrss = /dtLBFss, (2.1.1a)
L Ll 1(DX)2+1[X X, (2.1.1b)
BFSS — g2 r 9 0<xq 4 iy <2j ) oL

where 7,7 = 1,...,9 and the bosonic degrees of freedom X; are NxN Hermitian

matrices. g is the Yang-Mills coupling[] which has a dimension of (length)~3/? since

! Since we use classical physics, g only changes the energy scale. We take g = 1.
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Ag, X; are of dimension ——. The covariant derivative Dy is given as

length

X; = 0o X; — iAo, Xi], (2.1.2)
where A is the gauge field, which is also an N x N Hermitian matrix.

SU(N) gauge symmetry of the action in (2.1.Ta) can be seen by substituting the fol-

lowing transformations

X, = X =U'X;U, (2.1.3a)
Ay — Ay = UT AU 44U 0,U (2.1.3b)

into the Lagrangian in (2.1.1b). We first show that D X; transforms covariantly under
the action of the local gauge group SU(N).

Do(UTX;U) =00(UTX,U) — i [UT AU + iU 0,U, U X;U]
=00(UTX;U) — i[UT AU, UTX,U]
+ [UToU, UTX,U]
=0 UN XU + U (00 X:)U + UL XA8U) (2.1.4)
— iU Ay, X,]U + UT (0,0 UTX,U — UL X5 G,U
=(0UNX,U + UN (0o X:)U + UT(0,U)UT X;U
— iU Ao, XU,
where we used UUT = 1. Substituting the following identity
A(UUT) = (QU)UT + U (0UT) = 0
= U(QUT) = —(0,U)U! (2.1.5)
= U = —UT(0,U)U"

into the last line in (2.1.4)) gives

UN(0oX:)U — iU [Ag, X;|U — UNQEHT XU + UNOetHHF XU . (2.1.6)

Therefore, we have

1 1
Tr §(D0Xi)2 —Tr 5UT (Do X)) UUT (Do X:)U

1
=TT §(D0X1)2 s

2.1.7)



where we have used the cyclicity of the trace verifying the invariance of the kinetic
term under SU (2) gauge transformations. The potential term in the Lagrangian trans-

forms under the SU (V) gauge transformations as follows

T (X, X,)%) = [UT X0, U XU

(

= Tr(U'[X;, X;]UUTX;, X;|U) (2.1.8)
(
(

Equations (2.1.7) and (2.1.8)) together show that the Lagrangian Lgrgs is invariant
under the SU(N) gauge transformations.

In addition to the local gauge symmetry, the action has also a global SO(9) symmetry
i.e. it is invariant under the rigid SO(9) rotations of X; among each other. To see this
property, consider 9 x 9 orthogonal matrices R;; € SO(9) and the rotation

X! = Ry;X; . (2.1.9)

The covariant derivative transforms as

DO(Rinj) :aO(Rinj) - Z'[AOv Rinj]

=R;;(00X; — i[Ao, X;]) (2.1.10)
=Ri;(DoXj) .
Therefore, the kinetic term in the Lagrangian remains invariant under R € SO(9):
2 Do(Ry X)) Do RuXi) =3 Ry s (Do X;) (Do )
:%5jk(D0Xj>(D0Xk) (2.1.11)
:%(DOXJ')Q :

where we have used the fact that RR? = RT R since R is an orthogonal matrix. The

second term in Lgprgg transforms as
1

4 [Rinja Rlel] [Rszma Rann] :RinklRimRkn [ij Xl] [Xma Xn]

1
=m0 [ X, Xi][Xm, X,

1
:Z[vaXl]z
1

(2.1.12)



In the above equation the last line is obtained after relabeling the dummy indices.

Equations (2.1.11]) and (2.1.12)) together indicate that the Lagrangian is invariant un-

der the SO(9) transformations.

Since there is no Ao = 0pAp term in the Lprgg, its equation of motion is purely
algebraic and therefore Ay is not a dynamical variable. Nevertheless, the algebraic
equation of motion of Ay imposes a constraint on the system which is usually called

the Gauss law constraint. The variation

gives the equation of motion with respect to A as follows

% Tr(DoX:)? — % Tr((9pX; — i[ Ao + 549, Xi]) (96 X; — i[ Ao + 540, X))
_ %Tr((@oXi [ A, Xi] — i[5 Ao, Xi]) (36X — iAo, Xi] — i[5 Ao, X))
1

= 5 Tr((DoXi = i3 A0, XiJ)(DoX; = i[5 s, Xi]) + O((640)%))

1

(2.1.14)

where we have used the cyclicity of the trace while rearranging the terms. The varia-

tion of the action with respect to A is therefore given as

(2.1.15)
—i[X;, Do X;] = 0.
This implies that the equation of motion in the Ay, = 0 gauge is
X %] =0, (2.1.16)

where overdot denotes derivatives with respect to time. (2.1.16)) is usually called the

Gauss law constraint, in the literature [[1]].



The BFSS equation of motion can be obtained from the following variation

The variation of the action is

55 — / dt Tr(%%(Xi + 5Xi)%(Xi FOX) 4 51X 46X, X 4 5Xj]2) |
- (2.1.18)
The first term in the variation of the action takes the form
Tr(li(Xi +ox) x4 (SXi)) _ Tr(lo'g L OX) (X, + 5Xj)>
2dt dt 2
Sl ans) G

— Tt (Xm) ,

where we have used the cyclicity of the trace and kept only the first order variations.

This equation can be further simplified by using integration by parts as follows

7dt Tr (XcSX) — X0, io - 7dt Tr (XiéXi)
~oo0 N oo (2.1.20)
— / dt Tr(XiéXi) .



To first order in 6 X, the second term in the action can be written as follows

1 2
S[Xi 46X, X + 6X]

4

= (X0 X] + X0 0] + X0, X)) + 0,6

= 6 X006, 0G] + 16X, X)) + (16, 8X,] + 166, X)X, X,)

= S XX, 0] + (6, X;)

= %(Xixj — X, X)(Xi6X; — 6X;X; 4 0X:X; — X;0X;)

= %(XinXZ-(SXj — X, X;0X,;X; + X; X;0 X, X; — X; X;X;0X, (2.1.21)

~ X XXX + X XXX — X, XXX, + X, X, X,0X,)
- %5X1(ijixj CXXGX, - XXX X XGX)

4 %(5Xj(XinXi XXX, - XXX+ XX, X))

= 6X, (00X, — XXX, — X, XX + X, X X,)

= 0.X(X;[ X5, X] — [Xi, X5]X;)

= 0.X;[X;, [ Xi, Xj]].

Since the indices i and j are dummy, we have interchanged i with j in the 9" line.

Putting the results obtained in (2.1.20) and (2.1.21) together we find that the variation

of the action becomes
58 = / dt Tr(éXZ-(—X + X, [Xi,Xj]])> ~0. (2.1.22)

Therefore, the BFSS equation of motion is given as

X+ [X:,X;), X;] =0. (2.1.23)

2.2 The BFSS Matrix Model From Dimensional Reduction

In this section, the BFSS matrix model will be obtained from the dimensional reduc-

tion of pure SU(N') Yang-Mills theory in 9+1 dimensions to 0+1 dimensions[2]].
In 9+1 dimensions we can work with the metric n* = (—1,1,1,...,1). The Yang-

10



x v Lo

where i, v = 0,1, ...,9 and sum over repeated indices are implied. The electromag-

netic field tensor is given as
F.=0,A,—0,A,—ilA,, A, (2.2.2)

where A, = A,(X,t) = (Ao(X,t), A;(X,t)) fori = 1,...,9 is the gauge field. It

transforms under SU (') gauge transformation as
Ay — A, =UTAU +iU0,U, (2.2.3)

where U = U(X,t) € SU(N). The idea of dimensional reduction from 9+1 to 0+1
dimensions can be simply explained as follows. We consider all the components of
the gauge field A, and all the gauge transformations U, to be independent of the
spatial coordinates ' = 1,...,9 and depend only on z° = ¢. Thus we write A, =
A,(t) = (Ao(t), Ai(t)) and U = U(t). From (2.2.3)), we see that this implies for the

spatial components A;(¢) the gauge transformations
Aty =UTAU (2.2.4)

and for Ay(t) the gauge transformations are given in (2.1.3b). This shows that A;
transform adjointly under SU () gauge transformations. That is, just like an adjoint
non-abelian scalar field with SU (') gauge symmetry. Therefore, we may devise the

new notation

A, — (Ao(t), Xi(1)) (2.2.5)

as the constituent fields. Inserting (2.2.3)) to (2.2.2)) we find for the components of the

electromagnetic field tensor

Foi = 00X — 0; A0 — i[Ao, Xi]
= 0o X; — i[Ag, Xi] (2.2.6)
= DOXZ )

Fy = 0:X; — 8;X; —i[X;, X]]

where we have used the fact that all spatial derivatives are vanishing. Thus the La-

11



grangian takes the form

1 y 1 i i
L:—4—g2Tr(F,uuF'u ) TI'( 4_92(FUZF +EOFO+F1JF])
1
:Tr( E(QFO’LFOZ—}_F F”))
i] 2.2.7)
s (—4—gg<2<DoXi><—DoXi> - b))
1 1 1 2
and the action is
S = l/dt Tr 1(D()Xi)2 + l[Xz X']2 (2.2.8)
g2 2 AT )

which is the BFSS action that we have introduced in equation (2.1.1)).

2.3 Two Matrix Model

We will now concentrate on the structure of the Yang-Mills two matrix model with
SU(2) gauge symmetry. This model can be obtained by dimensionally reducing the
pure SU(2) Yang Mills theory in 2+1 dimensions to O+1 along the same lines as
described in the previous section or equally by considering (2.2.8)) with only X : i =
1,2. The Lagrangian has the form

L= %Tr((D0X1>2 + (DoXo)? + [ X1, Xo]?) 2.3.1)

which has the SU(2) gauge symmetry and SO(2) global symmetry. X; and X, are
2 x 2 matrices which are traceless and hermitian. Since they are in a triplet of SU(2),

we can use Pauli matrices to write X; and X5 as

Xz-:Ni:'i-&:Nx?aa

- N i i ) i :

1 2

where o = 1,2, 3 and /N is the normalization constant which will be determined now.

Working in the Ayg = 0 gauge, IV can be fixed by requiring that Tr (X 24+ X22> =

12



Y o(&¢Eg) + (2549). To satisfy this requirement, we see that we must have
[e%

1 o 1
5 (Xf) — SN (i?ao‘ifaﬁ)

= lNZ:'Uf‘ii Tr(o%0”)

% (2.3.3)
= —N2i037 2598

2
= N?%i93?

. o 1 . o
which therefore implies that we must take N = ok Let us now insert X; given in
(2.3.3) into the Lagrangian (2.3.1)) in the Ay = 0 gauge and evaluate the traces. This
yields

1 1 2 1 2171 1 ?
L=-Tr| | —=1%%] + —:1':505> + {—xo‘ao‘, —xﬁaﬁ]

1. (1 1 2

—_T - 042]]_ - 52]]_ ) afy .« v
5 1"<2(371) 2+ ()12 + (2 1€ i xy0 (2.3.4)
1 1 1

= —Tr —({E?)Qﬂ_g + —($§)2]]_2 — (Xl X Xg) :ﬂ_g
2 2 2
1.5 14 =

=5 (X)7+ 5(%)" — (K X %)

We see that the Lagrangian is analogous to that of two point particles with coordinates
X, and X, of unit mass and the interaction potential is V (1, 7o) = (X; X X5)?. Draw-
ing from our knowledge of analytical mechanics we can write down the canonically

conjugate momenta for X; and x5 as

oL - oL

131 = = )21 5 ]32 = — = ig . (235)
85(’1 aiQ
Then the Hamiltonian is found as follows
H=x-p-1L
o 1 . .
=p; — §p? + (%) X %Xp)? (2.3.6)

1—» — —
= 51)? + (Xl X X2)2 .

13



Using (2.3.6) we may determine the Hamiltonian’s equations of motion as

oOH

P = ——— = 2Xy X (X; X X3),
P1 0%, X2 (Xl X2)
. OH . . .
P2 = _8_5(’ = —2X2 X (Xl X Xg),
2 (2.3.7)

X = — =

1 aﬁl 1,
X = — = .

1 3ﬁ2 P2

Although these equations look superficially simple enough to yield the general so-
lutions, it turns out that they are still too complicated to be solved exactly. In order
to simplify the problem by taking advantage of its symmetries, we may first express

(X1,X2) as a single 3 x 2 matrix as

G
X =22 22|. (2.3.8)

3 .3
Ty Ty

We can implement the SU(2) ~ SO(3) gauge symmetry of the model by left multi-
plying with D(g) = R € SO(3), while the right multiplication implements the rigid
SO(2) symmetry of the model. Thus we have

1 .1 1 .1
Iy Ty Iy T

cos(¢) —sin(¢)

X = ,CL‘% x% —>RSO(3)' ;[;% 2| - . (2.3.9)

2 .
sin(¢) cos(¢o

We can always make a gauge transformation, that is choose D(g) = Rgo(3) such that
the vector X; is rotated to point in the 1-direction. In other words, if we start with
% = (21", 27, 2%)T we can always find a gauge transformation such that ¥, — %, =
(x1,0,0)T. This vector does not change under a SO(2) C SO(3) subgroup and that
residual gauge symmetry can be used to take X, — Xo = (23, 23,0)7. Nevertheless,
rigid SO(2) rotations which are acting from the right on X, would allow us to keep
only the last row of X to be zero but rotates 2 to a non-zero value in general. The
final outcome of this analysis is that out of 6 degrees of freedom only 4 remains due
to the local and global symmetries of the problem. The question we need to answer
is whether this analysis is preserved as the system is evolving in time. To do so, we

inspect the Gauss law constraint.
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In the previous section we have determined the Gauss law constraint of the BFSS
theory in the Ay = 0 gauge as given in (2.1.16), and for the two matrix model this

takes the form

|:X17X1] + |:X27X2:| = 07

1 1
= S[ato® i{o?] + Slabor 0" = 0
1
= 5(2i6a57x?$’fcﬂ + 2ie"Prh it o) =0 (2.3.10)

:’l.(}_i»lx}L(»l‘i‘)_(}QX)‘_(}Q)'&):O

= z(ﬂl—l—fg)-E:O

This implies that L:=L;+L,=0. Continuing with the point particle dynamics
interpretation of the system we can identify L; with the angular momentum of the i
particle and L as the total angular momentum of the system. Let us, however note that
for the two matrix model described by the action (2.3.1), L is the generator of SU(2)
gauge transformations. Constraint equation means that the total angular momentum
is vanishing. Time derivative of L, is

L =% X p1 +X; Xﬁl

2.3.11)
= 2)_(»1 X (ig X (il X ig))

In the first line of (2.3.11]), the first term is vanishing since X1 X P1=P1 X p1 = 0.
The second term is found by inserting the 51 in the (2.3.7) into this equation. Since
X and X, are orthogonal to L, (X1 X X) is aligned with L,. Then (Xo X (X1 X X3))

is orthogonal to L,. It is now obvious that %; X (X3 X (X; X X)) is aligned with L.

Equation (2.3.11) shows that ﬁl and fl are in the same direction. That is also valid

for Ly since they are anti-parallel vectors.

This angular momentum analysis shows that X;, X5, p; and ps are orthogonal to
L and the direction of L does not change in time. Therefore, the whole motion is
orthogonal to the f—plane. The gauge choice we previously made, taking 23 = x3 = 0
is preserved with L pointing in the x3-direction. Therefore, the motion is confined to

the x! — 22 plane.
Deleting the row of zeros in four dynamical degrees of freedom are arranged
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into a 2 X 2 matrix.

1,2
Ty I7

X = . (2.3.12)

1
Ly Ty

Since the determinant of this matrix is simply given by
det(X) = x123 — x327, (2.3.13)

we see that the potential part of the Lagrangian in (2.3.4)) or the Hamiltonian in (2.3.6))

can be written as follows

= 7175 — 1573 (2.3.14)

In order to simplify the problem it would be best if we could transform to a new
coordinate system in which the L = 0 constraint can be explicitly implemented. Fur-
thermore, we note that since the potential is given in terms of a cross product, the
relative angle, say 6, between the particles may be taken as one of the generalized
coordinates. After these intuitive remarks, we may take a two step approach to deter-

mine such new coordinates.

Step 1

Let us suppose that the particles are at a distance \/Li form an arbitrarily chosen origin

and are making a relative angle 6. Then, we may write as intermediate step

XO:L r rcos(f) (23.15)
v2 1o rsin(6) ' o

Step 2

X itself cannot be the most general form of the transformation between the old and
the new coordinates, since (2.3.15]) involves only the new coordinates, while we need
two more. The remaining two degrees of freedom can be introduced by performing a

left SO(2) rotation Rso(2)(x) and a right SO(2) rotation Rso(2)(¢) by angles x and
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¢, respectively. Therefore, we may write this parametrization of X in (2.3.9) as

X = R(x)XoR(¢)

1 [cos(x) —sin(x)\ [r rcos(f) cos(¢)  sin(¢) | (2.3.16)

V2 sin(x)  cos(x) 0 7rsin(0) —sin(¢) cos(¢)

This gives us the complete transformation of the coordinates (1, 2%, 3, z2) to the

new coordinates (7,6, ¢, x).

In (2.3:16)), R(x) acting from the left implements the rotations along the x>-axis by
an angle x. Therefore, we infer that the corresponding conjugate momenta p, = g—i
will be identified as the total angular momentum L of the system. The Gauss law
constraint L = 0 can then be implemented by taking p, = 0 after expressing the
Hamiltonian in the new phase space variables. We will see this explicitly in what

follows.

In order to understand the purpose and meaning of the Rgo(2)(¢) acting from right,
first note that it only acts on X as a 2 X 2 matrix and cannot possibly act on an
individual column vector. This is because, Rgo(z)(gb) acts in a similar manner as
the rigid global rotations of X;’s mixing them, except that for Rgo(2)(¢) the angle
¢ is in general time-dependent. Note that this does not preserve the length of the
column vectors in X. Meanwhile, we see that neither the left nor the right rotations

change the form of the potential X; X X, = +74sin?() in the new coordinates since,

det(X) = det(Xy).

The new coordinates are then (r, 6, ¢, x) and the corresponding conjugate momenta

are (pr, pg, Py, Py ). Hamiltonian can formally be expressed as

1

H = 5g"pip; + (det(X))*
1 1

— §gi;1pipj + ZTA sin?(9),

(2.3.17)

where g;; is the metric in the new coordinates which can be evaluated from the ex-

pression
g9ij = Tr(9,X10,X). (2.3.18)
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Using equation (2.3.16), the metric g;; can be explicitly written as

[ )
[\

Gij = , (2.3.19)

where the rows and columns are labeled in the order p,, ps, py, p,. We have evalu-
ated the components of g;; both analytically and also using Mathematica. Using this

metric, square of the line element can be written as

2

ds? =dr? + — d6? + 12 dg? + 2 dy?
2 (2.3.20)
+r%sin?(0) df d¢ + r* df dx + 2r*sin(f) d dy .
Then, the inverse metric g; is
1 0 0 0
0o 4 0 _2
—1 r2 r2
9i5 = 0 0 ; 12(0) __sec(f) gan(é’) (2321)
0 — 2 sec(f)tan(f)  (3—cos(26))sec?(6)
r2 72 2r2

As we have argued previously, p, corresponds to the total angular momentum L, and
therefore we set it zero in writing out the Hamiltonian (2.3.17) explicitly. Thus, we
only need the first 3 x 3 block of (2.3.21)) as

1o 0
95 =10 % 0 (2.3.22)
0 0 T‘2C0182(9)

and the Hamiltonian in (2.3.17) can be written as follows

H = 1})2 + 3p2 + i + 17“4 sin?(6) (2.3.23)
27 T 2P0 T 92 c052(0) T 4 ' o

Since (2.3.23) is cyclic in ¢, we immediately have ps = 0, meaning that py is con-
served, i.e. it is a constant of motion. Treating p4 a constant, we can focus on only
the phase space (r, 0, p., pg). There are singularities at 7 = 0 and 0 = k7 where £ is

an odd integer. Then the motion will be in the range 6 € (-3, 5) and 7 > 0.
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D5

Figure 2.1: Potential contours at p, = 1 and V' = 0.1,0.6,1.1,1.6,2.1,2.6,7

The potential contours in figure show that # values will be in a very narrow
region around # = ( as we increase r for low energies. This is the region in which the
commutator of the matrices are vanishingly small. Such configurations are called flat
directions in the matrix model. They are lifted i.e. commutators do not vanish once
quantum corrections are considered. Classical trajectories can spend a lot of time in
this region and could become time consuming to compute numerically. In this region,
0 exhibit harmonic motion. To see this, we recall that the general Hamiltonian for a

simple harmonic oscillation

p* 1
Hspo = — + —mw?x?. (2.3.24)
2m 2
Small angle approximation
(92
cos(f) ~1— 5 + ..
sin(f) ~ 6 + ... (2.3.25)

cos 2(0) ~ 1462 + ...
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in f-dependent part of the Hamiltonian gives us
Py
2t 2_
2
- _2
where the binomial formula is used. From @f]) and (2.3.26) we see that frequency

of oscillations in 0 is

1
(1 _|_ 92) 402

2
Hp = =pj + 1

(2.3.26)

4p?
we1|Le o (2.3.27)
7’

Figure shows that the motion is adiabatic in 6 at large r. In general the condition
for an adiabatic motion is given as [14]

X
7% <\ 2328
xS (2.3.28)

where A is a slowly varying parameter and 7' is the period of motion. In our case, we
may take the slowly varying parameter as the frequency w, and this gives the adiabatic

condition as

— <1 (2.3.29)

wz
using (2.3.277)), this takes the form
( —4 2 +716 r—00 1
B B T i (2.3.30)
w Vo <2p¢ + 7"2) r

Right hand side of (2.3.30) is vanishing at large r, then the motion is adiabatic in 6.

Thus, a term hw ~ hr can be added to the potential to ease the numerics. Here A is
just a parameter which will be set to a convenient number in the next section. The

Hamiltonian can be written as follows

1 2 v}
H=— — I
Pt p * 212 cos?(0)

1
. + Zr4 sin®(0) + hr. (2.3.31)

The Hamiltonian equations of motion are

. OH
T pr— pr— r oy
op, ¥
H 4 2
}ﬁrz—a = —pp — rsin®(0) + Py —h,
or r3 3 cos?(0)
OH 4 (2.3.32)
R ——
H 2 tan (0 1
Po = _OH _ Py n() — —r*sin(#) cos() .

90— r2cos?(d) 2
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2.3.1 Chaotic Dynamics From Poincaré Sections

Before presenting the results of Poincaré sections for this particular model, we di-
gress a moment and give a brief explanation of the meaning of Poincaré sections in
dynamical systems. Poincaré section is obtained by taking the intersection of the
phase flow and a surface of section [9, [15} [16} [17]. Therefore, N dimensional phase
space is reduced to N — 1 dimensions, and in the Hamiltonian systems it can be re-
duced further when the energy is constant. In this way, the four dimensional phase
space can be equally examined by focusing on the two dimensional Poincaré sections.
The chaotic dynamics of a system can be understood from the Poincaré sections as
follows. Randomly spread dots in Poincaré sections imply the existence of quasi pe-
riodic orbits. Contours in these figures, called as Kolmogorov, Arnold, Moser (KAM)
tori [15]], correspond to the quasi periodic orbits. The more detailed explanation of

the Poincaré sections is given in appendix [B.1

In this section, we replicate the numerical results obtained by [8]] using our own codes.
We examine the chaotic behavior of this model for the various values of py. In the
Poincaré sections, we used 25 different initial condition sets. Initially we take p, = 0
and 6 = 0 as a part of the all initial condition sets. For a given energy F, r > 0 is

picked randomly so that pg, which is

r? v}

takes a real value. Energy and the parameter 5 are taken to be equal to 1 and 0.1,

respectively.

Poincaré sections given in figure [2.2] which are plotted in the p, — py plane at the
intersection of # = 0, show that the system is more chaotic for the lower values of
Pe- At py = 1, KAM tori occurring in a relatively small region show that the phase
space is quasi-periodic in this region, while the rest is fully chaotic. KAM tori grow
at py = 1.5 and cover significant amount of the area in the p, — py section. This
system appears to be fully quasi-periodic for py > 2. We depict the cases py = 2 and

pe = 2.5 for specific examples.
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@ py =1 (b)py = 1.5

Figure 2.2: Poincaré sections

2.3.2 Chaotic Dynamics via Lyapunov Exponents

Another method for examining chaotic behavior in dynamical systems is the calcu-
lation of the Lyapunov exponents. For a given Hamiltonian system Lyapunov expo-
nents are real numbers, which measure the divergence of the phase space trajectories
starting from nearby initial conditions. There are as many Lyapunov exponents as the
number of phase space variables. A positive Lyapunov exponent signifies that trajec-
tories separated by infinitesimally separated initial conditions diverge exponentially.
This is direct indication of chaotic behavior since it describes the high sensitivity of

the system to initial conditions. One positive Lyapunov exponent is sufficient to con-
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clude that the dynamical system has chaotic behavior. For Hamiltonian systems sum
of all Lyapunov exponents is zero as a consequence of the Liouville’s theorem, which
states that the phase space volume does not change as the system evolves in time.

Further analytical details of the definition and evolution of Lyapunov exponents are

given in appendix [B.2]

For consistency, in the calculation of Lyapunov exponents we pick the initial condi-
tions, energy and parameter A as in the Poincaré sections. Lyapunov spectrum given
in figure are consistent with the Poincaré sections in terms of the transition from
chaotic to non-chaotic behavior. Vertical axis is the average of the largest Lyapunov
exponents which are numerically calculated for 25 different initial condition set for
each py and average of the 25 largest Lyapunov exponents are taken. Larger Lya-
punov exponents indicate that the system is more chaotic at those p, values. Figure

.3 shows that the system becomes less chaotic when we increase py.

0.25

ozl ©

015

0.05

Average of Maximum Lyapunov exponents

I I I I S (IR
1 12 14 16 18 2 22 2.4 26

Figure 2.3: Lyapunov spectrum

Number of Lyapunov exponents are equal to the degrees of freedom in the system.
In this model we have four Lyapunov exponents. One positive Lyapunov exponent is
sufficient to show that the system is chaotic. For this reason, we take only average of

the largest Lyapunov exponents in figure [2.3]

Lyapunov exponents versus time plot at p, = 0 is given in figure 2.4, The largest
Lyapunov exponent is approximately 0.4 which is the largest value among the largest

Lyapunov exponents at different values of p,. Therefore, it is possible to conclude
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that psy = 0 is the most chaotic configuration. At p, = 0, computational time for
drawing Poincaré sections is very long and the plots does not yield sufficient intersec-
tion points. Nevertheless, Lyapunov spectrum is sufficient to conclude the behavior

atp¢ =0.

0.5
04t R R
03 i’-f'
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|
0.1 §
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Figure 2.4: Lyapunov spectrum at p, = 0
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CHAPTER 3

TWO MATRIX MODEL WITH CHERN-SIMONS TERM

In this chapter, we will study the Yang-Mills two matrix model with the Chern-
Simons term. For completeness we start the chapter by introducing the Chern-Simons
action in 2+1 dimensions with SU(2) gauge symmetry and obtain its dimensional re-
duction to 0+1 dimensions in a manner similar to the treatment presented in section
for the BFSS matrix model. This will allow us to explicitly write down the Yang-
Mills Chern-Simons (YMCS) matrix model. We analyze the properties of this model.
In particular, we discuss the meaning of the modified Gauss law constraint and deter-
mine the Hamiltonian of the new system. Using these developments and numerical

methods we examine the chaotic dynamics emerging from this model.

3.1 Chern-Simons Action

Non-abelian Chern-Simons theory in 2+1 dimensions may be introduced by the La-
grangian [|18]]

Los :Heprr(AMaUAﬁ AMAVAP) G.11)

Neither the Lagrangian nor the action S.; = f d3x Leg is invariant under the SU(N)
gauge symmetry. In fact, under the SU(N) action Log changes by two terms, one
of which is of topological nature while the other is a total derivative [[11]. The latter
integrates to zero under proper boundary conditions over the fields, and therefore
does not change the action S¢g, while the former is proportional to an integer, as a
consequence of the topological conditions. Quantum physics, does not necessarily
require that S is invariant under gauge symmetry but it is rather e** which is required

to be gauge invariant, and this leads to the quantization of the Chern-Simons coupling.
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For the SU(2) gauge symmetry we have k = £, k € Z[11,[18]. In Lcs, A, are
anti-Hermitian SU(N) gauge fields i.e. flL = —A,. Denoting the anti-Hermitian
generator of SU(N) by T we may write

A,u — AaTa’ [Ta7 Tb} _ fabcTc ] (312)

To comply with the conventions of the previous chapter, we want to work with the
Hermitian gauge fields. We therefore would like to express (3.1.1)) in terms of Her-
mitian gauge fields. To do so, we may write the Hermitian generators of SU (V) as

S :=14T* and this gives

[5°,5°]

[i7, iT"]
= i(i[T, T"))
[ ] (3.1.3)
— ’i(fabciTc)
_ Z'fabcsc )
We may now express the Hermitian gauge fields A, in terms of the anti-Hermitian

A, as

A= ALSY
= A%T" 3.1.4)
—=iA,.
The non-abelian Chern-Simons Lagrangian expressed in terms of the Hermitian gauge

fields A, takes the form

Lcg = ke? Tr

2
(—z’Aﬂay(—z'A,J) - g(—i?’)AHAl,Ap)
) (3.1.5)
— ke Ty (—AM&,Ap + giAMAVAp> .

3.2 Reduction to 0+1 dimensions

Let us now focus on the Chern-Simons term with SU(2) gauge symmetry. Follow-

ing the same steps as in section [2.2] we require that all spatial derivatives in the
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Lagrangian vanish. Using the notation A, = (Ao, X;), 7 : 1,2 we have
LCS = /SZTI'(—GZO]XZ‘aoXj + §i(€01]A0Xin + €ZOJX1'A0XJ' + EZJOXZ‘X]'A()))
=r'Ir (Gij (XlX] + QZA()XZXJ)) s
(3.2.1)

where we used the cyclicity of the trace and wrote € = ¢;; .

3.3 Two Matrix Model with Chern-Simons Terms

Coupling the Chern-Simons Lagrangian with the Yang-Mills two matrix model La-

grangian given in the equation (2.3.1)) we have

1 1 iy .
LY]\/[CS = TI‘ (§(D0X1)2 + Z[XZ’ Xj]2 + HGZ] (XzX] + QZAonX])> . (331)

Let’s evaluate the variation of the action with respect to Ay. We have
§Symcs = / dt Tr(—i[X;, Do X;] + 2ike” X; X;) . (3.3.2)
Therefore, the A, equation of motion in the Ay = 0 gauge reads
- [X X] +2KETX X = 0. (33.3)
This is the Gauss law constraint for the YMCS matrix model.

In the Ay = 0 gauge (3.3.1)) becomes

1, . 1 .
LYMCS ="Ir <§(Xz)2 + Z[X“ Xj]2 + REZ]X,L'XJ'> . (334)
We may now express the Lagrangian using the vectors X; and X, introduced in the
previous chapter via the equation (2.3.2)). The Ly, part of the Lagrangian reads just

the same as in (2.3.4)). For the Lg term we find in terms of these vectors
Leg = kT (%eijx?i’faaaﬁ)
= L ij g0 38 (508 By oy
- mTr(ée 2y (01 + e o ))
— /{Tr<%eij§i . )'2]12) + /{Tr(%ieij(ii % )E]) ) &) (3.3.5)
= keVR; - ij

:H()Z»l‘);(’Q—)_(’Q'il).
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The second term of the third line of (3.3.5)) is vanishing since Tr o; = 0. The Ly pcs

is then

| P . . L L
Ly o = E(Xf + xg) — (X1 X x2)2 + K(X) + Xg — Xo + Xy) . (3.3.6)

We can immediately find the conjugate momenta as

_, oL . ﬁ
p1=8—;=X1—IiX2,

X

9L . (3.3.7)
ﬁQIT:i2+H§1.

(7x2

Note that conjugate momenta p; and p, are no longer equal to the kinematical mo-
menta X; and X» respectively due to the presence of the Chern-Simons term which is

first order in time derivative.

The constraint equation, (3.3.3), expressed in terms of X;, X, and their time deriva-
tives is

R X R+ Ry X Ry — 2%, X %o =0. (3.3.8)

Solving for the kinematical momenta %, X, from (3.3.7) and inserting them in (3.3.8)

yields
X X (P1 + KXg) + Xg X (P2 — kX1) — 26X X X3 =0
X1 X P1+Xo X Po+ 26X X X — 26X X Xp =0 (3.3.9)
Li+L,=0,

where we have used EZ = X; X p; as the standard definition of angular momentum.
This shows that the constraint equation has the same form as in (2.3.10). We will
check the direction of time derivatives of L; after finding the Hamiltonian in Cartesian

coordinates.

3.4 Lagrangian and Hamiltonian Mechanics with First Order Time Deriva-

tives in the Lagrangian

In order to determine the Hamiltonian corresponding to the Lagrangian (3.3.6) let us
digress a moment and inspect the structure of Lagrangians involving first order time

derivatives and the transition to the Hamiltonian dynamics in such systems.
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For a system with generalized coordinates ¢; and velocities ¢;, Lagrangian involving

first order time derivatives have the generic form

.. )
L= 2905 + figi =V, (3.4.1)

where g;; is the metric, f; is some function of the generalized coordinates i.e. f; =

fi(g;) and V' is a potential V' = V/(g;). Canonical momenta are evaluated as

oL .
pi = 90 9ij G5 + Ji- (3.4.2)

(2

In terms of p;, ¢; can be solved using the inverse metric in the form
G =95 (0j — 1),
=g"(p; = ).

The Hamiltonian is found as follows

(3.4.3)

H=pig—L

_ r _ _
= pigijl<pj —fi) — §9ij9¢k1(pk - fk)gjll(pl — fi) — figijl(pj —f)+V

85
_ 1 _ _
= pigij1<pj —fi) - §gjll(pj — fi)— fi) - figijl(pj - H)+V
_ L _ _
= pigi; (0 — [3) — §9ij1(pi — i) — fj) — figg (i — f;) +V
_ 1 1
=g, (pipj — pifi — SPiPi +pifi — §fifj —pifi+ fifi) +V
1 _ 1 _ _
= Egijlpipj + Egijlfifj - gijlpifj +V,
(3.44)
where we used g;; = gj; .
3.5 Hamiltonian Mechanics
Comparing (3.3.6) and (3.4.1)) we read
9 = g; = 6ij,
(_ii = iz )
(3.5.1)
fi = —kejja;,

V= ()21 X §2)2,
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therefore the Hamiltonian is

1 1

H = 551']'29@'103‘ + §5ij/€2€ikxk€jl$l — 04;pi(—kKejxy) + (X1 X %5)?
1 1 (3.5.2)
= E(ﬁ% +P3) + 5“2(32% +X3) + k(D1 Ko — P+ K1) + (X1 X Xo)°.
We find that the Hamiltonian equations of motion are given as
X] = 755~ = P1 + RX2,
Op1
P1 = —55 = KX] — kP2 + 2%, X (X X X3),
0%, (3.5.3)
L OH .
X9 = —— = Pg — kX1,
2 ErA P2 1
P2 = ——= = KXy + kP — 2X3 X (X1 X X3) .
3x2

The time derivative of L; can be found by using these equations of motion as follows

1 X P

"l

Elz

il X (Ii2)21 — Iiﬁg + 2}_{2 X (il X ig)) (3.5.4)

= —lﬁ)_()l X 52 + 2)21 X (ig X ()21 X ig)) .

The last term is the same as the one in section it is parallel to ﬂl, but the first
term does not have a definite direction. Therefore, fl may not be parallel to L;. The
same situation is also valid for EQ. Since the time derivative of Ei and fz may not
be in the same direction, it is not possible to immediately conclude that the motion
remains confined to the 1 — x5 plane. However, we will see from our subsequent

analysis that the motion remains confined to the x; — x5 plane.

3.6 Coordinate Transformation

Next step in our analysis is to obtain a coordinate transformation from x; and X, to
new variables as we did in the previous chapter in section [2.3] Compared to (2.3.13)

keeping now the zeros we may start with the 3 x 2 matrix

r rcos(6)
1
XOZE 0 rsin(f) | - (3.6.1)
0 0
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The reason for this is that, we need to be able to rotate both columns of this matrix
by a general SO(3) rotation not just by SO(2) subgroup, since we cannot argue in
advance that motion is confined to the x; — x5 plane. A general SO(3) rotation can
be written using Euler’s parametrization, which uses z — x — z active rotation with

the angles «, (3, v respectively and is given by[19]]

c(@)e(y) = s(a)e(B)s(y)  —s(@)e(B)e(v) — c(@)s(y)  s(a)s(B)
Rl B,7) = | e(v)s(e) + c(a)e(B)s(7)  c(@)e(Be(y) — s(a)s(y)  —c(a)s(B)
s(B8)s(7) s(B)e(7) c(B)
(3.6.2)

where s and c stand for sine and cosine respectively. In order to obtain the coordinate

transformation from (X, X,), we therefore write

1 r rcos(f) (@) in(g)

cos Sl
X = —=R(o, B, rsin | o
V2 ) 3 0(6) —sin(¢) cos(¢) ( |

which can be compared to the equation (2.3.16). Explicit form of the components of
the 3 x 2 matrix X are listed in the appendix The metric in these coordinate is

evaluated from g;; = Ir (&»X TﬁjX ) and its components as well of those of its inverse

g;;' are also given in the appendix

There are six generalized coordinates (7, 6, ¢, «, 3, v) and the corresponding six con-
jugate momenta given as (p,, Do, Py, Pa, P, P). Using these generalized coordinates

and momenta and the inverse metric gigl given in the appendix, we have the first term
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in the equation (3.4.4)

1
égij bip; = —

csc?(8) cos(2) esc?(0)p?
2r2
_esc?(B) esc®(0)pa cos(2(y +0))
212
_ 2cot(B) esc(B) esc?(0)papy
2
N cot(B) cse(B) cos(27) esc?(0)pap,
2
N cot() cse(B) csc?(0)pap- cos(2(y + 6))
2
N 2 cse(3) cot(0) esc(0)paps sin(2y + 0)
12
st () s (O cor?(B) ()2
T 2 T 2
r r
cot?(B) cot(8) esc(f)p? cos(2y + 6)
2
cot(6) csc(8)pj cos(2y + 0)
+ =
_ 2cot(B) cot(6) csc(b)pspy sin(2y + 0)
2
osc®(0)ph  tan(6) sec(6)p,py
+ 2 a 2
r r
2p,py | sec’(O)p2  p?
72 * 2r2 * 2r2
N Sec2(9)pi N 2p2  p?

o2 T2 T g

(3.6.4)

In order to proceed, we need to know the form of f; = —re;;x; in the new coordinates.

The function f; = f;(¢;) and ¢; in the Lagrangian (3.3.6) appear as
fiqi = KXy - Xy — KXy + X1 . 3.6.5)

Using the X matrix in (3.6.3) and time derivative X which is simply formed in terms
of the time derivatives of the components of X, right hand side of (3.6.5)) can be
written by taking the inner products of the column vectors of X and X and can be

written in this new coordinates as
. 1, : ) ) ) :
fidi = —gTkK <2¢ + sin(f)(2d cos(B) + 29 + 9)) : (3.6.6)

Since f;q; = f1f+f29+f3(/5+f4d+f56+f67 in the new coordinates, f;(r,0, ¢, o, 3,7),
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¢ :1,...,6 can be readily read out from this expression as

fi=0,
P
= 5" ksin(),
_ .2
fz=—rk, (3.6.7)
f1=—r*ksin(f) cos(B) ,
fs =0,

fo = —r?*ksin(f) .

This allows us to determine both the second and the third terms in the Hamiltonian.

We have for the second term

%gz-jl £fs = %ﬁ,ﬁ?, (3.6.8)

and for the third term
%gglpifj = —pyhi- (3.6.9)

The potential term is
L(E X %)” = 1t sin’(6) (3.6.10)

which is the same as in the case without the Chern-Simons term given in section [2.3]
since the square of the cross product of vectors is a scalar and does not get affected

by any gauge rotations.

Angular momentum vector L fora general SO(3) rotation can be expressed in terms

of the Euler angles «, 3, v and the conjugate momenta p,, pg and p., as [20]

(@) ese(5) — pacot() + pacos(a)
L = | cos(a) csc(B) (pa cos(B) — py) + pgsin(a) | , (3.6.11)
Pao

whose details are given in the appendix The constraint, L = 0, is satisfied if
and only if p, = ps = p, = 0 in equation (3.6.T1). Using this fact in (3.4.4), the

calculation of the Hamiltonian is significantly simplified and we find

1 2 pi K2r?
H=_p*+ Sp3+ s+ iy +
Pr2be ™ 50 cos?(0) Fbe

+ L sin?(6) . (3.6.12)

2 2 4
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As noted previously, as a consequence of Chern-Simons level quantization we have

o k . . .
K = 1=, where k is an integer. Therefore we can write (3.6.13) as

1 2 P kp Er?2 1, .
H==p>+ =2 0 0 ~rtsin®(0) + h 3.6.13
Pt El t yreoa@) T ar T iz Tt SO A (3613

where we have added a term Ar as in the pure Yang-Mills case since the #-dependent
terms in the Hamiltonian does not change compared to the pure Yang-Mills theory
and therefore 6 changes only adiabatically at large . The contribution of the Chern-
Simons term to the Hamiltonian are given by the terms proportional to k. Since
%—g = 0, pgs remains as a constant of motion and we can concentrate on the time

evolution of the phase space variables r, 6, p,., py only.

Hamiltonian equations of motion are

. OH
r= = Pr
o "

. OH  4p} v k*r 3 . 9

r = T 5 — " a - - 0) — ha
P or r3  rd3cos?(f) 1672 rsin’(6) (3.6.14)
o OH _4m -

B 6;09 N rz’

. oH 1, _ p} tan(0)

=——=—= 0)sin(f) — ——— .

bo 00 2" cos(9) sin(f) cos?(6)r?

It is also interesting to note that the Hamiltonian can be expressed in the form

1 2 1 i 2
H —- 2 ~ 2 - —r? 2 0
2pr + sze - 272 0082(9) (p(ZS * 47Tr o ( ) (3615)

1 2 kQ ? -2 1 k4 12
+3 (r + 167r2> sin”(6) — 1256150 (0) + hr.

3.7 Numerical Results and Chaos

Compared to the pure Yang-Mills matrix model Hamiltonian there is no change in
the phase space variables, they are still (r, 0, p,, pg) while the Hamiltonian and con-
sequently the equations of motion have new contributions due to the Chern-Simons
term. We now have in addition to py another constant £ € Z which can be taken to
assume different integer values, and we probe the emerging chaotic dynamics at dif-
ferent values of p, and k. The constants (E = 1, ~ = 0.1) and the algorithm choosing

randomly initial conditions are same as in the section[2.3]
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In the absence of the Chern-Simons term, the dynamics of the Hamiltonian (3.6.13))
becomes almost completely chaotic, as py — 0, while, chaos ceases to exist for
Py = 2. At pg = 1, for instance, there is a small region in phase space filled with
quasi periodic orbits, while the rest is chaotic. Here we study how chaotic dynamics
changes for different choices of the Chern-Simons level at three different values of

Pg, Which are py = 0,1, 2.

The general effect of the additional terms is to reduce chaos with increasing Chern-
Simons level. At py, = 0, we see from figure that as |k| increases largest Lya-
punov exponent (averaged over several initial conditions) quickly approaches to zero,
indicating that the system becomes less and less chaotic as |k| increases and almost

no chaos exists for |k| > 10.

At py = 1, increasing the |k| values suppresses the chaos except for the values of
k = —1to k = —4. Poincaré sections in figure 3.1| shows that the area of KAM
tori takes the larger part of the phase space for the increasing positive & values. For
negative k values in figure the range of k that sustains chaotic dynamics is larger
but chaos eventually disappears. The same trend can be seen in figure 3.4b| Lyapunov
exponents tend to increase only slightly for £ < 0 and |k| small but they start to
decrease and goes to zero at larger |k| values. In order to understand the cause of

small but interesting increase for k = —1 to k = —4 consider the following equation

kpy | k*r? Ly, 25 2 Ly o

E— (X2 = = —r®sin“(0) + hr. (3.7.1

( A N 3272 or i r2le N 212 cos?(6) - T (6) +hr. )

Here, we have just rearranged the equation (3.6.13) so that the right hand side of this

equation is the Hamiltonian of the pure Yang-Mills case. For —4 < k < —1 of k
k22

values kpy + 355 < 0. This has the same effect as increasing the energy of the pure

Yang-Mills case which results in an increase for the value of the Lyapunov exponents.

At py = 2, we do not have much chaos left in the phase space and a nonzero value of
|k| # 0 does not have any significant effect in this behavior as can be seen from the
plot[3.4c|which gives largest Lyapunov exponents to be very small, with the maximum
values of approximately 0.03 at & = —4, and this number is not large enough to

indicate appreciable chaotic dynamics in the phase space.
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k=3 k=4

Figure 3.1: Poincar€ sections at p, = 1 for positive k values

Poincaré sections in figure [3.3] are in agreement with the conclusions drawn from
the Lyapunov spectrum. Although the regions contain randomly scattered dots for
k = —1,-3,—5 as can be seen in figures [3.3c, [3.3d] [3.3¢| they appear due to a

limited number of initial conditions and this does not cause an appreciable effect in

the Lyapunov spectrum.
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©)k=-10 (d) k=-15

Figure 3.2: Poincaré sections at ps = 1 for negative k values
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Figure 3.3: Poincaré sections at p, = 2
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CHAPTER 4

TWO MATRIX MODEL WITH A MASS TERM

In this short chapter, we examine the changes in chaotic dynamics due to a mass
deformation in the two matrix model. As we will see shortly the mass term does not
break the gauge and the global symmetries. We, therefore follow the same approach

and if necessary use results from chapter[2]to present the developments in this chapter.

4.1 Two matrix model with mass terms

Adding a mass term to the Lagrangian (2.3.1)) is modified to
1
L=3 Tr((DoX1)? + (DoXo)? + (X1, Xo)* — 12 X7 — i X3) (4.1.1)

where % is a dimensionless parameter governing the mass deformation. Clearly,
Tru?X? is invariant under both the local gauge transformations UTX;U and the
global SO(2) rigid rotations X; — R;;X;. By using equation (2.3.2)), X? can be

expressed as
= ~292) (Oapla + i€apy0y) (4.1.2)

The mass term L, is then

4.1.3)



We have expressed the Lagrangian Ly, in terms of X; and X, in the equation (2.3.4)).

Thus, the Lagrangian with the mass deformation is

1 - 1 - 1 1
L= §(§1)2 + §(i2)2 — (X1 X Xp)? — §/~L X} — JH °%5 .
This yields the Hamiltonian,
L o2 Lo 222
H = op; + (X1 X Xp)" + Sp'Xy + 51°%
1 — — — —
= §(P? + 7% + (%1 X %)
Hamilton’s equations of motion are
: 0H
_’:——_,:2)_()X)_(»X)_(» —Q}E,
P1 0%, 2 X (¥ 2) — Xy
. OH
_.::__:_2_;X_;X_; _2_;’
P2 0%, Xy X (X1 X Xp) — p"Xp
X : =
1 apl 1,
X = =
1 8p2 2

while time derivative of the angular momentum

—

L =% XP1+X1XP1
:2721 X ()_('2 X ()21 Xig))-pﬂil Xil

= 2)_('1 X ()_('2 X ()_('1 X Xg)) .

4.1.4)

(4.1.5)

(4.1.6)

4.1.7)

Using the fact that L, and L, are anti parallel vectors we see that L; is in the same

direction with L as in the section

Using the coordinate transformation between X; and X,, and the new coordinates

(r,0, ¢, x) gives simply

2 2 _ .2
r1t+xy=1r".

(4.1.8)

Therefore, the Hamiltonian in (2:33T) is simply modified by an additive term £ 1%

and has the form

1 2, P}

1 1
H=_-p!+ =Spi+ =+ ZT4 sin?(0) + hr + —p*r®.

2 r2"0 T 212 cos?(6) 2

42
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The Hamiltonian equations of motion are

. OH
r= = Pr,
op. "
H 4 :
Dr = —a— = _p9 T sin2(9)—|— p¢ _h_ﬂzra
or 3 r? cos?(0)
i (4.1.10)
[——
8]79 r2p¢9 )
' OH pi tan(d) 1 , .
p¢9 — —W — —m — §T Sln(@) COS(G) .

4.1.1 Numerical Results and Chaos

Effect of the mass term on the chaotic behavior of this model will be examined
through studying the Poincaré sections and the Lyapunov spectrum. Initial condi-
tions are chosen as in section which are ¢ = 0, p, = 0 and r values are chosen

randomly as initially making py real for a given energy,

72 v 1
= — (B - =2 —hr— —pu2r2|. 4.1.11
Do \/2 ( oz " 2;”) ( )

Energy and the constant resembling & are again taken to be 1 and 0.1, respectively as

in section [2.3] We take p, fixed, at the value pgy = 1, and vary the mass parameter /.

Figure {.1] (a,b,c,d) show the Poincaré sections at 1+ = 0.15,0.30, 0.45, 0.60 respec-
tively. In figure there are KAM tori around py = 0.8 for p, € [0,0.2]. In figure
2.2a, we have the corresponding situation without the mass term and KAM tori were
also seen around the some region in the phase space. Effect of the mass term is to
narrow down this region in the phase space. Since the areas of the KAM tori in fig-
ures and are approximately same and the region outside of the KAM tori
is chaotic, smaller Poincaré section means smaller chaotic region in this comparison.
This fact implies that figure [4.1ais less chaotic than figure [2.2a] Increasing p to 0.30
in figure [4.1b| does not lead to a significant difference in the pattern, but chaotic re-
gion in phase space tends to become gradually smaller. In figure there are more
KAM tori at various coordinates of the phase space and chaotic regions occupy less
area in Poincaré section. At ;o = 0.60, KAM tori spread almost all over the phase

space, thus no chaos remains in the phase space.
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Figure 4.1: Poincaré sections at p, = 1

Lyapunov spectrum in figure [d.2] also shows that increasing x suppresses chaos cor-
roborating with the results inferred from the Poincaré sections. The system with mass
term becomes less chaotic than the one without the mass term as the value of the mass
parameter is increased. This can be seen by the fact that the largest Lyapunov expo-

nent at pg = 1 in figure [2.3]is larger than the one at say ;1 = 0.1 in figure .2
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CHAPTER 5

BFSS MATRIX MODEL WITH MASS DEFORMATIONS

In this chapter, we consider a double mass deformation of the BFSS matrix model
which breaks the global SO(9) symmetry first to SO(5) x SO(4) and subsequently
down to the product group SO(5) x SO(4) X Z,. The second step here is a conse-
quence of a particular choice for an ansatz configuration composed of fuzzy four and
two spheres with collective time dependence, which allows us to specialize to effec-
tive models with 4-dimensional phase space and gives us access to study the emerging

chaotic dynamics in a simplified setting.

5.1 Mass Deformed Action

Let us consider the double mass deformation of the BFSS model, whose Lagrangian

reads

1 1 1 1 1
S = 7 /dt TT(§(D0Xi)2 + Z[Xz‘,Xj]z - §M3(Xa)2 - §M§(Xb)2> , (5.1,

where 7,7 = 1,...,9;a = 1,...,5and b = 6,...,9. p; and py are mass deformation
parameters. The global SO(9) gauge symmetry is broken to SO(5) x SO(4) by
the last two terms in the action. We have found the equation of motion of BFSS

matrix model in section [2.1]as explicitly given in (2.1.23]). Contribution of the mass
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deformations to the equation of motion can be found as follows

Ly (Xa) — L, (Xa + 6X,)

M1
1 2 1 2
Tr —§,u1( — Tr —5Hi (X, +0X,)

) (5.1.2)

( 5,& (X2 +2X,6X, + (6X,) ))

=Ly, (Xa) = pi Tr(6XaXa) -
In like fashion, the variation of the second mass deformation is simply
1

L,,(Xp) = Tr(—ﬁﬂg(Xb)Q) — Ly (Xy) — p3 Tr(6X,X5) - (5.1.3)

In the Ay = 0 gauge, the equations of motion with respect to X, and X, are therefore

Xo+ [Xa, X5), Xj] 4+ 13X, =0,
“ [[Xa, X5], X5] + pi 5.14)
Xy + [[X0, X5, X5] + 43X, = 0.
Equation (5.1.4) form a rather complicated set of coupled non-linear differential equa-

tions, which cannot be easily solved. Further, the system is subject to the Gauss law

constraint [Xi, Xz] = 0 due to the Ay equation of motion.

In section we propose an ansatz configuration that is formed from matrices con-
figuring fuzzy 4-spheres and fuzzy 2-spheres at several increasing matrix levels and
with collective time dependence. To motivate these developments we discuss fuzzy

2-sphere and 4-sphere in the next two sections.

5.2 Fuzzy Two Sphere

Fuzzy S? [21]] can be obtained by the quantization of the map S® — S?. Consider
the two dimensional complex plane C* without the origin, C* \ {0}. The coordinates

z = (o + ify, oy + if33) can be written as ¢ = =, then |€[* is normalized to 1. In

Bl I’
this way, we see that £ can be used to describe the 3-sphere as

Consider the projection map z;(¢) = &7, , which is invariant under the U(1) trans-

formations ¢ — &e%. Clearly z; forms the components of a 3-vector X(¢). Let us
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compute the norm of X(§). We have

2iw; = (E1(00)avs) (€1 (00)caba)
= &l6Eléa(0a)a(0a)e
= €16l Ea(Bavdea — 2€acena)
= £16E a(—ba0ea + 200a0sc)
— 142

(5.2.2)

=1

Y

where a = 1,...,3 and a, b, c,d = 1, 2. Then z; can be understood as the coordinates
of S? embedded in R3. This construction is called the Hopf fibration U (1) — S —
S2.

Quantization of S gives the fuzzy S®. We can obtain fuzzy S* by replacing z; and
27 by annihilation operators a; and creation operators aj, which satisfy the following

commutation relation
(00| = 8. (5.2.3)

The number operator N is defined as
N =dla,. (5.2.4)
Using N, ¢, can be formally quantized as

~ ~

al (5.2.5)

1
ga:_,\&om 504 = T =%,
VN VN
for not taking the zero eigenvalue i.e. N = (. This condition on the number operator

removes the vacuum from the Hilbert space. However, a,, can create vacuum from

any |n) state. This complication does not arise for the quantization of the 2-sphere.

We can quantize fuzzy S? by quantizing the S* — S? map as follows

(5.2.6)

The last step follows from the fact that [ajaj, \/I_N} = (. Since [fi, N ] = 0, Z; can

be restricted to act on the (n + 1)-dimensional subspace of the Fock space spanned
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by the vectors

(aT)"l (aT)ng
Iy, no) = \/1717 2712! 10,0) (5.2.7)

where n; +ny = n. Then, ; are linear operators on this finite-dimensional space and

actonitas (n + 1) x (n + 1) Hermitian matrices.

SU(2) generators L; in terms of Schwinger construction [22] are given as

1
L= éaTUia (5.2.8)
and satisfy the commutation relations

The coordinates of fuzzy S? can therefore be expressed in the form
n

where % is the noncommutative scaling factor. The commutation relation of the coor-
dinates of fuzzy S? is

2

When n goes to infinity, this commutator vanishes identically and the standard S? is
recovered. The Casimir operator for SU(2) is L? and has the eigenvalues % (g + 1)
on the spin j = 7 representation of SU(2). We therefore have

L2 = g(g 1)L (5.2.12)

on any state of a SU(2) irreducible representations with spin J = 7. By using this

equation, radius of fuzzy S? is found as
2\’ n /n
2
(2) 2 (),
B (n) 2 (2 ) e
2
(1 n _> L
n

(5.2.13)

5.3 Fuzzy Four Sphere

The generators of the group SO(5) in the fundamental spinor representation with

Dynkin labels (0, 1) are
)
G'(ab = _Z[’)/a?’}/b] ) (531)
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where a,b = 1,...,5, and ~, are gamma matrices acting on C* and associated to
SO(5) group. They are defined by the anti-commutation relations {v,, 75} = 204

and we pick them in the following basis

0 01

T =01Q 01 = ;
01 0
0 (o))

Yo =01 Q03 = ;
092 0
0 03

V3= —01 Q03 = — ) (5.3.2)

03 0
0 1

Vo= —02 1Ly =1 )
-1, 0
-1, 0

V5 = N1Y2Y3Ya = —03 @ 1y = ;
0 1,

where o1, 05, 03 are the Pauli matrices.

SO(5) commutation relations are given in the standard form in 4-dimensional spinor

representation

[Galn ch} = i((sachd + 5bdGac - 5adGbc - 5chad) . (533)

Let us form the Hilbert space H,, as
Hy=(C'"®... @ C")gym - (5.3.4)

This is the n-fold symmetric tensor product of C*. H,, is the carrier space of the (0, n)

irreducible representations of SO(5) and has the dimension
1
N =dim(0,n) = a(n +1)(n+2)(n+3). (5.3.5)

Fuzzy S* [23, 24] is constructed such that its "coordinates" are matrices, X, acting

on H,,. Thus, we can define X, as follows
Xo=(70L®. 0L+ .+ 14® ... 1, ®V,) . (5.3.6)
X, are N x N Hermitian matrices with N given in (5.3.3), satisfying
X Xo =n(n+4)1,, (5.3.7)
el X Xy X . Xq = 8(n + 2) X, (5.3.8)
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where the equation gives the radius of fuzzy S* as

o =+/nn+4). (5.3.9)
The commutation relation of fuzzy S* is given as

[(Xo, Xp) = 4iM, (5.3.10)

where M, are generators of SO(5) in the (0,n) irreducible representation. They

satisfy the SO(5) algebra
[Map, Mea) = 4i(8acMpa + SbaMac — SaaMpe — dpeMaa) - (5.3.11)
The commutation relation of M, and X, is
[Map, Xe] = 4i(0ac Xy — 0peXa) 4 (5.3.12)

which shows that X, transform as vectors of SO(5).

5.4 A Configuration with Collective Time Dependence and Fuzzy 4 and Fuzzy
2 Spheres

We use fuzzy S* and fuzzy S? configurations to build an ansatz for the matrices X

(4 : 1...9) with collective time dependence. In particular, we take
Xy = y(t)Xs, b=6,..,8, (5.4.1)

where r(t) and y(t) are time dependent real functions. Here X, are fuzzy S* matrices
which are given in equation and their dimension is given in equation (5.3.3).
X, are fuzzy S? matrices which are taken as spin-j irreducible representations of
SU(2) with the dimension 2j + 1. These matrices must have the same dimension
N x N. Thus, we have the following consistency condition

2] +1= 1(n +1)(n+2)(n+ 3)

6 (5.4.2)

1
Jj= En(nQ—l—Gn—i— 11),
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for the levels (i.e. matrix sizes) of fuzzy S* and fuzzy S?. Substituting the ansatz
(5.4.1) into the action (5.1.1) and performing the trace operation we find the corre-

sponding reduced effective action. The corresponding Lagrangians are

(5.4.3)

-2 -2 4 4 2.2 2,2 2,2
Ln:Cﬂ” +ng —8017” — CY — CL T — Coly —C3TY .

Here we have used normalized trace Try = % Tr. The values of the coefficients
c1, Co, c3 appearing in (5.4.3) are given in the table [5.1] at different values of n from
n = 1ton = 6. In other words, we have obtained a family of effective actions by

using the ansatz (5.4.1)) at the matrix levels N = 4,10, 20, 35, 56, 84.

n=1| n=2 n=3 n—=4 n=>5 n==~06
cy 2.5 6 10.5 16 22.5 30
cy | 1.88 12.38 49.88 153 391.88 881.88
C3 21 207.66 | 1080.38 | 3970.31 | 11691.15 | 29493.06
Table 5.1

Corresponding Hamiltonian is

2

b
+ ﬁ + 8crrt 4 oyt + e pdr? + copdy? + csr’y? + 2c .
2

ja

544
1, (5.4.4)

H =

The constant term 2c; is included here to ensure that the minimum energy is zero.

Stability analysis given in the next section will reveal how the term 2¢; comes about.

The equations of motion are

L P
201 ’

. Py

Yy= -,
2¢9 (5.4.5)

Py = —32c11° — QClufr — 2c31y?

Dy = —4eoy® — 2eap5y — 2¢377Y
which describe a non-linear system of coupled differential equations. p; and ps are
essentially free parameters. To probe the chaotic dynamics, we consider the possibil-
ity that mass parameters could also be tachyonic, in particular we focus on the choice
p3 = —8 and p3 = 1. Other choices can be made and can have non-trivial effects on

the chaotic dynamics, but several essential features appear to be the same.
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5.5 Stability Analysis

The fixed points of the system described by Hamiltonian (5.4.4) are found by equating

the Hamiltonian equations of motion (5.4.5) to zero:

br

=0

261 ’

Py _

2¢y ’ (5.5.1)

—32¢y13 — 201;1%7" — 203ry2 =0,
—4coy® — 2cop2y — 2c3r%y = 0.

First two of the equations are trivially solved by p, = p, = 0. Solutions of the

remaining two algebraic equations for 7 and y are found using Mathematica to be

(r,y) = {(o,o), <:|:%,O>, (Oi%) (:I:fl,j:f2>, (:I:fl,$f2>} . (55.2)

where
c2(16¢1 + c3) _ [2¢1(2¢9 + ¢3)
=y —" =2y ————=. 5.5.3
h \/ 32¢c1c9 — 3 fa=2i 32¢1¢9 — 3 ( )
For the values of ¢y, ¢s, ¢3 given in table[S. 1| forn = 1, ..., 6, f; and f, in (5.5.3)) form

complex sets, therefore the only real solutions for r and y giving the fixed points are

(7,4, Doy Dy) = {(0,0,0,0), (%,0,0, 0), (— %,o,o,o)} . (5.5.4)

The energies of the fixed points can be found by substituting these solutions into the

Hamiltonian

Ef = E¥(0,0,0,0) = 2¢y,

1
F_ pF (| _
Ef =FE (\/5,0,0,0)_0, (5.5.5)
1
EF:EF(——,O,0,0>:0.
3 \/5

These energies are indeed the values of the potential at the critical points. We see that
without the addition of the last term 2¢; to the Hamiltonian in (5.4.4) we would have

found EI" = EI' = —2¢,.

In order to study the stability of the system at these critical points, we may proceed
as follows[15]]. First let us label the phase space coordinates as (z1, 2, x3,T4) =

(7, y,pr, py) for notational ease. Correspondingly left hand side of all equations in

54



(5.4.5)) are denoted as (i1, @9, ¥3,44). From the derivatives of z, (« : 1,...,4) with

respect to 3 we may form the Jacobian matrix J,3 = g%g and it reads
0 0 i 0
0 0 0 =
J(r,y) = 22 | (5.5.6)

J31 —4egry 00
—4csry Jao 0 0

where

J31 = —96017”2 — 203y2 + 16C1 s
(5.5.7)

Jio = —12¢oy* — 2¢57% — 2¢5 .

Eigenvalues of the Jacobian J,z are used to determine the stability of the correspond-

ing fixed points. According to the results given in [15, [25] we have,

i) If at least one real positive eigenvalue exists, the corresponding fixed point is

unstable.
ii) If all real eigenvalues are negative, the corresponding fixed point is stable.

iii) If there are no real eigenvalues, the corresponding fixed point may be stable or

unstable depending on the higher order terms, and this is the borderline case.

The eigenvalues of .J,,5 for the fixed points in (5.5.4)) are

A = A0,0,0,0) = (—i,i, —2V2,2V/2) |
1 L. —i\/QCQ +c3 i\/QCQ + Cg>
A=\ —=,0,0,0) = (—4i,44, , ,
’ (\/5 > ( V2 V2¢

1
AMM=A|—+=,0,0,0) =X\
’ ( V2 ) ?

Therefore, we conclude that (0, 0, 0, 0) is an unstable fixed point while <i\/i§, 0,0, O>

are borderline cases for deciding on the issue of stability as all the eigenvalues of J,3

(5.5.8)

are purely imaginary. Higher order analysis is required to identify the stability at
these points. Here, we are not going to pursue it further as we can extract sufficiently
illuminating results regarding the chaotic dynamics already at this level of the analy-

sis.
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5.6 Numerical Results and Chaos

We pick the initial conditions as follows. We initially take y = 0. Evaluating the

Hamiltonian at this point gives

2 2
H — & + p_y + 801T4 — 8017’2 + 2¢; , (561)
y=0 4cq 4co ~ ~~ o
~—~ =~ k3
k‘l k2

where we divide the Hamiltonian into three parts. We pick three random numbers
giving the energy as £ = k; + ko + k3. From these random numbers, we obtain p,.

and p, as

Pr =V 401]{31 s Dy =V 462]{32 . (562)

Consequently, r is found as

1
142, /2" 1—2,/2s

r={+ TS Ve . (5.6.3)

We choose to work with the upper sign in (5.6.3). Then we have

1
k 2 k
142 —8031 1—-2 —8631
Ve ro =

_— 5.6.4
5 ) 5 ; (5.6.4)

mr =

where 7; is always real and 75 is either real or imaginary. When 75 is imaginary, we
take r = r1. On the other hand, when both 7y, 5 are real, we randomly choose one of
them with equal probability. In this way, we choose all initial conditions as real and

positive numbers.

5.6.1 Poincaré Sections

In figure [5.1] we have plotted the Poincaré sections on p, — r plane at y = 0. The
left hand side column of the given plots i.e. figure[5.1](a,c,e,g.i,k) show the Poincaré
sections at the energy 2c¢; of the unstable critical point (0,0,0,0) forn = 1,2, ..., 6,
these energies are given respectively as £ = 5,12,21, 32,45, 60. We observe from
these Poincaré sections that the phase space is essentially filled by quasi periodic or-

bits and no chaotic dynamics appears. From the plots given in the right hand side i.e.
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figure[5.1] (b,d,f,h,j,1) which are at energies £ = 6,15,22,34,47,63 atn =1,2,...,6
respectively, clearly shows the transition in the system to significantly chaotic behav-
ior due to significant number of randomly spread points covering some or all of the
Poincaré sections, although there are still some KAM tori present. Plotted Poincaré
sections are due to 25 different initial condition sets. The reason of the plots not being
symmetric with respect to p, axis is due to the fact that we initially take only positive

initial conditions, and hence the motion always starts in the positive r, p,. plane.

5.6.2 Lyapunov Spectrum

We also determined the Lyapunov spectrum of the system at n = 1,...,6 at the re-
spective fixed point energies and at energies slightly larger than these to probe the
transition of the system from non-chaotic to chaotic behavior. In figure [5.2] (a-1) time
series of the Lyapunov exponents are given. Each time series plot is the result of av-
eraging of the Lyapunov exponents over 40 randomly chosen initial conditions. The
plots given in the left hand side i.e. figure[5.2](a,c,e,g.i,k) are the Lyapunov exponents
at the fixed point energies 2c;. We see that, all the Lyapunov exponents approach to
zero value indicating that the system is not chaotic at the fixed point energy. The
plots given in the right hand side of figure [5.2](b,d.f,h,j,]) show that there is a positive
Lyapunov exponent which is a definitive indicator of presence of chaotic dynamics.
We also observe that the sum of the Lyapunov exponents add up to zero as is expected

from a Hamiltonian system.

5.6.3 Largest Lyapunov Exponents versus Energy

In order to understand the structure of the chaotic dynamics in these systems, we have
performed a numerical study to reveal how the largest Lyapunov exponent responds

to increase in the energy given in figure[5.3]

We find that the response of the largest Lyapunov exponent above the critical value of
the energy (i.e. above the critical energies for which they become non-zero) appears
to be changing logarithmically with energy except for n = 1. The latter is a special

case in which the dynamics is chaotic only for a particular range of energies.
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We find that the functional form

M (F) = a,log(E) + b,

(5.6.5)

fits very well with the numerical results with the coefficients provided in the table

below.

n an b,

2 10.3448 | —0.8369
3 10.3517 | —0.7926
4 1 0.3716 | —0.8183
5 1 0.5557 | —2.197
6 | 0.5826 —2.47

Table 5.2

We see from table [5.2|that for n = 2, 3, 4 there are only slight variations in the values

of a, and b,, indicating that the largest Lyapunov exponents in these models at the

levels show essentially the same universal response: to the increasing. The same

conclusions can be made for n = 5, 6. However, we cannot immediately infer if and

how this pattern could alter with increasing n, although it seems reasonable to think

that a similar logarithmic dependence of the largest Lyapunov exponents on energy

could be expected.
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CHAPTER 6

CONCLUSION

In this thesis we have presented the results of two original research projects. The
main theme of the works have been the exploration of chaotic dynamics emerging
from matrix gauge theories. We first gave a review of the bosonic part of the BFSS
matrix model and a related two matrix model in chapter 2. For the latter, we have re-
produced numerical analysis given in [8] using our own code and revealed the chaotic
dynamics. In particular, we have demonstrated and verified how a conserved compo-
nent of angular momentum, p,, impact the chaotic dynamics, and how the system
ceases to transit from chaos to no-chaos as the value of py is modified as originally

discussed in [8]].

In chapter 3 we have focused our attention on the Yang-Mills Chern-Simons matrix
model with two matrices which is a variant of the two matrix model reviewed in
chapter 2, supplemented by the Chern-Simons term. The latter is first order in time
derivatives and we presented a careful and detailed analysis of the formulation of this
model. In this model too p, is conserved. Nevertheless, there is another parameter
in the model, namely the Chern-Simons coupling or the Chern-Simons level which
have quantized for non-abelian Chern-Simons theories. For a set of values of py we
analyzed how the Chern-Simons level k£ € Z affects the chaos. From the Poincaré
sections and Lyapunov spectrum we have found that for the completely chaotic case
of p, = 0 without the Chern-Simons term, increasing the value of | k| results in driving
the system to be less chaotic. We have seen from the largest Lyapunov exponents in
figure that the chaos is sustained quite well in the range |k| < 10, while the
system transits to non-chaotic phase for |k| > 10 essentially. At p, = 1, chaotic

dynamics of the model is still sustained at the range —6 < k& < 2 of values of k as
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can be seen from the figure @} In fact, we see that there is even an increase in
chaos for —4 < k < —1 which is seen from figure |3.4b, and also figure The
reason for this new effect can already be understood from (3.7.1)), which tells us that
for —4 < k < —1 increasing |k| amounts to increasing the energy of the two matrix
model without the Chern-Simons term, leading to larger positive Lyapunov exponents

as an indicator of more chaos.

Finally, at py = 2, we see that the system behaves in an almost non-chaotic manner
regardless of the value of %, and even more so with increasing values of |k|. This is
to be expected as the pure Yang-Mills model also ceases to be chaotic essentially for
Pe > 2 and the same profile is sustained for the model with the Chern-Simons term

too.

We have examined the effects of mass term on the structure of two matrix model in
chapter 4. The Poincaré sections and Lyapunov spectrum have demonstrated the fact

that increase of the mass term suppresses the chaos.

Chapter 5 has devoted to the study of a double mass deformation of the BFSS model
configurations with collective time dependence to obtain a family of effective ac-
tions in this model. After performing an analysis of the fixed points and their sta-
bility for the corresponding effective Hamiltonians we have directed our studies to
explore the transition to chaos once the system exceeds the energy of the unstable
fixed point. Poincaré sections and Lyapunov spectrum are obtained at fuzzy sphere
levels n = 1, ..., 6 and reveals the transition to chaos in these systems after the fixed
point energy is exceeded. Finally, we have shown that largest Lyapunov exponents

vary logarithmically with the energy of the system.
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APPENDIX A

CALCULATIONS ON CHERN-SIMONS THEORY

A.1 X Matrix
The result of the matrix multiplication in (3.6.3)) is

Xll X12
X - X21 X22 9 (All)
X31 X32

where the entries are

X = rsin(a) cos(8) sin(y) cos(f) sin(¢)  rsin(a) cos(B) cos(v) sin(f) sin(¢)
2 V2
rsin(a) cos(f) sin(7y) cos(¢) 4T cos(a) cos(7y) cos(8) sin(¢)
V2
r cos(a) sin(7y) sin(0) sin(¢) LT cos(a) cos(7y) cos(¢)
V2 V2 ’
r cos(a) cos(3) sin(y) cos(f) sin(¢) LT cos(a) cos(f3) cos(7y) sin(6) sin(¢)
V2
rcos(a) cos(f3) sin(y) cos(¢)  rsin(a)sin(7y) sin(f) sin(¢)
+ - ¥ (A.1.2)
rsin(a) cos(y) cos(f) sin(¢)  rsin(a) cos(7y) cos(¢p)
+ + 7% :
rsin(f) sin(7y) cos(6) sin(¢) LT sin(f) cos(y) sin(#) sin(¢)
V2 V2
4T sin(f) sin(7y) cos(¢)
NG ;

[\)

X21 =

S

S

[\

X31 =
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rsin(a) cos() sin(7y) cos(f) cos(¢)  rsin(a) cos(5) cos(y) sin(f) cos(¢)

e V2 i V2
N rsin(a) cos(3) sin(7y) sin(¢) N 1 cos(a) cos(7y) cos(#) cos(9)
V2 V2
_ rcos(a)sin(y) sin(f) cos(¢)  rcos(a) cos(y) sin(¢)
V2 V2 ’
X, T cos(a) cos(f) sin(7y) cos(6) cos(¢) 4T cos(a) cos(B) cos(7y) sin(6) cos(¢)
V2 V2
_ rcos(a) cos(S) sin(y) sin(¢) LT sin(a) cos(y) cos(8) cos(¢)
V2 V2
_ rsin(a)sin(y) sin(f) cos(¢)  rsin(a) cos(y) sin(¢)
V2 V2 ’
X T sin() sin(7y) cos(f) cos(¢) LT sin(3) cos(7y) sin(f) cos(¢)

V2 V2
_ rsin(8) sin(y) sin(¢)
NG .

The first column of this matrix is X; and the second column is X,. We also use this

matrix for the evaluation of the metric.

A.2 Metric

The metric of the two matrix model with Chern-Simons terms is more general than
the two matrix model metric since we have used the full Euler angles and additional
parameters appear. We have used this metric in the coordinate transformation for the

(r,6,¢,q,B,v) coordinates. The metric is found by the equation g;; = Tr (@X 10, X )

as follows
1 0 0 0
0 ; +r?sin(6) 22 cos(B) 0 §
0 irZsin(@ r? r?cos(B)sin(@d) 0  r2sin(f

= |0 B @@ 0 ) |

0 T cos(3) g34 44 gss 77 cos(f)
0 0 J54 Js5 0
0 = r? sin(6) 2 cos(f3) 0 r?

where
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g3s =12 cos(B3) sin(f)

s = — %T2 cos(283) cos(2(y + 0)) — 1—167“2 cos(2(8 — 7))

— %67”2 cos(2(6 + 7)) + 37’2 cos(205)
1, 3r2
T cos(6) cos(2y + 0) + i (A.2.2)

1
G54 = — 57“2 sin(f3) cos(f) sin(2y + 6) ,

1
Gu5 = — 57"2 sin(f) cos(#) sin(2y + 0) ,

1, 1, r?
G55 == 7 cos(2(y +6)) — 1" cos(2y) + 5 -

The inverse metric g,;' = g* is

1 0 0 0 O 0
0 % 0 0 0 -2
0 0 sec22(9) 0 0 __sec(9) ;an(&)
" ; , (A2.3)
0 0 0 944 g45 946
0 0 0 g54 g55 g56
0 — % _ sec(9) ;an((?) 964 965 g66
where
= (cos(27) + cos(2(y + 0)) — 2) esc?(B) esc?()
— — 7’2 ,
4 = 2 cot(0) cse(f) esc(f) sin(2y + 0)
- = :
4 — (cos(27) + cos(2(y + 0)) — 2) cot(B) csc(B) csc?(0)
= T2 7
se 2cot(f) cse(B) esc(f) sin(2y + )
g = > ,
r
7 = (cos(2v) + Cos(2(:2+ 6)) + 2) csc?(0) | (A2.4)
7 = 2 cot () cot(0) csc () sin(2y + 6)
S - ’
= (cos(27) + cos(2(y + 0)) — 2) cot(3) csc(B) csc?(6)
= 7»2 )
# = 2 cot () cot(0) csc(f) sin(2y + 6)
S - :
5 = —(cos(27) + cos(2(y + 0)) — 2) cot?(B) csc?(0) + sec?(0) + 1
- > :
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A.3 Angular Momentum Matrix for the Euler Rotation

In general angular velocities can be expressed in terms of Euler angles and their time

derivatives as [20]

wy = A sin(a) sin(B) + £ cos(a),
wy = Bsin(a) — 4 cos(a) sin(B), (A3.1)

ws = &+ Y cos(B) .

The kinetic energy for rigid body motion is

1
T:_[i 2
g it

:%(Ilw% + Lws + Lw;)
:]1(72 sinz(a) siHQ(B) + 257 sin(a) COS(Oz) sin(ﬁ) + 5’2 COSQ(Q)) (A.3.2)
+ I,(3? cos?(a) sin?(8) — 267 sin(a) cos(a) sin(B) + 2 sin?(«))

+ I3(26 cos(B) + & + 52 cos*(B))

where I; are the moment of inertia with respect to the Euler angles. By using p, =

oT _or _ T
96 D5 = 55, Py = 5y We have

Pa =I5 (& + 7 cos(B)) ,
Ps :% (2]1 cos(av) (”’y sin(a) sin(f3) + Bcos(a))
+215 sin(«) (6 sin(a) — 7 cos(a) Siﬂ(ﬁ))) :

. : (A3.3)
Py =5 (2]1 sin(«) sin(f) ("y sin(a) sin(f5) + 3 cos(a))
—215 cos(a) sin(f) (ﬁ sin(a) — 7 cos(av) sin(ﬁ))
+215 cos(f3) (& + 7 cos(B))) .
Equation (A.3.3) can be written in matrix form as
Pa 0 Ig [3 COS(B) «
ps | = 0 Ay Ay B (A3.4)
p’y ]3 COS(ﬂ) A32 A33
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where
Agy = I cos? () + I sin?(a),

)
) — I cos(a) sin(«) sin(f) ,
Asy = I cos(a) sin(a) sin(f) — I cos() sin(a) sin(f3) ,

(
Agz = I cos(a) sin(a) sin(f (A35)

Agz = I3 cos*(B) + I cos? () sin?(B) + I sin®(a) sin?(3) .

We write (A.3.4) as P = A-© for notational ease. The column matrix (&, 3,4)7 =
can be obtained from the equation O=A41.P. Substituting ¢, 6 ,y coming from
this equation into (A.3.1)) yields wy, wo, ws in terms of p,, pg, p, , and we obtain the

angular momentum L; = % = I,w; as follows

Ly =sin(a)(py csc(B) — pa cot(B)) + pg cos(a) ,
Ly = cos(a) esc(B)(pa cos(B) — py) + pssin(a) (A.3.6)
Ls =pa,

or in the matrix form

. sin(a)(py csc(B) — pa cot(3)) + pg cos(a)
L = | cos(a) csc(8)(pu cos(®) — py) + ppsin(a) | . (A3
pa
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APPENDIX B

METHODS OF EXAMINING CHAOS

B.1 Poincaré Sections

N dimensional phase space can be equivalently reduced to N — 1 dimensional surface
by taking the intersection of the flow in the phase space and a surface of section, which
is called as Poincaré section[9, |15, |16} [17]. The flow of the phase space is seen as
dots in the Poincaré section. The dynamics of the system can be examined by the
pattern of these dots. In a periodic motion, the flow of the phase space intersects the
surface at the same points after a while. Different initial conditions change the place
of these points. Each flow for different initial conditions can be projected onto the
same surface of section. In this way, Poincaré sections yield more comprehensive
analysis of the dynamics. For each different initial conditions, neighboring points are

formed in a periodic motion and they all form a closed contour.

Quasi-periodic motion consists of N > 2 different frequencies such that no frequency
can be written as a linear combination of others by using rational coefficients. In other
words, ratio of the frequencies are not rational numbers, they have to be incommen-
surable. Quasi-periodic motion of N frequencies can be regarded to form a phase
space, which is an N-dimensional torus, which is also called the invariant torus in
the context of the Kolmogorov-Arnold-Moser (KAM) theorem [15, 26]. The latter
is a celebrated theorem in mathematics, which can be briefly stated as the result that
for a small enough perturbation of a Hamiltonian system, there exists invariant torus
of the perturbed system which is close enough to that of the unperturbed system.
The details and proof of this theorem are quite complicated and beyond the scope of

this thesis. Nevertheless, a simple example can briefly illustrate these remarks. If a
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Hamiltonian system of say a point particle has 72, i.e. as it invariant torus, this means
that the particle exhibits quasi-periodic motion with frequency w; and ws as long as
"“ZZ—; is an irrational number. The latter ensures that the trajectory of the particle never
overlaps and eventually passes through every point of the invariant torus. Therefore,
quasi-periodic orbits in Poincaré sections can be seen by dots forming denser closed
contours. In this context, denser means that closed contours are like continuous lines
instead of separated dots. These contours are usually called KAM tori. On the other

hand, chaotic motion appears in Poincaré sections as randomly scattered dots.

As a simple example in which Poincaré sections can be illustrated, we may consider

the two dimensional simple harmonic oscillator with the Hamiltonian

2

2
Dy Py 1,4 2
H==-"2%4+"2 1k . B.1.1
2m+2m+2($ +y7) ( )

Let’s take m = % and k = 2, then the Hamiltonian becomes

H=p2+p, +a°+y. (B.1.2)

The Hamiltonian equations of motion are given as

i =2p,, p.=-—21, (B.1.3)

y=2p,, Dy=—2y. (B.14)

Equations of motion are integrable and this motion is well known to periodic. There-
fore, we naturally expect to see a closed contour in the Poincaré section provided that

sufficient number of initial conditions are used in sampling.
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-2 -1 0 1 2

Figure B.1: Poincaré section at £/ = 5

Taking £ = 5 and selecting initial conditions such that (z,y) = (0,0) and p, =
\/ E? — p? with p, chosen randomly in the interval p, € [—\/E, \/E} to make p,
real and using 125 different initial conditions according to this protocol, p, — py,

Poincaré section is obtained and given in figure [B.1

B.2 Lyapunov Spectrum

Lyapunov exponents[9, 27, 28] measure the sensitivity of the system to given initial
conditions. Let x'(¢) denote an "™ initial condition and nearby point in the phase
space be x(t) + dx'(t) . The deviation dx'(¢) can be expressed as

6x'(t) = ox'(0)eM, i=1,...

N, (B.2.1)

Y

where ); are Lyapunov exponents for NV dimensional phase space. §x*(0) form an
N dimensional infinitesimal sphere in the phase space. Time evolution of the system
distorts the infinitesimal sphere into an infinitesimal ellipsoid, which dx‘(¢) is the 7™

principal axis.
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Lyapunov exponents are given as

1 ox'(t)
A = tlggo n 1Og(5xi(0)> ) (B.2.2)

Let us denote the time evolution operator as
By =Mt (B.2.3)
Dividing the time ¢ into the two steps as t = t; + t, we have
6x'(t; + to) = 0x'(0) B, By, . (B.2.4)

Therefore, dividing the time into n equal steps such that ¢ = nAt gives the Lyapunov

exponents as follows

(B.2.5)

1
A = lim 10g<

t—oo N/t

0x(0)

Let v} be the orthonormal basis which are tangent to the trajectory of the ™ initial
condition at ¢ = 0. Time evolution of these vectors can be obtained by v = Ea;v{ .
However, the vectors vi do not have to be orthogonal. Using the Gram-Schmidt

orthogonalization we can obtain the orthogonal set as follows

A , (B.2.6)
uﬁzv’l—ZPuzl(vﬁ), i>1.
1=1
P,() is the projection operator defined by
(8, @)
Pa - 5 B.2.7
(8) = aay® (B2.7)

where (-, -) is the inner product. The expansion rate of the vector vi can be found by

i _ ||ul1|| _ ” i

r - , (B.2.8)
LIl '
where v! is normalized to 1. u} can be normalized as follows
S Lo
51

This procedure defines the time evolution of one At . After nAt steps we have

n—oo NAL

A = lim LZlog(r,i). (B.2.10)
k=1
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The set A; = {\1,..., Ay} is called as Lyapunov spectrum. The highest deviation
among v; and u} occur for uj, as a consequence of this construction. At least one

positive Lyapunov exponents is sufficient to say that the system is chaotic.
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