
MODEL-DRIVEN ENGINEERING FRAMEWORK FOR REPLICABLE
SIMULATION EXPERIMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ORÇUN DAYIBAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JULY 2019

Approval of the thesis:

MODEL-DRIVEN ENGINEERING FRAMEWORK FOR REPLICABLE
SIMULATION EXPERIMENTS

submitted by ORÇUN DAYIBAŞ in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. Halit Oğuztüzün
Supervisor, Computer Engineering Department, METU

Prof. Dr. Levent Yılmaz
Co-supervisor, Computer Science and Software Eng. Dept.,
Samuel Ginn College of Engineering, Auburn University

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Department, METU

Prof. Dr. Halit Oğuztüzün
Computer Engineering Department, METU

Prof. Dr. Tolga Can
Computer Engineering Department, METU

Assoc. Prof. Dr. Kayhan İmre
Computer Engineering Department, Hacettepe University

Assist. Prof. Dr. Hacer Yalım Keleş
Computer Engineering Department, Ankara University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Orçun Dayıbaş

Signature :

iv

ABSTRACT

MODEL-DRIVEN ENGINEERING FRAMEWORK FOR REPLICABLE
SIMULATION EXPERIMENTS

Dayıbaş, Orçun

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Halit Oğuztüzün

Co-Supervisor: Prof. Dr. Levent Yılmaz

July 2019, 63 pages

Simulation experiments allow the user to capture the specific variability of multiple

interdependent processes. The use of simulation models is widely accepted by prac-

titioners from diverse areas of applied sciences. Therefore, simulation experiments

are an essential part of computational science and engineering. Nevertheless, simula-

tions are rarely replicated due to reuse and maintenance challenges related to models

and data. In this respect, it is proposed that some crucial and labor intensive parts

of the simulation experiments could be replaced or supported by model transforma-

tions. This work focuses on model-driven engineering practices to enable replicable

and reusable simulation experiments. These practices are used to devote researchers’

time to analyze the system under investigation rather than dealing with low level de-

tails to create a working environment. The results of our framework development

work and our research directions are presented.

Keywords: Design of Experiment, Simulation Experiment, Variability Management,

v

Model Driven Engineering

vi

ÖZ

TEKRARLANABİLİR SİMÜLASYON DENEYLERİ İÇİN MODEL
TABANLI MÜHENDİSLİK ÇERÇEVESİ

Dayıbaş, Orçun

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Halit Oğuztüzün

Ortak Tez Yöneticisi: Prof. Dr. Levent Yılmaz

Temmuz 2019 , 63 sayfa

Simülasyon deneyleri, kullanıcıya birden fazla bir birine bağımlı sürecin belirli değiş-

kenliklerini yakalama olanağı sağlar. Simülasyon deneylerinin kullanımı, uygulamalı

bilimlerin değişik alanlarındaki uygulayıcılar tarafından geniş kabul görmüştür. Bu

nedenle, simülasyon deneyleri bilişsel bilimler ve mühendisliğin önemli bir parçası-

dır. Diğer taraftan, simülasyonlar, model ve verilere ilişkin yeniden kullanım ve idame

zorlukları nedeniyle ender olarak tekrarlanabilirler. Bu bağlamda, simülasyon deney-

lerinin bazı önemli ve emek yoğun kısımlarının, model dönüşümleri ile tamamen veya

kısmen ele alınmasına dayalı bir yöntem önerilmektedir. Bu çalışma tekrarlanabilir,

yeniden kullanılabilir simülasyon deneylerini olanaklı kılmayı kolaylaştırmak adına

model-güdülü mühendislik pratiklerine odaklanmaktadır. Bu pratikler, araştırmacıla-

rın zamanlarını çalışma ortamının yaratılması gibi alt seviye detaylar ile uğraşmak

yerine incelenen sisteme ilişkin analizlere ayırması için kullanılmaktadır.

Anahtar Kelimeler: Deney Tasarımı, Simülasyon Deneyi, Değişkenlik Yönetemi, Mo-

vii

del Tabanlı Mühendislik

viii

To my family...

ix

ACKNOWLEDGMENTS

I would like to thank all members of MDA research group (the both Auburn Univer-

sity and METU teams). It was a pleasure to work with each one of them.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 The Scientific Method and Experimentation 1

1.2 Model-driven Experiment Management and Simulations 3

2 STATE OF THE ART . 7

3 OVERALL APPROACH . 11

3.1 Building Blocks . 11

3.2 Formal Models . 13

3.2.1 Variability Model . 13

3.2.1.1 Feature Modeling . 13

3.2.1.2 Simulation Experiment Feature Model 14

xi

3.2.2 Domain Model (Simulation Experiment Model) 17

3.2.3 Variability Management . 20

3.2.4 Management Process . 21

3.2.5 Applying Configurations . 22

4 DOMAIN-SPECIFIC LANGUAGE FOR SIMULATION EXPERIMENT
DESIGN . 25

4.1 Specifying an Experiment . 26

4.2 Specifying Variants of an Experiment Family 28

5 GENERATING AN EXECUTABLE EXPERIMENT 31

5.1 Power Users vs. True Users . 31

5.2 Target Environments . 33

6 CASE STUDIES . 35

6.1 Machine Interference Experiment 35

6.1.1 Problem Definition . 35

6.1.2 Experiment Specification . 36

6.2 Quadcopter Controller Experiment 38

6.2.1 Problem Definition . 38

6.2.2 Experiment Specification . 39

6.3 Airline Flight Revenue Experiment 41

6.3.1 Problem Definition . 41

6.3.2 Experiment Specification . 42

7 CONCLUSION . 47

REFERENCES . 49

xii

APPENDICES

CURRICULUM VITAE . 61

xiii

LIST OF TABLES

TABLES

Table 1.1 Replication < Reproduction < Reuse 5

Table 3.1 Design Selection Guidelines (adapted from [1]) 16

Table 6.1 Quadcopter controller experiment ANOVA Table 41

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 The Scientific Method . 1

Figure 1.2 Extended Scientific Method and Simulation Experiments 3

Figure 1.3 DSL-based Model-driven Engineering Approach (arrows depict

"represents to" relations) . 4

Figure 2.1 Knowledge Map (key topics are highlighted) 10

Figure 3.1 Overall Approach . 12

Figure 3.2 Feature Tree Notation . 14

Figure 3.3 Feature Tree and Feature Configurations 14

Figure 3.4 Feature Model of Simulation Experiment Design 17

Figure 3.5 Simulation Experiment Domain Model (simplified) 20

Figure 3.6 Variability Management Approach 22

Figure 3.7 Creating a Feature Configuration with the FeatureIDE 22

Figure 4.1 Feature configurations and annotation use 29

Figure 5.1 Experiment Execution Sequence Diagram for Power User 32

Figure 5.2 Experiment Execution Sequence Diagram for True User 32

Figure 5.3 Conceptual View of Our Generative Approach 33

xv

Figure 5.4 Generated Kepler Workflow (arrows denote data precedences) . . 34

Figure 6.1 Machine Interference Problem 35

Figure 6.2 Activity Diagram . 38

Figure 6.3 PID Controller . 39

Figure 6.4 Airline Ticket Pricing [2] . 42

Figure 6.5 Total Revenue Optimization and PRNG Alternatives 45

xvi

LIST OF ABBREVIATIONS

ANCOVA Analysis of Covariance

ANOVA Analysis of Variance

CSV Comma Separated Value

CIM Computation Independent Model

DeMO An Ontology for Discrete-event Modeling and Simulation

DOE Design of Experiment

DSL Domain-Specific Language

EMP Eclipse Modeling Project

EDA Exploratory Data Analysis

EXPO An Ontology of Scientific Experiments

FODA Feature-Oriented Domain Analysis

LCG Linear Congruential Generator

M2T Model-to-Text Transformation

M&S Modeling and Simulation

MANCOVA Multivariate Analysis of Covariance

MANOVA Multivariate Analysis of Variance

MDA Model-driven Architecture

MDD Model-driven Development

MDE Model-driven Engineering

PD Proportional Derivative

PID Proportional Integral Derivative

PIM Platform Independent Model

PL Programming Languages

PRNG Pseudorandom Number Generation

xvii

PSM Platform-specific Model

RSM Response Surface Methodology

SED-ML Simulation Experiment Description Markup Language

SESSL Simulation Experiment Specification via a Scala Layer

SPL Software Product Line

xviii

CHAPTER 1

INTRODUCTION

1.1 The Scientific Method and Experimentation

Scientists use the “scientific method” to develop their knowledge about the world.

The attained knowledge may form public domain intellectual assets or used to lead

new explorations as per the results. The scientific method can be considered as a

common sense while looking at the world to understand rather than an academic

dictation. Every exploratory study boils down to same steps and these steps forms

a cycle (refer to Figure 1.1). Basically, observation leads to a hypothesis (inductive

reasoning) and the scientist makes a reasonable prediction based on that explanation.

Figure 1.1: The Scientific Method

1

The most important characteristic of that explanation is to be testable by experimenta-

tion (possibly conducted by other parties). Being testable is a vital point because it is

the essence of the scientific method to ensure that the foundation of the knowledge is

stable and objective. These strong and testable pillars are used by practitioners under

the shade of rational skepticism. Therefore, objective and reproducible experiment

results are needed and “DOE - Design of Experiment” (Experimental design) is a

process to create and conduct robust, reliable and efficient experiments. DOE defines

a repeatable way and consolidates the best practices in this respect.

Experimental design (DOE) traditionally refers to physical experiments originating

in laboratory experiments (physical models). However, at least parts of these exper-

iments are good candidates to be handled in a software environment (mathematical

models). Therefore, use of computer simulations is a paradigm shift for some labor-

intensive experiments and orders of magnitude less time, cost and effort is expected

by using a simulation model. Figure 1.2 depicts the process of data science in gen-

eral. First, the both of computer simulations and physical experiments are used to test

hypothesis in modern data science projects. Another important characteristic of the

process is to have inherent cycles and some alternative paths. For instance researchers

may update their hypothesis and pivot the experiment into slightly different version

of it and this case can be repeated several times for even only one experiment. It is

also not an extreme that researchers use physical and mathematical models in con-

junction for a single research question. Thus, we need to manage the whole process

effectively since the experimentation system evolves over the course of the life-cycle

of the research and it is also contributed by different parties other than one single

person.

In terms of computer simulations Exploratory Data Analysis (EDA) is also important

sub-process because it is very first step to produce the mathematical models which

are directly utilized in the simulations. The practitioners also make sense of the data

and figure out what questions to ask in this analysis step. It is important to look

for patterns, trends and outliers to create reliable models and/or algorithms. Quality

of simulations and experiments are directly affected by quality of the process as a

whole. Therefore, the success depends on implementation of the processes utilizing

best software engineering practices with proper tool support.

2

Figure 1.2: Extended Scientific Method and Simulation Experiments

1.2 Model-driven Experiment Management and Simulations

Model-driven engineering (MDE) is a design and development approach for develop-

ment of complex systems (e.g. software-intensive systems). MDE is an approach to

create complex system where models are the principal elements of the development

process rather than implementation level artifacts only. It defines system functionality

using platform independent/specific models (respectively CIM, PIM and PSM). Fur-

thermore, transformations are main mechanism to generate artifacts at different levels

of abstraction (see Figure 1.3). We propose to support the experimentation process by

using the model-driven engineering approach (refer to Chapter 5 for details). In this

respect, we are introducing a domain specific language (DSL) and its environment to

manage simulation experiments. We need to elaborate our scope since “management”

is a very broad term, before giving other details about the study.

3

Figure 1.3: DSL-based Model-driven Engineering Approach (arrows depict "repre-

sents to" relations)

Experiments consist basically of a subject (an information source) and its environ-

mental conditions (an experimental setup). Simulation experiments use system mod-

els as an information source differently from physical ones. Zeigler coined the "ex-

perimental frame" term to isolate specific interaction for the both real system and its

model [3]. In terms of the simulation experiments, the separation between the system

model and the experimental frame allows us to apply the same experimental frame

to different system models and vice versa. In this respect, conducting experiments

as-is (replication) means to run the system model with the experimental frame of the

originator. It is a way of cross-checking to instill trust in the experiment results. The

replication covers all experiment assets, including its model and data. Furthermore,

reuse is a way to use assets (the artifacts of experiment workflow) in the context of

another experiment. Reuse is a fundamental way to facilitate the creation of new ex-

periments; moreover closely related experiments may form a family and that family

can be managed to increase productivity. Although sometimes the terms are inter-

4

changeably used, there is a clear distinction between “replication” and “reproducibil-

ity” [4]. Reproducibility is a matter of verification, leading to same scientific results

using a data set other than that of the originator (Table 1.1 helps to understand these

terms and their use in our context).

Table 1.1: Replication < Reproduction < Reuse

Model Data Context

Replication Same Same Same

Reproduction Same / Different Same / Different Same

Reuse Same / Different Same / Different Same / Different

The main objective of this work is to improve the experimentation process by us-

ing model-driven development strategies. The strategy was introduced informally in

[5]. However, formalization (in the form of metamodeling) is necessary to leverage

available technologies, particularly, model-driven engineering. As per model-driven

engineering approach, creating formal models and defining transition among these

different abstraction level of artifacts is the primary strategy. The core contribution

of this work is to define these transitions and models to validate applicability of the

concept.

It is acknowledged that the part of this work was published as a journal article in

the “Journal of Simulation” with title of “On the use of model-driven engineering

principles for the management of simulation experiments” (Please refer to the Chapter

7 for the detailed information about the publication).

The rest of the dissertation is structured as follows: Chapter 2 presents an overview of

the state of the art along with comparisons with our work in modeling simulation ex-

periments. Our proposed approach is elaborated in Chapter 3. Chapter 4 provides the

details of the Domain-Specific Language, named Xperimenter, for experiment mod-

eling and Chapter 5 describes a generative method to produce executable experiments

and manage their life cycle. Three case studies demonstrate the approach in Chap-

ter 6. The final section concludes our proposed model-driven methods for effective

simulation experiments and points to future research directions.

5

6

CHAPTER 2

STATE OF THE ART

There are several approaches in the literature that aim to increase productivity of

simulation experimentation process. These approaches handle the issue at a variety

of levels. As expected, higher level approaches such as creating general-purpose

simulation tools for specific domains naturally have a higher impact on productivity

[6] at the cost of decreased reuse. These tools are more practical to be used for

the very fixed contexts and in general the repeatability is supported by adopting this

approach solely. On the other hand, reuse of the assets such as simulation models

has also remarkable effects on overall productivity of the process [7, 8]. Furthermore,

more traceable process with reused assets increases the success of the research and

that increased transparency also contributes the scientific respect of the simulation

[9].

In this respect, we use scientific workflow engines to execute the whole simulation

experimentation process. The present implementation of our approach relies on a

specific scientific workflow engine, namely, Kepler [10], to encapsulate the simu-

lation models. The reader can refer to [11] for a presentation of some other well

known scientific workflow management systems and their comparison with Kepler.

It is worth to highlight that our approach is not restricted to Kepler, it is just the very

first implementation of many possible target environments (please refer to Chapter

5 for the details). Nevertheless, ad-hoc reuse of the experiment assets does not sat-

isfy the true users (these users are experts in their scientific field of study, but with

hardly any programming skills. The real world studies are generally conducted with

a cross-disciplinary team and that diversity must be addressed by the adapted frame-

work and/or methodology [12]. Please refer to [13] for the details of the true/power

7

user distinction if you feel it is not clear because that terminology is used extensively

through the rest of this dissertation in the context they provided.

In order to provide a systematic way to manage reusable assets, we need a well es-

tablished method. In this respect, our approach facilitates managed reuse by using

variability management techniques. Czarnecki et al. compare different approaches

on that subject in [14]. As per their comparison, feature modeling is the most widely

and most diversely used method by far. Furthermore, feature models can be directly

associated with domain models [15]. We use features to encapsulate the requirements

of experimenters.

Sturrock argues that a detailed functional specification of a simulation experiment

plays key role in a simulation study [16]. Moreover, [17] advises to have this spec-

ification before we start modeling to avoid unexpected costs. As a functional speci-

fication, our DSL can be seen an adequate medium to share information among the

practitioners. Sargent recommends an eight-step procedure in model verification and

validation [18]. Several steps require coordination of different parties through ex-

change of the specification and periodic runs of the model. Furthermore, simulation

modeling requires many experimental frames to be used to validate the model. Our

framework adopts DOE method [19] in this respect. In [20], the authors give useful

experimental designs and the benefits of this statistical approach in terms of cost and

effort.

In [21], the authors identify “ensuring engineering reproducibility to enable the re-

execution of analyses, and the replication of results” as a key challenge in scientific

workflows. Furthermore, many simulation specific parameters (number of runs, ran-

dom number allocations, time management issues, etc...) complicate the challenge

for simulation experiments [22]. Such complications underline the importance of

managed experimentation to reuse existing know-how on simulation experiment de-

signs. Our approach formalizes the whole process of simulation experiment to pro-

vide replicable results. This holistic approach takes advantage of using model-driven

engineering practices (e.g. model transformations [23]) to enhance replicability.

SED-ML is a proposed standard for encoding simulation setups. The referenced

(Level 1 Version 1) version of the standard does not allow nesting or ordering of

8

tasks. In [24], the authors state that modelers would provide SED-ML scripts with

their manuscript submission that defines the detailed steps of the execution. This

approach might be considered compatible with ours. It is possible to integrate our

experiment definition to SED-ML by defining a model-to-text (M2T) transformation.

There exist a few ontologies like DeMO [25] to formalize the modeling part of the

simulation experiments, but their main focus is to create a data interchange format

for the simulation models. We rely on a scientific workflow engine to encapsulate

the simulation model but we can still utilize DeMO, or other ontologies; our work is

complementary to theirs. EXPO [26] is an ontology of scientific experiments and our

formal models are influenced by that work. To the best of our knowledge, EXPO is

the closest formalization effort to our approach. Nevertheless, our scope is restricted

to computational experiments and only a part of their generic ontology overlaps ours

partially.

SESSL is a domain-specific language for simulation experiments [27]. In terms of

facilitating the use of a DSL to specify the simulation experiments, SESSL is a recent

and comparable approach to our work. SESSL is an internal DSL while Xperimenter

is an external one and SESSL does not explicitly support the notion of Design of

Experiments. It does not have managed methods to decide experiment design points,

the user is free to set any value to create experimental runs. Therefore, being an

external DSL, portability of Xperimenter is not bounded by any host language. It is

also easier to use by true users with its variability management support. Our work can

be regarded as an attempt to answer the authors’ call for a DSL for “experimenting

with formal models (and possibly generating the corresponding workflows)” in [28].

"Open Knowledge Maps" is a relatively new but very useful tool to identify relevant

concepts. Figure 2.1 is an overview of key research topics (MDE, DOE, DSL, Com-

puter Simulation) of this work and their relations. It is simplified and aggregated

version of the related maps on Open Knowledge Maps website [29, 30, 31, 32]. It can

be used to get an overview of our research topics.

9

Figure 2.1: Knowledge Map (key topics are highlighted)

10

CHAPTER 3

OVERALL APPROACH

The main purpose of this chapter is to convey the overall approach by discussing

the components of the proposed solution. Although the tangible part of the solution

is the experiment design environment, it is only result of much bigger information

management activities. Domain knowledge and consolidated formal models are used

to create these tools and these tools are used to facilitate the practitioners’ work.

3.1 Building Blocks

Experimental design enables users to systematically analyze the outcome of the both

physical and simulation experiments [33]. Different statistical models exist for ana-

lyzing designs, so that a well-designed experiment provides us with a greater confi-

dence in the results. Thus, it is important to enhance replicability of the simulation

experiments. The objective of our work is to produce a user-friendly framework for

experiment specification and execution. As originally defined in [13], “true user”

(non-programmer) and “power user” (code-savvy user) terms are used to distinguish

different roles and use cases associated with a scientific workflow system. In terms

of experiment management, true users are expected to use a higher level tool that is

enhanced by the variability model, and power users have more flexibility by using di-

rectly a domain-specific language. Figure 3.1 is the high level pictorial representation

of our approach.

11

Figure 3.1: Overall Approach

Although the DOE (Design of Experiment) and computational simulation domains

are not explicitly formalized, they are the main knowledge sources of our formal mod-

els (variability and domain models in Section 3.2). Feature model (variability model)

and simulation experiment model (domain model) are constructed using our domain

knowledge (refer to Section 3.2 for details). These two models enable Model-to-Text

(M2T) transformation at the implementation level. According to our approach experi-

ment replicability is handled by code generation [34]. Code generation supports vari-

ability directly, does enables us to cope with variations in operational environment.

Therefore, these models are used to implement the experiment design environment

and the DSL (grammar and tool-chain). The specification language (DSL) is a criti-

cal aspect of the approach since its expressiveness defines the capabilities of the users.

The real value of transforming high level specifications into executable experiments

is twofold: First, step-wise refinement engenders different level of interactions. For

instance power user defines features, experiment components and their relations and

then true users refine by selecting experiment features only. Second, the generation of

the whole boilerplate code makes polyglot simulation experiments possible (involv-

ing multiple programming/simulation languages). The users are not bound to a single

execution environment. It is possible to have a simulation model in one language and

analysis code in another one by using our approach (e.g. MATLAB simulation model

can be run by experimental frame provided by R scripts and/or Java code).

12

3.2 Formal Models

In the previous section, the solution components are defined. Accordingly, computer

simulation and DOE concepts are discussed in the Chapter 1. The main purpose

of this section is to discuss other important components of the solution; the formal

models (see Figure 3.1)

3.2.1 Variability Model

In order to analyze a particular set of systems according to commonalities, variability

models are used to capture characteristics of this set. A primary concern of variability

modeling is to expose features in terms of commonalities and variances effectively.

The following subsections define the notation briefly and discuss our approach on

variability modeling.

3.2.1.1 Feature Modeling

A feature model is a general representation of the possible products of a product

family. Feature modeling, and, in general, variability modeling is an active research

area since the seminal work of Kang et al. on FODA [35]. Feature modeling is

an activity to model problem space. Therefore, it involves high level definition of

requirements. The model provides an abstraction for the users (true users in our case)

to allow them to specify their own requirements just by selecting required features.

Feature tree is the most commonly used notation to represent feature models and

Figure 3.2 depicts the core elements of this notation.

13

Figure 3.2: Feature Tree Notation

The notation is used to frame problem domain by defining valid configurations. Even

a relatively small feature tree may host a lots of different valid configurations (see

Figure 3.3). In this respect, formalizing problem space (domain) knowledge by using

constraints (cross-tree, compound/parent relations, etc.) is vastly important to create

a sustainable model.

Figure 3.3: Feature Tree and Feature Configurations

3.2.1.2 Simulation Experiment Feature Model

In terms of simulation experiment design [36], features can be categorized into two

groups. First, the simulation related features. These features are related to the aspects

14

such as model type, random number generation method. Our environment uses these

configurations for the execution of the simulation model. Second, the DOE related

features such as objective, a number of factors and analysis method. As the name im-

plies, this configuration group is used to manage the workflow of the experiment. In

[33], there is an extensive list of DOE related concepts, but since our scope is limited

to simulation experiments, the design techniques like blocking or confounding is not

covered (these techniques are applicable to real-world observations only). Although,

the current set of features is adequate in many cases, the authors do not claim an ex-

haustive set. As per our approach, the feature model is planned to evolve iteratively

in the course of time. As the feature model gets more refined in time, we expect more

components being identified for reuse (see Section 3.2.3 for the details).

• Simulation Model: According to the adopted time approach, the model can

be dynamic (state variables change over time) or static (snapshot at a point

in time). Dynamic models are divided into two classes; continuous (variables

change continually with time) and discrete-event (variables change at certain

points in time). Using a combination of discrete and continuous variables is

also possible (via mixed or hybrid simulation).

• Pseudo-random Number Generation (PRNG): Pseudo-random number gen-

erators are used to introduce randomness into the model. It is an optional fea-

ture because it is only valid on stochastic models and deterministic simulations

do not need that feature. User can select one of the different PRNG methods

that are alternative to each other (For the sake of simplicity, it’s limited to three

methods; Linear Congruential, Lagged Fibonacci, Mersenne Twister).

• Objective: The goal of the simulation experiment influences the execution and

analysis of the experiment. In general, there are three types of objectives of

experiments [1]: (i) Comparative designs are related to compare the effects

of the factors (Choosing between alternatives). (ii) Screening designs cover

monitoring the effects of one or more factors. Lastly, (iii) response surface

designs aim to reduce variation of results in a specific value range.

• Number of Factors: Since computational resources are often limited, the num-

ber of factors is a vital feature in designing efficient experiments. For instance,

15

some sampling methods are not practical for more than four factors (at least

using commodity hardware).

• Sampling Method: In terms of DOE, result instances are the outcome of itera-

tions (running the model) and each iteration is related to a specific design point

(determined by the values of all factors). In this respect, sampling method is

a method that specifies the values of factors for all design points. Table 3.1

depicts adopted constraints for the variability model on objectives, a number of

factors and sampling methods.

Table 3.1: Design Selection Guidelines (adapted from [1])

Num. of Factors Comparative Objective Screening Objective Response Surface Obj.

1 Randomized design N/A N/A

2-4 Randomized block design Full or fractional factorial Central composite or Box-Behnken

5 or more Randomized block design Frac.factorial/Plackett-Burman Screen first to reduce num. of factors

• Analysis Method: De facto analysis method of DOE is analysis of variance

(ANOVA). Nevertheless, design in use influences the application of that method.

For example, if there exists more than one response variable, MANOVA (Mul-

tivariate Analysis of Variance) is used. T-test and F-test of ANOVA are equiv-

alent (One-way ANOVA) if there exists only one factor (which means two

groups/levels to compare). Thus, one factor case can be covered by T-test, and

Factorial ANOVA is used to study more than one factor with a single response

variable.

The feature model in Figure 3.4 is a formal representation of the above definitions

and their interdependencies. In this model, abstract features are used to support un-

derstanding; these features are not mapped to any implementation artifact [37]. Other

features (Concrete ones) on the other hand, have some mappings to experiment im-

plementation. For instance, Analysis Method is mapped to implementation of

typical DOE plots (main effects mean, interaction plots, etc.) while the function of

the Objective feature is simply grouping its sub-features.

16

Figure 3.4: Feature Model of Simulation Experiment Design

3.2.2 Domain Model (Simulation Experiment Model)

The purpose of this section is to present and describe the proposed simulation exper-

iment model. It provides a conceptual understanding of the components of a simula-

tion experiment as well as the relationships between them. Furthermore, it provides

a domain model on which simulation experiments can be based (see Figure 3.5). The

model is also used to shape the DSL grammar.

• Experiment: The root element is the Experiment class. The attributes of this

class include relevant information about the experiment, such as the experiment

name, date and description. Additional information about the experiment can

17

also be included, such as the experiment cost, the experimenter’s name, and

so on. As can be seen in the model, an experiment is composed of following

main components: Simulation model, objective, simulation runs, design, design

matrix, statistical analysis and visualization methods. A detailed description of

these follows.

• SimulationModel: It is the core part of the simulation experiment. In

conventional experiments, the very first step of the overall process is to identify

the experimental unit (person/object that will be studied) that provides sampling

data. In simulation experiments, the simulation model is the primary source of

information.

• Objective: Defines what the purpose of the experiment is. This defini-

tion influences the experiment type and the number of runs that are required

to achieve the experiment’s goals. In this early form of model, objectives are

defined as a free form text, but it’s an ongoing task to formalize the objec-

tives (by constructing relations with the other components of model, such as

Variable).

• Run: The number of experiment runs required is not necessarily known before-

hand; it may depend on the actual progress of the experiment. Each run has a

start and end time.

• Design and DesignMatrix: Experiment design depicts the structural as-

pect of the experiment. The experimental structure is defined by the responses,

the factors and their levels and user provided value ranges. Based on the de-

sign, a design matrix can be created, which specifies the actual experimental

runs, that is, the combination of factor levels to be tested.

The design matrix is the actual implementation of the design. Each row of the

matrix corresponds to a factor level combination and the cells for the responses

will be filled in as the experiment is executed. In the case of a simulation

experiment, the factor values of each factor-level combination are the values of

the input parameters that are being tested.

• StatAnalysis: The response values and even the list of significant factors

by themselves are useful, but without further analysis, are limited in the value

18

they can provide to an experimenter. Therefore, statistical analysis methods

(such as ANOVA, MANOVA, ANCOVA, MANCOVA) on this data can provide

a wealth of useful information and knowledge about the influence of factors on

the responses. There are many different kinds of statistical analyses available,

but we limit ourselves to the most common ones.

• Visualization: Presenting data in tables may not be the best way of com-

municating the results of an experiment. Graphs and charts are valuable tools

that can convey the information more effectively. This part of the model de-

notes the method of visual representation of the analysis.

• Variable (Response and Factor): Each variable is identified by its name

and type. Currently, four types of variables (Integer, Float, Boolean, String)

are supported in the model. These variables can be divided into two distinct

classes; responses and factors. Responses represent the output values of the

experiment. Responses correspond to the dependent variables. We wish to an-

alyze and characterize the effect of the factors on these responses and, hence,

must record their values at varying factor level combinations. Factors corre-

spond to the independent variables, control variables and nuisance variables.

These factor types are distinguished by the attribute group.

An experiment is conducted by varying the factor values and recording the

outcomes. Each factor can have multiple levels (treatments). There is a one-

to-one mapping between a factor level and a factor value. The factor values

are the values that are actually fed into the simulation model. Response values

are generated at each experimental run. An experimental run is a run of the

simulation experiment with a set of input parameters. The input parameters are

the factor values for that run. The combination of these values is known as a

factor-level combination. They correspond to a row of the design matrix. The

response values are also recorded in the design matrix.

• SamplingInstance: Sampling instance is basically an aggregation of a

variable and its actual value. It can be an input to the model (factor variable) or

output of it (response variable). Sampling instances appear in a design matrix.

19

Figure 3.5: Simulation Experiment Domain Model (simplified)

3.2.3 Variability Management

In exploring phenomena, the scientific method can be construed as a process with

multiple stages. The scientist poses a hypothesis and deduces its predictions, which

drive an experiment (you can refer to Chapter 1 for the details of our interpretation

of the scientific method). Nevertheless, it is not always possible to draw a reliable

conclusion with a single prediction, especially for non-trivial cases like the ones in

computational biology [38]. Such difficulties bring an intuitive loop to the method.

Additional predictions are made due to the results supporting the hypothesis or the hy-

pothesis is revised due to a result that does not support its predictions. Therefore, the

general use case of our framework covers a family of experiments, rather than a single

20

one. To meet that demands, we have to deliver experiment variations while keeping

the family assets coherent. This is the main motivation to find a formal way to man-

age variabilities among a set of experiments. Our solution to this design problem is to

adopt variability management with feature modeling approach [39]. By using a for-

mal approach like feature modeling brings out-of-the-box solutions to many problems

(use cases). For instance experiment iterations may require unforeseen variations and

it can be handled by extending feature models and map these features to experiment

assets.

3.2.4 Management Process

The possible choices regarding the requirements are formalized in the variability

model (Section 3.2) which is an abstraction of the variability in the simulation experi-

ment domain requirements. The Chapter 4 explains the details of our language-based

approach to manage experiments. The language allows for the specification of single

or a family of experiments. Furthermore, the language is extended to annotate the

artifacts with features (for the details of similar superimposition method, please refer

to [40]).

The basic idea is quite simple:

1. The user (possibly a power user) prepares experiment family definition and

annotations.

2. The user (possibly a true user) selects the required features to specify their

actual experiment.

3. Then, the specified feature configuration is used to include/exclude annotated

parts of the low level experiment definition (written in our DSL by a power

user).

This workflow is illustrated in Figure 3.6. True users configure the feature model to

specify actual experiments while power users define experiments and their variations

(experiment family) by using our DSL.

21

Figure 3.6: Variability Management Approach

3.2.5 Applying Configurations

The major objective of this study is to find an effective way to manage a family of

simulation experiments. In this respect, using feature models to manage variability

pays off when users equally or more prefer to use it to execute experiments. In this

respect, application of the process is another important aspect.

Figure 3.7: Creating a Feature Configuration with the FeatureIDE

Feature trees consist of nodes and relations among them (parent/child, inter-tree, con-

straints, etc.). As we discussed earlier, according to our solution approach the con-

solidated knowledge in the form of feature tree is used to manage the configuration

22

phase. Although there exists a lot of alternative tools/environments, we adopted to

use FeatureIDE [41] for this task. Our code is able get the feature configurations (a

text file including comma-separated feature names) created by FeatureIDE as far as

annotations and feature names in the tree are matched. It is assumed that all con-

sistency/validity checks are handled by the tool (FeatureIDE checks these kind of

constraints and outputs valid configurations only). It is relatively easy task to switch

that part for the use of another tool since it is very straightforward (just matching fea-

ture names). In Figure 3.7, feature tree (at the left) and feature configuration (at the

right) editors are shown with their information flow. This flow depicts how "Manual"

configuration is handled by user in Figure 3.6.

23

24

CHAPTER 4

DOMAIN-SPECIFIC LANGUAGE FOR SIMULATION EXPERIMENT

DESIGN

The main focus of this chapter is take a closer look to the details of the introduced

DSL. Different functions such as using the DSL to specify an experiment or variants

of an experiment family are discussed in individual sections.

The objective of introducing our own language is twofold: First, it is the medium of

specifying simulation experiments. Users are able to declare their requirements in the

problem space and these declarations are used to generate respective solution artifacts

by the language translator. Secondly, fragments of an experiment specification are

mapped to features (see Section 3.2.3) to manage simulation experiment variability.

EMP - Eclipse Modeling Project [42] is used to implement the domain-specific lan-

guage and its environment. We mainly focused on designing the grammar since the

EMP platform handles the heavy lifting of language engineering tasks. The gram-

mar is a vital part of the language. Its content and form decide the level of usability.

The ease of use is one of our primary concerns and we tried to contribute that fea-

ture by designing an elegant grammar. Although the following subsections give the

details of different aspects of the language with the examples that give a hint on

the backbone of the grammar the reader can refer to the dedicated project website

(https://odayibas.github.io/xperimenter/) for the complete definition.

25

4.1 Specifying an Experiment

The Experiment has some properties that are identified by the domain model (see

Figure 3.5) and some of them (e.g. timeout and description) are optional to

support ease of use. In addition, some properties (e.g. Design, Simulation,

StatAnalysis references) are inherited from the feature model (see Figure 3.4).

Although these references are deducible by using feature configuration, they are also

defined in the grammar for the sake of creating a self contained DSL. The experiment

definition is not the only source of information to the translator (refer to Section 5).

True users are advised to use feature configuration files to create variations of the base

experiment.

1 experiment exp_A

2 {

3 desc "brief description of the purpose of the

experiment";

4 objective COMPARATIVE;

5 design FULL_FACT_DESIGN;

6 simulation SIMULATION_A;

7 analysis STAT_MTD_ANOVA;

8 visual BARCHART;

9 timeout 180;

10 }

The experiment definition involves a reference to an experiment design and each

design is given a name (to refer to it), a sampling method to be used, and a list of

variables:

1 design FULL_FACT_DESIGN

2 {

3 method FULLFACTORIAL;

4 varlist X,Y,Z;

5 }

26

The DSL assumes that the modelFile is a runnable entity in the target platform

(Kepler is the only supported platform right now) in order to provide a platform inde-

pendent way to execute the simulation model. Additional information like modelType

is left optional because current implementation does not use it, but it might be used

for prospective target platforms (see Chapter 5 for details). A similar approach is also

used to define the statistical analysis method.

1 simulation SIMULATION_A

2 {

3 modelFile tr.edu.metu.ceng.xperimenter.model.SimA;

4 modelType CONTINUOUS;

5 inport inX : X;

6 inport inY : Y;

7 inport inZ : Z;

8 outport outZ : K;

9 }

10

11 statAnalysis STAT_MTD_ANOVA

12 {

13 service tr.edu.metu.ceng.xperimenter.statistics.Anova;

14 }

Aforementioned design entity involves a set of variables (in fact, references to these

variables). The concrete definition of the variable covers its classification and its

high/low values. It is also possible to attach a pseudo random number generator

(generator) to the variables to introduce randomness in stochastic models:

1 variable X : FLOAT group FACTOR [0.5, 1.5];

2 variable Y : INTEGER group FACTOR [0.3, 2.4];

3 variable Z : FLOAT group NUISANCE gen NUM_GEN_1;

4 variable K : FLOAT group RESPONSE;

5

6 generator NUM_GEN_1

7 {

27

8 service tr.edu.metu.ceng.xperimenter.numgen.Mersenne;

9 seed 1024;

10 }

Although the above examples give a hint on the backbone of the grammar the reader

can refer to the project website (https://odayibas.github.io/xperimenter/) for the com-

plete definition.

4.2 Specifying Variants of an Experiment Family

In terms of variability management, an experiment family defines a set of variants that

can be selected by the user to specify a member of that family (a particular experi-

ment). A way to annotate DSL snippets with features need to be provided in the DSL

environment. In section 3.2.3, the variability management approach is introduced.

The design environment applies that method by using preprocessor directives. It is

very similar to C-style conditional compilation.

1 #ifdef Mersenne

2 generator NUM_GEN_1

3 {

4 service tr.edu.metu.ceng.xperimenter.numgen.Mersenne;

5 seed 1024;

6 }

7 #endif

8

9 #ifdef Fibonacci

10 generator NUM_GEN_1

11 {

12 service tr.edu.metu.ceng.xperimenter.numgen.Fibonacci;

13 seed 512;

14 }

15 #endif

28

The above method allows a user to specify a set of variants and to map them to the

feature model. The resulting specification creates a feature annotated code (it is also

another feature model) and then the language processor superimposes the selected

feature configuration onto the provided code to extract a particular valid experiment

specification. For instance, above code snippet includes two random number gen-

erators with the same name. According to the DSL grammar, these two generators

cannot reside in a single experiment (see Figure 4.1).

Figure 4.1: Feature configurations and annotation use

The simulation experiment feature model allows the selection of only one of the alter-

native options in a valid feature configuration (see the “alternative” relation in Figure

3.4). Feature configuration environment (e.g. FeatureIDE) enforce direct or implied

constraints during the selection operation. Therefore, the actual experiment may in-

29

clude only one generator definition according to user provided feature configuration.

As per their primary use case, true users use wizard-like selection tool (see the check

boxes to select concerning features in Figure 4.1) to manage experiment variations.

Similarly, the base feature (always selected root feature) denotes the commonalities of

the experiment family (shared code snippets like the core assets of the experiment).

30

CHAPTER 5

GENERATING AN EXECUTABLE EXPERIMENT

There is a constant trade-off between increasing level of abstraction to facilitate the

management process and decreasing for operational purposes. As per our approach,

model transformations are key methods to change levels of abstraction when it is

needed. These transformations are used to generate platform-specific assets such as

executable experiments. This chapter is dedicated to elaborate how an executable

experiment is generated in our proposed framework.

5.1 Power Users vs. True Users

As we already covered in the previous sections, our framework is designed to serve

two distinct user groups; true and power users (please refer to Chapter 3 for the details

of this classification). In this respect, experiment execution use case of these two

groups differs from each other. As a preprocess we assume that the experiment family

specification is curated and required annotation is also defined (see Section 3.2.3).

According to our approach, this process is power user’s responsibility. Figure 5.1

depicts the sequence diagram of a power user.

In this scenario, power user uses his/her coding skills to specify the experiment. First,

Editor checks the code and updates the user interface to highlight possible inconsis-

tency. It passes the specification to the Interpreter and it generates correspond-

ing artifacts. At this stage, we have platform-specific artifacts and these artifacts are

executable in only one environment. Thus, submitting them to the concerning envi-

ronment handler such as KeplerHandler is the final step of the process.

31

Figure 5.1: Experiment Execution Sequence Diagram for Power User

True user on the other hand, uses the feature model configuration tool (it is a kind of

wizard to make the process easier while sacrificing comprehensiveness) as a primary

tool. In this case, feature configuration specified by the user is used to generate cor-

responding experiment definition. As shown in Figure 5.2, the rest of the process is

similar to the sequence of the power user.

Figure 5.2: Experiment Execution Sequence Diagram for True User

32

5.2 Target Environments

Although our approach is platform agnostic, the Kepler [10] environment is selected

for demonstration purposes in the present implementation. Kepler is an environment

for the design and execution of scientific workflows. It is based on the Ptolemy II

system which relies on actor-oriented modeling paradigm [43]. In this paradigm, two

main entities constitute the backbone of the workflow. First, the “Director” manages

the data flow, and second, a set of “Actor”s executes the steps of the workflow. Al-

though the experiment workflow is static [44], the “Actor”s in action are subject to

change according to the feature configuration and DSL statements.

In Section 3.2.2, the artifacts that constitute the runnable experiment are listed in de-

tail. In terms of Kepler, these artifacts need to be represented by respective actors.

Figure 5.3 depicts our transformation approach to generate workflow components.

The translator uses the definitions provided by the user(s) and constructs all artifacts

as a scientific workflow. This final output is ready to be run on the Kepler environ-

ment.

Figure 5.3: Conceptual View of Our Generative Approach

Kepler inherits the actor-oriented paradigm of Ptolemy II, and the use of actors is

the main method to provide separation of concerns and reuse. Resulting experiment

workflow employs a director and a set of actors. DesignMatrixManager, for

example, is the actor that generates the sampling instances (design points). The other

33

function of that actor is to accumulate the results of the individual runs. The duty of

Terminator is to decide whether additional runs will be executed or not due to the

external constraints such as a time limit. As the name suggests, ModelRunner runs

the simulation model by using the provided parameters. Furthermore, StatAnalyzer

uses the statistical analysis method on the filled design matrix. In Kepler, DE (dis-

crete event) actors fire only after they receive their inputs. Thus, SampleDelay is a

required actor due to the nature of DE director. It prevents the workflow from falling

into a deadlock.

Figure 5.4: Generated Kepler Workflow (arrows denote data precedences)

34

CHAPTER 6

CASE STUDIES

Building blocks of our proposed approach have been covered in the previous chapters

and this chapter is solely reserved to demonstrate the approach by giving use cases

from diverse application areas. Each section individually defines the problem and use

of our approach to handle situation.Respectively, “machine interference” focuses on

generating an executable simulation experiment while “quadcopter controller” one is

more related to demonstration of variability management of the framework and final

“airline flight revenue model” exemplify the use of a stochastic model.

6.1 Machine Interference Experiment

6.1.1 Problem Definition

Figure 6.1: Machine Interference Problem

Let us consider the machine interference problem [45] to demonstrate our approach.

There are M machines and R repairmen. Each machine is operational for a period of

time until it needs maintenance. The repairmen serve the machines in a FIFO manner

35

and the repair operation is non-preemptive (see Figure 6.1). The time required to fix

a machine is not constant; it is a random amount of time. Assume that we have a

discrete-event simulation model for this problem and that model has the following

external variables.

• External inputs:

– M: number of machines

– R: number of repairmen

• External outputs:

– UM: utilization of the machines (total operational time / total time)

– UR: utilization of the repairmen (repair time / total time)

6.1.2 Experiment Specification

At this stage, we can define our experiment informally. Assume that our research

question is “Which is the best way to increase UM; buying a new machine or hiring

a new repairman?”. This is a comparative experiment where M and R are factors

and UM is a response variable. The DSL code below encodes one of the possible

alternative experiment definitions to conduct this experiment.

1 experiment MachineInterference {

2 desc An experiment to find the best way to increase

utilization of machines; buying a new machine or

hiring a new repairman ;

3 objective COMPARATIVE;

4 design CompMachineIntExpDesign;

5 simulation MachineSim;

6 analysis AnovaAnalysis;

7 visual DEFAULT;

8 timeout 180;

9 target KEPLER;

10 }

36

11

12 variable M : INTEGER group FACTOR [3, 5];

13 variable R : INTEGER group FACTOR [1, 4];

14 variable UM : INTEGER group RESPONSE;

15

16 design CompMachineIntExpDesign {

17 method FULLFACTORIAL;

18 varlist M R UM;

19 }

20

21 simulation MachineSim {

22 modelFile "c : machine_int.mdl";

23 modelType DISCRETEEVENT;

24 inport NumberOfMachines : M;

25 inport NumberOfRepairmen : R;

26 outport UtilOfMachines : UM;

27 }

28

29 analysis AnovaAnalysis {

30 service "http://ceng.metu.edu.tr/e1564178/xperimenter/

anova service";

31 }

The process of experimentation for the machine interference case study is illustrated

by the activity diagram in Figure 6.2. As a first step, the translator decides whether

the definition is for a single experiment or a family of experiments. If there exist

unresolved variations, meaning that it is for a family of experiments, it resolves them

according to user-provided feature configuration. In this example, the experiment

does not have any variability. Thus, it can be transformed into the execution environ-

ment without pre-processing. Translator creates a DesignMatrixManager that

builds a design matrix according to the specified design (full factorial) and prescribed

high/low values of the factors. The other generated actor ModelRunner includes

codes to run the simulation model. Basically, it executes the machine_int.mdl

37

(a Matlab/Simulink model) file by setting the actual values of its external variables,

namely, NumberOfMachines and NumberOfRepairmen. In a non-interrupted

experiment, the model is executed for each row of the design matrix; however, an

explicit time limit (180 seconds) is specified in our example. Thus, after each run,

Terminator checks whether that limit is exceeded or not. After the model execu-

tion loop is terminated, StatAnalyzer applies ANOVA to the filled design matrix

and generates analysis results. In our case the user requested standard ANOVA anal-

ysis with its default visualization. Therefore the final output of the workflow includes

the resulting ANOVA table and the multiple comparison chart. As a side product, the

design matrix is also generated in CSV (comma separated value) file format.

Figure 6.2: Activity Diagram

6.2 Quadcopter Controller Experiment

6.2.1 Problem Definition

Inherently, a multi-rotor systems like quadcopters have coupled rotational and trans-

lational subsystems. It is not possible to translate the system to anywhere without

any rotational force. Therefore, overall system dynamics are nonlinear and complex

in these systems. Even a human control (e.g. remote controller) is not be feasible

without electronic stabilization assistance system in quadcopters due to the this com-

plexity. That is to say, the performance of the electronic controllers are indispensable

38

part of the whole user experience.

As a controller, PD controllers are easy to apply because of theirs simplicity but they

are also inadequate for many use cases. PID controllers creates smaller steady-state

error but they also have some shortcomings like reset windup (integral saturation).

Therefore, finding right controller configurations (Tuning) is an important part of

designing a real world solution by using a quadcopter platform. The goal of this case

study is demonstrating our proposed experimentation framework to handle this task.

6.2.2 Experiment Specification

As the name suggests, Proportional-Integral-Derivative (PID) control consists of three

basic coefficients; proportional, integral and derivative which are varied to get opti-

mal response. Figure 6.3 depicts the general principles and execution of this type of

controllers.

Figure 6.3: PID Controller

The proportional component depends only on the difference between the set point

and the process variable. This difference is referred to as the error term. The pro-

portional gain (Kp) determines the ratio of output response to the error signal. The

integral component sums the error term over time. The result is that even a small er-

ror term will cause the integral component to increase slowly. The integral response

will continually increase over time unless the error is zero, so the effect is to drive the

39

steady state error to zero. The derivative component causes the output to decrease if

the process variable is increasing rapidly. The derivative response is proportional to

the rate of change of the process variable. Ideally, we would be able to use a method

to analyze a system and output the “optimal” PID gains (Kp, Ki, Kd).

As we already discussed, the quality of a controller depends on the gain values. On

the other hand, tuning these parameters require expert intuition and a lot of time. On

the other hand, using our framework helps to decrease the total effort. Step by step

instructions listed below.

1. Define a research question. Our goal is to find an answer to the following

question.

• “Which gain parameter is more important to determine the quality of the

controller?”

2. Prepare the required models to interface with external entities.

• We are using the third party quadcopter flight model which is publicly

available on Github as a MATLAB code [46].

3. Write the experiment definition in the Xperimenter.

• Below snippet depicts a full factorial design of this experiment in our

DSL.

1 experiment QuadcopterExperiment {

2 desc "Which PID parameter effects the

controller quality most"

3 objective COMPARATIVE;

4 design CompQuadcopterExpDesign;

5 simulation QuadcopterSim;

6 analysis AnovaAnalysis;

7 visual DEFAULT;

8 }

4. Get the resulting ANOVA table and evaluate it.

40

• The response table (which has a thousand of rows) is the input of the

analysis. Below you can find the the resulting table.

Table 6.1: Quadcopter controller experiment ANOVA Table

Source of Variation Sum of Squares Degrees of Freedom Mean Squares

Kd 0.0006 7 0.00008

Kp 0 0 0

Ki 0 0 0

Kd*Kp 0.0079 68 0.00012

Kd*Ki 0.0035 66 0.00005

Kp*Ki 1.5675 46 0.03408

Kd*Kp*Ki 15.6592 692 0.02263

Error 0 0 0

Total 28.1525 962

• In this experiment, we tried to find out which gain parameter is more

important to determine the performance of a PID controller. The system

under test is a quadcopter simulation (in Matlab) and the cost function

(response variable) is angular displacement to reach steady state (angular

motion). We have designed a full factorial design and each one of the

three gain parameters may have an integer value ranging from 1 to 10.

These design points generate a 1000-row response table and multi-way

ANOVA analysis is applied to this table. According to the resulting table,

group means are not significantly different from the others. Thus, three

gain parameters are equally important.

6.3 Airline Flight Revenue Experiment

6.3.1 Problem Definition

Risk modeling and simulations are used by many organizations to optimize their pro-

cess and take foreseeable actions accordingly. Airline flight revenue models are cus-

41

tomized form of risk models. Airline companies use these models to manage ticket

prices and maximize the revenue stream.

Figure 6.4: Airline Ticket Pricing [2]

Due to practical constraints, this dissertation cannot provide a comprehensive review

of risk modeling nor ticket revenue simulations. On the other hand this use case is

a good fit to demonstrate the use stochastic simulations and our experiment manage-

ment approach. Figure 6.4 depicts one strategy on ticket pricing with up-sell. One

can create similar or better revenue by selling fewer number of seats. As the example

figures proves, best effort selling (try to sell all available seats) is not the best strat-

egy always. However, overbooking (selling more than available seats to compensate

no-show customers) may also feasible strategy in many cases.

6.3.2 Experiment Specification

Assume our hypothetical airline company use a simple stochastic simulation to put

their strategy of ticket pricing/selling (In real life, the companies use fairly complex

models to handle that). The external parameters and their descriptions are as follows:

• External inputs:

42

– price: The price of one seat (Nuisance).

– capacity: The number of available seats per flight (Nuisance).

– no-show: The number of no-show customers (Factor).

– compensation: Compensation payment which is defined by percentage

of the ticket price (Factor).

– refund: No-show refund payment which is defined by percentage of the

ticker price (Factor).

– sold-ticket: The number of ticket sold (Factor).

• External outputs:

– total-rev: Total revenue of the flight.

Contrary to the previous comparative experiment designs, this one utilizes Response

Surface (RSM) to optimize a value. Below you can find the main part of the experi-

ment specification.

1 experiment AirlineTicketRevenue {

2 desc An experiment to find optimum level of

overbooking to maximize ticket revenue ;

3 objective RESPSURFACE;

4 design RespSurfaceAirlineExpDesign;

5 simulation TicketOverbookSim;

6 analysis AnovaAnalysis;

7 visual DEFAULT;

8 target R;

9 }

10

11 variable price : INTEGER group NUISANCE 200;

12 variable capacity : INTEGER group NUISANCE 100;

13 variable refund: INTEGER group NUISANCE 50;

14 variable compensation: INTEGER group NUISANCE 125;

15 variable no_show : INTEGER group NUISANCE gen NUM_GEN_NO

_SHOW;

43

16 variable sold_ticket: INTEGER group FACTOR [105,125];

17 variable total_rev: INTEGER group RESPONSE;

18

19 design RespSurfaceAirlineExpDesign {

20 method CENTRAL_COMP;

21 varlist price capacity refund compensation no_show;

22 }

23

24 simulation TicketOverbookSim {

25 modelFile "c : r_models airline_ticket.r";

26 modelType STATIC;

27 inport Price : price;

28 inport Capacity : capacity;

29 inport Refund : refund;

30 inport Compensation : compensation;

31 inport No_Show : no_show;

32 inport Sold_Ticket : sold_ticket;

33 outport Total_Rev : total_rev;

34 }

35

36 analysis AnovaAnalysis {

37 service "http://ceng.metu.edu.tr/e1564178/xperimenter/

anova service";

38 }

39

40 #ifdef Mersenne

41

42 generator NUM_GEN_NO_SHOW

43 {

44 service tr.edu.metu.ceng.xperimenter.numgen.Mersenne

;

45 range [0,24];

44

46 seed 1024;

47 }

48

49 #endif

50

51 #ifdef Congruential

52

53 generator NUM_GEN_NO_SHOW

54 {

55 service tr.edu.metu.ceng.xperimenter.numgen.LCG;

56 range [0,24];

57 seed 1024;

58 }

59

60 #endif

In this specific scenario, true user compares the alternative random number genera-

tor options (Mersenne Twister and Congruential) which is prepared by power user.

Figure 6.5 shows this comparison.

Figure 6.5: Total Revenue Optimization and PRNG Alternatives

45

The chart in Figure 6.5 proves that around the 17% overbooking maximizes the to-

tal revenue and this result is consistent among the use of different random number

generators.

46

CHAPTER 7

CONCLUSION

In this study, a generative approach is introduced to manage the experimentation pro-

cess with computer simulations. In our approach, domain and feature models are

used to capture the relevant aspects of simulation experiments. That information is

the main source to manage experiment life cycle operations such as generating cor-

responding operation instances in execution environments. Our novel contribution is

twofold: First, we have defined a formal way to specify and execute an experiment

that explicitly supports replicability since it is based on semi-automated model trans-

formations. Second, custom use cases for different levels of users are introduced. To

our knowledge, this is the first work to merge the variability management notion with

the design of experiment paradigm. Our approach clearly supports systematic reuse

by defining a formal way to reuse experiment assets by different levels of users. From

the research that has been carried out, it is possible to conclude that model-driven en-

gineering practices have great potential for simulation experiment applications. First

of all, true users are completely isolated from glue codes but power users has enough

flexibility to define a variety of experiments. Moreover, they both are free to deal

with maintenance operations (e.g. platform/formalism changes to adopt a third party

experiment) since the translator handles such details. Our framework development is

an ongoing work as an open source project and the thesis focused on mainly generat-

ing executable experiments part of it. On the other hand, the findings suggest that its

capabilities will expand by enriching our formal models.

In our future research, we intend to concentrate on three main issues: First, we will

add new features and their implementations to provide finer grained variants. These

variants will create a more flexible environment for the true users. Secondly, addi-

47

tional translators will be developed to target the environments other than Kepler. Al-

though Kepler’s reuse abstraction (actors) is well suited to support systematic reuse,

it is desirable to add another target environment that works in completely different

paradigm (e.g. Matlab, Repast). Lastly, a provenance mechanism which is based on

the proposed domain model is planned to be developed. It is vastly important to store

the information about conducted experiments to deduce new pointers for users (e.g.

an experiment environment which assists the user based on their or others’ previous

experiments). Thus, defining and adopting a formal way to support provenance will

be of interest in the next stage of our research.

48

REFERENCES

[1] NIST, “NIST/SEMATECH e-Handbook of Statistical Methods.” http://

www.itl.nist.gov/div898/handbook/, 2013. [Online; accessed

2014-03-11].

[2] FlightFox, “How do airlines set prices.” https://flightfox.com/

tradecraft/how-do-airlines-set-prices. [Online; accessed

2018-04-27].

[3] B. Zeigler, Theory of Modelling and Simulation. A Wiley-Interscience Publica-

tion, John Wiley, 1976.

[4] C. Drummond, “Replicability is not reproducibility: nor is it good science,”

in Proceedings of the Evaluation Methods for Machine Learning Workshop at

the 26th International Conference on Machine Learning, (Montreal, Canada),

pp. 2005–2008, 2009.

[5] L. Yilmaz, “Reproducibility in M&S research: issues, strategies and implica-

tions for model development environments,” Journal of Experimental & Theo-

retical Artificial Intelligence, vol. 24, pp. 457–474, Dec. 2012.

[6] S. Robinson, R. E. Nance, R. J. Paul, M. Pidd, and S. J. Taylor, “Simulation

model reuse: definitions, benefits and obstacles,” Simulation Modelling Practice

and Theory, vol. 12, pp. 479–494, Nov. 2004.

[7] D. G. Cople and E. S. Brick, “A simulation framework for technical systems

life cycle cost analysis,” Simulation Modelling Practice and Theory, vol. 18,

pp. 9–34, Jan. 2010.

[8] M. D. Petty and E. W. Weisel, “Chapter 4 - model composition and reuse,” in

Model Engineering for Simulation (L. Zhang, B. P. Zeigler, and Y. laili, eds.),

pp. 57 – 85, Academic Press, 2019.

49

http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
https://flightfox.com/tradecraft/how-do-airlines-set-prices
https://flightfox.com/tradecraft/how-do-airlines-set-prices

[9] R. G. Sargent, “A perspective on fifty-five years of the evolution of scientific

respect for simulation,” in 2017 Winter Simulation Conference (WSC), pp. 3–

15, Dec 2017.

[10] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, “Ke-

pler: an extensible system for design and execution of scientific workflows,” in

Proceedings of the 16th International Conference on Scientific and Statistical

Database Management, 2004., pp. 423–424, June 2004.

[11] D. Talia, “Workflow Systems for Science: Concepts and Tools,” ISRN Software

Engineering, vol. 2013, pp. 1–15, 2013.

[12] I. Altintas, S. Purawat, D. Crawl, A. Singh, and K. Marcus, “Towards

A methodology and framework for workflow-driven team science,” CoRR,

vol. abs/1903.01403, 2019.

[13] S. Cohen-Boulakia and U. Leser, “Search, adapt, and reuse: the future of scien-

tific workflows,” ACM SIGMOD Record, vol. 40, no. 2, pp. 6–16, 2011.

[14] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski, “Cool

features and tough decisions: a comparison of variability modeling approaches,”

in Proceedings of the Sixth International Workshop on Variability Modeling of

Software-Intensive Systems, pp. 173–182, ACM, 2012.

[15] K. Czarnecki, C. Hwan, P. Kim, and K. Kalleberg, “Feature models are views

on ontologies,” in Software Product Line Conference, 2006 10th International,

pp. 41–51, IEEE, 2006.

[16] D. T. Sturrock, “Tutorial: Tips for successful practice of simulation,” in 2015

Winter Simulation Conference (WSC), pp. 1756–1764, Dec 2015.

[17] M. R. Barker and N. B. Zupick, “A Clue, the Cash, the Commitment, and the

Courage: The Keys to a Successful Simulation Project,” in Proceedings of the

2016 Winter Simulation Conference, WSC ’16, (Piscataway, NJ, USA), pp. 80–

87, IEEE Press, 2016.

[18] R. G. Sargent, “An Introductory Tutorial on Verification and Validation of Simu-

lation Models,” in Proceedings of the 2015 Winter Simulation Conference, WSC

’15, (Piscataway, NJ, USA), pp. 1729–1740, IEEE Press, 2015.

50

[19] A. M. Law, “A Tutorial on Design of Experiments for Simulation Modeling,” in

Proceedings of the 2014 Winter Simulation Conference, WSC ’14, (Piscataway,

NJ, USA), pp. 66–80, IEEE Press, 2014.

[20] S. M. Sanchez and H. Wan, “Work smarter, not harder: A tutorial on designing

and conducting simulation experiments,” in 2015 Winter Simulation Conference

(WSC), pp. 1795–1809, Dec 2015.

[21] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,

M. Livny, L. Moreau, and J. Myers, “Examining the challenges of scientific

workflows,” IEEE Computer, vol. 40, pp. 26–34, December 2007.

[22] W. D. Kelton, “Design of experiments: experimental design for simulation,” in

Proceedings of the 32nd conference on Winter simulation, pp. 32–38, Society

for Computer Simulation International, 2000.

[23] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,” Electronic

Notes in Theoretical Computer Science, vol. 152, pp. 125–142, Mar. 2006.

[24] D. Waltemath, R. Adams, F. T. Bergmann, M. Hucka, F. Kolpakov, A. K. Miller,

I. I. Moraru, D. Nickerson, S. Sahle, J. L. Snoep, and N. Le Novère, “Repro-

ducible computational biology experiments with SED-ML–the Simulation Ex-

periment Description Markup Language.,” BMC systems biology, vol. 5, p. 198,

Jan. 2011.

[25] G. a. Silver, J. a. Miller, M. Hybinette, G. Baramidze, and W. S. York, “DeMO:

An Ontology for Discrete-event Modeling and Simulation.,” Simulation, vol. 87,

pp. 747–773, Sept. 2011.

[26] L. N. Soldatova and R. D. King, “An ontology of scientific experiments.,” Jour-

nal of the Royal Society, Interface / the Royal Society, vol. 3, pp. 795–803, Dec.

2006.

[27] R. Ewald and A. M. Uhrmacher, “SESSL: A Domain-specific Language

for Simulation Experiments,” ACM Trans. Model. Comput. Simul., vol. 24,

pp. 11:1–11:25, Feb. 2014.

51

[28] J. Schützel, D. Peng, A. M. Uhrmacher, and L. F. Perrone, “Perspectives on

languages for specifying simulation experiments,” in Proceedings of the 2014

Winter Simulation Conference, pp. 2836–2847, IEEE Press, 2014.

[29] O. K. Maps, “Overview of research on model-driven en-

gineering.” https://openknowledgemaps.org/map/

f73dfdff06453bac7345e3b9840c5464. [Online; accessed 2018-

04-27].

[30] O. K. Maps, “Overview of research on design of ex-

periment.” https://openknowledgemaps.org/map/

13da82c00fd5ae812123cbddefbf9c28/. [Online; accessed 2018-04-

27].

[31] O. K. Maps, “Overview of research on domain-specific

language.” https://openknowledgemaps.org/map/

cd2aa4fc6728a7a9b33eb59baa9b417e/. [Online; accessed 2018-04-

27].

[32] O. K. Maps, “Overview of research on computer sim-

ulation.” https://openknowledgemaps.org/map/

14f5c3bedfaa8293f147e906a9ae10ba/. [Online; accessed 2018-04-

27].

[33] D. Montgomery, Design and Analysis of Experiments, 8th Edition. John Wiley

& Sons, Incorporated, 2012.

[34] J. Ledet, A. Teran-Somohano, Z. Butcher, L. Yilmaz, A. E. Smith, H. Oguz-

tuzun, O. Dayibas, and B. K. Gorur, “Toward model-driven engineering prin-

ciples and practices for model replicability and experiment reproducibility,” in

Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS In-

tegrative, DEVS ’14, (San Diego, CA, USA), pp. 27:1–27:8, Society for Com-

puter Simulation International, 2014.

[35] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-Oriented

Domain Analysis (FODA) Feasibility Study,” technical report, Software Engi-

neering Institute, Nov. 1990.

52

https://openknowledgemaps.org/map/f73dfdff06453bac7345e3b9840c5464
https://openknowledgemaps.org/map/f73dfdff06453bac7345e3b9840c5464
https://openknowledgemaps.org/map/13da82c00fd5ae812123cbddefbf9c28/
https://openknowledgemaps.org/map/13da82c00fd5ae812123cbddefbf9c28/
https://openknowledgemaps.org/map/cd2aa4fc6728a7a9b33eb59baa9b417e/
https://openknowledgemaps.org/map/cd2aa4fc6728a7a9b33eb59baa9b417e/
https://openknowledgemaps.org/map/14f5c3bedfaa8293f147e906a9ae10ba/
https://openknowledgemaps.org/map/14f5c3bedfaa8293f147e906a9ae10ba/

[36] W. D. Kelton and R. R. Barton, “Experimental Design for Simulation,” in Pro-

ceedings of the 35th Conference on Winter Simulation: Driving Innovation,

WSC ’03, pp. 59–65, Winter Simulation Conference, 2003.

[37] T. Thüm, C. Kastner, S. Erdweg, and N. Siegmund, “Abstract features in feature

modeling,” in Proceedings of the 2011 15th International Software Product Line

Conference, SPLC ’11, (Washington, DC, USA), pp. 191–200, IEEE Computer

Society, 2011.

[38] I. A. Hubner, M. Oliveberg, and E. I. Shakhnovich, “Simulation, experiment,

and evolution: Understanding nucleation in protein s6 folding,” Proceedings of

the National Academy of Sciences, vol. 101, no. 22, pp. 8354–8359, 2004.

[39] D. Beuche, H. Papajewski, and W. Schröder-Preikschat, “Variability man-

agement with feature models,” Science of Computer Programming, vol. 53,

pp. 333–352, 2004.

[40] K. Czarnecki and M. Antkiewicz, “Mapping features to models: A template ap-

proach based on superimposed variants,” in Generative programming and com-

ponent engineering, pp. 422–437, Springer, 2005.

[41] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich, “Fea-

tureide: An extensible framework for feature-oriented software development,”

Science of Computer Programming, vol. 79, pp. 70–85, Jan. 2014.

[42] R. C. Gronback, Eclipse modeling project: a domain-specific language (DSL)

toolkit. Pearson Education, 2009.

[43] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. a. Lee,

J. Tao, and Y. Zhao, “Scientific workflow management and the Kepler system,”

Concurrency and Computation: Practice and Experience, vol. 18, pp. 1039–

1065, Aug. 2006.

[44] I. Lorscheid, B.-O. Heine, and M. Meyer, “Opening the ‘black box’ of sim-

ulations: increased transparency and effective communication through the sys-

tematic design of experiments,” Computational and Mathematical Organization

Theory, vol. 18, pp. 22–62, Oct. 2011.

53

[45] K. E. Stecke and J. E. Aronson, “Review of operator/ machine interference

models,” International Journal of Production Research, vol. 23, no. 1, pp. 129–

151, 1985.

[46] A. Gibiansky, “Quadcopter simulation in matlab.” https://github.

com/gibiansky/experiments/tree/master/quadcopter. [On-

line; accessed 2019-03-26].

54

https://github.com/gibiansky/experiments/tree/master/quadcopter
https://github.com/gibiansky/experiments/tree/master/quadcopter

APPENDIX A: XPERIMENTER XTEXT GRAMMAR

1 grammar io.github.odayibas.Xperimenter with org.eclipse.

xtext.common.Terminals

2

3 generate xperimenter "http://www.github.io/odayibas/

Xperimenter"

4

5 Model :

6 (elements += Type)

7 ;

8

9 Type:

10 NormalType FeaturedType

11 ;

12

13 FeaturedType:

14 #ifdef feature = ID

15 (featureContent += NormalType)

16 #endif

17 ;

18

19 NormalType:

20 Experiment Design Simulation StatAnalysis

NumberGenerator Variable

21 ;

22

23 Experiment:

24 experiment name = ID

25 {

55

26 (desc description = STRING ;)?

27 objective objective = Objective ;

28 design design = [Design] ;

29 simulation simulation = [Simulation] ;

30 analysis analysis = [StatAnalysis] ;

31 visual visualization = VisualizationType ;

32 target target=TargetType ;

33 (workdir workdir = STRING ;)?

34 (timeout timeout = INT ;)?

35 }

36 ;

37

38 Design:

39 design name = ID {

40 method method = SamplingMethod ;

41 varlist (variables += [Variable]) ;

42 }

43 ;

44

45 Simulation:

46 simulation name = ID {

47 modelFile modelFilePath = STRING ;

48 (modelType modelType = SimModelType ;)

49 (ports += Port)

50 }

51 ;

52

53 StatAnalysis:

54 statAnalysis name=ID {

55 action = Callable

56 }

57 ;

56

58

59 Port:

60 InPort OutPort

61 ;

62

63 InPort:

64 inport name = ID : variable = [Variable] ;

65 ;

66

67 OutPort:

68 outport name = ID : variable = [Variable] ;

69 ;

70

71 Callable:

72 Method Service

73 ;

74

75 Method:

76 method type=StatAnalysisType ;

77 ;

78

79 Service:

80 service uri=STRING ;

81 ;

82

83 Variable:

84 variable name = ID : type = VariableType group

group = VariableGroup ([lowValue = INT ,

highValue = INT])? (gen generator=[

NumberGenerator])? ;

85 ;

86

57

87 NumberGenerator:

88 generator name=ID {

89 method uri=STRING ;

90 (seed seed=INT ;)?

91 }

92 ;

93

94 enum Objective :

95 COMPARATIVE SCREENING RESPSURFACE

96 ;

97

98 enum SimModelType :

99 STATIC CONTINUOUS DISCRETEEVENT

100 ;

101

102 enum VariableGroup :

103 FACTOR RESPONSE NUISANCE

104 ;

105

106 enum VariableType :

107 BOOLEAN INTEGER FLOAT STRING

108 ;

109

110 enum SamplingMethod:

111 RANDOMIZED RANDOMIZEDBLOCK FACTORIAL

FRACFACTORIAL CENTRALCOMP

112 ;

113

114 enum StatAnalysisType:

115 HYPOTESTING ANOVA MANOVA CONFINTERVAL

116 ;

117

58

118 enum VisualizationType:

119 HISTOGRAM SCATTERPLOT BARCHART DEFAULT

120 ;

121

122 enum TargetType:

123 KEPLER R_SCRIPT

124 ;

59

60

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Dayıbaş, Orçun

Nationality: Turkish (TC)

Date and Place of Birth: 25.02.1983, Denizli

Marital Status: Married

EDUCATION

Degree Institution Year of Grad.

M.S. METU, Computer Engineering 2009

B.S. Hacettepe University, Computer Engineering 2005

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2018 - ... Havelsan Inc. Engineering Mng.

2015 - 2018 Havelsan Inc. Technical Lead

2014 - 2015 Onami Inc. Founder, CTO

2010 - 2014 Aselsan Inc. Senior Software Eng.

2009 - 2010 Université Nice Sophia Antipolis Researcher

2005 - 2009 Aselsan Inc. Software Engineer

61

PUBLICATIONS

International Journal Publications

• “On the use of model-driven engineering principles for the management of sim-

ulation experiments” Orçun Dayıbaş, Halit Oğuztüzün, Levent Yılmaz, 2018,

Journal of Simulation, Pg. 1-13, Taylor & Francis Group

International Conference Publications

• “Models as self-aware cognitive agents and adaptive mediators for model-driven

science” Levent Yilmaz, Sritika Chakladar, Kyle Doud, Alice E Smith, Alejandro

Teran-Somohano, Halit Oğuztüzün, Sema Çam, Orcun Dayıbaş, Bilge K Görür

Proceedings of the Simulation Conference (WSC), 2017 Winter, Pg. 1300-

1311, IEEE Press

• “A hybrid transformation process for simulation modernization and reuse via

model replicability and scenario reproducibility” Joseph Ledet, Sema Cam, B

Kaan Gorur, Orcun Dayibas, Halit Oguztuzun, Levent Yilmaz, Alice E Smith

Proceedings of the 2015 AlaSim Conference, Pg. 8, IEEE Press

• “Toward a model-driven engineering framework for reproducible simulation

experiment lifecycle management” Alejandro Teran-Somohano, Orçun Dayıbaş,

Levent Yilmaz, Alice Smith Proceedings of the 2014 Winter Simulation Confer-

ence, Pg. 2726, IEEE Press

• “Toward model-driven engineering principles and practices to support model

replicability” Joseph Ledet, Alejandro Teran-Somohano, Zachary Butcher, Lev-

ent Yilmaz, Alice E Smith, Halit Oğuztüzün, Orçun Dayıbaş, Bilge Kaan Görür

Proceedings of the 2014 Summer Simulation Multiconference, Pg. 6, Society

for Computer Simulation International

• “Toward model-driven engineering principles and practices for model replica-

bility and experiment reproducibility” J.Ledet, A.Teran-Somohano, Z.Butcher,

L.Yilmaz, A.E. Smith, H. Oğuztüzün, O. Dayıbaş, B.K. Görür Proceedings of

62

the Symposium on Theory of Modeling & Simulation-DEVS Integrative 2014,

Pg. 27, Society for Computer Simulation International

• “Kutulu: A Domain-Specific Language for Feature-Driven Product Derivation”

Orcun Dayibas, Halit Oguztuzun Computer Software and Applications Confer-

ence (COMPSAC), 2012 IEEE 36th Annual, Pg. 105, IEEE

63

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	The Scientific Method and Experimentation
	Model-driven Experiment Management and Simulations

	State of the Art
	Overall Approach
	Building Blocks
	Formal Models
	Variability Model
	Feature Modeling
	Simulation Experiment Feature Model

	Domain Model (Simulation Experiment Model)
	Variability Management
	Management Process
	Applying Configurations

	Domain-specific Language for Simulation Experiment Design
	Specifying an Experiment
	Specifying Variants of an Experiment Family

	Generating An Executable Experiment
	Power Users vs. True Users
	Target Environments

	Case Studies
	Machine Interference Experiment
	Problem Definition
	Experiment Specification

	Quadcopter Controller Experiment
	Problem Definition
	Experiment Specification

	Airline Flight Revenue Experiment
	Problem Definition
	Experiment Specification

	Conclusion
	REFERENCES
	CURRICULUM VITAE

