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Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Assist. Prof. Dr. Figen S. Öktem
Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar
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ABSTRACT

COMPUTATIONAL SPECTRAL IMAGING TECHNIQUES USING
DIFFRACTIVE LENSES AND COMPRESSIVE SENSING

Kar, Oğuzhan Fatih

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Figen S. Öktem

July 2019, 103 pages

Spectral imaging is a fundamental diagnostic technique in physical sciences with ap-

plication in diverse fields such as physics, chemistry, biology, medicine, astronomy,

and remote sensing. In this thesis, we first present a modified version of a high-

resolution computational spectral imaging modality and develop a fast sparse recov-

ery method to solve the associated large-scale inverse problems. This technique uses

a diffractive lens such as a photon sieve for dispersing the optical field. We then ex-

tend this technique to obtain super-resolution using an additional coded aperture to

spatially modulate the field before dispersion. We also demonstrate the capability of

the system in a compressive setting where the entire three-dimensional spectral cube

is reconstructed from highly compressed measurements through sparse recovery. In

all of the imaging modalities, we numerically illustrate the performance for various

settings and obtain promising results. Lastly, we provide a detailed analysis on the

spatio-spectral resolution and optimization of the system from both analytical and

numerical aspects.
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ÖZ

KIRINIMLI LENSLER VE SIKIŞTIRILMIŞ ALGILAMAYA DAYALI
HESAPLAMALI SPEKTRAL GÖRÜNTÜLEME TEKNİKLERİ

Kar, Oğuzhan Fatih

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Figen S. Öktem

Temmuz 2019 , 103 sayfa

Spektral görüntüleme fizik bilimleri için temel bir tanılayıcı araç olup fizik, kimya,

biyoloji, tıp, astronomi ve uzaktan algılama gibi pek çok alanda kullanılmaktadır. Bu

tezde, ilk olarak bir yüksek çözünürlüklü hesaplamalı spektral görüntüleme tekniği-

nin farklı bir versiyonu sunulmakta ve ilgili büyük ölçekli ters problemlerin çözümü

için hızlı bir seyrek gerikazanım yöntemi geliştirilmektedir. Bu teknik, optik alanı

dağıtmak için foton süzgeci adı verilen kırınımlı bir lens kullanmaktadır. Geliştiri-

len teknik, sahneyi uzamsal olarak modüle eden bir kodlu açıklık eklenerek süper-

çözünürlüklü görüntüleme durumuna genişletilmiştir. Son olarak sistemin kapasitesi

sıkıştırılmış durum için incelenmiştir. Bu durumda, yüksek miktarda sıkıştırılmış öl-

çümlerden seyrek gerikazanım yoluyla üç boyutlu spektral veri kübü geri oluşturul-

muştur. Tüm görüntüleme modellerinde performans çeşitli durumlar için sayısal ola-

rak gösterilmiş ve umut verici sonuçlar elde edilmiştir. Son olarak, sıkıştırılmış sis-

temin uzamsal-spektral çözünürlüğü ve optimizasyonu analitik ve sayısal yönlerden

incelenmiştir.
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Mert Kalfa, Serhat İlbey, Berkan Kılıç, and Umut Bahçeci, for creating an enjoy-

able work environment and for many interesting discussions about scientific and non-

scientific topics. A special thanks to Alper Güngör, from whom I learnt a lot about

programming and optimization. I also thank Dr. H. Emre Güven for his support and

encouragement.

I would like to express my deepest gratitude to my family for their unconditional

love, caring, and support throughout my life. I am very lucky to have my mother
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CHAPTER 1

INTRODUCTION

Spectral imaging is a powerful diagnostic tool with application in diverse fields such

as physics, chemistry, biology, medicine, astronomy, and remote sensing [1, 2]. The

goal in spectral imaging is to form images of a scene as a function of wavelength.

This requires simultaneous acquisition of three-dimensional (3D) data, f(x, y, λ), for

a two-dimensional (2D) scene, where λ is the spectral dimension and x and y are the

spatial dimensions. Hence the spectral data cube contains the emitted spectrum for

each spatial position.

However, capturing this 3D data with 2D detectors imposes inherent limitations on

the spatio-spectral performance of the technique [3]. Conventional spectral imaging

techniques rely on a scanning process to build up the 3D spectral cube from a series

of 2D measurements. One approach uses a spectrometer with a long slit and scans

the scene spatially. Hence, it records only a thin slice of the observed scene at a time.

Another approach employs an imaging system with multiple spectral filters to scan

the scene spectrally, which corresponds to imaging a single spectral band at a time.

One critical disadvantage of these techniques is that higher number of scans is needed

with increased spatial and spectral resolutions [4]. This may lead to low light through-

put, increased hardware complexity, and long acquisition times which cause temporal

artifacts in dynamic scenes [5, 6]. Moreover, the temporal, spatial, and spectral res-

olutions are inherently limited as they are purely determined by the physical systems

involved.

Computational spectral imaging is an effective approach to overcome these limita-

tions by passing on some of the burden to an imaging algorithm. It enables to recon-
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struct the entire spectral data cube from multiplexed measurements through computa-

tional techniques. One important theory exploited in computational spectral imaging

is compressive sensing (CS) which relies on two principles: sparsity of the spectral

images in some transform domain and incoherence of the measurements [7, 8]. It

is widely known that spectral images exhibit both spatial and spectral correlations,

which allow sparse representations. For the incoherence of the measurements, differ-

ent optical configurations have been suggested [9, 10, 11, 12].

In this thesis, we develop novel computational spectral imaging techniques using CS

theory and diffractive lenses. We focus on three important tasks in spectral imaging:

fast and programmable multi-spectral imaging in Chapter 2, spatial super-resolution

in Chapter 3, and compressive spectral imaging in Chapter 4. For each task, we first

formulate the forward and inverse problems for the proposed imaging system. Then,

we develop an alternating direction method of multipliers (ADMM) [13] based sparse

recovery algorithm which enables fast and high quality reconstructions. Finally, the

reconstruction performance is illustrated numerically for various settings. In all of

the optical configurations, diffractive lenses are utilized.

For the fast and programmable multi-spectral imaging task, we first study a high-

resolution computational imaging modality. This technique uses a diffractive lens

such as a photon sieve for dispersing the optical field, and takes 2D measurements

at different distances from the sieve using a moving detector. This system requires

a mechanical component and is also undesirable in dynamic scenes. We present a

modified version of this system which takes measurements at a fixed measurement

plane by exploiting beam splitters or programmable spatial light modulators (SLM).

We then develop an ADMM based fast sparse recovery method to solve the asso-

ciated large-scale inverse problems for both modalities. Through simulations, we

demonstrate that both modalities can be used interchangeably without sacrificing the

reconstruction quality. Performance of the developed modalities are illustrated in ex-

treme ultra-violet (EUV) and visible band. Moreover, we provide an analysis for the

spatial resolution of the system using both theoretical and numerical tools.

We then turn our attention to the spatial super-resolution problem. Current spec-

tral imaging systems, both computational imaging based and conventional ones, have
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hardware and cost constraints which limit their spatial resolution. To overcome this

limitation, we adopt a spatial super-resolution technique for the diffractive lens based

spectral imaging system with a low-resolution detector. To reconstruct the spectral

images with high spatial resolution from the subsampled measurements, we solve an

inverse problem by developing an ADMM based reconstruction method. To achieve

higher spatial super-resolution levels, we also extend this technique by adding a coded

aperture to the imaging system. This aperture spatially modulates the optical field

before dispersion to obtain more incoherent measurements, as dictated by CS the-

ory. Multiple measurements with different spatial codes are captured to improve the

measurement diversity. Effectiveness of the proposed super-resolution techniques is

demonstrated numerically for different observation settings.

Lastly, we present a novel compressive spectral imaging technique named compres-

sive spectral imaging with diffractive lenses (CSID). The CSID enables to reconstruct

the entire spectral cube from a few multiplexed measurements via sparsity based re-

construction. It uses a coded aperture to spatially modulate the optical field from the

scene and a diffractive lens such as a photon sieve for dispersion. Different than the

spatial super-resolution setting, the coded aperture is fixed now, i.e. the same aperture

is used for multiple measurements. Moreover, different than the earlier works that use

diffractive lenses for spectral imaging [14, 15, 16], here we use them for the first time

in a compressive modality. We develop sparse recovery methods with `1-norm or

`0-norm based regularization to reconstruct the spectral cube from compressive mea-

surements. We not only illustrate the imaging performance for various settings, but

also investigate the effect of different sparsity priors on the reconstruction quality. In

addition, a detailed analysis on the spatio-spectral resolution of the system and mea-

surement optimization is provided using both analytical and numerical approaches.

The rest of this thesis is organized as follows. In Chapter 2, we present a modified

version of a diffractive lens based computational multi-spectral imaging modality

which offers fast, programmable, and high-resolution imaging. In Chapter 3, we

apply spatial super-resolution to the imaging modality and extend its capability by

adding a coded aperture to the system. In Chapter 4, we present a novel compressive

spectral imaging modality using diffractive lenses, which reconstructs the entire data

cube from few measurements. We provide the concluding remarks in Chapter 5.
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CHAPTER 2

HIGH-RESOLUTION COMPUTATIONAL MULTI-SPECTRAL IMAGING

USING DIFFRACTIVE LENSES

2.1 Introduction

Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene,

is a fundamental diagnostic technique in the physical sciences with application in

diverse fields such as physics, chemistry, biology, medicine, astronomy, and remote

sensing. In this imaging modality, also known as imaging spectroscopy, multispectral

or hyperspectral imaging, the intensity of the light radiated from each spatial point

in the scene is sensed as a function of wavelength. The measured three-dimensional

(3D) spectral data cube provides information for uniquely identifying the physical,

chemical, and biological properties of targeted objects. This makes spectral imag-

ing a useful diagnostic tool in various applications including remote sensing of as-

trophysical plasmas, environmental monitoring, resource management, biomedical

diagnostics, industrial inspection, and surveillance, among many others.

Conventional spectral imaging techniques rely on a scanning process to build up the

3D spectral data cube from a series of 2D measurements that are acquired simultane-

ously, or sequentially. One important disadvantage of these conventional techniques

is that the number of scans (hence measurements) proportionally increases with the

desired spatial and spectral resolutions [4]. This disadvantage generally causes long

acquisition times as well as hardware complexity. Resulting temporal artifacts in dy-

Some parts of this chapter have been recently presented in [17], and also submitted for publication [18].
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namic scenes and low light throughput are other limitations [5, 6]. Moreover, since

the conventional spectral imaging techniques purely rely on physical systems, there

are inherent physical limitations on their performance such as temporal, spatial, and

spectral resolutions.

To overcome these limitations, computational spectral imaging emerges as an effec-

tive approach by passing on some of the burden to a computational system. In these

approaches, the 3D spectral cube is represented in terms of voxels and the voxel

values are reconstructed from some indirect multiplexed measurements. The multi-

plexed measurements can be taken with different optical configurations. The added

computational part provides flexibility to combine information from different mea-

surements, as well as to incorporate the additional prior knowledge about the images

of interest into the image formation process in the form of a regularization. This is

achieved by solving an inverse problem for image reconstruction which takes into

account both the image formation model and additional prior information.

Over the last decade, different techniques have been developed for computational

spectral imaging. The most commonly known is coded aperture snapshot spectral

imaging (CASSI) [10, 19, 20] which reconstructs the spectral cube by solving a com-

putationally intensive inverse problem and also requires a bulky optical configuration

involving a coded aperture, a prism, and lenses. Another method using the CASSI

approach additionally performs mechanical translation to also encode temporal in-

formation [21]. Recently, diffractive lenses are also used to disperse the optical

field in different configurations [22, 14, 15, 16]. Other techniques utilize a scatter-

ing medium [23] or an additional camera [24] to capture the multi-spectral data. A

detailed review of these techniques are given in [25, 2].

Here we study a computational spectral imaging modality that uses a diffractive lens

such as a photon sieve for dispersing the optical field. A photon sieve is a modification

of a Fresnel zone plate in which open zones are replaced by a large number of circular

holes. It has been proposed as a superior image forming device than the Fresnel

zone plate [26], to be especially used at UV and x-ray wavelengths where refractive

lenses are not available due to strong absorption of materials, and reflective mirrors

are difficult to manufacture to achieve near diffraction-limited resolution. In fact, at
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these shorter wavelengths, surface roughness and figure errors often limit resolution

of reflective optics to a level that is significantly lower than the diffraction limit [27,

28, 29].

This computational spectral imaging modality was initially proposed in [22]. Be-

cause the focal length of a diffractive lens is wavelength-dependent, each measure-

ment in this setting is the superposition of differently blurred spectral components.

To achieve measurement diversity in this system, multiple measurements can be ob-

tained in different ways. One possible approach is using a moving detector to capture

measurements at different measurement planes, as in [22]. Alternatively, one can fix

the measurement plane, i.e. the distance from the diffractive lens, and use different

lens designs by exploiting beam splitters or programmable spatial light modulators

(SLM). In both cases, each measurement consists of superimposed images of differ-

ent wavelengths, with each spectral component being either in focus or out of focus.

For incoherent illumination, we study the problem of recovering the individual spec-

tral images from these superimposed and blurred data.

For this, we first formulate the discrete forward problem starting from the continuous

image-formation model. The resulting inverse problem is an ill-posed multi-frame

deconvolution problem requiring multiple images to be deblurred. This problem is

formulated as a regularized least squares problem with sparsity prior. To solve the re-

sulting problem, a fast reconstruction algorithm is developed using alternating direc-

tion method of multipliers (ADMM). Each update step in the algorithm has efficient

computation, which enables significant savings on the computation time and memory.

In contrast to traditional multi-spectral imagers such as those employing wavelength

filters, the proposed computational spectral imaging technique relies on a simple and

low-cost optical system, but requires powerful image processing methods to form

the spectral images computationally. In addition to the diffraction-limited high spa-

tial resolution enabled by diffractive lenses in short wavelengths, this technique can

also achieve higher spectral resolution than the conventional spectral imagers. This

is because the proposed technique offers the possibility of separating nearby spec-

tral components that would not otherwise be possible by using physical wavelength

filters. These promising aspects are illustrated for EUV and visible bands through
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numerical simulations. Finally, an analysis for spatial resolution is provided using

both theoretical and numerical tools.

2.2 Forward Problem

2.2.1 Imaging System and Assumptions

The proposed spectral imaging system, illustrated in Fig. 2.1, obtains K different

measurements. For the kth measurement, ds and dk respectively denote the distances

from the object and measurement planes to the plane where the diffractive lens re-

sides, where k = 1, . . . , K. To achieve measurement diversity in this system, multi-

ple measurements can be obtained in different ways. One possible approach is using a

moving detector to capture measurements at K different measurement planes. In this

case, same diffractive lens can be used by only changing the distance dk in each mea-

surement. Alternatively, one can fix the measurement plane, i.e. the distance dk, and

use different diffractive lens designs by exploiting beam splitters or programmable

spatial light modulators (SLMs) such as digital micromirror device (DMD). In this

case, the focusing behavior of the diffractive lens can be changed in each measure-

ment [17].

From the input object, we consider a polychromatic illumination consisting of P spa-

tially incoherent monochromatic sources, each with a different wavelength λp where

p = 1, . . . , P . These monochromatic sources are also assumed to be mutually inco-

herent [30]. In general, the diffractive lens can be used to form images either with

spatially coherent or incoherent illumination [31]. In this work, we focus on the in-

coherent case where the diffractive lens produces images in intensity only, but the

concepts readily generalize to the coherent or partially coherent case as well. The

assumed illumination is typical in astrophysical imaging [29].

2.2.2 Continuous Image Formation Model

Our first goal is to mathematically relate the input spectral images, fλp(u, v), to the

multiple measurements obtained. Each measurement is a superposition of differently
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Figure 2.1: Schematic view of the diffractive lens based spectral imaging system

blurred spectral images. Mathematically, the intensity tk(u, v) of the kth measure-

ment can be formulated [22] as

tk(u, v) =
P∑
p=1

sp(u, v) ∗ gλp,k(u, v), (2.1)

where ∗ denotes the 2D continuous-time convolution operation. Here sp(u, v) =
d2
s

d2
k
fλp(− ds

dk
u,− ds

dk
v) is a scaled version of the source intensity fλp(u, v) at the wave-

length λp, and gλp,k(u, v) is the incoherent point-spread function (PSF) of the diffrac-

tive lens at wavelength λp for the kth measurement, given by [31]

gλp,k(u, v) =

∣∣∣∣i λp∆k

e
−iπ u2+v2

∆kλpd
2
k ∗ Ak

(
u

λpdk
,
v

λpdk

)∣∣∣∣2 . (2.2)

Here ∆k = 1/ds + 1/dk, and Ak(u, v) is the Fourier transform of the aperture (trans-

mittance) function of the diffractive lens used in the kth measurement. For classical

diffractive lens designs with circular holes [26], Ak(u, v) is sum of jinc functions

corresponding to the Fourier transform of the circular functions representing each

pinhole on the diffractive lens. It is defined as jinc(u, v) = J1(π
√
u2+v2)

2
√
u2+v2 where J1(u) is

a Bessel function of the first kind.

An approximate, but a simpler model can also be used for the PSF in Eq. (2.2) when

the number of zones in the diffractive lens design is large. This approximate PSF is
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given as follows [31]:

gλp,k(u, v) =



(
1
π
(λpdk)

2D2
kjinc( Dk

λpdk
u, Dk

λpdk
v)
)2

, if εk = 0∣∣∣ 1
π
(λpdk)

2D2
kjinc( Dk

λpdk
u, Dk

λpdk
v)∗

iλp
ε1

exp(−iπ u2+v2

ε1λpd2
k
)
∣∣∣2 , if εk 6= 0,

(2.3)

where Dk is the outer diameter of the diffractive lens, f1 = Dkw
λp

is its first-order focal

distance, w is the outer zone width of the diffractive lens, and εk = 1/dk+1/ds−1/f1

is a parameter related to the amount of defocusing. This approximate model provides

easier computation as well as simpler analysis of the imaging system.

2.2.3 Discrete Model

In practice, only a finite number of discrete measurements is available through a dig-

ital sensor such as a CCD array. Since image reconstruction will be performed com-

putationally on a digital computer, a discrete representation of the source intensities

is also needed. Now, our goal is to obtain such a discrete-to-discrete model between

the unknown spectral images and measurements.

For this, we exploit the band-limitedness of the continuous functions involved. First

note that the PSF gλp,k is band-limited to a circle of diameter 2Dk/(λpdk). This is

because the argument inside the magnitude sign in (2.2) has a circular frequency sup-

port, whose diameter is Dk/(λpdk). The incoherent PSF is the magnitude square of

this function, and hence the frequency support of this PSF is given by the convolution

of this circular support with itself, resulting in a circular support of twice diame-

ter [30]. The band-limitedness of the measurement tk then directly follows from the

band-limitedness of the PSF.

Secondly, note that high frequencies of the source images sp that lie outside the fre-

quency support of the PSF are not captured at the measurements, which is known as

the inherent diffraction-limit [27]. As a result, the forward operator involving convo-

lutions with these PSFs has a non-trivial nullspace. Here we restrict our attention to

band-limited source images only, and aim for recovering the band-limited versions of
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the source intensities sp, which are given by

xp(u, v) ≡ sp(u, v) ∗ jinc

(
2Dk

λpdk
u,

2Dk

λpdk
v

)
. (2.4)

The forward model in (2.1) is still valid when the unknown source intensities, sp,

are replaced with their band-limited versions, xp. Therefore, all functions in the

continuous forward model can be assumed band-limited and represented using the

conventional sinc basis [30].

Now by replacing each continuous band-limited function with its discrete representa-

tion with sinc basis, the continuous convolution operations in (2.1) reduce to discrete

convolutions of the form [22]

tk[m,n] =
P∑
p=1

xp[m,n] ∗ gλp,k[m,n], (2.5)

where m,n = [0, . . . , N − 1]. Here tk[m,n], xp[m,n], and gλp,k[m,n] are uniformly

sampled versions of their continuous counterparts, e.g. tk[m,n] = tk(m∆, n∆) for

some ∆ smaller than the Nyquist sampling interval (i.e. ∆ < λpdk
2Dk

). Here the uni-

formly sampled observations, tk[m,n], are assumed to be equal to the detector mea-

surements, i.e. the averaged intensity over detector pixels of width ∆.

Let the PSF gλp,k[m,n] hasM×M support, i.e. gλp,k[m,n] = 0 form,n /∈ [0,M−1].

We assume that the supports of the spectral images, xp[m,n], are limited to a slightly

smaller region than the detector range as determined by N pixels in each direction,

i.e. xp[m,n] = 0 for m,n /∈ [0, N −M − 1]. With this, the convolution in Eq. (2.5)

can be replaced with a circular convolution of N points, which will be exploited in

the development of the fast reconstruction method.

Due to the linearity of the circular convolution operator, the discrete model can be

cast in matrix-vector form using appropriate lexicographic ordering:

tk =
P∑
p=1

Hk,pxp (2.6)

where Hk,p is an N2 × N2 block circulant matrix with circular blocks correspond-

ing to the circular convolution operation with the PSF gλp,k[m,n]. Vectors tk and xp

correspond to lexicographically ordered versions of observations, tk[m,n], and spec-

tral images, xp[m,n], respectively. By combining all the measurement vectors into a
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single vector, t, we obtain

t = Hx, (2.7)

H =


H1,1 . . . H1,P

...
...

HK,1 . . . HK,P

 , (2.8)

where t = [tT1 | . . . |tTK ]T , x = [xT1 | . . . |xTp ]T , and H is a KN2 × PN2 matrix. In

practice, the measurement t is obtained in the presence of noise; hence the complete

observation model can be expressed as

y = t + w = Hx + w (2.9)

where w = [wT
1 | . . . |wT

K ]T is the additive noise vector. Here, white Gaussian noise is

assumed, where (wk)i ∼ N(0, σ2
k) with σk representing the noise standard deviation

for the kth measurement and uncorrelated across pixels i and different measurements

k. This white Gaussian noise assumption is generally valid for many practical multi-

spectral imaging scenarios of interest.

2.3 Inverse Problem

In the inverse problem, the goal is to recover the unknown spectral images, x, from the

measurements, y, obtained with the spectral imaging system. This inverse problem

can be considered as a multi-frame deconvolution problem that involves measure-

ments of the superimposed blurred images. That is, each measurement is a superposi-

tion of focused or defocused versions of different spectral images. This deconvolution

problem is inherently ill-posed, and as the PSFs, gλp,k[m,n], of different wavelengths

and measurements become more similar (for example, as the distance between dif-

ferent measurement planes or different wavelengths decreases), the problem becomes

more ill-conditioned due to the increased dependency between the columns of H.

Consequently, it becomes necessary to replace the original ill-posed problem with

another inverse problem that has better conditioning.

There are a variety of approaches to solve ill-posed linear inverse problems. A sys-

tematic approach to regularization leads to the minimization of an appropriately for-
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mulated cost function [32]. This approach generally derives from the use of prior

knowledge about the unknown solution in a least squares setting. The prior infor-

mation can be introduced in a deterministic way [33, 34, 35], or in a statistical set-

ting [36], which is related to the Bayes paradigm [37].

A general formulation of the inverse problem can be expressed as

min
x

ν||y −Hx||22 + Φ(Px). (2.10)

where the first term controls data fidelity, whereas the second term Φ(Px) controls

how well the reconstruction matches our prior knowledge of the solution, with the

scalar parameter ν trading off between these two terms. P is a matrix associated with

an analysis (transform) operator. Equivalently, we can reformulate this problem as a

constrained problem:

min
x

Φ(Px) subject to ||y −Hx||2 ≤ ε, (2.11)

where ε ≥ 0 is a parameter that depends on noise. We note that if the problem in

Eq. (2.11) is feasible for some ε ≥ 0, then it is equivalent to Eq. (2.10) for some

ν ≥ 0. An advantage of the formulation in Eq. (2.11) over Eq. (2.10) is the fact that

the parameter ε is directly proportional to the noise standard deviation, hence it is

much easier to choose than the parameter ν [38].

There are popular and powerful choices for the regularizer Φ(.) [38, 39, 40]. One

common choice is Tikhonov (quadratic) regularization [41], i.e. Φ(Px) = ‖Px‖2
2

with an appropriately chosen regularization matrix P (often a derivative operator),

which leads to an optimization problem with a stable and closed-form solution. How-

ever, it generally results in a reconstruction that is globally smooth. This property

is due to the fact that it treats all the structures of the image equally and to suppress

noise, large gradients or edges are also penalized.

To avoid this and preserve sharp structures in reconstructions, quadratic regularization

is often replaced with an `p-norm based regularization, i.e. Φ(Px) = ‖Px‖pp, with

1 ≤ p < 2. Unlike the quadratic case, when other norms are used, no closed-form so-

lution exists and iterative methods are required. Of particular interest is the case when

p = 1, leading to `1-norm, which is convex but non-smooth (non-differentiable) in the

origin, hence requires nonlinear optimization techniques. When a discrete approxi-
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mation to the gradient operator is used for P, the result is the well known anisotropic

total variation (TV) regularization which has achieved significant popularity due to

its superior results for reconstructing images with significant structure [42]. Another

powerful choice is isotropic TV, i.e. Φ(Px) = TV(x) with P = I, defined as follows

TV(x) =
∑
m,n

∇(x)[m,n], (2.12)

where

∇(x)[m,n] =
√

(Dh(x))2 + (Dv(x))2, (2.13)

and

Dh(x) = x[m+ 1, n]− x[m,n], (2.14)

Dv(x) = x[m,n+ 1]− x[m,n]. (2.15)

This choice of regularization also preserves piecewise-constant characteristics of the

image, but requires an iterative method for the solution [43].

2.4 Image Reconstruction Method

In this work, we develop a fast reconstruction algorithm using the ADMM framework

to solve the resulting optimization problem in Eq. (2.11). ADMM is an algorithm

used in many signal and image reconstruction problems [13, 44, 38, 45, 46]. It be-

longs to the family of augmented Lagrangian methods [47]. The algorithm provides

a divide-and-conquer approach by splitting the minimization steps of the objective

function in unconstrained multi-objective convex optimization problems. Its conver-

gence has been guaranteed under mild conditions [13].

To solve the resulting problem, we first transform the problem in Eq. (2.11) to an un-

constrained problem by adding the constraint to the objective as an indicator function:

min
x

Φ(Px) + ι(||y−Hx||2≤ε)(x), (2.16)
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where the indicator function ι(||y−Hx||2≤ε)(x) is expressed as follows:

ι(||y−Hx||2≤ε)(x) =

0, if ||y −Hx||2 ≤ ε

+∞, if ||y −Hx||2 > ε.

We then formulate our problem in ADMM form using variable-splitting:

minimize
x,u,v

Φ(u) + ι(||y−v||2≤ε)(v)

subject to u = Px, v = Hx
(2.17)

where u and v are ADMM auxiliary variables. For the kth iteration, we have mini-

mizations over x, u, and v with the following ADMM update steps:

xk+1 = arg min
x

µ

2

∥∥∥∥∥∥
 P

H

x−

 uk

vk

−
 dk

fk

∥∥∥∥∥∥
2

2

(2.18)

uk+1 = arg min
u

Φ(u) + µ
2
‖u− (Pxk+1 − dk)‖2

2 (2.19)

vk+1 = arg min
v

ι(||y−v||2≤ε)(v) + µ
2
‖v − (Hxk+1 − fk)‖2

2 (2.20)

where d and f are ADMM dual variables, and µ is a parameter related to the step

size of the algorithm. We now explain how these update steps, referred as x-update,

u-update, and v-update, are performed.

In the x-update step, we have a least squares problem, as given in Eq. (2.18), which

has the following solution:

xk+1 = (I + HHH)−1(PH(uk + dk) + HH(vk + fk)), (2.21)

where we assume P is a unitary transformation matrix satisfying PHP = I. Inversion

of (I + HHH) can be pre-calculated and used throughout the iterations. However,

since H is a huge matrix, a direct inversion is not practical.

To overcome this issue, we develop an efficient technique to invert A , (I + HHH)

using ideas from [48]. Since each block of H matrix, i.e. Hk,p, is a block circu-

lant matrix with circular blocks (BCCB), it is diagonalized by the discrete Fourier

transform (DFT) matrix, F. That is, Hk,p = FHΛk,pF where Λk,p is a diagonal ma-

trix whose diagonal can be computed by taking the DFT of the first column of Hk,p,
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which corresponds to the PSF gλp,k[m,n]. Let Λ be the matrix composed of K × P
blocks with each block given by Λk,p for k = 1, . . . , K and p = 1, . . . , P . Then A is

a matrix of P × P blocks with each block given by

Ap,q =
K∑
k=1

HH
k,pHk,p + δp,qI = FHΣp,qF, (2.22)

where Σp,q =
∑K

k=1 ΛH
k,pΛk,p+δp,qI with δp,q being the Kronecker delta function and

p, q = 1, . . . , P . Then A can be written as A = F̃HΣF̃ where F̃ = IP ⊗ F, and

IP is the P × P identity matrix. Here ⊗ is the Kronecker product, and Σ is a matrix

of P × P blocks with each block given by Σp,q. Then the inverse of A is given by

F̃HΣ−1F̃. Inserting this term in Eq. (2.21), we have the following solution for the

x-update step:

xk+1 = F̃HΣ−1F̃(PH(uk + dk) + HH(vk + fk)), (2.23)

which can be rewritten as

xk+1 = F̃HΣ−1(F̃PH(uk + dk) + ΛHF̃(vk + fk)). (2.24)

Here we efficiently compute the terms F̃PH(uk + dk) and F̃(vk + fk) using the fast

Fourier transform (FFT) since F̃(vk + fk) = [(F(vk1 + fk1 ))T | . . . |(F(vkP + fkP ))T ]T

and a similar form for F̃PH(uk + dk).

For the efficient calculation of Σ−1, note that Σ is a block matrix of P × P blocks.

Hence the inverse can be calculated efficiently through a recursive block matrix in-

version approach [49]. For P = 2 case, this inverse becomes Σ1,1 Σ1,2

Σ2,1 Σ2,2

−1

=

 C Σ−1
1,1Σ1,2K

KΣ2,1Σ
−1
1,1 −K

 (2.25)

where K = −(Σ2,2−Σ2,1Σ
−1
1,1Σ1,2)−1 and C = Σ−1

1,1−Σ−1
1,1Σ1,2KΣ2,1Σ

−1
1,1. For P >

2 case, the overall matrix Σ is partitioned into 2×2 blocks and each block is inverted

recursively using Eq. (2.25). Finally, we note that since each block in Eq. (2.25) is a

diagonal matrix, this inversion requires only elementwise multiplication and division

operations, which speeds up the computation significantly. Thus, it is not required to

form any of the matrices involved. As mentioned before, Σ−1 is pre-calculated and

used in all iterations for the x-update step, as given in Eq. (2.24).
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For the u-update step, the minimization problem in Eq. (2.19) needs to be solved,

which corresponds to a denoising problem of the form:

Ψf (u) = arg min
u

f(u) + 1
2
‖u− z‖2

2, (2.26)

where f is the regularization functional and z is the noisy observation. The solution

of this problem is defined as the Moreau proximal mapping [50] of the regularization

function f evaluated at u. Hence, the minimization in Eq. (2.19) is, by definition,

the Moreau proximal mapping of Φ(.) evaluated at (Pxk+1 − dk). We denote this

proximal mapping as ΨΦ(Pxk+1 − dk).

There are efficient calculations of ΨΦ(Pxk+1−dk) for different choices of Φ(.) func-

tional. For example, if `1-norm is used, i.e. Φ(Px) = ‖Px‖1, then ΨΦ(Pxk+1 − dk)

becomes soft-thresholding, i.e. Ψ`1 = soft(Pxk+1 − dk, τ), where τ is the thresh-

olding parameter. The soft-thresholding, soft(n, τ), is component-wise computed as

nl → sign(nl) max(|nl| − τ, 0) for all l, with sign(nl) taking value 1 if nl > 0 and

−1 otherwise [38]. If Φ(.) is chosen as isotropic TV operator, P becomes the identity

matrix, and the resulting proximal mapping, ΨTV(xk+1 − dk), has an efficient calcu-

lation for each spectral band using Chambolle’s algorithm [43, 38]. Specifically, we

separate the spectral bands and dual variables into P components, namely xk+1
p and

dkp, p = 1, . . . , P , and update each corresponding uk+1
p as follows:

uk+1
p = ΨTV(xk+1

p − dkp), p = 1, . . . , P. (2.27)

Then, the overall vector uk+1 is obtained by concatenating the uk+1
p vectors lexico-

graphically.

For the v-update step given in Eq. (2.20), similar to the u-update, we have the

proximal mapping of ι(||y−v||2≤ε)(.) evaluated at (Hxk+1 − fk), which we denote as

Ψι(||y−v||2≤ε)
(Hxk+1− fk). Calculation of this proximal mapping requires a projection

of s , (Hxk+1 − fk) onto ε-radius ball centered at y. The solution has the following

form [38]:

Ψι(||y−v||2≤ε)
(s) =

y + ε s−y
‖s−y‖2 , if ‖s− y‖2 > ε

s, if ‖s− y‖2 ≤ ε.
(2.28)
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Table 2.1: PSSI reconstruction algorithm

1. Set: k = 0

Choose: µ > 0, u0, v0, d0, f0

2. Repeat

3. mk = PH(uk + dk) + HH(vk + fk)

4. xk+1 = (I + HHH)−1mk

5. uk+1 = ΨΦ(Pxk+1 − dk)

6. vk+1 = Ψι(||y−v||2≤ε)
(Hxk+1 − fk)

7. dk+1 = dk − (Pxk+1 − uk+1)

8. fk+1 = fk − (Hxk+1 − vk+1)

9. k ← k + 1

10. Until: some stopping criterion is satisfied.

Finally, ADMM dual variables, d and f , are updated as follows [13]:

dk+1 = dk − (Pxk+1 − uk+1) (2.29)

fk+1 = fk − (Hxk+1 − vk+1) (2.30)

The overall algorithm is summarized in Table 2.1 for a general P and Φ(.). In the

numerical results, we choose Φ(.) as the isotropic TV operator and step 5 is solved

efficiently using Chambolle’s algorithm [43] for each spectral band, as explained be-

fore.

2.4.1 Computational Complexity

The computational complexity of the algorithm is dominated by the x-update, given

in Steps 3 and 4 of Table 2.1. This requires 2P FFT and P inverse FFT computa-

tions. Thus, its computational complexity is O(PN2 log(N)) where N2 is the size of

a spectral image and P is the number of spectral bands. Proximal mapping in Step 5

and ADMM dual variable update in Step 7 have O(N2) complexity if P is a diagonal

matrix, or O(PN2 log(N)) if P has a fast implementation such as with FFT. Step 6
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and 8 require multiplication with H, which costs O(PN2 log(N)). Thus, the overall

complexity of the algorithm is O(PN2 log(N)). It is also worth noting that the com-

plexity of the recursive inversion in Eq. (2.25) is O(P 3N2). Since it is pre-calculated

once, it does not affect the algorithm’s overall complexity.

2.5 Numerical Results

Here we present numerical simulations to illustrate the high spatial and spectral reso-

lution enabled by the proposed spectral imaging technique for an application in solar

spectral imaging. For this, we consider a polychromatic input source generating three

quasi-monochromatic waves at close (but different) EUV wavelengths: λ1 = 33.4

nm, λ2 = 33.5 nm and λ3 = 33.6 nm (i.e., P = 3).

For the diffractive lens, a sample photon sieve design described in [29] for EUV

solar imaging is considered, where the outer diameter of the sieve is 25 mm, and the

diameter of the smallest hole is 5 µm. This results in a photon sieve with the first-order

focal lengths of f1 = 3.742 m, f2 = 3.731 m, and f3 = 3.720 m at the corresponding

wavelengths, and Abbe’s diffraction resolution limit of 5 µm [27, 51]. The pixel size

on the detector is then chosen as 2.5 µm to match the diffraction-limited resolution

of the system with two pixels on the detector (which corresponds to Nyquist rate

sampling).

For the imaging system, two different measurement settings are considered. In the

moving detector (MD) case, the system records the intensities at three focal planes,

f1, f2 and f3, corresponding to wavelengths λ1, λ2 and λ3 (i.e., K = 3). Hence at

the first focal plane, the measurement consists of a focused image of the first source

overlapped with the defocused images of the second and the third sources, and vice

versa at the other focal planes.

Alternatively, in the fixed detector (FD) case, we fix the measurement plane at the dis-

tance f2 and obtain the measurements by changing the photon sieve diameter at each

shot. This measurement setting obtains similar measurements with the MD setting

without moving the detector in the axial direction, but at the expense of multiple pho-

ton sieve designs. In this case, the measurements can be obtained in real-time using a
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spatial light modulator (SLM) to generate multiple photon sieves or beam-splitters.

For the FD setting, same photon sieve design is used by only changing the diameter

to also focus λ1 and λ3 onto the distance f2. Because the measurement plane is fixed

to f2 = 3.731 m, the diameter is decreased by 77 µm for λ1 and is increased by 72

µm for λ3. These modifications on the sieve design are within the limits of modern

lithography techniques [52].

2.5.1 Reconstructions in EUV Band

Here we demonstrate the reconstructions of the solar spectral images under different

imaging scenarios with MD and FD measurement settings. In the numerical experi-

ments, solar EUV scenes of size 512×512 pixels are used as the inputs to the system.

However, since the resolution of the existing solar spectral imagers are below the

diffraction-limited resolution considered here, it is not possible to obtain a realistic

(high-resolution) solar image for the simulations. Instead, we use these solar images

as if they were images of some other sun-like object, and illustrate the diffraction-

limited resolution for this case. Our goal with this experiment is to illustrate that

diffraction-limited high spatial resolution can be achieved for imaging objects with

similar characteristics.

Using the forward model in Eq. (2.9), we first simulate the measurements y at the

signal-to-noise ratio (SNR) of 25 dB for the MD setting. Figures 2.2 and 2.3 show

the resulting measurements at the three focal planes together with the contributions

from each source and the corresponding point-spread functions of the system, respec-

tively. We obtain the reconstructions using the algorithm in Table 2.1 with isotropic

TV regularization which is implemented in MATLAB. One reconstruction takes ap-

proximately 300 seconds on a computer with 16 GB of RAM and i7 7700K 4.20 GHz

CPU.

The reconstructed images are shown in Fig. 2.4 for the three spectral sources, together

with the diffraction-limited versions of the original scenes, for comparison. The re-

constructed images suggest that the proposed system achieves near diffraction-limited

resolution. The average peak SNR (PSNR) and SSIM values are 35.36 dB and 0.94,
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respectively. Visual inspection shows that the characteristic features, such as solar

flares, are successfully recovered from the noisy measurements.

In Table 2.2, we present the average PSNR and SSIM values for different SNRs of 15

dB to 40 dB with 5 dB steps, when MD and FD settings are used. The results demon-

strate the successful and stable recovery under even noisy regimes. More specifically,

the average PSNR is above 30 dB even when the input SNR is 15 dB. Furthermore,

it increases significantly as the SNR level increases and surpasses 40 dB level for the

highest SNR case. SSIM is 0.90 when input SNR is 20 dB, and increases up to 0.97

as the measurements become less noisy. Hence, the obtained PSNR and SSIM values

clearly show the system’s powerful reconstruction capability over a wide range of

noise levels, as required by various measurement scenarios.

Another critical observation in Table 2.2 is that MD and FD measurement settings

almost provide the same reconstruction performance. For a given input SNR level,

maximum differences in the reconstructions of the two settings are 0.18 dB for PSNR

and 0.01 for SSIM metrics. This demonstrates that both measurement settings can be

used interchangeably without sacrificing from the reconstruction performance. This

opens up new possibilities for using both settings under different practical limitations.

To demonstrate the system performance for different number of multi-spectral bands,

P , we also perform simulations for P = 2 and P = 4 cases as well while taking

the number of measurements equal to the number of spectral bands (i.e. K = P ).

In the first setting, we consider two spectral bands at λ2 = 33.5 nm, λ3 = 33.6 nm

with the measurements obtained at f2 and f3. In the latter setting, we consider four

spectral bands, namely λ0 = 33.3 nm, λ1 = 33.4 nm, λ2 = 33.5 nm, λ3 = 33.6 nm,

and obtain four measurements at the corresponding focal planes, f0, f1, f2, and f3.

Table 2.3 shows PSNR and SSIM values for these settings as well as P = 3 setting

described before for comparison. The results demonstrate that the reconstruction

quality degrades with increasing number of P values. This is expected as the inverse

problem’s ill-posedness increases with the increase in the number of sources, P . Still,

the system provides high quality reconstructions even for P = 4 case, with PSNR of

31.67 dB and SSIM of 0.90 for 25 dB input SNR.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.2: Measured intensities for 25 dB SNR at the first focal plane f1 (a), at the

second focal plane f2 (e), and at the third focal plane f3 (i), the underlying images

of the first source at the first, second, and third focal planes (b)-(d), the underlying

images of the second source at the first, second, and third focal planes (f)-(h), and the

underlying images of the third source at the first, second, and third focal planes (j)-(l).
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(a)

(b)

(c)

Figure 2.3: Sampled and zoomed point-spread functions of the system at the first

focal plane for different wavelengths (a) λ1, (b) λ2, and (c) λ3, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Reconstructions of the first, second, and third sources at wavelengths λ1,

λ2, and λ3 (a), (c), (e) for 25 dB SNR and original diffraction-limited images of the

sources (b), (d), (f), respectively.
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Table 2.2: PSNR (dB) and SSIM values for different input SNRs when moving de-

tector (MD) and fixed detector (FD) measurement settings are used. SNR and PSNR

values are reported in decibel (dB).

Input SNR MD PSNR FD PSNR MD SSIM FD SSIM

15 30.51 30.49 0.88 0.87

20 31.66 31.66 0.90 0.90

25 33.32 33.15 0.92 0.92

30 35.36 35.38 0.94 0.93

35 38.10 38.09 0.95 0.95

40 41.64 41.55 0.97 0.97

Table 2.3: PSNR (dB) and SSIM values for different number of sources (P) and

measurements (K) for 25 dB SNR.

Setting Average PSNR (dB) Average SSIM

K=2, P=2 37.04 0.94

K=3, P=3 33.32 0.92

K=4, P=4 31.67 0.90

2.5.2 Resolution Analysis

In this section, we analyze the spatial resolution of the system both theoretically and

numerically to understand its performance better. We first perform a conditioning-

based analysis to demonstrate the resolution of the proposed system. Then, we recon-

struct point sources with different separation distances from noisy measurements and
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investigate whether they are in agreement with the conditioning-based analysis. Since

this is not a conventional camera but a computational imaging system, two-point res-

olution may not reveal the system performance for more complex scenes. For this

reason, in addition to two-point resolution, we also consider higher number of point

sources.

For the theoretical analysis, similar to the analysis in [53], we investigate the stability

of the forward model in Eq. (2.9). We consider different number of point sources with

varying number of spacings between them. Since the measurements are corrupted by

noise, conditioning of the columns of H associated with the nonzero point sources

will have a critical role on the reconstruction quality. Thus, by looking at the con-

ditioning of the relevant submatrices of H, we will gain an understanding about the

resolving capability of the system. We suppose an oracle tells us the exact locations

of the point sources on the 3D spectral data cube, which effectively corresponds to

knowing the support of the cube a priori. Then, our job is to find only the values of

the nonzero components. If this problem fails, the original problem of finding both

nonzero locations and values will also fail. Hence calculating the conditioning of the

relevant submatrices of H provides insight for accurately solving the inverse problem

of interest.

To perform this analysis, we consider point sources with 2, 4, 16, 36, and 64 elements

placed in a square grid. We choose the pixel size on the detector as 1 µm for fine anal-

ysis of resolution. We change the spacing between the point sources from 1 µm to 20

µm with 1 µm steps. Then, we calculate the conditioning of corresponding submatri-

ces for these point sources. The results are plotted in Fig. 2.5 when the point sources

are located at the first, second and third spectral bands for P = 3 case in the MD mea-

surement setting. As can be seen, conditioning is similar for all bands and becomes

worse as the number of point sources increases, as expected. Moreover, as the point

sources get closer, conditioning degrades which is also expected. This illustrates that

the system is unable to resolve different point targets after a certain separation dis-

tance. An important observation is the rapid decrease in the condition number up to 5

µm separation distance which corresponds to the theoretical diffraction-limited reso-

lution of the system for the monochromatic case. After this distance, the conditioning

starts to change slowly for all cases.
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Figure 2.5: Conditioning of the submatrices of H for different number of point

sources and different separation distances. Left to right: conditioning results when

the point sources are placed at the first, second, and third spectral bands.

For the numerical analysis of the system resolution, we consider 2, 4, and 16 point

sources of size 1 µm placed at the first, second, and third spectral bands, respectively.

The separation distance between the point sources are chosen as 5 µm. The point

sources are reconstructed from the measurements generated using the forward model

in Eq. (2.9) for 25 dB SNR. Figure 2.6 shows the ground truth, diffraction-limited,

and reconstructed point targets as well as the measured intensities. Visual inspection

shows that the system successfully resolves points with 5 µm separation and recon-

structs sharper images than the diffraction-limited images at this SNR level. We note

that obtaining sharper reconstructions than the diffraction-limited images are also re-

lated with the choice of regularization, which is isotropic TV.

In another analysis, we observe that when the distance between the point sources are

5 µm, we resolve them successfully even for 3 dB input SNR. This shows that the

system resolution is robust for highly noisy measurements. Below this SNR level,

reconstruction fails to separate the existing point sources. Moreover, resolving point

sources with 4 µm spacing is also possible up to 5 dB input SNR. In other words,

although it requires a higher SNR level than 5 µm case, the system is capable of

providing 4 µm resolution for a wide range of SNR values. On the other hand, the

system can not resolve the point sources when the distance becomes 3 µm even for

high SNR levels. We expect that the system fails after a certain separation distance,

as the conditioning degrades significantly below 5 µm. Hence, these results are in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.6: Demonstration of 5 µm resolution using point targets for 25 dB SNR. (a)-

(c) Noisy measurements with 25 dB SNR at wavelengths λ1, λ2, and λ3, (d)-(f) re-

constructed images from the noisy measurements, (g)-(i) diffraction-limited images,

(j)-(l) ground truth images.
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agreement with the conditioning plots shown in Fig. 2.5. Note that the intensity dif-

ference between the point sources would also affect their resolvability, which is not

analyzed here.

2.5.3 Reconstructions in Visible Band

We now present numerical simulations to illustrate the performance of FD measure-

ment setting in a visible band spectral imaging scenario. For this, we consider a

dataset of size 256×256×10 (10 wavelengths from 530−620 nm with 10 nm spacing)

obtained from an online hyperspectral database at the University of Manchester [54].

For the photon sieve design, the smallest hole diameter is chosen as ∆ = 15 µm,

which can be realized using an off-the-shelf digital micro-mirror device (DMD). The

outer diameter of the sieve used for the kth measurement is selected asDk = fλk
∆

[22]

where the focal length f is fixed as 0.09 m. We simulate the measurements at the focal

plane using the model in Eq. (2.9). The reconstruction algorithm is run on a computer

with i7 7700K CPU and 16 GB RAM using MATLAB r2015a. Sparsity is enforced

using a Kronecker basis P = P1 ⊗ P2, i.e. Φ(Px) = ‖Px‖1 where P1 is the 2D

Symmlet-8 basis and P2 is the 1D cosine basis [4]. This is a commonly used sparsity

prior in computational spectral imaging.

Figure 2.7: Reconstructed spectral images for different measurement SNRs when the

FD measurement setting is used. Top to bottom: true spectral images, reconstructions

with 60 dB, 40 dB, and 30 dB SNR.
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The number of measurements is chosen asK = 10 (i.e. non-compressive setting) and

different SNR levels are considered. Table 2.4 shows the average PSNRs and SSIMs,

and demonstrates successful reconstruction performance for moderate and high SNR

cases. The reconstructed spectral images for 60 dB, 40 dB, and 30 dB SNR cases

are shown in Fig. 2.7 together with the true images. The results illustrate that the

visual quality and spectral characteristics are well preserved. Reconstruction times

are approximately 200 seconds; thus the developed reconstruction method enables

fast spectral imaging for higher number of spectral bands.

Table 2.4: Comparison of mean PSNRs (dB) and SSIMs for different SNR levels

when the FD measurement setting is used.

Input SNR (dB) 20 dB 30 dB 40 dB 50 dB 60 dB ∞

Mean PSNR (dB) / SSIM 26.35/0.84 28.48/0.90 29.85/0.93 31.08/0.95 32.60/0.96 36.80/0.98

2.6 Conclusions

In this chapter, we have considered a diffractive lens based computational spectral

imaging modality. This technique originally takes measurements at different dis-

tances from the sieve using a moving detector, which may be undesirable in dynamic

scenes. To avoid this, we have proposed to take measurements at a fixed plane by us-

ing multiple photon sieves with beam splitters or programmable spatial light modula-

tors (SLM). We have solved the resulting inverse problem by developing an ADMM

based reconstruction technique. Efficient implementation of the proposed reconstruc-

tion technique has also been described, which requires no matrix formation and takes

few minutes on a standard computer.

The presented results for EUV and visible band spectral imaging illustrate the pos-

sibility of achieving diffraction-limited spatial resolution and even beyond with the

proposed computational spectral imaging technique. Another important advantage,

which is slightly hidden in these experiments, is the higher spectral resolution achieved

compared to the conventional spectral imagers with wavelength filters as pointed out

in [22]. Note that the sources of interest in the EUV experiments have wavelengths
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33.3 nm, 33.4 nm, 33.5 nm, and 33.6 nm, hence the proposed spectral imager can

achieve a spectral resolution of 0.1 nm, which is less than 0.3% of the central wave-

length of each source. Such a high spectral resolution is not possible to achieve with

the state-of-the-art EUV wavelength filters, which can at best achieve a spectral res-

olution of 10% of the central wavelength [55]. This becomes an issue when this 10%

spectral band contains more than one spectral line since in this case resolving each

line is not possible.

Lastly, we have provided an analysis for the spatial resolution of the system both

theoretically and numerically to understand its capability better. For this, we first

performed a conditioning based analysis to understand the stability of the forward

model. Then, we reconstructed point sources with different configurations and com-

pared the results with the results of the conditioning analysis. The two results are in

agreement and the system can provide the theoretically expected diffraction-limited

spatial resolution and even beyond for a wide range of SNR levels. As a last remark,

we note that these promising aspects of the technique can be improved further by

taking more measurements than the unknown spectral bands (such as obtaining mea-

surements at the intermediate planes), which will help to remedy the ill-posed nature

of the encountered multi-frame deconvolution problem further.
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CHAPTER 3

SPATIAL SUPER-RESOLUTION IN DIFFRACTIVE LENS BASED

SPECTRAL IMAGING

3.1 Introduction

In this chapter, we consider the spatial super-resolution problem for spectral imaging

systems with diffractive lenses. The spatial super-resolution problem aims to recon-

struct the original high-resolution spectral images from low-resolution measurements.

This problem is of interest in various practical imaging settings. Achieving high-

spatial resolution is important for different spectral imaging applications involving

space imagery, recognition and identification.

Current spectral imaging systems, both computational imaging based and conven-

tional techniques, have hardware constraints which limit their spatial resolution. Al-

though there is continuous interest and development in higher resolution focal plane

arrays (FPAs) such as for infrared (IR) regime [56, 57], the associated costs still pro-

hibit their use in low-cost applications [58]. To overcome these limitations, software-

based (post-processing) approaches are proposed for spatial super-resolution prob-

lem [59, 60, 61, 62, 63, 64, 65, 66]. A better approach is to also modify the optical

system based on the framework of computational imaging [58, 4, 67, 68]. Here, we

develop spatial super-resolution techniques using both approaches for diffractive lens

based spectral imaging. We utilize a photon sieve [22] as the diffractive lens, and call

the resulting system photon sieve spectral imaging (PSSI).

Photon sieve is a modification of the Fresnel zone plate in which open zones are

replaced by a large number of circular holes. It has superior performance in espe-

cially UV and x-ray wavelengths where refractive lenses are not available due to
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strong absorption of materials, and reflective mirrors are difficult to manufacture to

achieve diffraction-limited resolution [29]. It offers diffraction-limited imaging per-

formance with relaxed manufacturing tolerances. However, because the focal length

of the photon sieve is wavelength dependent (causing chromatic aberration), its use

has been generally restricted to monochromatic sources[26, 69, 70]. The PSSI tech-

nique, however, takes advantage of chromatic aberration for multispectral imaging.

In the classical PSSI technique, as explained in Chapter 2, a moving detector is used

to record the superimposed and differently blurred spectral images at different mea-

surement planes (see Fig. 3.1). The spectral images are reconstructed from these

measurements by solving a multi-frame deconvolution problem involving multiple

objects. For super-resolution in PSSI, no hardware modification to the system is re-

quired. However, its super-resolution power is limited and the performance of the sys-

tem degrades at higher subsampling levels. To overcome this issue, we also consider

coded measurements by adding a coded aperture to the system and taking multiple

shots with different coded masks. This system is called as Coded-PSSI (C-PSSI) (see

Fig. 3.1).

Using the inverse problem framework, our aim is to reconstruct the original high-

resolution spectral images from the measurements taken by a PSSI or C-PSSI system

with a low-resolution detector. Although there are different algorithmic approaches

for the spatial super-resolution problem in the literature, it is not possible to use them

directly for the solution of our inverse problem. This is because our underlying prob-

lem involves blurry, superimposed and subsampled measurements. For this reason,

we develop an algorithm to obtain fast and high quality reconstructions. The algo-

rithm is based on alternating direction method of multipliers (ADMM) which is a

frequently used optimization technique for linear inverse problems in imaging [38].

We analyze the performance of the algorithm for both PSSI and C-PSSI under dif-

ferent noise settings and obtain promising results in terms of reconstruction time and

visual quality.
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3.2 Forward Problem

Illustrations of PSSI and C-PSSI are given in Fig. 3.1. In PSSI, the optical field is

directly passed through the photon sieve. On the other hand, in C-PSSI, the imaging

lens forms the image of the scene on the plane of the coded aperture. The resulting

coded field is then passed through the photon sieve. We consider PSSI and C-PSSI

settings separately as the former has a limited super-resolution capability, but requires

no hardware modification to the original system that takes measurements at different

planes. The latter, on the other hand, utilizes a coded aperture and also takes multiple

measurements at each plane with different codes to improve the performance. In both

settings, we consider K different measurement planes. We discretize the original 3D

spectral data cube into S spectral bands along the spectral dimension, and Nx × Ny

pixels along the spatial dimensions. After this discretization, the spectral components

have wavelengths λ1, . . . , λS .

3.2.1 Photon Sieve Spectral Imaging (PSSI)

In PSSI, intensity measurements are recorded at K different measurement planes. In

all K such measurement planes, we assume measurements are taken by a detector

with a lower resolution than the expected theoretical resolution of the system. Here,

ds and dk denote the distances from the source and kth measurement plane to the

plane where the photon sieve resides, with k = 1, .., K. The relation between the

kth measurement and the spectral images can be expressed as follows:

tk[m,n] =
S∑
s=1

xs[m,n] ∗ hk,s[m,n] (3.1)

Here, the term xs[m,n] denotes the spectral image with wavelength λs. This spectral

image at wavelength λs is convolved at distance dk with the incoherent point-spread

function (PSF), hk,s[m,n], of the photon sieve. This discretized PSF is obtained by

uniformly sampling its continuous form, i.e. gλs,k[m,n] = gλs,k(mδx, nδx) with

δx denoting the spatial discretization distance. This sampling distance is chosen to

match the diffraction-limited resolution of the system. Note that although the terms

xs[m,n]’s involve different scaling for different k’s, when ds is much larger than dk,
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(a)

(b)

Figure 3.1: Schematic view of the (a) PSSI (b) C-PSSI systems.

this scaling can be effectively taken as the same. Hence, we assume all the spectral

bands have the same scaling.

The continuous form of the PSF at wavelength λs and distance dk has a closed-form

expression given as [71]:

hk,s(x, y) = i
λs
γ
e
−iπ x

2+y2

∆λsd
2
k ∗ A(

x

λsdk
,
y

λsdk
), (3.2)

where γ = 1/ds + 1/dk and A(fx, fy) is the Fourier transform of the aperture (trans-

mission) function of the photon sieve. The aperture (transmission) function, a(x, y),

of the photon sieve is defined as the ratio of the transmitted field amplitude to the

incident field amplitude at every point (x, y) on the photon sieve.

Because the detector has lower resolution than the resolution of the system, i.e. δx,
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the detector measurements are the subsampled versions of tk[m,n]:

yk[m,n] =
1

∆x∆y

∆x∑
ix=1

∆y∑
iy=1

tk[(m− 1)∆x + ix, (n− 1)∆y + iy], (3.3)

where m = 1, ..., Nx and n = 1, ..., Ny for an input image of size Nx × Ny. Here,

∆x and ∆y denotes subsampling ratios along x and y dimensions, and ∆ , ∆x∆y is

the overall subsampling ratio of the system. The measurement yk[m,n] is obtained at

distance dk over a detector with N ′x ×N
′
y pixels where N ′x ,

Nx
∆x

, N ′y ,
Ny
∆y

.

Here, we let the PSF hk,s[m,n] has M ×M support, i.e. hk,s[m,n] = 0 for m,n 6∈
[1,M ]. We assume that the size of the input objects are limited to a slightly smaller

region than the original image size, i.e. xs[m,n] = 0 for m 6∈ [M + 1, Nx] and

n 6∈ [M + 1, Ny]. With this, the convolution in Eq. (3.1) can be replaced with a

circular convolution of Nx×Ny points. This will be used later in the development of

fast reconstruction algorithm.

We can rewrite the image formation model given in Eq. (3.3) in the following matrix-

vector form:

y = DHx + w, (3.4)

y =


y1

...

yK

 , x =


x1

...

xS

 , H =


H1,1 . . . H1,S

...
...

HK,1 . . . HK,S

 .

Here, yk ∈ RN
′

represents the lexicographically ordered kth measurement vector,

and y ∈ RKN
′

is the overall measurement vector with N
′
, N

′
xN

′
y. Similarly,

xs ∈ RN is the vector corresponding to the spectral image at wavelength λs, and

x ∈ RSN is the overall image vector with N , NxNy. The matrix Hk,s ∈ RN×N

is a block circulant matrix with circular blocks corresponding to circular convolution

with hk,s[m,n], and H ∈ RKN×SN is the overall system matrix. The matrix D ∈
RKN

′×KN performs the averaging subsampling operation. It takes each ∆x × ∆y

group and produces a single average for it. Using this matrix, integration of incoming

light intensity over the low-resolution detector pixels is modeled [72]. Finally, the

vector w = [wT1 |...|wTK ]T is the additive white Gaussian noise with (wk)i ∼ N(0, σ2
k).
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3.2.2 Coded Photon Sieve Spectral Imaging (C-PSSI)

As illustrated in Fig. 3.1, C-PSSI system is similar to the PSSI system but there is

an additional imaging lens and a coded aperture. The imaging lens forms the image

of the scene on the plane of the coded aperture. We assume an ideal imaging lens

with unit magnification. The resulting coded field is then passed through the photon

sieve. These coded, superimposed and blurred measurements are captured using a

low-resolution detector at different measurement planes. Similar to the PSSI, we as-

sume ds is much larger than dk, hence different scaling ratios can be effectively taken

as the same for all bands. We can take multiple measurements at each measurement

plane by changing the code in the coded aperture (using a programmable spatial light

modulator (SLM)) to obtain subpixel information about the spectral images. In this

system, each different measurement can be expressed as follows:

tk,l[m,n] =
S∑
s=1

(cl,s[m,n]xs[m,n]) ∗ hk,s[m,n], (3.5)

where cl,s[m,n] denotes the lth coded aperture with entries 1 or 0 and modulates the

sth spectral component. Each spectral component can be modulated differently, as

in [73], using "colored" coded apertures. The other terms in the formulation is same

with Eq. (3.1), and the same subsampling operation in Eq. (3.3) follows. Hence, we

rewrite the given image-formation model in the matrix-vector form as follows:

yl = DHClx + wl, (3.6)

where

Cl =


diag(cl,1) . . . 0

... . . . ...

0 . . . diag(cl,s)


Here, different from Eq. (3.4), we have the diagonal matrix Cl ∈ RSN×SN corre-

sponding to the lth coding operation for S different spectral components, and takes

values 1 or 0 along its diagonal. If we consider taking L different measurements at

each measurement plane with L different colored coded apertures, then the resulting

relation becomes

ỹ = D̃H̃C̃x + w̃, (3.7)
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where

ỹ =


y1

...

yL

 , D̃ = D⊗ IL, H̃ = H⊗ IL,

C̃ =


C1

...

CL

 , w̃ =


w1

...

wL

 .
Here, ỹ ∈ RLKN

′
is the overall measurement vector, and C̃ ∈ RLSN×SN represents

the coding operation with L different colored coded apertures. The matrix IL is L×L
identity matrix and ⊗ denotes Kronecker product. The block diagonal matrices H̃ ∈
RLKN×LSN and D̃ ∈ RLKN

′×LKN performs convolution and averaging subsampling

operations for different colored coded apertures, respectively. Finally, w̃ ∈ RLKN
′

is the overall additive white Gaussian noise vector. We note that this formulation

reduces to (3.4) if we set L = 1 and C to identity matrix. Hence, from now on, we

use the more general forward model in Eq. (3.7).

3.3 Inverse Problem

In the inverse problem, the goal is to reconstruct the unknown spectral images, x,

from their noisy, superimposed, blurred, coded, and subsampled measurements, ỹ.

This problem is inherently ill-posed due to subsampling and blurring operations. De-

creasing the detector resolution and distance between different measurement planes,

and the different wavelengths further increase the ill-posedness of the problem.

There are a variety of approaches to solving such ill-posed linear inverse problems [74].

Here we consider using the prior knowledge of the unknown solution in a least squares

setting. This results in the following regularized linear least squares problem:

min
x

ν||ỹ − D̃H̃C̃x||22 +R(x). (3.8)

Here the first term controls data fidelity, whereas the second termR(x) controls how

well the reconstruction matches our prior knowledge of the solution, with the scalar
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parameter ν trading off between these two terms. Equivalently, we can reformulate

this problem as a constrained problem:

min
x
R(x) subject to ||ỹ − D̃H̃C̃x||2 ≤ ε, (3.9)

where ε ≥ 0 is a parameter that depends on noise variance. We note that if problem

(3.9) is feasible for some ε ≥ 0, then it is equivalent to (3.8) for some ν ≥ 0. An

advantage of the formulation (3.9) over (3.8) is the fact that the parameter ε is directly

proportional to the noise standard deviation, hence it is much easier to set than ν [38].

There are popular and powerful choices for the regularizerR(.) such as those involv-

ing `1-norm and total variation (TV) [38]. We choose R(.) as anisotropic 3D TV

operator when the spectrum has high correlation along the spectral dimension, i.e.

slowly changing, to exploit the redundancy. If the spectrum has small correlation, i.e.

fast changing, along the spectral dimension, then we use anisotropic 2D TV operator

since redundancy in the spectral dimension is limited. Specifically,

2D TV:R(x) = ‖Txx‖1 + ‖Tyx‖1 , TV2D(x) (3.10)

3D TV:R(x) = TV2D(x) + ‖Tzx‖1 , TV3D(x) (3.11)

Here Tx, Ty, Tz are SN ×SN matrices performing the discrete derivative operation

along x, y, and z dimensions.

3.4 Image Reconstruction Method

Similar to Chapter 2, we solve the resulting optimization problem in (3.9) by develop-

ing a fast reconstruction algorithm using ADMM framework. Again, we rewrite (3.9)

in ADMM formulation. For this, we first convert the problem to an unconstrained

problem by adding the constraint to the objective as an indicator function:

min
x
R(x) + ι(||ỹ−D̃H̃C̃x||2≤ε)(x), (3.12)

where the indicator function ι(||ỹ−D̃H̃C̃x||2≤ε)(x) has the following form:

ι(||ỹ−D̃H̃C̃x||2≤ε)(x) =

0, if ||ỹ − D̃H̃C̃x||2 ≤ ε

+∞, if ||ỹ − D̃H̃C̃x||2 > ε.
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We then obtain the following formulation of the problem in ADMM form:

minimize
x,u,v

R(u) + ι(||ỹ−v||2≤ε)(v)

subject to u = x, v = D̃H̃C̃x
(3.13)

where u and v are ADMM auxiliary variables. After this formulation, we minimize

the variables x, u, and v alternatingly, as explained below.

In x-update step, we have a least squares problem which has the following normal

equation:

(I + C̃HH̃HD̃HD̃H̃C̃)xk+1 = (uk + dk) + C̃HH̃HD̃H(vk + fk) (3.14)

where d and f are ADMM dual variables. We solve this normal equation for xk+1

using a conjugate-gradient algorithm, which reaches convergence in a few iterations.

For this iterative process, forming any of the matrices is not required, which pro-

vides significant savings for the memory as well as the computation time. Specif-

ically, multiplications with matrices H̃ and H̃H correspond to summation of some

convolutions. That is, for multiplication with H̃ matrix, we can simply take 2D

Fourier transforms of underlying PSFs hk,1[m,n], . . . , hk,S[m,n] and the spectral im-

ages x1[m,n], . . . , xS[m,n], multiplying them elementwise, and then summing all

the results. For multiplication with H̃H matrix, a similar operation is performed us-

ing h1,s[m,n], . . . , hK,s[m,n]. Multiplications with D̃ and D̃H can be carried out

using averaging subsampling operator and zero-order hold interpolating operator, re-

spectively. Former is computed by taking each ∆x×∆y group and producing a single

average for it. For the latter, each single entry of the image is repeated in a ∆x ×∆y

block. Lastly, the required multiplications with C̃ and C̃H in the iterative process

reduce to simple elementwise multiplications with coded aperture functions. Hence,

forming these large matrices is also not required.

In u-update, the following minimization problem is solved:

uk+1 = arg min
u

R(u) + µ
2
‖u− (xk+1 − dk)‖2

2 (3.15)

We make a quadratic approximation to the `1-norms inR(u) term using half-quadratic

regularization for an overall quadratic formulation [75]. Although the underlying op-

erators are different in anisotropic 2D and 3D TV cases, the solution is obtained for
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both cases using the following normal equation:

(µ
2
I + TTWT)uk+1 = µ

2
(xk+1 − dk) (3.16)

Here, T is the matrix performing TV2D or TV3D operations depending on the spec-

trum of interest. W is a diagonal weighting matrix due to approximating `1-norm

using half-quadratic regularization [76, 75]. It has the following form:

W = diag(
0.5

([Tu]2i + β)0.5
), (3.17)

where β is a small positive constant.

The given normal equation is solved for uk+1 using a conjugate-gradient algorithm,

which converges in a few iterations. Multiplication with T matrix can be carried

out performing convolutions with difference filter, i.e. [1 − 1 0], along x, y, and

z directions. Similarly, the flipped version of the difference filter can be used for

multiplication with TH matrix. Hence, forming these matrices is not required as

well.

Minimization of v requires a projection of s , (D̃H̃C̃xk+1 − fk) onto ε-radius ball

centered at ỹ. The solution has the following form:

vk+1 =

ỹ + ε s−y
‖s−y‖2 , if ‖s− ỹ‖2 > ε

s, if ‖s− ỹ‖2 ≤ ε.
(3.18)

Finally, we update ADMM dual variables as follows:

dk+1 = dk − (xk+1 − uk+1) (3.19)

fk+1 = fk − (D̃H̃C̃xk+1 − vk+1) (3.20)

The overall algorithm is given in Table 3.1.

3.4.1 Computational Complexity

Dual variable updates in Steps 7 and 8 haveO(LSN) cost. D̃, D̃H , C̃, C̃H operations

and the Moreau proximal mappings in Steps 5-6 have cost O(LSN) as well. Hence,

the complexity of the overall algorithm is O(LSN log(N)) due to FFT algorithm

used for multiplications with H̃ and H̃H .
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Table 3.1: Spatial super-resolution in PSSI algorithm

1. Set: k = 0

Choose: µ > 0, u0, v0, d0, f0.

2. Repeat

3. Solve Eq. (3.14) for xk+1 using conjugate-gradient algorithm.

4. Solve Eq. (4.8) for uk+1 using conjugate-gradient algorithm.

5. Update vk+1 using Eq. (3.18).

6. Update dk+1 using Eq. (3.19).

7. Update fk+1 using Eq. (3.20).

9. k ← k + 1

10. Until: some stopping criterion is satisfied.

3.5 Numerical Results

We analyze the performance of the proposed super-resolution algorithm under differ-

ent imaging scenarios. For this, we present the results on PSSI and C-PSSI systems

using spectral images in visible and EUV bands. All the experiments are run in MAT-

LAB R2016a on a computer with i7 7700k 4.20 GHZ CPU and 16 GB of RAM.

3.5.1 PSSI

Here we present numerical results to show the performance of the proposed algo-

rithm for EUV and visible bands in PSSI. In the first case, the object of interest

is a polychromatic source emitting two quasi-monochromatic waves at wavelengths

λ1 = 33.4 nm and λ2 = 33.5 nm. Simulation setting is same with the EUV band

results of Chapter 2. Specifically, for the photon sieve, a sample design in [77] for

EUV solar imaging is considered, with the outer diameter of the photon sieve as 25

mm, and the diameter of the smallest hole as 5 µm. This results in a photon sieve

with focal lengths f1 = 3.742 m and f2 = 3.731 m for the two wavelengths. We

take measurements at the focal planes corresponding to these wavelengths (K = 2).

We use solar EUV images of size 512 × 512 as inputs. We set subsampling factors

∆x = ∆y = 2, and compare the reconstructed images with reconstructions obtained
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when there is no-subsampling. We use anisotropic 2D TV as regularizer since spectral

correlation in the considered EUV application is limited. The algorithm converges in

approximately 150 seconds for all input SNRs.

Figure 3.2 shows reconstructed images when input SNR is 30 dB. When there is

subsampling and no-subsampling, the PSNR values are 33.0 dB and 33.5 dB, and

SSIM values are 0.93 and 0.95, respectively. Thus, reconstruction quality is similar

for both cases in terms of PSNR and SSIM metrics. Visual inspection of Fig. 3.2 is

also in agreement with these metrics, showing that both reconstructions provide sharp

images and preserve spectral features.

Table 3.2 shows the PSNR and SSIM values for different input SNRs. It can be

seen that when there is 2 × 2 subsampling, the reconstruction performance is robust

to noise, and provides slightly lower PSNR and SSIM values compared to the no-

subsampling case under even low input SNRs.

In the second case, we consider a dataset of size 128 × 128 × 6 (6 wavelengths

from 540 - 590 nm with 10 nm spacing) in visible band that was obtained from an

online hyperspectral image database [78]. This simulation setting is different from

the visible band results given in Chapter 2. For the photon sieve, a sample design is

used [79], with the outer diameter of the photon sieve as 3.36 mm and the diameter

of the smallest hole as 15 µm, resulting in a focal length of 9 cm at 560 nm. We

take measurements at the focal planes corresponding to these wavelengths (K = 6).

We set subsampling factors ∆x = ∆y = 2 again. We use anisotropic 3D TV as

regularizer to exploit the spectral correlation in the visible regime. The algorithm

converges in approximately 22 seconds for all input SNRs.

Figure 3.3 shows the reconstructed images when the input SNR is 30 dB. Similar

to the results in EUV band, image features are well preserved both spatially and

spectrally when there is 2 × 2 subsampling. For numerical evaluation, PSNR and

SSIM values for different input SNRs are reported in Table 3.3. From these results, it

can be seen that PSNR and SSIM values are lower than the EUV band results for both

subsampling and no-subsampling cases. This is an expected result since the number

of bands we reconstruct increases from 2 to 6, which increases the ill-posedness of

the inverse problem.

44



Figure 3.2: Reconstruction of EUV band images (K = 2) when input SNR is 30 dB.

Left to right: Reference, Reconstruction when there is subsampling (∆x = ∆y = 2),

Reconstruction when there is no subsampling.

Table 3.2: PSNR(dB)/SSIM values for EUV band images (K = 2).

Input SNR (dB) Subsampling (∆x = ∆y = 2) No-subsampling

Infinite 39.1/0.95 44.6/0.99

40 35.7/0.94 36.0/0.98

30 33.0/0.93 33.5/0.95

20 30.9/0.89 31.4/0.92

Table 3.3: PSNR(dB)/SSIM values for visible band images (K = 6).

Input SNR (dB) Subsampling (∆x = ∆y = 2) No-subsampling

Infinite 35.2/0.97 44.7/0.99

40 32.2/0.94 34.8/0.97

30 30.8/0.91 32.2/0.95

20 27.7/0.83 29.8/0.89

Finally, we test the performance of the reconstruction method when there is severe

subsampling. We set ∆x = ∆y = 4, and reconstruct both EUV band and visible
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Figure 3.3: Reconstruction of visible band images (K = 6) when input SNR is 30 dB.

Left to right: Reference, Reconstruction when there is subsampling (∆x = ∆y = 2),

Reconstruction when there is no subsampling.
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band data cubes given before when input SNR is 40 dB. For EUV band, PSNR and

SSIM values are 33.9 dB and 0.91, respectively. These values are 26.8 and 0.79

for visible band, showing that the effect of subsampling increases as the number of

spectral band increases, as expected. Figures 3.4 and 3.5 show the reconstructed

images with reference images. As can be seen, both reconstruction involves blur

and noise artifacts. Moreover, although the EUV band reconstruction preserves the

spectral features, spectral information in some parts is lost in the visible case (for

example, see the color change at the right side of the box).

Figure 3.4: Reconstruction of EUV band images (K = 2) when input SNR is 40 dB.

Left to right: Reference, Reconstruction when there is severe subsampling (∆x =

∆y = 4).
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Figure 3.5: Reconstruction of visible band images (K = 6) when input SNR is 40

dB. Left to right: Reference, Reconstruction when there is severe subsampling (∆x =

∆y = 4).
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3.5.2 C-PSSI

For C-PSSI, we consider a dataset of size 256 × 256 × 6 (6 wavelengths from 550

- 600 nm with 10 nm spacing) in visible band that was obtained from [78]. For the

photon sieve, a slightly new design is used, with the outer diameter of the photon

sieve as 3.45 mm and the diameter of the smallest hole as 15 µm, resulting in a focal

length of 9 cm at the wavelength of 575 nm. We take measurements at the focal planes

of each wavelength in the dataset (K = 6) again. In each measurement, the system

applies the masking operation on the individual spectral bands using a colored coded

aperture. The entries of these apertures are drawn from a Bernoulli distribution such

that 50% of the coded mask pixels is transmissive. For different shots, i.e. l values,

different colored coded apertures are used. We set ∆x = ∆y = 4 and L = 16, 8, 4, 2

and compare with the L = 1 case, i.e. PSSI setting with no coding. We set input SNR

levels to 20 dB, 30 dB, 40 dB, and infinite. Each reconstruction takes approximately

30 minutes. Here the results are only presented for the visible case, but not for the

EUV case because C-PSSI observation setting is not very practical for the considered

EUV application.

Reconstructions for different L values are given in Fig. 3.6 when the input SNR is

40 dB. As can be seen from the figure, reconstruction quality improves both spatially

and spectrally as the number of shots, i.e. L, increases. PSNR and SSIM values for

different input SNRs are given in Table 3.4. From the reported PSNR and SSIM val-

ues, it can be seen that using C-PSSI with multiple shots improves the reconstruction

quality compared to the PSSI reconstruction with no coding. Hence, C-PSSI provides

better reconstructions than the PSSI as the detector resolution decreases.

Table 3.4: PSNR(dB)/SSIM values for visible band images (K = 6) at different L

and input SNR values.

SNR

L
1 (No Coding-PSSI) 2 4 8 16

20 dB 25.29/0.78 25.84/0.80 26.45/0.82 27.13/0.84 27.84/0.86

30 dB 26.77/0.84 27.60/0.86 28.36/0.87 29.34/0.89 30.46/0.90

40 dB 27.52/0.87 29.40/0.89 30.85/0.91 32.51/0.92 34.21/0.94

∞ 32.09/0.92 35.41/0.94 37.85/0.96 51.98/1.00 53.37/1.00
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Figure 3.6: Reconstruction of visible band images (K = 6) when input SNR is 40

dB and ∆x = ∆y = 4. Left to right: Reference, Reconstruction when L = 1 (No

coding-PSSI), L = 2, L = 4, L = 8,and L = 16.

3.6 Conclusions

In this chapter, we have considered spatial super-resolution problem in photon sieve

spectral imaging. We have developed a fast reconstruction method to achieve spa-

tial super-resolution in PSSI system. We have then extended this method to C-PSSI

where different colored coded apertures are used to improve the reconstruction per-

formance by taking more measurements. Our method is based on ADMM algorithm

and utilizes anisotropic 2D-TV and 3D-TV regularizers for different spectrum char-

acteristics. We have illustrated the performance of the proposed technique using sim-

ulations for various scenarios at EUV and visible regimes. The algorithm we propose
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offers promising performance in terms of both reconstruction time and quality, and is

robust to noise.

For super-resolution in PSSI, no hardware modification is required. We have showed

that this system can provide 2 × 2 super-resolution successfully based on PSNR,

SSIM, and visual quality. However, performance of the system degrades at higher

subsampling levels. In such cases, C-PSSI with multiple shots should be used to im-

prove the reconstruction quality. We have showed that for 4 × 4 super-resolution,

taking 4 or 8 shots with C-PSSI at each measurement plane provides successful re-

construction performance in terms of PSNR, SSIM, and visual quality. We note that

multiple shots can be taken using off-the-shelf spatial light modulators, which pro-

vides frame rates up to 1 kHz. Hence, C-PSSI can work in dynamic scenes as well.
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CHAPTER 4

COMPRESSIVE SPECTRAL IMAGING WITH DIFFRACTIVE LENSES

4.1 Introduction

As mentioned before, conventional spectral imaging techniques rely on a scanning

process to build up the 3D spectral cube from a series of 2D measurements [82]. One

important disadvantage is that higher number of scans is needed with increased spatial

and spectral resolutions [4]. This generally leads to low light throughput, increased

hardware complexity, and long acquisition times, resulting in temporal artifacts in

dynamic scenes [5]. Moreover, the temporal, spatial, and spectral resolutions are

inherently limited as they are purely determined by the physical elements involved.

Compressive spectral imaging provides an effective way to overcome these limita-

tions by passing on some of the burden to a computational system. It enables to re-

construct the entire spectral cube from a few multiplexed measurements via sparsity-

based reconstruction. This is made possible by compressive sensing (CS) which relies

on two principles: sparsity of the spectral images in some transform domain and in-

coherence of the measurements. It is widely known that spectral images exhibit both

spatial and spectral correlations, which allow sparse representations [4]. For the inco-

herence of the measurements, different compressive spectral imaging techniques have

been proposed such as coded aperture snapshot spectral imaging (CASSI) [4, 83, 84]

and compressive hyperspectral imaging by separable spectral and spatial operators

(CHISS) [11].

Some parts of this chapter have been presented in [79, 80], and also submitted for publication [81].
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In this chapter, we develop a novel compressive spectral imaging technique named

compressive spectral imaging with diffractive lenses (CSID). CSID uses a coded aper-

ture to spatially modulate the optical field from the scene and a diffractive lens such

as a photon sieve [22, 70] for dispersion. The coded field is first passed through the

diffractive lens and then measured at a few planes using a moving detector. A fast

sparse recovery method is also developed to reconstruct the spectral cube from these

compressive measurements. The performance is illustrated numerically for various

settings. Different than the earlier works that use diffractive lenses for spectral imag-

ing [22, 14, 15, 16], here we utilize them for the first time in a compressive modality.

Figure 4.1: Illustration of the CSID system.

Figure 4.1 illustrates the CSID system, which has a simple optical configuration con-

sisting of (1) an imaging lens, (2) a coded mask, (3) a diffractive lens (such as a photon

sieve [22, 70]), and (4) a monochrome detector [79]. First the image of the scene is

formed on the plane of the coded mask. Then the coded field is passed through the

diffractive lens. Since the diffractive lens has a wavelength-dependent focal length,

each spectral component is exposed to a different amount of focus. As a result, each

measurement is a superposition of differently blurred and coded spectral bands. Us-

ing a moving detector, a total of K such measurements can be recorded at different

distances from the diffractive lens.
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4.2 Forward Problem

The measurements obtained with the CSID system can be related to the intensity of

each spectral component as follows:

yk(u, v) =

∫
(fλ(u, v) ∗ hdk,λ(u, v)) b(λ)dλ. (4.1)

Here yk(u, v) represents the kth measurement obtained at distance dk, fλ(u, v) =

xλ

(
− ds
dk
u,− ds

dk
v
)
cλ

(
− ds
dk
u,− ds

dk
v
)

is the coded and scaled intensity of the spec-

tral field sλ(u, v) with the coded aperture cλ(u, v). Assuming an ideal imaging lens

with unit magnification, the coded and scaled intensity fλ(u, v) is convolved with

the incoherent point-spread function (PSF) of the diffractive lens, hdk,λ(u, v), which

has a closed-form expression given elsewhere [31]. Lastly, b(λ) denotes the spectral

response of the detector. Note that although the terms xλ
(
− ds
dk
u,− ds

dk
v
)

’s involve

different scaling for different k’s, when ds is much larger than dk, this scaling can be

effectively taken as the same.

We discretize the spectral field into S spectral bands, and xs(u, v) represents the

intensity of the sth band with central wavelength λs. This spectral component is

modulated with the coded mask which has pattern cs(u, v) at wavelength λs. The

patterns cs(u, v) are the same for all wavelengths (s = 1, . . . , S) if an uncolored

(traditional block-unblock) mask is used; however, the mask patterns will be differ-

ent if a colored coded aperture [85] is used instead. The coded aperture cs(u, v) =∑
m,n cs[m,n]rect( u

∆c
−m, v

∆c
− n) is a pixelated array with a pixel size of ∆c, and

cs[m,n] denotes the value of the coded aperture at pixel (m,n).

After discretizing the spectral field along the spectral dimension, discretization along

the spatial dimensions is also needed to arrive at a discrete model. By replacing each

spatially continuous function with its discretized version, we can obtain the following

discrete forward model:

yk[m,n] =
S∑
s=1

(xs[m,n]cs[m,n]) ∗ hdk,λs [m,n])bs. (4.2)

Here, yk[m,n] denotes the kth measurement obtained over Nx × Ny detector pixels,

and corresponds to the samples of yk(u, v), i.e. yk[m,n] = yk(m∆, n∆). The sam-

pling interval ∆ corresponds to the pixel size of the detector. The coded aperture
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pixel size can be chosen as an integer multiple of ∆ to avoid the need for subpixel

positioning accuracy. Here, we choose ∆c = ∆ for simplicity. Moreover, xs[m,n]

and hdk,λs [m,n] are the uniformly sampled versions of their continuous counterparts

with the same sampling interval ∆. Lastly, bs represents the coefficient resulting from

the response of the detector at the central wavelength λs.

The above discrete forward model can be expressed in matrix-vector form as follows:

y = HCx + w, (4.3)

where y = [yT1 , ...,y
T
K ]T ∈ RKN is vertically concatenated measurement vector with

N , NxNy where yk ∈ RN represents the kth measurement vector. Similarly,

xs ∈ RN is the vector corresponding to the spectral image with wavelength λs, and

x = [xT1 , ...,x
T
S ]T ∈ RSN is the concatenated image vector. The KN × SN matrix

H consists of N × N convolution matrices representing the convolutions with PSFs

hdk,λs [m,n]. The diagonal matrix C ∈ RSN×SN represents the overall coding opera-

tion, and has values 0 or 1 along its diagonal. Finally, the vector w = [nT1 , ..., n
T
K ]T

denotes the measurement noise, which is often white Gaussian. In our setting, the

number of measurements (K) is smaller than the number of spectral bands (S), which

results in an under-determined system of equations.

4.3 Image Reconstruction Method

In the inverse problem, the goal is to reconstruct the unknown spectral images, x,

from their compressive superimposed measurements, y, which correspond to their

coded and blurred versions. This problem is inherently ill-posed. There are a variety

of approaches to solve such ill-posed linear inverse problems. Here, to exploit the

sparsity of the spectral images after some transformation Φ, we present two different

image reconstruction approaches using `1-norm based and `0-norm based regulariza-

tion. We first formulate each associated inverse problem and then solve it efficiently

by developing a fast sparse recovery algorithm.
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4.3.1 `1-norm Based Regularization

In the first reconstruction approach, we formulate the inverse problem as the following

constrained optimization problem:

min
x
‖Φx‖1 subject to ||y −HCx||2 ≤ ε, (4.4)

where ε ≥ 0 is a parameter that depends on noise variance. Here the `1-norm enforces

the sparsity of the spectral cube after transformation with Φ, as motivated by the CS

theory [86].

To solve the resulting optimization problem, we convert our constrained problem to an

unconstrained problem by adding the constraint to the objective function as a penalty

function:

min
x
‖Φx‖1 + ι(||y−HCx||2≤ε)(x), (4.5)

where the indicator function ι(||y−HCx||2≤ε)(x) takes value 0 if the constraint is satis-

fied, and +∞ otherwise. We solve this problem by developing a fast reconstruction

algorithm that is based on alternating direction method of multipliers (ADMM) [38].

After variable-splitting, this results in the following problem:

minimize
x,z(1),z(2)

‖Φz(1)‖1 + ι(||y−z(2)||2≤ε)(z
(2))

subject to z(1) = x, z(2) = HCx
(4.6)

where z(1), z(2) are the auxiliary variables in the ADMM framework. After expressing

the problem in Eq. 4.6 in augmented Lagrangian form [38], minimization over x, z(1),

and z(2) is needed. Here, we minimize them in an alternating fashion.

For minimization over x, we face a least-squares problem which has the following

normal equation:

(I + CHHHC)xk+1 = (z(1) + d(1) + CHH(z(2) + d(2))) (4.7)

with d denoting the dual variable in the ADMM framework. A direct matrix inver-

sion approach for solving the linear system in Eq. (4.7) is not feasible for large-scale

spectral cubes. Here, we solve this iteratively using the conjugate-gradient method.

For this iterative process, forming any of the matrices is not required, which pro-

vides huge savings for the memory as well as the computation time. Specifically,
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multiplications with matrices H and HH correspond to summation of some convo-

lutions. That is, for multiplication with H matrix, we can simply take 2D Fourier

transforms of underlying PSFs hdk,λ1 [m,n], . . . , hdk,λS [m,n] and the spectral images

x1[m,n], . . . , xS[m,n], multiplying them elementwise, and then summing all the re-

sults. For multiplication with HH matrix, a similar operation is performed using the

PSFs hd1,λs [m,n], . . . , hdK ,λs [m,n]. Lastly, the required multiplications with C in

the iterative process reduce to simple elementwise multiplications with coded aper-

ture functions cs[m,n].

For minimization over z(1), we need to perform the following operation involving

soft-thresholding:

z
(1)
k+1 = Φ−1(soft(Φ(xk+1 − d

(1)
k ), 1

µ
)), (4.8)

Here, soft(w, τ) denotes the soft-thresholding operation and is component-wise com-

puted as wi → sign(wi) max(|wi| − τ, 0) for all i, with sign(wi) taking value 1 if

wi > 0 and −1 otherwise [38]. That is, the solution in (4.8) can be obtained by first

transformation with Φ, followed by soft-thresholding with parameter 1/µ, and inverse

transformation operation Φ−1.

For minimization over z(2), a projection of s , (HCxk+1 − d
(2)
k ) onto ε-radius hy-

persphere centered at y is required [38]. This projection has the following form:

z
(2)
k+1 =

y + ε s−y
‖s−y‖2 , if ‖s− y‖2 > ε

s, if ‖s− y‖2 ≤ ε.
(4.9)

As a result, we have three update steps resulting from the ADMM formulation, i.e.

x-update, z(1)-update, and z(2)-update. The overall algorithm is summarized in Ta-

ble 4.1.
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Table 4.1: `1-norm based reconstruction algorithm for CSID

Input: Compressive measurements y obtained using (4.3).

Initialization: Initialize iteration count k = 0, choose µ > 0, ε,

z
(1)
0 , z

(2)
0 ,d(1)

0 , d
(2)
0 .

Main Iteration: Increment k by 1 and repeat the following steps

until some stopping criterion is satisfied.

1. Calculate spectral images xk+1 by solving (4.7)

using conjugate-gradient algorithm.

2. Calculate z
(1)
k+1 using soft-thresholding in (4.8).

3. Calculate z
(2)
k+1 using projection in (4.9).

4. Update d
(1)
k+1 as d

(1)
k+1 = d

(1)
k − (xk+1 − z

(1)
k+1).

5. Update d
(2)
k+1 as d

(2)
k+1 = d

(2)
k − (HCxk+1 − z

(2)
k+1).

Output: Spectral images x.

4.3.2 `0-norm Based Regularization

To enforce sparsity, we can also formulate the inverse problem as follows:

min
x,b

ν||y −HCx||2 +
SN∑
j=1

||WPjx− bj||22 s.t. ||b||0 ≤ β (4.10)

Here we extract 3D patches of size n1×n1×n2 from the data cube using Pj ∈ RL×SN

operator (L = n2
1n2). Then we promote sparsity of these patches in the 3D discrete

cosine transform (DCT) domain. This is done by transforming each patch to this

transform domain using the 3D DCT operator W ∈ RL×L. Vector bj ∈ RL is the

sparse code vector of the jth patch, and b ∈ RLSN is obtained by concatenating

bj sparse code vectors. Finally, ν controls the weight between the two terms in the

objective function while β is the sparsity parameter.

To solve the resulting optimization problem, we develop a fast alternating minimiza-

tion approach which alternately minimizes the objective term in Eq. (4.10) over the

spectral images x and sparse codes b.

In the sparse coding step, the objective is minimized over b while x is kept fixed;
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the optimal solution is obtained by assigning the largest β elements of all patches

{WPjx}SNj=1 to b, and zeroing the others.

In the spectral cube update step, the minimization problem over x is solved while b

is kept fixed. This is a least-squares problem whose linear normal equation has the

following form:

(νCHHHC + G)x = (νCHHy + z) (4.11)

where G =
∑SN

j=1 PT
j WHWPj = ISN and z =

∑SN
j=1 PT

j WHx with ISN denoting

the SN × SN identity matrix. We solve this normal equation using a conjugate-

gradient algorithm. Multiplication with H matrix is efficiently calculated using FFT,

as explained before. The overall algorithm is summarized in Table 4.2.

Table 4.2: `0-norm based reconstruction algorithm for CSID

Input: Compressive measurements y obtained using (4.3).

Initialization: Initialize iteration count k = 0, choose ν > 0, β > 0,

x.

Main Iteration: Increment k by 1 and repeat the following steps

until some stopping criterion is satisfied.

1. Calculate spectral images xk+1 by solving Eq. (4.11)

using conjugate-gradient algorithm.

2. Calculate bk+1 by assigning the largest β elements of

{WPjx}SNj=1 to b, and zeroing the others.

Output: Spectral images x.

4.3.3 Computational Complexity

For the `1-norm based regularization method, similar to Chapter 2, dual variable up-

dates and Moreau proximal mappings have O(SN) cost. The complexity of the over-

all algorithm is O(SN log(N)) due to the FFT algorithm used in multiplications with

H and HH .

For the `0-norm based regularization method, complexity is dominated by WPjx
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operation in the sparse coding step [48]. Its computational complexity is O(L2SN2).

The spectral cube update step requires multiplications with H and HH . Its complexity

is O(SN log(N)). Thus, the complexity of the overall algorithm is O(L2SN2).

4.4 Numerical Results

4.4.1 `1-norm Based Regularization

We now present numerical simulations to illustrate the performance of the developed

imaging technique. We consider a spectral scene of size 256 × 256 × 10 (10 wave-

lengths from the range 530− 620 nm with 10 nm interval), which was taken from an

online hyperspectral database [54]. For the diffractive lens, the same design with the

C-PSSI setting at visible regime is used, as explained in Section 3.5.2. Specifically,

we consider a photon sieve design with an outer diameter of 3.45 mm and the small-

est hole diameter of δ = 15 µm. This results in a focal length of f0 = 9 cm at the

central wavelength λ0 = 575 nm and Abbe’s spatial resolution of 15 µm. The pixel

size of the detector, ∆, is chosen as 7.5 µm to match the expected spatial resolution.

Moreover, the expected spectral resolution is 4 δ2/f0 = 10 nm, as given by the spec-

tral bandwidth of the diffractive lens [27][Chap. 9]. Note that this expected spectral

resolution matches the chosen spectral sampling interval, i.e. 10 nm.

The compressive measurements are simulated using the model in Eq. (4.3) with addi-

tive Gaussian noise. In each measurement, the system applies the masking operation

on individual spectral bands using colored coded apertures. The entries of these aper-

tures are drawn from a Bernoulli distribution. A sample mask pattern is shown in

Fig. 4.2. After the coded field passes through the photon sieve, we capture measure-

ments at different planes. A sample compressive measurement is shown in Fig. 4.2

together with the true spectral cube superimposed (integrated) along the spectral di-

mension. As seen, the measurements involve not only the superposition of all spectral

images but also a significant amount of blur and degradation.

We consider different compressive scenarios with 2, 3, 4, and 5 measurements taken

at different planes with equidistant points from the central focal plane. These cor-
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Figure 4.2: Demonstration of compressive measurements obtained with CSID. Left

to right: Superimposed true image, sample mask pattern, sample compressive mea-

surement.

respond to compression ratios (CRs), 100 × (1 − K/S), of 80%, 70%, 60%, and

50%, respectively. Different measurement SNRs of 20, 30, and 40 dB are also con-

sidered for the additive noise. Reconstructions are obtained from these compressive

and noisy measurements using the algorithm in Table 4.1. Similar to previous com-

pressive spectral imaging approaches [4], we enforce sparsity in a Kronecker basis

Φ = Φ1 ⊗ Φ2 where Φ1 is the basis for 2D Symmlet-8 wavelet and Φ2 is the 1D

discrete cosine (DCT) basis. This transformation with Φ is computed by first taking

the 2D Symmlet-8 transform of each spectral image and then the 1D DCT along the

spectral dimension. One reconstruction takes approximately 35 seconds on a com-

puter with 16 GB of RAM and i7 7700K 4.20 GHz CPU.

Table 4.3 shows the average PSNRs for the considered measurement scenarios. It can

be seen that PSNR is above 30 dB at 70% compression ratio and 30 dB input SNR,

which demonstrates the high-quality reconstruction of the spectral cube in practical

imaging scenarios. In addition, the performance degrades gracefully with decreasing

input SNR and increasing compression ratio. That is, the imaging performance is also

robust to high noise and compression levels.

To visually evaluate the results, we present in Fig. 4.3 the reconstructed spectral im-

ages at 30 dB input SNR and different compression ratios, together with the true

spectral images. We can see that the image details and edges, as well as the spec-

tral variations, are well preserved in the reconstructions. In the bottom of the figure,

superimposed reconstructions along the spectral dimension are also shown, which
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are indistinguishable from the true one. Hence, the results demonstrate the success-

ful reconstruction of the spectral image cube from compressive measurements with

compression ratios of as high as 80%.

To further demonstrate the successful recovery along the spectral dimension, we se-

lect three representative spatial points with different spectral characteristics. These

points P1, P2, and P3 are shown in Fig. 4.3. The reconstructed spectra at these points

are plotted in Fig. 4.4, together with the ground truth. It can be seen that the spec-

trum is recovered almost perfectly in all compression ratios for P1. At points P2 and

P3, the reconstruction with 80% compression ratio slightly deviates from the ground

truth, while other compression ratios provide good reconstructions.

To also numerically evaluate the spectrum recovery performance, the normalized

mean squared error (NMSE) for the spectrum is computed at these selected points,

using ||x− x∗||22/||x||22 where x is the ground truth and x∗ is the reconstructed spec-

trum. The resulting NMSE values are given in Table 4.4. These values also support

the successful recovery of the spectrum with a typical NMSE value of less than 1%.

Table 4.3: Comparison of average PSNRs (dB) for different compressive measure-

ment scenarios and SNRs.

SNR (dB) 80% CR 70% CR 60% CR 50% CR

20 25.34 27.43 28.11 28.54

30 27.65 31.52 32.61 33.07

40 29.14 34.56 36.29 37.00
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Figure 4.3: Reconstructed spectral images (at 10 wavelengths in the range 530− 620

nm with 10 nm spacing) from compressive measurements when input SNR is 30

dB. Left to right: true images, reconstructions with 50%, 60%, 70%, and 80% CR.

Superimposed (summed) spectral cubes along the spectral dimension are shown at

the bottom part.

64



Figure 4.4: Spectrum at three spatial positions P1, P2, and P3.

Table 4.4: NMSE of the spectrum at the selected points.

Point # 80% CR 70% CR 60% CR 50% CR

1 1.14% 0.33% 0.86% 0.18%

2 0.67% 0.15% 0.06% 0.06%

3 6.92% 0.55% 0.52% 0.26%

4.4.1.1 Effect of Different Transform Choices

Here we obtain reconstructions using the same measurement settings with different

priors to investigate the effect of prior selection on the reconstruction quality. For

this, we choose Φ as 3D TV, 3D Full DCT (which takes 3D DCT of the full spec-

tral cube), 3D Patched DCT (which takes 3D DCT of 16 × 16 × 4 patches of the

spectral cube with a stride of 3), Kronecker product of 2D Daubechies Wavelet and

1D DCT (2D Daub + 1D DCT), and Kronecker product of 2D Symmlet-8 Wavelet

and 1D DCT (2D Symm + 1D DCT). PSNRs for these priors are given in Table 4.5

for different CRs and input SNRs. From these results, it can be seen that 3D Full

DCT performs best at lower input SNRs while 3D Patched DCT provides the highest

PSNR as the input SNR increases. On the other hand, wavelet-based priors, i.e. 2D
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Daub + 1D DCT and 2D Symm + 1D DCT, have comparable performance with 3D

Full DCT at lower input SNRs, and better than 3D Patched DCT. Finally, in all of

the measurement settings, 3D TV performs the worst. This is because while the 3D

TV prior is successful in preserving spatial features, it causes over-smoothing in the

spectral direction, which limits its reconstruction capability. 3D DCT based priors,

on the other hand, capture the spectral changes across different bands successfully.

However, their reconstructions involve noisy artifacts, which degrades spatial perfor-

mance. Finally, utilizing 2D wavelet-based priors along spatial dimensions and 1D

DCT along spectral dimension offers the best performance.

To understand the effect of different sparsity priors on the spectrum, NMSE of the

reconstructed spectrum at points P1, P2, and P3 are given in Table 4.6 for different

CRs for SNR=30 dB case. From the NMSE results, it can be seen that 2D Daub +

1D DCT and 2D Symm + 1D DCT recover the spectrum much better than the other

priors for all cases. However, since the PSNR of 2D Symm + 1D DCT is better than

the 2D Daub + 1D DCT prior, especially at high input SNR levels, we conclude that it

provides the best reconstruction performance among all these priors. Reconstructions

using this prior were given in Fig. 4.3. For comparison, we also present reconstruc-

tions using other priors in Figure 4.5, 4.6, 4.7, and 4.8 when input SNR is 30 dB.

Visual inspection shows that 2D Symm + 1D DCT reconstruction preserves spatial

image features as well as spectral changes while other reconstructions lose spectral

information in some regions and exhibit noisy artifacts.
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Figure 4.5: Reconstructed spectral images (at 10 wavelengths in the range 530− 620

nm with 10 nm spacing) from compressive measurements using 3D TV prior when

input SNR is 30 dB. Left to right: true images, reconstructions with 50%, 60%, 70%,

and 80% CR.
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Figure 4.6: Reconstructed spectral images (at 10 wavelengths in the range 530− 620

nm with 10 nm spacing) from compressive measurements using 3D Full DCT prior

when input SNR is 30 dB. Left to right: true images, reconstructions with 50%, 60%,

70%, and 80% CR.
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Figure 4.7: Reconstructed spectral images (at 10 wavelengths in the range 530− 620

nm with 10 nm spacing) from compressive measurements using 3D Patched DCT

prior when input SNR is 30 dB. Left to right: true images, reconstructions with 50%,

60%, 70%, and 80% CR.
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Figure 4.8: Reconstructed spectral images (at 10 wavelengths in the range 530− 620

nm with 10 nm spacing) from compressive measurements using 2D Daub + 1D DCT

prior when input SNR is 30 dB. Left to right: true images, reconstructions with 50%,

60%, 70%, and 80% CR.
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Table 4.5: Comparison of average PSNRs (dB) for different priors, different com-

pressive measurement scenarios, and SNRs. Prior results are given in the following

SNR order: 20 dB, 30 dB, 40 dB. For a given CR and input SNR, priors with highest

PSNR (within 0.1 dB margin) are given in bold numbers.

Prior 80% CR 70% CR 60% CR 50% CR

3D TV 23.33/25.10/27.19 24.28/26.99/30.36 25.11/28.65/32.28 25.53/29.32/33.06

3D Full DCT 25.72/27.80/29.69 27.65/32.08/35.32 28.60/33.19/36.92 29.10/33.58/37.59

3D Patched DCT 24.49/27.05/30.24 26.64/31.85/35.77 27.83/33.29/37.32 28.20/33.76/37.83

2D Daub + 1D DCT 25.37/27.56/29.11 27.26/31.16/33.82 27.80/32.17/35.35 28.29/32.60/35.87

2D Symm + 1D DCT 25.34/27.65/29.14 27.43/31.52/34.56 28.11/32.61/36.29 28.54/33.07/37.00

Table 4.6: Comparison of NMSE of the spectrum (in %) at the selected points for dif-

ferent priors and different compressive measurement scenarios when the input SNR

is 30 dB. Prior results are given in the following point order: P1, P2, and P3. For

a given CR and point, priors with lowest NMSE (within 0.1 % margin) are given in

bold numbers.

Prior 80% CR 70% CR 60% CR 50% CR

3D TV 3.44/1.33/20.42 2.36/1.11/7.87 2.75/0.72/3.90 1.95/0.98/3.67

3D Full DCT 2.53/0.80/8.04 1.41/0.17/1.02 1.15/0.06/1.15 0.80/0.05/0.50

3D Patched DCT 3.91/0.97/9.02 2.06/0.18/1.04 0.77/0.08/1.08 0.54/0.08/0.71

2D Daub + 1D DCT 1.16/0.58/6.37 0.32/0.22/0.53 0.27/0.10/0.31 0.36/0.04/0.31

2D Symm + 1D DCT 1.14/0.67/6.92 0.33/0.15/0.55 0.86/0.06/0.52 0.18/0.06/0.26
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4.4.2 `0-norm Based Regularization

Here we present numerical simulations to illustrate the performance using `0-norm

based regularization. We consider a dataset of size 128 × 128 × 6 (6 wavelengths

from 540− 590 nm with 10 nm spacing), which was obtained from an online hyper-

spectral image database at the University of Manchester. For the diffractive lens, the

same design with the PSSI setting at visible regime is used, which is explained in

Section 3.5.1. For this, the outer diameter is selected as 3.36 mm and the diameter of

the smallest hole as 15 µm, resulting in a focal length of 9 cm at 560 nm. The mea-

surements are simulated using the model in (4.3) with randomly generated colored or

uncolored coded masks.

In the first analysis, 2 noiseless measurements are taken at the focal planes of the

second and fifth spectral components by using no mask, uncolored and colored coded

apertures. Reconstructed images for these three cases are given in Fig. 4.9a together

with the true images. The results demonstrate the successful reconstruction of the

spectral cube from compressive measurements with a PSNR of more than 40 dB when

either uncolored or colored masks are used.

For the second analysis, the above experiment is repeated for K = 1, 3, and 6 cases,

with the 3 measurements taken at the midpoints of successive wavelength sources in

the two extreme ends, and one in the center. Fig. 4.9b shows the reconstruction per-

formance for different compression ratios for the colored mask case. This suggests

that compression ratios of up to 33% allows almost perfect recovery. In the third anal-

ysis, the effect of noise is explored by generating noisy measurements with different

SNRs. Table 4.7 shows the PSNRs for the K = 2 and K = 3 cases with a colored

mask, and demonstrates that the reconstruction performance degrades gracefully at

noisy regimes.

For comparison, we also obtain reconstructions from compressive measurements us-

ing `1-norm based regularization which is explained in Section 4.3.1. We note that

`0-norm based reconstruction is not feasible for the earlier data set used for `1-norm

based reconstruction because it takes hours to reconstruct 256 × 256 × 10 spectral

cube. For this reason, here we provide the results of both reconstruction methods on
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Figure 4.9: (a) Reconstructed images from compressive measurements (K = 2). Top

to bottom: true images, reconstructions with no mask, uncolored mask, colored mask.

(b) PSNR versus K for the colored mask case

73



128×128×6 spectral cube given here. For `1-norm based reconstruction, we use 3D

TV, 3D Full DCT, 3D Patched DCT, and 2D Symm + 1D DCT priors, which are ex-

plained in Section 4.4.1.1. PSNRs for these priors and `0-norm based reconstruction

are given in Table 4.8. It can be seen that 3D Patched DCT and 3D Full DCT priors in

`1-norm based regularization have similar PSNRs with `0-norm based reconstruction

using 3D Patched DCT prior. On the other hand, the `1-norm based regularization

utilizing ADMM converges much faster, around 30 seconds, while `0-norm based

regularization requires approximately 800 seconds.
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Table 4.7: Comparison of average PSNRs (dB) for different compressive measure-

ment scenarios and SNRs.

SNR (dB) 80% CR 70% CR 60% CR 50% CR

20 25.34 27.43 28.11 28.54

30 27.65 31.52 32.61 33.07

40 29.14 34.56 36.29 37.00

Table 4.8: Comparison of PSNRs (dB) of `0-norm and `1-norm based regularization

methods for different compressive measurement scenarios and SNRs. Reconstruction

results are given in the following SNR order: 20 dB, 30 dB, and infinite. For a given

K and input SNR, methods with highest PSNR (within 0.1 dB margin) are given in

bold numbers.

Method K=2 (67% compression) K=3 (50% compression)

(`1) 3D TV 28.50/31.06/35.30 29.20/32.60/37.64

(`1) 3D Full DCT 30.17/33.87/38.25 31.11/35.53/40.39

(`1) 3D Patched DCT 30.71/33.86/41.00 31.39/35.30/42.44

(`1) 2D Symm + 1D DCT 29.06/31.82/36.11 30.00/33.68/38.94

(`0) 3D Patched DCT 30.69/32.92/40.25 33.97/34.98/44.45

4.4.2.1 Effect of Different Transform Choices

Here we consider the effect of different sparsity priors on the performance of `0-

norm based reconstruction. For this, we solve the problem in Eq. (4.10) by changing

the patch 3D DCT operator with full 3D DCT operator. In other words, instead of

sparsifying the patches in the data cube separately, we apply 3D DCT transformation
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to the full spectral cube at once. Then the related sparse code update step is applied

for Wx where W is the 3D DCT operator. Similarly, the matrix G in Eq. (4.11)

becomes the identity matrix, I. We denote these two priors as 3D Patched DCT and

3D Full DCT, respectively.

We compare the performance of these priors when the input SNR is 20 dB and 30 dB.

We set K = 3 and reconstruct 6 spectral bands of size 128 × 128 from 6 different

spectral dataset. Spectral images with different characteristics are taken from [54]

and their superimposed versions are illustrated in Fig. 4.10. We use the same photon

sieve design parameters with the previous setting. Reconstruction times are given in

Table 4.9 and demonstrate longer reconstruction times for 3D Patched DCT prior, as

expected.

Table 4.10 shows average PSNR and SSIM values for different datasets and SNR

levels. The results demonstrate that 3D Patched DCT prior provides higher PSNR and

SSIM values in almost all cases. To visually evaluate the results, reconstructed images

with both priors are given with the reference images for dataset #1 when SNR=30

dB. As can be seen, 3D Patched DCT prior preserves spatial and spectral properties

while 3D Full DCT causes noisy artifacts. The results show that 3D Patched DCT is

superior to 3D Full DCT in terms of reconstruction quality, while it requires a longer

reconstruction time.

Figure 4.10: Spectral datasets with different spatial and spectral characteristics.
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Table 4.9: Reconstruction times for different priors and input SNRs in seconds using

`0-norm based reconstruction method.

SNR (dB) 3D Full DCT 3D Patched DCT

20 697 s 1038 s

30 773 s 1449 s

Table 4.10: PSNR(dB)/SSIM values of different datasets for different priors and dif-

ferent input SNRs.

Dataset # SNR (dB) 3D Full DCT 3D Patched DCT

1 20 25.5/0.63 33.2/0.93

30 32.9/0.85 35.1/0.96

2 20 27.1/0.67 31.7/0.90

30 30.9/0.83 34.4/0.95

3 20 29.9/0.89 29.2/0.94

30 33.0/0.95 31.8/0.97

4 20 24.3/0.39 27.1/0.83

30 30.5/0.74 31.4/0.89

5 20 27.1/0.59 33.2/0.92

30 32.1/0.83 35.0/0.95

6 20 26.3/0.65 21.7/0.84

30 28.2/0.77 31.4/0.91
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Figure 4.11: Reconstructed spectral images for dataset #1 when input SNR is 30 dB.

Left to right: True images, 3D Patched DCT reconstruction, 3D Full DCT reconstruc-

tion.
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4.5 System Analysis

In this section, we analyze the compressive spectral imaging system described in Sec-

tion 4.4.1 from different aspects. Specifically, we investigate its spatial and spectral

resolution numerically and theoretically. Then, we provide a relation between the

conditioning of system matrix and reconstruction quality as we change the measure-

ment planes, which can be used as a tool for system optimization.

4.5.1 Spatial Resolution

Here we first perform a conditioning-based analysis to investigate the resolution of

the proposed system. For this analysis, we investigate the stability of the forward

model. Similar to Section 2.5.2, we consider point sources with 2, 4, 16, 36, and 64

elements placed in a square grid with varying separation distances. We choose the

pixel size on the detector as 1 µm for fine analysis. Separation distance between the

point sources is changed from 1 µm to 20 µm with 1 µm steps. Since we have 10

spectral bands, we place the point sources at the 1st, 5th, and 10th bands to observe

the general behavior of the system. We then calculate the conditioning of the relevant

submatrices of the system matrix HC associated with the nonzero locations.

The results are plotted in Figures 4.12 when the CR values are 50%, 60%, 70%, and

80%, respectively. We note that the expected theoretical diffraction-limited spatial

resolution is 15 µm. From the given plots, it can be seen that the conditioning is sim-

ilar for all three bands and becomes worse as the number of point sources increases,

which is an expected result. In addition, when the separation distance between the

point sources decreases, conditioning of the system increases, which indicates that

the system’s resolving power degrades. A critical observation is the sharp decrease

in the condition number until 15 µm, which then starts to change slowly for all cases.

Although this trend is similar for all CR values, as CR increases, conditioning has

higher values for a given separation distance. This observation is also in agreement

with the fact that the system becomes more ill-posed as the CR increases. This illus-

trates that the resolution of the system becomes worse as the number of measurements

decreases.
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(a)

(b)

(c)

(d)

Figure 4.12: Conditioning of the submatrices of HC for different number of point

sources and different separation distances when CR is (a)-(d) 50%, 60%, 70%, and

80%, respectively. Left to right: conditioning results when the point sources are

placed at the 1st, 5th, and 10th spectral bands.
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To visually demonstrate the system resolution, we consider 16 point sources of size

1 µm placed at the first spectral band. The separation distance between the point

sources is chosen as 15 µm, and reconstructions are obtained for 30 dB input SNR

when the CR values are 50%, 60%, 70%, and 80%, respectively. Figure 4.13 shows

the ground truth, diffraction-limited, and reconstructed images at different CR values.

As can be seen, the system resolves points with a separation of 15 µm successfully

up to 70% CR. When CR is 80%, points at the outermost part are barely resolvable,

showing that resolution degrades as the CR increases. The results also show that the

proposed system provides sharper reconstructions than the diffraction-limited images.

To better understand the true resolution offered by the system, the separation distance

between 16 point sources of size 1 µm is decreased from 15 µm to 8 µm with 1

µm steps. Reconstructions obtained for these point sources are given in Fig. 4.14

when CR is 50% and input SNR is 30 dB. The results demonstrate that the points are

resolvable until the separation distance is decreased to 8 µm, which indicates that the

system can surpass the expected theoretical resolution of 15 µm at this CR and SNR

level.

Finally, to observe the effect of input SNR on the resolution, we obtain reconstruc-

tions of 16 point sources of size 1 µm and separation 15 µm at different input SNRs.

Fig. 4.15 shows reconstructions when CR is 50% and input SNR is decreased from

30 dB to 0 dB with 10 dB steps. The results show that the points are resolvable until

10 dB input SNR at this CR level, hence the system is robust to noise for a wide range

of SNR levels.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Demonstration of 15 µm resolution using 16 point targets for 30 dB

SNR. (a) Ground truth image , (b) diffraction-limited image, (c)-(f) reconstructed

images from the noisy measurements when CR is 50%, 60%, 70%, and 80%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.14: Demonstration of 15 µm to 8 µm resolution using 16 point targets for

30 dB SNR when CR is 50%. (a)-(h) Reconstructed images from the noisy mea-

surements when the separation distance is decreased from 15 µm to 8 µm with 1 µm

steps.
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(a) (b)

(c) (d)

Figure 4.15: Demonstration of 15 µm resolution using 16 point targets for different

input SNRs when CR is 50%. (a)-(d) Reconstructed images from the noisy measure-

ments when the input SNR is decreased from 30 dB to 0 dB with 10 dB steps.

4.5.2 Spectral Resolution

Similar to spatial resolution, we perform a conditioning-based analysis for spectral

resolution. For this analysis, we place point sources with 20 nm separation along

spectral direction. In other words, point sources are located at (i, i+ 2) spectral pairs

for i = 1, . . . , 8. We then calculate the conditioning of the relevant submatrices of the

system matrix HC associated with the nonzero locations. The results are plotted in

Figures 4.16 when the CR values are 50%, 60%, 70%, and 80%, respectively. From

these plots, it can be seen that conditioning is similar for all spectral band pairs and

get worse as the CR increases. In other words, it becomes harder to resolve differ-

ent spectral points when the number of measurements decreases. However, verifying

these results through reconstructions is harder than the spatial resolution case. This

is because we exploit the fact that the spectral cube exhibits correlation along the

spectral dimension, and formulate the inverse problem using this correlation. As a
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result, the reconstruction will inevitably fail for the point sources along the spectral

dimension. Instead of this, calculating NMSE of the reconstructed spectrum at vari-

ous points in the spectral cube provides more insight about the spectral resolution of

the system, as we have done in Section 4.4.1.

Figure 4.16: Conditioning of the submatrices HC for 2 point sources placed at every

(i, i + 2) spectral pairs, i = 1, . . . , 8 when the CR values are 50%, 60%, 70%, and

80%, respectively.

4.5.3 Measurement Plane Optimization

The choice of measurement planes (MP) correctly has a crucial role in the successful

reconstruction of the spectral data cube from compressive measurements. Here we

present a conditioning-based analysis based on the conditioning of the overall system

matrix HC for different measurement plane choices. The main goal is to find a design

optimality metric that is independent of SNR, unknown spectral cube characteristics,

and reconstruction choices. The analysis is performed in a lower-dimensional grid

than the original dimension of the problem because forming the larger matrices and

computing their singular values are not practical. Here we show that performing the

conditioning-based analysis for a significantly smaller problem still provides impor-
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tant information about measurement plane optimization.

For this analysis, we consider a data cube of size 32 × 32 × 10 and form the overall

system matrix HC for this input size. Then we calculate the first 2500 singular values

of the system matrix using an iterative solver [87] for 10 different measurement plane

selections when the CR is 50%. These selections are reported in Table 4.11 in a

normalized grid, (0.0, 1.0). Specifically, the focal distance of the largest wavelength

λ10, i.e. f10, is denoted as 0.0 while the focal distance of the shortest wavelength λ1,

i.e. f1, is denoted as 1.0. After this, all the measurement plane locations are chosen

between (0.0, 1.0). Note that MP-10 in Table 4.11 corresponds to the measurement

planes used in the previous results for 50% CR. Normalized 2500 largest singular

values of the matrix HC for these MP choices are given in Fig. 4.17 together with

their zoomed-in versions. From the given singular value plots, it can be seen that

the singular values of MP-8 setting decay faster than other MPs while MP-6 has the

slowest decay.

Intuitively, we expect that spreading the measurement locations between 0.0 and 1.0

should provide a better conditioning. This is in agreement with the singular value

plots of MP-1, MP-2, MP-3, MP-4, MP-5, and MP-10. All of these MP choices

have similar spreads confined in a narrow region. Conversely, MP-7 and MP-8 obtain

measurements only from the half portion of the overall range, which results in a quick

decay in the singular value distribution, as expected. Finally, MP-9 focuses on the

central portion of the overall range and does not contain both extreme ends, which

also results in a fast decaying singular value distribution.
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Table 4.11: Different measurement plane selections normalized between f10 and f1.

Measurement Plane No Normalized Locations of 5 measurement planes

MP-1 [0.20 0.40 0.60 0.80 1.00]

MP-2 [0.10 0.30 0.50 0.70 0.90]

MP-3 [0.00 0.20 0.40 0.60 0.80]

MP-4 [0.00 0.30 0.50 0.70 1.00]

MP-5 [0.00 0.20 0.50 0.80 1.00]

MP-6 [0.05 0.25 0.50 0.75 0.95]

MP-7 [0.00 0.10 0.20 0.30 0.40]

MP-8 [0.60 0.70 0.80 0.90 1.00]

MP-9 [0.30 0.40 0.50 0.60 0.70]

MP-10 [0.00 0.25 0.50 0.75 1.00]

Figure 4.17: Normalized 2500 largest singular values of HC matrix for the MP se-

lections in Table 4.11. Zoomed-in version is given at right.
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Now we investigate the relation between the singular value distribution and the recon-

struction quality. For this, we reconstruct data cubes of size 32×32×10, 64×64×10,

and 256× 256× 10 using these 10 different MP choices for 40 dB input SNR. In all

of the MP selections we calculate the ratio σmin
σmax

where σmin is the smallest singular

value and σmax is the largest singular value. We expect the ratio σmin
σmax

to be related to

the reconstruction quality, which we evaluate using the PSNR metric. The results are

plotted in Fig. 4.18 and are in agreement with our expectations. Specifically, both the

ratio σmin
σmax

and PSNR are the highest for MP-6 and the lowest for MP-8. Moreover,

although the ratio σmin
σmax

is calculated for 32×32×10 data cube size, the results are still

consistent with the reconstructions of higher dimensional inputs of size 64× 64× 10

and 256×256×10. This suggests that the optimization of the measurement plane lo-

cations can be done by calculating the singular values in a lower-dimensional setting

than the original problem size, which is more memory-efficient.
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(a) (b)

(c) (d)

Figure 4.18: (a) The ratio σmin
σmax

for different MP selections when input size is 32 ×
32 × 10. PSNRs for these MP selections when input SNR is 40 dB and input size is

(b) 32× 32× 10, (c) 64× 64× 10, and (d) 256× 256× 10, respectively.

4.6 Conclusions

Compressive spectral imaging enables to reconstruct the entire three-dimensional

(3D) spectral cube from a few multiplexed images. In this chapter, we have devel-

oped a novel compressive spectral imaging technique using diffractive lenses. Our

technique uses a coded aperture to spatially modulate the optical field from the scene
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and a diffractive lens such as a photon sieve for dispersion. The coded field is passed

through the diffractive lens and then measured at a few planes using a monochrome

detector. The 3D spectral cube is then reconstructed from these highly compressed

measurements through sparse recovery. For this, we have developed two fast sparse

recovery methods, namely `1-norm based regularization and `0-norm based regular-

ization, to solve this large-scale inverse problem. The imaging performance is illus-

trated at the visible regime for various scenarios with different compression ratios

through numerical simulations. The results demonstrate that promising reconstruc-

tion performance can be achieved with as little as two measurements. Finally, we

have provided an analysis for the spatio-spectral resolution of the system and mea-

surement plane optimization using both numerical and theoretical tools.

Since the system takes compressive measurements along the spectral dimension, suc-

cessful reconstructions can be achieved for spectrally-correlated scenes at the visible

and infrared regimes. Different than the earlier compressive spectral imaging tech-

niques that rely on prisms or gratings to disperse the optical field and many lenses to

form images, here a single diffractive lens is used for both purposes. Calibration of the

system also appears to be simpler because the imaging system is shift-invariant and

measuring the PSFs is sufficient, instead of the system response for each voxel. Hence

the presented work opens up new possibilities for high-resolution spectral imaging

with low-cost and simple designs.

In the presented results, the pixel size of the detector, as well as the reconstruction

grid, are chosen to match the expected spatial resolution of the diffractive lens. Be-

cause the developed imaging modality is a computational imaging technique and the

compression is performed along the spectral direction, the effective spectral resolu-

tion not only depends on the spectral bandwidth of the diffractive lens but also on the

scene content (mainly, its spectral correlation). Although the imaging performance

appears to be robust to higher compression levels and noise, clearly increasing the

number of measurements improves the reconstructions. However, this comes with

the cost of increased acquisition time, which may be undesirable for dynamic scenes.

The reconstructions can be further improved with the optimization of coded apertures

and learning-based recovery.
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CHAPTER 5

CONCLUSIONS

In this thesis, we have focused on three important tasks in spectral imaging: fast

and programmable multi-spectral imaging in Chapter 2, spatial super-resolution in

Chapter 3, and compressive spectral imaging in Chapter 4. For each task, we have

developed novel imaging modalities that utilize diffractive lenses. Then, we have

presented novel reconstruction methods to solve the resulting inverse problems. The

methods are based on the alternating direction method of multipliers (ADMM) which

is a state of the art technique in signal recovery problems. Finally, we have numeri-

cally illustrated the reconstruction performance for various settings.

For the fast and programmable multi-spectral imaging task, we have first studied a

high-resolution computational imaging modality. This technique uses a diffractive

lens such as a photon sieve for dispersing the optical field and takes measurements at

different distances from the sieve using a moving detector, which may be undesirable

in dynamic scenes. To avoid this, we have proposed to take measurements at a fixed

plane by using multiple photon sieves with beam splitters or programmable spatial

light modulators (SLM). We have developed an ADMM based fast sparse recovery

method to solve the associated large-scale inverse problems for both modalities. We

have also presented an efficient implementation of the proposed method, which re-

quires no matrix formation and takes a few minutes on a standard computer.

We have investigated the performance of the proposed system in EUV and visible

band spectral imaging for a different number of sources and input SNRs. We have

obtained promising results in terms of PSNR, SSIM, and visual quality. We have also

demonstrated that the proposed system has almost the same performance as the origi-

nal one. Thus, they can be used interchangeably without sacrificing the reconstruction
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quality. After this, we have provided an analysis of the spatial resolution of the sys-

tem using both theoretical and numerical tools. To do this, first, a conditioning-based

analysis has been performed to understand the stability of the forward model. Then,

we have reconstructed point sources with different configurations and compared the

results with the theoretical findings. We have shown that the numerical results are

in agreement with the theoretical expectations, and the system provides the expected

theoretical diffraction-limited spatial resolution and even beyond for a wide range of

SNR levels. Also, the system enables high spectral resolution in the EUV regime that

is not possible with the state of the art EUV wavelength filters.

In the next chapter, we have dealt with the spatial super-resolution problem. Current

spectral imaging systems, both computational imaging based and conventional ones,

have hardware constraints which limit their spatial resolution. To overcome this lim-

itation, we have proposed a spatial super-resolution technique for the diffractive lens

based spectral imaging system with a low-resolution detector. We have developed an

ADMM based reconstruction method which utilizes anisotropic 2D-TV and 3D-TV

regularizers for different spectrum characteristics. We have illustrated the perfor-

mance of the proposed technique using simulations for various scenarios at EUV and

visible regimes. We have shown that this system can provide 2 × 2 super-resolution

successfully based on PSNR, SSIM, and visual quality. However, the performance of

the system degrades at higher super-resolution levels.

To achieve higher super-resolution levels, we have extended this technique by adding

a coded aperture to the imaging system. This aperture spatially modulates the optical

field before dispersion to obtain more incoherent measurements, as dictated by the

CS theory. We have shown that this system enables 4 × 4 super-resolution by taking

4 or 8 shots. The system can also be used in dynamic scenes by utilizing off-the-shelf

SLMs, which provides frame rates up to 1 kHz.

Lastly, we have presented a novel compressive spectral imaging technique using

diffractive lenses. This technique uses a fixed coded aperture to spatially modulate

the optical field from the scene and a diffractive lens such as photon sieve for disper-

sion. The coded field is passed through the diffractive lens and then measured at a

few planes using a monochrome detector. The 3D spectral cube is then reconstructed
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from these highly compressed measurements through sparse recovery. We have de-

veloped two fast sparse recovery methods, namely `1-norm based regularization and

`0-norm based regularization, to solve this large-scale inverse problem.

We have illustrated the compressive spectral imaging performance at the visible regime

for various scenarios with different compression ratios. The results demonstrate that

promising reconstruction performance can be achieved with few measurements. Next,

we have compared both recovery methods in terms of reconstruction time and quality.

While their performances based on PSNR and SSIM are similar, the first method is

significantly faster than the latter. After this, we have presented an analysis of the

spatio-spectral resolution of the system using conditioning, as we have done in Chap-

ter 2. We have found that the proposed system provides high spatial and spectral

resolution that is robust to noise and in agreement with the theoretical expectations.

Finally, we have shown that the optimization of measurement plane locations can be

done by calculating singular values in a lower-dimensional setting than the original

problem size, which is more memory-efficient.

As future work, in all of the above imaging modalities, the reconstructions can be

further improved with the use of adaptive sparsity priors and learning-based recovery.

Another critical part is the optimization of coded apertures for spatial super-resolution

and compressive spectral imaging tasks, which will enable better system matrices

satisfying CS requirements.
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