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submitted by DENİZ ALTINPULLUK in partial fulfillment of the requirements for
the degree of Master of Science in Industrial Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yasemin Serin
Head of Department, Industrial Engineering

Prof. Dr. Haldun Süral
Supervisor, Industrial Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Canan Sepil
Industrial Engineering, METU

Prof. Dr. Haldun Süral
Industrial Engineering, METU

Assoc. Prof. Dr. Sedef Meral
Industrial Engineering, METU

Assoc. Prof. Dr. Ferda Can Çetinkaya
Industrial Engineering, Çankaya University

Assist. Prof. Dr. Sakine Batun
Industrial Engineering, METU

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Deniz Altınpulluk

Signature :

iv



ABSTRACT

THE CUTTING STOCK PROBLEM WITH DIAMETER CONVERSION IN
THE CONSTRUCTION INDUSTRY

Altınpulluk, Deniz

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Haldun Süral

July 2019, 85 pages

The one-dimensional cutting stock problem has been widely used for reinforcement

steel bar (rebar) in the construction industry. Diameter sizes of rebars are determined

by the structural designer to provide tensile strength to the structure, and they can be

changed if the ratio of cross-section area of rebars to the concrete area stays constant.

The decision maker can decide to convert diameter size to generate better cutting

patterns. Besides, the time dimension is considered by assuming the multi-period

structure of rebar demand. We study the cutting stock problem that decides diameter

sizes, cutting times, and cutting patterns to minimize the usage of raw material and

holding cost. It differs from the classical cutting stock problem as it is not known

how many pieces should be cut until diameter sizes are chosen. We propose a pseudo-

polynomial formulation and a genetic algorithm to solve the problem. Computational

results are provided.

Keywords: construction industry, cutting stock, lot-sizing, genetic algorithm
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ÖZ

İNŞAAT SEKTÖRÜNDE ÇAP TAHVİLLİ STOK KESME PROBLEMİ

Altınpulluk, Deniz

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Haldun Süral

Temmuz 2019 , 85 sayfa

Bir boyutlu çubuk kesme problemi inşaat sektöründeki betonarme demirlerinin ke-

simi için sıklıkla uygulanmıştır. Yapı tasarımcısı gerekli çekme mukavemetini sağla-

yabilmeleri için kullanılan demirlerin çap büyüklüklerini belirler. Çap büyüklükleri,

kullanılan betonarme demiri sayısı değiştirilerek betonun kesit alanındaki demirin

alanı sabit kalmak şartıyla farklı büyüklüklere dönüştürülebilmektedir. Karar verici

çapların büyüklüklerini birbirlerine tahvil ederek daha iyi kesme kalıpları oluştura-

bilir. Demir taleplerinin farklı dönemlerde olabileceğini varsayarak, zaman boyutu

da hesaba katılmıştır. Malzeme kullanımını ve envanter tutma maliyetini enazlayacak

şekilde çap büyüklüklerine, kesim zamanlarına ve kesme kalıplarına karar verilen bir

stok kesme problemi üzerinde çalışılmıştır. Bu problemde ne kadar parça kesileceği,

çap büyüklüğü belirlenmediği için klasik stok kesme probleminden farklılaşmakta-

dır. Çözüm önerisi olarak pseudo-polinomiyal bir formulasyon ve genetik algoritma

yaklaşımı önerilmektedir. Sayısal sonuçlar verilmiştir.

Anahtar Kelimeler: inşaat sektörü,stok kesme, kafile büyüklüğü, genetik algoritma
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CHAPTER 1

INTRODUCTION

The construction industry is one of the leading industries in the world. It constitutes a

significant part of the gross domestic products of countries. According to the Turkish

Central Bank report [6], construction accounts for 5.7% of Turkey’s GDP. If its direct

and indirect impacts on other sectors are considered, the share of the construction sec-

tor in the Turkish economy reaches 30%. This industry not only aims to construct real

estates such as houses, apartments, skyscrapers, and business offices but also includes

the construction of public structures such as bridges, roads, airports, etc. Decreasing

costs of construction industry contributes to economies of countries considerably. In

addition, decreasing the waste amount of materials used in constructions is beneficial

to the environment as well. Although developing technologies provide cost reduction

in the construction industry significantly, there are always chances to improve the

existing system by planning its activities efficiently.

One of the major cost items in the construction industry is reinforcement steel bar

(rebar) which is widely used to provide necessary tensile strength to the structures.

Figure 1.1 shows the reinforcement steel bars used in concrete. It is crucial to use

Figure 1.1: Rebars used in concrete
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rebars efficiently to decrease the cost of structures and to prevent wasting natural re-

sources. Reinforcement steel bars with standard length are sold in different diameters

in the market. These rebars are ordered in different sizes of length depending on the

geometric sizes and shapes of the structural elements. Each part of the structures re-

quires different sizes of these rebars in terms of diameter and length, and they can be

obtained by cutting large rebars into smaller pieces. The need for an efficient cutting

plan arises in order to decrease trim losses for every structure where reinforcement

steel bars are used. The one-dimensional cutting stock problem (1-D CSP) appears

when cutting patterns are generated so that the usage of raw material is minimized.

Suppose that there arem item types of rebars, each of them has lengthwj and demand

dj , k different diameter sizes, and a sufficiently large number of stocks (j = 1,2,...,m).

Stocks are generally sold with 12 meters in the market. Therefore, stock capacity is

12 meters where several items are located with length of wj . The objective is to cut

dj copies for each item type j using the minimum number of stocks so that the total

length of items for each stock does not exceed the capacity. However, using the 1-D

CSP needs to group items whose diameter sizes are equal. It separately solves every

group of the problem for each diameter size. Therefore, the number of the 1-D CSP

on hand is equal to the number of diameter sizes used in the construction project.

However, this approach misses the advantage of convertibility of diameter sizes to

each other in designing structural elements.

Diameter sizes and the number of rebars required are determined in a way to obtain

necessary tensile strength. The chosen diameter size and the number of rebars needed

for each structural element can be converted into different sizes if some conversion

rules are followed. These rules are discussed in Chapter 3. Since the diameter sizes

are convertible, considering both decisions of choosing diameter sizes and generating

cutting patterns together would yield more efficient results to avoid trim loss. Briefly,

the problem in this thesis is to determine cutting patterns and diameter sizes to mini-

mize the usage of reinforcement steel bars. Since the diameter is a different dimension

of the problem in addition to the length dimension, the problem differs from the clas-

sical 1-D CSP. On the other hand, sizes of the diameter dimension are unknown and

convertible to different sizes. Therefore, determining the appropriate diameter size is

a part of the decision process. It means that diameter sizes are decision variables of

2



the problem and the problem differs from the classical two-dimensional cutting stock

problem (2-D CSP).

The 1-D CSP and 2-D CSP have taken particular attention in the literature. How-

ever, a few studies were published similar to our problem, and the problem is defined

as the 1.5-dimensional cutting stock problem (1.5-D CSP). We propose a pseudo-

polynomial arc-flow formulation, particularly the reflect formulation of Delorme and

Iori [5] to solve the problem. It is a quite powerful technique even for large size

problem instances because it uses the half capacity of the stock size rather than the

total capacity. Therefore, it partially handles the weakness of the former pseudo-

polynomial formulation of arc-flow [4].

Most construction projects may include more than one building such as multiple unit

housing projects, holiday sites, public building complexes, etc. The need for rebars

may occur in different time periods during the construction phase of these projects.

Especially, one huge building projects may need different diameter rebars in different

time periods according to the business plan. As a result, the decision maker of the

construction project should decide the times of procurement and amount of rebars

before rebars are needed. The aim of the decision maker is to determine the time pe-

riods of the cutting operations and cutting patterns of the items so that trim loss and

inventory holding costs are minimized. This problem is called as the 1.5-dimensional

multi-period cutting stock problem (1.5-D MPCSP). To benefit from the diversity, the

decision maker can decide cutting the demands of the latter periods by paying inven-

tory holding costs. Therefore, there is a trade-off between inventory holding cost and

trim loss. The problem is to determine cutting patterns, diameter sizes, and cutting

periods of each rebar at the same time. To solve the 1.5-D MPCSP, the reflect for-

mulation [5] is proposed for small and moderate size problem instances. However,

obtaining exact solutions by using the commercial solver CPLEX is difficult for mod-

erate and large size instances with this formulation. Therefore, we propose a Genetic

Algorithm (GA) approach for solving moderate and large size problem instances.

The proposed algorithm can reach small optimality gap values within a reasonable

amount of time. Moreover, the parameters of the GA are finetuned. We compared the

performance of the GA under different parameters in terms of solution quality and

computation times.

3



The computational experiments are based on the real projects in the construction in-

dustry such as hospitals, apartments, business center, and public buildings. Our com-

putational experiments question the following issues:

1. To what sizes can the single-period and multi-period 1.5-D cutting stock prob-

lems be solved?

2. Do the different properties of the construction projects (such as the number of

items, the number of different diameter sizes, etc.) affect the solution qualities

and computational times?

3. How does the multi-period structure affect the solution quality compared to the

single-period structure?

4. How does a different solution approach affect solution quality and computa-

tional time for single-period and multi-period problems?

5. What is the advantage of using the genetic algorithm over the reflect formula-

tion?

6. How does the parameter setting of the genetic algorithm affect the solution

qualities and computational times?

7. Are the conversions in the diameter sizes and holding inventory cost beneficial

in the industry?

The organization of the next chapters is as follows. In Chapter 2, the studies related

to the cutting stock problems and their solution approaches will be discussed. In

Chapter 3, the problem definitions, properties of the problems, background informa-

tion, and mathematical formulations are provided separately for the single-period and

multi-period cutting stock problems with diameter conversion in the construction in-

dustry. Exact and heuristic solution approaches to solve the 1.5-D CSP and the 1.5-D

MPCSP will be presented in Chapter 4. The computational results for each solution

approaches are compared in terms of solution quality and computational times and

the discussions based on experimental results will be provided in Chapter 5. Finally,

the conclusion and further research directions will be shared in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

In this section, we conduct a literature review for the cutting stock problem and its

variants. We summarize two published typologies about cutting and packing prob-

lems. Furthermore, we classify the studies in two main sections according to their

relevances. The first section reviews the cutting stock problems while the second

section summarizes solution methods for the cutting stock problems.

2.1 Cutting Stock Problems

In the cutting stock problem, there arem item types, with length wj and demand dj (j

= 1,2,...,m), and a sufficiently large number of identical stocks with capacity c. The

aim is to obtain dj copies of each item type j using the minimum number of stocks

so that the total length of items for each pattern does not exceed the capacity. The

cutting stock problem was early formulated by Kantorovich [7]. Although his for-

mulation is weak and solves small size instances, it helps to understand the problem

structure. Gilmore and Gomory [8] suggested a concept of column generation for the

cutting stock and bin packing problems (BBP) inspiring from Dantzig and Wolfe [9].

This approach brought a breakthrough in solving the cutting stock problems. Since

enumerating all feasible cutting patterns is prohibitively time consuming, it generates

valid patterns iteratively and adds them to the problem according to their contribu-

tion to the objective function. With the help of the column generation method, the

large scale cutting stock problems became solvable in a reasonable time. Further-

more, many studies have been conducted in course of time to attack the cutting stock

problem (CSP) and its variations.
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Dyckhoff [10] classified cutting and packing problems by integrating different kinds

of problems according to several classification criteria. Washer et al. [1] developed

a new typology partially based on Dyckhoff’s ideas. They extended a variety of the

problems and introduced new classification criterion which is the shape of the small

items. Basically, small items are laid out on large objects. For example, small items

refer to orders which are cut from large stocks in the cutting stock problems. The

cutting and packing problems can be classified according to five main features: di-

mensionality, kind of assignment, assortment of small items, assortment of large ob-

jects, and shape of small items. Dimensionality distinguishes the problems according

to one, two, and three dimensional or even larger dimensions. Kind of assignment

divides the problems in terms of their assignment types such as input minimization

and output maximization. There are three main categories in assortment of small

items such as identical small items, weakly heterogeneous assortment, and strongly

heterogeneous assortment. To illustrate, the cutting stock problems can be classified

as weakly heterogeneous assortment since small items can be grouped into relatively

few classes. On the other hand, the bin packing problems are in the class of strongly

heterogeneous assortment because all items differ from each other. Assortment of

large objects classifies the problems as one large object and several large objects. The

last criterion is the shape of small items in the typology. It distinguishes the shape of

small items in terms of their geometric shapes. Basic problem types can be defined

by using two criteria which are kind of assignment and assortment of small items.

Figure 2.1 shows the basic problem types according to the typology of Washer et al.

[1].

Although the exact classification of our problem was not addressed in the typology,

we consider our problem in the class of open dimension problems according to this

typology. Open dimension problems have been rarely discussed in the literature com-

pared to other problem types. In the class of open dimension problems, small items

are accommodated by one or several large objects, but at least one dimension is re-

garded as a variable of the problem. It means that fixing this variable dimension must

be a part of decision processes in solving the problem. It generally occurs when two

dimensional small items are laid out on one or more very long rectangular large ob-

jects, whose width is fixed and its length is tried to be minimized. In addition, open

6



Figure 2.1: Typology of cutting and packing problems [1]

dimension problems appear in the industries that use rolled materials such as paper

rolls or coils. Width of the large rolls is generally fixed, but their lengths or diameters

vary in distinct sizes. The aim is basically to minimize inputs by determining cutting

patterns and selecting appropriate stock sizes.

Considering discussion about the typology of cutting and packing problems, we claim

that the problems considered in this thesis can be classified as an input minimiza-

tion, open dimension with more than one large object, and cutting stock problem.

Moreover, this class of problems is also defined as the 1.5-dimensional cutting stock

problem (1.5-D CSP) in the literature.

2.1.1 Open Dimension Problems

Haessler [11] studied the 1.5-dimensional cutting stock problem in 1978 and called

the problem 1.5-dimensional coil slitting problem that occurred in the metal indus-

try. In classical 1-D CSP, larger stocks are cut into smaller parts to satisfy customer

demand. It is desired to generate optimal cutting patterns to minimize the usage of

raw material. Similarly, the 2-D CSP tries to achieve the same goal, but orders are

specified in two dimensions. In coil slitting problem, coils are rolled on length dimen-
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sion, and their widths are much smaller than their lengths. Therefore, orders should

be obtained by cutting these rolled larger items alongside their long dimension. In

Heassler’s problem, each order has a particular width and weight, and these orders

can be obtained from larger coils in the inventory. Inventory coils also vary in width

and weight. Figure 2.2 depicts the inventory coils, order coils, and slitting operation.

However, demand requirements for one dimension are specified indirectly. To clarify,

demand is stated in terms of the total weights and desired width instead of specifying

the length, width, and required number as being in the classical 2-D CSP. Demand

can be satisfied by summing up the weights of small items. Since there are multiple

coils in the inventory, it is not known which order should be satisfied from which of

them. Therefore, the number of pieces needed for satisfying demand for an item is

not known until the sizes of inventory coils, which will be cut, have been selected.

Coils in the inventory may vary according to their weights because the diameter of

coils may change. Thus, the number of required coils to satisfy demand may vary

according to the selection of the coils.

In Haessler’s problem [11], orders are defined by specifying number, widths, and

weights of coils. To formulate he used pounds and widths. Parts are cut according

to the width and brought together in order to satisfy weight per inches of width. To

satisfy weight per inches of width for a specific order, weights of some equal width

parts should be summed up, and the total weight of the parts should be between the

upper and lower limits of the order for weight per inches of width.

Haessler’s problem [11] is similar to the problem to be considered in this thesis study

in terms of several aspects. First, both problems have orders whose lengths (widths)

are specified clearly but the size of the second dimension is denoted indirectly. While

the measure of the second dimension is the total area of rebars in our problem, the to-

tal weight per inches of width is the measure of order in Haessler’s problem. Hence,

the diameter of rebars and weights of coils can be changed as long as the total re-

quirements specified for both problems satisfied. Second, the number of pieces that

must be cut is not known until which stocks should be cut that are chosen for both

problems. In our problem, diameter size can be changed by decision maker within

an allowable range provided that the ratio of rebar cross-section area to the concrete

area remains constant. Therefore, the number of pieces to be cut is uncertain until
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Figure 2.2: Coil slitting operation [2]

diameter size is chosen for each structural element. Similarly, weights of larger coils

vary in different sizes. The number of required coils, that satisfy the order, is not

known unless inventory coils selected.

There are some differences between these two problems. Firstly, rebars with dif-

ferent diameters cannot be brought together to satisfy area requirements apart from

Haessler’s case. To clarify, the total weight requirement of a particular item can be

satisfied from several large objects by summing up weights of small items whose

width are same in coil slitting problem. However, only one type of diameter should

be chosen to satisfy the demand of each structural element in our problem. It is not

desired to satisfy demand by using rebars with more than one kind of diameter in

one structural element because of the structural rules and operational simplicity. In

addition, diameter conversion is also restricted by several rules. It can be made for

an order of structural element within an allowable range, generally, two steps up and

down. However, an order of the coils could be met from the multiple coils in the

inventory whose weight may vary. It means that two or more coils in the inventory

can be used to satisfy particular order as long as the requirement of weight per inches

of width is satisfied. Secondly, coils in the inventory may have different widths, but

the rebars are cut from a constant 12 meters stock length. Therefore, the coil slitting
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problem has multiple stock length nature.

The coil slitting problem can be classified as an input minimization, open dimension

with more than one large object, and the cutting stock problem with multiple stock

sizes according to the typology of Washer et al [1].

Han and Chang [2] also studied the coil slitting problem. They tried to minimize slit-

ting loss and overproduction by selecting appropriate large objects when the cutting

patterns are given. Apart from Haesler, they attempted to deal with overproduction

penalty. They developed a pseudo-polynomial time algorithm to attack the problem.

However, they only dealt with the selection of coils in the inventory by not consider-

ing pattern generation.

Gasimov et al. [12] studied the 1.5-dimensional assortment problem in the produc-

tion of corrugated boxes in the paper industry. Orders are cut from paper rolls in a

rectangular shape. Their large objects are sufficiently long sheets assuming infinite

for practical purposes. Moreover, their problem has multiple stock size nature. There

are several stock sizes available in the market and it is beneficial to keep different

sizes of stock in the inventory in order to achieve the lower trim loss level. Never-

theless, increasing the number of different roll sizes causes several types of costs to

be incurred such as costs of operation, stocking, and handling. Therefore, there is a

trade-off between inventory costs and material utilization in terms of trim loss. The

problem is also an open dimension cutting stock problem with strongly heterogeneous

assortment of large objects. They proposed the multi-objective mixed integer linear

programming model. They generated all possible cutting patterns for the formulation.

Song et al. [3] studied a real-life 1.5-dimensional cutting stock problem that appears

in the plastic industry. The problem is the selection of a subset from the set of stock

rectangles to minimize the total production cost. It includes waste of material and

production time under limitations of cutter knife changes, machine restrictions, and

due dates. There are the number of available input sheets whose lengths vary in length

dimension, and their widths are the same. They are desired to cut along its width, but

input sheets are smaller than the orders as shown in Figure 2.3. Therefore, demand

can be met by getting together more than one input sheets to obtain the necessary
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Figure 2.3: Input and ordered sheets for 1.5-D CSP in plastic industry [3]

length and cutting them into the desired width. This problem is also similar to our

problem because the number of pieces that will be cut is not known until the input

sheets are chosen. Besides, the width of sheets is the same for all input sheets similar

to our problem. However, demand can be met from any input material by bringing

them together to satisfy the length requirement apart from our problem. In our case,

demand can be met by bringing rebars together to satisfy area requirements as in their

problem, but rebars should be from the same diameter for each structural element. In

addition, the diameter of rebars should also be within an allowable range.

2.1.2 Waste Minimization Problems for Reinforcement Steel Bar

Reducing waste of reinforcement steel bar has taken particular attention in the liter-

ature since it is one of the major cost items in the construction industry. The 1-D

CSP occurs while generating cutting patterns to satisfy rebar requirements. On the

other hand, several designing and managerial issues can be combined with CSP. A

recent study published by Nadoushani et al. [13] dealt with minimizing cutting waste

of reinforcing steel bars by considering designing issue, lap splicing, which affects

ordered lengths of reinforcement steel bar. Since there is flexibility in terms of length

of rebars for some particular structural elements, they proposed to take into account

this flexibility while generating cutting patterns in order to achieve better utilization

level of materials. In other words, lengths of some ordered rebars are changed within

the range that structural design code allows. This study also has similarities with our

problem because changing the design of structures leads to better utilization of mate-

11



rial. However, they dealt with changing the length of the rebars rather than diameter

as in our problem. Another recent study published by Zheng et al. [14] considered re-

bar material costs related to trim loss and rebar installation costs including labor hours

used in rebar stock processing, delivering, placing, and tying. These installation costs

are directly dependent on rebar layout arrangement plan. Authors claim that bene-

fits can be obtained from a trade-off between reducing waste and lowering the total

cost by identifying the rebar layout arrangement plan and generating the rebar pro-

curement plan, cutting plan, and crew installation plan. Benjaoran and Metham [15]

studied the effect of demand variations on steel bars cutting loss and experimentally

showed how the distribution of pieces of length ordered affects material utilization.

Although there are several studies published in the journals related to the construc-

tion industry to attack the 1-D CSP for reinforcement steel bar, we reviewed solution

methods to solve 1-D CSP in the last section in detail.

2.1.3 Cutting Stock Problems with Time Dimension

In this subsection, we review the cutting stock problem related to the time dimension.

There are some articles addressing the time dimension of the cutting stock problem

in the literature. Time dimension appears as a significant factor that affects the costs

of production and operations. Since there are several cost components such as setup

costs, holding costs, and tardiness costs, it is beneficial to take time dimension into

account for the cutting stock problems. The main idea behind the time dimension of

cutting and packing problem is to exploit the trade-offs between trim loss and costs

related to time. Recently, Poldi and Araujo [16] considered the multi-period one-

dimensional cutting stock problem with holding costs and trim loss and adopted an

arc-flow model with the multi-period structure. Reinertsen and Vossen [17] studied

the 1-D CSP with due dates which arises in supplying of reinforcement steel bars

to customers. It tries to minimize total tardiness costs and trim loss simultaneously.

Sometimes, tardiness may be more important than trim loss. In addition, there are a

lot of studies in the literature which dealt with setup and holding costs in the cutting

stock problems. We refer to the review paper recently published by Melega et al. [18],

which classifies the lot-sizing and cutting stock problems. We also refer to another

review study recently published about operations scheduling for waste minimization
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in Hesran et al. [19].

2.2 Solution Methods for 1-Dimensional Cutting Stock Problems

There are a lot of solution methods to solve the BPP and the CSP in the literature.

We refer to the review paper published by Delorme et al. [20]. It reviews successful

methods in the literature in solving the one-dimensional CSP and BPP and classifies

these methods into four main groups such as upper and lower bounding techniques,

pseudo-polynomial formulations, enumeration algorithms, and branch & price (B&P)

approaches. They also provided the computational performances of these methods.

Note that, we are given m items each having an integer weight wj (j = 1,2,...,m), and

an unlimited number of identical bins of integer capacity c in the bin packing problem.

The aim is to pack all items by minimizing the number of bins used. However, all

items are demanded in one piece apart from the cutting stock problem.

We restrict our review of solution methods with prominent studies and those which

are most relevant with and inspiring our solution methods. Remaining parts of this

section are organized in three main classes, namely, formulations, exact methods, and

heuristics & metaheuristics.

2.2.1 Formulations

Pseudo-polynomial formulations are widely used to solve the CSP. They are useful

tools for solving large size problems. However, their strengths are highly dependent

on the problem parameters. When the stock capacity increases, number of variables

and constraints increase. We reviewed several pseudo-polynomial formulations for

the CSP.

The one-cut formulation independently developed by Rao [21] and Dyckhoff [22] is

an early pseudo-polynomial formulation for the CSP. The idea behind this formulation

is dividing the stock length into two pieces. The left piece is used for an item and the

right piece is residual that can be used either for producing other items or another

item.

13



The DP-flow was proposed by Cambazard and O’Sullivan [23] for the BPP, but it can

be extended to the CSP. It uses classical dynamic programming approach.

Carvalho [4] proposed an arc-flow formulation and implemented a branch & price

method. He formulated the CSP as a minimum flow network problem. Items are

represented on normal arcs and wastage is represented on loss arcs. He provided

three efficient criteria to reduce network size. His formulation is very powerful to

attack the 1-D CSP and the BPP if the stock capacity is not very large. Note that

his work is mentioned in detail at Chapter 4. Brandão and Pedroso [24] proposed an

alternative arc-flow formulation and an algorithm of graph compression for reducing

network size. Delorme and Iori [5] suggested the reflect formulation which is an

enhanced version of the arc-flow formulation. Since these formulations are pseudo-

polynomial, they become weak when the capacity of stock length increases. It is

because of that increase in stock capacity will lead to an increase in network size

considerably. However, the reflect formulation uses half-length of the stock capacity

so that the number of nodes and arcs reduce substantially. Hence, it partially handles

the weakness of arc-flow formulation and becomes a powerful tool to attack the BPP

and the CSP. The reflect formulation is mentioned in detail in Chapter 4.

2.2.2 Exact Methods

Branch & price method is widely used to obtain integer optimal solution for the CSP

and the BPP. It is basically based on combining two well-known methods, column

generation, and branch & bound. Although its implementation is difficult, it is a very

successful tool for solving these kinds of problems.

Set covering formulations have been used to solve the cutting stock problems by

enumerating all possible patterns because it gives a strong LP relaxation as a lower

bound. On the other hand, generating all possible cutting patterns grows exponen-

tially in number. Therefore, it is prohibitive to enumerate patterns even for moderate

size instances. Column generation method, invented by Gilmore & Gomory [8] for

the CSP, is based on the set covering formulation but it generates patterns iteratively

and adds them to the model according to their contribution to the objective function.

Although this method gives very strong lower bound, the resulting solution may not
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be an integer. Integer round-up property was conjectured for the CSP in the seven-

ties. Optimal integer solution can be obtained by rounding up the LP relaxation of set

covering formulation. However, it was shown by Marcotte [25] that there are some

instances that violate integer round-up property. On the other hand, a modified integer

round-up property (MIRUP) was conjectured by Scheithauer & Terno [26]. MIRUP

claims that the rounded-up value of LP relaxation plus one is greater than or equal to

the optimal integer solution. Until now, there are no instances shown yet that MIRUP

property does not hold. Therefore, it is still an open conjecture for the CSP.

Branch & Price method has been used to obtain an optimal integer solution for the

CSP and the BPP. It is based on column generation method, but if the obtained so-

lution is fractional, branch & bound is implemented to escape fractional solution.

Therefore, column generation is repeatedly implemented at the nodes of branch &

bound tree until an optimal integer solution is found.

Vance [27] proposed a branch & price method for solving the binary cutting stock

problem by using branching rules developed by Ryan & Foster [28]. Then, Schei-

thauer and Terno [29] developed a method by combining MIRUP conjecture and

branch & price. Vance [30] compared the two branch & price methods: Danztig-

Wolfe decomposition on the Kantorovich formulation and set covering formulation

used by Gilmore & Gomory for column generation. It is shown that both methods

provide the same LP relaxation value. On the other hand, both methods need differ-

ent branch & bound approaches. She proposed branching decisions for both formu-

lations and provided a comparison of experimental results. Valério de Carvalho [4]

implemented column generation on the arc-flow formulation. Belov and Scheithauer

[31] proposed a very powerful branch & price approach which is quite successful in

solving well-known instances in the literature.

There are a few enumeration algorithms for solving the CSP and the BPP exactly such

as branch-and-bound and constraint programming approaches. An early branch-and-

bound algorithm for the BPP was conducted by Eilon and Christofides [32]. It is based

on combining the best-fit decreasing algorithm and standard LP relaxation, but it

cannot solve large instances. Martello and Toth [33] proposed a powerful branch-and-

bound algorithm, called MTP, by using better heuristics and improved lower bounds.

15



Another successful branch-and-bound algorithm for the BPP, known as BISON, was

developed by Scholl et al. [34]. They combined tabu search and some tools from

MTP to compose their algorithm. Constraint programming approaches were also

used to attack the BPP and the CSP. Shaw [35] proposed a new dedicated constraint

based on a set of pruning and propagation rules. Cambazard and O’Sullivan [23] used

pseudo-polynomial formulations in constraint programming approach. Schaus et al.

[36] introduced a filtering rule based on cardinality considerations.

2.2.3 Heuristic and Metaheuristic Approaches

There are several heuristics presented in the literature to solve the BBP and the CSP.

However, there is no exact polynomial time algorithm that can solve these problems.

There are basically three types of heuristics discussed in the literature: approximation

algorithms, lower bounds, and metaheuristics.

Best-fit, first-fit, and next-fit algorithms are basically used as a simple approximation

algorithm in the literature. It is shown that in the study of Semi-Levi [37], next-fit

algorithm’s worst-case performance ratio is 2 and it is worse than others. On the

other hand, the first-fit and best-fit algorithms have the same worst-case performance

ratio (WCPR), which is 17/10, but it can be improved by sorting items according to

their lengths in descending order. The new algorithms are called best-fit decreasing

and first-fit decreasing, and their WCPR is 3/2 for the BPP. Even though their WCPR

is equal, the first-fit algorithms obtain solutions more quickly.

There are some heuristics to calculate lower bound on the BPP and the CSP. LP re-

laxation of the Kantorovich formulation can be used as a lower bound, although its

WCPR is poor. Martello and Toth [38] provide a better lower bound and its WCPR

is 2/3. There are also metaheuristics developed for the BPP and the CSP. The large

majority of metaheuristics have been modified for the CSP such as the tabu search, ge-

netic, simulated annealing, etc. As a prominent work, we refer to Quiroz-Castellanos

[39] who developed a very successful genetic algorithm for the CSP.

The main contribution of this thesis is to integrate Operations Research tools into the

cutting stock problem for the construction industry. The 1.5-D CSP in the construc-
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tion industry is a novel application that considers diameter conversion and cutting

patterns simultaneously. To the best of our knowledge, convertibility of diameter into

different sizes makes the problem unique and the problem based on a real case in the

construction industry is firstly examined. Moreover, we considered the multi-period

case of the problem where decision maker must deal with the trade-off between trim

loss and inventory holding cost by having an option of cutting the demands of the

latter in the previous periods. To the best of our knowledge, this is the first study that

takes both multi-period and the 1.5-D CSP structure into account together.
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CHAPTER 3

PROBLEM DEFINITION

In this chapter, we define the 1.5-dimensional cutting stock problem with diameter

conversion in the construction industry. Background information, problem proper-

ties, and mathematical formulations are provided separately for the single-period and

multi-period problems in Sections 3.1 and 3.2, respectively. The single-period cut-

ting stock problem does not consider the time dimension. On the other hand, the

multi-period cutting stock problem considers the case where orders appear in differ-

ent time-periods and decision maker should compromise the trade-off between trim

loss and inventory holding cost.

3.1 Single-Period Cutting Stock Problem with Diameter Conversion in the Con-

struction Industry

In this section, we will define the single-period cutting stock problem with diameter

conversion in the construction industry. In this problem, the decision maker consid-

ers the selection of diameter sizes and cutting patterns for one period. We consider

Kantorovich, arc-flow, and reflect as mathematical formulations of the problem and

modify them for this problem.

3.1.1 Problem Formulation

Reinforcement steel bar is widely used in the construction industry. It provides nec-

essary tensile strength to the structure when it is placed in concrete with a sufficient

amount. It is important to manage the usage of rebar for construction companies be-
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cause it constitutes a significant cost of construction. To illustrate, rebars are used

in all concretes for different purposes such as stirrup, shear wall, slab, column, and

beam. Rebars are generally used in several diameter sizes in the industry: 8, 10, 12,

14, 16, 18, 20, 22, 24, 26, 28, 30, and 32 in millimeters. However, some special

structures may need 36 and 40 in millimeters. Rebars are usually 12 meters because

it is the maximum amount that trucks can carry. Figure 3.1 shows reinforcement steel

bars used in the construction industry.

Each structural element requires different sizes of rebar in length according to its ge-

ometric shape and place. Order of rebars is met by cutting 12m length stocks into

the desired length. Cutting processes are conducted by workers on a workbench in

the construction zone. The 1-D CSP occurs during the cutting processes. Therefore,

cutting patterns should be generated according to the cutting plan to minimize the

usage of materials. On the other hand, the number and diameter sizes of rebars are

determined by the structural designer to provide the necessary tensile strength. Af-

ter a load of concrete is calculated, necessary cross-section area between rebar and

concrete is determined for each structural element. In addition, there are some rules

that should be followed for locating rebars into concrete such as spacing where the

distance between rebars in the concrete should be calculated. Therefore, a designer

should determine the diameter size and the number of rebars in concrete by consider-

ing these rules. In general, a few diameter sizes are appropriate to be chosen to satisfy

these rules at the same time. Required number of rebars is calculated to satisfy the

necessary cross-section area using the formula:

Required number of rebars =
Necessary cross section area

π(radius)2

Only one diameter size can be chosen for each structural element due to structural

rules and operational simplicity. Therefore, the necessary cross-section area cannot

be satisfied by using more than one size of diameter.

There are some flexibilities in determining diameter size and the required number

of rebars. These sizes and numbers can be converted to different sizes if some con-

version rules are followed. The primary condition that needs to be satisfied is that

the necessary ratio of rebar cross-section area to the concrete area should stay con-

20



(a) (b)

Figure 3.1: Rebars used in construction industry

stant. It means that the sum of the areas of the rebars in concrete should be constant.

Therefore, a decision maker can change the required number of rebar by varying the

diameter size. The conversion formula is given below:

(chosen diameter)2∗required # of rebar = (new diameter)2∗ new required # of rebar

The number of required rebar can be decreased by increasing its diameter size and

vice versa if equality above holds true. However, diameter size cannot be converted

more than two step sizes because of construction standards. To illustrate, if diameter

size is initially chosen as Ø14, it can be converted to diameter sizes as Ø10, Ø12,

Ø16, and Ø18.

The following example shows that instead of using 100 rebars of Ø16, the decision

maker can select to use 64 rebars of Ø20 as given below.

(16)2 ∗ 100 = (20)2 ∗ 64

Note that, it may be beneficial to consider the conversion when generating cutting

patterns because better cutting patterns can be generated using conversion. Cutting

pattern denotes how items are cut from stock by combining number of items in dif-

ferent length in the stock capacity. Suppose that orders are assumed to be as shown

in Table 3.1.

Note that, if the conversion is not considered during the pattern generation process,

best patterns should be as follows: six times 3-7 and a 2-2-2. However, the last order

can be converted to the diameter 12 by using conversion formula 3x14x14=Rx12x12.
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Table 3.1: Example orders

Diameter (mm) Length (m) Required #

12 3 6

12 7 6

14 2 3

R is found as 4.08 but rounded to 5 in order to stay on the safe side. In this case,

cutting patterns can be generated as five times 3-7-2 and a 3-7 with 2 m loss. As

a result, usage of the material is decreased by using leftover parts of rebars from

diameter 12.

Classical problems (1-D CSP) and (2-D CSP) have been widely studied in the lit-

erature. The 1-D CSP deals with the determination of the cutting patterns in a 1-

dimensional space. The decision maker of the problem tries to find the best cutting

patterns according to demand quantities for different sizes. The 1-D CSP has been

widely used for determining cutting patterns of reinforcement steel bar in the con-

struction industry. In the problem, the length of the rebar is fixed, and the pieces with

different sizes are cut from the large stock to meet the demand of different sizes. The

problem aims to minimize the usage of raw material by generating the best cutting

patterns. Furthermore, the 2-D CSP considers both width and length requirements of

the demands. The objective of this problem is the same as the 1-D CSP.

In the 1.5-dimensional cutting stock problem, sizes of one dimension are not fixed

and can be changed by the decision maker by altering the required order of items. It

means that the number of pieces being cut is not known until the sizes of the variable

dimensions are fixed. The aim of the problem is to minimize the usage of materials

by determining cutting patterns and choosing the proper sizes of variable dimension.

The early definition of the problem is made by Haessler [11] at 1978 on coil slitting

problem in the industry.

In our problem, diameter sizes are convertible to each other by applying conversion

rules and the number of pieces that should be cut is not known until diameter size is

chosen for each structural element. The decision maker should determine which part
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of demands are met from which diameter of rebar and cutting patterns to minimize

the usage of materials. Since choosing diameter sizes and generating cutting patterns

affect each other, the decision should be made simultaneously. Table 3.2 shows the

requirements of items in their original diameter and possible conversion in different

diameters. For example, 48 pieces in Ø12 are demanded for 4th item and its demand

can be converted to 108, 70, 36 and 27 in quantity if diameter size is chosen as Ø8,

Ø10, Ø14, and Ø16 respectively. Hence, there are flexibilities in diameter sizes and

their corresponding quantities. Note that, each item has a range of convertibility

specified by the designer. Mostly two steps of sizes to up or down are allowable but

sometimes it may be tighter or even not convertible. The decision maker can convert

these requirements to generate better cutting patterns so that better utilization level of

materials is achieved.

Table 3.2: Conversion table

Items Dia. Length Quant.

1 8 8.50 808

2 8 3.45 202

3 10 6.65 265

4 12 7.00 48

5 12 9.15 105

6 14 8.05 203

7 14 3.15 1685

8 16 1.50 24

Ø8 Ø10 Ø12 Ø14 Ø16 Ø18 Ø20

808 518 360 - - - -

202 130 90 - - - -

415 265 185 136 - - -

108 70 48 36 27 - -

237 152 105 78 60 - -

- 398 277 203 156 123 -

- 3303 2294 1685 1291 1020 -

- - 43 32 24 19 16

* Dia: Diameter (mm), Length: Stock length (m), Quant: Quantity (units)

The problem that we consider differs from the classical 1-D CSP because there is an

additional diameter dimension. On the other hand, it also differs from the classical 2-

D CSP as sizes of the diameters are not fixed and can be changed by decision maker.

The cutting stock problem with diameter conversion in the construction industry can

be defined as the 1.5-D CSP since order sizes of diameter are not fixed and can be

converted by the decision maker by changing the required number of rebars.
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3.1.2 Mathematical Formulations

Different versions of mathematical formulations for the single period cutting stock

problem with diameter conversion in the construction industry will be presented in

this subsection.

3.1.2.1 Kantorovich Formulation

Kantorovich [7] formulated the cutting stock problem in 1939. Although the formu-

lation is weak and cannot solve even small size instances, it is helpful to understand

the problem. We modified his formulation according to the structure of the 1.5-D

CSP. Since it is known that LP relaxation of this formulation is very bad, we pro-

vide this formulation to a solver that applies a branch & price algorithm by using

Dantzig-Wolfe decomposition to be mentioned in Chapter 4.

Table 3.3: Notation of the Kantorovich formulation for 1.5-D CSP

Sets:

I Set of items

J Set of diameters

Ui Set of eligible diameters for converting item i

K Set of patterns

Parameters:

cj cost of unit stock with diameter j

bij demand of item (in units) i if it is cut from stock with diameter j

wi length of item i

W stock length capacity

Decision Variables:

yijk number of times item i is cut in pattern k with diameter j

xjk =

1, if pattern k with diameter j is used

0, otherwise

mij =

1, if diameter j is chosen for item i

0, otherwise
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Min
∑
j∈J

∑
k∈K

cjxjk (3.1)

s.t.∑
k

yijk ≥ bijmij ∀i ∈ I,∀j ∈ J (3.2)∑
i

wiyijk ≤ Wxjk ∀j ∈ J,∀k ∈ K (3.3)∑
j∈Ui

mij = 1 ∀i ∈ I (3.4)

yijk : integer ∀i ∈ I,∀j ∈ J,∀k ∈ K (3.5)

xjk ∈ 0− 1 ∀j ∈ J,∀k ∈ K (3.6)

mij ∈ 0− 1 ∀i ∈ I,∀j ∈ J (3.7)

There is an additional dimension, diameter, apart from the original Kantorovich for-

mulation for the 1-D CSP. Objective function (3.1) minimizes the total cost of rebars

used. Constraints (3.2) assure to satisfy the required number of rebars according to

chosen diameter sizes. Constraints (3.3) create feasible patterns by combining items,

whose chosen diameter sizes are same, in stock length capacity W . They also ensure

that if item i is cut in pattern k with diameter j, corresponding variable xjk should

get value 1. Constraints (3.4) guarantee that each item’s demand should be satisfied

from only one diameter size. Constraints (3.5)-(3.7) are the binary and integrality

restrictions.

The Kantorovich formulation has a kind of pseudo-polynomial structure because the

number of patterns k increases pseudo-polynomially if the amount of order is in-

creased. Therefore, instances with high demand cause the model to have more deci-

sion variables. Although the formulation can be solved by branch & price method, its

pseudo-polynomial and symmetrical structure make difficult to obtain a solution in a

reasonable time.
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3.1.2.2 Arc-Flow Formulation

Carvalho [4] proposed the arc-flow formulation which is quite successful in solv-

ing the cutting stock problems. Given stock length capacity of W and item sizes

w1, w2, . . . , wm. He formulated the problem as the minimum flow network problem

on graph G = (V,A) with V = 0, 1, 2. . . ,W ,A = (i, j) : 0 ≤ i < j ≤ W and

j–i = wd for every d ≤ m. There are item arcs and loss arcs used in the graph. Item

arcs represent the items while loss arcs represent the trim loss. There should be an

item arc between two vertices if there is an item size equal to arc size. In addition,

loss arcs such that (k, k + 1), k = 0, 1. . . ,W–1 are used to denote the unused part of

stock length. The network consists of nodes between 0 and the possible combination

of the total length of items in the pattern till stock length. There is a pattern generated

if and only if there is a path between 0 and W . Figure 3.2 shows a generic graph

structure of the arc-flow formulation. In the figure, arcs (0,3), (1,4), and (2,5) rep-

resents the item-1, while arcs (0,2), (1,3), (2,4), (3,5) represent the item-2 according

to their length. Loss arcs such as (0,1), (1,2), (2,3) represent the unused part of the

pattern. Any path from 0 to 5 denotes the possible patterns. For example, the path,

(0-2-4-5), indicates the pattern that includes 2 copies of item-2 and one unit of trim

loss. Table 3.4 shows the notation of the arc-flow formulation for 1.5-D CSP and

1.5-D CSP formulation is given as:

Figure 3.2: Example for network representation of the arc-flow formulation [4]
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Table 3.4: Notation of the arc-flow formulation for 1.5-D CSP

Sets:

I Items

J Diameters

d, e, f Nodes

n Last node

Parameters:

wi: lenght of item i

bij: demand of item i in diameter j

cj: unit cost of stock with diameter j

Decision Variables:

xdej: flow between node d and e with diameter j

zj: total flows emanating from vertex 0 in diameter j

mij =

1, if diameter j is chosen for item i

0, otherwise

Min
∑
j

cjzj (3.8)

s.t.∑
e

x0ej = zj ∀j ∈ J (3.9)∑
d

xdej −
∑
f

xefj = 0 ∀e, ∀j ∈ J (3.10)

∑
d

xdnj = zj ∀j ∈ J (3.11)∑
d,d+wi

xd,d+wi,j ≥ bijmij ∀i ∈ I,∀j ∈ J (3.12)

∑
j

mij = 1 ∀i ∈ I (3.13)

mij ∈ 0− 1 ∀i ∈ I,∀j ∈ J (3.14)

zj : integer ∀j ∈ J (3.15)

xdej : integer ∀d,∀e,∀j ∈ J (3.16)
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Objective function (3.8) minimizes the total flows zk, emanating from node 0, which

represents the total bars used associated with the unit cost of stock ck according to

diameter k. Constraints (3.9) - (3.11) are flow balance equations. Constraints (3.12)

ensure that the number of arcs that represents item d should be greater than or equal

to demand the amount of item d if diameter size k is selected for item d. Constraints

(3.13) provide that every item should be cut from only one diameter size of stocks.

Constraints (3.14)-(3.16) are binary and integrality restrictions.

3.1.2.3 Reflect Formulation

In order to formulate the problem, we use the knowledge accumulated in the literature.

Carvalho’s [4] arc-flow formulation is a pseudo-polynomial formulation because it

has O(mc) variables and O(m + c) constraints. Thus, it becomes weak when the

stock capacity increases. To handle this weakness, Delorme and Iori [5] developed

the reflect formulation. It uses half of the stock capacity so that the number of arcs

and nodes are reduced substantially. Therefore, this paves the way for the model to

possess a few number of constraints and variables. It is a more powerful formulation

for solving the cutting stock problems. The computation times are also improved by

Delorme’s [5] reflect formulation.

The reflect formulation has properties as listed below:

1. It uses vertices as in the normal patterns but from 0 to
W

2
and extra vertex,

called R, whose corresponding size is
W

2
.

2. The formulation converts each item arc (d, e) in the arc-flow formulation whose

d <
W

2
and e >

W

2
into arc (d,W -e).

3. It eliminates all items and loss arcs (d, e) whose d >
W

2
.

4. It adds a last loss arc between right most vertex before R with R.

A pattern can be generated as a pair of two colliding paths. Both start from 0 to the

same vertex, but only one of them can pass through the R. In other words, only one

of them can include reflected arcs. Figure 3.3 depicts the reflection of paths.
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Figure 3.3: Example for network representation of the reflect formulation [5]

Multi Graph G = (V,A) used in the reflect formulation consists of vertices such that

V = 0 ∪ e ∈ N, 0 < e <
c

2
∪ c

2
. The set of arcs A includes two different arc types

which are standard arcs, As, and reflected arcs, Ar. Ar includes reflected arcs such

that they are converted from arc (d, e) such that d <
W

2
and e >

W

2
to (d,W -e). As

includes all other arcs in the arc-flow formulation such as normal item arcs and loss

arcs whose e is less than
W

2
. Notations (d, e, r) and (d, e, s) represent arcs from d

to e reflected and standard respectively, whereas (d, e, k) used for generic arcs from

either As or Ar.

We modified this formulation by adding diameter dimension according to the struc-

ture of the 1.5-dimensional cutting stock problem based on sets, parameters and de-

cision variables summarized in Table 3.5. The reflect formulation for our problem is

provided.
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Table 3.5: Notation of the reflect formulation for 1.5-D CSP

Sets:

I Items

J Diameters

d, e, f Nodes

Ar: Set of reflected arcs

As: Set of standard arcs

Ai: Set of arcs, include both reflected and standard arcs, whose

sizes correspond to the length of item i

r, s, k: Arc type

δ−s (e): denotes the set of standard arcs entering e

δ−r (e): denotes the set of reflected arcs entering e

δ+(e): denotes the set of arcs emanating from e

Parameters:

bij: demand of item i in diameter j

cj: unit cost of stock with diameter j

Decision Variables:

ξdekj: arc between d and e with arc type k for diameter j

mij =

1, if diameter j is chosen for item i

0, otherwise

Min
∑
j

∑
(d,e,r)∈Ar

cj ξderj (3.17)

s.t. ∑
(d,e,s)∈δ−s (e)

ξdesj =
∑

(d,e,r)∈δ−r (e)

ξderj +
∑

(e,f,k)∈δ+(e)

ξefkj e ∈ V − {0},∀j ∈ J (3.18)

∑
(0,e,k)∈δ+(0)

ξ0ekj = 2
∑

(d,e,r)∈Ar

ξderj ∀j ∈ J (3.19)

∑
(d,e,k)∈Ai

ξdekj ≥ bijmij ∀i ∈ I, ∀j ∈ J (3.20)

∑
j

mij = 1 ∀i ∈ I (3.21)

ξdekj : integer ∀(d, e, k) ∈ A,∀j ∈ J (3.22)

mij ∈ 0− 1 ∀i ∈ I, ∀j ∈ J (3.23)
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Objective function (3.17) minimizes reflected arcs associated with unit cost of stock

cj according to diameter j. Since patterns are composed of two colliding paths, where

the first one only includes standard arcs and the second one includes reflected arc, the

number of total bars used equals the number of reflected arcs. Hence, minimizing the

number of reflected arcs corresponds to minimizing the total bars used. Constraints

(3.18) are a kind of flow balance equation, and they guarantee that amount of flow

on standard arcs entering node e equals the sum of flow on every arc emanating from

node e, and flow of reflected arcs entering node e. Constraints (3.19) are also a kind

of flow balance equation, and they ensure that the amount of flow emanating from

node 0 should be equal to twice amount of reflected arcs. It provides that patterns

are composed of two colliding paths. Constraints (3.20) ensure that demand for items

should be satisfied according to the selection of diameter type j. Constraints (3.21)

ensure that every item should be cut from only one diameter type. Constraints (3.22)

and (3.23) are binary and integrality restrictions.

3.2 Multi-Period Cutting Stock Problem with Diameter Conversion in Con-

struction Industry

In this section, we will define the multi-period cutting stock problem with diameter

conversion in the construction industry. In this problem, a decision maker should

decide the selection of diameter sizes, cutting patterns, and cutting times by com-

promising the trade-off between trim loss and inventory holding cost. Mathematical

formulations of Kantorovich and reflect are modified for this problem. and the prob-

lem is 1.5-D MPCSP.

3.2.1 Problem Formulation

Some construction projects can be composed of multiple buildings such as multiple

unit housing projects, holiday sites, and public building complexes, etc. During the

construction of these projects, reinforcement steel bars are required at different times

because buildings are not constructed at the same time. In addition, some processes
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are repetitively pursued at different times according to the business plan due to the

inherent properties of the construction. One of the major processes conducted repeti-

tively is pouring of concrete for beams and columns at different times. Especially in

huge projects such as skyscraper, bridge or multiple building complex, there are mul-

tiple repetitive works during construction and time intervals associated with them.

Reinforcement steel bar is used in this process and embedded into concrete to pro-

vide tensile strength for each concrete pouring process. Rebars should be cut into the

desired length before the process begins. Therefore, the need for rebars can occur at

different times. To explain further, the completion time of huge construction projects

might be more than one year. For example, during the construction of multiple build-

ings complexes, buildings are constructed sequentially according to some business

plan to allocate resources such as labor and equipment efficiently. These different

times can be defined as periods and demand for rebars should be satisfied in different

periods throughout the project. If these orders are considered independently during

generation of cutting patterns, it may lead to missing advantages of obtaining better

solutions in terms of trim losses. On the other hand, aggregation of orders which

appear in different periods needs keeping materials in the stock. In other words, if

a cutting pattern is composed of items whose demands are in different periods, the

cutting process should be completed before the closest deadline of the item in the

pattern. It causes some items to be kept in inventory to meet future periods of de-

mand. Therefore, it requires paying inventory holding cost for these items. Note that

there are multiple periods in the construction projects, and periods have the following

properties:

• Each period has its own demand for reinforcement bars from different diame-

ters and lengths.

• Reinforcement bars should be ready before each pouring process begins. It

means that orders of small items should be cut from large stocks before the

pouring process of each period.

• Pouring process takes time and there should be waiting time after it is com-

pleted. Therefore, there should be enough time between periods to construct

durable concrete. Sometimes, periods may get longer according to the business
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plan of the project.

Increasing number of items in the cutting stock problems provides better utilization

of stock materials. Therefore, aggregating orders of different diameters and periods

increases the chance to generate better cutting patterns in terms of trim losses. How-

ever, aggregating orders of periods needs to hold inventory. To illustrate, suppose that

there are five periods and each has its own demands for different items. If items, that

are demanded for period four, are cut in period two to generate better-utilized patterns

with items, that is demanded for period two. Items for period four should be kept in

inventory for two periods. As a result, inventory holding cost will be incurred for two

periods.

Briefly, it can be said that there is a trade-off between generating good patterns and

holding cost. It may be beneficial to accept holding cost to reduce the cost of trim

loss. It means that some reinforcement bars can be cut and stored to meet future

demands. Formally, the problem is to determine which item should be cut at which

period; select diameter for each item and generate cutting patterns for orders of each

period in order to minimize the usage of raw material and holding cost.

3.2.2 Mathematical Formulation

We consider Kantorovich and reflect versions of mathematical formulations for solv-

ing the multi-period cutting stock problem with diameter conversion in the construc-

tion industry.

3.2.2.1 Kantorovich Formulation for Multi-Period Case

The Kantorovich formulation is not capable of solving small size instances within a

reasonable time even for the single-period problem. However, it is useful to share this

formulation for the purpose of understanding problem structure easily.
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Table 3.6: Notation of the Kantorovich formulation for the 1.5-D MPCSP

Sets:

I Set of Items

J Set of Diameters

Ui Set of eligible diameters for converting item i

K Set of Patterns

T Set of Periods

Parameters:

cj cost of stock per unit with diameter j

bijt demand of item i if it is cut from stock with diameter j at period t

wi length of item i

h holding cost for unit length per period

W stock length

Decision Variables:

yijkt number of times item i is in the pattern k with diameter j at period t

Inijt amount of inventory from item i for diameter j in period t

xjkt =

1, if pattern k is cut in diameter j at period t

0, otherwise

mij =

1, if diameter j is chosen for item i

0, otherwise
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Min
∑
j

∑
k

∑
t

Wcjxjkt +
∑
i

∑
j

∑
t

hcjwiInijt (3.24)

s.t.∑
k

yijkt = bijtmij + Inijt − Inijt−1 ∀i ∈ I,∀j ∈ J,∀t ∈ T (3.25)∑
i

wiyijkt ≤ Wxjkt ∀j ∈ J,∀k ∈ K, ∀t ∈ T (3.26)∑
j∈Ui

mij = 1 ∀i ∈ I (3.27)

yijkt : integer ∀i ∈ I,∀j ∈ J,∀k ∈ K, ∀t ∈ T (3.28)

xjkt ∈ 0− 1 ∀j ∈ J,∀k ∈ K, ∀t ∈ T (3.29)

mij ∈ 0− 1 ∀i ∈ I,∀j ∈ J (3.30)

Inijt : integer ∀i ∈ I,∀j ∈ J,∀t ∈ T (3.31)

The objective function (3.24) minimizes the total cost of rebars and the inventory

holding cost. The second term of the objective function indicates holding cost that

is derived by considering length, diameter size, the number of items in the inventory,

and the holding cost rate. Both term includes length parameters as W and wi to make

them comparable. Constraints (3.25) are the inventory balance equations. Constraints

(3.26) provide to generate feasible cutting patterns. They also ensure that if item i is

cut in pattern k with diameter j at period t, corresponding variable xjkt should get

value 1. Constraints (3.27) guarantee that each item can be cut from only one diam-

eter size within allowable set Ui. Constraints (3.28)-(3.31) are binary and integrality

restrictions.

3.2.2.2 Reflect Formulation for Multi-Period Case

We exploited from the reflect formulation to solve the 1.5-D MPCSP and modified

it to the multi-period structure since it is a powerful tool to attack CSP unless stock

capacity is quite large. In addition to the previous version, the time dimension is

added to the formulation. The reflect formulation of the multi-period extension of our

problem is provided below.
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Table 3.7: Notation of the reflect formulation for the 1.5-D MPCSP

Sets:

I Items

J Diameters

T Periods

d, e, f Nodes

Ar: Set of reflected arcs

As: Set of standard arcs

Ai: Set of arcs, include both reflected and standard arcs, whose

sizes correspond to the length of item i

r, s, k: Arc type

δ−s (e): denotes the set of standard arcs entering e

δ−r (e): denotes the set of reflected arcs entering e

δ+(e): denotes the set of arcs emanating from e

Parameters:

h: holding cost for unit length per period

wi: lenght of item i

W : stock length

bij: demand of item i in diameter j

cj: cost of stock with diameter j

Decision Variables:

ξdekjt: arc between d and e with type k for diameter j at period t

Inijt: amount of inventory from item i for diameter j in period t

mij =

1, if diameter j is chosen for item i

0, otherwise
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Min
∑
j

∑
t

∑
(d,e,r)∈Ar

Wcj ξderjt +
∑
i

∑
j

∑
t

hwicjInijt (3.32)

s.t. ∑
(d,e,s)∈δ−s (e)

ξdesjt =
∑

(d,e,r)∈δ−r (e)

ξderjt +
∑

(e,f,k)∈δ+(e)

ξefkjt e ∈ V − 0 ,∀j ∈ J, ∀t ∈ T (3.33)

∑
(0,e,k)∈δ+(0)

ξ0ekjt = 2
∑

(d,e,r)∈Ar

ξderjt ∀j ∈ J, ∀t ∈ T (3.34)

∑
(d,e,k)∈Ai

ξdekjt = bijmij + Inijt − Inijt−1 ∀i ∈ I, ∀j ∈ J, ∀t ∈ T (3.35)

∑
j

mij = 1 ∀i ∈ I (3.36)

ξdekjt : integer ∀(d, e, k) ∈ A,∀j ∈ J, ∀t ∈ T (3.37)

mij ∈ 0− 1 ∀i ∈ I, ∀j ∈ J (3.38)

Inijt : integer ∀i ∈ I, ∀j ∈ J, ∀t ∈ T (3.39)

Objective function (3.32) minimizes the total cost of rebars and the total inventory

holding cost. Constraints (3.33)-(3.34) are flow balance equations. Constraints (3.35)

are inventory balance equations. They ensure that amount of items, which are cut in

the current period and plus on-hand inventory from the previous period, should be

equal to the demand of item for the current period plus the current inventory level

for item i. Constraints (3.36) provide that every item should be cut from only one

diameter. Constraints (3.37) - (3.39) are binary and integrality restrictions.
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CHAPTER 4

SOLUTION APPROACHES

In this section, we will introduce our solution approaches to solve the 1.5-D CSP and

the 1.5-D MPCSP. We implemented the Kantorovich formulation using SCIP-Generic

Column Generator and CPLEX. On the other hand, we modified the reflect and arc-

flow formulations for the 1.5-D CSP and the reflect formulation for the 1.5-D MPCSP.

These formulations are implemented using only CPLEX. Furthermore, we proposed

a genetic algorithm approach to solve large size instances of the 1.5-D MPCSP. The

details of the solution approaches are discussed and organized as formulations in

Section 4.1, and genetic algorithm approach in Section 4.2.

4.1 Solution of Mathematical Formulations

To solve our problem, we benefited from three different formulations namely, Kan-

torovich, arc-flow, and reflect. The implementation details of these formulations will

be presented in this section.

4.1.1 Kantorovich Formulation

Branch & price (B&P) method is widely used in solving the cutting stock and bin

packing problems to obtain an integer solution. B&P combines two well-known

methods: Branch & Bound and Column Generation. Basically, the method applies

column generation to the problem at the nodes of the branch & bound tree until an

optimal integer solution is found. It is a powerful approach, but it requires significant

efforts in the implementation. Therefore, we decided to use SCIP-Generic Column
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Generator solver that uses branch & price algorithm logic.

The Kantorovich formulation is beneficial for understanding the problem structure

easily, but it cannot be solved by using standard linear integer programming solvers

for even small size instances. It is because of the weak LP relaxation of the formula-

tion that does not give a good lower bound. To overcome this weakness, Gilmore and

Gomory [8] invented a column generation method based on the set covering formula-

tion, and its LP relaxation provides very good lower bound. Vance [30] showed that

applying the Dantzig-Wolfe decomposition to the Kantorovich formulation gives the

same lower bound with a set covering formulation. Since standard integer linear pro-

gramming solvers cannot handle the Kantorovich formulation in a reasonable amount

of time, we decided to use the SCIP-Generic Column Generator (GCG) solver due

to two main reasons. First, the GCG automatically applies branch & price algorithm

based on the Dantzig-Wolfe decomposition. Second, the implementation is quite easy

compared to the manual implementation of the B&P methods, since the GCG handles

many issues automatically such as column generation, tree management, branching

decisions, etc. It is enough to provide information about how the problem should be

divided into master and subproblems for the GCG.

The model should be divided into master and subproblems properly so that the GCG

implements B&P method successfully. The Kantorovich formulation can be divided

as constraints (3.2) and (3.4) in the master problem and constraints (3.3) are in the

subproblems. We have J different diameter sizes and K different number of patterns

provided initially. It can be observed that there would be J*K number of subprob-

lems. However, the number of patterns, K, has no effects on the solution because

all subproblems are same for each pattern k in K. Therefore, we conclude that there

are J different types of subproblems and it is enough to solve these J subproblems at

each iteration. GCG automatically detects these symmetries and aggregates subprob-

lems into J different subproblems. Master and subproblems are divided as below:
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Master Problem:

Min
∑
j∈J

∑
k∈K

cjxjk (4.1)

s.t.∑
k

yijk ≥ bijmij ∀i ∈ I,∀j ∈ J (4.2)∑
j∈Ui

mij = 1 ∀i ∈ I (4.3)

yijk : integer ∀i ∈ I,∀j ∈ J,∀k ∈ K (4.4)

xjk ∈ 0− 1 ∀j ∈ J,∀k ∈ K (4.5)

mij ∈ 0− 1 ∀i ∈ I,∀j ∈ J (4.6)

Subproblem:

Max ReducedCost (4.7)

s.t.∑
i

wiyijk ≤ Wxjk ∀j ∈ J,∀k ∈ K (4.8)

One can observe that the subproblems become knapsack problem in this partition.

The GCG is a kind of black box solver, and it allows intervention in a limited manner.

It uses the Dantzig-Wolfe decomposition method to implement branch & price. Not

only it detects problem structure and suggests how the problem should be divided

into the master and subproblems, but it also allows users to provide decomposition

as well. We gave our decomposition structure to the solver and let it handle column

generations, branching rules, tree management, etc. Nevertheless, the GCG could not

handle moderate size instances. It is because of applying general frameworks to the

problem, but it is needed to manage branch & price issues such as branching rules,

symmetry breaking, etc. according to problem specific properties to solve large size

instances successfully. Therefore, the general framework branch & price algorithm

implemented by the GCG is not very successful for solving our problem. As a result,

we decided to use network-based pseudo-polynomial formulations.
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4.1.2 Arc-Flow Formulation

Pseudo-polynomial formulations have taken attention in solving the CSP and the BPP.

There are several pseudo-polynomial formulations in the literature such as One-Cut,

DP-Flow, and arc-flow. We focused on network-based formulations which are the

arc-flow, introduced by Carvalho [4]. The cutting stock problems are handled as min-

imum flow network problem and items are represented by arcs in these formulations.

However, the arc-flow formulation becomes weak when the capacity of stock length

increases. Increasing stock length hardens problem because the network size grows

enormously. Since stock capacity is fixed at 12 meters and precision used is 0.01 me-

ters, the formulation is capable of solving instances in a reasonable time. To illustrate,

item lengths increase in a way that 3.4 m, 3.41 m, 3.42 m, etc. However, it needs to

generate network for implementing the formulation. As a result, it is crucial to gener-

ate a network efficiently to prevent symmetries in the solution space. Otherwise, both

pre-processing time of generating network and solution time increase significantly.

Graph Generation:

The arc-flow formulation includes many symmetries in the solution space. Patterns

that represent the same solution can be generated using different paths in the graph.

Carvalho [4] proposes three criteria as mentioned below to decrease symmetries and

network size.

Criterion 1:

An arc of size we, designated by x(k, k + we), can only have its tail at a node k that

is the head of another arc of size wd, x(k − wd, k) for wd ≥ we, or, else, from node

0, i.e., the left border of the bin. It means items should be sorted in a non-increasing

manner to avoid symmetry in the solution spaces. To exemplify, suppose that there

are three items whose lengths are 5m, 4m, and 2m. To generate patterns with these

items using 12m stock length, there are 24 (4!) ways of representing the solution in

the graph such as 5-4-2-loss, 5-2-loss-4, loss-2-5-4, etc. Although item sequence in a

pattern has no meaning to obtain low trim loss level, it appears in the graph as if they

are different solutions. Carvalho’s first criterion provides to avoid symmetry in the

solution space by sorting them in non-increasing order. Therefore, only one solution

can be valid which is 5-4-2-loss in the example.
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Criterion 2:

All the loss arcs x(k, k + 1) can be set to zero for k < wm. It means that loss arcs

should begin from the node that the minimum size of item can fit. In other words,

since patterns cannot start with loss arcs due to criterion 1, loss arcs from 0 to wm,

which is the smallest item length, should be set to zero initially. For example, if the

minimum length is 4 in an instance, loss arcs (0,1), (1,2), (2,3), (3,4) should be set to

zero.

Criterion 3:

Given any node k that is the head of another arc of size wd (wd > we) or k = 0, the

only valid arcs for size we are those that start at nodes k + swe, s = 0, 1, 2, . . . , be–1

and k + swe ≤ W , where be is the demand of items of size we. In other words, there

should be no space between arcs.

We designed an algorithm to generate a directed acyclic graph for the arc-flow formu-

lation by applying the criteria above. The pseudocode of this algorithm 1 is provided

in Algorithm 1.

In the industry, the difference between two consecutive item’s length is generally 0.05

or 0.01 meters, and stock length is 12 meters. To illustrate, if item’s length increases

0.05 m spacing such as 3.4 m, 3.45 m, 3.5 m, there cannot be more than 240 types

of item in terms of the item’s length. Before generating a network for the arc-flow

formulation, we expanded items’ lengths into the range between 1 and 240. If item’s

length increases 0.01 m spacing such as 3.4 m, 3.41 m, 3.42 m, the maximum number

of different item types in terms of length is 1200. Note that, precision used during

design stage affects the network sizes significantly. If 0.01 m precision is chosen, it

raises the number of nodes and arcs considerably. To generate an acyclic directed

graph, the initial arcs set is introduced as 0-items’ lengths. New arcs are added to

obtain valid paths which represent possible patterns. To avoid adding redundant paths

to the network, we used the information of last added items. The new arc is added to

the tail point of a current incomplete path unless the length of the item is more than

last added item of the current path and stock length capacity (C) is exceeded. Adding

new items to the tail points of incomplete paths creates a number of new paths, which

equals the number of added items, but the number of addable items decreases at every
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Algorithm 1 Graph Generation Algorithm for the Arc-Flow
Step 1: Sort items in descending order

Step 2: Initialize paths as 0 - items’ lengths set them as generation 1

Keeps tail points of paths and last added items.

Take generation 1 as current

Do Step 3, Until no generation of path added

Step 3: Generate Graph

For each tail point of current generation path

For each item i

If tail + lengthi ≤ C and lengthi ≤ last added item to tail point

Generate arc as (tail point, tail point + item length)

Add this arc to the network

Keep item length as last added item for this path

Keep new tail point of path of next generation

Else

Go to next tail point of current generation

If there is no new tail point,

Remove duplicated arcs in the network

Take this new generation as current and return step 3

If no generation added at last iteration, then stop.

Step 4: Create Loss Arcs

Take all vertex in the network and sort them in ascending order

Create loss arcs by connecting them each other consecutively.

Step 5: Expand graph into multi-graph by adding diameter dimension

Take network created, set of arcs =(i,j)

For each arc in the set convert it (i,j,k) for all k in K (set of diameter)
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step. Adding processes continues until no addable items left. We keep arcs and add

them into the network during generation processes. In order to prevent and avoid

unnecessary iterations, duplications in the network are removed before starting to

create a new generation.

To illustrate, Figure 4.1 shows a small example of creating networks using four items.

The main idea of the algorithm is to generate paths whose arcs aligned in descending

order. Note that vertex 50 can be reachable from by two paths, 0-50,0-30-50. It means

the paths 0-30-50-90 becomes valid in the network despite nonincreasing order is

desired. Hence, there are still some symmetries in the solution space.

We implemented the arc-flow formulation for our problem using CPLEX Concert

Technology with C++. After the network is generated using Algorithm 1, it is pro-

vided to the model as problem parameters. Experimental results will be provided in

Chapter 5.

4.1.3 Reflect Formulation

The reflect formulation, introduced by Delorme and Iori [5] as an enhanced version of

the arc-flow, is used to solve our problems. Since an increase in stock length capacity

causes that the arc-flow formulation becomes weak, Delorme and Iori [5] developed

the reflect formulation which uses half of the length capacity in order to overcome

this weakness. Therefore, it reduces the number of nodes and arcs in the network.

It means that a new formulation is more powerful to solve large instances faster.

Nevertheless, it is also a pseudo-polynomial formulation and it becomes weak if the

capacity of stock length increases. On the other hand, the network structure includes

many symmetries unless network used in the formulation is generated efficiently. In

order to avoid these symmetries in the solution space and generate a network within a

reasonable amount of time, we used a graph generation algorithm based on the ideas

of Delorme and Iori [5].

Graph Generation:

The same logic with the arc-flow formulation can be used to avoid symmetry in the

model. Mainly, sorting items according to their sizes in non-increasing order dur-
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Figure 4.1: Graph generation example

ing generating graph eliminates redundant arcs and vertices, and it breaks possible

symmetries.

Pseudocode of graph generation algorithm for the reflect formulation is provided in

Algorithm 2. Note that similar to the arc-flow formulation, it is crucial to generate

networks efficiently since obtaining solutions within a reasonable amount of time is

significantly dependent on the network sizes. If these network-based formulations are

implemented using an inefficient network, solution time increases considerably.

Apart from the arc-flow graph generation algorithm, arcs are reflected from the middle

of stock length capacity in the reflect’s algorithm. There are three types of arcs:

standard, reflected, and loss arcs. The standard arcs can be generated like in the arc-

flow’s algorithm 1. They exist in the range between 0-capacity/2. If an arc has head in

this range and its tail exceeds capacity/2, the arc should be reflected from the middle

of the capacity. It should be (i, capacity-j) rather than (i,j). If capacity is not an even

integer, all items’ length and capacity should be expanded by multiplying two.

We implemented the modified the reflect formulation for single and multi-period

cases for our problem using CPLEX Concert Technology with C++. After the net-

work is generated using Algorithm 2, it is provided to the model as problem parame-

ters. Experimental results are discussed at Chapter 5.
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Algorithm 2 Graph Generation Algorithm for Reflect
Step 1: Sort items in descending order

Step 2: Initialize paths

Take items whose lengths ≥ C/2

Generate reflected arcs as (0,C-lengthi) for those items

Remove these items from set of items

Initialize paths as (0, lengthi) set them generation 1

Keep tail points of paths and last added items.

Take generation 1 as current

Do Step 3, Until no generation of path added

Step 3: Generate Graph

For each tail point of current generation path

For each item i

If lengthi ≤ last added item to tail point

If tail + lengthi ≤ C/2

Generate standard arc as (tail point, tail point + lengthi, s)

Add this arc to the network

Keep item length as last added item for this path

Keep new tail point of path of next generation

Else

Generate reflected arc as (tail point,C- tail point - lengthi, r)

Else

Go to next tail point of current generation

If there is no new tail point,

Remove duplicated arcs in the network

Take this new generation as current and return step 3

If no generation added at last iteration, then stop.

Step 4: Create loss arcs

Take all vertex in the network and sort them in ascending order

Create loss arcs by connecting them each other consecutively.

Step 5: Expand graph into multi-graph by adding diameter dimension

Take network created, set of arcs =(d,e,k)

For each arc in the set convert it (d,e,k,j) for all j in J (set of diameter)
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4.2 Genetic Algorithm Approach

In this section, we introduce a heuristic approach to solve the 1.5-D MPCSP. When

problem size increases, solving the reflect formulation with CPLEX becomes ineffec-

tive. It has difficulty in solving problem instances more than 250 items. Therefore,

we decided to design a genetic algorithm for our multi-period problem in order to

reach a better solution quality within a reasonable amount of time. The parameters

used in the algorithm are probabilities of crossover and mutation that are denoted

by Pc and Pm, Percentmutation indicates the percentage of genes in a chromosome

to be mutated, the Percentbest that is the percentage to transfer the best parents to

the mating pool directly, and Percentelite denotes the percentage of elite solutions at

the initial population. While creating the initial population, we considered the feasi-

ble sets of diameter size and periods in our algorithm. Therefore, individuals in the

population are always feasible. In the crossover operations, the offsprings are also

always feasible. In the mutation operator, we also changed the genes according to

their feasible sets. The details of the algorithm are provided in Sections 4.2.1-4.2.8.

The pseudocode of the proposed algorithm is given in Section 4.2.9.

4.2.1 Representation Scheme

As a chromosome representation, we form a 2n-dimensional array in order to rep-

resent diameter and period selection for an item, where n refers to the number of

items in the problem. In the first n cells of the chromosome, chosen diameter sizes

are represented at each cell. For this purpose, we use a discrete representation that

a cell can only take the values of the diameter sizes which are 8, 10, 12...32. In the

example provided at Figure 4.2, the first column of the chromosome has a value of

12, it means that the item-1 is assigned to be cut from the stock whose diameter size

is Ø12. The second n dimension array is used for assignments of the items to the

periods. The assigned period numbers are written to the chromosome to the related

column. For example, the second n-dimension array includes ’1’ as a first entry. It

means that the first item is assigned to period 1, and its demand should be cut at pe-

riod 1. When we have n items, the chromosome representation is a 2n-dimension

array. Note that, periods are assigned for whole demand of each item. Cutting de-
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mand of items partially in different periods is not possible in this representation. We

accept this weakness in advance because considering each unit of order partially lead

to enormous computational effort.

Figure 4.2: Chromosome representation

This representation is quite easy to decode. By looking at the value written in the

chromosome, we can understand the assignments of the diameter sizes and periods to

the items. In terms of memory, its requirement is small enough (2n-dimension array,

n is the number of items).

4.2.2 Initial Population Generation

In the problem description, the designer initially assigns diameter size to the items.

These are the desired diameter sizes for the items. On the other hand, the assigned

diameter size can be changed as stated in Chapter 3, but it is a limited set. The

assigned diameter size of the stock for the associated item should be within a range

of four. To illustrate that, the assigned diameter size for an item is 16. Then, the

diameter size of the associated item can be Ø12, Ø14, Ø16, Ø18, and Ø20. For each

diameter size, we have a set of possible conversions.

While generating the initial population, we are using the information related to the

possible diameter conversions. From the feasible set of conversions, we are randomly

selecting one of the possible diameter sizes with equal probability.

For the period selection in the initial chromosomes, we are following similar steps.

Deadlines of the cutting of items are previously determined according to the business

plan. Therefore, the feasible set for the period assignment for the related item should

be no later than the deadline. To illustrate that, the item i is required at period 3.
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The feasible set for the cutting of item i can be performed at periods 1, 2, and 3.

In the chromosome representation, we are selecting from the feasible values of the

periods with equal probability. After determining the initial population, the values of

the function can be calculated for each generated chromosome.

Instead of generating an initial population with entirely random chromosomes, we try

to insert elite solutions to the population with small proportion so that the algorithm

converges to better solution value more rapidly. Elite solutions can be achieved by im-

plementing base heuristic which is derived using problem-specific information. The

proportion of elite solution is restricted with a small rate to avoid premature conver-

gence and let the algorithm explore better solutions. It can be said that the necessary

diversity to explore better solutions is preserved since the majority of the population

begins with random solutions. According to the preliminary results, using elite solu-

tions in the initial population provides the algorithm to achieve better solution quality

compared to the case where elite solutions are not included in the initial population.

However, including elite solutions in the initial population may cause the algorithm to

converge early if the percentage of elite solutions is increased overmuch. Therefore,

we include the parameter levels of Percentelite in the experiments where parameters

are fine-tuned at Chapter 5. The main idea behind base heuristic is aggregating diam-

eter sizes of orders in order to generate better cutting patterns in terms of trim loss.

Therefore, items are grouped by converting their original diameter sizes into some

pre-determined diameter sizes. The main objective of the grouping step is decreasing

the number of groups as much as possible so that each group has enough diversity to

produce better cutting patterns. Since diameter conversion is restricted with a range

of two steps up or down and there are 13 different diameter sizes in the industry, the

number of grouping options is very limited. Orders can be aggregated within three

groups as shown in Figure 4.3.

In this demonstration, orders are grouped in a way that 5-5-3, but there are also differ-

ent versions of this partition such as 5-3-5 and 3-5-5. Arrows represent the conversion

of diameter sizes. For instance, in the first group, orders whose original diameter sizes

are 8-10-14, and 16 are converted to diameter 12. Besides, the group which consists

of three diameter sizes can have different variants such as orders can be aggregated at

28 or 32. On the other hand, the groups which include five diameter sizes cannot have
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Figure 4.3: Example conversions of base heuristic

any variants because conversion is restricted with two steps. As a result, there are nine

different versions of diameter aggregation if groups consist of numbers which are 5,5

and 3.

There is one more partition type to generate three groups as shown in Figure 4.4. In

this partition, groups are made up of diameter sizes in number such as 4-4-5. There

are also other versions of this partition such as 5-4-4 and 4-5-4. In addition, the

groups of four diameter sizes have two different variants because each diameter sizes

are convertible to each other. To illustrate, in Figure 4.4, diameter sizes 10, 12 and

18, 20 are the possible aggregation sizes since conversion is limited to two steps up

or down. Hence, there can be 12 different types of diameter aggregation if groups

consist of numbers such as 5,4 and 4. Ultimately, there are 21 different options to

aggregate orders in three groups. In addition, choosing original diameter sizes for

all item is the 22nd option as an elite solution. After assigning diameter sizes to the

items, original deadlines are assigned as period information for all elite solution.

Figure 4.4: Example conversions of base heuristic

These 22 options derived from aggregation are evaluated, by calling CPLEX to solve

51



1-D CSPs, according to their objective function values, and the best solutions are

transferred to the initial population as elite solutions with the proportion of Percentelite.

As a result, the algorithm can exploit these elite solutions so that it converges to better

objective function value.

4.2.3 Fitness Function

When the chromosome representation is available, we have separate cutting stock

problems for each diameter size and period, which gives D x P different 1-D cut-

ting stock problems (assuming there are D different diameter sizes and P different

periods). We can solve D x P different cutting stock problems for each chromosome

and use their objective function value at the fitness function. The objective function

values of the CSPs only give the material cost, but we also need to calculate the in-

ventory holding cost. In the fitness function, we sum the objective function values of

the CSPs and inventory holding costs. By this way, we can evaluate the quality of

each chromosome.

To solve different cutting stock problems, we used two different techniques. The first

one is the solving problems using original reflect formulation and calling CPLEX for

each subproblem. However, we realized that it is time-consuming to call CPLEX

D x P times for each chromosome. Although individual solutions can be obtained

rapidly using the reflect formulation, calling it for each D x P subproblems leads

to huge computation time at each iteration. Since problems for each chromosome

are not dependent on each other, we applied parallel computing to solve the CSPs

simultaneously by assigning threads to each problem. The implementation of parallel

computing increased the speed of the algorithm as approximately two times faster

compared to the serial implementation. However, the time consumed for solving

each chromosome is still enormous to obtain solutions in a reasonable amount of

time. Therefore, to get the solutions faster, we implemented a heuristic approach

which is called first-fit decreasing algorithm with pre-allocated items to solve the

CSPs separately, and evaluated the fitness function. Our preliminary results showed

that solving CSPs approximately is very helpful to reduce computation times without

sacrificing much from the solution quality. As a result, we decided to continue with
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this approach in order to evaluate the fitness function.

First-fit, best-fit, and next-fit algorithms are widely used to obtain approximate solu-

tions rapidly in CSP and BPP. It is shown that worst-case performance ratio (WCPR)

of the first-fit and the best-fit algorithm is 17/10 while next-fit’s WCPR is 2 in terms of

solution quality. Moreover, WCPR of first-fit and best-fit algorithm can be improved

to 3/2 by sorting items in descending order as shown in the Semi-Levi [37]. Although

their WCPRs are equal, first-fit can solve instances more rapidly. As a result, we de-

cided to make use of first-fit decreasing algorithm so that approximate solutions are

obtained rapidly without sacrificing solution quality significantly.

The algorithm begins to sort items according to their lengths in descending order.

Then, locate items whose sizes are longer than half of the capacity into the stocks to

eliminate redundant search since items whose sizes are larger than half of the capacity

cannot be in the same pattern. The number of stocks opened is equal to the number of

orders for each large item. Remaining items are tried to locate open stocks in order.

If no open stocks are available to locate the next item, then the new stock will be

opened. Two possible situations can be encountered during this assignment process

if the length of the item is suitable to assign to the existing stocks. First, the order

amount of the item on hand is more than the number of suitable existing stocks. In

this case, the algorithm assigns orders of that item as much as possible to the existing

stocks, and then it opens new stocks in number which equals to unassigned orders.

Second, the order amount of the item is less than or equal to the number of suitable

existing stocks. In the second case, orders are assigned to the existing stocks with

an exact amount of order. Since the orders of items are assigned as bulk, not one

by one, there can be inefficient assignments. Additional improvement algorithm is

implemented to deal with inefficiency. It checks whether there is an obvious ineffi-

cient assignment or not in the solution. To illustrate, suppose that eight stocks are

separately cut into only one size of length, 3 meters. However, these items can be cut

together in two stocks by aggregating their demands as 3-3-3-3 and 3-3-3-3. Pseu-

docode of first-fit decreasing algorithm and example of improvement algorithm are

mentioned in Appendix A.
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4.2.4 Parent Selection

The parents are selected after calculating the fitness values of the chromosomes. Since

our aim is to minimize costs in the problem, lower fitness function values are better.

The first Percentbest of the chromosomes that have minimum fitness values are di-

rectly transferred to the mating pool. According to the preliminary results, transfer-

ring a small proportion of best solution directly to the mating pool provides algorithm

converges better solutions compared to not implementing. The level of Percentbest

is fine-tuned at Chapter 5. We applied a parent selection procedure. For each chro-

mosome in the population, we evaluated the following function.

In equation 4.9, selecti value will be used to determine the probability of selection

the chromosome i, where fmax and fmin value refer to the maximum and minimum

fitness values observed at the population, respectively and fi is the fitness value of the

chromosome i.

selecti =
fmax − fi
fmax − fmin

(4.9)

When the selecti values are summed over the chromosomes, the total of these values

may exceed one, so we need to normalize these values to calculate the selection prob-

abilities. Assume that probi refers to the probability of selection of the chromosome

i, its value is calculated using the equation (4.10).

probi =
selecti∑
i

selecti
(4.10)

After determining selection probabilities for the chromosomes, the discrete cumula-

tive probability distribution is formed. The random numbers are generated to deter-

mine which chromosomes will be sent to the mating pool.

4.2.5 Crossover Operators

The mating pool is firstly shuffled to avoid the mating of elite solutions. Then, we

matched the parents consecutively from the mating pool. According to the crossover
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probability Pc, we decided on whether to apply crossover or not. If the decision does

not have a crossover, the parents directly become as offsprings. For the rest of them,

we created 2n size vector (the size is the same with the size of the chromosome) that

includes randomly selected 0-1 entries. It is the binary crossover mask to select the

genes from the parents. If the entry is 0, it means that the related cells of the offspring

1 and 2 should come from second and first parent, respectively. If it is 1, it should be

vice versa. To illustrate that, we provide a small example in Figure 4.5.

Figure 4.5: Example of a crossover operation

To illustrate, crossover mask begins with 0. Therefore offspring-1 gets the value of

20 which is the first element of parent-2 and offspring-2 gets the value of 12 which is

the first element of parent-1. Since the second element of crossover mask is 1, parent-

1 sends its second element to offspring-1 and parent-2 sends its second element to

offspring-2.

4.2.6 Mutation Operators

Mutation probability is fixed to some value in the algorithm first. Then, offsprings,

that will be exposed to the mutation, will be selected according to the probability

of mutation, Pm. Genes of the selected chromosomes for the mutation are changed.

Number of genes to be mutated is calculated via Percentmutation which denotes the
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percentage of genes to be mutated in a chromosome. While changing a gene, the

feasibility is preserved by changing the cells from the feasible set. Figure 4.6 shows

the example of the mutation operation in a chromosome.

Figure 4.6: Mutation example

In this small example, the diameter size of item-1 is altered from Ø12 to Ø14 and

cutting time of item-2 is mutated from 3 to 2. In order to determine levels of Pm and

Percentmutation, we tested different levels of these parameters in the experiments at

Chapter 5.

4.2.7 Forming Population for Next Generation

After the crossover and mutation operations, we directly take the offsprings to the

next generation without comparing the fitness values of the offsprings and parents.

Consequently, parents are killed even if they have better fitness value so that the algo-

rithm may explore different solutions, and premature convergence can be prevented.

4.2.8 Termination Criteria

We define two different termination criteria in the genetic algorithm. First one is the

time limit, if the algorithm reaches the stated time limit, it stops. The second one is

the convergence, we look at the last 100 iterations and take averages of the first 10 and
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last 10 solutions, separately. If the improvements between the two sets are smaller

than 0.001%, the algorithm stops. It is enough to satisfy one of the termination cri-

teria for ending the algorithm. At the end of the iterations, the CSP subproblems are

solved using CPLEX, rather than calling the first-fit algorithm, in such a way that

each chromosome is solved in a parallel manner, and the best solution found is saved.
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4.2.9 Pseudocode of the Genetic Algorithm

Algorithm 3 A Genetic Algorithm for 1.5MPCSP
Step 1: Initialize Parameters

Initialize the parameter values: Pc, Pm, Percentmutation, Percentbest,

Percentelite, population size

Step 2: Generate Initial population

Generate elite solution with base heuristic algorithm.

(1- Percentelite) of the population is created from the feasible set,

Percentelite of the population is formed with elite solutions.

Step 3: Fitness Value Calculations

Calculate the fitness value for each individual by using first-fit algorithm

Step 4: Parent Selection

Take the Percentbest of the best individuals to the mating pool directly

Calculate the probability of selection for each individual

Determine the rest of the parents according to the probability of

selection

Step 5: Crossover Operations

Shuffle parents

Consecutively match the parents

According to probability of crossover pc, determine the parents that will

enter crossover operations

Generate offsprings

Step 5: Mutation Operations

Determine the offsprings for mutation

Change the genes of the mutated offsprings

Step 6: Forming Population for the Next Generation

Transfer the offsprings directly to the next generation

Step 7: Termination

if solution time= time limit OR convergence criterion is satisfied

Stop, and call CPLEX to solve 1-D CSPs

Report the best solution found

else return to Step 3
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CHAPTER 5

COMPUTATIONAL RESULTS

In this chapter, we present the experimental results of solution approaches. Different

sizes and types of problem instances are used in computational experiments. In-

stances are derived from the real construction projects developed for the industry.

The performances of Kantorovich, arc-flow, and reflect formulations are tested for

the 1.5-dimensional single-period cutting stock problem. The performances of reflect

formulation and genetic algorithm are compared for the 1.5-dimensional multi-period

cutting stock problem. Parameters of the genetic algorithm are also fine-tuned for im-

proving the solution quality. Moreover, the contributions of 1.5-D CSP and 1.5-D

MPCSP compared to the 1-D CSP are examined and discussed in the last section.

5.1 Data Collection & Instance Generation

In order to analyze our solution approaches realistically, we benefitted from the real

construction projects taken from the industry. We use five different projects from

different application areas such as hospitals, apartments, business centers, and public

buildings. Each project is different in terms of sizes and properties. Four main prop-

erties of projects that make projects different are the number of items, the number of

diameter types, the minimum item length, and the number of different lengths. Table

5.1 shows the properties of these projects. Intuitively, one expects that an increase in

the number of items and the number of diameter types make difficult to solve prob-

lems. On the other hand, the number of different lengths and the minimum length

used in projects also affect the problem complexity since these parameters have an

influence upon network size. To clarify, if the number of different length in an in-
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stance increases, the network size grows accordingly. Therefore, it affects solution

time and quality significantly. On the other hand, the minimum length of the instance

has similar effects on network size. To illustrate, assume that there are two identical

instances, except their minimum length of items. The minimum lengths of items ob-

served in those instances are 50 cm and 100 cm, respectively. The instance, whose

minimum length is 50 cm, has a larger network size compared to the instance, whose

minimum length is 100 cm. It is because of that decrease in the lengths of items in an

instance causes the network to possess more vertices and arcs.

Table 5.1: Properties of instances

Project Name # of Item # of Different Dia. Size Min. Item Length # of Different Length

Project-1 1835 6 20 cm 268

Project-2 1940 12 40 cm 254

Project-3 1540 7 62 cm 126

Project-4 11313 8 60 cm 457

Project-5 2900 5 43 cm 218

To compare solution approaches, we derived instances from five real projects in dif-

ferent application areas. Instances are generated with 100, 250, 500, and 1000 items

by drawing randomly from each project separately. Moreover, instances with 2000

items are derived from both project-4 and project-5. Finally, instances with 5000 and

10000 items are created using only project-4. Five instances are generated for every

size for all projects. Table 5.2 shows the number of instances created from every

project and for different sizes. All projects are designed by a structural designer with

0.01 meters precision. To illustrate, item lengths increase in a way that 3.4 m, 3.41 m,

3.42 m, etc. Since stock length is 12 meters, the maximum amount of different length

types can reach 1200 theoretically with this precision.

Instances are generated for single-period and multi-period problems separately. We

assume that there are 10 periods, and inventory holding rate is 0.01 for multi-period

problems. Since information about the demanded periods for items is not available

for the data we collect, we generate period information randomly for each instance.
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Table 5.2: Number of instances used in the experiments

Number of Items

Project Name 100 250 500 1000 2000 5000 10000 Total

Project-1 5 5 5 5 0 0 0 20

Project-2 5 5 5 5 0 0 0 20

Project-3 5 5 5 5 0 0 0 20

Project-4 5 5 5 5 5 5 5 35

Project-5 5 5 5 5 5 0 0 25

5.2 Computational Results for the Single-Period Cutting Stock Problem with

Diameter Conversion in the Construction Industry

We tested exact solution approaches, which are the arc-flow and reflect formulations,

on 120 instances for the single-period cutting stock problem with diameter conver-

sion in the construction industry. Implementation is built using C++ and CPLEX

12.8.0 Concert Technology with Intel (R) Core (TM) i7-4790 CPU @3.10 GHz and

16GB RAM. To solve each instance, two hours of time limit is given to CPLEX. Note

that the Kantorovich formulation is excluded from the experiment because it cannot

solve instances larger than 50 by using Scip-GCG solver that applies B&P algorithm

according to preliminary results.

In five different projects, the performances of arc-flow and reflect formulations are

compared in the case of single-period CSP with diameter conversion in terms of so-

lution quality. To evaluate the solution quality, average gap values of CPLEX are

compared. In Table 5.3, the computational results are provided. The number of items

is varied while comparing these two formulations. In some instances, CPLEX could

not find any integer solution within the time limit. Therefore, the number of instances

solved are recorded for every five instances which are generated for every project and

every size of the number of items.

According to the computational results presented at Table 5.3, average gap values

are lower in the reflect formulation in all projects and all sizes for the number of

items compared to the arc-flow formulation. When the number of items increases,
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the average gap values also rise in both formulations as expected. Furthermore, if no

upper bound value is obtained within the time limit, we classified those instances "not

solved". A few instances with larger item size cannot be solved by both formulations.

On the other hand, the reflect formulation outperforms the arc-flow formulation in

terms of average gap values and the number of instances solved in each case. To

illustrate this, the reflect formulation can solve all instances with 0.09% average gap

value in Project-5 where the number of items is 2000 whereas the arc-flow formu-

lation cannot solve any of these instances within the time limit. Moreover, the total

numbers of instances solved are 113 and 72 for the reflect and arc-flow formulations,

respectively. Finally, we suggest that the decision maker of the problem can use the

reflect formulation in order to obtain better solutions for 1.5-D CSP instead of Kan-

torovich and arc-flow formulations. As a result, we did not make use of the arc-flow

formulation in solving 1.5-D MPCSP.

5.3 Computational Results for the Multi-Period Cutting Stock Problem with

Diameter Conversion in the Construction Industry

The reflect formulation and genetic algorithm approaches are tested experimentally

on 120 instances for the multi-period cutting stock problem with diameter conversion

in the construction industry. Implementation is built using C++ and CPLEX 12.8.0

Concert Technology with Intel (R) Core (TM) i7-4790 CPU @3.10 GHz and 16GB

RAM. To solve each instance, two hours of time limit is given to CPLEX.

We also propose to round-up input length data for the reflect formulation, since it

becomes weak when the stock length capacity increases due to its pseudo-polynomial

structure. Lengths of items are generally designed with 0.05 m precision such as 3.4

m, 3.45 m, 3.5 m, etc. However, they can be rarely designed with 0.01 m precision

such as 3.41 m, 3.42 m, 3.43 m, etc. In order to reduce network size, we propose to

round-up lengths of items, whose magnitudes are assigned with 0.01 m precision, to

the nearest potential length. To illustrate, suppose that lengths of items are 3.41 m,

3.42 m, 3.45 m, and 3.46 m. Their rounded final lengths will be 3.45 m, 3.45 m, 3.45

m, and 3.5 m. Consequently, rounding items’ lengths provides to reduce network size

in terms of both numbers of arcs and nodes. Although rounding procedure sacrifices
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Table 5.3: Comparison of reflect and arc-flow formulations for 1.5-D CSP

Reflect Arc-flow

Project Name # Items # Solved Avg. Gap (%) # Solved Avg. Gap (%)

Project-1 100 5 0.10 5 0.47

Project-1 250 5 0.13 2 0.46

Project-1 500 5 0.13 0 NA

Project-1 1000 5 0.13 0 NA

Project-2 100 5 0.02 5 0.16

Project-2 250 5 0.02 4 0.78

Project-2 500 5 0.09 2 4.56

Project-2 1000 5 0.20 3 45.14

Project-3 100 5 0.01 5 0.01

Project-3 250 5 0.01 5 0.03

Project-3 500 5 0.03 5 0.10

Project-3 1000 5 0.06 5 0.22

Project-4 100 5 0.07 5 0.17

Project-4 250 5 0.05 5 0.85

Project-4 500 5 0.03 5 0.21

Project-4 1000 5 0.12 2 0.70

Project-4 2000 5 0.82 0 NA

Project-4 5000 3 38.43 0 NA

Project-4 10000 0 NA 0 NA

Project-5 100 5 0.10 5 0.33

Project-5 250 5 0.11 5 0.36

Project-5 500 5 0.11 3 0.56

Project-5 1000 5 0.09 1 2.22

Project-5 2000 5 0.09 0 NA

Total Instances Solved 113 72
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solution quality in advance, it paves the way for the reflect formulation becomes more

powerful and capable to reach better solution quality compared to the original form.

As a result, we included both original and rounded forms of the reflect formulation in

the experiments.

In Table 5.4, the summary of the computational results are presented for the multi-

period 1.5-D cutting stock problems. The performances of the reflect formulation,

its rounded version, and genetic algorithm are compared. Before conducting these

experiments, the parameters of the genetic algorithm are finetuned as it will be ex-

plained in Section 5.4. The experiments with the genetic algorithm are conducted

with the selected algorithm parameters. The average gap values of the genetic algo-

rithm and rounded version are calculated using the best lower bounds provided by

CPLEX while solving the reflect formulation.

In these experiments, the same five projects are used and five instances are created for

each project and item size. In total, 120 instances are used to compare solution ap-

proaches. Instances with 100 items are not examined by rounded version and genetic

algorithm since they can be easily solved by the reflect formulation satisfactorily.

For the reflect formulation and its rounded version, the average gap values and the

number of instances solved are recorded. Since the genetic algorithm can find a solu-

tion for every case, the average gap values and average run times are used to make a

reasonable comparison.

As expected, when the number of items increases, both reflect formulation and its

rounded version have difficulties in solving instances. On the other hand, genetic

algorithm spends much more time to satisfy termination criteria in the case where

we have a large number of items. In the comparison of reflect formulation and its

rounded version, the reflect-rounded can solve a larger number of instances. To il-

lustrate that, rounded version solves 83 instances out of 95 instances. However, the

reflect formulation enables to solve 30 of them from the same set of instances.

The genetic algorithm can reach small gap values in a shorter amount of time. When

the number of items is small (e.g. when the number of items is equal to 250), rounded

version finds lower gap values compared to genetic algorithm. On the contrary, the

genetic algorithm outperforms both versions of the reflect formulation at instances
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Table 5.4: Comparison of the reflect formulation and genetic algorithm for 1.5-D

MPCSP

Reflect Reflect Rounded Genetic Alg.

Project

Name

# of

Items

#

Solved

Avg.

Gap (%)

#

Solved

Avg.

Gap (%)

Avg. Run

Time (s)

Avg.

Gap (%)

Project-1 100 5 1.13 - - - -

Project-1 250 1 25.92 5 5.18 168.1 5.53

Project-1 500 0 NA 5 19.20 421.7 5.39

Project-1 1000 0 NA 5 55.82 1291.9 5.35

Project-2 100 5 0.17 - - - -

Project-2 250 3 20.47 5 1.73 154.2 2.64

Project-2 500 0 NA 5 11.46 483.8 3.81

Project-2 1000 1 66.33 2 67.94 992.7 3.73

Project-3 100 5 0.01 - - - -

Project-3 250 5 0.05 5 0.04 418.2 3.68

Project-3 500 5 0.94 5 0.25 735.1 3.78

Project-3 1000 2 2.22 5 11.60 1635.1 3.31

Project-4 100 5 0.07 - - - -

Project-4 250 2 1.01 5 1.12 143.1 7.86

Project-4 500 2 49.61 5 8.29 559.6 5.29

Project-4 1000 0 NA 5 41.85 1456.8 5.68

Project-4 2000 4 66.00 5 63.25 3601.6 4.81

Project-4 5000 1 63.55 4 58.36 5826.9 4.62

Project-4 10000 0 NA 4 49.71 6668.2 4.87

Project-5 100 5 0.65 - - - -

Project-5 250 4 13.70 5 0.91 199.9 4.40

Project-5 500 0 NA 5 25.04 386.1 4.05

Project-5 1000 0 NA 1 75.24 1141.0 2.90

Project-5 2000 0 NA 2 73.39 2966.3 2.50
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with a larger number of items. For example, when the number of items is 1000,

the average gap values for the reflect-rounded and genetic algorithm are 55.82% and

5.35% for Project-1, respectively. To conclude, the reflect-rounded can be used in a

small number of items whereas the genetic algorithm is a powerful tool to solve large

size 1.5D-MPCSP problems to reach reasonable gap values in shorter computation

times.

As can be seen from the computational results, each project shows different attitudes

in terms of solution quality and the number of instances solved. It is because of that

each project has different properties in terms of four main characteristic which are

number of items, the number of different diameter size, the minimum length of items,

and the number of different length sizes in the instances as seen in Table 5.1. In

order to show how these four properties affect solution quality, we analyze computa-

tional results. Firstly, it is obvious that when the number of items increases solving

instances is getting harder. To illustrate, the number of instances solved is decreasing

and the average gap value increases if the number of items increases for all projects.

Secondly, it can be observed that an increase in the number of different diameter sizes

has no major effect on solving instances. For example, projects 2 and 5 have similar

properties except their number of different diameter sizes as 12 and 5, respectively.

However, the total numbers of instances solved are equal for both projects and aver-

age gap values do not differ significantly. Thirdly, it can be deduced that decrease in

the size of minimum item length will result in difficulties in solving instances since it

causes network size to grow considerably. To illustrate, projects 1 and 5 have similar

properties except their minimum item length’s sizes as 20 cm and 43 cm, respectively.

While the total numbers of instances solved are six and nine, the average gap values

of Project-1 are larger than Project-5. Finally, the number of different item length

sizes has an effect on solution quality as well. Project-3 and Project-4 have similar

properties except their number of different item length sizes which are 126 and 457,

respectively as seen at Table 5.1. If the average gap values and the total numbers of

instances are compared, it can be easily seen that the instances of Project-4 are more

difficult to solve than instances of Project-3. Therefore, we can conclude that an in-

crease in the number of different item length sizes has a negative impact on solution

quality.
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5.4 Parameter Selection for Genetic Algorithm

The performance of a genetic algorithm is directly dependent on the parameter values.

There are six parameters: crossover probability, mutation probability, Percentelite

percentage of elite solution at the initial population, population size, Percentmutation

indicates the percentage of genes in a chromosome to be mutated, and the Percentbest

that is the percentage of transferring the best parents to the mating pool directly.

To determine the best parameter values, we tested different parameter settlements on

three instances for every project and for different sizes. In order to reduce the time

spent on experiments, we restricted data set with three instances from every project

and their item sizes up to 2000, instead of using five instances as in Sections 5.2 and

5.3. Since complete enumeration for parameters and their levels will lead to trying

a large number of instances, we also restricted the number of parameters and their

levels to be enumerated. Ultimately, the full-factorial experiment design is conducted

on four parameters’ levels. Table 5.5 shows the details of the experiment. Therefore,

36 different settlements, where the population size and the Percentmutation are fixed

to 200 and %10 respectively, are tested on 72 instances. Table 5.6 shows the average

gap values for every settlement.

Table 5.5: Genetic algorithm parameters’ levels to be enumarated (%)

Mutation Prob. 6.0 12.0 18.0

Percentbest 15.0 30.0

Crossover Prob. 75.0 85.0 95.0

Percentelite 15.0 30.0

After the full-factorial experiment on four parameters’ level, we fixed their values

(Percentbest = 12%, mutation probability = 15%, crossover probability = 95%,

Percentelite = 15%), where average of the gap values are minimum. After select-

ing mutation probability as 15%, another decision arises for the mutation technique

in the genes of the chromosome.
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Table 5.6: Average gap values in different parameter settlement

Settlement Mutation (%) Percentbest(%) Crossover (%) Percentelite(%) Gap (%)

1 6 15 75 15 4.58

2 6 15 75 30 4.60

3 6 15 85 15 4.52

4 6 15 85 30 4.55

5 6 15 95 15 4.53

6 6 15 95 30 4.55

7 6 30 75 15 4.84

8 6 30 75 30 4.87

9 6 30 85 15 4.80

10 6 30 85 30 4.78

11 6 30 95 15 4.69

12 6 30 95 30 4.69

13 12 15 75 15 4.58

14 12 15 75 30 4.53

15 12 15 85 15 4.50

16 12 15 85 30 4.54

17 12 15 95 15 4.46

18 12 15 95 30 4.52

19 12 30 75 15 4.65

20 12 30 75 30 4.71

21 12 30 85 15 4.64

22 12 30 85 30 4.59

23 12 30 95 15 4.62

24 12 30 95 30 4.60

25 18 15 75 15 4.64

26 18 15 75 30 4.61

27 18 15 85 15 4.59

28 18 15 85 30 4.63

29 18 15 95 15 4.71

30 18 15 95 30 4.70

31 18 30 75 15 4.63

32 18 30 75 30 4.64

33 18 30 85 15 4.61

34 18 30 85 30 4.58

35 18 30 95 15 4.54

36 18 30 95 30 4.52
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In this study, we decided to vary the percentage of the genes of the chromosome to

be mutated. To select the Percentmutation value, the computational experiments are

conducted. Three different levels of Percentmutation (5%, 10%, and 20%) are tested

on the same 72 instances to set its value. Table 5.7 shows that average gap values of

Percentmutation levels.

Table 5.7: Average gap values in different mutation percentages

Percentmutation(%) Avg. Gap(%)

5 4.47

10 4.46

20 4.62

According to the results of the experiments, it is concluded that the average gap values

do not change significantly when the Percentmutation value is varied. The minimum

average gap value is obtained when Percentmutation value is 10%. Therefore, we

selected it as 10% in subsequent experimentation.

Finally, experiments are carried out for setting an appropriate value for the population

size. The genetic algorithm is tested with four different population sizes as 200, 500,

1000, and 2000. As it can be seen from Table 5.8, increasing population size will lead

to increase solution time and let the algorithm explore better solutions. However,

the algorithm can exploit good solutions at small population sizes. According to

our computational experiments, the best average gap value, which is 4.38%, can be

reached when population size is 2000.

Table 5.8: Average gap values and run times in different population sizes

Population Size Avg. Run Time (s) Avg. Gap (%)

200 453 4.46

500 504 4.54

1000 576 4.51

2000 1047 4.38

In order to see the effects of population sizes, graphs 5.1, 5.2, 5.3, and 5.4 show the
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Figure 5.1: Gap values over time when the number of item is 250 for four different

population sizes

gap values over time for different item sizes as 250, 500, 1000, and 2000. In each

graph, four different colored lines (green, yellow, blue, and red) can be observed

which refer to the behavior of the average gap values over time in four different pop-

ulation sizes (200, 500, 1000, and 2000), respectively.

At first glance, it draws the attention that there are sharp decreases in the gap values

at the last iteration of the algorithm for every population size. When the algorithm

remains at close gap values during a large number of iterations, CPLEX is called for

solving chromosomes of the last population instead of using the first-fit algorithm. As

a result, it finds optimal solutions for individual 1-D cutting stock problems by using

original reflect formulation so that the algorithm provides better gap values.

It can be easily observed that the algorithm explore better solutions when the popula-

tion size is at its largest level. Although there are no major differences among solution

qualities, the largest level of the population size provides to obtain minimum average

gap values for all item sizes. On the other hand, solution time increases because the

algorithm converges later and solves more chromosomes for every iteration. In the

lowest value of the population size, the genetic algorithm exploits solutions that de-

crease the gap value sharply. On the other hand, the algorithm converges early and
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Figure 5.2: Gap values over time when the number of item is 500 for four different

population sizes

Figure 5.3: Gap values over time when the number of item is 1000 for four different

population sizes
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Figure 5.4: Gap values over time when the number of item is 2000 for four different

population sizes

cannot explore better solutions.

5.5 Contributions of 1.5-Dimensional and Multi-Period Cutting Stock Problem

In the last section of computational results, we made comparisons among 1-D CSP,

1.5-D CSP, and 1.5-D MPCSP to demonstrate the contribution of 1.5-dimensional

and multi-period structures of CSP. We prepare an experimental set using original

data of five real projects. Properties of these projects are conserved as shown in Ta-

ble 5.1. For the single-period problem, we tried to answer the following questions:

What if diameters are not converted and how much gain do we get by converting di-

ameter sizes? We solved five real projects’ instances without considering conversion.

Since each item will be cut from its original diameter, every diameter size forms 1-

dimensional cutting stock problems. As a result, we solve 6, 12, 7, 8, and 5 (which are

the number of different diameter sizes of projects) different and independent 1-D cut-

ting stock problems for projects 1-5, respectively. Then, these real projects’ instances

are solved considering diameter conversion. Experiments are conducted within five

hours of time limit. Table 5.9 shows the computational results. Since solving Project-
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4 cannot be solved satisfactorily, we solve Project-4 by rounding their length sizes

as mentioned in Section 5.3. According to the computational results, taking diameter

conversion into account when preparing a cutting plan of rebars offers significant ad-

vantages. For instance, the decision maker can save 6 % from using rebar if Project-3

is solved considering diameter conversion.

Table 5.9: 1.5-D CSP % gain comparison to 1-D CSP

Single-Period

% Gap
Gain Compared to 1-D CSP (%)Project Name Reflect Reflect-Rounded

Project-1 0.1 - 5.6

Project-2 0.1 - 5.9

Project-3 0.1 - 6.0

Project-4 5.5 0.5 4.3

Project-5 0.1 - 0.9

In order to evaluate the contribution of diameter conversion and multi-period structure

of the problem together, we prepare another experimental set from the same five real

projects. Properties of these projects are conserved as shown in Table 5.1. We tried

to answer the following questions: What if diameters are not converted and holding

inventory is not considered? How much gain do we get by converting diameter sizes

and holding inventory? Therefore, we aimed to solve two different settlements com-

posed of five real projects as if they are 1-D CSP. The first settlement is designed as

all items are cut from its original diameter at its demanded period while the second

settlement is designed as all items are cut from its original diameter in the first period.

As a result, 60, 120, 70, 80, and 50 different and independent 1-D CSPs are solved

for projects 1-5, respectively, since there are 10 time periods on those projects for the

first settlement. Furthermore, 6, 12, 7, 8, and 5 different and independent 1-D CPSs

are solved for projects 1-5, respectively since all items are cut at the beginning for the

second settlement. Note that, in the first experiment, items are cut at their demanded

periods and no inventory is carried to the next period. In this settlement, the decision

maker misses the advantage of generating efficient patterns by holding inventory. On

the other hand, in the second experiment items are cut in the first period and demands
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of later periods are supplied from the inventory. Although the decision maker can

benefit from generating efficient cutting patterns by cutting all items at the first pe-

riod, inventory holding cost incurred without compromising contribution of generat-

ing efficient patterns. Finally, instances are solved with the genetic algorithm, reflect

formulation, and its rounded version considering diameter conversion and holding in-

ventory within five hours of time limit. Table 5.10 shows the computational results. It

can easily be observed that instances cannot be solved successfully using the reflect

formulation and its rounded version. Therefore, we benefitted from the results of the

genetic algorithm to make a comparison. As a result, holding inventory and convert-

ing diameters provides savings up to 7.3% from using rebars compared to the case

where all items are cut at their demanded periods. Besides, saving can reach to 6.8%

compared to the case where all items are cut at the first period. Furthermore, it can be

concluded that these two strategies do not outperform each other since savings vary

according to the projects as can be seen from the results. To illustrate, while the strat-

egy of cutting all items in their demanded periods gives better results for projects 3-5,

the strategy of cutting all items in the first period gives better results for projects 1-2.

To conclude, converting diameter sizes and holding inventory provide cost reduction

from using rebar, but the trade-off between generating efficient cutting patterns and

holding inventory should be exploited in order to obtain better results.

Table 5.10: 1.5-D MPCSP % gain comparison to 1-D CSP

Multi-Period

% Gap Saving Compared to 1-D

CSP if all items are cut at

their demanded periods (%)

Saving Compared to 1-D

CSP if all items are cut at

the first period (%)Projects Reflect Reflect-Rounded Genetic

Project-1 Not Solved Not Solved 4.1 5.6 5.3

Project-2 Not Solved Not Solved 2.7 7.3 6.6

Project-3 Not Solved 12.5 3.1 5.6 6.8

Project-4 Not Solved Not Solved 4.4 0.5 4.0

Project-5 Not Solved Not Solved 1.6 0.3 3.6
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CHAPTER 6

CONCLUSION

The construction industry has abundant managerial aspects that could be improved by

using Operations Research. In many countries, the share of the construction industry

constitutes a significant part of gross domestic product. Therefore, effective planning

of its activities provides valuable reductions in the expenditures.

Reinforcement steel bar is one of the major cost components in the construction in-

dustry. The 1-dimensional cutting stock problem has been widely studied in the liter-

ature. It enables to generate efficient cutting patterns when it is used for rebars. How-

ever, convertibility of diameters of rebars provides the decision maker to create better

cutting patterns in terms of trim loss. In this thesis, we define a new problem that

arises in the construction industry considering both decisions of selecting appropriate

diameter sizes and generating cutting patterns. Since there is a diameter dimension

in addition to the length dimension, it differs from the 1-D CSP. However, choosing

the appropriate size of this dimension is also part of the decision process. Therefore,

the problem also differs from the 2-D CSP. It can be defined as open dimensional

or the 1.5-dimensional cutting stock problem when its similar problems in the litera-

ture are considered. Furthermore, we also take into account the time dimension since

the need for rebars occurs at different times for large and multiple building projects.

Therefore, the trade-off between holding inventory and trim loss should be exploited

in order to reduce the costs of construction projects. We defined this problem as the

1.5-dimensional multi-period cutting stock problem.

To solve the 1.5-D CSP, we considered three different formulations namely, Kan-

torovich, arc-flow, and reflect. Although LP relaxation of the Kantorovich formula-

tion is weak, it facilitates to understand the problem structure. Since arc-flow and
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reflect formulations are network-based, efficient graphs should be generated in order

to obtain better solution qualities. We modified these arc-flow and reflect formula-

tions according to the 1.5-dimensional structure. Since the reflect outperforms the

other formulations, we benefitted from it to model 1.5-D MPCSP. However, it is not

capable of obtaining satisfactory results for moderate and large sizes of instances.

Furthermore, we also design a genetic algorithm to reach reasonable gap values for

moderate and large sizes of instances.

In order to answer our research questions, we made computational experiments using

real data of the construction projects. Scrutiny of the computational results shows

that properties of the projects such as the number of items, minimum item length,

etc. have significant effects on solution quality. In addition, the parameters of genetic

algorithm also affect solution quality as well. As an alternative solution approach, we

propose rounded-up length sizes of instances in order to reduce network sizes so that

the reflect formulation becomes more powerful to attack the 1.5-D CSP and 1.5-D

MPCSP. It can be concluded that the reflect formulation is powerful of solving a large

majority of instances for the 1.5-D CSP. However, it is not capable of obtaining satis-

factory results on solving the moderate and large size instances for the 1.5-D MPCSP.

Thus, we propose the rounded version of the reflect formulation for the small and

moderate size instances and a genetic algorithm that reaches reasonable gap values

for larger instances. Lastly, we conducted an experiment to figure out the contribu-

tion of diameter conversion and holding inventory. The results show that decision

maker can obtain cost savings up to 6% and 7.3% for 1.5-D CSP and 1.5-D MPCSP,

respectively.

As future research direction, transportation issue can be combined with these prob-

lems. Construction companies may conduct more than one projects simultaneously

or consecutively. The need for rebars may occur at different locations and different

times. Therefore, trade-off among logistic costs, inventory holding costs, and trim

loss can be exploited to reduce costs of construction companies.

Multiple stock length situation can be considered as another future research direction.

Although rebars are usually sold in 12 meters in the market, some special contracts

can be made for different lengths of rebars. Consequently, better cutting patterns can
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be obtained using several stock length. However, it causes companies to pay more

price for non-standard products. As a result, there is a trade-off between generating

good patterns and cost of multiple stock length. The decision maker may accept to

pay more for non-standard products in order to reduce cost of trim loss.

Labor cost can be also combined with the problems considered in thesis. Although

converting diameter sizes is beneficial for the industry, increasing the number of

stocks used in cutting processes may lead to using more labor. Therefore, more

comprehensive study can be conducted by considering conversion of diamater sizes,

generation of cutting patterns and labor at the same time.

77



78



REFERENCES

[1] G. Wäscher, H. Haußner, and H. Schumann, “An improved typology of cutting

and packing problems,” European journal of operational research, vol. 183,

no. 3, pp. 1109–1130, 2007.

[2] Y. T. Han and S. Y. Chang, “A subset sum approach to coil selection for slitting.,”

International Journal of Industrial Engineering, vol. 22, no. 3, 2015.

[3] X. Song, C. Chu, Y. Nie, and J. A. Bennell, “An iterative sequential heuristic

procedure to a real-life 1.5-dimensional cutting stock problem,” European Jour-

nal of Operational Research, vol. 175, no. 3, pp. 1870–1889, 2006.

[4] J. V. De Carvalho, “Exact solution of bin-packing problems using column gener-

ation and branch-and-bound,” Annals of Operations Research, vol. 86, pp. 629–

659, 1999.

[5] M. Delorme and M. Iori, “Enhanced pseudo-polynomial formulations for bin

packing and cutting stock problems,” in Technical Report, DEI “Guglielmo Mar-

coni” Alma Mater Studiorum Università di Bologna, Italy, 2017.

[6] T. C. Association, “Turkish contracting in the international market.”

https://www.tmb.org.tr/doc/file/YDMHmarch2017.pdf, 2017. Accessed:March

2019.

[7] L. V. Kantorovich, “Mathematical methods of organizing and planning produc-

tion,” Management science, vol. 6, no. 4, pp. 366–422, 1960.

[8] P. C. Gilmore and R. E. Gomory, “A linear programming approach to the cutting-

stock problem,” Operations research, vol. 9, no. 6, pp. 849–859, 1961.

[9] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,”

Operations research, vol. 8, no. 1, pp. 101–111, 1960.

[10] H. Dyckhoff, “A typology of cutting and packing problems,” European Journal

of Operational Research, vol. 44, no. 2, pp. 145–159, 1990.

79



[11] R. W. Haessler, “A procedure for solving the 1.5-dimensional coil slitting prob-

lem,” AIIE Transactions, vol. 10, no. 1, pp. 70–75, 1978.

[12] R. N. Gasimov, A. Sipahioglu, and T. Saraç, “A multi-objective programming

approach to 1.5-dimensional assortment problem,” European Journal of Opera-

tional Research, vol. 179, no. 1, pp. 64–79, 2007.

[13] Z. S. M. Nadoushani, A. W. Hammad, J. Xiao, and A. Akbarnezhad, “Min-

imizing cutting wastes of reinforcing steel bars through optimizing lap splic-

ing within reinforced concrete elements,” Construction and Building Materials,

vol. 185, pp. 600–608, 2018.

[14] C. Zheng and M. Lu, “Optimized reinforcement detailing design for sustainable

construction: Slab case study,” Procedia Engineering, vol. 145, pp. 1478–1485,

2016.

[15] V. Benjaoran, N. Sooksil, and M. Metham, “Effect of demand variations on steel

bars cutting loss,” International Journal of Construction Management, vol. 19,

no. 2, pp. 137–148, 2019.

[16] K. C. Poldi and S. A. de Araujo, “Mathematical models and a heuristic method

for the multiperiod one-dimensional cutting stock problem,” Annals of Opera-

tions Research, vol. 238, no. 1-2, pp. 497–520, 2016.

[17] H. Reinertsen and T. W. Vossen, “The one-dimensional cutting stock problem

with due dates,” European Journal of Operational Research, vol. 201, no. 3,

pp. 701–711, 2010.

[18] G. M. Melega, S. A. de Araujo, and R. Jans, “Classification and literature re-

view of integrated lot-sizing and cutting stock problems,” European Journal of

Operational Research, vol. 271, no. 1, pp. 1–19, 2018.

[19] C. Le Hesran, A.-L. Ladier, V. Botta-Genoulaz, and V. Laforest, “Operations

scheduling for waste minimization: A review,” Journal of Cleaner Production,

2018.

[20] M. Delorme, M. Iori, and S. Martello, “Bin packing and cutting stock problems:

Mathematical models and exact algorithms,” European Journal of Operational

Research, vol. 255, no. 1, pp. 1–20, 2016.

80



[21] M. Rao, “On the cutting stock problem,” Journal of the Computer Society of

India 7, pp. 35–39, 1976.

[22] H. Dyckhoff, “A new linear programming approach to the cutting stock prob-

lem,” Operations Research, vol. 29, no. 6, pp. 1092–1104, 1981.

[23] H. Cambazard and B. O’Sullivan, “Propagating the bin packing constraint using

linear programming,” in International Conference on Principles and Practice of

Constraint Programming, pp. 129–136, Springer, 2010.

[24] F. Brandao and J. P. Pedroso, “Bin packing and related problems: general arc-

flow formulation with graph compression,” Computers & Operations Research,

vol. 69, pp. 56–67, 2016.

[25] O. Marcotte, “An instance of the cutting stock problem for which the rounding

property does not hold,” Operations Research Letters, vol. 4, no. 5, pp. 239–243,

1986.

[26] G. Scheithauer and J. Terno, “The modified integer round-up property of the

one-dimensional cutting stock problem,” European Journal of Operational Re-

search, vol. 84, no. 3, pp. 562–571, 1995.

[27] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser, “Solving binary

cutting stock problems by column generation and branch-and-bound,” Compu-

tational optimization and applications, vol. 3, no. 2, pp. 111–130, 1994.

[28] D. Ryan and E. Foster, “An integer programming approach to scheduling,” Com-

puter Scheduling of Public Transport, pp. 269–280, 1981.

[29] G. Scheithauer and J. Terno, “A branch&bound algorithm for solving one-

dimensional cutting stock problems exactly,” Applicationes Mathematicae,

vol. 23, no. 2, pp. 151–167, 1995.

[30] P. H. Vance, “Branch-and-price algorithms for the one-dimensional cutting stock

problem,” Computational optimization and applications, vol. 9, no. 3, pp. 211–

228, 1998.

81



[31] G. Belov and G. Scheithauer, “A branch-and-cut-and-price algorithm for one-

dimensional stock cutting and two-dimensional two-stage cutting,” European

journal of operational research, vol. 171, no. 1, pp. 85–106, 2006.

[32] S. Eilon and N. Christofides, “The loading problem,” Management Science,

vol. 17, no. 5, pp. 259–268, 1971.

[33] S. Martello, “Knapsack problems: algorithms and computer implementations,”

Wiley-Interscience series in discrete mathematics and optimiza tion, 1990.

[34] A. Scholl, R. Klein, and C. Jürgens, “Bison: A fast hybrid procedure for exactly

solving the one-dimensional bin packing problem,” Computers & Operations

Research, vol. 24, no. 7, pp. 627–645, 1997.

[35] P. Shaw, “A constraint for bin packing,” in International conference on princi-

ples and practice of constraint programming, pp. 648–662, Springer, 2004.

[36] P. Schaus, J.-C. Régin, R. Van Schaeren, W. Dullaert, and B. Raa, “Cardinality

reasoning for bin-packing constraint: application to a tank allocation problem,”

in Principles and Practice of Constraint Programming, pp. 815–822, Springer,

2012.

[37] D. Simchi-Levi, “New worst-case results for the bin-packing problem,” Naval

Research Logistics (NRL), vol. 41, no. 4, pp. 579–585, 1994.

[38] S. Martello and P. Toth, “Lower bounds and reduction procedures for the bin

packing problem,” Discrete applied mathematics, vol. 28, no. 1, pp. 59–70,

1990.

[39] M. Quiroz-Castellanos, L. Cruz-Reyes, J. Torres-Jimenez, C. Gómez, H. J. F.

Huacuja, and A. C. Alvim, “A grouping genetic algorithm with controlled gene

transmission for the bin packing problem,” Computers & Operations Research,

vol. 55, pp. 52–64, 2015.

82



APPENDIX A

Table A.1: Example of a small instance for first-fit algorithm

Length (cm) Demand

Item 1 900 8

Item 2 625 5

Item 3 575 10

Item 4 400 2

Item 5 375 7

Item 6 300 6

Item 7 225 17

Item 8 125 3

Example of a small instance composing of eight items is used to show that how first-

fit decreasing algorithm works. Table A.1 shows the lengths and demands of items

in the example instance. The instance is solved with first-fit decreasing algorithm.

Obvious inefficiencies are eliminated with an improvement part of the algorithm. The

reason why first-fit decreasing produces inefficient patterns is that orders of the items

are assigned to the patterns as bulk, not one by one. Therefore, using additional

improvement is helpful to achieve better utilization levels of the patterns. Table A.2

and Table A.3 show how beneficial to add improvement part to the algorithm. The

total number of stocks used is reduced from 28 to 23 adding improvement part to the

algorithm while the optimal solution of this instance is 22. Pseudo-code of the first-fit

decreasing algorithm is provided in Algorithm 4.
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Table A.2: Example of first-fit algorithm without improvement

Without Improvement

# of usage item 1 item 2 item 3 Total Length (cm)

Pattern 1 6 900 300 1200

Pattern 2 5 625 575 1200

Pattern 3 2 575 400 225 1200

Pattern 4 3 575 375 225 1175

Pattern 5 3 375 225 125 725

Pattern 6 2 900 225 1125

Pattern 7 6 225 225

Pattern 8 1 375 225 600

Total Pattern 28

Table A.3: Example of first-fit algorithm with improvement

With Improvement

# of usage item 1 item 2 item 3 item 4 Total Length (cm)

Pattern 1 6 900 300 1200

Pattern 2 5 625 575 1200

Pattern 3 2 575 400 225 1200

Pattern 4 3 575 375 225 1175

Pattern 5 3 375 225 125 225 950

Pattern 6 2 900 225 1125

Pattern 7 1 225 225 450

Pattern 8 1 375 225 225 825

Total Pattern 23
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Algorithm 4 Pseudocode of First-Fit Decreasing Algorithm
Step 1: Initialize patterns

Sort items according to their lengths in descending order

Open patterns for each item whose length is larger than capacity/2 in amount

of their order

Step 2: Assign Orders to the patterns

For remaining items

For each open pattern

If item length < unused capacity of the pattern

If order of the item > amount of convenient patterns

Assign orders as much as possible

Update order amount of the item

Go to next open pattern

Else if order of the item = < amount of convenient patterns

Assign all orders

Else Go to next pattern

If no suitable pattern exists to assign orders

Open new patterns in amount of remaining orders of the item

If no orders of the item are left to assign, Go to Next item

Step 3: Improve Pattern Utilization

Sort Patterns according to their total length in ascending order

Check whether orders of items can be located to other patterns

If so, assign orders of the items as much as possible to the other patterns

Check whether orders of items can be aggregated in their own patterns

If so, aggregate orders of the items as much as possible in the patterns
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