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ABSTRACT

MIXED INTEGER PROGRAMMING AND HEURISTICS APPROACHES
FOR CLUSTERING WITH CLUSTER-BASED FEATURE SELECTION

Onen Oz, Sena

M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Cem lyigiin

July 2019, [135]| pages

Cluster analysis tries to figure out the hidden similarities between data points in order
to place similar data points into the same group and different data points into separate
groups using unlabeled data. Understanding the data becomes difficult and the power
of obtaining informative clusters for an algorithm decreases as the dimensionality of
the data set gets high. Identifying the relevant features of high dimensional data sets
is the mostly used technique in order to increase the performance of the algorithm to
find the best clusters. However, selecting or deselecting the features comes up with

the assumption that all the selected features have the same relevance for all clusters.

In this study, it is assumed that the features to be used in clustering may differ for
each cluster. Number of clusters and number of relevant features in each cluster
are given in advance. By using a center-based clustering approach, identifying the
cluster centers, assigning data points to a cluster and selecting relevant features for
each cluster are performed simultaneously. A mixed integer mathematical model is
proposed which minimizes the total distance between data points and their cluster

center by using the selected features for each cluster. Since the proposed model is not



linear, mathematical models using different linearization methods have been used to
solve the problem. In addition to those mathematical models, we propose Benders
Decomposition solution method implemented on our problem. Besides, two different
heuristic algorithms have been developed by taking into account the nature of the
mentioned problem. The proposed mathematical models and heuristic algorithms
have been experimented on several data sets in different problem sizes in terms of

number of clusters, number of relevant features and number of data points.

Keywords: clustering, feature selection, mathematical model, heuristic approach
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0z

KUME OZGU OZNITELIK SECIMI ILE KUMELEME PROBLEMI iCIN
KARMA TAMSAYILI PROGRAMLAMA VE SEZGISEL YAKLASIMLAR

Onen Oz, Sena

Yiiksek Lisans, Endiistri Miithendisligi Boliimii
Tez Yéneticisi: Dog. Dr. Cem Iyigiin

Temmuz 2019 , sayfa

Kiimeleme algoritmalari, noktalar arasindaki onceden bilinmeyen gizli iligkileri be-
lirleyip birbirine benzeyen veri noktalarini ayni gruba, birbirinden farkli veri noktala-
rin1 ise ayr1 gruplara koymay1 hedefleyen gozetimsiz bir 6grenme yontemidir. Ancak
veri setinin boyutu arttik¢a verinin anlasilmasi zorlastifindan dogru kiimelemeyi elde
etme ihtimali diiger. En iyi kiimelemeyi bulmak i¢in kiimeleri tanimlayan 6znitelik-
leri belirlemek kiimeleme algoritmalarinin performansini arttirmak amaciyla biiyiik
Olcekli veri setlerinde en ¢ok kullanilan 6n igleme teknigidir. Ancak 6zniteliklerin
ayirt edici olarak segilip se¢ilmemesi, tiim Ozniteliklerin her kiime i¢in ayni ilgi dii-

zeyine sahip oldugu varsayimiyla ortaya ¢ikmaktadir.

Bu ¢alismada, kiimelemede kullanilacak 6zniteliklerin her bir kiime i¢in farklilik gos-
terebilecegi varsayilmaktadir. Kiime sayis1 ve her kiime i¢in ilgili 6znitelik sayis1 6n-
ceden verilmektedir. Kiime merkezleri bazli bir kiimeleme yaklagimi kullanilarak,
kiime merkezlerinin belirlenmesi, veri noktalarinin bir kiimeye atanmasi ve her bir
kiime icin ilgili ozniteliklerin se¢imi es zamanlh olarak yapilmaktadir. Bu ¢alisma

kapsaminda kiime i¢indeki noktalarin ilgili kiime merkezine sec¢ilen oznitelikler tize-
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rinden uzakliklarinin toplamin1 enazlayan karma tamsayili bir matematiksel model
onerilmistir. Onerilen model dogrusal olmadig1 i¢in problemin ¢oziimiinde farkli dog-
rusallastirma yontemlerinin uygulandigr matematiksel modeller kullanilmigtir. Bunun
yani sira, problemin ¢éziimil icin Benders Ayristirma yontemi uygulanmistir. Ayrica,
belirtilen problem icin iki farkli sezgisel ¢ziim yontemi gelistirilmistir. Onerilen ma-
tematiksel modeller ve gelistirilen sezgisel coziim yontemleri nokta ve 6znitelik sayisi

acisindan farkl biiytikliikteki veri setleri lizerinde denenmistir.

Anahtar Kelimeler: kiimeleme, 6znitelik secimi, matematiksel model, sezgisel yakla-

sim
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CHAPTER 1

INTRODUCTION

Enormous amount of data are obtained in various formats such as transaction records
on bank accounts, sensor data obtained from devices used to gather climate informa-
tion, and posts on social media. All of these data are generated very fast, and must be
processed as soon as possible to create valuable information. Analyzing big data and
finding relevance of data is too difficult, time consuming and costly. Hence, data min-
ing methods were developed to ease the process of obtaining meaningful information

(Jain, 2010).

Well-known data mining tasks are grouped into two categories depending on the avail-
ability of information, which are supervised learning and unsupervised learning. In
supervised learning, data has the label information and labels are used to train the
algorithm. Then, the trained algorithm is used to predict the unknown label of new
observations. Classification and regression are considered in this class. On the other
hand, there is no known labels used in unsupervised learning. Unsupervised learn-
ing algorithms aim to obtain meaningful information using available unlabeled data.
Clustering is a widely studied unsupervised learning method. It aims to group similar
data points in a data sets into the same cluster by separating them from the data points

which are dissimilar.

There are some challenges associated with clustering problems, and choosing the
similarity measure is one of them. The measure should be selected by considering the
properties of data sets, whether it contains quantitative (continuous or binary) or qual-
itative (categorical) features. Also, objective function which can be used in grouping
data sets may change. As the definition of clustering problem suggest, clusters should

be well-separated because we try to put dissimilar data points into different clusters.



This aim is named as separation in the literature. Also, similar data points should be
in the same cluster, and it is obtained by measuring the compactness. Since cluster-
ing problem is considered as an unsupervised learning, the number of clusters is not
known a priori and the data has no label information. Besides, different approaches
used in clustering may come up with different clustering solutions. Therefore, selec-
tion of similarity measure and objective function, constructing different numbers of
clusters, and using different solution techniques may generate totally different clus-
tering solutions. Hence, proposing a universal quality measure for clustering is not

possible.

In the literature, several studies propose solution to clustering problem by using dif-
ferent methods, objective functions and data sets with different properties. In gen-
eral, we can classify clustering approaches as Partitional Clustering and Hierarchical
Clustering. The former method aims to generate disjoint clusters in such a way that
similar data points are gathered around a cluster representative. The latter constructs a
hierarchical cluster structure of a data set, and it enables to obtain different clustering
solutions if the cluster structure is cut at different levels. There are advantages and
disadvantages of these methods, and they will be discussed in Chapter 2] Most of the
studies include heuristic approaches to obtain clusters in a reasonable time due to the
complexity of the problem. However, in Chapter [2] studies including exact solution

methods for clustering will also be delivered.

Data sets may contain redundant and irrelevant features as well as relevant ones. Clus-
tering patterns hidden in the data set may be masked by the redundant or irrelevant
features. In order to obtain clusters in a reasonable time, redundant and irrelevant
features should be removed from data set. This phenomenon is called as “dimension
reduction”, and there are numerous techniques to do that. In the literature, most of
the dimension reduction techniques assume that the same features may be used to
identify all clusters. However, global selection of features may not be helpful to ob-
tain all clusters in a data set, since there may be no common subset of features that is
relevant for all clusters. In the literature, there are some studies proposed to overcome
this problem, and both data points and features are clustered simultaneously. These

studies will be called as local clustering algorithms throughout this study.



Our problem in this study is to find clustering solution with feature selection but
we focus on identifying clusters via different subsets of features. That means, each
cluster is described by a different set of features. Here, it is allowed that the same
feature might be relevant for many other clusters. In the first part of this study, a mixed
integer mathematical model has been proposed for the solution of clustering problem
with cluster based feature selection (CBFS). The model decides (i) location of the
cluster centers, (ii) features to be selected for each cluster, and (ii1) assignment of data
points to a cluster simultaneously. The number of clusters and number of features that
will be selected for each cluster are given in advance. The aim is to minimize total
distance between the data points and cluster centers through selected features. Here,
it should be noted that Partitional Clustering is implemented, and cluster centers
are selected among data points. Also, data sets only include continuous features, and
similarity measure is selected as L1 —norm. Since the proposed mathematical model
include nonlinear term in the objective function, different linearization methods have

been applied in order to increase the performance.

In the second part of the study, Benders Decomposition approach is applied on our
problem in order to obtain the exact solution. Benders Decomposition method is
used to solve large-scale optimization problems, and the nature of our problem is
suitable to apply Benders Decomposition. When the data set gets larger in terms of
number of features or number of data points, the solution time of the proposed math-
ematical models gets worse. After obtaining insights about the problem structure
by Benders Decomposition, a Benders like heuristic algorithm is constructed. This
heuristic algorithm uses a new mathematical model which only decides the cluster
centers and relevant features of the clusters. When the cluster centers and selected
features are obtained from the mathematical model, each data point will be assigned
to the their closest center in order to minimize the total distance between data points
and their cluster centers via selected features of that clusters. For the assignments of
data points, a simple search procedure is developed. Additionally, a new heuristic al-
gorithm has been introduced in the second part of this thesis. This heuristic algorithm
decides each decision variable by iteratively solving smaller problems. That means,
at each iteration, two of the decision variables are fixed, and the other is decided by

the defined smaller problem specific to problem context.



There may be no common subset of features that can be used to identify all clusters.
Therefore, we try to identify relevant subset of features which are specific to clusters.
To the best of our knowledge, we are contributing to the literature by using mathe-
matical models and proposing heuristic algorithms to solve clustering problem and
cluster based feature selection simultaneously. The mentioned problem may be used
in different real life applications. In customer segmentation, customer groups can
be identified by clustering with cluster based feature selection, and services which
are provided to those customer groups may be arranged depending on the features of
groups. Another example might be team formation where teams in a work environ-
ment are formed considering the skill(features) of employees in order to assign task
accordingly. Last but not least, cluster based feature selection can be used in order to
identify the similar regions in an image where the similarity depends on the features

of regions.

This thesis is organized as follows. In Chapter [2| background information on clus-
tering and its properties are given. Related studies in the literature specifically for
clustering and feature selection in clustering problems are discussed. In Chapter [3]
we define the problem with its properties, and proposed mixed integer linear program-
ming models for our problem are delivered. Results of the experimental studies con-
ducted on these models are presented in Chapter @] Benders Decomposition method
implemented to our problem and Benders like heuristic algorithm are explained in
Chapter [5] Chapter [6 will introduce a new heuristic algorithm which works in a way
that all decision variables are decided by an iterative solution method. Chapter [/|in-
cludes experimental results for heuristic algorithms and their comparison with one of
the proposed mathematical models. Finally, in Chapter[§] the main findings obtained

from this study and future research directions are delivered.



CHAPTER 2

BACKGROUND ON CLUSTERING AND LITERATURE REVIEW

As stated by Xu and Wunsch/(2005), in the literature, there are many studies in various
disciplines, such as marketing, biology, economy and medicine which use clustering
in the literature. In this chapter, basic terminology about clustering, commonly used
clustering approaches and studies related to our problem and their contribution to the
literature will be discussed. In Section definition of the clustering problem, its
properties and solution approaches will be introduced. Then, we describe the need
for reducing the size of data sets in Section [2.2] In this section, advantages and dis-
advantages of different dimension reduction methods will be discussed. Next Section
2.3 will introduce the studies on clustering and feature selection in clustering prob-
lems. Lastly, simultaneous clustering of data points and features will be discussed in
Section 2.4

2.1 Clustering Problems

Cluster analysis is an unsupervised learning technique used to figure out the hidden
similarities of data points in order to designate the relationship between them. Data
sets are grouped by considering the similarities of data points according to predefined
similarity measure. By this way, similar data points are grouped in a cluster whereas

dissimilar ones are assigned to different clusters.

Selection of the similarity measure can be considered as one of the main challenges
of clustering problem. Data sets may include quantitative (continuous or binary) or
qualitative (categorical) features which represent the properties of the data points.

Therefore, choice of the similarity measure highly depends on the type of the features.
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e Quantitative Features: Similarity is measured with any distance metrics like

Ly — norm or Ly — norm where data sets contain only continuous features.

e Qualitative Features: There are some special similarity measures like Ham-
ming Distance, Rand Index, and Jaccard Coefficient that can be used with cat-

egorical features.

In clustering problems, selection of objective function is also an important issue. The
definition of clustering problem states that obtained clusters should be well-separated
since dissimilar data points are aimed to be grouped into different clusters. There-
fore, the distance between clusters should be maximized. This aim is named as sep-
aration in the literature. Mostly used separation measures are linkage metrics such
as complete-link or single-link when separation is taken as the point-wise distance.
Those measures consider data points grouped in different clusters, and calculate the
pairwise distance between those data points. Complete-link takes two farthest data
points from different clusters and calculates the distance between those data points,
whereas single-link takes into account the closest data points of different clusters to
measure separation. Also, cluster analysis puts similar data points into the same clus-
ter and those data points should be close to each other. It is named as compactness
and this measure should be minimized. In the literature, several compactness mea-
sures are proposed which can be grouped into two categories as representative point
based and individual point-wise compactness measures. Representative point based
compactness measures define similarity as the distance between a cluster representa-
tive and data points in that cluster. On the other hand, pairwise data point similarities
within a cluster are used in individual point-wise compactness measures instead of
the similarity between cluster representatives and data points. These measures per-
form differently depending on the used clustering algorithms and properties of the
data types. There are some studies that both of those measures are used as objec-
tive functions separately. Also, a combination of those measures is used as a single
objective in the literature like the ratio of separation and compactness which will be

maximized.

Due to the nature of the data sets, the true cluster structures and number of clusters

in a data set cannot be known in advance. Using different similarity measures or ob-
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jective functions may result in obtaining different clustering solutions. Evaluating the
obtained clustering solutions is not straightforward since there is no label information.
Due to these issues, in the literature, there are several clustering algorithms. Accord-
ing toJain et al.| (1999)), those approaches can be classified under two main categories

namely partitional clustering algorithms and hierarchical clustering algorithms.

2.1.1 Partitional Clustering

Clusters are formed around the cluster centers which are representatives of the clus-
ters. Due to the definition, partitional clustering methods are also known as center-

based clustering. They can be classified based on the assignments of the data points:

e Hard Clustering: Each data point should only be assigned to one cluster cen-

ter, and disjoint clusters will be obtained.

o Soft Clustering: Assignment of a data point to a cluster will be associated with
the membership value. That means, a data point may be assigned to multiple

clusters with a probability.

Total distance between data points and their cluster center is the mostly used objective
function in partitional clustering algorithms. Due to the type of the objective function,
a data point is closer to the cluster center of the assigned cluster, than the other cluster
centers. Partitional clustering algorithms require lower memory and time, and they
are good at clustering large data sets. The main problem of these algorithms is that
the number of clusters should be given in advance to the algorithm. Also, they only
work well with data sets with all quantitative features. Besides, clustering solution
will differ depending on the initial cluster centers. Therefore, the performance of the

algorithms highly depends on the initial selection of cluster centers.

K-means (MacQueen, [1967) and PAM (Kaufman and Rousseeuwl, [{1990), which is a
kind of k-medoid clustering, are the commonly used partitional clustering algorithms,
in the literature. Both of these algorithms work in an iterative fashion while trying
to minimize the distance between data points and their cluster centers. Starting with

randomly selected initial cluster center, assignment of each data point to a cluster
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is performed. With these assignments, new cluster centers are calculated, and these
steps are repeated until assignments of data points do not change. There are two main
differences between those algorithms. K-means tries to minimize the total squared
distances, while PAM minimizes the sum of distances between data points and their
cluster centers. Hence, the latter is less sensitive to the outliers. Also, cluster centers
are selected among data points in PAM, whereas cluster centers are the means of all
the data points within clusters in K-means algorithms. In both of these algorithms,

hard clustering is performed, that is, each data point is only assigned to one cluster.

Fuzzy C-Means (FCM) (Bezdek et al., [1984) and Probabilistic Distance Clustering
(PD-Clustering) (Ben-Israel and Iyigun, 2008)) are the approaches for the soft cluster-
ing. Those algorithms also work in iterative manner, but there is also a membership
value for each data point to each center. In each iteration, centers of the clusters and
membership value of data points are computed until convergence. Between these two
algorithms, objective function, calculation of membership value and calculation of
cluster centers differ. Convergence criteria is also different among those algorithms.
The former stops when the objective function value does not change, whereas the
latter terminates when there is no change in the center locations anymore. These

methods are useful when the boundaries among clusters are not well-separated.

2.1.2 Hierarchical Clustering

Hierarchical clustering creates nested partitions of data sets. There will be a hierar-
chical relation between the created clusters, and those clusters are represented with
dendrograms. Different partitions of the data sets can be found at each level of these
tree-like structures. Algorithms of this type can be grouped into two, namely divisive

methods and agglomerative methods.

Divisive methods, which are also known as top-down approaches start with a single
all-inclusive cluster and split the chosen cluster into two until having only clusters
with one data point. Whereas agglomerative methods (bottom-up approaches), start
with the individual clusters that include single data point and merge clusters at each
iteration until getting a single all-inclusive cluster. Agglomerative methods try to

minimize the linkage criterion with selected distance metric while merging the clus-



ters. Single-link and complete-link are the most commonly used linkage criteria. As
defined before, in single-link, the proximity of the clusters is defined as the distance
between the two closest points of different clusters. At each step, two clusters with
the minimum single-link are merged. In complete-link, the distance between the far-
thest points of two different clusters is considered as a proximity. Algorithm merges

two clusters with the smallest complete-link.

Main advantage of hierarchical clustering is that the number of clusters is not neces-
sarily be given in advance. Also, they can be used for qualitative data sets as well as
quantitative ones. However, they are sensitive to noise and outliers. Also, they are
computationally expensive comparing to partitional clustering. Besides, the mistake

made in any iteration cannot be fixed.

CURE (Guha et al., [1998) and BIRCH (Zhang et al., 1996)) are the well-known hier-

archical clustering algorithms used in many applications.

2.2 Dimension Reduction in Clustering

Data features (attributes) represent the properties of data sets. Each feature stores
some information about the data point. As the number of features increases, the
dimensionality of the data set increases as well. Therefore, understanding the data
becomes difficult and the chance of obtaining useful information decreases. The phe-

nomenon is known as “Curse of Dimensionality” in the literature.

Data sets may include relevant and irrelevant(or redundant) features. Irrelevant and
redundant features do not contain useful information to analyze the data (Dy and
Brodley, 2004). The difference between redundant and irrelevant features can be
seen in Figure [2.1] Figure[2.1](a) shows that clusters can be identified by using either
feature x or y. Therefore, we can eliminate one of them while clustering the data set.
However, in Figure 2.1 (b), feature y does not contain any information to separate
data points of two clusters. That means, when it is eliminated, we do not lose any
information to identify clusters. Even it would be beneficial to eliminate feature y to
obtain clusters in less computing time. As in Figure [2.1] (c), both features x and y

should be used together to identify clusters. They are both relevant features.
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Figure 2.1: Examples for Redundant and Irrelevant Features

In order to extract meaningful information from a data set, dimension reduction is an
important step for machine learning problems. In order to decrease the size, feature
extraction or feature selection algorithms can be applied (Alelyani et al., 2013). Both
of these methods improve prediction power of the clustering, reduce computational

requirements and effects caused by the “Curse of Dimensionality”.

2.2.1 Feature Extraction in Clustering

Feature extraction methods decrease the size of feature set by projecting the original
features into a new feature space with a lower dimension. The original features are
combined, so new features are created. Since the combination of original features are
used, the interpretation of the results will be difficult. Also, it can be noted that noisy
data will adversely affect the performance of the feature extraction methods since the

transformation of data considers all data.

Principal Component Analysis (PCA) can be given as an example for the most com-
monly used feature extraction methods. The method uses covariance matrix to gen-
erate eigenvalues and eigenvectors. We will obtain principal components in order of
significance by ranking eigenvectors in order of their corresponding eigenvalues in
descending order. Principal components are new uncorrelated variables which are
the linear combinations or mixtures of the initial variables. Some of the principal
components are eliminated since they include less information about variability of
the data. However, |[Law et al.| (2004) argue that using the features with high variance

does not indicate that those features are meaningful for clustering.
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2.2.2 Feature Selection in Clustering

Feature selection uses original features throughout the process and selects a subset of
original features for analyzing the data. The subset of features is selected based on the
underlying distribution pattern in the case of unsupervised learning or the relevance

of label information in the case of supervised learning (Alelyani et al., [2013)).

Feature selection approaches can be grouped into three main categories as filter meth-
ods, wrapper methods, and hybrid methods in data mining. Here, we shortly explain

these methods through the clustering problems.
Filter Methods

Filter methods are performed prior to the clustering algorithms. Therefore, quality of
the features are not measured with clustering analysis. In these methods, the scores of
features by a suitable ranking criterion are computed. Features that have lower scores
than the predefined threshold value are removed from further analysis. The resulting

feature subset is provided as an input to clustering (Chandrashekar and Sahin, [2014).

In most cases, feature dependencies are ignored and score of each feature is separately
considered. These techniques are named as univariate filter methods. They may
adversely effect the performance of the clustering algorithms (Saeys et al., 2007).
To overcome this drawback, multivariate filter methods are proposed which take into
account the dependencies and correlations between features. So, they can handle

redundant features as well as irrelevant ones.

Filter methods are performed only once before the clustering since they are indepen-
dent from the clustering algorithm. Therefore, they are computationally simple and
fast, and useful for high-dimensional data sets. However, the ignorance of the inter-
action between feature selection and clustering algorithm can be considered as the

disadvantage of these methods.
Wrapper Methods

Wrapper methods search the feature space to obtain the best subset. In order to find

the best subset, wrapper methods start with any subset of features, then evaluate the
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performance of the subset by clustering quality. These methods iteratively evaluate
the performance of the possible feature subsets until the desired level of quality is
obtained. Since considering all possible subsets of feature space is almost impossible,

heuristic search algorithms are used mostly.

As opposed to filter methods, wrapper methods are computationally expensive since
they interact with the clustering algorithm in evaluating the feature subsets, (Cai et al.,
2018)). However, wrapper methods provide better clusters since the interaction be-
tween clustering algorithm and feature selection is not ignored. But, their perfor-
mance may change depending on the used clustering algorithm and there is a risk of

overfitting.
Hybrid Methods

Hybrid methods try to eliminate the drawbacks of filter and wrapper methods. They
can be considered as a combination of those two methods. Hybrid methods are com-
putationally inexpensive than wrapper methods and they can capture relationships
between features contrary to filter methods. Filtering method is used to obtain candi-
date subsets of features. By this way, number of subsets to be evaluated is reduced.

Candidate subsets are evaluated with clustering algorithms as in wrapper methods.

So far a brief background for the clustering problem and the feature selection problem
are provided. The literature review related to our problem will be covered in the rest

of this chapter.

2.3 Literature Review for Clustering and Feature Selection in Clustering

In this study, mathematical models and heuristic algorithms are proposed to obtain a
solution for the clustering problem with feature selection. Therefore, this chapter will
cover exact solution methods and heuristics approaches used for both clustering and
feature selection in clustering. It can be noted that there are not many studies aiming
to obtain exact solution for clustering or feature selection in clustering since there is

no prior label information.
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2.3.1 Exact Solution Methods for Clustering

Apart from traditional algorithms proposed to solve clustering problem, the problem
is also handled within the framework of operations research. It is observed that the
center-based clustering problem can easily be modeled and solved as an optimization

problem due to its similarity to p-median facility problem (Olafsson et al., 2008).

Vinod (1969) provides two mathematical formulations for the grouping problem where
one of them uses the principle of facility location problems. The study shows the anal-
ogy between the facilities and the cluster centers, and also customers and data points.
Predetermined number of cluster centers are selected and data points are allocated to
a cluster as in the facility location problems. Therefore, there are two binary decision
variables which indicate if a data point is selected as a cluster center and whether a
data point is assigned to a cluster or not. The formulation aims to minimize the total

cost of assigning all data points to a cluster.

In the years following this study, Rao|(1971) extends the study published by the Vinod
(1969) by considering two different objective functions, minimizing the maximum
distance within clusters which is the farthest distance between data points which are
assigned to the same cluster, and minimizing the total within cluster sum of square
distances. The study takes definition of two binary decision variables as given in
the previous study. Also, Bradley et al. (1996) use mathematical model to decide
only cluster centers. They divide the problem into smaller problems, and they assign
each data point to its closest cluster after finding the cluster centers. They actually
implement the K-medoid algorithm within the concept of optimization. Note that, in

all of these studies, cluster centers are selected among the data points.

To obtain optimal solutions for clustering problem, all feasible solutions must be eval-
uated. Unfortunately, with the increase in the problem size, the number of feasible
solutions grows exponentially. For this reason, enumeration of all solutions is com-
putationally infeasible for large problems. Some problems can be solved optimally
without explicitly enumerating all feasible solutions by using the branch and bound
solution method. In the literature, there are various studies solving clustering problem

with branch and bound procedure. Koontz et al. (1975) propose a branch and bound
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procedure where nodes of the tree include assignment of data points. Since they do
not propose a mathematical model in their article, Klein and Aronson/ (1991) combine
the branch and bound algorithm with modeling the clustering as an optimization prob-
lem. In order to find the optimal solution of the problem which has the same objective
functions used in Rao| (1971)), Brusco| (2003) uses branch and bound algorithm pro-
posed by Klein and Aronson (1991) but the definition of lower and upper bounds are
changed in order to obtain tight bounds. The main similarity between those studies is
that they all consider cluster centers as anywhere in the vector space. Therefore, data
points are assigned to cluster itself not to the cluster center. |Brusco and Stahl| (2006)
cover branch and bound applications in clustering and also for feature selection with

different objective functions.

2.3.2 Heuristic Approaches for Clustering

For the solution of the mathematical model of clustering problem proposed by Vinod
(1969) and [Rao| (1971)), a heuristic algorithm which includes Lagrangian relaxation
is proposed by (Mulvey and Crowder, |1979). They relax the assignment constraint
which is difficult to meet by adding it to objective function. Algorithm starts with
finding a good initial clustering solution and cluster centers. By using subgradient
method a lower bound on the objective function has been obtained. Since the as-
signment constraint is relaxed in the subgradient method, the solution may not be
feasible. Therefore, in the next step, each data point is assigned to a closest cluster
center, and a feasible solution and an upper bound on the objective function are ob-
tained by this way. The heuristic algorithm terminates when the gap between lower
and upper bounds is smaller than the predefined threshold or iteration limit has been

reached.

Among partitional clustering algorithms, K-means clustering is known to be more
sensitive to outliers in comparison with the K-medoid clustering. Here, we will
cover some of the studies enhancing K-medoid clustering. PAM (Partitioning Around
Medoids) (Kaufman and Rousseeuw, [1990) is a benchmark algorithm for K-medoid
clustering. The algorithm consists mainly two steps which are build and swap. Ini-

tial solution is generated randomly in the build step, that is, initial cluster centers are
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selected among data points (medoid). In the swap step, for each of the non-medoid
data points, the change in the objective function is calculated when that point is con-
sidered as a center in its cluster instead of the current medoid of that cluster. The
data point which causes the most decrease in the objective function is selected as a
new medoid. The algorithm is repeated until there is no change in the objective func-
tion. In the literature, there are many studies improving the performance of PAM

algorithms. However, we will cover the most recent and distinctive ones.

In classical PAM, all possible swap calculations are made in order to find the highest
decrease in the objective function in each step. Reynolds et al.| (2006) discuss a way
to speed up PAM by decreasing the calculations in swap step. They show that the
change in the objective function can be decomposed into two components, where the
first component depends only the removal of a medoid, the second component de-
pends only on the selection of a new point as cluster center. Also, in order to decrease
the computational time of PAM, Park and Jun| (2009) propose a new algorithm for K-
medoid clustering where it differs from the traditional K-medoid clustering in terms
of initial selection of cluster centers. The new algorithm tends to select the k most
middle data points as initial centers. Then, the algorithm continues with assigning
all data points to the closest cluster centers. New medoid of each cluster is selected
among the data points in that cluster, which is the one that has minimum total dis-
tance to other data points in its cluster. Instead of using distances directly, Zadegan
et al.[|(2013) use a rank matrix which is constructed by sorting the distance between
each data point and storing the indices of data points starting from the most similar
one. New medoids are selected according to a new measure named as hostility which
simply use the sorted ranking and find the data point that is in the middle of the group.

In this algorithm, the convergence is defined by the number of iterations.

Saglam et al. (2006)) try to minimize the maximum cluster diameter as studied by Rao
(1971) using mathematical models but they observed that performance of the model
is not comparable with the other studies in the literature in terms of computational
time. Therefore, they have proposed a heuristic algorithm which starts with fixing
the assignment of some of the data points and taking them as a fixed points in their
mathematical formulation. In order to eliminate the poor quality clusters, data points

are reassigned to clusters after clustering solution is obtained.
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The Vertex Substitution Heuristic proposed by [Teitz and Bart (1968)) performs an
iterative search among all possible centers. It replaces selected center with an unse-
lected data point that will decrease the objective function where it is a minimization
problem. The process is repeated until the objective function converges during the ex-
change steps. Since the algorithm starts with random selection of centers, the result-
ing solution will not be globally optimal solution in general. Hence, it will generate

upper bound to the optimal solution of the p-median clustering.

Brusco and Kohn| (2008) propose three stages heuristic method to select predefined
number of cluster centers and assign data points to a cluster while trying to minimize
sum of Euclidean Distance between cluster centers and data points. In the first stage,
Vertex Substitution Heuristic proposed by [Teitz and Bart| (1968) is implemented. The
stage is performed multiple times in order to obtain tight upper bounds and eliminate
the effect of starting centers. In the second stage, Lagrangian Relaxation method is
applied. The relaxed problem is solved by iterative subgradient optimization method,
and lower bound on p-median clustering problem is obtained. If the lower bound ob-
tained by Lagrangian Relaxation and the upper bound obtained by Vertex Substitution
Heuristics is the same, they state that the solution is optimal. If it is not optimal, then

at the third stage, branch and bound algorithm is applied.

Kim et al.| (2009) follow the optimization method that has been suggested by [Shi
and Olafsson| (2000) named as Nested Partitions to obtain clusters. At the beginning
of the algorithm the feasible region is divided into subregions, and it is assumed
that there is a subregion which is promising to have the best solution. The most
promising region is divided into predefined number of subregions, and what remains
is aggregated into one region called the surrounding region. To evaluate each of these
regions, a randomly generated clustering solutions is used, and a promising index is
calculated to select the next promising region. If one of the subregions is the best, this
region becomes the most promising region. If the surrounding region is the best, the
algorithm backtracks to a larger region that contains the old most promising region.

It is observed that the idea is actually similar to the branch and bound algorithm.

Fahad et al.|(2014) review the traditional clustering algorithms in their study in detail.

There are also several types of metaheuristics used in clustering such as Simulated
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Annealing, Tabu Search, and Evolutionary Algorithms. Nanda and Panda (2014)

provide detailed review of those metaheuristics used in partitional clustering.

2.3.3 Exact Solution Methods for Feature Selection in Clustering

In the classical clustering problem, clusters are identified using all features but as it
is mentioned there may be irrelevant variables that may worsen the performance of
clustering algorithms. In order to eliminate those irrelevant features, feature selection
can be applied in clustering. Hidden clusters in the data sets are identified by only
using those features that are not eliminated. This subsection and the following one
will review the feature selection methods used in clustering. It should be noted that

all of those studies use the same subset of features in order to identify clusters.

As in clustering problems, feature selection is also taken into consideration within the
context of operations research. Optimal subset of features can be obtained with ex-
haustive search which considers all possible combinations, but it is computationally
expensive. Therefore, Narendra and Fukunagal (1977) propose a branch and bound
procedure for selecting the subset of features. In this procedure, features are elim-
inated depending on the predetermined criterion function at each node. In order to
search the tree effectively and decrease the computational time, there are several dif-
ferent approaches to branch and bound implementation on feature selection. Yu and
Yuan| (1993) claim that reducing the calculation of criterion function while searching
the tree will decrease the computational time. The proposed method says that crite-
rion function can be calculated only at the leaf node of a path which includes a single
branch. Keeping information about the previously eliminated feature sets may reduce
the search space by eliminating some of the paths without calculating the criterion
function. Therefore, Chen| (2003) proposes to keep partial paths which have been al-
ready eliminated in previous nodes. The author ignores paths containing at least one
of those partial paths before evaluating the criterion function. Somol et al.|(2004) use
a simpler prediction function instead of the actual criterion function. If the node is
eliminated according to prediction function, then the actual criterion function is also
calculated. |Casasent and Chen| (2003) and |Nakariyakul and Casasent| (2007) propose

to start searching the tree from different levels other than the root node.
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However, none of those studies deliver a mathematical model for feature selection
problem. Mathematical models of clustering problem (Vinod (1969); Rao (1971))
are modified by Benati and Garcia (2014)), and distances between data points are
calculated depending on the selected subset of features. They define a new decision
variable additional to the decision variables used in clustering problem. The new
decision variable represents the selection of a feature. Proposed model minimizes the
total distance between data points and cluster centers through selected features. The
model decides the best subset of features, cluster centers and partitions of the data set
into clusters simultaneously. In this study, two linearization methods are used which
are direct linearization and radius formulation proposed by Garcia et al.|(2011) as an

effective method that can be used in solving p-median problem.

2.3.4 Heuristic Approaches for Feature Selection in Clustering

A heuristic algorithm to select features to increase the performance of the clustering
algorithms is proposed by |Brusco and Cradit (2001)). Suppose that one clustering
solution is identified using the already selected features and a second solution is ob-
tained by using only one unselected feature, let say j. At each step of the algorithm
two clustering solutions are compared using Adjusted Rand Index. A large Adjusted
Rand Index suggests that selection of feature ;7 would not worsen the current cluster-
ing solution. On the contrary, if the Adjusted Rand Index is small, it can be concluded
that feature j should not be added to the set of selected features since it masks the cur-
rent clustering solution. At each iteration, the feature with the highest Adjusted Rand

Index is added to the subset of features.

Brusco (2004) works on clustering problem in the presence of irrelevant features. In
order to eliminate those features, a heuristic approach is proposed. The assumptions
of the proposed method are that clusters are known in advance and data set should
only contain binary features. The heuristic algorithm starts with selecting subset of
features evaluated on subset of data points. In the next step, additional features among
the remaining ones are tested, and they are added to the subset one at a time by

evaluating the clusters obtained from k-means algorithm.
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Olafsson and Yang| (2005)) use the Nested Partitions method described in the subsec-
tion which reviews the heuristic algorithms for clustering problems. The method is
implemented to feature selection problem by defining feasible region as it contains
all set of feature subsets. Rest of the algorithm is following the same idea. Yang and
Olafsson (2006) enhance this study by proposing to use sample of features instead
of using all features. The backtracking step of the algorithm enables to fix erroneous
decisions. Also, in this study, it is suggested that the sample rate can be adjusted
dynamically according to the observed frequency of backtrackings. This adjustment

eliminates the need to know the optimal sample size in advance.

An exhaustive search algorithm for selecting the subset of features has been proposed
by |Steinley and Brusco (2008). For all possible subset of features, the best clustering
solution is identified by using K-means algorithm with multiple initialization. Then,
the proportion of explained variation from the clustering process is computed for each
clustering solution, VV AF'. For each subsets at same size, the subset with maximum
V AF is selected as the best solution. The algorithm selects the best subset size,
according to a ratio between the reduction in the VV AF when subset size is increased
from s to s+ 1 and the reduction in V AF’ when the subset size is increased from s — 1

to s. The subset of features that produces the maximum ratio is selected as the best.

In their study, Andrews and McNicholas (2014) aim to find the features which simul-
taneously minimize the variance within cluster and maximize the variance between
clusters. Apart from variance, they also consider the correlation between features
while selecting the features. Their algorithm starts with calculating the variance on
each feature, then those variances are sorted in ascending order. The first feature
which has the minimum variance is selected. The algorithm searches features in the
ascending order of variances and select the features which have lower correlation than

predefined threshold with previously selected features.

Benati et al. (2018) propose two heuristic algorithms for feature selection in cluster-
ing. The biggest assumption in their study is that clusters centers are taken as given.
Therefore, they aim to find the assignment of each data point to a cluster and rele-
vant features of each cluster. In their first algorithm, they divide the problem into

two smaller problems as best-assignment (BA) and best-feature (BF). In the BA, data
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points are assigned to the cluster centers through the selected features. BF tried to
select best features for each cluster. For finding those features, the total distances
over features are sorted in increasing order and the predefined number of features
are selected based on this sorted distances. The second algorithm basically adds and
drops features from the selected feature set. Algorithm removes a feature, which in-
creases the objective function less, from the set of unselected features and adds it to
selected features set. Also, in the following step, algorithm removes a selected fea-
ture from the set by considering the maximum decrease in the objective function for

a minimization problem.

Xue et al. (2015) provide a detailed review on feature selection used in data mining
techniques, and |Alelyani et al.| (2013) cover feature selection methods specifically
used in clustering. Also, nature inspired metaheuristics for feature selection are pro-

vided in comprehensive review conducted by Diao and Shen (2015).

Reviewed feature selection methods ignore the fact that selected subset of features
may have different significance for each cluster. The study of Frigui and Nasraoui
(2004) is the closest study to our problem. They use different subsets of features in
order to identify the clusters. But, different than our problem, they assign weights to
features instead of selecting the features. Also, in the next section, studies where both

data points and features are clustered simultaneously will be delivered.

2.4 Local Clustering and Feature Selection

It is possible that the subset of features relevant to a cluster may not be relevant as
well for a different cluster. That is, there may be no common subset of features that
can be used to identify all clusters. There are some studies proposed to overcome
this problem, and those studies cluster both data points and features simultaneously,
which we will call them as local clustering algorithms. Following subsections will
summarize these algorithms which are relatively new topics in data mining concept.
As a matter of fact, the name of the local clustering and feature selection methods are
used interchangeably in the literature which leads to confusion about the types. In this

study, we tried to grouped them into two titles, subspace clustering and bi-clustering.
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2.4.1 Subspace Clustering

Subspace clustering is a technique which aims to find all clusters within all possible
subspaces. There are two major types of subspace clustering depending on the search
strategy. Top-down algorithms start with finding an initial clustering using all dimen-
sions and then evaluate the subspaces of each cluster. With the top-down algorithms,
partitions of data sets are obtained, that is, each data point is assigned to only one clus-
ter. PROCLUS (Aggarwal et al., [1999) and COSA (Friedman and Meulman, 2004)
are the well-known examples of top-down subspace clustering algorithms. Bottom-
up algorithms aim to find dense regions in low dimensional spaces and then combine
those dense regions to form clusters. In the resulting clusters, one data point can be
assigned to different clusters simultaneously. CLIQUE (Agrawal et al., 1998)) is one
of the bottom-up approaches, and it is also the pioneering study that attempts to find
subspace clustering. Both algorithms define similarity of data points as a distance,
and data points in the same cluster should be near to each other considering only the

subset of features.

2.4.2 Bi-clustering

Contrary to subspace clustering, bi-clustering collects data points which follow a sim-
ilar behavior into a cluster. Hence, bi-clustering is also named as pattern-based clus-
tering in the literature. Here, the pattern between data points generally relates to the
correlations among the features. Bi-clustering allows that a data point or a feature
should be able to belong to more than one cluster, to only one cluster, or to no cluster
at all. There can be overlapping clusters as in subspace clustering. Bi-clustering al-
gorithms are originally used in the analysis of microarray gene expression data, and
Cheng and Church! (2000) is the pioneering study of this type. In the literature, there
are different approaches on bi-clustering, and they are reviewed on articles written by
Pontes et al.|(2015]) and Padilha and Campello (2017). Kriegel et al. (2009) provide a

brief review of both subspace clustering and bi-clustering with their applications.

Consider a data set represented by a matrix, DD, where rows denote the data points

and columns denote the features. Matrix D is defined by the set of data points, X =
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{1, 29, ..., x, }, and set of features, Y = {y1,92,...,yn}. Dy = (I,J) represents a
submatrix of D which includes only the entries in / and .J, where [ is a subset of data
points X, I C X, and J is a subset of features Y, J C Y. In classical clustering,
either cluster of data points, Dy, or cluster of features, Dy, is identified. However,
it is possible that there are multiple D); ; submatrices that can be identified where each
cluster meets the predefined similarity criterion, and local clustering algorithms can

be used to obtain those submatrices.

(d)

®© ® )

Figure 2.2: Clustering Problems with Different Properties

Figure[2.2] covers the clustering problems with different properties. Classical cluster-
ing problem with hard assignment and no feature selection is shown in Figure[2.2] (a).
Its extended version with feature selection is in Figure 2.2] (b). In this type, selected
features are considered as relevant for both of the clusters. Figure [2.2](c) represents
the local feature selection for hard clustering problem. All features are used by only
one of the clusters in this type. However, in Figure |ZZ| (d), some of the features are
not used. The clustering problem shown in Figure[2.2] (e) allows that features may be
used by more than one cluster. The difference between Figure 2.2 (e) and Figure [2.2]
(f) is that as well as features data points may be assigned to more than one cluster in
the latter. In the last case, Figure [2.2](g), a data point or a feature can belong to more

than one cluster, to only one cluster, or to no cluster at all.
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Our problem in this study to feature selection in clustering are similar to subspace
clustering and bi-clustering in the sense that we are trying to group data sets into
clusters using different subset of features. However, we are not trying to find all
cluster in all subspaces. Also, different from the bi-clustering, we construct disjoint
clusters where each data point are assigned to only one clusters. Bi-clustering is a

type of clustering shown in Figure [2.2] (g), whereas the clustering solution identified

by our approaches may be as in Figure 2.2](b), Figure 2.2 (d), and Figure[2.2] (e).

To sum up, we work on clustering problem with feature selection but it is considered
that clusters may lay in different subset of features. Therefore, we will select features
specific to the clusters. To the best of our knowledge, we are contributing to the liter-
ature by using optimization methods and proposing structured heuristic algorithms to

solve clustering problem and cluster based feature selection simultaneously.

The next chapter mainly provides the characteristics of the problem and mathematical

model formulation proposed for the solution of the defined problem.
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CHAPTER 3

PROBLEM DEFINITION

In Chapter 2 background information about clustering and its variations were intro-
duced, and the related literature both for clustering and feature selection in clustering
problems were reviewed. In this chapter, characteristics of the problem considered
in this study will be discussed. After defining the problem, proposed mathematical

models will be provided.

3.1 Problem Statement

Clustering algorithms try to group alike data points into the same cluster and assign
dissimilar ones to different clusters. In this study, each cluster will be represented by
a center, and that center will be one of the data points assigned to that cluster. The

center is named as medoid. Also, each data point will be assigned to only one cluster.

Similarity measure used in clustering can be defined differently depending on the
features of the data set. In this study, we only use data sets which contain continuous
features. So, the similarity between data points and cluster centers are calculated by
using L; — norm. Let data points v; and v; be defined in R™, here m is equal to | M|
where M is the set of features and |.| is used to denote the cardinality of a set. Then,

L, distance between data point ¢ and data point j will be as follows:

dij = Zdijk> 3.1
k=1
where diji =] vir, — vjk | -
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The main objective will be minimizing the sum of distances between the data points
and their cluster centers. Consider a data set where the set of data points and fea-
tures are shown by N and M, respectively. By assuming all features to be used in

clustering, the objective function of the problem will be as follows:

P |[M] |N|

minimize Z Z Z dicyk 3.2)

plklzl
1€Cp

Here, P is the number of clusters in the problem, and || and |N| stand for the
number of features and number of data points. €, denotes the data points assigned
to cluster p and c, represents the medoid of that cluster. Then, d;. . shows the L,
distance between data point ¢ and cluster center ¢, through feature k. Notice that, this

objective function tries to minimize the compactness of the clusters.

In this study, the number of clusters is given in advance. If it is not given, the objective
function given in (3.2)) will be minimized where the number of clusters is equal to the

number of data points, P = | N|.

Data sets may include irrelevant or redundant features which do not contain useful
information to form clusters besides the ones that are relevant. In order to obtain
meaningful clusters, relevant features should be selected. Hence, in this study, we
consider a clustering problem with feature selection. Selecting the features comes up
with the assumption that selected features have the same relevance for all clusters.
But, the feature set used to define each cluster might be different. That means, we are
constraining feature selection based on the clusters. Assume that () features are used
to define each cluster, and a feature may be relevant to more than one cluster. The

objective function of the problem will be as follows:

p M| |N|

minimaize Z Z Z dic,q 3.3)

where (), denotes the features selected for cluster p. Rest of the notation used in (3.3)

are the same with the ones in (3.2).
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It is assumed that number of features used to define each cluster will be given in
advance, and it is same for all clusters. Note that, the objective function uses the
nonnegative terms. Value of the objective function stays the same or increases with
an increase in the number of features to be selected. Therefore, without constraining
the number of features to be selected, the model will only use one feature for each

cluster to minimize the compactness of clusters.

To sum up, our problem is center-based clustering where each data point is assigned
to only one of the clusters, and each cluster is represented by one of the data points
assigned to that cluster. The number of clusters is predefined in advance. Each cluster
is described by a different set of features, and the number of features to be selected
is given. Here, it is allowed that the same feature might be relevant for many other
clusters. The aim is to minimize the total distance between data points and their
cluster centers via selected features. The defined problem is named as clustering and

cluster based feature selection (CBFS).

The total number of possible solutions to the described problem with | N| = n data

points, | M| = m features, P clusters, and () relevant features is computed as follows:

B[] e

The first term of (3.4) shows the number of ways to partition n data points into P
clusters, whereas the second term is the number of ways to select () features out
of m features for P number of clusters. Table [3.1| provides the number of possible
solutions for various combinations of n, m, P, and Q. The table reveals that, even for
very small-sized problems, the solution space for CBFS is enormous. It shows that a
complete enumeration search over all possible cluster centers and relevant features is

computationally impractical for large problems.
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Table 3.1: The Number of Possible Solutions for Various Combinations of n, m, P,

and Q.

possible number

n m P Q

of solutions
20 4 2 2 1.887x107
20 6 2 2 1.180x108
20 6 2 3 2.097x108
20 4 3 2 1.254x10'"!
20 6 3 2 1.960x10"2
20 6 3 3 4.645x10'2
40 4 2 2 1.979x1013
40 6 2 2 1.237x10'
40 6 2 3 2.199x10'
40 4 3 2 4.377x10%
40 6 3 2 6.839x10%!
40 6 3 3 1.621x10%

Consider the well-known facility location problem, namely p-median problem. If one
thinks that the centers in the clustering problem denote the facilities and data points
refer to the customers, then the clustering problem can be seen as a p-median prob-
lem. But, the customers are defined on the plane, and they have only two features
in the facility location problem. However, data points generally have more than two
features in the clustering problem. Also, in the facility location problem, there is no
discussion on feature selection, both = and y coordinates are important for the cus-
tomers. In our problem, feature selection is also crucial. If we do not select features
for each cluster and we only have two features, then our problem will be a p-median
problem. Because of the similarity between two problems, mathematical model for

the p-median problem may serve as a base model for our clustering problem.

In our problem, by using a center-based clustering approach, (i) locations of cluster
centers (i1) assignments of the data points to a cluster and (ii1) selection of features
for each cluster are decided simultaneously. A mixed integer mathematical model is
proposed which minimizes the total distance between data points and cluster centers

via selected features. The details of the proposed model is given in the next section.
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3.2 Mixed Integer Programming Formulations

In this section, mathematical models proposed for the CBES are delivered. In (3.2.1
the proposed model is given. Since the model is nonlinear, we have used different
linearization techniques proposed in the literature. The following two subsections,

subsection and subsection [3.2.3| give details of those linearized models.

3.2.1 A Nonlinear Mixed Integer Model for CBFS: NM

Consider a data set where N represents the set of data points and M is the set of
features where each data point is defined. We try to cluster the data sets into p clusters
where each cluster is described by ¢ features. We need to find the centers for each
cluster, assign data points to a cluster and select the relevant features of the clusters.
Since we are using center-based clustering, each cluster has a center and the centers

should be selected from the data points.

The objective of the problem is to minimize the total distance between data points and
their cluster centers over the selected features of those clusters. The proposed model

NM will be:

(NM)  Minimize > ) > diezpry (3.5)

i€eN jeN keM

subject to: zi; < Yj, Vi,j € N (3.6)
> ay =1, Vie N  3.7)
JEN
> yi=n, (3.8)
JEN
>z =qu;, VieN (39
keM
z;; € {0,1}, Vi,j e N (3.10)
zii € {0, 1}, Vje NVke M (3.11)
y; € {0,1}. VieN (3.12)
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There are three decision variables in this formulation. A binary variable is defined
to decide whether a data point j is selected as a cluster center or not, y;. We have a
binary variable which takes 1 if a data point 7 is assigned to a cluster where data point
J is the center of that cluster, x;;. Lastly, z;; is the binary decision variable stating

whether feature £ is selected for the cluster where data point j is the center.

Constraint (3.6) ensures that data point i can only be assigned to the data point j if data
point j is a cluster center. Constraint forces data point ¢ to be assigned to exactly
one cluster since we are aiming to obtain disjoint clusters. Constraint implies
that total number of clusters should be equal to p. Constraint (3.9) imposes that if
data point j is selected as a cluster center, then there should be ¢ features selected for

this cluster. Constraints (3.10), (3.11) and (3.12)) state that decision variables x;;, zjj

and y; are binary variables, respectively.

In the Table the notation used for mathematical formulations is summarized.

Table 3.2: Notation used for Mathematical Formulations

Sets

N Set of data points

M Set of features

Parameters

P Number of clusters that will be constructed

q Number of features that should be selected for each cluster

diji Distance between data points ¢ and j on feature k, i € N,
jeEN, ke M

Decision Variables

Yj Binary decision variable as 1 if data point 7 is selected as a

cluster center, O otherwise, j € N

Tij Binary decision variable as 1 if data point ¢ is assigned to
data point 7, 0 otherwise, 7 € N, 7 € N

Zjk Binary decision variable as 1 if feature k is selected for

cluster center j, 0 otherwise, j € N,k € M
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It is observed that when decision variables representing the cluster centers and se-
lected features, y; and z;;, are binary variables, assignment variables x;; may be re-
laxed to take continuous values. Due to the constraint (3.6)), 7;;’s may take the value
of at most 1 at the optimal solution. Since we have positive terms in the objective
function, it will be minimized when each data point is assigned to only one cluster
instead of giving fractional values to x;;’s. Therefore, x;;’s will take integer values at

the optimal solution, and constraint (3.10) can be written as z;; > 0,V%,j € N.

The objective function of the proposed model contains the product of two decision
variables, z;;2;;. So, the model NM has a nonlinear objective function. Following

sections introduce linearized models.

3.2.2 Linearized Model 1: LM;

L1 (1994) proposes the following proposition for the product of two decision vari-
ables, where one of them is a continuous variable between 0 and 1, and the other is
a binary variable. This proposition can be used to reformulate the given nonlinear
model NM.

Proposition 1. A polynomial mixed 0-1 term w = zx, where z is a 0-1 variable and
x is a continuous variable, 0 < x < 1, can be represented by the following linear

inequalities: (i) w > v+ z — 1; (i) w < x ; (iii) w < z; (iv) w > 0.

Proof.

Case 1. Suppose w = zz. All inequalities will be satisfied for z = 0 or 1 since x
variables are continuous variables such that 0 < z < 1.

Case 2. Suppose all inequalities are true. If z = 0, then we have w = 0 from
inequalities (zi¢) and (iv). If z = 1, it forces w = x from inequalities (7) and (23). It
can be concluded that w = zz.

Therefore, if and only if w = zz, 2 = Oor 1, and 0 < x < 1, then (i)—(iv) are

satisfied. O]
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By following the Proposition I} the term z;.z;; in (3.5) can be rewritten as w;;;,. The

following constraints should be added to the model NM.

Wijk > Tij + Zjk — 1, Vi,j € N,Vke M
Tij = Wijk, Vi,j € NNVke M
Zjk 2 Wijk, Vi,j € N\Vke M
wijr > 0, Vi,j € N,Vke M

Then the resulting linearized model (LLM;) will be as given below.
(LM;)  Minimize Y > > dipwi (3.13)
iEN jEN keM
subject to:

8.9 - B9

Wijk > Tij + Zjk — 1, Vi,7 € NNYke M (3.14)

Ti; > Wik, Vi,j € N.Vke M (3.15)
Zik > Wijk, Vi,je N\Vke M (3.16)
wijk = 0, Vi,j € NNVke M (3.17)
25 > 0, Vi,j € N (3.18)
zj € {0, 1}, Vje N,Vke M (3.19)
y; € {0,1}. VieN (3.20)

Since constraints (3.6)—(3.9) are the same, they are not written again in this formula-

tion.

There are different conditions for the right hand side value of the constraint (3.14). If

any one of the variables x;; or zj;, is at their upper bounds, then

if Tij = 1,then Wijk Z Zjk
if Zjk = 1,th61’1 Wik Z T4

if T = 1 and Zik = 17then Wijk >1
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Since it is a minimization problem,

if Tij = l,then Wik = Zjk

if Zjk = 1, then Wijk = T4j

if Tij = 1 and ik = 1,then Wik = 1

Note that, it is at most 1 in either cases.

If at least any one of the variables x;; or z;; is 0, then the right hand side does not

take positive value. Therefore, w;;;, will be 0.

if Ti5 = 1 and Zik = O,then Wik = 0

if Tij = 0 and ik = 1,then Wik = 0

if Tij = 0 and Zik = O,then Wik = 0

That means, constraints (3.15)) and (3.16)) are satisfied at every optimal solution, they

can be dropped from the formulation. The reduced model will be as follows.

(LM,)

Minimize

subject to:

Z Z Z dz’jkwijk

iEN jEN keM

Vi,j € N
Vie N

VjeN

Vi,j e NNVke M
Vi,je NNVYke M

Vi,j € N
Vje NVke M
VjeN

(3.21)

(3.22)
(3.23)

(3.24)

(3.25)

(3.26)
(3.27)
(3.28)
(3.29)
(3.30)



3.2.3 Linearized Model 2: LM,

By following the linearization method used by Benati et al.|(2018]), we propose to use

the following Proposition 2)in order to linearize the product of two decision variables:

Proposition 2. A polynomial mixed 0-1 term w = xz, where both x and z are 0-1

variables, can be represented by the following linear constraints:

(4) Z Wijk = 4 Tij, Vi,j € N
keM

(ZZ) Wijk < Zjk, Vi,j € N,Vke M

(#4) wisn € {0, 1}, Vi,je NVke M

Proof.

Case 1. Suppose w;ji, = zj;x;;. All inequalities will be satisfied;

if z;; = 0, wyj, = 0 from (¢) and (4i7)

if z;; =1, Z wi, = ¢, and Z Wik < Z 2z;1, from (77). Since z;; = 1 we know
keM keM keM

that y; should also be 1. Therefore, (i7) is satisfied.

Case 2. Suppose all inequalities are true. If z;;, = 0, then we have w;j; = 0 from (i7)

and (i47). If z;;, = 1, it forces w;;;, = x;; from (i) and (4i7). It can be concluded that

Wijk = ZjkLij-

Therefore, if and only if w;;;, = zj,x;;, where both z;; and z;;,’s are binary, then

(1)—(4i7) are satisfied. O

Using Proposition the term z;;;; in (3.5)) of model NM will be written as w;;;, and
the given constraints will be added to model. Then, the new linearized model which

is called model LM, will be as follows.
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(LM;)  Minimize Y > > dipw (3.31)

iEN jEN keM

subject to:

-

> wi = quy, Vi,j € N (3.32)
keM

wijk < Zjk, Vi,j € NVke M (3.33)
wijr € {0,1}, Vi,j € N,Vke M (3.34)
z;; € {0,1}, Vi,j € N (3.35)
zj € {0, 1}, Vje N,Vke M (3.36)
y; € {0,1}. Vie N (3.37)

The first four constraints, (3.6)—(3.9)), are the same with the ones in model NM. (3.32)
ensures that if data point 7 is assigned to cluster center j, then ¢ number of w;;;, should
be equal to 1. (3.33) is used for satisfying the condition that w;;;, may take positive

value if the feature k is selected for the cluster center j. Otherwise, w;;; will be 0.

When the model is analyzed, it is observed that since x;;’s are either O or 1, even if y;
is relaxed to take any value between 0 and 1, it will always take O or 1 at the optimal

solution due to constraint (3.06)).

Also, when z;;,’s are binary decision variables, the right hand side of (3.33]) will be 0
or 1. So, wjj;, is bounded by 0 or 1. Since w;;;, have nonnegative coefficients in the
objective function, and we are solving a minimization problem, w;;; will be equal to

0 or 11if zj; is equal to 1 instead of taking fractional values.

Based on those observations, the model was updated and the resulting model is pro-

vided below.
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(LM;)  Minimize Y > > dirwi (3.38)
iEN jJEN keM
subject to: i < Y, Vi,j € N (3.39)
> ay=1, Vie N (3.40)
JEN
> yi=n, (3.41)
JEN
>z =qu;, VieN (3.42)
keM
Z Wijk q Zij, VZ,j eN (343)
keM
wijk < Zjk, Vi,j e NYke M (3.44)
wijr > 0, Vi,j € N,Vke M (3.45)
Lij S {0, 1}, VZ,j eN (346)
zi, € {0,1}, Vje N,Vke M (3.47)
y; € [0,1]. Vie N (3.48)

Following the study of [Vinod| (1969), constraint (3.39) can be rewritten as:

Zacijgnyj, VJGN

1EN

The logic behind this transformation is that if a data point is selected as a cluster

center, then at most all data points may be assigned to that cluster.

The new model will be named as model LMj3. In this formulation, the first constraint

is different than the one in model LM,, but the rest is the same.
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(LM3)  Minimize Y > > dipw (3.49)

iEN jEN keM

subjectto: Y xy; < ny;, Vjie N (3.50)
iEN
D =1, Vie N (3.51)
JEN
> yi=n, (3.52)
JEN
>z =qu;, VieN (3.53)
keM
> wipk = q i, Vi,j € N (3.54)
keM
Wik S Ziks \V/l,] € N, Vk e M (355)
Wijk Z 0, \V/Z,j € N, Vk e M (356)
zi; € {0,1}, Vi,j €N (3.57)
zx €{0,1}, Vjie NVke M (3.58)
y; € [0,1]. VieN (3.59)

wjj;i’s and y;’s are defined as continuous decision variables. The reason behind this
relaxation for w;j;’s is explained during the discussion of model LM,. However,
explanation about why y; decision variable takes integer values at optimal solution is

not obvious in this formulation.

Consider the constraint (3.55]) over the features is given below

> win <>z, Vi,j € N (3.60)

keM keM
The left-hand side of the constraint (3.60) is equal to g z;; due to (3.54). The right-
hand side of the constraint (3.60) is equal to ¢ y; due to (3.53).

qzij < qYj, Vi,j €N (3.61)

Then, inequality (3.61) reduces to:

T4 S Yy, VZ,j e N (362)
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Since x;;’s are binary decision variables, even if y;” are continuous, they will always

take O or 1 at the optimal solution since we are solving a minimization problem.

Table [3.3]shows number of constraints and variables in each linearization method. By
writing the first constraint in a compact form in model LM3, we are reducing total
number of inequality constraints by n?> — n comparing to models LM; and LM,.
Model LM, has n? less equality constraints than models LM, and LM3;. When
it comes to number of decision variables, there are n> — n less binary variables in
model LM; than models LM, and LM3, but model LM; has n? — n more continuous

variables than the other models.

Table 3.3: Differences between Linearized Models

Number of Constraints Number of Variables

Model Equality Inequality Binary Continuous

LM, 2n+1 n(1+m) | n(1+m) n?>(1+m)
LM; n(24+4n)+1 n*(1+m) |[n(n+m) n(l+nm)
ILM; n(24n)+1 n(l4+nm) | nn+m) n(l+nm)

The performances of the proposed nonlinear model NM and linearized models LM;,
LM,, and LMj; are tested on the simulated data sets. The details are given in the next

chapter.
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CHAPTER 4

COMPUTATIONAL RESULTS AND COMPARISON OF PROPOSED
MODELS

In this chapter, results of the experimental studies conducted on proposed mathemat-
ical models will be provided. In Section we describe the simulated data sets used
in this study. In Section4.2] performance measures used in evaluation of the proposed
mathematical models are described. Comparison of those mathematical models is de-
livered in Section

4.1 Simulated Data Sets

In this study, we use simulated data sets to compare the performance of the proposed
models. We create data sets of different size which include relevant and irrelevant
features. Table shows the characteristics of the simulated data sets. Here, it can
be said that given a data set with n data points, number of clusters (p), total number
of features (m), and number of relevant features (q) are changing. Data sets include
2, 3, and 4 clusters, and the number of features in each data set will be {4, 5, 6, 8,
10, 12} where some of these features are relevant. Also, the relation between number
of features and number of relevant features will be ¢ < m, where ¢ and m represent
number of relevant features and total number of features in the data set, respectively.
Therefore, for a given data set in size n, 60 problem instances in different settings are

generated.

For every data set with a given number of data points, out of m features ¢ of them
are selected as relevant. We are generating the data sets using multivariate normal

distribution for the relevant features. Here, each cluster has a different mean. For

39



Table 4.1: Details of the Simulated Data Sets

Number of Data Points (n) 40, 50, 80, 100, 200
Number of Clusters (p) 2,3,4

Number of Features (m) 4,5,6, 8,10, 12
Number of Relevant Features (q) | 2, 3,4, 6

example, if two clusters will be generated when ¢ is equal to two, cluster means will
be located at [0, 0] and [5, 5]. Table 4.2 shows the mean of each cluster. In that
notation, l_q> refers to a vector of ones with ¢ entries. As given in the same table,
variance-covariance matrix is always set to identity matrix which is symmetrical and
positive definite for each cluster. By this way, spherical clusters will be generated.

Note that, when creating the data sets, it is assumed that clusters have equal sizes.

Table 4.2: Parameters of Multivariate Normal Distribution for Clusters, ¢ = Number

of Relevant Features

Cluster Number | Parameters of the Distribution for the Cluster
%
1 (,ula 21)=(0 1q7 Iq)
%
2 (,u2’ E2):(5 1q7 Iq)
%
3 (3, 23)=(=714,1)
_>
4 (,u4’ 24)=(11 lqqu)

Remaining features of data set, m — ¢ features, will be named as irrelevant features.
They are created from Uniform distribution. For all irrelevant features, the distribu-

tion parameters will be as Uniform[0, 20], Uniform[0, 10], and Uniform[0, 5].

If we geometrically interpret the generated data sets, multivariate normal distribution
will generate dense data sets along relevant features but data points will be scattered

over irrelevant features due to Uniform Distribution.
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4.2 Performance Measures

Proposed mathematical models are compared by using different performance mea-
sures which are percent gaps from made objective, optimal solution, and best avail-
able solution, number of times the optimal solution found, number of times the best
available solution found, computational time and number of times the model hits to
the time limit. Details of those measures are described below and their abbreviations

are provided between parentheses.

Percent gap from made objective (% Gap,,): Data sets are generated using specific
distributions. If we assume that generated clusters and their corresponding relevant
features are taken as they are, we need to only know cluster centers in order to mini-
mize total distance between cluster center and data points in that cluster. Made objec-
tive of the simulated data set is calculated by using the Equation [3.3 given in Chapter
after finding the cluster centers. Total L distance of the generated data set will be
denoted as Z,,. If we denote the objective function of any mathematical model with

Z, then %Gapy, will be calculated as follows:

4 —Zy

YoGapyr = ( 7

) 100 4.1
It may take negative values because we have a strong assumption that generated clus-
ters are perfectly separable and they will be obtained by clustering solution. Negative
gap means that proposed models found better clusters than the generated ones in terms

of compactness.

Percent gap from optimal solution (%Gapp): It is the optimality gap which is
directly obtained from the solver. It is calculated by considering the objective function
of the current solution Z- and the best possible objective function Zp that can be

obtained by searching through unexplored nodes.

Zo— Zp

%Gapo = ( ) 100 4.2)
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Percent gap from best available solution (% Gapg): It is the performance measure
that takes into account the best available objective function value Zp obtained from
any of the mathematical model. The measure can be calculated as follows where Z

denotes the objective function value of a specific model:

Z —Zp
Zp

%Gapp = ( ) 100 (4.3)
Number of times the optimal solution found (NOpt): We will explicitly report
how many times a mathematical model finds the optimal solution out of 60 problem

instances for a given number of data points n.

Number of times the best available solution found (/VBest): The best available
solution may be obtained by more than one mathematical models. This performance
measure is actually the summary of the performance measure %Gapp. We will ex-
plicitly report how many times a mathematical model find the best available solution

out of 60 problem instances for a given number of data points 7.

Computational time (C'PU s.): It represents the solution time of the proposed model
in seconds. It should be noted that the time limit for each mathematical model to solve
the problem is specified as 7200 seconds. The data sets that cannot be solved within

the time limit is stated as TL in the corresponding column.

Number of times the model hits time limit (N'7'L): This performance measure
report the number of problem instances that cannot be solved optimally by a math-
ematical model within the time limit. Data sets which include same number of data

points n will be considered together. That means, it is out of 60 as in N Best.

4.3 Computational Results of Proposed Methods for Simulated Data

Experimental studies were carried out on 64-bit Windows 10 PC with 3.0 GHz eight-
core AMD Ryzen 7 1700 processor and 16 GB RAM. All solution methods were
coded in C++. We compiled codes under Concert Library of CPLEX 12.7.1 on Mi-
crosoft Visual Studio 2017.
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Proposed mathematical models are tested on simulated data sets. Results of the ex-
periments conducted on a data set with 40 data points are provided in Tables #.3H4.5]
The results for the data sets which include 50, 80, 100, and 200 data points are given
in Tables |A.1 provided in Appendix

Parameter settings of simulated data sets are given in the first three columns of tables
where the number of clusters, number of features and number of relevant features are
represented as p, m and ¢. For example, results of experimental studies conducted on
the data set with 40 data points, and 10 features where two of them will be selected
for the case of two clusters (p2m10¢2) can be found in the 13" row of Table For
each of the mathematical models, there are four columns showing the performance
measures, %Gapy, %Gapo, %Gapp and CPU s.. At the last row of each table,
averages of performance measures will be provided. Average of C' PU s. is calculated
by only considering the times less than the given time limit. In some of the tables,
there is a symbol “-” for the averages of computational times. It means that none
of the problem instances with n number of data points and p clusters can be solved
within the time limit by a corresponding mathematical model, so the average is not

calculated.

Averages of those performance measures are also summarized in Table 4.6/ by group-
ing data sets with equal number of data points. In this table, there are two additional
columns for the performance measures N Best and NT' L. Looking at only averages
on C'PU s. may be misleading because of the number of terms considered in the cal-
culation. Here, N'T'L will be helpful to come up with a conclusion about computation

times of mathematical models.

In most of the data sets, nonlinear model NM cannot solve the problem within the
given time limit. Usually, when the size of the data set increases, the performance
measure showing the number of problem instances that cannot be solved within a
time limit, N'I'L, also reports higher values. For example, almost half of the problem
instances can be solved within 7200 seconds when the data set include only 50 data
points. However, this value decreases sharply, and we can only solve eight problem

instances out of 60 by using model NM for a data set with 100 data points.
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Table 4.6: Summary of Performance Measures of Proposed Mathematical Models on

Simulated Data Sets
n =40 n =50
Methods [— y
%Gapyy  %Gapo %Gapp  NOpt  NBest CPUs. NTL | %Gapyy  %Gapo  %Gapg NOpt NBest CPUs. NTL
NM -3.45 58.65 0.67 18 43 1004.95 42 -1.75 52.05 0.75 26 48 1637.95 34
LM, -3.88 44.46 0.22 31 52 1100.28 29 -1.69 54.68 0.80 24 47 1377.45 36
LM, -4.08 0.40 0.01 58 59 236.22 2 -2.31 1.72 0.17 53 54 22343 7
LM; -4.07 0.37 0.03 58 59 259.55 2 -2.38 1.67 0.10 53 56 286.62 7
n =80 n =100
Methods - -
%Gapy  %Gapo %Gapg  NOpt  NBest CPUs. NTL | %Gapy  %Gapo %Gapg NOpt NBest CPUs. NTL
NM 2.98 77.40 4.74 11 21 1596.54 49 12.55 84.34 14.15 8 12 261252 52
LM, 3.98 78.24 5.76 11 20 1907.51 49 11.27 84.65 12.90 8 13 2810.82 52
LM, -1.58 351 0.13 49 57 367.35 11 -0.83 4.27 0.50 46 51 658.94 14
LM; -1.20 3.93 0.51 49 50 366.31 11 -1.19 3.98 0.15 47 56 672.47 13
n = 200
Methods
%Gapy  %Gapo  %Gaps NOpt NBest CPUs. NTL
NM 24.83 97.39 12.65 1 14 5562.06 59
LM, 26.70 98.41 0 14.34 10 - 60
LM, 42.42 32.65 24.23 13 22 2473.95 47
LM; 42.36 28.64 24.37 19 32 2153.03 41

Among linearized models, model LM; performs poorly comparing with the others.
By looking at C' PU s., model LM; takes more time to solve the problem optimally, if
it can within the time limit. As reported in Tables[4.3H4.5] the solver cannot state op-
timality for nine data sets out of 60. For example, even if model LM;’s performance
in terms of %Gap,; and %Gapp are the same with models LM, and LMj, its gap
from optimality %Gapo is stated as approximately 45% in data set with two clusters

four relevant features among 12 features (p2m12q4).

It can be said that the performance of model LM; is similar to the performance of
model NM. They both cannot solve many of the problem instances within the given
time limit. Although their percent gap from optimal solution is high comparing to
other two models, they actually ended up at the best available solution in most of the
problem instances for smaller data sets. For example, model LM, cannot solve 29
problem instances within time limit where data sets include 40 data points. However,
when we look at the column showing N Best, model LM; reports the same objective
function with other two linearized models in 52 out of 60 instances, but with reported

optimality gap.
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If we analyze the performances of those two models deeply, one may see that model
NM even takes less time on the average for the problems which it can solve within
time limit. Also, its performance measures for the percent gaps are slightly worse
than the model LM; for the larger data sets. Also, there is a symbol “-” in the row of
model LM; for the averages of computational times where data set includes 200 data

points since none of the problem instances can be solved within time limit.

When it comes to the performance of models LM, and LMj3, we can say that the
problem size affects those two models as well. If the data set includes less number of
data points, optimal solutions can be found in almost all problem instances by both
of these models. When data sets get larger in terms of data points n, they cannot find
the optimal solution in more of the problem instances, but they are still the ones that

find the best available solution among the proposed four mathematical models.

The performances of those two models is comparable for a small data sets. For exam-
ple, when data points in a data set is equal to 50, it looks like model LM, performs
better than model LMj in less time, C'PU s., with a small sacrifice in the performance
about percent gaps. However, model LM, cannot state optimally in seven problem
instances. Therefore, this will not be a realistic comparison. In this situation, it is
obvious that model LMj; is better than model LM,. If we look at the data sets with
80 data points, it can be seen that model LM, performs far better than LM3 with a
one second increase in computational time on the average. The difference between
the performances of those two models can be easily seen when data gets larger. Table

shows that model LMj outperforms model LM, in larger data sets.

Experiments show that the problem is getting harder to solve if the number of data
points n increases. The same relation was also observed for the number of clusters p
and number of features m. When we compare data sets with higher p and m values,
CPU s. to solve the problem increases as well. On the contrary, computational time
is inversely related to the number of features to be selected g. If ¢ increases, problem

gets easier, and C'PU s. decreases.

To sum up, when we compare performances of mathematical models, it is observed
that base model NM and our first linearized model LM; cannot solve the problem

within time limits for most of the data instances, whereas models LM, and LM3
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will be useful to find optimal solutions when data set includes small number of data
points. In order to see whether the mean difference of the objective functions obtained
by different approaches is significantly different from zero or not, we apply paired-t
test at 5% significance level. From this test, it is observed that there is no significant
difference between LM, and LMj3, whereas they are significantly different than the
other two mathematical models. Among those two models, we will continue with

model LMj; because it performs not significantly but slightly better than model LM,.

In this thesis, we are also proposing heuristic algorithms to solve the problem in a rea-
sonable time with comparable results. In the next chapters, details of these heuristic

algorithms will be delivered.
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CHAPTER 5

BENDERS DECOMPOSITION OF THE MODEL AND A HEURISTIC
SOLUTION APPROACH

Experimental studies show that proposed mathematical models perform poorly in
terms of computational time especially when the size of the data set is larger. In
this study, a well-known decomposition algorithm Benders Decomposition is applied
to our problem. Also, a heuristic algorithm has been developed by following the
decomposition approach. The details of the proposed algorithms will be delivered in

this chapter.

5.1 Benders Decomposition of the Model

Benders Decomposition (BD) is a well-known solution method used for solving op-
timization problems. In (BD) approach, the problem is partitioned into smaller prob-
lems instead of solving the large-scale problem for all decision variables using all con-
straints. These smaller problems are called master problem and subproblem, where
those problems includes subsets of decision variables and subsets of constraints of the
main problem. The method starts with solving the master problem, and the remaining
decision variables are determined by the dual of the subproblem with the fixed values
of the decision variables of master problem. With the solution of dual problem, a
new constraint is generated which is called “Benders cut” and added to the master

problem, which will be solved again. The stages of the decomposition method is also

represented in Figure
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Master Problem Subproblem

Fixed variables

Solve for the subset of variables Contains the remaining variables

A

Solve dual of the subproblem to
generate Benders cut

Contains Benders cuts generated by

Generated cuts
subproblem

Figure 5.1: Stages of the Benders Decomposition Approach

Dual of the subproblem is solved to eliminate solutions which are worse than the cur-
rent solution. The method is beneficial if the subproblem is a linear programming
model. Considering our mixed integer programming models, it is seen that (BD)
method can be suitable to solve our clustering problem. The method is applied on our
first linearized model LM; which is again provided below for the sake of complete-

ness.

(LM;)  Minimize > Y ) dijpwip (5.1)

iEN jEN keM

subject to: i < Y5, Vi, 7€ N  (5.2)
D wy=1, Vie N (5.3)
JEN
> yi=np (5.4)
JEN
>z =qu;, Vie N (55)
keM

Wijk > Tij + Zjk — 1, Vl,j c N, Vk e M (5.6)

wije > 0, Vi,je NYke M  (5.7)
i >0, Vi,je N  (5.8)
zin € {01}, VieENVEEM (59)
y; € {0,1}. VjeN (5.10)

The set of decision variables and constraints of model LM; are partitioned into two.

The master problem contains binary decision variables which indicate whether a data
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point j is a cluster center or not, y;, and if feature & is selected for a data point j, zj.

The remaining two continuous decision variables will be solved in the subproblem.

The model LM; can be rewritten in terms of variables y; and z;;, as follows and the

resulting mathematical model will be named as MP:
Master Problem
(MP) Minimize 0+4¢

subject to: Z Y =D,

jEN
szk:qyj, VjeN
keM

2, € {0,1}, Vje NVke M
y; € {0,1}. VjeN

(5.11)
(5.12)

(5.13)

(5.14)
(5.15)

where ¢ is the optimal objective function value of the subproblem SP given below.

Model MP decides the location of cluster centers and relevant features of each cluster,

y; and z;;, respectively. In the formulation of SP, optimal decision variables of the

model MP are fixed, and they are denoted as ¥; and Zj;,. Assignments of data points

are decided in SP.

Subproblem

(SP) Minimize Z Z Z d; Wik

iEN jEN keM

subject to: — T > —Vj, Vi,j e N
> wy=1, Vie N
jEN
Wijk — Tij = Zjgp — 1, Vi,7 € NNYke M
wijr > 0, Vi,j € N,Vke M
x5 > 0. Vi,j € N

(5.16)

(5.17)
(5.18)

(5.19)
(5.20)
(5.21)

By strong duality theory, the optimal objective function value of a primal solution can

also be obtained by solving its dual. Let denote variables «;;, 3;, and ;5 as the dual
variables of the constraints (5.17), (5.18)), and (5.19), respectively. The dual of the

subproblem Dgp is as follows.
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Dual of the Subproblem

(Dsp) Maximize — > Y i+ > B+ > > > (Zr— Dy (5:22)

iEN jEN ieN i€EN jEN keM
subject to: — i+ Bi— Y vk <0, Vi,j €N  (5.23)
keM
Vg < digi, Vi,j € NNVke M  (5.24)
ai; > 0, Vi,j €N  (5.25)
Yijk > 0, Vi,j e NNYke M (5.26)
B; urs. Vie N (5.27)

Comparing to the feasible region of the subproblem SP, feasible region of the dual
problem does not depend on the values of the decision variables y; and zj;, only the
objective function will be affected. Also, notice that model Dgp always has a feasible
solution since the origin is in the feasible region. Therefore, there is no feasibility
issue. For a given center and features, it is always possible to find the assignments. In
each iteration, with the solution of Dgp, generated “Benders cut” will be as follows.

Here, o, B_Z and 7;;, show optimal values of «;;, 3;, and -, variables, respectively.

§>— Z Zyjo_éij + ZBZ + Z Z Z(ij — 1)%iji- (5.28)

i€EN jEN 1EN 1€N jeN keM

Steps of the Benders Decomposition method is given below in detail.

Step 1. Solve model MP to obtain lower bound to the model LMj.

If model MP is infeasible, conclude that the original model LM; is also
infeasible. STOP the process.

If model MP is feasible, set its objective function as the lower bound, LB,
then go to Step 2.

Step 2. Solve model Dgp. The optimal solution of the model Dgp will be an upper
bound to the optimal solution of model LMy, set it as U B.

If | UB— LB |< e where ¢ is a predefined small threshold value, then STOP.

Otherwise, generate a new cut for the model MP. Add Inequality (5.28) to
the constraint set of model MP and go to Step 1.
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Steps of the approach can also be seen in Figure[5.2]

Infeasible
Solution
(STOP)

s the solution
feasible?

Step 1: Solve MP

A

Yes
Add Benders cut (5.28) to Set objective function value
MP of MP as LB
No
Y
Step 2: Solve Dsp and set its
Is |UB-LBJ< € ? objective function value as
uB
Yes

STOP

Figure 5.2: Flowchart of the Benders Decomposition Approach

The given solution approach is tested on our simulated data sets but the results cannot
compete with the performance of our linearized models. Therefore, we add the fol-
lowing valid inequalities to the subproblem in order to have more information in the

cut.

=) wie = —~[N|qy;, VjeN (5.29)
1€EN keM

=) wiye >INz, VjENVkeM (5.30)
1EN
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Inequality (5.29) states that if data point j is selected as a cluster center, then at most
| N| ¢ number of the w;;;’s may take the value of 1 since for each cluster center we
will use ¢ features and at most all data points may be assigned to that cluster. The
same logic is true for (5.30). If feature £ is used for data point j where it is selected
as a cluster center, then at most | N| number of w;;;’s may take the value of 1 since at

most all data points may use feature & in cluster where the center is data point j.
New subproblem will be as given below, SP'. The master problem is taken as it is.
New Subproblem

(SP')  Minimize Y > ) dijwii (5.31)

iEN jEN keM

subject to: — Tij > —Uj, Vi,7€ N (5.32)

D wy=1, Vie N (5.33)

JEN

Wik — Tij Z gjk — 1, VZ,j S N, Vk e M (534)

=) wie = —~[N[qg;, VjieN (535)
i€EN keM

=) wijp = —|N| Zi, VjeN,Yke M (5.36)
iEN

wij, > 0, Vi,je NNVke M (5.37)

The first three constraints are the same as the subproblem SP, and the following two

constraints are the new valid inequalities.

Let denote variables o;;, 3;, Vijk, 0;, and 0;; as the dual variables of the constraints

(5.32)—(5.36), respectively. The dual of the new subproblem is as follows, Dgp'.
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Dual of the New Subproblem

(Dsp') Maximize — Z Z gjjozij + Z 61 + Z Z Z(ij — 1)%]’1@

iEN jEN ieN iEN jEN keM
—INTg > 78 — INI DD Zindji
JEN JEN keM
subject to: — g+ B — Z Vit <0, Vi,j € N
keM
Yijk — 05 — 0k < dyji, Vi,j € N,Vk e M
a;; > 0, Vi,j € N
Yijk = 0, Vi,j € N,Vke M
6, >0, VjeN
9 > 0, Vj e NVke M
B; urs. YieN

(5.39)

(5.40)

(5.41)
(5.42)
(5.43)
(5.44)
(5.45)
(5.46)

The cut that will be added to the master problem will change also as given in (5.47).

2= yia+ > B+ > (zie— DA

iEN jEN iEN iEN jEN keM
—INTg >y — INI D Dz
JEN JEN keM

(5.47)

Adding the given valid inequalities decreased the computational time comparing to

the (BD) which uses SP and Dgp. However, it is observed that the performance of the

proposed Benders Decomposition is still lower than the performance of our linearized

model LM;.

We inspired from the Benders Decomposition, and develop a heuristic algorithm by

following the relations between master and subproblems used in (BD).
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5.2 Benders like Heuristic Algorithm: H,

Benders Decomposition divides larger problems into smaller problems as master and
subproblem. The solution of one of these smaller problems is fixed in the other prob-
lem. In this heuristic algorithm, we follow the same principal. If assignment of all
data points are given in advance, selection of cluster centers and features can be de-
cided simultaneously. Also, when the cluster centers and selected features are known,
the assignments of data points can be obtained easily. Therefore, as in Benders de-
composition, we have divided our problem into two smaller problems. In the first
problem, cluster centers and selected features are decided by using a mathematical
model, as in MP. The second problem uses the information obtained from the first
problem, and decides the assignments of data points. Different than SP, we are using
simple heuristic algorithm to assign data points to a cluster. Also, instead of adding
the cut to provide information, we directly give the assignments to the first prob-
lem. Details of the proposed heuristic algorithm and its steps will be provided in this

section.

5.2.1 Center and Feature Problem: Hx

In this smaller problem, it is assumed that assignment of data points to clusters are
given in advance. That means, we are eliminating the assignment variable from the
optimization problem, and cluster centers and features to be selected will be decided.
Schematic representation of this smaller problem for two clusters can be seen in Fig-
ure Here, c; and ¢, are for cluster centers, and (); and (), are representing
the features that define clusters. Solid line states that assignment of data points are

known, whereas dashed lines show that cluster centers and features will be decided.

We propose a new mathematical model to decide cluster centers and relevant features
for each cluster. This model contains the assignment information different than our
previous mathematical models. The mathematical model is provided below and it

will be called as model Hy.
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Q,

Figure 5.3: Schematic Representation of Hy

(Hx)  Minimize > > > ) dijzjm (5.48)

peP icCy jEC, kEM

subject to: > up=1, Vpe P (5.49)
JEC)
> Zik = qUjp; Yje N,¥pe P (550)
keM
Zipk € {0, 1}, Vje NVke M,Npe P (5.51)
yip € {0,1}. Vie NVpeP (552

Objective function of this formulation minimizes the total distance between the data
points and cluster centers of those groups via selected features. Notice that the clus-
ters are already formed since we know the data points which are assigned to the same
group. In this formulation, z;,, will be 1 if feature % is selected for cluster p where
data point j is the center of that cluster. The decision variable y;, will be 1 if data
point j is selected as the cluster center of cluster p. Constraint (5.49) ensures that
every cluster will have a cluster center which is one of the data points belonging to

that cluster. Constraint (5.50) aims to select ¢ features for each cluster.

The model looks like the master problem of the Benders Decomposition of our prob-
lem. However, model Hy includes the assignment information directly while select-
ing centers and features, and the objective function is different since the assignments

are known in advance. We know the constructed clusters based on the given as-
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signments, so the model Hy can be solved separately for each cluster to find cluster

centers and relevant features.

Notation used in this problem can be found in Table[5.1]

Table 5.1: Notation used in Mathematical Model Hyx

Sets

N

M

P
Parameters

Gy

d;jk

Decision Variables

Yip

Zjpk

Set of data points
Set of features

Set of clusters

Data points in cluster p, p € P

Number of features that should be chosen for each cluster
Distance between data points ¢ and j on feature k, 7,7 € N,
ke M

Binary decision variable as 1 if data point j is selected as a
cluster center of clusterp, j € N,p e P

Binary decision variable as 1 if feature £ is selected for
cluster center j where data point j is a center of cluster p,

jeEN,keM,peP

5.2.2 Assignment Problem: Py

We have obtained the clusters centers and selected features from the mathematical

model Hy, and they will be represented as y;, and Zz;p;, respectively. When they

are known and fixed, only the assignment of data points remains. Schematic repre-

sentation of assignment problem is given in Figure [5.4] Here, dashed line states that

assignment of data points are not known, whereas solid lines show that cluster centers

and features were decided.
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Q,

Figure 5.4: Schematic Representation of Assignment Problem

Py is the mathematical formulation used to decide the assignments of data points.

(Px)  Minimize > > > digZjon (5.53)

iEN jeCp kEM
subject to: x; > 1, Vie N (5.54)
x; < |P|. Vie N (5.55)

x; denotes the cluster number in which data point 7 is assigned, and |P| gives the
number of clusters. Together with the objective function, constraints ensure that every
data point should be assigned to one cluster. Objective function will be minimized
where all data points are assigned to their closest centers. We can use a simple search
algorithm which calculates total distance of each data point to all cluster centers via
selected features for those clusters, and assigns data points to do closest cluster center.
Pseudocode of the assignment problem is provided in Algorithm[I] and the procedure

will be called as AssignmentPx().

The outer for loop (lines 1 — 20) is constructed for assigning all data points to a
cluster. In the inner loop (lines 3 — 18), the distance between data points 7 and j is
calculated if the data point j is a cluster center for cluster p, and feature £ is selected
for that cluster. Temporary center of data point 7 is assigned as p if d;; is the minimum
distance known so far and j is the center of that cluster (lznes 12 — 15). When all

possible clusters are considered for 7, it is assigned to the temporary center ¢.
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Algorithm 1: Assignment Algorithm I

Procedure AssignmentPx ()

input : gjp’ Ejpk
output: z;
1 for i=1,...N
2 Let min be a very large number
3 for p=1,...,P
4 for j=1,...N
5 Let dij =0 % total distance between data points ¢ and j
6 if y;, = 1 then
7 for k=1,...M
8 if Z;,, = 1 then
9 ‘ dij = dij + dz‘jk
10 end
11 end for
12 if d;; < min then
13 min = dij
14 t = P
15 end
16 end
17 end for
18 end for
19 r;, =1
20 end for
end

Our heuristic algorithm H; iteratively use Hx and Px in order to obtain clustering
solution to our problem. At the start of the algorithm, each data point is randomly
assigned to a cluster. Then, Hy is solved to obtain cluster centers and relevant features
of those clusters according to the given assignments. After finding the data points
which are selected as a cluster center and relevant features, each data point is assigned
to its closest cluster center using the Algorithm[I| H; terminates when the difference
between the objective functions of the two consecutive iterations are smaller than a

threshold value. The steps of H; can also be seen below.
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Step 0. Initialize total_dist,q = 0, total_dist =0

Step 1. Randomly assign all data points to a cluster

Step 2. Solve Hx to obtain cluster centers and selected features

Step 3. Call AssignmentPz() to obtain the assignments of data points using cluster

centers and selected features

Step 4. Calculate the total distance between all data points and their cluster centers
via selected features, set it as total_dist.

If | total_dist — total_dist,q |< € where € is a predefined small threshold
value; if iteration limit is not reached then go to Step 1, otherwise STOP.

If | total_dist — total_distyg |> €, set total_dist,y = total_dist. Go to

Step 2.

Note that, the algorithm is initialized 50 times to reduce the effect of random assign-

ments.

The algorithm can also be tracked by using the flow chart given in Figure [5.5]

Initialization:
# of initialization is

Random
assignments of
all data points

given

Solve Hx

Solve Px by calling
Procedure
AssignmentPx()

A

No Is the objective

function converged?

Yes

Output:
Cluster centers
Selected features for all clusters
Assignments

Yes

Figure 5.5: Flow Chart of the Benders like Heuristic Algorithm

63



The pseudocode of Hy is given in Algorithm 2]

Algorithm 2: Benders like Heuristic Algorithm

Procedure H, ()

input : Data set N
output: Assignment of data points , cluster centers , selected features
1 Read data set
2 Set counter,,q., stopping_condition, total_distyes
3 repeat
4 Let absdist be a very big number
5 Step 0. Set total_dist = 0 and total_dist,q = 0
6 Step 1. Randomly assign data points to clusters, z;
7 repeat
8 total_dist,q < total_dist
9 Step 2. Center and Feature Selection
10 Solve Hx — Yips Zipk
11 Step 3. Assignment Update
12 Call AssignmentPx() — x;
13 Step 4. Calculate total distance total_dist
14 absdist «| total_dist — total_dist,qg |
15 until absdist < stopping_condition
16 if total_dist < total_disty.s then
17 total_distpes; < total_dist
18 for j=1,...N
19 for p=1,...,P
20 yjpbest — y.]p
21 for k=1,...M
22 ‘ ijkbest — Z.]pk
23 end for
24 end for
25 end for
26 for i=1,... N
27 | @, @
28 end for
29 end
30 counter = counter + 1
31 until counter > counter,,..
end
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Algorithm[2]starts with randomly assigning data points to a cluster. The inner loop up-
dates cluster centers, selected features and assignments until convergence (lines 9 —
15). Best assignments, best cluster centers and their selected features are updated if
the total distance of the current solution is better than the total distance of previously

identified clustering solution (/ines 16 — 31).

The next chapter will introduce a new heuristic algorithm which works in iterative
manner, where all decision variables are decided by using a simple heuristic algorithm

depending on the nature of the problems.
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CHAPTER 6

ITERATIVE HEURISTIC ALGORITHM

Proposed mathematical models perform poorly with the size of the data set. In Chap-
ter [5| Benders Decomposition solution method and Benders like heuristic algorithm
have been introduced. In this chapter, a new heuristic algorithm will be delivered and

it will be referred as H,.

Our problem depends on three decision variables. If X, C', and () denote the decision
variables for assignments of data points, cluster centers, and features to be selected,

then the problem can be represented as:

minimize f(X,C,Q)

s.to Q

where () shows the feasible region of the problem.

Our heuristic algorithm uses the idea of fixing two decision variables and solving the
problem for the remaining decision variable. Therefore, we can mention about three

main problems.
e Assignment Problem where C' and () are fixed. It is called Px.
e Center Selection Problem where X and () are fixed. It is called Pc.
e Feature Selection Problem where X and C are fixed. It is called Py.
Details of the these main problems will be provided before introducing the proposed

heuristic H, which benefits from those problems in an iterative fashion.
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6.1 Assignment Problem: Pyx

This main problem takes cluster centers and selected features as given, and it only
decides the assignments of data points to a cluster. The mentioned problem can be
represented as given in Figure where there are two clusters. Dashed line shows
clusters so the assignment of data points which are not decided yet, and solid lines

show the fixed decision variables, cluster centers and selected features, cj,c; and

Q3, Q3, respectively.

Q"

Figure 6.1: Schematic Representation of Assignment Problem

Conceptual model of this main problem will as follows. Here, we fix the cluster
centers and selected features, and try to find best assignments, where ) x represents

the feasible region of the problem.

minimize [(X,C=C"Q=Q)

s.to Qx
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The mathematical model of the given problem Px can be seen below.

(Px)  Minimize > Y Y dijiZi (6.1)

1EN jeEN keM

subject to: Tij < Y, Vi,j € N (6.2)
 ay=1, Yie N  (6.3)
JEN
Lij c {O, 1} VZ,j eN (64)

where z;; is a binary variable which takes the value of 1 if a data point 7 is assigned
to data point j. In this formulation, y; will denote the fixed cluster centers and zj;,
will represent the given selected feature £ for cluster j. The aim is to minimize the
total distance between data point 7 and data point j where feature £ is selected for that
cluster. Constraint (6.2)) ensures that a data point ¢ may be assigned to j if data point

j is a center, and states that a data point must be assigned to a cluster.

The Assignment Problem in H; mentioned in the Chapter [S]is different than the prob-
lem Px. In the former, data points are assigned to a cluster, that means we are forming
the groups of data points without considering the centers. Here in Px, data points are
assigned to one of the given cluster centers. The data points assigned to the same
center form the clusters. As in Hy, model Px can be solved separately for each data
point because objective function will be minimized where all data points are assigned
to their closest cluster centers via the features defining those clusters. Therefore, a
simple search algorithm can be used to find the closest center of each data point.

Pseudocode of the assignment problem is provided in Algorithm 3]
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Algorithm 3: Assignment Algorithm II

Procedure Assignment ()

input . gj’ ij
output: x;;
1 for i=1,...N
2 Let min be a very large number
3 for j=1,...N
4 Let dz’j =0 % total distance between data points % and j
5 if y; = 1 then
6 for k=1,...M
7 if Z;;, = 1 then
8 ‘ dij = dij + dijk
9 end
10 end for
11 if dij < min then
12 min = d;;
13 t=7
14 end
15 end
16 end for
17 Ty =1
18 end for
end

Different than Algorithm I} cluster center of data point i is selected as data point j if
d;; is the minimum distance known so far ({7nes 11 — 14). When all possible cluster

centers are considered for data point i, it is assigned to the cluster center ¢ in [ine 17.

6.2 Center Selection Problem: P¢

This problem is used to decide cluster centers given the assignments of data points
and features that should be used in clustering. Since we know the groups of data
points, center of a group should be selected among data points which are assigned
to that group. Figure [6.2] schematically represents center selection problem. Dashed
lines say that centers of the clusters have not been decided. With the solid lines,
assignments of data points and selected features are shown. Unknown cluster centers

and selected features are represented with ¢y, c; and QF, )3, respectively.
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Q,

Figure 6.2: Schematic Representation of Center Selection Problem

Conceptual model of this main problem will as follows. Here, assignments of data
points and selected features are fixed, and we try to find best cluster centers. In the

formulation, (2 represents the feasible region.

minimize (O, X=X",Q=0Q

s.to Qc

The mathematical model of the given problem can be seen below named as model

Pc.

(Pc)  Minimize > > Y > dipZy; (6.5)

pEP i€Cy jeCp keQyp

subject to: Z y; =1, Vpe P (6.6)
JEC
y; € {0,1}. Vie N  (6.7)

where y; is a binary variable which takes the value of 1 if a data point j is selected
as a cluster center among the data points which are in cluster p, where those data
points are in set C),, which includes the data points in cluster p. In this formulation,
Q) is the set of features used in cluster p. (6.6) ensures that center of each cluster
will be selected among the data points in that cluster. Notice that objective function

of the problem will be minimized when the data point which is located in the middle

71



of the cluster is selected as a center. Since we know the assignments of data points
and selected features, we can decompose the problem into smaller problems where
center of each cluster is decided separately. For each data point, total distance to other
data points in a cluster is calculated, and the one which is closest to all other cluster
members is selected as the cluster center. The following Algorithm []is provided to

find cluster centers.

Algorithm 4: Center Selection Algorithm

Procedure Center ()

input : Zfz‘j, ij
output: y;
1 for i=1,...N
2 Let dz =0 % total distance to data point %
3 for n=1,...,.N
4 for j=1,...N
5 if Ifij = 1and jnj = 1 then
6 for k=1,...M
7 if Z;;, = 1 then
9 end
10 end for
11 end
12 end for
13 end for
14 end for
15 for i=1,...N
16 Let min = d;
17 best =1
18 for n=1,...,.N
19 for j=1,...N
20 if 7;; = 1 and z,,; = 1 and d,, < min then
21 min = d,
22 best =n
23 j=N
24 end
25 end for
26 end for
27 Ybest = 1
28 end for
end

The algorithm starts with a for loop to calculate the total distance to data point 7 by

considering the data points which are assigned to the same cluster with data point
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t (lines 1 — 14). The for loop is repeated for all data points. After calculating all
distances, data point which is closest to all data points in its cluster is selected as the

cluster center (lines 15 — 28).

6.3 Feature Selection Problem: P

Feature selection problem takes the assignments of data points and cluster center as
given. Then, the problem only decides the relevant features for each cluster that will
minimize the total distance between data points and cluster centers via selected fea-
tures. Feature selection problem is given in Figure [6.3] Dashed lines say that relevant
features of each cluster have not been decided. With the solid lines, it is stated that
assignments of data points and cluster centers are known. In figure, cluster centers

and unknown relevant features are represented with cj, ¢5 and )1, )2, respectively.

Q

Q.

Figure 6.3: Schematic Representation of Feature Selection Problem

Conceptual model of this main problem will as follows. Here, assignment of data
points and cluster centers are known and fixed. The model states that relevant features

of each cluster should be selected, where (), represents the feasible region.

minimize f(Q,C=C"X=X")

s.to Qg
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The mathematical model of feature selection problem Pg is presented below.

(Pg)  Minimize > ) ) dipiz (6.8)

i€N jEN keM

subject to: Z Zjk = qYj, Vp e P (6.9)
keM
2 € {0,1}. Vje N Vke M (6.10)

where z;;, takes 1 if feature k is selected for cluster where j is the center. Here, given
assignments and cluster centers will be represented as z;; and ¥;, respectively. Con-
straint (6.9)) is used to select ¢ features for each cluster. Notice that objective function
of the problem includes nonnegative coefficients for all z;;, variables. Therefore, the
objective function will be minimized when the features which are the most compact
ones are selected. Since we are allowing that one feature may be used in more than
one cluster, relevant features of each cluster can be selected by sorting the total dis-
tance on each feature in ascending order. That means, we can decompose feature
selection problem as well. The following Algorithm [5|finds those ¢ features for each

cluster separately.

In this algorithm, for each cluster centers, total distance through each feature is cal-
culated, dji, (Iines 1 — 12). In order to find the features which are relevant for the
cluster centers, d;;, values are sorted in ascending order, () features with the smallest

d;i, values are selected for each cluster (lines 13 — 32).
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Algorithm 5: Feature Selection Algorithm

O 0 3 o U b W N B

W oW W NnNDNDNNDNDNNDNN R R R R R R R
N P O VW ® Jd oUW N R O LV o JdoOs W NN R O

Procedure Feature ()
input . gj» jij
output: z;;
for k=1,...M
for j=1,...N
Let djk =0 % total distance to data point j through feature k
if y; = 1 then
for i=1,...N
if .f'l] = 1 then
| dje = dji + dijn
end
end for
end
end for
end for
for j=1,...N
if ; = 1 then
for k=1,... M
| sort_disty, = dj
end for
Sort sort_dist smallest to largest — sorted_dist
total_selected = 0
for k=1,.. M
if total_selected < () then
for g=1,...,0
if dj;, = sorted_dist, then
RZik = 1
q=Q
total_selected = total_selected + 1
end
end for
end
end for
end
end for
end
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6.4 Iterative Heuristic Algorithm: H,

Three main problems, Px, Pc, and P, are discussed before introducing heuristic Hj.
Iterative heuristic algorithm H, benefits from those problems in an iterative manner
when two of the decision variables are fixed and the problem is solved for the re-
maining one. H, can be divided into three subroutines in which one of the decision
variables is fixed, and the other two decision variables are updated iteratively by using
the algorithms proposed for the solution of Px, Pc, and P problems. For example,
if we fix the cluster centers, we need to update assignments and selected features it-
eratively. To do that, in each iteration, we fix one of them. When selected features
are fixed, the problem is reduced to the problem Px which is solved by Algorithm
After deciding the assignments, we will fix them besides the cluster centers, and rele-
vant features are found by using the Algorithm [5|for the solution of problem Pg. This
subroutine is named as feature-assignment update subroutine, and it is called as Pgx.
H, will also have assignment-center update Pxc and center-assignment update Pcx
subroutines which work in the same manner. In the following subsections, we will
cover those subroutines in detail, and Figure [6.4] schematically represents the relation

between subroutines.

Pxc Pox Pex

Px Pq Pc

Initialization | — | |t | —— | |t | —— | |1
Pc Px Px

|

Figure 6.4: Schematic Representation of the Relations between Subroutines

6.4.1 Assignment-Center Update: Pxc

In this subroutine, features of each cluster are fixed, assignments of data points and
cluster centers will be found. Assignments and cluster centers are updated iteratively

where in each step, one of them is fixed. When the assignments are fixed, since the
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features are also given, the problem turns into the problem P¢. Similarly, the prob-
lem turns into Px when the cluster centers are fixed. Therefore, this subroutine is
solving Px and P¢ problems iteratively and finds the best cluster centers and assign-
ments of data points while the features are given. For solving Px and P¢, we utilize
Assignment() and Center() procedures in Algorithm [3| and Algorithm 4| respec-

tively. Steps of this subroutine are provided below.

Step 0. Initialize total_dist,q = 0, total_dist =0

Step 1. Solve for X by calling Assignment() for given cluster centers (y;) and
selected features (2;,)

Step 2. Solve for C' by calling C'enter() for given assignments (Z;;) and selected
features (Zjx)

Step 3. Calculate the total distance between all data points and their cluster centers
through selected features, set it as total_dist

If | total_dist — total_dist,q |< € where € is a predefined small threshold
value, STOP.

If | total_dist — total_dist,g |> €, set total_dist,y = total_dist. Go to
Step 1.

The pseudocode of the subroutine can also be found in Algorithm [6]

Algorithm 6: Assignment-Center Update Algorithm
Procedure Py ()

input : absdist, stopping_condition, y;, Zji
output: x;;, y;
1 Step 0. total_dist,y = 0, total_dist =0
2 repeat
total_dist,q < total_dist
4 Step 1. Assignment Update
5 Call Assignment() — x;;
6 Step 2. Center Update
7 Call Center() — y;
8 Step 3. Calculate total distance total_dist
9 absdist <| total_dist — total_dist,q |
10 until absdist < stopping_condition
end
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6.4.2 Feature-Assignment Update: Pox

In this subroutine, assignments of data points and relevant features of each cluster
will be found while cluster centers are given. In each step, relevant features and
assignments are updated iteratively by fixing one of them. When the assignments
are fixed, since the cluster centers are also given, the problem turns into the problem
P. Similarly, if the relevant features are fixed, then the problem turns into Px. That
means, this subroutine is solving Pg and Px problems iteratively. For solving Px
and P, we utilize Assignment() and Feature() procedures in Algorithm 3| and
Algorithm [5] respectively. The steps of the feature-assignment update subroutine can

be seen below.

Step 0. Initialize total_dist,q = 0, total_dist =0

Step 1. Solve for () by calling Feature() for given cluster centers (7;) and assign-
ments (7;;)

Step 2. Solve for X by calling Assignment() for given cluster centers (y;) and
selected features (Z;;,)

Step 3. Calculate the total distance between all data points and their cluster centers
through selected features, set it as total_dist

If | total_dist — total_dist,q |< € where € is a predefined small threshold
value, STOP.

If | total_dist — total_dist.g |> €, set total_disty,y = total_dist. Go to
Step 1.

The pseudocode of the subroutine is given in Algorithm
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Algorithm 7: Feature-Assignment Update Algorithm

Procedure Py ()

input : absdist, stopping_condition, y;, T;;
Olltpllt: Tij, Zjk
1 Step 0. total_dist,; = 0, total_dist =0
2 repeat
total_dist,q < total_dist
4 Step 1. Feature Selection
5 Call Feature() — zjj,
6 Step 2. Assignment Update
7 Call Assignment() — x;;
8 Step 3. Calculate total distance C's
9 absdist <| total_dist — total_dist,q |
10 until absdist < stopping_condition
end

6.4.3 Center-Assignment Update: Pcx

In this subroutine, features of each cluster are fixed, assignments of data points and
cluster centers will be found as in subroutine Pxc. We will start by fixing assign-
ment of data points besides selected features and iteratively update cluster centers
and assignments, but subroutine Px¢ starts with fixed selected features and randomly
decided cluster centers. For the solution of Px and P¢ problem, Assignment() and
Center() procedures in Algorithm [3| and Algorithm [4] will be utilized, respectively.

Steps of this subroutine are provided below.

Step 0. Initialize total_dist,q = 0, total_dist =0

Step 1. Solve for C' by calling C'enter() for given assignments (Z;;) and selected
features (Z;,)

Step 2. Solve for X by calling Assignment() for given cluster centers (y;) and
selected features (Z;;,)

Step 3. Calculate the total distance between all data points and their cluster centers
through selected features, set it as total_dist

If | total_dist — total_dist,q |< € where € is a predefined small threshold
value, STOP.

If | total_dist — total_dist,g |> €, set total_dist,y = total_dist. Go to
Step 1.
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The pseudocode of the subroutine is provided in Algorithm [§]

Algorithm 8: Center-Assignment Update Algorithm

Procedure Py ()

input : absdist, stopping_condition, T;j, Zjj,
output: x;;, y;

1 Step 0. total_dist, g = 0, total_dist =0
repeat

total_dist,q < total_dist

4 Step 1. Center Update

5 Call Center() — y;

6 Step 2. Assignment Update

7 Call Assignment() — x;;

8 Step 3. Calculate total distance total_dist

9 absdist «| total_dist — total_dist,qg |

10 until absdist < stopping_condition
end

H, starts with random selection of cluster centers, and updates assignment and clus-
ters using Pxc until convergence. Then, cluster centers are fixed, and selected features
and assignment of data points are updated by Pgx. In the next step of the algorithm,
given the selected features, assignments and cluster centers are changed iteratively

using Pcx. Input and output relations between subroutines can be seen in Figure [6.5]

Pxc Pox Pex
Px Pq Pc
. Fixed Q Fixed C Fixed Q
Initialization Given C l T Given X l T Given X l T
Pc Px Px
T Fixed C ’
Given X

Figure 6.5: Schematic Representation of the Relations between Subroutines with In-

puts/Outputs

Steps of our heuristic algorithm H, is given below. Note that, the algorithm is initial-

1ized 50 times to reduce the effect of random start.
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Step 0. Initialize total_dist,q = 0, total_dist =0

Step 1. Randomly select cluster centers

Step 2. Call Pxc to obtain assignments and update cluster centers using all features
Step 3. Call Pox to update selected features and assignments given the cluster centers
Step 4. Call P¢x to update cluster centers and assignments given the selected features

Step 5. Calculate the total distance between all data points and their cluster centers
via selected features, set it as total_dist

If | total_dist — total_dist,g |< € where € is a predefined small threshold
value; if iteration limit is not reached then go to Step 1, otherwise STOP.

If | total_dist — total_dist,g |> €, set total_dist,y = total_dist. Go to
Step 3.

Figure[6.6] provides the flow chart of the heuristic algorithm.

Initialization: Fixed feat Update assignments Fixed cluster
# of initialization is given 7 Gi |er (:a urest and centers by calling centers
9 iven cluster centers Procedure Pxc() Given assignments

Update relevant features
No and assignments by
calling Procedure Pox()

Is the iteration
limit reached?

Is the objective
unction converged?

Fixed selected
features
Given assignments

Yes

Output:
Cluster centers
Selected features for all
clusters
Assignments

Update cluster centers
and assignments by
calling Procedure Pcx()

Fixed cluster centers
Given assignments

Figure 6.6: Flow Chart of the Iterative Heuristic Algorithm

The pseudocode of H; is given in Algorithm [0] The algorithm starts with random
selection of cluster centers in l¢ne 6. Until convergence, assignments of data points
and cluster centers are updated in line 9. Updates of selected features and assign-
ments, and then cluster centers and assignments are performed iteratively by using
the subroutines Pox and Pcx in lines 10 — 18, respectively. Lines 19 — 30 record the

best solution which has the minimum distance obtained so far.
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Algorithm 9: Iterative Heuristic Algorithm

10
11

12

13

14

15

16

17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32

Procedure H, ()
input : Data set N

output: Assignment of data points, cluster centers , selected features

Read data set
Set counter,,q., stopping_condition

repeat
Let absdist be a very big number
Step 0. Set total_dist = 0 and total_dist,q = 0

Step 1. Randomly select cluster centers, y;
Assume z;;, = 1 forall k € M

Step 2. Assignment-Center Update
Call ch() — Tij,Yj

repeat
total_dist,q < total_dist

Step 3. Feature-Assignment Update

Call PoxO)— x5, zjk

Step 4. Center-Assignment Update

Call Pcx(O)— @45, y;

Step 5. Calculate total distance total_dist
absdist | total_dist — total_distyyq |

until absdist < stopping_condition

if total_dist < total_disty.s; then
total_distpes: < total_dist
for j=1,...N
Yjpess < Yj
for k=1,...M
| Zjkes ¢ 2
end for
for i=1,....N
| Zijoens  Tig
end for
end for
end
counter = counter + 1
until counter > counter,,qau
end
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In the next chapter, experimental studies conducted on the proposed heuristic algo-

rithms will be discussed.
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CHAPTER 7

COMPUTATIONAL RESULTS AND COMPARISON OF HEURISTICS
ALGORITHMS

Empirical results that compare heuristic algorithms will be provided in this chapter.
In the first part of this chapter, in Section|[/.1}, we state the changes in the performance
measures delivered in Chapter ] and one additional performance measure is intro-
duced. Section will deliver the results of the experimental studies conducted on
the introduced simulated data sets to compare the performances of proposed mathe-

matical models and heuristic algorithms.

7.1 Performance Measure

We will benefit from the performance measures mentioned in Chapter[d Percent gap
from optimal solution (%Gape) is removed from consideration. Also, percent gap
from best available solution (%Gapg) will be calculated by considering all available
solutions instead of taking only the ones obtained from mathematical models. In
order to report the number of hits to known optimal solutions, there will be additional
information provided with the performance measure NOpt. The number of known
optimal solutions will be provided within parenthesis with NOpt. We will also use

one other measure to represent performances of heuristic algorithms, namely Hits.

Number of hits (/:ts): In our study, all heuristic algorithms start with random ini-
tialization of one of the decision variables. In order to eliminate the bias of the so-
lution to initial parameters, algorithms start with 50 different random initializations.
Apart from the best and worst solutions in terms of objective function, we also keep

the number of hits to those solutions.

85



7.2 Computational Results of Proposed Methods for Simulated Data

Performances of mathematical models are compared in Chapter 4], and it is concluded
that nonlinear model NM and model LM, cannot solve the problem within reasonable
time. Among the other mathematical models, model LMj performs slightly better
than model LM,. Hence, our heuristic algorithms will be compared also with the

mathematical model LM3.

Proposed heuristic algorithms are tested on simulated data sets, and results for data
sets including 40 data points can be seen in Tables Tables[B.IHB.12]provided
in Appendix [B| will report the results of experimental studies conducted on data sets
with 50, 80, 100, and 200 data points. For further comparing the performances of
heuristic algorithms H; and H,, there are additional data sets which include 500 and
1000 data points. The results of the experimental studies conducted on those data sets

are reported in Tables |B.13HB.18|in Appendix

Tables are constructed as in Chapter[d] The first there columns contain the parameters
of data sets, which are number of clusters, number of features and number of relevant
features. For our mathematical model LMj3, we report three performance measures,
%Gapyr, %Gapp and CPU s.. Clustering solutions with minimum and maximum
objective functions obtained by heuristic algorithms H; and H, are evaluated based
on %Gapy, %Gapp, and Hits. Completion time of the heuristic algorithms are also
reported on those tables, C'PU s.. Averages of all performance measures can be seen

at the last row of each table.

For the mathematical model and heuristic algorithms, averages of performance mea-
sures %Gapys, %Gapp, and CPU s. on the data sets with equal number of data points
are summarized in Table That means, the performance of each solution method
is evaluated by considering 60 problem instances where data sets include 7 number
of data points. It should be noted that the best and worst clustering solutions are taken
into account when reporting the performances of heuristic algorithms. In this table,
there is also a new column N Best which reports how many times the corresponding

solution method has found the best available solution.
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Table 7.4: Summary of Performance Measures of LM3, H;, and H, for Simulated

Data Sets
n =40 n =50
Methods %Gapnr | %Gapp | NOpt(58) N Best CPU s. || %Gapyr | %Gapp | NOpt(54) | NBest | CPU s.
LM; -4.07 0.03 58 59 259.55 238 0.10 53 56 414.65
Hyp -1.97 2.32 46 47 0.89 3.42 41 42
Hyy 78.02 84.52 9 9 1584 75.01 78.66 10 10 2107
H,, -3.11 1.21 2 40 -1.74 0.77 38 40
Ha,, 77.60 85.06 7 7 002 83.89 88.10 8 8 002
n = 80 n =100
Methods %Gapn | %Gapp | NOpt(49) N Best CPU s. || %Gapn | %Gapg | NOpt(47) | NBest | CPU s.
LM; -1.20 0.97 49 49 366.31 -1.19 0.58 47 51 672.47
Hy, 2.32 4.49 12 46 322 5.02 40 43
Hyy 75.75 78.61 9 9 77 75.91 78.15 10 10 205
Hy, -1.24 0.95 41 47 -1.31 0.47 41 43
Hyy 81.92 85.10 9 9 003 77.11 79.84 10 10 005
n = 200
Methods %Gapy | NOpt(19) | %Gapp | NBest | CPU s.
LM; 42.43 43.93 19 20 2153.03
Hip 471 5.98 17 46
213.64
Hyy 62.92 64.43 7 13
Hy, -1.05 0.27 19 52
Hay 94.57 96.48 6 7 030

Table 7.5: Summary of Performance Measures of H; and H, for Simulated Data Sets

n = 500 n = 1000
Methods
%Gapyr | %Gapp | NBest | NTL | CPU s. | %Gapyy | %Gapp | NBest | NTL | CPU s.
Hj, 7.04 8.10 42 7.06 7.90 43
0 1655.15 11 2757.11
H,., 68.96 70.18 11 59.48 60.41 16
Hy, -0.64 0.37 57 -0.64 0.20 58
0 2.25 0 9.46
H,, 88.69 90.17 6 96.80 97.97 7
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It is observed that model LMj finds the best available solution in most of the data
instances for the data sets which includes small number of data points. This perfor-
mance decreases sharply when we look at the data set with the highest number of
data points. The same trend is also shown in the other performance measures. Com-
putational time and percent gaps from both made objective and best available solution

increases with the increase in the data points.

When N Best is considered, H; found the best available solution in many of the data
instances when its best clustering solutions are considered, Hyp,. N Best for the Hyy
corresponds to the number of data instances where even in the worst case H; finds
the best available solution. It can be said that H; behaves as the mathematical model
L.M3; does in terms of increase in the computational time and percent gaps when data
sets get larger. With the increase in the data points in a data set, averages of %Gapys
and %Gapp increase as well, whereas there is no such change in N Best. That means,
when H; could not find the best available solution, its deviations are higher in the data
sets with more data points. Comparing average C' PU s. of H; with model LM3’s, the
former can find clustering solutions of the data instances within at most four minutes,
whereas the latter takes approximately 10 minutes on the average if it could solve the
problem within the given time limit. Even the latter could not find clustering solutions

within the time limit in most of the data instances when data sets get larger.

If we add H; to the comparison, it is seen that its biggest advantage is the computa-
tional time. In our biggest simulated data set, it only takes less than one second on
the average to obtain clustering solution. That means, the increase in the size of the
data set does not affect C PU s. of H, too much. N Best increases and its percent
gap from best available solution decreases with the increase in size. Therefore, we
can say that its solution is used as the best available solution among the clustering
solutions obtained from the other solution methods. In order to further compare the
performances of heuristic algorithms H; and H,, additional experimentation has been
conducted, and result are given in Table Here, it can be said that H, finds almost
all best available solutions which are obtained by heuristic algorithms. Hj hits to the
time limit in 11 data instances among 60 when data set includes 1000 data points.
However, H; still find the solutions in less than 10 seconds on the average. Paired t-

test at 5% significance level is applied to see if the mean difference between objective
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functions of different approaches is significantly different. The results show that there
is a significant difference between both heuristic algorithms, and heuristic algorithms

and LM;.
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CHAPTER 8

CONCLUSION

Clustering problem has been extensively discussed in variety of disciplines. It can
be briefly described as the grouping of similar data points in the same clusters while
separating them from the dissimilar data points. Selection of similarity measure and
objective function, and also size of the data set may affect the performance of a clus-

tering algorithm.

In this thesis, we address the clustering problem with cluster based feature selection.
For the specified problem, center-based clustering is applied where each data point
is assigned to only one of the clusters, and cluster centers are selected among the
data points in that cluster. For the defined clustering problem, we work with data
sets which include only continuous features in different number of features, clusters
and data points. We show the analogy between classical p-median and clustering
problems, and a nonlinear mixed integer programming model has been proposed.
The study also includes three linearized model with different properties. All of those
models ensure to find (i) the locations of cluster centers, (ii) features to be selected for
each cluster, and (iii) assignment of data points to a cluster simultaneously. Number
of clusters that will be constructed is given a priori as well as number of features
to be selected for each cluster. As other partitional clustering methods, we aim to
minimize total distance between the data points and the cluster centers. Different
from traditional clustering algorithms, we are also performing feature selection that
will provide relevant features for each cluster. Hence, distances are calculated using

only selected features.

Number of features, data points and clusters in a data set affect the dimensionality of

the data. When it gets larger, the solution time of the proposed mathematical models
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gets worse. Therefore, in the second part of the study, Benders Decomposition ap-
proach is applied to our problem as an exact approach, and two heuristic algorithms
have been proposed. We divide our problem into two subproblems in Benders De-
composition. Location of cluster centers and selection of features are decided in the
master problem, whereas the assignments are decided in the subproblem. The ex-
perimental studies show that it is not beneficial to use Benders Decomposition, but
the idea of decomposing the problem into subproblems is used in our heuristic al-
gorithms. We propose a Benders like Heuristic Algorithm (H;) which uses a new
mathematical model to only decide cluster centers and relevant features of the clus-
ters. When the cluster centers and relevant features are fixed, the objective function
will be minimized by assigning each data point to its closest cluster center. For finding

the closest center a simple procedure is used, Assignment Problem (Py).

It has been observed that when fixing two of the decision variables the solution of
the remaining problem will be trivial. Therefore, our problem can be divided into
three main problems. When the cluster centers and relevant features are fixed, each
data point should be assigned to its closest cluster center, Assignment Problem (Px).
Center Selection Problem (P¢) decides cluster centers when constructed groups and
relevant features are fixed. In this case, cluster centers will be the data point which is
located in the middle of the cluster. In order to find relevant features of each cluster,
Feature Selection Problem (Pg) sorts features in the ascending order of compactness
and select () most compact features. Iterative Heuristic Algorithm (H,), decides each

decision variable by solving the defined smaller problems iteratively.

The experiments are conducted on simulated data sets which differ in terms of num-
ber of data points, features, and clusters. All data sets are generated as they reflect
discussed clustering structure where clusters are located in different dimensions and
global feature selection may not ensure to construct all clusters. Data has been gen-
erated by using Multivariate Normal Distribution for relevant features and Uniform
Distribution for irrelevant features. By this way, dense clusters along relevant fea-
tures has been obtained, whereas they are scattered through irrelevant features. The
empirical results show that optimal solutions cannot be obtained within the given
time limit by using mathematical models in most of the data sets. Since the Ben-

ders like Heuristic Algorithm (H;) uses mathematical model to obtain cluster center
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and select features, it takes more time to converge than Iterative Heuristic Algorithm
(H»). We applied paired-t test at 5% significance level to test if the mean difference of
the objective function obtained by different approaches is significantly different from
zero. It is observed that there is no significant difference between models LM, and
M3, whereas they are significantly different than the other two mathematical mod-
els. Also, heuristics algorithms perform significantly different than the mathematical
models especially when the size of the data set increases, and their performances are

different than each other.

To the best of our knowledge, there is no study modeling clustering and cluster based
feature selection as a mixed integer programming. It should also be noted that the pro-
posed solution approaches may select same features for different clusters. Therefore,

all approaches can also be used in classical feature selection problem.

The data sets used in this study are only include continuous features and clusters
are all in the spherical shapes since we are using identity matrix in the formation of
data sets. Proposed algorithms can be analyzed in different data sets having arbitrary
shaped clusters with density differences or having categorical features. In this study,
Ly — norm is used as a similarity measure. Another future research issue may be
analyzing the performance of proposed mathematical models and heuristic algorithms
in different distance measures. Also, the number of features that should be selected
may be considered as a decision variable instead of parameters in different problem

formulations.

The focus of this study is to maximize the compactness by decreasing the distance
between data points assigned to same cluster. We may also analyze our approaches
using different objectives such as maximization of separation between clusters or

maximization of the ratio between separation and compactness.

Different valid inequalities can be added to Benders Decomposition solution method
to improve its performance. Also, with the some preliminary studies, we have ob-
served that dual variables of the subproblem may be directly found using strong du-
ality and Karush—Kuhn-Tucker optimality conditions. If it is valid in all conditions,
there will be no need to solve mathematical model to obtain dual variables and gen-

erate cut. We will also focus on these observations as a future work.
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APPENDIX A

EXPERIMENTAL RESULTS OF PROPOSED MATHEMATICAL MODELS

In this appendix, we give experimental results of the proposed mathematical models

for each problem instances.
Performance measures used in all tables are explained below.

%Gapy: Percent gap from made objective
%Gapo: Percent gap from optimal solution
%Gapp: Percent gap from best available solution

C' PUs.: Computational time
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APPENDIX B

COMPARISON OF LM3;, H;, AND H, FOR SIMULATED DATA SETS

In this appendix, we give experimental results of the mathematical model LM3 and

heuristic algorithms H; and H, for each problem instances.
Performance measures used in all tables are explained below.

%Gapys: Percent gap from made objective
%Gapp: Percent gap from best available solution
Hits: Number of hits to the solution

C' PUs.: Computational time
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