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ABSTRACT

MIXED INTEGER PROGRAMMING AND HEURISTICS APPROACHES
FOR CLUSTERING WITH CLUSTER-BASED FEATURE SELECTION

Önen Öz, Sena
M.S., Department of Industrial Engineering

Supervisor: Assoc. Prof. Dr. Cem İyigün

July 2019, 135 pages

Cluster analysis tries to figure out the hidden similarities between data points in order

to place similar data points into the same group and different data points into separate

groups using unlabeled data. Understanding the data becomes difficult and the power

of obtaining informative clusters for an algorithm decreases as the dimensionality of

the data set gets high. Identifying the relevant features of high dimensional data sets

is the mostly used technique in order to increase the performance of the algorithm to

find the best clusters. However, selecting or deselecting the features comes up with

the assumption that all the selected features have the same relevance for all clusters.

In this study, it is assumed that the features to be used in clustering may differ for

each cluster. Number of clusters and number of relevant features in each cluster

are given in advance. By using a center-based clustering approach, identifying the

cluster centers, assigning data points to a cluster and selecting relevant features for

each cluster are performed simultaneously. A mixed integer mathematical model is

proposed which minimizes the total distance between data points and their cluster

center by using the selected features for each cluster. Since the proposed model is not

v



linear, mathematical models using different linearization methods have been used to

solve the problem. In addition to those mathematical models, we propose Benders

Decomposition solution method implemented on our problem. Besides, two different

heuristic algorithms have been developed by taking into account the nature of the

mentioned problem. The proposed mathematical models and heuristic algorithms

have been experimented on several data sets in different problem sizes in terms of

number of clusters, number of relevant features and number of data points.

Keywords: clustering, feature selection, mathematical model, heuristic approach
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ÖZ

KÜME ÖZGÜ ÖZNİTELİK SEÇİMİ İLE KÜMELEME PROBLEMİ İÇİN
KARMA TAMSAYILI PROGRAMLAMA VE SEZGİSEL YAKLAŞIMLAR

Önen Öz, Sena
Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Cem İyigün

Temmuz 2019 , 135 sayfa

Kümeleme algoritmaları, noktalar arasındaki önceden bilinmeyen gizli ilişkileri be-

lirleyip birbirine benzeyen veri noktalarını aynı gruba, birbirinden farklı veri noktala-

rını ise ayrı gruplara koymayı hedefleyen gözetimsiz bir öğrenme yöntemidir. Ancak

veri setinin boyutu arttıkça verinin anlaşılması zorlaştığından doğru kümelemeyi elde

etme ihtimali düşer. En iyi kümelemeyi bulmak için kümeleri tanımlayan öznitelik-

leri belirlemek kümeleme algoritmalarının performansını arttırmak amacıyla büyük

ölçekli veri setlerinde en çok kullanılan ön işleme tekniğidir. Ancak özniteliklerin

ayırt edici olarak seçilip seçilmemesi, tüm özniteliklerin her küme için aynı ilgi dü-

zeyine sahip olduğu varsayımıyla ortaya çıkmaktadır.

Bu çalışmada, kümelemede kullanılacak özniteliklerin her bir küme için farklılık gös-

terebileceği varsayılmaktadır. Küme sayısı ve her küme için ilgili öznitelik sayısı ön-

ceden verilmektedir. Küme merkezleri bazlı bir kümeleme yaklaşımı kullanılarak,

küme merkezlerinin belirlenmesi, veri noktalarının bir kümeye atanması ve her bir

küme için ilgili özniteliklerin seçimi eş zamanlı olarak yapılmaktadır. Bu çalışma

kapsamında küme içindeki noktaların ilgili küme merkezine seçilen öznitelikler üze-
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rinden uzaklıklarının toplamını enazlayan karma tamsayılı bir matematiksel model

önerilmiştir. Önerilen model doğrusal olmadığı için problemin çözümünde farklı doğ-

rusallaştırma yöntemlerinin uygulandığı matematiksel modeller kullanılmıştır. Bunun

yanı sıra, problemin çözümü için Benders Ayrıştırma yöntemi uygulanmıştır. Ayrıca,

belirtilen problem için iki farklı sezgisel çözüm yöntemi geliştirilmiştir. Önerilen ma-

tematiksel modeller ve geliştirilen sezgisel çözüm yöntemleri nokta ve öznitelik sayısı

açısından farklı büyüklükteki veri setleri üzerinde denenmiştir.

Anahtar Kelimeler: kümeleme, öznitelik seçimi, matematiksel model, sezgisel yakla-

şım
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CHAPTER 1

INTRODUCTION

Enormous amount of data are obtained in various formats such as transaction records

on bank accounts, sensor data obtained from devices used to gather climate informa-

tion, and posts on social media. All of these data are generated very fast, and must be

processed as soon as possible to create valuable information. Analyzing big data and

finding relevance of data is too difficult, time consuming and costly. Hence, data min-

ing methods were developed to ease the process of obtaining meaningful information

(Jain, 2010).

Well-known data mining tasks are grouped into two categories depending on the avail-

ability of information, which are supervised learning and unsupervised learning. In

supervised learning, data has the label information and labels are used to train the

algorithm. Then, the trained algorithm is used to predict the unknown label of new

observations. Classification and regression are considered in this class. On the other

hand, there is no known labels used in unsupervised learning. Unsupervised learn-

ing algorithms aim to obtain meaningful information using available unlabeled data.

Clustering is a widely studied unsupervised learning method. It aims to group similar

data points in a data sets into the same cluster by separating them from the data points

which are dissimilar.

There are some challenges associated with clustering problems, and choosing the

similarity measure is one of them. The measure should be selected by considering the

properties of data sets, whether it contains quantitative (continuous or binary) or qual-

itative (categorical) features. Also, objective function which can be used in grouping

data sets may change. As the definition of clustering problem suggest, clusters should

be well-separated because we try to put dissimilar data points into different clusters.
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This aim is named as separation in the literature. Also, similar data points should be

in the same cluster, and it is obtained by measuring the compactness. Since cluster-

ing problem is considered as an unsupervised learning, the number of clusters is not

known a priori and the data has no label information. Besides, different approaches

used in clustering may come up with different clustering solutions. Therefore, selec-

tion of similarity measure and objective function, constructing different numbers of

clusters, and using different solution techniques may generate totally different clus-

tering solutions. Hence, proposing a universal quality measure for clustering is not

possible.

In the literature, several studies propose solution to clustering problem by using dif-

ferent methods, objective functions and data sets with different properties. In gen-

eral, we can classify clustering approaches as Partitional Clustering and Hierarchical

Clustering. The former method aims to generate disjoint clusters in such a way that

similar data points are gathered around a cluster representative. The latter constructs a

hierarchical cluster structure of a data set, and it enables to obtain different clustering

solutions if the cluster structure is cut at different levels. There are advantages and

disadvantages of these methods, and they will be discussed in Chapter 2. Most of the

studies include heuristic approaches to obtain clusters in a reasonable time due to the

complexity of the problem. However, in Chapter 2, studies including exact solution

methods for clustering will also be delivered.

Data sets may contain redundant and irrelevant features as well as relevant ones. Clus-

tering patterns hidden in the data set may be masked by the redundant or irrelevant

features. In order to obtain clusters in a reasonable time, redundant and irrelevant

features should be removed from data set. This phenomenon is called as “dimension

reduction”, and there are numerous techniques to do that. In the literature, most of

the dimension reduction techniques assume that the same features may be used to

identify all clusters. However, global selection of features may not be helpful to ob-

tain all clusters in a data set, since there may be no common subset of features that is

relevant for all clusters. In the literature, there are some studies proposed to overcome

this problem, and both data points and features are clustered simultaneously. These

studies will be called as local clustering algorithms throughout this study.
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Our problem in this study is to find clustering solution with feature selection but

we focus on identifying clusters via different subsets of features. That means, each

cluster is described by a different set of features. Here, it is allowed that the same

feature might be relevant for many other clusters. In the first part of this study, a mixed

integer mathematical model has been proposed for the solution of clustering problem

with cluster based feature selection (CBFS). The model decides (i) location of the

cluster centers, (ii) features to be selected for each cluster, and (iii) assignment of data

points to a cluster simultaneously. The number of clusters and number of features that

will be selected for each cluster are given in advance. The aim is to minimize total

distance between the data points and cluster centers through selected features. Here,

it should be noted that Partitional Clustering is implemented, and cluster centers

are selected among data points. Also, data sets only include continuous features, and

similarity measure is selected as L1−norm. Since the proposed mathematical model

include nonlinear term in the objective function, different linearization methods have

been applied in order to increase the performance.

In the second part of the study, Benders Decomposition approach is applied on our

problem in order to obtain the exact solution. Benders Decomposition method is

used to solve large-scale optimization problems, and the nature of our problem is

suitable to apply Benders Decomposition. When the data set gets larger in terms of

number of features or number of data points, the solution time of the proposed math-

ematical models gets worse. After obtaining insights about the problem structure

by Benders Decomposition, a Benders like heuristic algorithm is constructed. This

heuristic algorithm uses a new mathematical model which only decides the cluster

centers and relevant features of the clusters. When the cluster centers and selected

features are obtained from the mathematical model, each data point will be assigned

to the their closest center in order to minimize the total distance between data points

and their cluster centers via selected features of that clusters. For the assignments of

data points, a simple search procedure is developed. Additionally, a new heuristic al-

gorithm has been introduced in the second part of this thesis. This heuristic algorithm

decides each decision variable by iteratively solving smaller problems. That means,

at each iteration, two of the decision variables are fixed, and the other is decided by

the defined smaller problem specific to problem context.
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There may be no common subset of features that can be used to identify all clusters.

Therefore, we try to identify relevant subset of features which are specific to clusters.

To the best of our knowledge, we are contributing to the literature by using mathe-

matical models and proposing heuristic algorithms to solve clustering problem and

cluster based feature selection simultaneously. The mentioned problem may be used

in different real life applications. In customer segmentation, customer groups can

be identified by clustering with cluster based feature selection, and services which

are provided to those customer groups may be arranged depending on the features of

groups. Another example might be team formation where teams in a work environ-

ment are formed considering the skill(features) of employees in order to assign task

accordingly. Last but not least, cluster based feature selection can be used in order to

identify the similar regions in an image where the similarity depends on the features

of regions.

This thesis is organized as follows. In Chapter 2, background information on clus-

tering and its properties are given. Related studies in the literature specifically for

clustering and feature selection in clustering problems are discussed. In Chapter 3,

we define the problem with its properties, and proposed mixed integer linear program-

ming models for our problem are delivered. Results of the experimental studies con-

ducted on these models are presented in Chapter 4. Benders Decomposition method

implemented to our problem and Benders like heuristic algorithm are explained in

Chapter 5. Chapter 6 will introduce a new heuristic algorithm which works in a way

that all decision variables are decided by an iterative solution method. Chapter 7 in-

cludes experimental results for heuristic algorithms and their comparison with one of

the proposed mathematical models. Finally, in Chapter 8, the main findings obtained

from this study and future research directions are delivered.
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CHAPTER 2

BACKGROUND ON CLUSTERING AND LITERATURE REVIEW

As stated by Xu and Wunsch (2005), in the literature, there are many studies in various

disciplines, such as marketing, biology, economy and medicine which use clustering

in the literature. In this chapter, basic terminology about clustering, commonly used

clustering approaches and studies related to our problem and their contribution to the

literature will be discussed. In Section 2.1, definition of the clustering problem, its

properties and solution approaches will be introduced. Then, we describe the need

for reducing the size of data sets in Section 2.2. In this section, advantages and dis-

advantages of different dimension reduction methods will be discussed. Next Section

2.3 will introduce the studies on clustering and feature selection in clustering prob-

lems. Lastly, simultaneous clustering of data points and features will be discussed in

Section 2.4.

2.1 Clustering Problems

Cluster analysis is an unsupervised learning technique used to figure out the hidden

similarities of data points in order to designate the relationship between them. Data

sets are grouped by considering the similarities of data points according to predefined

similarity measure. By this way, similar data points are grouped in a cluster whereas

dissimilar ones are assigned to different clusters.

Selection of the similarity measure can be considered as one of the main challenges

of clustering problem. Data sets may include quantitative (continuous or binary) or

qualitative (categorical) features which represent the properties of the data points.

Therefore, choice of the similarity measure highly depends on the type of the features.
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• Quantitative Features: Similarity is measured with any distance metrics like

L1 − norm or L2 − norm where data sets contain only continuous features.

• Qualitative Features: There are some special similarity measures like Ham-

ming Distance, Rand Index, and Jaccard Coefficient that can be used with cat-

egorical features.

In clustering problems, selection of objective function is also an important issue. The

definition of clustering problem states that obtained clusters should be well-separated

since dissimilar data points are aimed to be grouped into different clusters. There-

fore, the distance between clusters should be maximized. This aim is named as sep-

aration in the literature. Mostly used separation measures are linkage metrics such

as complete-link or single-link when separation is taken as the point-wise distance.

Those measures consider data points grouped in different clusters, and calculate the

pairwise distance between those data points. Complete-link takes two farthest data

points from different clusters and calculates the distance between those data points,

whereas single-link takes into account the closest data points of different clusters to

measure separation. Also, cluster analysis puts similar data points into the same clus-

ter and those data points should be close to each other. It is named as compactness

and this measure should be minimized. In the literature, several compactness mea-

sures are proposed which can be grouped into two categories as representative point

based and individual point-wise compactness measures. Representative point based

compactness measures define similarity as the distance between a cluster representa-

tive and data points in that cluster. On the other hand, pairwise data point similarities

within a cluster are used in individual point-wise compactness measures instead of

the similarity between cluster representatives and data points. These measures per-

form differently depending on the used clustering algorithms and properties of the

data types. There are some studies that both of those measures are used as objec-

tive functions separately. Also, a combination of those measures is used as a single

objective in the literature like the ratio of separation and compactness which will be

maximized.

Due to the nature of the data sets, the true cluster structures and number of clusters

in a data set cannot be known in advance. Using different similarity measures or ob-
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jective functions may result in obtaining different clustering solutions. Evaluating the

obtained clustering solutions is not straightforward since there is no label information.

Due to these issues, in the literature, there are several clustering algorithms. Accord-

ing to Jain et al. (1999), those approaches can be classified under two main categories

namely partitional clustering algorithms and hierarchical clustering algorithms.

2.1.1 Partitional Clustering

Clusters are formed around the cluster centers which are representatives of the clus-

ters. Due to the definition, partitional clustering methods are also known as center-

based clustering. They can be classified based on the assignments of the data points:

• Hard Clustering: Each data point should only be assigned to one cluster cen-

ter, and disjoint clusters will be obtained.

• Soft Clustering: Assignment of a data point to a cluster will be associated with

the membership value. That means, a data point may be assigned to multiple

clusters with a probability.

Total distance between data points and their cluster center is the mostly used objective

function in partitional clustering algorithms. Due to the type of the objective function,

a data point is closer to the cluster center of the assigned cluster, than the other cluster

centers. Partitional clustering algorithms require lower memory and time, and they

are good at clustering large data sets. The main problem of these algorithms is that

the number of clusters should be given in advance to the algorithm. Also, they only

work well with data sets with all quantitative features. Besides, clustering solution

will differ depending on the initial cluster centers. Therefore, the performance of the

algorithms highly depends on the initial selection of cluster centers.

K-means (MacQueen, 1967) and PAM (Kaufman and Rousseeuw, 1990), which is a

kind of k-medoid clustering, are the commonly used partitional clustering algorithms,

in the literature. Both of these algorithms work in an iterative fashion while trying

to minimize the distance between data points and their cluster centers. Starting with

randomly selected initial cluster center, assignment of each data point to a cluster
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is performed. With these assignments, new cluster centers are calculated, and these

steps are repeated until assignments of data points do not change. There are two main

differences between those algorithms. K-means tries to minimize the total squared

distances, while PAM minimizes the sum of distances between data points and their

cluster centers. Hence, the latter is less sensitive to the outliers. Also, cluster centers

are selected among data points in PAM, whereas cluster centers are the means of all

the data points within clusters in K-means algorithms. In both of these algorithms,

hard clustering is performed, that is, each data point is only assigned to one cluster.

Fuzzy C-Means (FCM) (Bezdek et al., 1984) and Probabilistic Distance Clustering

(PD-Clustering) (Ben-Israel and Iyigun, 2008) are the approaches for the soft cluster-

ing. Those algorithms also work in iterative manner, but there is also a membership

value for each data point to each center. In each iteration, centers of the clusters and

membership value of data points are computed until convergence. Between these two

algorithms, objective function, calculation of membership value and calculation of

cluster centers differ. Convergence criteria is also different among those algorithms.

The former stops when the objective function value does not change, whereas the

latter terminates when there is no change in the center locations anymore. These

methods are useful when the boundaries among clusters are not well-separated.

2.1.2 Hierarchical Clustering

Hierarchical clustering creates nested partitions of data sets. There will be a hierar-

chical relation between the created clusters, and those clusters are represented with

dendrograms. Different partitions of the data sets can be found at each level of these

tree-like structures. Algorithms of this type can be grouped into two, namely divisive

methods and agglomerative methods.

Divisive methods, which are also known as top-down approaches start with a single

all-inclusive cluster and split the chosen cluster into two until having only clusters

with one data point. Whereas agglomerative methods (bottom-up approaches), start

with the individual clusters that include single data point and merge clusters at each

iteration until getting a single all-inclusive cluster. Agglomerative methods try to

minimize the linkage criterion with selected distance metric while merging the clus-
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ters. Single-link and complete-link are the most commonly used linkage criteria. As

defined before, in single-link, the proximity of the clusters is defined as the distance

between the two closest points of different clusters. At each step, two clusters with

the minimum single-link are merged. In complete-link, the distance between the far-

thest points of two different clusters is considered as a proximity. Algorithm merges

two clusters with the smallest complete-link.

Main advantage of hierarchical clustering is that the number of clusters is not neces-

sarily be given in advance. Also, they can be used for qualitative data sets as well as

quantitative ones. However, they are sensitive to noise and outliers. Also, they are

computationally expensive comparing to partitional clustering. Besides, the mistake

made in any iteration cannot be fixed.

CURE (Guha et al., 1998) and BIRCH (Zhang et al., 1996) are the well-known hier-

archical clustering algorithms used in many applications.

2.2 Dimension Reduction in Clustering

Data features (attributes) represent the properties of data sets. Each feature stores

some information about the data point. As the number of features increases, the

dimensionality of the data set increases as well. Therefore, understanding the data

becomes difficult and the chance of obtaining useful information decreases. The phe-

nomenon is known as “Curse of Dimensionality” in the literature.

Data sets may include relevant and irrelevant(or redundant) features. Irrelevant and

redundant features do not contain useful information to analyze the data (Dy and

Brodley, 2004). The difference between redundant and irrelevant features can be

seen in Figure 2.1. Figure 2.1 (a) shows that clusters can be identified by using either

feature x or y. Therefore, we can eliminate one of them while clustering the data set.

However, in Figure 2.1 (b), feature y does not contain any information to separate

data points of two clusters. That means, when it is eliminated, we do not lose any

information to identify clusters. Even it would be beneficial to eliminate feature y to

obtain clusters in less computing time. As in Figure 2.1 (c), both features x and y

should be used together to identify clusters. They are both relevant features.
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Figure 2.1: Examples for Redundant and Irrelevant Features

In order to extract meaningful information from a data set, dimension reduction is an

important step for machine learning problems. In order to decrease the size, feature

extraction or feature selection algorithms can be applied (Alelyani et al., 2013). Both

of these methods improve prediction power of the clustering, reduce computational

requirements and effects caused by the “Curse of Dimensionality”.

2.2.1 Feature Extraction in Clustering

Feature extraction methods decrease the size of feature set by projecting the original

features into a new feature space with a lower dimension. The original features are

combined, so new features are created. Since the combination of original features are

used, the interpretation of the results will be difficult. Also, it can be noted that noisy

data will adversely affect the performance of the feature extraction methods since the

transformation of data considers all data.

Principal Component Analysis (PCA) can be given as an example for the most com-

monly used feature extraction methods. The method uses covariance matrix to gen-

erate eigenvalues and eigenvectors. We will obtain principal components in order of

significance by ranking eigenvectors in order of their corresponding eigenvalues in

descending order. Principal components are new uncorrelated variables which are

the linear combinations or mixtures of the initial variables. Some of the principal

components are eliminated since they include less information about variability of

the data. However, Law et al. (2004) argue that using the features with high variance

does not indicate that those features are meaningful for clustering.
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2.2.2 Feature Selection in Clustering

Feature selection uses original features throughout the process and selects a subset of

original features for analyzing the data. The subset of features is selected based on the

underlying distribution pattern in the case of unsupervised learning or the relevance

of label information in the case of supervised learning (Alelyani et al., 2013).

Feature selection approaches can be grouped into three main categories as filter meth-

ods, wrapper methods, and hybrid methods in data mining. Here, we shortly explain

these methods through the clustering problems.

Filter Methods

Filter methods are performed prior to the clustering algorithms. Therefore, quality of

the features are not measured with clustering analysis. In these methods, the scores of

features by a suitable ranking criterion are computed. Features that have lower scores

than the predefined threshold value are removed from further analysis. The resulting

feature subset is provided as an input to clustering (Chandrashekar and Sahin, 2014).

In most cases, feature dependencies are ignored and score of each feature is separately

considered. These techniques are named as univariate filter methods. They may

adversely effect the performance of the clustering algorithms (Saeys et al., 2007).

To overcome this drawback, multivariate filter methods are proposed which take into

account the dependencies and correlations between features. So, they can handle

redundant features as well as irrelevant ones.

Filter methods are performed only once before the clustering since they are indepen-

dent from the clustering algorithm. Therefore, they are computationally simple and

fast, and useful for high-dimensional data sets. However, the ignorance of the inter-

action between feature selection and clustering algorithm can be considered as the

disadvantage of these methods.

Wrapper Methods

Wrapper methods search the feature space to obtain the best subset. In order to find

the best subset, wrapper methods start with any subset of features, then evaluate the
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performance of the subset by clustering quality. These methods iteratively evaluate

the performance of the possible feature subsets until the desired level of quality is

obtained. Since considering all possible subsets of feature space is almost impossible,

heuristic search algorithms are used mostly.

As opposed to filter methods, wrapper methods are computationally expensive since

they interact with the clustering algorithm in evaluating the feature subsets, (Cai et al.,

2018). However, wrapper methods provide better clusters since the interaction be-

tween clustering algorithm and feature selection is not ignored. But, their perfor-

mance may change depending on the used clustering algorithm and there is a risk of

overfitting.

Hybrid Methods

Hybrid methods try to eliminate the drawbacks of filter and wrapper methods. They

can be considered as a combination of those two methods. Hybrid methods are com-

putationally inexpensive than wrapper methods and they can capture relationships

between features contrary to filter methods. Filtering method is used to obtain candi-

date subsets of features. By this way, number of subsets to be evaluated is reduced.

Candidate subsets are evaluated with clustering algorithms as in wrapper methods.

So far a brief background for the clustering problem and the feature selection problem

are provided. The literature review related to our problem will be covered in the rest

of this chapter.

2.3 Literature Review for Clustering and Feature Selection in Clustering

In this study, mathematical models and heuristic algorithms are proposed to obtain a

solution for the clustering problem with feature selection. Therefore, this chapter will

cover exact solution methods and heuristics approaches used for both clustering and

feature selection in clustering. It can be noted that there are not many studies aiming

to obtain exact solution for clustering or feature selection in clustering since there is

no prior label information.
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2.3.1 Exact Solution Methods for Clustering

Apart from traditional algorithms proposed to solve clustering problem, the problem

is also handled within the framework of operations research. It is observed that the

center-based clustering problem can easily be modeled and solved as an optimization

problem due to its similarity to p-median facility problem (Olafsson et al., 2008).

Vinod (1969) provides two mathematical formulations for the grouping problem where

one of them uses the principle of facility location problems. The study shows the anal-

ogy between the facilities and the cluster centers, and also customers and data points.

Predetermined number of cluster centers are selected and data points are allocated to

a cluster as in the facility location problems. Therefore, there are two binary decision

variables which indicate if a data point is selected as a cluster center and whether a

data point is assigned to a cluster or not. The formulation aims to minimize the total

cost of assigning all data points to a cluster.

In the years following this study, Rao (1971) extends the study published by the Vinod

(1969) by considering two different objective functions, minimizing the maximum

distance within clusters which is the farthest distance between data points which are

assigned to the same cluster, and minimizing the total within cluster sum of square

distances. The study takes definition of two binary decision variables as given in

the previous study. Also, Bradley et al. (1996) use mathematical model to decide

only cluster centers. They divide the problem into smaller problems, and they assign

each data point to its closest cluster after finding the cluster centers. They actually

implement the K-medoid algorithm within the concept of optimization. Note that, in

all of these studies, cluster centers are selected among the data points.

To obtain optimal solutions for clustering problem, all feasible solutions must be eval-

uated. Unfortunately, with the increase in the problem size, the number of feasible

solutions grows exponentially. For this reason, enumeration of all solutions is com-

putationally infeasible for large problems. Some problems can be solved optimally

without explicitly enumerating all feasible solutions by using the branch and bound

solution method. In the literature, there are various studies solving clustering problem

with branch and bound procedure. Koontz et al. (1975) propose a branch and bound
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procedure where nodes of the tree include assignment of data points. Since they do

not propose a mathematical model in their article, Klein and Aronson (1991) combine

the branch and bound algorithm with modeling the clustering as an optimization prob-

lem. In order to find the optimal solution of the problem which has the same objective

functions used in Rao (1971), Brusco (2003) uses branch and bound algorithm pro-

posed by Klein and Aronson (1991) but the definition of lower and upper bounds are

changed in order to obtain tight bounds. The main similarity between those studies is

that they all consider cluster centers as anywhere in the vector space. Therefore, data

points are assigned to cluster itself not to the cluster center. Brusco and Stahl (2006)

cover branch and bound applications in clustering and also for feature selection with

different objective functions.

2.3.2 Heuristic Approaches for Clustering

For the solution of the mathematical model of clustering problem proposed by Vinod

(1969) and Rao (1971), a heuristic algorithm which includes Lagrangian relaxation

is proposed by (Mulvey and Crowder, 1979). They relax the assignment constraint

which is difficult to meet by adding it to objective function. Algorithm starts with

finding a good initial clustering solution and cluster centers. By using subgradient

method a lower bound on the objective function has been obtained. Since the as-

signment constraint is relaxed in the subgradient method, the solution may not be

feasible. Therefore, in the next step, each data point is assigned to a closest cluster

center, and a feasible solution and an upper bound on the objective function are ob-

tained by this way. The heuristic algorithm terminates when the gap between lower

and upper bounds is smaller than the predefined threshold or iteration limit has been

reached.

Among partitional clustering algorithms, K-means clustering is known to be more

sensitive to outliers in comparison with the K-medoid clustering. Here, we will

cover some of the studies enhancing K-medoid clustering. PAM (Partitioning Around

Medoids) (Kaufman and Rousseeuw, 1990) is a benchmark algorithm for K-medoid

clustering. The algorithm consists mainly two steps which are build and swap. Ini-

tial solution is generated randomly in the build step, that is, initial cluster centers are
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selected among data points (medoid). In the swap step, for each of the non-medoid

data points, the change in the objective function is calculated when that point is con-

sidered as a center in its cluster instead of the current medoid of that cluster. The

data point which causes the most decrease in the objective function is selected as a

new medoid. The algorithm is repeated until there is no change in the objective func-

tion. In the literature, there are many studies improving the performance of PAM

algorithms. However, we will cover the most recent and distinctive ones.

In classical PAM, all possible swap calculations are made in order to find the highest

decrease in the objective function in each step. Reynolds et al. (2006) discuss a way

to speed up PAM by decreasing the calculations in swap step. They show that the

change in the objective function can be decomposed into two components, where the

first component depends only the removal of a medoid, the second component de-

pends only on the selection of a new point as cluster center. Also, in order to decrease

the computational time of PAM, Park and Jun (2009) propose a new algorithm for K-

medoid clustering where it differs from the traditional K-medoid clustering in terms

of initial selection of cluster centers. The new algorithm tends to select the k most

middle data points as initial centers. Then, the algorithm continues with assigning

all data points to the closest cluster centers. New medoid of each cluster is selected

among the data points in that cluster, which is the one that has minimum total dis-

tance to other data points in its cluster. Instead of using distances directly, Zadegan

et al. (2013) use a rank matrix which is constructed by sorting the distance between

each data point and storing the indices of data points starting from the most similar

one. New medoids are selected according to a new measure named as hostility which

simply use the sorted ranking and find the data point that is in the middle of the group.

In this algorithm, the convergence is defined by the number of iterations.

Sağlam et al. (2006) try to minimize the maximum cluster diameter as studied by Rao

(1971) using mathematical models but they observed that performance of the model

is not comparable with the other studies in the literature in terms of computational

time. Therefore, they have proposed a heuristic algorithm which starts with fixing

the assignment of some of the data points and taking them as a fixed points in their

mathematical formulation. In order to eliminate the poor quality clusters, data points

are reassigned to clusters after clustering solution is obtained.
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The Vertex Substitution Heuristic proposed by Teitz and Bart (1968) performs an

iterative search among all possible centers. It replaces selected center with an unse-

lected data point that will decrease the objective function where it is a minimization

problem. The process is repeated until the objective function converges during the ex-

change steps. Since the algorithm starts with random selection of centers, the result-

ing solution will not be globally optimal solution in general. Hence, it will generate

upper bound to the optimal solution of the p-median clustering.

Brusco and Köhn (2008) propose three stages heuristic method to select predefined

number of cluster centers and assign data points to a cluster while trying to minimize

sum of Euclidean Distance between cluster centers and data points. In the first stage,

Vertex Substitution Heuristic proposed by Teitz and Bart (1968) is implemented. The

stage is performed multiple times in order to obtain tight upper bounds and eliminate

the effect of starting centers. In the second stage, Lagrangian Relaxation method is

applied. The relaxed problem is solved by iterative subgradient optimization method,

and lower bound on p-median clustering problem is obtained. If the lower bound ob-

tained by Lagrangian Relaxation and the upper bound obtained by Vertex Substitution

Heuristics is the same, they state that the solution is optimal. If it is not optimal, then

at the third stage, branch and bound algorithm is applied.

Kim et al. (2009) follow the optimization method that has been suggested by Shi

and Ólafsson (2000) named as Nested Partitions to obtain clusters. At the beginning

of the algorithm the feasible region is divided into subregions, and it is assumed

that there is a subregion which is promising to have the best solution. The most

promising region is divided into predefined number of subregions, and what remains

is aggregated into one region called the surrounding region. To evaluate each of these

regions, a randomly generated clustering solutions is used, and a promising index is

calculated to select the next promising region. If one of the subregions is the best, this

region becomes the most promising region. If the surrounding region is the best, the

algorithm backtracks to a larger region that contains the old most promising region.

It is observed that the idea is actually similar to the branch and bound algorithm.

Fahad et al. (2014) review the traditional clustering algorithms in their study in detail.

There are also several types of metaheuristics used in clustering such as Simulated
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Annealing, Tabu Search, and Evolutionary Algorithms. Nanda and Panda (2014)

provide detailed review of those metaheuristics used in partitional clustering.

2.3.3 Exact Solution Methods for Feature Selection in Clustering

In the classical clustering problem, clusters are identified using all features but as it

is mentioned there may be irrelevant variables that may worsen the performance of

clustering algorithms. In order to eliminate those irrelevant features, feature selection

can be applied in clustering. Hidden clusters in the data sets are identified by only

using those features that are not eliminated. This subsection and the following one

will review the feature selection methods used in clustering. It should be noted that

all of those studies use the same subset of features in order to identify clusters.

As in clustering problems, feature selection is also taken into consideration within the

context of operations research. Optimal subset of features can be obtained with ex-

haustive search which considers all possible combinations, but it is computationally

expensive. Therefore, Narendra and Fukunaga (1977) propose a branch and bound

procedure for selecting the subset of features. In this procedure, features are elim-

inated depending on the predetermined criterion function at each node. In order to

search the tree effectively and decrease the computational time, there are several dif-

ferent approaches to branch and bound implementation on feature selection. Yu and

Yuan (1993) claim that reducing the calculation of criterion function while searching

the tree will decrease the computational time. The proposed method says that crite-

rion function can be calculated only at the leaf node of a path which includes a single

branch. Keeping information about the previously eliminated feature sets may reduce

the search space by eliminating some of the paths without calculating the criterion

function. Therefore, Chen (2003) proposes to keep partial paths which have been al-

ready eliminated in previous nodes. The author ignores paths containing at least one

of those partial paths before evaluating the criterion function. Somol et al. (2004) use

a simpler prediction function instead of the actual criterion function. If the node is

eliminated according to prediction function, then the actual criterion function is also

calculated. Casasent and Chen (2003) and Nakariyakul and Casasent (2007) propose

to start searching the tree from different levels other than the root node.
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However, none of those studies deliver a mathematical model for feature selection

problem. Mathematical models of clustering problem (Vinod (1969); Rao (1971))

are modified by Benati and García (2014), and distances between data points are

calculated depending on the selected subset of features. They define a new decision

variable additional to the decision variables used in clustering problem. The new

decision variable represents the selection of a feature. Proposed model minimizes the

total distance between data points and cluster centers through selected features. The

model decides the best subset of features, cluster centers and partitions of the data set

into clusters simultaneously. In this study, two linearization methods are used which

are direct linearization and radius formulation proposed by García et al. (2011) as an

effective method that can be used in solving p-median problem.

2.3.4 Heuristic Approaches for Feature Selection in Clustering

A heuristic algorithm to select features to increase the performance of the clustering

algorithms is proposed by Brusco and Cradit (2001). Suppose that one clustering

solution is identified using the already selected features and a second solution is ob-

tained by using only one unselected feature, let say j. At each step of the algorithm

two clustering solutions are compared using Adjusted Rand Index. A large Adjusted

Rand Index suggests that selection of feature j would not worsen the current cluster-

ing solution. On the contrary, if the Adjusted Rand Index is small, it can be concluded

that feature j should not be added to the set of selected features since it masks the cur-

rent clustering solution. At each iteration, the feature with the highest Adjusted Rand

Index is added to the subset of features.

Brusco (2004) works on clustering problem in the presence of irrelevant features. In

order to eliminate those features, a heuristic approach is proposed. The assumptions

of the proposed method are that clusters are known in advance and data set should

only contain binary features. The heuristic algorithm starts with selecting subset of

features evaluated on subset of data points. In the next step, additional features among

the remaining ones are tested, and they are added to the subset one at a time by

evaluating the clusters obtained from k-means algorithm.
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Ólafsson and Yang (2005) use the Nested Partitions method described in the subsec-

tion which reviews the heuristic algorithms for clustering problems. The method is

implemented to feature selection problem by defining feasible region as it contains

all set of feature subsets. Rest of the algorithm is following the same idea. Yang and

Olafsson (2006) enhance this study by proposing to use sample of features instead

of using all features. The backtracking step of the algorithm enables to fix erroneous

decisions. Also, in this study, it is suggested that the sample rate can be adjusted

dynamically according to the observed frequency of backtrackings. This adjustment

eliminates the need to know the optimal sample size in advance.

An exhaustive search algorithm for selecting the subset of features has been proposed

by Steinley and Brusco (2008). For all possible subset of features, the best clustering

solution is identified by using K-means algorithm with multiple initialization. Then,

the proportion of explained variation from the clustering process is computed for each

clustering solution, V AF . For each subsets at same size, the subset with maximum

V AF is selected as the best solution. The algorithm selects the best subset size,

according to a ratio between the reduction in the V AF when subset size is increased

from s to s+1 and the reduction in V AF when the subset size is increased from s−1

to s. The subset of features that produces the maximum ratio is selected as the best.

In their study, Andrews and McNicholas (2014) aim to find the features which simul-

taneously minimize the variance within cluster and maximize the variance between

clusters. Apart from variance, they also consider the correlation between features

while selecting the features. Their algorithm starts with calculating the variance on

each feature, then those variances are sorted in ascending order. The first feature

which has the minimum variance is selected. The algorithm searches features in the

ascending order of variances and select the features which have lower correlation than

predefined threshold with previously selected features.

Benati et al. (2018) propose two heuristic algorithms for feature selection in cluster-

ing. The biggest assumption in their study is that clusters centers are taken as given.

Therefore, they aim to find the assignment of each data point to a cluster and rele-

vant features of each cluster. In their first algorithm, they divide the problem into

two smaller problems as best-assignment (BA) and best-feature (BF). In the BA, data
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points are assigned to the cluster centers through the selected features. BF tried to

select best features for each cluster. For finding those features, the total distances

over features are sorted in increasing order and the predefined number of features

are selected based on this sorted distances. The second algorithm basically adds and

drops features from the selected feature set. Algorithm removes a feature, which in-

creases the objective function less, from the set of unselected features and adds it to

selected features set. Also, in the following step, algorithm removes a selected fea-

ture from the set by considering the maximum decrease in the objective function for

a minimization problem.

Xue et al. (2015) provide a detailed review on feature selection used in data mining

techniques, and Alelyani et al. (2013) cover feature selection methods specifically

used in clustering. Also, nature inspired metaheuristics for feature selection are pro-

vided in comprehensive review conducted by Diao and Shen (2015).

Reviewed feature selection methods ignore the fact that selected subset of features

may have different significance for each cluster. The study of Frigui and Nasraoui

(2004) is the closest study to our problem. They use different subsets of features in

order to identify the clusters. But, different than our problem, they assign weights to

features instead of selecting the features. Also, in the next section, studies where both

data points and features are clustered simultaneously will be delivered.

2.4 Local Clustering and Feature Selection

It is possible that the subset of features relevant to a cluster may not be relevant as

well for a different cluster. That is, there may be no common subset of features that

can be used to identify all clusters. There are some studies proposed to overcome

this problem, and those studies cluster both data points and features simultaneously,

which we will call them as local clustering algorithms. Following subsections will

summarize these algorithms which are relatively new topics in data mining concept.

As a matter of fact, the name of the local clustering and feature selection methods are

used interchangeably in the literature which leads to confusion about the types. In this

study, we tried to grouped them into two titles, subspace clustering and bi-clustering.
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2.4.1 Subspace Clustering

Subspace clustering is a technique which aims to find all clusters within all possible

subspaces. There are two major types of subspace clustering depending on the search

strategy. Top-down algorithms start with finding an initial clustering using all dimen-

sions and then evaluate the subspaces of each cluster. With the top-down algorithms,

partitions of data sets are obtained, that is, each data point is assigned to only one clus-

ter. PROCLUS (Aggarwal et al., 1999) and COSA (Friedman and Meulman, 2004)

are the well-known examples of top-down subspace clustering algorithms. Bottom-

up algorithms aim to find dense regions in low dimensional spaces and then combine

those dense regions to form clusters. In the resulting clusters, one data point can be

assigned to different clusters simultaneously. CLIQUE (Agrawal et al., 1998) is one

of the bottom-up approaches, and it is also the pioneering study that attempts to find

subspace clustering. Both algorithms define similarity of data points as a distance,

and data points in the same cluster should be near to each other considering only the

subset of features.

2.4.2 Bi-clustering

Contrary to subspace clustering, bi-clustering collects data points which follow a sim-

ilar behavior into a cluster. Hence, bi-clustering is also named as pattern-based clus-

tering in the literature. Here, the pattern between data points generally relates to the

correlations among the features. Bi-clustering allows that a data point or a feature

should be able to belong to more than one cluster, to only one cluster, or to no cluster

at all. There can be overlapping clusters as in subspace clustering. Bi-clustering al-

gorithms are originally used in the analysis of microarray gene expression data, and

Cheng and Church (2000) is the pioneering study of this type. In the literature, there

are different approaches on bi-clustering, and they are reviewed on articles written by

Pontes et al. (2015) and Padilha and Campello (2017). Kriegel et al. (2009) provide a

brief review of both subspace clustering and bi-clustering with their applications.

Consider a data set represented by a matrix, D, where rows denote the data points

and columns denote the features. Matrix D is defined by the set of data points, X =
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{x1, x2, ..., xn}, and set of features, Y = {y1, y2, ..., yn}. DIJ = (I, J) represents a

submatrix of D which includes only the entries in I and J , where I is a subset of data

points X , I ⊆ X , and J is a subset of features Y , J ⊆ Y . In classical clustering,

either cluster of data points, DIY , or cluster of features, DXJ , is identified. However,

it is possible that there are multipleDIJ submatrices that can be identified where each

cluster meets the predefined similarity criterion, and local clustering algorithms can

be used to obtain those submatrices.

(a) (c) (d)

(e) (f) (g)

(b)

Figure 2.2: Clustering Problems with Different Properties

Figure 2.2 covers the clustering problems with different properties. Classical cluster-

ing problem with hard assignment and no feature selection is shown in Figure 2.2 (a).

Its extended version with feature selection is in Figure 2.2 (b). In this type, selected

features are considered as relevant for both of the clusters. Figure 2.2 (c) represents

the local feature selection for hard clustering problem. All features are used by only

one of the clusters in this type. However, in Figure 2.2 (d), some of the features are

not used. The clustering problem shown in Figure 2.2 (e) allows that features may be

used by more than one cluster. The difference between Figure 2.2 (e) and Figure 2.2

(f) is that as well as features data points may be assigned to more than one cluster in

the latter. In the last case, Figure 2.2 (g), a data point or a feature can belong to more

than one cluster, to only one cluster, or to no cluster at all.
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Our problem in this study to feature selection in clustering are similar to subspace

clustering and bi-clustering in the sense that we are trying to group data sets into

clusters using different subset of features. However, we are not trying to find all

cluster in all subspaces. Also, different from the bi-clustering, we construct disjoint

clusters where each data point are assigned to only one clusters. Bi-clustering is a

type of clustering shown in Figure 2.2 (g), whereas the clustering solution identified

by our approaches may be as in Figure 2.2 (b), Figure 2.2 (d), and Figure 2.2 (e).

To sum up, we work on clustering problem with feature selection but it is considered

that clusters may lay in different subset of features. Therefore, we will select features

specific to the clusters. To the best of our knowledge, we are contributing to the liter-

ature by using optimization methods and proposing structured heuristic algorithms to

solve clustering problem and cluster based feature selection simultaneously.

The next chapter mainly provides the characteristics of the problem and mathematical

model formulation proposed for the solution of the defined problem.
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CHAPTER 3

PROBLEM DEFINITION

In Chapter 2, background information about clustering and its variations were intro-

duced, and the related literature both for clustering and feature selection in clustering

problems were reviewed. In this chapter, characteristics of the problem considered

in this study will be discussed. After defining the problem, proposed mathematical

models will be provided.

3.1 Problem Statement

Clustering algorithms try to group alike data points into the same cluster and assign

dissimilar ones to different clusters. In this study, each cluster will be represented by

a center, and that center will be one of the data points assigned to that cluster. The

center is named as medoid. Also, each data point will be assigned to only one cluster.

Similarity measure used in clustering can be defined differently depending on the

features of the data set. In this study, we only use data sets which contain continuous

features. So, the similarity between data points and cluster centers are calculated by

using L1 − norm. Let data points vi and vj be defined in Rm, here m is equal to |M |
where M is the set of features and |.| is used to denote the cardinality of a set. Then,

L1 distance between data point i and data point j will be as follows:

dij =
m∑
k=1

dijk, (3.1)

where dijk =| vik − vjk | .
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The main objective will be minimizing the sum of distances between the data points

and their cluster centers. Consider a data set where the set of data points and fea-

tures are shown by N and M , respectively. By assuming all features to be used in

clustering, the objective function of the problem will be as follows:

minimize
P∑

p=1

|M |∑
k=1

|N |∑
i=1
i∈Cp

dicpk (3.2)

Here, P is the number of clusters in the problem, and |M | and |N | stand for the

number of features and number of data points. Cp denotes the data points assigned

to cluster p and cp represents the medoid of that cluster. Then, dicpk shows the L1

distance between data point i and cluster center cp through feature k. Notice that, this

objective function tries to minimize the compactness of the clusters.

In this study, the number of clusters is given in advance. If it is not given, the objective

function given in (3.2) will be minimized where the number of clusters is equal to the

number of data points, P = |N |.

Data sets may include irrelevant or redundant features which do not contain useful

information to form clusters besides the ones that are relevant. In order to obtain

meaningful clusters, relevant features should be selected. Hence, in this study, we

consider a clustering problem with feature selection. Selecting the features comes up

with the assumption that selected features have the same relevance for all clusters.

But, the feature set used to define each cluster might be different. That means, we are

constraining feature selection based on the clusters. Assume that Q features are used

to define each cluster, and a feature may be relevant to more than one cluster. The

objective function of the problem will be as follows:

minimize

P∑
p=1

|M |∑
q=1
q∈Qp

|N |∑
i=1
i∈Cp

dicpq (3.3)

where Qp denotes the features selected for cluster p. Rest of the notation used in (3.3)

are the same with the ones in (3.2).
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It is assumed that number of features used to define each cluster will be given in

advance, and it is same for all clusters. Note that, the objective function uses the

nonnegative terms. Value of the objective function stays the same or increases with

an increase in the number of features to be selected. Therefore, without constraining

the number of features to be selected, the model will only use one feature for each

cluster to minimize the compactness of clusters.

To sum up, our problem is center-based clustering where each data point is assigned

to only one of the clusters, and each cluster is represented by one of the data points

assigned to that cluster. The number of clusters is predefined in advance. Each cluster

is described by a different set of features, and the number of features to be selected

is given. Here, it is allowed that the same feature might be relevant for many other

clusters. The aim is to minimize the total distance between data points and their

cluster centers via selected features. The defined problem is named as clustering and

cluster based feature selection (CBFS).

The total number of possible solutions to the described problem with |N | = n data

points, |M | = m features, P clusters, and Q relevant features is computed as follows:

[
1

P !

P∑
p=0

(−1)p
(
P

p

)
(P − p)n

] [(
m

Q

)P]
(3.4)

The first term of (3.4) shows the number of ways to partition n data points into P

clusters, whereas the second term is the number of ways to select Q features out

of m features for P number of clusters. Table 3.1 provides the number of possible

solutions for various combinations of n, m, P, and Q. The table reveals that, even for

very small-sized problems, the solution space for CBFS is enormous. It shows that a

complete enumeration search over all possible cluster centers and relevant features is

computationally impractical for large problems.
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Table 3.1: The Number of Possible Solutions for Various Combinations of n, m, P,

and Q.

n m P Q
possible number

of solutions

20 4 2 2 1.887x107

20 6 2 2 1.180x108

20 6 2 3 2.097x108

20 4 3 2 1.254x1011

20 6 3 2 1.960x1012

20 6 3 3 4.645x1012

40 4 2 2 1.979x1013

40 6 2 2 1.237x1014

40 6 2 3 2.199x1014

40 4 3 2 4.377x1020

40 6 3 2 6.839x1021

40 6 3 3 1.621x1022

Consider the well-known facility location problem, namely p-median problem. If one

thinks that the centers in the clustering problem denote the facilities and data points

refer to the customers, then the clustering problem can be seen as a p-median prob-

lem. But, the customers are defined on the plane, and they have only two features

in the facility location problem. However, data points generally have more than two

features in the clustering problem. Also, in the facility location problem, there is no

discussion on feature selection, both x and y coordinates are important for the cus-

tomers. In our problem, feature selection is also crucial. If we do not select features

for each cluster and we only have two features, then our problem will be a p-median

problem. Because of the similarity between two problems, mathematical model for

the p-median problem may serve as a base model for our clustering problem.

In our problem, by using a center-based clustering approach, (i) locations of cluster

centers (ii) assignments of the data points to a cluster and (iii) selection of features

for each cluster are decided simultaneously. A mixed integer mathematical model is

proposed which minimizes the total distance between data points and cluster centers

via selected features. The details of the proposed model is given in the next section.
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3.2 Mixed Integer Programming Formulations

In this section, mathematical models proposed for the CBFS are delivered. In 3.2.1,

the proposed model is given. Since the model is nonlinear, we have used different

linearization techniques proposed in the literature. The following two subsections,

subsection 3.2.2 and subsection 3.2.3, give details of those linearized models.

3.2.1 A Nonlinear Mixed Integer Model for CBFS: NM

Consider a data set where N represents the set of data points and M is the set of

features where each data point is defined. We try to cluster the data sets into p clusters

where each cluster is described by q features. We need to find the centers for each

cluster, assign data points to a cluster and select the relevant features of the clusters.

Since we are using center-based clustering, each cluster has a center and the centers

should be selected from the data points.

The objective of the problem is to minimize the total distance between data points and

their cluster centers over the selected features of those clusters. The proposed model

NM will be:

(NM) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkzjkxij (3.5)

subject to: xij ≤ yj, ∀i, j ∈ N (3.6)∑
j∈N

xij = 1, ∀i ∈ N (3.7)

∑
j∈N

yj = p, (3.8)

∑
k∈M

zjk = q yj, ∀j ∈ N (3.9)

xij ∈ {0, 1}, ∀i, j ∈ N (3.10)

zjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈M (3.11)

yj ∈ {0, 1}. ∀j ∈ N (3.12)
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There are three decision variables in this formulation. A binary variable is defined

to decide whether a data point j is selected as a cluster center or not, yj . We have a

binary variable which takes 1 if a data point i is assigned to a cluster where data point

j is the center of that cluster, xij . Lastly, zjk is the binary decision variable stating

whether feature k is selected for the cluster where data point j is the center.

Constraint (3.6) ensures that data point i can only be assigned to the data point j if data

point j is a cluster center. Constraint (3.7) forces data point i to be assigned to exactly

one cluster since we are aiming to obtain disjoint clusters. Constraint (3.8) implies

that total number of clusters should be equal to p. Constraint (3.9) imposes that if

data point j is selected as a cluster center, then there should be q features selected for

this cluster. Constraints (3.10), (3.11) and (3.12) state that decision variables xij , zjk

and yj are binary variables, respectively.

In the Table 3.2, the notation used for mathematical formulations is summarized.

Table 3.2: Notation used for Mathematical Formulations

Sets

N Set of data points

M Set of features

Parameters

p Number of clusters that will be constructed

q Number of features that should be selected for each cluster

dijk Distance between data points i and j on feature k, i ∈ N ,

j ∈ N , k ∈M
Decision Variables

yj Binary decision variable as 1 if data point j is selected as a

cluster center, 0 otherwise, j ∈ N
xij Binary decision variable as 1 if data point i is assigned to

data point j, 0 otherwise, i ∈ N , j ∈ N
zjk Binary decision variable as 1 if feature k is selected for

cluster center j, 0 otherwise, j ∈ N , k ∈M
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It is observed that when decision variables representing the cluster centers and se-

lected features, yj and zjk, are binary variables, assignment variables xij may be re-

laxed to take continuous values. Due to the constraint (3.6), xij’s may take the value

of at most 1 at the optimal solution. Since we have positive terms in the objective

function, it will be minimized when each data point is assigned to only one cluster

instead of giving fractional values to xij’s. Therefore, xij’s will take integer values at

the optimal solution, and constraint (3.10) can be written as xij ≥ 0,∀i, j ∈ N .

The objective function of the proposed model contains the product of two decision

variables, zjkxij . So, the model NM has a nonlinear objective function. Following

sections introduce linearized models.

3.2.2 Linearized Model 1: LM1

Li (1994) proposes the following proposition for the product of two decision vari-

ables, where one of them is a continuous variable between 0 and 1, and the other is

a binary variable. This proposition can be used to reformulate the given nonlinear

model NM.

Proposition 1. A polynomial mixed 0-1 term w = zx, where z is a 0-1 variable and

x is a continuous variable, 0 < x ≤ 1, can be represented by the following linear

inequalities: (i) w ≥ x+ z − 1; (ii) w ≤ x ; (iii) w ≤ z; (iv) w ≥ 0.

Proof.

Case 1. Suppose w = zx. All inequalities will be satisfied for z = 0 or 1 since x

variables are continuous variables such that 0 < x ≤ 1.

Case 2. Suppose all inequalities are true. If z = 0, then we have w = 0 from

inequalities (iii) and (iv). If z = 1, it forces w = x from inequalities (i) and (ii). It

can be concluded that w = zx.

Therefore, if and only if w = zx, z = 0 or 1, and 0 < x ≤ 1, then (i)–(iv) are

satisfied.

31



By following the Proposition 1, the term zjkxij in (3.5) can be rewritten as wijk. The

following constraints should be added to the model NM.

wijk ≥ xij + zjk − 1, ∀i, j ∈ N, ∀k ∈M

xij ≥ wijk, ∀i, j ∈ N, ∀k ∈M

zjk ≥ wijk, ∀i, j ∈ N, ∀k ∈M

wijk ≥ 0, ∀i, j ∈ N, ∀k ∈M

Then the resulting linearized model (LM1) will be as given below.

(LM1) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkwijk (3.13)

subject to:

(3.6)− (3.9)

wijk ≥ xij + zjk − 1, ∀i, j ∈ N,∀k ∈M (3.14)

xij ≥ wijk, ∀i, j ∈ N,∀k ∈M (3.15)

zjk ≥ wijk, ∀i, j ∈ N,∀k ∈M (3.16)

wijk ≥ 0, ∀i, j ∈ N,∀k ∈M (3.17)

xij ≥ 0, ∀i, j ∈ N (3.18)

zjk ∈ {0, 1}, ∀j ∈ N,∀k ∈M (3.19)

yj ∈ {0, 1}. ∀j ∈ N (3.20)

Since constraints (3.6)–(3.9) are the same, they are not written again in this formula-

tion.

There are different conditions for the right hand side value of the constraint (3.14). If

any one of the variables xij or zjk is at their upper bounds, then

if xij = 1, then wijk ≥ zjk

if zjk = 1, then wijk ≥ xij

if xij = 1 and zjk = 1, then wijk ≥ 1
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Since it is a minimization problem,

if xij = 1, then wijk = zjk

if zjk = 1, then wijk = xij

if xij = 1 and zjk = 1, then wijk = 1

Note that, it is at most 1 in either cases.

If at least any one of the variables xij or zjk is 0, then the right hand side does not

take positive value. Therefore, wijk will be 0.

if xij = 1 and zjk = 0, then wijk = 0

if xij = 0 and zjk = 1, then wijk = 0

if xij = 0 and zjk = 0, then wijk = 0

That means, constraints (3.15) and (3.16) are satisfied at every optimal solution, they

can be dropped from the formulation. The reduced model will be as follows.

(LM1) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkwijk (3.21)

subject to: xij ≤ yj, ∀i, j ∈ N (3.22)∑
j∈N

xij = 1, ∀i ∈ N (3.23)

∑
j∈N

yj = p, (3.24)

∑
k∈M

zjk = q yj, ∀j ∈ N (3.25)

wijk ≥ xij + zjk − 1, ∀i, j ∈ N, ∀k ∈M (3.26)

wijk ≥ 0, ∀i, j ∈ N, ∀k ∈M (3.27)

xij ≥ 0, ∀i, j ∈ N (3.28)

zjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈M (3.29)

yj ∈ {0, 1}. ∀j ∈ N (3.30)
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3.2.3 Linearized Model 2: LM2

By following the linearization method used by Benati et al. (2018), we propose to use

the following Proposition 2 in order to linearize the product of two decision variables:

Proposition 2. A polynomial mixed 0-1 term w = xz, where both x and z are 0-1

variables, can be represented by the following linear constraints:

(i)
∑
k∈M

wijk = q xij, ∀i, j ∈ N

(ii) wijk ≤ zjk, ∀i, j ∈ N,∀k ∈M

(iii) wijk ∈ {0, 1}, ∀i, j ∈ N,∀k ∈M

Proof.

Case 1. Suppose wijk = zjkxij . All inequalities will be satisfied;

if xij = 0, wijk = 0 from (i) and (iii)

if xij = 1,
∑
k∈M

wijk = q, and
∑
k∈M

wijk ≤
∑
k∈M

zjk from (ii). Since xij = 1 we know

that yj should also be 1. Therefore, (ii) is satisfied.

Case 2. Suppose all inequalities are true. If zjk = 0, then we have wijk = 0 from (ii)

and (iii). If zjk = 1, it forces wijk = xij from (i) and (iii). It can be concluded that

wijk = zjkxij .

Therefore, if and only if wijk = zjkxij , where both xij and zjk’s are binary, then

(i)–(iii) are satisfied.

Using Proposition 2, the term zjkxij in (3.5) of model NM will be written as wijk and

the given constraints will be added to model. Then, the new linearized model which

is called model LM2 will be as follows.
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(LM2) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkwijk (3.31)

subject to:

(3.6)− (3.9)∑
k∈M

wijk = q xij, ∀i, j ∈ N (3.32)

wijk ≤ zjk, ∀i, j ∈ N, ∀k ∈M (3.33)

wijk ∈ {0, 1}, ∀i, j ∈ N, ∀k ∈M (3.34)

xij ∈ {0, 1}, ∀i, j ∈ N (3.35)

zjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈M (3.36)

yj ∈ {0, 1}. ∀j ∈ N (3.37)

The first four constraints, (3.6)–(3.9), are the same with the ones in model NM. (3.32)

ensures that if data point i is assigned to cluster center j, then q number of wijk should

be equal to 1. (3.33) is used for satisfying the condition that wijk may take positive

value if the feature k is selected for the cluster center j. Otherwise, wijk will be 0.

When the model is analyzed, it is observed that since xij’s are either 0 or 1, even if yj

is relaxed to take any value between 0 and 1, it will always take 0 or 1 at the optimal

solution due to constraint (3.6).

Also, when zjk’s are binary decision variables, the right hand side of (3.33) will be 0

or 1. So, wijk is bounded by 0 or 1. Since wijk have nonnegative coefficients in the

objective function, and we are solving a minimization problem, wijk will be equal to

0 or 1 if zjk is equal to 1 instead of taking fractional values.

Based on those observations, the model was updated and the resulting model is pro-

vided below.
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(LM2) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkwijk (3.38)

subject to: xij ≤ yj, ∀i, j ∈ N (3.39)∑
j∈N

xij = 1, ∀i ∈ N (3.40)

∑
j∈N

yj = p, (3.41)

∑
k∈M

zjk = q yj, ∀j ∈ N (3.42)

∑
k∈M

wijk = q xij, ∀i, j ∈ N (3.43)

wijk ≤ zjk, ∀i, j ∈ N, ∀k ∈M (3.44)

wijk ≥ 0, ∀i, j ∈ N, ∀k ∈M (3.45)

xij ∈ {0, 1}, ∀i, j ∈ N (3.46)

zjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈M (3.47)

yj ∈ [0, 1]. ∀j ∈ N (3.48)

Following the study of Vinod (1969), constraint (3.39) can be rewritten as:

∑
i∈N

xij ≤ n yj, ∀j ∈ N

The logic behind this transformation is that if a data point is selected as a cluster

center, then at most all data points may be assigned to that cluster.

The new model will be named as model LM3. In this formulation, the first constraint

is different than the one in model LM2, but the rest is the same.
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(LM3) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkwijk (3.49)

subject to:
∑
i∈N

xij ≤ n yj, ∀j ∈ N (3.50)

∑
j∈N

xij = 1, ∀i ∈ N (3.51)

∑
j∈N

yj = p, (3.52)

∑
k∈M

zjk = q yj, ∀j ∈ N (3.53)

∑
k∈M

wijk = q xij, ∀i, j ∈ N (3.54)

wijk ≤ zjk, ∀i, j ∈ N, ∀k ∈M (3.55)

wijk ≥ 0, ∀i, j ∈ N, ∀k ∈M (3.56)

xij ∈ {0, 1}, ∀i, j ∈ N (3.57)

zjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈M (3.58)

yj ∈ [0, 1]. ∀j ∈ N (3.59)

wijk’s and yj’s are defined as continuous decision variables. The reason behind this

relaxation for wijk’s is explained during the discussion of model LM2. However,

explanation about why yj decision variable takes integer values at optimal solution is

not obvious in this formulation.

Consider the constraint (3.55) over the features is given below∑
k∈M

wijk ≤
∑
k∈M

zjk, ∀i, j ∈ N (3.60)

The left-hand side of the constraint (3.60) is equal to q xij due to (3.54). The right-

hand side of the constraint (3.60) is equal to q yj due to (3.53).

q xij ≤ q yj, ∀i, j ∈ N (3.61)

Then, inequality (3.61) reduces to:

xij ≤ yj, ∀i, j ∈ N (3.62)
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Since xij’s are binary decision variables, even if yj’ are continuous, they will always

take 0 or 1 at the optimal solution since we are solving a minimization problem.

Table 3.3 shows number of constraints and variables in each linearization method. By

writing the first constraint in a compact form in model LM3, we are reducing total

number of inequality constraints by n2 − n comparing to models LM1 and LM2.

Model LM1 has n2 less equality constraints than models LM2 and LM3. When

it comes to number of decision variables, there are n2 − n less binary variables in

model LM1 than models LM2 and LM3, but model LM1 has n2−n more continuous

variables than the other models.

Table 3.3: Differences between Linearized Models

Number of Constraints Number of Variables

Model Equality Inequality Binary Continuous

LM1 2n+ 1 n2 (1 +m) n (1 +m) n2 (1 +m)

LM2 n (2 + n) + 1 n2 (1 +m) n (n+m) n (1 + nm)

LM3 n (2 + n) + 1 n (1 + nm) n (n+m) n (1 + nm)

The performances of the proposed nonlinear model NM and linearized models LM1,

LM2, and LM3 are tested on the simulated data sets. The details are given in the next

chapter.
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CHAPTER 4

COMPUTATIONAL RESULTS AND COMPARISON OF PROPOSED

MODELS

In this chapter, results of the experimental studies conducted on proposed mathemat-

ical models will be provided. In Section 4.1, we describe the simulated data sets used

in this study. In Section 4.2, performance measures used in evaluation of the proposed

mathematical models are described. Comparison of those mathematical models is de-

livered in Section 4.3.

4.1 Simulated Data Sets

In this study, we use simulated data sets to compare the performance of the proposed

models. We create data sets of different size which include relevant and irrelevant

features. Table 4.1 shows the characteristics of the simulated data sets. Here, it can

be said that given a data set with n data points, number of clusters (p), total number

of features (m), and number of relevant features (q) are changing. Data sets include

2, 3, and 4 clusters, and the number of features in each data set will be {4, 5, 6, 8,

10, 12} where some of these features are relevant. Also, the relation between number

of features and number of relevant features will be q < m, where q and m represent

number of relevant features and total number of features in the data set, respectively.

Therefore, for a given data set in size n, 60 problem instances in different settings are

generated.

For every data set with a given number of data points, out of m features q of them

are selected as relevant. We are generating the data sets using multivariate normal

distribution for the relevant features. Here, each cluster has a different mean. For
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Table 4.1: Details of the Simulated Data Sets

Number of Data Points (n) 40, 50, 80, 100, 200

Number of Clusters (p) 2, 3, 4

Number of Features (m) 4, 5, 6, 8, 10, 12

Number of Relevant Features (q) 2, 3, 4, 6

example, if two clusters will be generated when q is equal to two, cluster means will

be located at [0, 0] and [5, 5]. Table 4.2 shows the mean of each cluster. In that

notation,
−→
1q refers to a vector of ones with q entries. As given in the same table,

variance-covariance matrix is always set to identity matrix which is symmetrical and

positive definite for each cluster. By this way, spherical clusters will be generated.

Note that, when creating the data sets, it is assumed that clusters have equal sizes.

Table 4.2: Parameters of Multivariate Normal Distribution for Clusters, q = Number

of Relevant Features

Cluster Number Parameters of the Distribution for the Cluster

1 (µ1, Σ1)=(0
−→
1q , Iq)

2 (µ2, Σ2)=(5
−→
1q , Iq)

3 (µ3, Σ3)=(−7
−→
1q , Iq)

4 (µ4, Σ4)=(11
−→
1q , Iq)

Remaining features of data set, m − q features, will be named as irrelevant features.

They are created from Uniform distribution. For all irrelevant features, the distribu-

tion parameters will be as Uniform[0, 20], Uniform[0, 10], and Uniform[0, 5].

If we geometrically interpret the generated data sets, multivariate normal distribution

will generate dense data sets along relevant features but data points will be scattered

over irrelevant features due to Uniform Distribution.
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4.2 Performance Measures

Proposed mathematical models are compared by using different performance mea-

sures which are percent gaps from made objective, optimal solution, and best avail-

able solution, number of times the optimal solution found, number of times the best

available solution found, computational time and number of times the model hits to

the time limit. Details of those measures are described below and their abbreviations

are provided between parentheses.

Percent gap from made objective (%GapM ): Data sets are generated using specific

distributions. If we assume that generated clusters and their corresponding relevant

features are taken as they are, we need to only know cluster centers in order to mini-

mize total distance between cluster center and data points in that cluster. Made objec-

tive of the simulated data set is calculated by using the Equation 3.3 given in Chapter

3 after finding the cluster centers. Total L1 distance of the generated data set will be

denoted as ZM . If we denote the objective function of any mathematical model with

Z, then %GapM will be calculated as follows:

%GapM = (
Z − ZM

ZM

) 100 (4.1)

It may take negative values because we have a strong assumption that generated clus-

ters are perfectly separable and they will be obtained by clustering solution. Negative

gap means that proposed models found better clusters than the generated ones in terms

of compactness.

Percent gap from optimal solution (%GapO): It is the optimality gap which is

directly obtained from the solver. It is calculated by considering the objective function

of the current solution ZC and the best possible objective function ZP that can be

obtained by searching through unexplored nodes.

%GapO = (
ZC − ZP

ZP

) 100 (4.2)
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Percent gap from best available solution (%GapB): It is the performance measure

that takes into account the best available objective function value ZB obtained from

any of the mathematical model. The measure can be calculated as follows where Z

denotes the objective function value of a specific model:

%GapB = (
Z − ZB

ZB

) 100 (4.3)

Number of times the optimal solution found (NOpt): We will explicitly report

how many times a mathematical model finds the optimal solution out of 60 problem

instances for a given number of data points n.

Number of times the best available solution found (NBest): The best available

solution may be obtained by more than one mathematical models. This performance

measure is actually the summary of the performance measure %GapB. We will ex-

plicitly report how many times a mathematical model find the best available solution

out of 60 problem instances for a given number of data points n.

Computational time (CPU s.): It represents the solution time of the proposed model

in seconds. It should be noted that the time limit for each mathematical model to solve

the problem is specified as 7200 seconds. The data sets that cannot be solved within

the time limit is stated as TL in the corresponding column.

Number of times the model hits time limit (NTL): This performance measure

report the number of problem instances that cannot be solved optimally by a math-

ematical model within the time limit. Data sets which include same number of data

points n will be considered together. That means, it is out of 60 as in NBest.

4.3 Computational Results of Proposed Methods for Simulated Data

Experimental studies were carried out on 64-bit Windows 10 PC with 3.0 GHz eight-

core AMD Ryzen 7 1700 processor and 16 GB RAM. All solution methods were

coded in C++. We compiled codes under Concert Library of CPLEX 12.7.1 on Mi-

crosoft Visual Studio 2017.
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Proposed mathematical models are tested on simulated data sets. Results of the ex-

periments conducted on a data set with 40 data points are provided in Tables 4.3–4.5.

The results for the data sets which include 50, 80, 100, and 200 data points are given

in Tables A.1–A.12 provided in Appendix A.

Parameter settings of simulated data sets are given in the first three columns of tables

where the number of clusters, number of features and number of relevant features are

represented as p, m and q. For example, results of experimental studies conducted on

the data set with 40 data points, and 10 features where two of them will be selected

for the case of two clusters (p2m10q2) can be found in the 13th row of Table 4.3. For

each of the mathematical models, there are four columns showing the performance

measures, %GapM , %GapO, %GapB and CPU s.. At the last row of each table,

averages of performance measures will be provided. Average of CPU s. is calculated

by only considering the times less than the given time limit. In some of the tables,

there is a symbol “-” for the averages of computational times. It means that none

of the problem instances with n number of data points and p clusters can be solved

within the time limit by a corresponding mathematical model, so the average is not

calculated.

Averages of those performance measures are also summarized in Table 4.6 by group-

ing data sets with equal number of data points. In this table, there are two additional

columns for the performance measures NBest and NTL. Looking at only averages

on CPU s. may be misleading because of the number of terms considered in the cal-

culation. Here, NTL will be helpful to come up with a conclusion about computation

times of mathematical models.

In most of the data sets, nonlinear model NM cannot solve the problem within the

given time limit. Usually, when the size of the data set increases, the performance

measure showing the number of problem instances that cannot be solved within a

time limit, NTL, also reports higher values. For example, almost half of the problem

instances can be solved within 7200 seconds when the data set include only 50 data

points. However, this value decreases sharply, and we can only solve eight problem

instances out of 60 by using model NM for a data set with 100 data points.
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Table 4.6: Summary of Performance Measures of Proposed Mathematical Models on

Simulated Data Sets

Methods
n = 40 n = 50

%GapM %GapO %GapB NOpt NBest CPU s. NTL %GapM %GapO %GapB NOpt NBest CPU s. NTL

NM -3.45 58.65 0.67 18 43 1004.95 42 -1.75 52.05 0.75 26 48 1637.95 34

LM1 -3.88 44.46 0.22 31 52 1100.28 29 -1.69 54.68 0.80 24 47 1377.45 36

LM2 -4.08 0.40 0.01 58 59 236.22 2 -2.31 1.72 0.17 53 54 223.43 7

LM3 -4.07 0.37 0.03 58 59 259.55 2 -2.38 1.67 0.10 53 56 286.62 7

Methods
n = 80 n = 100

%GapM %GapO %GapB NOpt NBest CPU s. NTL %GapM %GapO %GapB NOpt NBest CPU s. NTL

NM 2.98 77.40 4.74 11 21 1596.54 49 12.55 84.34 14.15 8 12 2612.52 52

LM1 3.98 78.24 5.76 11 20 1907.51 49 11.27 84.65 12.90 8 13 2810.82 52

LM2 -1.58 3.51 0.13 49 57 367.35 11 -0.83 4.27 0.50 46 51 658.94 14

LM3 -1.20 3.93 0.51 49 50 366.31 11 -1.19 3.98 0.15 47 56 672.47 13

Methods
n = 200

%GapM %GapO %GapB NOpt NBest CPU s. NTL

NM 24.83 97.39 12.65 1 14 5562.06 59

LM1 26.70 98.41 0 14.34 10 - 60

LM2 42.42 32.65 24.23 13 22 2473.95 47

LM3 42.36 28.64 24.37 19 32 2153.03 41

Among linearized models, model LM1 performs poorly comparing with the others.

By looking at CPU s., model LM1 takes more time to solve the problem optimally, if

it can within the time limit. As reported in Tables 4.3–4.5, the solver cannot state op-

timality for nine data sets out of 60. For example, even if model LM1’s performance

in terms of %GapM and %GapB are the same with models LM2 and LM3, its gap

from optimality %GapO is stated as approximately 45% in data set with two clusters

four relevant features among 12 features (p2m12q4).

It can be said that the performance of model LM1 is similar to the performance of

model NM. They both cannot solve many of the problem instances within the given

time limit. Although their percent gap from optimal solution is high comparing to

other two models, they actually ended up at the best available solution in most of the

problem instances for smaller data sets. For example, model LM1 cannot solve 29

problem instances within time limit where data sets include 40 data points. However,

when we look at the column showing NBest, model LM1 reports the same objective

function with other two linearized models in 52 out of 60 instances, but with reported

optimality gap.
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If we analyze the performances of those two models deeply, one may see that model

NM even takes less time on the average for the problems which it can solve within

time limit. Also, its performance measures for the percent gaps are slightly worse

than the model LM1 for the larger data sets. Also, there is a symbol “-” in the row of

model LM1 for the averages of computational times where data set includes 200 data

points since none of the problem instances can be solved within time limit.

When it comes to the performance of models LM2 and LM3, we can say that the

problem size affects those two models as well. If the data set includes less number of

data points, optimal solutions can be found in almost all problem instances by both

of these models. When data sets get larger in terms of data points n, they cannot find

the optimal solution in more of the problem instances, but they are still the ones that

find the best available solution among the proposed four mathematical models.

The performances of those two models is comparable for a small data sets. For exam-

ple, when data points in a data set is equal to 50, it looks like model LM2 performs

better than model LM3 in less time, CPU s., with a small sacrifice in the performance

about percent gaps. However, model LM2 cannot state optimally in seven problem

instances. Therefore, this will not be a realistic comparison. In this situation, it is

obvious that model LM3 is better than model LM2. If we look at the data sets with

80 data points, it can be seen that model LM2 performs far better than LM3 with a

one second increase in computational time on the average. The difference between

the performances of those two models can be easily seen when data gets larger. Table

4.6 shows that model LM3 outperforms model LM2 in larger data sets.

Experiments show that the problem is getting harder to solve if the number of data

points n increases. The same relation was also observed for the number of clusters p

and number of features m. When we compare data sets with higher p and m values,

CPU s. to solve the problem increases as well. On the contrary, computational time

is inversely related to the number of features to be selected q. If q increases, problem

gets easier, and CPU s. decreases.

To sum up, when we compare performances of mathematical models, it is observed

that base model NM and our first linearized model LM1 cannot solve the problem

within time limits for most of the data instances, whereas models LM2 and LM3
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will be useful to find optimal solutions when data set includes small number of data

points. In order to see whether the mean difference of the objective functions obtained

by different approaches is significantly different from zero or not, we apply paired-t

test at 5% significance level. From this test, it is observed that there is no significant

difference between LM2 and LM3, whereas they are significantly different than the

other two mathematical models. Among those two models, we will continue with

model LM3 because it performs not significantly but slightly better than model LM2.

In this thesis, we are also proposing heuristic algorithms to solve the problem in a rea-

sonable time with comparable results. In the next chapters, details of these heuristic

algorithms will be delivered.
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CHAPTER 5

BENDERS DECOMPOSITION OF THE MODEL AND A HEURISTIC

SOLUTION APPROACH

Experimental studies show that proposed mathematical models perform poorly in

terms of computational time especially when the size of the data set is larger. In

this study, a well-known decomposition algorithm Benders Decomposition is applied

to our problem. Also, a heuristic algorithm has been developed by following the

decomposition approach. The details of the proposed algorithms will be delivered in

this chapter.

5.1 Benders Decomposition of the Model

Benders Decomposition (BD) is a well-known solution method used for solving op-

timization problems. In (BD) approach, the problem is partitioned into smaller prob-

lems instead of solving the large-scale problem for all decision variables using all con-

straints. These smaller problems are called master problem and subproblem, where

those problems includes subsets of decision variables and subsets of constraints of the

main problem. The method starts with solving the master problem, and the remaining

decision variables are determined by the dual of the subproblem with the fixed values

of the decision variables of master problem. With the solution of dual problem, a

new constraint is generated which is called “Benders cut” and added to the master

problem, which will be solved again. The stages of the decomposition method is also

represented in Figure 5.1.
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Master Problem

Solve for the subset of variables 

Contains Benders cuts generated by 

subproblem

Subproblem

Contains the remaining variables 

Solve dual of the subproblem to 

generate Benders cut

Fixed variables

Generated cuts

Figure 5.1: Stages of the Benders Decomposition Approach

Dual of the subproblem is solved to eliminate solutions which are worse than the cur-

rent solution. The method is beneficial if the subproblem is a linear programming

model. Considering our mixed integer programming models, it is seen that (BD)

method can be suitable to solve our clustering problem. The method is applied on our

first linearized model LM1 which is again provided below for the sake of complete-

ness.

(LM1) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkwijk (5.1)

subject to: xij ≤ yj, ∀i, j ∈ N (5.2)∑
j∈N

xij = 1, ∀i ∈ N (5.3)

∑
j∈N

yj = p, (5.4)

∑
k∈M

zjk = q yj, ∀j ∈ N (5.5)

wijk ≥ xij + zjk − 1, ∀i, j ∈ N, ∀k ∈M (5.6)

wijk ≥ 0, ∀i, j ∈ N, ∀k ∈M (5.7)

xij ≥ 0, ∀i, j ∈ N (5.8)

zjk ∈ {0, 1}, ∀j ∈ N, ∀k ∈M (5.9)

yj ∈ {0, 1}. ∀j ∈ N (5.10)

The set of decision variables and constraints of model LM1 are partitioned into two.

The master problem contains binary decision variables which indicate whether a data
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point j is a cluster center or not, yj , and if feature k is selected for a data point j, zjk.

The remaining two continuous decision variables will be solved in the subproblem.

The model LM1 can be rewritten in terms of variables yj and zjk as follows and the

resulting mathematical model will be named as MP:

Master Problem

(MP) Minimize 0 + ξ (5.11)

subject to:
∑
j∈N

yj = p, (5.12)

∑
k∈M

zjk = q yj, ∀j ∈ N (5.13)

zjk ∈ {0, 1}, ∀j ∈ N,∀k ∈M (5.14)

yj ∈ {0, 1}. ∀j ∈ N (5.15)

where ξ is the optimal objective function value of the subproblem SP given below.

Model MP decides the location of cluster centers and relevant features of each cluster,

yj and zjk respectively. In the formulation of SP, optimal decision variables of the

model MP are fixed, and they are denoted as ȳj and z̄jk. Assignments of data points

are decided in SP.

Subproblem

(SP) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkwijk (5.16)

subject to: − xij ≥ −ȳj, ∀i, j ∈ N (5.17)∑
j∈N

xij = 1, ∀i ∈ N (5.18)

wijk − xij ≥ z̄jk − 1, ∀i, j ∈ N,∀k ∈M (5.19)

wijk ≥ 0, ∀i, j ∈ N,∀k ∈M (5.20)

xij ≥ 0. ∀i, j ∈ N (5.21)

By strong duality theory, the optimal objective function value of a primal solution can

also be obtained by solving its dual. Let denote variables αij , βi, and γijk as the dual

variables of the constraints (5.17), (5.18), and (5.19), respectively. The dual of the

subproblem DSP is as follows.
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Dual of the Subproblem

(DSP) Maximize −
∑
i∈N

∑
j∈N

ȳjαij +
∑
i∈N

βi +
∑
i∈N

∑
j∈N

∑
k∈M

(z̄jk − 1)γijk (5.22)

subject to: − αij + βi −
∑
k∈M

γijk ≤ 0, ∀i, j ∈ N (5.23)

γijk ≤ dijk, ∀i, j ∈ N,∀k ∈M (5.24)

αij ≥ 0, ∀i, j ∈ N (5.25)

γijk ≥ 0, ∀i, j ∈ N, ∀k ∈M (5.26)

βi urs. ∀i ∈ N (5.27)

Comparing to the feasible region of the subproblem SP, feasible region of the dual

problem does not depend on the values of the decision variables yj and zjk, only the

objective function will be affected. Also, notice that model DSP always has a feasible

solution since the origin is in the feasible region. Therefore, there is no feasibility

issue. For a given center and features, it is always possible to find the assignments. In

each iteration, with the solution of DSP, generated “Benders cut” will be as follows.

Here, ᾱij , β̄i, and γ̄ijk show optimal values of αij , βi, and γijk variables, respectively.

ξ ≥ −
∑
i∈N

∑
j∈N

yjᾱij +
∑
i∈N

β̄i +
∑
i∈N

∑
j∈N

∑
k∈M

(zjk − 1)γ̄ijk. (5.28)

Steps of the Benders Decomposition method is given below in detail.

Step 1. Solve model MP to obtain lower bound to the model LM1.

If model MP is infeasible, conclude that the original model LM1 is also
infeasible. STOP the process.

If model MP is feasible, set its objective function as the lower bound, LB,
then go to Step 2.

Step 2. Solve model DSP. The optimal solution of the model DSP will be an upper
bound to the optimal solution of model LM1, set it as UB.

If | UB−LB |≤ εwhere ε is a predefined small threshold value, then STOP.

Otherwise, generate a new cut for the model MP. Add Inequality (5.28) to
the constraint set of model MP and go to Step 1.

54



Steps of the approach can also be seen in Figure 5.2.

Infeasible 

Solution

(STOP)

Set objective function value 

of MP as LB

Is the solution 

feasible?

Step 2: Solve DSP and set its 

objective function value as

UB
 Is |UB-LB|  ɛ ?

STOP

No

Yes

Yes

Step 1: Solve MP

Add Benders cut (5.28) to 

MP

No

Figure 5.2: Flowchart of the Benders Decomposition Approach

The given solution approach is tested on our simulated data sets but the results cannot

compete with the performance of our linearized models. Therefore, we add the fol-

lowing valid inequalities to the subproblem in order to have more information in the

cut.

−
∑
i∈N

∑
k∈M

wijk ≥ −|N | q ȳj, ∀j ∈ N (5.29)

−
∑
i∈N

wijk ≥ −|N | z̄jk, ∀j ∈ N,∀k ∈M (5.30)
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Inequality (5.29) states that if data point j is selected as a cluster center, then at most

|N | q number of the wijk’s may take the value of 1 since for each cluster center we

will use q features and at most all data points may be assigned to that cluster. The

same logic is true for (5.30). If feature k is used for data point j where it is selected

as a cluster center, then at most |N | number of wijk’s may take the value of 1 since at

most all data points may use feature k in cluster where the center is data point j.

New subproblem will be as given below, SP'. The master problem is taken as it is.

New Subproblem

(SP') Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkwijk (5.31)

subject to: − xij ≥ −ȳj, ∀i, j ∈ N (5.32)∑
j∈N

xij = 1, ∀i ∈ N (5.33)

wijk − xij ≥ z̄jk − 1, ∀i, j ∈ N,∀k ∈M (5.34)

−
∑
i∈N

∑
k∈M

wijk ≥ −|N | q ȳj, ∀j ∈ N (5.35)

−
∑
i∈N

wijk ≥ −|N | z̄jk, ∀j ∈ N,∀k ∈M (5.36)

wijk ≥ 0, ∀i, j ∈ N, ∀k ∈M (5.37)

xij ≥ 0. ∀i, j ∈ N (5.38)

The first three constraints are the same as the subproblem SP, and the following two

constraints are the new valid inequalities.

Let denote variables αij , βi, γijk, θj , and δjk as the dual variables of the constraints

(5.32)–(5.36), respectively. The dual of the new subproblem is as follows, DSP'.
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Dual of the New Subproblem

(DSP') Maximize−
∑
i∈N

∑
j∈N

ȳjαij +
∑
i∈N

βi +
∑
i∈N

∑
j∈N

∑
k∈M

(z̄jk − 1)γijk

−|N | q
∑
j∈N

ȳjθj − |N |
∑
j∈N

∑
k∈M

z̄jkδjk (5.39)

subject to: − αij + βi −
∑
k∈M

γijk ≤ 0, ∀i, j ∈ N (5.40)

γijk − θj − δjk ≤ dijk, ∀i, j ∈ N,∀k ∈M (5.41)

αij ≥ 0, ∀i, j ∈ N (5.42)

γijk ≥ 0, ∀i, j ∈ N,∀k ∈M (5.43)

θj ≥ 0, ∀j ∈ N (5.44)

δjk ≥ 0, ∀j ∈ N,∀k ∈M (5.45)

βi urs. ∀i ∈ N (5.46)

The cut that will be added to the master problem will change also as given in (5.47).

ξ ≥ −
∑
i∈N

∑
j∈N

yjᾱij +
∑
i∈N

β̄i +
∑
i∈N

∑
j∈N

∑
k∈M

(zjk − 1)γ̄ijk

−|N | q
∑
j∈N

yj θ̄j − |N |
∑
j∈N

∑
k∈M

zjkδ̄jk (5.47)

Adding the given valid inequalities decreased the computational time comparing to

the (BD) which uses SP and DSP. However, it is observed that the performance of the

proposed Benders Decomposition is still lower than the performance of our linearized

model LM1.

We inspired from the Benders Decomposition, and develop a heuristic algorithm by

following the relations between master and subproblems used in (BD).
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5.2 Benders like Heuristic Algorithm: H1

Benders Decomposition divides larger problems into smaller problems as master and

subproblem. The solution of one of these smaller problems is fixed in the other prob-

lem. In this heuristic algorithm, we follow the same principal. If assignment of all

data points are given in advance, selection of cluster centers and features can be de-

cided simultaneously. Also, when the cluster centers and selected features are known,

the assignments of data points can be obtained easily. Therefore, as in Benders de-

composition, we have divided our problem into two smaller problems. In the first

problem, cluster centers and selected features are decided by using a mathematical

model, as in MP. The second problem uses the information obtained from the first

problem, and decides the assignments of data points. Different than SP, we are using

simple heuristic algorithm to assign data points to a cluster. Also, instead of adding

the cut to provide information, we directly give the assignments to the first prob-

lem. Details of the proposed heuristic algorithm and its steps will be provided in this

section.

5.2.1 Center and Feature Problem: HX

In this smaller problem, it is assumed that assignment of data points to clusters are

given in advance. That means, we are eliminating the assignment variable from the

optimization problem, and cluster centers and features to be selected will be decided.

Schematic representation of this smaller problem for two clusters can be seen in Fig-

ure 5.3. Here, c1 and c2 are for cluster centers, and Q1 and Q2 are representing

the features that define clusters. Solid line states that assignment of data points are

known, whereas dashed lines show that cluster centers and features will be decided.

We propose a new mathematical model to decide cluster centers and relevant features

for each cluster. This model contains the assignment information different than our

previous mathematical models. The mathematical model is provided below and it

will be called as model HX.
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Figure 5.3: Schematic Representation of HX

(HX) Minimize
∑
p∈P

∑
i∈Cp

∑
j∈Cp

∑
k∈M

dijkzjpk (5.48)

subject to:
∑
j∈Cp

yjp = 1, ∀p ∈ P (5.49)

∑
k∈M

zjpk = q yjp, ∀j ∈ N,∀p ∈ P (5.50)

zjpk ∈ {0, 1}, ∀j ∈ N, ∀k ∈M,∀p ∈ P (5.51)

yjp ∈ {0, 1}. ∀j ∈ N, ∀p ∈ P (5.52)

Objective function of this formulation minimizes the total distance between the data

points and cluster centers of those groups via selected features. Notice that the clus-

ters are already formed since we know the data points which are assigned to the same

group. In this formulation, zjpk will be 1 if feature k is selected for cluster p where

data point j is the center of that cluster. The decision variable yjp will be 1 if data

point j is selected as the cluster center of cluster p. Constraint (5.49) ensures that

every cluster will have a cluster center which is one of the data points belonging to

that cluster. Constraint (5.50) aims to select q features for each cluster.

The model looks like the master problem of the Benders Decomposition of our prob-

lem. However, model HX includes the assignment information directly while select-

ing centers and features, and the objective function is different since the assignments

are known in advance. We know the constructed clusters based on the given as-
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signments, so the model HX can be solved separately for each cluster to find cluster

centers and relevant features.

Notation used in this problem can be found in Table 5.1

Table 5.1: Notation used in Mathematical Model HX

Sets

N Set of data points

M Set of features

P Set of clusters

Parameters

Cp Data points in cluster p, p ∈ P
q Number of features that should be chosen for each cluster

dijk Distance between data points i and j on feature k, i, j ∈ N ,

k ∈M
Decision Variables

yjp Binary decision variable as 1 if data point j is selected as a

cluster center of cluster p, j ∈ N , p ∈ P
zjpk Binary decision variable as 1 if feature k is selected for

cluster center j where data point j is a center of cluster p,

j ∈ N , k ∈M , p ∈ P

5.2.2 Assignment Problem: PX

We have obtained the clusters centers and selected features from the mathematical

model HX, and they will be represented as ȳjp and z̄jpk, respectively. When they

are known and fixed, only the assignment of data points remains. Schematic repre-

sentation of assignment problem is given in Figure 5.4. Here, dashed line states that

assignment of data points are not known, whereas solid lines show that cluster centers

and features were decided.
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Figure 5.4: Schematic Representation of Assignment Problem

PX is the mathematical formulation used to decide the assignments of data points.

(PX) Minimize
∑
i∈N

∑
j∈Cp

∑
k∈M

dijkz̄jxik (5.53)

subject to: xi ≥ 1, ∀i ∈ N (5.54)

xi ≤ |P |. ∀i ∈ N (5.55)

xi denotes the cluster number in which data point i is assigned, and |P | gives the

number of clusters. Together with the objective function, constraints ensure that every

data point should be assigned to one cluster. Objective function will be minimized

where all data points are assigned to their closest centers. We can use a simple search

algorithm which calculates total distance of each data point to all cluster centers via

selected features for those clusters, and assigns data points to do closest cluster center.

Pseudocode of the assignment problem is provided in Algorithm 1, and the procedure

will be called as AssignmentPx().

The outer for loop (lines 1 − 20) is constructed for assigning all data points to a

cluster. In the inner loop (lines 3 − 18), the distance between data points i and j is

calculated if the data point j is a cluster center for cluster p, and feature k is selected

for that cluster. Temporary center of data point i is assigned as p if dij is the minimum

distance known so far and j is the center of that cluster (lines 12 − 15). When all

possible clusters are considered for i, it is assigned to the temporary center t.
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Algorithm 1: Assignment Algorithm I
Procedure AssignmentPx()

input : ȳjp, z̄jpk
output: xi

1 for i=1,...,N
2 Let min be a very large number
3 for p=1,...,P
4 for j=1,...,N
5 Let dij = 0 % total distance between data points i and j

6 if ȳjp = 1 then
7 for k=1,...,M
8 if z̄jpk = 1 then
9 dij = dij + dijk
10 end
11 end for
12 if dij < min then
13 min = dij
14 t = p
15 end
16 end
17 end for
18 end for
19 xi = t
20 end for

end

Our heuristic algorithm H1 iteratively use HX and PX in order to obtain clustering

solution to our problem. At the start of the algorithm, each data point is randomly

assigned to a cluster. Then, HX is solved to obtain cluster centers and relevant features

of those clusters according to the given assignments. After finding the data points

which are selected as a cluster center and relevant features, each data point is assigned

to its closest cluster center using the Algorithm 1. H1 terminates when the difference

between the objective functions of the two consecutive iterations are smaller than a

threshold value. The steps of H1 can also be seen below.

62



Step 0. Initialize total_distold = 0, total_dist = 0

Step 1. Randomly assign all data points to a cluster

Step 2. Solve HX to obtain cluster centers and selected features

Step 3. Call AssignmentPx() to obtain the assignments of data points using cluster
centers and selected features

Step 4. Calculate the total distance between all data points and their cluster centers
via selected features, set it as total_dist.

If | total_dist − total_distold |≤ ε where ε is a predefined small threshold
value; if iteration limit is not reached then go to Step 1, otherwise STOP.

If | total_dist − total_distold |> ε, set total_distold = total_dist. Go to
Step 2.

Note that, the algorithm is initialized 50 times to reduce the effect of random assign-

ments.

The algorithm can also be tracked by using the flow chart given in Figure 5.5.

Initialization:

# of initialization is 

given

Random 

assignments of 

all data points

Solve Hx

Is the iteration 

limit reached?

No

Is the objective 

function converged?

Output:

Cluster centers

Selected features for all clusters

Assignments

Solve Px by calling 

Procedure 

AssignmentPx()

No

Yes

Yes

Figure 5.5: Flow Chart of the Benders like Heuristic Algorithm
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The pseudocode of H1 is given in Algorithm 2.

Algorithm 2: Benders like Heuristic Algorithm
Procedure H1()

input : Data set N
output:Assignment of data points , cluster centers , selected features

1 Read data set
2 Set countermax, stopping_condition, total_distbest
3 repeat
4 Let absdist be a very big number
5 Step 0. Set total_dist = 0 and total_distold = 0

6 Step 1. Randomly assign data points to clusters, xi
7 repeat
8 total_distold ← total_dist

9 Step 2. Center and Feature Selection

10 Solve HX→ yjp, zjpk

11 Step 3. Assignment Update

12 Call AssignmentPx()→ xi

13 Step 4. Calculate total distance total_dist

14 absdist←| total_dist− total_distold |
15 until absdist ≤ stopping_condition

16 if total_dist < total_distbest then
17 total_distbest ← total_dist
18 for j=1,...,N
19 for p=1,...,P
20 yjpbest ← yjp
21 for k=1,...,M
22 zjpkbest ← zjpk
23 end for
24 end for
25 end for
26 for i=1,...,N
27 xibest ← xi
28 end for
29 end
30 counter = counter + 1
31 until counter > countermax

end
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Algorithm 2 starts with randomly assigning data points to a cluster. The inner loop up-

dates cluster centers, selected features and assignments until convergence (lines 9−
15). Best assignments, best cluster centers and their selected features are updated if

the total distance of the current solution is better than the total distance of previously

identified clustering solution (lines 16− 31).

The next chapter will introduce a new heuristic algorithm which works in iterative

manner, where all decision variables are decided by using a simple heuristic algorithm

depending on the nature of the problems.
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CHAPTER 6

ITERATIVE HEURISTIC ALGORITHM

Proposed mathematical models perform poorly with the size of the data set. In Chap-

ter 5, Benders Decomposition solution method and Benders like heuristic algorithm

have been introduced. In this chapter, a new heuristic algorithm will be delivered and

it will be referred as H2.

Our problem depends on three decision variables. If X , C, and Q denote the decision

variables for assignments of data points, cluster centers, and features to be selected,

then the problem can be represented as:

minimize f(X,C,Q)

s.to Ω

where Ω shows the feasible region of the problem.

Our heuristic algorithm uses the idea of fixing two decision variables and solving the

problem for the remaining decision variable. Therefore, we can mention about three

main problems.

• Assignment Problem where C and Q are fixed. It is called PX.

• Center Selection Problem where X and Q are fixed. It is called PC.

• Feature Selection Problem where X and C are fixed. It is called PQ.

Details of the these main problems will be provided before introducing the proposed

heuristic H2 which benefits from those problems in an iterative fashion.
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6.1 Assignment Problem: PX

This main problem takes cluster centers and selected features as given, and it only

decides the assignments of data points to a cluster. The mentioned problem can be

represented as given in Figure 6.1 where there are two clusters. Dashed line shows

clusters so the assignment of data points which are not decided yet, and solid lines

show the fixed decision variables, cluster centers and selected features, c∗1, c
∗
2 and

Q∗1, Q
∗
2, respectively.

c*
1

c*
2

Q*
1

Q*
2

Figure 6.1: Schematic Representation of Assignment Problem

Conceptual model of this main problem will as follows. Here, we fix the cluster

centers and selected features, and try to find best assignments, where ΩX represents

the feasible region of the problem.

minimize f(X,C = C∗, Q = Q∗)

s.to ΩX
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The mathematical model of the given problem PX can be seen below.

(PX) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkxij z̄jk (6.1)

subject to: xij ≤ ȳj, ∀i, j ∈ N (6.2)∑
j∈N

xij = 1, ∀i ∈ N (6.3)

xij ∈ {0, 1}. ∀i, j ∈ N (6.4)

where xij is a binary variable which takes the value of 1 if a data point i is assigned

to data point j. In this formulation, ȳj will denote the fixed cluster centers and z̄jk

will represent the given selected feature k for cluster j. The aim is to minimize the

total distance between data point i and data point j where feature k is selected for that

cluster. Constraint (6.2) ensures that a data point i may be assigned to j if data point

j is a center, and (6.3) states that a data point must be assigned to a cluster.

The Assignment Problem in H1 mentioned in the Chapter 5 is different than the prob-

lem PX. In the former, data points are assigned to a cluster, that means we are forming

the groups of data points without considering the centers. Here in PX, data points are

assigned to one of the given cluster centers. The data points assigned to the same

center form the clusters. As in H1, model PX can be solved separately for each data

point because objective function will be minimized where all data points are assigned

to their closest cluster centers via the features defining those clusters. Therefore, a

simple search algorithm can be used to find the closest center of each data point.

Pseudocode of the assignment problem is provided in Algorithm 3.
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Algorithm 3: Assignment Algorithm II
Procedure Assignment()

input : ȳj , z̄jk
output: xij

1 for i=1,...,N
2 Let min be a very large number
3 for j=1,...,N
4 Let dij = 0 % total distance between data points i and j

5 if ȳj = 1 then
6 for k=1,...,M
7 if z̄jk = 1 then
8 dij = dij + dijk
9 end
10 end for
11 if dij < min then
12 min = dij
13 t = j
14 end
15 end
16 end for
17 xit = 1
18 end for

end

Different than Algorithm 1, cluster center of data point i is selected as data point j if

dij is the minimum distance known so far (lines 11− 14). When all possible cluster

centers are considered for data point i, it is assigned to the cluster center t in line 17.

6.2 Center Selection Problem: PC

This problem is used to decide cluster centers given the assignments of data points

and features that should be used in clustering. Since we know the groups of data

points, center of a group should be selected among data points which are assigned

to that group. Figure 6.2 schematically represents center selection problem. Dashed

lines say that centers of the clusters have not been decided. With the solid lines,

assignments of data points and selected features are shown. Unknown cluster centers

and selected features are represented with c1, c2 and Q∗1, Q
∗
2, respectively.
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Figure 6.2: Schematic Representation of Center Selection Problem

Conceptual model of this main problem will as follows. Here, assignments of data

points and selected features are fixed, and we try to find best cluster centers. In the

formulation, ΩC represents the feasible region.

minimize f(C,X = X∗, Q = Q∗)

s.to ΩC

The mathematical model of the given problem can be seen below named as model

PC.

(PC) Minimize
∑
p∈P

∑
i∈Cp

∑
j∈Cp

∑
k∈Qp

dijkz̄jkyj (6.5)

subject to:
∑
j∈Cp

yj = 1, ∀p ∈ P (6.6)

yj ∈ {0, 1}. ∀j ∈ N (6.7)

where yj is a binary variable which takes the value of 1 if a data point j is selected

as a cluster center among the data points which are in cluster p, where those data

points are in set Cp which includes the data points in cluster p. In this formulation,

Qp is the set of features used in cluster p. (6.6) ensures that center of each cluster

will be selected among the data points in that cluster. Notice that objective function

of the problem will be minimized when the data point which is located in the middle
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of the cluster is selected as a center. Since we know the assignments of data points

and selected features, we can decompose the problem into smaller problems where

center of each cluster is decided separately. For each data point, total distance to other

data points in a cluster is calculated, and the one which is closest to all other cluster

members is selected as the cluster center. The following Algorithm 4 is provided to

find cluster centers.

Algorithm 4: Center Selection Algorithm
Procedure Center()

input : x̄ij , z̄jk
output: yj

1 for i=1,...,N
2 Let di = 0 % total distance to data point i

3 for n=1,...,N
4 for j=1,...,N
5 if x̄ij = 1 and x̄nj = 1 then
6 for k=1,...,M
7 if z̄jk = 1 then
8 di = di + dink
9 end
10 end for
11 end
12 end for
13 end for
14 end for
15 for i=1,...,N
16 Let min = di
17 best = i
18 for n=1,...,N
19 for j=1,...,N
20 if x̄ij = 1 and x̄nj = 1 and dn < min then
21 min = dn
22 best = n
23 j = N
24 end
25 end for
26 end for
27 ybest = 1
28 end for

end

The algorithm starts with a for loop to calculate the total distance to data point i by

considering the data points which are assigned to the same cluster with data point
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i (lines 1 − 14). The for loop is repeated for all data points. After calculating all

distances, data point which is closest to all data points in its cluster is selected as the

cluster center (lines 15− 28).

6.3 Feature Selection Problem: PQ

Feature selection problem takes the assignments of data points and cluster center as

given. Then, the problem only decides the relevant features for each cluster that will

minimize the total distance between data points and cluster centers via selected fea-

tures. Feature selection problem is given in Figure 6.3. Dashed lines say that relevant

features of each cluster have not been decided. With the solid lines, it is stated that

assignments of data points and cluster centers are known. In figure, cluster centers

and unknown relevant features are represented with c∗1, c
∗
2 and Q1, Q2, respectively.

c*
1

c*
2

Q1

Q2

Figure 6.3: Schematic Representation of Feature Selection Problem

Conceptual model of this main problem will as follows. Here, assignment of data

points and cluster centers are known and fixed. The model states that relevant features

of each cluster should be selected, where ΩQ represents the feasible region.

minimize f(Q,C = C∗, X = X∗)

s.to ΩQ
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The mathematical model of feature selection problem PQ is presented below.

(PQ) Minimize
∑
i∈N

∑
j∈N

∑
k∈M

dijkx̄ijzjk (6.8)

subject to:
∑
k∈M

zjk = q ȳj, ∀p ∈ P (6.9)

zjk ∈ {0, 1}. ∀j ∈ N, ∀k ∈M (6.10)

where zjk takes 1 if feature k is selected for cluster where j is the center. Here, given

assignments and cluster centers will be represented as x̄ij and ȳj , respectively. Con-

straint (6.9) is used to select q features for each cluster. Notice that objective function

of the problem includes nonnegative coefficients for all zjk variables. Therefore, the

objective function will be minimized when the features which are the most compact

ones are selected. Since we are allowing that one feature may be used in more than

one cluster, relevant features of each cluster can be selected by sorting the total dis-

tance on each feature in ascending order. That means, we can decompose feature

selection problem as well. The following Algorithm 5 finds those q features for each

cluster separately.

In this algorithm, for each cluster centers, total distance through each feature is cal-

culated, djk, (lines 1 − 12). In order to find the features which are relevant for the

cluster centers, djk values are sorted in ascending order, Q features with the smallest

djk values are selected for each cluster (lines 13− 32).
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Algorithm 5: Feature Selection Algorithm
Procedure Feature()

input : ȳj , x̄ij
output: zjk

1 for k=1,...,M
2 for j=1,...,N
3 Let djk = 0 % total distance to data point j through feature k

4 if ȳj = 1 then
5 for i=1,...,N
6 if x̄ij = 1 then
7 djk = djk + dijk
8 end
9 end for

10 end
11 end for
12 end for
13 for j=1,...,N
14 if ȳj = 1 then
15 for k=1,...,M
16 sort_distk = djk
17 end for
18 Sort sort_dist smallest to largest→ sorted_dist
19 total_selected = 0
20 for k=1,...,M
21 if total_selected < Q then
22 for q=1,...,Q
23 if djk = sorted_distq then
24 zjk = 1
25 q = Q
26 total_selected = total_selected+ 1
27 end
28 end for
29 end
30 end for
31 end
32 end for

end
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6.4 Iterative Heuristic Algorithm: H2

Three main problems, PX, PC, and PQ, are discussed before introducing heuristic H2.

Iterative heuristic algorithm H2 benefits from those problems in an iterative manner

when two of the decision variables are fixed and the problem is solved for the re-

maining one. H2 can be divided into three subroutines in which one of the decision

variables is fixed, and the other two decision variables are updated iteratively by using

the algorithms proposed for the solution of PX, PC, and PQ problems. For example,

if we fix the cluster centers, we need to update assignments and selected features it-

eratively. To do that, in each iteration, we fix one of them. When selected features

are fixed, the problem is reduced to the problem PX which is solved by Algorithm 3.

After deciding the assignments, we will fix them besides the cluster centers, and rele-

vant features are found by using the Algorithm 5 for the solution of problem PQ. This

subroutine is named as feature-assignment update subroutine, and it is called as PQX.

H2 will also have assignment-center update PXC and center-assignment update PCX

subroutines which work in the same manner. In the following subsections, we will

cover those subroutines in detail, and Figure 6.4 schematically represents the relation

between subroutines.

Initialization

Px

Pc

Pxc

PQ

Px

PQx

Pc

Px

Pcx

Figure 6.4: Schematic Representation of the Relations between Subroutines

6.4.1 Assignment-Center Update: PXC

In this subroutine, features of each cluster are fixed, assignments of data points and

cluster centers will be found. Assignments and cluster centers are updated iteratively

where in each step, one of them is fixed. When the assignments are fixed, since the
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features are also given, the problem turns into the problem PC. Similarly, the prob-

lem turns into PX when the cluster centers are fixed. Therefore, this subroutine is

solving PX and PC problems iteratively and finds the best cluster centers and assign-

ments of data points while the features are given. For solving PX and PC, we utilize

Assignment() and Center() procedures in Algorithm 3 and Algorithm 4, respec-

tively. Steps of this subroutine are provided below.

Step 0. Initialize total_distold = 0, total_dist = 0

Step 1. Solve for X by calling Assignment() for given cluster centers (ȳj) and
selected features (z̄jk)

Step 2. Solve for C by calling Center() for given assignments (x̄ij) and selected
features (z̄jk)

Step 3. Calculate the total distance between all data points and their cluster centers
through selected features, set it as total_dist

If | total_dist − total_distold |≤ ε where ε is a predefined small threshold
value, STOP.

If | total_dist − total_distold |> ε, set total_distold = total_dist. Go to
Step 1.

The pseudocode of the subroutine can also be found in Algorithm 6.

Algorithm 6: Assignment-Center Update Algorithm
Procedure PXC()

input : absdist, stopping_condition, ȳj , z̄jk
output: xij , yj

1 Step 0. total_distold = 0, total_dist = 0

2 repeat
3 total_distold ← total_dist

4 Step 1. Assignment Update

5 Call Assignment()→ xij

6 Step 2. Center Update

7 Call Center()→ yj

8 Step 3. Calculate total distance total_dist

9 absdist←| total_dist− total_distold |
10 until absdist ≤ stopping_condition

end
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6.4.2 Feature-Assignment Update: PQX

In this subroutine, assignments of data points and relevant features of each cluster

will be found while cluster centers are given. In each step, relevant features and

assignments are updated iteratively by fixing one of them. When the assignments

are fixed, since the cluster centers are also given, the problem turns into the problem

PQ. Similarly, if the relevant features are fixed, then the problem turns into PX. That

means, this subroutine is solving PQ and PX problems iteratively. For solving PX

and PQ, we utilize Assignment() and Feature() procedures in Algorithm 3 and

Algorithm 5, respectively. The steps of the feature-assignment update subroutine can

be seen below.

Step 0. Initialize total_distold = 0, total_dist = 0

Step 1. Solve for Q by calling Feature() for given cluster centers (ȳj) and assign-
ments (x̄ij)

Step 2. Solve for X by calling Assignment() for given cluster centers (ȳj) and
selected features (z̄jk)

Step 3. Calculate the total distance between all data points and their cluster centers
through selected features, set it as total_dist

If | total_dist − total_distold |≤ ε where ε is a predefined small threshold
value, STOP.

If | total_dist − total_distold |> ε, set total_distold = total_dist. Go to
Step 1.

The pseudocode of the subroutine is given in Algorithm 7.
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Algorithm 7: Feature-Assignment Update Algorithm
Procedure PQX()

input : absdist, stopping_condition, ȳj , x̄ij
output: xij , zjk

1 Step 0. total_distold = 0, total_dist = 0

2 repeat
3 total_distold ← total_dist
4 Step 1. Feature Selection

5 Call Feature()→ zjk

6 Step 2. Assignment Update

7 Call Assignment()→ xij

8 Step 3. Calculate total distance C3

9 absdist←| total_dist− total_distold |
10 until absdist ≤ stopping_condition

end

6.4.3 Center-Assignment Update: PCX

In this subroutine, features of each cluster are fixed, assignments of data points and

cluster centers will be found as in subroutine PXC. We will start by fixing assign-

ment of data points besides selected features and iteratively update cluster centers

and assignments, but subroutine PXC starts with fixed selected features and randomly

decided cluster centers. For the solution of PX and PC problem, Assignment() and

Center() procedures in Algorithm 3 and Algorithm 4 will be utilized, respectively.

Steps of this subroutine are provided below.

Step 0. Initialize total_distold = 0, total_dist = 0

Step 1. Solve for C by calling Center() for given assignments (x̄ij) and selected
features (z̄jk)

Step 2. Solve for X by calling Assignment() for given cluster centers (ȳj) and
selected features (z̄jk)

Step 3. Calculate the total distance between all data points and their cluster centers
through selected features, set it as total_dist

If | total_dist − total_distold |≤ ε where ε is a predefined small threshold
value, STOP.

If | total_dist − total_distold |> ε, set total_distold = total_dist. Go to
Step 1.
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The pseudocode of the subroutine is provided in Algorithm 8.

Algorithm 8: Center-Assignment Update Algorithm
Procedure PCX()

input : absdist, stopping_condition, x̄ij , z̄jk
output: xij , yj

1 Step 0. total_distold = 0, total_dist = 0

2 repeat
3 total_distold ← total_dist
4 Step 1. Center Update

5 Call Center()→ yj

6 Step 2. Assignment Update

7 Call Assignment()→ xij

8 Step 3. Calculate total distance total_dist

9 absdist←| total_dist− total_distold |
10 until absdist ≤ stopping_condition

end

H2 starts with random selection of cluster centers, and updates assignment and clus-

ters using PXC until convergence. Then, cluster centers are fixed, and selected features

and assignment of data points are updated by PQX. In the next step of the algorithm,

given the selected features, assignments and cluster centers are changed iteratively

using PCX. Input and output relations between subroutines can be seen in Figure 6.5.

Initialization

Px

Pc

Pxc

PQ

Px

PQx

Pc

Px

Pcx

Fixed C

Given X

Fixed Q

Given X

Fixed C
Given X

Fixed Q

Given C

Figure 6.5: Schematic Representation of the Relations between Subroutines with In-

puts/Outputs

Steps of our heuristic algorithm H2 is given below. Note that, the algorithm is initial-

ized 50 times to reduce the effect of random start.
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Step 0. Initialize total_distold = 0, total_dist = 0

Step 1. Randomly select cluster centers

Step 2. Call PXC to obtain assignments and update cluster centers using all features

Step 3. Call PQX to update selected features and assignments given the cluster centers

Step 4. Call PCX to update cluster centers and assignments given the selected features

Step 5. Calculate the total distance between all data points and their cluster centers
via selected features, set it as total_dist

If | total_dist − total_distold |≤ ε where ε is a predefined small threshold
value; if iteration limit is not reached then go to Step 1, otherwise STOP.

If | total_dist − total_distold |> ε, set total_distold = total_dist. Go to
Step 3.

Figure 6.6 provides the flow chart of the heuristic algorithm.

Output:

Cluster centers

Selected features for all 

clusters

Assignments

Initialization:

# of initialization is given

Fixed features

Given cluster centers

Update assignments 

and centers by calling 

Procedure Pxc()

Fixed cluster 

centers

Given assignments

Update relevant features 

and assignments by 

calling Procedure PQx()

Fixed selected 

features

Given assignments

Update cluster centers 

and assignments by 

calling Procedure Pcx()

Is the objective 

function converged?
Yes

Is the iteration 

limit reached?

Yes

No

Fixed cluster centers

Given assignments

No

Figure 6.6: Flow Chart of the Iterative Heuristic Algorithm

The pseudocode of H2 is given in Algorithm 9. The algorithm starts with random

selection of cluster centers in line 6. Until convergence, assignments of data points

and cluster centers are updated in line 9. Updates of selected features and assign-

ments, and then cluster centers and assignments are performed iteratively by using

the subroutines PQX and PCX in lines 10− 18, respectively. Lines 19− 30 record the

best solution which has the minimum distance obtained so far.
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Algorithm 9: Iterative Heuristic Algorithm
Procedure H2()

input : Data set N
output:Assignment of data points, cluster centers , selected features

1 Read data set
2 Set countermax, stopping_condition

3 repeat
4 Let absdist be a very big number
5 Step 0. Set total_dist = 0 and total_distold = 0

6 Step 1. Randomly select cluster centers, yj
7 Assume zjk = 1 for all k ∈M
8 Step 2. Assignment-Center Update

9 Call PXC()→ xij, yj

10 repeat
11 total_distold ← total_dist

12 Step 3. Feature-Assignment Update

13 Call PQX()→ xij, zjk

14 Step 4. Center-Assignment Update

15 Call PCX()→ xij, yj

16 Step 5. Calculate total distance total_dist

17 absdist←| total_dist− total_distold |
18 until absdist ≤ stopping_condition

19 if total_dist < total_distbest then
20 total_distbest ← total_dist
21 for j=1,...,N
22 yjbest ← yj
23 for k=1,...,M
24 zjkbest ← zjk
25 end for
26 for i=1,...,N
27 xijbest ← xij
28 end for
29 end for
30 end
31 counter = counter + 1
32 until counter > countermax

end
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In the next chapter, experimental studies conducted on the proposed heuristic algo-

rithms will be discussed.
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CHAPTER 7

COMPUTATIONAL RESULTS AND COMPARISON OF HEURISTICS

ALGORITHMS

Empirical results that compare heuristic algorithms will be provided in this chapter.

In the first part of this chapter, in Section 7.1, we state the changes in the performance

measures delivered in Chapter 4, and one additional performance measure is intro-

duced. Section 7.2 will deliver the results of the experimental studies conducted on

the introduced simulated data sets to compare the performances of proposed mathe-

matical models and heuristic algorithms.

7.1 Performance Measure

We will benefit from the performance measures mentioned in Chapter 4. Percent gap

from optimal solution (%GapO) is removed from consideration. Also, percent gap

from best available solution (%GapB) will be calculated by considering all available

solutions instead of taking only the ones obtained from mathematical models. In

order to report the number of hits to known optimal solutions, there will be additional

information provided with the performance measure NOpt. The number of known

optimal solutions will be provided within parenthesis with NOpt. We will also use

one other measure to represent performances of heuristic algorithms, namely Hits.

Number of hits (Hits): In our study, all heuristic algorithms start with random ini-

tialization of one of the decision variables. In order to eliminate the bias of the so-

lution to initial parameters, algorithms start with 50 different random initializations.

Apart from the best and worst solutions in terms of objective function, we also keep

the number of hits to those solutions.
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7.2 Computational Results of Proposed Methods for Simulated Data

Performances of mathematical models are compared in Chapter 4, and it is concluded

that nonlinear model NM and model LM1 cannot solve the problem within reasonable

time. Among the other mathematical models, model LM3 performs slightly better

than model LM2. Hence, our heuristic algorithms will be compared also with the

mathematical model LM3.

Proposed heuristic algorithms are tested on simulated data sets, and results for data

sets including 40 data points can be seen in Tables 7.1–7.3. Tables B.1–B.12 provided

in Appendix B will report the results of experimental studies conducted on data sets

with 50, 80, 100, and 200 data points. For further comparing the performances of

heuristic algorithms H1 and H2, there are additional data sets which include 500 and

1000 data points. The results of the experimental studies conducted on those data sets

are reported in Tables B.13–B.18 in Appendix B.

Tables are constructed as in Chapter 4. The first there columns contain the parameters

of data sets, which are number of clusters, number of features and number of relevant

features. For our mathematical model LM3, we report three performance measures,

%GapM , %GapB and CPU s.. Clustering solutions with minimum and maximum

objective functions obtained by heuristic algorithms H1 and H2 are evaluated based

on %GapM , %GapB, and Hits. Completion time of the heuristic algorithms are also

reported on those tables, CPU s.. Averages of all performance measures can be seen

at the last row of each table.

For the mathematical model and heuristic algorithms, averages of performance mea-

sures %GapM , %GapB, andCPU s. on the data sets with equal number of data points

are summarized in Table 7.4. That means, the performance of each solution method

is evaluated by considering 60 problem instances where data sets include n number

of data points. It should be noted that the best and worst clustering solutions are taken

into account when reporting the performances of heuristic algorithms. In this table,

there is also a new column NBest which reports how many times the corresponding

solution method has found the best available solution.
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Table 7.4: Summary of Performance Measures of LM3, H1, and H2 for Simulated

Data Sets

Methods
n = 40 n = 50

%GapM %GapB NOpt(58) NBest CPU s. %GapM %GapB NOpt(54) NBest CPU s.

LM3 -4.07 0.03 58 59 259.55 -2.38 0.10 53 56 414.65

H1b -1.97 2.32 46 47
15.84

0.89 3.42 41 42
21.07

H1w 78.02 84.52 9 9 75.01 78.66 10 10

H2b -3.11 1.21 42 42
0.02

-1.74 0.77 38 40
0.02

H2w 77.60 85.06 7 7 83.89 88.10 8 8

Methods
n = 80 n = 100

%GapM %GapB NOpt(49) NBest CPU s. %GapM %GapB NOpt(47) NBest CPU s.

LM3 -1.20 0.97 49 49 366.31 -1.19 0.58 47 51 672.47

H1b 2.32 4.49 42 46
35.77

3.22 5.02 40 43
50.55

H1w 75.75 78.61 9 9 75.91 78.15 10 10

H2b -1.24 0.95 41 47
0.05

-1.31 0.47 41 48
0.05

H2w 81.92 85.10 9 9 77.11 79.84 10 10

Methods
n = 200

%GapM NOpt(19) %GapB NBest CPU s.

LM3 42.43 43.93 19 20 2153.03

H1b 4.71 5.98 17 46
213.64

H1w 62.92 64.43 7 13

H2b -1.05 0.27 19 52
0.30

H2w 94.57 96.48 6 7

Table 7.5: Summary of Performance Measures of H1 and H2 for Simulated Data Sets

Methods
n = 500 n = 1000

%GapM %GapB NBest NTL CPU s. %GapM %GapB NBest NTL CPU s.

H1b 7.04 8.10 42
0 1655.15

7.06 7.90 43
11 2757.11

H1w 68.96 70.18 11 59.48 60.41 16

H2b -0.64 0.37 57
0 2.25

-0.64 0.20 58
0 9.46

H2w 88.69 90.17 6 96.80 97.97 7
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It is observed that model LM3 finds the best available solution in most of the data

instances for the data sets which includes small number of data points. This perfor-

mance decreases sharply when we look at the data set with the highest number of

data points. The same trend is also shown in the other performance measures. Com-

putational time and percent gaps from both made objective and best available solution

increases with the increase in the data points.

When NBest is considered, H1 found the best available solution in many of the data

instances when its best clustering solutions are considered, H1b. NBest for the H1w

corresponds to the number of data instances where even in the worst case H1 finds

the best available solution. It can be said that H1 behaves as the mathematical model

LM3 does in terms of increase in the computational time and percent gaps when data

sets get larger. With the increase in the data points in a data set, averages of %GapM

and %GapB increase as well, whereas there is no such change inNBest. That means,

when H1 could not find the best available solution, its deviations are higher in the data

sets with more data points. Comparing average CPU s. of H1 with model LM3’s, the

former can find clustering solutions of the data instances within at most four minutes,

whereas the latter takes approximately 10 minutes on the average if it could solve the

problem within the given time limit. Even the latter could not find clustering solutions

within the time limit in most of the data instances when data sets get larger.

If we add H2 to the comparison, it is seen that its biggest advantage is the computa-

tional time. In our biggest simulated data set, it only takes less than one second on

the average to obtain clustering solution. That means, the increase in the size of the

data set does not affect CPU s. of H2 too much. NBest increases and its percent

gap from best available solution decreases with the increase in size. Therefore, we

can say that its solution is used as the best available solution among the clustering

solutions obtained from the other solution methods. In order to further compare the

performances of heuristic algorithms H1 and H2, additional experimentation has been

conducted, and result are given in Table 7.5. Here, it can be said that H2 finds almost

all best available solutions which are obtained by heuristic algorithms. H1 hits to the

time limit in 11 data instances among 60 when data set includes 1000 data points.

However, H2 still find the solutions in less than 10 seconds on the average. Paired t-

test at 5% significance level is applied to see if the mean difference between objective
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functions of different approaches is significantly different. The results show that there

is a significant difference between both heuristic algorithms, and heuristic algorithms

and LM3.
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CHAPTER 8

CONCLUSION

Clustering problem has been extensively discussed in variety of disciplines. It can

be briefly described as the grouping of similar data points in the same clusters while

separating them from the dissimilar data points. Selection of similarity measure and

objective function, and also size of the data set may affect the performance of a clus-

tering algorithm.

In this thesis, we address the clustering problem with cluster based feature selection.

For the specified problem, center-based clustering is applied where each data point

is assigned to only one of the clusters, and cluster centers are selected among the

data points in that cluster. For the defined clustering problem, we work with data

sets which include only continuous features in different number of features, clusters

and data points. We show the analogy between classical p-median and clustering

problems, and a nonlinear mixed integer programming model has been proposed.

The study also includes three linearized model with different properties. All of those

models ensure to find (i) the locations of cluster centers, (ii) features to be selected for

each cluster, and (iii) assignment of data points to a cluster simultaneously. Number

of clusters that will be constructed is given a priori as well as number of features

to be selected for each cluster. As other partitional clustering methods, we aim to

minimize total distance between the data points and the cluster centers. Different

from traditional clustering algorithms, we are also performing feature selection that

will provide relevant features for each cluster. Hence, distances are calculated using

only selected features.

Number of features, data points and clusters in a data set affect the dimensionality of

the data. When it gets larger, the solution time of the proposed mathematical models
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gets worse. Therefore, in the second part of the study, Benders Decomposition ap-

proach is applied to our problem as an exact approach, and two heuristic algorithms

have been proposed. We divide our problem into two subproblems in Benders De-

composition. Location of cluster centers and selection of features are decided in the

master problem, whereas the assignments are decided in the subproblem. The ex-

perimental studies show that it is not beneficial to use Benders Decomposition, but

the idea of decomposing the problem into subproblems is used in our heuristic al-

gorithms. We propose a Benders like Heuristic Algorithm (H1) which uses a new

mathematical model to only decide cluster centers and relevant features of the clus-

ters. When the cluster centers and relevant features are fixed, the objective function

will be minimized by assigning each data point to its closest cluster center. For finding

the closest center a simple procedure is used, Assignment Problem (PX).

It has been observed that when fixing two of the decision variables the solution of

the remaining problem will be trivial. Therefore, our problem can be divided into

three main problems. When the cluster centers and relevant features are fixed, each

data point should be assigned to its closest cluster center, Assignment Problem (PX).

Center Selection Problem (PC) decides cluster centers when constructed groups and

relevant features are fixed. In this case, cluster centers will be the data point which is

located in the middle of the cluster. In order to find relevant features of each cluster,

Feature Selection Problem (PQ) sorts features in the ascending order of compactness

and select Q most compact features. Iterative Heuristic Algorithm (H2), decides each

decision variable by solving the defined smaller problems iteratively.

The experiments are conducted on simulated data sets which differ in terms of num-

ber of data points, features, and clusters. All data sets are generated as they reflect

discussed clustering structure where clusters are located in different dimensions and

global feature selection may not ensure to construct all clusters. Data has been gen-

erated by using Multivariate Normal Distribution for relevant features and Uniform

Distribution for irrelevant features. By this way, dense clusters along relevant fea-

tures has been obtained, whereas they are scattered through irrelevant features. The

empirical results show that optimal solutions cannot be obtained within the given

time limit by using mathematical models in most of the data sets. Since the Ben-

ders like Heuristic Algorithm (H1) uses mathematical model to obtain cluster center

94



and select features, it takes more time to converge than Iterative Heuristic Algorithm

(H2). We applied paired-t test at 5% significance level to test if the mean difference of

the objective function obtained by different approaches is significantly different from

zero. It is observed that there is no significant difference between models LM2 and

LM3, whereas they are significantly different than the other two mathematical mod-

els. Also, heuristics algorithms perform significantly different than the mathematical

models especially when the size of the data set increases, and their performances are

different than each other.

To the best of our knowledge, there is no study modeling clustering and cluster based

feature selection as a mixed integer programming. It should also be noted that the pro-

posed solution approaches may select same features for different clusters. Therefore,

all approaches can also be used in classical feature selection problem.

The data sets used in this study are only include continuous features and clusters

are all in the spherical shapes since we are using identity matrix in the formation of

data sets. Proposed algorithms can be analyzed in different data sets having arbitrary

shaped clusters with density differences or having categorical features. In this study,

L1 − norm is used as a similarity measure. Another future research issue may be

analyzing the performance of proposed mathematical models and heuristic algorithms

in different distance measures. Also, the number of features that should be selected

may be considered as a decision variable instead of parameters in different problem

formulations.

The focus of this study is to maximize the compactness by decreasing the distance

between data points assigned to same cluster. We may also analyze our approaches

using different objectives such as maximization of separation between clusters or

maximization of the ratio between separation and compactness.

Different valid inequalities can be added to Benders Decomposition solution method

to improve its performance. Also, with the some preliminary studies, we have ob-

served that dual variables of the subproblem may be directly found using strong du-

ality and Karush–Kuhn–Tucker optimality conditions. If it is valid in all conditions,

there will be no need to solve mathematical model to obtain dual variables and gen-

erate cut. We will also focus on these observations as a future work.
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APPENDIX A

EXPERIMENTAL RESULTS OF PROPOSED MATHEMATICAL MODELS

In this appendix, we give experimental results of the proposed mathematical models

for each problem instances.

Performance measures used in all tables are explained below.

%GapM : Percent gap from made objective

%GapO: Percent gap from optimal solution

%GapB: Percent gap from best available solution

CPUs.: Computational time
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APPENDIX B

COMPARISON OF LM3, H1, AND H2 FOR SIMULATED DATA SETS

In this appendix, we give experimental results of the mathematical model LM3 and

heuristic algorithms H1 and H2 for each problem instances.

Performance measures used in all tables are explained below.

%GapM : Percent gap from made objective

%GapB: Percent gap from best available solution

Hits: Number of hits to the solution

CPUs.: Computational time

117



Ta
bl

e
B

.1
:C

om
pa

ri
so

n
of

L
M

3,
H

1,
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

50
D

at
a

Po
in

ts
an

d
2

C
lu

st
er

s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

2
4

2
-2

.6
8

0
8.

10
4.

26
7.

13
19

44
.3

6
48

.3
3

3
8.

93
-2

.6
79

0
41

49
.8

9
54

.0
2

1
0.

01

2
4

3
0

0
3.

08
0

0
50

0
0

50
6.

64
0

0
50

0
0

50
0.

02

2
5

2
0

0
2.

20
0

0
46

11
8.

64
11

8.
64

3
9.

53
0

0
50

0
0

50
0.

02

2
5

3
0

0
2.

23
0

0
50

0
0

50
7.

16
0

0
50

0
0

50
0.

02

2
5

4
0

0
4.

69
0

0
50

0
0

50
6.

90
0

0
50

0
0

50
0.

02

2
6

2
-1

.9
5

0
8.

03
-1

.5
6

0.
39

3
66

.8
3

70
.1

4
6

10
.0

0
-1

.9
5

0
23

67
.6

8
71

.0
1

1
0.

02

2
6

3
0

0
3.

96
0

0
50

0
0

50
9.

65
0

0
48

13
1.

05
13

1.
05

2
0.

02

2
6

4
0

0
8.

86
0

0
49

11
9.

38
11

9.
38

1
8.

36
0

0
42

1.
38

1.
38

8
0.

02

2
8

2
-3

.2
1

0
30

.5
6

0.
20

3.
52

18
40

.2
8

44
.9

3
1

9.
04

2.
17

5.
56

50
2.

17
5.

56
50

0.
03

2
8

3
0

0
12

.9
6

0
0

46
10

9.
92

10
9.

92
1

12
.4

1
0

0
50

0
0

50
0.

03

2
8

4
0

0
24

.6
8

0
0

50
0

0
50

10
.6

8
0

0
50

0
0

50
0.

03

2
8

6
0

0
23

.3
2

0
0

48
14

4.
10

14
4.

10
2

9.
65

0
0

50
0

0
50

0.
02

2
10

2
0

0
8.

81
0

0
47

11
9.

94
11

9.
94

1
20

.3
0

0
0

39
15

2.
40

15
2.

40
2

0.
03

2
10

3
0

0
12

4.
17

0
0

33
87

.8
1

87
.8

1
5

13
.4

5
0

0
29

71
.0

4
71

.0
4

8
0.

03

2
10

4
0

0
63

.3
5

0
0

18
87

.0
0

87
.0

0
1

12
.6

3
0

0
48

86
.4

8
86

.4
8

2
0.

03

2
10

6
0

0
74

.5
0

0
0

50
0

0
50

15
.2

0
0.

73
0.

73
50

0.
73

0.
73

50
0.

03

2
12

2
-0

.1
9

0
10

.4
1

-0
.1

9
0

26
11

0.
98

11
1.

38
1

13
.3

5
8.

48
8.

68
11

84
.4

5
84

.7
9

7
0.

03

2
12

3
0

0
28

.8
8

0
0

32
13

2.
99

13
2.

99
1

15
.1

2
0

0
48

12
8.

02
12

8.
02

1
0.

04

2
12

4
0

0
12

3.
84

0
0

25
98

.8
7

98
.8

7
1

12
.4

5
0

0
49

10
1.

22
10

1.
22

1
0.

04

2
12

6
0

0
54

.5
6

0
0

50
0

0
50

13
.7

9
0

0
50

0
0

50
0.

03

Av
er

ag
e

-0
.4

0
0

31
.0

6
0.

14
0.

55
38

.0
0

64
.0

6
64

.6
7

18
.8

5
11

.2
6

0.
34

0.
75

43
.9

0
43

.8
3

44
.3

8
26

.6
5

0.
02

118



Ta
bl

e
B

.2
:C

om
pa

ri
so

n
of

L
M

3,
H

1,
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

50
D

at
a

Po
in

ts
an

d
3

C
lu

st
er

s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

3
4

2
-3

.5
2

0
12

.4
9

4.
26

8.
06

29
17

.5
3

21
.8

2
2

11
.9

5
-3

.5
2

0
19

59
.5

4
65

.3
6

7
0.

02

3
4

3
0

0
2.

36
0

0
50

0
0

50
11

.4
4

0
0

35
17

2.
67

17
2.

67
1

0.
02

3
5

2
-0

.4
7

0
9.

55
3.

43
3.

92
5

58
.9

1
59

.6
6

1
12

.7
2

-0
.4

7
0

26
68

.1
1

68
.9

1
3

0.
02

3
5

3
0

0
3.

06
0

0
47

17
4.

15
17

4.
15

1
12

.8
4

0
0

36
17

6.
91

17
6.

91
2

0.
02

3
5

4
0

0
4.

28
0

0
50

0
0

50
13

.3
0

0
0

42
13

3.
53

13
3.

53
1

0.
02

3
6

2
-0

.6
4

0
22

.2
6

25
.5

4
26

.3
4

6
54

.0
8

55
.0

7
1

14
.2

4
-0

.3
8

0.
26

25
74

.0
1

75
.1

2
1

0.
02

3
6

3
-2

.4
7

0
10

.8
9

-2
.4

7
0

3
90

.4
0

95
.2

3
2

13
.1

6
-2

.4
7

0
35

10
7.

08
11

2.
32

2
0.

02

3
6

4
0

0
6.

05
0

0
41

21
2.

88
21

2.
88

1
14

.0
1

0
0

32
21

4.
23

21
4.

23
1

0.
02

3
8

2
-4

.5
2

0
50

0.
96

-1
.6

1
3.

04
18

18
.4

4
24

.0
4

1
46

.6
5

-4
.5

2
0

1
46

.4
1

53
.3

3
2

0.
02

3
8

3
0

0
69

.8
9

42
.7

5
42

.7
5

2
71

.4
6

71
.4

6
1

15
.0

1
0

0
20

66
.8

6
66

.8
6

1
0.

03

3
8

4
0

0
47

.0
3

0
0

25
14

6.
67

14
6.

67
1

47
.2

6
0.

06
0.

06
9

70
.7

5
70

.7
5

1
0.

03

3
8

6
-0

.4
4

0
13

.6
6

-0
.4

4
0

50
-0

.4
4

0
50

17
.2

5
0.

33
0.

77
26

20
5.

35
20

6.
70

9
0.

03

3
10

2
-8

.0
0

0.
81

T
L

-8
.2

4
0.

55
3

23
.9

8
35

.8
5

0.
55

20
.2

1
-8

.2
4

1
1

25
.3

2
37

.3
2

1
0.

03

3
10

3
-1

.0
8

0
T

L
15

.4
9

16
.7

5
1

44
.9

9
46

.5
8

1
15

.8
9

1.
17

2.
28

27
49

.0
5

50
.6

8
2

0.
03

3
10

4
0

0
74

.6
7

3.
76

3.
76

2
89

.7
9

89
.7

9
1

22
.3

9
0

0
20

78
.7

0
78

.7
0

1
0.

03

3
10

6
-1

.1
2

0
34

.2
2

-1
.1

2
0

49
16

3.
75

16
6.

74
1

20
.2

2
0.

35
1.

49
31

16
8.

57
17

1.
61

6
0.

03

3
12

2
-7

.6
4

1.
14

T
L

-8
.6

8
0

7
26

.8
1

38
.8

8
1

25
.5

0
-5

.4
4

3.
55

1
59

.5
4

74
.7

1
2

0.
03

3
12

3
0

0
55

1.
89

0
0

1
10

8.
77

10
8.

77
1

26
.3

0
1.

77
1.

77
3

79
.5

3
79

.5
3

1
0.

03

3
12

4
-2

.6
1

0
72

00
.2

8
26

.1
6

29
.5

4
1

60
.5

1
64

.8
2

1
21

.6
2

-2
.2

1
0.

42
30

47
.2

1
51

.1
6

2
0.

03

3
12

6
-1

.7
8

0
26

3.
35

-1
.7

8
0

38
12

0.
72

12
4.

71
1

31
.0

1
-1

.7
8

0
33

11
7.

20
12

1.
13

1
0.

04

Av
er

ag
e

-1
.7

1
0.

10
51

9.
23

4.
85

6.
74

21
.4

0
74

.1
7

76
.8

6
8.

45
20

.6
5

-1
.2

7
0.

56
22

.6
0

10
1.

03
10

4.
08

2.
35

0.
02

119



Ta
bl

e
B

.3
:C

om
pa

ri
so

n
of

L
M

3,
H

1,
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

50
D

at
a

Po
in

ts
an

d
4

C
lu

st
er

s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

4
4

2
0

0
6.

28
0

0
3

16
8.

51
16

8.
51

1
18

.5
1

0
0

27
21

8.
10

21
8.

10
1

0.
02

4
4

3
0

0
3.

09
0

0
44

11
1.

79
11

1.
79

1
16

.0
1

0
0

31
11

0.
92

11
0.

92
1

0.
02

4
5

2
0

0
8.

17
0

0
1

91
.9

4
91

.9
4

1
18

.1
2

0
0

35
72

.7
5

72
.7

5
4

0.
02

4
5

3
0

0
5.

72
0

0
40

16
5.

10
16

5.
10

1
19

.6
6

2.
37

2.
37

27
16

0.
16

16
0.

16
1

0.
02

4
5

4
0

0
4.

18
0

0
43

82
.8

7
82

.8
7

1
19

.8
9

0
0

36
10

5.
48

10
5.

48
1

0.
02

4
6

2
-5

.2
3

0
23

62
.3

9
-4

.7
6

0.
49

1
29

.5
0

36
.6

4
1

19
.0

1
-5

.2
3

0
1

23
.7

0
30

.5
2

1
0.

02

4
6

3
-4

.7
1

0
34

.0
3

-4
.7

1
0

1
68

.9
8

77
.3

4
1

21
.7

8
-4

.7
1

0
1

11
8.

91
12

9.
74

1
0.

02

4
6

4
-0

.8
5

0
7.

12
-0

.8
5

0
46

95
.4

4
97

.1
2

1
22

.9
1

-0
.0

5
0.

81
8

95
.0

7
96

.7
4

12
0.

02

4
8

2
-2

6.
84

0
24

9.
95

-2
4.

65
2.

98
15

-3
.7

5
31

.5
5

1
58

.1
2

-2
6.

52
0.

43
1

17
.0

4
59

.9
8

1
0.

02

4
8

3
-1

.5
1

0
27

3.
52

11
.3

7
13

.0
8

1
96

.8
1

99
.8

2
1

27
.1

1
-1

.5
1

0
9

10
6.

71
10

9.
86

1
0.

03

4
8

4
-1

.9
2

0
23

.4
8

-1
.9

2
0

16
13

5.
09

13
9.

70
1

72
.5

8
-1

.9
2

0
21

17
0.

32
17

5.
62

1
0.

02

4
8

6
-1

.6
9

0
10

.6
9

-1
.6

9
0

46
10

1.
96

10
5.

44
1

28
.0

5
-1

.6
9

0
29

23
9.

76
24

5.
62

1
0.

03

4
10

2
-2

0.
35

0
65

72
.2

7
-2

0.
35

0
21

1.
27

27
.1

5
1

28
.4

0
-1

8.
80

1.
95

1
15

.6
9

45
.2

6
1

0.
03

4
10

3
-0

.4
0

1.
87

T
L

5.
74

8.
16

1
60

.7
6

64
.4

3
1

26
.0

1
-2

.2
3

0
14

45
.6

2
48

.9
4

1
0.

03

4
10

4
-0

.4
3

0
76

.8
5

-0
.4

3
0

9
15

5.
57

15
6.

67
1

32
.0

6
-0

.4
3

0
11

13
0.

08
13

1.
06

1
0.

03

4
10

6
-1

.9
2

0
35

.9
8

-1
.9

2
0

38
11

8.
80

12
3.

07
1

32
.4

7
-0

.4
5

1.
50

21
11

9.
34

12
3.

62
3

0.
03

4
12

2
-2

4.
67

2.
44

T
L

-2
5.

29
1.

60
1

0.
03

36
.0

3
1

35
.8

5
-2

3.
42

4.
15

1
21

.9
0

65
.7

8
1

0.
03

4
12

3
-0

.1
2

0
T

L
33

.0
2

33
.1

8
1

10
3.

45
10

3.
70

1
34

.4
3

-0
.1

2
0

5
12

6.
56

12
6.

83
1

0.
04

4
12

4
-7

.0
7

0
31

31
.2

6
-7

.0
7

0
2

63
.1

3
75

.5
4

1
46

.0
0

-1
.9

6
5.

50
10

86
.8

7
10

1.
08

1
0.

03

4
12

6
-2

.8
5

0
13

8.
32

-2
.8

5
0

42
89

.0
7

94
.6

2
1

49
.2

0
0.

65
3.

61
1

15
1.

08
15

8.
45

1
0.

03

Av
er

ag
e

-5
.0

3
0.

22
76

1.
37

-2
.3

2
2.

97
18

.6
0

86
.8

2
94

.4
5

1.
00

31
.3

1
-4

.3
0

1.
02

14
.5

0
10

6.
80

11
5.

83
1.

80
0.

02

120



Ta
bl

e
B

.4
:C

om
pa

ri
so

n
of

L
M

3,
H

1,
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

80
D

at
a

Po
in

ts
an

d
2

C
lu

st
er

s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

2
4

2
0

0
7.

44
0

0
50

0
0

50
11

.5
5

0
0

49
5.

66
5.

66
1

0.
03

2
4

3
0

0
8.

41
0

0
50

0
0

50
9.

35
0

0
50

0
0

50
0.

03

2
5

2
0

0
15

.2
7

0
0

50
0

0
50

13
.3

2
0

0
50

0
0

50
0.

03

2
5

3
0

0
64

.9
0

0
0

47
95

.0
1

95
.0

1
3

12
.9

1
0

0
50

0
0

50
0.

04

2
5

4
0

0
11

.9
9

0
0

50
0

0
50

10
.0

1
0

0
50

0
0

50
0.

04

2
6

2
-3

.1
1

0
35

.1
6

-3
.1

1
0

48
57

.3
1

62
.3

7
1

13
.5

1
-3

.1
1

0
43

85
.8

8
91

.8
5

2
0.

04

2
6

3
0

0
20

.5
3

0
0

50
0

0
50

22
.7

8
0

0
50

0
0

50
0.

04

2
6

4
0

0
31

.9
5

0
0

50
0

0
50

12
.1

2
0

0
50

0
0

50
0.

04

2
8

2
-2

.0
5

0
31

4.
79

-2
.0

5
0

4
61

.3
3

64
.7

0
1

13
.1

4
-2

.0
5

0
28

45
.6

9
48

.7
3

3
0.

05

2
8

3
0

0
99

.5
0

0
0

50
0

0
50

23
.6

1
0

0
48

78
.3

1
78

.3
1

1
0.

05

2
8

4
-0

.0
6

0
14

0.
65

-0
.0

6
0

49
11

9.
47

11
9.

60
1

19
.3

3
-0

.0
6

0
50

-0
.0

6
0

50
0.

06

2
8

6
0

0
16

9.
49

0
0

48
13

5.
78

13
5.

78
1

17
.5

1
0

0
50

0
0

50
0.

05

2
10

2
0

0
31

.9
1

0
0

6
78

.9
2

78
.9

2
1

19
.0

6
0

0
34

81
.9

3
81

.9
3

2
0.

05

2
10

3
0

0
36

6.
91

0
0

36
98

.2
2

98
.2

2
1

24
.9

1
0

0
13

92
.0

3
92

.0
3

1
0.

05

2
10

4
0

0
56

0.
25

0
0

36
96

.4
0

96
.4

0
3

22
.2

7
0

0
50

0
0

50
0.

06

2
10

6
0

0
37

2.
94

0
0

47
92

.6
7

92
.6

7
3

21
.5

2
1.

24
1.

24
50

1.
24

1.
24

50
0.

06

2
12

2
-5

.9
4

0
77

5.
30

-5
.9

4
0

45
47

.3
4

56
.6

5
1

21
.9

1
-5

.9
4

0
1

63
.2

5
73

.5
7

1
0.

06

2
12

3
0

0
33

3.
92

0
0

39
71

.8
7

71
.8

7
11

30
.9

1
0

0
45

89
.5

9
89

.5
9

1
0.

06

2
12

4
0

0
11

66
.2

7
0

0
49

61
.3

6
61

.3
6

1
30

.8
1

0
0

46
28

.5
8

28
.5

8
1

0.
08

2
12

6
0

0
60

4.
21

0
0

23
89

.1
3

89
.1

3
1

24
.8

4
0

0
48

3.
15

3.
15

2
0.

08

Av
er

ag
e

-0
.5

6
0

25
6.

59
-0

.5
6

0
41

.3
5

55
.2

4
56

.1
3

18
.9

5
18

.7
7

-0
.5

0
0.

06
42

.7
5

28
.7

6
29

.7
3

25
.7

5
0.

05

121



Ta
bl

e
B

.5
:C

om
pa

ri
so

n
of

L
M

3,
H

1,
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

80
D

at
a

Po
in

ts
an

d
3

C
lu

st
er

s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

3
4

2
-2

.2
5

0
14

3.
80

15
.5

4
18

.2
0

18
28

.4
7

31
.4

3
1

19
.0

8
-2

.2
5

0
17

68
.6

7
72

.5
4

10
0.

03

3
4

3
0

0
16

.6
8

0
0

49
18

6.
22

18
6.

22
1

16
.5

5
0

0
37

18
4.

80
18

4.
80

1
0.

03

3
5

2
-2

.6
0

0
61

.1
7

6.
77

9.
63

3
57

.6
4

61
.8

5
1

23
.5

0
6.

77
9.

63
13

55
.6

5
59

.8
1

7
0.

04

3
5

3
0

0
12

.4
7

0
0

50
0

0
50

22
.0

5
0

0
36

23
4.

09
23

4.
09

1
0.

04

3
5

4
0

0
20

.3
3

0
0

49
18

0.
83

18
0.

83
1

20
.0

6
1.

43
1.

43
33

17
8.

56
17

8.
56

7
0.

03

3
6

2
-1

.4
2

0
16

2.
80

29
.4

8
31

.3
5

2
56

.9
4

59
.2

0
7

22
.2

2
-1

.4
2

0
14

71
.6

1
74

.0
9

1
0.

04

3
6

3
-2

.1
3

0
74

.5
0

-2
.1

3
0

15
88

.3
7

92
.4

8
1

25
.5

4
-2

.1
3

0
31

10
0.

73
10

5.
11

1
0.

05

3
6

4
0

0
37

.5
9

0
0

47
12

3.
52

12
3.

52
1

24
.3

4
0

0
31

18
5.

61
18

5.
61

5
0.

04

3
8

2
-1

2.
51

0
21

28
.3

4
-1

2.
51

0
25

-3
.1

7
10

.6
7

2
30

.1
8

-1
2.

51
0

4
7.

93
23

.3
6

2
0.

05

3
8

3
0

0
25

04
.2

2
17

.4
9

17
.4

9
2

30
.1

5
30

.1
5

1
25

.6
8

0
0

8
38

.0
2

38
.0

2
1

0.
05

3
8

4
0

0
24

3.
02

0
0

30
12

4.
65

12
4.

65
1

38
.4

2
6.

20
6.

20
42

70
.6

2
70

.6
2

2
0.

06

3
8

6
0

0
91

.9
4

0
0

50
0

0
50

32
.7

3
0

0
31

19
3.

50
19

3.
50

2
0.

05

3
10

2
-7

.9
2

0.
44

T
L

-6
.7

6
1.

71
1

15
.9

9
26

.5
3

1
44

.6
8

-5
.3

3
3.

27
1

44
.5

2
57

.6
5

1
0.

05

3
10

3
1.

84
2.

87
T

L
24

.6
7

25
.9

4
2

51
.2

4
52

.7
8

1
36

.8
9

-0
.9

2
0.

08
2

54
.5

1
56

.0
8

1
0.

06

3
10

4
0

0
53

7.
13

0
0

8
10

2.
24

10
2.

24
1

43
.9

5
0

0
1

91
.0

5
91

.0
5

1
0.

05

3
10

6
0

0
22

1.
55

0
0

46
17

6.
41

17
6.

41
1

38
.1

8
6.

25
6.

25
38

10
9.

54
10

9.
54

1
0.

06

3
12

2
-1

7.
79

9.
65

T
L

-2
5.

02
0

1
-4

.2
5

27
.7

1
1

51
.0

6
-1

8.
67

8.
47

1
3.

13
37

.5
6

1
0.

06

3
12

3
-2

.0
7

0.
48

T
L

0.
63

3.
25

1
73

.9
7

78
.5

0
1

53
.2

2
-2

.5
4

0
17

64
.7

4
69

.0
4

2
0.

06

3
12

4
0.

53
0.

53
T

L
38

.0
8

38
.0

8
1

71
.6

0
71

.6
0

1
36

.9
0

0
0

9
52

.1
6

52
.1

6
1

0.
07

3
12

6
0

0
53

3.
00

0
0

44
14

6.
56

14
6.

56
1

64
.0

2
0

0
10

13
9.

91
13

9.
91

1
0.

09

Av
er

ag
e

-2
.3

2
0.

70
45

2.
57

4.
31

7.
28

22
.2

0
75

.3
7

79
.1

7
6.

25
33

.4
6

-1
.2

6
1.

77
18

.8
0

97
.4

7
10

1.
66

2.
45

0.
05

122



Ta
bl

e
B

.6
:C

om
pa

ri
so

n
of

L
M

3,
H

1,
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

80
D

at
a

Po
in

ts
an

d
4

C
lu

st
er

s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

4
4

2
0

0
41

.4
7

17
.1

5
17

.1
5

9
36

.8
7

36
.8

7
1

31
.4

3
0

0
24

11
5.

26
11

5.
26

2
0.

03

4
4

3
0

0
20

.9
5

0
0

47
12

0.
61

12
0.

61
1

30
.3

3
0

0
32

10
7.

41
10

7.
41

1
0.

03

4
5

2
-4

.2
4

0
12

1.
41

-4
.2

4
0

1
67

.4
9

74
.9

1
1

35
.3

1
-4

.2
4

0
3

36
.9

5
43

.0
2

1
0.

03

4
5

3
0

0
17

.6
9

0
0

44
19

8.
93

19
8.

93
1

31
.5

2
0

0
3

22
4.

41
22

4.
41

1
0.

04

4
5

4
0

0
12

.9
0

0
0

8
14

0.
62

14
0.

62
2

30
.8

3
0

0
35

26
0.

20
26

0.
20

1
0.

04

4
6

2
-1

.9
5

0
38

0.
52

35
.9

9
38

.6
9

1
67

.1
0

70
.4

1
1

35
.2

3
1.

50
3.

52
6

63
.9

3
67

.1
8

1
0.

04

4
6

3
0

0
69

.5
3

0
0

20
99

.0
7

99
.0

7
1

44
.0

7
0

0
28

10
2.

41
10

2.
41

3
0.

04

4
6

4
0

0
32

.5
3

0
0

29
18

1.
37

18
1.

37
1

37
.6

7
0

0
8

18
3.

13
18

3.
13

1
0.

04

4
8

2
-4

.2
9

6.
21

T
L

-9
.8

9
0

2
14

.4
3

26
.9

9
1

46
.3

3
-9

.8
9

0
1

26
.2

4
40

.0
9

1
0.

06

4
8

3
0

0
35

38
.4

1
22

.5
6

22
.5

6
1

11
3.

58
11

3.
58

1
50

.7
7

0
0

13
88

.6
4

88
.6

4
1

0.
05

4
8

4
-0

.1
6

0
23

1.
76

-0
.1

6
0

35
14

4.
26

14
4.

66
1

63
.5

3
-0

.1
6

0
28

18
4.

76
18

5.
23

1
0.

06

4
8

6
0

0
73

.9
9

0
0

17
16

9.
61

16
9.

61
1

46
.2

3
0

0
35

25
1.

62
25

1.
62

1
0.

06

4
10

2
-1

0.
13

1.
58

T
L

-1
1.

53
0

1
3.

87
17

.4
1

1
50

.9
2

-2
.8

9
9.

77
2

34
.2

0
51

.6
9

1
0.

06

4
10

3
0.

23
0.

92
T

L
24

.3
0

25
.1

6
1

70
.5

9
71

.7
6

1
54

.7
9

-0
.6

8
0

2
59

.3
4

60
.4

3
1

0.
06

4
10

4
0

0
76

7.
25

0
0

5
95

.6
4

95
.6

4
1

73
.0

3
0

0
6

12
7.

20
12

7.
20

1
0.

06

4
10

6
0

0
16

2.
85

0
0

24
14

5.
88

14
5.

88
1

73
.9

2
0.

67
0.

67
28

22
7.

07
22

7.
07

1
0.

07

4
12

2
-2

2.
90

2.
90

T
L

-2
0.

74
5.

78
2

-3
.1

2
29

.3
1

1
82

.2
5

-2
0.

40
6.

24
1

11
.0

3
48

.1
9

1
0.

07

4
12

3
25

.7
4

25
.7

4
T

L
14

.3
3

14
.3

3
1

94
.1

3
94

.1
3

1
83

.1
8

0
0

9
62

.9
7

62
.9

7
1

0.
07

4
12

4
6.

86
6.

86
T

L
0

0
1

82
.3

0
82

.3
0

1
97

.2
1

0
0

3
90

.5
2

90
.5

2
1

0.
08

4
12

6
-3

.5
0

0
55

7.
76

-3
.5

0
0

45
89

.4
4

96
.3

1
1

10
3.

27
-3

.1
9

0.
32

9
13

3.
15

14
1.

60
1

0.
09

Av
er

ag
e

-0
.7

2
2.

21
43

0.
64

3.
21

6.
18

14
.7

0
96

.6
4

10
0.

52
1.

05
55

.0
9

-1
.9

6
1.

03
13

.8
0

11
9.

52
12

3.
91

1.
15

0.
05

123



Ta
bl

e
B

.7
:C

om
pa

ri
so

n
of

L
M

3,
H

1,
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

10
0

D
at

a
Po

in
ts

an
d

2
C

lu
st

er
s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

2
4

2
-0

.4
0

0
23

.8
4

-0
.4

0
0

50
-0

.4
0

0
50

14
.8

2
-0

.4
0

0
50

-0
.4

0
0

50
0.

05

2
4

3
0

0
23

.2
0

0
0

50
0

0
50

12
.0

1
0

0
50

0
0

50
0.

05

2
5

2
0

0
30

.2
0

0
0

35
13

4.
95

13
4.

95
1

14
.2

6
0

0
2

4.
06

4.
06

48
0.

05

2
5

3
0

0
67

.7
8

0
0

50
0

0
50

14
.8

2
0

0
50

0
0

50
0.

05

2
5

4
0

0
32

.1
6

0
0

50
0

0
50

12
.7

8
0

0
50

0
0

50
0.

06

2
6

2
0

0
82

.4
4

0
0

9
10

5.
87

10
5.

87
1

19
.4

6
0.

01
0.

01
39

74
.6

1
74

.6
1

2
0.

08

2
6

3
0

0
11

4.
26

0
0

50
0

0
50

19
.6

2
0

0
50

0
0

50
0.

06

2
6

4
0

0
14

1.
91

0
0

50
0

0
50

16
.1

8
0

0
50

0
0

50
0.

07

2
8

2
-1

.0
3

0
48

1.
76

-0
.9

4
0.

09
32

64
.4

6
66

.1
7

18
21

.9
6

0
0

4
15

.6
7

16
.8

7
10

0.
07

2
8

3
0

0
28

2.
91

0
0

45
13

3.
07

13
3.

07
1

24
.1

2
0

0
44

81
.0

1
81

.0
1

1
0.

07

2
8

4
0

0
13

0.
80

0
0

50
0

0
50

19
.4

4
0

0
50

0
0

50
0.

07

2
8

6
0

0
39

9.
45

0
0

47
17

5.
06

17
5.

06
3

21
.6

4
0

0
50

0
0

50
0.

07

2
10

2
-3

.8
4

0
47

9.
91

-3
.8

4
0

41
60

.7
6

67
.1

9
1

35
.3

1
-3

.8
4

0
30

60
.6

4
67

.0
7

3
0.

07

2
10

3
0

0
10

37
.6

6
0

0
21

72
.7

1
72

.7
1

2
31

.6
9

0
0

50
0

0
50

0.
09

2
10

4
0

0
12

50
.3

8
0

0
24

88
.8

1
88

.8
1

1
43

.1
3

0
0

44
10

3.
03

10
3.

03
2

0.
09

2
10

6
0

0
97

2.
61

0
0

47
15

8.
37

15
8.

37
1

31
.1

9
0

0
50

0
0

50
0.

09

2
12

2
0

0
51

7.
76

0
0

1
10

2.
43

10
2.

43
3

39
.2

0
0

0
7

20
.5

4
20

.5
4

12
0.

09

2
12

3
0

0
44

28
.4

7
0

0
32

70
.7

6
70

.7
6

1
41

.6
2

0
0

41
62

.3
8

62
.3

8
4

0.
11

2
12

4
0

0
26

98
.0

5
0

0
33

80
.2

6
80

.2
6

1
45

.5
7

0
0

2
84

.7
3

84
.7

3
1

0.
14

2
12

6
0

0
17

14
.6

0
0

0
35

94
.6

5
94

.6
5

15
40

.9
4

0
0

42
11

.2
0

11
.2

0
1

0.
12

Av
er

ag
e

-0
.2

6
0

74
5.

51
-0

.2
6

0
37

.6
0

67
.0

9
67

.5
1

19
.9

5
25

.9
9

-0
.2

1
0

37
.7

5
25

.8
7

26
.2

7
29

.2
0

0.
08

124



Ta
bl

e
B

.8
:C

om
pa

ri
so

n
of

L
M

3,
H

1,
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

10
0

D
at

a
Po

in
ts

an
d

3
C

lu
st

er
s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

3
4

2
0

0
11

6.
99

28
.6

8
28

.6
8

6
39

.5
8

39
.5

8
1

27
.8

4
0

0
13

80
.9

0
80

.9
0

3
0.

06

3
4

3
0

0
52

.7
4

0
0

50
0

0
50

22
.4

6
0

0
38

14
1.

89
14

1.
89

1
0.

06

3
5

2
-0

.5
2

0
23

8.
42

25
.9

1
26

.5
7

1
62

.3
6

63
.2

1
5

28
.9

8
-0

.5
2

0
38

57
.5

4
58

.3
6

2
0.

08

3
5

3
0

0
33

.9
3

0
0

50
0

0
50

24
.3

3
0

0
37

10
0.

51
10

0.
51

1
0.

07

3
5

4
0

0
85

.0
4

0
0

48
12

5.
90

12
5.

90
1

27
.6

9
0

0
38

12
3.

47
12

3.
47

10
0.

07

3
6

2
-3

.8
7

0
11

13
.5

2
23

.0
2

27
.9

8
1

44
.4

1
50

.2
3

2
31

.4
0

0.
85

4.
92

9
93

.3
2

10
1.

12
1

0.
07

3
6

3
0

0
19

4.
05

0
0

6
12

1.
87

12
1.

87
1

32
.5

4
0

0
38

11
9.

34
11

9.
34

3
0.

07

3
6

4
0

0
75

.2
5

0
0

50
0

0
50

32
.6

6
0

0
37

13
0.

67
13

0.
67

4
0.

08

3
8

2
0.

94
0

T
L

0.
94

0
8

16
.8

6
15

.7
7

1
42

.4
8

0.
94

0
3

47
.1

2
45

.7
5

1
0.

09

3
8

3
1.

78
1.

78
T

L
24

.4
4

24
.4

4
3

34
.6

1
34

.6
1

1
35

.7
5

0
0

30
31

.9
2

31
.9

2
1

0.
09

3
8

4
0

0
93

5.
35

0
0

30
12

1.
80

12
1.

80
1

48
.8

0
0

0
36

10
5.

60
10

5.
60

3
0.

09

3
8

6
-0

.8
7

0
31

7.
36

-0
.8

7
0

44
11

0.
36

11
2.

21
5

41
.9

4
-0

.8
7

0
37

11
1.

86
11

3.
73

3
0.

10

3
10

2
-6

.5
7

0.
60

T
L

-6
.0

1
1.

21
1

19
.1

2
28

.2
7

1
57

.6
4

2.
43

10
.2

9
1

31
.3

3
41

.4
2

1
0.

11

3
10

3
-0

.4
3

0.
23

T
L

26
.3

5
27

.1
9

5
66

.0
3

67
.1

3
1

61
.2

1
-0

.6
6

0
11

52
.9

5
53

.9
6

1
0.

11

3
10

4
0

0
15

76
.5

3
0

0
1

10
7.

10
10

7.
10

1
56

.1
4

0
0

9
90

.2
1

90
.2

1
1

0.
11

3
10

6
0

0
82

5.
50

0
0

49
18

9.
23

18
9.

23
1

61
.9

9
2.

05
2.

05
31

18
8.

91
18

8.
91

3
0.

11

3
12

2
-1

5.
33

0
T

L
-1

3.
67

1.
96

1
1.

28
19

.6
1

1
65

.2
7

-1
3.

67
1.

96
1

9.
33

29
.1

2
1

0.
12

3
12

3
3.

78
3.

78
T

L
26

.0
8

26
.0

8
1

88
.4

4
88

.4
4

1
75

.9
6

0
0

9
56

.9
1

56
.9

1
1

0.
13

3
12

4
5.

76
4.

73
T

L
15

.5
8

14
.4

6
1

76
.3

2
74

.6
1

1
68

.8
3

0.
98

0
3

38
.1

8
36

.8
4

1
0.

12

3
12

6
0

0
22

41
.7

6
0

0
33

13
8.

18
13

8.
18

1
75

.9
5

0
0

1
11

3.
69

11
3.

69
1

0.
16

Av
er

ag
e

-0
.7

7
0.

56
60

0.
49

7.
52

8.
93

19
.4

5
68

.1
7

69
.8

9
8.

80
45

.9
9

-0
.4

2
0.

96
21

.0
0

86
.2

8
88

.2
2

2.
15

0.
09

125



Ta
bl

e
B

.9
:C

om
pa

ri
so

n
of

L
M

3,
H

1,
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

10
0

D
at

a
Po

in
ts

an
d

4
C

lu
st

er
s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

4
4

2
0

0
81

.1
6

24
.0

6
24

.0
6

1
34

.5
4

34
.5

4
1

34
.6

5
0

0
21

99
.9

9
99

.9
9

6
0.

04

4
4

3
0

0
62

.6
5

0
0

42
12

4.
09

12
4.

09
1

38
.2

2
0.

58
0.

58
28

12
3.

55
12

3.
55

1
0.

05

4
5

2
-0

.2
6

0
13

0.
15

-0
.2

6
0

9
95

.2
9

95
.8

0
1

52
.5

4
-0

.2
6

0
4

67
.1

7
67

.6
0

1
0.

05

4
5

3
0

0
11

6.
12

0
0

40
18

3.
02

18
3.

02
1

46
.0

3
0

0
21

10
0.

99
10

0.
99

1
0.

06

4
5

4
0

0
41

.9
4

0
0

21
14

6.
38

14
6.

38
1

41
.8

7
0

0
35

26
0.

19
26

0.
19

1
0.

06

4
6

2
-2

.5
6

0
54

1.
84

15
.0

9
18

.1
1

1
56

.7
9

60
.9

1
1

53
.1

3
-2

.5
6

0
13

73
.8

2
78

.3
9

1
0.

06

4
6

3
-1

.2
3

0
17

6.
16

-1
.2

3
0

31
13

9.
06

14
2.

04
1

63
.0

4
1.

86
3.

13
27

15
2.

62
15

5.
77

1
0.

06

4
6

4
0

0
12

4.
09

0
0

38
16

6.
21

16
6.

21
2

52
.4

7
0

0
30

22
8.

16
22

8.
16

1
0.

06

4
8

2
-2

0.
47

1.
79

T
L

-2
1.

87
0

1
-1

2.
30

12
.2

6
1

69
.5

9
-1

9.
99

2.
41

2
26

.5
6

61
.9

9
2

0.
08

4
8

3
0

0
28

03
.2

0
22

.3
7

22
.3

7
1

10
1.

44
10

1.
44

1
74

.7
5

0
0

15
10

5.
21

10
5.

21
1

0.
08

4
8

4
0

0
51

3.
96

0
0

37
14

2.
84

14
2.

84
1

84
.5

7
0

0
27

20
6.

37
20

6.
37

1
0.

07

4
8

6
0

0
37

7.
77

0
0

38
93

.4
8

93
.4

8
1

90
.4

1
0

0
31

24
2.

60
24

2.
60

1
0.

09

4
10

2
-2

1.
46

0
T

L
-2

0.
37

1.
39

1
-9

.2
5

15
.5

5
1

86
.9

4
-2

0.
04

1.
82

1
12

.2
5

42
.9

3
1

0.
09

4
10

3
2.

19
1.

64
T

L
19

.3
3

18
.6

9
1

73
.9

9
73

.0
5

1
83

.2
9

0.
54

0
3

48
.6

6
47

.8
6

2
0.

10

4
10

4
-1

.5
2

0
15

15
.9

9
-1

.5
2

0
8

10
3.

00
10

6.
12

1
10

2.
64

-1
.5

2
0

7
11

5.
44

11
8.

76
1

0.
09

4
10

6
0

0
67

0.
75

0
0

37
14

5.
59

14
5.

59
1

11
1.

79
0

0
29

23
8.

57
23

8.
57

1
0.

09

4
12

2
-2

2.
11

2.
59

T
L

-2
4.

08
0

1
-7

.8
7

21
.3

5
1

12
1.

90
-2

3.
42

0.
87

1
16

.9
7

54
.0

7
1

0.
10

4
12

3
17

.7
4

17
.7

4
T

L
15

.8
5

15
.8

5
1

91
.4

4
91

.4
4

1
12

1.
51

0
0

2
58

.9
8

58
.9

8
1

0.
11

4
12

4
0.

37
0

T
L

22
.5

0
22

.0
6

1
74

.2
7

73
.6

4
1

11
3.

56
0.

60
0.

23
20

78
.2

8
77

.6
3

1
0.

11

4
12

6
-1

.6
9

0
17

33
.8

0
-1

.6
9

0
42

10
7.

68
11

1.
25

1
15

0.
62

-1
.4

6
0.

23
1

12
6.

80
13

0.
70

1
0.

11

Av
er

ag
e

-2
.5

5
1.

19
63

4.
97

2.
41

6.
13

17
.6

0
92

.4
8

97
.0

5
1.

05
79

.6
8

-3
.2

8
0.

46
15

.9
0

11
9.

16
12

5.
02

1.
35

0.
08

126



Ta
bl

e
B

.1
0:

C
om

pa
ri

so
n

of
L

M
3,

H
1,

an
d

H
2

fo
rS

im
ul

at
ed

D
at

a
Se

ts
w

ith
20

0
D

at
a

Po
in

ts
an

d
2

C
lu

st
er

s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

2
4

2
-0

.4
4

0
18

3.
41

-0
.4

4
0

50
-0

.4
4

0
50

27
.2

5
-0

.4
4

0
50

-0
.4

4
0

50
0.

20

2
4

3
0

0
21

4.
33

0
0

50
0

0
50

20
.8

1
0

0
50

0
0

50
0.

17

2
5

2
-2

.7
4

0
40

25
.8

9
-2

.7
4

0
40

48
.3

7
52

.5
4

10
44

.4
7

-2
.7

4
0

8
48

.3
7

52
.5

4
1

0.
19

2
5

3
0

0
21

89
.4

6
0

0
48

10
5.

13
10

5.
13

2
40

.3
1

0
0

50
0

0
50

0.
18

2
5

4
0

0
28

4.
15

0
0

50
0

0
50

34
.6

7
0

0
50

0
0

50
0.

20

2
6

2
0

0
41

9.
38

0
0

50
0

0
50

78
.1

5
0

0
44

12
7.

61
12

7.
61

4
0.

19

2
6

3
0

0
27

66
.4

6
0

0
48

91
.0

1
91

.0
1

2
52

.1
0

0
0

49
38

.0
6

38
.0

6
1

0.
23

2
6

4
0

0
42

81
.7

9
0

0
50

0
0

50
53

.6
9

0
0

50
0

0
50

0.
22

2
8

2
-1

.0
2

0.
42

T
L

-1
.4

3
0

25
64

.4
8

66
.8

7
3

68
.5

6
-1

.4
3

0
5

61
.5

7
63

.9
1

1
0.

25

2
8

3
9.

55
10

.3
5

T
L

-0
.7

3
0

12
72

.1
6

73
.4

2
3

61
.7

6
-0

.7
3

0
40

72
.1

6
73

.4
2

1
0.

26

2
8

4
1.

14
1.

14
T

L
0

0
50

0
0

50
86

.2
8

0
0

49
13

8.
01

13
8.

01
1

0.
32

2
8

6
0

0
61

48
.1

2
0

0
50

0
0

50
58

.5
2

0
0

50
0

0
50

0.
28

2
10

2
-0

.9
8

1.
12

T
L

-2
.0

8
0

26
52

.5
5

55
.7

9
1

89
.2

9
-2

.0
8

0
3

52
.3

4
55

.5
7

1
0.

28

2
10

3
56

.0
0

56
.6

2
T

L
-0

.4
0

0
47

80
.0

9
80

.8
0

2
11

6.
50

-0
.4

0
0

47
83

.0
1

83
.7

4
1

0.
33

2
10

4
5.

56
5.

56
T

L
0

0
50

0
0

50
11

4.
20

0
0

47
95

.7
8

95
.7

8
2

0.
32

2
10

6
15

.4
4

15
.4

4
T

L
0

0
50

0
0

50
98

.1
3

0
0

50
0

0
50

0.
33

2
12

2
1.

95
2.

99
T

L
-1

.0
0

0
16

60
.9

5
62

.5
9

33
11

3.
34

-1
.0

0
0

2
67

.2
3

68
.9

3
2

0.
36

2
12

3
10

0.
75

10
1.

13
T

L
-0

.1
9

0
9

83
.0

4
83

.3
9

17
10

7.
36

-0
.1

9
0

42
90

.1
2

90
.4

8
1

0.
34

2
12

4
25

.6
9

25
.6

9
T

L
0

0
32

10
7.

63
10

7.
63

6
12

1.
93

0
0

45
11

6.
30

11
6.

30
1

0.
40

2
12

6
75

.5
3

75
.5

3
T

L
0

0
50

0
0

50
15

6.
16

0
0

49
2.

58
2.

58
1

0.
37

Av
er

ag
e

14
.3

2
14

.8
0

22
79

.2
2

-0
.4

5
0

40
.1

5
38

.2
5

38
.9

6
28

.9
5

77
.1

7
-0

.4
5

0
39

.0
0

49
.6

3
50

.3
5

18
.4

0
0.

27

127



Ta
bl

e
B

.1
1:

C
om

pa
ri

so
n

of
L

M
3,

H
1,

an
d

H
2

fo
rS

im
ul

at
ed

D
at

a
Se

ts
w

ith
20

0
D

at
a

Po
in

ts
an

d
3

C
lu

st
er

s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

3
4

2
0

0
34

55
.5

3
26

.4
7

26
.4

7
37

36
.3

8
36

.3
8

2
83

.8
3

0
0

34
95

.8
9

95
.8

9
2

0.
16

3
4

3
0

0
89

4.
60

0
0

50
0

0
50

49
.3

0
0

0
38

14
0.

27
14

0.
27

1
0.

17

3
5

2
-1

.1
9

0
29

07
.2

2
7.

13
8.

43
1

61
.5

3
63

.4
8

1
84

.8
9

-1
.1

9
0

12
62

.8
1

64
.7

8
1

0.
17

3
5

3
0

0
76

2.
74

0
0

48
11

6.
93

11
6.

93
1

74
.7

0
0

0
36

19
7.

24
19

7.
24

2
0.

19

3
5

4
0

0
20

72
.1

9
0

0
49

11
0.

72
11

0.
72

1
72

.6
2

0
0

36
17

3.
75

17
3.

75
3

0.
18

3
6

2
10

.7
1

12
.0

8
T

L
46

.7
7

48
.5

9
16

58
.4

4
60

.4
2

1
11

3.
65

-1
.2

3
0

19
89

.8
3

92
.2

0
2

0.
20

3
6

3
39

.5
2

39
.5

2
T

L
0

0
4

92
.9

8
92

.9
8

6
97

.4
2

0
0

40
98

.2
8

98
.2

8
2

0.
19

3
6

4
0

0
20

19
.4

8
0

0
47

20
2.

32
20

2.
32

1
90

.6
3

0
0

39
11

9.
64

11
9.

64
11

0.
22

3
8

2
11

.9
3

7.
88

T
L

3.
75

0
12

22
.7

3
18

.2
9

1
15

5.
65

3.
84

0.
09

4
38

.1
6

33
.1

7
1

0.
28

3
8

3
46

.1
2

46
.1

2
T

L
41

.1
4

41
.1

4
8

48
.0

5
48

.0
5

2
13

2.
02

0
0

32
48

.9
0

48
.9

0
3

0.
26

3
8

4
19

.2
5

19
.2

5
T

L
0

0
38

13
5.

48
13

5.
48

1
20

0.
93

0
0

2
14

8.
63

14
8.

63
1

0.
37

3
8

6
16

.4
1

16
.4

1
T

L
0

0
50

0
0

50
15

9.
90

1.
99

1.
99

32
19

6.
09

19
6.

08
1

0.
34

3
10

2
6.

36
10

.5
2

T
L

-3
.7

7
0

1
15

.7
9

20
.3

3
1

29
1.

55
-2

.0
4

1.
80

1
38

.5
7

44
.0

0
1

0.
41

3
10

3
69

.7
2

69
.7

5
T

L
26

.8
7

26
.8

9
3

63
.1

8
63

.2
1

2
24

0.
40

-0
.0

2
0

16
54

.3
2

54
.3

5
1

0.
39

3
10

4
73

.1
2

73
.1

2
T

L
0

0
6

93
.3

8
93

.3
8

1
27

2.
38

0
0

33
64

.0
1

64
.0

1
2

0.
41

3
10

6
26

5.
66

25
4.

16
T

L
3.

25
0

40
29

.0
8

25
.0

2
3

29
6.

13
3.

25
0

33
17

1.
13

16
2.

60
4

0.
39

3
12

2
1.

00
13

.1
4

T
L

-1
0.

73
0

8
1.

77
14

.0
0

1
29

0.
55

-8
.9

1
2.

04
1

25
.2

1
40

.2
6

1
0.

35

3
12

3
13

6.
08

13
3.

93
T

L
17

.7
7

16
.7

0
2

70
.2

1
68

.6
6

1
31

5.
47

0.
92

0
2

67
.2

8
65

.7
6

1
0.

34

3
12

4
54

.9
2

54
.9

2
T

L
31

.6
9

31
.6

9
1

82
.1

1
82

.1
1

1
30

9.
10

0
0

23
53

.8
7

53
.8

7
1

0.
40

3
12

6
63

.1
6

63
.1

6
T

L
0

0
50

0
0

50
47

8.
59

0
0

35
12

5.
29

12
5.

29
1

0.
45

Av
er

ag
e

40
.6

4
40

.7
0

20
18

.6
3

9.
52

10
.0

0
23

.5
5

62
.0

5
62

.5
9

8.
85

19
0.

49
-0

.1
7

0.
30

23
.4

0
10

0.
46

10
0.

95
2.

10
0.

29

128



Ta
bl

e
B

.1
2:

C
om

pa
ri

so
n

of
L

M
3,

H
1,

an
d

H
2

fo
rS

im
ul

at
ed

D
at

a
Se

ts
w

ith
20

0
D

at
a

Po
in

ts
an

d
4

C
lu

st
er

s

p
m

q
L

M
3

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

4
4

2
0

0
T

L
12

.2
4

12
.2

4
1

20
.2

7
20

.2
7

1
11

2.
30

0
0

11
13

8.
94

13
8.

94
1

0.
16

4
4

3
0

0
10

07
.0

9
0

0
47

12
4.

25
12

4.
25

1
11

8.
84

0
0

28
23

9.
95

23
9.

95
1

0.
17

4
5

2
1.

92
1.

36
T

L
5.

92
5.

33
2

59
.8

4
58

.9
6

1
20

0.
57

0.
56

0
1

51
.7

4
50

.9
0

2
0.

20

4
5

3
0

0
19

70
.2

4
0

0
35

18
9.

74
18

9.
74

1
14

4.
61

0
0

29
19

9.
07

19
9.

07
1

0.
21

4
5

4
0

0
81

5.
56

0
0

21
14

5.
41

14
5.

41
1

11
6.

23
0

0
20

26
5.

75
26

5.
75

1
0.

20

4
6

2
20

.4
7

22
.3

7
T

L
18

.5
5

20
.4

3
1

61
.0

3
63

.5
8

1
20

1.
71

-1
.5

6
0

1
14

4.
29

14
8.

16
1

0.
21

4
6

3
36

0.
76

36
1.

06
T

L
-0

.0
7

0
2

11
8.

64
11

8.
78

1
22

7.
26

-0
.0

7
0

17
14

8.
81

14
8.

97
1

0.
22

4
6

4
0

0
44

67
.9

8
0

0
28

16
1.

40
16

1.
40

1
17

3.
28

0
0

18
16

0.
88

16
0.

88
1

0.
23

4
8

2
-0

.5
2

20
.0

3
T

L
-1

7.
12

0
4

-6
.1

6
13

.2
2

1
25

4.
66

-1
6.

55
0.

69
1

30
.5

2
57

.4
8

2
0.

27

4
8

3
67

.7
7

67
.7

7
T

L
24

.2
9

24
.2

9
1

11
1.

35
11

1.
35

1
30

5.
40

0
0

14
10

6.
62

10
6.

62
1

0.
27

4
8

4
60

.0
4

60
.0

4
T

L
0

0
40

12
4.

05
12

4.
05

1
58

6.
81

0
0

1
15

7.
68

15
7.

68
1

0.
35

4
8

6
30

.1
6

30
.1

6
T

L
0

0
42

95
.8

6
95

.8
7

1
29

8.
88

0
0

26
23

7.
73

23
7.

74
1

0.
39

4
10

2
2.

11
28

.9
5

T
L

-2
0.

82
0

2
-1

2.
08

11
.0

4
1

45
7.

22
-1

7.
34

4.
40

1
10

.3
9

39
.4

2
1

0.
42

4
10

3
31

.0
8

25
.1

0
T

L
54

.6
0

47
.5

5
1

77
.6

2
69

.5
3

1
37

2.
41

4.
78

0
3

68
.2

4
60

.5
7

1
0.

43

4
10

4
11

1.
18

11
1.

18
T

L
0

0
10

11
6.

05
11

6.
05

1
53

5.
91

0
0

19
14

2.
68

14
2.

68
1

0.
45

4
10

6
33

.1
9

33
.1

9
T

L
0

0
44

13
9.

27
13

9.
27

1
51

5.
73

2.
47

2.
47

4
21

0.
52

21
0.

52
1

0.
41

4
12

2
19

.6
8

58
.8

4
T

L
-2

4.
66

0
1

-1
3.

91
14

.2
6

1
61

0.
63

-2
2.

36
3.

05
1

14
.1

9
51

.5
6

1
0.

49

4
12

3
24

9.
14

24
9.

37
T

L
42

.8
0

42
.8

9
1

83
.0

6
83

.1
8

1
66

9.
99

-0
.0

7
0

14
11

0.
89

11
1.

03
1

0.
46

4
12

4
20

8.
95

20
8.

95
T

L
5.

97
5.

97
1

74
.9

5
74

.9
5

1
80

5.
45

0
0

10
87

.4
6

87
.4

6
1

0.
49

4
12

6
26

1.
31

26
3.

70
T

L
-0

.6
6

0
41

98
.3

4
99

.6
5

1
75

7.
57

-0
.6

6
0

2
14

6.
03

14
7.

65
1

0.
45

Av
er

ag
e

72
.8

6
77

.1
0

20
65

.2
2

5.
05

7.
94

16
.2

5
88

.4
5

91
.7

4
1.

00
37

3.
27

-2
.5

4
0.

53
11

.0
5

13
3.

62
13

8.
15

1.
10

0.
32

129



Ta
bl

e
B

.1
3:

C
om

pa
ri

so
n

of
H

1
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

50
0

D
at

a
Po

in
ts

an
d

2
C

lu
st

er
s

p
m

q

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

2
4

2
-0

.0
8

0
50

-0
.0

8
0

50
15

5.
05

-0
.0

8
0

49
71

.9
3

72
.0

6
1

1.
41

2
4

3
0

0
50

0
0

50
10

9.
04

0
0

50
0

0
50

1.
33

2
5

2
-0

.0
2

0
50

-0
.0

2
0

50
24

4.
49

-0
.0

2
0

49
55

.9
1

55
.9

4
1

1.
58

2
5

3
0

0
49

11
3.

87
11

3.
87

1
21

1.
90

0
0

50
0

0
50

1.
60

2
5

4
0

0
50

0
0

50
15

2.
49

0
0

50
0

0
50

1.
48

2
6

2
-0

.3
2

0
43

80
.5

1
81

.0
8

1
37

3.
24

-0
.3

2
0

20
97

.6
7

98
.3

0
2

1.
67

2
6

3
0

0
23

58
.5

8
58

.5
9

1
28

2.
18

0
0

2
8.

42
8.

42
7

1.
77

2
6

4
0

0
50

0
0

50
19

9.
68

0
0

50
0

0
50

1.
65

2
8

2
11

.7
3

14
.3

4
3

26
.4

2
29

.3
8

1
54

9.
80

-2
.2

9
0

12
35

.8
1

38
.9

9
1

2.
38

2
8

3
0

0
35

93
.9

3
93

.9
3

1
54

6.
94

0
0

47
10

8.
53

10
8.

53
2

2.
31

2
8

4
0

0
49

10
9.

98
10

9.
98

1
47

8.
54

0
0

50
0

0
50

2.
34

2
8

6
0

0
50

0
0

50
35

5.
29

0
0

50
0

0
50

2.
25

2
10

2
18

.7
7

20
.3

4
1

19
.6

2
21

.1
9

19
70

8.
13

-1
.3

0
0

22
30

.6
9

32
.4

1
1

2.
76

2
10

3
0

0
43

47
.8

8
47

.8
8

2
80

9.
37

0
0

27
50

.4
4

50
.4

4
1

2.
37

2
10

4
0

0
13

67
.8

1
67

.8
1

10
70

5.
12

8.
56

8.
56

46
67

.0
8

67
.0

8
1

2.
91

2
10

6
0

0
50

0
0

50
62

3.
68

0
0

49
6.

48
6.

48
1

2.
63

2
12

2
16

.7
4

16
.7

9
2

38
.7

9
38

.8
5

1
10

92
.7

0
-0

.0
5

0
16

37
.6

0
37

.6
7

1
3.

02

2
12

3
17

.5
1

18
.2

7
1

23
.2

6
24

.0
6

3
85

6.
07

-0
.6

4
0

21
37

.8
8

38
.7

7
1

2.
90

2
12

4
0

0
28

56
.1

0
56

.1
0

3
83

9.
08

0
0

49
42

.4
3

42
.4

3
1

3.
27

2
12

6
0

0
49

10
4.

35
10

4.
35

1
95

2.
49

0
0

50
0

0
50

3.
07

A
ve

ra
ge

3.
22

3.
49

34
.4

5
42

.0
5

42
.3

5
19

.7
5

51
2.

26
0.

19
0.

43
37

.9
5

32
.5

4
32

.8
8

18
.5

5
2.

23

130



Ta
bl

e
B

.1
4:

C
om

pa
ri

so
n

of
H

1
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

50
0

D
at

a
Po

in
ts

an
d

3
C

lu
st

er
s

p
m

q

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

3
4

2
-0

.1
9

0
43

10
5.

98
10

6.
39

1
45

5.
33

-0
.1

9
0

34
15

0.
57

15
1.

06
1

1.
30

3
4

3
0

0
50

0
0

50
40

3.
33

0
0

41
14

2.
05

14
2.

05
4

1.
32

3
5

2
28

.1
1

33
.4

6
7

44
.6

6
50

.7
0

2
63

5.
37

-4
.0

1
0

17
44

.0
7

50
.0

9
3

1.
61

3
5

3
0

0
50

0
0

50
50

5.
72

0
0

37
26

5.
56

26
5.

56
1

1.
62

3
5

4
0

0
50

0
0

50
49

9.
16

0
0

40
15

1.
06

15
1.

06
1

1.
47

3
6

2
33

.4
7

34
.6

5
7

48
.7

9
50

.1
0

6
68

9.
60

-0
.8

8
0

20
75

.9
9

77
.5

5
1

1.
64

3
6

3
-0

.0
2

0
50

-0
.0

2
0

50
69

4.
91

-0
.0

2
0

39
11

5.
19

11
5.

22
1

1.
60

3
6

4
0

0
48

10
0.

06
10

0.
06

2
93

4.
02

0
0

40
10

0.
92

10
0.

92
9

1.
60

3
8

2
-2

.9
0

1.
03

17
10

.6
3

15
.1

0
4

15
38

.3
6

-3
.8

8
0

2
43

.8
7

49
.6

8
1

2.
53

3
8

3
38

.8
0

38
.8

0
12

71
.7

8
71

.7
8

1
15

87
.4

5
0

0
27

78
.7

6
78

.7
6

1
2.

43

3
8

4
0

0
47

14
4.

09
14

4.
09

1
14

65
.2

5
0

0
39

14
4.

26
14

4.
26

1
2.

16

3
8

6
0

0
46

10
8.

42
10

8.
42

1
11

02
.9

6
0

0
34

20
4.

22
20

4.
22

1
2.

18

3
10

2
-9

.1
1

0
8

5.
86

16
.4

7
3

18
46

.9
8

-9
.1

1
0

2
31

.1
6

44
.3

0
1

2.
88

3
10

3
12

.1
9

13
.6

9
2

25
.1

2
26

.7
9

1
19

91
.5

5
-1

.3
2

0
10

51
.7

8
53

.8
0

1
2.

77

3
10

4
0

0
14

16
1.

04
16

1.
04

1
22

47
.6

6
0

0
7

95
.0

9
95

.0
9

1
2.

89

3
10

6
0

0
48

16
9.

27
16

9.
27

1
18

21
.7

7
0

0
38

17
0.

88
17

0.
88

2
2.

62

3
12

2
-3

.2
9

0
3

4.
74

8.
30

2
23

33
.1

8
1.

85
5.

31
1

44
.0

7
48

.9
7

1
3.

20

3
12

3
22

.1
1

22
.3

1
1

29
.3

4
29

.5
6

1
25

65
.6

1
-0

.1
7

0
10

45
.2

2
45

.4
6

2
2.

96

3
12

4
46

.2
3

46
.2

3
10

79
.9

9
79

.9
9

3
29

58
.0

8
0

0
1

60
.5

6
60

.5
6

1
2.

83

3
12

6
0

0
45

12
7.

72
12

7.
72

2
26

02
.2

8
0

0
40

90
.3

8
90

.3
8

1
3.

31

A
ve

ra
ge

8.
27

9.
51

27
.9

0
61

.8
7

63
.2

9
11

.6
0

14
43

.9
3

-0
.8

9
0.

27
23

.9
5

10
5.

28
10

6.
99

1.
75

2.
25

131



Ta
bl

e
B

.1
5:

C
om

pa
ri

so
n

of
H

1
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

50
0

D
at

a
Po

in
ts

an
d

4
C

lu
st

er
s

p
m

q

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

4
4

2
0

0
18

70
.5

4
70

.5
4

1
11

06
.3

5
0

0
23

11
0.

09
11

0.
09

1
1.

40

4
4

3
0

0
49

18
3.

92
18

3.
92

1
74

2.
62

0
0

33
79

.5
6

79
.5

6
9

1.
25

4
5

2
-0

.4
6

0
14

14
8.

18
14

9.
32

1
14

19
.1

1
-0

.4
6

0
30

12
8.

61
12

9.
66

1
1.

61

4
5

3
0

0
43

18
6.

28
18

6.
28

1
13

16
.7

1
0

0
38

14
2.

43
14

2.
43

2
1.

59

4
5

4
0

0
22

13
1.

23
13

1.
23

1
10

91
.1

7
0

0
29

25
1.

80
25

1.
80

1
1.

52

4
6

2
23

.6
4

26
.5

1
1

64
.0

1
67

.8
0

2
18

38
.9

6
-2

.2
6

0
15

15
0.

78
15

6.
59

1
1.

67

4
6

3
0

0
42

15
0.

88
15

0.
89

1
19

17
.0

0
0

0
32

13
2.

94
13

2.
94

1
1.

65

4
6

4
0

0
30

15
3.

40
15

3.
40

1
17

00
.0

5
0

0
27

26
4.

17
26

4.
17

1
1.

58

4
8

2
35

.8
3

39
.4

1
1

56
.9

4
61

.0
8

1
26

07
.3

2
-2

.5
7

0
3

66
.8

1
71

.2
1

1
2.

50

4
8

3
52

.9
9

52
.9

9
1

79
.4

2
79

.4
2

1
26

94
.8

5
0

0
17

10
8.

67
10

8.
67

1
2.

28

4
8

4
0

0
44

73
.2

6
73

.2
6

1
34

88
.1

3
0

0
32

16
8.

87
16

8.
87

1
2.

20

4
8

6
0

0
38

16
7.

30
16

7.
30

2
26

11
.0

3
0

0
29

24
5.

43
24

5.
43

1
2.

31

4
10

2
10

.2
8

19
.4

2
12

16
.9

9
26

.6
9

1
44

28
.6

4
-7

.6
5

0
1

40
.9

4
52

.6
2

1
2.

74

4
10

3
32

.1
2

33
.1

8
1

80
.5

4
81

.9
9

1
44

02
.1

9
-0

.8
0

0
12

82
.9

5
84

.4
2

1
2.

61

4
10

4
0

0
9

13
8.

28
13

8.
28

2
39

15
.5

1
0

0
26

11
8.

91
11

8.
91

1
2.

81

4
10

6
0

0
35

14
1.

54
14

1.
55

4
40

97
.9

0
0

0
3

19
4.

40
19

4.
40

1
2.

92

4
12

2
-2

1.
38

0
2

-9
.8

5
14

.6
6

1
64

42
.0

1
-1

4.
96

8.
17

1
5.

56
34

.2
7

1
3.

78

4
12

3
35

.8
0

31
.4

6
1

58
.6

7
53

.6
0

1
43

49
.8

6
3.

30
0

16
45

.0
4

40
.4

0
1

3.
00

4
12

4
26

.5
8

26
.5

8
1

96
.3

6
96

.3
6

2
58

84
.9

7
0

0
13

11
0.

22
11

0.
22

1
3.

09

4
12

6
0

0
45

10
5.

05
10

5.
05

1
54

84
.8

7
0

0
1

15
6.

54
15

6.
54

1
2.

99

A
ve

ra
ge

9.
77

11
.4

8
20

.4
5

10
4.

65
10

6.
63

1.
35

30
76

.9
6

-1
.2

7
0.

41
19

.0
5

13
0.

24
13

2.
66

1.
45

2.
27

132



Ta
bl

e
B

.1
6:

C
om

pa
ri

so
n

of
H

1
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

10
00

D
at

a
Po

in
ts

an
d

2
C

lu
st

er
s

p
m

q

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

2
4

2
-0

.0
2

0
37

59
.0

9
59

.1
1

13
64

4.
94

-0
.0

2
0

17
66

.9
2

66
.9

5
1

6.
77

2
4

3
0

0
50

0
0

50
39

1.
25

0
0

50
0

0
50

5.
98

2
5

2
-0

.2
2

0
50

-0
.2

2
0

50
90

2.
34

-0
.2

2
0

31
22

.0
0

22
.2

6
1

7.
64

2
5

3
0

0
50

0
0

50
62

9.
09

0
0

50
0

0
50

7.
37

2
5

4
0

0
50

0
0

50
49

7.
03

0
0

50
0

0
50

6.
44

2
6

2
-0

.0
2

0
50

-0
.0

2
0

50
70

2.
28

-0
.0

2
0

48
59

.7
0

59
.7

3
2

7.
70

2
6

3
-0

.0
5

0
50

-0
.0

5
0

50
93

2.
35

-0
.0

5
0

41
8.

62
8.

67
7

7.
02

2
6

4
0

0
50

0
0

50
72

9.
56

0
0

50
0

0
50

7.
62

2
8

2
8.

08
10

.3
7

5
28

.4
0

31
.1

1
1

11
50

.3
9

-2
.0

7
0

8
32

.6
3

35
.4

4
2

10
.3

8

2
8

3
-0

.0
4

0
33

88
.0

3
88

.1
0

7
18

35
.9

9
-0

.0
4

0
46

84
.3

9
84

.4
6

1
9.

89

2
8

4
0

0
50

0
0

50
13

83
.5

9
0

0
50

0
0

50
8.

83

2
8

6
0

0
50

0
0

50
94

0.
39

0
0

50
0

0
50

9.
13

2
10

2
16

.6
6

17
.7

4
13

17
.6

9
18

.7
9

5
14

94
.6

5
-0

.9
3

0
17

27
.7

6
28

.9
5

10
10

.8
0

2
10

3
-0

.0
1

0
35

41
.2

5
41

.2
7

5
20

92
.5

1
-0

.0
1

0
39

41
.4

8
41

.5
0

1
11

.0
8

2
10

4
0

0
12

60
.8

7
60

.8
7

2
14

56
.8

4
0

0
21

57
.9

2
57

.9
2

2
11

.6
7

2
10

6
0

0
50

0
0

50
16

22
.2

1
0

0
50

0
0

50
10

.3
1

2
12

2
15

.0
6

15
.0

6
10

31
.7

1
31

.7
1

1
23

45
.5

7
0

0
9

33
.2

5
33

.2
5

1
13

.3
4

2
12

3
22

.0
3

22
.3

3
5

31
.1

1
31

.4
4

6
21

81
.9

8
-0

.2
5

0
30

35
.8

0
36

.1
4

1
12

.3
5

2
12

4
0

0
26

63
.9

1
63

.9
1

1
28

57
.4

7
0

0
44

69
.9

5
69

.9
5

1
13

.4
6

2
12

6
0

0
48

96
.1

6
96

.1
6

1
25

35
.1

8
0

0
2

4.
02

4.
02

48
12

.0
5

A
ve

ra
ge

3.
07

3.
27

36
.2

0
25

.9
0

26
.1

2
27

.1
0

13
66

.2
8

-0
.1

8
0

35
.1

5
27

.2
2

27
.4

6
21

.4
0

9.
49

133



Ta
bl

e
B

.1
7:

C
om

pa
ri

so
n

of
H

1
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

10
00

D
at

a
Po

in
ts

an
d

3
C

lu
st

er
s

p
m

q

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

3
4

2
-0

.1
4

0
50

-0
.1

4
0

50
12

06
.3

9
-0

.1
4

0
25

17
1.

25
17

1.
63

1
7.

23

3
4

3
0

0
50

0
0

50
10

01
.5

0
0

0
35

25
7.

61
25

7.
61

2
5.

38

3
5

2
28

.8
1

30
.4

4
8

37
.1

0
38

.8
3

12
18

22
.3

3
-1

.2
5

0
18

43
.7

1
45

.5
3

2
6.

62

3
5

3
0

0
50

0
0

50
14

38
.8

5
0

0
40

11
7.

83
11

7.
83

1
7.

11

3
5

4
0

0
50

0
0

50
12

81
.8

9
0

0
38

15
6.

83
15

6.
83

1
6.

36

3
6

2
43

.7
8

45
.7

3
1

46
.3

1
48

.3
0

1
19

70
.5

6
-1

.3
4

0
25

74
.0

1
76

.3
8

1
7.

17

3
6

3
-0

.1
2

0
50

-0
.1

2
0

50
21

54
.8

7
-0

.1
2

0
34

11
3.

99
11

4.
24

1
7.

26

3
6

4
0

0
50

0
0

50
20

65
.6

3
0

0
38

20
3.

90
20

3.
90

1
7.

48

3
8

2
23

.7
7

25
.5

5
3

26
.2

7
28

.0
9

1
40

38
.0

1
-1

.4
2

0
15

44
.3

2
46

.4
0

1
10

.6
3

3
8

3
0

0
1

81
.5

4
81

.5
4

1
37

97
.1

4
0

0
38

77
.1

9
77

.1
9

1
10

.2
8

3
8

4
0

0
45

17
0.

21
17

0.
21

1
36

68
.1

4
0

0
38

17
3.

33
17

3.
33

1
9.

01

3
8

6
0

0
44

23
2.

92
23

2.
92

6
32

72
.2

0
0

0
32

23
3.

76
23

3.
76

1
9.

46

3
10

2
-1

0.
53

0
2

0.
89

12
.7

6
1

53
80

.2
7

-1
0.

53
0

1
17

.0
5

30
.8

2
2

11
.9

8

3
10

3
60

.3
2

61
.8

4
1

77
.4

9
79

.1
6

1
59

42
.7

9
-0

.9
4

0
31

53
.5

0
54

.9
5

1
10

.4
2

3
10

4
0

0
43

13
7.

46
13

7.
46

1
54

55
.6

2
0

0
34

13
0.

11
13

0.
11

1
10

.2
6

3
10

6
0

0
38

18
4.

08
18

4.
08

2
55

59
.0

2
0

0
33

18
5.

14
18

5.
14

1
9.

87

3
12

2
-7

.7
3

0
11

-2
.7

4
5.

41
1

70
52

.2
4

-2
.7

4
5.

41
1

38
.6

0
50

.2
1

1
14

.7
2

3
12

3
19

.9
0

20
.8

5
12

27
.8

1
28

.8
2

2
60

84
.5

2
-0

.7
8

0
9

43
.1

7
44

.3
0

1
11

.2
7

3
12

4
42

.4
5

36
.2

7
1

79
.6

0
71

.8
1

1
68

10
.9

1
4.

54
0

30
65

.4
3

58
.2

5
1

12
.1

6

3
12

6
0

0
39

-9
3.

91
-9

3.
91

1
T

L
0

0
38

10
1.

62
10

1.
62

2
13

.4
3

A
ve

ra
ge

10
.0

3
11

.0
3

27
.4

5
50

.2
4

51
.2

7
16

.6
0

36
84

.3
6

-0
.7

4
0.

27
27

.6
5

11
5.

12
11

6.
50

1.
20

9.
40

134



Ta
bl

e
B

.1
8:

C
om

pa
ri

so
n

of
H

1
an

d
H

2
fo

rS
im

ul
at

ed
D

at
a

Se
ts

w
ith

10
00

D
at

a
Po

in
ts

an
d

4
C

lu
st

er
s

p
m

q

H
1

H
2

be
st

w
o
r
st

C
P
U

s.
be
st

w
o
r
st

C
P
U

s.
%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

%
G
a
p
M

%
G
a
p
B

H
it
s

4
4

2
-0

.0
9

0
7

70
.9

1
71

.0
5

4
27

81
.2

6
-0

.0
9

0
23

14
5.

57
14

5.
78

1
6.

73

4
4

3
0

0
36

20
5.

99
20

5.
99

2
18

52
.2

9
0

0
30

28
7.

80
28

7.
80

2
5.

75

4
5

2
3.

97
4.

56
23

63
.0

5
63

.9
8

1
38

28
.1

2
-0

.5
6

0
27

11
3.

11
11

4.
32

1
7.

71

4
5

3
0

0
42

18
8.

69
18

8.
69

1
32

13
.0

7
0

0
39

20
3.

59
20

3.
59

1
7.

14

4
5

4
0

0
46

19
2.

99
19

2.
99

1
23

83
.8

7
0

0
38

28
4.

71
28

4.
71

2
6.

54

4
6

2
25

.0
1

26
.4

1
1

64
.9

4
66

.7
9

1
45

85
.7

2
-1

.1
1

0
10

14
5.

37
14

8.
12

1
7.

20

4
6

3
-0

.0
4

0
38

17
8.

84
17

8.
95

1
40

63
.9

5
-0

.0
4

0
29

21
3.

19
21

3.
32

1
7.

44

4
6

4
0

0
29

11
4.

42
11

4.
42

1
33

67
.0

8
0

0
34

21
8.

65
21

8.
65

1
6.

62

4
8

2
23

.2
5

24
.2

9
1

15
2.

42
15

4.
54

1
T

L
-0

.8
3

0
1

91
.4

9
93

.1
0

1
10

.1
1

4
8

3
35

.9
0

35
.9

2
1

10
1.

33
10

1.
36

1
65

58
.4

0
-0

.0
1

0
27

10
0.

61
10

0.
63

1
10

.2
3

4
8

4
0

0
34

12
4.

16
12

4.
16

1
T

L
0

0
25

14
6.

83
14

6.
83

1
10

.4
4

4
8

6
0

0
37

17
1.

19
17

1.
19

1
55

99
.6

9
0

0
30

24
8.

24
24

8.
24

1
9.

26

4
10

2
7.

02
7.

66
3

16
.7

0
17

.4
0

1
T

L
-0

.6
0

0
1

46
.6

8
47

.5
6

1
11

.6
1

4
10

3
-0

.7
5

0
2

89
.0

9
90

.5
2

1
T

L
-0

.7
5

0
6

77
.4

2
78

.7
6

1
9.

83

4
10

4
0

0
8

10
1.

84
10

1.
84

1
T

L
0

0
4

10
6.

17
10

6.
17

1
10

.6
4

4
10

6
0

0
39

3.
61

3.
61

1
T

L
0

0
33

22
5.

06
22

5.
06

2
10

.0
2

4
12

2
-2

1.
04

0
1

-1
3.

89
9.

06
1

T
L

-1
5.

96
6.

43
1

11
.1

0
40

.7
0

1
14

.7
2

4
12

3
48

.4
1

49
.1

7
1

66
.9

9
67

.8
5

1
T

L
-0

.5
1

0
1

57
.7

2
58

.5
3

1
13

.0
7

4
12

4
41

.0
4

41
.0

4
2

90
.6

7
90

.6
7

1
T

L
0

0
23

10
8.

62
10

8.
62

1
12

.0
3

4
12

6
0

0
23

10
5.

16
10

5.
16

1
T

L
0

0
27

18
0.

57
18

0.
57

1
12

.6
3

A
ve

ra
ge

8.
13

9.
45

18
.7

0
10

4.
46

10
6.

01
1.

20
38

23
.3

5
-1

.0
2

0.
32

20
.4

5
15

0.
62

15
2.

55
1.

15
9.

49

135


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	Introduction
	Background on Clustering and Literature Review
	Clustering Problems
	Partitional Clustering
	Hierarchical Clustering

	Dimension Reduction in Clustering
	Feature Extraction in Clustering
	Feature Selection in Clustering

	Literature Review for Clustering and Feature Selection in Clustering
	Exact Solution Methods for Clustering
	Heuristic Approaches for Clustering
	Exact Solution Methods for Feature Selection in Clustering
	Heuristic Approaches for Feature Selection in Clustering

	Local Clustering and Feature Selection
	Subspace Clustering
	Bi-clustering


	Problem Definition
	Problem Statement
	Mixed Integer Programming Formulations
	A Nonlinear Mixed Integer Model for CBFS: NM
	Linearized Model 1: LM1
	Linearized Model 2: LM2


	Computational Results and Comparison of Proposed Models
	Simulated Data Sets
	Performance Measures
	Computational Results of Proposed Methods for Simulated Data

	Benders Decomposition of the Model and a Heuristic Solution Approach
	Benders Decomposition of the Model
	Benders like Heuristic Algorithm: H1
	Center and Feature Problem: HX
	Assignment Problem: PX


	Iterative Heuristic Algorithm
	Assignment Problem: PX
	Center Selection Problem: PC
	Feature Selection Problem: PQ
	Iterative Heuristic Algorithm: H2
	Assignment-Center Update: PXC
	Feature-Assignment Update: PQX
	Center-Assignment Update: PCX


	Computational Results and Comparison of Heuristics Algorithms
	Performance Measure
	Computational Results of Proposed Methods for Simulated Data

	Conclusion
	REFERENCES
	Experimental Results of Proposed Mathematical Models
	Comparison of LM3, H1, and H2 for Simulated Data Sets

