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ABSTRACT 

 

IMPROVED VIEWSHED ANALYSIS ALGORITHMS FOR AVIONICS 

APPLICATIONS 

 

 

Özkıdık, Mustafa 

MSc., Department of Information Systems 

Supervisor: Assoc. Prof. Dr. Altan Koçyiğit 

 

July 2019, 85 pages 

 

Viewshed analysis is a common GIS capability used in various domains with various 

requirements. In avionics, viewshed analysis is a part of accuracy critical applications and 

the real time operating systems in embedded devices use preemptive scheduling 

algorithms to satisfy performance requirements. Therefore, to effectively benefit from the 

viewshed analysis, a method should be both fast and accurate.  

Although R3 algorithm is accepted as an accuracy benchmark, R2 algorithm with lower 

accuracy is preferred in many cases due to its better execution time performance. This 

thesis prioritizes accuracy and presents an alternative approach to improve execution time 

performance of the R3 algorithm. Considering different execution environments, 

improved versions of R3 are implemented for CPU and GPU. The experiment results show 

that CPU implementation of improved algorithms achieve 1.23x to 13.51x speedup 

depending on the observer altitude, range and topology of the terrain. In GPU 

implementation experiments up to 2.27x speedup is recorded. In addition to execution 

time performance improvements, the analysis results prove that proposed algorithms are 

capable of providing higher accuracy like R3. 

Keywords: geographic information systems, avionic applications, viewshed analysis, line 

of sight analysis, parallel programming  



v 

 

ÖZ 

 

AVİYONİK UYGULAMALAR İÇİN GELİŞTİRİLMİŞ GÖRÜNÜRLÜK ANALİZİ 

ALGORİTMALARI 

 

 

Özkıdık, Mustafa 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. Altan Koçyiğit 

 

Temmuz 2019, 85 sayfa 

 

Görünürlük analizi, farklı gereksinimlerle farklı çalışma alanlarında kullanılan bir Coğrafi 

Bilgi Sistemleri yeteneğidir. Aviyonik sistemlerde, görünürlük analizi doğruluk kritik 

uygulamaların bir parçasıdır ve gömülü cihazlardaki gerçek zamanlı işletim sistemleri, 

performans gereksinimlerini sağlamak için kesintili zamanlama algoritmaları 

kullanmaktadır. Bu nedenle, görünürlük analizinden etkin bir şekilde yararlanmak için 

kullanılan yöntemler hem hızlı hem de doğru olmalıdır.  

R3 algoritması analiz sonuçlarının doğruluğu konusunda bir ölçü olarak kabul edilse de 

daha iyi işleme zamanı performansı nedeniyle daha düşük doğruluğa sahip R2 algoritması 

tercih edilmektedir. Bu tez analiz sonuçlarının doğruluğunu ön planda tutarak R3 

algoritmasının işleme zamanı performansını geliştirmeye yönelik alternatif bir yaklaşım 

sunmaktadır. Farklı çalışma ortamları gözetilerek R3 algoritmasının geliştirilmiş 

versiyonları merkezi işlem birimi ve grafik işlem birimi için kodlanmıştır. Merkezi işlem 

birimi ile yapılan deneylerde; analiz irtifasına, menziline ve topolojiye bağlı olarak 

standart R3 algoritmasına göre 1.23 ile 13.51 kat arasında hızlanma görülmüştür. Grafik 

işlem biriminde yapılan deneylerde ise tavsiye edilen algoritmalarda standart R3’e göre 

2.27 kata kadar hızlanma kaydedilmiştir. İşleme zamanı performansındaki bu artışların 

yanı sıra, analiz sonuçları önerilen algoritmaların R3 gibi yüksek doğruluk değerleri 

sunabilme yeteneğini göstermiştir. 

Anahtar Sözcükler: coğrafi bilgi sistemleri, aviyonik uygulamalar, görünürlük analizi, 

görüş hattı analizi, paralel programlama  
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CHAPTER 1 

 

INTRODUCTION 

 

Viewshed analysis indicates visible regions on a terrain to an observer located at a certain 

altitude and position. The analysis environment involves an elevation model for the terrain 

and an observer with a given range of vision. The output is generally an image, as seen in 

Figure 1, depicting visible and invisible areas on the terrain as a guide for decision support. 

The red and green pixels on the output image represent invisible and visible points, 

respectively. 

 

Figure 1: Viewshed analysis output 

If the observer is moving or changing the altitude, the whole analysis is revisited since the 

output will be different. This is because view angles to all points from previous analysis 

change and new elevation points will be added to range of vision while some points are 

disposed due to changing observer position. 
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Viewshed analysis is a very common practice and depending on what application domain 

requires, the analysis algorithm and elevation model may vary because different quality 

parameters are adopted in different application domains like architecture, archeology, 

game development, physics and avionics. 

1.1. Motivation and Research Question 

Viewshed analysis applications offer different results in terms of accuracy, execution time 

and resource allocation depending on chosen algorithm and elevation model. The purpose 

of application may prioritize one or more of these attributes. Since the output of viewshed 

analysis is a guide depicting visible regions, the accuracy is an important metric to 

evaluate different algorithms. For the cases observer position on terrain changing 

continuously, execution time is a concern. Additionally, memory efficiency and other 

resource requirements are effective to evaluate the practical application. 

There are two fundamental viewshed analysis algorithms, R2 and R3 (Mehta, Ray, & 

Franklin, 1994), the researchers study to improve for raster type elevation models. These 

studies focus on different application methods of the algorithms like using external 

memory (Andrade, Magalhães, Magalhães, Franklin, & Cutler, 2011) or derivation of new 

approaches (Haverkort, Toma, & Wei, 2013). This is because standard R2 algorithm is a 

fast solution but its accuracy is not sufficient for some applications, whereas R3 is the 

benchmark for the accuracy (Zalik & Kaučič, 2002) and the slowest algorithm. 

In avionics applications, R2 algorithm may be preferred because of execution time 

concern despite the low level accuracy. This is because real time operating systems with 

preemptive scheduling algorithms (Vestal, 2007) impose constraints for task completion 

time and R3 is the slowest method. The problem is that these algorithms approach the 

visibility problem from two opposite points of view. As an alternative Van Kreveld’s 

algorithm (Van Kreveld, 1996) tries to offer a balanced solution between R3 and R2, 

however, the amount of temporary storage required by the algorithm is a significant 

problem and false negative visibility decision count of Van Kreveld’s is worse than R2 

(Yılmaz, 2017). 

This thesis approaches the problem from avionics perspective and as the literature survey 

shows the previous works do not offer a convenient and feasible solution for avionic 

applications concerning both accuracy and execution time. Hence our research question 

is: what should be a practical and high performance solution for avionics applications? 

The solution should present fast execution time, high accuracy and moderate resource 

allocation besides using raster type digital elevation model which is the common data type 

used in avionics systems (Bailey, Parrish, Kramer, Harrah, & Arthur). 
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1.2. Objective and Contribution 

There are different avionics applications utilizing viewshed analysis to ensure flight 

safety. These capabilities provide users with visible regions on the terrain to a threat or 

ally. In challenging environmental conditions, as seen in Figure 2, the accuracy of such 

capabilities is a very critical issue. Hence, our objective is to present an alternative 

algorithm that is faster than R3 and provides higher accuracy compared to R2. 

In this research we propose a family of algorithms, derived from R3, named granularity 

algorithms. Each one of these solutions offers improvement in execution time while 

almost matching the exact accuracy of R3. For altitudes below MSA (minimum sector 

altitude) (Federal Aviation Administration, n.d.) or close to the ground, the suggested 

solutions reach the best execution time which means they can be used especially for low 

level flights. Additionally, the design approach of proposed algorithms brings a solution 

to scalability problem of large elevation data models. The effect of increasing resolution 

and extending analysis area to execution time is compensated by the granularity 

algorithms since they use processed elevation models. Therefore, in expense of moderate 

increase in memory and disk usage, elevation models with higher resolution than DTED-

2 (NGA.mil, 2015) can be used in avionics applications.  

 

Figure 2: Terrain model visualization using Global Mapper GIS Software 

The proposed algorithms are implemented for CPU and GPU using raster type digital 

elevation model. Depending on the range of analysis, processing unit or design 

restrictions, one of the suggested solutions can be preferred using results of this research. 

 

1.3. Thesis Organization 

The organization of thesis document is as follows: 
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Chapter 1 introduces viewshed analysis and presents the motivation and objective of the 

thesis, 

Chapter 2 provides background information about viewshed analysis and related work, 

Chapter 3 introduces the proposed algorithms, alternative implementations and their 

rationale, 

Chapter 4 presents experiments conducted to validate the proposed algorithms and 

discusses the results, 

Chapter 5 presents concluding remarks and suggests directions for future work, 

Appendix A includes the pseudo code for the proposed algorithms, 

Appendix B presents experiment tile statistics, execution time and accuracy charts for the 

evaluation of proposed algorithms. 
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CHAPTER 2 

 

 BACKGROUND INFORMATION AND PREVIOUS WORK 

 

In this chapter components of viewshed analysis are defined and an overview of 

algorithms that researchers study is presented. 

2.1 Elevation Model 

There are two very common data types for digital elevation models which are TIN and 

raster type DEM (Trautwein, et al., 2016).  

In 2D grid structure of raster type DEM, terrain is divided into equal sized rectangular 

geographic regions. Each cell in the grid represents the height of a rectangular region by 

an elevation value as illustrated in Figure 3. This structure is simple and easy to work with 

while calculating the index of a geographic region on the grid and fetching the elevation 

value (Trautwein, et al., 2016). Therefore, raster type DEM is preferred for studies in 

avionics applications (Bailey, Parrish, Kramer, Harrah, & Arthur). 

 

Figure 3: TIN and raster type DEM 

As an alternative of raster type DEM, TIN consists of triangulated data points (See Figure 

3). The number of points in a TIN and their distribution depends on the shape and 

complexity of the terrain. Therefore, shape and size of each triangle in TIN can be different 
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and this structure provides size reduction capability. However, use of TIN requires more 

effort to process for analyses (Trautwein, et al., 2016). 

2.2. Line of Sight 

Suppose an observer with a predefined range of analysis is placed above the terrain at a 

certain altitude. When we examine visibility of a point on the terrain, we need to define 

the line of sight between the observer and the target point. Since we use the digital model 

of the terrain, the line between observer and target point should be rasterized. In this 

research we use Bresenham’s line drawing algorithm (Bresenham, 1965) to calculate the 

list of points constituting the line of sight between the observer and target point as 

illustrated in Figure 4. 

 

Figure 4: Line drawn by Bresenham’s algorithm  

To determine visibility of a target point, slope value between the observer and the target 

point should be compared with all slope values between the observer and other 

intermediary points in the line of sight. Calculation of slope value of a point with respect 

to observer is given in Equation 1. 

Equation 1: Slope calculation of a point with respect to observer 

(elevation of target point on terrain)-(altitude of observer)

(distance between observer and target point)
 

In Figure 5, red dashed line represents line of sight between two points P1 and P2. Suppose 

that observer is at P1 and the target point to check visibility is P2. H is an intermediary 

point on the line of sight between P1 and P2.  



7 

 

If the slope value between P2 and P1 is smaller than the slope value between H and P1, 

P2 is marked as invisible. Otherwise, we can say that target point in P2 is visible. 

 

Figure 5: Visibility on a line of sight 

The visibility calculation for this example is given in Equation 2. 

Equation 2: Visibility calculation on a line of sight 

HHeight :Elevation of intermediary point H 

P1Height:Observer altitude 

P2Height:Target point altitude 

D1:Distance between observer and intermediary point H 
D2:Distance between intermediary point H and P2 

    If 
HHeight- P1Height

D1
≤
P2Height- P1Height

D1 + D2
 , P2 point is visible 

    If 
HHeight- P1Height

D1
>
P2Height- P1Height

D1 + D2
 , P2 point is not visible 

2.3. Viewshed Analysis Algorithms 

Viewshed analysis investigates the visibility of all points on the terrain within the range 

of vision. In line of sight based ray-casting viewshed analysis algorithms, visibility of each 

target point in area is determined by examining the points in the drawn line of sight 

(Mehta, Ray, & Franklin, 1994). These algorithms are also considered as ray-casting 

methods (Carver & Washtell, 2012). If the line of sight from observer to the target point 

is obstructed by another point on the terrain, the target point is marked as invisible. In 

Figure 6 green points on the terrain refer to visible points. The red points on the terrain 

refer to invisible points since their visibility is obstructed by terrain. 

Blelloch, Van Kreveld, R2 and R3 presented by Franklin, Ray and Mehta are well known 

examples of such ray casting algorithms (Mehta, Ray, & Franklin, 1994) computing 

visibility by sending a ray from observer to the target point. Using the same approach 
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researchers also offered some line of sight scanning methods (Ying, Li, Mei, & Gao, 2008) 

to reduce the weight of computation. 

 

Figure 6: Line of Sight 

Additionally, Mehta, Ray and Franklin defined a wave front approach, named as Xdraw, 

in which dataset is processed as layers unlike line of sight approach. Visibility is 

determined starting from the nearest points to the observer position and calculated layer 

by layer until the last layer is analyzed. Visibility of each layer is determined only using 

the information from the previous layer unlike ray-casting methods. 

2.3.1. R3 

R3 is a line of sight based algorithm accepted as the accuracy benchmark. The algorithm 

simply computes the visibility of each target point separately, in other words, a separate 

line of sight is drawn from observer to each target point to determine visibility. This is 

because R3 is not an approximate method making estimation or reusing information 

regarding visibility of previously analyzed target points (Zalik & Kaučič, 2002). 

 

Figure 7: R3 Algorithm 

Assume that the elevation grid is given in Figure 7 for viewshed analysis and O is the 

position of observer. Computing visibility of each cell in this brute force fashion makes 

R3 the slowest algorithm with O(n3) complexity for (n × n)  analysis area. Therefore, 
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researchers try to speed up the algorithm using new technologies like GPGPU (Axell & 

Fridén, 2015) or works to avoid unnecessary computations (Shrestha & Panday, 2018)  

with different methods for a better execution time. 

2.3.2. R2 

R2 algorithm uses a similar approach to R3 but instead of solving the problem with brute 

force fashion it draws lines of sight only to boundary cells of the analysis area (See Figure 

8). While moving on a line of sight to determine visibility of a boundary target point, R2 

computes visibility of intermediary points too. The algorithm compares slope value of an 

intermediary point with its predecessors’ slope values. If current point’s slope value is 

smaller than any slope value belongs to previous points on the same line of sight, current 

point is marked as invisible. 

 

Figure 8: R2 Algorithm 

Since different line of sights can intersect at some intermediary points, we can say that 

visibility of such intersection point is computed multiple times and visibility decision of 

these cells can be controversial. 

 

Figure 9: Bresenham lines for R2 Algorithm 

This is because different line of sights may draw different paths to these intersection 

points. Please check Figure 9 in which lines of sight are drawn for T4 and T5 target points 
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starting from observer position represented with O. These two lines of sight have a 

common intersection point T42 and paths to T42 are different. The line of sight from O to 

T4 uses slope value of T49, whereas, the line of sight from O to T5 uses slope of T50 to 

determine visibility of T42. For this reason, visibility of T42 will be determined by the 

last visiting line of sight and the order of visibility calculation affects the accuracy of R2. 

However, the algorithm offers better execution time with complexity O(n2) compared to 

R3. 

2.3.3. Blelloch 

To compute viewsheds for an area, each line of sight can be processed in parallel by R2 

or R3 algorithms. Additionally, Blelloch parallelizes the execution of a single line of sight 

using maximum prefix scan method (Blelloch, 1997).  

Maximum prefix scan finds the maximum element in a given list of numbers starting from 

the 0th index to the given ith index. The input for the algorithm is the slope values of cells 

in a line of sight. Blelloch does maximum prefix scan in parallel with binary comparison 

and it requires n/2 threads for n slope values to be compared. To find the maximum slope 

for a line of sight with n elements, this procedure should be repeated 𝑙𝑜𝑔(𝑛)  times. 

Algorithm 1 explains how Blelloch determines viewsheds using maximum prefix scan on 

a line of sight. 

Algorithm 1: Application of maximum prefix scan algorithm for visibility 

SlopeList: List of target slope values along a line of sight 
MaxPrefixScanOutput: Output of maximum prefix scan algorithm 
 
INPUT: SlopeList 
 
SlopeList = {3, 1, 5, 0, 7, 6} 
n: Last item index in SlopeList which is 5 
n ≥ i ≥ 0, MaxPrefixScanOutput[i] is the maximum of SlopeList[0…i] 
MaxPrefixScanOutput = {3, 3, 5, 5, 7, 7} 
 
IF MaxPrefixScanOutput[i] > SlopeList[i] 
 Point in index i is invisible 
ELSE 
 Point in index i is visible 

 

In Figure 10 you can see input data to be processed by maximum prefix scan algorithm 

and in Figure 11 you can see the output of maximum prefix scan algorithm. 
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Figure 10: Input slope data for maximum prefix scan algorithm 

 

 

Figure 11: Output of maximum prefix scan algorithm 

Blelloch’s approach improves R2 by focusing on the bottleneck of the algorithm which is 

the execution time spent for a line of sight. Complexity of the algorithm is 

O(n/number of processors + 𝑙𝑜𝑔 𝑛 )  for (n × n)  analysis area. However, Blelloch’s 

method is not useful considering scalability due to required number of threads. 

2.3.4. Van Kreveld’s Algorithm 

Van Kreveld’s algorithm has a different approach to solve visibility problem (Van 

Kreveld, 1996). Van Kreveld’s method draws a reference line from observer point to the 

border of the analysis area and algorithm sweeps all cells, holding elevation value, in the 

terrain grid. There are three types of events or states for each cell in the elevation grid 

which are enter, center and exit (See Figure 12). 

• If sweeping reference line enters the cell, it is marked as enter event for the cell. 
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• If sweeping reference line passes from the center of the cell, it is marked as 

center event for the cell. 

• If sweeping reference line is leaving the cell, it is marked as exit event for the 

cell. 

 

Figure 12: Events for cell in Van Kreveld's algorithm 

For all cells, azimuth angle of these three events are calculated and collected in a to-do 

list. The list is sorted with respect to value of azimuth angles to define an order for 

execution of events. As the reference line sweeps, the events in the to-do list are visited 

and depending on the type of events different actions are taken by the algorithm using a 

balanced tree called active. 

• If an enter event is seen, the cell is pushed into active. 

• If a center event is seen, visibility of related cell should be determined using 

active. 

• If an exit event is seen, related cell should be removed from the active. 

Enter and center events of cells in the active balanced tree are placed according to their 

distance to the observer as seen in Figure 13. 

 

Figure 13: Active balanced tree 

While iterating list of events if a center event for a cell is found, active balanced tree is 

traversed to find the maximum slope value (Van Kreveld, 1996). The execution time spent 

for this operation takes log( n) for n elements by the help of balanced tree structure of 
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active list. If the maximum slope value is greater than the slope value of the cell with 

center event, the cell is marked as invisible. In other words; to mark a cell as visible, the 

slope value of the cell in center state should be larger than all slope values of cells with 

enter and center state in active tree. 

Van Kreveld’s algorithm is considered as a nice option between R3 and R2 due to high 

accuracy and better execution time with O(n2 log n ) complexity. There are also improved 

alternatives of the method offering better execution time like HLD (Nguyen, Duy, & 

Duong, 2018) and parallel sweep line algorithm implemented for GPU (Ferreira, Andrade, 

Franklin, Magalhães, & Pena, 2013), however, the improvement is only in execution time. 

Moreover, studies show that the algorithm tends to mark visible points as invisible 

(Yılmaz, 2017). As an example; use of this algorithm to calculate the coverage of a threat 

may be misleading for the user who wants to avoid visible regions to the threat. Besides, 

implementation of the algorithm requires extra memory for three types of events with float 

type azimuth angle for a single elevation cell in the terrain grid. 

2.3.5. Xdraw 

Xdraw (Mehta, Ray, & Franklin, 1994)  is a wave front algorithm processing the terrain 

data layer by layer and compute visibility from the inside out as seen in Figure 14. There 

are many variations developed from Xdraw since it is an approximate approach offering 

different estimation methods (Larsen, 2015). Mainly algorithm defines a set of 

predecessor points and using their elevation values computes a horizon to address the 

visibility of target point. Each target point’s visibility depends on relative points in the 

previous layer. While computing visibility of the target point; minimum, maximum, mean 

elevation values of relative points can be used or elevation interpolation methods can be 

applied. 

 
Figure 14: Xdraw algorithm 

Xdraw is a faster alternative to R2 but its accuracy is worse. By the help of different 

estimation methods, algorithm accuracy can be increased (Larsen, 2015) but it is still not 

enough to use Xdraw for avionic applications with accuracy concern. 
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2.3.6 Comparison of Viewshed Analysis Algorithms 

The comparison of algorithms summarized in previous sections is given in Table 1. 

Execution time and accuracy comparison of algorithms are provided for both CPU and 

GPU implementation. Blelloch parallel prefix scan algorithm has no CPU version. 

Table 1: Comparison of common algorithms 

Viewshed analysis 

algorithms in CPU 

Execution Time Accuracy Extra Required Memory 

R2 better than Van 

Kreveld’s 

worse than R3 

better than Xdraw 
- 

R3 slowest algorithm best accuracy - 

Van Kreveld’s 

Algorithm 

better than R3, 

slower than R2 

better than R2 

worse than R3 

3 FLOAT type lists for 

events and a binary search 

tree 

Xdraw better than R2 in 

some cases 
worse than R2 - 

Viewshed analysis 

algorithms in GPU 

Execution Time Accuracy Extra Required Memory 

R2 better than Van 

Kreveld’s 

worse than R3 

better than Xdraw 

- 

R3 slowest algorithm best accuracy - 

Blelloch Parallel 

Prefix Scan 

better than R2 same with R2 copy of line of sight data 

for each target point 

Van Kreveld’s 

Algorithm 

better than R3 better than R2 

worse than R3 

3 FLOAT type lists for 

events and a binary search 

tree 

Xdraw better than R2 worse than R2 - 
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CHAPTER 3 

 

3. PROPOSED SOLUTION DESIGN AND IMPLEMENTATIONS 

 

In this chapter, proposed viewshed analysis algorithms and corresponding CPU/GPU 

implementations are introduced. Additionally, implementation details of R2 and R3 

algorithms are given in Section 3.3 for comparison. 

3.1. Proposed Solution and Design Rationale 

The proposed approach of this study is based on standard R3. To reach the maximum 

accuracy level, we define granularity family algorithms which are derived from R3 by 

making improvements to reduce the execution time. All algorithms in this family use ray 

casting approach and Bresenham’s line drawing method (Bresenham, 1965).  Names of 

these granularity algorithms are X2, X4, X8, X16, DGRHYB and DGR3. 

The complexity of proposed algorithms is O(n3). For the execution time improvement, 

preprocessed elevation models are used by granularity algorithms besides the original 

digital elevation model. In other words, the total amount of data used by the analysis is 

increased but total amount of computation in runtime is decreased by the help of processed 

elevation models while preserving the accuracy. 

The implementation of granularity algorithms is done for both CPU and GPU to see 

whether parallelism is a utility to be exploited by the proposed solutions. Recently GPUs 

are used in avionics for such purposes due to their computing capability and limited 

execution times assigned for such tasks. Besides, DGRHYB algorithm presents a different 

approach by running different parts of analysis in CPU and GPU. This method might be 

helpful to divide problem instead of pushing the workload to a single processing unit for 

cases in which there are also other tasks. 

The proposed analysis model consists of 3 phases as summarized in Figure 15. Since 

preparation of processed elevation models is not done in analysis runtime, it is named as 

phase-0. As these elevation models are prepared, execution of granularity algorithms starts 
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with phase-1 and then continues with phase-2. If observer altitude or position changes 

phase-1 and phase-2 are executed again to update the analysis result. 

 

Figure 15: Proposed approach 

3.1.1. Phase-0: Prepare Processed Elevation Models 

Since the size of digital elevation model is the most effective factor in execution time, 

suggested approach focus on redesigning the elevation model to gain speedup. In this 

phase, true digital elevation model with real size is processed to create smaller size models 

without losing fundamental information. To retrieve the smaller version of digital 

elevation model, spatially adjacent elevation values are grouped and represented as a tile 

by saving the information of minimum and maximum values within the group.  

 

The illustration of how true elevation model is processed to create smaller size model is 

given in Figure 16. Each red square in figure represents a group on elevation model. When 

elevation values are grouped by 2×2 tiles, we retrieve an elevation model whose size is ¼ 

of the original. Each element in processed elevation model only holds the minimum and 

maximum within the group of four spatially nearby elevation values. 
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The procedure shown in Figure 16 is applied to original elevation model with 2×2, 4×4, 

8×8 and 16×16 tiles to be used by proposed algorithms. 

 

Figure 16: Forming down scaled elevation model with group by 2×2 

Please check the notations given in Table 2 which will be useful to define the proposed 

algorithms in the rest of the document. The names of granularity algorithms are relevant 

to processed elevation models they use. DGR3 (dynamic granularity R3) algorithm is 



18 

 

named considering that it uses multiple processed elevation models with different 

granularities. 

Table 2: Notations for algorithm descriptions 

Notation Content 

n Dimension of n×n analysis area 

E_Model Original Elevation model 

E2_Model Granularity elevation model consisting of elements with minimum and 

maximum elevation values for each 2×2 tile in E_Model 

E4_Model Granularity elevation model consisting of elements with minimum and 

maximum elevation values for each 4×4 tile in E_Model 

E8_Model Granularity elevation model consisting of elements with minimum and 

maximum elevation values for each 8×8 tile in E_Model 

E16_Model Granularity elevation model consisting of elements with minimum and 

maximum elevation values for each 16×16 tile in E_Model 

G Granularity dimension for grouping G×G points 

EG_Model Refers to E2_Model, E4_Model, E8_Model, E16_Model depending on value 

of G. 

S_Model Slope values of target points with respect to observer. 

S2_Model Minimum and maximum slope values of target points with 2×2 granularity 

S4_Model Minimum and maximum slope values of target points with 4×4 granularity 

S8_Model Minimum and maximum slope values of target points with 8×8 granularity 

S16_Model Minimum and maximum slope values of target points with 16×16 granularity 

SG_Model Refers to S2_Model, S4_Model, S8_Model, S16_Model depending on value 
of G. 

V_Table Visibility table representing viewshed analysis result with same size of E 

In Table 3, the size of each elevation model is given and algorithms using them marked 

with a cross. 

Table 3: Processed elevation models used by algorithms 

 X2 X4 X8 X16 DGR3 Elevation Model Size 

E_Model X X X X X 512×512 1024×1024 2048×2048 

E2_Model X     256×256 512×512 1024×1024 

E4_Model  X   X 128×128 256×256 512×512 

E8_Model   X  X 64×64 128×128 256×256 

E16_Model    X X 32×32 64×64 128×128 

The dimensions of processed elevation models are calculated according to three 

predefined sizes of original elevation model which are 512×512, 1024×1024 and 
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2048×2048. The total size of the digital elevation models required by the proposed 

algorithms is larger than standard R3. The dimensions of processed elevation model with 

G×G granularity is 1/(G×G) of the original model but we double the size of each element 

in model since we need both minimum and maximum elevation values of G×G tile. The 

maximum data size for proposed solutions is given in Equation 3. 

Equation 3: Calculation of size increase for proposed algorithms 

Data size of E2_Model is 1/2 of E_Model 
Data size of E4_Model is 1/8 of E_Model 
Data size of E8_Model is 1/32 of E_Model 
Data size of E16_Model is 1/128 of E_Model 
The maximum data size increase is 1/2+ 1/8 + 1/32 + 1/128 < 0.67 

3.1.2. Phase-1: Detection of Invisible Groups 

The first phase of actual analysis execution is detection of invisible groups. To find the 

invisible group of points, slope model is calculated from the processed elevation model. 

Reminding that each element in processed elevation models has a minimum and maximum 

elevation value, the calculated slope models also consist of tiles with minimum and 

maximum slope values. To generate the slope model, Equation 4 is applied for each cell 

in processed elevation data. 

Equation 4: Slope calculation with granularity elevation model in phase-1 

ObserverX: Observer position along X axis in Cartesian grid 
ObserverY: Observer position along Y axis in Cartesian grid 
TargetX: Target cell position along X axis in Cartesian grid 
TargetY: Target cell position along Y axis in Cartesian grid 
ObserverAltitude: Altitude of observer 
Distance: Euclidean distance between observer and the target cell 
TargetMinElev: Minimum elevation value of target cell 
TargetMaxElev: Maximum elevation value of target cell 
TargetMinSlope: Minimum slope value of target cell 
TargetMaxSlope: Maximum elevation value of target cell 
 

Distance = √(TargetX - ObserverX)2+ (TargetY - ObserverY)2  
 
TargetMinSlope = (TargetMinElev-ObserverAltitude) / Distance 
TargetMaxSlope = (TargetMaxElev-ObserverAltitude) / Distance 
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The result of slope calculation on elevation model is one of the slope models given in 

Table 4. 

Table 4: Dimensions of slope models retrieved from processed elevation models 

 Slope Model Size 

S2_Model 256×256 512×512 1024×024 

S4_Model 128×128 256×256 512×512 

S8_Model 64×64 128×128 256×256 

S16_Model 32x32 64×64 128×128 

As slope model is available we draw separate line of sight for each cell in granularity slope 

model as we do in R3 algorithm. We cannot determine visible points using any granularity 

slope models, however, the information of minimum and maximum slope values helps us 

to find invisible group of points. 

 

Figure 17: Visibility on slope model with 16×16 granularity 

In Figure 17 we see an example of S16_Model (See Table 2) and there is a line of sight 

drawn from Source_Cell to Target_Cell marked with orange color. Other intermediary 
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points are marked with blue color. Since the maximum slope of Target_Cell is smaller 

than the minimum slope value of an intermediary point, Target_Cell will be marked as 

invisible. Since granularity of slope model is 16×16, we can mark 16×16=256 points as 

invisible in V_Table (See Table 2). 

3.1.3. Phase-2: Determine Visibility for Remaining Points 

Suppose that X4 algorithm is run and phase-1 is just completed. In Figure 18, we see that 

observer is represented with O and red cells are marked as invisible by using S4_Model 

(See Table 2). This example illustrates the recent state of viewshed analysis result just 

before phase-2 starts. 

 

Figure 18: V_Table after phase-1 

The visibilities of unmarked cells will be resolved in phase-2, therefore, slope values of 

all target points are calculated by applying Equation 5 using the original elevation model. 
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Equation 5: Slope calculation with original elevation model in phase-2 

ObserverX: Observer position along X axis in Cartesian grid 
ObserverY: Observer position along Y axis in Cartesian grid 
TargetX: Target cell position along X axis in Cartesian grid 
TargetY: Target cell position along Y axis in Cartesian grid 
ObserverAltitude: Altitude of observer 
Distance: Euclidean distance between observer and the target cell 
TargetElev: Elevation value of target cell 
TargetSlope: Slope value of target cell 
 

Distance = √(TargetX - ObserverX)
2
+ (TargetY - ObserverY)

2
  

TargetSlope = (TargetElev-ObserverAltitude) / Distance 

After S_Model (See Table 2) is prepared, visibility computation for unmarked points 

starts. Phase 2 works like standard R3 but it aims to reduce the amount of computation by 

reusing visibility information of the previously analyzed points. Therefore, visibility 

calculation of remaining points is done from the inside out. To decide visibility of each 

target point, a separate line of sight is drawn and algorithm checks whether it is possible 

to avoid slope comparison operations along that line of sight.  

Since we draw the line of sight using Bresenham’s algorithm, we can find the position of 

previous point of target cell. If the slope value of previous point on the line of sight is 

larger than the target point’s slope value, we can mark the target cell as invisible. 

Algorithm 2 explains how predecessor position is calculated and visibility of target point 

is decided. 

Algorithm 2: Detection of invisible point by checking the slope of predecessor 

ObserverX: Observer position along X axis in Cartesian grid 
ObserverY: Observer position along Y axis in Cartesian grid 
TargetX: Target cell position along X axis in Cartesian grid 
TargetY: Target cell position along Y axis in Cartesian grid 
DeltaX: Absolute value of distance between observer and target along X 
axis 
DeltaY: Absolute value of distance between observer and target along Y 
axis 
PrevPointX: Position of target point’s predecessor along X axis 
PrevPointY: Position of target point’s predecessor along Y axis 
SlopeModel: 2D data holding target point slope values calculated using 
original elevation model. 
 
INPUT: ObserverX, ObserverY, TargetX, TargetY, SlopeModel 
 
DeltaX = |TargetX – ObserverX| 
DeltaY = |TargetY – ObserverY| 
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Algorithm 2 (continued) 

IF (TargetX – ObserverX) > 0 THEN IteratorX = 1 
IF (TargetX – ObserverX) < 0 THEN IteratorX = -1 
IF (TargetY – ObserverY) > 0 THEN IteratorX = 1 
IF (TargetY – ObserverY) < 0 THEN IteratorX = -1 
 
IF (DeltaX – DeltaY) > DeltaY 
 PrevPointX = TargetX - IteratorX 

PrevPointY = TargetY 
ELSE IF (DeltaY – DeltaX) > DeltaX 
 PrevPointX = TargetX 

PrevPointY = TargetY - IteratorY 
ELSE 
 PrevPointX = TargetX - IteratorX 

PrevPointY = TargetY - IteratorY 
 
IF SlopeModel[PrevPointX][PrevPointY] > SlopeModel[TargetX][TargetY] 
Mark target point as invisible 

If the slope of predecessor is not greater than slope of the target cell, we can determine 

visibility by analyzing two relative points of the target. 

 

Figure 19: Reuse of visibility information in phase 2 

In Figure 19, three different lines of sight and list of points in them presented for three 

target cells T1, T2 and T3. Comparing point list of T3 with other point lists shows that we 

cannot use visibility information of T2 or T1 due to different intermediary points written 
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in red color. However, union of T1 and T2 lists covers the line of sight points assigned for 

T3 and we may determine visibility of target by analyzing T1 and T2 in two specific cases 

where both of the points are visible or invisible. 

If T1 and T2 point are visible and their slope values are smaller than the slope of T3, we 

can mark T3 as invisible without examining the whole line of sight. Moreover, if T1 and 

T2 are invisible and their slope values are greater than slope of T3, T3 must be invisible. 

For other cases, slope of target point is compared with slope values of all points on the 

line of sight as we see in standard R3. Algorithm 3 explains how position of relative points 

found. 

Algorithm 3: Determine visibility using relative points’ lines of sight 

 
ObserverX: Observer position along X axis in Cartesian grid 
ObserverY: Observer position along Y axis in Cartesian grid 
TargetX: Target cell position along X axis in Cartesian grid 
TargetY: Target cell position along Y axis in Cartesian grid 
DeltaX: Absolute value of distance between observer and target along X 
axis 
DeltaY: Absolute value of distance between observer and target along Y 
axis 
RelP1X: Position of first relative point along X axis 
RelP1Y: Position of first relative point along Y axis 
RelP2X: Position of second relative point along X axis 
RelP2Y: Position of second relative point along Y axis 
 
INPUT: ObserverX, ObserverY, TargetX, TargetY 
 
DeltaX = |TargetX – ObserverX| 
DeltaY = |TargetY – ObserverY| 
 
IF (TargetX – ObserverX) > 0 THEN IteratorX = 1 
IF (TargetX – ObserverX) < 0 THEN IteratorX = -1 
IF (TargetY – ObserverY) > 0 THEN IteratorX = 1 
IF (TargetY – ObserverY) < 0 THEN IteratorX = -1 
 
IF (DeltaX > DeltaY) 
 RelP1X = TargetX – IteratorX 

RelP1Y = TargetY – IteratorY 
RelP2X = TargetX – IteratorX 
RelP2Y = TargetY 
 

ELSE 
 RelP1X = TargetX – IteratorX 

RelP1Y = TargetY – IteratorY 
RelP2X = TargetX 
RelP2Y = TargetY – IteratorY 
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3.2. Proposed Granularity Algorithm Implementations 

In this section we define the implementation details of proposed granularity algorithms 

and elevation model processing. Besides CPU and GPU implementation of each 

algorithm, hybrid approach of DGRHYB is also explained. 

The implementation steps are executed in the given order. To understand the notations 

used for data models please check Table 2. 

3.2.1. Elevation Model Processing 

Since the suggested solutions use processed elevation models, we should start with 

elevation model processing. These implementation steps are run before the analysis 

runtime and depending on value of G; E2_Model, E4_Model, E8_Model or E16_Model 

is created from E_Model. 

1) Create empty EG_Model with (n/G)×(n/G) dimensions, consisting of elements with 

minimum and maximum elevation attributes 

2) For each G×G group in E_Model find minimum and maximum elevation values 

3) Place minimum and maximum elevation values of each G×G group to respective 

location in EG_Model 

3.2.2. Granularity Algorithms in CPU 

 

At the end of elevation model processing EG_Model is obtained for the granularity 

algorithms. The following implementation steps are executed in analysis runtime and 

they are same for X2, X4, X8, X16 and DGR3 algorithms. Firstly phase-1 steps are run 

to detect invisible group of points using EG_Model. 

1. Calculate SG_Model from EG_Model with respect to observer altitude and position 

using Euclidean distance 

2. Draw separate line of sight for each target point with G×G granularity whose 

visibility is not determined yet 

3. Iterate on each drawn line of sight to target groups in SG_Model 

a. If minimum slope value of target point is larger than maximum slope 

values of points along the line of sight, mark G×G points in target as 

invisible using V_Table. 

4. Prepare list of remaining points according to V_Table 

At the end of phase-1 some invisible regions may be found or not. Visibility of remaining 

points is resolved by phase-2 with following steps. 
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5. Calculate S_Model from E_Model with respect to observer altitude and position 

using Euclidean distance 

6. Draw separate line of sight to each target point remaining from phase-1 

7. Iterate on each drawn line of sight to target points in S_Model 

a. If slope value of target point is smaller than the slope value of 

predecessor, mark target point as invisible using V_Table 

b. Else if slope value of target point is smaller than the slope values of two 

invisible relative points, mark target point as invisible using V_Table 

c. Else if slope value of target point is larger than the slope values of two 

visible relative points, mark target point as visible using V_Table 

d. Else if slope value of target point is larger than slope values of all points 

along the line of sight, mark target point as visible using V_Table 

e. Else if slope value of the target point is smaller than slope value of any 

point along the line of sight, mark target point as invisible using V_Table 

DGR3 algorithm uses three types of elevation models besides the original elevation 

model. Therefore, elevation model processing is applied for 16×16, 8×8 and 4×4 

granularities. In analysis runtime algorithm starts phase-1 with E16_Model and repeats 

the same implementation steps using E8_Model and E4_Model in order. For the 

remaining points phase-2 is run once like other granularity algorithms starting from step 

5. 

3.2.3. Granularity Algorithms in GPU 

GPU implementations of proposed algorithms are done using CUDA API developed by 

NVIDIA. (NVIDIA Corporation, n.d.). In CUDA, we define kernels which are functions 

executed by assigned threads in parallel with single instruction multiple data approach. 

To run a kernel we firstly decide launch parameters which are the grid and block structure 

for the threads (NVIDIA Corporation, n.d.). 

In each phase of granularity algorithms, two kernels are defined to compute slope values 

and determine visibility of points. Although same kernels are run in proposed algorithms, 

calculation of launch parameters is different for DGR3 in phase-1. For the other proposed 

algorithms (X2, X4, X8, X16) the equation to define grid and block structure does not 

change (See Equation 6). 
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Equation 6: Launch parameters of both kernels in phase-1 for proposed algorithms except DGR3 

N: Dimension of analysis area which can be 512, 1024 or 2048 
G: Granularity dimension of algorithm 
NG: Dimension of analysis area with granularity G 
 
NG = (N / G) 
BlockDim = 16 
GridDim = NG / BlockDim 
 
2D Block structure = (BlockDim, BlockDim) 
2D Grid structure = (GridDim, GridDim) 

Since each thread works for only one target point, same launch parameters are used for 

slope calculation and invisible group detection tasks in phase-1 of X2, X4, X8 and X16 

algorithms. In Equation 6, you can see grid calculation where the block dimension is 

assigned as 16 for both kernels of phase-1. 

DGR3 repeats phase-1 three times with different granularities. For slope calculation kernel 

in phase-1, the algorithm uses same launch parameters given in Equation 6. However, in 

detection of invisible groups, grid and block structure depends on the count of remaining 

points which are not marked as invisible. For each run of phase-1, launch parameters are 

calculated again as explained in Equation 6  and Equation 7. 

Equation 7: DGR3 kernel launch parameters calculation in phase-1 

G: Granularity dimension of algorithm 
Rem: Remaining point count whose visibility is not determined in 
phase-1 
RemG: Remaining point count whose visibility is not determined yet 
with granularity G 
 
RemG = Rem / G 
BlockDim = 16 

GridDim = √RemG / (BlockDim × BlockDim) 
 
2D Block structure = (BlockDim, BlockDim) 
2D Grid structure = (GridDim, GridDim) 

In phase-2 launch parameter equations are same for all proposed algorithms. The grid and 

block structure for slope calculation of phase-2 is given in Table 5. 
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Table 5: Phase-2 slope computation launch parameters for proposed algorithms 

Analysis Dimension Grid Structure Block Structure 

512×512 (32,32) (16,16) 

1024×1024 (64,64) (16,16) 

2048×2048 (128,128) (16,16) 

To determine visibility of remaining points in phase-2, 1D grid and 2D block structure is 

used as shown in Equation 8 because using 2D grid may cause unnecessary occupancy 

of thread blocks. 

Equation 8: Phase-2 visibility computation kernel launch parameters 

Rem: Remaining point count whose visibility is not determined in 
phase-1 
 
BlockDim = 16 
GridDim = (Rem+(BlockDim × BlockDim)-1) / (BlockDim×BlockDim) 

2D Block structure = (BlockDim, BlockDim) 
1D Grid structure = (GridDim) 

To process data in GPU, we need to make copy operation from host memory to device 

memory. The device operations are executed in parallel using kernel launch parameters 

and then result data is copied back to host. Therefore, the implementation steps begin with 

data copy to execute phase-1. 

In Host: 

1) Copy EG_Model to device memory 

In Device: 

2) Calculate SG_Model from EG_Model with respect to observer altitude and position 

using Euclidean distance 

3) Draw separate line of sight for each target point with G×G granularity whose 

visibility is not determined yet 

4) Iterate on each drawn line of sight to target groups in SG_Model 

a. If minimum slope value of target point is larger than maximum slope 

values of points with along the line of sight, mark G×G points in 

target as invisible using V_Table. 

In Host: 
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5) Copy V_Table to host memory 

6) Prepare list of remaining points according to V_Table 

At the end of phase-1 the visibility results are copied to host memory. In phase-2 

remaining point list is prepared and copied to device memory to determine visibility of 

points. 

7) Copy E_Model and list of remaining points to device memory 

 

In Device: 

8) Calculate S_Model from E_Model with respect to observer altitude and position 

using Euclidean distance 

9) Draw separate line of sight to each target point remaining from phase-1 

10) Iterate on each drawn line of sight to target point 

a. If slope value of target point is smaller than the slope value of 

predecessor, mark target point as invisible using V_Table 

b. Else if slope value of target point is smaller than the slope values of 

two invisible relative points, mark target point as invisible using 

V_Table 

c. Else if slope value of target point is larger than the slope values of 

two visible relative points, mark target point as visible using V_Table 

d. Else if slope value of target point is larger than slope values of all 

points along the line of sight, mark target point as visible using 

V_Table 

e. Else if slope value of the target point is smaller than slope value of 

any point along the line of sight, mark target point as invisible using 

V_Table 

In Host: 

11) Copy V_Table to host memory 

The implementation steps above are executed once by X2, X4, X8 and X16 algorithms. 

DGR3 repeats steps 1-6 for E16_Model, E8_Model and E4_Model with given order and 

then executes phase-2 starting from step 7.  

3.2.4. Hybrid Granularity Algorithm 

DGRHYB algorithm executes phase-1 in CPU and then switches to GPU to execute 

phase-2. In phase-1, DGRHYB repeats steps 1-4 in CPU three times as DGR3. After 
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phase-1 is completed, the algorithm continues phase-2 in GPU by executing the steps 5-

10. For slope calculation DGRHYB uses launch parameters given in Table 5 and then 

visibility computation of remaining points is done with grid and block structure calculated 

with Equation 8. 

3.3. R3 and R2 Algorithm Implementations 

3.3.1. R3 in CPU 

The implementation steps for standard R3 is given below: 

1) Calculate S_Model from E_Model with respect to observer altitude and position 

using Euclidean distance 

1) Draw separate line of sight for each target point in S_Model 

2) Iterate on each drawn line of sight to target points 

a. If slope value of the target point is greater than slope values of all points 

along the line of sight, mark target point in V_Table as visible. 

b. If slope value of the target point is less than slope value of any point 

along the line of sight, mark target point in V_Table as invisible. 

3.3.2. R2 in CPU 

The implementation steps for standard R2 is given below: 

1. Calculate S_Model from E_Model with respect to observer altitude and position 

using Euclidean distance 

2. Draw separate line of sight only for target points on the edges of S_Model 

3. Iterate on each drawn line of sight to determined target points 

a. If slope value of the target point is greater than slope values of all points 

along the line of sight, mark target point in V_Table as visible. 

b. If slope value of the target point is less than slope value of any point 

along the line of sight, mark target point in V_Table as invisible. 

3.3.3. R3 in GPU 

R3 algorithm runs a thread for each target point in parallel using 2D indexing since the 

elevation data and viewshed output is 2D. The block size is defined as 16×16 and the grid 

dimension varies depending on the size of analysis area. 
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For slope calculation and visibility computation kernels, same launch parameters are used 

shown in Table 6. 

Table 6: R3 kernel launch parameters 

Analysis Dimension R3 Grid Structure R3 Block Structure 

512×512 (32,32) (16,16) 

1024×1024 (64,64) (16,16) 

2048×2048 (128,128) (16,16) 

GPU implementation of algorithm follows same steps with CPU implementation. Only 

E_Model is copied to device memory in the beginning and visibility result data V_Table 

is copied to host memory at the end of the analysis. 

3.3.4. R2 in GPU 

R2 algorithm computes slope values in the analysis area using the same launch parameters 

with R3 as given in Table 6. However, visibility computation kernel uses 1D grid and 

blocks.  

Table 7: R2 kernel launch parameters 

Analysis Area R2 Grid Structure R2 Block Structure 

512×512 8 256 

1024×1024 16 256 

2048×2048 32 256 

This is because R2 algorithm draws line of sight only for points on the edges of analysis 

area. The block size is arranged as 256 which is equal to 16×16 which is used for 2D block 

structure of compared algorithms. Table 7 shows grid and block dimensions for three 

different analysis dimensions.GPU implementation of algorithm follows same steps with 

CPU implementation. Only E_Model is copied to device memory in the beginning and 

visibility result data V_Table is copied to host memory at the end of the analysis. 
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CHAPTER 4 

 

4.EVALUATION 

 

In this chapter we will see the comparison of implemented proposed algorithms with R3 

and R2 in terms of accuracy, execution time and resource allocation. R2 and R3 

implementations used in evaluations are given in Section 3.3. Digital elevation models 

used in analysis experiments are retrieved from ASTER (NASA, n.d.). Experiment tiles 

are chosen in three sizes which are 512, 1024 and 2048. For each size, 25 different tiles 

are used to assess results in different terrain topologies. In Appendix B experiment tile 

statistics are provided. Since the elevation models are extracted with Cartesian 

coordinates, Euclidian distance is used in slope calculations. 

For each experimented tile, the viewshed analyses are carried out for seven different 

observer altitudes and the observer is located at the center of the tile in the experiments. 

The altitudes are determined according to terrain elevation value at the observer’s position 

and standard deviation of elevation levels in the tile. Hence, sensible changes in viewshed 

can be examined, as the altitude is increased. The observer altitudes are calculated as 

follows: 

𝐴0 = 𝐸𝑜 + 2 Meters 

and 

𝐴𝑐 = 𝐸𝑜 + 𝑐 ∗          𝑓𝑜𝑟 𝑐 = 1,2,3,4,5 

Where, Ac for c=0..5 is the altitude of the observer, Eo is elevation at the observer’s 

position,  is the standard deviation of all elevations in the tile. Another observer altitude 

level to be tested is MSA (minimum sector altitude). In aviation, MSA (Federal Aviation 

Administration, n.d.) is used as a common reference to provide minimum clearance of 300 

meters above the terrain (Federal Aviation Administration, n.d.). 

𝐴𝑚𝑠𝑎 = 𝐸𝑜 + 300 𝑀𝑒𝑡𝑒𝑟𝑠 
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Each algorithm is run on each experiment tile with 7 different altitudes, in other words, 

525 experiments are run per algorithm in this research. In each experiment, speedup ratios 

for the proposed algorithms with respect to R3 are calculated to make comparisons with 

R3 algorithm’s execution time. CPU versions of algorithms are implemented with single 

thread. For GPU implementation CUDA parallel programming platform and API is used 

(NVIDIA Corporation, n.d.). Elevation data, slope data and distance calculations use 

FLOAT data type for maximum accuracy. 

 

Hardware and software specifications of experimental setup are listed below. 

 

OS: Windows 10  

IDE: Visual Studio 2010 with C++  

CUDA Version: v9.2  

Architecture: x64 

CPU: Intel(R) Core(TM) i7-4700QM CPU @ 2.40GHz 4 Core 

GPU: NVIDIA Kepler Compute Capability 3.0  

RAM: 16 GB 

4.1. Experiments with CPU Implementation 

4.1.1. Execution Time 

In this section, execution time performances of the proposed algorithms are compared to 

execution times of R3 algorithm. The speedup parameters changing by the altitude are 

depicted with figures. Analyses are performed on three different tile sizes and the data 

points in the charts correspond to the speedup value obtained. 

According to the results presented in Figure 20, Figure 21, Figure 22 and Figure 23, 

speedup per altitude graph shows that the fastest algorithms are DGR3, X4 and X8 for all 

altitude levels. Execution time of X2 and X16 algorithms proves that very small and very 

large granularities reduce the execution time improvement provided by phase-1. 

X2 is the algorithm spending most time for phase-1 among other granularity algorithms 

because E2_Model is the largest processed elevation model. On the other hand, X16 is the 

algorithm using smallest input data E16_Model but increasing granularity decreases the 

possibility to find invisible group of points. In this case phase-1 becomes less effective for 

X16 and algorithm spends so much time for phase-2. 

For analysis on 512×512 tiles, X4 and DGR3 algorithms offer best execution time with 

altitude levels lower than A₃ (See Figure 20). DGR3 algorithm takes advantage of using 

processed elevation models with large granularities at lowest altitude level. In contrast, 

increasing observer altitude decreases wide invisible regions and causes DGR3 to lose 

time in phase-1. X8 algorithm provides the best execution time for altitude levels higher 

than A₃ because contribution of phase-1 dramatically reduces for all granularity algorithms 
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and X8 completes phase-1 faster than DGR3 and X4. Although X8 spends more time for 

phase-2 compared to X4 and DGR3, it becomes the fastest algorithm due to small analysis 

dimension (See Figure 20).  

 

Figure 20: CPU algorithm execution time comparison on 512×512 tiles 

The execution time statistics given in Table 8 for 512×512 tiles prove that DGR3 can 

reach 7.77x speedup ratio. Although, X8 is the fastest algorithm at high altitude levels, 

DGR3 and X4 are the best choices according to average speedup values. 

Table 8: Execution time statistics of CPU algorithms on 512×512 tiles 

 DGR3 X2 X4 X8 X16 

min 1.75 1.69 1.81 1.74 1.57 

max 7.77 3.95 7.46 6.49 4.58 

avg 3.30 2.62 3.30 3.21 2.65 

When analysis tile size is increased to 1024×1024, DGR3 and X4 benefits from phase-1 

more by the help of 4×4 granularity and X8 performs slower due to spending more time 

for phase-2 by the increased analysis area dimension (See Figure 21). On the ground and 

low altitude levels DGR3 is slightly faster than X4 since it uses 8×8 and 16×16 

granularities besides 4×4 to determine invisible groups more quickly. For the maximum 
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altitude level, gap of speedup ratio between X4, DGR3 and X8 disappears as it can be 

seen from Figure 21. 

 

Figure 21: CPU algorithm execution time comparison on 1024×1024 tiles 

According to Table 9, all algorithms have better speedup statistics compared to Table 8. 

Hence, it can be said that 1024×1024 is the ideal size for proposed algorithms. Average 

speedup values of DGR3 and X4 exceed 4.10x and starts to increase the gap with X8.  

Table 9: Execution time statistics of CPU algorithms on 1024×1024 tiles 

 DGR3 X2 X4 X8 X16 

min 2.04 1.74 2.08 2.15 1.87 

max 11.08 4.74 10.29 10.44 5.18 

avg 4.18 2.99 4.10 3.82 2.99 

As it can be seen from Figure 22, for 2048×2048 tiles, X4 offers the best execution time 

with 4×4 granularity. Execution time results at low altitude show that X4 benefits from 

phase-1 more than other algorithms. DGR3 is apparently slower than X4 due to overhead 

caused by repeating phase-1 for 8×8 and 16×16 granularities. In smaller analysis areas 
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overhead was not considerable but as we increase analysis area, it started to decelerate 

DGR3. 

 

Figure 22: CPU algorithm execution time comparison on 2048×2048 tiles 

In Table 10, lower minimum and higher maximum speedup ratios are seen because of the 

increased analysis area.  

Table 10: Execution time statistics of CPU algorithms on 2048×2048 tiles 

 DGR3 X2 X4 X8 X16 

min 1.61 1.23 1.82 1.87 2.02 

max 13.51 6.32 11.70 13.26 9.95 

avg 3.72 2.99 4.29 3.72 3.24 

However, average speedup ratios start to decrease compared to Table 9 which proves that 

1024×1024 tile size is optimal for proposed algorithms. Results of MSA tests shown in 

Figure 23 also confirm that 1024×1024 is the optimal size for the proposed algorithms. 

For smaller analysis areas X8, X4 and DGR3 performs similar in terms of computation 
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time but as we extend the range of vision, the graphs indicate that X4 is the best overall 

choice. 

 

Figure 23: CPU algorithm execution time comparison for MSA 

To sum up, experiment results prove that using large point tiles complicates detection of 

invisible groups while small point tiles cause extra overhead due to processing large data 

sets. Proposed algorithms perform much better at low altitude levels because phase-1 offer 

greater speedup compared to phase-2. On the other hand, phase-2 is effective in cases 

altitude level is increased. The best practice for CPU will be using DGR3 for observers 

on ground or with low level altitudes. As observer altitude approaches to A₃ or MSA X4 

algorithm should be applied. 

4.1.2. Accuracy 

Approximate methods to compute viewsheds reuse information or makes estimation to 

reduce the execution time. On the other hand, R3 draws a separate line of sight to each 

target point and it is accepted as an exact method by researchers (Zalik & Kaučič, 2002). 

Therefore, the performance comparisons in this study are made with respect to R3.  

Table 11 shows the discrepancies (i.e., non-matching point count) between the output of 

each algorithm and the output obtained by R3 algorithm. According to minimum non-

matching point counts, there are cases for proposed algorithms providing exactly same 

accuracy with R3. Additionally, proposed algorithms avoid any false positive decisions 

(mistakenly marked as visible) as given in Table 12 thanks to Phase-2. The false negative 
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decisions (mistakenly marked as invisible) are done in Phase-1 because in slope 

calculation same distance value is assigned to a tile of points which may lead to wrong 

minimum and maximum slope value calculation. Therefore, the largest average non-

matching point count belongs to X2 which uses the largest processed elevation model. 

Table 11: Accuracy of CPU algorithms 

 non-matching point count 

 512×512=262144 1024×1024=1048576 2048×2048=4194304 

 min max avg min max avg min max Avg 

R2  135 11028 5702.14 68 38090 20110.32 875 173843 78584.72 

DGR3  0 637 15.55 0 329 27.13 0 883 113.71 

X2  1 437 52.99 1 1130 185.68 6 3255 874.55 

X4  0 249 8.02 0 329 22.42 0 578 86.55 

X8  0 590 6.84 0 91 4.06 0 485 30.71 

X16  0 176 1.72 0 67 1.16 0 497 10.37 

DGR3 uses 3 types of processed elevation models and accumulates wrong decisions made 

by Phase-1 of X16, X8 and X4 algorithms. However, average non-matching point count 

of R2 is still 8.95x of maximum non-matching point count of DGR3 on the smallest 

analysis area. Besides, DGR3 offers average 15.55 non-matching points compared to 

5702.14 of R2 which is a significant difference. As the size of analysis area increases, the 

distinction between granularity algorithms and R2 becomes larger. 

Table 12: Accuracy statistics of algorithms (FN: False Negative, FP: False Positive) 

 non-matching point count 

 512×512 1024×1024 2048×2048 

 min max avg min max avg min max avg 

FN R2  55 5080 2340.78 19 17816 8921.07 416 81436 35096.59 

FP R2  80 5948 3361.36 49 21233 11189.25 459 92407 43488.13 

FP DGR3  0 0 0.00 0 0 0.00 0 0 0.00 

FN DGR3 0 637 15.55 0 329 27.13 0 883 113.71 

FP X2  0 0 0.00 0 0 0.00 0 0 0.00 

FN X2  1 437 52.99 1 1130 185.68 6 3255 874.55 

FP X4  0 0 0.00 0 0 0.00 0 0 0.00 

FN X4  0 249 8.02 0 329 22.42 0 578 86.55 

FP X8  0 0 0.00 0 0 0.00 0 0 0.00 

FN X8  0 590 6.84 0 91 4.06 0 485 30.71 

FP X16  0 0 0.00 0 0 0.00 0 0 0.00 

FN X16  0 176 1.72 0 67 1.16 0 497 10.37 
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In Figure 24, we see visual comparison of false positive and false negative decisions of 

R2 and DGR3 with respect to output of R3. Orange points represent false negative 

decisions (mistakenly marked as invisible) and blue points represent false positive 

decisions (mistakenly marked as visible). 

 
Figure 24: Visual comparison of non-matching points of R2 and DGR3 with R3 

Total number of false negative and false positive decisions of R2 for this experiment is 

5678 (See Table 13) which is lower than the average value according to Table 11 but the 

difference in viewshed output looks quite misleading and this accuracy may not be 

satisfactory for some applications. 

Table 13: Accuracy statistics of experiment in Figure 24 

 False Negative False Positive 

R2 3674 2004 

DGR3 6 0 

Proposed algorithms draw a line of sight for group of points and iterate on them. In other 

words, they apply R3 with larger resolution and all points in the same target group 

assumed to be on the same line of sight and distance to the observer. Therefore, detection 

of invisible groups in phase-1 may cause wrong visibility decisions for some of the points 

within the group. When we increase the number of groups by decreasing the granularity 

of down scaled elevation models, we see more mistaken visibility decisions. This fact 

explains average non-matching point count relation between X2, X4, X8 and X16. On the 

other hand, increasing granularity may cause a wrong decision affecting many points in a 

larger group and cause wrong decisions to accumulate in a specific region which is an 

important problem. In Figure 25, we see original output of R3 and wrong visibility 

decisions of X2 and DGR3. Orange points represent false negative decisions (mistakenly 

marked as invisible) in output of X2 and DGR3. When we analyze the outputs of 

algorithms using same approach with different granularities we see wrong decisions of X2 

is dispersed unlike DGR3. 
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Figure 25: Visual comparison of non-matching points of X2 and DGR3 with R3 

Van Kreveld’s algorithm is seen as considerable alternative to R3 due to accuracy. The 

study of Johansson and Lundberg (Johansson & Lundberg, 2016) presents accuracy results 

of Van Kreveld’s algorithm on 2001×2001 tiles. The experiment results show that there 

are 50346 non-matching points, meanwhile, X2 algorithm offers the worst accuracy with 

3255 unmatched points on 2048×2048 tiles (See Table 11). In other words, granularity 

algorithms offer significant accuracy results compared to Van Kreveld’s algorithm. 

4.2. Experiments with GPU Implementation 

4.2.1. Execution Time 

GPU execution time performances of the proposed algorithms are compared with respect 

to R3. Parallelization of proposed algorithms sketch different execution time graphs 

depending on the size of the analysis area. Since all threads run in parallel, the amount of 

serial computations in an algorithm is very effective on the execution time. In this case, 

execution time of R3 is determined by the visible point which is the most distant one from 

the observer position. Considering that decreasing observer altitude extends the invisible 

regions and cause threads to finish visibility computation quickly, R3 provides the best 

execution time for the minimum altitude level. Therefore, proposed algorithms are slower 

than R3 at low altitude levels as seen in Figure 26, Figure 27 and Figure 28. 

The execution time results of granularity algorithms indicate sequential execution of 

Phase-1 and Phase-2 cause overhead compared to parallel implementation of R3. 

Especially on smallest analysis area proposed algorithms are significantly slower than R3 

as shown in Figure 26. 
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Figure 26: GPU algorithm execution time comparison on 512×512 tiles 

Maximum speed up values given in Table 14 reveals that granularity algorithms failed to 

achieve any execution time improvement. DGRHYB and DGR3GPU are the slowest 

granularity algorithms because of sequentially repeating Phase-1 besides the execution of 

Phase-2. 

Table 14: Execution time statistics of GPU algorithms on 512×512 tiles 

 DGR3GPU X2GPU X4GPU X8GPU X16GPU DGRHYB 

min 0.28 0.36 0.40 0.42 0.38 0.31 

max 0.71 0.85 0.97 0.94 0.82 0.66 

avg 0.60 0.67 0.80 0.80 0.72 0.55 

According to Figure 27 and Table 15, on 1024×1024 analysis dimensions we see X8 and 

X4 achieve speedup (See Figure 27) by the increasing workload for a single thread. This 

is because execution of phase-1 helps X4 and X8 to be affected less from the growing 

analysis area compared to R3. However, R3 is still faster on the ground and increasing 

altitude decelerate execution time performance of X4 and X8. 
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Figure 27: GPU algorithm execution time comparison on 1024×1024 tiles 

Moreover, comparison of analysis results in Figure 26 and Figure 27 indicates that 

DGR3GPU shows improvement by the increased analysis area while DGRHYB is still 

slowest since it executes phase-1 in CPU. 

Table 15: Execution time statistics of GPU algorithms on 1024×1024 tiles 

 DGR3GPU X2GPU X4GPU X8GPU X16GPU DGRHYB 

min 0.26 0.39 0.49 0.52 0.46 0.26 

max 1.19 1.21 1.59 1.49 1.14 0.96 

avg 0.92 0.91 1.13 1.08 0.90 0.71 

In case of 2048×2048 tile size, DGR3GPU benefits more from invisible phase-1 and 

becomes one of the top three algorithms. We also notice the execution time difference 

between algorithms is more obvious. 
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Figure 28: GPU algorithm execution time comparison on 2048×2048 tiles 

The execution time graph in Figure 28 shows that granularity algorithms provide 

improvement only on large analysis areas and X4 is the best algorithm with 1.41x average 

speed up to 2.27x maximum (See Table 16). The second fastest algorithm is X8 with 1.31x 

average speed up to 2.0x maximum thanks to 8×8 granularity and DGR3 GPU is the third 

because of repeating phase-1. 

Table 16: Execution time statistics of GPU algorithms on 2048×2048 tiles 

 DGR3GPU X2GPU X4GPU X8GPU X16GPU DGRHYB 

min 0.36 0.36 0.57 0.58 0.52 0.22 

max 1.87 1.63 2.27 2.00 1.50 1.21 

avg 1.25 1.09 1.41 1.31 1.05 0.81 

We see MSA results also support (See Figure 29) that X4GPU, X8GPU and DGR3GPU 

offer execution time improvement only for 2048×2048 analysis area. 
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Figure 29: GPU algorithm execution time comparison for MSA 

The reason for DGRHYB to be the slowest algorithm is the execution time overhead 

caused by running phase-1 in CPU. If we compare DGRHYB with CPU version of R3, 

we see amount of speedup given in Figure 30. The rationale to use hybrid approach can 

be reducing the workload in CPU while using both processing units in a system. 
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Figure 30: Hybrid algorithm speedup with respect to R3 CPU implementation 

Combining all analysis results, we can infer that GPU implementations of granularity 

algorithms achieve speedup only at altitude levels higher than A₀ for large analysis areas.  

Although X4 comes forward with best execution time results, X8 is also a nice option for 

high altitude levels. 

4.2.2. Accuracy 

GPU implementation provides the same accuracy values since the proposed algorithms 

are deterministic solutions. However, R2 algorithm acts differently as the visibilities of 

some points are calculated multiple times. GPU implementation of R2 algorithm is not 

deterministic in terms of visibility because GPU threads processing different line of sights 

have intersection points and the path to these intersection points is also different. When 

we ran R2 algorithm in GPU on the same analysis tile twice, we can see different statistics 

(See Table 17). 
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Table 17: Changing statistics of R2 algorithm for same analysis 

 
non-matching point count of R2 GPU implementation 

 
 False Negative False Positive 

Test 1 1611 2386 

Test 2 1589 2213 

In CPU implementation this is not a problem since processing is sequential and always in 

the same order. However, GPU threads running parallel reach the same intersection point 

in an arbitrary order and the visibility will be determined by the last thread visiting the 

point. Intersecting line of sights may find different visibility results for intersection points 

and in real time applications this may cause flickering pixels because of GPU threads 

racing to overwrite visibility. 

 

Figure 31: Changing pixels due to racing threads of R2 algorithm in GPU 

In Figure 31 wrong visibility decisions of two analysis outputs of R2 are shown. Although 

we used same elevation data for two analyses, we see different wrong visibility decisions. 

Orange points in figure represent false negative points (mistakenly marked as invisible) 

and blue points represent (mistakenly marked as visible) false positive decisions. 
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4.3. Resource Usage 

In Table 18 the resource requirements of each algorithm are given because it is also an 

important criterion in practical settings. The numbers in red color represents the external 

requirement to implement the algorithms (See Table 18). Proposed algorithms require 

maximum 0.67x more space in disk and 1.0x more memory. 

For GPU implementation amount of data given in Table 18 is copied to device memory. 

Therefore, GPU memory requirements are exactly same with CPU implementation. In 

order to decrease the disk and memory requirements, the algorithm can also be 

implemented with INTEGER data type. 

Apart from R2, Van Kreveld’s algorithm, which is considered as a fast alternative to R3, 

does not require extra disk space for implementation. However, the algorithm needs extra 

temporary storage for the runtime. The event lists (enter, center and exit) and active 

balanced tree require more than 3x extra memory in total (Johansson & Lundberg, 2016). 

Therefore, proposed granularity methods seem more feasible compared to Van Kreveld’s, 

if disk space is not a constraint. 

Table 18: Resource usage of algorithms 

 Disk Usage Memory Usage in KB 

Algorithms on 

different analysis 
dimensions 

Elevation 

 
(FLOAT,FLOAT) 

Slope 

 
FLOAT 

Remaining Point List 

 
(SHORT,SHORT) 

Visibility 

 
BOOL 

X2 512×512 512 + 1024 1024 1024 256 

X2 1024×1024 2048 + 4096 4096 4096 1024 

X2 2048×2048 8192 + 16384 16384 16384 4096 

X4 512×512 128 + 1024 1024 1024 256 

X4 1024×1024 512 + 4096 4096 4096 1024 

X4 2048×2048 2048 + 16384 16384 16384 4096 

X8 512×512 32 + 1024 1024 1024 256 

X8 1024×1024 128 + 4096 4096 4096 1024 

X8 2048×2048 512 + 16384 16384 16384 4096 

X16 512×512 8 + 1024 1024 1024 256 

X16 1024×1024 32 + 4096 4096 4096 1024 

X16 2048×2048 128 + 16384 16384 16384 4096 

DGR3 512×512 168 + 1024 1024 1024 256 

DGR3 1024×1024 672 + 4096 4096 4096 1024 

DGR3 2048×2048 2688 + 16384 16384 16384 4096 

DGRHYB 512×512 168 + 1024 1024 1024 256 

DGRHYB 1024×1024 672 + 4096 4096 4096 1024 

DGRHYB 2048×2048 2688 + 16384 16384 16384 4096 
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CHAPTER 5 

 

5. CONCLUSION AND FUTURE WORK 

 

In this research, accuracy is considered as the primary concern in viewshed analysis. 

Accordingly, a set of algorithms, which are mainly derived from R3 algorithm, are 

proposed to improve the processing time performance of R3 algorithm while preserving 

its accuracy. The proposed algorithms are implemented for both CPU and GPU. 

Findings of the experiments confirm that CPU versions of DGR3 and X4 are considerable 

options to R3 in any conditions. Besides the execution time improvement, proposed 

algorithms never display an invisible point as visible unlike R2 and Van Kreveld’s 

algorithm. The significant decrease in number of false negative decisions compared to 

other approximate algorithms can also be a motivation to choose granularity algorithms. 

On the other hand, GPU application of the suggested approach does not offer as much 

speedup as CPU but on large analysis dimensions DGR3GPU, X4GPU, X8GPU can offer 

speedup above 2x with respect to R3GPU. Moreover, R2GPU algorithm is not a reliable 

option in terms of accuracy due to flicker effect caused by the racing threads. 

Resource requirements of an algorithm are also an important issue for practical 

applications. DGR3, which requires the maximum resource among proposed solutions, 

can be considered as moderate compared to Van Kreveld’s and it can be revised to change 

the granularity level in runtime with respect to MSA to achieve the best execution time. 

To sum up DGR3, X4 and X8 are nice options to R3, if a CPU is assigned for the task. 

Depending on design constraints and execution time requirements these algorithms can 

be useful alternatives to R2.  

To solve the execution time issues of viewshed analysis, algorithms like Xdraw and R2 

are proposed. In this study, the motivation is to improve R3 while keeping the accuracy 

as high as possible. However, none of the algorithms proposed is as fast as R2. In contrast 

to the approach proposed in this thesis, future work may be on improvement of R2 

algorithm’s accuracy while preserving execution time performance. 
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For a specific range of analysis, wrong decisions of R2 can be anticipated. This is because 

the procedure to draw the line of sight and compute visibility is certain. Since there is no 

estimation involved in viewshed computation, the pattern of errors can be analyzed and 

wrong decision points can be found to develop a method minimizing false visibility 

decisions. Nevertheless, in order to preserve the execution time performance of R2, error 

correction method should not change the complexity of the algorithm.  

Moreover, since different algorithms offer advantages on different terrain topologies, a 

method can be developed to switch between algorithms on the fly. Implementation of such 

an adaptive solution requires real time analysis of the terrain. Depending on changing 

parameters like roughness and standard deviation of elevation data, we can run the optimal 

algorithm to provide high accuracy and fast execution time. Additionally, making such an 

analysis of the terrain can help to find points whose visibility does not change by the 

vertical or horizontal movement of observer to avoid redundant visibility computations. 

In conclusion, execution time requirement of real time terrain analysis should be studied 

and solutions using this method should be compared with R2, R3 and granularity 

algorithms in terms of performance and practicality.  
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APPENDICES 

 

APPENDIX A 

 

R3 Pseudocode 

 

Ox,y: Position of observer in cartesian coordinates 

AO: Altitude of observer 
i: x component of point cartesian coordinate 
j: y component of point cartesian coordinate 
n: Dimension of analysis area 
Distancei,j: Euclidean distance between observer and point with indices 

i and j 
E: Elevation model data 
S: Slope model data 
V: Visibility result data 
Ei,j: Elevation value of point with indices i and j 

Si,j: Slope value from observer to point with indices i and j 

Ti,j: Target point to determine visibility with indices i and j 

Vi,j: Visibility result of target point with indices i and j 

BresenhamPoint: Position of any point on Bresenham line between 
observer and Ti,j 
 
Assign Ox,y as (n/2, n/2) 

 
// Compute Slope 
FOR <i,j>: <0...n, 0...n> 

Si,j = (Ei,j - AO) /  Distancei,j 
END FOR 
 
// Compute Visibility 
FOR <i,j>: <0...n, 0...n> 

IsTargetInvisible = FALSE 
WHILE IsTargetInvisible is FALSE  
Iterate on Bresenham line points from Ox,y to Ti,j 

 IF Si,j < SBresenhamPoint 

  Vi,j = Invisible 
IsTargetInvisible = TRUE 
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END IF 
END WHILE 
IF IsTargetInvisible is FALSE 
 Vi,j = Visible 

 END IF 
END FOR 

 

R2 Pseudocode 

 

Ox,y: Position of observer in cartesian coordinates 

AO: Altitude of observer 
i: x component of point cartesian coordinate 
j: y component of point cartesian coordinate 
n: Dimension of analysis area 
Distancei,j: Euclidean distance between observer and point with indices 

i and j 
E: Elevation model data 
S: Slope model data 
V: Visibility result data 
Ei,j: Elevation value of point with indices i and j 

Si,j: Slope value from observer to point with indices i and j 

Ti,j: Target point to determine visibility with indices i and j 

Vi,j: Visibility result of target point with indices i and j 
BresenhamPoint: Position of any point on Bresenham line between 
observer and Ti,j 

 
Assign Ox,y as (n/2, n/2) 

 
// Compute Slope 
FOR <i,j>: <0...n, 0...n> 

Si,j = (Ei,j - AO) /  Distancei,j 

END FOR 
 
// Compute Visibility 
R2RangeIndices <i,j> = <0, 0...n> U <n, 0...n> U <0...n, 0> U <0...n, 
n> 
FOR <i,j>: <R2RangeIndices> 

MaxSlope = Minimum float value 
IsTargetInvisible = FALSE 
WHILE IsTargetInvisible is FALSE  
Iterate on Bresenham line points from Ox,y to Ti,j 

 IF SBresenhamPoint ≥ MaxSlope 
  VBresenhamPoint = Visible 
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MaxSlope = SBresenhamPoint 
ELSE 
 VBresenhamPoint = Invisible 

  END IF 
END WHILE 

END FOR 

 

Elevation Data Preprocessing Pseudocode 

 

AO: Altitude of observer 
i: x component of point cartesian coordinate 
j: y component of point cartesian coordinate 
n: Dimension of analysis area 
G: Dimension of group size 
E: Elevation model data 
Ei,j: Elevation value of point with indices i and j. 

GroupMax: Temporary minimum elevation found 
GroupMin: Temporary maximum elevation found 
EGMin: G×G minimum elevation value model  
EGMax: G×G maximum elevation value model  
Index: Temporary iteration index 
 
/* Phase 0 - Prepare Processed Elevation Models */ 
Index = 0 
FOR <i,j>: <0...n, 0...n> 
 GroupMax = Ei,j 

 GroupMin = Ei,j  

 
FOR <p,r>: <0...G, 0...G>  

IF Ei+p,j+r > GroupMax 

GroupMax = Ei+p,j+r 
  END IF 

IF Ei+p,j+r < GroupMin 

GroupMin = Ei+p,j+r 

END IF 
END FOR 

 
EGMinIndex = GroupMin 
EGMaxIndex = GroupMax 
 
Index = Index + 1 

 i = i + G 
j = j + G 
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END FOR 

 

Family of Granularity Algorithms Pseudocode 

 

Ox,y: Position of observer in cartesian coordinates 

AO: Altitude of observer 
i: x component of point cartesian coordinate 
j: y component of point cartesian coordinate 
n: Dimension of analysis area 
G: Dimension of group size 
Distancei,j: Euclidean distance between observer and point with indices 

i and j 
EGMini,j: Minimum elevation value in G×G group with indices i and j 

EGMaxi,j: Maximum elevation value in G×G group with indices i and j 

E: Elevation model data 
S: Slope model data 
Ei,j: Elevation value of point with indices i and j 

SGMini,j: Minimum slope value in G×G group with indices i and j 

SGMaxi,j: Maximum slope value in G×G group with indices i and j 

Si,j: Slope value from observer to point with indices i and j 
V: Visibility result data 
Vi,j: Visibility result of target point with indices i and j 

Ti,j: Target point or group of points to determine visibility with 

indices i and j 
Dx: Absolute value of distance between observer and target point along 
x axis 
Dy: Absolute value of distance between observer and target point along 
y axis 
R: Points not marked as invisible according to Vi,j 

xIt: Iterator attribute for x axis 
yIt: Iterator attribute for y axis 
BresenhamPoint: Position of any point on Bresenham line between 
observer and Ti,j 
 
/* Phase 1 Determine visibility of Remaining Points */ 
 
// Compute Slope 
Assign Ox,y as (n/(2*G), n/(2*G)) 

FOR <i,j>: <0...n/G, 0...n/G> 
SGMini,j = (EGMini,j - AO) /  Distancei,j 

SGMaxi,j = (EGMaxi,j - AO) /  Distancei,j 

END FOR 
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// Compute Visibility 
FOR <i,j>: <0...G, 0...G> 

IsTargetInvisible = FALSE 
WHILE IsTargetInvisible is FALSE  

Iterate on Bresenham line points from Ox,y to Ti,j 

  IF SGMini,j < SGMaxBresenhamPoint 
FOR <p,r>: <0...G, 0...G> 

Vi*G+p,j*G+r = Invisible 

ENDFOR 
IsTargetInvisible = TRUE 

END IF 
END WHILE 

END FOR 
 
 
/* Phase 2 Determine visibility of Remaining Points */ 
 
// Compute Slope 
Prepare R according to V 
Assign observer position as (n/2, n/2) 
FOR <i,j>: <0...n, 0...n> 

Si,j = (Ei,j - AO) /  Distancei,j 

END FOR 
 
// Compute Visibility 
xIt = 1 
yIt = 1 
 
IF(Ox > i) 
 xIt = -1 
END IF 

 
IF(Oy > j) 

 yIt = -1 
END IF 
 
FOR each point Ti,j in R 

IF (Dx - Dy) > Dy AND Si,j < Si-xIt,j  

 Vi,j = Invisible 

ELSE IF (Dy - Dx) > Dx AND Si,j < Si-xIt,j  

 Vi,j = Invisible  

ELSE IF Dx > Dy AND 
((Vi-xIt,j-yIt is Visible AND Si-xIt,j-yIt ≥ Si,j) OR 

(Vi-xIt,j is Visible AND Si-xIt,j ≥ Si,j)) 

Vi,j = Visible 
ELSE IF Dy > Dx AND 
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((Vi-xIt,j-yIt is Visible AND Si-xIt,j-yIt ≥ Si,j) OR 

(Vi,j-yIt is Visible AND Si-xIt,j ≥ Si,j)) 

  Vi,j = Visible 
ELSE 

IsTargetInvisible = FALSE 
WHILE IsTargetInvisible is FALSE  
Iterate on Bresenham line points from Ox,y to Ti,j 

 IF Si,j < SBresenhamPoint 

  Vi,j = Invisible 

IsTargetInvisible = TRUE 
END IF 

END WHILE 
IF IsTargetInvisible is FALSE 
 Vi,j = Visible 

 END IF 
END IF 

END FOR 

 

R3GPU Pseudocode 

 

Ox,y: Position of observer in cartesian coordinates 

AO: Altitude of observer 
i: x component of point cartesian coordinate 
j: y component of point cartesian coordinate 
n: Dimension of analysis area 
Distancei,j: Euclidean distance between observer and point with indices 
i and j 
E: Elevation model data 
S: Slope model data 
Ei,j: Elevation value of point with indices i and j 

Si,j: Slope value from observer to point with indices i and j 

Ti,j: Target point to determine visibility with indices i and j 

V: Visibility result data 
Vi,j: Visibility result of target point with indices i and j 

BresenhamPoint: Position of any point on Bresenham line between 
observer and Ti,j 

 
COPY E to device memory 
Assign Ox,y as (n/2, n/2) 

 
// Compute Slope 
SLOPE_CALC_KERNEL 

i = (blockDim.x * blockIdx.x) + threadIdx.x 
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j = (blockDim.y * blockIdx.y) + threadIdx.y 
Si,j = (Ei,j - AO) / Distancei,j 

END SLOPE_CALC_KERNEL 
 
// Compute Visibility 
R3_VISIBILITY_KERNEL 

i = (blockDim.x * blockIdx.x) + threadIdx.x 
j = (blockDim.y * blockIdx.y) + threadIdx.y 
IsTargetInvisible = FALSE 
WHILE IsTargetInvisible is FALSE  

Iterate on Bresenham line points from Ox,y to Ti,j 

 IF Si,j < SBresenhamPoint 

  Vi,j = Invisible 
IsTargetInvisible = TRUE 

END IF 
END WHILE 
IF IsTargetInvisible is FALSE 
 Vi,j = Visible 

 END IF 
END R3_VISIBILITY_KERNEL 
 
COPY V to device memory 

 

R2GPU Pseudocode 

 

Ox,y: Position of observer in cartesian coordinates 

AO: Altitude of observer 
i: x component of point cartesian coordinate 
j: y component of point cartesian coordinate 
n: Dimension of analysis area 
Distancei,j: Euclidean distance between observer and point with indices 

i and j 
E: Elevation model data 
S: Slope model data 
Ei,j: Elevation value of point with indices i and j 

Si,j: Slope value from observer to point with indices i and j 

Ti,j: Target point to determine visibility with indices i and j 

V: Visibility result data 
Vi,j: Visibility result of target point with indices i and j 
BresenhamPoint: Position of any point on Bresenham line between 
observer and Ti,j 
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COPY E to device memory 
Assign Ox,y as (n/2, n/2) 

 
// Compute Slope 
SLOPE_CALC_KERNEL 

i = (blockDim.x * blockIdx.x) + threadIdx.x 
j = (blockDim.y * blockIdx.y) + threadIdx.y 
Si,j = (Ei,j - AO) /  Distancei,j 

END SLOPE_CALC_KERNEL 
 
// Compute Visibility 
R2_VISIBILITY_KERNEL 

IF blockIdx.x < 2 
i = (blockDim.x * blockIdx.x) + threadIdx.x 
j = 0 

ELSE IF blockIdx.x > 1 AND blockIdx.x < 4 
i = (blockDim.x * (blockIdx.x - 2)) + threadIdx.x 
j = n-1 

ELSE IF blockIdx.x > 3 AND blockIdx.x < 6 
i = 0 
j = (blockDim.x * (blockIdx.x - 4)) + threadIdx.x 

ELSE IF blockIdx.x > 5 AND blockIdx.x < 8 
i = n - 1 
j = (blockDim.x * (blockIdx.x - 6)) + threadIdx.x 

END IF 
 

MaxSlope = Minimum float value 
IsTargetInvisible = FALSE 
WHILE IsTargetInvisible is FALSE 

Iterate on Bresenham line points from Ox,y to Ti,j 

 IF SBresenhamPoint < MaxSlope 
  VBresenhamPoint = Invisible 
 ELSE 
  VBresenhamPoint = Visible 

MaxSlope = SBresenhamPoint 
 END IF 

 END WHILE 
END R2_VISIBILITY_KERNEL 

Copy V to host memory 

 

Family of Granularity Algorithms GPU Pseudocode 

Ox,y: Position of observer in cartesian coordinates 
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AO: Altitude of observer 
i: x component of point cartesian coordinate 
j: y component of point cartesian coordinate 
n: Dimension of analysis area 
G: Dimension of group size (granularity dimension) 
Distancei,j: Euclidean distance between observer and point with indices 

i and j 
ExMini,j: Minimum elevation value in group with indices i and j 

ExMaxi,j: Maximum elevation value in group with indices i and j 

E: Elevation model data 
S: Slope model data 
Ei,j: Elevation value of point with indices i and j 

SGMini,j: Minimum slope value in G×G group with indices i and j 

SGMaxi,j: Maximum slope value in G×G group with indices i and j 

Si,j: Slope value from observer to point with indices i and j 

Ti,j: Target point to determine visibility with indices i and j 

V: Visibility result data 
Vi,j: Visibility result of target point with indices i and j 
Dx: Absolute value of distance between observer and target point along 
x axis 
Dy: Absolute value of distance between observer and target point along 
y axis 
R: Points not marked as invisible according to Vi,j 

xIt: Iterator attribute for x axis 
yIt: Iterator attribute for y axis 
BresenhamPoint: Position of any point on Bresenham line between 
observer and Ti,j 
 
 
// Phase 1 - Detection of Invisible Groups 
 
// Compute Slope 
Prepare R according to V 
Assign Ox,y as (n/(2*G), n/(2*G)) 

Copy E to device memory 
SLOPE_G_CALC_KERNEL 

i = (blockDim.x * blockIdx.x) + threadIdx.x 
j = (blockDim.y * blockIdx.y) + threadIdx.y 
SGMini,j = (EGMini,j - AO) /  Distancei,j 

SGMaxi,j = (EGMaxi,j - AO) /  Distancei,j 
END SLOPE_G_CALC_KERNEL 
 
// Compute Visibility 
VISIBILITY_G_KERNEL 
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Ti,j = R[(blockIdx.y * gridDim.x * blockDim.x * blockDim.y) + 

(blockIdx.x * blockDim.x * blockDim.y) + (threadIdx.y * blockDim.x) + 
threadIdx.x 

IsTargetInvisible = FALSE 
WHILE IsTargetInvisible is FALSE 
Iterate on Bresenham line points from Ox,y to Ti,j 

IF SGMini,j < SGMaxBresenhamPoint 

FOR <p,r>: <0...G, 0...G> 
Vi*G+p,j*G+r = Invisible 

ENDFOR 
IsTargetInvisible = TRUE 

END IF 
END FOR 

END VISIBILITY_G_KERNEL 
Copy V to host memory 
Prepare R accoring to V 
Copy R to device memory 
 
// Phase 2 Determine visibility of Remaining Points 
 
// Compute Slope 
Assign Ox,y as (n/2, n/2) 
SLOPE_CALC_KERNEL 

i = blockDim.x * blockIdx.x + threadIdx.x 
j = blockDim.y * blockIdx.y + threadIdx.y 
Si,j = (Ei,j - AO) / Distancei,j 

END SLOPE_CALC_KERNEL 
 
// Compute Visibility 
IMPR3_ VISIBILITY _KERNEL 

Ti,j = R[blockIdx.x * blockDim.x * blockDim.y) + (blockDim.x * 
threadIdx.y) + threadIdx.x] 

 
xIt = 1 
yIt = 1 

 
IF(Ox > i) 

  xIt = -1 
END IF 
 
IF(Oy > j) 

  yIt = -1 
END IF 

 
 

IF (Dx - Dy) > Dy AND Si,j < Si-xIt,j  

 Vi,j = Invisible 
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ELSE IF (Dy - Dx) > Dx AND Si,j < Si-xIt,j  

 Vi,j = Invisible  

ELSE IF Dx > Dy AND 
((Vi-xIt,j-yIt is Visible AND Si-xIt,j-yIt ≥ Si,j) OR 

(Vi-xIt,j is Visible AND Si-xIt,j ≥ Si,j)) 

Vi,j = Visible 

ELSE IF Dy > Dx AND 
((Vi-xIt,j-yIt is Visible AND Si-xIt,j-yIt ≥ Si,j) OR 

(Vi,j-yIt is Visible AND Si-xIt,j ≥ Si,j)) 

  Vi,j = Visible 
ELSE 

IsTargetInvisible = FALSE 
WHILE IsTargetInvisible is FALSE  
Iterate on Bresenham line points from Ox,y to Ti,j 

 IF Si,j < SBresenhamPoint 

  Vi,j = Invisible 

IsTargetInvisible = TRUE 
END IF 

END WHILE 
IF IsTargetInvisible is FALSE 
 Vi,j = Visible 

 END IF 
END IF 

END IMPR3_ VISIBILITY _KERNEL 
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APPENDIX B 

 

Experiment Tile Statistics 

 

 512×512 1024×1024 2048×2048 

Tile No Std Dev Mean Std Dev Mean                    Std Dev Mean 

1 41.96 824.93 285.81 1564.45 234.67 338.74 

2 69.79 893.41 242.15 1187.25 290.41 569.89 

3 93.7 853.14 66.87 733.29 274.89 971.56 

4 101.04 965.59 57.86 710.04 252.82 1150.64 

5 112.98 1096.93 54.49 788.86 112.71 1146.36 

6 113.55 1045.2 83.02 823.19 219.12 1189.95 

7 130.51 996.93 249.11 946.62 170.55 987.83 

8 135.15 809.05 419.54 1327.08 132.66 1007.45 

9 140.81 897.45 388.4 1440.12 107.44 1048.94 

10 147.39 801.64 282.47 1702.37 175.95 1067.02 

11 167.35 770.5 328.26 1310.15 124.2 1122.88 

12 169.07 495.57 168.29 985.29 423.26 511.63 

13 178.26 1122.35 173.07 1209.07 288.97 296.58 

14 179.56 486.8 149.06 891.12 406.72 483.39 

15 181.69 721.93 149.03 970.35 222.63 646.1 

16 183.23 372.34 253.39 1243.74 217.05 935.28 

17 183.42 630.06 299.39 1455.55 242.66 1302.41 

18 184.03 940.64 304.54 1006.82 263.52 1207.56 

19 209.6 373.34 397.88 1273.84 216.5 1126.66 

20 215.02 1073.03 408.17 1103.28 81.04 1050.72 

21 217.82 719.3 241.62 1331.93 63.9 991.4 

22 226.67 457.35 194.86 923.9 155.8 1044.38 

23 234.58 414.42 311.51 1432.01 182.15 1247.32 

24 309.56 645.85 226.03 1169.96 223.89 944.14 

25 325.14 670.35 289.64 1208.36 186.32 150.18 
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Experiments with  CPU Implementation 

 

 

 

 

 

A₀ A₁ A₂ A₃ A₄ A₅

DGR3 4.21 3.43 3.03 2.97 3.01 3.22

X2 2.63 2.78 2.59 2.55 2.53 2.61

X4 4.07 3.42 3.03 3 3.09 3.25

X8 3.58 3.06 2.86 2.98 3.17 3.47

X16 2.48 2.31 2.33 2.54 2.78 3.11
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A₀ A₁ A₂ A₃ A₄ A₅

DGR3 5.86 4.58 4.02 3.78 3.59 3.63

X2 3.37 3.38 3.07 2.91 2.71 2.68

X4 5.47 4.47 3.93 3.76 3.56 3.65

X8 5.06 3.84 3.58 3.48 3.42 3.61

X16 3.41 2.82 2.73 2.79 2.9 3.12
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A₀ A₁ A₂ A₃ A₄ A₅

DGR3 5.54 4.31 3.58 3.32 3.14 3.09

X2 3.26 3.48 3.09 2.93 2.78 2.73

X4 5.96 4.93 4.22 3.93 3.77 3.61

X8 5.43 4.09 3.57 3.36 3.25 3.15

X16 3.93 3.37 3.18 3.08 3.04 2.98
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Experiments with  GPU Implementation 

 

 

 

 

 

A₀ A₁ A₂ A₃ A₄ A₅

DGRHYB 0.4 0.58 0.59 0.58 0.57 0.55

DGR3GPU 0.37 0.6 0.65 0.65 0.67 0.64

X2GPU 0.5 0.71 0.72 0.7 0.69 0.67

X4GPU 0.59 0.85 0.85 0.84 0.82 0.82

X8GPU 0.61 0.83 0.84 0.84 0.83 0.83

X16GPU 0.53 0.72 0.75 0.75 0.75 0.76
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A₀ A₁ A₂ A₃ A₄ A₅

DGRHYB 0.51 0.79 0.78 0.75 0.72 0.7

DGR3GPU 0.58 1 1.02 0.99 0.96 0.94

X2GPU 0.69 1.05 1.01 0.96 0.92 0.88

X4GPU 0.88 1.29 1.25 1.17 1.12 1.08

X8GPU 0.86 1.2 1.16 1.12 1.09 1.06

X16GPU 0.76 0.96 0.95 0.92 0.9 0.89
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A₀ A₁ A₂ A₃ A₄ A₅

DGRHYB 0.5 1.02 0.94 0.87 0.82 0.79

DGR3GPU 0.76 1.55 1.44 1.33 1.26 1.21

X2GPU 0.81 1.39 1.25 1.15 1.06 1.02

X4GPU 1.11 1.77 1.6 1.47 1.37 1.32

X8GPU 1.06 1.6 1.46 1.36 1.28 1.23

X16GPU 0.87 1.24 1.14 1.08 1.02 1
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Accuracy Results on 512×512 Tiles 

 

 non-matching point count with respect to R3 

512×512 tile no and 
observer altitude R2  DGR3  X2  X4  X8  X16  R2GPU  

TILE_5_1082.01 135 3 10 3 0 0 127 

TILE_5_1192.99 4283 43 71 43 0 0 4127 

TILE_5_1305.97 5859 12 41 4 0 8 5764 

TILE_5_1418.95 6266 7 68 7 0 0 6178 

TILE_5_1531.93 6732 3 63 3 0 0 6676 

TILE_5_1644.92 6883 8 54 8 0 0 6828 

TILE_5_1720.33 6636 9 48 8 5 0 6592 

TILE_18_1026.45 896 107 1 0 74 40 781 

TILE_18_1208.48 6154 17 83 17 0 0 6005 

TILE_18_1392.51 8575 2 51 2 0 0 8420 

TILE_18_1576.54 8572 5 55 5 0 0 8447 

TILE_18_1760.58 7610 4 32 4 0 0 7560 

TILE_18_1944.61 6822 2 25 2 0 0 6776 

TILE_18_1798.13 7424 5 31 5 0 0 7382 

TILE_3_772.619 860 0 111 0 0 0 852 

TILE_3_864.315 9802 4 112 4 0 0 9682 

TILE_3_958.011 10223 0 101 0 0 0 10093 

TILE_3_1051.71 9428 0 71 0 0 0 9404 

TILE_3_1145.4 8421 2 58 2 0 0 8388 

TILE_3_1239.1 7327 3 64 3 0 0 7312 

TILE_3_1541.09 4708 1 21 1 0 0 4677 

TILE_4_1128.24 474 1 9 1 0 0 412 

TILE_4_1227.28 4363 2 48 1 1 0 4285 

TILE_4_1328.32 6725 11 77 11 0 0 6601 

TILE_4_1429.36 7995 9 89 9 0 0 7926 

TILE_4_1530.4 8660 9 69 9 0 0 8583 

TILE_4_1631.44 8667 2 43 2 0 0 8592 

TILE_4_1597.96 8652 3 43 3 0 0 8595 

TILE_22_255.678 2803 14 168 13 1 0 2709 

TILE_22_480.349 5883 24 88 16 8 0 5791 

TILE_22_707.021 6306 13 46 9 1 3 6269 

TILE_22_933.692 6302 12 52 12 0 0 6289 

TILE_22_1160.36 5990 7 57 7 0 0 5951 
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TILE_22_1387.03 5678 6 43 6 0 0 5649 

TILE_22_1306.86 5811 5 43 5 0 0 5767 

TILE_25_653.042 1900 0 10 0 0 0 1815 

TILE_25_976.186 5651 13 34 13 0 0 5570 

TILE_25_1301.33 6151 4 46 4 0 0 6121 

TILE_25_1626.48 6121 4 27 4 0 0 6126 

TILE_25_1951.62 5840 2 28 2 0 0 5812 

TILE_25_2276.76 5168 2 18 2 0 0 5132 

TILE_25_1657.39 6086 4 34 4 0 0 6088 

TILE_20_1213.58 830 3 9 3 0 0 743 

TILE_20_1426.6 3842 0 38 0 0 0 3719 

TILE_20_1641.62 5865 2 40 2 0 0 5778 

TILE_20_1856.63 6158 1 42 1 0 0 6156 

TILE_20_2071.65 5955 4 41 4 0 0 5964 

TILE_20_2286.67 5626 3 25 3 0 0 5633 

TILE_20_1730.12 6152 1 42 1 0 0 6136 

TILE_6_1218.55 996 26 9 27 1 0 965 

TILE_6_1330.09 5504 17 54 13 4 0 5318 

TILE_6_1443.64 6896 7 59 7 0 0 6739 

TILE_6_1557.19 7338 3 43 3 0 0 7231 

TILE_6_1670.73 7197 2 43 2 0 0 7127 

TILE_6_1784.28 6849 2 48 2 0 0 6828 

TILE_6_1671.32 7188 2 47 2 0 0 7127 

TILE_21_817.056 1003 30 39 18 16 0 924 

TILE_21_1032.87 4886 49 59 17 35 0 4765 

TILE_21_1250.69 6676 5 63 4 1 0 6556 

TILE_21_1468.51 7028 3 57 1 2 0 6965 

TILE_21_1686.33 6546 0 36 0 0 0 6550 

TILE_21_1904.14 5810 1 24 1 0 0 5824 

TILE_21_1541.14 6936 7 49 7 0 0 6869 

TILE_2_846.845 1920 50 94 50 0 0 1815 

TILE_2_914.637 6735 3 79 3 0 0 6555 

TILE_2_984.428 7892 7 91 7 0 0 7763 

TILE_2_1054.22 8283 4 94 4 0 0 8216 

TILE_2_1124.01 8354 5 68 5 0 0 8290 

TILE_2_1193.8 8311 5 69 5 0 0 8295 

TILE_2_1451.31 6137 1 36 1 0 0 6142 

TILE_1_806.641 521 0 11 0 0 0 472 

TILE_1_846.606 8713 4 116 4 0 0 8527 

TILE_1_888.571 10665 7 125 4 3 0 10481 
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TILE_1_930.536 11028 1 100 1 0 0 10924 

TILE_1_972.501 10766 0 106 0 0 0 10661 

TILE_1_1014.47 10069 1 76 1 0 0 10009 

TILE_1_1440.38 3905 0 16 0 0 0 3925 

TILE_15_713.188 469 0 3 0 0 0 377 

TILE_15_892.874 4633 28 37 15 16 0 4482 

TILE_15_1074.56 5249 28 35 4 24 0 5109 

TILE_15_1256.25 5540 8 41 8 0 0 5465 

TILE_15_1437.93 5870 3 31 0 3 0 5784 

TILE_15_1619.62 5811 1 27 1 0 0 5782 

TILE_15_1572.78 5826 3 37 3 0 0 5769 

TILE_23_285.586 1056 0 94 0 0 0 984 

TILE_23_518.168 4536 6 31 6 0 0 4515 

TILE_23_752.749 5734 45 78 32 13 0 5732 

TILE_23_987.331 5875 52 50 7 11 39 5839 

TILE_23_1221.91 5492 3 42 2 0 1 5446 

TILE_23_1456.49 5236 0 38 0 0 0 5185 

TILE_23_1475.98 5217 0 24 0 0 0 5173 

TILE_16_139.641 1506 11 18 10 1 0 1427 

TILE_16_320.876 5090 4 39 3 1 0 4978 

TILE_16_504.111 5742 6 46 5 1 0 5726 

TILE_16_687.345 5498 5 44 5 0 0 5505 

TILE_16_870.58 5168 0 41 0 0 0 5176 

TILE_16_1053.81 5072 5 41 5 0 0 5085 

TILE_16_1115.18 5177 3 34 3 0 0 5181 

TILE_24_653.796 906 6 77 0 6 0 840 

TILE_24_961.357 5296 9 55 9 1 0 5235 

TILE_24_1270.92 7025 9 47 6 3 0 6953 

TILE_24_1580.48 6725 0 29 0 0 0 6673 

TILE_24_1890.04 5699 2 29 0 2 0 5643 

TILE_24_2199.6 4758 1 23 1 0 0 4738 

TILE_24_1558.51 6801 0 39 0 0 0 6739 

TILE_11_673.651 957 1 14 1 0 0 888 

TILE_11_838.996 2806 0 17 0 0 0 2666 

TILE_11_1006.34 3927 7 27 7 1 0 3846 

TILE_11_1173.69 5812 9 37 9 0 0 5780 

TILE_11_1341.03 6959 7 48 7 0 0 6940 

TILE_11_1508.38 6843 4 58 4 0 0 6816 

TILE_11_1460.27 6918 14 50 8 6 0 6907 

TILE_17_766.002 798 0 22 0 0 0 717 
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TILE_17_947.423 2905 225 57 49 0 176 2789 

TILE_17_1130.84 5900 56 65 20 26 10 5792 

TILE_17_1314.26 7517 10 52 9 1 0 7411 

TILE_17_1497.68 7506 7 49 7 0 0 7420 

TILE_17_1681.11 6541 4 43 4 0 0 6495 

TILE_17_1405.77 7556 7 45 6 1 0 7472 

TILE_13_1247.4 792 27 17 2 1 24 684 

TILE_13_1423.66 4627 7 60 7 0 0 4531 

TILE_13_1601.92 6662 4 61 4 0 0 6597 

TILE_13_1780.17 7165 6 53 6 0 0 7165 

TILE_13_1958.43 7520 2 60 2 0 0 7497 

TILE_13_2136.69 7109 0 43 0 0 0 7104 

TILE_13_1817.21 7346 7 55 6 1 0 7336 

TILE_10_951.737 1291 531 141 249 321 0 1249 

TILE_10_1097.13 5232 17 93 16 1 0 5084 

TILE_10_1244.51 7753 7 66 6 1 0 7701 

TILE_10_1391.9 7523 3 64 3 0 0 7492 

TILE_10_1539.29 7018 5 50 5 0 0 6991 

TILE_10_1686.68 6334 1 43 1 0 0 6307 

TILE_10_1583.18 6838 0 39 0 0 0 6821 

TILE_14_540.374 558 6 37 5 1 0 532 

TILE_14_717.938 7545 5 103 4 1 0 7354 

TILE_14_897.502 8257 2 70 2 0 0 8117 

TILE_14_1077.07 7379 7 57 7 0 0 7291 

TILE_14_1256.63 6749 1 38 1 0 0 6703 

TILE_14_1436.19 5971 3 41 3 0 0 5968 

TILE_14_1214.91 6862 6 41 6 1 0 6823 

TILE_12_474.915 1263 9 157 9 0 0 1218 

TILE_12_641.989 4842 14 42 14 0 0 4726 

TILE_12_811.063 6858 14 65 5 9 0 6820 

TILE_12_980.137 7557 5 62 5 0 0 7553 

TILE_12_1149.21 7132 4 44 4 0 0 7097 

TILE_12_1318.29 6127 6 43 6 0 0 6122 

TILE_12_1227.18 6736 8 49 8 0 0 6720 

TILE_7_1196.47 1079 4 154 4 0 0 1040 

TILE_7_1324.98 4256 5 35 5 0 0 4183 

TILE_7_1455.48 5735 0 52 0 0 0 5641 

TILE_7_1585.99 6184 7 34 7 0 0 6074 

TILE_7_1716.5 5965 1 29 1 0 0 5888 

TILE_7_1847.01 5247 8 35 8 0 0 5192 
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TILE_7_1681.34 6088 2 38 2 1 0 5986 

TILE_8_681.975 1240 1 6 1 0 0 1126 

TILE_8_815.124 5208 4 42 4 0 0 5111 

TILE_8_950.273 5934 2 53 2 0 0 5840 

TILE_8_1085.42 6441 3 41 3 0 0 6407 

TILE_8_1220.57 6589 4 50 4 0 0 6591 

TILE_8_1355.72 6071 5 41 5 0 0 6079 

TILE_8_1492.57 5520 4 32 4 0 0 5532 

TILE_19_671.188 645 637 437 156 590 0 628 

TILE_19_878.786 6202 32 97 32 0 0 6106 

TILE_19_1088.39 6877 6 56 6 0 0 6833 

TILE_19_1297.98 6781 17 50 17 0 0 6768 

TILE_19_1507.58 6258 2 29 2 0 0 6200 

TILE_19_1717.18 5392 0 21 0 0 0 5359 

TILE_19_1151.38 6923 3 59 3 0 0 6874 

TILE_9_745.292 851 0 14 0 0 0 717 

TILE_9_884.102 3180 7 17 7 0 0 2968 

TILE_9_1024.91 5586 3 45 3 0 0 5411 

TILE_9_1165.72 6365 8 57 8 0 0 6189 

TILE_9_1306.53 6964 9 59 9 0 0 6858 

TILE_9_1447.34 7271 5 53 5 0 0 7164 

TILE_9_1643.28 6603 6 39 6 0 0 6601 
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Accuracy Results on 1024×1024 Tiles 

 

 non-matching point count with respect to R3 

1024×1024 tile no and 
observer altitude R2  DGR3  X2  X4  X8  X16  R2GPU  

TILE_5_755.081 6735 3 135 3 0 0 6552 

TILE_5_807.567 21642 3 329 3 0 0 20988 

TILE_5_862.052 30587 10 410 6 4 0 29961 

TILE_5_916.538 35201 11 412 11 0 0 34733 

TILE_5_971.024 37372 15 365 14 1 0 36890 

TILE_5_1025.51 38090 14 345 10 4 0 37653 

TILE_5_1297.05 32799 7 239 5 2 0 32767 

TILE_18_869.188 564 0 81 0 0 0 523 

TILE_18_1171.73 35982 20 402 18 2 0 35511 

TILE_18_1476.27 35715 15 307 14 1 0 35456 

TILE_18_1780.81 31049 20 224 20 0 0 30926 

TILE_18_2085.35 26026 18 162 17 1 0 26035 

TILE_18_2389.89 21988 19 99 19 0 0 21996 

TILE_18_2860.57 17167 2 98 2 0 0 17125 

TILE_3_693.999 1405 0 30 0 0 0 1184 

TILE_3_758.865 9486 13 105 13 0 0 8973 

TILE_3_825.731 18076 5 193 5 0 0 17615 

TILE_3_892.597 24454 10 293 10 0 0 24121 

TILE_3_959.464 28990 9 291 9 0 0 28592 

TILE_3_1026.33 32137 21 308 20 1 0 31725 

TILE_3_1540.75 30481 9 149 9 0 0 30435 

TILE_4_667.636 912 1 5 1 0 0 775 

TILE_4_723.497 8492 236 166 236 0 0 8131 

TILE_4_781.359 21125 13 250 13 0 0 20583 

TILE_4_839.22 28008 9 298 8 1 0 27417 

TILE_4_897.081 31962 11 353 11 0 0 31454 

TILE_4_954.943 34151 27 319 26 1 0 33667 

TILE_4_1244.2 34519 10 261 10 0 0 34270 

TILE_22_902.835 867 0 15 0 0 0 808 

TILE_22_1095.69 17212 13 287 10 3 0 16989 

TILE_22_1290.55 30506 27 403 27 0 0 29943 

TILE_22_1485.41 31991 25 325 25 0 0 31602 

TILE_22_1680.27 30828 9 302 9 0 0 30573 
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TILE_22_1875.12 28823 16 267 16 0 0 28635 

TILE_22_1935.44 28229 23 231 23 0 0 28085 

TILE_25_946.191 1029 3 8 3 0 0 867 

TILE_25_1233.83 9586 27 128 21 6 0 9130 

TILE_25_1523.46 14627 41 176 37 6 0 14233 

TILE_25_1813.1 19611 45 248 36 9 0 19332 

TILE_25_2102.74 22993 27 259 25 3 0 22737 

TILE_25_2392.37 23929 26 236 26 0 0 23699 

TILE_25_2215.07 23844 31 224 31 0 0 23567 

TILE_20_1022.51 7668 87 109 83 4 0 7516 

TILE_20_1428.68 24879 39 253 38 1 1 24654 

TILE_20_1836.85 26663 18 180 16 2 0 26420 

TILE_20_2245.02 22594 13 108 9 4 0 22354 

TILE_20_2653.19 19334 15 101 14 1 0 19224 

TILE_20_3061.35 16816 3 89 3 0 0 16678 

TILE_20_2832.31 18149 8 84 8 0 0 17975 

TILE_6_818.615 3476 3 151 3 0 0 3438 

TILE_6_899.639 23137 75 276 73 2 0 22396 

TILE_6_982.662 30132 14 307 14 0 0 29499 

TILE_6_1065.69 32044 15 256 14 1 0 31519 

TILE_6_1148.71 31966 34 235 26 10 0 31587 

TILE_6_1231.73 30611 16 233 16 1 0 30338 

TILE_6_1556.39 23987 11 162 6 5 0 23855 

TILE_21_1647.85 747 2 11 2 0 0 677 

TILE_21_1887.47 19583 25 167 19 6 0 19162 

TILE_21_2129.08 22697 13 173 13 0 0 22211 

TILE_21_2370.7 22912 19 163 15 4 0 22536 

TILE_21_2612.31 23127 13 160 13 0 0 22833 

TILE_21_2853.93 22176 10 164 10 0 0 21995 

TILE_21_2436.32 23033 12 164 11 1 0 22657 

TILE_2_1355.85 68 0 1 0 0 0 64 

TILE_2_1596 19116 65 235 45 21 0 18500 

TILE_2_1838.16 26789 44 294 24 21 0 26266 

TILE_2_2080.31 29203 23 262 22 1 0 28928 

TILE_2_2322.47 30004 20 219 19 1 0 29881 

TILE_2_2564.62 29213 24 210 19 5 0 29090 

TILE_2_2703.94 28446 15 170 14 1 0 28394 

TILE_1_1706.36 3064 23 86 23 0 0 2954 

TILE_1_1990.17 15697 22 155 21 1 0 15240 

TILE_1_2275.98 22130 14 196 13 2 0 21517 
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TILE_1_2561.79 24977 23 217 16 7 1 24457 

TILE_1_2847.6 25736 47 218 45 4 0 25421 

TILE_1_3133.41 25370 33 183 32 3 0 25172 

TILE_1_2777.12 25529 30 258 29 1 1 25193 

TILE_15_785 2120 3 16 3 0 0 1957 

TILE_15_932.031 12129 12 93 9 3 3 11849 

TILE_15_1081.06 16244 37 195 36 4 0 15857 

TILE_15_1230.09 18652 36 197 24 12 0 18332 

TILE_15_1379.13 20614 30 176 18 14 0 20250 

TILE_15_1528.16 23384 31 235 23 8 0 23024 

TILE_15_2083.11 26485 8 198 8 1 0 26355 

TILE_23_1239.48 8268 27 1130 22 5 0 8237 

TILE_23_1548.99 24421 35 245 31 4 0 24082 

TILE_23_1860.5 24397 33 204 27 6 0 24162 

TILE_23_2172.01 23950 33 217 31 2 0 23879 

TILE_23_2483.52 23220 21 192 18 3 0 23169 

TILE_23_2795.04 22055 27 148 27 0 0 22043 

TILE_23_2485.08 23203 22 192 19 3 0 23119 

TILE_16_1395.93 4282 10 21 6 4 0 3963 

TILE_16_1647.32 12300 45 122 39 6 0 11767 

TILE_16_1900.71 19959 47 215 45 4 0 19572 

TILE_16_2154.1 24719 30 271 29 1 0 24308 

TILE_16_2407.5 26546 42 233 32 10 0 26198 

TILE_16_2660.89 26607 31 230 31 0 0 26306 

TILE_16_2391.8 26531 30 252 24 8 0 26153 

TILE_24_830 6231 8 68 6 2 0 5793 

TILE_24_1054.03 12571 14 105 14 0 0 12272 

TILE_24_1280.06 16246 29 159 23 6 0 16072 

TILE_24_1506.09 21367 25 180 25 0 0 21183 

TILE_24_1732.12 24063 37 204 28 9 0 23911 

TILE_24_1958.15 24636 32 222 22 10 0 24436 

TILE_24_2311.12 22960 18 145 18 0 0 22820 

TILE_11_1222.62 2430 4 17 4 0 0 2200 

TILE_11_1548.87 12892 83 215 60 11 12 12632 

TILE_11_1877.13 17204 29 159 14 15 0 16890 

TILE_11_2205.38 19171 18 158 12 7 5 18864 

TILE_11_2533.64 20011 18 119 17 1 0 19728 

TILE_11_2861.89 20006 27 133 26 1 0 19737 

TILE_11_2801.98 20089 28 158 26 2 0 19828 

TILE_17_1917.87 1315 0 4 0 0 0 1201 
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TILE_17_2215.25 7119 101 117 24 91 0 6759 

TILE_17_2514.64 15197 130 172 50 40 42 14840 

TILE_17_2814.02 20483 49 189 39 10 1 20099 

TILE_17_3113.41 22690 13 191 12 1 0 22470 

TILE_17_3412.8 23821 28 155 28 2 0 23693 

TILE_17_2642.31 17450 49 151 34 11 8 17082 

TILE_13_1148.56 2753 3 624 3 0 0 2682 

TILE_13_1319.63 15742 10 110 7 3 0 15021 

TILE_13_1492.7 17813 20 141 20 2 0 17481 

TILE_13_1665.76 19961 17 162 17 0 0 19809 

TILE_13_1838.83 20877 28 175 21 7 0 20766 

TILE_13_2011.9 21173 20 166 19 1 0 21146 

TILE_13_2174.49 21364 24 153 16 8 0 21314 

TILE_10_1586.7 2577 7 13 7 0 0 2272 

TILE_10_1867.16 5236 7 35 7 0 0 4668 

TILE_10_2149.63 7478 13 70 13 2 0 7071 

TILE_10_2432.1 11650 30 88 27 4 0 11315 

TILE_10_2714.56 16432 16 148 15 1 0 16083 

TILE_10_2997.03 19388 33 200 32 2 0 19133 

TILE_10_2864.56 18189 25 187 25 1 0 17871 

TILE_14_812.509 5957 8 62 6 3 0 5750 

TILE_14_959.573 16230 46 180 34 14 0 15930 

TILE_14_1108.64 19815 31 209 30 2 1 19709 

TILE_14_1257.7 23071 42 239 36 6 0 22909 

TILE_14_1406.76 24574 85 226 34 3 48 24380 

TILE_14_1555.83 24176 90 199 21 2 67 24000 

TILE_14_1879.59 21368 19 130 19 0 0 21210 

TILE_12_925.406 3961 4 28 4 0 0 3467 

TILE_12_1091.7 15003 31 181 21 1 9 14651 

TILE_12_1259.99 23913 45 245 22 23 0 23578 

TILE_12_1428.28 24731 36 193 32 4 0 24348 

TILE_12_1596.57 24058 14 189 13 1 0 23834 

TILE_12_1764.86 23172 14 136 13 1 0 22911 

TILE_12_2015.92 21693 4 96 4 0 0 21542 

TILE_7_746.002 4399 1 55 1 0 0 4241 

TILE_7_993.115 12264 64 192 58 6 0 11818 

TILE_7_1242.23 16671 38 165 27 11 0 16388 

TILE_7_1491.34 20908 35 181 28 11 0 20551 

TILE_7_1740.45 22288 34 173 26 7 1 21906 

TILE_7_1989.57 23581 30 193 30 0 0 23343 
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TILE_7_2276.83 23582 26 164 25 1 0 23464 

TILE_8_1911.89 2136 0 7 0 0 0 1942 

TILE_8_2329.43 15726 39 147 38 1 0 15439 

TILE_8_2748.98 25161 35 210 23 13 0 24819 

TILE_8_3168.52 28609 42 203 28 15 0 28253 

TILE_8_3588.06 29824 22 169 16 6 0 29672 

TILE_8_4007.6 29615 17 141 15 2 0 29524 

TILE_8_2680.37 23939 29 208 24 11 0 23663 

TILE_19_1339.41 9040 6 21 6 0 0 8624 

TILE_19_1735.29 16100 18 102 12 3 3 15561 

TILE_19_2133.17 20880 21 129 17 4 0 20425 

TILE_19_2531.05 23389 51 148 22 29 0 23098 

TILE_19_2928.94 24460 20 162 14 6 0 24282 

TILE_19_3326.82 24388 21 135 20 2 0 24318 

TILE_19_2736.71 24004 22 157 21 1 0 23745 

TILE_9_1893.12 4598 329 82 329 6 0 4529 

TILE_9_2279.53 19544 19 153 15 4 0 19080 

TILE_9_2667.93 24545 26 180 26 0 0 24168 

TILE_9_3056.33 27223 21 159 19 4 0 26826 

TILE_9_3444.74 27718 25 175 22 3 0 27495 

TILE_9_3833.14 27470 11 147 11 0 0 27417 

TILE_9_2903.67 26588 21 160 19 2 0 26200 
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Accuracy Results on 2048×2048 Tiles 

 

 non-matching point count with respect to R3 

2048×2048 tile no and 
observer altitude R2  DGR3  X2  X4  X8  X16  R2GPU  

TILE_5_1041.02 12531 23 197 23 0 0 11965 

TILE_5_1151.73 47849 82 595 49 35 49 45489 

TILE_5_1264.44 65824 117 764 114 3 0 63072 

TILE_5_1377.15 79604 302 902 192 132 8 76970 

TILE_5_1489.86 89714 199 1015 142 54 13 87176 

TILE_5_1602.57 98036 101 977 96 6 0 95915 

TILE_5_2021.96 111727 99 1039 83 16 0 110314 

TILE_18_1078.79 16045 12 149 5 7 0 14799 

TILE_18_1340.31 64106 151 698 104 40 12 61590 

TILE_18_1603.83 71263 263 692 138 155 497 69523 

TILE_18_1867.36 76486 216 841 92 115 25 75430 

TILE_18_2130.88 82233 154 881 106 28 73 81563 

TILE_18_2394.41 90375 107 884 95 15 2 89845 

TILE_18_2898.04 97385 112 860 107 6 21 96925 

TILE_3_1629.43 875 588 557 578 351 0 773 

TILE_3_1902.32 71470 134 771 111 22 1 70025 

TILE_3_2177.22 86772 149 783 127 24 0 84608 

TILE_3_2452.11 96922 120 810 99 21 0 94612 

TILE_3_2727 102203 114 843 98 17 0 100022 

TILE_3_3001.89 105885 105 857 97 13 1 103991 

TILE_3_2383.85 94677 132 796 114 18 0 92338 

TILE_4_1293.92 3816 93 174 80 13 0 3693 

TILE_4_1544.74 65681 80 649 70 10 0 63301 

TILE_4_1797.56 76917 83 748 76 7 0 74879 

TILE_4_2050.38 84612 81 844 68 16 0 82927 

TILE_4_2303.2 90586 102 885 83 19 0 88905 

TILE_4_2556.02 94020 95 838 70 26 0 92577 

TILE_4_2601.62 94707 97 822 87 11 0 93339 

TILE_22_903.02 4324 6 312 6 0 2 4185 

TILE_22_1056.82 90585 48 1481 45 3 0 87533 

TILE_22_1212.63 124067 59 1815 55 4 1 121068 

TILE_22_1368.43 142732 55 1931 46 9 0 140088 

TILE_22_1524.24 153312 49 1924 36 13 1 151212 
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TILE_22_1680.04 156665 38 1827 35 4 0 154983 

TILE_22_2437.29 138585 18 1137 17 1 0 138255 

TILE_25_11 3129 43 47 14 4 28 2648 

TILE_25_195.315 14206 306 473 277 33 0 13063 

TILE_25_381.631 25105 205 495 163 55 0 23793 

TILE_25_567.946 39557 383 604 215 185 7 38120 

TILE_25_754.261 55595 296 768 243 55 0 54059 

TILE_25_940.577 71093 225 842 204 24 0 69371 

TILE_25_1423.12 77166 128 771 101 32 10 75610 

TILE_20_998.58 2832 12 185 7 5 0 2779 

TILE_20_1077.63 60305 27 929 27 0 0 57576 

TILE_20_1158.67 96473 29 1424 25 5 5 92882 

TILE_20_1239.71 119535 33 1598 33 0 0 115886 

TILE_20_1320.76 135395 34 1828 29 5 0 132267 

TILE_20_1401.8 146510 43 1925 32 12 2 143479 

TILE_20_1943.44 156895 35 1419 35 1 4 155679 

TILE_6_1359.1 4155 2 117 2 0 0 3953 

TILE_6_1576.23 53746 149 779 113 41 47 51946 

TILE_6_1795.35 78813 123 1010 103 22 0 76836 

TILE_6_2014.48 94775 88 1067 73 16 17 92787 

TILE_6_2233.6 106570 92 1120 87 12 1 104712 

TILE_6_2452.73 115225 125 1156 110 15 0 113481 

TILE_6_2589.82 118821 99 1113 80 20 1 117293 

TILE_21_945.968 6588 4 124 4 0 0 6029 

TILE_21_1007.87 53602 220 1024 220 0 0 51021 

TILE_21_1071.78 87912 14 1493 14 0 0 84830 

TILE_21_1135.68 112625 27 1855 27 0 0 109510 

TILE_21_1199.58 130483 29 1967 29 0 0 127358 

TILE_21_1263.49 144051 30 2113 24 7 0 141152 

TILE_21_1548.13 173843 25 2018 25 0 0 171737 

TILE_2_770.449 2565 4 23 4 0 0 2037 

TILE_2_1058.86 26279 193 372 159 37 0 24912 

TILE_2_1349.26 52772 217 672 198 19 0 51210 

TILE_2_1639.67 74930 251 847 175 92 4 73201 

TILE_2_1930.08 89835 185 879 153 32 12 88160 

TILE_2_2220.48 98115 162 986 142 23 0 96563 

TILE_2_2064.68 94135 159 947 138 22 0 92598 

TILE_1_97.061 17958 494 659 491 3 0 17862 

TILE_1_329.736 48230 173 501 109 87 46 46534 

TILE_1_564.411 54859 144 626 107 37 9 53484 
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TILE_1_799.085 62563 218 656 168 51 3 61179 

TILE_1_1033.76 69239 161 649 115 46 18 67822 

TILE_1_1268.43 76459 168 779 118 54 0 74898 

TILE_1_1610.27 88030 202 833 136 78 3 86284 

TILE_15_707.713 5017 9 78 8 1 6 4504 

TILE_15_928.339 40785 81 415 66 8 13 38297 

TILE_15_1150.96 54737 92 558 63 29 4 52342 

TILE_15_1373.59 68689 109 710 82 27 0 66599 

TILE_15_1596.22 79256 122 855 105 18 0 77338 

TILE_15_1818.84 88645 112 990 99 11 2 87100 

TILE_15_2188.91 97547 122 998 113 10 0 96333 

TILE_23_1256.17 4026 12 88 12 0 0 3747 

TILE_23_1436.32 62601 156 763 106 49 4 59932 

TILE_23_1618.47 92974 334 1116 156 197 32 90555 

TILE_23_1800.62 109102 190 1201 131 61 4 107116 

TILE_23_1982.77 115053 148 1236 114 37 0 113547 

TILE_23_2164.92 116648 139 1173 102 35 4 115484 

TILE_23_2430.68 113424 186 1001 112 55 20 112775 

TILE_16_919.464 1953 7 44 0 7 0 1929 

TILE_16_1134.51 96004 71 1055 67 4 0 93229 

TILE_16_1351.56 113848 82 1069 72 11 0 111536 

TILE_16_1568.61 115981 90 990 81 12 0 114306 

TILE_16_1785.66 112371 116 934 88 29 2 111367 

TILE_16_2002.71 106952 94 834 89 7 4 106242 

TILE_16_2226.52 101142 82 818 71 13 0 100703 

TILE_24_919.464 1933 7 44 0 7 0 1898 

TILE_24_1141.36 96667 72 1048 67 6 1 93876 

TILE_24_1365.25 113589 84 1054 73 12 0 111380 

TILE_24_1589.14 114901 76 999 71 7 0 113326 

TILE_24_1813.03 110581 114 887 95 21 0 109508 

TILE_24_2036.92 104689 84 841 83 3 0 103990 

TILE_24_2226.52 99663 78 804 67 13 0 99214 

TILE_11_1173.48 1468 4 3255 4 0 0 1434 

TILE_11_1295.68 55054 240 794 115 129 16 52491 

TILE_11_1419.87 80413 104 1056 51 50 3 78168 

TILE_11_1544.07 101863 72 1323 52 20 0 100048 

TILE_11_1668.26 120497 88 1390 66 23 0 118534 

TILE_11_1792.46 130667 75 1480 41 34 5 128782 

TILE_11_1974.72 137515 58 1440 55 6 0 135833 

TILE_17_992.225 10681 10 89 10 0 0 10111 
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TILE_17_1232.89 49791 57 496 53 6 0 47412 

TILE_17_1475.55 57700 63 548 57 8 0 55658 

TILE_17_1718.22 61329 114 545 67 15 37 59713 

TILE_17_1960.88 63947 110 602 90 22 0 62688 

TILE_17_2203.55 67506 70 621 62 10 1 66593 

TILE_17_2751.21 72447 92 643 81 12 0 71855 

TILE_13_919.943 18961 62 177 60 6 14 18503 

TILE_13_1206.91 50046 600 676 320 465 2 47833 

TILE_13_1495.89 61207 883 941 509 485 289 59258 

TILE_13_1784.86 74636 667 989 302 258 157 72903 

TILE_13_2073.83 76548 224 627 155 36 38 75257 

TILE_13_2362.8 74428 115 590 91 25 0 73395 

TILE_13_1808.63 75181 627 949 403 175 106 73484 

TILE_10_867 8534 6 277 2 4 0 8099 

TILE_10_1040.95 49080 41 596 30 11 3 46499 

TILE_10_1216.91 64298 66 856 45 22 0 61805 

TILE_10_1392.86 74600 78 880 49 29 0 72534 

TILE_10_1568.82 82332 55 982 53 2 0 80454 

TILE_10_1744.77 95227 133 1147 119 14 0 93736 

TILE_10_2094.32 111508 49 1131 39 11 0 110289 

TILE_14_69.286 1197 0 11 0 0 0 1140 

TILE_14_474.005 77839 62 753 51 11 0 76569 

TILE_14_880.723 75189 82 629 75 9 54 74607 

TILE_14_1287.44 77229 92 692 77 18 3 76856 

TILE_14_1694.16 80682 133 692 120 15 1 80287 

TILE_14_2100.88 82201 98 659 71 27 3 81833 

TILE_14_2436.65 82695 84 611 78 7 0 82325 

TILE_12_69.286 1250 0 11 0 0 0 1193 

TILE_12_490.549 77340 65 692 51 14 0 76078 

TILE_12_913.813 73370 72 610 56 17 0 72929 

TILE_12_1337.08 74679 96 615 70 27 9 74316 

TILE_12_1760.34 77100 79 678 66 15 15 76680 

TILE_12_2183.6 77932 103 631 82 21 1 77547 

TILE_12_2436.65 78652 83 584 77 7 0 78310 

TILE_7_921.229 15993 13 289 12 5 0 15536 

TILE_7_1089.78 100983 76 1176 64 13 0 98190 

TILE_7_1260.33 121405 88 1323 80 10 0 119390 

TILE_7_1430.88 126922 63 1222 52 11 0 125469 

TILE_7_1601.44 126117 76 1176 70 7 3 125353 

TILE_7_1771.99 122539 70 1082 67 3 0 121998 
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TILE_7_2343.16 105119 31 743 25 7 0 104972 

TILE_8_920.73 18866 17 299 14 3 0 18064 

TILE_8_1051.39 40399 37 523 36 3 0 38297 

TILE_8_1184.06 68465 55 884 40 15 0 66205 

TILE_8_1316.72 95422 59 1220 57 2 0 93133 

TILE_8_1449.39 114795 57 1513 57 1 1 112538 

TILE_8_1582.05 127303 49 1623 49 0 0 125412 

TILE_8_1709.08 136895 59 1678 55 5 0 135075 

TILE_19_963 1908 0 6 0 0 0 1853 

TILE_19_1177.5 85021 65 931 45 21 14 82089 

TILE_19_1394 94540 99 899 64 37 15 92318 

TILE_19_1610.5 96085 76 806 59 18 0 94376 

TILE_19_1827 95533 96 780 67 31 2 94158 

TILE_19_2043.5 95498 70 700 49 21 1 94380 

TILE_19_2571.84 92009 73 576 55 19 0 91406 

TILE_9_1042.97 11285 3 113 3 0 0 10394 

TILE_9_1148.41 46395 13 523 13 0 0 44137 

TILE_9_1255.85 84789 30 1008 22 8 0 81965 

TILE_9_1363.29 105244 46 1223 38 10 0 102776 

TILE_9_1470.72 119073 45 1409 45 0 0 116653 

TILE_9_1578.16 130535 69 1504 53 17 0 128256 

TILE_9_2039.94 146026 43 1256 35 7 2 144568 

 


