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ABSTRACT 

 

PERFORMANCE COMPARISON OF FILTERING METHODS ON 

MODELLING AND FORECASTING TOTAL PRECIPITATION AMOUNT 

 

Ünal, Ecem 

Master of Science, Statistics 

Supervisor: Assoc. Prof. Dr. Ceylan Yozgatlıgil 

Co-Supervisor: Assist. Prof. Dr. Serdar Neslihanoğlu 

 

June 2019, 91 pages 

 

The performance of condensed water vapour in the atmosphere observed as 

precipitation on the earth surface with the consequence of gravity. It is hard to observe 

and measure the amount and concentration of total precipitation with its all types 

changing over time. This difficulty can be explained by the association between the 

changing amount of precipitation and the variability in the climate with its both causes 

and consequences. As a result of these factors, modelling and forecasting of monthly 

total precipitation series is a difficult procedure because of being highly parametrized 

and varied nature of data. To predict and forecast total precipitation, filtering methods 

are suggested as an alternative in the literature. Therefore, this study focus on the 

comparison of modelling and forecasting performances of different types of filtering 

methods on monthly total precipitation series. To do this, the Kalman Filter method is 

preferred in order to predict and forecast the naturally uncontrollable outcomes. The 

Kalman Filter is an algorithm for the estimation of the unobservable true state of the 

system, which is conducted by incorporation with the models of the system and noisy 

measurements of parameters. For this purpose, we used the monthly precipitation 

series of Muğla, Konya and Ordu stations from 1950 to 2010. The regions have been 

selected in terms of the amount of precipitation as moderate, scarce and abundant 
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regions. The results of modelling and forecasting performance comparison will be a 

guide for the choice of best performing method for further work related to the 

precipitation. 

 

Keywords: Hybrid Model, Kalman Filter, Precipitation, State Space Model  
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ÖZ 

 

TOPLAM YAĞIŞ MİKTARININ MODELLENMESİ VE ÖNGÖRÜLERİN 

ELDE EDİLMESİNDE FİLTRELEME YÖNTEMLERİNİN BAŞARIM 

KARŞILAŞTIRMASI 

 

Ünal, Ecem 

Yüksek Lisans, İstatistik 

Tez Danışmanı: Doç. Dr. Ceylan Yozgatlıgil 

Ortak Tez Danışmanı: Dr. Öğr. Üyesi Serdar Neslihanoğlu 

 

Haziran 2019, 91 sayfa 

 

Atmosferde yoğunlaşmış halde bulunan su buharı yerçekiminin de etkisiyle 

yeryüzünde yağış olarak gözlemlenir. Bütün yağış türlerini de kapsayarak toplam 

yağış miktarını ve konsantrasyonunu gözlemlemek ve ölçmek oldukça zor bir 

yöntemdir. Elde edilen yağış miktarındaki değişiklik ile neden ve sonuçlarıyla birlikte 

iklim yapısındaki çeşitlilik arasındaki ilişki yağış miktarını ölçmeyi zorlaştıran bir 

etmen olarak gösterilebilir. Zamanla değişen yağış miktarını etkileyen bazı doğal 

faktörler nedeniyle aylık toplam yağış miktarı verisi çok parametreli ve yüksek 

varyanslı bir veri olduğu için doğru ve hassas modellemek zordur. Böyle bir durumda 

iyi öngörüleri sağlayan en iyi modele ulaşmak için bazı filtreleme yöntemlerinin 

kullanılması seçenek bir yol olabilir. Bu amaçla aylık toplam yağış verisinin 

modellenmesi ve öngörülerin elde edilmesinin sonuçlarının farklı filtreleme 

yöntemlerinin başarımları açısından değerlendirilmesi çalışma açısından önemli 

olacaktır. Çalışmanın temel amacı, aylık yağış verisini modellerken tahmin evresinde 

gözlemlenen belirsizliğin en aza indirgenmesidir. Bu amaca ulaşmak için tercih edilen 

filtreleme yöntemi Kalman Filtreleme yöntemi olmuştur. Kalman filtreleme tekniği, 

aylık toplam yağış miktarı verisinin model parametrelerinin çıkarımları ve sistem 

durum değişkenlerinin tahmininin yapılmasında kullanılan bir yöntemdir. Bu 
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noktadan bakıldığında, Kalman filtreleme yönteminin, farklı parametrelere sahip aylık 

yağış verisinin modellenmesine ve tahmin edilmesine farklı bir yön verebileceği 

düşünülmektedir. Bu nedenle, 1950 ve 2010 yılları arasında Muğla, Konya ve Ordu 

istasyonlarında gözlemlenen aylık yağış verilerinin çalışmada kullanılması uygun 

görülmüştür. Seçilen istasyonlar alınan yağış miktarına göre ortalama yağış alan, az 

yağış alan ve çok yağış alan bölgeler olarak sınıflandırılmıştır. Modelleme ve tahmin 

etme başarımları karşılaştırıldığında, elde edilen sonuçlar uygulamada en iyi başarımı 

veren yöntemin seçilebilmesi için ilerideki çalışmalara ışık tutacaktır. 

 

Anahtar Kelimeler: Durum Uzay Modeli, Hibrit Model, Kalman Filtresi, Yağış 
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CHAPTER 1  

 

1. INTRODUCTION 

 

 

One of the most common problems of the world is the remarkable changes observed 

in the climate. The effects of these changes on earth and human-beings cannot be 

ignored in the sense of creating a habitable future. There are lots of parameters listed 

which are changing the usual structure of climate, day by day. One of the most known 

is the global warming which has effect on climate, directly. Especially, instability in 

the elapsed time for the passing period of climate makes the earth out of balance. The 

seasons take shorter or longer times than the previous years, relatively. In this 

circumstances, to expect the usual returns of the seasons lose its meaning at all. At this 

point, some issues come to the scene such as warmer weather conditions than the 

expected in winter months, more arid summers, the amount of precipitation in every 

type less or sometimes more than expected. There may be no solution to make the 

warmer or colder weather as they should be in practice but if the amount of 

precipitation is predicted, it will help making lives easier and the world more livable. 

The plans of these type future events are crucial in the currrent life circle. The 

precipitation mentioned here is not just consisting of rain but also snow, hail, dew, 

rime etc. The prediction of such kind of unseasonable and changeable things in the 

earth with an unstable climate requires some struggle. Especially, when the global 

warming has combined with the variability in the nature itself, predicting the amount 

of precipitation with its all types will be a tough process. However, the best prediction 

has come up with gains for the earth especially for the countries. A good mechanism 

for the prediction of precipitation will be a guide for agricultural actions, give a way 

to the engineering activities, enhance the river basin hydrology and water resources, 

develop even the countries’ economics. To be able to predict the amount of 
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precipitation with all the effective parameters on it is needed to make some 

arrangements or editing on agricultural activities, plan engineering processes or be 

prepared for the conditions caused by the severe amount of precipitation. Having a 

good prediction model of the amount of precipitation for the area of agriculture is very 

important. It provides to make innovations on the existent irrigation systems. How 

these innovations carried out can be exampled as making new methods for the 

application procedures of irrigation systems or changing the design of the systems 

according to the regime of the precipitation in that region. Apart from the assistive 

side of prediction and forecast of the amount of precipitation for the irrigation systems, 

it helps planning the seeding and cropping mechanism according to the updated 

information of precipitation. The regions that are predicted to get much more 

precipitation may be chosen to grow highly precipitation resistant seeds. Likewise, a 

seeding which needs a little water to grow up should be planted in regions that receive 

a little precipitation. These seeding and cropping actions made according to the 

amount of receiving precipitation in that regions profit from the time and man power 

that are wasted by wrong seeding system. Knowledge of the amount of precipitation 

also enables selecting the right agricultural equipment to handle the severe 

precipitation types (Keefer, 2003). Indeed, the importance of predicting and 

forecasting the amount of precipitation for the agricultural activities is related to the 

power of production. Having a perfect prediction means a strong agricultural system 

which improves the countries’ economies from every respects. A country with a strong 

agricultural economy can raise its own products in proper areas which makes the 

country powerful in exportation. This directly saves the country from being dependent 

on importation.  

The significance of predicting the amount of precipitation also shows itself in the area 

of energy. The most popular field of energy associated with the precipitation is 

hydroelectric power which is a source of electricity. The generation for this type of 

electricity is processed in large dams (Harting, 2010). In accordance, the precipitation 

zones are taken into consideration while selecting the right and fertile areas for the 
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construction of plants to produce the energy from the hydroelectrical power. Large 

dams should be constructed in regions being taking precipitation efficiently so that the 

maximum energy is reached. The plants are not constructed only in the precipitation 

zones but also in the drainage basins. There is also a relation between the amount of 

precipitation and the basins in such a way that the river basins are aimed to constitute 

in the regions that are known to receive more precipitation. The reason of construction 

these basins in such regions also prevent the freshet cases which result in due to the 

severe amount of precipitation. As a result, with the prediction of the amount of 

precipitation, proper drainage basins are set up and with the source of water gained 

from the river and by the amount of precipitation naturally, the hydroelectrical energy 

is produced.  

At this point, it should not be ignored that a good prediction of the amount of 

precipitation also prevents the huge natural disasters. People can take precautions with 

the prior knowledge of the extreme amount of precipitation. 

Another contribution of predicting the precipitation can be considered on tourism 

areas. People make their vacation plans in accordance with the meteorological 

estimations. A good prediction of the amount of precipitation is significant as much 

as a good estimation for weather. The good prediction for precipitation beneficial for 

the vacationist which results in an increase in the number plannings of holiday. It will 

have a direct effect on the economy of the country.  

As it was clearly understood, a good prediction mechanism for the precipitation has 

comprehensive effects on daily life and long run plannings for countries with different 

meanings. Hence, this study is commenced in order to give a direction for solving the 

problems of all these areas. Since the precipitation has come up with various 

parameters in it, it will be important to decompose that parameters from the 

precipitation itself. It means that the significance of the predicting the amount of 

precipitation is coming from the idea that all the parameters affecting the observed 

amount of precipitation should be taken into account and the prediction mechanism 
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should solve the problem with all of these parameters. While the useful parts of these 

parameters are processed in the prediction algorithm, the impractical parts are leaved 

out the mechanism by filtering them. In this study, it is tried to find the best prediction 

model for the amount of precipitation with a filtering method. To use the filtering 

method while predicting the amount of precipitation is a rare method used in the 

literature. One of these filtering methods is a Kalman Filter method. It is a well-known 

method especially in predicting the location of devices but as far as our knowledge, it 

is almost an untried method in the area of predicting the amount of precipitation. The 

working mechanism of the Kalman Filter for the prediction starts with the prediction 

and then the filtering step follows the prediction. After that the smoothing part is 

applied as a last step since the Kalman Filter is taught to be given very accurate results 

in the smoothing. In this study, the precipitation which is predicted by the Kalman 

Filter is the monthly total precipitation amount. Three different stations in Turkey are 

preferred for the application of the Kalman Filter method which are chosen in terms 

of getting average, low and high amount of precipitation listed as Muğla, Konya and 

Ordu, respectively. The main purpose of doing these three applications is to observe 

the performance of the Kalman Filter for different situations and whether the accuracy 

of the results of the method will be affected by the amount of precipitation or not. 

After seeing the results of the Kalman Filter method on the training of the precipitation 

model, forecasting is processed for each station to compare the forecast values being 

predicted by the Kalman Filter with the original values of precipitation in the test set. 

This study intends to succeed in prediction of precipitation with Kalman Filter. Our 

motivation by applying Kalman Filter to the precipitation series is to predict the total 

amount of monthly precipitation while it is affected by unobservable variables 

considered as parameters of nature. The aim is to reach the most accurate values of 

total amount of precipitation by filtering the noisy measurements. The modelling of 

the total amount of precipitation has some struggles because of having variety series 

itself. The most common problem encountered in the process of predicting the amount 

of precipitation has been stated as getting high Mean Squared Error (MSE) values. In 

this study, we have suggested a method by implementing the Kalman Filter to 
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overcome the issue of having high MSE values while modelling the precipitation. 

Hence, the novelty tried to be proposed with this study is to gain a new perspective to 

the studies on precipitation modelling by using a filtering method via Kalman Filter. 

This study also shows the performance comparison of the standard OLS, ARIMA and 

the Kalman Filter estimation for the prediction of the precipitation amount. This 

comparison will be a guide for the future works from the aspect of Kalman Filter 

performance.  

Following this chapter, a literature review about the Kalman Filter and the 

precipitation prediction models has been conducted in Chapter 2. After that Chapter 3 

has discussed the methodology which gives information about the models and 

techniques used in this study. In connection with the methodology part, the empirical 

analysis has been applied to the precipitation series and the results have been discussed 

in Chapter 4. As a final, inferences from the analysis of data have been shared and 

some discussions have been made for the future studies in Chapter 5.  
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

 

The history of Kalman Filter applications is not dated back to very time because 

Rudolf Emil Kalman has produced this method in 1960 to solve the navigation 

problem of Apollo project which is a human spaceflight program carried out by 

NASA. After Rudolf Kalman has used the method for the navigation problem, various 

studies have been conducted by the application of Kalman Filter (Hun et al., 2016). 

Therefore, in the literature, the most recent applications of Kalman Filter can be seen 

in various areas.  

Using Kalman Filter in the control of complex dynamic systems may be the leading 

application area. Aircraft, ships, spacecraft and satellites can be given as examples of 

complex dynamic systems. People generally do not have control on such dynamic 

systems, and the Kalman Filter predicts the outcome of these dynamic systems such 

as the flow of rivers during flood conditions, the trajectories of celestial bodies, or the 

prices of traded commodities (Grewal, 2011). Meinhold et al. (1983) used the Kalman 

Filter method for the application of tracking a satellite's orbit around the earth. 

Westmore et al. (1991) has studied for the relative position estimation based on 

locations taken from images obtained from an end-point mounted camera by using 

Kalman Filter. Farrell et al. (2000) implemented Kalman Filter for GPS‐aided SINU 

system by adopting the global positioning system (GPS) as an external source to 

minimize the error of inertial navigation system (INS). 

Nair et al. (2016) used Kalman Filter application in 2-D tracking of airborne vehicles. 

With constant velocity and deceleration, tracking of airborne vehicle is prepared to 

use the Kalman Filter application.  
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Deep et al. (2018) tried to estimate the position of a GPS with the Kalman Filter 

method. With the observed GPS measurements, the Kalman Filter method is applied 

to find better estimates for the position. 

The studies of Kalman Filter application in the area of tracking objects or navigation 

are very common. Another commonly application area of Kalman Filter is the 

economics. Pasricha (2006) mentioned some Kalman Filter applications in economics 

such as a model for the Demand for International Reserves as an example of Modeling 

Regime Changes, Exchange Rate Risk Premia. 

Menke (2012) used Kalman Filter in three different applications in economics. The 

first one was the estimation of the output gap time series of Brazilian economy. The 

second application was creating a model on the Brazilian exchange rate. The final 

application was about the Brazilian financial market. While the model estimations are 

different in the study, the principle of Kalman Filter application was the same in three 

of them. 

Neslihanoglu (2014) used the Kalman Filter algorithm in modelling time-varying 

systematic covariance risk in a Two-Moment capital asset pricing model for financial 

time series of developed and emerging markets in both univariate and multivariate 

contexts. 

Wu et al. (2016) proposed a Kalman Filter based algorithm for solving the economic 

dispatch problem by minimizing the cost. 

Apart from these studies about tracking, navigation or economics, the Kalman Filter 

method was used in a very different area which is traffic management. Antoniou et al. 

(2010) published a study about the Kalman Filter applications for traffic management. 

They are interested in the topic of on-line calibration of traffic simulation models and 

formulate the real-time OD (origin-destination) estimation and prediction problem as 

a state–space model and solve it using a Kalman Filter algorithm. 
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While the applications of Kalman Filter on precipitation amount prediction, there are 

not so many of them exist. The studies about predicting the precipitation by using 

Kalman Filter method are very recent in the literature.  

Asemota et al. (2016) conducted a study on modelling seasonal behavior of rainfall in 

North Nigeria. They used monthly rainfall data collected from 1981 to 2013 in order 

to pave the way for new agricultural plannings in North Nigeria with the state space 

models via the Kalman Filter. The state space models in their study are constructed as 

local level model with stochastic seasonal modelling and the local level model with 

deterministic seasonal modelling. In order to get more accurate results, they also used 

the Kalman Smoothing as we did in our study. 

Zulfi et al. (2018) published a study about the development rainfall forecasting by 

using Kalman Filter. ARIMA and Kalman Filter methods were compared for the 

performance in forecasting of rainfall in their study. The in-sample data collected from 

2005 to 2015 was divided into clusters using a k-means algorithm, and Kalman Filter 

method was applied for modelling and forecasting in each cluster. At the end, the study 

concluded that performance of the Kalman Filter was better than the ARIMA model 

for forecasting of rainfall. 

Maşazade et al. (2019) focused on the amount of rainfall is estimated by the Kalman 

Filter with radar reflectivity measurements. The amount of rainfall obtained from the 

automatic weather observation stations was assumed to be the unknown state vector, 

and the radar reflectivity values were used in the measurement model. The aim for 

applying the Kalman Filter was to model the true rainfall amounts. 

In literature, some techniques rather than Kalman Filter have been used for the 

prediction precipitation models.  

Sigrist et al. (2011) proposed a study to predict the short term rainfall by using a 

hierarchical Bayesian model for spatio-temporal data. They used a model combining 

3 different forecasts observed from past precipitation observations. 
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Kotowski and Kazmierczak (2013) conducted a study based on probabilistic models 

of maximum precipitation. They assumed the interval precipitation amounts criterion 

to isolate the intensive rainfalls and found maximum precipitation models for 

Wroclaw for the time period from 1960 to 2009.  

Gaikwad et al. (2013) conducted a study for the prediction of precipitation models 

with two approaches empirical method and dynamic method, respectively. 

Abdul-Aziz et al. (2013) published a study for observing the pattern of rainfall in 

Ghana with its both low and extreme variabilities by using seasonal ARIMA.  

In another study, to predict the amount of rainfall in Sylhet, Bari et al. (2015) used 

seasonal ARIMA model based on Box and Jenkins method which directed them to the 

most effective model giving the best predictions.  

Yozgatlıgil and Turkes (2018) modelled monthly maximum precipitation amounts by 

using a distributional and time series analysis approach in their study. They have found 

that the performance of time series model is better than the probabilistic approach 

which uses the extreme value theory. 

Recently, lots of methods have been proposed to model the precipitation (Du et al., 

2017, Aagesen et al., 2018). 

Liu et al (2019) created a Markov chain model by using the data collected from Beijing 

from 1951 to 2013 to predict the amount of precipitation in 2014 and 2015.  

The idea behind this study is conducting the precipitation prediction models with a 

different filtering technique. The main motivation of this study is the non-existence of 

the high performance precipitation prediction models for Turkey as far as our research. 

Although the number of studies are very limited in the literature until time being, with 

the accurate results of the Kalman Filter, it is taught to be one of the most preferred 

method for predicting the amount of precipitation. 
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CHAPTER 3  

 

3. METHODOLOGY 

 

 

In this chapter, some background information about the statistical methodology used 

in the study have been stated. Firstly, the models that are included in the study have 

been summarized and some specifications of state space models have been examined. 

After that, the working principle of Kalman Filter and smoother has been clarified 

with the estimation methods. Finally, a brief information has been placed about 

logistic regression at the end of the methodology part. 

 

3.1. Models 

 

The mentioned models in this part is consisting of precipitation models, state space 

models, logistic regression and ARIMA models, respectively. 

 

3.1.1. Precipitation Models 

 

The performance of condensed water vapor in the atmosphere is observed as 

precipitation on the earth surface with the consequence of gravity. It will be hard to 

observe and measure the amount and concentration of total precipitation with its all 

types over time. This difficulty can be explained by the association between the 

changing amount of precipitation and the variability in the climate with its both causes 

and consequences (EE et al., 2017). In addition to the effects of consequences of 
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variability in the climate on the total precipitation amount, some natural causes can be 

listed as factors which have effects on total precipitation. Those factors can be 

considered as different parameters of nature that can be both results of climate change 

and effects on total precipitation for a different length of time. According to these 

different parameters of nature the observed amount of precipitation changes. 

Furthermore, some different mechanisms such as the rate of humidity observed 

temperature or cloudiness may affect the time, duration or intensity of the 

precipitation. 

As a result of these factors, an accurate and precise modelling of total precipitation 

series is a difficult procedure to achieve because of being highly parametrized and 

highly varied nature of data. While modelling total precipitation, it is important to take 

the maximum and minimum values of those parameters into account in order to get 

the most efficient structure of the model. To exert dominance on the different factors 

effective on total precipitation making easy to understand the structure of the data is 

important to reach the best model with good forecasts. 

To model, the monthly collected precipitation data is taught to shed a light on the 

agricultural and engineering applications (Keefer, 2003). The variety in precipitation 

and its natural parameters accords with the issue of applying the right agricultural 

policies, making the possible energy production units and determining the settlement 

of dams in a specific region. Hence, being able to understand the structure and nature 

of precipitation with its all parameters is vital in order to establish a model and enhance 

it (Trenberth et al., 2003). 

 

3.1.2. State Space Models 

 

A state space representation includes all of the cases of the interest known as a 

dynamic linear model (Shumway et al., 2016). The non-stationary and time-varying 
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systems are described very well by the state space model consisting of state or 

transition and measurement or observation equations, respectively. This part of 

methodology section is primarily taken from (Neslihanoglu, 2014). The state space 

can be considered as a tool that mixes the observed and unobserved variables. The 

state or transition equation includes the unobserved state variable αt while the 

observation or measurement equation involves both observed variables known as 

measurements yt and unobserved state variable αt. The evolution in the unobserved 

state variable over time is described in the state equation. The relation between the 

observed variables yt and unobserved state variable αt is defined in the measurement 

equation.  In general the observed variables yt come up with an error. 

The state space model with both state and measurement equations is shown in the form 

of equations (3.1) and (3.2) for 𝑡 =  1, … , 𝑛; 

𝑌𝑡 = 𝐴𝑡𝛼𝑡 + 𝜀𝑡, (3.1)  

𝛼𝑡 = 𝛷𝑡𝛼𝑡−1 +  𝑤𝑡. (3.2) 

 

The equation 3.1 is the measurement equation showing the dependence of observed 

variable yt to the unobserved state variable αt. The term At, a (q x p) vector, is describing 

how the unobserved state variable αt, a (p x1) vector, is turning to the measurements 

yt, a (qx1) vector, for each time t.  Here, the observed variables yt come up with an error 

term Ɛt followed in equation (3.3).  

𝜀𝑡 ~ 𝑁(0, 𝐻), (3.3) 

  

In the definition (3.3), the error term a (q x 1) vector is independent and identically 

normally distributed from t = 1,..., n where the variance matrix of it is a (q x q) matrix 

called as H. 

The equation (3.2) is the state equation reflecting the relation between the unobserved 

state variable α at time t and at time t-1. The ɸt, a (p x p) vector is the speed or transition 
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parameter explains the relation between the unobserved state variable at different 

times. The wt, a (p x 1) vector, is independent and identically distributed error term 

with a normal distribution shown in equation (3.4). 

𝑤𝑡 ~ 𝑁(0, 𝑄). (3.4) 

 

In the definition (3.4), the error term wt is distributed normally with a zero mean and 

(pxp) vector of matrix Qt. The aforementioned matrices A , ɸ, H and Q are called as 

system matrices. It is assumed that the A matrix is known and ɸ, H and Q matrices 

estimated from the given data are constant over time.  

The first assumption should be satisfied in the linear Gaussian state space models is 

that the initial state vector α0 which is usually a random variable distributed as 

Gaussian with mean µ0 and variance Ʃ0 shown in equations (3.5), (3.6) and (3.7). 

𝐸(𝛼0)  =  𝜇0, (3.5) 

𝐶𝑜𝑣(𝛼0)  = 𝐸[((𝛼0 − 𝜇0)(𝛼0 − 𝜇0)𝑇)]  =  Ʃ0, (3.6) 

𝛼0 ~ 𝑁(𝜇0, Ʃ0). (3.7) 

 

The second assumption should be satisfied for linear Gaussian state space models is 

that there is zero correlation between the error terms of measurement and state 

equations 𝜀t and wt . To put it differently, 𝜀t and wt are independent of each other 

(Neslihanoglu, 2014). 

 

3.1.2.1. State Space Model Specifications 

 

As it is mentioned before, the state space models is consisting of two equations which 

are measurement and transition equations. In the measurement equation, it can be seen 
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that how the measurements are changing according to the unobserved vector of αt over 

time. This measurement equation can be taught as a time-varying coefficient 

regression model. The time-varying parameter here is αt. In the transition equation, 

the change in the unobserved vector αt over time is shown. Different models based on 

the Kalman Filter idea appear to define the evolution of αt in the state equation 

(Neslihanoglu, 2014). 

 

3.1.2.1.1. Random Coefficient 

 

In random coefficient models, the state equation contains a term �̂� which is the mean 

value of α0, α1, … , αn  shown as follows in equation (3.8). 

α𝑡 =  α ̂ + 𝑤𝑡. (3.8) 

 

Here, there is no correlation between the stationary sequences of α0, α1, … , αn which 

is formed with constant mean and variance. 

 

3.1.2.1.2. Random Walk 

 

The state equation is written by assuming a first order random walk model as in 

equation (3.9). 

α𝑡 =  α𝑡−1 + 𝑤𝑡. (3.9) 

 

Here, there is autocorrelation between the nonstationary sequence of α0, α1, … , αn 

where the variance of αt is increasing by time t. 
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3.1.2.1.3. Mean Reverting 

 

The state equation is represented by the following model to make the sequence 

stationary. 

α𝑡 −  �̂�  =  𝛷(α𝑡−1 − �̂�) +  𝑤𝑡. (3.10) 

 

The coefficients of the diagonal elements of the speed or transition matrix ɸ should 

be less than 1 in order to have a stationary sequence of α0, α1, … , αn. 

These three specifications will be used with the names of Kalman Filter Random 

Coefficient (KFRC), Kalman Filter Random Walk (KFRW) and Kalman Filter Mean 

Reverting (KFMR) in this study. 

 

3.1.2.2. Estimation of State Space Model Parameter via Kalman Filter Algorithm 

 

Kalman Filter is a recursive process that works by updating an estimate of the 

unobserved state variable with the consecution function of observed variables.  The 

name of the filter is arising from a study of Rudolph E. Kalman about finding a 

recursive solution for the linear filtering problem of discrete data (Welch et al., 1995). 

The algorithm behind the Kalman Filter is to process the data with the optimal 

recursive (Ribeiro, 2000). The word “optimal” represents the best estimate based on 

the idea of minimizing the state error while estimating it (Ribeiro, 2004). The word 

“recursive” means that the past data has not to be stored by the Kalman Filter and by 

taking a new measurement it is reevaluated every time by the filter. In short, Kalman 

Filter uses the state vector α at time t and measurements at time t+1 to evaluate the 

state vector α at time t+1 (Gasana, 2012). 
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It is stated as the best filter since Kalman Filter minimizes the mean square error of 

the estimated parameters (Gasana, 2012). Therefore, the Kalman Filter is the optimal 

MMSE state estimator (Shimkin, 2016). The estimation process of a state of the 

system is performed by a filter according to the available measurements in the system 

(Ribeiro, 2004). It is actually a state estimation process.  

In a very simple way, the working principle of the filter starts with solving the 

imperfect information has an error, noisy and uncertainty is consisting of initial 

assumptions. While taking the useful parts of information, the desired states are 

reached by filtering the noise and uncertainty (Rudy et al., 2011). That is to say, the 

observed data is used in a Kalman Filter to get the optimal estimate of the system state 

(Susmel, 2013). 

The basic idea behind the Kalman Filter is stated as follows in equations (3.11) and 

(3.12) 

𝑌𝑡 = 𝐴𝑡𝛼𝑡 +  𝜀𝑡            𝜀𝑡 ~ 𝑁(0, 𝐻), (3.11) 

𝛼𝑡 = 𝛷𝑡𝛼𝑡−1 + 𝑤𝑡       𝑤𝑡 ~ 𝑁(0, 𝑄). (3.12) 

 

At is the observation matrix. Yt’s are the observed measurements. αt is the unobserved 

state vector and ɸ is the transition or speed parameter. The measurement and transition 

equations have come up with error terms 𝜀𝑡 and 𝑤𝑡 which are normally distributed 

with 0 mean and variances H and Q, respectively. 

The formulations above are in the structure of the state space model because the linear 

state space systems are operable for the mechanism of Kalman Filter.    
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3.1.2.2.1. Kalman Filter Algorithm 

 

When the filter comes to the process, the mechanism changes. If it is scheduled as a 

structure of steps, it will be followed as; 

Step 1: The current estimate of state vector αt and the initial values of ɸ together with 

the error terms Ɛt and wt in measurement and state equations start the process. After 

this, the predicted estimate of α is calculated by the filter for the next time t+1. 

Step 2: The predicted measurement value y is estimated for the next time as yt+1 by 

the filter putting the calculated αt+1 in the measurement equation and using the 

observed value yt+1 which is already known. 

Step 3: With the observed value yt+1 at time t+1, the predicted error which is the 

difference between observed and predicted measurements is calculated. 

Step 4: The adjustment of the αt prediction is done by the model by allowing part of 

the prediction to feed through in the adjusted αt. Then, the process is starting again 

from Step 1 by using the adjusted αt as αt+1. 

Identification of the unknown parameters’ values which minimizes the prediction 

error is done by solving MLE (Maximum Likelihood Estimation) recursively (Renzi-

Ricci, 2016). 

The algorithm is actually carried out in 3 steps stated as prediction, filtering and 

smoothing, respectively.  

The prediction part includes the calculations of the estimate of the state vector at time 

t and the error covariance vector as follows in equations (3.13) and (3.14). 
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�̂�𝑡+1|𝑡  =  �̂�𝑡|𝑡−1 𝛼𝑡|𝑡−1. (3.13) 

Ʃ𝑡+1|𝑡 =  𝛷𝑡Ʃ𝑡|𝑡−1𝛷𝑡
𝑇 + 𝑄𝑡. (3.14) 

 

In the update part, innovation and innovation covariance, Kalman gain, updated state 

estimate and updated error covariance are calculated. 

Innovation: 

𝐼𝑡 =  𝑌𝑡  −  𝐴𝑡�̂�𝑡+1|𝑡 . (3.15) 

Innovation covariance: 

𝑆𝑡 =  𝐴𝑡Ʃ𝑡+1|𝑡𝐴𝑡
𝑇𝐻𝑡. (3.16) 

Kalman Gain: 

𝐾𝑡 =  Ʃ𝑡+1|𝑡𝐴𝑡
𝑇𝑆𝑡

−1. (3.17) 

Updated state estimate: 

�̂�𝑡+1|𝑡+1 =  �̂�𝑡+1|𝑡  +  𝐾𝑡𝐼𝑡. (3.18) 

Updated error covariance: 

Ʃ𝑡+1|𝑡+1 =  (𝐼𝑑 −  𝐾𝑡𝐴𝑡)Ʃ𝑡+1|𝑡. (3.19) 

  

Kalman Filter is a one-sided filter that predicts state vector α with using past and 

current values of a variable of interest y.  

Kalman Smoother is a two-sided filter estimates the state vector α by using all 

observed values of the variable of interest y (Mikusheva, 2007). 
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3.1.2.2.2. Kalman Filter and Smoother Algorithm 

 

Since the problem that Kalman Filter tries to solve is estimating the state of a process 

controlled by the linear stochastic difference equation, the very simple algorithm of 

Kalman Filter is based on the following state space model which has already stated 

before in section 3.1.2.2 equations (3.11) and (3.12) (Welch et al., 1995); 

𝑌𝑡 = 𝐴𝑡𝛼𝑡 +  𝜀𝑡            𝜀𝑡 ~ 𝑁(0, 𝐻), (3.20) 
 

𝛼𝑡 = 𝛷𝑡𝛼𝑡−1 + 𝑤𝑡       𝑤𝑡 ~ 𝑁(0, 𝑄). (3.21) 

 

The process and measurement noises are represented by the random variables Ɛt and 

wt which are assumed to be independent of each other, white, and normally distributed 

as stated in equations (3.3) and (3.4). The process noise covariance matrix H and 

measurement noise covariance matrix Q in Kalman Filter equations are assumed to be 

constant over time (Welch et al., 1995). Same as with the covariance matrices of the 

system, the A and ɸ matrices are also constant over time. 

The main purpose of this analysis is stated as estimating the unobserved state variable 

αt at time t with the given information of 𝑌𝑛 = {𝑌1;  𝑌2; … ; 𝑌𝑛} at time n. Having two 

different time points as t and n arises 3 different situations according to these time 

points. The first situation occurs when (𝑡 > 𝑛) called as “prediction”. This 

“prediction” issue which is an apriori type of estimation tries to provide information 

about the quantity of interest at some time (𝑡 + 𝑛) by using data available up to and 

including time t-1. The second situation is observed when (𝑡 = 𝑛) called as “filtering”. 

Filtering issue compromises the excluding of information about a quantity of interest 

at time t, by using data available up to and including time t. The final situation shows 

up when (𝑡 < 𝑛)  called as “smoothing”. Smoothing part is an a posteriori type of 

estimation in which data available after the time of interest are used for the estimation 

(Neslihanoglu, 2014). 
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As a result, the algorithm of the Kalman Filter in our study is actually consisting of 3 

steps which are prediction, filtering and smoothing, respectively.  

To start the process, the conditional mean and variance of the state vector αt up to time 

n are defined as following equations. 

𝛼𝑡
𝑛 =   𝐸(𝛼𝑡|𝑌𝑛), (3.22) 

𝑃𝑡
𝑛 =   𝑉𝑎𝑟(𝛼𝑡|𝑌𝑛). (3.23) 

 

The forward recursion steps of the Kalman Filter and Smoother algorithm with the 

initial conditions of these conditional mean and variance represented by 𝛼0
0 and 

𝑃0
0 used in the prediction and filtering processes characterized as follows 

(Neslihanoglu, 2014). 

𝛼0
0 =  𝜇0, (3.24) 

 

𝑃0
0 =  Ʃ0. (3.25) 

 

The process begins with the prediction of the state αt as in equation (3.26). 

𝛼𝑡|𝑡−1 =  𝛷 𝛼𝑡−1|𝑡−1, (3.26) 

 

Then, the state covariance matrix represented by P is updated according to the formula 

in equation (3.27). 

𝑃𝑡|𝑡−1 =  𝛷 𝑃𝑡−1|𝑡−1𝛷𝑇 + 𝑄. (3.27) 

 

These two statements are set in the prediction process. The term “innovation” or 

called as the residual which is reflecting the discrepancy between the predicted 
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measurement 𝐴𝑡α𝑡|𝑡−1and the actual measurement Yt  and the covariance of it are set 

in the filtering part stated in the following equations. 

Innovation: 

𝐼𝑡 = 𝑌𝑡 −  𝐴𝑡α𝑡|𝑡−1, (3.28) 

Innovation covariance: 

𝑆𝑡 =  𝐴𝑡Ʃ𝑡|𝑡−1𝐴𝑡
𝑇 + 𝐻. (3.29) 

 

Then, Kalman gain equation is stated by using the innovations created in the previous 

step. 

Kalman Gain: 

𝐾𝑡 =  𝑃𝑡|𝑡−1𝐴𝑡
𝑇𝑆𝑡

−1. (3.30) 

 

The Kalman gain term represented by Kt minimizes the a posteriori error covariance 

is calculated by substituting the updated state estimate shown as equation (3.31) below 

into the a posteriori estimate error equation and then substituting that into the updated 

error covariance represented by equation (3.32) (Welch et al., 1995). 

Updated or a posteriori state estimate: 

𝛼𝑡|𝑡 =  𝛼𝑡|𝑡−1 +  𝐾𝑡𝐼𝑡 . (3.31) 

Updated error covariance:  

𝑃𝑡|𝑡 =  𝑃𝑡|𝑡−1 −  𝐾𝑡𝐴𝑡𝑃𝑡|𝑡−1. (3.32) 

 

The equations from (3.24) to (3.32) are cycled for each time t. Here, the process that 

includes equations (3.26) and (3.27) is the prediction part of the system. The forward 
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recursion in equations (3.28) through (3.32) is called the Kalman Filter. Hereby, the 

prediction and filtering steps of the process is done.  

Until this time, the past and current observations Yt are used to predict the αt by 

Kalman Filter. It is actually needed for the computation of likelihood. However, when 

the issue is to estimate the αt, the whole data should be used to predict αt. This situation 

is occurred when (𝑡 < 𝑛) and the application of backward recursion here called as 

Kalman Smoother (Mikusheva, 2007). 

Since the previous part ends with the updated state estimate 𝛼𝑛|𝑛 and updated error 

covariance 𝑃𝑛|𝑛, the initials of the current step will be those values calculated from the 

Kalman Filter at time (𝑡 = 𝑛). The working principle of the Kalman Smoother starts 

by setting the smoothed state and smoothed error variance shown in equations (3.33) 

and (3.34) respectively at time t equal to n and continues until t is equal to 1.  

𝛼𝑡−1
𝑛 =  𝛼𝑡−1

𝑡−1 +  𝐽𝑡−1(𝛼𝑡
𝑛 −  𝛼𝑡

𝑡−1), (3.33) 

 

𝑃𝑡−1
𝑛 =  𝑃𝑡−1

𝑡−1 +  𝐽𝑡−1(𝑃𝑡
𝑛 −  𝑃𝑡

𝑡−1)𝐽𝑡−1
𝑇 , (3.34) 

 
𝐽𝑡−1 =  𝑃𝑡−1

𝑡−1𝛷𝑇[𝑃𝑡
𝑡−1]−1. (3.35) 

 

As a summary, the Kalman Filter is a recursive process which is running forward. On 

the other hand, the Kalman smoother is a process running backward (Mikusheva, 

2007). In filtering step, the state αt is reached recursively moving forward by keeping 

the values 𝛼𝑡|𝑡−1, 𝛼𝑡|𝑡, 𝑃𝑡|𝑡−1, 𝑃𝑡|𝑡 from the time t is equal to 1 until n. After that, 

Kalman Smoother is applied with the backwards movement until the state at time t 

which is the desired value of estimate (Neslihanoglu, 2014). Starting from (𝑡 = 𝑛) 

and repeating the smoothing equations, 𝛼𝑛|𝑛, 𝛼𝑛−1|𝑛, … , 𝛼1|𝑛 are estimated 

(Mikusheva, 2007). 
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3.1.2.2.3. Estimation of Parameters Process via Kalman Filter 

 

In the beginning of the calculations, the system matrices H, ɸ and Q and the initial 

values which are the mean of the state vector µ0 and variance of the state vector Ʃ0 are 

assumed to be known. However; the system matrices H, ɸ and Q may depend on a 

vector of unknown hyper parameters stated as Ɵ. In such cases, the main idea is 

estimating those unknown parameters by maximum likelihood estimation method.  

The derivation of the Maximum Likelihood function is based on the assumptions that 

are previously mentioned as; 

- The initial value of unknown state vector α0 is normally distributed with 

known mean µ0 and variance Ʃ0. 

- The measurement error term represented by Ɛ has a Normal distribution with 

0 mean and variance matrix H. 

- The transition error term represented by w has a Normal distribution with 0 

mean and variance matrix Q. 

- There is no correlation between the error terms {𝜀𝑡} and{𝑤𝑡}. 

Under the satisfied assumptions, the likelihood function represented by L is generated 

in equation (3.36). 

𝐿𝑌(Ɵ) = 𝑃(𝑌1, 𝑌2, … , 𝑌𝑛; Ɵ)  =  𝑃(𝑌1; Ɵ) ∏ 𝑃(𝑌𝑡|𝑌𝑡−1;  Ɵ)

𝑛

𝑡=2

. (3.36) 

 

According to the normal procedure of Log likelihood function, the next step is taking 

the natural logarithm of the L function. The multiplication turns into summation when 

we take its logarithm and it is stated in equation (3.37). 

𝑙𝑜𝑔(𝐿𝑌(Ɵ)) =  ∑ 𝑙𝑜𝑔(𝑃(𝑌𝑡|𝑌𝑡−1;  Ɵ)).

𝑛

𝑡=1

(3.37) 
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According to the state space models in equations (3.1) and (3.2), the conditional mean 

and the conditional variance of the Gaussian Yt are calculated in equations (3.38) and 

(3.39). 

𝐸(𝑌𝑡|𝑌𝑡−1;  Ɵ)  =  𝐴𝑡α𝑡|𝑡−1, (3.38) 

𝑉𝑎𝑟(𝑌𝑡|𝑌𝑡−1;  Ɵ)  =  Ʃ𝑡. (3.39) 

 

When these expectation and variance values are substituted in the conditional density 

of Yt, it has the form like in equation (3.40).  

𝑃(𝑌𝑡|𝑌𝑡−1;  Ɵ) =  
1

2𝛱
𝑞

2⁄
 |Ʃ𝑡(Ɵ)|

−1
2⁄  𝑒𝑥𝑝 (

−1

2
𝐼𝑡(Ɵ)𝑇Ʃ𝑡(Ɵ)−1𝐼𝑡(Ɵ)) , (3.40) 

 

where it is the innovation term. When we substitute the above equation into the 

equation (3.37) which is the logged equation, the final presentation of the equation 

will be like as follows in equation (3.41). 

𝑙𝑜𝑔 (𝐿𝑦(Ɵ)) =  −
𝑛𝑞

2
 𝑙𝑜𝑔(2𝛱) −

1

2
 ∑ 𝑙𝑜𝑔|Ʃ𝑡(Ɵ)|

𝑛

𝑡=1

−
1

2
 ∑ 𝐼𝑡(Ɵ)𝑇Ʃ𝑡(Ɵ)−1𝐼𝑡(Ɵ)

𝑛

𝑡=1

. (3.41) 

 

The update of the unknown parameter vector Ɵ by maximizing the log likelihood 

function is mostly done with Newton-Raphson method. The algorithm of the update 

is stated in the study of Shumway et al. (2006) by steps; 

1) The initial values are selected for the unknown parameters vector Ɵ(0). 

2) The Kalman Filter is run by using these initial values Ɵ(0). As like in the first 

step of Kalman Filter, the innovations It and the variance of innovations St are 

set and used to calculate the log likelihood function 𝑙𝑜𝑔 (𝐿𝑦(Ɵ)). 
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3) The Newton- Raphson algorithm is processed to observe the updated estimates 

of Ɵ to obtain the new estimates stated as Ɵ(1). 

4) Ɵ(𝑗+1), Ɵ(𝑗) and innovations, variance of innovations are obtained by repeating 

the steps 2 and 3.  

5) The algorithm ends when the values of Ɵ(𝑗+1)and  Ɵ(𝑗)  are different from each 

other, or the values of 𝐿𝑌(Ɵ(𝑗+1)) and  𝐿𝑌(Ɵ(𝑗)) are different from each other, 

by less than a predetermined small amount (Neslihanoglu, 2014). 

 

3.1.3. Logistic Regression 

 

In some linear regression models, the dependent variable can be classified as successes 

or failures. In other words, the values may come from binomial distribution. This kind 

of regression models are called Generalized Linear Models. The logistic regression is 

one type of it (Rundel, 2013). A Generalized Linear Model is constructed in equation 

(3.42). 

Ƞ𝑖 =  𝛽0 + 𝛽1𝑋1 + ⋯ +  𝛽𝑝𝑋𝑝 + 𝜀. (3.42) 

 

It is made up with two functions which are a link function that shows the relation 

between the mean of dependent variable and the linear predictor and a variance 

function that shows the relation between the variance of dependent variable and the 

mean (Turner, 2008). 

Link function: 

𝑔(𝜇𝑖) =  ƞ𝑖. (3.43) 
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Variance Function: 

𝑉𝑎𝑟(𝑌𝑖) = 𝛷𝑉𝑎𝑟(𝜇). (3.44) 

 

The logistic regression is used to build models for binary categorical variables as a 

dependent variable. The independent variables can be numerical or categorical as well. 

Since the dependent variable is coming from binomial distribution, the probability of 

success represented by p is modeled in logistic regression (Rundel, 2013). In other 

words, the success probability of Y given X is modeled as (Tibshirani, 2014); 

𝑃(𝑌 = 1|𝑋) =  
𝑒𝑥𝑝(𝛽𝑥)

1 + 𝑒𝑥𝑝(𝛽𝑥)
. (3.45) 

 

Rearrange the equation (3.46); 

𝑙𝑜𝑔 (
𝑃(𝑥)

1 − 𝑃(𝑥)
) =  𝛽𝑖𝑋. (3.46) 

 

The left-hand side of the equation (3.46) is called as log odds or logit of 𝑃(𝑥). In this 

structure, it can be said that one unit increase in the independent variable 𝑥𝑖will cause 

a 𝛽𝑖change in the log odds while keeping other predictors fixed (Tibshirani, 2014). 

If we make the equation (3.47) like; 

(
𝑃(𝑥)

1 − 𝑃(𝑥)
) =  𝑒𝛽𝑖𝑋 . (3.47) 

 

The interpretation of the coefficients will be made as one unit increase in the 

independent variable 𝑥𝑖  changes the odds by 𝑒𝛽𝑖 while keeping other predictors fixed 

(Tibshirani, 2014). 



 

 

 

28 

 

To put it simply, there is a binary response variable Y which will be modeled based on 

the conditional probability 𝑃(𝑌 = 1|𝑋 = 𝑥) as a function of x and the parameters are 

estimated by maximum likelihood estimation (Shalizi, 2019). 

 

3.1.4. ARIMA Models 

 

The stochastic process developing in time  𝑡 = 1, … 𝑛 create time series shown as 

{𝑦𝑡}−∞
+∞. Since they are observed sequentially in time, the observations are dependent 

to each other. The aim of time series analysis is to see the structure of time-dependent 

variables while making a forecast for the future observations (Yozgatlıgil, METU 

OpenCourseWare, 2011).  

The first assumption satisfied in time series analysis called as stationarity means that 

the variability in the behavior of the values is constant over time. The auto covariance 

and auto correlation function (ACF) between 𝑦𝑡 and 𝑦𝑡−𝑘 for a stationary series shown 

in equations (3.48) and (3.49). 

𝛾𝑘 =  𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡−𝑘) = 𝐸[(𝑦𝑡 − 𝜇)(𝑦𝑡−𝑘 − 𝜇)], (3.48) 

𝜌𝑘 =  𝐶𝑜𝑟𝑟(𝑦𝑡, 𝑦𝑡−𝑘) =
𝛾𝑘

𝛾0
. (3.49) 

 

The stationary process {𝑦𝑡} which can be written in the form of linear combination of 

the sequence of uncorrelated white noise called as Moving Average time series shown 

in equation (3.50).  

𝑌𝑡 =  𝜑1𝑌𝑡−1 + ⋯ +  𝜑𝑝𝑌𝑝−1 + 𝜀𝑡. (3.50) 
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The different time series models which are invertible can be re-expresses by each 

other, then it creates Autoregressive representation of time series shown in equation 

(3.51). 

𝑌𝑡 =  𝜀𝑡 +  𝜃1𝜀𝑡−1 + ⋯ +  𝜃𝑞𝜀𝑞−1. (3.51) 

 

In equation (3.50), it is called moving average process with order q denoted by MA(q) 

and in equation (3.51), Yt is called as autoregressive series with order p denoted by 

AR(p). In both equations, 𝜀𝑡 is white noise.  

The series Yt which is observed as a combination of both autoregressive and moving 

average processes called as Autoregressive Moving Average series denoted by ARMA 

(p, q) in equation (3.52). 

𝑌𝑡 =  𝜑1𝑌𝑡−1 + ⋯ +  𝜑𝑝𝑌𝑝−1 +  𝜀𝑡 +  𝜃1𝜀𝑡−1 + ⋯ +  𝜃𝑞𝜀𝑞−1. (3.52) 

 

The differencing is a very important term used while dealing with the non-stationary 

time series to make them stationary. At this point, an autoregressive moving average 

series which needs to be differenced to be made stationary is called as Integrated 

Autoregressive Moving Average series denoted by ARIMA (p, d, q) in which the 

difference is shown by d. The cases in which the integrated autoregressive moving-

average series have had strong seasonal characteristics as showing same structure after 

a regular time interval called Seasonal ARIMA shown in equation (3.53). 

𝛷(𝐿𝑠)𝜑(𝐿)(1 − 𝐿)𝑑(1 − 𝐿𝑠)𝐷𝑌𝑡 =  𝛩(𝐿𝑠)𝜃(𝐿)𝜀𝑡. (3.53) 

 

It is denoted by ARIMA (p, d, q) x (P, D, Q)s where the seasonality is represented by s 

(Ihaka, 2005).  
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An ARIMA model is constructed by either applying regular time series analysis or 

using an automated algorithm. For the regular time series analysis, decisions of being 

stationary, having trend or seasonality should be made and best model should be 

selected according to the smallest information criterion. In the automated algorithm, 

auto.arima() function in RStudio suggests the best ARIMA model with the smallest 

information criterion (Hyndman & Athanasopoulos, 2018). 

 

3.2. Model Evaluation Criteria 

 

The accuracy for the out-of-sample forecasts have been measured by looking the MAE 

and MSE values. The MAE measures the absolute value of the differences between 

the forecasted and original values. The MSE operates as taking the squared root of the 

mean value of squared errors which treats these errors like they are large but 

infrequent. When the difference between MAE and MSE increases this means that the 

error size is more consistent. The small values of forecast evaluation criteria means 

that the out of sample forecasts are estimated properly and the model constructed at 

the end is a significant model (Neslihanoglu, 2014). The equations for the MAE and 

MSE criteria shown in equations (3.54) and (3.55). 

𝑀𝐴𝐸 =  
1

𝑛
 ∑|𝑦𝑖− 𝑦𝑖 ̂|

𝑛

𝑖=1

, (3.54) 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑦𝑖 −  𝑦�̂�)

2

𝑛

𝑖=1

. (3.55) 
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CHAPTER 4  

 

4. DATA ANALYSIS 

 

 

In this chapter, the empirical part of study has been conducted. After giving a brief 

information, the data description and application sections for each station have been 

mentioned, respectively.  

 

4.1. Introduction 

 

In this part, the monthly total precipitation amount, monthly average temperature, 

relative humidity, and cloudiness series from three different regions are obtained from 

the Turkish Meteorology Services between 1950 and 2010 to predict and forecast 

precipitation amount applying the Kalman Filter by using RStudio. These regions are 

abundant, moderate and scarce in terms of getting the precipitation. This selection 

provided us to see the performance of our applications for different cases. The models 

conducted are actually based on the idea of linear regression. The observed 

precipitation amount is the response variable in the regression model where monthly 

average temperature, relative humidity, and cloudiness series are chosen as predictors. 

Since these three independent variables may be considered as being in a close relation, 

there may be a doubt of multicollinearity. However, according to the results of VIF 

(Variance Inflation Vector) found as 2.1810, 1.3206, 2.1751 for each predictor, there 

is no evidence for multicollinearity. As it is mentioned in the methodology part, the 

regression covers prediction, filtering and smoothing, respectively. The predicted, 

filtered and smoothed results found for precipitation at the end are obtained by 
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applying Kalman Filter. The aim by using Kalman Filter is to see how close the 

smoothed variables of precipitation observed at the end to the actual precipitation 

values used at the beginning while it is affected by the other independent variables. 

The most simple regression model is constructed in equation (4.1). 

𝑌𝑡 =  𝛼 +  𝛽𝑖𝑡𝑋𝑖𝑡 + 𝜀𝑡,         𝑖 = 1,2,3. (4.1) 

  

However, the above model is needed to be in the form of a state space model shown 

in equations (3.1) and (3.2) in order to apply Kalman Filter. As it is stated before there 

are different state space model specifications in section 3.1.2. One of which can be 

associated with our model is the mean reverting specification of state space model 

which is called a Kalman Filter Mean Reverting (KFMR) here. The mean reversion 

idea here can be taught as returning to the average value at the end. The idea for the 

measurement equation will be the same but the transition equation will converted into 

the form of Kalman Filter Mean Reverting followed by equations (4.2) and (4.3). 

𝑌𝑡 =  𝛼 + 𝛽𝑖𝑡𝑋𝑖𝑡 + 𝜀𝑖𝑡                      𝜀𝑖𝑡 ~ 𝑁(0, 𝐻), (4.2) 

Measurement model 

𝛽𝑖𝑡 =  �̅�𝑖 +  𝛷𝑖(𝛽𝑖𝑡 −  �̅�𝑖) + 𝑤𝑖𝑡       𝑤𝑖𝑡 ~ 𝑁(0, 𝑄). (4.3) 

Transition model 

 

Yt  is the observed values which is related with the unobserved state variables βt. These 

βt’s are the independent variables in our first linear regression model. The effect of 

these variables on the amount of precipitation is modelled in the equation (4.2). In the 

transition model, which is designed in terms of the Kalman Filter Mean Reverting, 

how the unobserved state variables changes over time by depending on its mean value 

is examined. The error terms for measurement and transition equations should be 

normally distributed with 0 mean and variances H and Q, respectively. 
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Note that the whole mechanism for the application of Kalman Filter will be based on 

these models in this study. However, the application part is done with two different 

approaches.  

The first series itself is used for the application to obtain the predicted, filtered and 

smoothed values for precipitation. Some negative values are observed for the total 

amount of precipitation, which is impossible, at the end of those calculations 

especially for smoothed values. To overcome this, it is tried to make some 

transformation on the series. However, the transformation did not solve the problem. 

Those negative values again observed. At that point, it is decided to count those 

negative values as zero because they were already very close to the zero. In other 

words, for the first application part with the actual data, the negative values obtained 

for the predicted, filtered and smoothed values are representing the zero values for 

precipitation. This means that there is no expectation for precipitation on that day.  

The second data being hybrid data is created from the actual data to handle negative 

values observed in the smoothing part by using the logistic regression method. The 

below steps are followed for generating the hybrid model; 

- The precipitation amount series are arranged as 0 if amount is 0, otherwise 1.  

- A logistic regression model is fitted by using explanatory variables.  

- The estimated 0's fixed as 0 and the estimated 1's are put in Kalman Filter 

procedure as precipitation amount.  

- The accuracy measures and forecasts for future observations are obtained. 

The algorithm of Kalman Filter is implemented for the series obtained these two 

approaches and final results are observed. After that, a forecast technique is carried 

out to see the performance of the Kalman Filter for both datasets as Rolling Window 

Forecast technique. The main goal is to make this forecasting method is comparing 

the performances of Kalman Filter estimates and Ordinary Least Square estimates and 

seeing which one gives better about predictions for precipitation. 
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4.2. Analysis for Muğla 

 

In this part, a brief information about the structure of Muğla station data and results 

of application will be given. 

 

4.2.1. Data Description for Muğla Station 

 

The series is composed of monthly total precipitation amount of Muğla from 1950 to 

2010 including three independent variables, namely average temperature, relative 

humidity, and cloudiness series. Because Muğla is receiving precipitation on average 

whole year compared to the rest of the regions in Turkey, it is also chosen as a 

representative of a moderate region in terms of precipitation intake. The data is 

provided by the Turkish Meteorological Service.  

The descriptive statistics of the Muğla station data are shown in the following table; 

Table 4.1. Descriptive Statistics for Muğla Station 

 Precipitation Temperature Relative Humidity         Cloudiness 

Minimum 0.00 2.50 29.10 0.10 

1st Quartile 11.10 7.90 51.38 1.50 

Median 55.85 14.10 64.80 3.50 

Mean 96.72 14.97 62.47 3.39 

3rd Quartile 143.40 22.20 73.83 5.00 

Maximum 645.30 29.00 89.40 7.90 

 

As figured in the Table 4.1, the minimum observation for the precipitation is 0 mm. 

because the days without any precipitation is represented with 0 mm. The mean value 

of the precipitation is 96.72 mm, which is a moderate value when the whole data is 

taken into consideration with its minimums and maximums. If the observations for 
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temperature value are considered, the temperature never lies under zero and never 

exceeds 29 0C. The average temperature for the whole data collected from 1950 to 

2012 is obtained as 14.97 0C which is an indicator of a moderate zone in terms of 

weather conditions. Because of the location of Muğla which is a city by sea, humidity 

is observed as a result of maritime climate. The observed minimum relative humidity 

value of 29.10 is the evidence of this seaside effect. Even the average value of relative 

humidity is around 65. The cloudiness in the Muğla city is mostly at low levels.  

If the time series plot of Muğla station is examined, firstly, it should be checked 

whether there is a trend pattern or not. Trend can be observed in two ways. If the graph 

is going up (down) by time, it is called as positive (negative) secular trend. It is needed 

to have enough data to detect the pattern of trend. Since our series is consisting of 732 

observation, it can be easily understood from the time series plot of precipitation 

values.  

 

Figure 4.1. Time Series Plot of the Total Precipitation Amount of Muğla Station 

from 1950 to 2010 
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According to the Figure 4.1, there is no clue for the pattern of trend, hence stationarity 

test was applied and it is need that the series is stationary. After deciding about trend, 

the variation is taken into consideration. The variation is actually coming from its first 

basic idea which shows the peaks and troughs. Those are the high and low points in 

the data. Figure 4.1 helps us to see where the times series precipitation data goes up 

and goes down along the 62 years. Seasonality means regular peaks and troughs which 

happen at the same time each year. There are regular ups and downs in specific periods 

of each year which is seen in Figure 4.1. Therefore, it can be said that the precipitation 

data is a seasonal time series.  

 

4.2.2. Application for Muğla Station 

 

The applications of the actual model and hybrid model have been examined 

respectively in this section. 

 

4.2.2.1. Actual Model 

 

Since our series has “0”s for the precipitation values, some negative values in both 

prediction, filtering and smoothing processes are obtained. Those negative values are 

counted as zero as it is stated before in this application procedure for the data itself. 

We define our linear regression model in a very simple way in equation (4.4).  

𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡 =  𝛼 + 𝛽1(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)𝑡 +  𝛽2(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦)𝑡        (4.4)

                          + 𝛽3(𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠)𝑡 + 𝜀𝑡,    𝜀𝑡 ~ 𝑁(0, 𝐻).                                             
 

 

The time varying version of regression model (equation 4.4) into the state space form 

as in equation (4.5). 
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𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑡 =  𝛼 +  𝛽1𝑡(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)𝑡 +  𝛽2𝑡(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦)𝑡      (4.5)

                             + 𝛽3𝑡(𝐶𝑙𝑜𝑢𝑑𝑖𝑛𝑒𝑠𝑠)𝑡 + 𝜀𝑡,      𝜀𝑡~ 𝑁(0, 𝐻)                                                 
 

 

In accordance with equation (3.10), the state equations can be written as; 

𝛽1𝑡 =  �̅�1 +  𝛷1(𝛽1𝑡 −  �̅�1) + 𝑤1𝑡       𝑤1𝑡 ~ 𝑁(0, 𝑄1), (4.6) 

              𝛽2𝑡 =  �̅�2 +  𝛷2(𝛽2𝑡 −  �̅�2) + 𝑤2𝑡       𝑤2𝑡 ~ 𝑁(0, 𝑄2),   

              𝛽3𝑡 =  �̅�3 +  𝛷3(𝛽3𝑡 −  �̅�3) + 𝑤3𝑡       𝑤3𝑡 ~ 𝑁(0, 𝑄3).  

with priors 

β10 ~ 𝑁(𝜇β1
, Ʃβ1

),    β20 ~ 𝑁(𝜇β2
, Ʃβ2

),    β30 ~ 𝑁(𝜇β3
, Ʃβ3

). (4.7) 

 

The estimation of the parameters of the distributions has been made from the data in 

the estimation part. Here, the intercept of the regression is represented by α and the 

slopes of the regression are defined as 𝛽1𝑡, 𝛽2𝑡 and 𝛽3𝑡 estimated by MLE as 

�̂�, 𝛽1�̂�, 𝛽2�̂� and 𝛽3�̂�, respectively. Note that, these parameters estimation process is 

discussed in section 3.1.2.2.1. 

For the model selection, the MAE and the MSE values are obtained for each step 

prediction, filtering and smoothing respectively. Inside each algorithm, R2 and 

adjusted R2 values are generated.  At the end, 𝑌�̅� values for prediction, filtering and 

smoothing parts calculated and compared with the original precipitation values. 

The smoothed precipitation values achieved at the end are compared with the original 

precipitation values in order to see how we close to the actual observations by applying 

the KFMR to predict the monthly precipitation data. The plots below are carried out 

by dividing the data into 4 sequential groups in order to see the two lines smoothed 

and original precipitation values clearly. The relation is shown in Figures 4.2., 4.3, 4.4 

and 4.5. 
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Figure 4.2. Smoothed vs Original Precipitation Values Muğla I 

 

 

Figure 4.3. Smoothed vs Original Precipitation Values Muğla II 
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Figure 4.4. Smoothed vs Original Precipitation Values Muğla III 

 

 

Figure 4.5. Smoothed vs Original Precipitation Values Muğla IV 
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The red line represents the original values of precipitation and the blue line represents 

the smoothed values of precipitation. It can be clearly seen that there is a perfect match 

between the original variables and smoothed variables. As it is seen that the smoothed 

values for precipitation is acting almost same as the original precipitation values. 

When focusing on a specific time period in order to see the relation up too close, 

Figure 4.6 is generated based on the smoothed and original observations of 

precipitation between 1970 and 1971. 

 

Figure 4.6. Smoothed vs Original Precipitation Values of Muğla for 1-Year Time 

Period  

 

Even if the discrimination of red line and blue line is hard in the Figures 4.2, 4.3, 4.4 

and 4.5 for smoothed and original values comparison, the intervals or points can easily 

detected from the Figure 4.6 that the red line is differentiating from the blue line. 

According to the Figure 4.6, the smoothed values of precipitation in each month of 

year again matched with the original ones although some insignificant differences 
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observed especially around mid of the year and around September. On that period, the 

smoothed values can be seen as moving with little deviations than the original values. 

However, the significance of catching this perfect integration is valid in every period 

of the mentioned year. 

The meaning of this perfect match between smoothed predictions of precipitation 

values and original precipitation values is that to use the KFMR for predicting the 

monthly precipitation which is affected by some unobserved variables or noises gives 

very accurate results. Since the data is a seasonal time series data, it might be taught 

that prediction of precipitation at the specific periods of year according to the region 

is a simple procedure. However, Kalman Filter is not just good at predicting the values 

of precipitation in that specific time periods. It also very well worked for whole time 

periods among the years. This strong closeness between the smoothed values by 

Kalman Filter and original values are shown briefly in Table 4.2. 

Table 4.2. Smoothed vs Original Precipitation Values for Muğla  

Smoothed 

precipitation values 

Original 

precipitation values 

224.3998 224.7000 

67.2703 67.2000 

77.7153 77.7000 

55.0009 54.9000 

255.5676 255.7000 

40.1895 40.1000 

-0.3102 0.0000 

-0.2966 0.0000 

31.2793 31.4000 

44.9046 44.8000 

 

Very small differences are just observed for the decimal points of two precipitation 

values.  
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The difference between the original precipitation values and the smoothed 

precipitation values has construct the residual term and the standardized residual term. 

The first 10 residual and standardized residual values are listed in Table 4.3 and all 

the residuals are plotted in Figure 4.7. 

Table 4.3. Residuals and Standardized Residuals for Muğla  

Residuals 
Standardized 

Residuals 

0.3002 0.0031 

-0.0703 -0.0009 

-0.0153 -0.0001 

-0.1009 -0.0010 

0.1323 0.0014 

-0.0895 -0.0030 

0.3102 0.0533 

0.2966 0.0506 

0.1206 0.0053 

-0.1046 -0.0019 

 

 

Figure 4.7. Residuals for Muğla   
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In the most ideal scenario, residuals should be small and unstructured. What the 

meaning of small and unstructured residual is that the variation of the dependent 

variable has been explained successfully in the model. In this study, the residuals and 

standardized residuals for the smoothed precipitation values are very small which 

makes our model significant. 

These very accurate results direct us to see the MAE and MSE values for the model 

constructed with the smoothed precipitation values. The MAE and MSE values are 

figured out in Table 4.4. 

Table 4.4. MAE and MSE Values for Smoothed Precipitation Values of Muğla  

SMAE SMSE 

0.1871 0.1743 

SMAE: Smoothing MAE 

SMSE: Smoothing MSE 

 

The models with small MSE and MAE values are the proper models to use (Hyndman 

& Athanasopoulos, 2018). For model selection, MSE and MAE values are compared 

between the models and the model with small MAE and MSE is chosen at the end. 

According to the Table 4.4, MAE result for the model with smoothed precipitation 

values is 0.187144 and MSE result for same model is 0.174367. Both MSE and MAE 

values for the model created by smoothed variables are very small which support the 

idea that the model constructed with smoothed precipitation values and β values is a 

meaningful model and the existent perfect match between the smoothed and original 

precipitation variables is significant.  

The significance of the model constructed by smoothed variables in terms of the 

relations between the precipitation and independent variables temperature, relative 

humidity and cloudiness is controlled by looking into R2 and adjusted R2 values. These 

values describes how much of the change in dependent variable can be explained by 

the change in independent variables. In other words, it defines the accuracy of the 

model shown in Table 4.5. 
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Table 4.5. R2 and Adjusted R2 Values for Muğla  

SadjR2 SR2 

0.9999 0.9999 

 

The smoothed adjusted R2 and R2 are very close to the 1. This means that 99% of the 

change in the amount of smoothed precipitation can be explained by the explanatory 

variables. The model consisting of smoothed variables is a very reasonable model in 

terms of the relationship between the dependent and independent variables. Kalman 

Filter again proves its strength in predicting the amount of precipitation for the 

regression model.  

These perfect results give a way to the study as making a forecast on precipitation. 

Rolling window forecast technique is used for forecasting the precipitation values. 

The procedure followed in rolling window forecasting technique is given in the 

following algorithm.  

Step 1. A starting value is taken as 500. In other words, the model is estimated with 

the first 500 observations to forecast the observation 501.  

Step 2. The observation 501 is included in the estimation sample and the model is 

estimated again with 501 observations to forecast the observation 502.  

Step 3. The process is repeated until a forecast for all 32 out of sample observations is 

reached. The first 10 forecast values and the original values are stated in the Table 4.6. 
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Table 4.6. Forecast and Original Precipitation Values of Muğla  

Forecast 

values 

Original 

values 
Difference 

7.2127 7.2000 0.01270 

0.0832 0.1000 -0.0167 

-0.0321 0.0000 -0.0321 

2.5870 2.6000 -0.0129 

26.7200 26.7000 0.0200 

34.8128 34.8000 0.0128 

145.1987 145.2000 -0.0012 

57.6206 57.6000 0.0206 

304.9838 305.000 -0.0161 

312.1912 312.2000 -0.0087 

 

It can be seen from the Table 4.6, the forecast algorithm is worked very well because 

the differences shown in the third column of Table 4.6 are very small. The plot of the 

forecast and original values of precipitation. 

 

Figure 4.8. Forecasting Precipitation Values of Muğla  
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The red line is for the 32 forecast values and the blue line is for the 32 original values. 

Our forecasting mechanism is good at forecasting the precipitation values.  

To prove the performance of applied forecast algorithm, the MSE and MAE values 

are also calculated and found as in Table 4.7. 

Table 4.7. MAE and MSE Results for Forecast Values of Muğla  

MAE MSE 

0.0132 0.0001 

 

The MAE and MSE values for the forecast application are very small which are 

reasonable. 

After concluding the forecast calculations and interpreting the visuals, the 

performance of the Kalman Filter (KFMR) estimation is needed to compare with the 

performance of OLS estimation and Seasonal ARIMA model for predicting the 

precipitation. The Seasonal ARIMA model fitted by using the auto.arima( ) function 

in RStudio. The logic behind the auto arima algorithm is to have a combination of the 

unit root tests and minimum information criteria values of AIC and BIC (Hyndman & 

Athanasopoulos, 2018). In other words, auto arima suggests a model with the smallest 

information criterion. After using auto.arima( ), the Seasonal ARIMA model observed 

as SARIMA (1, 0, 0) x (1, 1, 0) by checking the residual diagnostics.  

The forecast results have been added to the comparison in order to see the 

performances of all techniques on prediction. The comparison is shown in the Figure 

4.9. 
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Figure 4.9. Prediction Comparison for Muğla   

 

Since the Kalman Filter predictions for precipitation have perfect match with the 

original values of precipitation as same as with the forecast values, they are put in the 

same line in Figure 4.9. Original precipitation values, Kalman Filter predictions and 

forecast values are represented by the blue line all together. The green line is for the 

OLS predictions of precipitation and the purple line represents the predicted 

precipitation values by ARIMA. When OLS estimation technique is implemented to 

the data, it has not worked as well as Kalman Filter which can be seen obviously from 

the Figure 4.9. The peaks and troughs have been predicted in the right direction with 

pattern of the original precipitation values by the OLS. However, especially the points 

that precipitation have get its maximum and minimum values in some specified 

periods, the OLS predictions have-not caught that points. The ups and downs in those 

points have not been clarified with the OLS estimation technique. Although there is 

similarity on the dispersion pattern of predictions for the OLS and ARIMA, even the 
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OLS has been working better than the ARIMA. The predictions of precipitation values 

have not caught the original values in the maximum and minimum points in ARIMA 

as well. Therefore, Kalman Filter has outperformed the OLS and ARIMA for 

predicting the amount of monthly total precipitation. 

 

4.2.2.2. Hybrid Model 

 

Since the previous analysis to actual data has given some negative values for the 

predicted, filtered and smoothed precipitation, those values have been counted as zero. 

However, in this part of analysis, it has been tried to make some transformation on 

precipitation observations. The whole process has been repeated but the results again 

contained the negative values in prediction, filtering and smoothing steps. At this 

point, making a transformation to handle the negative values was meaningless because 

the small values creates big differences in the models and the error terms are expected 

to increase. Hence, a hybrid model was considered to apply. As it is mentioned in 

Section 4.1, the procedure followed to create a hybrid model is starting with the 

arrangement of precipitation amount series as 0 if the amount is 0, otherwise 1. With 

this obtained binary independent variables, a logistic regression is fitted with the same 

predictors; temperature, relative humidity and cloudiness. Those estimated 0 values 

are fixed as 0, and that estimated 1 values are used in the KFMR using the original 

precipitation amount series. The whole KFMR application is applied with the new 

data to obtain the accuracy measures and forecasts. The new hybrid model is again 

structured as a state space model form. The only difference here that the binary 

response variable consisting just 1’s. The accuracy results which has been obtained 

from the logistic regression is as follows in Table 4.8. 
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Table 4.8. Logistic Regression Confusion Matrix for Muğla Hybrid Model 

               Accuracy   0.9235  

                 95% CI   (0.8913, 0.9486) 

    No Information Rate   0.8934   

    P-Value [Acc > NIR]   0.0332        

                  Kappa   0.4810            

 Mcnemar's Test P-Value   0.0003     

            Sensitivity   0.3846         

            Specificity   0.9877         

         Pos Pred Value   0.7894          

         Neg Pred Value   0.9308          

             Prevalence   0.1065          

         Detection Rate   0.0409         

   Detection Prevalence   0.0519          

      Balanced Accuracy   0.6861         

 

The accuracy which is a measurement showing that the classification is true is 92% in 

the Table 4.8. This is enough to say that our classification by arranging 0’s as itself 

and the other precipitation amounts as 1 is an accurate technique. Sensitivity means to 

predict the true values as true. It is 38% a little bit small but the specificity which 

means identifying the negatives correctly is very high as 98%.  

After checking the logistic regression accuracy measurements, the hybrid model has 

been prepared for the Kalman Filter algorithm. The transition model has been again 

turned into the Kalman Filter Mean Reverting (KFMR) as in equations (4.4), (4.5) and 

(4.6). 

The smoothed values of precipitation in the model have been compared visually with 

the original precipitation values in Figures 4.10, 4.11, 4.12 and 4.13. Since having a 

large sample size decreases the significance of the pattern in visual, the whole data 

have not been directly used as it is in the plot. The plots are showing the pattern of 

these two vector of values monthly.  
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Figure 4.10. Smoothed vs Original Precipitation Values Muğla Hybrid Model I 

 

 

Figure 4.11. Smoothed vs Original Precipitation Values Muğla Hybrid Model II 
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Figure 4.12. Smoothed vs Original Precipitation Values Muğla Hybrid Model III 

 

 

Figure 4.13. Smoothed vs Original Precipitation Values Muğla Hybrid Model IV 
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The perfect accord between the smoothed variables of precipitation represented by 

blue line and the original precipitation variables represented by red line has been 

proved again for the hybrid model. Although our data have been turned into a hybrid 

model, Kalman Filter has shown its performance as well as in the hybrid model. This 

performance is shown in Figure 4.14 by focusing a specific time period in details. 

 

Figure 4.14. Smoothed vs Original Precipitation Values of Muğla Hybrid Model for 

1-Year Time Period 

 

Figure 4.14 is constructed with the observations from 1970 to 1971 in order to see the 

differences for 12 month period. Again, the lines representing the original and 

smoothed values are perfectly matched but the insignificant small differences can be 

seen in the smoothed variables around August. 

By estimating the state vector in KFMR, amount of monthly precipitation is 

successfully smoothed. To handle the noises in the data has been achieved by Kalman 

Filter. As a result, these smoothed values of precipitation have been detected as so 
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close to the originals in every period of data. A small part of these values shown in the 

figures above has been placed in Table 4.9. 

Table 4.9. Smoothed vs Original Precipitation Values for Muğla Hybrid Model 

Smoothed 

precipitation values 

Original 

precipitation values 

224.4326 224.7000 

67.2860 67.2000 

77.7255 77.7000 

55.0213 54.9000 

255.5615 255.7000 

40.1579 40.1000 

31.2142 31.4000 

44.9252 44.8000 

120.1770 120.2000 

153.2621 153.2000 

 

The reason why the red and blue lines represents the original and smoothed values of 

precipitation overlap directly inferred from the insignificant differences in Table 4.9. 

The residuals defined as the difference between original and smoothed values of 

precipitation have briefly shown in Table 4.10 and Figure 4.15. 

Table 4.10. Residuals and Standardized Residuals for Muğla Hybrid Model 

Residuals 
Standardized 

Residuals 

0.2673 0.0028 

-0.0860 -0.0011 

-0.0255 -0.0002 

-0.1213 -0.0012 

0.1384 0.0014 

-0.0579 -0.0019 

0.1857 0.0082 

-0.1252 -0.0022 

0.0229 0.0002 

-0.0621 -0.0004 
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Figure 4.15. Residuals for Muğla Hybrid Model  

 

According to the Figure 4.15, the residuals around 0 have not shown a structure. 

Having these small numbers for the residuals and standardized residuals means that 

Kalman Filter has been operated properly for the prediction of monthly amount of 

precipitation for the hybrid model. 

The remarkable performance of Kalman Filter in the hybrid model have need to be 

supported by the significant model evaluation criteria values which are MAE and 

MSE. Even though MAE and MSE values have been obtained for prediction, filtering 

and smoothing steps, the considered results of MAE and MSE have been the ones 

calculated in the smoothing step. The results are as given in the following table; 

Table 4.11. MAE and MSE Values for Smoothed Precipitation Values of Muğla 

Hybrid Model 

SMAE SMSE 

0.1810 0.1220 

SMAE: Smoothing MAE 

SMSE: Smoothing MSE 
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Smoothing MAE and MSE values have been interpreted as significant as being model 

evaluation criteria since the smaller MAE and MSE values means the better model. 

When they have been compared to the ones in the previous application for city of 

Muğla, the MSE value for the hybrid model has been performed 30% better than the 

one in the previous model. 

The model evaluation criteria have directed us to check the R2 and adjusted R2 values 

of the model to see how much of the variability in the smoothed precipitation values 

in the model can be explained by the temperature, relative humidity and cloudiness. 

The values are represented in Table 4.12. 

Table 4.12. R2 and Adjusted R2 Values for Muğla Hybrid Model   

SadjR2 SR2 

0.9999 0.9999 

 

From Table 4.12, the 99% variability in the smoothed precipitation values can be 

explained by the independent variables for the hybrid model. This is actually a very 

extreme value for an accuracy measure; however, this can be counted as proof of the 

power of Kalman Filter in precipitation modelling. 

After giving the details about the results of Kalman Filter algorithm on the hybrid data, 

the same forecasting method have been preferred to use which is rolling window 

forecast technique. The same number of sample size have been chosen at the 

beginning for the estimation procedure to forecast the observation 501. The algorithm 

goes like this until 32 forecast values have been observed. The head 10 forecast values 

with the originals are given in Table 4.13. 
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Table 4.13. Forecast and Original Precipitation Values of Muğla Hybrid Model 

Forecast 

values 

Original 

values 
Difference 

79.8221 79.8000 0.0221 

82.4157 82.4000 0.0157 

7.2090 7.2000 0.0090 

0.0824 0.1000 -0.0175 

2.5795 2.6000 -0.0204 

26.7168 26.7000 0.0168 

34.8115 34.8000 0.0115 

145.1999 145.2000 0.0001 

57.6182 57.6000 0.0182 

304.9850 305.0000 -0.0149 

 

As it can be understood from the small differences between the forecasted values and 

original values, the forecast technique has given significant values for the hybrid 

model as well. This idea has been also provided in Figure 4.16. 

 

Figure 4.16. Forecasting Precipitation Values of Muğla Hybrid Model  
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In all peaks and troughs, the forecasting mechanism for the precipitation have worked 

properly as expected. The MAE and MSE values of forecasting have also supported 

the proper working mechanism of our forecast in hybrid model as stated in Table 4.14. 

Table 4.14. MAE and MSE Results for Forecast Values of Muğla Hybrid Model 

MAE MSE 

0.0132 0.0002 

 

The MAE values are very close to each other; however, the performance of MSE in 

forecasting for the hybrid model is 30% higher than the previous model.  

At the end of analysis, the performances of OLS, ARIMA and Kalman Filter 

estimations for the monthly precipitation data have examined. The ARIMA model has 

been again fitted with the auto.arima( ) and found as ARIMA(3, 0, 2). The forecast 

results have been included the plot as well seen in Figure 4.17. 

 

Figure 4.17. Prediction Comparison for Muğla Hybrid Model  
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The Kalman Filter is again better than the OLS and ARIMA methods for predicting 

the precipitation for the hybrid model. Since the original precipitation values have 

been very close to the smoothed precipitation values found by KFMR, they cannot 

seen directly. The overlapped lines of original precipitation values, Kalman Filter 

predictions and forecast values are the proof of the good performance of our method. 

However, the OLS estimation and ARIMA method have not worked as good as 

Kalman Filter as expected for the hybrid model. Although the directions of the 

increases and decreases are estimated truly by the OLS estimation, the amount of that 

increases and decreases has not been caught properly. In other words, the ups and 

downs within an increasing pattern are not able to see clearly in the OLS estimation. 

Yet, the Kalman Filter predictions has included all movements and patterns of the 

original precipitation values. Unlike OLS estimation, ARIMA method has not even 

shown the up and down movements and it has just a smooth line for the precipitation 

values. Hence, OLS and ARIMA methods have been overwhelmed by Kalman Filter 

method for the prediction of the amount of monthly precipitation. 

 

4.3. Analysis for Konya 

 

In the following parts, description of Konya data will be made and application results 

will be shared, respectively. 

 

4.3.1. Data Description for Konya 

 

The data used in this part of analysis has been taken from the city of Konya which is 

a 61-yeared data collected from 1950 to 2010. The sample size for Konya data has 

been again chosen as 732 and the same independent variables have been preferred to 

use in the analysis as temperature, relative humidity and cloudiness. The aim of 
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making another Kalman Filter application to a different data is wondering the 

performance of Kalman Filter on predicting the monthly precipitation in a region in 

which the amount of precipitation has been observed very rare. That is to say Konya 

can be categorized as a scarce region in terms of getting precipitation. According to 

the data taken from the Turkish State Meteorological Service the days that Konya have 

taken precipitation in a year is 22% which is enough to named Konya as droughty. 

Although Konya is an arid area in terms of the amount of precipitation, the days 

without any kind of precipitation have been too few in our data. In other words, the 

zero values in the precipitation vector of our data have been observed around 10 

observations. Therefore, only the Kalman Filter method has been applied directly to 

the data and another application to hybrid data with logistic regression has not been 

considered as necessarily. Since the two applications in Muğla station have already 

given close results, to make the hybrid model application has been evaluated as non-

essential. After making decision about reducing the Kalman Filter application just for 

the actual data, some descriptive statistics have been given for Konya data in Table 

4.15. 

Table 4.15. Descriptive Statistics for Konya 

 Precipitation Temperature Relative Humidity Cloudiness 

 Minimum 0.000 -7.700 25.500 0.200 

 1st Quartile 14.200 2.913 52.250 2.500 

 Median  30.890 10.300 62.200 4.300 

 Mean    34.810 10.246 62.630 4.154 

 3rd Quartile 50.120 17.800 73.380 5.700 

 Maximum   157.500 26.300 89.600 8.300 

 

The minimum value has been observed as 0 for the amount of precipitation as expected 

for the region. The observed maximum value for the precipitation in Konya is 157.50 

mm which is the 25% of the observed maximum precipitation value of Muğla. The 

average value of precipitation for the 61-yeared time period in Konya is 34.81 which 

is the 30% of the average precipitation value observed in Konya. This difference has 

supported our argument about Konya being a scarce region in terms of precipitation. 
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While the temperature has never been observed under zero in Muğla, the minimum 

temperature for Konya has been seen as -7.70 0C. Even the Konya is near the seaside 

cities, the relative humidity has not been measured as much as Muğla and the number 

of cloudy days has seemed very rare.  

With the knowledge of descriptive statistics, the time series plot of the precipitation 

data has been examined in Figure 4.18. 

 

Figure 4.18. Time Series Plot of the Total Precipitation Amount of Konya Station 

from 1950 to 2010 

 

According to the Figure 4.16, there is enough evidence to say that the series has shown 

no trend pattern. After deciding about trend, the variation is taken into consideration. 

The high and low points in the observation of precipitation have been clearly detected 

from the plot. The observed maximum precipitation values have reached 500 mm and 

the minimum values for precipitation have been approached to 0. Those are the high 

and low points in the data. When seasonality is considered for the data, there has been 

definitely seasonal pattern in the observations. The regular ups and downs in specific 

periods of each year have generated a pattern for seasonality.  
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4.3.2. Application for Konya Station 

 

Since the data for Konya has not included zero values while collecting the 

precipitation observations as much as Muğla data, as it has been mentioned before, 

the hybrid model application will not be considered in the application part of study. 

The negative values obtained for the smoothed values of precipitation has been 

counted as zero since the data has already had a few zero values in any case. In other 

words, in those days, it can be taught as there were no precipitation in any type.  

The precipitation regression model has been constructed for Konya station as a state 

space model form like in equations (4.4), (4.5) and (4.6) 

Since the data is collected as monthly for 61 years and the sample size is large, the 

plot of smoothed and original values of precipitation has been cut into 4 for seeing 

more clearly in Figures 4.19, 4.20, 4.21 and 4.22. 

 

Figure 4.19. Smoothed vs Original Precipitation Values Konya I 
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Figure 4.20. Smoothed vs Original Precipitation Values Konya II 

 

 

Figure 4.21. Smoothed vs Original Precipitation Values Konya III 
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Figure 4.22. Smoothed vs Original Precipitation Values Konya IV 

 

As well as in the Muğla station, the smoothed values of predicted precipitation values 

by the Kalman Filter method have seen very close to the original values of 

precipitation values. The line for original values represented by blue and the line for 

smoothed values represented by red have been stratified in the plot. Even if there are 

small differences between those values, they can be seen in a very detailed plot which 

is constructed based on the idea of focusing the years between 1970 and 1971 as in 

Figure 4.23.  
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Figure 4.23. Smoothed vs Original Precipitation Values of Konya for 1-Year Time 

Period 

 

The smoothed values represented by red line again shows the same movements with 

original variables. In the mid of year (around June), very small differences can be 

observed in the smoothed variables of Kalman Filter predictions; however, those 

differences have been counted as insignificant for the performance of Kalman Filter. 

The difference between smoothed and original precipitation values can be seen 

directly from Table 4.16. 
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Table 4.16. Smoothed vs Original Precipitation Values for Konya 

Smoothed 

precipitation values 

Original 

precipitation values 

41.0794 41.0801 

18.6914 18.6919 

68.1933 68.1985 

45.7696 45.6652 

125.5439 125.5271 

33.7987 33.8120 

4.6648 4.6532 

13.3546 13.3637 

4.2437 4.2500 

24.8185 24.8183 

 

It has been deducted from the table that the smoothed values predicted by Kalman 

Filter algorithm are very close to the original ones. Because of those fractional 

differences, the two lines for the smoothed and original variables of precipitation have 

seen as one line. As it has mentioned in Muğla application, those differences between 

the original variables and fitted smoothed variables of precipitation called as residuals. 

The residuals and standardized residuals have been obtained to show the differences 

even if they are very small in Table 4.17 for the first 10 observations and Figure 4.24 

for all the residuals. 

Table 4.17. Residuals and Standardized Residuals for Konya 

Residuals 
Standardized 

Residuals 

0.0006 0.0000 

0.0004 0.0000 

0.0051 0.0002 

-0.1040 -0.0045 

-0.0170 -0.0006 

-0.0132 0.0007 

-0.0116 -0.0006 

0.0090 0.0005 

0.0062 0.0003 

-0.0002 0.0000 
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Figure 4.24. Residuals for Konya  

 

In Figure 4.24, all the residuals are significant because of being close to the 0. It can 

be counted as a proof of one line in the abovementioned plots which shows the perfect 

match between the original and smoothed values of precipitation. 

The assessments about the predicted smoothing values of precipitation have directed 

the study to focus on making inferences about the model which is fitted by using that 

smoothed values of precipitation obtained by the Kalman Filter. Firstly, MAE and 

MSE values have been preferred for making inferences about the model. The MAE 

and MSE model selection criteria for model constructed by smoothed values of 

precipitation have given in Table 4.18. 

Table 4.18. MAE and MSE Values for Smoothed Precipitation Values of Muğla 

SMAE SMSE 

0.0196 0.0012 

SMAE: Smoothing MAE 

SMSE: Smoothing MSE 

 

Here, the smallest results that encountered until this part of study for the model 

evaluation criteria. The working mechanism of MAE and MSE is behind the idea that 
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having the smallest values means the preferable model. Therefore, the fitted model 

constructed with the smoothed predictions of precipitation as a response variable 

obtained by the application of Kalman Filter is an accurate model based on the small 

values of MAE and MSE in Table 4.18 as 0.019649 and 0.0012, respectively. The 

precision of the fitted model has also been proved by the R2 and adjusted R2 values 

shown in Table 4.19. 

Table 4.19. R2 and Adjusted R2 Values for Konya 

SadjR2 SR2 

0.9999 0.9999 

 

Both adjusted R2 and R2 values are almost 1 which means that 99% change in the 

smoothed predictions of precipitation values can be explained by the state variables 

temperature, relative humidity and cloudiness. Since the higher R2 value means the 

better fitted model, the model constructed with the smoothed predictions of 

precipitation values obtained by the application of Kalman Filter algorithm considered 

as a better model in the mean of explaining the variability in the response.  

This part has been finished by the assessment of model evaluation criteria and the 

rolling window forecasting technique has been applied to Konya data as well as in 

Muğla data. Since the sample sizes are same in two application stations, the same 

algorithm has been processed and 32 forecast values have been calculated for the 

precipitation values shown 10 of them in Table 4.20. 
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Table 4.20. Forecast and Original Precipitation Values of Konya 

Forecast 

values 

Original 

values 
Difference 

27.9063 27.9000 0.0063 

13.4334 13.4000 0.0334 

0.0315 0.0000 0.0315 

3.5272 3.5000 0.0272 

67.5284 67.6000 -0.0715 

38.6547 38.7000 -0.0452 

29.3071 29.3000 0.0071 

54.7093 54.7000 0.0093 

54.4973 54.5000 -0.0026 

62.2078 62.2000 0.0078 

 

The forecasted values for precipitation have again seen very close to the original ones. 

This relation has been figurated as well in Figure 4.25. 

 

Figure 4.25. Forecasting Precipitation Values of Konya  
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The rolling window forecast technique has given very accurate forecast result for 

precipitation. All movements in the last 32 observations have been clearly fulfilled by 

the forecast values of precipitation shown in Figure 4.25. The assistive part on the 

proper results of forecast has been included the MAE and MSE values in Table 4.21. 

Table 4.21. MAE and MSE Results for Forecast Values of Konya 

MAE MSE 

0.0285 0.0012 

 

Since the MAE and MSE values measure the average magnitude of the errors in the 

forecasts, it is important to have small values of them. The values 0.0285 and 0.00126 

are small enough to say that the magnitude of errors are considerably close to zero.  

After all the results of predicted precipitation values, the most accurate way is to 

compare the performances of all techniques in the following plot. 

 

Figure 4.26. Prediction Comparison for Konya 



 

 

 

70 

 

In Figure 4.26, the green line represents the OLS estimation and purple line represents 

the seasonal ARIMA (1, 0, 0) x (2, 0, 0) model which is observed with the usage of 

auto.arima() for the prediction values of precipitation. The overlapped line 

represented by blue is for the Kalman Filter predictions, forecast values and the 

original values, respectively. OLS estimation has been considered as inaccurate in 

predicting the amount of precipitation. Even though the movements of that predicted 

values have been in the same direction of the original precipitation values, they have 

never caught the exact values of precipitation especially for the end points. In the 

ARIMA model, there is a pattern especially around the average values of precipitation. 

Furthermore, the ARIMA predictions have shown opposite movements of OLS 

estimation and Kalman Filter method. When the prediction of precipitation values 

have been increasing in OLS and Kalman Filter method, there is a decreasing pattern 

in ARIMA method. The Kalman Filter mechanism for the prediction of precipitation 

has worked very well not only in the direction but also in the endpoints than the OLS 

and ARIMA methods. The forecast values obtained by following the Kalman Filter 

algorithm have also performed with very small deviations from the original 

precipitation values. 

 

4.4. Analysis for Ordu 

 

In this part, the properties of Ordu data will be summarized and after that application 

results will be placed. 

 

4.4.1. Data Description for Ordu 

 

The data in the last part of application has been collected from 1950 to 2010 from the 

Ordu city with a sample size of 732. In the construction of the model, the temperature, 
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relative humidity and cloudiness have chosen as independent variables which are 

taught to have effect on the total amount of monthly precipitation. The region of Ordu 

is included is a popular area with taking the precipitation. It is known that the observed 

amount of precipitation even in the driest spell of the year has been too much in Ordu. 

In fact, Ordu is an abundant region in terms of precipitation. According to the 

information taken from the Turkish Meteorological Service, the number of days with 

precipitation has been recorded almost 45% in a year. The aim of the Kalman Filter 

application in this part is to see the performance of the algorithm in such a region 

which has very high precipitation regime. Since most of the methods have had some 

challenges in predicting the amount of precipitation in such regions, it is important to 

see whether the Kalman Filter is functional in the prediction of precipitation or not. In 

the data taken from Ordu station, the zero values have never been observed from 1950 

to 2010. This means that there was no day with any type of precipitation. This 

information has shown that there is no need for the application on a hybrid model. The 

Kalman Filter algorithm will be implemented directly to the original data. Firstly, the 

descriptive statistics about the data have been given in Table 4.22. 

Table 4.22. Descriptive Statistics for Ordu 

 Precipitation Temperature Relative Humidity Cloudiness 

 Minimum 0.30 2.80 54.20 2.20 

 1st Quartile 49.94 8.82 69.81 5.20 

 Median  76.94 13.88 73.90 6.10 

 Mean    86.22 14.14 73.31 6.04 

 3rd Quartile 112.33 19.74 77.00 6.90 

 Maximum   269.40 26.60 90.30 9.20 

 

The minimum value observed for the precipitation has never reached to zero even if it 

has been very close to it. The maximum value of precipitation is the highest value 

among three stations which has been recorded as 269.40 mm. The average amount of 

monthly precipitation over 61 years is almost 90 mm. The minimum temperature has 

never been under zero all time and the average temperature can be counted as moderate 

relatively. Being in the Black Sea region of Turkey and placed near the seaside have 
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made the Ordu city humid. The humidity for such a long period has always followed 

at higher rates in Ordu around 70’s. The existence of clouds has been mentioned as a 

return of getting any of precipitation whole year. Based on the knowledge about the 

precipitation regime of Ordu and the descriptive statistics of the series, the time series 

plot has been drawn in Figure 4.27. 

 

Figure 4.27. Time Series Plot of the Total Precipitation Amount of Ordu Station 

from 1950 to 2010 

 

According to the Figure 4.27, it has shown that the mean of precipitation values is 

stationary around a constant value. It has not changed over time in the plot. There has 

been again a seasonal pattern. There is no evidence of trend pattern like Muğla and 

Konya stations. The maximum values for the amount of precipitation have observed 

the points very close to the 600’s as expected for an abundant region in terms of 

precipitation.  
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4.4.2. Application for Ordu Station 

 

Since the data itself has not included any zero values for precipitation, there won’t be 

negative values for the prediction of them. Therefore, the direct values for prediction 

of precipitation has been calculated at the end without conducting a hybrid model.  

The procedure followed for the Kalman Filter application for predicting the amount 

of precipitation will be the same with the previous applications in Muğla and Konya 

stations. The precipitation regression model has been constructed for Ordu station as 

a state space model form like in equations (4.4), (4.5) and (4.6). The results for the 

smoothed values of prediction for precipitation obtained by Kalman Filter have shown 

in a plot with the original precipitation values in Figures 4.28, 4.29, 4.30 and 4.31. 

 

Figure 4.28. Smoothed vs Original Precipitation Values Ordu I 
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Figure 4.29. Smoothed vs Original Precipitation Values Ordu II 

 

 

Figure 4.30. Smoothed vs Original Precipitation Values Ordu III 
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Figure 4.31. Smoothed vs Original Precipitation Values Ordu IV 

.  

The blue line represents the original precipitation values and the red line represents 

the smoothed form of predicted precipitation values by Kalman Filter. The situation 

for Ordu data is not same as with the situations in Muğla and Konya stations. In details, 

the differences between those two stations have seen clearly in this time even if the 

sample size is large and the plots have not been so legible. At some time points, red 

line which represents the smoothed values have shown itself. The detailed version for 

comparison of smoothed and original precipitation values has been plotted in Figure 

4.32 from 1970 to 1971. 
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Figure 4.32. Smoothed vs Original Precipitation Values of Ordu for 1-Year Time 

Period 

 

Even it has been observed differences between these values, in most of the points, the 

smoothed forms of predicted values of precipitation by Kalman Filter are able to catch 

the original ones. The magnitude of the differences can be classified as insignificant 

which can be proved with just first 10 observations of smoothed form of predicted and 

original values of precipitation in Table 4.23. 
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Table 4.23. Smoothed vs Original Precipitation Values for Ordu 

Smoothed 

precipitation values 

Original 

precipitation values 

201.3365 217.0370 

92.4520 92.3430 

73.0330 69.4480 

39.9169 29.4430 

64.7675 60.3720 

45.8494 45.9040 

39.7047 32.1150 

63.6303 70.1760 

31.3831 14.0570 

121.4772 133.880 

 

The smoothed form of predicted precipitation values has been observed both above 

and below the original values. However; the difference has never acrossed 10. It is 

very significant to predict the amount of precipitation for such a region which gets 

every type of precipitation whole year. In brief, even though the Kalman Filter has not 

caught the original values exactly, it has been very close to them. The working 

mechanism of Kalman Filter in prediction of precipitation cannot be ignored 

especially in such a region. That differences have shown as being residuals and 

standardized residuals briefly in Table 4.24 and all of them in Figure 4.33. 

Table 4.24. Residuals and Standardized Residuals for Ordu 

Residuals 
Standardized 

Residuals 

15.7004 0.2828 

-0.1090 -0.0023 

-3.5849 -0.0682 

-10.4739 -0.2224 

-4.3955 -0.0846 

0.0545 0.0014 

-7.5897 -0.1895 

6.5456 0.1641 

-17.3261 -0.4177 

12.4027 0.2636 
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Figure 4.33. Residuals for Ordu  

 

Although they have not been observed as small as like in the Muğla and Konya data, 

the residuals cannot be counted as having high values. In fact, a nonstructural 

visualization of the residuals in Figure 4.33 has promoted the strength of Kalman Filter 

method. Most of the residuals have been observed around 0 and just some of them has 

been measured more than the expected. However, those values do not decrease the 

accuracy of Kalman Filter algorithm in Ordu data. Yozgatlıgil and Turkes (2018) has 

applied extreme value approach to predict the amount of precipitation in Black Sea 

sub region of Turkey. Since Ordu station is in the same region, the MSE values have 

been compared. The minimum MSE value observed as 48.66 in their study. While the 

monthly total precipitation amount has been used in this study, they modelled the 

monthly maximum precipitation amount by using location parameter. At this point, 

the performance of Kalman Filter is evaluated as an improvement for the modelling 

of precipitation. A better performance from the Kalman Filter is expected when it is 

applied to monthly maximum precipitation amount. 

The model inferences have been made according to the MAE and MSE values 

calculated for the model constructed with the smoothed form of prediction values of 

precipitation in Table 4.25. 
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Table 4.25. MAE and MSE Values for Smoothed Precipitation Values of Ordu 

SMAE SMSE 

8.6693 125.4195 
SMAE: Smoothing MAE 

SMSE: Smoothing MSE 

 

The values in Table 4.25 are the largest values that are faced with until this time for 

the MAE and MSE values. Actually, since the Kalman Filter has not worked in Ordu 

data for the prediction of precipitation as good as like in Konya and Muğla data, the 

values for MAE and MSE values were expected. Even if these values have been 

observed higher than the ones in previous applications that does not mean the Kalman 

Filter is not considerable to apply a region getting high amount of precipitation. For 

the differences obtained in Table 4.24, these MAE and MSE values have been 

acceptable because the observed R2 and adjusted R2 values for the explanation of the 

variability in the response variable are very remarkable shown in Table 4.26. 

Table 4.26. R2 and Adjusted R2 Values for Ordu    

SadjR2 SR2 

0.9493 0.9495 

 

This means that 94% change in the response variable can be explained by the variation 

of independent variables in the model. In other words, 94% of the variability in the 

smoothed form of predicted values for precipitation can be easily explained by the 

temperature, relative humidity and cloudiness. These very high values of R2 and 

adjusted R2 cannot be ignored because a 94% explanation in the variability of a model 

have been taught very accurate in statistics. Hence, even the performance of Kalman 

Filter decreases for Ordu data, it still works properly.  

When the rolling window forecast technique has been applied with the same 

procedure, the forecast values and the actual values of precipitation seem to be very 

close to each other stated in Table 4.27. 
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Table 4.27. Forecast and Original Precipitation Values of Ordu 

Forecast 

values 

Original 

values 
Difference 

52.1067 52.1000 0.0067 

158.0566 158.1000 -0.0433 

30.6200 30.6000 0.0200 

53.2090 53.2000 0.0090 

167.9679 168.0000 -0.0320 

68.6117 68.6000 0.0117 

102.4917 102.5000 -0.0082 

120.3793 120.4000 -0.0206 

94.1070 94.1000 0.0070 

65.3235 65.3000 0.0235 

 

That is to say, our forecasting technique applied subsequently to the Kalman Filter 

procedure have again shown a very good performance for precipitation series. The 

plot of the forecast for the last 32 observations has been drawn in Figure 4.34. 

 

Figure 4.34. Forecasting Precipitation Values of Ordu  
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Since the plot of forecasted and original values of precipitation has just one line, it can 

be said that the precipitation values have been forecasted very well. The MAE and 

MSE results have get along with the deduction made in Figure 4.30 shown in Table 

4.28. 

Table 4.28. MAE and MSE Results for Forecast Values of Ordu 

MAE MSE 

0.0195 0.0006 

 

The significant values of MAE and MSE have shown that the magnitude of the errors 

in forecasting values are small which makes the forecast more reliable.  

Finally, the performance comparison of Kalman Filter, OLS and seasonal ARIMA (0, 

0, 0) x (2, 0, 0) conducted with auto.arima() by checking the model diagnostics and 

the forecast results for precipitation have been examined in Figure 4.35. 

 

Figure 4.35. Prediction Comparison for Ordu  
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The forecast values represented by the red line and the original values represented by 

dark green line have observed together in one line as expected from the interpretations 

made before. The most important thing in Figure 4.35 is to be able see the difference 

between the performances of OLS estimation, ARIMA method and Kalman Filter 

algorithm in prediction of amount of precipitation. The predicted values obtained by 

the application of Kalman Filter represented by blue line have seen very close to the 

original values of precipitation. The movements in the Kalman Filter predictions are 

all in the same direction with the original ones. The up and down points have been 

almost caught by the Kalman Filter predictions. Since the structure of two values has 

appeared almost the same, the Kalman Filter algorithm have done its duty successfully 

in the mean of precipitation prediction. On the other hand, the OLS technique could 

not estimate even the directions of the movements of original precipitation values. 

While original values have had an increasing tendency, the OLS predictions have not 

followed the same structure in some parts. Like OLS, the performance of ARIMA 

method has fallen behind the Kalman Filter for predicting the precipitation. It could 

not catch the increases and decreases in the same way. To sum up, Kalman Filter has 

shown a better performance than the OLS estimation and ARIMA technique to predict 

the amount of precipitation in a region which is abundant in terms of precipitation.   
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CHAPTER 5  

 

5. CONCLUSION AND DISCUSSION 

 

 

The issue of predicting the precipitation is a challenging process at all since various 

parameters of nature involved in the procedure that are directly effective on 

precipitation. These parameters have effect not only on the expected amount of 

precipitation but also on the exact time or place of precipitation. Although it is hard to 

predict the amount of precipitation with these parameters, Kalman Filter method offers 

accurate results in prediction. In other words, to predict the amount of precipitation 

with its all noisy measurements is aimed with the application of Kalman Filter in this 

study.  With the knowledge of Kalman Filter’s accuracy in prediction, in this study, 

the monthly precipitation values have been predicted by filtering based on a state space 

model. The parameters which are taught as deterministic factors for the amount of 

precipitation chosen as temperature, relative humidity and cloudiness. With three 

different applications of Kalman Filter, this study aims to see the performances of 

filtering in different regions classified in terms of the amount of precipitation received. 

First station chosen as a moderate one in terms of getting precipitation is Muğla. 

Second one is preferred from a scarce region by precipitation is Konya. The last 

application region is selected from an abundant region for the precipitation is Ordu. 

This study has discussed the issue that how strong Kalman Filter algorithm is in the 

prediction of different amount of precipitation. Besides the filtering and prediction 

processes of the KFMR, with the smoothing part of algorithm, the most accurate 

values for the predicted precipitation values have been observed. KFMR has been 

applied especially into different series to measure the performance of it. Furthermore, 

the performance of Kalman Filter has been tested for the series with missing values 

like in hybrid model. Kalman Filter application has given same accurate results in the 
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hybrid model as well. According to the results in all applications, Kalman Filter have 

given very accurate results for the smoothed values of predicted precipitation amount. 

Since using the Kalman Filter in predicting the amount of precipitation is not a 

common method, this study will bring in new perspectives to the literature with all the 

accurate results. The smoothed values of precipitation have been calculated very close 

to the original precipitation observations. It is supported by the precision of the 

constructed regression models with the smoothed values of predicted precipitation 

which have R2 and adjusted R2 values very close to 1. In the subsidiary part of 

application, it has been tried to estimate the amount of precipitation not only with 

KFMR but also OLS and ARIMA. The results have also promoted the idea of 

receiving very accurate results for predicted values of precipitation with the 

application of Kalman Filter. Although ARIMA is one of the most common techniques 

used for the prediction and forecast of time series models, Kalman Filter has 

outperformed the ARIMA in predicting the amount of precipitation for all the 

applications. Moreover, OLS estimation have get closed for the ups and downs of 

original precipitation values, however; it has not caught the actual values one by one. 

In other words, OLS estimation has been also failed against the Kalman Filter method 

for different regions in terms of getting amount of precipitation. According to the 

results of three application stations, the performance KFMR has shown better working 

mechanism than the OLS and ARIMA models in predicting the amount of 

precipitation. Therefore, it has been concluded that having too many zeros in data 

itself like Muğla station does not affect the performance of Kalman Filter at all. 

Furthermore, the insignificant number of zero values in the series has not affected the 

performance of Kalman Filter as in Konya station. Likewise, getting severe amount of 

precipitation does not cause a decrease in the performance of Kalman Filter.  Actually, 

it is important to have very accurate results in such regions because it is an unusual 

case. To expect accurate results from Kalman Filter in a moderate region can be 

considerable but for an extreme case such as Konya and Ordu, these prediction results 

can be categorized as statistically significant. Even if Kalman Filter has not shown the 

same perfect performance in Ordu station as same as with Muğla and Konya stations 
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due to being an abundant region in terms of precipitation, the smoothed values of 

predicted precipitation observations have been still considered as remarkable 

statistically. Nevertheless there are differences between smoothed and original values, 

they can be ignored when the total amount of precipitation in the region is taken into 

consideration. In conclusion, Kalman Filter has been preferred with the knowledge of 

being a strong method for the prediction of precipitation, and it can be said that it has 

handled with all the struggles which are coming from the origin of data. The 

performance of filter has changed according to the application areas; however, it has 

never gone behind the OLS and ARIMA in prediction. With the very accurate results 

of smoothed values of predicted precipitation, Kalman Filter has shown its noticeable 

performance for different application stations. In short, KFMR has reached the goal 

of predicting the amount of monthly precipitation with small error terms despite the 

tight conditions coming from the origin of precipitation data and preferred regions for 

the application. After having these results, it might be discussed that whether Kalman 

Filter shows the same performance in hourly or daily precipitation data or not. That 

kind of a study would be significant in terms of being a guide for preventing some 

natural disasters caused by sudden floods. 
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