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ABSTRACT

AN APPLICATION OF THE RAYLEIGH-RITZ METHOD TO THE
INTEGRAL-EQUATION REPRESENTATION OF THE

ONE-DIMENSIONAL SCHRÖDINGER EQUATION

Kaya, Ruşen

M.S., Department of Mathematics

Supervisor: Prof. Dr. Hasan Taşeli

July 2019, 52 pages

In this thesis, the theory of the relations between differential and integral equations

is analyzed and is illustrated by the reformulation of the one-dimensional Schrödinger

equation in terms of an integral equation employing the Green’s function. The Rayleigh-

Ritz method is applied to the integral-equation formulation of the one-dimensional

Schrödinger equation in order to approximate the eigenvalues of the corresponding

singular problem within the desired accuracy. The outcomes are compared with those

resulting from the methods applied to the original formulation of the problem. Con-

secutive symmetries are observed throughout the symmetric structure of the problem,

the symmetric Green’s function, the symmetric potentials used in the method and the

symmetric matrices obtained eventually.

Keywords: Integral Equations, Green’s Function, Schrödinger equation, Rayleigh-

Ritz Method
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ÖZ

RAYLEIGH-RITZ YÖNTEMİNİN BİR BOYUTLU SCHRÖDINGER
DENKLEMİNİN İNTEGRAL-DENKLEM GÖSTERİLİMİNE

UYGULANMASI

Kaya, Ruşen

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hasan Taşeli

Temmuz 2019, 52 sayfa

Bu tezde, diferansiyel ve integral denklemler arasındaki ilişkilerin teorisi incelen-

miş ve bir boyutlu Schrödinger denkleminin Green fonksiyonu yardımıyla integral

denklem olarak yeniden formülleştirilmesiyle örneklenmiştir. Karşılık gelen sonsuz

problemin özdeğerlerini yaklaşık olarak istenilen doğrulukta hesaplamak için bir bo-

yutlu Schrödinger denkleminin integral-denklem formülüne Rayleigh-Ritz yöntemi

uygulanmıştır. Sonuçlar, problemin asıl formülüne uygulanan yöntemlerden elde edi-

lenler ile karşılaştırılmıştır. Problemin simetrik yapısı, simetrik Green fonksiyonu,

yöntemde kullanılan simetrik potansiyeller ve sonuç olarak elde edilen simetrik mat-

risler boyunca birbirini izleyen simetriler gözlenmiştir.

Anahtar Kelimeler: İntegral Denklemler, Green Fonksiyonu, Schrödinger Denklemi,

Rayleigh-Ritz Yöntemi
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CHAPTER 1

INTRODUCTION

"When you look at objects from different perspectives, the views fairly change.

For instance, if you look at a cube through a bagel, you see an equator; if you look at

it from one of its faces, you see a square; if you look at it from one of its edges, you

see an angle. According to your point of view, you see objects and nature in different

shapes as a result of your perception.", says Cahit Arf, the great mathematician, at

the beginning of his speech within the scope of seminars of "Zeta Function Days"

held in the Department of Mathematics of METU on May 26, 1991. One may define

"mathematics" as a human endeavour to express the properties of infinite universe in

terms of equations. In view of Cahit Arf’s sentences, mathematicians develop vary-

ing techniques for the solutions of equations when they look at them from different

perspectives. Differential equations, in particular, which form one of the vast field in

engineering sciences and applied mathematics, require various methods to reach exact

or numerical solutions. From one’s perspective, a differential equation needs reduc-

ing to an algebraic equation by means of a numerical method. From our perspective,

however, it is, equivalently, an integral equation in which the unknown function is

presented under an integral sign.

Integral equations arise in many problems of mathematical physics and engineer-

ing sciences. Namely, they are used in potential theory, diffraction problems, wa-

ter waves, conformal mapping and scattering in quantum mechanics. Other fields

in which integral equations appear are functional analysis and stochastic process.

Certain problems which are formulated by differential equations are solved more

efficiently when they are formulated in terms of the corresponding integral equa-
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tions. To be more precise, certain initial value or boundary value problems, together

with the specified initial or boundary conditions, respectively, can be contracted into

single integral-equation formulations. Conversely, certain integral equations can be

converted into the corresponding initial value or boundary value problems. In other

words, there exists an exact equivalence between initial value or boundary value prob-

lems and their corresponding integral-equation formulations. Furthermore, due to the

fact that integration is a smooth process, more accurate outcomes are obtained through

most of all numerical techniques applied to integral equations than those of the ones

applied to differential equations when approximate solutions are searched for.

This thesis mainly involves the procedures composed of the construction of the

equivalent integral-equation formulation of a famous quantum mechanical problem;

namely, the one-dimensional Schrödinger equation, the employment of an advanta-

geous numerical method; namely, the Rayleigh-Ritz method, to the formulation so

obtained in order to compute the eigenvalues of the corresponding singular prob-

lem within the desired accuracy, and the comparison of the outcomes with those re-

sulting from the methods applied to the original formulation of the one-dimensional

Schrödinger equation. This thesis wherein an introductory theory of relations be-

tween differential and integral equations is elaborated and is supported by illustrative

examples can also be regarded as a motivational guide for those who target further re-

search in integral equations. The thesis also arouses interest in the sense that the one

who reads it in a diligent manner will observe the advantages and firm consequences

of "symmetry". More precisely, throughout the thesis, there exists a succession of

symmetries starting by the symmetry of the structure of our self-adjoint problem and

persisting with the construction of the symmetric Green’s function G, the process of

the application of the numerical method in which reflective symmetric potentials are

used and the achievement of symmetric matrices resulting from the eigenvalue prob-

lem brought about by the method. The effect of symmetry is observed not only on the

reduction of orders of matrices but also on the elimination of complicated integrations

and hence yields the simplicity of computations.
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CHAPTER 2

INTEGRAL EQUATIONS

2.1 Definition and Classification of Integral Equations

A differential equation involves an unknown function y and its derivatives of

several orders y′, y′′, ... , y(n). An integral equation, however, is an equation in which

an unknown function y takes place under an integral sign. Integral equations are

classified into two main categories: "linear integral equations" [2] and "nonlinear in-

tegral equations". Linear integral equations involve only linear forms of the unknown

function y, whereas nonlinear integral equations involve some nonlinear functions of

y. The following equations comprise two classifications of linear integral equations,

which mainly hold our attention.

α(x)y(x) = F (x) + λ

∫ b

a

K(x, ξ)y(ξ)dξ (2.1.1)

α(x)y(x) = F (x) + λ

∫ x

a

K(x, ξ)y(ξ)dξ, (2.1.2)

where x, ξ ∈ [a, b], λ 6= 0, a, b are constants, α, F , K are given functions and y(x) is

the unknown function. The given function K(x, ξ) of the variables x and ξ is called

the kernel of the integral equation.

Nonlinear integral equations, which are not considered here, can be illustrated

with the following example

α(x)y(x) = F (x) + λ

∫ b

a

K(x, ξ)[y(ξ)]2dξ (2.1.3)
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due to the appearance of a nonlinear form [y(ξ)]2 of the unknown function y in (2.1.3).

As we are back to our main concern, equations (2.1.1) and (2.1.2) are said to

be the Fredholm equation and the Volterra equation, respectively. It is clear that the

Volterra equation is obtained by interchanging the fixed upper limit of the integration

in the Fredholm equation with the variable x.

Equations (2.1.1) and (2.1.2) are called the integral equations of the first kind

if α(x) ≡ 0, while they are called the equations of the second kind if α(x) ≡ 1.

The equations, in particular, are called homogeneous if F (x) ≡ 0. For example, a

homogeneous Fredholm equation of the second kind is of the form

y(x) = λ

∫ b

a

K(x, ξ)y(ξ)dξ. (21)

It is possible to rewrite an integral equation in the form of an equation of the second

kind by means of a manipulation. For instance, when α(x) > 0 for all x ∈ [a, b],

equation (2.1.1) can be converted into the form of

√
α(x)y(x) =

F (x)√
α(x)

+ λ

∫ b

a

K(x, ξ)√
α(x)α(ξ)

√
α(ξ)y(ξ)dξ, (2.1.4)

which is an integral equation of the second kind whose unknown function and al-

tered kernel are
√
α(x)y(x) and

K(x, ξ)√
α(x)α(ξ)

, respectively. In addition, if the kernel

K(x, ξ) of (2.1.1) is symmetric; that is, if K(x, ξ) = K(ξ, x), then the altered kernel
K(x, ξ)√
α(x)α(ξ)

of (2.1.4) is also symmetric in the sense that
K(ξ, x)√
α(ξ)α(x)

=
K(x, ξ)√
α(x)α(ξ)

.

Symmetric kernels are of great significance in linear integral equations as are symmet-

ric matrices in linear algebra. The detailed consideration of linear integral equations

with symmetric kernels is given by the Hilbert-Schmidt Theory [1].

Equation (2.1.1), by the way, possesses a continuous solution y(x) provided that

the given functions F (x), α(x) and K(x, ξ) are continuous in (a, b).
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2.2 Relations between Differential and Integral Equations

Certain differential equations can be converted to integral equations and, con-

versely, certain integral equations can be transformed to differential equations. More

specifically, certain initial value problems and boundary value problems are exactly

equivalent to their corresponding integral-equation formulations. In Subsection 2.2.1,

the procedure of showing the equivalence of an initial value problem and its corre-

sponding integral-equation formulation is given for an illustrative example. Subsec-

tion 2.2.2, however, involves a complete construction of the integral-equation formu-

lation of a boundary value problem by the determination of the Green’s function.

2.2.1 Relations between Initial Value Problems and Integral Equations

The following lemma is required to indicate the strong relation between initial

value problems and integral equations as an illustrative example.

Lemma 2.1.1. If f is an integrable function, then∫ x

a

∫ u

a

f(t)dtdu =

∫ x

a

(x− ξ)f(ξ)dξ

for some constant a.

Proof. Let ∫ x

a

∫ u

a

f(t)dtdu = y1(x) and
∫ x

a

(x− ξ)f(ξ)dξ = y2(x).

Then, the fundamental theorem of calculus and the Leibnitz’s Rule [7] yield

y′1(x) =

∫ x

a

f(t)dt and y′2(x) =

∫ x

a

f(ξ)dξ, respectively.

It is obvious that y′1(x) = y′2(x). Therefore, y1(x) and y2(x) differ by some constant

and that constant, however, is precisely zero since y1(x) and y2(x) both vanish at

x = a, which simply follows that y1(x) = y2(x).
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Example 2.1.1. The initial value problem consisting of the linear second-order dif-

ferential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x) (2.2.5)

and the initial conditions y(a) = y0, y′(a) = y′0 is equivalent to the Volterra equation

of the second kind

y(x) = F (x) +

∫ x

a

K(x, ξ)y(ξ)dξ, (2.2.6)

where

F (x) =

∫ x

a

(x− ξ)f(ξ)dξ +
(
p(a)y0 + y′0

)
(x− a) + y0 (2.2.7a)

and

K(x, ξ) = (ξ − x)
(
q(ξ)− p′(ξ)

)
− p(ξ). (2.2.7b)

Solution. The exact equivalence of the initial value problem consisting of (2.2.5)

with the specified initial conditions and the integral equation (2.2.6) is shown in two

parts:

Part 1. Let us assume the initial value problem consisting of (2.2.5) and the

specified initial conditions. Integration of each member of (2.2.5) over (a, x) leads to

the equation

y′(x)− y′0 +

∫ x

a

p(t)y′(t)dt+

∫ x

a

q(t)y(t)dt =

∫ x

a

f(t)dt

and the evaluation of the first integral on the left by parts yields

y′(x)− y′0 + p(x)y(x)− p(a)y0 −
∫ x

a

y(t)p′(t)dt =

∫ x

a

f(t)dt.

A second integration, together with the help of lemma (2.2.1), results in

y(x) =

∫ x

a

(x− ξ)f(ξ)dξ +
(
p(a)y0 + y′0

)
(x− a) + y0 +

∫ x

a

[(ξ − x)
(
q(ξ)− p′(ξ)

)
− p(ξ)]y(ξ)dξ

= F (x) +

∫ x

a

K(x, ξ)y(ξ)dξ,

where F (x) and K(x, ξ) are the same as identified by (2.2.7a) and (2.2.7b).

Therefore, the integral equation (2.2.6) is deduced from the initial value problem

consisting of (2.2.5) and the specified initial conditions.

Part 2. Conversely, given the Volterra equation of the second kind (2.2.6), differ-

entiation of (2.2.6) leads to

y′(x) = F ′(x) +K(x, x)y(x) +

∫ x

a

∂K(x, ξ)

∂x
y(ξ)dξ (2.2.8)

6



with the help of the Leibnitz’s Rule. Making use of the explicit forms (2.2.7a) and

(2.2.7b) of F (x) and K(x, ξ), respectively, we rewrite

y′(x) =

∫ x

a

f(ξ)dξ + p(a)y0 + y′0 − p(x)y(x) +

∫ x

a

p′(ξ)y(ξ)dξ −
∫ x

a

q(ξ)y(ξ)dξ.

(2.2.9)

Integration of the fifth term on the right by parts gives

y′(x) =

∫ x

a

f(ξ)dξ + p(a)y0 + y′0 − p(x)y(x) + p(x)y(x)

− p(a)y(a)−
∫ x

a

p(ξ)y′(ξ)dξ −
∫ x

a

q(ξ)y(ξ)dξ

=

∫ x

a

[f(ξ)− p(ξ)y′(ξ)− q(ξ)y(ξ)]dξ + p(a)(y0 − y(a)) + y′0.

(2.2.10)

A second differentiation of y(x) results in

y′′(x) = f(x)− p(x)y′(x)− q(x)y(x). (2.2.11)

As a result of (2.2.11), we obtain

y′′(x)+p(x)y′(x)+q(x)y(x) = f(x)−p(x)y′(x)−q(x)y(x)+p(x)y′(x)+q(x)y(x) = f(x).

That is, y satisfies the linear second-order differential equation (2.2.5). Further, set-

ting x = a in (2.2.6), (2.2.7a) and (2.2.10), we, respectively, acquire F (a) = y(a),

F (a) = y0 and y′(a) = y0.

It is consequently deduced that the Volterra equation of the second kind (2.2.6)

is reduced to the initial value problem consisting of (2.2.5) and the specified initial

conditions.

As a result of part 1 and part 2, the conclusion is drawn that the Volterra equation of

the second kind (2.2.6) and the initial value problem consisting of the linear second-

order differential equation (2.2.5) and the specified initial conditions are

exactly equivalent.
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2.2.2 Relations between Boundary Value Problems and Integral Equations (The

Green’s Function)

In this section, an equivalent integral-equation formulation of a boundary value

problem is established by constructing the Green’s function, whose definition is still

in progress.

Let us start with the boundary value problem consisting of the differential equation

Ly(x) + Φ(x) = 0 (2.2.12)

and the boundary conditions

k1y(x) + k2y
′(x) = 0 (2.2.13)

at the end points of the interval [a, b] for some constants k1 and k2, where L is the

self-adjoint differential operator [1] defined by

L =
d

dx

(
p(x)

d

dx

)
+ q(x) = p(x)

d2

dx2
+ p′(x)

d

dx
+ q(x); (2.2.14)

Φ(x) is of the form Φ(x) = φ(x) or Φ(x) = φ
(
x, y(x)

)
; p′(x), q(x) are continuous

and p(x) 6= 0 in (a, b).

To set up an equivalent integral-equation formulation of the problem, we first aim

the construction of the Green’s function G(x) for a fixed value of ξ in the form of

G(x) =

G1(x) if a < x ≤ ξ

G2(x) if ξ ≤ x < b ,
(2.2.15)

which supplies the following conditions:

C1. LG1(x) = 0 and LG2(x) = 0 whenever x < ξ and x > ξ, respectively.

C2. G1(x) and G2(x) satisfy the specified boundary conditions (2.2.13) at x = a

and x = b, respectively.

C3. G(x) is continuous at x = ξ, from its definition with G1(ξ) = G2(ξ).

8



C4. The measure of the jump discontinuity of G′ at x = ξ is
−1

p(ξ)
; that is, G′2(ξ)−

G′1(ξ) =
−1

p(ξ)
.

Then, we show the equivalence of the integral-equation formulation

y(x) =

∫ b

a

G(x, ξ)Φ(ξ)dξ (2.2.16)

to the boundary value problem consisting of (2.2.12) and the specified boundary con-

ditions such that (2.2.16) determines the solution y(x) if Φ(x) = φ(x), while (2.2.16)

forms the corresponding formulation of the problem if Φ(x) = φ
(
x, y(x)

)
.

Before making a start on the construction of the Green’s function, it is required to

mention the following theorem known as Abel’s formula [1].

Theorem 2.2.1 (Abel’s Formula). If u(x) and v(x) satisfy the equation Ly = 0,

where L is the differential operator L = p(x)
d2

dx2
+ p′(x)

d

dx
+ q(x), then

u(x)v′(x)− u′(x)v(x) =
c

p(x)

for some constant c whenever p′(x), q(x) are continuous and p(x) 6= 0 in an interval

(a, b).

Proof. With the abbreviation of prime notation of derivative, we write

pu′′ + p′u′ + qu = 0 (2.2.17)

pv′′ + p′v′ + qv = 0. (2.2.18)

Multiplication of each member of equations (2.2.17) and (2.2.18) by v and u, respec-

tively, and subtraction of the resulting equations lead to

p′(uv′ − u′v) + p(uv′′ − vu′′) = 0,
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which implies

p′(uv′ − u′v) + p(uv′ − vu′)′ = 0, (2.2.19)

where (uv′ − vu′)′ = uv′′ − vu′′.
An equivalent form of (2.2.19) is derived as [p(uv′ − vu′)]′ = 0, which follows that

u(x)v′(x)− u′(x)v(x) =
c

p(x)
(2.2.20)

for some constant c.

Construction of the Green’s Function

To set up G, we propose two nontrivial solutions u(x) and v(x) of Ly = 0 with

the associated boundary conditions (2.2.13) at x = a for u(x) and at x = b for v(x).

Then, G1(x) = c1u(x) and G2(x) = c2v(x) automatically satisfy the conditions C1

and C2. It remains to set the values of c1 and c2 in terms of ξ. The conditions C3 and

C4 imply G1(ξ) = G2(ξ) and G′2(ξ)−G′1(ξ) =
−1

p(ξ)
, respectively. Then, one has

c2v(ξ)− c1u(ξ) = 0 (2.2.21a)

c2v
′(ξ)− c1u′(ξ) =

−1

p(ξ)
. (2.2.21b)

The system of equations (2.2.21a) and (2.2.21b) possesses a unique solution for c1

and c2 if the Wronskian

W
(
u(ξ), v(ξ)

)
=

∣∣∣∣∣∣u(ξ) v(ξ)

u′(ξ) v′(ξ)

∣∣∣∣∣∣
of the solutions u and v of Ly = 0 is nonzero. When u and v are linearly independent,

W
(
u(ξ), v(ξ)

)
= u(ξ)v′(ξ)− v(ξ)u′(ξ) 6= 0. (2.2.22)
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Employment Abel’s formula for u and v gives rise to

u(ξ)v′(ξ)− v(ξ)u′(ξ) =
c

p(ξ)
, (2.2.23)

where c is nonzero by (2.2.22). Multiplication of each member of (2.2.23) by
−1

c

leads to
−u(ξ)

c
v′(ξ) − −v(ξ)

c
u′(ξ) =

−1

p(ξ)
, where

−u(ξ)

c
and
−v(ξ)

c
stand for c1

and c2, respectively, in (2.2.21b).

The ultimate format of (2.2.15) becomes

G(x) =


−1

c
u(x)v(ξ) if a < x ≤ ξ

−1

c
u(ξ)v(x) if ξ ≤ x < b ,

(2.2.24)

which completes the construction of G. It is clearly seen that the Green’s function is

symmetric; that is, G(x, ξ) = G(ξ, x).

Equivalence of the integral-equation formulation (2.2.16) to the boundary value

problem consisting of (2.2.12) and the specified boundary conditions is established in

two parts:

Part 1 (Reduction of the formulation (2.2.16) to the boundary value problem

consisting of (2.2.12) and the specified boundary conditions).

Let us start by substituting the explicit form (2.2.24) of G into (2.2.16). Then, we

obtain

y(x) =
−1

c

[ ∫ x

a

v(x)u(ξ)Φ(ξ)dξ +

∫ b

x

u(x)v(ξ)Φ(ξ)dξ

]
. (2.2.25)

11



Differentiation of each member of (2.2.25) yields

y′(x) =
−1

c

[
v(x)u(x)Φ(x) +

∫ x

a

v′(x)u(ξ)Φ(ξ)dξ − u(x)v(x)Φ(x) +

∫ b

x

u′(x)v(ξ)Φ(ξ)dξ

]

=
−1

c

[ ∫ x

a

v′(x)u(ξ)Φ(ξ)dξ +

∫ b

x

u′(x)v(ξ)Φ(ξ)dξ

]
.

(2.2.26)

Second differentiation of y(x) leads to

y′′(x) =
−1

c

[ ∫ x

a

v′′(x)u(ξ)Φ(ξ)dξ+

∫ b

x

u′′(x)v(ξ)Φ(ξ)dξ

]
−1

c

[
v′(x)u(x)−u′(x)v(x)

]
Φ(x).

(2.2.27)

By recalling that Ly = py′′ + p′y′ + qy and that u and v satisfy (2.2.20), equation

(2.2.27) is transformed into

Ly(x) =
−1

c

[
p(x)

∫ x

a

v′′(x)u(ξ)Φ(ξ)dξ + p(x)

∫ b

x

u′′(x)v(ξ)Φ(ξ)dξ

]
− p(x)

c

c

p(x)
Φ(x)

− 1

c

[
p′(x)

∫ x

a

v′(x)u(ξ)Φ(ξ)dξ + p′(x)

∫ b

x

u′(x)v(ξ)Φ(ξ)dξ

]

− 1

c

[
q(x)

∫ x

a

v(x)u(ξ)Φ(ξ)dξ + q(x)

∫ b

x

u(x)v(ξ)Φ(ξ)dξ

]
= −1

c

[ ∫ x

a

[
p(x)v′′(x) + p′(x)v′(x) + q(x)v(x)

]
u(ξ)Φ(ξ)dξ

+

∫ b

x

[
p(x)u′′(x) + p′(x)u′(x) + q(x)u(x)

]
v(ξ)Φ(ξ)dξ

]
− Φ(x)

= −1

c

[ ∫ x

a

Lv(x)u(ξ)Φ(ξ)dξ +

∫ b

x

Lu(x)v(ξ)Φ(ξ)dξ

]
− Φ(x)

= −Φ(x),

where Lv(x) = 0 = Lu(x). Therefore, (2.2.16) implies (2.2.12).

Moreover, imposing x = a on (2.2.25) and (2.2.26), we obtain

y(a) =
−1

c
u(a)

∫ b

a

v(ξ)Φ(ξ)dξ (2.2.28a)
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and

y′(a) =
−1

c
u′(a)

∫ b

a

v(ξ)Φ(ξ)dξ, (2.2.28b)

respectively. Multiplying each member of (2.2.28a) and (2.2.28b) by u′(a) and u(a),

respectively, we observe the equality u′(a)y(a) = u(a)y′(a), which is equivalent to

u′(a)y(a)+
(
−u(a)

)
y′(a) = 0, where u′(a) and−u(a) are the constants which stand

for k1 and k2 in (2.2.13). A similar process guarantees the fulfillment of the condition

for x = b. Therefore, y, determined by the formulation (2.2.16), satisfies the specified

boundary conditions.

Part 2 (Deduction of the formulation (2.2.16) from the boundary value prob-

lem consisting of (2.2.12) and the specified boundary conditions).

Let us start by the simple equality

∫ b

a

G(x, ξ)Φ(x)dx =

∫ b

a

G(x, ξ)
[
− Ly(x)

]
dx = −

∫ b

a

G(x, ξ)
[
Ly(x)

]
dx.

(2.2.29)

Dividing the interval of the right member of (2.2.29) into two subintervals and apply-

ing the self-adjoint operator L in (2.2.14) to y(x), we obtain

∫ b

a

G(x, ξ)Φ(x)dx = −
∫ ξ

a

G1(x, ξ)
[(
p(x)y′(x)

)′
+ q(x)y(x)

]
dx

−
∫ b

ξ

G2(x, ξ)
[(
p(x)y′(x)

)′
+ q(x)y(x)

]
dx

= −
∫ ξ

a

G1(x, ξ)
[(
p(x)y′(x)

)′]
dx−

∫ b

ξ

G2(x, ξ)
[(
p(x)y′(x)

)′]
dx

−
∫ ξ

a

G1(x, ξ)q(x)y(x)dx−
∫ b

ξ

G2(x, ξ)q(x)y(x)dx.

(2.2.30)

Integration of the first two members by parts and condensation of the other members
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on the right of (2.2.30) yield

∫ b

a

G(x, ξ)Φ(x)dx = −p(ξ)G1(ξ)y
′(ξ) +G1(a)p(a)y′(a) +

∫ ξ

a

G′1(x)p(x)y′(x)dx

−G2(b)p(b)y
′(b) +G2(ξ)p(ξ)y

′(ξ) +

∫ b

ξ

G′2(x)p(x)y′(x)dx

−
∫ b

a

G(x, ξ)q(x)y(x)dx.

(2.2.31)

By recalling that any linear combination (2.2.13) of the function y(x) and its deriva-

tive y′(x) vanishes at the endpoints of the interval [a, b] due to the homogeneous

specified boundary conditions, equation (2.2.31) is abbreviated as

∫ b

a

G(x, ξ)Φ(x)dx = −p(ξ)G1(ξ)y
′(ξ) +

∫ ξ

a

G′1(x)p(x)y′(x)dx

+G2(ξ)p(ξ)y
′(ξ) +

∫ b

ξ

G′2(x)p(x)y′(x)dx

−
∫ b

a

G(x, ξ)q(x)y(x)dx.

(2.2.32)

Due to the third condition C3 of G, (2.2.32) takes the simple form

∫ b

a

G(x, ξ)Φ(x)dx =

∫ ξ

a

G′1(x)p(x)y′(x)dx+ +

∫ b

ξ

G′2(x)p(x)y′(x)dx

−
∫ b

a

G(x, ξ)q(x)y(x)dx.

(2.2.33)

Integration of the first two terms on the right of (2.2.33) by parts and employment of

the specified boundary conditions lead to

∫ b

a

G(x, ξ)Φ(x)dx = G′1(ξ)p(ξ)y(ξ)−
∫ ξ

a

(
G′1(x)p(x)

)′
y(x)dx

−G′2(ξ)p(ξ)y(ξ)−
∫ b

ξ

(
G′2(x)p(x)

)′
y(x)dx

−
∫ b

a

G(x, ξ)q(x)y(x)dx.

(2.2.34)
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Conditions C1 and C4 of G simplify (2.2.34) to

∫ b

a

G(x, ξ)Φ(x)dx =

∫ ξ

a

G1(x, ξ)q(x)y(x)dx+

∫ b

ξ

G2(x, ξ)q(x)y(x)dx

−
∫ b

a

G(x, ξ)q(x)y(x)dx+ p(ξ)
1

p(ξ)
y(ξ)

= y(ξ).

(2.2.35)

Changing the variables in (2.2.35) and using the symmetry of G(x, ξ), we ultimately

obtain

∫ b

a

G(x, ξ)Φ(ξ)dξ =

∫ b

a

G(ξ, x)Φ(ξ)dξ = y(x).

Hence, the integral-equation formulation (2.2.16) is deduced from the boundary value

problem consisting of (2.2.12) and the specified boundary conditions.

As a result, part 1 and part 2 together imply that the integral-equation formula-

tion (2.2.16) and the boundary value problem consisting of (2.2.12) and the specified

boundary conditions are exactly equivalent.

An excellent illustrative example of this equivalence is given by the installation of the

integral-equation formulation of the one-dimensional Schrödinger equation in Sec-

tion 2.3.

2.3 Integral Equation-Formulation of the One-Dimensional Schrödinger Equa-

tion

The Schrödinger equation is regarded as the fundamental equation of quantum the-

ory in physics. In addition to the extensive affect of this equation in modern physics,

it is of great interest to many researchers in applied mathematics. Despite the avail-

ability of various forms of the Schrödinger equation, we deal with its particular form

called the one-dimensional Schrödinger equation [6], given by

~2

2m

d2ψ

dx2
+ v(x)ψ(x) = Eψ(x), (2.3.36)
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where the eigenfunction ψ(x), the eigenvalue E, the constants ~ and m represent the

wave function, the energy eigenvalue, the Planck constant and the mass of a parti-

cle, respectively, under a potential v(x). Leaving aside the physical implications of

(2.3.36) and turning our attention to its mathematical aspect, we obtain the eigenvalue

problem [3]

−y′′(x) + v(x)y(x) = λy(x), (2.3.37)

which is an equivalent modified form of (2.3.36). Together with the homogeneous

boundary conditions y(−l) = 0 = y(l), (2.3.37) becomes the boundary value prob-

lem on [−l, l], explicitly given by

−y′′(x) + v(x)y(x) = λy(x), y(−l) = 0 = y(l), x ∈ (−l, l). (2.3.38)

Boundary value problem (2.3.38) is called the Dirichlet boundary value problem,

whose detailed consideration is given in Section 3.1.

For the reformulation of the problem useful for our numerical purpose introduced in

chapter 3, (2.3.38) is simply converted to the equivalent form

−y′′(t) + w(t)y(t) = λ̃y(t), y(−π) = 0 = y(π), t ∈ (−π, π). (2.3.39)

by means of a scaling relation

x =
l

π
t, (2.3.40a)

where

w(t) =
l2

π2
v

(
l

π
t

)
(2.3.40b)

and

λ̃ =
l2

π2
λ. (2.3.40c)
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The exact self-adjoint form of (2.3.39) is expressed by

y′′(t) +
(
λ̃− w(t)

)
y(t) = 0, y(−π) = 0 = y(π), t ∈ (−π, π), (2.3.41)

which is equivalent to

Ly + Φ(t) = 0, y(−π) = 0 = y(π), t ∈ (−π, π), (2.3.42)

where Ly(t) = y′′(t) and Φ(t) =
(
λ̃− w(t)

)
y(t).

The equivalent integral-equation formulation of (2.3.41) is

y(t) =

∫ π

−π
G(t, ξ)

(
λ̃− w(ξ)

)
y(ξ)dξ

= −
∫ π

−π
G(t, ξ)w(ξ)y(ξ)dξ + λ̃

∫ π

−π
G(t, ξ)y(ξ)dξ,

(2.3.43)

which is a Fredholm equation of the second kind, where the Green’s function G(t) is

to be determined.

For the construction of the Green’s function G, let us propose the general solution

y = c1 + c2t of Ly(t) = 0. If u(t) and v(t) are two nontrivial solutions satisfying the

homogeneous boundary conditions u(−π) = 0 and v(π) = 0, then u(t) and v(t) are

taken as u(t) = π + t and v(t) = t − π. Therefore, G is expressed in the form of

(2.2.24) as

G(t) =


−1

c
(π + t)(ξ − π) if − π < t ≤ ξ

−1

c
(π + ξ)(t− π) if ξ ≤ t < π .

(2.3.44)

Condition C4 ofG implies G′2(ξ)−G′1(ξ) =
−1

p(ξ)
, whereG1(t) =

−1

c
(π+ t)(ξ−π),

G2(t) =
−1

c
(π + ξ)(t − π) and p(x) ≡ 1. It immediately follows that c = 2π.

17



(2.3.44), then, becomes

G(t) =


1

2π
(t+ π)(π − ξ) if − π < t ≤ ξ

1

2π
(π + ξ)(π − t) if ξ ≤ t < π .

(2.3.45)

Substitution of (2.3.45) into (2.3.43) permits us to deduce the corresponding integral-

equation formulation

y(t) = −
∫ π

−π
G(t, ξ)w(ξ)y(ξ)dξ + λ̃

∫ π

−π
G(t, ξ)y(ξ)dξ, (2.3.46)

of the scaled form (2.3.41) of (2.3.38), where

G(t, ξ) =


1

2π
(π + ξ)(π − t) if − π < ξ ≤ t

1

2π
(π + t)(π − ξ) if t ≤ ξ < π .

(2.3.47)

acts as a function of ξ.

As are clearly seen from (2.3.45) and (2.3.47), two formulations G(t, ξ) and

G(ξ, t) are unchanged when t and ξ are interchanged; that is, G(t, ξ) = G(ξ, t) and

hence G is symmetric, as expected.

The symmetry of G has an enormous effect on simplifications of our further

computations in chapter 4.
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CHAPTER 3

A REVIEW OF NUMERICAL APPROACHES TO SINGULAR PROBLEMS

THROUGH THE FINITE BOUNDARY VALUE PROBLEMS

In addition to the Dirichlet boundary value problem introduced by (2.3.38), if the

equation (2.3.37) satisfies the homogeneous boundary conditions y′(−l) = 0 = y′(l),

then the new boundary value problem takes the form of

−y′′(x) + v(x)y(x) = λy(x), y′(−l) = 0 = y′(l), x ∈ (−l, l), (3.0.1)

which is called the Neumann boundary value problem.

The Dirichlet and Neumann boundary value problems both become singular boundary

value problems over (−∞,∞) as l diverges to infinity.

3.1 Behaviours of the Eigenvalues of the One-Dimensional Schrödinger Equa-

tion

If the potential v(x) = x2 is substituted into the one-dimensional Schrödinger

equation (2.3.37), then the equation so obtained is expressed by

−y′′(x) + x2y(x) = λy(x), (3.1.1)

known as the famous quantum mechanical harmonic oscillator problem. Moreover,

(3.1.1) is analytically solvable in (−∞,∞) with the exact associated eigenvalues

λ∞n = 2n + 1 for n = 0, 1, 2, ..., especially used for testing various numerical meth-

ods.
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As a result of the consideration of that the singular boundary value problem is the

limiting case of the finite boundary value problem on [−l, l], we may observe the fol-

lowing remarkable corollary [3].

Corollary. The eigenvalues λ+(l) and λ−(l) of Dirichlet and Neumann boundary

value problems, respectively, generate two-sided eigenvalue bounds for the eigenval-

ues λ∞ of the singular boundary value problem in the sense that λ−(l) < λ∞ < λ−(l),

where l > l0 for some threshold value l0 of l.

The core of this corollary can be reflected by Figure 3.1, see [3].

l

λn(l)

λ∞n

l0

λ+n (l)

λ−n (l)

Figure 3.1: Asymptotic Behaviours of Dirichlet and Neumann Eigenvalues

It may be observed from 3.1 that the upper bound λ+(l) and the lower bound λ−(l)

for λ∞ both have asymptotic behaviours. Furthermore, λ+(l)−λ−(l) can be regarded

as the measure of the error in the computation of λ∞, which is not directly calculated,

but is approximately calculated by λ−(l) within negligible errors when l is sufficiently

large.

20



It is also clear that liml→∞[λ+(l)− λ−(l)] = 0; or, equivalently, for any given ε > 0,

there exists a threshold value l0 of l such that λ+(l) − λ−(l) < ε whenever l > l0,

which implies that the error in the computation of λ∞ can be made arbitrarily small

by taking l sufficiently large. In other words, λ∞ can be satisfactorily approximated

within a desired accuracy.

An efficient methodology to demonstrate the successful approximation of λ∞ is the

Rayleigh-Ritz method, which is introduced in Section 3.2. The following remark,

however, creates a motivational base that is essential for the construction of the pro-

cedure.

Remark.

• The sequences of trigonometric functions

φ2k(x) =
1√
π

cos(k +
1

2
)x, k = 0, 1, 2, ... (3.1.2a)

φ2k+1(x) =
1√
π

sin(k + 1)x, k = 0, 1, 2, ... (3.1.2b)

satisfies the Dirichlet boundary conditions and form orthonormal bases over

x ∈ [−π, π]. The even functions in (3.1.2a) and the odd ones in (3.1.2b) de-

compose the spectrum of the finite boundary value problem in [−π, π] into

two disjoint subsets consisting of even and odd parity state eigenvalues, sepa-

rately, if the potential v(x) has a reflection symmetry; that is, if v(x) is an even

function [3]. Moreover, Taşeli and Eid [8] have shown that the bases formed

by (3.1.2a) and (3.1.2b) give satisfactory results in two and three-dimensional

Schrödinger equations as well.

• The choice of the basis of trigonometric functions, even or odd, separately, di-

minishes the dimensions of matrices arising from the matrix eigenvalue prob-

lem as an ultimate result of the Rayleigh-Ritz method. We will carry out the

procedure with an even polynomial, and hence having the reflection symmetry,
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by utilizing the basis in (3.1.2a) to obtain even state eigenvalues. A similar pro-

cedure can be followed by (3.1.2b) to get odd state eigenvalues. The cases both,

however, facilitate the computation of the eigenvalues avoiding the laboured

evaluation of large matrices.

3.2 The Rayleigh-Ritz Method

The Rayleigh-Ritz method, used together with a basis of trigonometric functions

in (3.1.2a) or (3.1.2b) satisfying the Dirichlet boundary conditions, is quite effective

to accurately compute eigenvalues of the one-dimensional Schrödinger equation with

an even polynomial [4] . This method enables the even and odd state eigenvalues,

separately, of an unbounded problem to be approximated by making use of the basis

sets (3.1.2a) and (3.1.2b), respectively, with negligible errors whenever the boundary

parameter l of the associated bounded problem remains greater than a critical value

lcr. Taking the above remark into account, we may expand an even state eigenfunction

of the bounded problem in [−π, π] in terms of the basis elements in (3.1.2a). In other

words, any even state eigenfunction ψT (x), called the trial function, is expressible as

a linear combination of the basis elements in (3.1.2a) and hence it satisfies

−y′′(x) + v(x)y(x) = λy(x), y(−π) = 0 = y(π) (3.2.3)

when v(x) is an even polynomial in the form of

v(x) =
M∑
i=1

v2ix
2i. (3.2.4)

Therefore, the substitution of ψT (x) =
∞∑
k=0

ckφ2k(x) into (3.2.3), the application of

the inner product of each member of the so obtained equation by φ2j(x) and the

truncation of the series expansion of ψT with the size N yield the eigenvalue problem

N−1∑
k=0

Hjkck = λ

N−1∑
k=0

δjkck, (3.2.5)
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where Hjk = − < φ′′2k(x), φ2j(x) > + < v(x)φ2k(x), φ2j(x) > and δjk represents

the elements of the matrix H and Kronecker’s delta, respectively. Further evaluation

of the inner products gives rise to the results

Hjk =
(
j − 1

2

)2
δjk +

M∑
i=1

v2i[R
(i)
j+k−1 +R

(i)
j−k], (3.2.6)

where

R(i)
n =

1

π

∫ π

0

x2icos(nx)dx. (3.2.7)

More explicit equivalent forms are given by

R(i)
n =

i−1∑
p=0

(−1)p+n

n2(p+1)

(
2i

2p+ 1

)
(2p+ 1)!π2(i−1−p), n > 0 (3.2.8a)

R
(i)
0 =

π2i

2i+ 1
, n = 0 (3.2.8b)

or

n2R(i)
n = 2iπ2(i−1)(−1)k − 2i(i− 1)R(i−1)

n , i ≥ 1 (3.2.9)

with the initial condition R(0)
k = 0.
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CHAPTER 4

APPLICATION OF THE RAYLEIGH-RITZ METHOD TO THE

INTEGRAL-EQUATION FORMULATION OF THE ONE-DIMENSIONAL

SCHRÖDINGER EQUATION

4.1 Introduction

The equivalence of the Dirichlet boundary value problem (2.3.38) and its corre-

sponding integral- equation formulation (2.3.46) enables us to apply the Rayleigh-

Ritz method, together with the basis elements in (3.1.2a), to (2.3.46) in order to

approximate the even state eigenvalues λ∞n , n = 0, 2, 4, ..., of the singular bound-

ary value problem up to 15 digits accuracy employing the even polynomial potential

v(x) = x2+βx4, known as the anharmonic quartic oscillator, so long as the boundary

parameter l remains greater than a critical value lcr of l.

In particular, β = 0 case is used as a testing ground for our method since the

singular problem becomes the famous harmonic oscillator problem whose even state

eigenvalues are exactly known as λ∞n = 2n+ 1, n = 0, 2, 4, ... over x ∈ (−∞,∞).

4.2 The Process of the Application of the Method

Proposing an even state truncated solution of type

y(t) =
N−1∑
k=0

ckφ2k(t) (4.2.1)
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for (2.3.46), where φ2k(t) = 1√
π
cos(k + 1

2
)t, k = 0, 1, ..., N − 1, given by (3.1.2a)

and substituting (4.2.1) into (2.3.46), we obtain

N−1∑
k=0

ckφ2k(t) = −
∫ π

−π

[
G(t, ξ)w(ξ)

N−1∑
k=0

ckφ2k(ξ)
]
dξ+λ̃

∫ π

−π

[
G(t, ξ)

N−1∑
k=0

ckφ2k(ξ)
]
dξ.

(4.2.2)

Multiplication of each member of (4.2.2) by φ2j(t) and integration with respect to t

over (−π, π) yield

N−1∑
k=0

ck

∫ π

−π
φ2j(t)φ2k(t)dt =−

N−1∑
k=0

ck

∫ π

−π

∫ π

−π
G(t, ξ)w(ξ)φ2k(ξ)φ2j(t)dξdt

+ λ̃
N−1∑
k=0

ck

∫ π

−π

∫ π

−π
G(t, ξ)φ2k(ξ)φ2j(t)dξdt.

(4.2.3)

By making use of the symmetry of G(t, ξ) and reversing the order of each integration

on the right, (4.2.3) is converted to

N−1∑
k=0

δjkck =−
N−1∑
k=0

ck

∫ π

−π
w(ξ)φ2k(ξ)

∫ π

−π
G(ξ, t)φ2j(t)dtdξ

+ λ̃

N−1∑
k=0

ck

∫ π

−π
φ2k(ξ)

∫ π

−π
G(ξ, t)φ2j(t)dtdξ,

(4.2.4)

where δjk is Kronecker’s delta andG is the relevant Green’s function acting as a func-

tion of t.

Abbreviations

Ij(ξ) =

∫ π

−π
G(ξ, t)φ2j(t)dt, (4.2.5)

Bjk =

∫ π

−π
φ2k(ξ)Ij(ξ)dξ (4.2.6a)
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and

Ajk = −
∫ π

−π
w(ξ)φ2k(ξ)Ij(ξ)dξ (4.2.6b)

transform (4.2.4) into

N−1∑
k=0

δjkck =
N−1∑
k=0

Ajkck + λ̃
N−1∑
k=0

Bjkck, (4.2.7)

which is equivalent to the generalized matrix eigenvalue problem

(I−A)c = λ̃Bc (4.2.8)

where Bjk, Ajk, ck stand for the elements of matrices A, B, the column matrix c,

respectively, and I is the identity matrix generated by Kronecker’s delta δjk. Matrix

B, further, is shown to be invertible and diagonal in Section 4.3, so (4.2.8) is reduced

to a simpler form

Âc = λ̃c, (4.2.9)

where

Â = B−1(I−A). (4.2.10)

4.3 Evaluation of Exact Formulations of Entries of the Matrices (The Effect of

the Symmetry of the Green’s Function)

Implicit formulations of entries of the matrices were obtained in their simple forms

with the help of the assumed symmetry of G in Section 4.2. An alternative procedure

of acquirement and computation of the same formulations is given in Appendix A to

show how evaluations are much more complicated without making use of the sym-

metry of G. In this section, however, all the computations are simply carried out to

obtain the exact formulation of entires of the matrices appeared in Section 4.2.

4.3.1 Evaluation of the Integral Formulation Ij(ξ)

Substitution of G, given in (2.3.45) by
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G(t) =


1
2π

(t+ π)(π − ξ) if − π < t ≤ ξ

1
2π

(π + ξ)(π − t) if ξ ≤ t < π,

and φ2j(t), given in (3.1.2a) by φ2j(t) =
1√
π

cos(j + 1
2
)t, into (4.2.5) leads to the

equation

Ij(ξ) =
1

2π
√
π

[
(π−ξ)

∫ ξ

−π
(π+ t) cos(j+

1

2
)tdt+(ξ+π)

∫ π

ξ

(π− t) cos(j+
1

2
)tdt

]
.

(4.3.11)

Integration of each term on the right by parts, together with the abbreviations, yields

Ij(ξ) =
4√
π

cos(j + 1
2
)ξ

(2j + 1)2
. (4.3.12)

4.3.2 Evaluation of the Entries of B

Substitution of φ2k in (3.1.2a) and Ij(ξ) in (4.3.12) into (4.2.6a) yields

Bjk =
2

π(j + 1
2
)2

∫ π

0

cos

(
(k +

1

2
)ξ

)
cos

(
(j +

1

2
)ξ

)
dξ

=


4

(2k+1)2
, if k = j

0, if k 6= j.

(4.3.13)

It immediately follows that B is a diagonal matrix, whose inverse B−1 is generated

by the entries

B−1jk =


(2k + 1)2

4
, if k = j.

0, if k 6= j.
(4.3.14)
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4.3.3 Evaluation of the Entries of A and Â (The result of the Symmetry of Â)

As is clearly seen from the implicit formulation of the entries of A in (4.2.6b),

evaluation of the general entry Ajk is determined by the potential w, where

w(t) = l2

π2v( l
π
t) given by (2.3.40b), v(x) is the potential of the original formulation

of the problem in (2.3.38) and x = l
π
t is the scaling relation in (2.3.40a) that maps

the domain from x ∈ [−l, l] to t ∈ [−π, π]. Therefore, the entries of A are dependent

upon the choice of the potentials v(x) for which we try the harmonic and anharmonic

quartic oscillators.

4.3.3.1 Harmonic Oscillator (v(x) = x2)

Substitution of w(t) = l2

π2v( l
π
t) = l4

π4 t
2, given by (2.3.40b), φ2k given by (3.1.2a),

and Ij(ξ), given by (4.3.12), into (4.2.6b) leads to

Ajk =
−2l4

π5(2j + 1)2

∫ π

−π
[ξ2 cos(k + j + 1)ξ + ξ2 cos(k − j)ξ]dξ. (4.3.15)

Two integrations of the members on the right by parts result in

Ajk =


2l4

π4(2k + 1)2

[
4

(2k + 1)2
− 2π2

3

]
, if k = j

8l4(−1)k+j

π4(2j + 1)2

[
1

(k + j + 1)2
− 1

(k − j)2

]
, if k 6= j.

(4.3.16)

If use is made of (4.2.10), the general entry of Âjk of Â is obtained by

Âjk =

B
−1
kk (1− Akk), if k = j

−B−1jj Ajk, if k 6= j.
(4.3.17)
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Insertion of (4.3.14) and (4.3.16) in (4.3.17) yields

Âjk =


(2k + 1)2

4
− l4

π4

(
2

(2k + 1)2
− π2

3

)
, if k = j

2l4(2k + 1)(2j + 1)(−1)k+j

π4(k − j)2(k + j + 1)2
, if k 6= j.

(4.3.18)

It is not surprising that matrix Â is symmetric; that is Âjk = Âkj , since it reflects the

symmetry of our self-adjoint problem whose eigenvalues are all real!

4.3.3.2 Anharmonic Quartic Oscillator (v(x) = x2 + βx4)

Following the same procedure as in section (4.3.3.1), substitution of

w(t) =
l2

π2
v(
l

π
t) =

l4

π4
t2 + β

l6

π6
t4,

φ2k and Ij(ξ) given in (2.3.40b), (3.1.2a) and (4.3.12), respectively, into (4.2.6b)

yields

Ajk =
−4l4

π5(2j + 1)2

[ ∫ π

0

ξ2
(

cos(k + j + 1)ξ + cos(k − j)ξ
)
dξ

+
βl2

π2

∫ π

0

ξ4
(

cos(k + j + 1)ξ + cos(k − j)ξ
)
dξ

]
.

(4.3.19)

Two integrations of the first term and four integrations of the second term on the right

by parts yield

Ajk =


4l4

π4(2k+1)2

[
2

(2k+1)2
− π2

3
+ βl2

π2

(
4π2

(2k+1)4
− π4

5
− 24

(2k+1)2

)]
, if k = j

−8l4(2k+1)(−1)k+j

π4(2j+1)(k−j)2(k+j+1)2

[
1 + 2βl2

π2

(
π2 − 6[(k+j+1)2+(k−j)2]

(k−j)2(k+j+1)2

)]
, if k 6= j.

(4.3.20)
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Insertion of (4.3.14) and (4.3.20) in (4.3.17) leads to

Âjk =


(2k+1)2

4
− l4

π4

(
2

(2k+1)2
− π2

3

)
+ β l6

π6

(
π4

5
+ 24

(2k+1)4
− 4π2

(2k+1)2

)
, if k = j

2l4(2k+1)(2j+1)(−1)k+j

π4(k−j)2(k+j+1)2

[
1 + β 2l2

π2

(
π2 − 6[(k+j+1)2+(k−j)2]

(k−j)2(k+j+1)2

)]
, if k 6= j

(4.3.21)

It is, again, clear that Âjk = Âkj and hence matrix Â is symmetric as expected. Fur-

thermore, it may be inductively shown that matrix Â is symmetric whenever the po-

tential v(x) is taken as the generalized anharmonic oscillator x2 +βx2m, m = 2, 3, ...

due to the symmetric structure of our self-adjoint problem. Note that formulations

(4.3.18) and (4.3.21) agree when β = 0.
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CHAPTER 5

NUMERICAL RESULTS AND DISCUSSION

By recalling from the eigenvalue problem (4.2.9) that Â is the matrix yielding

the spectrum of the integral-equation formulation (2.3.46) of the corresponding scaled

Dirichlet boundary value problem (2.3.41) of (2.3.38), the eigenvalues of (2.3.46) and

hence the eigenvalues of (2.3.38) are simply computed since the exact formulations of

all entries of the symmetric matrix Â were obtained for the harmonic and anharmonic

quartic oscillators in Chapter 4. All numerical computations are performed by means

of the MATLAB language. Numerical results of the even parity state eigenvalues for

the harmonic and anharmonic quartic oscillators tabulated are up to 15 digits.

5.1 Even Parity State Eigenvalues for the Harmonic Oscillator

Tables 5.1, 5.2 and 5.3 include ground-state λ0, second excited-state λ2 and

fourth excited-state λ4 eigenvalues, respectively, corresponding to the number N of

basis functions and the boundary parameter l. Tabulated eigenvalues λ0, λ2 and λ4

are the upper bounds to the even state eigenvalues λ∞0 , λ∞2 and λ∞4 , respectively, of

the unbounded harmonic oscillator problem whose eigenvalues are exact by λ∞0 = 1,

λ∞2 = 5 and λ∞4 = 9.

As is clearly seen from Tables 5.1, 5.2 and 5.3, among the boundary parameters l,

indicated, there is a critical value (distance) lcr of l at which the eigenvalue of the

unbounded problem is calculated up to 15 digits accuracy with an optimal truncation

size N .
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Table 5.1: Convergence of ground-state eigenvalues λ0(l, N) of the harmonic oscil-

lator v(x) = x2 up to 15 digits as a function of the boundary parameter l and the

truncation order N .

l N λ0(l, N)

8 1.000 000 001 147 89

5.5 11 1.000 000 000 000 88

14 1.000 000 000 000 89

20 1.000 000 000 000 89

10 1.000 000 000 025 80

6.3 11 1.000 000 000 000 12

12 1.000 000 000 000 00

13 1.000 000 000 000 00

11 1.000 000 000 000 86

6.5 12 1.000 000 000 000 00

13 1.000 000 000 000 00

12 1.000 000 000 000 03

6.7 13 1.000 000 000 000 00

14 1.000 000 000 000 00

14 1.000 000 000 000 17

8 15 1.000 000 000 000 00

16 1.000 000 000 000 00

Namely, according to Table 5.1, the critical value lcr is observed to lie around 6.3,

where the desired accuracy is obtained using 12 basis functions, whereas lcr = 6.6

with N = 14 and lcr = 7.1 with N = 16 in Tables 5.2 and 5.3, respectively. It is also

clear from the tables that the boundary parameters l, less than the critical values lcr

indicated, do not yield the convergence of the eigenvalues of the bounded problem to

those of the unbounded harmonic oscillator problem even though the truncation size

is relatively large. Furthermore, the convergence with the same truncation size N as

obtained at the critical distance to reach the desired accuracy is possibly acquired as

the boundary parameter l is sufficiently close to lcr. To illustrate, boundary parame-

ters l = 6.5 around lcr = 6.3 with N = 12 in Table 5.1, l = 6.7 around lcr = 6.6 with
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Table 5.2: Convergence of n = 2 excited-state eigenvalues λ2(l, N) of the harmonic

oscillator v(x) = x2 up to 15 digits as a function of the boundary parameter l and the

truncation order N .

l N λ2(l, N)

12 5.000 000 000 007 37

6 13 5.000 000 000 007 34

14 5.000 000 000 007 34

15 5.000 000 000 007 34

12 5.000 000 000 023 24

6.6 13 5.000 000 000 000 10

14 5.000 000 000 000 00

15 5.000 000 000 000 00

13 5.000 000 000 000 32

6.7 14 5.000 000 000 000 00

15 5.000 000 000 000 00

14 5.000 000 000 000 03

7 15 5.000 000 000 000 00

16 5.000 000 000 000 00

15 5.000 000 000 000 03

7.5 16 5.000 000 000 000 00

17 5.000 000 000 000 00

N = 14 in Table 5.2 and l = 7.2 around lcr = 7.1 with N = 16 in Table 5.3 also lead

to the convergence of the eigenvalues within the desired accuracy.

Larger boundary parameters l than the critical values lcr, however, give rise to the

convergence of the eigenvalues with larger truncation sizes N due to asymptotic be-

haviors of the eigenvalues in accordance with 3.1 given in Section 3.1. To illustrate,

l = 8 > lcr = 6.3 with N = 15 in Table 5.1, l = 7.5 > lcr = 6.6 with N = 16 in

Table 5.2 and l = 8.5 > lcr = 7.1 with N = 19 in Table 5.3 yield the convergence,

where the numbers of basis functions are relatively large.
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Table 5.3: Convergence of n = 4 excited-state eigenvalues λ4(l, N) of the harmonic

oscillator v(x) = x2 up to 15 digits as a function of the boundary parameter l and the

truncation order N .

l N λ4(l, N)

12 9.000 000 002 970 40

6.5 15 9.000 000 000 010 69

20 9.000 000 000 010 69

15 9.000 000 000 000 28

7.1 16 9.000 000 000 000 00

17 9.000 000 000 000 00

15 9.000 000 000 000 87

7.2 16 9.000 000 000 000 00

17 9.000 000 000 000 00

15 9.000 000 000 002 59

7.3 16 9.000 000 000 000 01

17 9.000 000 000 000 00

18 9.000 000 000 000 00

18 9.000 000 000 000 33

8.5 19 9.000 000 000 000 00

20 9.000 000 000 000 00

5.2 Even Parity State Eigenvalues for the Anharmonic Quartic Oscillator

In Tables 5.4, 5.5 and 5.6, β represents the anharmonicity constant of the quartic

oscillator v(x) = x2 + βx4. λ0, λ2 and λ4 are the first three even state eigenvalues of

the integral equation formulation (2.3.46) of the scaled form (2.3.41) of the bounded

Dirichlet boundary value problem (2.3.38) computed at indicated critical values lcr.

The first three even state eigenvalues of the bounded problem, indeed, are obtained

at critical values lcr using the required number N of basis functions in order to ap-

proximate the first three even state eigenvalues λ∞0 , λ∞2 and λ∞4 of the corresponding

unbounded problem correct to 15 digits. Critical values are dependent on the varia-

tional parameter β, so lcr(β) is regarded as a function of β.
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Table 5.4: Ground-state eigenvalues λ0 of the anharmonic quartic oscillator v(x) =

x2 + βx4 up to 15 digits around the critical value lcr(β), as a function of β, estimated

by the scaling relation β−1/6lcr(1) for β ≥ 1.

β N lcr(β) β−1/6lcr(1) λ0

0.0001 12 6.30 - 1.000 074 986 880 20

0.001 13 6.20 - 1.000 748 692 673 18

0.01 11 6.00 - 1.007 373 672 081 38

0.1 13 5.00 - 1.065 285 509 543 71

1 14 3.75 3.75 1.392 351 641 530 29

10 14 2.55 2.55 2.449 174 072 118 38

100 15 1.78 1.74 4.999 417 545 137 58

1000 16 1.18 1.18 10.639 788 711 328 0

40000 16 0.65 0.64 36.274 458 133 736 0

Table 5.5: n = 2 Excited-state eigenvalues λ2 of the anharmonic quartic oscillator

v(x) = x2 + βx4 up to 15 digits around the critical value lcr(β), as a function of β,

estimated by the scaling relation β−1/6lcr(1) for β ≥ 1.

β N lcr(β) β−1/6lcr(1) λ2

0.0001 18 6.60 - 5.000 974 615 938 38

0.001 17 6.60 - 5.009 711 872 788 10

0.01 13 6.30 - 5.093 939 132 742 30

0.1 14 5.30 - 5.747 959 268 833 56

1 16 4.07 4.07 8.655 049 957 759 30

10 16 2.79 2.77 16.635 921 492 413 7

100 16 1.89 1.89 34.873 984 261 994 7

1000 17 1.29 1.29 74.681 404 200 164 8

40000 17 0.69 0.69 255.017 677 289 573

As β values range from the regime of small values to the regime of large values,

critical values of boundary parameters l vary from the ones near the harmonic regime

to the ones in the anharmonic regime. Determination of critical values of l is not

a difficult task for the regime of small values of β due to the similarity between the

behaviours of the anharmonic quartic oscillator and those of the harmonic oscillator.
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Table 5.6: n = 4 Excited-state eigenvalues λ4 of the anharmonic quartic oscillator

v(x) = x2 + βx4 up to 15 digits around the critical value lcr(β), as a function of β,

estimated by the scaling relation β−1/6lcr(1) for β ≥ 1.

β N lcr(β) β−1/6lcr(1) λ4

0.0001 17 7.2 - 9.003 072 972 044 61

0.001 17 7.2 - 9.030 549 566 074 71

0.01 15 6.9 - 9.289 479 816 311 88

0.1 16 6.0 - 11.098 595 622 633 0

1 19 4.85 4.85 18.057 557 436 303 2

10 20 3.29 3.30 35.885 171 222 253 8

100 20 2.25 2.25 75.877 004 028 669 7

1000 20 1.54 1.53 162.802 374 196 975

40000 20 0.84 0.82 556.200 474 630 523

As for determination of critical values of l for the regime of large values of β, a

very useful scaling relation β−1/6lcr(1), revealed by Taşeli [4], guides us to estimate.

Critical values for the regime of large values of β are indicated together with the cor-

responding outputs of the scaling relation in Tables 5.4, 5.5 and 5.6 to be compared.

Therefore, neither critical values of l for the regime of small values, nor those for the

regime of large ones are difficult to estimate for acquirement of the eigenvalues within

the desired accuracy using N basis functions. The Rayleigh-Ritz method enables us

to accurately obtain the eigenvalues of the unbounded problem with optimal trunca-

tion sizes N . Tables 5.4, 5.5 and 5.6 show that no matter how large the values of β

are, the desired accuracy is obtained by using required numbers N of basis functions

ranging from N = 12 to N = 20. All numerical results reflected in Tables 5.4, 5.5

and 5.6 are compatible with the outcomes of an integration-free method published by

Taşeli and Demiralp [5].

To summarize, Tables 5.4, 5.5 and 5.6, constructed as a result of the Rayleigh-Ritz

method, reflect the first three even parity state eigenvalues of the integral-equation

formulation of the corresponding finite Dirichlet boundary value problem. Moreover,

these eigenvalues are not only upper bounds for those of the corresponding singular

problem but also exact up to 15 digits around critical values lcr(β), roughly estimated

by the scaling relation β−1/6lcr(1), with optimal truncation sizes N as the anhar-
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monicity constant β varies from the regime of small values to that of large ones.
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CHAPTER 6

CONCLUSIONS

In this thesis, the exact equivalence of certain integral equations and differen-

tial equations is reflected by means of the application of the Rayleigh-Ritz method

to the integral-equation formulation of the finite Dirichlet boundary value problem

consisting of the one dimensional Schrödinger equation and its homogeneous bound-

ary conditions. The outcome of the application of the numerical method reveals the

even parity state eigenvalues of the corresponding singular problem within 15 digits

accuracy which are compatible with those published by Taşeli [4] and Demiralp [5].

In accordance with the process of the method, reformulation of the problem is

established for the scaled form of the Dirichlet boundary value problem utilizing a

scaling relation mapping the domain from x ∈ [−l, l] to t ∈ [−π, π]. The proce-

dure is, then, sustained by making use of an orthonormal basis of even parity state

trigonometric functions together with even polynomial potentials; namely, harmonic

oscillator and anharmonic quartic oscillator.

Initially, the first three even parity state eigenvalues of the integral-equation formu-

lation of the corresponding finite Dirichlet problem are compared with those of the

famous singular harmonic problem whose spectrum is exactly known by

{λn}∞n=0 = {2n+ 1}∞n=0.

After the successful completion of this test level, convergence of the even state eigen-

values of the integral-equation formulation of the bounded anharmonic quartic os-

cillator problem to those of the corresponding singular problem is observed. The

admirable advantages of the method are taken in the aspects of computation of the

eigenvalues with low-dimensional matrices and the convergence of the eigenvalues

around critical distances lcr whose rough estimations are not difficult thanks to a scal-
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ing relation [4]. As the variation of the anharmonicity constant β ranges from small

values to large values, critical values lcr change from those approximated around the

harmonic regime to those, in the anharmonic regime, roughly calculated by the scal-

ing relation.

As a result of this thesis, we form a chain of the following consequences which

are connected with magic word "symmetry" of mathematics:

• Since the problem concerned is the Dirichlet boundary value problem consist-

ing of the one-dimensional Schrödinger equation, of the self-adjoint form, and

the specified homogeneous boundary conditions, its corresponding integral-

equation formulation is achieved by the construction of the symmetric Green’s

function G.

• Employment of the Rayleigh-Ritz method with reflective symmetric polyno-

mial potentials permits of the evaluation of eigenvalues with matrices of small

orders, which prevents laborious computations.

• Exact formulation of the entries of matrix Â, through which the eigenvalues

are sought, is simply obtained with the help of the symmetry of G. (Difficulty

of computations without using the symmetry of G is shown in Appendix A.)

• The formulation indicates that Â is symmetric, leading to all real eigenvalues,

which is, indeed, the reflection of the symmetric structure of our self-adjoint

problem.
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APPENDIX A

AN ALTERNATIVE PROCEDURE OF EVALUATION OF EXACT

FORMULATIONS OF ENTRIES OF THE MATRICES

A.1 Introduction

The main target of this chapter is to show the great effect of the symmetry of the

Green’s functionG on simplification of complicated integrations. The one who would

prefer to cover this chapter rather than read Sections 4.2 and 4.3 misses the point of

strong impact of the symmetry of G on difficult calculations. Conversely, Sections

A.2 and A.3 are worth looking through to distinguish this impact from computational

aspects despite their equivalence to Sections 4.2 and 4.3, respectively.

A.2 The Process of the Application of the Method

Proposing an even state truncated solution of type

y(t) =
N−1∑
k=0

ckφ2k(t) (A.2.1)

for (2.3.46), where φ2k(t) = 1√
π

cos(k + 1
2
)t, k = 0, 1, ..., N − 1, given by (3.1.2a)

and substituting (A.2.1) into (2.3.46), we obtain

N−1∑
k=0

ckφ2k(t) = −
∫ π

−π

[
G(t, ξ)w(ξ)

N−1∑
k=0

ckφ2k(ξ)
]
dξ+λ̃

∫ π

−π

[
G(t, ξ)

N−1∑
k=0

ckφ2k(ξ)
]
dξ.

(A.2.2)

Multiplication of each member of (A.2.2) by φ2j(t) and integration with respect to t
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over (−π, π) yield

N−1∑
k=0

ck

∫ π

−π
φ2j(t)φ2k(t)dt =−

N−1∑
k=0

ck

∫ π

−π

∫ π

−π
G(t, ξ)w(ξ)φ2k(ξ)φ2j(t)dξdt

+ λ̃
N−1∑
k=0

ck

∫ π

−π

∫ π

−π
G(t, ξ)φ2k(ξ)φ2j(t)dξdt.

(A.2.3)

Direction of the process differs from that of the one followed in Section 4.2 at this

point omitting the usage of the symmetry of G made in Section 4.2.

Abbreviations

Ik(t) =

∫ π

−π
G(t, ξ)w(ξ)φ2k(ξ)dξ (A.2.4)

Jk(t) =

∫ π

−π
G(t, ξ)φ2k(ξ)dξ (A.2.5)

Ajk = −
∫ π

−π
Ik(t)φ2j(t)dt (A.2.6)

and

Bjk =

∫ π

−π
Jk(t)φ2j(t)dt (A.2.7)

transform (A.2.3) into

N−1∑
k=0

δjkck =
N−1∑
k=0

Ajkck + λ̃
N−1∑
k=0

Bjkck, (A.2.8)

which is equivalent to the generalized matrix eigenvalue problem

(I−A)c = λ̃Bc, (A.2.9)

where Bjk, Ajk, cj stand for the elements of the matrices A, B, the column matrix c,

respectively, and I is the identity matrix generated by Kronecker’s delta δjk. Matrix
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B, further, is shown to be invertible and diagonal in section A.3, so (A.2.9) is reduced

to a simpler form

Âc = λ̃c, (A.2.10)

where

Â = B−1(I−A). (A.2.11)

A.3 Evaluation of Exact Formulations of Entries of the Matrices

A.3.1 Evaluation of the Integral Formulations Ik(t) and Jk(t)

Substitution of G given in (2.3.47) by

G(t, ξ) =


1
2π

(π + ξ)(π − t), if − π < ξ ≤ t

1
2π

(π + t)(π − ξ), if t ≤ ξ < π,

φ2k, given in (3.1.2a), and w(t) =
l2

π2
v
( l
π
t
)

=
l4

π4
t2 + β

l6

π6
t4 into (A.2.4) leads to

the equation

Ik(t) =
1

2π
√
π

(π − t)
∫ t

−π
(π + ξ)

l4

π4

(
ξ2 + β

l2

π2
ξ4
)

cos

(
(k +

1

2
)ξ

)
dξ

+
1

2π
√
π

(π + t)

∫ π

t

(π − ξ) l
4

π4

(
ξ2 + β

l2

π2
ξ4
)

cos

(
(k +

1

2
)ξ

)
dξ

=
l4

2π5
√
π

[
(π − t)

[
πR2(t) +R3(t) +

βl2

π
R4(t) +

βl2

π2
R5(t)

]
+ (π + t)

[
πS2(t)− S3(t) +

βl2

π
S4(t)−

βl2

π2
S6(t)

]]
,

(A.3.12)

where

Rm(t) =

∫ t

−π
ξm cos

(
(k +

1

2
)ξ

)
dξ, m = 2, 3, 4, 5 (A.3.13a)
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and

Sm(t) =

∫ π

t

ξm cos

(
(k +

1

2
)ξ

)
dξ, m = 2, 3, 4, 5. (A.3.13b)

The complexity of too many terms resulting from integrations of (A.3.13a) and

(A.3.13b) by parts is reduced by the abbreviations

Ik(t) = H(t) + βHa(t), (A.3.14)

where

H(t) =
8π

(2k + 1)2

[
t2 cos(k +

1

2
)t− 8t

2k + 1
sin(k +

1

2
)t− 24

(2k + 1)2
cos(k +

1

2
)t

+
8π

(2k + 1)
(−1)k

]
,

(A.3.15a)

Ha(t) =
8l2

π(2k + 1)2

[
t4 cos(k +

1

2
)t− 16

2k + 1
t3 sin(k +

1

2
)t+

16

(2k + 1)
π3(−1)k

− 144

(2k + 1)2
t2 cos(k +

1

2
)t+

768

(2k + 1)3
t sin(k +

1

2
)t

− 768

(2k + 1)3
π(−1)k +

1920

(2k + 1)4
cos(k +

1

2
)t

]
,

(A.3.15b)

H and Ha are determiners of the formulations of the elements of matrices for the

harmonic and anharmonic quartic oscillators, respectively.

Substitution of G and φ2k into (A.2.5) and evaluation of the so obtained integral yield

Jk(t) =
4√

π(2k + 1)2
cos(t+

1

2
)t. (A.3.16)
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A.3.2 Evaluation of the Entries of B

Substitution of φ2j in (3.1.2a) and Ik(t) in (A.3.16) into (A.2.7) results in

Bjk =

∫ π

−π

4√
π(2k + 1)2

cos

(
(k +

1

2
)t

)
1√
π

cos

(
(j +

1

2
)t

)
dt

=
4

π(2k + 1)2

∫ π

0

(
cos(j + k + 1)t+ cos(k − j)t

)
dt

=


4

(2k + 1)2
, if k = j

0, if k 6= j,

(A.3.17)

where B is a diagonal matrix, whose inverse B−1 is generated by the entries

B−1jk =


(2k + 1)2

4
, if k = j

0, if k 6= j,
(A.3.18)

Note that formulations (A.3.17) and (A.3.18) coincide with (4.3.13) and (4.3.14),

respectively.

A.3.3 Evaluation of the Entries of A and Â

A.3.3.1 Harmonic Oscillator (β = 0)

Substitution of Ik(t) = H(t) in (A.3.15a) into (A.2.6) and evaluation of the so

obtained integral lead to

Ajk =


−4l4

π4(2k+1)2

[
π2

3
− 2

(2k+1)2

]
, if k = j

−8l4(−1)k+j

π4(2k+1)2

[ (2k+1)(2j+1)
(k+j+1)2(k−j)2 + 4(2j+1)

(2k+1)(k+j+1)(k−j) + 16
(2k+1)(2j+1)

]
, if k 6= j

(A.3.19)
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If use is made of (A.2.11), the general entry Âjk of Â is obtained by

Âjk =

B
−1
kk (1− Akk), if k = j

−B−1jj Ajk, if k 6= j.
(A.3.20)

Insertion of (A.3.18) and (A.3.19) in (A.3.20) yields

Âjk =


(2k+1)2

4
− l4

π4

(
2

(2k+1)2
− π2

3

)
, if k = j

2l4

π4

(2j+1)2(−1)k+j

(2k+1)2

[ (2j+1)(2k+1)
(k+j+1)2(k−j)2 + 4(2j+1)

(2k+1)(k+j+1)(k−j) + 16
(2k+1)(2j+1)

]
, if k 6= j.

(A.3.21)

One may concern that matrix Â is not symmetric. Two formulations (A.3.21) and

(4.3.18), however, are exactly the same !

The equality is obvious when k = j. The case of k 6= j is simply shown by a

useful identity

(2k + 1)2 − (2j + 1)2 = 4(k + j + 1)(k − j) : (A.3.22)
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Âjk =
2l4

π4

(2j + 1)2(−1)k+j

(2k + 1)2

[
(2j + 1)(2k + 1)

(k + j + 1)2(k − j)2
+

4(2j + 1)

(2k + 1)(k + j + 1)(k − j)

+
16

(2k + 1)(2j + 1)

]

=
2l4

π4

(2j + 1)3(−1)k+j

(2k + 1)

[
16[

(2k + 1)2 − (2j + 1)2
]2

+
16

(2k + 1)2
[
(2k + 1)2 − (2j + 1)2

]]+
16(2j + 1)

(2k + 1)3

=
2l4

π4

16(2j + 1)(−1)k+j

(2k + 1)3

[
(2j + 1)2[2(2k + 1)2 − (2j + 1)2][

(2k + 1)2 − (2j + 1)2
]2

+
[(2k + 1)2 − (2j + 1)2]2[
(2k + 1)2 − (2j + 1)2

]2]

=
2l4

π4

16(2j + 1)(−1)k+j

(2k + 1)3

[
(2k + 1)4[

(2k + 1)2 − (2j + 1)2
]2]

=
2l4

π4

16(2j + 1)(2k + 1)(−1)k+j

16(k + j + 1)2(k − j)2

=
2l4(2k + 1)(2j + 1)(−1)k+j

π4(k − j)2(k + j + 1)2
,

which is the same as Âkj when k 6= j in (4.3.18).

A.3.3.2 Anharmonic Quartic Oscillator (β > 0)

Following the same procedure as in Section A.3.3.1, substitution of (A.3.15a),

(A.3.15b) and φ2j into (A.2.6) gives rise to the evaluation of the entries of A resulting

from more complicated integrations. The entries of Â, fortunately, are also obtained

in the sense that the formulations

Âjk =


(2k+1)2

4
− l4

π4

(
2

(2k+1)2
− π2

3

)
+ β l6

π6

(
π4

5
+ 24

(2k+1)4
− 4π2

(2k+1)2

)
, if k = j

2l4(2k+1)(2j+1)(−1)k+j)
π4(k−j)2(k+j+1)2

[
1 + β 2l2

π2

(
π2 − 6[(k+j+1)2+(k−j)2)]

(k−j)2(k+j+1)2

)]
if k 6= j

(A.3.23)
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and (4.3.21) agree with the help of abbreviations.
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