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ABSTRACT 

 

DEVELOPMENT OF A DYNAMIC MAINTENANCE ALGORITHM WITH 

MULTIPLE SCENARIOS: A CASE STUDY FOR SURFACE MINING 

 

Ölmez Turan, Merve 

Master of Science, Mining Engineering 

Supervisor: Assist. Prof. Dr. Onur Gölbaşı 

 

June 2019, 83 pages 

 

Surface mining operations such as ore extraction and overburden stripping activities 

highly depend on machine performance. These machines’ operational plan aims to 

handle required amount of material within a specific period with the lowest 

maintenance cost and the highest availability. In order to achieve these objectives, the 

machines should be adapted to the production schedule properly. On this basis, 

maintenance policies play crucial roles in the sustainability of operations. A 

maintenance policy is basically a combination of work packages that cover the 

answers of what, when, and how to maintain a machinery system. It should be 

determined specifically not only the machine itself but also operational dependencies 

between machines in the fleet. Although the literature on mining machine maintenance 

modelling commonly concentrates on corrective and preventive actions, opportunistic 

maintenance that examines whether an opportunity exists for the preventive 

maintenance of a running component in case of failure of another dependent 

component is not discussed as required. On this basis, the current study intends to 

develop an integrated simulation model that considers mathematical interaction of 

corrective, preventive, and opportunistic maintenance to stochastic uptime and 

downtime behaviors of subsystems in Arena® Software. The implementation of the 
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simulation algorithm helps to understand the effect of maintenance policy content on 

total maintenance cost or annual production amount.  

The proposed algorithm is implemented for two different scenarios. In the first 

example, an operation with three shovels where corrective, preventive, and 

opportunistic maintenance activities are applied under the policy is simulated for a 

period of one year. The simulation model is also performed for five different 

inspection intervals. According to results, the maximum attainable annual production 

of three shovels was obtained as 7,266,714 m3. The increase of inspection intervals 

were detected to have no significant effect on the fleet availability. However, 

increasing time between inspections caused a shift from preventive maintenance to 

corrective maintenance that may cause a remarkable jump in the machine deterioration 

rate. In this sense, sensitivity of corrective maintenance statistics to the inspection 

intervals for each subsystem were evaluated. In the second case, six different 

maintenance policies with different combinations of corrective, preventive, and 

opportunistic maintenance were applied for a dragline system. In addition, effect of 

inspection intervals on the total maintenance cost was also evaluated for the policies 

that include preventive maintenance. The result shows that the total maintenance cost 

is minimized to 913,480 $ by applying just corrective and opportunistic maintenance. 

This means that opportunistic maintenance, which is applied during corrective 

maintenance hours, is good enough to prevent approaching failures; and preventive 

maintenance in inspections is redundant for the system. Moreover, the corrective 

maintenance statistics explains that the machinery house and movement subsystems 

are the most sensitive to inspection intervals where this is least for the rigging and 

hoisting subsystems. 

 

Keywords: Dynamic Maintenance Policy, Inspection Interval Optimization, Discrete-

Event Simulation, Dragline, Shovel, Arena ® Simulation Software  
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ÖZ 

 

ÇOKLU SENARYOYA SAHİP BİR DİNAMİK BAKIM-ONARIM 

ALGORİTMASI GELİŞRİTİRİLMESİ: BİR AÇIK İŞLETME 

UYGULAMASI 

 

Ölmez Turan, Merve 

Yüksek Lisans, Maden Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Onur Gölbaşı 

 

Haziran 2019, 83 sayfa 

 

Cevher ve örtü kazı üretimi gibi yerüstü madencilik faaliyetleri doğrudan makine 

performanslarına bağlıdır. Bu makinelerin operasyonel açıdan planlanmaları, 

belirtilen zamanda hedeflenen üretim miktarına en düşük bakım-onarım maliyetleriyle 

ulaşmayı hedefler. Hedeflenen amaçlara ulaşabilmek için, makinelerin üretim planına 

uygun şekilde uyum sağlaması gerekmektedir. Buna dayanarak, bakım-onarım 

politikaları operasyonların sürdürülebilirliğinde önemli rol oynamaktadır. Bakım-

onarım politikası temelde, bir makine sisteminde neye, ne zaman ve nasıl bir bakım-

onarım uygulaması yapılacağı cevaplarını kapsayan iş paketlerinin kombinasyonudur. 

Sadece makinelerin kendisinin değil, filodaki makineler arasındaki operasyonel 

ilişkilerde da belirlenmelidir. Her ne kadar maden makinalarının bakım-onarım 

modellemesi ile ilgili literatürde genellikle düzeltici ve önleyici bakım-onarım 

faaliyetlerine odaklanılmış olsa da, bir bağımlı bileşenin arızalanması durumunda 

çalışan bir bileşene uygulanan önleyici bakım-onarım faaliyeti için bir fırsat olup 

olmadığını inceleyen fırsatçı bakım-onarım gerektiği gibi tartışılmamaktadır. Buna 

dayanarak, yapılan çalışma Arena® Yazılımında alt sistemlerin stokastik çalışma ve 

arıza süresi davranışları ile düzeltici, önleyici ve fırsatçı bakım-onarım uygulamarının 

matematiksel etkileşimini kapsayan entegre bir simülasyon modeli geliştirmeyi 
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amaçlamaktadır. Simülasyon algoritmasının uygulanması, bakım-onarım politikasının 

toplam bakım-onarım maliyetleri veya yıllık üretim miktarları üzerindeki etkisini 

anlamanıza yardımcı olmaktadır. 

Önerilen algoritma iki farklı senaryo için uygulanmaktadır. İlk örnekte, politika 

kapsamında düzeltici, önleyici ve fırsatçı bakım-onarım faaliyetlerinin uygulandığı üç 

ekskavatörle yapılan operasyonun bir yıllık bir süresi simüle edilmektedir. 

Simülasyon modeli ayrıca beş farklı denetim aralığı için gerçekleştirilmektedir. Elde 

edilen sonuçlara göre, üç ekskavatör icin yıllık maksimum üretim miktarı 7,266,714 

m3 olarak elde edilmektedir. Denetim aralıklarındaki artışın üretime uygunluk 

oranlarını üzerinde önemli bir etkisinin olmadığı tespit edilmektedir. Fakat, 

denetimler arasındaki zamanın artması, önleyici bakım-onarımdan düzeltici bakım-

onarıma kaymaya neden oldu. Bu kayma ise makine bozulma oranında gözle görülür 

bir sıçramaya neden olabilemektedir. Bu anlamda, düzeltici bakım-onarım 

istatistiklerinin her bir alt sistem için denetim aralıklarına duyarlılığı 

değerlendirildi.İkinci örnekte, bir dragline sistemine düzeltici, önleyici ve fırsatçı 

bakım-onarım faaliyet kombinasyonlarından oluşan altı farklı bakım-onarım politikası 

uygulanmıştır. Ayrıca, denetim aralıklarının toplam bakım-onarım maliyeti 

üzerindeki etkisi de önleyici bakım-onarım faaliyeterini içeren politikalar için 

değerlendirilmiştir. Sonuç olarak, düzeltici ve fırsatçı bakım-onarım faaliyetleri 

uygulayarak toplam bakım-onarım maliyetleri 913,480 $ seviyesine düşürülmektedir. 

Bu durumda, düzeltici bakım-onarım uygulama süresinde uygulanan fırsatçı bakım-

onarım uygulaması yaklaşan arızaları önleyecek kadar iyi olduğu ve denetimlerde 

uygulanan önleyici bakım-onarımın sistem için fazlalık olduğu anlamına gelmektedir. 

Bunun yanı sıra, düzenleyici bakım-onarım istatistik verilerine göre makine dairesi ve 

hareket üniteleri denetleme aralıklarına en hızlı tepkiyi verirken, kaldırma ve dengeleme 

üniteleri en yavaş tepkiyi vermektedir 

Anahtar Kelimeler: Dinamik Bakım Onarım Politikaları, Denetim Aralıklarının 

Optimizasyonu, Ayrık Olay Simülasyonu, Elektrikli Ekskavatör, Çekme Kepçeli 

Yürüyen Yerkazar, Arena® Simülasyon Programı 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Background 

After the Industrial Revolution, machines have started to be part of production systems 

in various industries by substituting manpower, and this shift boosted the amount and 

quality of production.  In the mining industry, the effect of these systems on 

production efficiency is observable since almost all stages of mining require different 

machines with a high capacity and dependability. In most cases, failure of a machine, 

especially earthmovers, induces an interruption and delay in scheduled activities of a 

mining operation. Therefore, any forecasting on the range and control of machine 

failures may contribute to mine planning more precisely by keeping these massive 

systems above the intended operational conditions. 

There are different types of maintenance policies that have been evolved in 

compliance with political and industrial fluctuations in the related decades. For 

instance, run to failure maintenance, which stands for repairing after the failure 

occurrence, was widely used up to the end of mid-forties. This type is also called 

corrective maintenance (CM). After World War Ⅱ, market growth and global 

computation led to a significant improvement of mechanization and mass production, 

especially in the mining and transportation sectors. In that period, some preventive 

measures, i.e. preventive maintenance (PM), were started to be included in 

maintenance policies to increase the system availability and reliability. On this basis, 

preventive maintenance offers a scheduled activity that is performed without a failure 

occurrence so as to decrease the risk of failure. The third and the last period of the 

maintenance evaluation was started when the small-scale and sensitive machines had 

come into sight in some sectors such as health care, data processing, and 
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telecommunication. In this maintenance approach, the activity scope covers not only 

reliability and productivity, but also the safety and quality of the production (Moubray, 

1997). In this sense, remote monitoring systems with improved sensor technology 

have been included in maintenance activities. These systems, called condition-based 

maintenance (CBM), intend to monitor the data flow of machine performance 

indicators such as vibration, stress, and sound. It is occasionally considered under 

preventive maintenance work packages. However, there are some other industrial 

cases where CBM is evaluated and stated apart from preventive maintenance. This is 

called predictive maintenance. Table 1.1 shows the revaluation and inclusion of 

maintenance types and their influence areas. 

Table 1.1. Developments in Maintenance (Venkataraman, 2010) 

Period Types of Market and Manufacturing Types of Maintenance 

Pre 1945 
• Assembly lines 

• Production for stock CM 

1950s 
• Economic expansion 

• Ever-Increasing demand CM 

1960s 

• The growing complexity of 

assets 

• Innovations 

• Expanding infrastructure 

CM & PM 

1970s 

• Market saturation Paradigm 

shift from a vendor to 

customer 
CM, PM, CBM 

1980s 
• The customers have become 

the king CM, PM, CBM 

1990s 

• Global competition 

• Implementation of enterprise 

resource planning, total quality 

management 

CM, PM, CBM,  

Total Production Maintenance, 

Reliability-Centered Maintenance 

By using the principles of maintenance types, their mathematical interactions, and 

their effects on production, this study aims to develop an algorithm that evaluates and 
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optimizes multiple maintenance policies with different work packages for mining 

machineries.  

1.2. Problem Statement 

In the mining industry, production activities that cover drilling, blasting, loading, and 

haulage have a serial connection with each other. It means that any interruption in any 

of those activities may cause an interruption in the production cycle. Among these, 

earthmoving machineries have an extreme priority and importance since they have a 

direct effect on production. They are generally complex, expensive, and massive 

machines. Therefore, maintenance policies and their work packages need to be 

constituted very carefully. Improper maintenance policies may cause not just high 

operational cost but also additional production loss. In industries, maintenance cost 

maybe 15 to 70% of total production cost (Jajimoggala et al., 2011). 30-50 % of the 

total production cost is constituted by maintenance cost in open pit mines (Krellis and 

Singleton, 1998). This percentage can change according to machine types and their 

usage areas (Hall, 1997). Mining machines are used in challenging working 

environments where the maintenance operation is carried out on field or in 

maintenance shops, which needs a considerable cash flow. Many other external and 

internal factors such as ambient temperature, rock type, geological anomalies, 

operational factors, competency of manpower, and spare part logistic factors may 

change the deterioration of machines and frequency of maintenance works. In 

addition, maintenance work packages with different implementation plans affect 

sustainability and maintainability of the production systems. In this sense, 

maintenance policies should offer a balance between corrective and preventive 

measures that minimizes overall maintenance cost (Figure 1.1).   

Secondly, the value of a production loss is assessed by the capacity and the unit cost 

for a given operation. The production rate of a machine is highly affected by the 

excavated material properties, operator skills, its catalogue capacity, and production 

plans. There may be catastrophic changes in machine availabilities year by year. For 
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instance, shovel availability in a mine was detected to decrease from 64% to 55% 

between 2009 and 2010 (Ozdogan, 2012). On the other hand, the production cost is 

measured by operational expenses and downtime cost that is a function of commodity 

price and unit production. As seen in Figure 1.2, iron ore fines price has fluctuated 

between 40 and 100 USD/dry metric ton in the recent five years (Market Inside, 2019). 

Any change in the commodity price has a great effect on the unit value of production 

loss.  

 

Figure 1.1. Accounting Cost of Maintenance Balance (Jardine, 1973) 

Variability of maintenance work packages, their effectivities and financial burdens, 

uncertainty in the deterioration of machine parts, and time-dependent value of 

production complicate the constitution of a proper maintenance policy. Therefore, a 

holistic and dynamic approach that offers a comparative evaluation of production 

capacity, physical cost, and production loss is required for the optimality of policy. 

A comprehensive literature review showed that there is a lack of maintenance 

algorithm, which correlates the interactions of work packages for mining machineries 

in both financial and operational manner. In this sense, this research study intends to 

develop a dynamic model for solving and comparing multiple maintenance policies to 

find out an optimal way of maintaining mining machineries.    
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Figure 1.2. A Sample Chart for a Commodity Price Change (Market Inside, 2019) 

1.3. Objectives and Scopes of the Study 

The main objective of this study is to develop a stochastic algorithm to evaluate 

different maintenance policies for mining machineries. Sub-objectives of the study 

entail i) building up mathematical interactions between the work packages in a policy, 

ii) decomposition of machinery systems, iii) data pre-processing and assessment of 

algorithm parameters, iv) simulation of the policies in a discrete-event environment, 

and v) evaluation of simulation results in terms of overall maintenance cost and 

production outcomes.  

Scope of the study includes maintenance work packages related to preventive 

maintenance (PM), corrective maintenance (CM) and opportunistic maintenance 

(OM) strategies. Direct cost values are included in the model deterministically where 

production loss and system behavior are handled stochastically.  

1.4. Research Methodology 

This research study uses stochastic approaches when developing a multi-stage 

maintenance algorithm. Graphical illustration of the research methodology used in the 

study can be viewed in Figure 1.3. The main steps of the methodology are as follows:  
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o Identification of functional dependencies in the systems  

▪ Identification of the machine’s components and subsystems, 

▪ Evaluation of quantitative failure and repair datasets, 

▪ Investigation of expert opinions, machinery catalogs, and related studies, 

o Development of a machine-specific maintenance policy in Arena® software. 

▪ Introducing the configuration of components in the system, 

▪ Logical adaptation of corrective maintenance, preventive maintenance, and 

opportunistic maintenance to the system configuration, 

▪ Defining scheduled breaks other than maintenance activities,  

o Optimization of the introduced maintenance policy 

▪ Monitoring random operating hours and random repairing times, and resultant 

production losses which variate dynamically with each time increment, 

▪ Optimizing and reporting inspection intervals, their resultant annual production 

amount and machine availabilities, 

o The sensitivity analysis of the maintenance policy to different work packages 

▪ Given random operating and downtime behavior of system, evaluating and 

discussing the sensitivity of various maintenance policies to production rate and 

maintenance cost. 
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Figure 1.3. Research Methodology of the Thesis Study 
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1.5. Significance and Expected Contributions of This Thesis 

Although there are many studies about maintenance scheduling or planning in the 

literature, their implementation on mining machines is limited. In addition, mining-

related studies generally cover just reliability analysis to highlight the most critical 

component in the system without any component or subsystem decomposition. 

Moreover, mathematical modelling of multi-scenarios for maintenance was not 

studied in detail. In this sense, there is no observed research about the maintenance 

simulation that covers the interaction between multiple-machines and multi-

subsystems. Moreover, the recent studies have generally ignored opportunistic 

maintenance although it is common in practice. The current dissertation implements a 

maintenance simulation-optimization model, considering corrective, preventive, and 

opportunistic maintenance application with random component lifetimes and repair 

times. Therefore, the research allows investigating the effects of different maintenance 

policies on total maintenance cost or production availability for changing inspection 

intervals. 
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CHAPTER 2  

 

2. LITERATURE REVIEW  

 

2.1. Introduction 

This chapter briefly explains the terms, theories, and methodologies related to 

maintenance models. In this sense, the literature survey highlights the topics about 

maintenance activities, maintenance optimization, modeling, and simulation of 

maintenance policies and recent maintenance studies in the mining area. 

2.2. Classification of Maintenance Activities 

Budai et al.  (2008) defined maintenance as a group of activities required to keep a 

facility in “as built” condition and therefore it may continue to have its original 

productive capacity. Ben-Daya et al. (2016) categorized maintenance activities in two 

major groups as PM and CM. Branching of different maintenance work packages 

under PM and CM can be viewed in Figure 2.1. 

Corrective maintenance is implemented after random failure occurrences that happen 

during operation. In the literature, it also is called run to failure strategy. CM can be 

divided into two subgroups based on the importance of the failed component. For a 

critical component, immediate CM needs to be initiated instantly to mitigate or prevent 

the resultant negative consequences such as injuries, death, high downtime or high 

cost of production loss. The other type of CM is the deferred CM, which is carried on 

a non-critical component and can be delayed. Although CM requires low investment 

and labor skills, the factors such as additional production losses, extra labor hours, 

extras for repairing and replacement cost, and increasing risk of the accident are the 

reasons why CM should not be a priority in a maintenance policy. In addition, the 

production plan can suffer from the unavailability of spare parts and delays in 

breakdown management. Thus, maintenance activities that include proper PM 
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activities may reduce the total maintenance cost by 8 to 12 % (The US Department of 

Energy, 2010). 

 

Figure 2.1. Types of Maintenance Activities (Ben-Daya et al., 2016) 

On the other hand, preventive maintenance (PM) is performed before a failure 

occurrence to minimize the impact of a sudden breakdown by detecting the 

approaching failures and/or finding hidden defects. PM can be grouped as 

predetermined, condition-based, and opportunistic. Predetermined maintenance, 

sometimes called preventive maintenance interchangeably in the literature, is carried 

out considering the focus of time and usage. Time can be continuous (i.e. calendar or 

age clock) or intermittent (i.e. usage clock). Because of dynamic operation schedules 

and environment changes, predetermined maintenance may sometimes be ineffective, 

and its convenience needs to be validated. On the other hand, CBM is applied only 

when the system is suitable for such an adaptation. Condition monitoring systems such 

as sensors or regular inspection and functional tests are used to control the machine’s 

condition. When a specific measurable parameter of system degradation, which can 

be heat, vibration or oil level, reaches the warning threshold level, the risk of failure 



 

 

 

11 

 

is assumed to be beyond the acceptable limit. These threshold levels trigger the 

maintenance crew for a proactive response. CBM reduces not only downtime but also 

cost of spare part and labor. However, the installation of condition monitoring is 

generally required high capital investment.  

In brief, as illustrated in Figure 2.2, CM is applied after failure when degradation level 

reaches breakdown threshold where PM is applied before the threshold level. On the 

other hand, CBM is applied when degradation reaches a specific warning threshold 

which is always less than the expected failure point (Alrabghi and Tiwari, 2015). 

Opportunistic maintenance (OM), as a specific type of preventive maintenance, is 

carried out for deteriorated but non-failed components preventively where the failure 

of another component provides an opportunity for such a maintenance. Additionally, 

administrative breaks may also provide such an opportunistic time for maintenance. 

OM offers a cost-effective way of maintenance only if there is enough amount of 

implementation time and resource. 

 

Figure 2.2. Trigger Points of Different Maintenance Types (Alrabghi and Tiwari, 2015) 

In literature and industry, the most common maintenance activities were detected to 

be PM, CM, and CBM. Alrabghi and Tiwari (2015) stated that PM models were 

investigated most in the literature. On the other hand, The US Department of Energy 

(2010) report showed that the majority of maintenance activities is performed 

correctively with CM in the US industry. Figure 2.3 shows the comparative weights 

of maintenance types in the literature and the industry.  
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Figure 2.3. Maintenance Application in Literature and US Industry (Alrabghi and Tiwari, 2015; The 

USA Department of Energy, 2010) 

There are two popular maintenance approaches in practice, which are called 

reliability-centered maintenance (RCM) and total productive maintenance (TPM). 

TPM was introduced by Nakajima (1988) and defined as a maintenance management 

approach that combines total quality management philosophy and maintenance 

techniques. TPM focuses on involving all employees in an organization to improve an 

equipment performance by defining six major losses due to equipment failures. The 

aim of this strategy is to eliminate these losses and maximizing overall equipment 

effectiveness. On the other hand, Reliability-Centered Maintenance is a methodology 

that defines the actions to be considered so as to ensure that the system continues 

fulfilling its functional capacity in its present condition. The purpose of RCM is the 

optimization of preventive maintenance depending on systems and functionalities of 

their components (Budai et al., 2008). The methodology can cover the combinations 

of corrective, preventive, and condition-based actions. RCM application areas can be 

examined in Figure 2.4.  

Moreover, maintenance actions may contribute to the operation age of a system or a 

component differently. As shown in Figure 2.5, Pham and Wang (1996) give an 

overview of the different possible degrees of restoration: 
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• Perfect repair or perfect maintenance: The operating condition of the system 

is restored to an as good as new state, which means that the lifetime 

distribution, degradation level, and failure rate are same with a new 

component. 

• Minimal repair or minimal maintenance: The system is restored to the 

condition just before the maintenance action, which stands for as bad as old 

state. 

• Imperfect repair or imperfect maintenance: The system is restored to 

somewhere between as good as new and as bad as old conditions. 

• Worse repair or worse maintenance: The system failure rate or actual age of 

the system increases after performing a maintenance action. Worse repair 

means that the repair type or maintenance implementation is inappropriate for 

the related system. 

                                                      

Figure 2.4. Reliability-Centered Maintenance Application Areas (Moubray, 1997) 
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Figure 2.5. Effect of Repair Types on Failure Rate (Blischke and Murthy, 2000) 

2.3. Simulation and Modelling of an Engineering System 

This section makes a brief introduction about the modelling steps of engineering 

systems and simulation types that can be used to mimic the system operations in a 

computational environment. 

2.3.1. Modeling of an Engineering System 

The system is like a black box although input and output of it can be observed. This 

means that the system cannot be understood exactly, and the model is a miniature 

representation of the real system, so it tries to enlighten the underlying mechanism of 

the system.  Observation of input and output and phenomena behind the system are 

used to build the model. In case that the model’s prediction is highly correlated with 

the real system’s outputs then the model can be utilized to simulate and analyze other 

scenarios. The basic steps used for building a model can be listed as follows (Dym, 

2004): 

• Identification of the requirements for the model  

• Listing the required data set in the model   

• Identification of available relevant data 

• Identification of the circumstances that apply  

• Identification of the leading physical principles 
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• Identification of the equations that will be used, the calculations that will be 

made, and the answers that will outcome   

• Validation of the model. 

Schematic view of how a model should be developed with which questions are given 

in Figure 2.6. 

 

Figure 2.6. Follow Chart of Model (Carson and Cobelli, 2001). 

In a maintenance system, assets, production dynamics, and maintenance resources 

constitute the three pillars of the model. Production dynamics are buffer capacities 

where maintenance resources include spare parts, maintenance crew, and capacity of 

the maintenance shop. On the other hand, assets can be explained in three main parts 

as number of components, number of stages, and relationship between assets.  

In the literature, systems are defined as single-unit or multiple-unit. Single-unit means 

that the system can be defined without any decomposition or only one component is 

considered. For instance, Gilardoni et al. (2016) concentrated only on haulage truck 

engine maintenance where Elevli et al. (2008) studied shovel maintenance without 

component classification.  
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On the other hand, multi-unit systems, which consider two or more components, were 

analyzed in the literature with different configurations. These configurations can be 

series, parallel, K-out-of-N and standby (Figure 2.7). In a series configuration, failure 

of any component can stop the whole system. This type is commonly observed in the 

subsystems of different machines (Roy et al., 2001). In a parallel configuration, the 

system keeps on production until all components are failed. This type of configuration 

is used in manufacturing production lines (Zahedi-Hosseini et al., 2018). Furthermore, 

systems can include both series and parallel configurations as also shown in Figure 

2.7. Truong Ba, et al. (2017) built a method to optimize the opportunistic maintenance 

strategy for the series-parallel system. Moreover, in K-out-of-N configuration, if K 

number of components works in N number of components in a system, the system 

keeps working. For example, the earthmoving ability of a shovel is active even though 

two out of four hydraulic pumps in the system are operationally healthy (Samanta et 

al., 2002). In standby systems, some of the identical components wait in passive mode. 

When a working component fails, one of these passive components switch with the 

failed one in milliseconds. Levitin et al. (2018) implemented an optimization model 

for a power station’s coal transportation system where subsystems were constructed 

with stand-by components. 

 

Figure 2.7. System Configuration Types (Kumar et al., 2006) 
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In any configuration, for measuring performance of the system, global mining 

companies use their internal standard time usage model. Although all calendar time 

structures are created by same logic, their time component names are different form 

each other. For example, Figure 2.8 illustrates The Glencore time usage model (Ritter 

and Stoyan, 2018). The components of a system can be in a stage of working, 

unscheduled stoppage or external idle time. External idle is caused by an 

administrative or weather condition. On the other hand, the working time covers 

available time and maintenance time. Maintenance model contains planned or 

unplanned stoppage. How and when a maintenance activity will be performed with 

which content may also change depending on the model scopes. While CM and OM 

strategies consider as unplanned maintenance time, PM strategy considers as planned 

maintenance time.  

 

Figure 2.8. The Glencore time usage model (Ritter and Stoyan, 2018) 

2.3.2. Simulation Types 

Simulation is defined as “experimentation with a simplified imitation of an operations 

system as it progresses through time, for the purpose of better understanding and/or 

improving that complex system” by Robinson (2004). For complex maintenance 

problems, analytical, and mathematical approaches are limited in solving. In this 

sense, Rezg et al. (2005) developed both analytical and simulation models to solve 

identical complex problems and the results showed that the simulation model provided 

more flexibility and simpler estimations. In this sense, the advantages of the 

simulation may be listed as follows (Sharma et al., 2011): 
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• Simulation allows to study and experiment with a complex system in a more 

practical manner. 

• Simulation enables the feasibility testing of any hypothesis about how or why 

certain phenomena occur. 

• Flexibility in time handling as it can be compressed or expanded to allow for 

a speed-up or slow-down of the phenomena under investigation. 

• Evaluating the different circumstances of simulation by changing the inputs 

and observing the resultant outputs can produce a valuable insight into which 

variables are the most important. 

• Simulation helps in the formulation and verification of analytical solutions. 

In addition to these advantages, simulation also has some disadvantages as: 

• Special training is required to build simulation models. 

• Since much randomness is associated with simulation, so it can be hard to 

distinguish whether an observation is a result of system interrelationships or 

of randomness. 

• Simulation modeling and analysis can be time consuming and expensive.  

Simulation modeling can be categorized into three main types based on the progress 

of time, as shown in Figure 2.9: 

✓ Time-slicing Simulation: Model is simulated in every constant time-step (ΔT). 

There are two main problems with the time-slicing approach. There are redundant 

data produced since the system is generally in the same condition between the 

increments. Secondly, the determination of ΔT is critical. 

✓ Discrete-event Simulation: Model is simulated at a time point when any value or 

situation changes. Model is created in chronological orders of the change points, 

called an event. The system is updated when an event occurs. Otherwise, the 

system remains unchanged and time is advanced to the next scheduled event. 

Although this approach gives a chance to analyze the model efficiently, it may 

lead to a more complex structure and a need for additional controlling. 
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✓ Continuous Simulation: Model is simulated in a continuous timeline. This is 

suitable for a condition where system changes continuously through time. 

 

Figure 2.9. Sample Illustration of Time-Slicing Simulation (a), Discrete-Event Simulation (b), and 

Continuous Simulation (c) 

In brief, discrete-event simulation (DES) offers less computational time compared to 

the other simulation types. In addition, since a maintenance model requires 

consecutive and discrete decision-making process when the system state is turned to 

either of failure, corrective maintenance, preventive maintenance and opportunistic 

maintenance, DES is selected as a simulation type in this research study. 

2.4. Maintenance Policy Optimization  

A maintenance policy should give an answer to what, when, and how questions for 

maintenance activities (Budai et al., 2006). The work on maintenance optimization 

was initiated in the early 1960s by McCall (1965), Barlow and Proschan (1965), and 

Pierskalla and Voelker (1979). Maintenance optimization model which is defined as 

“the procedure of finding and comparing feasible solutions until no better solution can 

be found” by Deb (2001), has three main stages as objective, decision variables, and 

constraints. Constraints in a maintenance policy can be inventory limits, budget, labor, 
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minimum reliability level or physical capacity of maintenance shop (Alrabghi and 

Tiwari, 2015). In following the parts, the objective of model and decision variables 

will be explained in detail.  

2.4.1. Optimization Objective 

The objective of an optimization model for maintenance policy can be as follows 

(Wilson, 2002):  

➢ Minimizing the cost,  

➢ Maximizing quantity of products, 

➢ Maximizing availability, 

➢ Maximizing work safety. 

The cost item consists of two parts that are account costs and opportunistic costs. They 

are also called direct and indirect costs. In maintenance operations, accounting costs 

are the real expenditure of labor, material and spare parts, contractors, infrastructures 

and the related tax. On the other hand, Boyes and Melvin (1991) defined opportunistic 

cost as the best alternative that we give up or sacrifice by using the same amount of 

resource. Opportunistic costs of maintenance actions cover loss of revenue due to the 

downtime, cost of accidents, demurrages and insurance policies (Ben-Daya et al., 

2016). Bartholomew-Biggs et al. (2006) intended to schedule PM to minimize account 

cost which reflects repair and replacement costs and PM itself. Also, Kuntz et al. 

(2001) developed a model that finds out the optimal inspection frequency by 

minimizing cost which covers inspection, CM, PM, and customer reliability costs as 

opportunistic cost items. 

One of the system performance evaluation parameters is availability which is the rate 

of success at a stated instant of time or over a stated period. Roux et al. (2013) 

identified maximizing machines availability as an objective function. They claimed 

that the availability is a more adequate criterion than the maintenance costs where 

production costs are higher than maintenance costs. Some researchers optimized cost 

and availability in the same model. Alrabghi and Tiwari (2015) proposed a model to 
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estimate the optimal inspection frequency for six-components manufacturing system 

by minimizing the cost and maximizing the availability. Moreover, a system’s 

availability is directly related to the required quality output and the revenue of the 

system. Arab et al. (2013) developed a model with system parameters of cycle times, 

buffers’ capacity and mean time to repair of machines in order to maximize the 

throughput. In another view, Yang et al. (2008) intended to determine an optimal 

maintenance strategy among four alternatives such that system profit including 

availability factor was maximized. 

In this thesis, the objective function will be minimizing overall cost of maintenance 

policy. In addition, two case studies will be performed for a shovel fleet and a dragline 

to reveal the effects of different maintenance strategies on the systems.  

2.4.2. Decision Variable 

Decision variable is a pre-specified system parameter that has an effect on the 

objective function to minimize or maximize its value. In maintenance studies, 

researchers generally focused on inspection frequency, spare parts, maintenance 

threshold, priorities, and buffer sizes (Alrabghi and Tiwari, 2015).  

Preventive maintenance activities of inspections are carried to control the system in 

regular intervals to detect possible anomalies in systems. These activities may cover: 

(i) controlling of system components conditions and their thresholds , (ii) repairing or 

corrective replacement of hidden failed components, (iii) lubrication, (iv) overhauling, 

and (v) preventive replacement of specified wear-out components (Gölbaşı and 

Demirel, 2017). By estimating an optimum inspection interval, the unit cost of 

maintenance activities can be reduced, and availability and sustainability of systems 

can be kept in desired levels. Roux et al. (2013) tried to estimate inspection intervals 

of preventive replacement actions by using simulation and optimization-based model. 

While the priority was given to maximize the availability of the system, it was 

intended to minimize the maintenance cost. The results showed an inspection intervals 
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difference of 48 hours can increase the availability by 5 %. In the current study, the 

decision variable will be defined as inspection interval. 

Spare parts are essential inputs of maintenance actions. Out-of-stock spare parts can 

cause additional downtime. Therefore, proper inventory management can (i) reduce 

the unnecessary waiting time and anticipatory payment, (ii) increase the system 

availability, and (iii) decrease indirect and labor cost. Xu et al. (2012) generated a 

Monte Carlo simulation model for minimizing the total cost of a preventive 

replacement policy of the multi-component system. The proposed policy reduced the 

cost values between 3.41% and 10.47%.  

Maintenance threshold that triggers maintenance actions is the major decision variable 

for CBM and OM. Xiang et al. (2012) estimated full lifetime distribution of single-

component systems operated under a Markovian environment where the system’s 

instantaneous deterioration rate highly depends on the environment, by using 

simulation and optimization-based approach. In the study, age-based and CBM 

policies were developed for the defined systems and a large numerical experiment was 

conducted to evaluate the cost benefits of the CBM. The results showed that average 

cost savings with a shift from scheduled maintenance to a CBM were between 23.17% 

and 44.88%.   

Finally, in some studies, maintenance queuing that is the order of maintenance actions 

to restore in shortest time were optimized for different assets. In other words, systems 

in a bottleneck should have a higher priority to enhance the total outputs. Hani et al. 

(2008) developed a simulation model to optimize the scheduling in a railway 

maintenance facility. The results indicated that the capacity was improved by more 

than 18%, and that the mean duration of immobilization was reduced by 18.5%. 

2.5. Maintenance Studies in Mining Area 

In the literature, various maintenance policies have been studied for mining machines 

such as, shovel  (Elevli et al., 2008; Pascual et al., 2009; Samanta et al., 2001, 2002), 

Load-Haul-Dump (LHD) (Dindarloo, 2016), drilling machine (Al-Chalabi et al., 
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2014), haulage truck (Gilardoni et al., 2016; Jafari et al., 2017), process plant 

machines  (Wang et al., 2007; Dandotiya and Lundberg, 2012), and dragline (Gölbaşı 

and Demirel, 2017). A brief discussion on some of these studies are given below. 

Samanta et al. (2001) aimed to analyze the three shovels, operated in an open cast coal 

mine, with a reliability approach. For this purpose, they collected TBF data set in the 

mining area. Then, they grouped it regarding the sub-systems of the shovel, which 

were hydraulic, engine, transmission, bucket, track, and others.  Each group of datasets 

were tested for data dependency and being identical. Because all datasets were 

identically distributed and independent, the renewal process was used to find the 

probability distribution functions. According to these functions, the most critical sub-

system in the shovels was detected to be hydraulic. The authors suggested that the 

hydraulic system should be taken into consideration first for improving the 

performance of shovels. 

Louit and Knights (2001) developed a DES model for the analysis of the maintenance 

performance which covered fleet availabilities, the proportion of preventive 

maintenance performed in scheduled times, and the percentage of unplanned 

maintenance. Simulation scenario involved the changes in stock planning, repair 

standards, additional demand for labor and workshop area, organizational changes, 

transferring of maintenance staff to operation process, and maintenance contracting. 

The model indicated that a significant improvement could be achieved through 

initiatives designed to reduce the frequency of unplanned failures and the times to 

repair. Two initiatives of relevance are the elimination of breakdowns by root-cause 

failure analysis and generating repair standards. The model was implemented in a 

mining company that operates two gold and silver mines in the north of Chile. 

Crespo Marquez (2005) evaluated maintenance strategies aimed to cope with a critical 

failure of a repairable system by using continuous simulation modeling. The objective 

function of the model was to reduce the total cumulative expected cost of maintenance 

that was spent for employee, spare parts, rescheduled operations, testing process. The 
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simulation model was implemented for 18 diesel engines installed in the same number 

of haulage trucks, used for open pit metallic mines. 

Gupta et al. (2006) analyzed the reliability of a longwall shearer, which had a 

significant role in the production as a cutter and loader, by decomposing it into 

subsystems. The analyses showed that 15% of the shearer components reached to their 

wear-out phase. This means that the preventive replacement could be more 

economical than corrective repairing for these components. Moreover, they created a 

fault tree map to find out the most critical component in the system.  

Barabady and Kumar (2008) studied on reliability and availability characteristics of a 

crushing plant, which was located at Jajarm Bauxite Mine in Iran. On this basis, six 

subsystems` lifetimes of the plant were estimated by using best-fit distributions and 

non-homogenous Poisson process for lifetimes with non-trend and trend behavior, 

respectively. According to these analyses, the conveyor subsystem and the secondary 

screen subsystem were detected to be most critical in point of reliability where the 

secondary crusher subsystem and conveyer subsystem were critical in point of 

availability.  

Gupta et al. (2009) developed a scheme for maintenance policy decisions through a 

time-based control chart, called t-chart that monitors the failure process of the 

component or system under investigation. The authors defined the components` time 

between failure (TBF) data with Weibull and Lognormal distribution functions. The 

proposed t-chart gives a warning when the observed failure is out of the boundaries 

defined by the acceptable error limits. According to the failure patterns, they proposed 

boundaries that explain the required maintenance actions and the cause of TBF 

patterns. For example, if all TBF points are in the limits and no systematic pattern 

exists, then the performance of the present maintenance schedule is assumed to be 

satisfied. They applied the model to Armored Flexible Conveyor in an underground 

coal mine in India; and they collected data for 2 years. They divided Armored Flexible 

Conveyor to twenty-three components. Each component`s TBF Weibull distribution 
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function was estimated. Due to the result of the model, nine components get into zone 

II. For these components, two suggestions were given. The first one is that preventive 

replacement policy should be applied when it reaches the wear-out phase it should be 

waited for some more time before fixing up its maintenance schedule if it is new. The 

other one is the investigation of whether there is any assignable cause leading to 

significant process deterioration. 

Vayenas and Wu (2009) analyzed the maintenance and reliability of LHD by using 

reliability-based approaches. This analysis was based on the breakdowns and 

accompanying repair hours of 13 LHD vehicles from January 2006 to May 2007 at a 

hard rock underground mine in Canada. The results showed that the mechanical 

breakdown and planned maintenance activities consumed most of the repair times. It 

means that preventive maintenance did not appear to cause a major improvement on 

the mechanical availability of equipment. 

Uzgören et al. (2010) evaluated the reliability of two draglines by using Renewal 

Process. Reliability values were estimated for different time intervals by using 

Weibull distribution. The study results showed that mean time between failures 

(MTBF) for Dragline-1 and Dragline-2 were found to be 97.0 and 75.8 hours 

respectively. Moreover, the study focused on estimating the required maintenance 

intervals for various reliability levels. According to the result, 23.8 and 19.1 hours 

maintenance intervals were required to keep Dragline-1 and Dragline-2 above 75% 

reliability level, respectively. 

Al-Chalabi et al. (2014) proposed a model to minimize the total cost that included 

machine purchase price, maintenance cost, and operating cost. The model was based 

on artificial neural network and it was used to find the relationships between the costs 

and the optimal replacement time of drilling machine. The authors studied three 

different cases for the sensitivity of increasing purchase price, decreasing operating 

cost, and decreasing maintenance cost. In the model output, the most important 

parameter influencing the optimal time replacement of the drilling machine was 
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detected to be decreasing maintenance cost, followed by increasing purchase price and 

decreasing operating cost. 

Gilardoni et al. (2016) compared two PM policies that were applied periodically and 

dynamically. The selection of policies was based on minimizing the expected cost. 

They used 208 failure data of 193 off-road engines that were used in a Brazilian 

mining area. They used maximum likelihood estimation as a statistical tool. In 

addition, they assumed that the maintenance activities were imperfect in order to be 

more realistic. The application result stated that the expected operating cost per unit 

of time might be much lower if a dynamic policy is used in case of a high maintenance 

and repair cost. 

Said and Taghipour (2016) built a model to define the effects of different PMs, and 

CMs. The assumption of the model was that the effect of CM was minimal while a 

PM could reduce the operating age of the system. A likelihood function was used to 

estimate the failure process and PM effects. Moreover, the reliability function was 

determined to find out the expected number of failures over a period between two 

consecutive PMs by using Non-Homogenous Poisson Process. The proposed model 

was implemented on two haulage trucks that were used in an underground copper-

nickel mine located in Canada. The trucks were decomposed into two subsystems as 

mobile and electrical. Three types of PM were applied every 250, 500, and 1000 hours 

on the subsystems. According to the results, the mobile subsystem was in the wear-

out phase and the expected number of failures and the observed number of failures are 

relatively close. PM-1 had minimal repair effect while the PM-2 and PM-3 reduced 

the operating age of the mobile subsystem effectively. Moreover, PMs with three 

different implementation intervals were detected to turn the electrical subsystem into 

almost as good as new condition. 

Jafari et al. (2017) aimed to select an optimal maintenance policy, which covered OM, 

PM, and CBM to minimize the cost per unit time in the long term. Mean residual 

lifetime, as an input of the system, was found by using a semi-Markov decision 
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process framework. In the policy, instead of a PM activity, maintenance policy 

combining CBM and age information was used with a proportional hazards model. 

This model and a computational algorithm were applied on the haul trucks in a mining 

company by considering transmission and clutch as two main units. Finally, two 

maintenance approaches were compared by the developed model. Firstly, the policy 

did not include OM where no opportunity was considered to perform PM on 

transmission upon clutch failure. Secondly, the traditional CM was performed. The 

combined model was detected to be more economical than the conventional approach. 

Finally, Gölbaşı and Demirel (2017) developed a simulation algorithm, called the 

time-counter, to optimize the inspection intervals of draglines by minimizing total 

direct and indirect maintenance cost. This algorithm was used on two different 

draglines that operate in Tunçbilek coal mine in Turkey. Firstly, the draglines were 

decomposed into seven sub-systems and thirty components with a top-to-down 

approach. Probability distribution functions for TBF and time to repair (TTR) dataset 

of each component were generated to create a random data input for the algorithm. 

The simulation results became more realistic when random TBF and TTR values were 

used instead of the mean values. The algorithm also considered the administrative 

halts that are shift changes, lunch breaks and holidays, as well as maintenance stops. 

The current maintenance policy in the mine is that draglines are stopped for 8 hours 

every 160 h for regular inspection. According to simulation results, the time between 

inspections (TBI) should be 232 h and 184 h for Dragline-1 and Dragline-2. If the 

inspections are rescheduled according to the study outputs, the cumulative of direct 

and indirect costs may be dropped by 5.9 and 6.2 percent for Dragline-1 and Dragline-

2, respectively. 

According to the literature review, it was observed that there is no research study that 

evaluates, compares, and optimizes different maintenance policies with different work 

packages for the mining machineries. This study intends to fill this gap in the 

literature. 
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CHAPTER 3  

 

3. DEVELOPMENT OF THE MAINTENANCE ALGORITHM 

 

3.1. Introduction 

This study aims to develop a dynamic maintenance algorithm to find out system 

availabilities, production rates, contribution of components/subsystems to system 

failure behavior and total maintenance cost, and optimal policy among different 

maintenance policy alternatives. The algorithm includes random lifetime and repair 

time behaviors of system components and scheduled administrative halts in the 

decisions. The model can be adapted to different production systems that operate 

coordinately to achieve a production in a certain period. For a clear illustration of the 

algorithm, the model steps are discussed with two different cases in this chapter. 

Details of the case studies and the simulation results will be discussed more in Chapter 

4.  

In the case studies, the model will simulate i) an operation with three electric rope 

shovels decomposed into subsystems and ii) a dragline decomposed into its working 

components. Each shovel covers six main subsystems with a serial connection: Air 

system (SHA), crowd mechanism (SHC), dipper system (SHD), electrical system 

(SHE), hoist mechanism (SHH) and other subsystem (OTH) as illustrated in Figure 

3.1. Second, the dragline is composed of six subsystems in a serial connection where 

twenty-seven main components are available. These subsystems are called machinery 

house (MH), rigging (RI), dragging (DR), bucket (BU), movement (MO), boom (BO) 

as illustrated in Figure 3.2. 

In both cases, a combination of preventive maintenance, corrective maintenance, and 

opportunistic maintenance was introduced for a dynamic and appropriate allocation of 
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maintenance work packages. The simulation steps and logic were clarified in detail in 

Chapter 3.2 where Arena® implementation was explained in Chapter 3.3. 

 

Figure 3.1. Schematic View of Electric Rope Shovel’s Subsystems 

 

Figure 3.2. Schematic View of Dragline’s Subsystems (Demirel & Gölbaşı, 2016) 
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3.2. Algorithm Logic and Components 

The simulation model is built up by using three main time parameters: Time between 

failures (TBF), time to repair (TTR) and the starting time of wear-out phase (TSW). 

These parameters are dynamically determined regarding mutual interaction of 

component parameters. In the simulation model, TBF and TTR values stand for 

random time between failures (operating time) and random time to repair (corrective 

maintenance duration) of system components. They are assigned when activated by 

using the related TBF and TTR probability distribution functions of subsystems or 

components. On the other hand, TSW values refer to wear-out phases of subsystems 

or components with a recognizable indication of approaching failures. This type of 

variable is also called delay-time in the literature, and it takes the value of zero if a 

component fails suddenly without any warning or indication. In other words, it is the 

expected portion of the subsystem/component lifetime where the indication is 

appeared. According to these parameters, change of system state and the required 

action that can be either of corrective maintenance (CM), preventive maintenance 

(PM), opportunistic maintenance (OM) or of regular inspection are decided in a 

discrete-event simulation. In case of no change in the system state, production is 

allowed to continue. In addition, administrative halts such as shift changes, breaks and 

regular maintenance activities, the system state and condition of production are also 

evaluated. In the algorithm, working hour per shift is taken eight hours and equipment 

are assumed to operate three shifts a day.  

As stated, the algorithm will be applied to a shovel fleet and a dragline. In the shovel 

case, lunch break was assumed an hour at midday and shift breaks were taken half an 

hour at the end of each shift. On the other hand, for dragline, only shift breaks with 

half an hour were assumed that means 1.5 total compulsory break a day. According to 

these actions, the algorithm finds out annual direct and indirect maintenance costs and 

availabilities of shovels and dragline for different maintenance scenarios. Detailed 

view of the algorithm flowchart is given in Figure 3.3. These algorithm steps are 

explained in detail as follows: 
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i. When the simulation time reaches the target time then the algorithm is 

ended. 

ii. When the simulation time reaches any scheduled shift end, then all 

equipment parts are stopped, and production is halted until the next 

scheduled shift start. 

iii. When the simulation time reaches the next inspection, the equipment 

parts and production are stopped during the inspection duration. After 

inspection, the equipment parts will continue to operate in as bad as old 

condition except for the condition where the subsystems/component 

are to be in wear out phase. In this situation, PM is applied to the 

equipment parts in deterioration and this action is assumed to turn them 

to as new as good condition as illustrated in Figure 3.4. In case of any 

decision for PM, the related preventive maintenance cost is generated 

and accumulated in the total direct preventive cost item (see dragline 

case).  

iv. When any of i th equipment part’s lifetime ends, the concerned 

equipment is stopped until the failed part is correctively maintained. 

After corrective maintenance, the part is assumed to turn to as good as 

new condition and the component’s corrective maintenance cost is 

accumulated under the total direct corrective cost is item. 

v. Any CM activity for the failed component may create an opportunity 

for preventive check and repair of the other non-failed components. 

During a CM application, the non-failed components are controlled to 

check whether they are in a wear-out period or not. If such components 

are detected and their preventive maintenance durations are good 

enough to be performed within the corrective maintenance duration of 

the failed component, then they are recovered under opportunistic 

maintenance action. Figure 3.5. can be examined to see how SHD 

subsystem of Shovel-1 is activated in the failure of SHE subsystem. 

Then, the part is assumed to turn to as good as new condition and direct 
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opportunistic maintenance is added to total preventive maintenance 

cost of the part.  

vi. Out of the maintenance times, the equipment makes a production of 

‘Pro_cycle’ amount in each ‘Cycle_shov’ time. If any of i th equipment 

part is broken in the production cycle, then this cycle is not completed, 

and the previous cycle is assumed as the last cycle in the current 

simulation time. On the other hand, inspection or shift breaks do not 

halt the production cycle. For example, when the simulation time 

reaches next inspection time and the production cycle is continuing, 

then equipment will complete production cycle before inspection. 

Also, idling time of equipment is assumed zero. It means that the haul 

truck will always be available for the loading.   

Considering the given assumption and the algorithm dynamics, time limits, and 

minimum amount of the production need to be introduced as model constraints. 

System availabilities and the required inspection intervals are computed regarding the 

interactions between CM, PM, OM, and random characteristics of the subsystems. By 

using the model, it is tried to find out the optimal TBI that minimizes the overall 

maintenance cost while keeping the production above the intended level. The model 

was created in Arena® simulation environment that is a discrete event simulation 

software. In the next section, implementation of the algorithm in Arena® will be 

explained in detail. 



 

 

 

34 

 

 

Figure 3.3.  Flowchart of the Algorithm 
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Figure 3.4. Conditions of Subsystems at Inspection Hours in the Algorithm 

 

Figure 3.5. Conditions of Subsystems at Working Hours in the Algorithm 
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3.3. Arena® Implementation 

Arena®, which is a discrete-event simulation software, has been used widely in various 

sectors to develop simulation models with a graphical illustration. Arena® uses 

SIMAN simulation languages and it gives the user a chance to build up simulations 

by using the graphical model or coding alternatively. For implementing the algorithm 

in Arena® by graphical model, two basic process panels can be used as data modules 

and flowchart modules. Firstly, data modules are employed to create and edit the 

database of the algorithm. The standard data modules are entity, attributes, resource, 

queue, variable, schedule, and set. In Table 3.1, each data module’s functions are 

explained briefly. For a clear understanding of the model, the algorithm flow in 

Arena® will be discussed and explained with the shovel and dragline cases where the 

shovel case covers three shovels with six subsystems each without any component 

classification and the dragline case includes one dragline with twenty-seven 

components with six subsystems. 

In the algorithm, shovels’ subsystems are accepted as an entity for the first case where 

the dragline’s components are introduced as an entity in the second case. Therefore, 

the first model covers 6 entities for each shovel and 18 entities in total and the second 

model covers 27 entities which belongs to 6 subsystems. Each entity has own 

deterministic and stochastic attributes. The deterministic attributes are defined at the 

beginning of the simulation. These attributes are the expected percentage of the 

subsystem’s lifetime just before defect arises (Ths) and index of the shovel (Shov) for 

the first model and preventive and corrective maintenance costs, preventive repair 

time and index of the subsystem for the second model. Stochastic attributes, which are 

defined after each maintenance action, are TBF, TTR and TSW for both models. 

Moreover, variables of the system are time between inspection (TBI), inspection time 

(IT), production amount of each cycle of ith equipment (Pro_cycle), a cycle time of ith 

equipment (Cycle_shov), break schedule, and signal of each entity which profiles the 

condition of subsystems. The signal variable takes the value of 0 for working state, 1 

for a scheduled break state, 2 for regular inspection state, 3 for preventive maintenance 
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state, and 4 for corrective maintenance state. In addition, there is also a permanently 

active system that determines the subsystems with priority due to their lifetimes 

coming to an end in the timeline. 

Table 3.1. Data Modules in Arena® 

Data Module General Function Definition in Current Model 

Entity 
Defined players in the 

simulation 

The subsystems of shovels 

The components of dragline 

Attribute 
Specific properties of 

each entity 

TBF, TTR, Shov, Ths, TSW, 

CM cost, PM cost 

Variable Overall model dynamics  

TBI, IT, Cycle_shov, 

Pro_cycle, Break Schedule 

and Signal of Each Entity 

Resource 
Requirements for 

processing 
- 

Schedule 
Working time for 

resource 
- 

Queue 
The order of processing 

or releasing 

The entity which has 

minimum TBF value goes 

first 

Set 
A cluster of some data 

modules 
- 

In addition to data modules, the set of actions of entities in a timeline is defined by 

using flowchart modules. Although Arena® has some other modules for simulating 

complex systems, basic and transportation flowchart modules were utilized in the 

simulation chart for more flexibility. In Figure 3.6, the functions used in flowchart 

module are explained with their symbols and general application. In Table 3.2, the 

functions used in flowchart module are explained with their symbols and general 

application. 
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Table 3.2. Flowchart Modules in Arena® 

Flowchart Module General Function 

Create 

 

Starting node of entity 

Dispose 

 

Ending node of entity 

Process 
 

An activity that can require some resource with a 

specific time  

Decide 

 

Determining node for entity’s way 

 

Batch 

 

Package of a specific number of entities 

Separation 

 

Duplication of entities, or separating a previous 

batch of entities 

Assign 

 

Assigning new values to variables, entity attributes, 

entity types, entity pictures, or other system 

variables 

Record 

 

Data collection node 

Enter 

 

Exit station of rout or conveyor 

Leave 

 

Entrance station of rout or conveyor  

The general view of model is shown in Figure 3.6.In ‘Create’ module that is the 

starting point of model, all entities are created and all deterministic attributes are 

assigned. Then, all entities are transferred to ‘Assign_attribute’, which is shown in 

Figure 3.7 The introduction of entities is not just provided from ‘Create’ but also from 

‘Come_from_station’ that connects the routes from each maintenance process.  
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Figure 3.6. Overall view of Arena® simulation 

In Assign_attribute Module, which is illustrated in Figure 3.7, each entity has its own 

flowchart modules for recording the number of regeneration and assigning the random 

attributes. Here, two modules were assigned to each entity because TSW is directly 

computed by using TBF. In the first assign modules, TBF and TTR attributes are 

randomly defined and, in second assign modules, TSW is defined as the multiplication 

of TBF and Ths. 

The Arena® simulation behavior where each entity is simulated one by one in a 

specific order at the same simulation time cannot ensure the model assumptions. For 

that reason, occurrence order of the events needs to be regulated for each cycle. For 
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example, let’s suppose that the first entity failed where the second entity is in a wear 

out phase at a specific simulation time. Therefore, corrective maintenance should be 

applied on the first entity where opportunistic maintenance should be applied on the 

second entity. If the second entity is simulated before the first entity, then 

opportunistic maintenance is not applied on the second entity because the first 

subsystem is not in “Corrective Maintenance” submodule when second entity is 

active.  Therefore, the order plays an important role in the decision of opportunistic 

maintenance. For that reason, before the junction of actions, a control submodule, 

called as ‘Separation & Hold’, is employed to regulate the occurrence order of entities. 

Moreover, the second function of ‘Separation & Hold’ is to hold the entities of 

equipment until all of them complete their simulation cycles. This ensures the series 

dependency between the subsystems in shovels and between components in dragline 

case.  As shown in Figure 3.8, for the shovel model, after the separation of the 

subsystem with respect to their shovel code, the hold module releases subsystem by 

considering the ascending order of TBF values.  

 

Figure 3.7. ‘Assign_Attributes’ Submodule to Randomize the Uptime/Downtime Behavior of System 
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Figure 3.8. ‘Separation & Hold’ Submodule 

As shown in Figure 3.6, ‘Separation & Hold’ submodule is connected to a decision 

module where the simulation can select either of three pathways. Firstly, the entities 

can only be out of the cycle when the simulation time is higher or equal to the target 

simulation time. In that case, the entities go to the dispose modules that is called ‘End’ 

and simulation is completed. Secondly, scheduled break time cause a halt for all 

entities that are operated in 3 shifts. When the time comes to a scheduled break, 

‘Break’ submodule is introduced to all entities. As also illustrated in Figure 3.9, signal 

values of each entity turn to 1 and they are halted for 15 minutes at the beginning and 

at the end of each shift. In addition to shift break, one-hour lunch break is given at 

midday only for shovel case. After the scheduled break, the signals turn to 0 and 

entities enter the cycle in the ‘No_process’ station. Until the target simulation time, 

this process is repeated for every given TBI value.  

As stated in the general illustration of the algorithm in Figure 3.6, if an entity is not 

detected to have a defect in any inspection, then that entity may fail at the end of its 

assigned lifetime (CM is applied) or an OM can be applied during the corrective 

repairing of another entity. Any corrective maintenance (CM) cause production 
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interruption. Here, time between failures for the entity and ‘Corrective Maintenance’ 

submodule is activated. Moreover, when one of the entities is in ‘Corrective 

Maintenance’, the decision module checks whether any other operable entity in the 

same equipment is in a wear-out period. ‘Opportunistic Maintenance’ module is 

activated for the entity in wear-out if i) the entity’s TSW value is less than or equal to 

zero and ii) its preventive maintenance time is less than or equal to the corrective 

repairing time of the failed entity. Otherwise, the operable entities that cannot satisfy 

the requirements of opportunistic maintenance are sent to the cycle in ‘No_process’ 

station. 

 

Figure 3.9. ‘Break’ Submodule 

 

Figure 3.10. ‘Inspection’ Submodule 
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 ‘Corrective Maintenance’, which is shown in Figure 3.11, considers whether the CM 

duration is overlapped with a scheduled break to a certain extent. When starting time 

of scheduled break is between the end of lifetime and the end of corrective 

maintenance action, the entity goes to ‘Corrective Maintenance with Break’, or else 

‘Corrective Maintenance without Break’. In both submodules, signal of entities is set 

as 4 until the corrective maintenance process is completed. As expected, the process 

time of ‘Corrective Maintenance without Break’ is TTR of the entity. However, the 

process time of ‘Corrective Maintenance with Break’ is the summation of repairing 

time of subsystem and scheduled break time. Since any scheduled break pushes the 

ending of CM forward in the timeline. Then, the entity returns to the cycle by using 

the route, from ‘Reassign 2’ to ‘Come_From_Application’.  

 

Figure 3.11.’Corrective Maintenance’ Submodule 

After all junction points, all entities enter ‘Production’ as shown in Figure 3.12. In this 

submodule, firstly, entities are grouped based on their equipment codes and they come 

together to form a whole equipment entity. Assumption in the simulation is that a 

failure of any entity can interrupt the production cycle of system. According to this 

assumption, the pathways are followed by the entity. Firstly, when remaining lifetimes 

of equipment’s all entities are more than cycle time, a new group of entities follows 

to its production process module. Then, the new equipment’s total production amount 

is increased by a cycle production amount. Secondly, if production cycle is interrupted 

by any entity failure, the equipment entity waits for remaining lifetimes of failed 

entities and the equipment’s total production amount does not change. After both 
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procedures, each equipment is again divided into its own subsystems or components 

and their remaining lifetimes are decreased by a production cycle time. At the end of 

two ways, entity go back to ‘Separation_Hold’.  

 

Figure 3.12. Production Submodule for Shovel Model 

After evaluating and deciding decision in all submodules, data flows of the dynamic 

and static variables are satisfied by using two separate routes called ‘Assign_Attribute’ 

and ‘No_process’. ‘Assign_Attribute’ is used for reassigning the random attribute 

value when connecting the maintenance activities to each other. The other one 

connects ineffective processes that are scheduled break, regular inspection and 

‘No_process’. In addition, when the one entity in an equipment fails, the operable 

entities use this route for going back to cycle. In ‘No_process’, equipment’s entities 

are held until all entities are in an operable condition. 

To sum up, downtime and uptime characteristic of three shovels and a dragline were 

modeled in a discrete-event environment by using Arena® simulation software. In the 

equipment’s life cycles, three main actions are regarded in the model: Production, 

maintenance and scheduled breaks. Maintenance actions consist of corrective, 
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preventive, and opportunistic maintenance activities. The inputs of the simulation 

model are assigned deterministically or randomly. Some attributes such as production 

cycle time and number of shovels are assumed fixed during the simulation time. In 

addition, some variables such as inspection time or time between inspections are also 

taken as constant values. These deterministic attributes and variables are assigned at 

the beginning of simulation. On the other hand, some attributes such as TBF and TTR 

are assigned randomly to mimic the system behavior more realistically. Finally, the 

simulation model can reveal the total production amount, system/subsystem 

availability, and total direct and indirect costs of maintenance for the examined period. 

In the next chapter, two cases in which one of them is on a shovel fleet and the other 

is on a dragline will be simulated by the developed model to highlight the outcomes 

and the benefits of the model more apparently.  

 





 

 

 

47 

 

CHAPTER 4  

 

4. NUMERICAL EXAMPLES FOR THE ALGORITHM 

 

4.1. Introduction 

In this chapter, the proposed algorithm is implemented for two realistic examples 

taken from some research studies in the literature. In the first implementation, the 

algorithm was applied to three shovels working together for a joint production. In this 

case, fleet availability was aimed to be maximized. In the second implementation, the 

model was applied for a dragline case. In this application, the total cost of maintenance 

including direct and indirect losses was intended to be minimized. The first and second 

implementations will be explained in Chapter 4.2 and Chapter 4.3, respectively. 

4.2. Case Study-1: An Application for Multiple Shovels 

The proposed model is implemented for multiple cable shovels operating in an 

Rajarappa opencast mine in India. The dataset that includes reliability and 

maintenance probability distribution functions of the subsystems of three shovels in 

the same mine and was retrieved from a study by Roy et al. (2001). The dataset that 

explained under Chapter 4.2.1is used as an input of the proposed algorithm. Finally, 

the results of the algorithm will be discussed in Chapter 4.3. 

4.2.1. Input Dataset of the Algorithm 

The shovels are assumed to be stopped half an hour every shift end for shift changes 

and they are operated in three shifts. Other than shift changes, the shovels are assumed 

to be inactive for one hour during lunch break at midday. TBF and TTR are unknown 

parameters specific to the system itself. TTR and TBF functions of three electrical 

cable shovels with six subsystems are taken from Roy et al. (2001). The parameters 

of TTR and TBF distribution functions are given in Table 4.1 and Table 4.2. In 
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addition, the contribution of each subsystem to failure numbers can be investigated 

with Pareto Charts in Figure 4.1. Total number of failures for a 2-years period are 224, 

200, and 154 for Shovel 1, Shovel 2 and Shovel 3, respectively. According to the 

Pareto charts, the subsystem exposing to the failures most frequently is the dipper 

system (SHD) for the all shovels.  

Table 4.1. TTR and TBF Parameters of Shovel 1 and Shovel 2 (Roy et al., 2001) 

Shovel 1 

Code 

Time Between Failure (TBF)  Time to Repair (TTR) 

Best-fit 

Distribution 
Parameters  Best-fit 

Distribution 
Parameters 

SHA Weibull β=1.169; η=522.9  Lognormal μ=10.14; σ=8.26 

SHC Exponential λ=880.3  Exponential λ=32.5 

SHD Exponential λ=60.16  Lognormal μ=11.12; σ=17.36 

SHE Weibull β=0.871; η=111.1  Lognormal μ=28,.73; σ=62.76 

SHH Weibull β=1.684; η=485  Lognormal μ=13.3; σ=15.91 

OTH Weibull β=0.856; η=191.3   Lognormal μ=26.09; σ=45.08 

Shovel 2 

Code 

Time Between Failure (TBF)  Time to Repair (TTR) 

Best-fit 

Distribution 
Parameters  Best-fit 

Distribution 
Parameters 

SHA Exponential λ=384.3   Exponential λ=16 

SHC Weibull β=1.562; η=146.83  Lognormal μ=26.92; σ=47.8 

SHD Weibull β=1.115; η=57.17  Lognormal μ=10.93; σ=13.58 

SHE Weibull β=1.119; η=87.64  Lognormal μ=17.25; σ=19.34 

SHH Weibull β=1.226; η=130.44  Exponential λ=12.36 

OTH Exponential λ=116.3   Lognormal μ= 20.71; σ=38.23 
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Table 4.2. TTR and TBF Parameters of Shovel 3 (Roy et al., 2001) 

Shovel 3 

Code 

Time Between Failure (TBF)  Time to Repair (TTR) 

Best-fit 

Distribution 
Parameters  Best-fit 

Distribution 
Parameters 

SHA Weibull 
β=1.177; 

η=506.14 
 Lognormal 

μ=18.54; 

σ=46.45 

SHC Exponential λ=220.6  Lognormal 
μ=46.79; 

σ=102.6 

SHD Weibull 
β=1.108; 

η=79.23 
 Lognormal 

μ=15.79; 

σ=25.28 

SHE Exponential λ=96.5  Lognormal 
μ=35.33; 

σ=82.94 

SHH Weibull 
β=1.029; 

η=206.43 
 Lognormal 

μ=17.76; 

σ=23.75 

OTH Weibull 
β=1.361; 

η=301.16 
 Exponential λ=76.5 

According to the statistics in Tables 4.1 and 4.2, the Weibull and exponential 

distributions were observed to be best-fit distributions for the TBF data. On the other 

hand, lognormal and exponential distribution provide the best-fit for the TTR data. 

According to exponential distribution behavior, the subsystem can be characterized as 

a constant failure/repair rate. On the other hand, if the Weibull parameter of β is more 

than 1, it points to an increasing failure rate, i.e. potential wear-out, for the subsystem. 

Four out of six subsystems for Shovel 2 and Shovel 3 are detected to be in this 

condition. Each subsystem reliability curve is examined based on best-fit probability 

function, and drawn in Figure 4.2, Figure 4.3, and Figure 4.4. According to this 

analysis, after 24 working hours, the levels of shovels’ reliability are decreasing to 

0.4, 0.35, and 0.45, respectively.  
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Figure 4.1. Pareto Charts of the Failure Statistics for Shovel 1 (a), Shovel 2 (b), Shovel 3 (c) (Roy et 

al., 2001) 

As mentioned in Chapter 3.2, the other input parameter in the algorithm is the starting 

time of wear-out phase (TSW) that is used to detect deterioration periods of 

subsystems/components. Gölbaşı and Demirel (2017) determined Ths values for two 

draglines by using subjective data coming from the maintenance crew in the field. 

Although dragline and shovel have different production capacities and working 

principles, they have some similarity in terms of subsystem functionalities.Therefore, 

Ths values for shovel subsystems were assumed regarding the dragline values (Table 

4.3). For instance, the wear-out phase of SHA subsystem of the shovel starts after 

completing 75% of its random lifetime. During that wear-out phase, the subsystem 

can be maintained preventively in inspections or opportunistic maintenance if it can 

be detected. For a more precise information, a survey may be conducted with the 

experts of shovel maintenance.  
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Figure 4.2. System and Subsystems Reliability Curves of Shovel 1 

 

Figure 4.3. System and Subsystems Reliability Curves of Shovel 2 
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Figure 4.4. System and Subsystems Reliability Curves of Shovel 3 

Finally, shovel production is directly related with not only the failure behavior but 

also the production capacities and production cycles. In this study, shovels’ bucket 

capacity is equal to 10 m3. The assumptions for fill and swell factors, expected cycle 

time, and operation efficiency are shown in Table 4.4. Chapter 4.2.2 will discuss the 

results that are obtained from the algorithm by using the available dataset. 

Table 4.3. Dragline Maximum and Minimum Ths (Gölbaşı & Demirel, 2017) and the Assumed Ths 

for the Shovels 

Subsystem 
Dragline Ths (%) 

Shovel Ths (%) 
Maximum Minimum 

SHA 75 75 75 

SHC 95 85 90 

SHD 95 90 90 

SHE 95 98 95 

SHH 100 80 90 

OTH - - 90 
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Table 4.4. Assumed Production Parameters 

Factors Shovel 1 Shovel 2 Shovel 3 

Bucket Capacity (m3) 10 10 10 

Fill Factor 0.85 0.85 0.85 

Swell Factor 1.45 1.45 1.45 

Production volume per cycle (m3) 4.3965 4.3965 4.3965 

Cycle Time (min) 0.6 0.55 0.5 

4.2.2. Results of the Algorithm 

After determining the input dataset, the algorithm is used to analyze the shovel 

availability, statistics of maintenance actions for each subsystem, and their application 

times in a year. Due to the stochastic approach, the algorithm was simulated 500 times. 

As shown in Figure 4.5, the average availability of shovel that is around 73% becomes 

stable after 300th simulation. 

 

Figure 4.5. Shovel 1 Average Availability Results by Increased Iteration Number When TBI Value is 

80. 

The process is done for five different TBI (time between inspections) values. The 

overall results give a chance to understand the effect of inspection decisions on 

productivity and corrective maintenance statistics. As shown in Table 4.5, the 
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availability of three shovels does not vary when the inspection interval is over 160-

hours. Moreover, the maximum annual production of three shovels is nearly 7,266,714 

m3. Correlation between time between inspections and corrective maintenance 

statistics for the subsystems can be investigated in Table 4.6 where effect of inspection 

interval on the shovel availabilities can be seen in Figure 4.6.  

Table 4.5. Annual Production Amounts (m3) of Shovels Regarding to TBI Value 

TBI Shovel 1 Shovel 2 Shovel 3 Total 

40 2,205,394 2,184,099 2,515,932 6,905,425 

80 2,282,711 2,271,006 2,579,780 7,133,496 

120 2,294,421 2,302,556 2,597,571 7,194,549 

160 2,305,440 2,319,851 2,607,453 7,232,744 

200 2,308,879 2,327,013 2,606,259 7,242,151 

  

Figure 4.6. Availability Values for Three Shovels Regarding to Changing TBI Values 

Increasing TBI will lead to a less number of inspection a year so that there is less 

inspection downtime. This can improve shovel availability. However, the shift from 

preventive to corrective maintenance applications will cause a remarkable jump in the 

deterioration and failure rates of subsystems. Therefore, decisions considering just 

availability should be given very carefully depending on the risk appetite of company. 
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Variations in corrective maintenance statistics in terms of repair time and repair 

number can be viewed in Tables 4.6.  

Table 4.6. Corrective Maintenance Statistics Regarding to TBI Values 

TBI (hour)  40 80 120 160 200 

S
h

o
v
el

 1
 R

ep
ai

r 
T

im
e 

(h
) 

SHA 2.57 5.40 6.78 7.59 9.21 

SHC 38.04 64.88 88.96 100.57 107.03 

SHD 201.63 239.14 248.32 258.46 258.39 

SHE 264.44 308.12 327.01 334.67 347.97 

SHH 19.66 40.73 63.04 70.08 71.29 

OTH 132.53 172.18 187.86 190.70 193.74 

R
ep

ai
r 

N
u
m

b
er

 

SHA 0.71 1.44 1.79 2.01 2.41 

SHC 2.30 3.78 5.00 5.63 6.00 

SHD 43.77 51.62 53.37 55.30 55.39 

SHE 24.79 29.00 30.21 30.71 31.26 

SHH 1.77 3.77 5.24 5.91 6.15 

OTH 23.50 29.94 32.42 32.98 33.57 

S
h

o
v
el

 2
 R

ep
ai

r 
T

im
e 

(h
) 

SHA 23.08 39.50 48.47 58.46 62.82 

SHC 96.79 130.82 146.54 150.95 156.13 

SHD 269.23 298.06 309.77 314.18 319.07 

SHE 250.63 276.12 282.07 283.82 284.97 

SHH 123.68 151.54 163.52 167.72 170.92 

OTH 213.49 240.23 248.81 257.05 256.88 

R
ep

ai
r 

N
u
m

b
er

 

SHA 3.08 4.96 5.89 6.98 7.41 

SHC 16.47 21.67 24.01 24.66 25.43 

SHD 65.46 72.48 75.31 76.41 77.11 

SHE 57.67 63.65 65.04 65.27 65.68 

SHH 27.11 32.80 34.88 35.82 36.33 

OTH 54.92 61.77 63.67 65.39 65.84 
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Table 4.6. Corrective Maintenance Statistics Regarding to TBI Values(cont’d) 

TBI (hour)  40 80 120 160 200 

S
h

o
v

el
 3

 

R
ep

ai
r 

T
im

e 
(h

) 

SHA 14.75 27.10 32.83 38.56 41.82 

SHC 110.46 133.06 142.45 147.74 146.13 

SHD 278.99 317.54 332.20 338.01 346.62 

SHE 219.59 236.83 244.10 245.66 246.01 

SHH 24.67 38.91 43.11 45.57 46.36 

OTH 191.10 292.51 334.08 359.42 376.51 

R
ep

ai
r 

N
u

m
b

er
 

SHA 2.95 5.02 5.80 6.64 7.08 

SHC 24.74 29.49 31.49 32.73 32.28 

SHD 47.16 52.88 55.25 56.06 57.05 

SHE 43.92 47.27 48.75 48.88 48.87 

SHH 5.82 8.99 9.92 10.30 10.49 

OTH 11.74 17.90 20.15 21.45 22.30 

The nonlinear relationship between inspection intervals and the corrective 

maintenance profiles of shovels were shown in Table 4.7 and plotted in Figure 4.7 and 

Figure 4.8. In the equations, the dependent variable which is the time between 

inspections (TBI) is symbolized as and the independent variables which are   and   refer 

to total corrective repairing times of the shovel, and total corrective repairing numbers, 

respectively. For these equations, the mean sum of squared errors (MSE) and the 

standard error (S) that are used to measure the deviation and the upper and lower 

boundaries were calculated with 95% confidence interval were also given in Table 

4.7. Instead of a single point in the line, these ranges help to identify influence areas 

as given in Figure 4.7 and Figure 4.8 with the dashed lines. The analysis shows that 

the length of inspection interval has a remarkable effect on the failure behaviors of 

subsystems. Excessive failure occurrences cause a frequent interruption in production 

and deterioration of system components before their expected useful lifetimes. The 

simulation was performed up to an inspection interval of 200 h. The generated 

equations can be used to make a forecasting for higher inspection intervals 
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Table 4.7. Nonlinear Regression Equation 

 Equation Model Accuracy Parameters in 95% CI 

Shovel 1 

 

MSE:35.4792 

S:5.9564 

Pr1: (1144.49, 1198.07) 

Pr2: (-6.70, -5.74) 

 

MSE:0.08 

S:0.29 

Pr1: (145.93, 147.78) 

Pr2: (-17.13, -16.06) 

Shovel 2 

 

MSE:6.11 

S:2.47 

Pr1: (1339.47, 1357.18) 

Pr2: ( 14.44, 15.81) 

 

MSE:3.67 

S:1.92 

Pr1: (297.22, 311.97) 

Pr2: ( -3.71, -2.76) 

Shovel 3 

 

MSE:27.26 

S:5.22 

Pr1: (1331.52, 1375.48) 

Pr2: (22.23, 26.15) 

 

MSE:1.14 

S:1.07 

Pr1: (190.41, 198.28) 

Pr2: (14.61, 18.96) 

According to the simulation results, the sensitivity of subsystems to the changing 

inspection intervals can be analyzed. Figure 4.9, Figure 4.10, and Figure 4.11 presents 

a representative graph for the subsystems of Shovel 1, Shovel 2 and Shovel 3, 

respectively. Inspection interval of 120 h was taken as a reference point; and increase 

or decrease in the total corrective maintenance times for different inspection intervals 

were shown comparatively in the figure. It is concluded from the graph that SHA and 

SHE are the subsystems with the most sensitivity to the changes in inspection 

intervals. Also, OTH and SHH respond slowest to inspection intervals.  
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Figure 4.7. Effect of Time between Inspections to Corrective Maintenance Time 

 

Figure 4.8. Effect of Time between Inspections to Corrective Maintenance Number 
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Figure 4.9. Sensitivity of Total Corrective Maintenance Time of Shovel 1 Subsystems to Inspection 

Interval 

 

Figure 4.10. Sensitivity of Total Corrective Maintenance Time of Shovel 2 Subsystems to Inspection 

Interval 
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Figure 4.11. Sensitivity of Total Corrective Maintenance Time of Shovel 3 Subsystems to Inspection 

Interval 

4.3. Case Study-2: An Application for a Dragline 

The second implementation of the proposed model is done for a dragline which 

operates in an opencast mine in Turkey. The dataset was retrieved from a study by 

Gölbaşı and Demirel (2017); and it includes reliability and maintenance probability 

distribution functions for the components of a dragline. The available dataset and the 

results of the algorithm will be discussed in Chapters 4.3.1 and 4.3.2, respectively.  

4.3.1. Input Dataset of the Algorithm 

TTR and TBF functions of the dragline with 6 subsystems and 27 components were 

taken from Gölbaşı and Demirel (2017). It was stated in that study that the dragline is 

halted 903 times from 1998 to 2011. In this study, these halts are classified as 

correspondent components and components were arranged under subsystems. While 

estimated TBF distribution functions show a variation for components, the best 

estimation function for TTR is a lognormal distribution for the all components. The 
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system components and their TBF function parameters are shown in Table 4.8. In 

order to prevent the assignment of outlier values above the upper bound and below the 

lower bound during the simulation, random TBF values will be generated in a 90% 

confidence interval. The limit values of the confidence interval can also be examined 

in the tables. 

Table 4.8. TBF Parameters of the Dragline Components (Gölbaşı and Demirel, 2017) 

 Components TBF 

 Code Name Model Parameter Limits(h) 

D
ra

g
g
in

g
 

DR1 Chain assembly GRP  

 

Max: 

Min: 

2121 

23 

DR2 Ringbolt Lognormal-2P  

 

Max: 

Min: 

2398 

100 

DR3 Rope-mode01 Weibull-2P  

 

Max: 

Min: 

2667 

85 

DR4 Rope-mode02 Weibull-2P  

 

Max: 

Min: 

7777 

122 

DR5 Control Lognormal-2P  

 

Max: 

Min: 

1664 

29 

DR6 Socket Lognormal-2P  

 

Max: 

Min: 

48139 

410 

H
o
is

ti
n
g

 

HO1 Brake GRP  

 

Max: 

Min: 

7808 

15 

HO2 Rope-mode01 Normal-2P  

 

Max: 

Min: 

5550 

153 

HO3 Rope-mode02 Lognormal-2P  

 

Max: 

Min: 

29628 

419 

HO5 Control Weibull-2P  

 

Max: 

Min: 

4843 

16 

B
u
ck

et
 

BU1 Bucket Body Weibull-2P  

 

Max: 

Min: 

3331 

54 

BU2 Chain Assembly Lognormal-2P  

 

Max: 

Min: 

19507 

4784 

BU3 Digging Teeth Weibull-2P  

 

Max: 

Min: 

2561 

26 

BU4 Pins Weibull-2P  

 

Max: 

Min: 

2320 

33 

BU5 Ringbolt Exponential 
 

Max: 

Min: 

3388 

85 
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Table 4.8. TBF Parameters of the Dragline Components (Gölbaşı and Demirel, 2017) (cont’d) 

 Components TBF 

 Code Name Model Parameter Limits(h) 

R
ig

g
in

g
 

RI1 Socket GRP  

 

Max: 

Min: 

26312 

174 

RI2 Ringbolt Weibull-2P  

 

Max: 

Min: 

11894 

143 

RI3 Rope-Mode01 Loglogistic-2P  

 

Max: 

Min: 

1336 

78 

RI4 Rope-Mode02 Weibull-2P  

 

Max: 

Min: 

10086 

57 

RI5 Pulley-Mode01 Normal-2P  

 

Max: 

Min: 

8624 

101 

RI6 Pulley-Mode02 Lognormal-2P  

 

Max: 

Min: 

4578 

220 

M
ac

h
in

er
y
 

H
o
u
se

 

MH1 Generators Weibull-2P  

 

Max: 

Min: 

3415 

30 

MH2 Motors Exponential 
 

Max: 

Min: 

3847 

86 

MH3 Lubrication Lognormal-2P  

 

Max: 

Min: 

2674 

42 

M
o
v
em

en
t MO1 Rotation GRP  

 

Max: 

Min: 

3194 

17 

MO2 Walking Weibull-2P  

 

Max: 

Min: 

2959 

25 

MO3 Warning Lognormal-2P  

 

Max: 

Min: 

10757 

511 

In Tables 4.8, components in dragging, bucket, and machinery house subsystems 

seems to have smaller operating lifetimes. On the other hand, repair time values in 

Table 4.9 show that although the majority of components can be repaired in less than 

5 hours; this can be extremely high for the machinery house components when failed.     
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Table 4.9. Estimated TTR Parameters (Gölbaşı and Demirel., 2017) 

 Components TTR 

 

Code Name 
Lognormal 

Mean 

Lognormal 

Standard 

Deviation 

Limits(h) 

Max Min 

D
ra

g
g
in

g
 

DR1 Chain assembly 0.96 0.53 6.3 1.1 

DR2 Ringbolt 0.48 0.49 3.6 0.7 

DR3 Rope-mode01 1.64 0.8 19.2 1.4 

DR4 Rope-mode02 0.35 0.59 3.7 0.5 

DR5 Control 1.16 1.17 22.1 0.5 

DR6 Socket 0.16 0.37 2.2 0.6 

H
o
is

ti
n
g

 HO1 Brake 0.59 1.07 10.4 0.3 

HO2 Rope-mode01 2.4 0.69 34.3 3.5 

HO3 Rope-mode02 0.49 0.35 2.9 0.9 

HO5 Control 0.85 1.32 20.5 0.3 

B
u
ck

et
 

BU1 Bucket Body 1 1.21 20.0 0.4 

BU2 Chain Assembly 1.22 1.03 18.4 0.6 

BU3 Digging Teeth -0.02 0.64 2.8 0.3 

BU4 Pins 0.08 0.61 2.9 0.4 

BU5 Ringbolt 0.43 0.63 4.3 0.5 

R
ig

g
in

g
 

RI1 Socket 0.16 0.7 3.7 0.4 

RI2 Ringbolt 0.51 0.64 4.8 0.6 

RI3 Rope-Mode01 0.44 0.58 4.0 0.6 

RI4 Rope-Mode02 0.48 0.59 4.2 0.6 

RI5 Pulley-Mode01 0.72 0.69 6.4 0.7 

RI6 Pulley-Mode02 0.31 0.78 4.9 0.4 

M
ac

h
in

er
y
 

H
o
u
se

 MH1 Generators 2.63 1.95 342.6 0.6 

MH2 Motors 2.76 1.73 270.1 0.9 

MH3 Lubrication 0.76 1.04 11.7 0.4 

M
o
v
em

en
t MO1 Rotation 0.55 1.09 10.4 0.3 

MO2 Walking 1.46 1.56 56.4 0.3 

MO3 Warning 1.23 1.27 27.8 0.4 
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Like the probability distribution functions, cycle time, production loss, components 

Ths and cost parameters have a critical role in the model. As mentioned in Chapter 3, 

Ths value is a percentage that points to healthy portion of component lifetime without 

any wear-out. Once this threshold is exceeded, the component starts to a signal for 

deterioration and approaching failure. In Gölbaşı and Demirel (2017), Ths percentage, 

and preventive and corrective maintenance costs were determined from maintenance 

experts (Table 4.10). In addition, the cycle time of dragline and unit production loss 

were stated as 0.87 min and 9.03 $/min, respectively.  

Corrective maintenance can be applied in all components while preventive 

maintenance can be applied only to the components which Ths value is below 100. It 

means that the component gives signals for deteriorations. Moreover, preventive 

maintenance is applied during inspection times that takes 8 hours every 160 hours in 

normal conditions in the field. On the other hand, opportunistic maintenance may be 

applicable only in corrective maintenance downtimes. For the eligibility of a 

component for opportunistic maintenance: i) The component needs to be in a wear-

out period with a visible signal. In the study, it is assumed that the period between the 

start of wear-out according to component’s Ths value and its expected failure point in 

the timeline is the wear-out period for the component. In the timeline, components 

will have dynamic wear-out periods that is updated after every maintenance decision, 

and independent of each other. ii) Preventive maintenance duration of the component 

under opportunistic maintenance needs to be less than the corrective maintenance 

duration of the failed component. These conditions help to build up a realistic case 

such that a long-duration opportunistic maintenance is avoided in case of a short-

duration corrective maintenance. iii) Opportunistic maintenance can be applicable 

only in operation time other than the inspection hours.   
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Table 4.10. Ths Values and Maintenance Activity Costs (Gölbaşı & Demirel, 2017) 

 Code Name 
Ths 

(%) 

CM 

Direct 

Cost ($) 

PM Direct 

Cost ($) 

PM 

Time (h) 

D
ra

g
g
in

g
 

DR1 Chain assembly 95 1114 98 - 

DR2 Ringbolt 90 56 16 - 

DR3 Rope-mode01 100 1132 0 1 

DR4 Rope-mode02 100 0 0 - 

DR5 Control 90 500 295 4 

DR6 Socket 95 95 65 - 

H
o
is

ti
n
g

 HO1 Brake 85 45 65 1.81 

HO2 Rope-mode01 100 1216 0 1.5 

HO3 Rope-mode02 100 0 0 - 

HO5 Control 95 591 164 3.19 

B
u
ck

et
 

BU1 Bucket Body 95 309 327 1.44 

BU2 Chain Assembly 90 295 229 1.45 

BU3 Digging Teeth 95 109 65 0.31 

BU4 Pins 90 659 98 0.33 

BU5 Ringbolt 90 614 245 0.48 

R
ig

g
in

g
 

RI1 Socket 95 34 16 1.35 

RI2 Ringbolt 90 164 131 1.65 

RI3 Rope-Mode01 100 98 0 - 

RI4 Rope-Mode02 100 0 0 - 

RI5 Pulley-Mode01 95 843 33 - 

RI6 Pulley-Mode02 100 655 0 - 

M
ac

h
in

er
y
 

H
o
u
se

 

MH1 Generators 90 364 295 6 

MH2 Motors 95 159 87 4 

MH3 Lubrication 80 341 49 2 

M
o
v
em

en
t 

MO1 Rotation 95 3977 589 - 

MO2 Walking 90 2205 785 - 

MO3 Warning 90 291 393 2 
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4.3.2. Results of the Algorithm 

The model is used to understand the effects of TBI value and different maintenance 

policy on production time and total maintenance cost that includes direct and indirect 

financial burdens. By using the dataset, the model gives maintenance statistics and 

their resultant downtime and cost values for each component. By using these outputs, 

the total cost and production time of the dragline in a year can be obtained. As 

explained in Chapter 4.2.2, for increasing accuracy, the algorithm was simulated for 

350 times. This process is completed for three different maintenance scenarios. First 

maintenance policy covers only corrective and preventive maintenance in inspections. 

The second scenario includes opportunistic maintenance in an addition to corrective 

maintenance and preventive maintenance in inspection. The third scenario also 

includes all three maintenance actions, but opportunistic maintenance was restricted 

to the subsystem level. It means that likelihood of an opportunistic maintenance can 

be checked for the subsystem components where one component in that subsystem is 

under corrective maintenance.  

For each maintenance policy, 15 different TBI values are simulated. It starts at 16-

hours and increases 24-hours for 14 analysis. Finally, TBI value is assigned 8760-

hours for inactivated preventive maintenance module in simulation. The production 

time and costs results of the simulations are shown in Table 4.11, Table 4.12, and 

Table 4.13 for 3 different maintenance policies. Moreover, Figure 4.12 is illustrated 

TBI, production time and total cost in a three-dimensional plane for each maintenance. 

In the figure, 350 h TBI represents the maintenance policy without PM for better 

illustration. The minimum cost values for the three maintenance policies are 981,738 

$, 913,480 $ and 974,674 $, respectively. The result shows that there is no significant 

cost change when OM is applied with subsystem constraint. The third model just 

increase the annual production by 24 hours. On the other hand, the second model 

reduced the cost by 68,000 $ annually. It reaches a minimum point when only OM and 

CM is applied. By this way, the production time can be increased by 130 hours without 

inspection.  
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Table 4.11. 1st maintenance policy annual uptime and cost value with TBI 

TBI 
Direct Cost 

($) 

Indirect Cost 

($) 

Total Cost 

($) 

Production Time 

(h) 

16 47,839 1,840,040 1,887,880 5,364 

40 71,296 1,192,143 1,263,438 6,560 

64 82,718 1,018,202 1,100,920 6,884 

88 91,967 946,616 1,038,583 7,014 

112 99,674 913,383 1,013,057 7,077 

136 102,278 893,087 995,364 7,115 

160 105,291 885,918 991,209 7,127 

184 108,571 875,617 984,188 7,146 

208 112,088 869,650 981,738 7,157 

232 112,837 883,302 996,139 7,132 

256 114,621 880,265 994,886 7,138 

280 115,918 871,653 987,570 7,154 

304 116,995 870,747 987,742 7,154 

320 117,040 886,402 1,003,442 7,130 

8760 126,080 886,197 1,012,277 7,127 

Table 4.12. 2nd maintenance policy annual uptime and cost value with TBI 

TBI 
Direct Cost 

($) 

Indirect Cost 

($) 

Total Cost 

($) 

Production Time 

(h) 

16 46,953 1,838,694 1,885,647 5,366 

40 70,521 1,193,208 1,263,729 6,558 

64 82,599 1,011,743 1,094,342 6,894 

88 91,117 936,294 1,027,411 7,034 

112 95,801 900,886 996,687 7,099 

136 105,334 841,872 947,206 7,209 

160 103,189 853,689 956,878 7,185 

184 105,334 841,872 947,206 7,209 

208 106,568 854,335 960,903 7,186 

232 108,539 842,437 950,976 7,209 

256 109,582 833,707 943,289 7,224 

280 108,786 831,302 940,088 7,228 

304 111,115 826,567 937,683 7,238 

320 112,480 819,169 931,649 7,251 

8760 121,272 792,209 913,481 7,304 
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Table 4.13. 3rd maintenance policy annual uptime and cost value with TBI 

TBI 
Direct Cost 

($) 

Indirect Cost 

($) 

Total Cost 

($) 

Production Time 

(h) 

16 47,204 1,839,156 1,886,360 5,366 

40 70,949 1,195,537 1,266,486 6,554 

64 82,804 1,013,599 1,093,507 6,890 

88 92,212 947,067 1,039,279 7,013 

112 97,875 911,539 1,009,414 7,079 

136 101,197 892,060 993,257 7,116 

160 104,329 879,381 983,709 7,140 

184 106,419 880,893 987,311 7,138 

208 108,404 876,974 985,378 7,146 

232 110,010 873,884 983,894 7,151 

256 112,893 862,546 975,440 7,170 

280 112,554 869,202 981,756 7,157 

304 113,516 861,159 974,675 7,174 

320 113,726 862,441 976,167 7,173 

8760 125,123 858,675 983,798 7,180 

 

Figure 4.12. Production time and total cost results with TBI 



 

 

 

69 

 

As mentioned in Chapter 4.1.3, the production time and total maintenance cost results 

may not be enough to decide on equipment condition. Therefore, corrective 

maintenance statistics explained in Table 4.14 are analyzed for each subsystem 

regarding to TBI values. As expected, for all maintenance policies, when the 

inspection interval increases, corrective maintenance time and its application number 

also increase. The comparison between the corrective maintenance profiles of each 

maintenance that the increase rate of repairing time and number decrease from first 

maintenance policy to third maintenance policy. 

Table 4.14. Corrective Maintenance Statistics Regarding to TBI Values for Each Maintenance Policy 

TBI (h)  16 64 112 160 208 256 304 8760 

1
st
 M

a
in

te
n

a
n

ce
 P

o
li

cy
 

R
ep

ai
r 

T
im

e 
(h

) 

DR 47.6 112.6 136.3 150.5 159.3 165.4 166.7 184.0 

HO 26.6 44.1 52.1 56.0 57.3 60.5 61.6 68.7 

BU 5.4 27.2 39.1 46.9 51.2 52.7 56.7 69.3 

RI 34.1 45.2 46.8 48.3 49.3 49.3 49.7 54.7 

MH 33.3 206.9 300.8 364.8 391.5 446.1 449.5 596.6 

MO 12.2 43.0 63.5 73.0 85.0 89.2 95.6 123.5 

R
ep

ai
r 

N
u
m

b
er

 

DR 8.74 25.29 32.34 36.32 39.48 40.74 42.00 48.05 

HO 2.87 6.49 8.40 9.55 9.86 10.60 11.17 8.83 

BU 3.09 14.23 20.34 24.50 26.49 27.86 29.32 36.88 

RI 17.78 23.70 24.41 25.12 25.23 25.52 26.11 28.31 

MH 0.94 8.32 13.31 16.02 18.18 19.95 20.96 27.71 

MO 2.49 8.49 12.27 13.79 15.63 16.42 17.29 21.78 

2
n

d
 M

a
in

te
n

a
n

ce
 P

o
li

cy
 

R
ep

ai
r 

T
im

e 
(h

) 

DR 47.5 112.6 138.5 149.7 159.0 160.9 164.0 184.8 

HO 26.4 45.8 51.3 55.2 57.1 60.8 60.3 68.3 

BU 5.4 26.4 38.4 44.4 46.9 50.6 52.5 61.2 

RI 34.1 45.1 47.2 48.5 49.0 49.3 50.0 54.4 

MH 31.1 197.5 297.3 351.8 412.8 415.5 440.8 563.0 

MO 12.1 42.3 62.7 77.2 83.4 93.6 95.0 119.4 
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Table 4.14. Corrective Maintenance Statistics Regarding to TBI Values for Each Maintenance Policy 

(cont’d) 

TBI(h)  16 64 112 160 208 256 304 8760 

2
n

d
 M

a
in

te
n

a
n

ce
 P

o
li

cy
 

R
ep

ai
r 

N
u

m
b

er
 

DR 8.68 25.07 32.70 36.05 38.90 40.11 41.45 47.65 

HO 2.85 6.75 8.42 9.34 9.85 10.56 10.99 13.31 

BU 3.10 13.98 19.69 22.78 24.39 25.85 26.69 31.37 

RI 17.82 23.41 24.51 25.08 25.25 25.55 25.88 28.20 

MH 0.93 8.21 12.76 15.66 17.73 19.30 19.83 26.00 

MO 2.49 8.64 12.30 14.22 15.50 16.89 17.26 21.47 

3
rd

 M
a
in

te
n

a
n

ce
 P

o
li

cy
 

R
ep

ai
r 

T
im

e 
(h

) 

DR 47.8 109.5 131.8 145.4 151.6 156.1 158.2 178.9 

HO 26.4 45.0 50.8 52.4 52.4 55.2 56.3 59.9 

BU 5.7 22.7 30.3 32.1 33.0 35.1 34.3 36.0 

RI 34.2 44.8 47.3 48.8 48.6 50.1 50.3 55.1 

MH 29.7 199.1 290.8 320.6 392.0 387.0 405.8 485.8 

MO 11.9 44.7 62.8 77.3 86.1 91.0 92.0 112.6 

R
ep

ai
r 

N
u
m

b
er

 

DR 8.82 24.46 31.17 35.18 37.67 39.24 39.91 46.69 

HO 2.95 6.47 7.86 8.10 8.43 8.86 8.98 10.14 

BU 2.98 11.95 15.12 16.17 16.76 17.15 17.20 18.53 

RI 17.77 23.27 24.49 25.28 25.14 25.85 25.90 28.21 

MH 0.94 7.89 11.62 13.42 15.15 15.87 16.71 19.49 

MO 2.42 8.79 12.31 14.41 15.60 16.54 16.89 20.30 

According to the corrective maintenance statistics, the sensitivity of subsystems to the 

changing inspection intervals can be analyzed for each maintenance policy. Figure 

4.13, Figure 4.14, and Figure 4.15 present a representative graph for the first, second 

and third maintenance policy, respectively. Inspection interval of 160 h was taken as 

a reference point. In these figures, the percentage of change in the total corrective 

maintenance times for different inspection intervals were shown comparatively. It is 

concluded from the graph that MH and MO subsystems are the most sensitive to the 

changes in inspection intervals. Besides, RI and HO are the subsystems with the least 

sensitivity to the changes in inspection intervals. 
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Figure 4.13. Sensitivity of Total Corrective Maintenance Time to Inspection Interval for 1st 

Maintenance Policy 

 

Figure 4.14. Sensitivity of Total Corrective Maintenance Time to Inspection Interval for 2nd 

Maintenance Policy 
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Figure 4.15. Sensitivity of Total Corrective Maintenance Time to Inspection Interval for 3rd 

Maintenance Policy 
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CHAPTER 5  

 

5. CONCLUSION AND RECOMMENDATIONS 

 

5.1. Conclusion 

Effectiveness of a maintenance policy reserves a high uncertainty coming from the 

stochastic behavior of component and subsystem lifetimes in the maintained systems. 

In addition, what to implement in planned and unplanned activities may change the 

financial and operational benefits of a maintenance policy. This study intends to 

develop a simulation algorithm that integrates corrective, preventive, and 

opportunistic maintenance to the stochastic repairing and operating behaviors of a 

working system. Once the stated integration was achieved, the model was tested for 

different inspection intervals since inspections, as a part of maintenance policy, is 

critical in mines especially for operationally important loading and hauling machines. 

The study methodology required (i) allocation of components in the system and 

characterization of component uptime and downtime profiles, (ii) mathematical 

correlation of production cycles, administrative breaks, regular inspections and 

maintenance work packages, which include corrective, preventive and opportunistic 

maintenance actions, (iii) introducing the model in a discrete-event software called 

Arena®, and (iv) computing and analyzing the sensitivity of production rates and 

maintenance cost to the different maintenance policies.  

The developed model was applied in two different case studies. First, the model was 

performed for three shovels operating in the same mine. Random characteristics of 

repairing and lifetime durations of the shovel subsystems were adapted in the model 

for a better understanding of downtime behavior of the systems. The results showed 

that the maximum total production amount for the shovel fleet can be achieved as    

7,242,151 m3 when the inspection intervals is 280 hours. It was realized that 

production amount was decreased drastically after 80 hours of inspection interval. 
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Although increasing inspection intervals raises the total productivity, it may accelerate 

the deterioration rates of components. Therefore, there should be a balance between 

corrective maintenance activities and annual production amount. Moreover, the 

outputs of the simulation were used to reveal the sensitivity of shovel subsystems to 

the changeable inspection intervals. In the sensitivity graphs, it was seen that SHA 

subsystem is the most sensitive to the changing inspection interval where it is the least 

for OTH. 

Second, the model was applied to a dragline case. The dragline components and 

subsystems were introduced with random repair times and lifetimes as an input of the 

model. Six different maintenance scenarios which are combination of CM, PM, and 

OM with different constraints were examined by using the algorithm. In addition, PM 

application was tested for 14 different inspection intervals between 16 and 320 hours 

with 24 hours increments. The results showed that the scenario where only CM and 

OM (for full system) is applied without any regular inspection minimizes the total 

maintenance cost which is equal to 913,481 $. Moreover, according to corrective 

maintenance statistics, MH and RI subsystems are the most and the least sensitive to 

the variations in inspection intervals, respectively. 

5.2. Recommendations 

Contribution of the research study can be extended regarding the following 

recommendations in the future studies: 

• In this study, the shovels are taken functionally independent of each other 

where the dragline performs a self-operation. Therefore, it is assumed that 

individual productivities are not affected from the failures in the other 

machines. The current model can be improved more for k-out-of-n systems 

where stand-by machines are available. Haul truck fleets can be given as an 

example to this kind of systems. 
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• In addition to production rate and maintenance cost estimation, component 

deterioration rate can also be included to the model to see the long-term effect 

of the maintenance policy. 

• Some other operational and environmental constraints or variables, and driver 

skills can be introduced to the model in for a more comprehensive 

characterization of the machines.   

• Crew capacity and competency may be added to the maintenance policy for a 

better evaluation of maintenance effectiveness. 

• An inventory policy may be adapted to reveal the additional production loss 

due to lack of enough spare part in case of maintenance. 

• Interaction of different machines working together can be considered to 

develop a more holistic maintenance policy since resources, i.e. crew capacity 

and spare part numbers, are limited in the production area. 
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