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ABSTRACT

QUANTUM-RESISTANT MULTIVARIATE QUADRATIC SYSTEMS AND DIGITAL
SIGNATURES

Altundağ, Esen

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

June 2019, 80 pages

In the light of technological advances, scientists expect that quantum computers will be gen-
erated and substitute with classical ones, then all symmetric and asymmetric (public-key)
cryptosystems will be invalid in the near future. This causes the need for quantum-resistant
algorithms all araund the world. That’s why, we have focused on multivariate public-key cryp-
tosystems as a kind of post-quantum cryptography. In order to explain the root idea behind this
kind of cryptosystems, as a starting point, the Matsumoto-Imai cryptosystem has been scruti-
nised together with its linearization equations attack. After that, we have constructed our own
specific toy example for illustrating the construction of both the single-branch Matsumoto-
Imai cryptosystem and its linearization equations attack. As well as these, Matsumoto-Imai
variants which were developed with the aim of increasing the security of original one, have
been examined. Then, it has been passed on to our main aim which is the analysis of the
Multivariate Quadratic Digital Signature Scheme which comes from the family of multivari-
ate public-key cryptosystems. In this process, its structural tools, security sources, parameter
sets, general description, detailed description and security analysis have been studied. As a
consequence of all these, we have realized that the security of Multivariate Quadratic Digital
Signature Scheme against both classical and quantum computers is based on the intractability
of the multivariate quadratic problem, the hardness of the commitment schemes which are
the structural tools of this algorithm, the splitting idea of the secret-key that comes from the
Sakumoto-Shirai-Hiwatari 5-pass Identification Scheme is a special kind of canonical 2n+1-
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pass identification schemes, and the Fiat-Shamir transform which maintains the security in the
process of obtaining a signature scheme from an identification scheme. That is, it is possible
to generate more secure and effective cryptographic protocols by improving the combination
of these tools and ideas with the optimized parameter sets.

Keywords: quantum computers, post-quantum algorithms, random oracle model, quantum
random oracle model, multivariate public-key cryptography, multivariate quadratic problem,
Matsumoto-Imai cryptosystems, linearization equations, commitment schemes, 5-pass iden-
tification schemes, Fiat-Shamir transform, Multivariate Quadratic Digital Signature Scheme.
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ÖZ

KUANTUM-DAYANIKLI ÇOK DEĞİŞKENLİ İKİ BİLİNMEYENLİ SİSTEMLER VE
SAYISAL İMZALAR

Altundağ, Esen

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Haziran 2019, 80 sayfa

Teknolojik gelişmeler ışığında bilim insanları, yakın gelecekte kuantum bilgisayarların üre-
tilip klasik olanların yerini almasını, müteakiben tüm simetrik ve asimetrik (açık anahtarlı)
şifreleme sistemlerinin geçersiz olmasını bekliyorlar. Bu da kuantum-dayanıklı algoritmalara
dünya çapında bir ihtiyaç doğuruyor. Bu sebeple, kuantum sonrası şifrelemenin bir türü olan
çok değişkenli açık anahtarlı şifreleme sistemlerine odaklandık. Bu tür şifreleme sistemleri ar-
dındaki ana fikri açıklamak için, başlangıç noktası olarak, Matsumoto-Imai şifreleme sistemi,
doğrusallaştırma denklemleri saldırısı ile birlikte detaylı bir biçimde incelenmiştir. Akabinde,
hem tek dallı Matsumoto-Imai şifreleme sisteminin hem de onun doğrusallaştırma denklem-
leri saldırısının kurgusunu göstermek için kendi örneğimizi oluşturduk. Bunların yanı sıra,
orijinal olanın güvenliğini artırmak amacıyla geliştirilen Matsumoto-Imai varyantları çalışıl-
mıştır. Ardından, çok değişkenli açık anahtarlı şifreleme sistemleri ailesinden gelen ve asıl
amacımız olan Çok Değişkenli İkinci Dereceden Sayısal İmza Şemasının analizine geçilmiş-
tir. Bu süreçte onun yapısal araçları, güvenlik kaynakları, parametre setleri, genel tanımla-
ması, ayrıntılı tanımlaması ve güvenlik analizleri çalışılmıştır. Tüm bunların bir sonucu olarak
farkettik ki, Çok Değişkenli İkinci Dereceden Sayısal İmza Şemasının, hem klasik hem de ku-
antum bilgisayarlara karşı güvenliği, çok değişkenli ikinci derecede problemin zorluğuna, bu
algoritmanın yapısal araçlarından olan bağlılık şemalarının güçlüğüne, standart 2n+1-geçişli
kimlik saptama şemalarının özel bir türü olan ve Sakumoto-Shirai-Hiwatari 5-geçişli kimlik
saptama şemasından gelen gizli anahtarı ikiye ayırma fikrine ve kimlik saptama şemasından
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imza şeması elde etme sürecinde güvenliği sağlayan Fiat-Shamir dönüşümüne dayalıdır. Yani,
bu araçların ve fikirlerin optimize edilmiş parametre setleriyle kombinasyonunu geliştirerek
daha güvenli ve etkili şifreleme protokolleri oluşturmak mümkündür.

Anahtar Kelimeler: kuantum bilgisayarlar, kuantum sonrası algoritmalar, rassal kahin mo-
deli, kuantum rassal kahin modeli, çok değişkenli açık anahtarlı şifreleme, çok değişkenli iki
bilinmeyenli problem, Matsumoto-Imai şifreleme sistemleri, doğrusallaştırma denklemleri,
bağlılık şemaları, 5-geçişli kimlik saptama şemaları, Fiat-Shamir dönüşümü, Çok Değişkenli
İki Bilinmeyenli Sayısal İmza Şeması
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CHAPTER 1

INTRODUCTION

At the present time, one of the most essential needs of the human being is the topic of security
and this concept is becoming increasingly important together with the technological advances.
That is, many areas of life such as communication, online shopping, Internet banking and
health care systems require high level of security. The main tool so as to satisfy this is the
existence of secure cryptographic protocols like identification schemes and digital signature
schemes. Let’s pay attention the lock icon on any browser address bar that indicates a secure
connection. If that connection can not be trusted, anything that relies on Internet security will
be rendered useless. This scenario is possible in the near future since a developing technology
which is said to be quantum computing has a potential to crack the encryption which is the
basis for secure Internet communications. Today secure communications rely on exchange of
keys or secret codes to ensure that the parties are who they say are and to exchange messages
that can not read by others. The same type of mechanisms are also used to guarantee that
application patches and code updates are coming from legitimate sources.

In 1994 a mathematician named Peter Shor developed an algorithm which can break the
security of key exchanges and digital signatures [38]. By using this algorithm, a quantum
computer would be able to crack today’s most sophisticated encryption in minutes [39]. On
the other hand, all the normal computers in the world working together would take longer
than the universe has existed, because quantum and traditional computers operate differently
from each other. That is, quantum ones work at atomic level and are not affected from the
physical restrictions over traditional computer chips. Furthermore, any quantum computer
used qubits instead of bits of a qubit has ability to represent 0 and 1 simultaneously and very
few qubits can speed up certain types of computation by an enormous amount. However,
this new technology can break the encryption on which the world relies. That is, all current
symmetric and asymmetric (public-key) cryptosystems which based on the hardness of the
mathematical problems like factorization and discrete logarithm can be invalid.

As soon as quantum computers are able to break the encryption which is estimated to be less
than 10 years away, the threats will be innumerable. For instance, a hacker could break a
software update key and send fake updates or malware to your computer or store private en-
crypted information could esaily be read by anyone with access to a cloud quantum computer.
As well as this, if we follow the advances in the technology, we can realize the competition
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among the famous firms such as IBM, Microsoft, Intel and Google for generating quantum
computers [2]. At this juncture, the need for the quantum resistant algorithms which is called
as post quantum cryptography becomes inevitable. In return for this, National Institute of
Standards and Technology (NIST) organized a competition for the quantum-resistant algo-
rithms on 20th December, 2016 [25]. Then, the round 2 candidates were announced by NIST
on 30th January, 2019 [3]. If we focus on the submissions in the portal of the NIST, we
can learn the well known quantum-resistant cryptographic algorithms which consist of multi-
variate public-key, lattice-based, hashed-based, isogeny-based and code-based cryptosystems
[25].

In this thesis, we analyze an algotihm whose name is the Multivariate Quadratic Digi-
tal Signature Scheme (MQDSS) which comes from the family of multivariate public-key
cryptosystems and is one of the round 2 candidates of NIST [3] since the systems which rely
on multivariate public-key polynomials are resistant against quantum computers [14]. Now
the security is based on the intractability of the multivariate quadratic (MQ) problem and the
hardness of the commitment schemes instead of the classical problems like factorization and
discrete logarithm which can be solved in polynomial time with fast computing capability of
the quantum computers.

The rest of the thesis is organized as follows. To begin with, the preliminary section which in-
cludes the Random Oracle Model (ROM) and the Quantum Random Oracle Model (QROM)
that are used in the security proofs of cryptographic algorithms are described. Then we fo-
cus on what are the multivariate public-key cryptosystems more detailed. In this process,
firstly Matsumoto-Imai cryptosystem and it’s linearization equations attack for single and
multiple-branch cases are studied. Secondly, our own specific toy example for illustrating the
construction of both the single-branch Matsumoto-Imai cryptosystem and it’s linearization
equations attack are generated. Finally, Matsumoto-Imai variants which were developed so as
to increase the security of the original MI cryptosystem are investigated. After that, crypto-
graphic protocols which are identification schemes, digital signature schemes and commith-
ment schemes are analyzed in general terms associated with their security properties.

From now on, we examine the structural tools of the MQDSS which are composed of the
MQ problem, is the main security source of the MQDSS, canonical 2n+1-pass identification
schemes, Sakumato-Shirai-Hiwatari (SSH) 3-pass and 5-pass identification schemes and Fiat-
Shamir transform in common with their security properties. Finally, the detailed analysis of
the MQDSS algoritm is made. In order to do this, preliminary parameters and functions,
general description, optimized parameter sets, the detailed description and the the classical
and the quantum algorithms for solving the MQ problem of the MQDSS are scrutinised.
Then by taking all these points into consideration, we pass on to the security analysis of the
MQDSS.
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CHAPTER 2

PRELIMINARIES

Since the aim of the thesis is the analysis of the Multivariate Quadratic Digital Signature
Scheme which belongs to the family of multivariate public-key cryptosystems, in the ongoing
process, some examination tools whose names are the random oracle model and the quantum
random oracle model, are needed. They are utilized both as a design strategy and as a proof
strategy. Because, at the end of the thesis, the thing which is wanted to be said is that MQDSS
is secure both in the random and the quantum random oracle model, these two concepts should
be known at the beginning as a preliminary part of the thesis.

2.1 RANDOM ORACLE MODEL

Random oracle model (ROM) is a mathematical model which requires to have an ideal cryp-
tographic hash function that match any input to that hash function with a uniform distribution.
This model was introduced by Bellare and Rogaway.

According to the above definition, lets assume we have an ideal cryptographic hash function
h : X −→ Y and we don’t have any access to a formula or an algorithm, which determines
the values of h. That’s why, it is possible to think h as a some kind of black box. As we come
to the application of ROM, there exists one thing which we need to assume: honest players
who are the players act upon defined cryptographic protocols. In the process of constructing a
digital signature scheme, generators prefer to sign the hash of message rather than the message
itself. Also adversary is interested in the hash of his or her guesses. Although the system
enables everyone to compute the hash, hashing is done by a new magical party called the
"oracle" whose operation can be regarded as a black box.

h behaves like an oracle that is we can query h and it will give the answer back and that
answer will be correct. However, if we keep on querying h, we will not be able to get any
pattern, and no matter how many times we have queried h before, the next query will behave
randomly in other words, the next answer to the next query will seem to be coming from the
space Y equiprobably. If we assume this property on h, then this means that we are following
the ROM.
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More formally, suppose that h ∈ FX,Y is chosen randomly, satisfies ROM and we have
picked up certain points {x1, x2, . . . , xQ} from X where Q is the number of queries that we
have made. Let the set of those points beX0 = {x1, x2, . . . , xQ} such that X0 ⊆ X . Assume
that we have queried the oracle for h at those points. Thus, we will have the several accesses
to several valid pairs like this: {(x1, h (x1)) , (x2, h (x2)) , . . . , (xQ, h (xQ))}.

Now if X has ROM, then for any x ∈ X \ X0, Pr [h (x) = y] = 1
M , |Y | = M for all

y ∈ Y even after having the knowledge of these valid pairs. That’s to say the hash function
doesn’t leak any information.

Furthermore, in the process of explaining ROM, to describe what is random oracle has an
important role for understanding the whole concept. When any domain set D and the range
set R are given, a random oracle is a randomly chosen function among all functions go from
D to R and it reminds us a look up table whose first column represents the input and the
second represents the corresponding output. The reason for this is that whenever the same
input is given to the random oracle, the same output has to be returned. The expectation from
this look up table is including all input and corresponding output sets that random oracle needs
to compute. However, so as to store this kind of look up table, we need exponential space.
Therefore, rather than considering a full table from the beginning, let’s assume that we have
a completely empty table and whenever an input value needs to be calculated by the random
oracle, this calculation is done after then the input and output values are entered to the table.
However, for each question asked to the oracle, firstly whether this question has been asked
before is checked by looking at the previous lines of the table and later on new entries are
made to the table only for previously unasked values. Thus, the problem of exponential space
will disappear. In this manner, random oracle can be utilized both as a design strategy and
as a proof strategy in the course of creating a scheme protocol.

Let’s focus on the word of "random". In the real world, it is impossible to construct a genuine
random function, so we are able to have only access to the pseudo random functions. For this,
ideal cryptographic hash functions which have to satisfy three properties: preimage resistance,
second preimage resistance and collision resistance are required to use in ROM.

2.1.1 PROPERTIES OF IDEAL CRYPTOGRAPHIC HASH FUNCTIONS

2.1.1.1 Preimage Resistance

When we analyze results of the algorithm FIND-PREIMAGE(h, y,Q), if for all pre-specified
outputs, it is computationally infeasible to return something out of failure, then our hash
function h will be called as preimage resistant.

4



Algorithm 1 FIND-PREIMAGE(h, y,Q) [34]

1: choose any X0 ⊆ X, |X0| = Q

2: for each x ∈ X0 do
3: if h (x) = y then return x
4: end if
5: end for
6: return failure

2.1.1.2 Second Preimage Resistance

Algorithm 2 FIND-SECOND-PREIMAGE(h, x,Q) [34]

1: y ← h (x)

2: choose any X0 ⊆ X \ {x} , |X0| = Q− 1

3: for each x0 ∈ X0 do
4: if h (x0) = y then return x0
5: end if
6: end for
7: return failure

When we analyze results of the algorithm FIND-SECOND-PREIMAGE (h, x,Q), if for any
specified input i.e., given x, it is computationally infeasible to return something out of failure,
then our hash function h will be called as second preimage resistant.

2.1.1.3 Collision Resistance

Algorithm 3 FIND-COLLISION(h,Q) [34]

1: choose any X0 ⊆ X, |X0| = Q

2: for each x ∈ X0 do
3: yx ← h (x)

4: if yx = yx′ for some x′ 6= x then return (x, x′)

5: end if
6: end for
7: return failure

When we analyze results of the algorithm FIND-COLLISION (h,Q), if for any specified
input i.e., given x, it is computationally infeasible to return something out of failure, then our
hash function h will be called as collision resistant.
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2.2 QUANTUM RANDOM ORACLE MODEL

Quantum random oracle model (QROM) is a random oracle model in the quantum world.
That’s why first let us know the quantum world and quantum cryptography. In classical cryp-
tography, the thing which makes the codes practically unbreakable is the tremendous amount
of time and computing power. Therefore, if all the world’s personal computers were working
nonstop to try and break the code that keeps your information safe, it would take them several
times of the universe’s age. On the other hand, the modern computer may soon be replaced by
the quantum computer and what takes a modern computer billions of years could be done by
a quantum computer in days or even hours. Since researchers are ready for this improvement,
they’ve come up with a new type of cryptography that’s not just hard to break but impossible
to break. It’s called quantum cryptography and what makes it so powerful is that instead
of math it relies on the laws of physiscs. The one we have to pay particular attention among
these laws is the Heisenberg Uncertainty Princible which says that there is no chance to
know absolutely everything about the state of a quantum particle because nature keeps some
things hidden.

In the process of sending an encrypted message to a receiver over a secure line by using
quantum cryptography, the key is a stream of light particles or photons whose property called
spin can be changed when it passes through any one of the four kind of filters: vertical,
horizontal and two diagonals. As we need to explain a little bit more, let’s lump the filters
into two groups: the diagonal scheme and the rectilinear scheme. Then to translate a photon
spin into a key, we have a matching such that a photon with vertical or bottom-left to top-right
diagonal spin means one, and horizantal or bottom-right to top-left diagonal spin means zero.
Over the course of sending photons to the receiver, the sender stands to switch between filters
at random. Now here’s where the Heisenberg uncertainty princible becomes significant since
the only way an adversary can measure a photon’s spin is by passing it through a filter. If the
adversary measures a photon has a specific shape with its right filter, then the guess will be
correct and according to the shape the attacker notes down its corresponding bit value 1 or
0. Otherwise, the photon spin will be altered as it passes through and the attacker incorrectly
reads the corresponding bit value. Unless the adversary knows beforehand which filter to
use, then he or she runs a pretty big risk of changing the spin. Since the sender is switching
between filters at random, the attacker will get it wrong about half of the time. For this reason,
the laws of quantum physics prevent the adversary from knowing the key.

If we go one step further, the thing which we have to focus on is the quantum adversary who
is an adversary with a quantum computer. As we recall from the previous section, one of
the reasons for using ROM is providing security proofs in the field of practical cryptographic
schemes. However, when it comes to quantum adversaries who have the ability for obtain-
ing the outputs of hash functions over many inputs’ superpositions, ROM can be no longer
effective in security proofs. That’s why a new model whose name is quantum random ora-
cle model was developed and in QROM, hash functions are built as a quantumly accessible
random oracle. [22] That is, a quantum adversary whose computational resources are really
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different from those belong to classical adversary is able to make a quantum circuit which en-
ables to analyze the hash oracle in superposition. This quantum circuit is a unitary mapping
UH such that UH : |x〉 |y〉 7−→ |x〉 |y ⊕H (x)〉 and it is possible to extend UH for states’
superpositions. Therefore, if we want to model abilities of a quantum adversary who imple-
ments any hash function, we should first tap into the random oracle by using UH then enable
to quantum access to UH [16].

7



8



CHAPTER 3

MULTIVARIATE PUBLIC-KEY CRYPTOSYSTEMS

In multivariate public-key cryptosystems, post-quantum identification and signature algo-
rithms rely on the hardness of large systems of the multivariate quadratic equations so called
multivariate quadratic (MQ) problem to provide resistance against attacks. The first occur-
rence of these algorithms started with the aim of finding a new alternative to current standard
schemes (e.g., RSA) which use the hardness of the factoring or discrete logarithm problem
for public-key identifications and digital signatures.

Now the question is: What is an MQ problem?

MQ problem is a problem which requires to solve a multivariate quadratic equation system
over a finite field. To be able to explain the root idea behind the MQ problem, the Matsumoto-
Imai cryptosystem which was proposed by Matsumoto and Imai in 1988, is described. After
that, linearization equations attack which broke the Matsumoto-Imai cryptosystem is iden-
tified [28]. Then, our own specific toy example for illustrating the construction of both the
single-branch Matsumoto-Imai cryptosystem and its linearization equations attack, is illus-
trated. Finally, Matsumoto-Imai variants which were developed so as to increase the security
of the original MI cryptosystem, are given.

3.1 MATSUMOTO-IMAI (MI) CRYPTOSYSTEM

The main idea of the Matsumoto-Imai cryptosystem is using both the vector space and the
hidden field structure of kn, k is a finite field, in the same time [24]. In other words, Mat-
sumoto and Imai search invertable maps on K, a degree n field extension of k instead of
looking for the maps over kn (vector space) directly. [28] Let’s define the construction of this
cryptosystem.
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KEY GENERATION

Let

• k = Fq, where q = 2n (k → finite field, char (k) = 2),

• g (x) ∈ k [x] be an irreducible polynomial whose degree n,

• K = k [x] /g (x) be a field which is a degree n extension of k and

• φ : K → kn be the standard k-linear isomorphism between K and kn given by:

φ
(
a0 + a1x+ · · ·+ an−1x

n−1) = (a0, a1, . . . , an−1) . (3.1)

Suppose that φ is a k-linear map and k is a subfield of K. Select θ such that 0 < θ < n

and gcd
(
qθ + 1, qn − 1

)
= 1. Let F̃ be a map over K such that F̃ (X) = X1+qθ . If

θ is chosen above, then MI Cryptosystem guarantees that F̃ will be an invertable map and
F̃−1 (X) = Xt, because t

(
1 + qθ

)
≡ 1 mod (qn − 1), t is an integer. Let F be the map

over kn such that:

F (x1, . . . , xn) = φ ◦ F̃ ◦ φ−1 (x1, . . . , xn) = (f1, . . . , fn) , (3.2)

where f1, . . . , fn ∈ k [x1, . . . , xn]. Now assume that L1 and L2 are two invertable affine
transformations over kn. Finally, let’s define the map F̄ over kn such that:

F̄ (x1, . . . , xn) = L1 ◦ F ◦ L2 (x1, . . . , xn) =
(
f̄1, . . . , f̄n

)
, (3.3)

where f̄1, . . . , f̄n ∈ k [x1, . . . , xn].

The Public-Key

The public key of the single-branch MI cryptosystem includes:

1. The field: k , the addition and multiplication tables of it,

2. The set of n polynomials: f̄1, . . . , f̄n ∈ k [x1, . . . , xn].

The Private-Key

The private key of the single-branch MI cryptosystem includes:

1. The two invertible affine transformations: L1 and L2,

2. Parameter: θ.
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ENCRYPTION

Given a plaintext message (x′1, . . . , x
′
n), the corresponding ciphertext: (y′1, . . . , y

′
n) where

y′i = f̄i (x′1, . . . , x
′
n) for i = 1, . . . , n.

DECRYPTION

Given a ciphertext (y′1, . . . , y
′
n), the decryption process is the following computation:

F̄−1
(
y′1, . . . , y

′
n

)
= L−12 ◦ F−1 ◦ L−11

(
y′1, . . . , y

′
n

)
= · · ·

· · · = L−12 ◦ φ ◦ F̃−1 ◦ φ−1 ◦ L−11

(
y′1, . . . , y

′
n

)
.

(3.4)

We need to know that due to the construction of the system , F̄−1’s components will have
very high degree. That’s why, the decryption process will be seperated into 3 parts:

1.
(
z′1, . . . , z

′
n

)
= L−11

(
y′1, . . . , y

′
n

)
, (3.5)

2. (z̄1, . . . , z̄n) = φ ◦ F̃−1 ◦ φ−1
(
z′1, . . . , z

′
n

)
, (3.6)

3.
(
x′1, . . . , x

′
n

)
= L−12 (z̄1, . . . , z̄n) . (3.7)

The description above only belongs to the single-branch MI, but in practical application,
the composition of several single-branch crytosystems, so called multiple-branch MI, is
preferred. In the application process of the multiple-branch MI, the input which will be en-
crypted is partitioned first, then each part is ciphered by using the single-branch MI. After that
the corresponding parts are combined to create a single ciphertext. Since it is necessary to
hide the branches before and after the ciphering, invertable affine transformations are applied
to the input and output [12]. This alternative cryptosystem was a candidate for the Japanese
Government’s security standards [32]. However, in 1995, Jacques Patarin broke the system
by means of an algebraic attack whose name is linearization equations attack.

3.2 LINEARIZATION EQUATIONS ATTACK

Let’s start with the description of the linearization equations attack for the single-branch MI
cryptosystem. After that, its generalization to multiple branch case is identified. [28] Since the
main tool of the linearization equations attack is the linearization equation, at the beginning,
it’s definition is given.

Definition 1. Let P = {p1, . . . , pm} be any set of m polynomials in k [x1, . . . , xn]. A lin-
earization equation for P is any polynomial in k [x1, . . . , xn, y1, . . . , ym] of the form

n∑
i=1

m∑
j=1

aijxiyj +

n∑
i=1

bixi +

m∑
j=1

cjyj + d, (3.8)

so that it gives the zero function in k [x1, . . . , xn] if we substitute in pj for yj , for j = 1, . . . ,m.
In other words, a linearization equation is any equation in k [x1, . . . , xn] of the form

n∑
i=1

m∑
j=1

aijxipj (x1, . . . , xn) +
n∑
i=1

bixi +
m∑
j=1

cjpj (x1, . . . , xn) + d = 0 (3.9)
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such that it is satisfied for all (x′1, . . . , x
′
n) ∈ kn.

Let’s move on to the definition of linearization equation space for a given P .

Definition 2. Assume that P = {p1, . . . , pm} which was defined in 1, is given. Its set of all
linearization equations that generates a k-vector space, is called as a linearization equations
space.

According to Patarin, so as to attack the Matsumoto-Imai cryptosystems, the thing which will
be needed is finding the linearization equations space for the components of F̄ which are
the public-keys of this cryptosystem. Since F̄ =

{
f̄1, . . . , f̄n

}
was defined in the previous

section, it is possible to explain the linearization equations attack over F̄ . That’s why, assume
that for the components of F̄ , there exists a linearization equation whose form is suitable to
(3.8). Then, so as to attack the system, when a ciphertext (y′1, . . . , y

′
n) is given, y′i should

be written instead of f̄i inside of this linearization equation. Thus, the corresponding linear
equation which only consists of the variables x1, . . . , xn, can be obtained. At this point, the
important thing is the existence of the plaintext among its solution set.

Now, the aim is to derive sufficient number of linear equations from the existing lineariza-
tion equations so that the unique solution of the system becomes the plaintext. In accor-
dance with the linearization equations attack, in the case of not finding the plaintext directly
from the obtained linear equations, they should be substituted into the public key equations
(fi(x1, . . . , xn) = y′i ∀i = 1, . . . , n) for decreasing the number of unknown variables. In
this process, for the existence of a feasible attack against the plaintext, there should be an ade-
quate number of linearly independent linear equations. Thus, the system can be either solved
directly or made easier to solve. In the attack, deciding the number of linearly independent
linear equations is quite necessary for the feasibility analysis.

3.2.1 LINEARIZATION EQUATIONS ATTACK FOR THE SINGLE-BRANCH MI
CRYPTOSYSTEM

In the case of a single branch MI, the plaintext is encrypted directly without partitioning
or permutating. That’s why, in this situation, it is possible to directly focus on the linearly
independent linear equations which are needed for the lineariazation equations attack against
the single-branch MI cryptosystem. Since deciding the number of them is necessary, [28] let’s
give a theorem which is related with the lower bound of this number.

Theorem 1. Assume that there is a single-branch MI cryptosystem whose public-key is the
following set: F̄ =

{
f̄1, . . . , f̄n

}
. Let L̄ be the linearization equations space of this set. If

for a given ciphertext Y ′ = (y′1, . . . , y
′
n) ∈ kn, L̄Y ′ is obtained as a linearization equations

space by putting y′i instead of yi for all i = 1, . . . , n, in each equation of L̄, then the lower
bound of the linearly independent linear equations in the space L̄Y ′ is the following:

n− gcd(n, θ) ≥ 2n

3
. (3.10)
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Only in the case of the existence of trivial equations, there will be an exceptional situation
such that L−1(Y ′) = (0, . . . , 0).

There exist two lemmas which are needed to see the correctness of the theorem (1). Let’s give
them:

Lemma 1. Assume that there is a single-branch MI cryptosystem whose public-key is derived
from the following construction: F̄ = L1 ◦F ◦L2. Let L and L̄ be the linearization equations
spaces for the sets {f1, . . . , fn} and

{
f̄1, . . . , f̄n

}
respectively. Then the dimensions of these

k-vector spaces will be the same and it’s denoted by:

dimk L = dimk L̄. (3.11)

Notice that: So as to show the equality for the dimensions of the k-vector spaces in the lemma
(1), the technique is associated with the finding a bijection between these spaces. That’s why,
first suppose the transformation L2 as an identity, then suppose the transformation L1 as an
identity. Since they are invertable affine transformations, the one which is not assumed as an
identity, can be defined together with the help of unknown coefficients and variables. After
that combine these two cases and get the answer. In this process, the thing which is needed to
do, is starting from the linearization equation for one of the sets {f1, . . . , fn} or

{
f̄1, . . . , f̄n

}
,

with the form of (3.8) and substituting the defined transformation inside of this equation, then
trying to pass on to the linearization equation of the other set via the arrangements over this
linearization equation. For the two-sidedness, make this operation for both of the sets. Thus,
the bijection between the linearization equations can be obtained, which means the equality
of their dimensions. .

Lemma 2. Let L and L̄ be the linearization equations spaces for the sets {f1, . . . , fn} and{
f̄1, . . . , f̄n

}
respectively, then let Z = L−11 (Y ′) = (z1, . . . , zn). If for a given ciphertext

Y ′ = (y′1, . . . , y
′
n), L̄Y ′ is obtained as a linearization equations space by putting y′i instead of

yi in each equation of L and LZ is obtained as a linearization equations space by putting zi
instead of yi in each equation of L̄ for all i = 1, . . . , n, then the dimensions of these k-vector
spaces will be the same and it’s denoted by:

dimk LZ = dimk L̄Y ′ . (3.12)

As such in the lemma (1), there is also a bijection between the two linearization equations
spaces in the lemma (2) with the same reason.

3.2.1.1 CONSTRUCTION OF THE LINEARIZATION EQUATIONS

Before explaining the two main approaches which are benefited for generating linearization
equations, let’s give the logic behind the construction of these equations from the Patarin’s
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point of view. So, let K be as described in the section (3.1) and X,Y ∈ K such that Y =

F̃ (X) = Xqθ+1. Then take the
{
qθ − 1

}th power of the both sides and get:

Y qθ−1 = (Xqθ+1)q
θ−1 = X(qθ+1)(qθ−1) = Xq2θ−1. (3.13)

Now mutiply both sides with XY and get:

XY qθ = Xq2θY ⇒ XY qθ −Xq2θY = 0. (3.14)

Define R̃(X,Y ) ∈ K [X,Y ] such that

R̃(X,Y ) = XY qθ −Xq2θY. (3.15)

After that, as in the case with F = φ ◦ F̃ ◦ φ−1, define R such that

R = φ ◦ R̃ ◦ (φ−1 × φ−1). (3.16)

Thus, it will be possible to derive n linearization equations for the vectors f1, . . . , fn with
the form of (3.8) from R(x1, . . . , xn, y1, . . . , yn). According to the definition (1), if fi is
written instead of yi for i = 1, . . . , n, in each linearization equation, then the zero polynomial
will be obtained in k [x1, . . . , xn]. Let’s focus on the number of linearly independent linear
equations that will be derived from R for a given particular ciphertext Y ′ = (y′1, . . . , y

′
n). Let

(x′1, . . . , x
′
n) = F−1(y′1, . . . , y

′
n) ∈ kn be the corresponding plaintext, Y ′ = φ−1(y′1, . . . , y

′
n)

and X ′ = φ−1(x′1, . . . , x
′
n). At this point, in the case of Y ′ 6= 0, one of the solutions for the

equation Xq2θY ′ = X(Y ′)q
θ

has to be X ′. Via dividing both sides by XY ′, the following
equation:

Xq2θ−1 = (Y ′)q
θ−1 (3.17)

will be attained. The number of solutions in the field K, for the equation (3.17) is at most
gcd(q2θ − 1, qn − 1). Since gcd(qθ + 1, qn − 1) = 1, according to the section (3.1),

gcd(q2θ − 1, qn − 1) = gcd(qθ − 1, qn − 1). (3.18)

That’s why, together with the trivial solution, the upper bound for the total number of solutions
of the equation (3.17) is gcd(qθ − 1, qn − 1) + 1. In order to find a more precise result, it can
be benefited from the following lemma.

Lemma 3. For any given a, b ∈ N+,

gcd(qa − 1, qb − 1) = qgcd(a,b) − 1. (3.19)

In the case of applying the lemma (3) to the above result, the upper bound for the total number
of linear equations will be the following:

gcd(qθ − 1, qn − 1) + 1 = qgcd(θ,n) − 1 + 1 = qgcd(θ,n). (3.20)

Now let λ be the number of linearly independent ones among all linear equations. So it can
be assumed that the number of linear equations of the corresponding system is equal to qn−λ.

14



Since the upper bound for the total number of all these equations is qgcd(θ,n), the following
inequality qn−λ ≤ qgcd(θ,n) and thereupon the consequent condition λ ≥ n− gcd(θ, n) will
be obtained. Then, let’s try to find the largest value of gcd(θ, n). With regard to the definition
of the greatest common divisor, gcd(θ, n) can not be larger than the following three values: n,
n
2 and n

3 . When these values are analyzed, gcd(θ, n) can not be equal to the first two values.
For the former case, since 0 < θ < n, gcd(θ, n) 6= n. For the latter case, if gcd(θ, n) is
assumed to be n

2 , then θ has to be also n
2 because θ < n. In this case,

gcd(qθ + 1, qn − 1) = gcd(q
n
2 + 1, qn − 1) = q

n
2 + 1 > 1 (3.21)

creates a contradiction with the condition gcd(qθ + 1, qn − 1) = 1 which is required for the
invertability of F̃ over the field K, in the section (3.1). Therefore, the value of gcd(θ, n) can
not be larger than n

3 . Since λ ≥ n − gcd(θ, n) and gcd(θ, n) ≤ n
3 , the lower bound for the

number of linearly independent linear equations will be at least:

λ = n− gcd(θ, n) ≥ n− n

3
=

2n

3
. (3.22)

Thus, the proof of the following theorem was done. Let’s give the theorem:

Theorem 2. Let L be the linearization equations space for the vectors f1, . . . , fn. If for a
given ciphertext Y ′ = (y′1, . . . , y

′
n) ∈ kn, LY ′ is obtained as a linearization equations space

by putting y′i instead of yi for all i = 1, . . . , n in each equation of L, then the lower bound for
dimk LY ′ is at least:

n− gcd(θ, n) ≥ 2n

3
(3.23)

except when Y ′ = (0, . . . , 0).

Furthermore, if we combine the theorem (2) and the lemma (2), then this combination gives
the proof of the theorem (1). However, in the theorem (1), there is an exception which is
L−11 (Y ′) = (0, . . . , 0). As well as this, it is possible to obtain trivial linear equations, 0 = 0

from the linearization equations. Since the number of linearly independent linear equations
is at least n− gcd(θ, n), there will be an enough amount of linear equations for cracking the
system in the case of gcd(θ, n) = 1.

Another important point is the level of security for the single-branch MI cryptosystem due to
the lower bound for the number of linearly independent linear equations which will be able
to obtained. Since this lower bound is equal to 2n

3 , this means that at least 2n
3 linear equations

which are satisfied by the plaintext for a given ciphertext, can be found, and thus 2
3 of the

information for this system can be attained. In the same time, when 2n
3 linear equations are

acquired, they can be utilized for eliminating 2
3 of the variables of the public equations which

are generated from the ciphertext and the public key. By doing this, the system will become
much more solvable.

Now let’s focus on the two different approaches which are ground on plaintext-ciphertext
pairs and the structure of polynomial functions respectively, so as to generate linearization
equations.

15



1) Plaintext-Ciphertext Pairs

Since the main tool of this approach is the public key, by using it, lots of plaintext-ciphertext
pairs can be obtained. Then, the thing that is needed to do, for any plaintext-ciphertext pair
which is given by F̄ (x′1, . . . , x

′
n) = (y′1, . . . , y

′
n), is putting x′i and y′i instead of xi and yi

respectively in the generic linearization equation with the form of (3.8). By doing this, for
each pair, one linear equation which has (n + 1)2 unknowns, will be generated. Due to this
number, approximately (n + 1)2 plaintext-ciphertext pairs should be chosen for solving the
resulting system.

At this point, let’s analyze the total cost. To begin with, it is possible to divide this cost into
two parts. The former part is the computation of the (n + 1)2 plaintext-ciphertext pairs, and
its complexity is equal to O(n4). The latter part is solving the set of (n+ 1)2 linear equations
each of which contains (n+ 1)2 unkonwns, and its complexity is equal to O(n6).

2) Structure of Polynomial Functions

In this approach, the starting point is the generic linearization equation for the vectors f̄1, . . . , f̄n
in the following form:∑∑

aijxiyj +
∑

bixi +
∑

cjyj + d = 0, (3.24)

where the coefficients aij , bi, cj , d ∈ k. Then, for an arrangement, the quadratic public equa-
tions which correspond to the vectors f̄1, . . . , f̄n, should be placed into the equation (3.24)
instead of y1, . . . , yn. Then, the resulting equation will have the following form:∑∑

αijlxixjxl +
∑

βijxixj +
∑

γixi + δ = 0, (3.25)

whose coefficients αijl, βij , γi, δ are linear functions which are derived from the coefficients
aij , bi, cj , d. After that each of αijl, βij , γi, δ will be equalized to zero. Thus, (n+1)(n+2)(n+3)

6

linear equations with the (n+1)2 unknown coefficients aij , bi, cj , dwill be obtained for q > 2.
Thus, the problem is transformed into the problem of solving the set of (n+1)(n+2)(n+3)

6 linear
equations with (n+1)2 unknown variables. However, there is no need to use all of these linear
equations. Since the number of unknown parameters is equal to (n+1)2, using approximately
(n + 1)2 linear equations will be enough. In this process, knowing the dimension of the
linearization equations space can be quite beneficial. Because, according to this dimension,
the decision of adding equations to the system can be made for finding the right solution space.
The total cost of this approach is derived from solving the set of (n + 1)2 linear equations
with (n+ 1)2 unknowns, and it’s complexity is equal to O(n6).

3.2.1.2 DIMENSION OF THE LINEARIZATION EQUATIONS SPACE FOR THE
SINGLE-BRANCH MI CRYPTOSYSTEM

In the case of a single-branch MI cryptosystem, so as to calculate the dimension of a lineariza-
tion equations space, the following theorem can be used [11, 28].
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Theorem 3. Let L be the linearization equations space for the vectors f̄1, . . . , f̄n which are
the components of the Matsumoto-Imai map F̄ . Since the map F̄ is invertable, it is possible
to assume θ 6= n/2.

If q > 2, then

dimk L =

2n/3, if θ = n/3, 2n/3;

n, otherwise.
(3.26)

If q = 2 and θ = n/3, 2n/3, then

dimk L =


7, if n = 6, θ = 2, 4;

8, if n = 3, θ = 1, 2;

2n/3, otherwise.

(3.27)

If q = 2 and θ 6= n/3, 2n/3, then

dimk L =


10, if n = 4, θ = 1, 3;

2n, if θ = 1, n− 1, (n± 1)/2;

3n/2, if θ = (n± 2)/2;

n, otherwise

(3.28)

3.2.1.3 TOY EXAMPLE OF THE LINEARIZATION EQUATIONS ATTACK FOR
THE SINGLE-BRANCH MI CRYPTOSYSTEM

Let k = GF (22) be a finite field which has q = 22 = 4 factors. Through the field element α
that satisfies the equation α2+α+1 = 0, the multiplicative group for the nonzero factors of k
can be produced. These elements are represented with the set {0, 1, α, α2}whose construction
is defined with the following addition and multiplication tables.

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α

α α α2 0 1

α2 α2 α 1 0

∗ 0 1 α α2

0 0 0 0 0

1 0 1 α α2

α 0 α α2 1

α2 0 α2 1 α

Next, we select n = 3 and g(x) = x3 + x+ 1 which is an irreducible polynomial in k[x]. Set
K = k[x]/(x3 + x+ 1). Since 0 < θ < n, then θ = 1 or θ = 2. In this example we will use
θ = 2. The map F̃ and its inverse is the following:

F̃ (X) = X1+42 , F̃−1(X) = X26. (3.29)
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We choose the invertible affine transformations: L1, L2:

L1(x1, x2, x3) =

α2 α α

α 1 0

1 0 1


x1x2
x3

+

0

1

α

 ,

L2(x1, x2, x3) =

1 0 α

0 1 α

1 α 0


x1x2
x3

+

 α

α2

α2

 .

Now we will find the public key components in terms of the following variables x1, x2, x3 by
using:

F̄ (x1, x2, x3) = L1 ◦ φ ◦ F̃ ◦ φ−1 ◦ L2(x1, x2, x3). (3.30)

So first we need to compute:

φ−1 ◦L2(x1, x2, x3) = (α+ x1 +αx3) + (α2 + x2 +αx3)x+ (α2 + x1 +αx2)x
2. (3.31)

If the above polynomial is denoted by X , then F̃ (X) = X1+42 = X.X16. Since the finite
field k which we are working on, has the characteristic 2, there are no degrees higher than
2 in F̃ (X). After the polynomial multiplication, x will be reduced according to the irre-
ducible polynomial g(x), and α, x1, x2, x3 will be reduced according to the tables. After the
reductions, F̃ (X) is found to be:

1 + α2x1 + αx2 + x3 + x1x2 + αx1x3 + α2x2x3

+ (α+ αx1 + x2 + α2x3 + x21 + α2x1x2 + x22 + x2x3)x+ (α2 + α2x1

+ αx2 + αx3 + x21 + x1x2 + αx1x3 + α2x22 + αx2x3 + α2x23)x
2. (3.32)

Finally we compute L1 ◦ φ(F̃ (X)) to obtain the public key components:

f̄1(x1, x2, x3) = 1 + x3 + αx1x3 + α2x22 + α2x2x3 + x23, (3.33)

f̄2(x1, x2, x3) = 1 + α2x1 + αx2 + x3 + x21 + x1x2 + α2x1x3 + x22, (3.34)

f̄3(x1, x2, x3) = α2x3 + x21 + α2x22 + x2x3 + α2x23. (3.35)

Now with these we can demonstrate the usage of linearization equations. For the given plain-
text (x1, x2, x3) ∈ k3, where n = 3, we add a new value x0 = 1. Thus, we can represent the
public key with a more compact form and it will be possible to write it by the summation of
quadratic terms. For our row vector x = (x0, x1, x2, x3) the public key is given by:

y1 = x


1 0 0 1

0 0 α

α2 α2

1

xT , (3.36)
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y2 = x


1 α2 α 1

1 1 α2

1 0

0

xT , (3.37)

y3 = x


0 0 0 α2

1 0 0

α2 1

α2

xT . (3.38)

The entries left blank of the above matrices are equal to 0. Assume that a plaintext produced
the ciphertext (1, 0, 1). We will use the linearization equation attack to recover the plaintext.

First we need to introduce y0 = 1, such that the public-key will be represented with y =

(y0, y1, y2, y3). We use m = n = 3 in this example, so it is possible to write linearization
equations in the matrix form:

xAyT = 0. (3.39)

where A is a 4 × 4 matrix with unknown coefficients Ai,j , i, j = 0, 1, 2, 3. Now we will
represent these (m+1)(n+1) unknowns with a one dimensional array. There is a commonly
utilized notation in programming language:

Ai,j ⇐⇒ A [(m+ 1) i+ j] = 0. (3.40)

By putting the public key into the equation (3.39), it can be generated a homogeneous polyno-
mial such that they are cubic in xi where i = 0, 1, 2, 3. Then a homogenous linear equations
system which has 16 unknowns from A[0] to A[15], is generated by gathering the coefficients
of 20 distinct terms. Thus, the resulting matrix’s rank will be 14. Therefore, linearization
equations’ dimension will be equal to 16− 14 = 2, in compliance with the theorem (3). As a
result of a reduction operation over this matrix with the aim of generating row echelon form,
the following equations will be attained:

A[0] = α2A[2] +A[6],

A[1] = αA[2] +A[6],

A[3] = A[2] + α2A[6],

A[4] = α2A[6],

A[5] = α2A[2] + αA[6],

A[7] = A[6],

A[8] = A[2],

A[9] = A[2] + α2A[6],

A[10] = αA[2] + α2A[6],

A[11] = αA[2] + αA[6],

A[12] = A[2] + αA[6],

A[13] = αA[6],

A[14] = A[2] + α2A[6],

A[15] = α2A[6],

where A[2] and A[6] are free parameters. These values and the given ciphertext:

y = (1, y′1, y
′
2, y
′
3) = (1, 1, 0, 1) (3.41)

19



are now substituted back into (3.39) to obtain:

xAyT =
(
1 x1 x2 x3

)
A[0] A[1] A[2] A[3]

A[4] A[5] A[6] A[7]

A[8] A[9] A[10] A[11]

A[12] A[13] A[14] A[15]




1

y′1
y′2
y′3



=
(
1 x1 x2 x3

)
α2A[2] +A[6] αA[2] +A[6] A[2] A[2] + α2A[6]

α2A[6] α2A[2] + αA[6] A[6] A[6]

A[2] A[2] + α2A[6] αA[2] + α2A[6] αA[2] + αA[6]

A[2] + αA[6] αA[6] A[2] + α2A[6] α2A[6]



1

1

0

1



=
(
1 x1 x2 x3

)
α2A[6]

α2A[2]

αA[2] +A[6]

A[2] + α2A[6]

 = 0

xAyT = (α2x1 + αx2 + x3)A[2] + (α2 + x2 + α2x3)A[6] = 0.

By equalizing the coefficients of A[2] and A[6] to 0, the following equations are obtained:

α2x1 + αx2 + x3 = 0, (3.42)

α2 + x2 + α2x3 = 0. (3.43)

The solution of the above system is the following:

x1 = α, (3.44)

x2 = α2 + α2x3. (3.45)

Ultimately, there are two ways for finding the plaintext:

As the first way, ∀x3 ∈ k, we check whether or not obtained plaintexts correspond to given
ciphertext. With each possible value of x3 in the solutions of above equations and the public
keys in (3.36), (3.37), and (3.38), the following possibilities are attained:

plaintext ciphertext
(α, α2, 0) =⇒ (0, α, α)

(α, 0, 1) =⇒ (α, α2, α2)

(α, α, α) =⇒ (1, 0, 1)

(α, 1, α2) =⇒ (α2, α, 0).

Merely the third case generates the desired ciphertext. That’s why, the original plaintext is
found as (α, α, α).

Another method is to substitute the linear equations x1 = α and x2 = α2 + α2x3 into the
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public keys (3.36), (3.37), (3.38), and set it equal to the given ciphertext, that is

y1 = 1, (3.46)

y2 = 0, (3.47)

y3 = 1. (3.48)

From here we obtain three quadratic equations, which the free parameter needs to satisfy.
Solving those equations yields x23 = α2. From this we conclude that x3 = α. We already
know that x1 = α, so x2 = α2 + α2x3 = α2 + α2α = α2 + 1 = α. Hence the plaintext is
(α, α, α) [28].

3.2.2 LINEARIZATION EQUATIONS ATTACK FOR THE MULTIPLE-BRANCH
MI CRYPTOSYSTEM

As mentioned in the section (3.1), a multiple-branch MI is a generalized form of a single-
branch MI. In the case of a multiple-branch MI, the following theorem is used in order to give
the lower bound for the number of linearly independent linear equations which are derived
from the linearization equations space (the generalized form of the theorem (1) in the section
(3.1)).

Theorem 4. Assume that there is a multiple-branch MI cryptosystem whose public key is the
following set: F̄ =

{
f̄1, . . . , f̄n

}
. Let L̄ be the linearization equations space of this set. If

for a given ciphertext Y ′ = (y′1, . . . , y
′
n) ∈ kn, L̄Y ′ is obtained as a linearization equations

space by putting y′i instead of yi for all i = 1, . . . , n, in each equation of L̄, then the lower
bound for dimk L̄Y ′ is at least:

n−
b∑
i=1

gcd(ni, θi) ≥
2n

3
(3.49)

with the following probability:

(qn1 − 1)(qn2 − 1) · · · (qnb − 1)

qn
. (3.50)

Consequently, for each type of Matsumoto-Imai cryptosystems, linearization equations attack
is applicable. Furthermore, Patarin improved this algorithm by seperating the branches before
the attack [28, 30].

3.3 MATSUMOTO-IMAI VARIANTS

After Patarin proposed the linearization equations attack which broke the Matsumoto-Imai
cryptosystem in 1995, lots of new variants of this system were developed with the aim of
increasing it’s security. These new variants can be considered as kinds of two main methods
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whose names are the "Minus" method and the "Plus" method. While the aim of the former
was improving the security of the original MI cryptosystem, the latter one was developed for
making a cipher injective, because an injective mapping is crucial so as to decrypt the cipher-
text correctly. In this section, the Minus method, Flash and Sflash which are the significant
variants of the Minus method, the Plus method, and the Matsumoto-Imai-Plus-Minus public
key cryptosystem will be described respectively. Among all the Matsumoto-Imai variants,
Sflashv2 can be acknowledged as the most successful and widely used one. Let’s start with
the description of the Minus method [28].

3.3.1 THE MINUS METHOD

To begin with, Shamir proposed the Minus method in 1993 [37] and after that it was explored
by Matsumoto and Patarin independently from Shamir [32]. According to the Minus method,
some of the components of the public-key are deleted. Let’s say the number of deleted ones
is r. Depending on the selection of r, resistance against linearization equations attack can
be given to the MI cryptosystem. In other words, r shouldn’t be selected too small if secure
systems are desired. Now let F̄ : kn → km be the set of public key components which are the
multivariate quadratic polynomials: f̄1, . . . , f̄m ∈ k [x1, . . . , xn]. In general, m is assumed to
be equal to n. However, this case doesn’t matter for the Minus method since it works in other
cases as well. Once the Minus method is applied to F̄ , the resulting map F̄− : kn → km−r

such that
F̄−(x1, . . . , xn) = (f̄1, . . . , f̄m−r) (3.51)

is obtained. Furthermore the Minus method has the following structure.

The Public-Key

The public key of the Minus method includes:

1. The field: k , the addition and multiplication tables of it,

2. The set of m− r polynomials: (f̄1, . . . , f̄m−r) ∈ k[x1, . . . , xn].

The Private-Key

The private-key of the Minus method is the same as in the original MI cryptosystem:

1. The two invertible affine transformations: L1 and L2,

2. Parameter: θ.

SIGNING PROCESS

Because it’s not bijective, this method is only useful for signing a document and not for an
encryption. Suppose the document to be signed, or its hash value, is Y ′− = (y′1, . . . , y

′
n−r) be
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a vector in kn−r. A person who wants to sign this document first selects r random elements
y′n−r+1, . . . , y

′
n in k and appends these values to Y ′− in order to obtain Y ′ = (y′1, . . . , y

′
n) in

kn. Then the signing is done in the same way as the decryption in the original MI cryptosys-
tem;

X ′ = (x′1, . . . , x
′
n) = F̄−1(Y ′)

Lastly, X ′ is the signature of Y ′− and (X ′, Y ′−) is sent as the signature and the message.

VERIFYING PROCESS

The person who gets the document Y ′− and its signature X ′ controls whether or not

(f̄1(X
′), . . . , f̄l−r(X

′)) = Y ′− (3.52)

by using the public key polynomials. If the equality is satisfied, the signature can be accepted
as valid, otherwise it is understood that the signature is invalid and therefore rejected.

Here, it is so significant that the appended values y′n−r+1, . . . , y
′
n are kept secret. If they are

known publicly, an attacker can use these values to recover the missing polynomials and forge
a signature [27].

The Minus method is especially beneficial so as to transform an ecryption scheme into a
signature scheme, since there is no more a necessity for the injectivity. The security of this
kind of signature schemes comes from the fact that solving a set of l − r nonlinear equations
in n variables is considered quite hard.

Now it will be illustrated how this signature scheme works. For that, the toy example that
was utilized to demonstrate how linearization equation attacks work, will be given. In that
example, there were 5 public-key polynomials; y1, y2, y3, y4, and y5. This once only the first
4 of them are made public and y5 is kept secret and is not a part of the public-key. As well
as this, anyone which is required to sign the document has the secret-key, and the invertible
affine transformations L1 and L2, or their inverses:

L−11 (y1, y2, y3, y4, y5) =


α2 α α2 1 1

0 0 α2 α2 1

α α 1 α2 1

α α2 0 α 1

0 0 α α 1




y1 − α2

y2 − α2

y3 − 0

y4 − 1

y5 − 0

 ,

L−12 (y1, y2, y3, y4, y5) =


α2 1 α2 0 1

α 1 α 1 α

0 α2 α α 0

α 1 1 α α

0 1 0 α α2




y1 − 1

y2 − 0

y3 − α2

y4 − α2

y5 − α2

 .
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θ is also known, and in this example θ = 3. This gives F̃−1(X) = X362, and the irreducible
polynomial g(x) = x5 + x3 + x+ α2.

Let’s assume the plaintext is Y ′− = (α2, α, α2, 0). Since n = 5, there will be 1 extra value
y′5, and as mentioned before this value should be selected randomly. In this toy example y′5
can be one of four possible values, and they are all displayed below, along with the signatures
they generate.

Y ′(Document) X ′(Signature)
(α2, α, α2, 0, 0) ⇒ (0, α, α, 0, α2)

(α2, α, α2, 0, 1) ⇒ (1, 1, α, α, α)

(α2, α, α2, 0, α) ⇒ (1, 0, 1, 1, α)

(α2, α, α2, 0, α2) ⇒ (α2, 1, 1, 0, α2)

Any of these four signatures, when used with the public-keys, y1, y2, y3, y4 will give

(y1, y2, y3, y4) = (α2, α, α2, 0), (3.53)

hence any of them will be accepted as valid.

If the four components of the public-key were to be utilized in a linearization equation attack,
the adversary would find that dimkLY ′ = 1, and therefore would just attain one linearization
equation

x1 = α2x2 + αx3 + α2x4 + αx5 + α2. (3.54)

The above equation (3.54) holds for the four possible signatures, hence it is not enough to
forge a signature. Broadly, in the case of larger r, the linearization equations are removed
entirely [28].

3.3.2 FLASH AND SFLASH

In 2000, The New European Schemes for Signatures, Integrity, and Encryption Project
(NESSIE) was started, and in 2004 final selections were made. Sflashv2 which is a fast mul-
tivariate signature scheme was elected by NESSIE so as to utilize in low-cost smart cards
[1]. Sflashv2 is said to be Flash by NESSIE. Since there was a flaw in the initial submission
Sflashv1, it was broken in 2002. This flaw was because of the preference of GF (2) for the
field elements [18]. But actually this preference was conscious in order to keep the signature
size and the public key size small. However it was not an irreversible flaw as it could easefully
be corrected by selecting the field as GF (27) in Sflashv2 [31]. For this new version, lengthes
of the signature and the public key are 259 bits and 15 KBytes respectively.

The creators of Sflashv2 asserted that it is the fastest digital signature scheme (DSS) in the
earth, and is the sole DSS that can be utilized in smart cards. Afterwards, because of fur-
ther security concerns, the producers suggested another version, Sflashv3 which has a longer
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signature whose length is 469 bits and a public key of 112 KBytes [26]. But they then real-
ized that their concerns weren’t necessary, and therefore Sflashv2 is suggested again. Today,
Sflashv2 has been thought as a still secure DSS [8].

For the illustration of the signature scheme Sflashv2, single-branch map F̄ with θ = 11 will
be used. Moreover, Sflash utilizes n = 37 and r = 11. So that gives F̄− : k37 → k26 such
that

F̄−(x1, . . . , x37) = (f̄1, . . . , f̄37−11) (3.55)

where f̄1, . . . , f̄26 ∈ k[x1, . . . , x37]. [28] The structure of the Sflash signature scheme in-
cludes:

The Public-Key

1. The field: k = GF (27) = GF (2)[x]/(x7 + x+ 1) with its additive and multiplicative
structure,

2. The set of 26 quadratic polynomials: (f̄1, . . . , f̄26) ∈ k[x1, . . . , x37].

The Private-Key

1. A randomly selected secret key whose length is 80-bit : ∆,

2. The two invertible affine transformations: L1 and L2.

THE SIGNATURE GENERATION

Assume ψ : k → GF (2)7 is a vector space isomorphism. The subscripts which will be
utilized below corresponds to the location in the bit string, and || is the concatenation of bit
strings. Let’s assume the message to be signed is M . The following processes are fulfilled for
signing the message

1. Calculate M1 = SHA-1(M) and M2 = SHA-1(M1). M1 and M2 are the strings
whose lengthes are 160-bit.

2. Let

V = M1||(M21, . . . ,M222) = (V1, . . . , V182)

W = SHA(V ||∆) = (W1, . . . ,W77).
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3. Let

M ′1 = ψ−1(V1, . . . , V7)

M ′2 = ψ−1(V8, . . . , V14)

...

M ′26 = ψ−1(V176, . . . , V182)

M ′27 = ψ−1(W1, . . . ,W7)

M ′28 = ψ−1(W8, . . . ,W14)

...

M ′37 = ψ−1(W71, . . . ,W77).

Lastly, let M ′ = (M ′1, . . . ,M
′
37).

4. Compute the signature S of message M by:

S = F̄−1(M ′)

= L−12 ◦ F
−1 ◦ L−11 (M ′)

= L−12 ◦ φ ◦ F̃
−1 ◦ φ−1 ◦ L−11 (M ′).

The pair (S,M), the message M with its signature S, is sent.

SIGNATURE VERIFICATION

Once the message-signature pair (S,M) is received, the verification process is very similar to
the signing process for the most part.

1. Calculate

M1 = SHA-1(M)

M2 = SHA-1(M1)

V = M1||(M21, . . . ,M222) = (V1, . . . , V182)

After that since ∆ is the secret key, W can’t be computed in the verification. Instead

2. Let

N ′1 = ψ−1(V1, . . . , V7)

N ′2 = ψ−1(V8, . . . , V14)

...

N ′26 = ψ−1(V176, . . . , V182)

and N ′ = (N ′1, . . . , N
′
26).
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3. If N ′ = F̄−(S), then the signature is accepted, otherwise it is rejected.

Here it can be easily seen that so as to forge a signature for the message M , an attacker is
required to be able to attain a unique pre-image of N ′ under F̄−, meaning that they should
obtain one solution to a system of 26 equations in 37 variables.

The secret key ∆ is so significant for satisfying security, and it is especially important that it
stays secret [27]. If this secret key is made known to the public, an attacker can utilize it to
reach the missing Minus polynomials, and therefore break the system and forge a signature
easily.

As it can be recalled from the previous parts, while being secure, the Minus method only
works for signatures, not for encryption. Because in signature schemes, the only need is to
have one pre-image, while for encryption it is required to find a unique pre-image. That’s
why, the "Plus" method can be considered as a technique in order to alter the Minus method
to work for encryptions [28].

3.3.3 THE PLUS METHOD

The Plus method consists of adding a few, for example s, randomly selected polynomials to
a given multivariate public key, and after that mixing them with an invertible affine transfor-
mation.

Suppose F̄ : kn → km is a multivariate public key cryptosystem with polynomial components
f̄1, . . . , f̄m ∈ k[x1, . . . , xn]. The randomly selected polynomials p1, . . . , ps are appended to
generate the following map: F̄+ : kn → km+s such that

F̄+(x1, . . . , xn) = L3 ◦ (f̄1, . . . , f̄m, p1, . . . , ps). (3.56)

Here L3 is an invertible affine transformation from km+s to km+s. To begin with, the Plus
method hasn’t been proposed to enhance the security of the cryptosystem. Unlike in the Minus
method the linearization equations are still there. The main purpose of the Plus method is to
take the map F̄ , which is not injective, and turn it into an injective map, thus enabling us to
use it for encryption. In other words, if F̄−1 has multiple elements, then the Plus method
can reduce the number of pre-images to only one and therefore helps to figure out the real
plaintext amongst many possible candidate plaintexts, but for this reduction, the number s
should be big enough [28].

3.3.4 THE MATSUMOTO-IMAI-PLUS-MINUS PUBLIC-KEY CRYPTOSYSTEM

As mentioned above, the Plus method doesn’t increase the security of Matsumoto-Imai cryp-
tosystem when it is implemented alone. So instead we use the Plus method and the Minus
method together to form the Matsumoto-Imai-Plus-Minus public-key cryptosystem.
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Suppose F̄ : kn → kn is a multivariate public key cryptosystem with polynomial compo-
nents f̄1, . . . , f̄n ∈ k[x1, . . . , xn]. In order to apply the two methods together, first remove
the last r polynomials, then append s randomly selected quadratic polynomials p1, . . . , ps ∈
k[x1, . . . , xn], and lastly mix these with the system through an invertible affine transforma-
tion. The new map F̄± : kn → km is defined by

F̄± = L3 ◦ (f̄1, . . . , f̄n−r, p1, . . . , ps) = (f̄±1 , . . . , f̄
±
m)

in whichm = n−r+s and L3 : km → km is an invertible affine transformation. Also r ≤ s,
since if r > s, this new map would not be injective and would be only useful for signatures.

Let’s give the structure [28]:

The Public-Key

1. The field: k, the addition and multiplication tables of it,

2. m quadratic polynomials: f̄±1 , . . . , f̄
±
m ∈ k[x1, . . . , xn].

The Private-Key

1. The quadratic Plus polynomials: p1, . . . , ps ∈ k[x1, . . . , xn],

2. The invertible affine transformations: L1, L2, L3.

ENCRYPTION

Assume the plaintext to be encrypted is (x′1, . . . , x
′
n) ∈ kn. Ciphertext (y′1, . . . , y

′
m) ∈ km

will be calculated with the following polynomials of F̄±:

(y′1, . . . , y
′
m) = F̄±(x′1, . . . , x

′
n). (3.57)

DECRYPTION

For the decryption, the following processes will be executed:

1. Compute (z1, . . . , zn−r+s) = L−13 (y′1, . . . , y
′
n−r+s)

2. ∀w = (w1, . . . , wr) ∈ kr, calculate

tw = (t1, . . . , tn) = F̄−1(z1, . . . , zn−r, w1, . . . , wr),

and let T = {(w, tw)|w ∈ kr}.

3. ∀(w, tw) ∈ T , control whether or not

pi(tw) = zn−r+i (3.58)
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holds ∀i = 1, 2, . . . , s. Keep all tw which satisfy the equation (3.58), and remove the
others. In the case of sufficiently large s, there should remain solely one element and
it’s said to be the plaintext (x′1 . . . , x

′
n).

Consequently, the Plus method also helps increase the security, because the map L3 mixes the
random polynomials into the system and an attacker can’t identify which ones are the original
polynomials and which ones are Plus polynomials. Thus, any method which can be utilized
on the Minus method will be too hard to use for Plus-Minus Cryptosystem [28].
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CHAPTER 4

CRYPTOGRAPHIC PROTOCOLS

In our current world, technological improvements which include the creation of the quantum
computers, affect and threaten the Internet security. The main reason of these is losing the
validity of the cryptographic protocols in conjunction with the existence of the quantum com-
puters. In this section of the thesis, the explanation of the three main cryptographic protocols
which consist of the identification schemes, the digital signature schemes and the commitment
schemes, will be given together with their security properties.

4.1 IDENTIFICATION SCHEMES

An identification scheme is a protocol that is run in the public-key setting just like public-
key encryption and digital signatures. Here there exist two entities. One of which, so called
prover locally generates a pair of public and private keys then publicizes the public-key and
makes it widely available. The second entity, so called verifier is assumed to be able to obtain
an authentic copy of the prover’s public-key. Now the goal of the identification scheme is to
allow the prover to convince the verifier that the prover is who he or she claims. Therefore,
the prover needs to be able to interact with the verifier and via this interaction convinces the
verifier of his or her identity.

In the construction which will be defined, IDS
(
1k
)

means an identification scheme with
security parameter k. To describe this frame, we need a triplet of probabilistic polynomial
time algorithms: KGen, P , V such that KGen represents the key generation algorithm, P
and V indicate the prover and the verifier respectively. As we need to explain more detaild,
firstlyKGen algorithm gives us a key pair (sk, pk), then the algorithmsP and V interact with
each other. In other words, they execute a common protocol, denoted by 〈P (sk) , V (pk)〉 in
which the prover’s input is the secret key sk and the verifier’s input is the public-key pk. At
the end of this protocol, the verifier’s output will be a bit, say b. According to the identification
framework, if b = 1, then it indicates "accept" otherwise indicates "reject".

[5] Let’s define some concepts related with the identification schemes. The first one which is
a property of the IDS

(
1k
)

is the notion of "perfectly correct". To be able to say IDS
(
1k
)

is perfectly correct, the probability that 〈P (sk) , V (pk)〉 equals to 1 , denoted by
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P [〈P (sk) , V (pk)〉] = 1, has to be 1. Secondly, we will define a transcript of an identifi-
cation scheme’s execution. In the process of prover and verifier’s interaction, they exchange
messages between each other. If we store all these messages which are created during an
interaction, the set of all these messages will give us the transcript of this execution that is
denoted by trans (〈P (sk) , V (pk)〉).

4.1.1 SECURITY PROPERTIES

[5] In this step, we analyze the security properties which an identification scheme needs to
satisfy.

4.1.1.1 Security Against Impersonation Under Passive Attacks (IMP-PA Security)

The relatively weak notion of security is the security against passive eavesdropping attacks.
In this model, an attacker eavesdrops multiple on honest executions between the prover and
the verifier, which the attacker has access to valid transcripts of honest executions and also has
access to public-key. Now the idea about the security notion is that even after eavesdropping
on these multiple honest executions, the attacker should not be able to convince a verifier
falsely that the attacker is the prover. That is, the attacker shouldn’t have the ability to succeed
in carrying out an execution of the identification protocol with a verifier when the real prover
is not around.

Let’s define IMP-PA security with mathematical terms:

Experiment: Expimp−pa
IDS(1k)

(I)

1. (sk, pk)← KGen ()

2. (state, com)← ITrans(pk,sk,·)(pk)

3. For every i ∈ {1, . . . , n}
1. chi ←R ChSi(1k)
2.(state, respi)← ITrans(pk,sk,·)(pk)

4. Return 1⇔ V f (pk, com, ch1, resp1, . . . , chn, respn) = 1.

Definition 3. Let k ∈ N and IDS
(
1k
)

be an identification scheme with a security parameter
k. IDS

(
1k
)

is called as IMP-PA secure if ∀Qt, t = poly (k), the success probability

Succimp−pa
IDS(1k)

(I) = negl (k) (4.1)

for any impersonator I running in time ≤ t, where Qt is the upper bound of the number of
queries which I makes to Trans in Expimp−pa

IDS(1k)
(I) experiment.

Note that: A function f is said to be negl (k) which means negligible in k if ∀ positive
polynomial g and sufficiently large k, f (k) < 1

g(k) .
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4.1.1.2 Key Relation

Definition 4. Let k ∈ N and IDS
(
1k
)

be an identification scheme with a security parameter
k and R be a relation. If ∀ (pk, sk) ← KGen () : (pk, sk) ∈ R, then IDS

(
1k
)

has the key
relation R.

4.1.1.3 Key-One-Wayness (KOW)

Definition 5. Let k ∈ N and IDS
(
1k
)

be an identification scheme with a security parameter
k. Assume that IDS

(
1k
)

has a key relation R. If ∀ polynomial time algorithm A,

Succpq−kow
IDS(1k)

(A) = · · ·

· · · = Pr
[
(pk, sk)← KGen () , sk′ ← A (pk) :

(
pk, sk′

)
∈ R

]
= negl (k) ,

(4.2)

then IDS
(
1k
)

is said to be key-one-way (KOW) according to R.

4.1.1.4 Soundness (with soundness error κ)

Definition 6. Let k ∈ N and IDS
(
1k
)

be an identification scheme with a security parameter
k. If ∀ probabilistic polynomial time algorithm A,

Pr
[
(pk, sk)← KGen () :

〈
A
(

1k, pk
)
,V (pk)

〉
= 1
]
≤ κ+ negl (k) (4.3)

where A indicates the adversary, then IDS
(
1k
)

is said to be a sound, with soundness error
κ.

4.1.1.5 Computational Honest Verifier Zero Knowledge (HVZK)

Definition 7. Let k ∈ N and IDS
(
1k
)

be an identification scheme with a security param-
eter k. If ∃ a probabilistic polynomial time algorithm S, say simulator such that for any
(pk, sk)← KGen () and polynomial time algorithm A (the adversary):

Succpq−hvzk
IDS(1k)

(A) = · · ·

|Pr [1← A (sk, pk, trans (〈P (sk) , V (pk)〉))]− Pr [1← A (sk, pk, S (pk))]|
· · · = negl (k) ,

(4.4)

then IDS
(
1k
)

is said to be computational HVZK.

4.2 DIGITAL SIGNATURE SCHEMES

Firstly, let’s focus on the role of digital signature schemes in modern cryptography. The con-
ventional signature on any document is utilized to verify or certify which the signer has the
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responsibility for the document’s content. Signing a document involves allocating a unique
sequence of characaters to represent your name for effectively binding your identity to that
document. Essentially the signing is a physical piece of the document and while forgery is
probable, it is hard to make this so cogently. A digital signature can be considered as the elec-
tronic analog of a physical signature. It is possible to achieve the same properties discussed in
the physical one meaning that there is a method of digital signing that is functionally equipo-
tent to a physical signature and very resistant to forgery. Schemes that enable this functionality
are said to be digital signature schemes.

There are two components of digital signature schemes. The former is the private signing
algorithm that allows a utilizer to securely sign a plaintext. The latter is the public verification
algorithm that allows any person to verify the authenticity of the signatures. The expectation
from the signing algorithm is making a connection between a message and a signature so that
the signature is not be able to utilized for signing another document. In practical terms, both
algorithms shoud be relatively fast and their computational complexities should be in enough
amount.

Let’s broadly illustrate how a digital signature works. Assume Alice wants to digitally sign
a document and send the corresponding signature to Bob for the verification. In the scheme,
Alice is first going to generate her two keys simultaneously: the private signing key and the
public verification key. These keys have a mathematical relationship, but most importantly it
should be hard to come up with the signing key given only the verification key. Therefore,
Alice is going to digitally sign a message M by applying a mathematical transformation to
her message M and her signing key sk. Then the output of the transformation given these
two inputs will be a special sequence of numbers or her digital signature. It should be noted
that the only person who possesses the signing key can generate this type of output.

The verification process that goes hand in hand with the signing process and involves the pub-
lic verification key has three different inputs: Alice’s message M , signature on message SM
and Alice’s public verification key pk. For Bob, the goal of the mathematical transformation
is to check the signature he received from Alice was produced by her private signing key sk.
It is significant to know that Bob can accomplish to answer the question of whether or not he
should accept the signature as valid without having the access to Alice’s signing key. At this
point, Alice’s public-key serves as an identifier to her just like a handwritten signature would.

Note that the transformation takes the message M as one of its inputs. In other words, chang-
ing the message would yield a different output unlike a handwritten signature which doesn’t
change depending on what you’re signing. Furthermore, digital signature schemes are often
associated with cryptographic hash functions. Before Alice signs a message, she needs to
apply a cryptographic hash function to her message and receive a shorter output, called the
digest of the hash function. Then, Alice should sign the message digest instead of the origi-
nal message itself. This process is necessary in digital signing, because dealing with a fixed
length input instead with an input of arbitrary length is much more feasible in practical ap-
plication. All the process which was defined above is based on the assumption that it is very
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difficult to find two messages that map to the same output when the hash funciton is applied.

In the construction which will be defined, DDS
(
1k
)

means a digital signature scheme with
security parameter k. To describe this frame, we need a triplet of polynomial time algorithms:
KGen, Sign, V f such that KGen represents a probabilistic key generation algorithm, Sign
indicates a possibly probabilistic signature generation algorithm and finally V f represents
a deterministic verification algorithm. More specifically, KGen algorithm gives us a key
pair (sk, pk), Sign algorithm whose inputs are a secret key sk and a message M gives us a
signature σ and V f algorithm whose inputs are a public-key pk, a messageM and a signature
σ gives us a bit b such that if b = 1, then it indicates "accept" otherwise indicates "reject"[5].

4.2.1 SECURITY PROPERTIES

In this step, we will analyze the security properties which a digital signature scheme needs to
satisfy. At this point, notice that identification schemes have only limited applicability on their
own. But they’re extremely important as a building block for digital signature schemes. That’s
why, in the process of constructing digital signatures from identification schemes, identifica-
tion schemes have to satisfy some security properties so that corresponding signature schemes
can satisfy security properties which are defined below. Actually there are two kinds of at-
tacks against which it is wanted to resist: message attacks and key only attacks. Therefore,
the following security properties will be associated with these attacks respectively [5].

4.2.1.1 Existential Unforgeability Under Adaptive Chosen Message Attacks
(EU-CMA Security)

In adaptive chosen message attack which is a kind of message attacks, an adversary has the
ability to examine some signatures correspond to his or her chosen messages. If we assume
A as a signer, then the attacker can utilize A as an oracle, meaning that the attacker is able
to have an access to signatures of messages which depend on both the public-key of A and
previously obtained signatures.

Existential forgery means producing a new signature for at least one message. However, the
adversary doesn’t have any control over the message whose signature he or she has. That’s
why existential unforgeability can be thought as a standard security notion for DSS. Let’s
describe the experiment Expeu−cma

DSS(1k)
(A) to be able to define EU-CMA security [19].

Experiment: Expeu−cma
DSS(1k)

(A)

1. (sk, pk)← KGen ()

2. (M∗, σ∗)← ASign(sk,·) (pk)

3. Let {(Mi)}Qs1 be the queries to Sign (sk, ·) .
4. Return 1⇔ V f (pk,M∗, σ∗) = 1 and M∗ /∈ {Mi}Qs1 .
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Definition 8. Let k ∈ N and DSS
(
1k
)

be a digital signature scheme with a security param-
eter k. If ∀Qs, t = poly (k), the success probability

Succeu−cma
DSS(1k)

(A) = Pr

[
Expeu−cma

DSS(1k)
(A) = 1

]
= negl (k) (4.5)

for any probabilistic polynomial time algorithm A running in time≤ t, where Qs is the upper
bound of the number of queries which will be signed in Expeu−cma

DSS(1k)
(A), then DSS

(
1k
)

is

said to be EU-CMA secure.

4.2.1.2 Key Only Attacks (KOA Security)

Experiment: Expkoa
DSS(1k)

(A)

1. (sk, pk)← KGen ()

2. (M∗, σ∗)← A (pk)

3. Return 1⇔ V f (pk,M∗, σ∗) = 1.

Definition 9. Let k ∈ N and DSS
(
1k
)

be a digital signature scheme with a security param-
eter k. If ∀t = poly (k), the success probability

Succkoa
DSS(1k) (A) = Pr

[
Expkoa

DSS(1k) (A) = 1
]

= negl (k) (4.6)

for any probabilistic polynomial time algorithm A running in time ≤ t, then DSS
(
1k
)

is
said to be KOA secure.

Notice that: If we compare the two security properties of digital signature schemes, they are
similar, but KOA security is weaker than EU-CMA security, because KOA security doesn’t
enable to any access to the signing oracle.

4.3 COMMITMENT SCHEMES

The concept of commitment has a really crucial role in both identification schemes and digital
signature schemes in terms of security. In any commitment scheme, there exist two parties:
prover P and verifier V . It is possible to think P and V as players of a game. In the process
of making a commitment, the prover should select a value from a given finite set, then this
player needs to commit his or her chosen value not to change his or her choice. In addition
to this, P can not display this value even if P wants to do it. Let’s illustrate a commitment
scheme with an informal example.

Assume thatP and V will play a game. The first step of this game starts withP’s commitment
meaning that P desires to commit a message m. That’s why, P writes the message on a paper
then puts it in a box which is locked with the help of a padlock. The second step is transferring
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the locked box of P to the V . In the final step, the key of the padlock is important, because if
the prover wants to open the commitment, the thing which P needs to do is giving this key to
the V .

In practical application, the locked box can be thought as a mathematical function more
specifically as one-way-functions. Thus, a commitment scheme can be secure. In crpytog-
raphy, collision-intractable hash functions are used as a one-way-function. Inputs of these
collision-intractable hash functions will be a messagem and a string r (which is the public key
of the protocol). The output which is the locked box can be thought as the committed message,
say com (r,m), where com is the one-way-function (collision-intractable hash function). As
a result of all these, we have the following theorem [10].

Theorem 5. If collision-intractable hash functions exist, then commitment schemes with se-
curity properties which are computationally binding and hiding, exist.

4.3.1 SECURITY PROPERTIES

A secure commitment scheme has to satisfy: binding and hiding properties. Now we will
analyze them [5].

4.3.1.1 Binding Property

If we continue from above example, let’s focus on the locked box. After P gave this box to
V , P loses the opportunity of changing the message which is inside of the box. Therefore,
when the lock is opened, we can be sure that P’s original selection and the message which
is revealed from the box are the same. This property is said to be computationally binding
property.

Definition 10. [10] Let k ∈ N and Com
(
1k
)

be a commitment scheme with a security
parameter k. If for any polynomial time algorithm A, random string r, random string r′,
message m and message m′,

Pr
[
Com (r,m) = Com

(
r′,m′

)
∧m 6= m′ :

(
r,m, r′,m′

)
← A

(
1k
)]

= · · ·

· · · = negl (k) ,
(4.7)

then Com
(
1k
)

is said to be computationally binding.

4.3.1.2 Hiding Property

The same example is also valid for defining the hiding property. As we remember, P gave the
locked box to the V . The thing which we have to know is that V needs to know the key of the
padlock so as to learn the message inside of the box and this key belongs to P . That’s why, P
and V have to work together. This property is said to be computationally hiding property.
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Definition 11. [10] Let k ∈ N and Com
(
1k
)

be a commitment scheme with a security
parameter k. If for any polynomial time algorithm A, random string r, message m and
message m′,∣∣Pr [1← A (Com (r,m))]− Pr

[
1← A

(
Com

(
r,m′

))]∣∣ = negl (k) , (4.8)

then Com
(
1k
)

is said to be computationally hiding.
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CHAPTER 5

STRUCTURAL TOOLS OF THE MULTIVARIATE
QUADRATIC DIGITAL SIGNATURE SCHEME (MQDSS)

In the design process of the MQDSS, it can be benefited from the lots of tools which are
composed of the multivariate quadratic problem, canonical 2n+1-pass identification schemes
together with its specific examples for n = 1 and n = 2 and its security properties, the
Sakumoto-Shirai-Hiwatari (SSH) 3-pass and 5-pass identification schemes together with its
security properties, the Fiat-Shamir transform together with its two specific examples for
canonical 3-pass and 5-pass identification schemes and its security analysis. The Fiat-Shamir
transform of the one particular SSH 5-pass identification scheme will be utilized in order to
obtain the MQDSS. That’s why, in this section of the thesis, these structural tools will be
introduced.

5.1 MULTIVARIATE QUADRATIC PROBLEM

In this thesis, we focus on multivariate public-key cryptosystem which is a kind of post quan-
tum cryptography as it was mentioned at the beginning. [2, 5] Since multivariate public key
cryptosystem is based on multivariate quadratic problem, say MQ problem, the aim of this
section is to explain what is MQ problem.

Definition 12. Let m,n, q ∈ N, Fq be a finite field with q elements where q is a prime
power, Fnq be an n-dimensional vector space over Fq and MQ (n,m,Fq) be a system of MQ
polynomials with n variables and m equations such that F : Fnq → Fmq of degree 2 over Fq:

MQ (n,m,Fq) = {F (x) = (f1 (x) , . . . , fm (x))} (5.1)

F =


f1 (x1, . . . , xn) =

∑n
i

∑n
j a

(1)
i,j xixj +

∑n
i b

(1)
i xi

f2 (x1, . . . , xn) =
∑n

i

∑n
j a

(2)
i,j xixj +

∑n
i b

(2)
i xi

...

fm (x1, . . . , xn) =
∑n

i

∑n
j a

(m)
i,j xixj +

∑n
i b

(m)
i xi

(5.2)
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Briefly,
fs (x) =

∑
i,j

a
(s)
i,j xixj +

∑
i

b
(s)
i xi, s ∈ {1, . . . ,m} (5.3)

where a
(s)
i,j , b

(s)
i ∈ Fq for 1 ≤ s ≤ m.

Let F be a system of MQ polynomials, say F ∈ MQ (n,m,Fq) (multivariate quadratic
function). For any given v ∈ Fmq , F (x) = v represents a system of m quadratic equations in
n variables.

At this point, the thing which it should be known is that there are 2 versions of the MQ
problem: search version and decision version. To describe any version of the MQ problem,
the definition of the polar form and the definition of the MQ relation become necessary. Let’s
define respectively:

Definition 13. Let F ∈ MQ (n,m,Fq). Then the polar form of the function F , say G (x, y)

is defined by:

G (x, y) = F (x+ y)− F (x)− F (y) (5.4)

such that G (x, y) is bilinear, i.e., ∀u1, u2, v ∈ Fnq ,

G (u1 + u2, v) = G (u1, v) +G (u2, v) (5.5)

G (v, u1 + u2) = G (v, u1) +G (v, u2) . (5.6)

Definition 14. Let F ∈MQ (n,m,Fq), v ∈ Fmq , s ∈ Fnq . The MQ relation which is a binary
relation is defined as follows:

RMQ(n,m,Fq) ⊆
(
MQ (n,m,Fq)× Fmq

)
× Fnq : ((F, v) , s) ∈ RMQ(n,m,Fq) ⇔ F (s) = v.

(5.7)

Since the polar form and MQ relation have been defined, now we can pass on to the definition
of MQ problem.

Definition 15. Assume that m,n, q ∈ N.

Given any MQ (F, v), the MQ (search) problem is defined as follows:
1. Assume F ∈MQ (n,m,Fq) , v ∈ Fmq are given.
2. Find, if any, s ∈ Fnq such that ((F, v) , s) ∈ RMQ(n,m,Fq).

Given any MQ (F, v), the MQ (decision) problem is defined as follows:
1. Assume F ∈MQ (n,m,Fq) , v ∈ Fmq are given.
2. Is there any s ∈ Fnq such that ((F, v) , s) ∈ RMQ(n,m,Fq).

Notice that: It is reasonable to think any decision problem as a problem whose solution is of
type "yes" or "no".
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In the following process, identification schemes and digital signature schemes which are based
on the MQ problem will be described. That’s why, it is crucial to know that if we want to
construct secure identification and digital signature schemes, then MQ problem has to be
intractable even for quantum computers. Let’s give the assumption which is widely believed
about the intractability of the MQ problem.

Assumption 1. Let m,n, q ∈ N. Assume that F is randomly chosen system of quadratic
polynomials from MQ (n,m,Fq) and s is randomly chosen n dimensional vector from Fnq .
∀ polynomial time quantum algorithm A given F and v = F (s), it is difficult to solve MQ
problem over Fnq , meaning that, it is difficult to find a solution s′ to the MQ (F, v) problem.
More mathematically,

Pr

((F, v) , s′
)
∈ RMQ(n,m,Fq) :

F ←R MQ (n,m,Fq)
s←R Fnq
((F, v) , s) ∈ RMQ(n,m,Fq)

s′ ← A
(
1k, F, v

)
 = negl (k) . (5.8)

If A is thought as a polynomial algorithm, then the above assumption means that there is no
known A for solving MQ problem even for quantum computers. It shows that MQ problem
which is NP-complete is an intractable problem not only for classical algorithms but also for
quantum algorithms as we desired.

5.2 CANONICAL 2n+ 1-PASS IDENTIFICATION SCHEMES

[5] Let IDS
(
1k
)

= (KGen,P,V) be an identification scheme with a security parameter k
and C1, . . . , Cn be n-challenge spaces of IDS

(
1k
)
. IDS

(
1k
)

is called as 2n + 1-pass
identification scheme if the prover and the verifier seperate their processes into n+1 groups:
P = (P0, P1, . . . , Pn) and V = (ChS1, . . . , ChSn, V f) such that:

• P0, P1, . . . , Pn are iterative algorithms meaning that the output of Pi is the input of
Pi+1 for 0 ≤ i ≤ n − 1. The input of P0 is the secret key sk which is obtained from
KGen algorithm, say (sk, pk)← KGen.

• The outputs of P0 (sk) are the initial commitment "com" which is the first message will
be sended to verifier V and a state "state" which is one of the inputs of P1

• ChSi generates the ith challenge message chi by selecting randomly from challenge
space Ci, i.e., chi ←R Ci.

• Pi (state, chi) → (respi, state) where respi is the ith response of the prover P and
the state state is updated in each iteration so as to supply a state as an input for the next
iteration for 1 ≤ i ≤ n.
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• V f (pk, com, ch1, resp1, . . . , chn, respn) → b where pk is the public-key which is
produced byKGen algorithm ((sk, pk)← KGen) and b is a bit which defines verifier
V’s final decision will be "accept" or "reject".

• The whole transcript of this protocol, denoted by trans (〈P (sk) , V (pk)〉) is the fol-
lowing set: {com, ch1, resp1, . . . , chn, respn}.
In other words, {com, ch1, resp1, . . . , chn, respn} is the set of all messages exchanged
between P and V .

Two specific choices exist for canonical 2n+ 1-pass identification schemes: canonical 3-pass
IDS and canonical 5-pass IDS where n = 1 and n = 2 respectively.
Canonical 3-pass IDS (n = 1) can be thought as a standard choice of both canonical 2n+ 1-
pass IDS and its corresponding signature scheme. Canonical 5-pass IDS (n = 2) becomes
fundamental for us, because in the following process, our aim is to analyze the construction
of the Multivariate Quadratic Digital Signature Scheme, say "MQDSS" which based on the
Fiat-Shamir transform of a special kind of canonical 5-pass IDS whose name is the Sakumoto-
Shirai-Hiwatari (SSH) 5-pass IDS.

5.2.1 CANONICAL 3-PASS IDENTIFICATION SCHEME

In the construction of canonical 3-pass IDS, the most essential point which should be known
is the number of messages that are exchanged between the prover and the verifier. As it can be
understood from the name of the IDS, this number equals to 3. Since n = 1, ∃ one challenge
space C1 in this framework, besides prover and verifier split into (n+ 1) subroutines such
that P = (P0, P1) and V = (ChS1, V f).

The whole transcript of the scheme Trans (〈P (sk) , V (pk)〉) is the following set:
{com, ch1, resp1}. Therefore, as a final step, verifier should check the IDS by using the
public-key pk and the above transcript i.e., V checks whether V f (pk, com, ch1, resp1) = b

or not and the bit b gives the result: "accept" or "reject". Let’s define more mathematically:

Table 5.1: Canonical 3-pass IDS [5]
P V

(state, com)←− P0 (sk)
com

−−−−−−−−−−−−−−−−−−→
ch1 ←−R ChS1

(
1k

)
ch1

←−−−−−−−−−−−−−−−−−−
resp1 ←− P1 (state, ch1)

resp1
−−−−−−−−−−−−−−−−−−→

b←− V f (pk, com, ch1, resp1)
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5.2.2 CANONICAL 5-PASS IDENTIFICATION SCHEME

In the construction of canonical 5-pass IDS, the most essential point which should be known
is the number of messages that are exchanged between the prover and the verifier. As it
can be understood from the name of the IDS, this number equals to 5. Since n = 2, ∃ 2

challenge spaces C1 and C2 in this framework, besides prover and verifier split into 3 =

(n+ 1) subroutines such that P = (P0, P1, P2) and V = (ChS1, ChS2, V f).

The whole transcript of the scheme Trans (〈P (sk) , V (pk)〉) is the following set:
{com, ch1, ch2, resp1, resp2}. Therefore, as a final step, verifier should check the IDS by
using the public-key pk and the above transcript i.e., V checks whether or not
V f (pk, com, ch1, ch2, resp1, resp2) = b and the bit b gives the result: "accept" or "reject".
Let’s define more mathematically:

Table 5.2: Canonical 5-pass IDS [5]
P V

(state, com)←− P0 (sk)
com

−−−−−−−−−−−−−−→
ch1 ←−R ChS1

(
1k
)

ch1
←−−−−−−−−−−−−−−

(state, resp1)←− P1 (state, ch1)
resp1

−−−−−−−−−−−−−−→
ch2 ←−R ChS2

(
1k
)

ch2
←−−−−−−−−−−−−−−

resp2 ←− P2 (state, ch2)
resp2

−−−−−−−−−−−−−−→
b←− V f (pk, com, ch1, ch2, resp1, resp2)

Now we will define a special kind of 5-pass identification scheme whose name is q2 Identifi-
cation Scheme.

Definition 16. [5] Let IDS
(
1k
)

= (KGen,P,V) be a canonical 5-pass identification
scheme with a security parameter k. Since n = 2, ∃ 2 challenge spaces C1 and C2 in this
framework. If ‖C1‖ = q and ‖C2‖ = 2, then IDS

(
1k
)

is said to be q2-identification
scheme.

5.2.3 SECURITY PROPERTIES OF 2n+ 1-PASS IDENTIFICATION SCHEMES

In the process of defining identification schemes, the security properties of IDS have been
explained, but these properties are not inclusive of special n-soundness, special soundness
(n = 1) and q2-extractor properties which are only special to canonical 2n + 1-pass IDS.

43



Since we have described canonical 2n+ 1-pass IDS, now we can pass on to the definitions of
these properties.

5.2.3.1 Special n-soundness

The security property of special n-soundness is an important concept for the construction
of secure digital signature schemes, because if we transform an identification scheme which
fulfills the properties of honest verifier zero knowledge and special soundness to a digital
signature scheme, then this signature scheme will be EU-CMA secure which is a security
property was defined before. The property of special soundness is only related with canonical
3-pass IDS, but special n-soundness embraces all canonical 2n + 1-pass IDS. That’s why,
special n-soundness is a generalized form of the special soundness (n = 1) to all n ∈ N.
Let’s define the special n-soundness.

Definition 17. [6] Let IDS
(
1k
)

= (KGen,P,V) be a canonical 2n + 1-pass identifica-
tion scheme with security parameter k. If ∃ a probabilistic polynomial time algorithm ε, the
extractor that upon input of two valid transcripts:

trans = (com, ch1, resp1, . . . , chn−1, respn−1, chn, respn) (5.9)

trans′ =
(
com, ch1, resp1, . . . , chn−1, respn−1, ch

′
n, resp

′
n

)
, (5.10)

where chn 6= ch′n and the corresponding public key pk, outputs a matching secret key sk for
pk with non-negligible success probability, then IDS

(
1k
)

is said to satisfy the property of
special n-soundness.

5.2.3.2 Special Soundness

For the property of special soundness, the thing which we need to focus on is the value of n.
Since this property is special to canonical 3-pass IDS, n equals to 1.

Definition 18. [5] Let IDS
(
1k
)

= (KGen,P,V) be a canonical 3-pass identification
scheme with a security parameter k and a key relation R. Assume that for IDS

(
1k
)
, A

is a polynomial time algorithm whose inputs are the security parameter k and the public-key
pk, outputs are 2 valid transcripts which correspond to pk with non-negligible probability:

trans = (com, ch1, resp1) (5.11)

trans′ =
(
com, ch′1, resp

′
1

)
, (5.12)

where ch1 6= ch′1. If ∃ a polynomial time algorithm ε, the extractor, whose inputs are pk and
A, output is a secret key sk so that (pk, sk) ∈ R with non-negligible success probability in k,
then IDS

(
1k
)

is said to satisfy the property of special soundness.
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5.2.3.3 q2-extractor

The property of q2-extractor is a specific kind of special n-soundness such that IDS
(
1k
)

is a
q2-Identification scheme that is a variant of canonical 5-pass IDS which was defined before.
That’s why, in this case, n equals to 2.

Definition 19. [5] Let IDS
(
1k
)

= (KGen,P,V) be a q2-Identification scheme with a
security parameter k and a key relation R. Assume that for IDS

(
1k
)
, A is a polynomial

time algorithm whose inputs are the security parameter k and the public-key pk, outputs are
4 valid transcripts which correspond to pk with non-negligible probability:

trans(1) = (com, ch1, resp1, ch2, resp2) , (5.13)

trans(2) =
(
com, ch1, resp1, ch

′
2, resp

′
2

)
, (5.14)

trans(3) =
(
com, ch′1, resp

′
1, ch2, resp2

)
, (5.15)

trans(4) =
(
com, ch′1, resp

′
1, ch

′
2, resp

′
2

)
, (5.16)

where ch1 6= ch′1 and ch2 6= ch′2. If ∃ a polynomial time algorithm ε, the extractor, whose
inputs are pk andA, output is a secret key sk so that (pk, sk) ∈ R with non-negligible success
probability in k, then IDS

(
1k
)

is said to satisfy the property of q2-extractor.

5.3 THE SAKUMOTO-SHIRAI-HIWATARI (SSH) 3-PASS AND 5-PASS
IDENTIFICATION SCHEMES

Up to this point, we have examined the construction of the MQ problem and canonical 2n+1-
pass identification schemes. Now let’s analyze their one of the applications. Sakumoto, Shirai
and Hiwatari proposed a specific application for both canonical 3-pass and 5-pass identifica-
tion schemes which use the hardness of the MQ problem [35]. Their public-key identification
schemes base on multivariate quadratic polynomials, are called as SSH 3-pass and SSH 5-pass
IDS.

When we investigate the previous public-key identification schemes, their security depends
on some problems in multivariate cryptography such as MinRank [7], Isomorphism of Poly-
nomials (IP) [29], Extended IP [13] or IP with partial knowledge [33] problems. On the
other hand, many schemes have been broken since they rely on the hardness of problems like
MinRank or IP instead of relying on the intractability of the MQ problems. As the examples
of these broken problems, Oil-and-Vinegar, SFLASH, MQQ-Sig, Enhanced TTS and En-
hanced STS can be given [35]. The significance of SSH 5-pass IDS is its dependence for the
hardness of the MQ problem and the security level of the non-interactive commitment scheme
which is statistically hiding and computationally binding.

Notice that SSH 3-pass IDS has the property of statistical zero knowledge and SSH 5-pass
IDS has the property of argument of knowledge (soundness). As we stated before, there is
no known polynomial time quantum algorithm for solving any random instance of the MQ
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problem which contains multivariate quadratic polynomials. That’s why, it is possible to
accept MQ function as a one-way function whose input and output sizes are short. When
we analyze its complexity, for the generic attacks which make use of the Gröbner basis, it is
exponential in time and space. If we consider the best known attack against the MQ function
over F2 whose input and output sizes are 84-bit and 80-bit respectively, then its complexity
requires 288.7 bit operations.

After the description of the SSH 3-pass and 5-pass IDS, we will pass on to the Fiat-Shamir
transform which is needed to transform these identification schemes to digital signature
schemes. The technique for this transformation is to get sequential or parallel composition
of the identification schemes by using optimal number of rounds. If the structural tools SSH
3-pass and 5-pass IDS to construct DDS satisfy statistical zero knowledge and argument of
knowledge respectively and the commitment schemes which are fundamental parts of these
IDS fulfill statistically hiding and computationally binding properties, then the corresponding
digital signature schemes will be secure against impersonation under passive attacks. Since
we know that SSH 3-pass and 5-pass IDS and commitment schemes satisfy the desired prop-
erties, we expect from the corresponding DDS to have the security properties that were men-
tioned above. Yet, the security under active attacks of the acquired digital signature schemes
is not overtly known.

Let’s describe the framework and the key idea of the SSH 3-pass and 5-pass IDS. In the
process of constructing SSH 3-pass and 5-pass IDS, Sakumoto, Shirai and Hiwatari use the
idea of [35] splitting the secret key sk and benefit from the polar form G (x, y) of F (x)

(F ∈MQ (n,m,Fq)). Let (sk, pk) ← KGen. Since these schemes are based on the MQ
problem, the secret key sk and the public-key pk will be s and v = F (s) respectively.
According to this idea, they first seperate the secret key s into 2 parts:

s = r0 + r1. (5.17)

Then, the public key v = F (s) can be written in terms of polar form G (x, y) of F (x) such
that

v = F (s) = F (r0 + r1) = F (r0) + F (r1) +G (r0, r1) (5.18)

since
G (x, y) = F (x+ y)− F (x)− F (y) . (5.19)

However v includes the term G (r0, r1) whose inputs are both r0 and r1, meaning that the
polar form depends on both parts of the secret key s. That’s why, they further split r0 and
F (r0) such that

αr0 = t0 + t1, (5.20)

αF (r0) = e0 + e1. (5.21)

Then,
αv = αF (r0)︸ ︷︷ ︸

=e0+e1

+αF (r1) + αG (r0, r1)︸ ︷︷ ︸
G(αr0,r1)

, (5.22)
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where

G( αr0︸︷︷︸
t0+t1

, r1) = G (t0 + t1, r1) = G (t0, r1) +G (t1, r1) (5.23)

Since the polar form is bilinear, G (t0 + t1, r1) can be represented as: G (t0, r1) +G (t1, r1).
If this representation is substituted into the right hand side of the equation (5.22), then the
following equation is obtained:

αv = e0 + e1 + αF (r1) +G (t0, r1) +G (t1, r1)

= (e1 + αF (r1) +G (t1, r1))︸ ︷︷ ︸
(r1,t1,e1)

+ (e0 +G (t0, r1))︸ ︷︷ ︸
(r1,t0,e0)

. (5.24)

When the summation is seperated into two parts as it can be seen in the above formula,
inputs of the first summand will be (r1, t1, e1) and inputs of the second summand will be
(r1, t0, e0). Hence, in the case of an access to any of these two summands, the secret key s
will still be secret. Since (pk, sk) ∈ ((F, v) , s), this key pair has to satisfy MQ key relation
i.e., ((F, v) , s) ∈ RMQ. Now let’s define the commitment scheme, com which is a tool of
SSH 3-pass and 5-pass IDS. There exist two phases for the com which satisfies the properties
of statistically hiding and computationally binding. Firstly, prover P computes a value c
which will be sended to the verifier V by using the function com such that c ← com (s, r)

where s is a string and r is a random string. Secondly, P sends (s, r) to V so that V verifies
c = com (s, r). Because of the security properties of com, it is not possible to distinguish
two commitment values which are generated from two distinct strings s1 and s2, from each
other. Furthermore, after P sends the commitment value c to V , P can not change his or
her committed string s in polynomial time due to the same reason. Since cryptographic hash
functions are used in the construction of the commitment schemes, then we expect from com

to satisfy these two security properties [5, 35].

Note that: In the description of only SSH 5-pass IDS, the function com will get 3 inputs
instead of 2 in the process of computing the first commitment value c0.

Let’s describe the SSH 3-pass and 5-pass IDS respectively:
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Table 5.3: The SSH 3-pass IDS [35]

Prover’s input: ((F, v) , s) Verifier’s input: (F, v)

r0, t0 ←−R Fnq , e0 ←−R Fmq

r1 ←− s− r0, t1 ←− r0 − t0

e1 ←− F (r0)− e0

c0 ←− com (r1, G (t0, r1) + e0)

c1 ←− com (t0, e0)

c2 ←− com (t1, e1)
(c0,c1,c2)

−−−−−−−−−−−−−−→
ch1 ←−R {0, 1, 2}

ch1
←−−−−−−−−−−−−−−

If ch1 = 0, resp1 ←− (r0, t1, e1)

If ch1 = 1, resp1 ←− (r1, t1, e1)

If ch1 = 2, resp1 ←− (r1, t0, e0)
resp1

−−−−−−−−−−−−−−→
If ch1 = 0, parse resp1 = (r0, t1, e1) check:

c1 =? com (r0 − t1, F (r0)− e1)

c2 =? com (t1, e1)

If ch1 = 1, parse resp1 = (r1, t1, e1) check:

c0 =? com (r1, v − F (r1)−G (t1, r1)− e1)

c2 =? com (t1, e1)

If ch1 = 2, parse resp1 = (r1, t0, e0) check:

c0 =? com (r1, G (t0, r1) + e0)

c1 =? com (t0, e0)
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Table 5.4: The SSH 5-pass IDS [35]

Prover’s input: ((F, v) , s) Verifier’s input: (F, v)

r0, t0 ←−R Fnq , e0 ←−R Fmq

r1 ←− s− r0

c0 ←− com (r0, t0, e0)

c1 ←− com (r1, G (t0, r1) + e0)
(c0,c1)

−−−−−−−−−−−−−−→
α←−R Fq

ch1=α
←−−−−−−−−−−−−−−

t1 ←− αr0 − t0

e1 ←− αF (r0)− e0
(t1,e1)

−−−−−−−−−−−−−−→
ch2 ←−R {0, 1}

ch2
←−−−−−−−−−−−−−−

If ch2 = 0, resp2 ←− r0

Else, resp2 ←− r1
resp2

−−−−−−−−−−−−−−→
If ch2 = 0, parse resp2 = r0 check:

c0 =? com (r0, αr0 − t1, αF (r0)− e1)

Else, parse resp2 = r1 check:

c1 =? com (r1, α (v − F (r1))−G (t1, r1)− e1)

Theorem 6. [5, 35] The security properties of the SSH 5-pass IDS are defined in the following:

• The SSH 5-pass IDS has a key relation RMQ(n,m,Fq).

• If the MQ search problem is hard on average, then the SSH 5-pass IDS is key-one-wayness.

• The SSH 5-pass IDS is perfectly correct i.e.,
∀ (pk, sk)← KGen, P [〈P (sk) ,V (pk)〉 = 1] = 1.

• If the commitment scheme com is computationally hiding, then the SSH 5-pass IDS is computationally honest
verifier zero knowledge.

• If the commitment scheme com is computationally binding, then the SSH 5-pass IDS is argument of knowledge
(soundness) for RMQ(n,m,Fq) with knowledge error 1

2
+ 1

2q
.

• If the commitment scheme com is computationally binding, then the SSH 5-pass IDS is sound with soundness
error 1

2
+ 1

2q
.

• If the commitment scheme com is computationally binding, then the SSH 5-pass IDS has a q2-Extractor.
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5.4 THE FIAT-SHAMIR TRANSFORM

As we explained before, identification schemes can be thought as a structural tool to construct
digital signature schemes. In this process, the thing which will be needed is the existence of
a mechanism or an algorithm which transforms an identification scheme to a digital signa-
ture scheme. Furthermore, the obtained DSS needs to be secure in both ROM and QROM.
The most common example of this transformation in which the acquired DSS satisfies the de-
sired security properties, is applied to the canonical 2n+ 1-pass identification schemes. Let’s
describe this transformation mechanism whose name is the Fiat-Shamir transform, through
the canonical 3-pass and 5-pass IDS respectively since the desription of the Fiat-Shamir trans-
form of 2n+ 1-pass IDS is too complex and not common.

5.4.1 THE FIAT-SHAMIR TRANSFORM OF CANONICAL 3-PASS IDS

Definition 20. [5] Assume k ∈ N and IDS
(
1k
)

= (KGenIDS ,P,V) is a canonical
3-pass identification scheme with a security parameter k where P = (P0, P1) and V =

(ChS1, V fIDS).

1. Suppose that IDS
(
1k
)

satisfies the security property of soundness with soundness
error κ.

2. Then select the number of rounds, say r to create a DSS
(
1k
)

such that κr = negl (k)

and its challenge space Cr has exponential size in k.

3. Let’s get the r rounds sequential or parallel composition of IDS
(
1k
)
. Then, IDS(r)

will be obtained.

4. Now select a cryptographic hash function H such that H : {0, 1}∗ → Cr.

5. Then the corresponding DSS
(
1k
)

which is obtained from IDS
(
1k
)

is the following
triplet: (KGen, Sign, V f). Let’s define these 3 algorithms:

Algorithm 4 Fiat-Shamir Key Generation

1: procedure KGEN( )
2: (pk, sk)← KGenIDS

3: return (pk, sk)

4: end procedure
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Algorithm 5 Fiat-Shamir Signature Generation

1: procedure SIGN(sk,M )
2: for j ∈ {1, . . . , r} do
3:

(
state(j), com(j)

)
← P

(j)
0 (sk)

4: end for
5: state :=

(
state(1), . . . , state(r)

)
6: com :=

(
com(1), . . . , com(r)

)
7: σ0 := com

8: ch← H (pk,M, σ0)

9: Parse ch as ch =
(
ch(1), ch(2), . . . , ch(r)

)
, ch(j) ∈ C

10: for j ∈ {1, . . . , r} do
11: resp(j) ← P

(j)
1

(
state(j), ch(j)

)
12: end for
13: resp :=

(
resp(1), . . . , resp(r)

)
14: σ1 := resp

15: return σ = (σ0, σ1)

16: end procedure

Algorithm 6 Fiat-Shamir Signature Verification

1: procedure VF(pk,σ,M )
2: Parse σ = (σ0, σ1)

3: Parse σ0 as σ0 :=
(
com(1), . . . , com(r)

)
4: ch← H (pk,M, σ0)

5: Parse ch as ch =
(
ch(1), ch(2), . . . , ch(r)

)
, ch(j) ∈ C

6: Parse σ1 as σ1 =
(
resp(1), . . . , resp(r)

)
7: for j ∈ {1, . . . , r} do
8: b(j) ← V f

(j)
IDS

(
pk, com(j), ch(j), resp(j)

)
9: end for

10: b← b(1) ∧ b(2) ∧ · · · ∧ b(r)

11: return b
12: end procedure

5.4.2 THE FIAT-SHAMIR TRANSFORM OF CANONICAL 5-PASS IDS

Definition 21. [5] Assume k ∈ N and IDS
(
1k
)

= (KGenIDS ,P,V) is a canonical 5-pass
identification scheme with a security parameter k in which P = (P0, P1, P2) and
V = (ChS1, ChS2, V fIDS).

1. Suppose that IDS
(
1k
)

satisfies the security property of soundness with soundness
error κ.
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2. Then select the number of rounds, say r to create a Dss
(
1k
)

such that κr = negl (k)

and its challenge spaces Cr1 , Cr2 have exponential size in k.

3. Let’s get the r rounds sequential or parallel composition of IDS
(
1k
)
. Then, IDS(r)

will be obtained.

4. Now select the cryptographic hash functions H1 and H2 such that H1 : {0, 1}∗ → Cr1
and H2 : {0, 1}∗ → Cr2 .

5. Then the corresponding Dss
(
1k
)

which is obtained from IDS
(
1k
)

is the following
triplet: (KGen, Sign, V f). Let’s define these 3 algorithms:

Algorithm 7 Fiat-Shamir Key Generation

1: procedure KGEN( )
2: (pk, sk)← KGenIDS

3: return (pk, sk)

4: end procedure

Algorithm 8 Fiat-Shamir Signature Generation

1: procedure SIGN(sk,M )
2: for j ∈ {1, . . . , r} do
3:

(
state(j), com(j)

)
← P

(j)
0 (sk)

4: end for
5: state :=

(
state(1), . . . , state(r)

)
6: com :=

(
com(1), . . . , com(r)

)
7: σ0 := com

8: h1 ← H1 (pk,M, σ0)

9: Parse h1 as h1 =
(
ch

(1)
1 , ch

(2)
1 , . . . , ch

(r)
1

)
, ch(j)1 ∈ C1

10: for j ∈ {1, . . . , r} do
11:

(
state(j), resp

(j)
1

)
← P

(j)
1

(
state(j), ch

(j)
1

)
12: end for
13: state :=

(
state(1), . . . , state(r)

)
14: resp1 :=

(
resp

(1)
1 , . . . , resp

(r)
1

)
15: σ1 := resp1

16: h2 ← H2 (pk,M, σ0, σ1)

17: Parse h2 as h2 =
(
ch

(1)
2 , ch

(2)
2 , . . . , ch

(r)
2

)
, ch(j)2 ∈ C2

18: for j ∈ {1, . . . , r} do
19: resp

(j)
2 ← P

(j)
2

(
state(j), ch

(j)
2

)
20: end for
21: resp2 :=

(
resp

(1)
2 , . . . , resp

(r)
2

)
22: σ2 := resp2

23: return σ = (σ0, σ1, σ2)

24: end procedure
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Algorithm 9 Fiat-Shamir Signature Verification

1: procedure VF(pk,σ,M )
2: Parse σ = (σ0, σ1, σ2)

3: Parse σ0 as σ0 :=
(
com(1), . . . , com(r)

)
4: h1 ← H1 (pk,M, σ0)

5: Parse h1 as h1 =
(
ch

(1)
1 , ch

(2)
1 , . . . , ch

(r)
1

)
, ch(j)1 ∈ C1

6: Parse σ1 as σ1 =
(
resp

(1)
1 , . . . , resp

(r)
1

)
7: h2 ← H2 (pk,M, σ0, σ1)

8: Parse h2 as h2 =
(
ch

(1)
2 , ch

(2)
2 , . . . , ch

(r)
2

)
, ch(j)2 ∈ C2

9: Parse σ2 as σ2 =
(
resp

(1)
2 , . . . , resp

(r)
2

)
10: for j ∈ {1, . . . , r} do
11: b(j) ← V f

(j)
IDS

(
pk, com(j), ch

(j)
1 , resp

(j)
1 , ch

(j)
2 , resp

(j)
2

)
12: end for
13: b← b(1) ∧ b(2) ∧ · · · ∧ b(r)

14: return b
15: end procedure

5.4.3 SECURITY ANALYSIS

Let’s analyze the security of the Fiat-Shamir transform. The most significant thing which
we need to know related with the Fiat-Shamir transform is that the digital signature scheme
which is constructed by using this transform, is provably secure in the ROM against classical
adversaries. Furthermore, there exists a proof which uses the ROM and the forking lemma
whose techniques consist of adaptively programming of the random oracle and rewinding
of the attacker such that if we transform an IDS which is HVZK and satisfies the security
property of special soundness, then the corresponding DSS will be EU-CMA secure.

As a different proof, Abdalla proposed that the identification scheme is IMP-PA secure if
and only if the corresponding digital signature scheme that is obtained by the Fiat-Shamir
transform, is EU-CMA secure. On the other hand, if we assume the existence of quantum
adversaries, then they will query the random oracle in superposition. That’s why, the security
of the Fiat-Shamir transform in the QROM is not clear, meaning that it is not easy to generalize
results for the ROM to the QROM.

Recently Jelle Don, Serge Fehr, Christian Majenz and Christian Schaffner proposed that
if the IDS satisfies security properties of the standard soundness and the proof of knowledge,
then the Fiat-Shamir transform preserves these properties even when enabling quantum at-
tacks. In other words, for any IDS which is proof of knowledge and satisfies soundness, the
corresponding Fiat-Shamir signature scheme is secure in the QROM. Also they showed the
security of Fish that is the Fiat-Shamir variant of Picnic which is a NIST candidate, in the
QROM [5, 9, 15].
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Since the most popular canonical 5-pass IDS is the q2-IDS, let’s give a theorem associated
with the security of q2-signature schemes which are obtained by the Fiat-Shamir transform of
q2-Identificatin schemes:

Theorem 7. [5] Let k ∈ N and IDS
(
k
)

be a q2-Identification scheme with a security pa-
rameter k and a key relation R. If IDS

(
1k
)

has a q2-extractor ε, is KOW secure and HVZK,
then the corresponding q2-signature scheme

(
q2−Dss

(
1k
))

which is attained by the Fiat-
Shamir transform of the IDS

(
1k
)
, will be EU-CMA secure.
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CHAPTER 6

MULTIVARIATE QUADRATIC DIGITAL SIGNATURE
SCHEME (MQDSS)

In 2018, Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska and Peter
Schwabe proposed a new digital signature scheme whose name is Multivariate Quadratic
Digital Signature Scheme (MQDSS). Since specialists expect quantum computers in the
near future, quantum resistant cryptographic algorithms started to have a great importance.
That’s why, NIST organized a competition for the post-quantum algorithms which contains
multivariate public-key, lattice-based, hashed-based, isogeny-based and code-based cryptosys-
tems. In this competiton, MQDSS which is a NIST candidate in the area of multivariate public
key cryptosytems, passed to the second round.

The security of the MQDSS is based on the intractability of the MQ problem and the security
level of the non-interactive commitment schemes. In the construction of the MQDSS, they
benefited from the MQ Problem, non-interactive commitment schemes which are statistically
hiding and computationally binding, SSH 5-pass identification scheme and the Fiat-Shamir
transform. In this section of the thesis, we focus on the MQDSS algorithm. Let’s start to
introduce MQDSS by giving preliminary parameters and functions, the general description,
optimized parameter sets, the detailed description, the classical and the quantum algorithms
for solving the MQ problem and the security analysis respectively.

6.1 MQDSS PRELIMINARY PARAMETERS AND FUNCTIONS

Parameters of MQDSS-q-n [5]:

• k ∈ N+: the security parameter,

• n ∈ N+: the number of variables and equations of the system F ,

• q ∈ N+: the order of the finite field Fq (q is a prime or a prime power),

• r ∈ N+: the number of rounds
(

normally r =
⌈
k/ log2

2q
q+1

⌉)
.
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Auxiliary functions of MQDSS-q-n [5]:

• PRGsk : {0, 1}k → {0, 1}3k: a pseudorandom generator which is utilized to produce
three seeds,

• PRGs : {0, 1}k → {0, 1}ndlog2 qe: a pseudorandom generator which is utilized to
produce the secret key,

• PRGrte : {0, 1}k × {0, 1}∗ → {0, 1}3rndlog2 qe: a pseudorandom generator which is
utilized to produce pseudorandom values for the signature generation,

• XOFF : {0, 1}k → {0, 1}Flen : an extendable output function which is utilized to
produce a multivariate system F through expanding a seed value that is generated by
PRGsk such that:
q = 2⇒ Flen = n ·

(
n·(n−1)

2 + n
)
, q > 2⇒ Flen = n ·

(
n·(n+1)

2 + n
)
dlog2 qe,

• H : {0, 1}∗ → {0, 1}2k: a cryptographic hash fuction,

• H1 : {0, 1}∗ → Frq : a cryptographic hash fuction,

• H2 : {0, 1}∗ → {0, 1}r: a cryptographic hash fuction,

• Com0 : Fnq × Fnq × Fnq → {0, 1}
2k: a string commitment function,

• Com1 : Fnq × Fnq → {0, 1}
2k : a string commitment function.

6.2 GENERAL DESCRIPTION OF THE MQDSS

Since MQDSS-q-n is a signature algorithm, it can be considered as a triplet of the following
algorithms: (KGen, Sign, V f). Let’s describe these 3 algorithms respectively [5].

REMARK

• SF : a seed of k bits (By using SF as an input, the MQ function F will be generated.),

• Ss: a seed of k bits (By using Ss as an input, the secret input s of the MQ function F
will be generated.),

• Srte: a seed of k bits (By using Srte as an input, parameters r(i)0 , t(i)0 , e(i)0 , where
i ∈ {1, . . . , r} which are needed for the signature generation will be generated.),

• M : the message which will be signed,

• G : Fnq × Fnq → Fnq : the polar form of the MQ function F .
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Algorithm 10 MQDSS-q-n Key Generation

1: procedure KGEN( )
2: sk ←R {0, 1}k

3: SF , Ss, Srte ← PRGsk (sk)

4: F ← XOFF (SF )

5: s← PRGs (Ss)

6: v ← F (s)

7: pk := (SF , v)

8: return (pk, sk)

9: end procedure

Algorithm 11 MQDSS-q-n Signature Generation

1: procedure SIGN(sk,M )
2: SF , Ss, Srte ← PRGsk (sk)

3: F ← XOFF (SF )

4: s← PRGs (Ss)

5: pk := (SF , F (s))

6: R← H (sk||M)

7: D ← H (pk||R||M)

8: r
(1)
0 , . . . , r

(r)
0 , t

(1)
0 , . . . , t

(r)
0 , e

(1)
0 , . . . , e

(r)
0 ← PRGrte (Srte, D)

9: for j ∈ {1, . . . , r} do
10: r

(j)
1 ← s− r(j)0

11: c
(j)
0 ← com0

(
r
(j)
0 , t

(j)
0 , e

(j)
0

)
12: c

(j)
1 ← com1

(
r
(j)
1 , G

(
t
(j)
0 , r

(j)
1

)
+ e

(j)
0

)
13: com(j) :=

(
c
(j)
0 , c

(j)
1

)
14: end for
15: σ0 ← H

(
com(1)||com(2)|| . . . ||com(r)

)
16: ch1 ← H1 (D,σ0)

17: Parse ch1 as ch1 =
(
α(1), α(2), . . . , α(r)

)
, α(j) ∈ Fq

18: for j ∈ {1, . . . , r} do
19: t

(j)
1 ← α(j)r

(j)
0 − t

(j)
0 , e

(j)
1 ← α(j)F

(
r
(j)
0

)
− e(j)0

20: resp
(j)
1 :=

(
t
(j)
1 , e

(j)
1

)
21: end for
22: σ1 ←

(
resp

(1)
1 ||resp

(2)
1 || . . . ||resp

(r)
1

)
23: ch2 ← H2 (D,σ0, ch1, σ1)

24: Parse ch2 as ch2 =
(
b(1), b(2), . . . , b(r)

)
, b(j) ∈ {0, 1}

25: for j ∈ {1, . . . , r} do
26: resp

(j)
2 ← r

(j)

b(j)

27: end for
28: σ2 ←

(
resp

(1)
2 ||resp

(2)
2 || . . . ||resp

(r)
2 ||c

(1)

1−b(1) ||c
(2)

1−b(2) || . . . ||c
(r)

1−b(r)

)
29: return σ = (R, σ0, σ1, σ2)

30: end procedure

57



REMARK

• The truth value of σ′0 == σ0: means valid verification,

• The false value of σ′0 == σ0: means invalid verification.

Algorithm 12 MQDSS-q-n Signature Verification

1: procedure VF(pk,σ,M )
2: F ← XOFF (SF )

3: D ← H (pk||R||M)

4: ch1 ← H1 (D,σ0)

5: Parse ch1 as ch1 =
(
α(1), α(2), . . . , α(r)

)
, α(j) ∈ Fq

6: ch2 ← H2 (D,σ0, ch1, σ1)

7: Parse ch2 as ch2 =
(
b(1), b(2), . . . , b(r)

)
, b(j) ∈ {0, 1}

8: Parse σ1 as σ1 =
(
resp

(1)
1 ||resp

(2)
1 || . . . ||resp

(r)
1

)
9: Parse σ2 as σ2 =

(
resp

(1)
2 ||resp

(2)
2 || . . . ||resp

(r)
2 ||c

(1)

1−b(1) ||c
(2)

1−b(2) || . . . ||c
(r)

1−b(r)

)
10: for j ∈ {1, . . . , r} do
11: Parse resp(j)1 as resp(j)1 =

(
t
(j)
1 , e

(j)
1

)
12: if b(j) == 0 then
13: r

(j)
0 = resp

(j)
2

14: c
(j)
0 ← Com0

(
r
(j)
0 , α(j)r

(j)
0 − t

(j)
1 , α(j)F

(
r
(j)
0

)
− e(j)1

)
15: else
16: r

(j)
1 = resp

(j)
2

17: c
(j)
1 ← Com1

(
r
(j)
1 , α(j)

(
v − F

(
r
(j)
1

))
−G

(
t
(j)
1 , r

(j)
1

)
− e(j)1

)
18: end if
19: com(j) :=

(
c
(j)
0 , c

(j)
1

)
20: end for
21: σ′0 ← H

(
com(1)||com(2)|| . . . ||com(r)

)
22: return σ′0 == σ0

23: end procedure

6.3 OPTIMIZED PARAMETER SETS

According to the general description of the MQDSS, lengthes of important parameters are the
following [5]:

• the public-key pk → k + n dlog2 qe bits,

• the secret key sk → k bits,

• the signature σ → 4k + (2k + 3n dlog2 qe) r bits,
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• the round number r →
⌈
k/ log2

2q
q+1

⌉
bits.

The creators of the MQDSS specify two reference parameter sets for this algorithm:

• MQDSS-31-48 (k = 128, q = 31, n = 48, r = 135),

• MQDSS-31-64 (k = 192, q = 31, n = 64, r = 202).

Now, it is possible to calculate lengthes of pk, sk, σ for MQDSS-31-48 and MQDSS-31-64:

Security
Category k q n r pk (bytes) sk (bytes) σ (bytes)

MQDSS-31-48 1− 2 128 31 48 135 46 16 16534

MQDSS-31-64 3− 4 192 31 64 202 64 24 34032

Then, lets give the complexity of the best classical and quantum attacks against MQDSS-31-
48 and MQDSS-31-64:

The Best Classical Attack The Best Quantum Attack
algorithm field operations algorithm gates depth

MQDSS-31-48 Hybrid F5 2159 Crossbread 299 290

MQDSS-31-64 Hybrid F5 2205 Crossbread 2130 2120

Notice that: Security categories of NIST can be seperated into 3 parts:
- security category 1− 2,
- security category 3− 4,
- security category 5− 6.

If we consider optimized parameter sets of the MQDSS creators, their preferences are based
on the two things: security level and performance analysis. They need to balance these two
factors so as to determine their optimized parameter sets. In this manner, they don’t prefer to
obtain NIST’s 5-6 security level since this level of security requires a signature size which is
out of the practical range. Furthermore, to reach 3-4 security level, they changed the number
of rounds. In addition to all these, the most essential decision is associated with the selection
of the parameter q. They prefer to use F31 (q = 31) instead of using F16 (q = 16) and F32

(q = 32) although the performance characteristics of the parameter sets over all these fields
are really similar with each other for the same level of security.

Let’s focus on the reasons:

- First of all, "31" is a Mersenne prime which is a prime number of the form 2n − 1. In
cryptography, Mersenne primes have an important role since in the process of finding and
checking the primality of large prime numbers, the usage of this kind of primes is pretty
efficient and practical.

- Secondly, for the MQDSS, we need to consider implementations of field arithmetics. All
computational devices include instructions for the multiplication of natural numbers over the
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field F31. On the other hand, they don’t contain any instruction set for the multiplication over
F16 and F32, so specific representations need to be generated for the fast implementations
over these fields.

- Finally, the creators of the MQDSS benefit from AVX2 instructions in their optimized im-
plementation and they realized that this instruction set is a lot more faster over F31 than F16

and F32.

6.4 DETAILED DESCRIPTION OF THE MQDSS

In the section 6.4, the optimized parameter sets of the MQDSS have been given. According
to these parameter sets, the parameter q is equal to 31 (q = 31). That’s why, in this section,
the detailed description of the MQDSS will be given for q = 31. In other words, the finite
field which will be worked on is F31. [5] In this process, all functions are defined in terms of
parameters k, n ∈ N such that 64|k and 8|n. Thus, any implementation over F31 for several
security categories can be performed by analyzing the following descriptive pseudo-codes
which contain the byte-level details.

6.4.1 PRELIMINARY FUNCTIONS [5]

REMARK

• SHAKE256(seed, 136): interface for the digest of SHAKE256 on input seed as stan-
dardized in FIPS 202, the SHA-3 standard.

• subarray(a, b, c): [a [b] , . . . , a [c− 1]].

• The secret key sk whose length is k
8 bytes (k bits) will be expanded into 3k

8 bytes (3k
bits).

• Then, the extended form of the secret key which is "block" will be seperated into three
parts such that its first k8 bytes create SF, second k

8 bytes create Ss and the remaining k
8

bytes create Srte.

Algorithm 13 Secret Key Expansion

1: procedure SECRETKEYEXPANSION(sk)
2: Input: sk
3: block ← SHAKE256(sk, 136)

4: SF ← subarray(block, 0, k/8)

5: Ss ← subarray(block, k/8, 2k/8)

6: Srte ← subarray(block, 2k/8, 3k/8)

7: Output: SF, Ss, Srte

8: end procedure
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REMARK

• SHAKE256absorb(seed): interface for the absorb phase of SHAKE256 for extandable
output.

• SHAKE256squeeze(state): interface for the squeeze phase of SHAKE256 for extand-
able output.

• len(a): the length of a.

• trunc(a, b): [a [0] , a [1] , . . . , a [b− 1]].

• a <> b: logical non-equal test.

• mask(a, b, c): a function which sets the bits a [b] , . . . , a [c] to 0.

• append(a, b): a function which appends the element b to the end of the array a.

• SHAKE256 functions are used in order to extend any input and return extended output.

• The obtained extended output enters into the function of rejection sampling and thus
XOFF, PRGs, PRGrte are instantiated.

• trunc(cand, 5) <> 11111 checks whether the least significant 5 bits of the byte array
"cand" is equal to 31 or not.

• If trunc(cand, 5) <> 11111 is true, then the function "append" is applied.

• append(array31,mask (cand, 5, 7)) sets the most significant 3 bits of the "array31"
to 0 and append these 3 bits to the end of the "array31". Thus, for each byte array
"cand", only the least significant 5 bits are taken then, they are reduced in modulo 31

since Fq = F31 (q = 31).

• At the end, the function "RejectSample" returns an array whose length is equal to input
"len".

• The function "RejectSample" is used in order to obtain the function F from SF, the
secret key s from Ss and the random vectors r0, t0 and e0 from Srte in the following
three algorithms (15, 16, 17).
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Algorithm 14 Rejection Sampling (Expanding SF, Ss, Srte)

1: procedure REJECTSAMPLE(seed, len)
2: Input: seed, len
3: array31← [ ]

4: state← SHAKE256absorb(seed)

5: while len(array31) < len do
6: block ← SHAKE256squeeze(state)

7: i← 0

8: while i < len(block)∧ len(array31) < len do
9: cand← block [i]

10: if trunc(cand, 5) <> 11111 then
11: append (array31,mask (cand, 5, 7))

12: end if
13: i← i+ 1

14: end while
15: end while
16: Output: array31

17: end procedure

REMARK

• In the following algorithm "MQsystem", the number 15 is substracted from the all ele-
ments of the function F so as to obtain signed integers between−15 and +15, inclusive.

Algorithm 15 Expanding SF

1: procedure MQSYSTEM(SF)
2: Input: SF

3: F← RejectSample
(
SF, n

(
n(n+1)

2 + n
))

4: for 0 ≤ i < len (F) do
5: F [i]← F [i]− 15

6: end for
7: Output: F
8: end procedure

Algorithm 16 Expanding Ss

1: procedure SECRETVECTOR(Ss)
2: Input: Ss

3: s← RejectSample (Ss, n)

4: Output: s
5: end procedure
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Algorithm 17 Expanding Srte

1: procedure RTEEXPAND(Srte, D)
2: Input: Srte

3: arrayrte ← RejectSample (Srte||D, 3rn)
4: arrayr ← subarray (arrayrte, 0, rn)

5: arrayt ← subarray (arrayrte, rn, 2rn)

6: arraye ← subarray (arrayrte, 2rn, 3rn)

7: r← [[0| i = 1 . . . n] |i = 1 . . . r]

8: t← [[0| i = 1 . . . n] |i = 1 . . . r]

9: e← [[0| i = 1 . . . n] |i = 1 . . . r]

10: for 0 ≤ i < rn; i← i+ n do
11: r[i]← subarray (arrayr, i, i+ n)

12: t[i]← subarray (arrayt, i, i+ n)

13: e[i]← subarray (arraye, i, i+ n)

14: end for
15: Output: r, t, e
16: end procedure

REMARK

• The function "EvaluateF" first generates the all quadratic terms of F then computes the
polynomials which correspond to these terms.

• The function "EvaluateF" computes the value of the function F for given any input
vector u.

Algorithm 18 Evaluating F
1: procedure EVALUATEF(u, F)
2: Input: u, F
3: terms← [ ]

4: for 0 ≤ i < n do
5: for 0 ≤ j < i do
6: append(terms, u [i] · u [j] mod 31)

7: end for
8: end for
9: r← [0|j = 0 . . . n− 1]

10: for 0 ≤ i < n; i← i+ 2 do
11: for 0 ≤ j < n do
12: r [j]← r [j] + u [i] · F [i · n+ 2 · j] mod 31

13: r [j]← r [j] + u [i+ 1] · F [i · n+ 2 · j + 1] mod 31

14: end for
15: end for
16: for 0 ≤ i < n·(n+1)

2
; i← i+ 2 do

17: for 0 ≤ j < n do
18: r [j]← r [j] + terms [i] · F [n ·m+ i ·m+ 2 · j] mod 31

19: r [j]← r [j] + terms [i+ 1] · F [n ·m+ i ·m+ 2 · j + 1] mod 31

20: end for
21: end for
22: Output: r = F (u)
23: end procedure
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REMARK

• The function G is the polar form of the function F (bilinear counterpart of F).

Algorithm 19 Evaluating G
1: procedure EVALUATEG(u, v, F)
2: Input: u, v, F
3: terms← [ ]

4: for 0 ≤ i < n do
5: for 0 ≤ j < i do
6: append(terms, u [i] · v [j] + u [j] · v [i] mod 31)

7: end for
8: end for
9: r← [0|j = 1 . . . n]

10: for 0 ≤ i < n·(n+1)
2 ; i← i+ 2 do

11: for 0 ≤ j < n do
12: r [j]← r [j] + terms [i] · F [n ·m+ i ·m+ 2 · j] mod 31

13: r [j]← r [j] + terms [i+ 1] · F [n ·m+ i ·m+ 2 · j + 1] mod 31

14: end for
15: end for
16: Output: r = G (u, v)

17: end procedure

REMARK

• At the beginning, there was an assumption which says 8|n. The reason for this is not to
need any padding for the byte array representations of input and output arrays.

• The function "PackArray31" gets a vector whose elements are expressed with only 5
bits as an input and return its byte array representation.

Algorithm 20 Packing F31 Elements

1: procedure PACKARRAY31(u)
2: Input: u
3: bitstring ← [ ]

4: for 0 ≤ i < len (u) do
5: bitstring ← bitstring||trunc (u [i] , 5)

6: end for
7: bytearray ← [ ]

8: for 0 ≤ i < len (bitstring) ; i← i+ 8 do
9: append (bytearray, subarray (bitstring, i, i+ 8))

10: end for
11: Output: bytearray
12: end procedure
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REMARK

• The function "UnpackArray31" is the exact inverse of the function "PackArray31".

Algorithm 21 Unpacking F31 Elements

1: procedure UNPACKARRAY31(bytearray)
2: Input: bytearray
3: bitstring ← [ ]

4: for 0 ≤ i < len (bytearray) do
5: bitstring ← bitstring||bytearray [i]

6: end for
7: u← [ ]

8: for 0 ≤ i < len (bitstring) ; i← i+ 5 do
9: append (u, subarray (bitstring, i, i+ 5) ||000)

10: end for
11: Output: u
12: end procedure

REMARK

• In the process of instantiation for the commitments and hash functions, SHAKE256 is
used.

• Commitments need byte arrays instead of arrays which consist of F31 elements, as
input.

• Inputs of the function "Com0" =⇒ 3 packed byte arrays: PackArray31(r),
PackArray31(t), PackArray31(e).

• Inputs of the function "Com1" =⇒ 2 packed byte arrays: PackArray31(r),
PackArray31(e).

Algorithm 22 Commitment Function Com0

1: procedure COM0(r, t, e)
2: Input: r, t, e
3: c0 ← [ ]

4: seed← (PackArray31 (r) ||PackArray31 (t) ||PackArray31 (e))

5: state← SHAKE256absorb(seed)

6: block ← SHAKE256squeeze(state)

7: c0 ← subarray(block, 0, k/8)

8: Output: c0
9: end procedure
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Algorithm 23 Commitment Function Com1

1: procedure COM1(r, e)
2: Input: r, e
3: c1 ← [ ]

4: seed← (PackArray31 (r) ||PackArray31 (e))

5: state← SHAKE256absorb(seed)

6: block ← SHAKE256squeeze(state)

7: c1 ← subarray(block, 0, k/8)

8: Output: c1
9: end procedure

Algorithm 24 Hash FunctionH
1: procedure HASH(bytearray)
2: Input: bytearray
3: state← SHAKE256absorb(bytearray)

4: block ← SHAKE256squeeze(state)

5: digest← subarray(block, 0, k/8)

6: Output: digest
7: end procedure

REMARK

• The challenge "ch1" is obtained by applying "RejectSample" algorithm to the "seed"
for the length r.

• The function SHAKE256squeeze is used iteratively in order to attain an output of de-
sirable length.

Algorithm 25 Hash Function H1

1: procedure HASH1(D,σ0)
2: Input: D,σ0
3: seed← D||σ0
4: ch1 ← RejectSample [seed, r]

5: Output: ch1
6: end procedure

REMARK

• "ch2" which is a binary challenge is acquired with the method of enumarating the bits
of arrays block [0], block [1], . . . whose lengthes are 1-byte.
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Algorithm 26 Hash Function H2

1: procedure HASH2(D,σ0, ch1, σ1)
2: Input: D,σ0, ch1, σ1
3: seed← D||σ0PackArray31 (ch1) ||σ1
4: state← SHAKE256absorb(seed)

5: block ← SHAKE256squeeze(state)

6: ch2 ← [ ]

7: for 0 ≤ i < r do
8: temp = block [floor (i/8)]

9: append (ch2, temp [i mod 8])

10: end for
11: Output: ch2
12: end procedure

6.4.2 DESCRIPTION OF THE ALGORITHMS: KGen, Sign, Vf

REMARK

• Since all necessary parameters and preliminary functions have been given for the de-
tailed description of the MQDSS over F31, now it is possible to complete this descrip-
tion which benefits from all these auxiliary pseudo codes by giving the following triplet
of algorithms [5]: KGen, Sign, Vf.

• The function rand(k) where k is the security parameter of the MQDSS, is used in order
to produce a pseudo random secret key sk whose length is k bits.

Algorithm 27 MQDSS Key Generation

1: procedure KGEN(k)
2: Input: k
3: sk← rand (k)

4: SF, Ss, Srte ← SecretKeyExpansion (sk)

5: F← MQsystem (SF)

6: s← SecretVector (Ss)

7: v← EvaluateF (s,F)

8: pk← SF||PackArray31 (v)

9: Output: (pk, sk)

10: end procedure
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Algorithm 28 MQDSS Signature Generation
1: procedure SIGN(sk,M )
2: Input: sk, M
3: SF, Ss, Srte ← SecretKeyExpansion (sk)

4: F← MQsystem (SF)

5: s← SecretVector (Ss)

6: v← EvaluateF (s,F)

7: pk← SF||PackArray31 (v)

8: R← Hash (sk||M)

9: D ← Hash (pk||R||M)

10: r0, t0, e0 ← RTEexpand (Srte, D)

11: r1 ← [[0| i = 1 . . . n] |i = 1 . . . r]

12: t1 ← [[0| i = 1 . . . n] |i = 1 . . . r]

13: e1 ← [[0| i = 1 . . . n] |i = 1 . . . r]

14: c0 ← [[0| i = 1 . . . 2k/8] |i = 1 . . . r]

15: c1 ← [[0| i = 1 . . . 2k/8] |i = 1 . . . r]

16: com← [ ]

17: for 0 ≤ i < r do
18: r1 [i]← s− r0 [i]

19: c0 [i]← Com0 (r0 [i] , t0 [i] , e0 [i])

20: c1 [i]← Com1 (r1 [i] ,EvaluateG (t0 [i] , r1 [i] ,F) + e0 [i])

21: com← com||PackArray31 (c0 [i]) ||PackArray31 (c1 [i])

22: end for
23: σ0 ← Hash (com)

24: ch1 ← Hash1 (D,σ0)

25: σ1 ← [ ]

26: for 0 ≤ i < r do
27: t1 [i]← ch1 [i] · r0 [i]− t0 [i]

28: e1 [i]← ch1 [i] · EvaluateF (r0 [i] ,F)− e0 [i]

29: σ1 ← σ1||PackArray31 (t1 [i]) ||PackArray31 (e1 [i])

30: end for
31: ch2 ← Hash2 (D,σ0, ch1, σ1)

32: σ2 ← [ ]

33: for 0 ≤ i < r do
34: if ch2 [i] == 0 then
35: σ2 ← σ2||PackArray31 (r0 [i])

36: else
37: σ2 ← σ2||PackArray31 (r1 [i])

38: end if
39: end for
40: for 0 ≤ i < r do
41: if ch2 [i] == 0 then
42: σ2 ← σ2||c1 [i]

43: else
44: σ2 ← σ2||c0 [i]

45: end if
46: end for
47: Output: σ = R||σ0||σ1||σ2
48: end procedure
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Algorithm 29 MQDSS Signature Verification

1: procedure VF(pk, σ, M )
2: Input: pk, σ, M
3: R← subarray (σ, 0, 2 · k/8)

4: σ0 ← subarray (σ, 2 · k/8, 4 · k/8)

5: σ1 ← subarray (σ, 4 · k/8, (4 · k + 10 · n · r) /8)

6: σ2 ← subarray (σ, (4 · k + 10 · n · r) /8, len (σ))

7: SF ← subarray (pk, 0, k/8)

8: F← MQsystem (SF)

9: D ← Hash (pk||R||M)

10: ch1 ← Hash1 (D,σ0)

11: ch2 ← Hash2 (D,σ0, ch1, σ1)
12: resp1 ← UnpackArray31 (σ1)

13: resp2 ← UnpackArray31 (subarray (σ2, 0, 5 · n · r/8))

14: c← subarray (σ2, 5 · n · r/8, len (σ2))

15: com← [ ]

16: for 0 ≤ i < r do
17: t1 ← resp1 [2i]

18: e1 ← resp1 [2i+ 1]

19: if ch2 [i] == 0 then
20: r0 ← resp2 [i]

21: c0 ← Com0 (r0, ch1 [i] · r0 − t1, ch1 [i] · EvaluateF (r0,F)− e1)
22: c1 ← subarray (c, i · k/8, (i+ 1) · k/8)

23: else
24: r1 ← resp2 [i]

25: c1 ← Com1 (r1, ch1 [i] · (v− EvaluateF (r1,F))− EvaluateG (t1, r1,F)− e1)
26: c0 ← subarray (c, i · k/8, (i+ 1) · k/8)

27: com← com||c0||c1
28: end if
29: end for
30: σ′0 ← Hash (com)

31: Output: σ′0 == σ0

32: end procedure

6.5 CLASSICAL AND QUANTUM ALGORITHMS FOR SOLVING THE MQ
PROBLEM

Before the security analysis of the MQDSS, let’s give a brief information about the classical
and quantum algorithms which are preferred in order to solve the MQ problem.
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6.5.1 CLASSICAL ALGORITHMS FOR SOLVING THE MQ PROBLEM

Let F = (f1, . . . , fm) , fi ∈ Fq [x1, . . . , xn]. The problem which we want to solve, is
finding x such that F (x) = 0. For solving this problem, it can be benefited from the following
classical algorithms [5]: the Exhaustive Search, the HybridF5 algorithm, the BoolenSolve
algorithm and the Crossbread algorithm.

6.5.1.1 Exhaustive Search

As is known to all, it is possible to acknowledge the exhaustive search as a brute force attack.
Since the aim is solving the problem of F (x) = 0 and x ∈ Fqn , the thing which is needed to
do is trying all possible values x ∈ Fqn until obtaining F (x) = 0.

6.5.1.2 The HybridF5 Algorithm

In the process of solving the problem of F (x) = 0, the F5 algorithm obtains the ideal which
is produced by the polynomials f1, . . . , fm. Then, it computes a Gröbner basis of this ideal.
According to Lazard, there is a connection between the Gröbner basis computation and the
Gaussian elimination on the Macaulay matrices. That is, Lazard found that by applying row
reduction method to a Macaulay matrix, Gröbner basis can be obtained [23]. Macaulay ma-
trices of degree D denoted by MacD (F ) are generated by setting the coefficients of mono-
mials ufi of maximal degree D to the rows of it. MacD (F ) needs to be computed for
D ∈ 2, . . . , Dreg where Dreg is the degree of regularity.

Let’s move on the hybrid approach of the F5 algorithm. The aim of this approach is re-
ducing the complexity of the F5 algorithm. With this aim, Bettale introduced a combi-
nation between the exhaustive search and the Gröbner basis computation. The technique
for doing this, is fixing n − k variables of the function F , then applying the reduction
operations to the matrix MacDreg(F̃ ), where F̃ = (f̃1, . . . , f̃m) and f̃i (x1, . . . , xk) =

f1 (x1, . . . , xk, ak+1, . . . , an) ∀ (ak+1, . . . , an) ∈ Fqn−k . Finally, qn−k times Gröbner ba-
sis computations of smaller systems are needed as the exhaustive search part [4]. Here, the
parameter k is obtained in the result of an optimization process.

6.5.1.3 The BooleanSolve Algorithm

The BooleanSolve algorithm focuses on solving the problem of F (x) = 0 for q = 2. This
algorithm is similar to the hybrid approach. First of all, as a result of the optimization process,
the value of the parameter k is determined. After fixing n − k variables, the problem is
transformed into the consistency testing problem of the following linear system:

u ·MacDreg(F̃ ) = (0, . . . , 0, 1), (6.1)

70



where F̃ = (f̃1, . . . , f̃m) and f̃i (x1, . . . , xk) = f1 (x1, . . . , xk, ak+1, . . . , an)

∀ (ak+1, . . . , an) ∈ F2n−k .

Consistency of the equation (6.1) means that the problem of F (x) = 0 doesn’t have a solution
and vice versa [17]. For the remaining part, exhaustive search operations are applied. That is,
since a ∈ F2n−k , 2n−k times consistency testing operation is repeated.

6.5.1.4 The Crossbread Algorithm

The Crossbread algorithm which was generated by Joux and Vitse, focuses on solving the
problem of F (x) = 0. Unlike the previous ones, this algorithm first applies some algebraic
operations on the matrix MacD(F ) where D ≥ Dreg(k, n), then it moves on to the fixing
process. In the second part, after two new matrices which are denoted by Mac

(k)
D,d(F ) and

M
(k)
D,d(F ), were derived from the matrix MacD(F ), the operation of attaining sufficent num-

ber of linearly independent elements which exist in the kernel of the matrix M (k)
D,d(F ) but

not in the kernel of the matrix Mac
(k)
D,d(F ), is performed. Then the multiplication of these

linearly independent elements with the matrix Mac
(k)
D,d(F ) gives us the set of polynomials,

say P . The rest of it is similar to the previous algorithms. That is, the system of

P̃ (x1, . . . , xk) = P (x1, . . . , xk, ak+1, . . . , an) ∀(ak+1, . . . , an) ∈ Fn−kq (6.2)

is generated. Finally, for solving the system of P̃ , the method of linearization operation is
peformed [21].

6.5.2 QUANTUM ALGORITHMS FOR SOLVING THE MQ PROBLEM

For solving the problem of F (x) = 0, it is not possible to find any dedicated quantum al-
gorithms. Instead of this, Grover’s algorithm running on a quantum computer is applied to
the classical algorithms. For using this algorithm, there exists a need for the existence of an
oracle whose usage is associated with the evaluation of the quadratic equations at a super-
position of all possible x values. Thus, the cost of the exhaustive search which is amplified
by the Grover’s algorithm, is decreased into Θ(2

n
2 ) from Θ(2n) in the case of n variables,

according to the work of Westerbaan and Schwabe. Now, the aim is applying the Grover’s
quantum search algorithm to the classical algorithms for solving the MQ problem [36].

The logic behind the Grover’s quantum search algorithm which is in a superposition of states,
is the process of simultaneous examination among the elements of an unordered list whose
size is 2k. In order to explain a little bit more, assume that there exists a quantum black box
function: f : {0, 1}k → {0, 1} and its unitary circuit: Uf : |x〉y〉 → |x〉 |x⊕ f(y)〉 which is
called as an oracle. The result x0 which is desired to find, gives 1 when it is putting into the
function f as an input. The rest of the x values gives 0. Then an operatorG is determined as a
function of Uf . After that, the optimal number of times, G is is applied on a state which is in
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an equal superposition of all possible input values. Finally, the desired result can be obtained
really faster than the exhaustive search [20].

Now, let’s remember the classical algorithms for solving the MQ problem: the Exhaustive
Search, the BooleanSolve, the HybridF5 and the Crossbread algorithms. By using these clas-
sical algorithms and the Grover’s quantum search algorithm together, the Grover enhanced
quantum algorithms whose names are the MQ oracle, the BooleanSolve oracle, the HybridF5
oracle and the Crossbread oracle respectively, can be obtained for solving the problem of
F (x) = 0. Actually, for the Grover’s qauntum search algorithm, the number of solutions of
the MQ problem is a significant parameter. Since we know that the MQ problem has exactly
one solution, it is possible to assume that the number of all solutions for this problem is equal
to 1.

6.5.2.1 The MQ Oracle

Since this method explains the Grover enhanced exhaustive search algorithm for solving the
MQ problem, the corresponding oracle will be UMQ. The logic behind the MQ oracle is the
following: if F (a) = 0, UMQ(a) = 1 for a ∈ Fqn . For solving the binary MQ problem
meaning that the MQ problem for Fq = F2, Westerbaan and Schwabe prefered to use two
oracles for the MQ polynomials which are defined over the field F2n [36].

6.5.2.2 The BooleanSolve Oracle

For this case, the oracle will be UBool. As we remember the classical BoolenSolve algorithm,
after the variable fixing process, it focuses on solving the consistency testing problem of the
linear system (6.1). If the equation (6.1) is inconsistent and after the inconsistency testing,
the remaining part of the classical BooleanSolve algorithm outputs b ∈ Fqk so that F̃ (b) = 0,
then UBool(a) = 1 for a ∈ F2n−k .

6.5.2.3 The HybridF5 Oracle

For this case, the oracle will be UHybF5. The logic behind the HybridF5 oracle is the follow-
ing: if the classical F5 algorithm outputs b ∈ Fqk so that F̃ (b) = 0, then UHybF5(a) = 1 for
a ∈ Fqn−k .

6.5.2.4 The Crossbread Oracle

For this case, the oracle will be UCross. The logic behind the Crossbread oracle is the
following: if the classical Crossbread algorithm outputs b ∈ Fqk so that P̃ (b) = 0, then
UCross(a) = 1 for a ∈ Fqn−k .
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6.6 SECURITY ANALYSIS

As we explained before, the security level of the MQDSS depends on:

• the MQ problem,

• the computationally hiding and binding properties of the commitments,

• the hash functions,

• the pseudo-random generators.

For the commitment functions, pseudo-random generators and extendable output functions,
they benefit from SHAKE-256 (as standardized in FIPS 202, the SHA-3 standard) whose
security properties of the preimage and the second preimage resistance enable to a pretty
large of security level.

In the process of determining parameters of the MQDSS, the creators of this algorithm pay
attention to the following points for providing high-level of security and performance:

• choosing equal number of variables and equations in F so as to obtain the hardest MQ
problem,

• determining the lower bound n′ for the number of variables in F within a specific
security level against classical field operations of the best classical attacks,

• determining the lower bound n′′ for the number of variables in F within a specific
security level against quantum circuit size and depth of the best quantum attacks,

• determining the number of variables n in F such that n = max {n′, n′′},

• choosing the security parameter k such that the auxiliary hash functionsH, H1 and H2

have the security property of collision resistance,

• choosing the number of rounds r such that the Fiat-Shamir transform of the SSH-5-pass
IDS according to r satisfy the security property of the soundness with soundness error
< 1

2k
.

The MQDSS which is a kind of q2-signature scheme, is EU-CMA secure in the ROM ac-
cording to the following theorem:

Theorem 8. The MQDSS is EU-CMA secure in the ROM if the following conditions are
satisfied:

• the MQ search problem is intractable in the average case,

• the hash functionsH, H1, H2 and the function XOFF are modeled as random oracles,
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• the commitment functions Com0 and Com1 have the properties of computationally
binding and hiding also have O (k) bits of output entropy which means the number of
states where a system can be found,

• the pseudo-random generators PRGsk, PRGs and PRGrte have outputs which are
computationally indistinguishable from random for any polynomial time adversary.

That’s why, the creators of the MQDSS have a security proof in the ROM but not in the
QROM in which the security proof of the Fiat-Shamir transform for the MQDSS is based
on the following techniques: the rewinding technique of the adversary and the adaptively
programming of the random oracle in the QROM. However, on 20 February 2019, Jelle Don,
Serge Fehr, Christian Majenz and Christian Schaffner submitted a paper under the title of
"Security of the Fiat-Shamir Transformation in the QROM". Since MQDSS is the Fiat-Shamir
transform of a kind of SSH 5-pass IDS, it is natural to generalize their results also for the
MQDSS. Therefore, it is possible to acknowledge the MQDSS as secure both in the ROM
and in the QROM [5, 15].
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CHAPTER 7

CONCLUSION

In this thesis, one specific solution of the security problem which arises from quantum com-
puters has been analyzed. Since quantum computers will be generated and substitute with
classical ones in the near future, then all symmetric and asymmetric (public-key) cryptosys-
tems will be invalid. Thus, the need for the quantum-resistant algorithms occur. Associated
with this need, people started to work on post-quantum algorithms all around the world. In this
process, NIST has a crucial role. By organizing a competition among the quantum-resistant
algorithms, NIST has made easier to follow the improvements in this area and taken them a
step forward [25]. The submissions for the NIST competition are composed of different kind
of post-quantum algorithms. One kind of them is the multivariate public-key cryptosystems
[5, 25]. In order to explain the root idea behind this kind of cryptosystems, as a starting and
descriptive example, the Matsumoto-Imai cryptosystem has been studied together with its
linearization equations attack. Then, we have constructed our own specific toy example for
illustrating the construction of both the single-branch MI cryptosystem and its linearization
equations attack. As well as these, Matsumoto-Imai variants which were developed with the
aim of increasing the security of the original MI cryptosystem have been examined. In this
thesis, the name of the specific solution which was scrutinised is the MQDSS that belongs to
the algorithm family of the multivariate public-key cryptosystems. Since MQDSS is a digital
signature scheme whose tools are identification schemes, we analyzed identification schemes,
signature schemes and their security properties step by step. In this process, we realized that
by using the Fiat-Shamir transform, a secure identification scheme can be transformed into a
secure digital signature scheme.

For the security proof of the cryptographic protocols, the means which we need are ROM
and QROM. That’s why, at the beginning, we have investigated these two mechanisms in de-
tailed. Since our crucial aim is the security analysis of the MQDSS, we have focused on the
security sources of this algorithm. Accordingly, the security of the MQDSS is based on the
intractability of the MQ problem and the hardness of the commitment schemes which satisfy
computationally hiding and binding properties instead of the other problems in multivariate
cryptography such as MinRank [7], IP [29], Extended IP [13] and IP with partial knowledge
[33]. To construct an intractable MQ problem, MQDSS transforms a specific kind of canoni-
cal 5-pass identification scheme whose name is Sakumoto-Shirai-Hiwatari (SSH) 5-pass IDS
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into a digital signature scheme. In this transformation, canonical 5-pass IDS is a specific kind
of canonical 2n + 1-pass IDS in which the prover and the verifier seperate their processes
into n + 1 groups: P = (P0, P1, . . . , Pn), V = (ChS1, . . . , ChSn, V f) and all the work is
done iteratively over these groups. In this concept, "2n + 1" represents the number of the
messages exchanged between the prover and the verifier for the identification process and the
most common ones of these scehemes is obtained by putting 1 or 2 instead of n.

If we move on the SSH 5-pass IDS, in this algorithm Sakumoto, Shirai and Hiwatari use the
idea of splitting the secret key and the output of the function F into 2 parts. After the first
splitting process is completed, some parts will further split [35]. For both operations, they
benefit from the polar form G (x, y) of F (x) since the polar form is bilinear . By using the
multiple splitting process of the secret key and the polar form, parts of the secret key are
getting away from each other so as to keep it secure [5].

Finally with the help of all these structural tools, the algorithm MQDSS is constructed. For
generating MQDSS, specific commitment functions, pseudo-random generators and param-
eter sets are used inside of the defining framework of it. Therefore, we have analyzed all
preliminary parameters and functions, general description (KGen, Sign, Vf), optimized pa-
rameter sets [5] (k = 128, q = 31, n = 48, r = 135; k = 192, q = 31, n = 64, r = 202), de-
tailed description, the classical and the quantum algorithms for solving the MQ problem and
the security analysis of the MQDSS.

If we take all these points into consideration, we can say that for the problem of information
security which occurs with the expectation of quantum computers, the algorithm MQDSS
which belongs to the family of multivariate public-key cryptosystem seems like really secure
and efficient in both ROM and QROM. That’s why, in order to construct a secure signature
scheme belongs to this family, we can benefit from the power of commitment schemes which
are one-way functions and the MQ problem. Furthermore, the Fiat-Shamir transform has an
essential role for maintaining security in the process of obtaining a signature scheme from
an identification scheme. For these reasons, by using the tools of commitment schemes, MQ
problem, canonical 2n + 1-pass IDS, splitting idea [35] which comes from the SSH 5-pass
IDS and the Fiat-Shamir transform and selecting optimized parameter sets, it is possible to
improve more secure and efficient cryptographic schemes against both classical and quantum
attacks.
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