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ABSTRACT

MODELING LONGITUDINAL INTERRUPTION DATA FROM TURKISH
ELECTRICITY DISTRIBUTION COMPANIES

Korkmaz, Ziilfiye Ebru
Master of Science, Statistics
Supervisor: Prof. Dr. Ozlem ilk Dag

May 2019, 145 pages

In recent years, many developments have been implemented by the players of the
sector to provide sustainable energy flow in Turkey. One of them is the obligation of
recording electricity interruption statistics. The Turkish energy regulatory compels
new rules to local electricity distribution companies about recording their interruption
statistics, including the reasons for electricity interruption, after 2003. However, all of
the local distribution companies do not use the same standard to record these statistics.
This situation causes complexities for decision makers and researchers for modeling
electricity interruptions. In this study, we aimed to find appropriate longitudinal
models for the dataset of electricity interruptions. However, the observed data in this
study is discrete count type and most of them are zero. Markov Chain Monte Carlo
Generalized Linear Mixed Models (abbreviated MCMCglmm), especially the type of
zero-inflated and hurdle could be appropriate for these type of data. Therefore,
Poisson, zero-inflated Poisson, and hurdle-Poisson distributed models were
implemented to a real electricity interruption count dataset belonging to Cankiri in this
study. The models have been implemented by using MCMCglmm package in R. To
compare the models, Deviance Information Criteria (DIC) and posterior predictive
checks were used. Geweke-Halfwidth and Heiderberger-Welch diagnostic tests were

used to detect convergence and stationary status of the models. Despite the excessive



zero in the dataset, it was observed that Poisson MCMCglmm estimates were better
than the models of zero-inflated Poisson and hurdle Poisson MCMCglimm.
Furthermore, Poisson MCMCglmm gave better estimation results in shorter

computational time as well.

Keywords: Markov Chain Monte Carlo Generalized Linear Mixed Models, Poisson,
Zero-Inflated, Hurdle, Turkish Electricity Distribution Companies, Interruption

Statistics.
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0z

TURK ELEKTRIK DAGITIM SIRKETLERINE AiT UZUNLAMASINA
ELEKTRIK KESINTIiSi VERILERININ MODELLENMESI

Korkmaz, Ziilfiye Ebru
Yiiksek Lisans, Istatistik
Tez Danigsmani: Prof. Dr. Ozlem Ilk Dag

Mayis 2019, 145 sayfa

Tiirkiye’de, enerji sektorii oyunculari tarafindan son yillarda kesintisiz enerji akisini
saglamak i¢in gelistirilen bircok yeni uygulama bulunmaktadir. Bunlardan biri
elektrik kesinti istatistiklerinin tutulmasi zorunlulugudur. Enerji Piyasasi Denetleme
Kurumu, Elektrik Dagitim Sirketlerine 2003 yili sonrast i¢in, nedenleriyle birlikte,
kesinti istatistiklerinin tutulmasi zorunlulugunu getirmistir. Ancak, tiim elektrik
sirketleri, bu kesinti istatistiklerinin tutulmasinda ayni standardi kullanmamaktadir.
Bu durum, karar verici ve arastirmacilar i¢in modellemeyi karmagsik hale
getirmektedir. Bu c¢alismada, elektrik kesintisi verileri i¢in uygun uzunlamasina
modellerin bulunmasini amagladik. Ancak, bu ¢alismada, gézlenen veri kesinti-say1
tipindedir ve verinin ¢ogu da sifirdir. Bu tip veriler icin Monte Carlo Markov Zinciri
Genellestirilmis Dogrusal Karma modeller, 6zellikle de sifir arttirilmis ve engelli
modeller uygundur. Bu c¢alismada, Poisson, sifir1 arttirilmis Poisson ve engelli-
Poisson dagilim modelleri Cankiri’ya ait gergek bir kesikli elektrik kesinti verisine
uygulanmistir.  Modeller R’da  bulunan MCMCglmm paketi kullanilarak
uygulanmistir. Modellerin karsilastirilmasi i¢in, sapma bilgi kriteri (DIC) ve sonraki
tahmin kontrolleri kullanilmistir. Modellerin yakinsama ve duraganligini tespit
edebilmek i¢in Geweke- Halfwidth ve Heiderberger-Welch tanimlama testleri de

ayrica kullanilmigtir. Veri kiimesinde asir1 sifir gézlemlenmesine ragmen, Poisson

Vil



MCMCglmm, sifir arttirilmig Poisson MCMCglmm ve engelli Poisson MCMCglmm
modellerinden daha iyi tahminler vermektedir. Ayrica, Poisson MCMCglmm’in daha

1yl tahminleri daha kisa bir siirede verdigini de belirtmek gerekir.

Anahtar Kelimeler: Monte Carlo Markov Zinciri, Genellestirilmis Dogrusal Karma
Modeller, Tiirkiye Elektrik Dagitim Sirketleri, Ariza Istatistikleri, Sifir1 Arttirilmis
Poisson model, Engelli Poisson model.
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CHAPTER 1

INTRODUCTION

Authorities acknowledge that energy and especially electrical energy is the critical
power all over the world. Significance of this critical role is increasing day by day.
Governments not only need to provide the necessary electricity to their citizens
anymore but also they need to provide using natural resources effectively and need to

decrease the loss of electricity as well.

When we look at the history of the electricity sector in Turkey, history had begun
before The Republic of Turkey. In the first quarter of the 20th century, the Ottoman
Empire could provide electricity to main and important cities of the country such as
Istanbul, 1zmir, Thessaloniki, Beirut, Sam. After the War of Independence was ended
and The Republic of Turkey was established, Turkey could have produced only 32.7
MW of electric power, which can be obtained from just one wind power plant today,
in all over the country. In 1930, the total electricity power of Turkey increased to 78.8
MW. However, 85.200 MW of electric power can be produced in all over the country
in 2017 (Resources, 2017). In 1935, the government took a new decision to establish
the Authority of Electricity Business (“Elektrik Isleri Etiit Idaresi”, which is
abbreviated as EIEI in Turkish) for controlling the energy flow and production. After
1950, production, transmission, and distribution, which are the three main vein of
Electricity, were divided into different private companies. However, this attempt was
not successful because of the economic situation of private companies. Next, another
decision was taken for regulating electricity activities by the government: Turkish
Electricity Institution was established by the Law no0.1312 in 1970 (EMO Energy
Comission, 1981).



After the 1980s, Turkish governments have begun to deregulate on the electricity
sector and encourage privatization. Turkish Electricity Institution continued to carry
out electricity regulations and activities until 1994. In the same year, it was divided
into two main sub-institutions: Turkish Electricity Production-Transmission Company
(“Tiirkiye Elektrik Uretim iletim A.S.”, which is abbreviated as TEAS in Turkish) and
Turkish Electricity Distribution Company (“Tiirkiye Elektrik Dagitim A.S.” which is
abbreviated as TEDAS in Turkish) . On the other hand, the most important and radical
progress has been realized in the electricity sector with an electricity market Law of
2001. The main aim of the Law of 2001 is that it is allowed to vertical disintegration
of production, transmission, and distribution, competition into production and retail
sale, privatization of public production plants and distribution institutions and entities.
Also, it was designed to make competitive electricity market conditions and encourage
entrepreneurs to invest electricity components for boosting the efficiency of
production and distribution of electricity (Ozkivrak, 2005).

In 2004, the privatization of TEDAS was initiated. At the time, TEDAS had 28 billion
customers and was selling a total of 93 million kWh of electric power in 21 separated
electricity distribution regions. The privatization of TEDAS for all electricity
distribution regions was completed in 2013. Starting from 2013, each of electricity
distribution region belongs to different private companies and electricity distribution
activities are conducted by them. TEDAS performs to follow and control the
performances of the private electricity distribution companies with the Energy Market
Regulatory Authority (EMRA, 2008; Ertilav & Aktel, 2015). EMRA was established
according to the Law of 2001 (Ozkivrak, 2005). It conducts the regulations of the
energy market and orders the market conditions and quality standards in Turkey.

In 2008, EMRA published a regulation article for 21 electricity distribution private
companies to control electricity supply continuity (EMRA, 2008). According to this
regulation, all of the electricity distribution companies have to publish their statistics
related to data for electricity supply continuity. These datasets include the same



variables such as interruption time, location and reason, etc. Each of the distribution
companies has to publish this type of data for each month and year. Any customer or
researcher can look at this type of data whenever s/he wants on the website of one of
the distribution companies. These datasets show the performances of each electric

distribution company according to EMRA’s standardized indicators.

1.1 Objective and Significance of the Thesis

In this study, we aim to estimate the possible interruption counts with the data for
electricity supply continuity by using Markov Chain Monte Carlo Generalized Linear
Mixed Models. At the beginning of the study, all of the datasets which belong to
different 21 distribution companies were intend to be used in this study, but it has been
realized that terminology of the dataset of each distribution company is different from
each other in spite of EMRA’s standardized regulation. Therefore, data for one local
area was used which belongs to Bagkent Electricity Distribution Company
(abbreviated BEDAS) for the location of Cankir1 and its neighborhood. Baskent
Electricity Distribution Company has been selected from 21 distribution companies
since the data conditions are more regular and confidential than others. The reason of
selecting the city of Cankar1 is that it has medium size compared to other cities in the
distribution region, which are Ankara, Bartin, Cankiri, Karabiik, Kastamonu,
Kirikkale, and Zonguldak.

These kind of studies are necessary to measure the performances of private Electricity
Distribution Companies and make the right decisions to invest in the right areas which
are needed for electricity infrastructure. To the best of our knowledge, it is a first
implementation study for the dataset of electricity supply continuity which has
features of the longitudinal type of Turkish electricity distribution companies.
Therefore, results need to be checked and compared by different researchers in the

future.



1.2 Organization of the Thesis

This thesis has five main chapters. Chapter 1 introduces the objective of the thesis,
study’s background and thesis structure. Chapter 2 gives similar studies briefly from
the literature. Chapter 3 presents the methodology of Bayesian data analysis, panel
data analysis, and Markov Chain Monte Carlo Generalized Linear Models in detail.
Chapter 4 shows data used in this study and its main points with some data analysis
and specification and conditions of MCMCglmm, their results, and comparison.

Finally, Chapter 5 clarifies conclusion of this study and possible future studies.



CHAPTER 2

LITERATURE REVIEW

Research into electricity as a scholarly field generally focused only on modeling
demand, consumption or cost and price of electricity, with a particular emphasis on its
production and effects on residents. Nowadays, even though electricity production and
related questions of demand, consumption and cost continue to be important fields of
research, distributing the produced electricity in an efficient way, without any loss, is
becoming much more important than the production process itself. Nearly 90 % of
total failures are recorded to have occurred in the distribution process (Meeuwsen,
1997), and this fact testifies to the intense interest in the distribution process,

maintenance of which is thus as equally important as the production process.

In order to understand the efficiency of electricity distribution, nowadays companies
and government institutions try to analyze electricity interruption counts in an
electricity network, and the duration, length and location of these interruptions.
Consequently, researchers all over the world have begun to improve different methods
to explain the behavior of electricity interruption and failure rate estimation.
Unfortunately, to the present day, there are no studies about interruption or failure rate
modeling in Turkey to the best of our knowledge. The statistics of interruption which
have been published by electricity distribution companies have been the only data that
could be obtained so far. Having said that, it should be noted that some political actions
of the government show that there is a tendency to support research into this area in
the future. Moreover, there are not any studies on the application of Markov Chain
Monte Carlo Generalized Linear Mixed Models (MCMCglmm) to estimate the
electricity interruptions. Having indicated this point, it should be underlined that this

thesis will hence function as a first implementation of this approach on electricity



interruptions. With the aim of contextualizing this debate, this literature review section
will offer an overview of the different approaches used in some of the models for

electricity interruptions.

2.1 Density Estimation using Kernel Method and Approximation by the Least

Squares

In 2002, Tatietse et al. published an article on interruption modeling in medium
voltage electrical networks. In order to find the probability of the electric interruption,
this article used statistical methods to estimate density with Kernel method and
approximation by the least squares. The study also included an experiment which had
been conducted in Yaounde urban region in Cameroon, and the data referred to two
stations, Ngousso and Melen. The article also presented information about their

feeders’ interruptions, which were collected monthly, over a period of two years.

Because of existing a strong linear correlation between intermittent interruption and
permanent interruption in the same feeder, and considering the number of observations
is too small for the empirical distribution, enough information could not be obtained
for determining the probability law of interruptions. This situation compelled the
researchers to use a probability technique depending on the Kernel Method
(Silverman, 1986). Also, least square estimation method was appropriate for the
model’s estimation. Then, the interruptions of Ngousso were modeled as shifted and
truncated Gamma distribution and interruption of Melen was modeled as a truncated
Normal probability law. Overall, the article explained these differences because of the
different qualities of maintenance at these stations. According to the article,
maintenance of quality was found to be a lot poorer for the station of Melen. The
station had a greater accumulation of random factors which were human, material and
environmental and these factors were affecting the current service quality of the

station mostly.



2.2 Hierarchical Bayesian Failure Rate Estimation

In their article, Moradkhani et al. (2014) discussed how to model the lack of
appropriate outage data belonging to 34 electrical distribution feeders in Alborz Power
Distribution company in 2010 with Hierarchical Bayesian failure rate estimation
model and other Bayesian models, which were Bayesian estimation pooled failure rate
and empirical Bayesian failure rate estimation, through a comparison by using
Deviance Information Criterion (DIC). The solution offered for handling the lack of

data was to use a shrinkage estimator for failure rate estimation of overhead lines.

The framework of electrical distribution maintenance consisted of these main levels.
These were components level, network level, and utility level. Providers of electrical
power, who were owners of electrical distribution companies and transmission
authorities etc., needed to implement different plans to determine optimal asset
maintenance, which consisted of these three main levels. This optimal plan required
especially sophisticated reliability models at levels of components and network.
Component’s reliability was one of the practical and statistical methods used in order
to determine the high number of installed components in an electrical network. Data
deficiency, population variability, data censoring, and poor quality data were among

some of these practical problems.

Moradkhani et al. (2014) discussed that in order to overcome data deficiency and
population variability, constant failure rate estimation of medium voltage overhead
lines in the presence of data was needed. This approach depended on Hierarchical
Bayesian Model (HBM). There were some advantages of Bayesian modeling such as
handling deficiency of data, as well as allowing for the combination of data with
domain knowledge, providing possible information about causal relationships
between variables, avoiding overfitting of data, giving good accuracy even with rather
small sample size of data, and finally, combining with decision analytic tools (Li &
Shi, 2012). As a result, the HBM was used for modeling the feeders’ failure rate. Prior



distribution depended on hyperparameters which were obtained through a two-stage
hierarchical model. In the first stage, the failure rates were assumed to be distributed
the conjugate Gamma. Then, in the second stage, non-informative prior distributions
were used for the prior distribution of hyperparameters. Also, each failure rate had
independent prior distribution according to the state of hyper-parameters. The
posterior distribution of HBM was analytically challenging for researchers. For this
reason, Metropolis within Gibb’s algorithm was used to calculate the distribution of

hyperparameters.

The model comparison showed that the DIC value of the HBM gave a slightly better
result than the values of the empirical Bayesian and pooled models noticeably. The
pooled model had the worst result. In spite of using data pooling technique for
eliminating the data deficiency problem, the estimation values of the pooled model
were not totally reliable for getting the precise value of failure rates for the feeders
when the real failure rates of which were considered high or low. On the other hand,
in the empirical Bayesian failure rate estimation and hierarchical Bayesian failure rate
estimation, the shrinkage estimator was used as the expected value of failure rates of
the feeder. Different from HBM, the parameters of the empirical Bayesian model were
estimated by the prior information from last year, but the component’s failure rate
depended on the current condition of components. Using last year’s information as
prior could not have given the current status of components. However, in HBM,
Metropolis within Gibb’s algorithm was used to obtain the shrinkage parameter. Also,
the initial value of zo was selected as a value of which did not affect the sensitivity of
posterior distribution. Depending on these results, HBM could be said to be the best
model when adequate data about failures could not be obtained by researchers
(Moradkhani, 2014).



2.3 Maximum Likelihood Estimation with Different Density Distributions

Prieto et al. (2014) stated that upper tail distribution (also known as Pareto
distribution), suggested by empirical researches about the reliability of the electricity
transmission networks with indicators such as Energy Not Supplied (ENS), total loss
of power (TLP) or restoration time (RT), cannot be valid in the whole range of major
events. Inaccordance with this, in the article, Prieto and his friends aimed to come up
with a probability distribution suitable for those indicators. They hypothesized that a
two-parameter model could be used to fit this type of data. Two-parameter models
such as Pareto Il, Fisk, Lognormal, Pareto, Weibull and Gamma distributions were
alternatively analyzed on the European power grid data which included reliability
indicators of ENS, TLP, and RT between 2002 and 2012 by maximum likelihood
estimation (MLE). Model’s estimation results were given according to datasets ENS,
TLP and RT in the whole range, in both periods: (2002-2009) and (2002-2012).
Results of the models were compared to each other according to AIC (Akaike
Information Criterion), BIC (Bayesian Information Criterion) and goodness of fits
were tested by empirical KS (Kolmogorov-Smirnov) statistic based on bootstrap
resampling. Pareto 1l model was the most preferable model for the datasets of ENS
and RT according to AIC and BIC. Moreover, Pareto 1l (Lomax), Fisk (log-logistic)
and lognormal models were the preferable models in TLP dataset according to AIC
and BIC.

In 2013, Alwan et al. published an article about reliability measurement for mixed
mode failures in 33/11 kilovolt electric power distribution stations average time
between electrical failures in Iraq. Duration of the failures of electric power
distribution stations was manually collected through a period of five years. According
to the article, reliability was important to consumers who affected the electrical cost
of failure, repair, and maintenance. Acceptability of fit test showed that Dagum
distribution fitted with the data very well. MLE was used to estimate the parameters
of Dagum distribution. According to the article, 8 out of 14 components cause this low



reliability level because of the age of the components. These components had to be
changed as soon as possible for eliminating electrical interruptions which occurred

because of components’ reliability.

2.4 Time-Varying Load Models and Estimation with Monte Carlo Simulation

In their survey, Huda & Zivanovié (2018) used Energy Not Supplied (ENS) index,
which is an index of measures of the expected amount of energy unreached to
customers in a specific time period because of failures in the distribution system.
Analytical and MC methods were used to estimate the ENS before (Billinton & Wang,
1999). However, MC simulation approach was evaluated to be a time-consuming
approach due to its requiring a large number of iterations to achieve acceptable
accuracy. In this study, Multilevel Monte Carlo (MLMC) performed the simulation
faster, and this method was used to estimate ENS with considering time-varying nature
of different load models. MLMC was the advanced Monte Carlo method used to
improve computational performance, and it incorporated Stochastic Differential
Equation (SDE) of system variables (Giles, 2015). Besides, MLMC approach with
Euler-Maruyama method was used for the estimation. Then, why did load models use
it here? The answer was easy. In practice, most of the utilities only had records of the
load demand data for a certain electricity distribution region. In other words, customer
variations of the load data for an individual load point during 24 hours in a day for a
year were not reachable.

In the ENS estimation, two variables of mean were considered: Time to Failure
(MTTF) and Time to Repair (MTTR). Assuming that the randomness of MTTF of a
component/ element j (MTTF;) was modeled by SDE with standard Brownian motion,
Bt on the time period (Kingman & Harrison, 1987) Stochastic model of MTTF; was

solved through the use of Euler Maruyama discretization scheme.
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Finally, Huda and Zivanovic (2018) stated that the ENS can be decreased by a small
percentage in places where the failure of the electricity system occured during the peak

loads of weekly and daily usage.

2.5 Multivariate Linear Regression Models on Panel Data

Eto et al. (2012) evaluated electricity reliability information collected over a period of
10 years from 155 different U.S. electric utilities, which were altogether responsible
for approximately 50% of total U.S. electricity sales. The results of the survey showed
that annual average electricity duration and annual average frequency of electricity
interruptions have been increasing by 2% each year. An earlier study by Eto and
LaCommare (2008) had indicated that more than 90% of average number of
interruptions generally stemmed from electricity distribution systems. For this reason,
it could be claimed that ill-conditioned electricity distribution systems caused the
increase on the average frequency of interruptions and average electricity of duration.
The dataset was unbalanced since it did not include reliability metrics for each year.
Multivariate log-linear regression models with fixed effects and random effects were
used in the survey separately. They enable us to point out the differences in the
outcomes, which were caused by the correlations, and also the differences in the
sources such as utility reported reliability metrics: System Average Interruption
Frequency Index (SAIFI) and System Average Interruption Duration Index (SAIDI).
Application of the models included four different steps respectively:

e Transforming reliability metrics to natural algorithms,

e Conducting F-test on the transformed reliability metrics,

e Applying Hausman specification test to understand the appropriateness

of the estimation either for fixed effects model or random effects
model,

e Estimating two sets of models: fixed effects and random effects.

11



Hausman specification test results showed that random effect models were consistent
and more efficient than the fixed effects version. In accordance with this, Eto et al.
(2012) found that temporal trends were significant for SAIFI and SAIDI. In addition,
SAIFI and SAIDI were found to be increasing at the rate of 2 % each year, which

showed that reported reliability gets worse over time.

2.6 Contribution of this Study to the Literature

In this chapter, different methods used in this area has been given as such:

e Density Estimation using Kernel Method and Approximation by the Least
Squares (Tatietse et al., 2002)

e Hierarchical Bayesian Failure Rate Estimation (Moradkhani et al., 2014)

e Maximum Likelihood Estimation with Different Density Distributions (Prieto
etal., 2014 ; Alwan et al., 2013)

e Time-Varying Load Models and Estimation with Monte Carlo Simulation
(Huda & Zivanovié, 2018)

e Multivariate Linear Regression Models on Panel Data (Eto et al., 2012)

Different approaches and methods using for estimation of electrical interruption were
given. When these studies are examined in detail, most of them had a continuous
response in the data and just some of the data is longitudinal data type. In this study,
to the best of our knowledge, different from the literature, it is the first time that count
and longitudinal type of electrical interruption’s data are analyzed with MCMCglmm.
It is not encountered any article like this study in the literature so far by us. Also, this
study is the first implementation of the R package of MCMCglmm, which has been

used mostly in the area of biostatistics, for this type of electrical interruption’s data.
We hope that this study will bring a new way to the analysts who want to investigate

the electrical interruption’s data type which is count and longitudinal. Also, this study

will gain a new point of view to the decision makers who manage the electrical

12



network according to possible reasons of electrical interruptions. On the other hand,
since the improving process of the package of MCMCgImm is continued, we hope

that this study will be also given enlightening answers to the statisticians who study

in this area.
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CHAPTER 3

METHODOLOGY

The aim of the study, its background and the studies using in the area has been
explained in Chapter 1 and Chapter 2. Useful methodological framework of the study
will be laid out in this chapter. In the first place, longitudinal methods will be
explained in detail, and then, secondly an examination of Bayesian approach will
follow. Finally, the chapter will conclude with the analysis of the main structure
MCMCglmm.

3.1 Longitudinal (Panel) Data Analysis

Longitudinal or panel data analysis used interchangeably has been improved in the
early 1950s during the time the U.S. government shifted a substantial part of its
research support from military to medical research. At that time, the main concern of
researchers was to decrease morbidity and mortality, and as a consequence of this,
early research focused on treating the diseases and eliminating the risk factors causing
the diseases. Later, researchers tried to identify the risk factors which cause diseases
in adult age, and could be detected in childhood. For example, researchers began to
investigate childhood blood pressure level of a patient who has hypertension
(Friedman et al., 1988). Through such studies, databases which include many factors
belonging to a patient were formed. Following this, a new type of data structure,

known as longitudinal or panel data was born.
This new data structure is based on taking measurements of the same individuals

repeatedly throughout time, and thereby it allows the direct study of change of a

certain factors over time. The main aim of a longitudinal study is to observe the change
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in response over time and the changing influences of factors to response (Rowell &
Walters, 1976). Then, with repeated measurements, one characteristic of the
individual can be detected within individual-change. To illustrate, in contrast to cross-
sectional data, which provides information for more than one unit in only an exact
time period, or time series data, which gives information only for one unit through
different periods, the evaluation of within subject influences on response over time
can be detected in the type of longitudinal data. However, same entities (subjects) such
as individuals, locations, countries, patients etc. and their differences at multiple time

points can be observed through using longitudinal or panel data analysis.

3.1.1 Specifications and Advantages of Longitudinal Data Analysis

e One of the most important features of longitudinal data is that data is actually
clustered. Repeated measurements of the individuals constitute clusters.
Moreover, observations in each cluster have positive correlation between
them.

e Differing from cross-sectional studies, longitudinal data analysis can
demonstrate the differences and influences of response within individual
changing over time. Cross-sectional studies cannot provide any information
about how individuals change during the time period.

e Longitudinal data analysis yields more accuracy regarding inference of
model parameters compared to cross-sectional studies.

e Longitudinal data analysis gives more information to researchers with more
variability.

e Controlling ability on variables is easy even if on un-known measurements or
un-observed variables.

e In longitudinal analysis, by comparing each response to one another, a
longitudinal analysis may dispose noises which affect the response and by

eliminating them, more accuracy of estimation can be obtained easily.
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e Longitudinal studies allow certain predictions through collecting information
from all individuals, and thus researchers can better predict individual change
through time for a certain individual (Fitzmaurice, 2004).

Another specification in the longitudinal data analyses is “balanced” or “unbalanced”
datasets. Balanced data means measurements are recorded just in time for every
individual or subject. However, in real life, these conditions may not always be
implemented. To illustrate, glucose level of patients may not have been measured
every 30 days, or individuals might sometimes miss or forget their scheduled visit and
participants might drop the study suddenly. With such impediments, recording
individual-changes of the response in the study becomes harder for the researchers,
and consequently mistimed measurements or random measurement might be obtained
by researchers. This type of data is called “unbalanced” data. There are various
reasons as to why the researches might wish to obtain unbalanced data. Researchers
might use it to reduce cost of study while at the same time increasing overall
participation of the individuals. This type of design is called as “rotating panel” design,
where researchers determine before the study which measurement will be obtained.
On the whole, while habitually balanced data structure is always preferred by the
researchers, unfortunately sometimes it might be unreachable. For these occasions, it
might be useful to remember that there are some assumptions and methods to
overcome the disadvantages of unbalanced data structures. At this point, it should be
noted that the data of this study is fortunately balanced dataset (Diggle et al., 2002).

3.1.2 Linear Models for Longitudinal Data

Linear model specifically means that the mean response indicates linear behavior in
the regression parameters whereas longitudinal data structure depends on the
assumption that a sample of N subjects are measured repeatedly over time (Ware,
1985). Both of these contents are combined in the same class for linear models on
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longitudinal data. The expression of Yij denotes the response variable for the i*" subject
on the j measurement occasion. In this case, the mean responses have a vector (1)
which includes Yi as simply a time-ordered collection of the n; x1, which means, it

consists of ni rows and 1 column of elements for the i subject.

Vi 1)
vi={ 2] LN

Yin,
One assumption is that the vectors of responses (1) for the N subjects are independent
from each other. However, the repeated measurements of the same subject are not
assumed to be consisting of independent observations. In longitudinal data analysis,
this assumption or the correlation among repeated measurements adds positive effect
to the analysis because correlated subjects provide more accurate estimates of the
effect of covariates. This assumption resembles cluster data features: The observations
that come from different clusters are assumed to be absolutely independent from each
other, while observations in one cluster are not assumed to be independent from each
other. In panel or longitudinal data analysis, every subject constitutes one cluster, such
as one patient’s health results. For example, one patient gives his blood to have his
glucose level checked periodically for each month over one year. The output of the
glucose level analysis in January is absolutely dependent on the output of the analysis
in June, since these two analyses show the same patient’s glucose level even if one

factor in analysis might have changed (For example, patient stops taking sugar in his
daily diet.)

In addition to one response of the data, there is a vector of covariates (2) with number

of p rows:

Xipy (2)
Xij2 . .
Xiji=| "2 ), i=1,..,N.; j=1,...,ni.

ijp
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The number of p rows of Xjj equal to different covariates of the analysis, which means
one vector of covariates (2) exists corresponding to one of the n; repeated
measurements for the i subject. There are two main covariates:

e Covariates having unchangeable values during the study.

e Covariates having changeable values during the study.

When a need to compound structures of responses and covariates arises, a linear

regression equation (3) becomes (Ware, 1985):

Yij = BiXij + BoXijo + -+ BpXijp + €ij =L 3)

With this regression equation (3), it is possible to observe what kind of relation is there
between the responses and corresponding covariates in each occasion. Of course, there
needs to be the number of n; as well as separate equations for modeling each response
variable. If all of parameters are grouped with each other, the model (4) appears as

follows:

Y1 Xi11 Xz Xy B1 e (4)
Yo | [ X221 X iz2 X i2p B + | G2
Yi"i Xinil Xinl-z Xinl-p IBP Cin;

e;j is random errors for the responses of the i subject with mean zero.

However, the errors at different time points are assumed dependent and hence we

have a variance-covariance structure, X.

3.1.2.1 Main Assumptions of Linear Models: Mean, Variance, Covariance and

Correlation Structures

In longitudinal data analysis, the main focus is directed to the mean of response. Mean

response or expectation of each response is weighted as the average of all possible
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values of the response and mean response for varying responses from individual to the

other is denoted (5) as:
uij = E(Yy). ®)

The mean response (5) gives the location of the center of the distributed Yijj. Second
important measurement is variance (6) which provides the measurement of spread of

the response and variance (Fisher, 1925). It is denoted (6) as:

of = E{Y;j — E(Y;)¥ = E(Yy; — wij)*. (6)

In addition, variance may vary from occasion to occasion while it may also be a

function of selected covariates.

Another concept of the longitudinal analysis is the dependence according to responses,
which is called covariance. Covariance for responses in the two different occasions
can be (Yjj and Yik) denoted (7) as:

o = E(Yij — wij) E(Yie — bix). (7)

Covariance (7) for these two responses in different occasions gives the relation of
linear dependence. The covariance of responses (7) might have positive or negative
values, but usually expected to be positive. Like other types of regression analysis,
when the covariance becomes zero, no linear relation between these two responses
exists. The covariance result is affected not only by the degree of dependence between
two variables, but also by their units of measurement. Indeed, any change in the scale
of the measurement affects the covariance’s value. For instance, when a scale of
variable changes from kilometer per hour to mile per hour, the result of covariance

also changes. Therefore, the covariance value is not really informative. Covariance
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always needs to be interpreted with the value of variance as the magnitude. To detect
the measurement of linear dependence between two responses, a measurement which
is free of units of measurement is more suitable. This measurement is correlation of

two variables (8):

o = E{Yi; — pij) (Y — .uik). (8)
0j0k

Correlation (8) is the linear dependence between two variables and it takes the range
of 1 to -1. When correlation takes 1, it implies that if one variable increases, other
variable also increases. However, when correlation takes -1, when one variable
increases, then other variable decreases. On the other hand, if covariance is 0, the
correlation is also zero. The most interesting thing here is that when two variables are
statistically independent from each other, then they can be uncorrelated, but they do
not need to be independent when the variables are uncorrelated. Statistical
independence implies that there is no dependence between these two variables.

However, correlation (8) shows only the linear dependence between the variables.

In longitudinal data, repeated measurements of the same individual are seen to be
positively correlated with each other. In this situation, variance-covariance matrix (9)

could be defined as below:

Var(Yy) — Cov(Yi,Yy) .. Cov(Yy,Ym)\ (9)
Cov 53 - COU(Y:iZ'Yil) Var(Yl;Z) COU(YL':ZDYL'TL) .
Vin Cov(Yin, Y1)  Cov(¥V, V) ... Var(Yy)

It is necessary to remember that variance and covariance have a symmetry. As

indicated in the example of Cov(Y;;, Vi) = ojx = ax; = Cov(Yy, Y;;) (9) and also this
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aspect is the same with correlation matrix (10) Corr(Y;;,Yi) = pji = pxj =

Corr(Yy, Y;;). Correlation matrix (10) can be seen below:

10
v 1 Corr(Yip,¥i) o Corr(Y,Y)\ 1O
Corr| Yy Corr (Y, Y1) 1 o Corr(Yize, Yin)
o Corr(¥im Yir)  Corr(¥un,Yig) - 1
n

The diagonal values are equaled to 1 because it indicates correlation of a variable with
itself.

Many articles have exposed that longitudinal data are correlated, furthermore, they are
positively correlated (Diggle et. al., 2002). When the behavior of empirical
observations about correlation in longitudinal studies was analyzed, it was necessary
to revisit the correlations. Deriving from there, Fitzmaurice (2004) list these behaviors
as follows:

e have positive relation,

e generally decline by time separation,

e correlation between repeated individuals (subjects) are barely close to

zero,
e Dbetween two repeated measurements which are close to each other does

not approach one.

In the process of longitudinal data estimation, ignoring the correlation and assuming
that measurements are independent from each other might lead to apparent
overestimation of variance. At the end of the analysis, this situation will lead to a bad
estimate of precision, will cause larger standard errors and p-values as well as wider

confidence intervals. Since, independence status of covariates of the model is
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important for obtaining true estimation and interpretation for the longitudinal data

analysis, a specific assumption, multi-collinearity must be checked.

Multi-collinearity is a statistical phenomenon which has a strong relation with
predictor variables. Obtaining reliable estimates of coefficient for each variable is very
difficult when multi-collinearity is encountered. For this reason, it cannot provide true
interpretation based on the outcome of predictor variables. Multi-collinearity affects
variances of the parameter estimates by inflating. Inflated variances may lead to
insufficient significance of predictor variables. Therefore, significant variable acts like
an insignificant variable. To conclude, multi-collinearity problem can cause serious
problems for the variable coefficients and it may lead to wrong conclusions when

researcher wrongly interprets outputs of a model (O’Hagan & McCabe, 1975).

To detect the multi-collinearity problem in a data analysis, it may be looked up:
e Correlation matrix of coefficients
e Variance Inflation Factor

e Eigenvalues Analysis

Correlation matrix; large correlation coefficients might be an evidence for multi-
collinearity. If the correlation is high and close to 1 or -1 between coefficients of two
predictor variables, it is possible to suspect a multi-collinearity problem in these

variables.
Variance Inflation Factor (VIF); measures multi-collinearity situation in ordinary

least-square analysis (Mansfield & Helms, 1982). VIF indicates the level of multi-

collinearity by measuring the variance of the estimated regression coefficient (11):
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__ 1 (11)
VIF = = )

Let R]-2 is the coefficient determination for the cases when X; is regressed on all other

variables in the model. When there is no linear relation between j™ variable and other

predictor variables, then VIF; = 1.

The result of VIF (11) exceeds 5 or 10 indicates that j regression coefficient is
estimated poorly because of multi-collinearity (Montgomery, 2001). We selected VIF
to check the multi-collinearity problem in this study. VIF code was taken from
(MCMCglmm-utils.R, 2019).

Correlation matrix with Eigenvalues; if eigenvalues are small or near to zero and
corresponding condition number is large, it may be existed multi-collinearity problem

in one or more predictor variables might occur.

3.1.2.2 Estimation Methods for Linear Models: Maximum Likelihood and

Restricted Maximum Likelihood

Maximum Likelihood Method (ML); is a common approach used to estimate
covariate of the model which is § and covariance parameter of the model which is 6.
The method of ML depends on finding the most probable values of £ and 6 in the
observed data. To find maximum values of § and 6, joint probability of the response
variable is maximized in the observed data. The fixed set of observed values of
response variables are regarded as the functions of £ and Y.;(8) (In multivariate
normal distribution, the covariance matrix of covariance parameters, 6, are presented
with Y;(0)). Also, these functions are known as likelihood functions (Laird & Ware,
1982; Lindstrom & Bates, 1988).
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To understand the mechanism of the method, standard linear regression model which
has univariate normal distribution with all the observations are independent and also
uncorrelated will be regarded as the simple case. For this, a cross-sectional type of
data which has repeated at n different occasions is being analyzed. Data has a sample
of N subjects at each occasion. Observations are independent from each other and data
has constant variance which is shown as a2. The mean response function of the linear

regression model (12) is:

E(Y;) = X7B. (12)

The estimation of the covariates for linear regression model can be obtained from all
the observations which maximize the joint normal density function. In the first place,

the univariate normal probability density function (13) is shown below:

1 “iy =) (13)
f(yij)=(2n02)_5exp{ Z(yl] ul])/o-Z}'

The log likelihood function of the univariate normal probability density function (14)
is that:

(14)

[ =log ﬁﬁf(yij)

i=1 j=1

1
7211\]:1 i (yij — X[iB)?

o2

K
= - Elog(eraz)

where the K is a matrix with the dimension of nxN.

In order to obtain the estimate of 3, ignore the first term of the likelihood function
(14) and take the derivative of the log-likelihood function. The ML estimator of S
equals to ordinary least square estimate of S:
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B (15)

B = ZZ(X X ZZ( iYij)

i=1j=1 i=1j=1

Restricted Maximum Likelihood Estimation (REML); The ML estimator of g and
Y.:(6) have large sample properties. Toillustrate, Y.;(8) has big bias in the finite small
samples. Also, the diagonal elements of Y:;(6) are underestimated. Therefore, REML
might be a good option to overcome these problems. For example, assume that
observations are independent and variance is constant which is a2 for a cross-sectional
data, and ML estimator is given above (15). When the ML estimator of o2 (16) is
that:

N X (Y — X5B)? /K (16)

On the other hand the mean of ML estimator of o2 (17) is that:
509 = () <17>

where the p is the dimension of S.
To conclude that the MLE of ¢2 is biased in small samples and o2 is underestimated.

An unbiased estimator needs to be obtained via using K-p (which is also residual

degrees of freedom). Then the REML estimator of o2 (18) becomes:

ie1 X1 (Y — X[B)? /(K — p). (18)

The main thought behind the REML estimation is that the data which has been used

for estimating g is ignored and rest of data is used for estimating o2. Hence, relevant
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parts of data is used for the process of estimation of );;(6), and it is unbiased. In this

thesis we will use Bayesian inference, which will be explained in section 3.2.

3.1.3 Generalized Linear Models

Linear model and estimation concept of the longitudinal data have been examined in
the previous section. However, when the response of a longitudinal data is discrete,
the concept of linear models can no longer be appropriate. Generalized Linear Model
(GLM) is a framework which combines discrete and continuous response variables of
independent observations for regression analysis, and hence it comes to mind when
the response variable is discrete in a longitudinal dataset, and when the methods of
linear models which analyze mean response to covariates are being used (Nelder &
Wedderburn, 1972). The concept of Generalized Linear Models (Liang & Zeger,
1986) has been improved by the researchers to handle these problems. However, due
to correlation among observations of the same individual in the longitudinal data,
GLM may not be so easy to implement. The main feature of GLM is its nonlinear-
transformation of the mean response, which is a linear function of covariates
(Mccullagh & Nelder, 1989). This non-linear transformation causes concern regarding
the interpretation of the regression coefficients in longitudinal data analysis. This
concern arises as a result of the different approaches to the sources of within—subject
association in the longitudinal data. Nevertheless, GLM offers a unified approach for
all univariate responses (binary, counts, continuous). Besides, GLM can be said to be
a collection of regression models and analysis of variance models (ANOVA) for;
*A normally distributed continuous response
*Logistic regression models for binary or dichotomous response

*Log-linear or Poisson regression models for counts
Generally, a response of GLM has three main specifications:

e Distributional assumption,

e One systematic component,
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e Link function
(Mccullagh & Nelder, 1989).

Distributional Assumption; GLM is an extended version of the concept of standard
linear regression analysis with settings where the response variable is discrete or
categorical. GLM concept depends on the probability distribution of response
variable, which is a member of the “Exponential Family”. Exponential family has

many distributions such as Normal, Bernoulli, Binomial and Poisson.

Random component is also included in the design of distributional assumption
concept. Random component brings a probabilistic mechanism to the responses in
accordance with its belonging to distributional assumptions. The members of the
exponential family have the same statistical properties of the models. For example,
the variance of the response for Binomial, Bernoulli and Poisson has a dispersion
parameter which is expressed with ¢ and variance function which is expressed with

v(u;) which is derived from the known function of the mean (u;) (19):

Var(Y;) = ¢v(y;), where ¢p>0 (19)

Variance function v(yu;) describes how the variance of the response is related to the
mean of the response. ¢ is a parameter which needs not to be estimated in most of
distributions for discrete data, since it is a known constant (¢ is 1 for Bernoulli and
Poisson distributions.) but for other distributions, ¢ might be an unknown parameter
which needs to be estimated. Moreover, ¢ could be bigger than 1 in the case of
overdispersion, and less than 1 for underdispersion, even in Bernoulli or Poisson

distribution. It will be discussed in details in section 3.1.3.1.

Variance depends on the mean of the distribution in Poisson and Bernoulli

distribution. This feature is identical in most distributions of discrete responses.
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However, the variance does not depend on the mean for normal distribution (Var(Yi)
= ¢ and the variance function is v(u;)=1). This is called “homogeneity of variance”.
Because of this feature for normal distribution, homogeneity of variance is maintained

with the standard linear regression assumptions for normally distributed responses.

Systematic Component; Generalized Linear Models also have a common regression
formulation such as having a common family of distribution. Linear regression
component is an important feature of the linear regression model and this component
also maintains its existence in Generalized Linear Models. Linear regression
component is called as “systematic component” in the notation of GLM. Systematic

component is denoted as the effects of covariates on the mean of response:

N = B1Xin + B2Xiz + - + BpXip. (20)

n; is called as “linear predictor” and ; will also be called as intercept if the X;; equals
to 1.The linear predictor is described as a linear combination of unknown regression
coefficients and covariates. The linear predictor is always denoted as “linear” since
the mean response is explained as a straightforward weighted sum of regression
parameters even if covariates of regression were not linear. Since the linear predictor
must be linear and if the linear assumptions on mean response are not provided, some

transformations have to be implemented to the mean response.

Link Function is a transformation of the mean response and it links the transformed
mean response with covariates through using linear predictor. Link function g(.)
assumes that the transformed mean response moves linearly with changing covariates.
The use of certain non-linear functions like log(y;), on the other hand, guarantees that

predictions of mean response are located between suitable ranges.
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Another important point to note is the concept of canonical or non-canonical link

functions. Canonical link functions are unique and they can be derived from the

specific distributions. To illustrate, logit link function (Iog(ﬁ)) is canonical link

function of Bernoulli and binomial distributions In addition, the canonical link
function of Poisson is the log link. However, non-canonical link functions such as
probit link function can also be used. Canonical ones simplify the computational

burden.

3.1.3.1 Log-Linear regression for Counts

Log-linear regression is generally defined as Poisson regression which is regression
analysis of counts in a specific time interval. In this case, the response of the data is a
count type and log-linear regression analysis helps to link the mean response with the
set of covariates. The probability function of the Poisson distribution (21) is defined
as such:

—uiy, Vi 21
Pr(Y; =y;) = ¢ y_"“ , Whereyi=0,1,2,.... (21)

yi is the observed number of events and Poisson distribution is determined with a
parameter which is the mean or expected number of events ( u; = E(Y;) = 0).
Besides, mean and variance of Poisson distribution is identical (E(Y;) = y; =
Var(Y;)). In addition, the expected rate is u;/T;. Ti a measurement of the “time at
risk” which is known and can be observed. The aim of log-linear regression is to detect
the “positive” effect of set of covariates on the expected rate. In this case, expected
rate can never take negative values. Then, logarithmic transformation is implemented

to the regression model (22) as follows:

log(ui/T;)=p1 + B2X; (22)

and also it can be referred as:

30



log(u;)=log(T}) + By + B2X;. (23)

log(T;) at the equation (23) is known and does not require estimation. Thus, it can be

concluded that log-linear regression is a log rate of some events and covariates.

Overdispersion; A common failure of Poisson distribution needs to be mentioned
here. Firstly, it should be remembered that the dispersion parameter is assumed
constant (¢ =1). However, in some applications, count data has great variability when
the predicted values are far from observed values. This assumption is defined as “over-
dispersion”, which is a common failure assumption. It might sometimes occur in
Poisson and binomial responses. In other words, the variance of response is greater
than the response mean. The over-dispersion problem can be detected with the model
deviance divided by degrees of freedom. When researchers suspect over-dispersion
problem in data analysis, the main evidence they can use is that the Pearson chi-square
statistic equals to the residual degrees of freedom which is calculated with the

difference of a number of observed values and model parameters (Agresti, 1996).

3.1.4 Linear Mixed Effects Models

In brief, Linear Mixed Effects Model (in general LMM) can be defined as a model
which combines random and fixed effects. In GLM, three main specifications existed:
Distributional assumption, one systematic component and link function. In addition to
these specifications, there exists an additional assumption which is called “conditional
distribution” of each response, Yij, in the concept of linear mixed effects models.
According to this assumption, vector of random effects which is b has normal

distribution and conditional variance of Y;j (24) is that:

Var(Yl]|bl) = 0'2 (24)
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Moreover, given the random effects, each response of the data is independent from
one another. Hence, it can be said that distributional assumption is completed on the

response, Yij.

Following the conditional variance of the LMM, the conditional mean of Yj; is defined

with the linear predictor (25) as such:

E(Yylbi) = mi; = XGB + Zjb. (25)
where Zijj is a subset of Xj;.
Linear predictor of LMM has both population and individual effects, as a result of
using fixed and random effects differing from the linear predictor of GLM. In addition,

conditional mean of response is also the identical link function of LMM.

In this case, simple expression for the conditional mean response for any individual
(26) is that:

EY;|b) = XiB + Z;b;. (26)

And the marginal mean response for the population in average for all individuals (27)
is that:

E(Y) = XiB. (27)

Another component of the model is “within subject measurement error” which is

defined with e;;. Normally, the within subject measurement error is also distributed
independently with zero mean and variance ¢2. On the other hand, the covariance
between observations, focused on the mean response of any individual is defined as
Cov(e;) = R; = oI, given conditional independence assumption. Then, the within

subject measurement is collected in a vector: e;~N (0, R;).
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To sum up, the linear mixed effect model (28) is defined as:

Y, =X+ Zb; +e; (28)

3.1.5 Generalized Linear Mixed Models

The notion of fixed effects, regression covariates, coefficients and three main
specifications of GLM were told in the last section. In this section, Generalized Linear
Mixed Models (GLMM) which is the extended version of Generalized Linear Models
(Skellam, 1948) will be examined.

The concept of GLMM (Gibbons & Hedeker, 1994) can be explained as the model in
which the effect of regression coefficients is allowed to be deployed randomly to the
individuals in the longitudinal data analysis. GLMM for longitudinal data provides the
assumption of heterogeneity between individuals in the population of the study via
using random effects. Due to the presence of unmeasured factors, random effects can
be assumed the maintain natural heterogeneity.

GLMM still completely preserves the assumptions that come from Linear Mixed
Models and Generalized Linear Models. Firstly, it is known that the distribution of
random effects are multivariate normal distribution according to mathematical and
computational convenience (Breslow & Clayton, 1993). Secondly, according to the
features of exponential family, it is assumed that the responses for any individual are
independent observations from the distribution. Thirdly, the assumption of
“conditional independence®, which means Rj = O'ZInl., is completely similar to Linear
Mixed Models. Briefly, it can be said that GLMM is a general version which
compounds linear mixed effects models and GLM.
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To sum up, GLMM can be defined through 3 main specification:

Assume that the conditional distribution of each Yjj given a vector of random
effects bi is a member of exponential family, and given the random effects,
each of Yj is independent from each other, pursuant to conditional
independence assumption.

Assume that the conditional mean of Yij depends on fixed and random effects
by the linear predictor with a known link function.

Assume that in principle, there exists a vector of b;i in any multivariate
distribution and the vector of b; is distributed multivariate normally with zero

mean and gxq covariance matrix of G and bi’s are independent of covariates.

3.1.5.1 Generalized Linear Mixed Model for Counts

Suppose that the response of the data, Yij, is a count. Then, the three main

specifications which are defined below exist in GLMM analysis:

Conditional on a vector of random effects, Yij is the response which has
independence assumption and Poisson distribution with E(Y;;|b;) =
Var(Yij|bl-).

The linear predictor of the model depends on both fixed and random effects
both and it is defined (29) as:

log{E(Y;|bi)} = nij = X[;8 + Z};b:. (29)

Also, this is the conditional mean of the response by log-linear link function.

The random effects are assumed to be bivariate normally distributed with zero

mean and a X a covariance matrix G.

This model is called also a log-linear regression model with random intercepts and

slopes. The model provides natural heterogeneity between individuals (Gardner,
Mulvey, & Shaw, 1995).
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3.2 Bayesian Inference & Markov Chain Monte Carlo

The concept of the Generalized Linear Mixed Models (GLMM) actually emerges
between Restricted Maximum Likelihood (REML) as pros and Bayesian Markov
Chain Monte Carlo (MCMC) Bayesian methods as cons (Hadfield, 2010). There are
many differences between two methods. To begin with, REML is a fast and
straightforward theory in application whereas MCMC is slower and more challenging
in technical analysis due to selection of a sensible prior. However, analytical results
cannot be obtained for non-Gaussian GLMM in REML because of its procedures.
REML has basic approximate likelihood methods but it may not work well for non-
Gaussian models. On the other hand, MCMC is also an approximation but the
accuracy of approximation increases when the analysis is run for all type of models.
Therefore, it can be said that Bayesian MCMC can offer more accuracy in the analysis

even if it may be more challenging and slower than REML.

The concept of Bayesian statistic depends on combination of the prior belief and
likelihood theory. To illustrate when several random deviates (y) from a normal
distribution o2 have been observed, the conditional probability of the model

parameters (30) can be shown to be proportional to:

(30)

Pr(y I, a®)Pr(u,o?)
The first term of the equation (30) is the likelihood function and the second term is

prior belief which the model parameters could take.

For the first term, the likelihood of the data is calculated on a grid of possible
parameter values to obtain data from the likelihood surface by using the Maximum
Likelihood or Restricted Maximum Likelihood Methods separately in order to obtain
posterior distribution (Section 3.1.2.2). However, for non-Gaussian distribution,

obtaining the derivative of the likelihood function is a more challenging process. To
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cope with this mathematical challenge, Markov Chain Monte Carlo Methods, which
are a class of algorithms, were improved and began to be used by the researchers as
an alternative way (Geyer,1991; Kass, Gilks, Richardson, & Spiegelhalter, 2006;
Marjoram, Molitor, Plagnol, & Tavare, 2003).

For the second term, the choice of prior is extremely important for the analysis since
it entails the beliefs of researchers about the values, which the model parameters might
take. In general, it may not take a suitable prior especially in the early stages of the
analysis and this situation is called “improper priors” since knowledge of the

researcher is restricted.

In the following section, the general framework of these two main parameters of the
Bayesian data analysis will be given. First, the concept of MCMC and its algorithms
will be told. Then, in the second part, the concept of prior function will be explained.

3.2.1 MCMC and Its Algorithms and Diagnostic Tests

Actually, Markov Chain Monte Carlo (MCMC) simulation techniques were developed
in 1950’s by the physicist (Metropolis et al., 1953). After that, the statisticians
(Hastings, 1970; Geman & Geman, 1984; Gelfand, Hills, Racine-Poon, & Smith,
1990) have discovered the method and they improved it to obtain posterior distribution

for model parameters and latent variables of the complex models as well.

MCMC generates a sample or likelihood surface stochastically. The first stage of
implementing MCMC is to select the initial values which start the chain truly. These
initial values should not be far away from the set of parameters. For instance, the
values should be selected from sets where the posterior density is high. If the initial
values are selected far away from the point where the posterior density is low, it will

inevitably require a lot more iterations before being converged.
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A chain of values xt, witht=1, ..., T (T is the total number of iterations), is a Markov
chain if x; depends on only x:1. This dependency is provided by a model that includes
a stochastic component. There are many MCMC algorithms used in Bayesian analysis.
The most famous algorithms can be listed as:

e Metropolis-Hasting algorithm

e Gibbs Sampling

3.2.1.1 Metropolis-Hasting Algorithm

The Metropolis- Hasting algorithm is a framework of MCMC simulations which are
suitable for constituting samples from Bayesian posterior distributions. For example,
Gibbs sampling is a special case of Metropolis-Hasting algorithm. In this section basic
Metropolis algorithm will be provided first (Metropolis et al., 1953), and then it will

be generalized as Metropolis-Hasting algorithm (Hastings, 1970) as well.

The Metropolis algorithm (Metropolis et al., 1953) is an adaptation of random walk.
It uses the rule of acceptance/rejection to converge to a specific distribution. The

algorithm includes the following steps:

1- Select a starting point 8° to be the first sample from the starting distribution,

Po(6).

2- Foreveryt, t=1,2,...

a- Sample a proposal 6* from a proposal (or jumping) distribution
J:((6*]6t71) at time t. The proposal or jumping distribution is symmetric
in the Metropolis algorithm, J,((8*]18t™1) = J.((68t71]6%).

b- Figure out the ratio of densities (31) :

_ 2(0"y) (31)
()

c- Then, set the ratio (31) to the accept/reject step:
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ot — {6* with probability min(r, 1) (32)
ot-1 otherwise

Generating (31) uniform random number u on [0,1].
If u < r, then accept the proposal 8¢ = 6*
If u > r, then reject the proposal 8* = 61,

3- Stop if the converge is satisfied.

The next step is Metropolis-Hasting Algorithm which is defined as the generalized
version of Metropolis algorithm (Hastings, 1970). The Metropolis-Hasting Algorithm

Is generalized in two ways:

2- Jumping distribution does not need to be symmetric.

3- The correction on the jumping rule, the ratio of r is different:

Pl (33)
o Ji(616°)
P/ /
Ji(6+116")

4- Stop if the converge is satisfied.

Generalization boosts the speed of the random walk with these two changes. Then,
If r > 1,then accept the proposal 8¢ = 6* ,
else

ot = { 0" with the probability r (34)
pt-1 with the probability 1 —r

The Markov Chain is begun at the starting point, and the algorithm is run to obtain

iterations when the starting value’s effect is decreased, or forgotten as well. These

38



samples which are called as burn-in are eliminated. The remaining accepted values of
0t provides a sample from generated target distribution p(8|y) The procedure of the
converge to the target distribution is the same with Metropolis algorithm (Gelman et
al., 2014).

3.2.1.2 Gibbs Sampling

The simplest special case of Metropolis-Hasting Algorithm is Gibbs sampling. Gibbs
Sampling, which is also called alternating conditional sampling, is explained with in
terms of sub-vectors. Assume that 6 is the parameter vector, and it is divided into
number of d components or sub-vectors. Hence, each iteration of the Gibbs sampling
contains sub-vectors and is cycling through the sub-vectors. Each subsets is drawn as
conditional on the values of all others. Therefore, each iteration of t has the number of
d steps. In each iteration of t, 8 is selected into an ordering sub-vectors of d, and 9]?
provides a sample from the conditional distribution given all the other components of
0. p(6,105".).

The procedure can be summed up with the following steps:

1- Select an initial value of §°

2- Next sample after 8° is 811, 91 has sub-vectors which are sampled in a
vector, 81 = (%%, 04+, ..., 05" ). Each sub-vector is conditioned on the
other sub-vectors so far.

3- Repeat the above steps to reach the desired sample size.
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3.2.1.3 MCMC Diagnostic Test for Checking Converge and Stationary Status of

Posterior Distribution
3.2.1.3.1. Geweke Diagnostic Test

Geweke (1992) developed a convergence diagnostic for Markov Chains. The
diagnostic depends on the assumption that equality of the means of the first and last

part of the chain.

If the samples are from the stationary distribution or with another words, the samples
(X7 and X,) reach the target distribution, then the means of the first (10% by default)
and the last part (50% by default) of the chain equal to each other and posterior

distribution converged. Equation of the statistic (35) is that:

X, — X, 35
Bk (35)

.5

n+m

Geweke statistic (35) is an asymptotically standard normal distribution. The sample
variances s? and s2 need to be adjusted and the samples are not independent.
According to the diagnostic, if the Geweke’s statistic (p-value) is less than 0.05 or
greater than 0.95, or with other words, z-score is less than -1.96 or greater than 1.96 ,

then this is an evidence against converge.

3.2.1.3.2. Heidelberger and Welch Diagnostic Test

Heidelberger & Welch, (1981) diagnostic proposed a test statistic based on the
Cramer-von Mises test statistics. According to the test, the null hypothesis that the

chain is approximately estimated from a stationary/target distribution.

The test has two parts:
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First part:
It defines with Heidelberg,

1- Generate a Markov chain with N iteration and identify a p level

2- Figure up the test statistic for the whole chain. Accept or reject the null
hypothesis. If the null hypothesis is accepted then, the chain generated from a
stationary posterior distribution.

3- If the null hypothesis is rejected, then remove the first 10% of the chain and
figure up test statistic again.

4- Repeat the third step until 50% of the chain is removed. Then, if the null

hypothesis is still rejected, the test result of chain is failed.

Second part:

If the chain pass successfully in the first part, the test will continue with the un-
removed part in the second part. The halfwidth test figures up half of the width the (1-

p) % reliable interval around the mean.

If the ratio of the halfwidth and the mean is lower than some ¢, then chain passes the

test.
3.2.2 Prior Belief / Function

As it has been mentioned before, Bayesian statistic or specifically Bayes theorem
contains two terms/components in order to calculate the posterior probability
distribution. One of them is prior belief. Prior belief is the probability distribution
which represents the uncertainty about the parameter. A Bayesian data analysis cannot
be carried out without using the prior distribution. Therefore, there are several types
of prior distribution in the literature. The type of priors can be divided into four main

subjects:
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Non-informative Priors: Non-informative priors can be described as “flat”
relative to the likelihood function. The flat prior means that it assigns equal
likelihood to all possible values of the parameters. When a non-informative
priors are used, the effect of the prior on the posterior distribution is minimum.
Many researchers prefer using non-informative priors because non-
informative priors appear more objective. However, it cannot be claimed that
these kind of priors do not give any information about parameter of interest.
Sometimes, for example, they might lead to obtaining “improper posteriors*
which are non-integrable posterior densities as well. (Kass & Wasserman,
1994) gives more information about derivation of the non-informative priors
in a detailed way.

Informative Priors: If a prior distribution dominates the likelihood, then it
can be said to be an informative prior. Bayesian methods state that information
which includes past experience, previous studies and expert’s opinion can be
gathered and have an impact on the data analysis. In this case, informative
priors function as a key to reach this purpose.

Improper Priors: Improper priors are generally used in Bayesian inference
since they produce non-informative priors and proper posterior distributions,
which means that non-informative priors do not include any subjective effect
of researcher’s opinion or any assumption came from past. They cannot effect
Bayesian conditional probability of the model. Proper posterior distribution
affects directly to the model. However, improper prior distributions can cause
improper posterior distributions, which means that improper prior affect the
conditional probability of the model wrongly with researcher’s improper
opinion or wrong assumptions.

Conjugate Priors: If the prior and posterior distributions come from the same
family, which means that the form of the prior distribution and the form of the

posterior distribution is the same, then we call these priors as conjugate priors.
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3.3 Multi-Response Generalized Linear Mixed Models

Multi-response models are not widely used in general except for quantitative genetics
and some other related areas. However, they allow for assumptions of single models,
and thus can be used and can be an effective way handling with data missing problems

and other related difficulties.

A new data structure needs to be improved for this type of dataset that has more than
one response. Responses are arranged as a matrix. According to this matrix, each of
the rows is indexed by reserved variable called as “units” and each column is indexed
by reserved variable called as “trait”. Responses are stacked as column-wise and other

variables stacked are duplicated respectively (Table 3.1).
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Table 3.1 Multi-Response Data Structure with Reserved Variables Trait and Unit.

# | Response 1 | Response2 | id

1 0.75351 1.036808 1

2 | 0.622868 1.150577 1

3 | 0.568975 1.231025

800| 1.568974 0.231026 |200

# Response | Trait id |Unit
1 0.75351 |Responsel |1 |1

2 0.622868 |Responsel |1 |2

3 0.568975 |Responsel |1 |3
800 |1.568974 |Responsel 200|800
801 |1.036808 |Response2 (1 |1
802 |1.150577 |Response2 |1 |2
803 |1.231025 |Response2 (1 |3
1600 | 0.231026 |Response2 |200 (800

3.3.1 Zero- Inflated Model

S

When researchers face to the dataset which have extra zeros, the first type of models

that comes to mind are the Zero- Inflated models. These models have been proposed
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by Lambert (1992) and the main aspect of the models is assuming that data come from
a mixture of a regular count distribution (to illustrate: Poisson) and a degenerate or
untruncated distribution of zero. ZIP models assume that response for subject i (36)
IS:

Vi {Poisson(/li) with probability ¢; (36)
i o with probability 1 — ¢;

The quantity of 1 — ¢; denotes the probability of structural zero. On the other hand,
¢,;=1 denotes that probability of zero-inflation equals to zero. It means that zero-
inflation is not necessary to be modeled and model turns to in an ordinary Poisson
distribution. Except for these two conditions, zeros of the data are inflated.

The probability distribution of Zero-Inflated Model (37) is:

P(Y; =0) = (1—¢) + ¢pie ™. (37)

where 0< ¢;<1

(38)

e iy

L2

P(Y; =)) = ¢y

Logistic regression zero-inflated process (40) is:

log(1,) = X1Tiﬁ1a (39)

logit(¢;) = x5, . (40)

With Expectation Maximization (EM) Algorithm or Newton-Raphson method, the
model parameters can be estimated (Min & Agresti, 2005).
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Zero-Inflated model has two latent variables. These latent variables are estimated by
The EM algorithm or MCMC methods. In zero-inflated models, the first latent
variable is associated with the named distribution and second latent variable is
associated with zero inflation. The model’s aspect depends on modeling a mixture
distribution of zeros originating form of the named distribution (for example Poisson)
and zeros originating from zero-inflation. It is actually a probability on the logit scale

(37) and this probability is that a zero-inflation process with the second latent variable.
To provide overall population mean (41), combine vi(x) = 4; (X)[1 — ¢; (X)] :

) = _SPETBL) (“1)
E(lexlj) T (1+exp(xlBy)

(Preisser et al., 2012).
Important notes for the zero inflated models:

e If zeros of the data is expected to be around 30%, we expect zero-inflation to
be a problem (Hadfield, 2016).

e Any residual variance cannot be observed in zero-inflated process and in
addition, the residual covariance between the zero-inflated and the named
distribution cannot be estimated because these processes cannot be observed
in one data point.

e Especially, compared with Hurdle Models, the parameters of the zero-inflated
models converge poorly.

e Model allows only zero-inflation process.

e Poor mixing of the parameters might arise when either distribution is not zero-

inflated or the model is over-dispersed.
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3.3.2 Hurdle Models

Hurdle model, which has been proposed by (Mullahy, 1986) a type of models for count
data which can cope with excess zero and over-dispersion. It is also very similar with
Zero-Inflated models. The difference of hurdle model from the zero-inflated model is
that in the former zero-deflation can be used in addition to zero-inflation. Hence,

hurdle models mix much better than Zero-Inflated models.

Hurdle model has two latent variables like Zero-inflated models. However, the first
latent variable is the mean parameter of a zero-truncated named distribution (for
example Poisson) and this model explains the observations bigger than the hurdle. On
the other hand, second latent variable in Zero-Inflated models is the probability of
observing zero because of zero-inflation, but in hurdle models, second latent variable
is the probability (on the logit scale) of the model response which is zero or not. The
probability mass function of Hurdle model (42) is:

Wy for y; =0 (42)

P(Yi =y) = e MA .
(1—W0)m fOT'yi>0

where 0< wy < 1.

If the probability of observed values which are bigger than 0 (P(Y; > 0) = 1 — w, and
the probability of observations which equals to 0 ( P(Y; = 0) = w,, the logistic
regression model of w, and a log-linear model for u;=A; of the truncated Poisson
distribution (44) :

log(4;) =x1;1, (43)
logit(w,) = log (12"‘2’0) = x3.8,. (44)

Then, expected value of response in Hurdle model (45) is given as such:
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= (45)
E®) = Z yi Pr(Y; = y)

yi=0
Hurdle Models:

e It has better mixing properties than Zero-Inflated models.
e While it is assumed that zero observations come from the origins of
“sampling” or from the “structural” in Zero-Inflated models, in hurdle models,

it is assumed that zero observations come from only one “structural” source.

3.4 Markov Chain Monte Carlo Generalized Linear Mixed Models
(MCMCglmm) Package in R

Until this point, methodological background of GLMM and MCMC algorithms were
told. In this study, MCMCglmm Package, which is a package in R, combining all the
methods was used and whose name is MCMCglmm Package. The package exists in
the statistical software of R and its development process is still continued by the

researchers.

As a closing remark, a few reasons as to why we select the MCMCglmm packages
can be revealed here. In the first place, MCMCglmm package is suitable for
longitudinal-discrete data that has been used. Next, it provides a flexible framework
for modeling with GLMM and it can be used for non-Gaussian response variables for
which we cannot be obtained likelihood in a closed form as well. Then, the package
can be used in multi-response models for the distributions of Gaussian, Poisson,
exponential, zero-inflated and censored distributions. Last, it allows for complicated

variance structures as well (Hadfield, 2010).
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CHAPTER 4

DATA DESCRIPTION, MODEL APPLICATION AND EMPRICAL RESULTS

Chapter 3 gave the methodological background of the data analysis related to this

study. In this chapter, first section will explain the structure and details of the

electricity interruption dataset used in the study. Then, the results from the applied

models are going to be explained and their results will be compared with each other

in the second section.

4.1 Data Description

The dataset used in this study provides information about the quality of the electricity

supply continuity in Cankir1 province and its neighborhoods. Cankiri is a city in the

distribution region of Baskent Electricity Distribution Company. Entity of the dataset

includes electricity interruption counts and variables of Cankir1 for the year of 2015.

These kind of datasets are published by 21 of the distribution companies in Turkey, in
accordance with EMRA’s regulation articles (EMRA, 2008). Dataset includes

interruptions’:
e Location (city, town, etc)
e Network component,
e Resource type (Low Voltage, Medium Voltage) ,
e Zone type of location (Zoned or not zoned) ,
e Duration,
e Count,
e Time (month, day, year),

e Reason (Operator, security, out of the distribution region),

e Explanation of reason (power switch breakdown, electrical fuse

breakdown etc.)
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After investigating the literature and evaluating the variables, location (Location),
time (Month), counts of electricity interruption (Ycount), location status of zone type
(Xin_out), resource type (XIv_mv) and reasons ( Xreasonl and Xreason2) have been

used as covariates in this study. A part of dataset can be seen in Appendix-E.

Each row shows interruption’s location, (city and town), resource type (low voltage
or medium voltage), location status of zone type (zoned or not zoned) and its reasons,
and the time when the interruption occurs (month), and the number of interruption
counts at that particular time. Why were these variables selected for the models?
Firstly, location, and location status of the zone give hints regarding the percentage of
the electrical usage and the development of electrical network in a specific location.
To illustrate, location status of the zone provides information about the density of the
population. If the area is located in the zoned land, it means that density of population
is higher than un-zoned land. Secondly, the variable of month gives the variation of
interruption’s count or duration according to time. Thirdly, the variable of reason gives
the information about which kind of fault or misusage of the network might be causing

the electrical interruption.

The variable of reason includes three main options: external, operator and security.
One of these options is external, which means that problems from out of the region,
which do not stem from the local distribution company, cause electrical interruptions
in one particular location. Second option is the operator. Operator indicates the
presence of problems due to the fault of the operator who works for the local
distribution company. For example, in a construction process that is carried out to
improve electrical network one operator might be the cause of power failure. On such
occasions, the reason for electrical interruption is the operator. Another option is
security. Security implies possible unauthorized interventions in the network. To
illustrate, a resident might be building a new house and when he/she fails to get
permission to intervene in the local network system, interruptions might occur because

of his / her fault. These options are defined by the electrical distribution company and
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these definitions differ from one electrical distribution company to the others. These
three options represented as Xreasonl and Xreason2, and can be explained together

such as:

e When Xreasonl and Xreason2 equal to 0, it indicates that

interruption’s reason is external,

e When Xreasonl equals to 0 and Xreason2 equals to 1, it indicates that

interruption’s reason is security,
e Finally, when Xreasonl equals to 1 and Xreason2 equals to 0, it

indicates that interruption’s reason is operator.

The variables of Xlv_mv and Xin_out have the same representations like Xreasonl
and Xreason2. They take 0 and 1 value. They are coded as follows:

For Xlv_mv:

e 0 indicates that electrical interruption occurs in the network of medium

voltage.

e 1indicates that electrical interruption occurs in the network of low voltage.

For Xin_out:

e 0 indicates that electrical interruption occurs in un-zoned land and effects

mostly the resident who lives there.

e 1indicates that electrical interruption occurs in zoned land and effects mostly

the resident who lives there.

4.2 Exploratory Data Analysis

With the aim of summarizing and evaluating the data used in the study, this section

will present some descriptive data analysis.
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4.2.1 Descriptive Statistics

All the analysis given in this section for the description of the data has been made by
using the software of R (Hadfield, 2010).

In first place, frequency tables of the variables will be given. (Table 4.1)

Table 4.1 Frequency Tables of the Variables

Xin_out Reasons
> un-zoned zoned External Security Operator
£ ‘ medium 53 23
=
< | Low 131 80 o > 185

Ycount O 1 2 3 4 5 6 7 8 9 >10

# 1441 124 49 27 13 21 16 8 7 4 18

The total numbers of observation are 1728. According to the Table 4.1, the dataset
includes excessive zeros where total number is 1441. After eliminating zeros from
the dataset, the electricity interruptions occurred in medium voltage vs un-zoned area
Is 53, in medium voltage vs zoned area is 23 and in low voltage vs un-zoned area is
131, in low voltage vs zoned area is 80. On the other hand, the electricity interruption
occurred because of the external reason is 97, because of the reason of security is 5
and because of the operator is 185. It is understood that most of electricity

interruptions occurred due to the reason of operator.

On the other hand, it can be seen that 83.4% of total number of observations are zero.

The data conditions are suitable with general assumptions except of being observed
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zero counts (see section 3.3.1 and 3.3.2). After the observed value of 10, the number
of observations are getting decreased. Their total number of observed value which
equals and be bigger 10 is 18. The maximum observed value is 52 which was observed

only one time.

At this point, it would be beneficial to look at some useful plots, to understand the data
(Figure 4.1 and Figure 4.2).

Number Of Electrical Interruption's Counts
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Figure 4.1 Plot of Number of Interruption Counts vs Month

According to Figure 4.1, the number of interruption counts rises from January to
December. Nevertheless, it is possible to observe excess zero counts for every month.

On the other hand, another important point is to see the highest interruption count,
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which is 52, in November. These observed values are extremely different than others
because most of the observed values are generally lower than 10. f BEDAS had failed
to solve the problems, probably, a failure either in an important component or in any
other element of the network might have occurred repeatedly. For this reason, more

than one interruption might have occurred at that time.
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Figure 4.2 Plot of Number of Interruption Counts vs Location-Town

Figure 4.2 shows interruption counts in towns of Cankiri. It can be observed that
majority of electricity interruptions occurred in the city center. This situation can be

explained with continuing process of development and resident’s intervention in the
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electrical network mostly. Interruption count of town of Orta and town of llgaz follow
this score. The observed value which occurred in the city center in November can be

defined as an outlier.

The data includes excessive zeros. However, Figures 4.1 and 4.2 cannot show this
situation precisely. Therefore, bar chart graph can be assisted here to better observing

for the density of zero. (Figure 4.3)

. III---__ J— L
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Figure 4.3 Bar Chart for Density of Number of Electrical Interruption’s Count

Figure 4.3 shows the density of interruption counts. According to the bar chart, data
has obviously excessive zeros. Number of electrical interruptions take zero value
mostly when no electrical interruption is observed in any location, during that month.
On the other hand, the electrical interruption count of one location can be measured
periodically (each month) in different occasions. These specifications show that data

structure is compliable with longitudinal panel data. Also, the data regarding the
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response of the number of electrical interruption’s counts is discrete. As these
specifications suggest Poisson or zero-inflation models might be employed for using

while modeling this type of data.

4.3 Empirical Results of the Data Analysis

In Sections 4.1 and 4.2, data analysis and important points were offered. This section
presents the implementations of Poisson, zero-inflated Poisson and hurdle Poisson
MCMCglmm, their important points and outputs will be given in detail.

It has been mentioned before that the data structure used in this study, which is called
electricity interruption data, is a count-longitudinal type of data. It is clear that the
model conditions are not suitable for modeling with the linear models because of
having longitudinal, discrete and non-Gaussian properties. Also, it is assumed that the
location of the electricity interruption impacts randomly on the response of the data,
which is defined as Ycount. In this case, the variable of location includes unobserved
variables such as numbers of consumers or residents, total investments made by local
distribution company etc. Some heterogeneity in electricity interruptions is expected
among different towns. In order to account for this heterogeneity, we include the
location variable as a random effect in the models. Longitudinal-count data with

random effects are handled by Generalized Linear Mixed Models (see section 3.1.5).

Although GLMM provides a flexible framework for modeling non-Gaussian response
variable, because of longitudinal type of data, the likelihood function cannot be
obtained easily. To cope with this problem, MCMC techniques were used in this study.
The package of MCMCglmm (Hadfield, 2010) uses MCMC techniques which are
combined with Metropolis- Hasting algorithm and Gibbs sampling when it generates

the posterior distribution.
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In this section, in order to get best explanatory estimation model, Poisson, zero-

inflated Poisson and Hurdle Poisson MCMCglmm models have been applied

separately. The results of each model will be given with this following alignment:

[EEN
1

Results of the models with the first implementation on Poisson and

Zero-Inflated Poisson MCMCglmm,

2- Results of the models with adding interaction effects and piecewise
indicator variable to the Poisson and zero-inflated Poisson
MCMCglmm

3- Results of the models with final implementation on Poisson, zero-
inflated Poisson and Hurdle Poisson MCMCglmm

4- Posterior predictive checks and comparison of the final models of

Poisson, zero-inflated Poisson and hurdle Poisson MCMCglmm

4.3.1 Results of the Models with the First Implementation on Poisson and Zero-

Inflated Poisson MCMCglmm

In this section, the first implementation of Poisson and zero-inflated Poisson

MCMCgImm will be told. First of all, the conditions and the model inputs, which are

prior function, number of iterations, thinning interval etc, needs to be explained.

Both Poisson and zero-inflated Poisson models are ran by:

Only the fixed effects of the covariates

The number of iteration has been set to 50,000.

Burn-in period is taken as 3,000,

The thin value has been equaled to 10,

Sample size has been 4,700 (after eliminating 3,000 of burn-in period the
number of iteration is divided by thin value).

The variable of the location is used in the models as random effect parameter.
The default prior function was used for the models which were given in this

section. The default prior function contains three elements: B, R and G
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structures. B structure defines the fixed effects’ prior distribution which is
multivariate normal with mean vector (mu) 0 and variance-covariance matrix
of a diagonal with large variances (10*°). Also, priors for the variance structure
of R and G elements have inverse-Wishart with expected covariance equals to
1 and degree of belief parameter is 0 (Hadfield, 2010).

4.3.1.1 First Implementation of Poisson MCMCglmm

Due to the p-value of MCMCglmm (Table 4.2) all of the model coefficients are

significant.

Table 4.2 Summary of the First Implementation of Poisson MCMCglmm.

Post Mean 1-95%  u-95% Efficient p-MCMC

Cl Cl Sample
(Intercept) -6.26 -7.18 -5.35 232.5 2x 104 Fhx
Xlv_mv 2.15 1.50 2.83 330.7 2x 10 kel
Xin_out -0.99 -1.59 -0.40 633.7 4.26 x10™ kel
Month 0.34 0.30 0.39 692.4 2x 10 kel
Xreasonl 1.74 1.04 2.36 765.4 2x 10 kel
Xreason?2 -3.75 -4.91 -2.61 98.4 2x 10 kel

Below is the open form of the model (46), as offered in the summary:

log ((YalbLocation)) (46)
= —6.26 + 2.15X1v,,,, — 0.99Xin,,; + 0.34Time

+ 1.74Xreasonl — 3.75Xreason2 + by ycation-

This open formula illustrates that intercept, the covariate of Xin_out and the covariate
of Xreason2 have the negative behavior in the model, while the others have the
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positive behavior for the estimation of log(E(Yit)). Since Generalized Linear Mixed
Model of Poisson has canonical link function, the response of the model acquires log
link function in the open form (see section 3.5.1). On the other side, covariates of the
model except the covariate of month are to be considered as the binary variables
explained in the previous chapter. In addition, it should be noted that covariates which
have negative behavior lead to the response where (log(Y1))) is getting lower values
than the value it gets in other covariates. Perhaps, it could be better expressed through
a scenario such as this: The estimated interruption value which occur due to a fault of
the operator in low voltage in a non-urban area in January is to be calculated.
Covariates of this scenario are as follows : Xlv_mv equals to 1, Xin_out equals to 0,
Month equals to 1, Xreasonl equals to 1 and Xreason2 equals to O:

7; — e(—6.26+2.15(1)—0.99(0)+0.34(1)+1.74(1)—3.75(0)+bL0’$wn) (47)

17; — e(—2,03) (48)

When b;,cation = 0 (i.e. for an “average” location), the estimated value of the
imagined scenario (48) is =0.13, which is quite close to 0. It is a probable estimate in
the presence of the data which has many zeros. If the effects of covariates are observed
more closely, it is to be seen that while the fitted value which is in low voltage and
non-urban area, and in January due to a fault of Operator (Xlv_mv = 1) is 0.13, the
fitted value with the same covariates except now in medium voltage (Xlv_mv = 0)
becomes 0.015, which is even closer to 0. The results of this scenario thus show that
the likelihood of an interruption is higher in a low voltage area than it is in the medium
voltage area. This might sound strange, but in fact it is understood to be more
reasonable since in low voltage areas, electricity systems are opened to intervention
and thus an interruption is more likely to occur in this system than a in a high voltage
area system. High voltage system is used for transfering the electricity power in long
distances like between cities or regions. TEIAS is responsible for this type of transfer
and the data is used in this study does not include high voltage area situation. However,
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low or medium voltage systems is used for short distances such as between houses,
neighborhoods or districts. Low voltage systems are open for intervention of people.
This kind of intervention can occur for construction activities, infrastructure
occupations etc. Therefore, probability of electricity interruption can be seen higher

in low or medium areas than in a high voltage area system.

Let’s focus on other covariates now. The result of the model lays bare that when other
conditions are kept stable, interruption statistics on urban area (i.e. Xin_out=1) are
closer to zero compared to the statistics in non-urban areas should be underlined. Non-
urban area cover the villages or small districts which are close to the cities. Electricity
lines and infrastructure are secured, and also voltage fluctuation is not seen very often
in urban areas. However, electricity lines and infrastructure cannot be secured in non-
urban area since construction and improvement of infrastructure continue there. Since
it is usually the decreasing of the voltage that is to be blamed for the type of electricity
interruptions mentioned here, it can be concluded that probability of interruptions in

urban areas is lower than the probability in non-urban areas according to the model.

After explaining the model, and parameters, it needs to be looked at the

estimated/fitted values and their comparison with the observed values.
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Figure 4.4 Observed vs. Fitted Values of the First Implementation of Poisson
MCMCgimm.

In Figure 4.4 comparison of observed vs. fitted values is shown. According to the plot,
fitted and observed values appear between O and 5 frequently. This indication is
reasonable since O values in observed data are more frequent than other values.
However, model is not good enough to explain observed values completely. To
illustrate, fitted values of the model may estimate 5, 10, 15, 20 and bigger than 25,
when observed value is 0. On the other hand, although the model’s convergence seems
reasonable, the autocorrelation is not good enough to be trustworthy (see Appendix-
A section 1). For this reason, it is favorable to evaluate residuals status. At the end of
the residual’s checking, the model needs to be modified with some extra techniques

probably.
This situation can also be seen in the residual vs fitted values and covariate plots

(Figure 4.5). In the residual plots, the residuals are located between 40, which is upper

bound, and -20 which is lower bound; hence the residual interval is so wide.
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Figure 4.5 Residual vs Fitted Values and Covariates of the First Implementation of
Poisson MCMCglmm

As justified by the presence of above mentioned problems, it is acknowledged that
this is not the best model and it needs to be updated. The prediction fails to give the
fitted values truly according to observed data. In the following parts, interaction
effects and adding a slope term can be tried as a solution. Besides, the zero-inflated
Markov Chain Monte Carlo Generalized Linear Mixed Models could be implemented

to the data, as the data has excessive zero value in general.

4.3.1.2 First Implementation of Zero-Inflated Poisson MCMCglmm

The dataset of the study and its specifications have been expressed in section 4.1. The
dataset is a specific longitudinal data with many zeros. At this point, it should be
remembered that the response of the data used in this study has 83.4% of zeros. This
situation brings to mind zero-inflation methods. In this section, application and results

of zero-inflated Poisson model will be provided.

62



First of all, zero-inflated Poisson model used in this section has only the fixed effects
like Poisson MCMCglmm model that was explained in the previous section. That is
to say, there are not any interaction effects in the model. Besides, Zero- Inflated
MCMCglmm is also a type of Multi-Response Model. Main structural differences in
the model are those: The mean of reserved variable which is called “trait” can be
added. Then, the unit shows response values in each row of “traits”, which emerge as
one type of response in MCMCglmm package for multi-response models. (see section
3.4). Considering these, it can be claimed that the first major difference from the first
implementation of Poisson model is the residual covariance matrix. In Zero-Inflated
Poisson MCMCglmm, the model works with heterogeneous residual variance. In other
words, the residual (co)variance matrix allows each unit of the model to have different
residual variances. In addition, the residual (co)variances between zero inflation and
the Poisson process cannot be estimated because processes cannot be simultaneously
observed in one data point.

The summary table of the model is given in Table 4.3.

Table 4.3 Summary of the First Implementation of Zero-Inflated Poisson

MCMCglmm

Post 1-95% u-95% Efficient p-

Mean Cl Cl Samples MCMC
Intercept_Poisson 548  -6.29 -4.38 7.59 2x 102 **
Intercept_Zerolnflated -2.36 -2.78  -1.73 6.67 2x 102 **
Xlv_mv 2.40 1.67 2.89 4.58 2x 102 **
Xin_out -1.17 -1.53 -0.67 20.67 2x 102 **
Month 0.35 0.30 0.39 23.43 2x 102 **
Xreasonl 1.55 0.88 2.31 7.56 2x 102 **
Xreason2 -4.62 -541  -3.35 3.22 2x 102 **

Predicted values of the model can be generated through two process which are Poisson

process and zero-inflated process (49):
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log(4;) = —5.48 + 2.40X1v,,, — 1.17Xin,,; + 0.35Month (49)
+ 1.55Xreasonl — 4.62Xreason2 + by ycation-

Second process (50) is:

logit(wy) = log(1 KV(:,V )= —2.36 (50)
0

In the first step (49), log(4;) shows the usual generalized linear mixed effect
regression model of Poisson process, whereas logit(wy) in equation (50) shows
regression model of Zero-Inflated Poisson process, which is a logit model by default
(see section 3.4.1). In zero-inflated process, there exists only the coefficient of

intercept.

The summary of the model suggests that the parameters of the MCMCglmm of Zero-
Inflated Poisson have the same behavior as the first implementation of Poisson
MCMCglmm: Intercept, the covariate of Xin_out and the covariate of Xreason2 have
the negative behavior in the model. However, others have the positive behavior on
estimation. The results of the model are close to the results of the first implementation
of Poisson MCMCglmm. However, before comparing the prediction results from two
different models, it would be more appropriate to look at the trace and density plots
of the first implementation of zero-inflated Poisson Model (see Appendix-A section
2).

Even though the autocorrelation problem exists according to autocorrelation plots (see
Appendix-A section 2) for the first implementation of Zero-Inflated Poisson, it is still
beneficial to look at the plot of Observed vs. Fitted Values to compare the models
(Figure 4.6).
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Figure 4.6 Fitted vs Observed Values of the First Implementation of ZIP
MCMCglmm

Figures 4.6 and 4.7 make it clear that the same problem in the first implementation of
Poisson MCMCglmm exists here, too. The model cannot effectively estimate the
observed values. In the zoomed plots, this situation can be observed clearly. The first
zoomed plot indicates the fitted vs observed values which are smaller than 10 and

second zoomed plot also demonstrates the values which are bigger than 10.
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Figure 4.7 Zoomed Plots for Fitted vs Observed Values of the First Implementation
of ZIP MCMCglmm

The model gives slightly a better estimation than the first implementation of Poisson
MCMCgImm. This result can be observed in first zoomed plot clearly since the range
of fitted values is between 0 and 20, while the range of fitted values of the first
implementation of Poisson MCMCgIlmm takes values bigger than 25. On the other
hand, in second zoomed plot gives when 10 or bigger values are observed in real
dataset, fitted values take different values, the range of which changes between 0 and
20. This situation is an indication of the need for modifications to the model, especially

when the observed values bigger than 10.

Residuals can be plotted versus observed covariates and fitted (Figure 4.8).
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Figure 4.8 Residual vs Fitted Values and Covariates of the First Implementation of
ZIP MCMCglmm

Residual plots show that fitted values of the first implementation of Zero-Inflated
Poisson model are not entirely compatible with observed values. Thus, it is understood
that ZIP does not fully solve the problems which were encountered in the use of first
implementation of Poisson models. It is thought that problems generally arise due to
the observed values which are bigger than 10. With the aim of effectively handling
this situation, modifications to the models will be applied through next sections.
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4.3.2 Results of the Models with Added Interaction Effects and Piecewise
Indicator Variable to the Poisson and Zero-Inflated Poisson
MCMCglmm

In Section 4.3.2, the first implementation of Poisson MCMCglmm and Zero-Inflated
Poisson MCMCglmm were discussed. These models had only fixed effects. However,
outputs of estimated values showed that especially the values which were bigger than
10 did not fit very well. This situation brings to mind options such as adding
interaction effects and piecewise indicator variable to the models. Therefore, in this
section, the versions of models with added significant interaction effects and
piecewise indicator variable are to be discussed. The newly developed models and

their differences are going to be mentioned as well.

A modification to the first implementation of Poisson and ZIP MCMCglmm were
necessary because the model did not fit well especially to the observed values bigger
than 10. If the data summary of the model is evaluated, it can be easily noticed that
observed values which are bigger than 10 are seen after June (i.e. Month > 6) (Section
4.2). The approach offered by Piecewise Linear Regression Technique could be used

one for this situation.

This method advocates using different intercept and/ or slope parameters to the model.
In this way, after one point is taken as origin, the intercept and/or slope of the model
changes. While applying this method, a new variable, “newMonthx”, was added to the
model. For this, we first define Monthx variable: If Month is smaller than 6 or equals
to 6, Monthx is 0, or else 1. The newMonthx is defined as the interaction of centered
Month, i.e. (Month-6), and Monthx. These variables may be formulated as below:

Monthx = if else(Month<=6,0,1)
newMonthx= (Month-6) x Monthx
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Both Poisson and zero-inflated Poisson MCMCgImm with being added interaction
effects and piecewise indicator variable are run by:

e Using fixed and interaction effects,

e The number of iteration has been set to 50,000.

e Burn-in period is taken as 3,000,

e The thin value has been equaled to 10,

e Sample size has been 4,700 (After eliminating 3,000 of burn-in period the

number of iteration is divided by thin value).

e The variable of the location is used in the models as random effect parameter.

The default prior function was used for the models which were given in this section.
The default prior function contains three element: B, R and G structures. B structure
defines the fixed effects’ prior distribution which is multivariate normal with mean
vector (mu) 0 and variance-covariance matrix being a diagonal with large variances
(10%°%). Also, priors for the variance structure of R and G elements have inverse-
Wishart with expected covariance equals to 1 and degree of belief parameter is 0
(Hadfield, 2010).

In the following section, Piecewise Linear Regression Technique and significant
interaction effects will be used to develop the models of Poisson MCMCglmm and
Zero-Inflated Poisson MCMCglmm.
4.3.2.1 Poisson MCMCglmm with Interaction Effects and Piecewise
Indicator Variable

To begin with, it should be noted that the output of first implementation of Poisson
model had shown that model was not fitting well for the values bigger than 10. Firstly,
the method of adding interaction coefficients was tried to solve this problem. The
interaction effects of XIv_mv vs Month , Xlv_mv vs Xreasonl and Xin_out vs Month

become significant in the model (Table 4.4).
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Table 4.4 Summary of Poisson MCMCglmm with Interaction Effects and Piecewise
Indicator Variable

Post Mean 1-95% u-95%  Efficient p-MCMC

Cl Cl Samples

(Intercept) -9.68 -11.64 -7.93 79.06 2x 107 kel
Xlv_mv 4.05 2.26 5.93 56.85 2x 107 kel
Xin_out -2.92 -410 -1.83 240.40 2x 10 falaie
newMonthx -0.72 -093 -0.51 322.05 2x 107 kel
Xreasonl 5.21 3.75 6.92 46.71 2x 10 kel
Xreason?2 -4.29 -558 -3.00 82.56 2x 10 faleled
Month 0.67 0.51 0.86 292.14 2x 104 kel
Xlv_mv : Month 0.17 0.07 0.27 586.61 2.13x 10 **

Xlv_mv:Xreasonl -4.71 -6.55  -3.09 47.40 2x 10 *xx
Xin_out: Month 0.22 0.11 0.33 216.25 2x 104 kel

After adding interaction effects and slope parameter to the model, model’s open form

(51) changes as such:

log(Y;;) = —9.68 + 4.05X vy, — 2.92Xiny,, — 0.72newMonthx  (51)
+ 0.67Month + 5.21Xreasonl — 4.29Xreason?2
+ 0-17lemvaonth - 4’-71lemvareasonl

+ O-ZZXinoutxMonth + bLocatwn-

Under the condition of by,.q10n = 0 , the fitted value (51) is =0.014, when the same
scenario is given: interruption due to a fault of operator in lower voltage and non-
urban area in January ( Xlv_mv equals to 1, Xin_out equals to 0, Month equals to 1,
Xreasonl equals to 1 and Xreason2 equals to 0). On the other hand, newMonthx
coefficient is invalid here because Month variable is 1 and value is smaller than 6. To

understand the effect of piecewise indicator variable, Month variable should be
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changed from 1 to 7. Thus newMonthx variable takes the value of (7-6) x1 and equals
to 1. The result generating from this condition is =0.03. While the value of Month
variable is increasing, predicted counts are expected to be increasing, too. The solution
subsides with this approach completely. Yet, before proceeding with the next stage, a

check for autocorrelation is needed (see Appendix-B section 1).

According to autocorrelation plot, autocorrelation problem gets higher here compared
to the first implementation of Poisson MCMglmm. Xreason2 variable is still
autocorrelated but, intercept, Xreasonl and Xlv_mv variables have also

autocorrelation problem (see Appendix-B, section-1).

While developed model cannot fix the problems of autocorrelation, the fitted values
are expected to be better than the first implementation of Poisson MCMCglmm. In
order to confirm this, it is essential to study the observed vs fitted plot and residual

plots as presented below (see Figures 4.9 and 4.10).
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Figure 4.9 Observed vs Fitted Values of Poisson MCMCglmm with Interaction
Effects and Piecewise Indicator Variable
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The plot of observed vs fitted values shows that the difference of observed /fitted
values decreased from 25 to 6. It is obvious that developed model has increased the
strength of estimation compared to the first implementation of Poisson MCMCglimm.
However, still the model cannot rightly estimate the observed values bigger than 10.
The possible causes might be autocorrelation problem, over-dispersion problem or
using Poisson distribution. With the aim of overcoming this, ZIP MCMCglmm model

is to be developed with interaction effects and piecewise indicator variable.
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Figure 4.10 Residual vs Fitted Values and Covariates of Poisson MCMCglmm with
Interaction Effects and Piecewise Indicator Variable

4.3.2.2 Zero-Inflated Poisson MCMCglmm with Interaction Effects and
Piecewise Indicator Variable

In the previous section, Poisson MCMCglmm with interaction effects and piecewise
indicator variable was depicted and its results were compared with that of the first
implementation of Poisson MCMCglmm. However, it was realized that problems

which were seen in the last sections were still continuing even in updated Poisson

72



MCMCglmm. In this section, ZIP with interaction and piecewise indicator variable

model and its efficiency will be discussed.

Significance of covariates of the model can be seen below (Table 4.5). The model

converge diagnostic plots can be seen at Appendix (see Appendix-B section 2).

Table 4.5 Summary of Zero-Inflated Poisson MCMCglmm with Interaction Effects
and Piecewise Indicator Variable

Post - u- Efficient p-MCMC
Mean 95%  95% Samples
Cl Cl

Intercept_Poisson -7.09 -8.65 -5.03 1.95 1x 103
Intercept_Zerolnf -0.15 -0.51 277 31.89  4.28x10% ***

Xlv_mv 4.29 2.67 5.21 6.11 1x 103 *x*
Xin_out -2.88 -3.85 -2.06 5.63 1x 103 *x*
newMonthx -0.61 -0.82  -0.39 11.23 1x 103 *x*
Xreasonl 5.35 3.55 6.61 2.26 1x 103 *x*
Xreason2 0.91 -0.27  2.22 2.98 1.38x 104 ***
Month 0.52 0.35 0.69 5.79 1x 103 *x*
Xlv_mv: Month 0.24 014 0.34 6.16 1x 103 *x*

Xlv_mv:Xreasonl -4.95 -6.38  -3.43 3.66 1x 103 F*x
XIlv_mv:Xreason2 -6.14 -7.60 -4.08 3.54 1x 103 H**
Xin_out: Month 0.15 0.06 0.26 7.04 1x 103 ***

The model’s count generating open form for both processes (52) and (53) are:
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log(4;) = —=7.09 + 4.29X1lv_mv — 2.88Xin_out + 0.52Month (52)
+ 5.35Xreasonl + 0.91Xreason2
— 0.61lnewMonthx + 0.24Xlv_mvxMonth
— 4.95Xlv_mvxXreasonl

— 6.14Xlv_mvxXreason2 + 0.15Xin_outxMonth

+ bLocatwn-

logit(wy) = log(z KVOWO) — —0.15 (53)

According to Poisson MCMCglmm with interaction effects and slope, only the

covariate of Xreason2 behavior has changed from negative to positive.

Unfortunately, autocorrelation problem exists in all covariates of the model (see
Appendix-B section 2). This problem might cause poor estimations & fits from the

model. Actually, trace plot gives a hint for this poor mixing.
It is generally known that autocorrelation problem might cause faulty generating

counts, however, this case needs to be proven for the situation at hand. For this aim,

below observed vs. fitted values are presented for analysis (Figure 4.11).
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Figure 4.11 Observed vs Fitted Values of ZIP MCMCglmm with Interaction Effects
and Piecewise Indicator Variable

From the figures, it is to be understood that adding interaction effects and adding
piecewise indicator variable to the model remained insufficient in fully developing the
model. In fact, it was discovered that zero-inflated model with added interaction
effects and piecewise indicator variable mixes more poorly than the first
implementation of zero-inflated model does. Residual plots could be consulted to

observe this result clearly (Figure 4.12).
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Figure 4.12 Residual vs Fitted Values and Covariates of ZIP MCMCglmm with
Interaction Effects and Slope Parameter

Residual plots of Zero-Inflated Poisson with interaction effects and piecewise
indicator variable show that model can estimate as many observed values as 200. The
cause behind this poor mixing and poor estimation in models needs to be investigated.
Three possible problems can arise here: Autocorrelation, over-dispersion and multi-
collinearity. In order to fix these problems, prior function, variance-covariance matrix
of fixed effects, number of iteration and thinning interval can be changed. Also,
different methods such as centering method etc. was tried before, but unfortunately

these methods cannot solve these problems (see Appendix-D).
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4.3.3 Results of the Final Models on Poisson, Zero-Inflated Poisson and Hurdle
Poisson MCMCglmm

In the last two sections the implementations of Poisson MCMCglmm and zero-inflated
Poisson MCMCglmm were presented to show that neither of them yielded problem
free solutions for modelling electricity interruption data. The diagnostic checks of
these four models were not good enough to explain the specifications of the data (see

Appendix-A and Appendix-B).

These results signal towards multi-collinearity problem (see Section 3.1.2.1). With the
aim of eliminating multi-collinearity problem, standardized covariates will be used in
this section. Besides, to understand the relationship of the covariates, it is beneficial
to consider Spearman’s correlation matrix of significant fixed and interaction effects
(see Figure 4.13).
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Figure 4.13 Correlation Matrix of the Significant Covariates
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The correlation matrix shows that all of the significant covariates of the data are
somehow correlated with each other. It is clear that especially the covariates of month
and newMonthx are the most correlated covariates. Due to correlated covariates,
variance-covariance matrix of the prior function needs to be regulated different from
the default prior function (see section 4.3.2). In view of this, a new prior function
needs to be formed according to the correlated covariates. From now, the new prior
will have a new variance-covariance matrix with large variances (108) and also the

large covariances (5x107) for the fixed effects in B structure.

Regarding R Structure, residual variance and also residual covariance cannot be
observed in zero-inflation or Hurdle or Poisson processes. To cope with this problem,
fixed residual variance whose value is 1 has been used and degree of belief parameter
has been taken as 0.002. This prior is called as inverse-gamma prior with its shape
0.001. Inverse-gamma prior also captures over-dispersion problem for Poisson
process (Hadfield, 2010). Considering these advantages, inverse-gamma prior has

been used for all models in this section.

The conditions and the model inputs are changed as follows:
e Each model is run for varying number of iterations, because of convergence
Issues.
e Location is still used as random effect component.

e Burn-in period is still 3,000.

X-mean(X)
sd(X)

e The variable of Xreason2 is eliminated due to serious convergence &

e Standardized ( ) variables are used.

autocorrelation problems and Xreasonl is redefined. When it takes 1.41, it
means that the interruption stems from the operator. Otherwise the reasons are

either external or they are related to security.
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In this case, the frequency table of the variables are almost the same (Table 4.6).
The only difference is that Xreason2 eliminated. Hence, the reasons of security

and external are evaluated together.

Table 4.6 Frequency Tables of Standardized Electricity Interruption Data

Xin_out.std
un-zoned  zoned
- (-0.99) (0.99) . Reasons
= e Security Operator
E 328 53 23 &
S g N External
* sa 102 185
SRS 131 80
-2

4.3.3.1 Final Implementation of Poisson MCMCglmm

According to Poisson MCMCglmm which was examined in the previous sections,
autocorrelation problem of each lag was very serious. To eliminate this problem,
number of iteration and thin value have been increased. The number of iteration is
taken 1,000,000 and the thinning interval is taken 500. Model is run with significant
covariates and the model results have been given below (see Table 4.7).
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Table 4.7 Summary Table for the Final Implementation of Poisson MCMCglmm

Post. |- u- Efficient p-
Mean 95% 95% Samples MCMC
Cl Cl

(Intercept) -466 -5.47 -3.97 235.7 <5x 10% *x*
Xlv_mv.std 1.26 0.68 1.87 416.2 <5x10% ***
Xin_out.std -0.41 -0.71  -0.12 1870.3 <2x10°  **
newMonthx.std -2.04 -3.07 -0.97 278.2 <b5x 10% ***
Month.std 391 241 5.60 260.1 <5x 10% ***
Xreasonl.std 2.05 1.49 2.62 253.7 <b5x 10% ***
Xlv_mv.std:newMonthx.std ~ -1.15 -1.66  -0.58 1318.2 <5x 10%  ***
Xlv_mv.std: Xreasonl.std -090 -1.36 -0.52 4474 <5x10% F**
Xin_out.std:newMonthx.std 1.26 0.87 1.67 1752.6 <5x 10%  ***
Xreasonl.std:newMonthx.std 0.99 0.13 1.82 2709 <1,6x10° *
Xlv_mv.std:Month.std 1.73 0.98 2.46 1216.9 <5x 10%  ***
Xin_out.std:Month.std -1.23 -1.72  -0.67 1748.1 <5x10%  ***
Xreasonl.std Month.std -1.30 -2.66 -0.08 2499 <3,9x10° *
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Figure 4.14 Trace & Density Plots of Variance Component (top) and Residual
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The trace and density plots for the all effects of fixed and interaction can be seen at
Appendix-C. According to Figure 4.14, there are not any trends at the trace plot for
variance component. It is an evidence for converging the model. Similarly, the residual
variance component seems to be converged, too. In the plot, units implicates that
residuals. that MCMCglmm function always handle with over-dispersion problem
(Hadfield, 2010). To check over-dispersion, it needs to be looked at the density plot
of residuals. The mean of the density of residuals is not equal to O. It is close to 0.8.

It means that the model can deal with over-dispersion problem.

In addition, the results of Geweke test (see section 3.2.1.3) have been offered below
(Table 4.8) to provide a check of the convergence status of the model. The test results
also support the output of the trace and density plots. According to Geweke’s test,
none of the Geweke statistics take z-score greater than upper bound (1.96) or less than
lower bound (-1.96), which indicates that posterior distribution converged for all the

covariates.
Table 4.8 Geweke Diagnostic Test Results for Final Implementation of Poisson
MCMCglmm.
Covariates Geweke
Diagnostic
z-score
(Intercept) 0.122
Xlv_mv.std 0.551
Xin_out.std 0.668
newMonthx.std 0.398
Xreasonl.std 0.096
Month.std -0.413
Xlv_mv.std:newMonthx.std 0.335
Xlv_muv.std: Xreasonl.std -0.815
Xin_out.std:newMonthx.std -0.230
Xreasonl.std:newMonthx.std -0.363
Xlv_mv.std:Month.std -0.370
Xin_out.std:Month.std 0.052
Xreasonl.std:Month.std 0.388
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Also, in order to check the stationary and accuracy status of the model, the results of
Heidelberger-Welch and Halfwidth Diagnostic tests (see section 3.2.1.3) have also
been presented below (Tables 4.9 and 4.10). The results of the test verify the Geweke
diagnostic and the trace-density plots. Hence, the convergences of all the covariates
of the final implementation of Poisson MCMCglmm is verified by all the diagnostics.

Table 4.9 Heidelberger-Welch Diagnostic Test’s Results for Final Implementation
of Poisson MCMCglmm.

Covariates Stationarity p-
Test value
(Intercept) passed 0.534
Xlv_mv.std passed 0.853
Xin_out.std passed 0.240
newMonthx.std passed 0.200
Month.std passed 0.165
Xreasonl.std passed 0.499
Xlv_mv.std:newMonthx.std passed 0.443
Xlv_muv.std: Xreasonl.std passed 0.734
Xin_out.std:newMonthx.std passed 0.218
newMonthx.std: Xreasonl.std  passed 0.173
Xlv_mv.std:Month.std passed 0.419
Xin_out.std:Month.std passed 0.644
Month.std: Xreason1.std passed 0.142
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Table 4.10 Halfwidth Diagnostic Test Results for Final Implementation of Poisson

MCMCgimm.
Covariates Halfwidth Mean Halfwidth
Test
(Intercept) passed -4.647 0.064
Xlv_mv.std passed 1.248 0.033
Xin_out.std passed -0.416 0.007
newMonthx.std passed -2.023 0.071
Month.std passed 3.892 0.112
Xreasonl.std passed 2.036 0.047
Xlv_mv.std:newMonthx.std passed -1.165 0.015
XIlv_mv.std: Xreasonl.std passed -0.899 0.024

Xin_out.std:newMonthx.std passed 1.276 0.009
newMonthx.std: Xreason1.std passed 0.978 0.052

XIlv_mv.std:Month.std passed 1.756 0.022
Xin_out.std:Month.std passed -1.239 0.012
Month.std: Xreason1.std passed -1.283 0.085

The previous versions of Poisson MCMCgImm had significant autocorrelation
problems. If the autocorrelation status according to the chain of the posterior
distribution is examined, it can be easily seen that the final implementation of Poisson
MCMCglmm does not have the autocorrelation problem (see the autocorrelation plots

at Appendix-C).

At the beginning of the analysis of the final implementation, the results of variance
inflation (VIF) was very high. Therefore, to cope with this problem, standardized
variables were used throughout the analysis. This solution has decreased the VIF
results (Table 4.11), (see Section 3.1.2.1). Thus, all of VIF results for each covariate
is less than 10 which can be taken as an evidence for the elimination of multi-

collinearity problem.
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Table 4.11 VIF Results of the Final Implementation of Poisson MCMCglmm

Covariates VIF

(Intercept) 1.000
Xlv_mv.std 1.000
newMonthx.std 6.072
Xreasonl.std 1.000
Xlv_mv.std: Xreasonl.std 1.000
newMonthx.std: Xreason1.std 6.072
Xin_out.std:Month.std 6.072
Xin_out.std 1.000
Month.std 6.072
Xlv_mv.std:newMonthx.std 6.072
Xin_out.std:newMonthx.std 6.072
Xlv_mv.std:Month.std 6.072
Month.std: Xreason1.std 6.072

The diagnostics expose that the model’s assumptions are verified. Therefore,

regression model of Poisson MCMCglmm (54) can be determined now.

log{E(Yij |Locati0n)} (54)
= —4.66 + 1.26X1v,,,,. std — 0.41Xin,,;. std
— 2.04newMonthx. std + 3.91Month. std
+ 2.05Xreasonl. std
— 1.15X1v,,,,. std x newMonthx. std
— 0.90X1v,,. std x Xreasonl. std
+ 1.26Xin,yy;. std x newMonthx. std
+ 0.99Xreasonl. std x newMonthx. std
+ 1.73X1v,,,. std x Month. std
— 1.23Xin,y;. std x Month. std

— 1.30Xreasonl.std x Month. std + by ,cation-
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In the model, all of covariates are used in the standardized version in order to prevent
multi-collinearity problem. The model’s main effects of the intercept, Xin out.std,
newMonthx.std and interaction effects of Xlv_mv.std: newMonthx.std, Xlv_mv.std:
Xreasonl.std, Xin_out.std:Month.std, Xreasonl.std: Month.std have negative
coefficients, whereas other main effects, interaction effects have positive coefficients.
While the covariates which have negative coefficients cause a decrease in the fitted
value of the model, the covariates which have positive coefficients cause an increase
in the fitted value of the model. In addition, variance of the random effect, which is
Diocation, IS 1.24. The variance is not too small not to affect the model’s estimation
result. This implicates that the choice of model is appropriate for the electricity

interruption dataset.

With the aim of comparing the fitted values of the first implementation and the final
implementation of the Poisson MCMCglmm using the same scenario which is given
in section 4.3.2.1, the model standardized covariates will take these values:

e Standardized Xlv_mv will take 0.99 instead of 1

e Standardized Xin_out will take -0.99 instead of 0

e Standardized Month will take -1.59 instead of 1

e Standardized newMonthx will take -0.82 instead of 0

e Standardized Xreasonl will take 1.41 instead of 1
The scenario had defined that an interruption value which occurred due to a fault of
operator in a lower voltage in an un-zoned area in January. The solution of the
regression model (54) according to this scenario is when b;,cqti0n = 0:

log{E (Y;;|Location)} = —4.41

The estimated value of the final implementation of Poisson MCMCglmm with

standardized variables equals to =0.010. It is closer to the observed value of 0 than the
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estimated value of the first implementation of Poisson MCMCgImm (see section
4.3.2.1). When other variables are the same, and only the covariate of month is
changed from January (-1.59) to July (-0.35), this situation affects the covariates
elated to the newMonthx. The value of the covariate of newMonthx hence changes
from -0.82 to -0.35. Then, log{E (Y;;|Location)} = -2.15 which is = 0.11. The
estimated value increases from January to July. Remember that observed values
increase from January to December (see Figure 4.1). This upwards movement can be
observed in the fitted values in the final implementation of the model, and it is
expected that the number of electricity interruption counts should be increased in the
second half of the year. This increase can be seen in detail at the fitted vs observed
values (see Figure 4.15).

On the other hand, when all other covariates remained same the interruption count
occurred in the medium voltage area instead of the lower voltage area: the
standardized Xlv_mv is taken -0.99 instead of 0. Then, the solution of the Poisson
MCMCgImm regression gives a smaller value (log{E (Y;;|Location)} = -17.15). The
estimated value converges closely to 0. The result indicates that the probability of an
interruption in January due to the operator fault, in un-zoned area, in the medium
voltage network, is so low, whereas in low voltage network, this probability is more
likely to occur. On the other hand, the scenario might occur in a zoned area instead of
un-zoned, and then the estimated value is increased. Except for the reason of operator,
the estimated value always increases. It means that the probability of the interruption
counts may be higher due to reasons related to security and external factors.

86



50

ObservedValues
40

10

20 30 40 50

FittedValues Poisson

Figure 4.15 Plot for Fitted vs Observed Plot of the Final Implementation of Poisson
MCMCglmm

Figure 4.15 shows that fitted values around zero and it implicates that the fitted values
are increasing parallel with observed values. However, it can be clearly seen that the
residuals spread from -10 up to +10 at the residual plots. It can be originated from the
number of observed values. The number of observations are really insufficient for
large interruptions. In the dataset, the number of observed values which are equal to

10 and bigger than 10 is only 18.
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Figure 4.16 Residual Plots vs Fitted Values and Covariates for the Final
Implementation of Poisson MCMCglmm

The residual plots above demonstrate that the residuals are increasing between June
and December. To eliminate these differences, piecewise indicator variable which is
newMonthx are added. The piecewise variable causes decreases in the residuals after
May. Consequently, even though it cannot be completely eliminated, it should be

noted that it makes significant changes to the first implemented models.
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Figure 4.17 Plot of the Fitted Values of Final Poisson MCMCglmm vs. Month

In order to observe success of the final Poisson model, it is beneficial to compare
Figure 4.1 and Figure 4.17. Figure 4.17 shows the fitted values according to Month
variable. Figure 4.17 and Figure 4.1 seem close to each other. The final Poisson
MCMCglmm estimate the biggest observation of the dataset as about 45. In addition,
the fitted values is getting higher after June mostly. It means that piecewise indicator

variable provides increasing of fitted values properly.
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Figure 4.18 Plot of Fitted Values for Final Poisson MCMCglmm vs Location

The success of the final Poisson MCMCglmm can be seen at Figure 4.18. In order to
understand the differences between observed vs fitted values, Figures 4.18 and 4.2 can
be evaluated. The plots seems close to each other. To illustrate, we expect to exist the
biggest fitted value in city center. According to Figure 4.18, fitted value of the model
exist in the city center. The towns of Orta, Ilgaz, Kizilirmak and Cerkes have other
bigger fitted values like being in the observed dataset. Under this results, we may say

that final Poisson MCMCgImm can explain the dataset correspondingly.
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4.3.3.2 Final Implementation of Zero-Inflated Poisson MCMCglmm

Although the final implementation of Poisson MCMCglmm has satisfactory

convergence status, the residuals of the model are still a bit high. Zero-inflated Poisson

MCMCglmm is attempted to fix this problem. These ZIP models have two processes:

named distribution (here Poisson) and zero-inflated (see section 3.4.1). Therefore,

firstly all of covariates were run for each of the processes. However, the covariates for

zero-inflated process did not give any significant results except for the intercept (Table

4.12).

Table 4.12 Summary Table for the Final Implementation of Zero-Inflated Poisson

MCMCglmm
Coefficients Post |- u- Efficient p-
Mean 95% 95% Samples MCMC
Cl Cl

Intercept_Poisson Process -463 -544 -3.87 2000 <5x10%  *x*
Intercept_Zerolnflated -3.80 -7.90 -5.14 2.689 <5x10% ***
Xlv_mv.std! 123 0.65 1.85 2000 <5x10% ***
Xin_out.std* -041 -0.72 -0.12 2000 1.4x102 *

newMonthx.std* -2.03 -3.14 -099 1851.88 <5x10% ***
Month.std* 391 239 5.68 1831.41 <5x10%* ***
Xreason1.std! 202 145 263 2000 <5x10% ***
Xlv_mv.std:newMonthx.std* -1.15 -1.71 -0.65 2000 <5x10% ***
XIlv_mv.std: Xreason1.std* -0.89 -1.33 -0.48 1856.51 <5x10% ***
Xin_out.std:newMonthx.std* 127 0.89 1.70 2000 <5x10% ***
Xreason1.std:newMonthx.std* 0.99 012 184 1846.39 8x10°% **
Xlv_mv.std:Month.std* 1.74 105 250 2000 <5x10% ***
Xin_out.std:Month.std* -1.23  -1.80 -0.72  2297.97 <5x10% ***
Xreason1.std:Month.std* -1.30 -2.65 -0.05 1846.42 29x102 *

*The superscript ! and 2 define the level of the process that * implicates as Poisson

process and 2 implicates zero-inflation process.

Even though intercept of zero-inflated process is significant at the summary table, this

does not imply that the model has good convergence. Trace and density plots along

with convergence test showed that the second process of the model did not converge

91



very well. For this reason, the number of iteration and thinning interval were increased
step by step. The summary table given as Table 4.12 shows the results when number
of iterations was 50,000,000 and thinning interval was 25,000. In addition, it should
be noted that this number of iterations and thinning interval include the last and the
highest values of the analysis over a period that continue throughout four days. After
this, it was realized that from that point onwards it is not possible to have appropriate
convergence anymore, even if the number of iterations and thinning interval are
increased. However, the intercept of zero-inflated process still does not converge
completely. Trace and density plots, Geweke, Heilderberger-Welch tests show this
result in detail (see Figure 4.19, Table 4.13, Table 4.14 and Table 4.15).
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Figure 4.19 Trace & Density Plots of Variance Component (top) and Residual
Variance Component (below) for the Final Implementation of ZIP MCMCglmm
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The results of Geweke Diagnostic show that all of the covariates except for the
intercept of zero-inflated process are in the interval of the diagnostic which is between
-1.96 and 1.96. Although number of iterations and thinning interval were increased,
the result of Geweke diagnostic did not change. Eventually, this situation suggests the
possibility that the data may not be suitable for the zero-inflated distribution.

Table 4.13 Geweke Diagnostic Test Results for Final Implementation of Zero-
Inflated Poisson MCMCglmm.

Covariates Geweke
Diagnostic

z-score

Intercept_Poisson Process 0.568
Intercept_Zerolnflated 3.514
Xlv_mv.std! 0.304
Xin_out.std? 1.324
newMonthx.std* 0.978
Month.std* -0.687
Xreason1.std! -0.485
XIv_mv.std:newMonthx.std* 0.490
XIv_mv.std: Xreason1.std* -0.006
Xin_out.std:newMonthx.std* -0.742
newMonthx.std: Xreason1.std* -0.308
XIv_mv.std:Month.std* -0.695
Xin_out.std:Month.std* 0.478
Month.std: Xreason1.std* 0.246

According to Geweke diagnostic, intercept of zero-inflated cannot converge very well.
In parallel with Geweke diagnostic, stationary and accuracy diagnostic which is
Heilderberger-Welch test gives the same results. In zero-inflated models, this kind of

converge problems are frequently observed (Hadfield, 2010).
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Table 4.14 Heidelberger-Welch Diagnostic Test’s Results for Final Implementation
of Zero-Inflated Poisson MCMCglmm.

Covariates Stationarity = p-value
Test
Intercept_Poisson Process passed 0.340
Intercept_Zerolnflated failed 0.048
XIlv_mv.std* passed 0.408
Xin_out.std* passed 0.413
newMonthx.std* passed 0.163
Month.std* passed 0.339
Xreason1.std* passed 0.300
Xlv_mv.std:newMonthx.std* passed 0.124
XIv_mv.std:Xreason1.std* passed 0.675
Xin_out.std:newMonthx.std* passed 0.294
newMonthx.std:Xreasonl.std!  passed 0.799
Xlv_mv.std:Month.std* passed 0.070
Xin_out.std:Month.std* passed 0.295
Month.std: Xreason1.std? passed 0.786

Table 4.15 Halfwith Diagnostic Test Results for Final Implementation of Zero
Inflated Poisson MCMCglmm.

Covariates Halfwidth Mean Halfwidth
Test
Intercept_Poisson Process passed -4.633 0.018
Intercept_Zerolnflated <NA> NA NA
Xlv_mv.std? passed 1.233 0.013
Xin_out.std* passed -0.413 0.006
newMonthx.std* passed -2.039 0.025
Month.std* passed 3.916 0.039
Xreasonl.std* passed 2.028 0.013
Xlv_mv.std:newMonthx.std* passed -1.158 0.012
XIlv_mv.std: Xreason1.std* passed -0.891 0.010
Xin_out.std:newMonthx.std* passed 1.270 0.009
newMonthx.std:Xreasonl.std®  passed 0.991 0.020
Xlv_mv.std:Month.std* passed 1.747 0.016
Xin_out.std:Month.std* passed -1.233 0.011
Month.std: Xreason1.std* passed -1.301 0.030
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To check the multi-collinearity problem, VIF results must be evaluated (Table 4.16).
All the VIF results of the covariates are less than 10 (see section 3.1.2.1). Multi-

collinearity problem is not observed in the model.

Table 4.16 VIF Results of the Final Implementation of Poisson MCMCglmm

Covariates VIF

Intercept_Poisson Process 1.000
Intercept_Zerolnflated 1.000
Xlv_mv.std! 1.000
Xin_out.std? 1.000
newMonthx.std* 6.072
Month.std* 6.072
Xreason1.std! 1.000
Xlv_mv.std:newMonthx.std* 6.072
Xlv_mv.std: Xreason1.std* 1.000
Xin_out.std:newMonthx.std* 6.072
newMonthx.std: Xreason1.std* 6.072
XIv_mv.std:Month.std* 6.072
Xin_out.std:Month.std* 6.072
Month.std: Xreason1.std? 6.072

As can be observed from the values covariates have in the summary table, while the
covariates of  Xlv_mv.std, Month.std, Xreasonl.std as well as
Xin_out.std:newMonthx.std, Xreasonl.std:newMonthx.std and
Xlv_mv.std:Month.std have positive coefficients, other covariates do not have
positive coefficients. Since the standardized variables are used, the covariates can take
negative values, too. For example, the covariate of Xlv_mv.std can take -0.99 instead
of 0, which is the interruption count in medium voltage area, then the covariate has
decreasing effect on the model response log(4;). Otherwise, in medium voltage area,
it would take -0.99, and would have positive increasing effect on the response.
Therefore, to evaluate the changes on the response variable, it would be beneficial to

go over the estimation of the regression model of ZIP(55) and (56) :
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For the Poisson process (55):

log(A;|Y;;) = —4.63 + 1.23Xlv_mv. std — 0.41Xin_out.std —  (55)
2.03newMonthx. std + 3.91Month. std + 2.02Xreasonl. std —
1.15Xlv_mv. std x newMonthx. std —

0.89Xlv_mv. std x Xreasonl. std +

1.27Xin_out. stdx newMonthx. std +

0.99newMonthx. stdxXreason1. std +

1.74Xlv_mv. std x Month. std - 1.23Xin_out. std x Month. std —
1.30Month. std x Xreason1.std + b, ocarion-

For the zero-inflated process (56) :

Wo
1—wy

(56)

logit(wy) = log( ) = —3.80

The scenario which was implemented to the first implementation of Poisson
MCMCglmm (55) was the electricity interruption, occurring due to a fault of the
operator in a low voltage and non-urban area in January. To evaluate the final
implementation of ZIP MCMCglmm, this scenario is calculated with the new model.
The observed value equals to zero. For this reason, zero-inflated process (56) estimates
wy gives the P(Yi=0) as =0.021. On the other hand, Poisson process (55) calculates
the log(1;]Y;;) = —6.89. Therefore, the model estimates the expected number of

interruptions as =1,01.
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Figure 4.20 Plot for Fitted vs Observed Plot of the Final Implementation of Zero-
Inflated Poisson MCMCglmm

Fitted vs observed plot (Figure 4.20) of the final implementation of ZIP MCMCglmm
seems so close to the plot of the final implementation of Poisson MCMCglmm’s plots.
In this situation zero-inflated process is seen not to converge very well. Nevertheless,
to overcome this convergence problem and improve the results, hurdle models which

usually indicate better convergence status should be tried here.

Consequently, the only problem that occurs in the final implementation of Poisson
MCMCglmm is the high residuals. It was supposed that the final implementation of
ZIP MCMCglmm might solve this problem; however, as can be seen on the residual
plots of the ZIP MCMCglmm, the model is not able to solve this problem (Figure
4.21).
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Figure 4.21 Residual Plots of the Final Implementation of ZIP MCMCglmm

4.3.3.3 Hurdle Poisson MCMCglmm

According to the literature, hurdle models have better convergence than the zero-
inflated models since hurdle model have the ability to handle not only zero-inflation
but also zero-deflation. (see section 3.4.2) In previous section, the final
implementation of zero-inflated Poisson MCMCglmm had convergence problem on
zero-inflation process. To fix this problem, hurdle Poisson MCMCglmm is

implemented to our Bayesian data analysis.

At first, the model’s diagnostics showed convergence problem in which number of
iteration is 1,000,000 and thinning interval is 500. Then, the values of them has been
increased progressively like zero-inflation Poisson MCMCglmm. After that, the
model converge the posterior distribution when the number of iterations is 10,000,000

and thinning interval is 7,500. These values are small than the number of iterations
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and thinning interval of the zero-inflated model given in previous section (see section

4.3.3.2). The summary table of significant covariates can be seen below (Table 4.17).

Table 4.17 Summary Table of Hurdle Poisson MCMCglmm

Post 1-95% u- Efficient p-MCMC
Mean Cl 95% Samples

Cl

Intercept_Poisson Process 0.27 -048 1.11 73.87 5.06x10?
Intercept_Hurdle Process 285 253 316 124.11 <5x10% ***
Xlv_muv.std? -1.29 -2.08 -0.60 94.40 <5x10% *xxk
Xlv_muv.std? -0.45 -0.80 -0.12 132.14 5x 103 **
Xin_out.std?! -0.30 -0.79 0.22 351.39 2.19x 107!
Xin_out.std? 0.40 0.12 0.71 172.51 9x 103 **
newMonthx.std?! -0.97 -2.24 0.39 84.41 1.38x101
newMonthx.std? 130 0.68 1.83 113.86 <5x10% ***
Month.std? 201 -0.09 3.81 69.31 2.2x10% *
Month.std? -2.73 -3.48 -1.95 86.72 <5x10% *xx*

Xlv_mv.std:newMonthx.std® -1.93 -3.22 -0.71 76.51 <5x10% R
Xlv_mv.std:newMonthx.std> 1.18 0.61 1.80 96.10 <5x10% R

Xlv_mv.std:Month.std?! 3.17 135 5.22 78.01 <5x10%
Xlv_mv.std:Month.std? -1.68 -2.42 -0.82 72.78 <5x10% Hkx*
Xin_out.std:newMonthx.std® 1.20 0.41 196  495.51 3x103  **
Xin_out.std:newMonthx.std> -0.85 -1.35 -0.31 121.94 <5x10% ***
Xin_out.std:Month.std* -1.36 -2.45 -0.29 380.41 1.3x102  *
Xin_out.std:Month.std? 0.78 0.12 1.46 91.79 1.7x102%  *

*The superscript ! and 2 define the level of the process that * implicates as Poisson

process and 2 implicates Hurdle process.

Hurdle models have two process like the zero-inflation models as well. For this reason,
the variables of the model were run for the each process. Except of the covariates of
the intercept, Xin_out.std and newMonthx.std for the Poisson process, all the
covariates are significant. Although both Xin_out.std and newMonthx.std are not
significant, they cannot be eliminated from the analysis because of the interaction

effects.
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When looking at the differences of the same covariates in hurdle and Poisson process,
intercepts of the processes take positive coefficients. However, the covariate of
Xlv_muv.std of each process takes negative coefficients. It is understood that intercepts
always increase the fitted value since using the log link for Poisson process and logit
link for the hurdle process. However, while the covariate of XIv_mv.std increases the
fitted value in medium voltage area (-0.99), it decreases the fitted value in low voltage
(0.99) area.

Next, it is understood that the model converge very well. In addition, it is not observed
any autocorrelation between lags (see Appendix-C). Geweke diagnostic and
Heilderberger-Welch diagnostics show this converge in detail for each of covariate
(see Table 4.18 and Table 4.19).
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Table 4.18 Geweke Diagnostic Test Results for Hurdle Poisson MCMCglmm.

Covariates Geweke
Diagnostic

z-score

Intercept_Poisson Process -0.735
Intercept_Hurdle Process -1.403
Xlv_mv.std* -0.248
XIv_mv.std? -1.007
Xin_out.std* 0.476
Xin_out.std? -0.933
newMonthx.std* -0.610
newMonthx.std? -0.956
Month.std! 0.540
Month.std? 1.114
XIv_mv.std:newMonthx.std* -0.425
XIv_mv.std:newMonthx.std? -1.675
Xlv_mv.std:Month.std* 0.391
XIv_mv.std:Month.std? 1.829
Xin_out.std:newMonthx.std* 0.279
Xin_out.std:newMonthx.std? 0.109
Xin_out.std:Month.std* -0.449
Xin_out.std:Month.std? 0.104

According to Geweke diagnostic, it can be seen that z-scores for all of covariates are
between the interval (-1.96 and 1.96).
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Table 4.19 Heidelberger-Welch Diagnostic Test’s Results for Hurdle Poisson

MCMCglmm.

Covariates Stationarity p-

Test value
Intercept_Poisson Process passed 0.717
Intercept_Hurdle Process passed 0.603
XIlv_mv.std* passed 0.664
XIlv_mv.std? passed 0.866
Xin_out.std* passed 0.228
Xin_out.std? passed 0.652
newMonthx.std* passed 0.632
newMonthx.std? passed 0.501
Month.std* passed 0.671
Month.std? passed 0.433
XIlv_mv.std:newMonthx.std® passed 0.778
XIv_mv.std:newMonthx.std?> passed 0.734
Xlv_mv.std:Month.std* passed 0.719
XIv_mv.std:Month.std? passed 0.670
Xin_out.std:newMonthx.std* passed 0.086
Xin_out.std:newMonthx.std? passed 0.887
Xin_out.std:Month.std* passed 0.052
Xin_out.std:Month.std? passed 0.962

All covariates for two processes in hurdle model passed from the stationarity
diagnostic. However, according to the Halfwidth diagnostic, there is an accuracy

problem for some covariates of the model (see Table 4.20).
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Table 4.20 Halfwidth Diagnostic Test Results for Hurdle Poisson MCMCglmm

Covariates Halfwidth Mean Halfwidth
Test
Intercept_Poisson Process failed 0.271 0.093
Intercept_Hurdle Process passed 2.853 0.028
Xlv_mv.std* passed -1.295 0.077
XIlv_mv.std? passed  -0.451 0.029
Xin_out.std* passed  -0.303 0.026
Xin_out.std? passed 0.404 0.023
newMonthx.std* failed -0.978 0.148
newMonthx.std? passed 1.303 0.056
Month.std* failed 2.011 0.243
Month.std? passed  -2.731 0.085
XIv_mv.std:newMonthx.std* passed -1.937 0.147
XIv_mv.std:newMonthx.std? passed 1.182 0.063
XIv_mv.std:Month.std* passed 3.179 0.223
XIv_mv.std:Month.std? passed -1.680 0.096
Xin_out.std:newMonthx.std* passed 1.205 0.035
Xin_out.std:newMonthx.std? passed -0.852 0.047
Xin_out.std:Month.std* passed  -1.369 0.055
Xin_out.std:Month.std? passed 0.787 0.070

In order to check the multi-collinearity status, values of the VIF is figured up.
According to VIF, there is no any covariate which causes the multi-collinearity

problem, since all the VIF values of each covariate is less than 10 (see Table 4.21).
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Table 4.21 VIF Results of Final Implementation of Poisson MCMCglmm

Covariates VIF
Intercept_Poisson Process 1.000
Intercept_Hurdle Process 1.000
XIv_mv.std* 1.000
XIv_mv.std? 1.000
Xin_out.std* 1.000
Xin_out.std? 1.000
newMonthx.std* 6.072
newMonthx.std? 6.072
Month.std* 6.072
Month.std? 6.072

XIv_mv.std:newMonthx.std?  6.072
XIv_mv.std:newMonthx.std>  6.072
XIv_mv.std:Month.std* 6.072
XIv_mv.std:Month.std? 6.072
Xin_out.std:newMonthx.std*  6.072
Xin_out.std:newMonthx.std>  6.072
Xin_out.std:Month.std* 6.072
Xin_out.std:Month.std? 6.072

The diagnostic checks have shown that except the accuracy problem for three
covariates, all of the covariates converge to the posterior distribution in hurdle Poisson
MCMCglmm. Next, it needs to be looked at the regression model for the estimation.

Hurdle regression model has two process like ZIP models (see section 3.4.2). One of
them is named distribution (here is Poisson) and the other is hurdle process. According

to the summary table, the open form of the hurdle regression model such as:
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For the hurdle process (57):

logit(w,|Y;;) = 2.85 — 0.45XIv_mv. std + 0.40Xin_out.std  (57)
+ 1.30newMonthx. std — 2.73Month. std
+ 1.18XIlv_mv. std x newMonthx. std
— 1.68Xlv_mv. std x Month. std
— 0.85Xin_out. std xnewMonthx. std
+ 0.78Xin_out. std x Month. std

For the Poisson process (58):

log(2;;]Y;;) = 0.27 — 1.29X1vp,,. std — 0.30Xin,y,. std (58)
— 0.97newMonthx. std + 2.01Month. std
— 1.93X1v,,,,. std x newMonthx. std
+ 3.17X1vy,,. std x Month. std
+ 1.20Xin,y;. std x newMonthx. std

— 1.36Xin,y;. std x Month. std + byycation-

When the random effect takes 0, b; pcarion = 0, the scenario which was the electricity
interruption of occurring due to a fault of the operator in a low voltage and non-urban
area in January is calculated with hurdle model. The observed value equals to zero.
Under these conditions, zero counts generated from the hurdle process and positive
counts are generated by using truncated-Poisson process. According to the hurdle
process, probability of observing 0 is (57) w, = 0.99. The result of the hurdle process
says that the probability of existing the electricity interruption under these conditions
is 0.99. The probability of observing positive counts which is 1- w, equals to 0.01.
After all probabilities are calculated, the expected mean value is =0.00094 according

to the model. It means that from the model fitted value is so close to O.

The fitted vs observed plot gives a better opinion about the model (see Figure 4.22).
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Figure 4.22 Fitted vs Observed Values Plot of Hurdle Poisson MCMCglmm

According to fitted vs observed values plot and residual plots, the residuals are higher
than the final implementation of Poisson and ZIP MCMCgImm. The model can
estimate 12 when an observed value is 0. This situation can be evaluated at residual
plots in detail (Figure 4.23). Especially, in the residual plot of Month after June and
newMonthx, the residuals’ distributed range is higher than the previous models given

in the section.

To sum up, according to the literature, hurdle model are expected to be mixing better
than the ZIP models. However, this situation does not guarantee that the estimation

gives better results than others.
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Figure 4.23 Residual Plots vs Covariates for Hurdle Poisson MCMCglmm

4.3.4 Posterior Predictive Checks and Comparison of the Final Models of
Poisson, Zero-Inflated Poisson and Hurdle Poisson MCMCglmm

In previous sections, 7 different models and their specifications were given. In first
place, in section 4.3.2, the first implementation of Poisson MCMCglmm and Zero-
Inflated Poisson MCMCgIlmm without any interaction or other variables were
explained separately. It was seen that the models were not enough to estimate some
observed values and some diagnostic checks did not provide satisfactory results.
Therefore, in section 4.3.3, significant interaction effects and piecewise indicator
variable were added to the first implementation of Poisson and Zero-Inflated Poisson
MCMCglmm. Thirdly, according to correlation relation, prior function was changed
and the variables were standardized against the multi-collinearity problem. Then, the

number of iterations and thinning intervals were customized against the
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autocorrelation problem in the final implementation of Poisson and zero-inflated

Poisson, and also the implementation of hurdle Poisson MCMCglmm was added.

Actually, the models were given in section 4.3.2 and section 4.3.3 show the
development process of our data analysis. They showed the model problems and gave
the possible solutions to us. Therefore, it is not necessary to compare the models given
in the sections 4.3.1 and 4.3.2. However, the final implementation of Poisson and ZIP

MCMCglmm and hurdle Poisson MCMCglmm need to be compared in detail.

To compare the models, the first method is posterior predictive check. Method
depends on simulating data from the fitted model and comparing it to observed data
(Gelman et al., 2014). To achieve this, 1000 sets of replicated dataset from each of
fitted model are simulated. For different ranges of observed value, the number of
replicated data bigger than the observed value is calculated, and then divided by 1,000
(59).

P(T(Yrep, 6) > T(y) (59)
p — valueggyesian = (P( (yrep ) Y )/1000

where 6 is unknown model parameters, T(y) is denoted as captured measurement
from the observed data, and T (yr¢p, 6) is denoted as replicated data from the fitted

model. The p-values that are smaller than 0.05 or bigger than 0.95 suggest that the
model is generating data different from observed data.

Therefore, the method of posterior predictive check is applied for different ranges of
the observed data (see Table 4.22).
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Table 4.22 Posterior Predictive Checks for Final Implementation of Poisson, ZIP
and Hurdle Poisson MCMCglmm

POSTERIOR PREDICTIVE

CHECKS
Model*/ Poisson ZIP  Hurdle
Count Poisson
Range
=0 0.791 0.768 0
>0 0.192 0.2 1
>5 0.303 0.313 0.773

>10 0.305 0.308 0.268
>15 0.347 0386 0.075
>20 0.189 0.164 0.026

Regarding the Poisson and ZIP models, p-values of the predictive checks are very
similar to each other. In this case, it can be understood that the final implementation
of ZIP model is using its Poisson process mostly in their modelling stage. In order to
understand this hypothesis, it is beneficial to look at the posterior predictive histogram
of the final implementation of Poisson MCMCglmm (see Figure 4.24). In Figure 4.24,
the number of observed values equal to 0 exist at the middle of the histogram which
are generated from the fitted values from the final implementation of Poisson
MCMCglmm. This situation means that the final implementation of Poisson

MCMCglmm can be seen adequate for modeling the dataset.

On the other hand, when looking at the p-values of hurdle Poisson for each count
range, it is realized that the hurdle cannot satisfactorily generate values equaled to
zero. The dataset has excess zeros whose percentage is 83.4%, but the model cannot
generate that much fitted values equal to zero. Next, the model is also not able to
satisfactorily generate fitted values bigger than 0. It is understood here that the hurdle
model generate the fitted values so close to zero, but it is never able to generate the

fitted values which equal to zero.
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Figure 4.24 Posterior Predictive Histogram of the Final Implementation of Poisson
MCMCglmm

To conclude that, posterior predictive checks show that the final implementation of
both Poisson and ZIP MCMCglmm has satisfactory estimation of the electricity

interruption dataset.

Deviance Information Criterion is another evaluation method for comparison of the
Bayesian models. The deviance “D” is defined as (60):
D = —2log(Prob(y|Q)) (60)

where ( is parameter set of the model. In MCMCglmm package, the mean deviance
which is D is calculated over all iterations. It is the mean of the latent variables, the
R-structure and the vector of fixed and random effects. The deviance is evaluated at
the mean estimation of the parameters. (D(Q)) (Hadfield, 2010). Then, the deviance

information criterion (61) is that:
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DIC = 2D —D(Q) (61)

To compare the final implemented models, the results of DIC (61) are given (see Table
4.23). The minimum DIC gives the best model. In this case, the DIC of Poisson
MCMCglmm has the minimum DIC value. Then, second preferable model is the final
implementation of ZIP MCMCglmm. Unfortunately, hurdle Poisson MCMCglmm
has the worst value of DIC.

Table 4.23 Deviance Information Criterion for Final Implementation of Poisson,
ZIP and Hurdle Poisson MCMCglmm

Poisson ZIP Hurdle
DIC 166251 1664.296 1946.685

In section 4.3.3, the number of iterations and thinning intervals of the final
implementation of the models was customized for their autocorrelation status. Hence,
the estimation time of the models were different as well (see Table 4.24). When
looking at the computational time table, the longest time belong to the final
implementation of ZIP MCMCglmm. Then, the computational time of hurdle Poisson
follows the computation time of ZIP MCMCgImm secondly. Thirdly, the final

implementation of Poisson MCMCglmm has the shortest computation time.

Table 4.24 Computation Time of Final Implementation of Poisson, ZIP and Hurdle
Poisson MCMCglmm

System  Poisson ZIP Hurdle
Time Poisson
(second)

User 3670.08 38515.78 12225.26
System 12346 4279.53 271.21
Elapsed 3811.55 36945.98 12523.06

To conclude that, according to posterior predictive checks, DIC, and computational
time of the models, the final implementation of Poisson MCMCglmm is the best
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model for this electricity interruption data. In spite of the literature, Poisson
distribution gave better estimation than ZIP and hurdle models for the dataset which

includes %83.4 of zero entity.
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CHAPTER 5

CONCLUSION

This study aimed to give a framework of evaluation and estimation for the electricity
interruption dataset which is published by the local electricity distribution companies
in Turkey. Electricity interruption counts were analyzed by depending on in the frame
of longitudinal data analysis and Bayesian inference. At the end of the study, it was
realized that Poisson distribution was adequate for analyzing this type of longitudinal
data which has 83.4% of excess zero. The data analysis were conducted in the
statistical tool of R software and its package of MCMCglmm. The MCMCglmm
package which was published in 2016 is developed by Jarrod Hadfield and its
development process is still continued by him (Hadfield, 2016).

In the final implementation of Poisson MCMCglmm:
e Probability of electricity interruption increases from January to July.
e Probability of electricity interruption is higher in the low voltage network than
medium voltage network.
e Probability of electricity interruption is bigger in a zoned area than in un-zoned

area.

In the first place, the probability of electricity interruption is lower in January than
July. It is reasonable since the electricity consumption is getting higher in summer
season because rapid voltage changes related with higher electricity consumption
cause the electricity interruptions in the network more frequently in summer season.
Next, the probability of electricity interruption is bigger in low voltage network. This
result can be explained with infrastructure of the electricity network. Low voltage

network consist of many electricity network components, and also connection
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components. Therefore, the probability of being broken down a component is higher.
Also, the electricity infrastructure, and also quality of components are lower in the
low voltage network than the medium voltage network. Moreover, low voltage system
is more open for illegal interventions causing by residents. All of these reasons make
the probability of electricity interruption is getting higher. Thirdly, the probability of
electricity interruption is also higher in zoned area than in un-zoned area since voltage
changes are observed more frequently in zoned area. The voltage changes made by
operators in substations and distribution centers increase the probability of electricity
interruptions in zoned area. However, the electricity consumption is little in un-zoned
area since population density is very low. Instead of population density, electricity
distribution lines exist in un-zoned area, and the components of electricity distribution
lines have better quality than the components of low voltage network. These situations

make the probability of electricity interruption increase in zoned area.

5.1 Limitations of the study

During the data analysis process, some limitations has been arisen:

e The package of MCMCglmm could not support the Negative Binomial
distribution which is suggested by the literature as an alternative distribution
to Poisson and zero-inflated Poisson. Therefore, negative binomial distribution
could not be used in our data analysis (Hadfield, 2016).

e Although the number of iterations and thinning intervals were customized
according to the models, autocorrelation problem of zero-inflated process in
the final implementation of ZIP MCMCglmm could not be solved by us.

e Also, instead of increasing number of iteration and thinning interval, centering
method was tried to solve autocorrelation problem for previous
implementations of the models. However, this method could not be successful

for solving the autocorrelation problem (see Appendix-D).
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Even if hurdle models are suggested by the literature for good converge status,
the hurdle Poisson MCMCglmm could not be give the best estimation result
in our data analysis.

Although the data structure is constituted by EMRA with the regulation
published in 2008, the regulation is not enough to standardize the electricity
interruption datasets which are published by the local electricity distribution
companies for data analysis. Hence, it needs to be improved.

In zero-inflated models, zeros of data is expected to be around 30% of the total
data (Hadfield, 2016). However, the dataset used in this study has 83.4% of
total observation being zero. This situation can explain why the final ZIP
MCMCglmm did not fit very well for zero-inflated process. However, there is
not any limitation for the percentage of zero observation in the literature
according to our knowledge. For this reason, this study also gives the
information that ZIP models may not fit very well when zero observation is
that high.

5.2 Future Studies

When looking at the Turkish electricity literature, the studies generally focused on the

consumption of electricity by users. There is not so much study about the data analysis

of electricity interruption to the best of our knowledge. In order to increase this type

of studies, the datasets which is constituted by the local electricity distribution

companies are precious resources.

The electricity interruption datasets which are published by local electricity

distribution companies have many information about electricity interruptions. Some

of them are:

Duration of electricity interruptions
Type of electricity component which causes the electricity interruption

The number of residents who are affected from electricity interruption
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If these resources might be modelled with appropriate data analysis techniques, it
might give valuable information about the electricity interruptions to the decision
makers and authorities. Moreover, these models might be used to predict the future
electricity interruptions in the future. Second, cost of loses due to electricity
interruptions can be predicted in a future study. Also, these analysis might be
conducted and evaluated together for other datasets which belong to different local
distribution companies if the standardized data conditions can be provided by EMRA
and TEDAS. Consequently, we hope that this study will give a key for the researchers

who study in this area to discover new resources and statistical technique.
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APPENDICES

A. DIAGNOSTIC CHECKS FOR THE FIRST IMPLEMENTATION OF
THE MODELS

1. Diagnostic Checks for the first implementation of Poisson MCMCglmm
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20 30
0.8
T T N

0.4

10
on

T T T T T
10000 0000 0000

erstons N=4700 Banowi®th= 006575

Trace of units Density ofunits

20

1.0 15 2.0
10

0.0
L

T T T T T
10000 30000 0000

teratbns N=4T00 Banowidth= 003355

Figure A.1 The trace and density plots of posterior distributions of (co)variances

matrices of the first Poisson MCMCglmm.

The second diagnostic check of the model will be the queue of autocorrelation (Figure
A2).
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Figure A.2: The visual diagnostic checking for autocorrelation status the first

implementation of Poisson MCMCglmm.

2. Diagnostic Checks for the first implementation of Zero-Inflated Poisson
MCMCglmm
The first diagnostic check’s results are given in the Figure A.3 below. Trace and

Density plots of two latent variable are: Poisson and Zero-Inflated.
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Figure A.3 Trace and Density Plots of 2 latent variable: Poisson and Zero-Inflated.
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Figure A.4 The visual diagnostic checking for autocorrelation status the first

implementation of Zero-Inflated Poisson MCMCglmm.
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B. DIAGNOSTIC CHECKS FOR THE POISSON AND ZIP MODELS
WITH INTERACTION EFFECTS AND PIECEWISE INDICATOR
VARIABLE

1. Diagnostic Checks for the Poisson MCMCglmm with Interaction Effects and

Piecewise Indicator Variable

Trace of Location Density of Location

Figure B.1 Trace and density plots of posterior distributions for Poisson
MCMCglmm with interaction effects and indicator variable.
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Figure B.2 Autocorrelation plots of Poisson MCMCglmm with interaction effects

and piecewise indicator variable
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2. Diagnostic Checks for the ZIP MCMCglmm with Interaction Effects and
Piecewise Indicator Variable
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Figure B.3 Trace and density plots of posterior distribution of Zero-Inflated Poisson

MCMCgImm with interaction effects and piecewise indicator variable
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Figure B.4 Autocorrelation Plots for Zero-Inflated Poisson MCMCglmm

-

with interaction effects and piecewise indicator variable
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C. DIAGNOSTIC CHECKS FOR THE FINAL IMPLEMENTATION OF

POISSON AND ZIP MODELS

1. The final implementation of Poisson MCMCglmm
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Figure C.1 Trace and Density Plots for the final implementation of Poisson

MCMCglmm with interaction effects and piecewise indicator variable
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Figure C.1 Continue Trace and Density Plots for the final implementation of

Poisson MCMCgImm with interaction effects and piecewise indicator variable
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1.2 Autocorrelation Plots of the final implementation of Poisson MCMCglmm
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Figure C.2 Autocorrelation Plots for the final implementation of Poisson

MCMCglmm with interaction effects and piecewise indicator variable
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2. The final implementation of zero-Inflated Poisson MCMCglmm
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Figure C.3 Trace and Density Plots for the final implementation of ZIP

MCMCgImm with interaction effects and piecewise indicator variable

133



race of at.level(trait, 1):Xlv_mv.std:Xreason'ensity of at.level(trait, 1):Xlv_mv.std:Xreaso

o e iiaastciad I —

Oe+00 2e+07 4e+07 -2.0 -1.5 -1.0 -0.5

lterations N=2000 Bandwidth = 0.04555

1ce of at.level(trait, 1):Xin_out.std:newMonthhsity of at.level(trait, 1):Xin_out.std:newMon

o I Aw———— oD

Oe+00 2e+07 4e+07 0.5 1.0 1.5 20

lterations N=2000 Bandwidth = 0.04732

re of at.level(trait, 1):newMonthx.std:Xreasasity of at.level(trait, 1):newMonthx.std:Xrea:

o LI 37

Oe+00 2e+07 4es07 0 1 z 3

lterations N =2000 Bandwidth = 0.1004

Trace of at.level(trait, 1):Xlv_mv.std:Month..Density of at.level(trait, 1):Xlv_mv.std:Montt

Lo s i T B

0e+00 2e+07 4e+07 05 10 15 20 25 30

fterations N=2000 Bandwidth = 0.08714

Trace of at.level(trait, 1):Xin_out.std:Month.Density of at.level(trait, 1):Xin_out.std:Montt

5 LAn——— 2

Oe+00 2e+07 4e+07 -2.0 -1.5 -1.0 -5

terations N =2000 Bandwidth = 0.06197

race of at.level(trait, 1):Month.std:XreasonTensity of at.level(trait, 1):Month.std:Xreason

Bl T BERE SN

Oe+00 Ze+T 4g+07 -4 -3 -2 -1 0 9

terations N=2000 Bandwidth =0.1552
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MCMCglmm with interaction effects and piecewise indicator variable
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3. The Implementation of Hurdle Poisson MCMCgimm
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Figure C.5 Trace and Density Plots for the Hurdle Poisson MCMCglimm

with interaction effects and piecewise indicator variable
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Figure C.5 Continue Trace and Density Plots for the Hurdle Poisson

MCMCglmm with interaction effects and piecewise indicator variable
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Figure C.6 Autocorrelation Plots for the Hurdle Poisson MCMCglmm with

interaction effects and piecewise indicator variable
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Figure C.6 Continue Autocorrelation Plots for the Hurdle Poisson

MCMCglmm with interaction effects and piecewise indicator variable
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Figure C.7 Zoomed plots for Observed vs Fitted Values of the Hurdle

Poisson MCMCglmm with interaction effects and piecewise indicator variable

D. THE RESULTS OF MODELS FOR OTHER IMPLEMENTATION

1. Poisson MCMCglmm and Zero-Inflated Poisson MCMCglmm with Method

of Centering

In this section, centering method will be used to overcome autocorrelation problem in
developed models, which were built by adding interaction effects and slope

parameters of Poisson MCMCgImm and Zero-Inflated Poisson MCMCglmm.
Poisson MCMCglmm had autocorrelation problem (see Appendix-A). Therefore, only

autocorrelation plots of covariates of developed Poisson MCMCglmm will be

evaluated here (Figure D.1).
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Figure D.1 Autocorrelation Plots of Covariates for Poisson MCMCglmm with Using

Centering Method.

Centering Method could solve autocorrelation problem for covariates of developed
Poisson MCMCglmm by adding interaction effects and slope parameter.
Autocorrelation problem is still observed on covariates of centered Xlv_mv,
Xreasonl, Xreason2 and also in the interaction of Xlv_mv and Xreasonl.
Consequently, it is understood that autocorrelation problem in this model cannot be

solved by the methods of centering or increasing number of iterations.

1.2 Zero-Inflated Poisson MCMCglmm with interaction effects and slope

parameter by using Centering Method
There were not any differences in developed Poisson MCMCglmm with Centering

Method. Probably, this situation will be the same at developed Zero-Inflated Poisson
MCMCglmm with Centering, too. To see differences of the autocorrelation status on
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the model, autocorrelation plots of covariates will be shown below (Figures D.2 and
D.3).
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Figure D.3 Continue Autocorrelation Plots of Covariates for Zero-Inflated Poisson
MCMCgIlmm with using Centering Method

According to autocorrelation plots, centering method could not solve autocorrelation
problem in Zero-Inflated Poisson MCMCglmm with interaction effects and piecewise
indicator variable as well. In fact, autocorrelation problem had been observed only at
the covariate of Xreason2 in the first implementation of Poisson and Zero- Inflated
Poisson MCMCglmm. Even so, since generating counts did not exactly fit when
observed values were bigger than 10, the models were needed to be improved by
adding interaction effects and piecewise indicator variable parameter. During the act
of fixing and improving the strength of generating counts in models by adding
interaction effects and slope parameter, it was realized that the autocorrelation
problem was posing even a higher threat. While this result is understandable given the
situation at hand since relations between covariates increase as a consequence of
interaction effects and slope, it needs to be acknowledged that unknown relations

between covariates might cause wrong generating.
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E. APART OF ELECTRICITY INTERRUPTION DATASET
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Table E.1 A Part Of Electricity Interruption Data
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