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ABSTRACT 

 

MODELING LONGITUDINAL INTERRUPTION DATA FROM TURKISH 

ELECTRICITY DISTRIBUTION COMPANIES 

 

Korkmaz, Zülfiye Ebru 

Master of Science, Statistics 

Supervisor: Prof. Dr. Özlem İlk Dağ 

 

May 2019, 145 pages 

 

In recent years, many developments have been implemented by the players of the 

sector to provide sustainable energy flow in Turkey. One of them is the obligation of 

recording electricity interruption statistics. The Turkish energy regulatory compels 

new rules to local electricity distribution companies about recording their interruption 

statistics, including the reasons for electricity interruption, after 2003. However, all of 

the local distribution companies do not use the same standard to record these statistics. 

This situation causes complexities for decision makers and researchers for modeling 

electricity interruptions. In this study, we aimed to find appropriate longitudinal 

models for the dataset of electricity interruptions. However, the observed data in this 

study is discrete count type and most of them are zero. Markov Chain Monte Carlo 

Generalized Linear Mixed Models (abbreviated MCMCglmm), especially the type of 

zero-inflated and hurdle could be appropriate for these type of data. Therefore, 

Poisson, zero-inflated Poisson, and hurdle-Poisson distributed models were 

implemented to a real electricity interruption count dataset belonging to Çankırı in this 

study. The models have been implemented by using MCMCglmm package in R. To 

compare the models, Deviance Information Criteria (DIC) and posterior predictive 

checks were used. Geweke-Halfwidth and Heiderberger-Welch diagnostic tests were 

used to detect convergence and stationary status of the models. Despite the excessive 
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zero in the dataset, it was observed that Poisson MCMCglmm estimates were better 

than the models of zero-inflated Poisson and hurdle Poisson MCMCglmm. 

Furthermore, Poisson MCMCglmm gave better estimation results in shorter 

computational time as well. 

 

 

Keywords: Markov Chain Monte Carlo Generalized Linear Mixed Models, Poisson, 

Zero-Inflated, Hurdle, Turkish Electricity Distribution Companies, Interruption 

Statistics.  
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ÖZ 

 

TÜRK ELEKTRİK DAĞITIM ŞİRKETLERİNE AİT UZUNLAMASINA 

ELEKTRİK KESİNTİSİ VERİLERİNİN MODELLENMESİ 

 

Korkmaz, Zülfiye Ebru 

Yüksek Lisans, İstatistik 

Tez Danışmanı: Prof. Dr. Özlem İlk Dağ 

 

Mayıs 2019, 145 sayfa 

 

Türkiye’de, enerji sektörü oyuncuları tarafından son yıllarda kesintisiz enerji akışını 

sağlamak için geliştirilen birçok yeni uygulama bulunmaktadır. Bunlardan biri 

elektrik kesinti istatistiklerinin tutulması zorunluluğudur. Enerji Piyasası Denetleme 

Kurumu, Elektrik Dağıtım Şirketlerine 2003 yılı sonrası için, nedenleriyle birlikte, 

kesinti istatistiklerinin tutulması zorunluluğunu getirmiştir. Ancak, tüm elektrik 

şirketleri, bu kesinti istatistiklerinin tutulmasında aynı standardı kullanmamaktadır. 

Bu durum, karar verici ve araştırmacılar için modellemeyi karmaşık hale 

getirmektedir. Bu çalışmada, elektrik kesintisi verileri için uygun uzunlamasına 

modellerin bulunmasını amaçladık. Ancak, bu çalışmada, gözlenen veri kesinti-sayı 

tipindedir ve verinin çoğu da sıfırdır. Bu tip veriler için Monte Carlo Markov Zinciri 

Genelleştirilmiş Doğrusal Karma modeller, özellikle de sıfır arttırılmış ve engelli 

modeller uygundur. Bu çalışmada, Poisson, sıfırı arttırılmış Poisson ve engelli-

Poisson dağılım modelleri Çankırı’ya ait gerçek bir kesikli elektrik kesinti verisine 

uygulanmıştır. Modeller R’da bulunan MCMCglmm paketi kullanılarak 

uygulanmıştır. Modellerin karşılaştırılması için, sapma bilgi kriteri (DIC) ve sonraki 

tahmin kontrolleri kullanılmıştır. Modellerin yakınsama ve durağanlığını tespit 

edebilmek için Geweke- Halfwidth ve Heiderberger-Welch tanımlama testleri de 

ayrıca kullanılmıştır. Veri kümesinde aşırı sıfır gözlemlenmesine rağmen, Poisson 
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MCMCglmm, sıfır arttırılmış Poisson MCMCglmm ve engelli Poisson MCMCglmm 

modellerinden daha iyi tahminler vermektedir. Ayrıca, Poisson MCMCglmm’in daha 

iyi tahminleri daha kısa bir sürede verdiğini de belirtmek gerekir. 

 

Anahtar Kelimeler: Monte Carlo Markov Zinciri, Genelleştirilmiş Doğrusal Karma 

Modeller, Türkiye Elektrik Dağıtım Şirketleri, Arıza İstatistikleri, Sıfırı Arttırılmış 

Poisson model, Engelli Poisson model. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Authorities acknowledge that energy and especially electrical energy is the critical 

power all over the world. Significance of this critical role is increasing day by day. 

Governments not only need to provide the necessary electricity to their citizens 

anymore but also they need to provide using natural resources effectively and need to 

decrease the loss of electricity as well.    

 

When we look at the history of the electricity sector in Turkey, history had begun 

before The Republic of Turkey. In the first quarter of the 20th century, the Ottoman 

Empire could provide electricity to main and important cities of the country such as 

Istanbul, Izmir, Thessaloniki, Beirut, Sam. After the War of Independence was ended 

and The Republic of Turkey was established, Turkey could have produced only 32.7 

MW of electric power, which can be obtained from just one wind power plant today, 

in all over the country. In 1930, the total electricity power of Turkey increased to 78.8 

MW.  However, 85.200 MW of electric power can be produced in all over the country 

in 2017 (Resources, 2017). In 1935, the government took a new decision to establish 

the Authority of Electricity Business (”Elektrik İşleri Etüt İdaresi”, which is 

abbreviated as EİEİ in Turkish) for controlling the energy flow and production. After 

1950, production, transmission, and distribution, which are the three main vein of 

Electricity, were divided into different private companies. However, this attempt was 

not successful because of the economic situation of private companies. Next, another 

decision was taken for regulating electricity activities by the government: Turkish 

Electricity Institution was established by the Law no.1312 in 1970 (EMO Energy 

Comission, 1981). 
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After the 1980s, Turkish governments have begun to deregulate on the electricity 

sector and encourage privatization. Turkish Electricity Institution continued to carry 

out electricity regulations and activities until 1994. In the same year, it was divided 

into two main sub-institutions: Turkish Electricity Production-Transmission Company 

(“Türkiye Elektrik Üretim İletim A.Ş.”, which is abbreviated as TEAŞ in Turkish) and 

Turkish Electricity Distribution Company (“Türkiye Elektrik Dağıtım A.Ş.” which is 

abbreviated as TEDAŞ in Turkish) . On the other hand, the most important and radical 

progress has been realized in the electricity sector with an electricity market Law of 

2001. The main aim of the Law of 2001 is that it is allowed to vertical disintegration 

of production, transmission, and distribution, competition into production and retail 

sale, privatization of public production plants and distribution institutions and entities. 

Also, it was designed to make competitive electricity market conditions and encourage 

entrepreneurs to invest electricity components for boosting the efficiency of 

production and distribution of electricity (Özkıvrak, 2005).  

 

In 2004, the privatization of TEDAŞ was initiated. At the time, TEDAŞ had 28 billion 

customers and was selling a total of 93 million kWh of electric power in 21 separated 

electricity distribution regions. The privatization of TEDAŞ for all electricity 

distribution regions was completed in 2013. Starting from 2013, each of electricity 

distribution region belongs to different private companies and electricity distribution 

activities are conducted by them. TEDAŞ performs to follow and control the 

performances of the private electricity distribution companies with the Energy Market 

Regulatory Authority (EMRA, 2008; Ertilav & Aktel, 2015). EMRA was established 

according to the Law of 2001 (Özkıvrak, 2005). It conducts the regulations of the 

energy market and orders the market conditions and quality standards in Turkey.  

 

In 2008, EMRA published a regulation article for 21 electricity distribution private 

companies to control electricity supply continuity (EMRA, 2008). According to this 

regulation, all of the electricity distribution companies have to publish their statistics 

related to data for electricity supply continuity. These datasets include the same 
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variables such as interruption time, location and reason, etc. Each of the distribution 

companies has to publish this type of data for each month and year. Any customer or 

researcher can look at this type of data whenever s/he wants on the website of one of 

the distribution companies. These datasets show the performances of each electric 

distribution company according to EMRA’s standardized indicators. 

 

1.1 Objective and Significance of the Thesis  

In this study, we aim to estimate the possible interruption counts with the data for 

electricity supply continuity by using Markov Chain Monte Carlo Generalized Linear 

Mixed Models. At the beginning of the study, all of the datasets which belong to 

different 21 distribution companies were intend to be used in this study, but it has been 

realized that terminology of the dataset of each distribution company is different from 

each other in spite of EMRA’s standardized regulation. Therefore, data for one local 

area was used which belongs to Başkent Electricity Distribution Company 

(abbreviated BEDAŞ) for the location of Çankırı and its neighborhood. Başkent 

Electricity Distribution Company has been selected from 21 distribution companies 

since the data conditions are more regular and confidential than others. The reason of 

selecting the city of Çankırı is that it has medium size compared to other cities in the 

distribution region, which are Ankara, Bartın, Çankırı, Karabük, Kastamonu, 

Kırıkkale, and Zonguldak. 

 

These kind of studies are necessary to measure the performances of private Electricity 

Distribution Companies and make the right decisions to invest in the right areas which 

are needed for electricity infrastructure. To the best of our knowledge, it is a first 

implementation study for the dataset of electricity supply continuity which has 

features of the longitudinal type of Turkish electricity distribution companies. 

Therefore, results need to be checked and compared by different researchers in the 

future. 
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1.2 Organization of the Thesis 

This thesis has five main chapters. Chapter 1 introduces the objective of the thesis, 

study’s background and thesis structure. Chapter 2 gives similar studies briefly from 

the literature. Chapter 3 presents the methodology of Bayesian data analysis, panel 

data analysis, and Markov Chain Monte Carlo Generalized Linear Models in detail. 

Chapter 4 shows data used in this study and its main points with some data analysis 

and specification and conditions of MCMCglmm, their results, and comparison. 

Finally, Chapter 5 clarifies conclusion of this study and possible future studies. 
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

Research into electricity as a scholarly field generally focused only on modeling 

demand, consumption or cost and price of electricity, with a particular emphasis on its 

production and effects on residents. Nowadays, even though electricity production and 

related questions of demand, consumption and cost continue to be important fields of 

research, distributing the produced electricity in an efficient way, without any loss, is 

becoming much more important than the production process itself. Nearly 90 % of 

total failures are recorded to have occurred in the distribution process (Meeuwsen, 

1997), and this fact testifies to the intense interest in the distribution process, 

maintenance of which is thus as equally important as the production process.  

 

In order to understand the efficiency of electricity distribution, nowadays companies 

and government institutions try to analyze electricity interruption counts in an 

electricity network, and the duration, length and location of these interruptions. 

Consequently, researchers all over the world have begun to improve different methods 

to explain the behavior of electricity interruption and failure rate estimation. 

Unfortunately, to the present day, there are no studies about interruption or failure rate 

modeling in Turkey to the best of our knowledge. The statistics of interruption which 

have been published by electricity distribution companies have been the only data that 

could be obtained so far. Having said that, it should be noted that some political actions 

of the government show that there is a tendency to support research into this area in 

the future. Moreover, there are not any studies on the application of Markov Chain 

Monte Carlo Generalized Linear Mixed Models (MCMCglmm) to estimate the 

electricity interruptions. Having indicated this point, it should be underlined that this 

thesis will hence function as a first implementation of this approach on electricity 
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interruptions. With the aim of contextualizing this debate, this literature review section 

will offer an overview of the different approaches used in some of the models for 

electricity interruptions. 

 

2.1 Density Estimation using Kernel Method and Approximation by the Least 

Squares 

In 2002, Tatietse et al. published an article on interruption modeling in medium 

voltage electrical networks. In order to find the probability of the electric interruption, 

this article used statistical methods to estimate density with Kernel method and 

approximation by the least squares. The study also included an experiment which had 

been conducted in Yaounde urban region in Cameroon, and the data referred to two 

stations, Ngousso and Melen. The article also presented information about their 

feeders’ interruptions, which were collected monthly, over a period of two years. 

 

Because of existing a strong linear correlation between intermittent interruption and 

permanent interruption in the same feeder, and considering the number of observations 

is too small for the empirical distribution, enough information could not be obtained 

for determining the probability law of interruptions. This situation compelled the 

researchers to use a probability technique depending on the Kernel Method 

(Silverman, 1986). Also, least square estimation method was appropriate for the 

model’s estimation. Then, the interruptions of Ngousso were modeled as shifted and 

truncated Gamma distribution and interruption of Melen was modeled as a truncated 

Normal probability law. Overall, the article explained these differences because of the 

different qualities of maintenance at these stations. According to the article, 

maintenance of quality was found to be a lot poorer for the station of Melen. The 

station had a greater accumulation of random factors which were human, material and 

environmental and these factors were affecting the current service quality of the 

station mostly. 
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2.2 Hierarchical Bayesian Failure Rate Estimation   

In their article, Moradkhani et al. (2014) discussed how to model the lack of 

appropriate outage data belonging to 34 electrical distribution feeders in Alborz Power 

Distribution company in 2010 with Hierarchical Bayesian failure rate estimation 

model and other Bayesian models, which were Bayesian estimation pooled failure rate 

and empirical Bayesian failure rate estimation, through a comparison by using 

Deviance Information Criterion (DIC). The solution offered for handling the lack of 

data was to use a shrinkage estimator for failure rate estimation of overhead lines. 

 

The framework of electrical distribution maintenance consisted of these main levels. 

These were components level, network level, and utility level. Providers of electrical 

power, who were owners of electrical distribution companies and transmission 

authorities etc., needed to implement different plans to determine optimal asset 

maintenance, which consisted of these three main levels. This optimal plan required 

especially sophisticated reliability models at levels of components and network. 

Component’s reliability was one of the practical and statistical methods used in order 

to determine the high number of installed components in an electrical network. Data 

deficiency, population variability, data censoring, and poor quality data were among 

some of these practical problems.  

 

Moradkhani et al. (2014) discussed that in order to overcome data deficiency and 

population variability, constant failure rate estimation of medium voltage overhead 

lines in the presence of data was needed. This approach depended on Hierarchical 

Bayesian Model (HBM). There were some advantages of Bayesian modeling such as 

handling deficiency of data, as well as allowing for the combination of data with 

domain knowledge, providing possible information about causal relationships 

between variables, avoiding overfitting of data, giving good accuracy even with rather 

small sample size of data, and finally, combining with decision analytic tools (Li & 

Shi, 2012). As a result, the HBM was used for modeling the feeders’ failure rate. Prior 
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distribution depended on hyperparameters which were obtained through a two-stage 

hierarchical model. In the first stage, the failure rates were assumed to be distributed 

the conjugate Gamma. Then, in the second stage, non-informative prior distributions 

were used for the prior distribution of hyperparameters. Also, each failure rate had 

independent prior distribution according to the state of hyper-parameters. The 

posterior distribution of HBM was analytically challenging for researchers. For this 

reason, Metropolis within Gibb’s algorithm was used to calculate the distribution of 

hyperparameters. 

 

The model comparison showed that the DIC value of the HBM gave a slightly better 

result than the values of the empirical Bayesian and pooled models noticeably. The 

pooled model had the worst result. In spite of using data pooling technique for 

eliminating the data deficiency problem, the estimation values of the pooled model 

were not totally reliable for getting the precise value of failure rates for the feeders 

when the real failure rates of which were considered high or low. On the other hand, 

in the empirical Bayesian failure rate estimation and hierarchical Bayesian failure rate 

estimation, the shrinkage estimator was used as the expected value of failure rates of 

the feeder. Different from HBM, the parameters of the empirical Bayesian model were 

estimated by the prior information from last year, but the component’s failure rate 

depended on the current condition of components. Using last year’s information as 

prior could not have given the current status of components. However, in HBM, 

Metropolis within Gibb’s algorithm was used to obtain the shrinkage parameter. Also, 

the initial value of z0 was selected as a value of which did not affect the sensitivity of 

posterior distribution. Depending on these results, HBM could be said to be the best 

model when adequate data about failures could not be obtained by researchers 

(Moradkhani, 2014). 
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2.3 Maximum Likelihood Estimation with Different Density Distributions 

Prieto et al. (2014) stated that upper tail distribution (also known as Pareto 

distribution), suggested by empirical researches about the reliability of the electricity 

transmission networks with indicators such as Energy Not Supplied (ENS), total loss 

of power (TLP) or restoration time (RT), cannot be valid in the whole range of major 

events.  In accordance with this, in the article, Prieto and his friends aimed to come up 

with a probability distribution suitable for those indicators. They hypothesized that a 

two-parameter model could be used to fit this type of data. Two-parameter models 

such as Pareto II, Fisk, Lognormal, Pareto, Weibull and Gamma distributions were 

alternatively analyzed on the European power grid data which included reliability 

indicators of  ENS, TLP, and RT between 2002 and 2012 by maximum likelihood 

estimation (MLE). Model’s estimation results were given according to datasets ENS, 

TLP and RT in the whole range, in both periods: (2002-2009) and (2002-2012). 

Results of the models were compared to each other according to AIC (Akaike 

Information Criterion), BIC (Bayesian Information Criterion) and goodness of fits 

were tested by empirical KS (Kolmogorov-Smirnov) statistic based on bootstrap 

resampling. Pareto II model was the most preferable model for the datasets of ENS 

and RT according to AIC and BIC. Moreover, Pareto II (Lomax), Fisk (log-logistic) 

and lognormal models were the preferable models in TLP dataset according to AIC 

and BIC. 

 

In 2013, Alwan et al. published an article about reliability measurement for mixed 

mode failures in 33/11 kilovolt electric power distribution stations average time 

between electrical failures in Iraq. Duration of the failures of electric power 

distribution stations was manually collected through a period of five years. According 

to the article, reliability was important to consumers who affected the electrical cost 

of failure, repair, and maintenance. Acceptability of fit test showed that Dagum 

distribution fitted with the data very well. MLE was used to estimate the parameters 

of Dagum distribution. According to the article, 8 out of 14 components cause this low 
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reliability level because of the age of the components. These components had to be 

changed as soon as possible for eliminating electrical interruptions which occurred 

because of components’ reliability. 

 

2.4 Time-Varying Load Models and Estimation with Monte Carlo Simulation  

In their survey, Huda & Živanović (2018) used Energy Not Supplied (ENS) index, 

which is an index of measures of the expected amount of energy unreached to 

customers in a specific time period because of failures in the distribution system. 

Analytical and MC methods were used to estimate the ENS before (Billinton & Wang, 

1999). However, MC simulation approach was evaluated to be a time-consuming 

approach due to its requiring a large number of iterations to achieve acceptable 

accuracy. In this study, Multilevel Monte Carlo (MLMC) performed the simulation 

faster, and this method was used to estimate ENS with considering time-varying nature 

of different load models. MLMC was the advanced Monte Carlo method used to 

improve computational performance, and it incorporated Stochastic Differential 

Equation (SDE) of system variables  (Giles, 2015). Besides, MLMC approach with 

Euler-Maruyama method was used for the estimation. Then, why did load models use 

it here? The answer was easy. In practice, most of the utilities only had records of the 

load demand data for a certain electricity distribution region. In other words, customer 

variations of the load data for an individual load point during 24 hours in a day for a 

year were not reachable.  

 

In the ENS estimation, two variables of mean were considered: Time to Failure 

(MTTF) and Time to Repair (MTTR). Assuming that the randomness of MTTF of a 

component/ element j (MTTFj) was modeled by SDE with standard Brownian motion, 

Bt on the time period (Kingman & Harrison, 1987) Stochastic model of MTTFj was 

solved through the use of Euler Maruyama discretization scheme. 
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Finally, Huda and Zivanovic (2018) stated that the ENS can be decreased by a small 

percentage in places where the failure of the electricity system occured during the peak 

loads of weekly and daily usage. 

 

2.5 Multivariate Linear Regression Models on Panel Data 

Eto et al. (2012) evaluated electricity reliability information collected over a period of 

10 years from 155 different U.S. electric utilities, which were altogether responsible 

for approximately 50% of total U.S. electricity sales. The results of the survey showed 

that annual average electricity duration and annual average frequency of electricity 

interruptions have been increasing by 2% each year. An earlier study by Eto and 

LaCommare (2008) had indicated that more than 90% of average number of 

interruptions generally stemmed from electricity distribution systems. For this reason, 

it could be claimed that ill-conditioned electricity distribution systems caused the 

increase on the average frequency of interruptions and average electricity of duration. 

The dataset was unbalanced since it did not include reliability metrics for each year. 

Multivariate log-linear regression models with fixed effects and random effects were 

used in the survey separately. They enable us to point out the differences in the 

outcomes, which were caused by the correlations, and also the differences in the 

sources such as utility reported reliability metrics: System Average Interruption 

Frequency Index (SAIFI) and System Average Interruption Duration Index (SAIDI). 

Application of the models included four different steps respectively: 

 Transforming reliability metrics to natural  algorithms, 

 Conducting F-test on the transformed reliability metrics, 

 Applying Hausman specification test to understand the appropriateness 

of the estimation either for fixed effects model or random effects 

model, 

 Estimating two sets of models: fixed effects and random effects. 
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Hausman specification test results showed that random effect models were consistent 

and more efficient than the fixed effects version. In accordance with this, Eto et al. 

(2012) found that temporal trends were significant for SAIFI and SAIDI. In addition, 

SAIFI and SAIDI were found to be increasing at the rate of 2 % each year, which 

showed that reported reliability gets worse over time. 

 

2.6 Contribution of this Study to the Literature 

In this chapter, different methods used in this area has been given as such: 

 Density Estimation using Kernel Method and Approximation by the Least 

Squares (Tatietse et al., 2002) 

 Hierarchical Bayesian Failure Rate Estimation (Moradkhani et al., 2014)  

 Maximum Likelihood Estimation with Different Density Distributions (Prieto 

et al., 2014 ; Alwan et al., 2013) 

 Time-Varying Load Models and Estimation with Monte Carlo Simulation 

(Huda & Živanović, 2018) 

 Multivariate Linear Regression Models on Panel Data (Eto et al., 2012) 

 

Different approaches and methods using for estimation of electrical interruption were 

given. When these studies are examined in detail, most of them had a continuous 

response in the data and just some of the data is longitudinal data type. In this study, 

to the best of our knowledge, different from the literature, it is the first time that count 

and longitudinal type of electrical interruption’s data are analyzed with MCMCglmm. 

It is not encountered any article like this study in the literature so far by us. Also, this 

study is the first implementation of the R package of MCMCglmm, which has been 

used mostly in the area of biostatistics, for this type of electrical interruption’s data.  

 

We hope that this study will bring a new way to the analysts who want to investigate 

the electrical interruption’s data type which is count and longitudinal. Also, this study 

will gain a new point of view to the decision makers who manage the electrical 
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network according to possible reasons of electrical interruptions. On the other hand, 

since the improving process of the package of MCMCglmm is continued, we hope 

that this study will be also given enlightening answers to the statisticians who study 

in this area. 
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CHAPTER 3  

 

3. METHODOLOGY 

 

The aim of the study, its background and the studies using in the area has been 

explained in Chapter 1 and Chapter 2. Useful methodological framework of the study 

will be laid out in this chapter. In the first place, longitudinal methods will be 

explained in detail, and then, secondly an examination of Bayesian approach will 

follow. Finally, the chapter will conclude with the analysis of the main structure 

MCMCglmm. 

 

3.1 Longitudinal (Panel) Data Analysis 

Longitudinal or panel data analysis used interchangeably has been improved in the 

early 1950s during the time the U.S. government shifted a substantial part of its 

research support from military to medical research. At that time, the main concern of 

researchers was to decrease morbidity and mortality, and as a consequence of this, 

early research focused on treating the diseases and eliminating the risk factors causing 

the diseases. Later, researchers tried to identify the risk factors which cause diseases 

in adult age, and could be detected in childhood. For example, researchers began to 

investigate childhood blood pressure level of a patient who has hypertension 

(Friedman et al., 1988). Through such studies, databases which include many factors 

belonging to a patient were formed. Following this, a new type of data structure, 

known as longitudinal or panel data was born. 

 

This new data structure is based on taking measurements of the same individuals 

repeatedly throughout time, and thereby it allows the direct study of change of a 

certain factors over time. The main aim of a longitudinal study is to observe the change 
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in response over time and the changing influences of factors to response (Rowell & 

Walters, 1976). Then, with repeated measurements, one characteristic of the 

individual can be detected within individual-change. To illustrate, in contrast to cross-

sectional data, which provides information for more than one unit in only an exact 

time period, or time series data, which gives information only for one unit through 

different periods, the evaluation of within subject influences on response over time 

can be detected in the type of longitudinal data. However, same entities (subjects) such 

as individuals, locations, countries, patients etc. and their differences at multiple time 

points can be observed through using longitudinal or panel data analysis. 

 

3.1.1 Specifications and Advantages of Longitudinal Data Analysis 

 One of the most important features of longitudinal data is that data is actually 

clustered. Repeated measurements of the individuals constitute clusters. 

Moreover, observations in each cluster have positive correlation between 

them. 

 Differing from cross-sectional studies, longitudinal data analysis can 

demonstrate the differences and influences of response within individual 

changing over time. Cross-sectional studies cannot provide any information 

about how individuals change during the time period. 

 Longitudinal data analysis yields more accuracy regarding inference of 

model parameters compared to cross-sectional studies. 

 Longitudinal data analysis gives more information to researchers with more 

variability. 

 Controlling ability on variables is easy even if on un-known measurements or 

un-observed variables. 

 In longitudinal analysis, by comparing each response to one another, a 

longitudinal analysis may dispose noises which affect the response and by 

eliminating them, more accuracy of estimation can be obtained easily. 
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 Longitudinal studies allow certain predictions through collecting information 

from all individuals, and thus researchers can better predict individual change 

through time for a certain individual (Fitzmaurice, 2004).  

 

Another specification in the longitudinal data analyses is “balanced” or “unbalanced” 

datasets. Balanced data means measurements are recorded just in time for every 

individual or subject. However, in real life, these conditions may not always be 

implemented. To illustrate, glucose level of patients may not have been measured 

every 30 days, or individuals might sometimes miss or forget their scheduled visit and 

participants might drop the study suddenly. With such impediments, recording 

individual-changes of the response in the study becomes harder for the researchers, 

and consequently mistimed measurements or random measurement might be obtained 

by researchers. This type of data is called “unbalanced” data.  There are various 

reasons as to why the researches might wish to obtain unbalanced data.  Researchers 

might use it to reduce cost of study while at the same time increasing overall 

participation of the individuals. This type of design is called as “rotating panel” design, 

where researchers determine before the study which measurement will be obtained. 

On the whole, while habitually balanced data structure is always preferred by the 

researchers, unfortunately sometimes it might be unreachable. For these occasions, it 

might be useful to remember that there are some assumptions and methods to 

overcome the disadvantages of unbalanced data structures. At this point, it should be 

noted that the data of this study is fortunately balanced dataset (Diggle et al., 2002). 

 

3.1.2 Linear Models for Longitudinal Data 

Linear model specifically means that the mean response indicates linear behavior in 

the regression parameters whereas longitudinal data structure depends on the 

assumption that a sample of N subjects are measured repeatedly over time (Ware, 

1985). Both of these contents are combined in the same class for linear models on 
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longitudinal data. The expression of Yij denotes the response variable for the ith subject 

on the jth measurement occasion. In this case, the mean responses have a vector (1) 

which includes Yi as  simply a time-ordered collection of the ni x1, which means, it 

consists  of ni rows and 1 column of elements for the ith subject.  

 

 

Yi = (

𝑌𝑖1
𝑌𝑖2
…
𝑌𝑖𝑛𝑖

),         i= 1,…,N. 

(1) 

One assumption is that the vectors of responses (1) for the N subjects are independent 

from each other. However, the repeated measurements of the same subject are not 

assumed to be consisting of independent observations. In longitudinal data analysis, 

this assumption or the correlation among repeated measurements adds positive effect 

to the analysis because correlated subjects provide more accurate estimates of the 

effect of covariates. This assumption resembles cluster data features: The observations 

that come from different clusters are assumed to be absolutely independent from each 

other, while observations in one cluster are not assumed to be independent from each 

other. In panel or longitudinal data analysis, every subject constitutes one cluster, such 

as one patient’s health results. For example, one patient gives his blood to have his 

glucose level checked periodically for each month over one year. The output of the 

glucose level analysis in January is absolutely dependent on  the output of the analysis 

in June, since these two analyses show the same patient’s glucose level even if one 

factor in analysis might have changed (For example, patient stops taking sugar in his 

daily diet.) 

 

In addition to one response of the data, there is a vector of covariates (2) with number 

of p rows: 

 

 

Xij = (

𝑋𝑖𝑗1
𝑋𝑖𝑗2
…
𝑋𝑖𝑗𝑝

),         i= 1,...,N. ; j=1,...,ni. 

(2) 
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The number of p rows of Xij equal to different covariates of the analysis, which means 

one vector of covariates (2) exists corresponding to one of the ni repeated 

measurements for the ith subject. There are two main covariates: 

 Covariates having unchangeable values during the study. 

 Covariates having changeable values during the study. 

 

When a need to compound structures of responses and covariates arises, a linear 

regression equation (3) becomes (Ware, 1985): 

 

 𝑌𝑖𝑗 = 𝛽1𝑋𝑖𝑗1 + 𝛽2𝑋𝑖𝑗2 +⋯+ 𝛽𝑝𝑋𝑖𝑗𝑝 + 𝑒𝑖𝑗         𝑗=1,…,ni. (3) 

 

With this regression equation (3), it is possible to observe what kind of relation is there 

between the responses and corresponding covariates in each occasion. Of course, there 

needs to be the number of ni as well as separate equations for modeling each response 

variable.  If all of parameters are grouped with each other, the model (4) appears as 

follows: 

 

 

(

𝑌𝑖1
𝑌𝑖2
⋮
𝑌𝑖𝑛𝑖

) = 

(

 

𝑋𝑖11
𝑋 𝑖21

𝑋𝑖12
𝑋 𝑖22

…
𝑋𝑖1𝑝
𝑋 𝑖2𝑝

⋮    ⋮ ⋮
𝑋𝑖𝑛𝑖1 𝑋𝑖𝑛𝑖2 𝑋𝑖𝑛𝑖𝑝 )

   (

𝛽1
𝛽2
⋮
𝛽𝑝

)+ (

𝑒𝑖1
𝑒𝑖2
⋮
𝑒𝑖𝑛𝑖

) 

(4) 

 

 𝑒𝑖𝑗 is random errors for the responses of  the ith subject with mean zero. 

However, the errors at different time points are assumed dependent and hence we 

have a variance-covariance structure, Σ. 

 

3.1.2.1 Main Assumptions of Linear Models: Mean, Variance, Covariance and 

Correlation Structures 

In longitudinal data analysis, the main focus is directed to the mean of response. Mean 

response or expectation of each response is weighted as the average of all possible 
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values of the response and mean response for varying responses from individual to the 

other is denoted (5) as: 

 𝜇𝑖𝑗 = 𝐸(𝑌𝑖𝑗). (5) 

 

The mean response (5) gives the location of the center of the distributed Yij. Second 

important measurement is variance (6) which provides the measurement of spread of 

the response and variance (Fisher, 1925). It is denoted (6) as: 

 

 𝜎𝑗
2 = 𝐸{𝑌𝑖𝑗 −  𝐸(𝑌𝑖𝑗)}

2 = 𝐸(𝑌𝑖𝑗 − 𝜇𝑖𝑗)
2. 

 

(6) 

 

In addition, variance may vary from occasion to occasion while it may also be a 

function of selected covariates. 

 

Another concept of the longitudinal analysis is the dependence according to responses, 

which is called covariance. Covariance for responses in the two different occasions 

can be (Yij and Yik) denoted (7) as: 

 

 𝜎𝑗𝑘 =  𝐸(𝑌𝑖𝑗 − 𝜇𝑖𝑗) 𝐸(𝑌𝑖𝑘 − 𝜇𝑖𝑘). (7) 

 

Covariance (7) for these two responses in different occasions gives the relation of 

linear dependence. The covariance of responses (7) might have positive or negative 

values, but usually expected to be positive. Like other types of regression analysis, 

when the covariance becomes zero, no linear relation between these two responses 

exists. The covariance result is affected not only by the degree of dependence between 

two variables, but also by their units of measurement. Indeed, any change in the scale 

of the measurement affects the covariance’s value. For instance, when a scale of 

variable changes from kilometer per hour to mile per hour, the result of covariance 

also changes. Therefore, the covariance value is not really informative. Covariance 
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always needs to be interpreted with the value of variance as the magnitude. To detect 

the measurement of linear dependence between two responses, a measurement which 

is free of units of measurement is more suitable. This measurement is correlation of 

two variables (8):  

 
𝜌𝑗𝑘 =

𝐸{𝑌𝑖𝑗 − 𝜇𝑖𝑗)(𝑌𝑖𝑘 − 𝜇𝑖𝑘)

𝜎𝑗𝜎𝑘
. 

(8) 

 

Correlation (8) is the linear dependence between two variables and it takes the range 

of 1 to -1. When correlation takes 1, it implies that if one variable increases, other 

variable also increases. However, when correlation takes -1, when one variable 

increases, then other variable decreases. On the other hand, if covariance is 0, the 

correlation is also zero. The most interesting thing here is that when two variables are 

statistically independent from each other, then they can be uncorrelated, but they do 

not need to be independent when the variables are uncorrelated. Statistical 

independence implies that there is no dependence between these two variables. 

However, correlation (8) shows only the linear dependence between the variables. 

 

In longitudinal data, repeated measurements of the same individual are seen to be 

positively correlated with each other. In this situation, variance-covariance matrix (9) 

could be defined as below: 

 

 

𝐶𝑜𝑣 (
𝑌𝑖1
𝑌𝑖2
⋮
𝑌𝑖𝑛

) = (

𝑉𝑎𝑟(𝑌𝑖1)  𝐶𝑜𝑣(𝑌𝑖1, 𝑌𝑖2)         … 𝐶𝑜𝑣(𝑌𝑖1, 𝑌𝑖𝑛)
𝐶𝑜𝑣(𝑌𝑖2, 𝑌𝑖1)       𝑉𝑎𝑟(𝑌𝑖2)          … 𝐶𝑜𝑣(𝑌𝑖21, 𝑌𝑖𝑛)

⋮ ⋮ ⋮
𝐶𝑜𝑣(𝑌𝑖𝑛, 𝑌𝑖1)  𝐶𝑜𝑣(𝑌𝑖𝑛, 𝑌𝑖2) …      𝑉𝑎𝑟(𝑌𝑖𝑛) 

). 

 

(9) 

It is necessary to remember that variance and covariance have a symmetry. As 

indicated in the example of Cov(𝑌𝑖𝑗 , 𝑌𝑖𝑘) = 𝜎𝑗𝑘 = 𝜎𝑘𝑗 = 𝐶𝑜𝑣(𝑌𝑖𝑘, 𝑌𝑖𝑗) (9) and also this 
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aspect is the same with correlation matrix (10) Corr(𝑌𝑖𝑗 , 𝑌𝑖𝑘) = 𝜌𝑗𝑘 = 𝜌𝑘𝑗 =

𝐶𝑜𝑟𝑟(𝑌𝑖𝑘, 𝑌𝑖𝑗). Correlation matrix (10) can be seen below: 

 

 

𝐶𝑜𝑟𝑟

(

 
 
𝑌𝑖1
𝑌𝑖2
…
𝑌𝑖𝑛)

 
 
= (

1        𝐶𝑜𝑟𝑟(𝑌𝑖1, 𝑌𝑖2)        … 𝐶𝑜𝑟𝑟(𝑌𝑖1, 𝑌𝑖𝑛)
 𝐶𝑜𝑟𝑟(𝑌𝑖2, 𝑌𝑖1)                     1                  … 𝐶𝑜𝑟𝑟(𝑌𝑖21, 𝑌𝑖𝑛)

⋮ ⋮  ⋮  
    𝐶𝑜𝑟𝑟(𝑌𝑖𝑛, 𝑌𝑖1)      𝐶𝑜𝑟𝑟(𝑌𝑖𝑛, 𝑌𝑖2)   …           1         

) 

 

(10) 

 

The diagonal values are equaled to 1 because it indicates correlation of a variable with 

itself.  

 

Many articles have exposed that longitudinal data are correlated, furthermore, they are 

positively correlated (Diggle et. al., 2002). When the behavior of empirical 

observations about correlation in longitudinal studies was analyzed, it was necessary 

to revisit the correlations. Deriving from there, Fitzmaurice (2004) list these behaviors 

as follows: 

 have positive relation, 

 generally decline by time separation, 

 correlation between repeated individuals (subjects) are barely close to 

zero, 

 between two repeated measurements which are close to each other does 

not approach one.  

 

In the process of longitudinal data estimation, ignoring the correlation and assuming 

that measurements are independent from each other might lead to apparent 

overestimation of variance. At the end of the analysis, this situation will lead to a bad 

estimate of precision, will cause larger standard errors and p-values as well as wider 

confidence intervals. Since, independence status of covariates of the model is 
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important for obtaining true estimation and interpretation for the longitudinal data 

analysis, a specific assumption, multi-collinearity must be checked. 

 

Multi-collinearity is a statistical phenomenon which has a strong relation with 

predictor variables. Obtaining reliable estimates of coefficient for each variable is very 

difficult when multi-collinearity is encountered. For this reason, it cannot provide true 

interpretation based on the outcome of predictor variables. Multi-collinearity affects 

variances of the parameter estimates by inflating. Inflated variances may lead to 

insufficient significance of predictor variables. Therefore, significant variable acts like 

an insignificant variable. To conclude, multi-collinearity problem can cause serious 

problems for the variable coefficients and it may lead to wrong conclusions when 

researcher wrongly interprets outputs of a model  (O’Hagan & McCabe, 1975). 

 

To detect the multi-collinearity problem in a data analysis, it may be looked up: 

 Correlation matrix of coefficients 

 Variance Inflation Factor 

 Eigenvalues Analysis 

 

Correlation matrix; large correlation coefficients might be an evidence for multi-

collinearity. If the correlation is high and close to 1 or -1 between coefficients of two 

predictor variables, it is possible to suspect a multi-collinearity problem in these 

variables. 

 

Variance Inflation Factor (VIF); measures multi-collinearity situation in ordinary 

least-square analysis (Mansfield & Helms, 1982). VIF indicates the level of multi-

collinearity by measuring the variance of the estimated regression coefficient (11): 
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𝑉𝐼𝐹𝑗 =

1

(1 − 𝑅𝑗
2)
. 

(11) 

 

Let Rj
2 is the coefficient determination for the cases when Xj is regressed on all other 

variables in the model. When there is no linear relation between jth variable and other 

predictor variables, then VIFj = 1.  

The result of VIF (11) exceeds 5 or 10 indicates that jth regression coefficient is 

estimated poorly because of multi-collinearity (Montgomery, 2001). We selected VIF 

to check the multi-collinearity problem in this study. VIF code was taken from 

(MCMCglmm-utils.R, 2019). 

Correlation matrix with Eigenvalues; if eigenvalues are small or near to zero and 

corresponding condition number is large, it may be existed multi-collinearity problem 

in one or more predictor variables might occur. 

 

3.1.2.2 Estimation Methods for Linear Models: Maximum Likelihood and 

Restricted Maximum Likelihood 

Maximum Likelihood Method (ML); is a common approach used to estimate 

covariate of the model which is 𝛽 and covariance parameter of the model which is 𝜃. 

The method of ML depends on finding the most probable values of 𝛽 and 𝜃 in the 

observed data. To find maximum values of 𝛽 and 𝜃, joint probability of the response 

variable is maximized  in the observed data. The fixed set of observed values of 

response variables are regarded as the functions of  𝛽 and ∑ (𝜃)𝑖  (In multivariate 

normal distribution, the covariance matrix of covariance parameters, 𝜃, are presented 

with ∑ (𝜃)𝑖 ). Also, these functions are known as likelihood functions (Laird & Ware, 

1982; Lindstrom & Bates, 1988). 
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To understand the mechanism of the method, standard linear regression model which 

has univariate normal distribution with all the observations are independent and also 

uncorrelated will be regarded as the simple case. For this, a cross-sectional type of 

data which has repeated at n different occasions is being analyzed. Data has a sample 

of N subjects at each occasion. Observations are independent from each other and data 

has constant variance which is shown as 𝜎2. The mean response function of the linear 

regression model (12) is: 

 𝐸(𝑌𝑖𝑗) =  𝑋𝑖𝑗
𝑇𝛽. (12) 

 

The estimation of the covariates for linear regression model can be obtained from all 

the observations which maximize the joint normal density function. In the first place, 

the univariate normal probability density function (13) is shown below: 

 

 

𝑓(𝑦𝑖𝑗) = (2𝜋𝜎2)− 
1

2 exp {
−

1

2
(𝑦𝑖𝑗 − 𝜇𝑖𝑗)

2

𝜎2
⁄ }. 

(13) 

 

The log likelihood function of the univariate normal probability density function (14) 

is that: 

 

 

𝑙 = log {∏∏𝑓(𝑦𝑖𝑗)

𝑛

𝑗=1

𝑁

𝑖=1

}

= − 
𝐾

2
log(2𝜋𝜎2) −

1
2
∑ ∑ (𝑛

𝑗=1
𝑁
𝑖=1 𝑦𝑖𝑗 − 𝑋𝑖𝑗

𝑇𝛽)2

𝜎2
, 

 

(14) 

where the K is a matrix with the dimension of nxN. 

In order to obtain the estimate of 𝛽, ignore the first term of the likelihood function 

(14) and take the derivative of the log-likelihood function. The ML estimator of 𝛽 

equals to ordinary least square estimate of 𝛽: 
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�̂� = {∑∑(𝑋𝑖𝑗𝑋𝑖𝑗
𝑇)

𝑛

𝑗=1

𝑁

𝑖=1

}

−1

∑∑(𝑋𝑖𝑗𝑦𝑖𝑗) .

𝑛

𝑗=1

𝑁

𝑖=1

 

 

(15) 

 

Restricted Maximum Likelihood Estimation (REML); The ML estimator of 𝛽 and 

∑ (𝜃)𝑖  have large sample properties.  To illustrate, ∑ (𝜃)𝑖  has big bias in the finite small 

samples. Also, the diagonal elements of  ∑ (𝜃)𝑖  are underestimated. Therefore, REML 

might be a good option to overcome these problems. For example, assume that 

observations are independent and variance is constant which is 𝜎2 for a cross-sectional 

data, and ML estimator is given above (15).  When the ML estimator of 𝜎2 (16) is 

that: 

 

 �̂�2 = ∑ ∑ (𝑛
𝑗=1

𝑁
𝑖=1 𝑌𝑖𝑗 − 𝑋𝑖𝑗

𝚤 �̂�)2/𝐾         (16) 

 

On the other hand the mean of ML estimator of 𝜎2 (17) is that: 

 𝐸(�̂�2) =  (
𝐾−𝑝

𝐾
)𝜎2, (17) 

 

where the p is the dimension of  𝛽. 

 

To conclude that the MLE of 𝜎2 is biased in small samples and 𝜎2 is underestimated. 

An unbiased estimator needs to be obtained via using K-p (which is also residual 

degrees of freedom). Then the REML estimator of  𝜎2 (18) becomes: 

 

 �̂�2 = ∑ ∑ (𝑛
𝑗=1

𝑁
𝑖=1 𝑌𝑖𝑗 − 𝑋𝑖𝑗

𝑇 �̂�)2/(𝐾 − 𝑝). (18) 

 

The main thought behind the REML estimation is that the data which has been used 

for estimating 𝛽 is ignored and rest of data is used for estimating 𝜎2. Hence, relevant 
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parts of data is used for the process of estimation of ∑ (𝜃)𝑖 , and it is unbiased. In this 

thesis we will use Bayesian inference, which will be explained in section 3.2. 

 

3.1.3 Generalized Linear Models 

Linear model and estimation concept of the longitudinal data have been examined in 

the previous section. However, when the response of a longitudinal data is discrete, 

the concept of linear models can no longer be appropriate. Generalized Linear Model 

(GLM) is a framework which combines discrete and continuous response variables of 

independent observations for regression analysis, and hence it comes to mind when 

the response variable is discrete in a longitudinal dataset, and when the methods of 

linear models which analyze mean response to covariates are being used (Nelder & 

Wedderburn, 1972). The concept of Generalized Linear Models (Liang & Zeger, 

1986) has been improved by the researchers to handle these problems. However, due 

to correlation among observations of the same individual in the longitudinal data, 

GLM may not be so easy to implement. The main feature of GLM is its nonlinear-

transformation of the mean response, which is a linear function of covariates 

(Mccullagh & Nelder, 1989). This non-linear transformation causes concern regarding 

the interpretation of the regression coefficients in longitudinal data analysis. This 

concern arises as a result of the different approaches to the sources of within–subject 

association in the longitudinal data. Nevertheless, GLM offers a unified approach for 

all univariate responses (binary, counts, continuous). Besides, GLM can be said to be 

a collection of regression models and analysis of variance models (ANOVA) for; 

•A normally distributed continuous response 

•Logistic regression models for binary or dichotomous response 

•Log-linear or Poisson regression models for counts 

 

Generally, a response of GLM has three main specifications: 

 Distributional assumption,  

 One systematic component, 



 

 

 

28 

 

 Link function 

(Mccullagh & Nelder, 1989). 

 

Distributional Assumption; GLM is an extended version of the concept of standard 

linear regression analysis with settings where the response variable is discrete or 

categorical. GLM concept depends on the probability distribution of response 

variable, which is a member of the “Exponential Family”.  Exponential family has 

many distributions such as Normal, Bernoulli, Binomial and Poisson. 

 

Random component is also included in the design of distributional assumption 

concept. Random component brings a probabilistic mechanism to the responses in 

accordance with its belonging to distributional assumptions. The members of the 

exponential family have the same statistical properties of the models. For example, 

the variance of the response for Binomial, Bernoulli and Poisson has a dispersion 

parameter which is expressed with ϕ and variance function which is expressed with 

𝜐(𝜇𝑖) which is derived  from the known function of the mean (𝜇𝑖) (19): 

 

 𝑉𝑎𝑟(𝑌𝑖) = 𝜙𝜈(𝜇𝑖), where 𝜙>0 

 

(19) 

 

Variance function 𝜈(𝜇𝑖) describes how the variance of the response is related to the 

mean of the response. 𝜙 is a parameter which needs not to be estimated in most of 

distributions for discrete data, since it is a known constant  (𝜙 is 1 for Bernoulli and 

Poisson distributions.) but for other distributions, 𝜙 might be  an unknown parameter 

which needs to be estimated. Moreover, 𝜙 could be bigger than 1 in the case of 

overdispersion, and less than 1 for underdispersion, even in Bernoulli or Poisson 

distribution. It will be discussed in details in section 3.1.3.1. 

 

Variance depends on the mean of the distribution in Poisson and Bernoulli 

distribution. This feature is identical in most distributions of discrete responses. 
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However, the variance does not depend on the mean for normal distribution (Var(Yi) 

= 𝜙 and the variance function is 𝜐(𝜇𝑖)=1). This is called “homogeneity of variance”.  

Because of this feature for normal distribution, homogeneity of variance is maintained 

with the standard linear regression assumptions for normally distributed responses. 

 

Systematic Component; Generalized Linear Models also have a common regression 

formulation such as having a common family of distribution. Linear regression 

component is an important feature of the linear regression model and this component 

also maintains its existence in Generalized Linear Models. Linear regression 

component is called as “systematic component” in the notation of GLM. Systematic 

component is denoted as the effects of covariates on the mean of response: 

 

 𝜂𝑖 = 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 +⋯+ 𝛽𝑝𝑋𝑖𝑝. (20) 

 

𝜂𝑖 is called as “linear predictor” and 𝛽1 will also be called as intercept if the 𝑋𝑖1 equals 

to 1.The linear predictor is described as a linear combination of unknown regression 

coefficients and covariates. The linear predictor is always denoted as “linear” since 

the mean response is explained as a straightforward weighted sum of regression 

parameters even if covariates of regression were not linear. Since the linear predictor 

must be linear and if the linear assumptions on mean response are not provided, some 

transformations have to be implemented to the mean response. 

 

Link Function is a transformation of the mean response and it links the transformed 

mean response with covariates through using linear predictor. Link function g(.) 

assumes that the transformed mean response moves linearly with changing covariates.  

The use of certain non-linear functions like log(𝜇𝑖), on the other hand, guarantees that 

predictions of mean response are located between suitable ranges. 

 



 

 

 

30 

 

Another important point to note is the concept of canonical or non-canonical link 

functions. Canonical link functions are unique and they can be derived from the 

specific distributions. To illustrate, logit link function (log(
𝜇

1−𝜇
)) is canonical link 

function of Bernoulli and binomial distributions In addition, the canonical link 

function of Poisson is the log link. However, non-canonical link functions such as 

probit link function can also be used. Canonical ones simplify the computational 

burden. 

 

3.1.3.1 Log-Linear regression for Counts 

Log-linear regression is generally defined as Poisson regression which is regression 

analysis of counts in a specific time interval. In this case, the response of the data is a 

count type and log-linear regression analysis helps to link the mean response with the 

set of covariates. The probability function of the Poisson distribution (21) is defined 

as such: 

 
Pr(𝑌𝑖 = 𝑦𝑖) =  

𝑒−𝜇𝑖𝜇
𝑖

𝑦𝑖

𝑦𝑖!
 , where yi = 0,1,2,… . 

 

(21) 

 

yi is the observed number of events and Poisson distribution is determined with a 

parameter which is the mean or expected number of events ( 𝜇𝑖 = 𝐸(𝑌𝑖) ≥ 0). 

Besides, mean and variance of Poisson distribution is identical (𝐸(𝑌𝑖) = 𝜇𝑖 =

𝑉𝑎𝑟(𝑌𝑖)). In addition, the expected rate is 𝜇𝑖/𝑇𝑖. Ti  a measurement of the “time at 

risk” which is known and can be observed. The aim of log-linear regression is to detect 

the “positive” effect of set of covariates on the expected rate. In this case, expected 

rate can never take negative values. Then, logarithmic transformation is implemented 

to the regression model (22) as follows: 

 

 log (𝜇𝑖/𝑇𝑖)=𝛽1 + 𝛽2𝑋𝑖 , (22) 

 

and also it can be referred as: 
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 log (𝜇𝑖)=log(𝑇𝑖) + 𝛽1 + 𝛽2𝑋𝑖. (23) 

 

log(𝑇𝑖) at the equation (23) is known and does not require estimation. Thus, it can be 

concluded that log-linear regression is a log rate of some events and covariates. 

 

Overdispersion; A common failure of Poisson distribution needs to be mentioned 

here. Firstly, it should be remembered that the dispersion parameter is assumed 

constant (𝜙 =1). However, in some applications, count data has great variability when 

the predicted values are far from observed values. This assumption is defined as “over-

dispersion”, which is a common failure assumption. It might sometimes occur in 

Poisson and binomial responses. In other words, the variance of response is greater 

than the response mean. The over-dispersion problem can be detected with the model 

deviance divided by degrees of freedom. When researchers suspect over-dispersion 

problem in data analysis, the main evidence they can use is that the Pearson chi-square 

statistic equals to the residual degrees of freedom which is calculated with the 

difference of a number of observed values and model parameters (Agresti, 1996). 

 

3.1.4 Linear Mixed Effects Models 

In brief, Linear Mixed Effects Model (in general LMM) can be defined as a model 

which combines random and fixed effects. In GLM, three main specifications existed: 

Distributional assumption, one systematic component and link function. In addition to 

these specifications, there exists an additional assumption which is called “conditional 

distribution” of each response, Yij, in the concept of linear mixed effects models. 

According to this assumption, vector of random effects which is bi has normal 

distribution and conditional variance of Yij (24) is that:  

 

 𝑉𝑎𝑟(𝑌𝑖𝑗|𝑏𝑖) = 𝜎2 (24) 
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Moreover, given the random effects, each response of the data is independent from 

one another. Hence, it can be said that distributional assumption is completed on the 

response, Yij. 

 

Following the conditional variance of the LMM, the conditional mean of Yij is defined 

with the linear predictor (25) as such: 

 

 𝐸(𝑌𝑖𝑗|𝑏𝑖) = 𝜂𝑖𝑗 = 𝑋𝑖𝑗
𝑇𝛽 + 𝑍𝑖𝑗

𝑇𝑏𝑖. (25) 

where Zij is a subset of Xij. 

Linear predictor of LMM has both population and individual effects, as a result of 

using fixed and random effects differing from the linear predictor of GLM. In addition, 

conditional mean of response is also the identical link function of LMM.  

 

In this case, simple expression for the conditional mean response for any individual 

(26) is that: 

 

 𝐸(𝑌𝑖|𝑏𝑖) = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖. (26) 

 

And the marginal mean response for the population in average for all individuals (27) 

is that: 

 

 𝐸(𝑌𝑖) = 𝑋𝑖𝛽. (27) 

 

Another component of the model is “within subject measurement error” which is 

defined with 𝑒𝑖𝑗. Normally, the within subject measurement error is also distributed 

independently with zero mean and variance 𝜎2. On the other hand, the covariance 

between observations, focused on the mean response of any individual is defined as 

𝐶𝑜𝑣(𝑒𝑖) = 𝑅𝑖 = 𝜎2𝐼𝑛𝑖   given conditional independence assumption. Then, the within 

subject measurement is collected in a vector: 𝑒𝑖~𝑁(0, 𝑅𝑖). 
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To sum up, the linear mixed effect model (28) is defined as: 

 

 𝑌𝑖 = 𝑋𝑖𝛽 + 𝑍𝑖𝑏𝑖 + 𝑒𝑖. (28) 

   

3.1.5 Generalized Linear Mixed Models 

The notion of fixed effects, regression covariates, coefficients and three main 

specifications of GLM were told in the last section. In this section, Generalized Linear 

Mixed Models (GLMM) which is the extended version of Generalized Linear Models 

(Skellam, 1948) will be examined. 

 

The concept of GLMM  (Gibbons & Hedeker, 1994) can be explained as the model in 

which the effect of regression coefficients is allowed to be deployed randomly to the 

individuals in the longitudinal data analysis. GLMM for longitudinal data provides the 

assumption of heterogeneity between individuals in the population of the study via 

using random effects. Due to the presence of unmeasured factors, random effects can 

be assumed the maintain natural heterogeneity.  

 

GLMM still completely preserves the assumptions that come from Linear Mixed 

Models and Generalized Linear Models. Firstly, it is known that the distribution of 

random effects are multivariate normal distribution according to mathematical and 

computational convenience (Breslow & Clayton, 1993). Secondly, according to the 

features of exponential family, it is assumed that the responses for any individual are 

independent observations from the distribution. Thirdly, the assumption of 

“conditional independence“, which means Ri = 𝜎2𝐼𝑛𝑖 , is completely similar to Linear 

Mixed Models. Briefly, it can be said that GLMM is a general version which 

compounds linear mixed effects models and GLM.  
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To sum up, GLMM can be defined through 3 main specification: 

 Assume that the conditional distribution of each Yij given a vector of random 

effects bi is a member of exponential family, and given the random effects, 

each of Yij is independent from each other, pursuant to conditional 

independence assumption. 

 Assume that the conditional mean of Yij depends on fixed and random effects 

by the linear predictor with a known link function. 

 Assume that in principle, there exists a vector of bi in any multivariate 

distribution and the vector of bi is distributed multivariate normally with zero 

mean and qxq covariance matrix of G and bi’s are independent of covariates. 

 

3.1.5.1 Generalized Linear Mixed Model for Counts 

Suppose that the response of the data, Yij, is a count. Then, the three main 

specifications which are defined below exist in GLMM analysis: 

 Conditional on a vector of random effects, Yij is the response which has 

independence assumption and Poisson distribution with 𝐸(𝑌𝑖𝑗|𝑏𝑖) =

𝑉𝑎𝑟(𝑌𝑖𝑗|𝑏𝑖). 

 The linear predictor of the model depends on both fixed and random effects 

both and it is defined (29) as: 

 

 log {𝐸(𝑌𝑖𝑗|𝑏𝑖)} = 𝜂𝑖𝑗 = 𝑋𝑖𝑗
′ 𝛽 + 𝑍𝑖𝑗

′ 𝑏𝑖 . (29) 

 

Also, this is the conditional mean of the response by log-linear link function. 

 The random effects are assumed to be bivariate normally distributed with zero 

mean and a x a covariance matrix G. 

 

This model is called also a log-linear regression model with random intercepts and 

slopes. The model provides natural heterogeneity between individuals (Gardner, 

Mulvey, & Shaw, 1995). 
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3.2 Bayesian Inference & Markov Chain Monte Carlo 

The concept of the Generalized Linear Mixed Models (GLMM) actually emerges 

between Restricted Maximum Likelihood (REML) as pros and Bayesian Markov 

Chain Monte Carlo (MCMC) Bayesian methods as cons (Hadfield, 2010). There are 

many differences between two methods. To begin with, REML is a fast and 

straightforward theory in application whereas MCMC is slower and more challenging 

in technical analysis due to selection of a sensible prior. However, analytical results 

cannot be obtained for non-Gaussian GLMM in REML because of its procedures. 

REML has basic approximate likelihood methods but it may not work well for non-

Gaussian models. On the other hand, MCMC is also an approximation but the 

accuracy of approximation increases when the analysis is run for all type of models. 

Therefore, it can be said that Bayesian MCMC can offer more accuracy in the analysis 

even if it may be more challenging and slower than REML. 

 

The concept of Bayesian statistic depends on combination of the prior belief and 

likelihood theory. To illustrate when several random deviates (y) from a normal 

distribution  𝜎2 have been observed, the conditional probability of the model 

parameters (30) can be shown to be proportional to: 

 

 
Pr (𝑦 𝜇, 𝜎2)Pr (𝜇, 𝜎2) 

(30) 

 

The first term of the equation (30) is the likelihood function and the second term is 

prior belief which the model parameters could take.  

 

For the first term, the likelihood of the data is calculated on a grid of possible 

parameter values to obtain data from the likelihood surface by using the Maximum 

Likelihood or Restricted Maximum Likelihood Methods separately in order to obtain 

posterior distribution (Section 3.1.2.2). However, for non-Gaussian distribution, 

obtaining the derivative of the likelihood function is a more challenging process. To 
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cope with this mathematical challenge, Markov Chain Monte Carlo Methods, which 

are a class of algorithms, were improved and began to be used by the researchers as 

an alternative way (Geyer,1991; Kass, Gilks, Richardson, & Spiegelhalter, 2006; 

Marjoram, Molitor, Plagnol, & Tavare, 2003). 

 

For the second term, the choice of prior is extremely important for the analysis since 

it entails the beliefs of researchers about the values, which the model parameters might 

take. In general, it may not take a suitable prior especially in the early stages of the 

analysis and this situation is called “improper priors” since knowledge of the 

researcher is restricted.  

 

In the following section, the general framework of these two main parameters of the 

Bayesian data analysis will be given. First, the concept of MCMC and its algorithms 

will be told. Then, in the second part, the concept of prior function will be explained. 

 

3.2.1 MCMC and Its Algorithms and Diagnostic Tests 

Actually, Markov Chain Monte Carlo (MCMC) simulation techniques were developed 

in 1950’s by the physicist (Metropolis et al., 1953). After that, the statisticians 

(Hastings, 1970; Geman & Geman, 1984; Gelfand, Hills, Racine-Poon, & Smith, 

1990) have discovered the method and they improved it to obtain posterior distribution 

for model parameters and latent variables of the complex models as well.  

 

MCMC generates a sample or likelihood surface stochastically. The first stage of 

implementing MCMC is to select the initial values which start the chain truly.  These 

initial values should not be far away from the set of parameters. For instance, the 

values should be selected from sets where the posterior density is high. If the initial 

values are selected far away from the point where the posterior density is low, it will 

inevitably require a lot more iterations before being converged. 
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A chain of values xt, with t = 1, …, T (T is the total number of iterations), is a Markov 

chain if xt depends on only xt−1. This dependency is provided by a model that includes 

a stochastic component. There are many MCMC algorithms used in Bayesian analysis. 

The most famous algorithms can be listed as: 

 Metropolis-Hasting algorithm 

 Gibbs Sampling 

 

3.2.1.1 Metropolis-Hasting Algorithm 

The Metropolis- Hasting algorithm is a framework of MCMC simulations which are 

suitable for constituting samples from Bayesian posterior distributions. For example, 

Gibbs sampling is a special case of Metropolis-Hasting algorithm. In this section basic 

Metropolis algorithm will be provided  first (Metropolis et al., 1953), and then it will 

be  generalized as Metropolis-Hasting algorithm (Hastings, 1970) as well. 

The Metropolis algorithm (Metropolis et al., 1953) is an adaptation of random walk. 

It uses the rule of acceptance/rejection to converge to a specific distribution. The 

algorithm includes the following steps: 

1- Select a starting point 𝜃0 to be the first sample from the starting distribution, 

𝑝0(𝜃). 

2- For every t, t=1,2,… 

a- Sample a proposal 𝜃∗ from a proposal (or jumping) distribution 

𝐽𝑡((𝜃
∗|𝜃𝑡−1) at time t. The proposal or jumping distribution is symmetric 

in the Metropolis algorithm, 𝐽𝑡((𝜃
∗|𝜃𝑡−1) = 𝐽𝑡((𝜃

𝑡−1|𝜃∗). 

b- Figure out the ratio of densities (31) : 

 
𝑟 =

𝑝(𝜃∗|𝑦)
𝑝(𝜃𝑡−1|𝑦)

. 
(31) 

 

c- Then, set the ratio (31) to the accept/reject step: 
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𝜃𝑡 = {

𝜃∗     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 min (𝑟, 1)        

𝜃𝑡−1                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
 

(32) 

 

Generating (31) uniform random number u on [0,1]. 

If 𝑢 ≤ 𝑟, 𝑡ℎ𝑒𝑛 𝑎𝑐𝑐𝑒𝑝𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝜃𝑡 = 𝜃∗ , 

If 𝑢 > 𝑟, 𝑡ℎ𝑒𝑛 𝑟𝑒𝑗𝑒𝑐𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝜃𝑡 = 𝜃𝑡−1.  

3- Stop if the converge is satisfied. 

The next step is Metropolis-Hasting Algorithm which is defined as the generalized 

version of Metropolis algorithm (Hastings, 1970). The Metropolis-Hasting Algorithm 

is generalized in two ways:  

2- Jumping distribution does not need to be symmetric. 

3- The correction on the jumping rule, the ratio of r is different: 

 

𝑟 =

𝑝(𝜃∗|𝑦)
𝐽𝑡(𝜃

∗|𝜃𝑡−1)
⁄

𝑝(𝜃𝑡−1|𝑦)
𝐽𝑡(𝜃

𝑡−1|𝜃∗)
⁄

. 

(33) 

4- Stop if the converge is satisfied. 

 

Generalization boosts the speed of the random walk with these two changes. Then,  

If   𝑟 ≥ 1 , 𝑡ℎ𝑒𝑛 𝑎𝑐𝑐𝑒𝑝𝑡 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝜃𝑡 = 𝜃∗ ,  

else 

 
𝜃𝑡 = {

𝜃∗                𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟     

𝜃𝑡−1          𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  1 − 𝑟
 

(34) 

 

The Markov Chain is begun at the starting point, and the algorithm is run to obtain 

iterations when the starting value’s effect is decreased, or forgotten as well. These 
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samples which are called as burn-in are eliminated. The remaining accepted values of 

𝜃𝑡 provides a sample from generated target distribution 𝑝(𝜃|𝑦) The procedure of the 

converge to the target distribution is the same with Metropolis algorithm (Gelman et 

al., 2014).  

3.2.1.2 Gibbs Sampling 

The simplest special case of Metropolis-Hasting Algorithm is Gibbs sampling. Gibbs 

Sampling, which is also called alternating conditional sampling, is explained with in 

terms of sub-vectors. Assume that  𝜃 is the parameter vector, and it is divided into 

number of d components or sub-vectors. Hence, each iteration of the Gibbs sampling 

contains sub-vectors and is cycling through the sub-vectors. Each subsets is drawn as 

conditional on the values of all others. Therefore, each iteration of t has the number of 

d steps. In each iteration of t,  𝜃 is selected into an ordering sub-vectors of d, and 𝜃𝑗
𝑡 

provides a sample from the conditional distribution given all the other components of 

𝜃, 𝑝(𝜃𝑗|𝜃−𝑗
𝑡−1, 𝑦). 

The procedure can be summed up with the following steps: 

1- Select an initial value of 𝜃0 

2- Next sample after 𝜃0 is 𝜃𝑖+1. 𝜃𝑖+1 has sub-vectors which are sampled in a 

vector, 𝜃𝑖+1 = (𝜃1
𝑖+1, 𝜃2

𝑖+1, … . , 𝜃𝑑
𝑖+1 ). Each sub-vector is conditioned on the 

other sub-vectors so far. 

3- Repeat the above steps to reach the desired sample size. 
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3.2.1.3 MCMC Diagnostic Test for Checking Converge and Stationary Status of 

Posterior Distribution 

3.2.1.3.1. Geweke Diagnostic Test 

Geweke (1992) developed a convergence diagnostic for Markov Chains. The 

diagnostic depends on the assumption that equality of the means of the first and last 

part of the chain.  

If the samples are from the stationary distribution or with another words, the samples 

(𝑋1 𝑎𝑛𝑑 𝑋2) reach the target distribution, then the means of the first (10% by default) 

and the last part (50% by default) of the chain equal to each other and posterior 

distribution converged. Equation of the statistic (35) is that: 

 
𝑇 =

𝑋1̅̅ ̅ − 𝑋2̅̅ ̅

√𝑠1
2

𝑛 +
𝑠2
2

𝑚

 . 
(35) 

 

Geweke statistic (35) is an asymptotically standard normal distribution. The sample 

variances 𝑠1
2 𝑎𝑛𝑑 𝑠2

2  need to be adjusted and the samples are not independent. 

According to the diagnostic, if the Geweke’s statistic (p-value)  is less than 0.05 or 

greater than 0.95, or with other words, z-score is less than -1.96 or greater than 1.96 , 

then this is an evidence against converge. 

 

3.2.1.3.2. Heidelberger and Welch Diagnostic Test 

Heidelberger & Welch, (1981) diagnostic proposed a test statistic based on the 

Cramer-von Mises test statistics. According to the test, the null hypothesis that the 

chain is approximately estimated from a stationary/target distribution.  

The test has two parts: 
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First part: 

It defines with Heidelberg,  

1- Generate a Markov chain with N iteration and identify a 𝜌 level 

2- Figure up the test statistic for the whole chain. Accept or reject the null 

hypothesis. If the null hypothesis is accepted then, the chain generated from a 

stationary posterior distribution. 

3- If the null hypothesis is rejected, then remove the first 10% of the chain and 

figure up test statistic again.  

4- Repeat the third step until 50% of the chain is removed. Then, if the null 

hypothesis is still rejected, the test result of chain is failed. 

 

Second part: 

If the chain pass successfully in the first part, the test will continue with the un-

removed part in the second part. The halfwidth test figures up half of the width the (1-

 𝜌) % reliable interval around the mean. 

If the ratio of the halfwidth and the mean is lower than some 𝜖, then chain passes the 

test.  

3.2.2 Prior Belief / Function 

As it has been mentioned before, Bayesian statistic or specifically Bayes theorem 

contains two terms/components in order to calculate the posterior probability 

distribution. One of them is prior belief. Prior belief is the probability distribution 

which represents the uncertainty about the parameter. A Bayesian data analysis cannot 

be carried out without using the prior distribution. Therefore, there are several types 

of prior distribution in the literature. The type of priors can be divided into four main 

subjects: 
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 Non-informative Priors: Non-informative priors can be described as “flat” 

relative to the likelihood function. The flat prior means that it assigns equal 

likelihood to all possible values of the parameters. When a non-informative 

priors are used, the effect of the prior on the posterior distribution is minimum. 

Many researchers prefer using non-informative priors because non-

informative priors appear more objective. However, it cannot be claimed that 

these kind of priors do not give any information about parameter of interest. 

Sometimes, for example, they might lead to obtaining “improper posteriors“ 

which are non-integrable posterior densities as well. (Kass & Wasserman, 

1994) gives more information about derivation of the non-informative priors 

in a detailed way.   

 Informative Priors: If a prior distribution dominates the likelihood, then it 

can be said to be an informative prior. Bayesian methods state that information 

which includes past experience, previous studies and expert’s opinion can be 

gathered and have an impact on the data analysis. In this case, informative 

priors function as a key to reach this purpose.  

 Improper Priors: Improper priors are generally used in Bayesian inference 

since they produce non-informative priors and proper posterior distributions, 

which means that non-informative priors do not include any subjective effect 

of researcher’s opinion or any assumption came from past. They cannot effect 

Bayesian conditional probability of the model. Proper posterior distribution 

affects directly to the model. However, improper prior distributions can cause 

improper posterior distributions, which means that improper prior affect the 

conditional probability of the model wrongly with researcher’s improper 

opinion or wrong assumptions. 

 Conjugate Priors: If the prior and posterior distributions come from the same 

family, which means that the form of the prior distribution and the form of the 

posterior distribution is the same, then we call these priors as conjugate priors.  
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3.3 Multi-Response Generalized Linear Mixed Models 

Multi-response models are not widely used in general except for quantitative genetics 

and some other related areas.  However, they allow for assumptions of single models, 

and thus can be used and can be an effective way handling with data missing problems 

and other related difficulties.  

A new data structure needs to be improved for this type of dataset that has more than 

one response. Responses are arranged as a matrix. According to this matrix, each of 

the rows is indexed by reserved variable called as “units” and each column is indexed 

by reserved variable called as “trait”. Responses are stacked as column-wise and other 

variables stacked are duplicated respectively (Table 3.1). 
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# Response 1 Response 2 id 

1 0.75351 1.036808 1 

2 0.622868 1.150577 1 

3 0.568975 1.231025 
 

… 
   

800 1.568974 0.231026 200 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1 Zero- Inflated Models 

When researchers face to the dataset which have extra zeros, the first type of models 

that comes to mind are the Zero- Inflated models. These models have been proposed 

Table 3.1 Multi-Response Data Structure with Reserved Variables Trait and Unit. 

# Response Trait id Unit 

1 0.75351 Response 1 1 1 

2 0.622868 Response 1 1 2 

3 0.568975 Response 1 1 3 

…         

800 1.568974 Response 1 200 800 

801 1.036808 Response 2 1 1 

802 1.150577 Response 2 1 2 

803 1.231025 Response 2 1 3 

…         

1600 0.231026 Response 2 200 800 
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by Lambert (1992) and the main aspect of the models is assuming that data come from 

a mixture of a regular count distribution (to illustrate: Poisson) and a degenerate or 

untruncated distribution of zero. ZIP models assume that response for subject i (36) 

is: 

 
𝑌𝑖  ~ {

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)        𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜙𝑖
0                     𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜙𝑖

 
(36) 

 

The quantity of 1 − 𝜙𝑖  denotes the probability of structural zero. On the other hand, 

𝜙𝑖=1 denotes that probability of zero-inflation equals to zero. It means that zero-

inflation is not necessary to be modeled and model turns to in an ordinary Poisson 

distribution. Except for these two conditions, zeros of the data are inflated.  

The probability distribution of Zero-Inflated Model (37) is: 

 𝑃(𝑌𝑖 = 0) = (1 − 𝜙𝑖) + 𝜙𝑖𝑒
−𝜆𝑖 . (37) 

 

 where   0< 𝜙𝑖<1 

 
𝑃(𝑌𝑖 = 𝑗) = 𝜙𝑖

𝑒−𝜆𝑖𝜆𝑖
𝑗

𝑗!
   j=1,2,…. 

(38) 

 

Logistic regression zero-inflated process (40) is: 

 log(𝜆𝑖) = 𝑥1𝑖
𝑇 𝛽1, (39) 

 

 𝑙𝑜𝑔𝑖𝑡(𝜙𝑖) = 𝑥2𝑖
𝑇 𝛽2 .          (40) 

 

With Expectation Maximization (EM) Algorithm or Newton-Raphson method, the 

model parameters can be estimated (Min & Agresti, 2005). 
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Zero-Inflated model has two latent variables. These latent variables are estimated by 

The EM algorithm or MCMC methods. In zero-inflated models, the first latent 

variable is associated with the named distribution and second latent variable is 

associated with zero inflation. The model’s aspect depends on modeling a mixture 

distribution of zeros originating form of the named distribution (for example Poisson) 

and zeros originating from zero-inflation. It is actually a probability on the logit scale 

(37) and this probability is that a zero-inflation process with the second latent variable.    

To provide overall population mean (41), combine νi(xi) = 𝜆𝑖 (xi)[1 − 𝜙𝑖 (xi)] : 

 
𝐸(𝑌𝑖𝑗|𝑥𝑖𝑗) =

exp (𝑥1𝑖
𝑇 𝛽1 )

(1+exp (𝑥2𝑖
𝑇 𝛽2)

 . (41) 

 

(Preisser et al., 2012). 

Important notes for the zero inflated models: 

 If zeros of the data is expected to be around 30%, we expect zero-inflation to 

be a problem (Hadfield, 2016). 

 Any residual variance cannot be observed in zero-inflated process and in 

addition, the residual covariance between the zero-inflated and the named 

distribution cannot be estimated because these processes cannot be observed 

in one data point.  

 Especially, compared with Hurdle Models, the parameters of the zero-inflated 

models converge poorly. 

 Model allows only zero-inflation process. 

 Poor mixing of the parameters might arise when either distribution is not zero-

inflated or the model is over-dispersed. 

 

 

 



 

 

 

47 

 

3.3.2 Hurdle Models 

Hurdle model, which has been proposed by (Mullahy, 1986) a type of models for count 

data which can cope with excess zero and over-dispersion.  It is also very similar with 

Zero-Inflated models. The difference of hurdle model from the zero-inflated model is 

that in the former zero-deflation can be used in addition to zero-inflation. Hence, 

hurdle models mix much better than Zero-Inflated models. 

Hurdle model has two latent variables like Zero-inflated models. However, the first 

latent variable is the mean parameter of a zero-truncated named distribution (for 

example Poisson) and this model explains the observations bigger than the hurdle. On 

the other hand, second latent variable in Zero-Inflated models is the probability of 

observing zero because of zero-inflation, but in hurdle models, second latent variable 

is the probability (on the logit scale) of the model response which is zero or not. The 

probability mass function of Hurdle model (42) is: 

 

P(𝑌𝑖 = 𝑦𝑖) = {

𝑤0                           𝑓𝑜𝑟  𝑦𝑖 = 0

(1 − 𝑤0)
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

(1 − 𝑒−𝜆𝑖)𝑦𝑖!
      𝑓𝑜𝑟 𝑦𝑖 > 0             

}   ,  

(42) 

 

where   0 <  𝑤0 < 1. 

If the probability of observed values which are bigger than 0 (P(𝑌𝑖 > 0) = 1 − 𝑤0 and 

the probability of observations which equals to 0 ( P(𝑌𝑖 = 0) = 𝑤0, the logistic 

regression model of 𝑤0 and a log-linear model for 𝜇𝑖=𝜆𝑖 of the truncated Poisson 

distribution (44) : 

 log(𝜆𝑖) =𝑥1𝑖
𝑇 𝛽1, (43) 

 𝑙𝑜𝑔𝑖𝑡(𝑤0) = log (
𝑤0

1−𝑤0
) =   𝑥2𝑖

𝑇 𝛽2. (44) 

 

Then, expected value of response in Hurdle model (45) is given as such: 
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𝐸(𝑦�̂�) =  ∑ 𝑦𝑖

∞

𝑦𝑖=0

𝑃𝑟(𝑌𝑖 = 𝑦𝑖) 
(45) 

Hurdle Models: 

 It has better mixing properties than Zero-Inflated models. 

 While it is assumed that zero observations come from the origins of 

“sampling” or from the “structural” in Zero-Inflated models, in hurdle models, 

it is assumed that zero observations come from only one “structural” source. 

 

3.4 Markov Chain Monte Carlo Generalized Linear Mixed Models 

(MCMCglmm) Package in R 

Until this point, methodological background of GLMM and MCMC algorithms were 

told. In this study, MCMCglmm Package, which is a package in R, combining all the 

methods was used and whose name is MCMCglmm Package. The package exists in 

the statistical software of R and its development process is still continued by the 

researchers.  

 

As a closing remark, a few reasons as to why we select the MCMCglmm packages 

can be revealed here. In the first place, MCMCglmm package is suitable for 

longitudinal-discrete data that has been used. Next, it provides a flexible framework 

for modeling with GLMM and it can be used for non-Gaussian response variables for 

which we cannot be obtained likelihood in a closed form as well. Then, the package 

can be used in multi-response models for the distributions of Gaussian, Poisson, 

exponential, zero-inflated and censored distributions. Last, it allows for complicated 

variance structures as well (Hadfield, 2010). 
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CHAPTER 4  

 

4. DATA DESCRIPTION, MODEL APPLICATION AND EMPRICAL RESULTS 

 

Chapter 3 gave the methodological background of the data analysis related to this 

study. In this chapter, first section will explain the structure and details of the 

electricity interruption dataset used in the study.  Then, the results from the applied 

models are going to be explained and their results will be compared with each other 

in the second section. 

4.1 Data Description 

The dataset used in this study provides information about the quality of the electricity 

supply continuity in Çankırı province and its neighborhoods. Çankırı is a city in the 

distribution region of Başkent Electricity Distribution Company. Entity of the dataset 

includes electricity interruption counts and variables of Çankırı for the year of 2015. 

These kind of datasets are published by 21 of the distribution companies in Turkey, in 

accordance with EMRA’s regulation articles (EMRA, 2008). Dataset includes 

interruptions’:  

 Location (city, town, etc) 

 Network component,  

 Resource type (Low Voltage, Medium Voltage) , 

 Zone type of location (Zoned or not zoned) , 

 Duration, 

 Count, 

 Time (month, day, year), 

 Reason (Operator, security, out of the distribution region), 

 Explanation of reason (power switch breakdown, electrical fuse 

breakdown etc.) 
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After investigating the literature and evaluating the variables, location (Location), 

time (Month), counts of electricity interruption (Ycount), location status of zone type 

(Xin_out), resource type (Xlv_mv)  and reasons ( Xreason1 and Xreason2) have been 

used as covariates in this study. A part of dataset can be seen in Appendix-E. 

 

Each row shows interruption’s location, (city and town), resource type (low voltage 

or medium voltage), location status of zone type (zoned or not zoned) and its reasons, 

and the time when the interruption occurs (month), and the number of interruption 

counts at that particular time. Why were these variables selected for the models? 

Firstly, location, and location status of the zone give hints regarding the percentage of 

the electrical usage and the development of electrical network in a specific location. 

To illustrate, location status of the zone provides information about the density of the 

population. If the area is located in the zoned land, it means that density of population 

is higher than un-zoned land. Secondly, the variable of month gives the variation of 

interruption’s count or duration according to time. Thirdly, the variable of reason gives 

the information about which kind of fault or misusage of the network might be causing 

the electrical interruption.  

 

The variable of reason includes three main options: external, operator and security. 

One of these options is external, which means that problems from out of the region, 

which do not stem from the local distribution company, cause electrical interruptions 

in one particular location. Second option is the operator. Operator indicates the 

presence of problems due to the fault of the operator who works for the local 

distribution company. For example, in a construction process that is carried out to 

improve electrical network one operator might be the cause of power failure. On such 

occasions, the reason for electrical interruption is the operator. Another option is 

security. Security implies possible unauthorized interventions in the network. To 

illustrate, a resident might be building a new house and when he/she fails to get 

permission to intervene in the local network system, interruptions might occur because 

of his / her fault. These options are defined by the electrical distribution company and 
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these definitions differ from one electrical distribution company to the others. These 

three options represented as Xreason1 and Xreason2, and can be explained together 

such as:  

 When Xreason1 and Xreason2 equal to 0, it indicates that 

interruption’s reason is external, 

 When Xreason1 equals to 0 and Xreason2 equals to 1, it indicates that 

interruption’s reason is security, 

 Finally, when Xreason1 equals to 1 and Xreason2 equals to 0, it 

indicates that interruption’s reason is operator. 

 

The variables of Xlv_mv and Xin_out have the same representations like Xreason1 

and Xreason2. They take 0 and 1 value. They are coded as follows:  

For Xlv_mv: 

 0 indicates that electrical interruption occurs in the network of medium 

voltage. 

 1 indicates that electrical interruption occurs in the network of low voltage. 

 

For Xin_out: 

 0 indicates that electrical interruption occurs in un-zoned land and effects 

mostly the resident who lives there. 

 1 indicates that electrical interruption occurs in zoned land and effects mostly 

the resident who lives there. 

 

4.2 Exploratory Data Analysis 

With the aim of summarizing and evaluating the data used in the study, this section 

will present some descriptive data analysis. 
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4.2.1 Descriptive Statistics 

 

All the analysis given in this section for the description of the data has been made by 

using the software of R (Hadfield, 2010). 

 

In first place, frequency tables of the variables will be given. (Table 4.1) 

 

Table 4.1 Frequency Tables of the Variables 

      Xin_out 

X
lv

_
m

v   un-zoned zoned 

medium  53 23 

Low 131 80 

 

 

 

Ycount 

 

 

0 

 

 

1 

 

 

2 

 

 

3 

 

 

4 

 

 

5 

 

 

6 

 

 

7 

 

 

8 

 

 

9 

 

 

≥10 

            

# 1441 124 49 27 13 21 16 8 7 4 18 

 

 

The total numbers of observation are 1728. According to the Table 4.1, the dataset 

includes excessive zeros where total number is 1441.  After eliminating zeros from 

the dataset, the electricity interruptions occurred in medium voltage vs un-zoned area 

is 53, in medium voltage vs zoned area is 23 and in low voltage vs un-zoned area is 

131, in low voltage vs zoned area is 80. On the other hand, the electricity interruption 

occurred because of the external reason is 97, because of the reason of security is 5 

and because of the operator is 185. It is understood that most of electricity 

interruptions occurred due to the reason of operator. 

 

On the other hand, it can be seen that 83.4% of total number of observations are zero. 

The data conditions are suitable with general assumptions except of being observed 

Reasons 
External Security Operator 

   

97 5 185 
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zero counts (see section 3.3.1 and 3.3.2). After the observed value of 10, the number 

of observations are getting decreased. Their total number of observed value which 

equals and be bigger 10 is 18. The maximum observed value is 52 which was observed 

only one time. 

 

At this point, it would be beneficial to look at some useful plots, to understand the data 

(Figure 4.1 and Figure 4.2). 

 

 

Figure 4.1 Plot of Number of Interruption Counts vs Month 

 

According to Figure 4.1, the number of interruption counts rises from January to 

December. Nevertheless, it is possible to observe excess zero counts for every month. 

On the other hand, another important point is to see the highest interruption count, 
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which is 52, in November. These observed values are extremely different than others 

because most of the observed values are generally lower than 10. If BEDAŞ had failed 

to solve the problems, probably, a failure either in an important component or in any 

other element of the network might have occurred repeatedly.  For this reason, more 

than one interruption might have occurred at that time.  

 

 

 

Figure 4.2 Plot of Number of Interruption Counts vs Location-Town 

 

Figure 4.2 shows interruption counts in towns of Çankırı. It can be observed that 

majority of electricity interruptions occurred in the city center. This situation can be 

explained with continuing process of development and resident’s intervention in the 
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electrical network mostly. Interruption count of town of Orta and town of Ilgaz follow 

this score. The observed value which occurred in the city center in November can be 

defined as an outlier.  

 

The data includes excessive zeros. However, Figures 4.1 and 4.2 cannot show this 

situation precisely. Therefore, bar chart graph can be assisted here to better observing 

for the density of zero. (Figure 4.3) 

 

 

Figure 4.3 Bar Chart for Density of Number of Electrical Interruption’s Count 

 

Figure 4.3 shows the density of interruption counts. According to the bar chart, data 

has obviously excessive zeros. Number of electrical interruptions take zero value 

mostly when no electrical interruption is observed in any location, during that month. 

On the other hand, the electrical interruption count of one location can be measured 

periodically (each month) in different occasions. These specifications show that data 

structure is compliable with longitudinal panel data. Also, the data regarding the 
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response of the number of electrical interruption’s counts is discrete. As these 

specifications suggest Poisson or zero-inflation models might be employed for using 

while modeling this type of data. 

 

4.3  Empirical Results of the Data Analysis 

In Sections 4.1 and 4.2, data analysis and important points were offered. This section 

presents the implementations of Poisson, zero-inflated Poisson and hurdle Poisson 

MCMCglmm, their important points and outputs will be given in detail. 

It has been mentioned before that the data structure used in this study, which is called 

electricity interruption data, is a count-longitudinal type of data. It is clear that the 

model conditions are not suitable for modeling with the linear models because of 

having longitudinal, discrete and non-Gaussian properties. Also, it is assumed that the 

location of the electricity interruption impacts randomly on the response of the data, 

which is defined as Ycount. In this case, the variable of location includes unobserved 

variables such as numbers of consumers or residents, total investments made by local 

distribution company etc. Some heterogeneity in electricity interruptions is expected 

among different towns. In order to account for this heterogeneity, we include the 

location variable as a random effect in the models.  Longitudinal-count data with 

random effects are handled by Generalized Linear Mixed Models (see section 3.1.5).  

 

Although GLMM provides a flexible framework for modeling non-Gaussian response 

variable, because of longitudinal type of data, the likelihood function cannot be 

obtained easily. To cope with this problem, MCMC techniques were used in this study. 

The package of MCMCglmm (Hadfield, 2010) uses MCMC techniques which are 

combined with Metropolis- Hasting algorithm and Gibbs sampling when it generates 

the posterior distribution.  
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In this section, in order to get best explanatory estimation model, Poisson, zero-

inflated Poisson and Hurdle Poisson MCMCglmm models have been applied 

separately. The results of each model will be given with this following alignment: 

  

1-  Results of the models with the first implementation on Poisson and 

Zero-Inflated Poisson MCMCglmm, 

2- Results of the models with adding interaction effects and piecewise 

indicator variable to the Poisson and zero-inflated Poisson 

MCMCglmm 

3- Results of the models with final implementation on Poisson, zero-

inflated Poisson and Hurdle Poisson MCMCglmm 

4- Posterior predictive checks and comparison of the final models of 

Poisson, zero-inflated Poisson and hurdle Poisson MCMCglmm 

 

4.3.1 Results of the Models with the First Implementation on Poisson and Zero-

Inflated Poisson MCMCglmm 

In this section, the first implementation of Poisson and zero-inflated Poisson 

MCMCglmm will be told. First of all, the conditions and the model inputs, which are 

prior function, number of iterations, thinning interval etc, needs to be explained.  

Both Poisson and zero-inflated Poisson models are ran by:  

 Only the fixed effects of the covariates  

 The number of iteration has been set to 50,000.   

 Burn-in period is taken as 3,000, 

 The thin value has been equaled to 10,  

 Sample size has been 4,700 (after eliminating 3,000 of burn-in period the 

number of iteration is divided by thin value).  

 The variable of the location is used in the models as random effect parameter.  

 The default prior function was used for the models which were given in this 

section. The default prior function contains three elements: B, R and G 
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structures. B structure defines the fixed effects’ prior distribution which is 

multivariate normal with mean vector (mu) 0 and variance-covariance matrix 

of a diagonal with large variances (1010).  Also, priors for the variance structure 

of R and G elements have inverse-Wishart with expected covariance equals to 

1 and degree of belief parameter is 0 (Hadfield, 2010). 

 

4.3.1.1 First Implementation of Poisson MCMCglmm 

Due to the p-value of MCMCglmm (Table 4.2) all of the model coefficients are 

significant. 

 

Table 4.2 Summary of the First Implementation of  Poisson MCMCglmm. 
 

Post Mean l-95% 

CI 

u-95% 

CI 

Efficient 

Sample 

p-MCMC   

(Intercept) -6.26 -7.18 -5.35 232.5 2x 10-4 *** 

Xlv_mv 2.15 1.50 2.83 330.7 2x 10-4 *** 

Xin_out -0.99 -1.59 -0.40 633.7 4.26 x10-4 *** 

Month 0.34 0.30 0.39 692.4 2x 10-4 *** 

Xreason1 1.74 1.04 2.36 765.4 2x 10-4 *** 

Xreason2 -3.75 -4.91 -2.61 98.4 2x 10-4 *** 

 

Below is the open form of the model (46), as offered in the summary: 

 

 log ((𝑌𝚤�̂�|𝑏𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛))

= −6.26 + 2.15𝑋𝑙𝑣𝑚𝑣 − 0.99𝑋𝑖𝑛𝑜𝑢𝑡 + 0.34𝑇𝑖𝑚𝑒

+ 1.74𝑋𝑟𝑒𝑎𝑠𝑜𝑛1 − 3.75𝑋𝑟𝑒𝑎𝑠𝑜𝑛2 + 𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛̂ . 

(46) 

 

This open formula illustrates that intercept, the covariate of Xin_out and the covariate 

of Xreason2 have the negative behavior in the model, while the others have the 



 

 

 

59 

 

positive behavior for the estimation of log(E(Yit)). Since Generalized Linear Mixed 

Model of Poisson has canonical link function, the response of the model acquires log 

link function in the open form (see section 3.5.1).  On the other side, covariates of the 

model except the covariate of month are to be considered as the binary variables 

explained in the previous chapter. In addition, it should be noted that covariates which 

have negative behavior lead to the response where (log(𝑌𝑖�̂�)) is getting lower values 

than the value it gets in other covariates. Perhaps, it could be better expressed through 

a scenario such as this: The estimated interruption value which occur due to a fault of 

the operator in low voltage in a non-urban area in January is to be calculated. 

Covariates of this scenario are as follows :  Xlv_mv equals to 1 , Xin_out equals to 0, 

Month equals to 1, Xreason1 equals to 1 and Xreason2 equals to 0: 

 𝑌𝚤�̂� = 𝑒(−6.26+2.15(1)−0.99(0)+0.34(1)+1.74(1)−3.75(0)+𝑏𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛̂ ) (47) 

 

 𝑌𝚤�̂� = 𝑒
(−2,03) (48) 

 

When 𝑏𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 0 (i.e. for an “average” location), the estimated value of the 

imagined scenario (48) is ≅0.13, which is quite close to 0. It is a probable estimate in 

the presence of the data which has many zeros. If the effects of covariates are observed 

more closely, it is to be seen that while the fitted value which is in low voltage and 

non-urban area, and in January due to a fault of Operator  (Xlv_mv = 1) is 0.13, the 

fitted value with the same covariates except now  in medium voltage (Xlv_mv = 0) 

becomes 0.015, which is even closer to 0.  The results of this scenario thus show that 

the likelihood of an interruption is higher in a low voltage area than it is in the medium 

voltage area. This might sound strange, but in fact it is understood to be more  

reasonable since in low voltage areas, electricity systems are opened to intervention 

and thus an interruption is more likely to occur in this system than a in a high voltage 

area system. High voltage system is used for transfering the electricity power in long 

distances like between cities or regions. TEIAS is responsible for this type of transfer 

and the data is used in this study does not include high voltage area situation. However, 
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low or medium voltage systems is used for short distances such as between houses, 

neighborhoods or districts. Low voltage systems are open for intervention of people. 

This kind of intervention can occur for construction activities, infrastructure 

occupations etc. Therefore, probability of electricity interruption can be seen higher 

in low or medium areas than in a high voltage area system.   

 

Let’s focus on other covariates now. The result of the model lays bare that when other 

conditions are kept stable, interruption statistics on urban area (i.e. Xin_out=1) are 

closer to zero compared to the statistics in non-urban areas should be underlined. Non-

urban area cover the villages or small districts which are close to the cities. Electricity 

lines and infrastructure are secured, and also voltage fluctuation is not seen very often 

in urban areas. However, electricity lines and infrastructure cannot be secured in non-

urban area since construction and improvement of infrastructure continue there. Since 

it is usually the decreasing of the voltage that is to be blamed for the type of electricity 

interruptions mentioned here, it can be concluded that probability of interruptions in 

urban areas is lower than the probability in non-urban areas according to the model.  

 

After explaining the model, and parameters, it needs to be looked at the 

estimated/fitted values and their comparison with the observed values. 
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Figure 4.4 Observed vs. Fitted Values of the First Implementation of Poisson 

MCMCglmm. 

 

In Figure 4.4 comparison of observed vs. fitted values is shown. According to the plot, 

fitted and observed values appear between 0 and 5 frequently. This indication is 

reasonable since 0 values in observed data are more frequent than other values. 

However, model is not good enough to explain observed values completely. To 

illustrate, fitted values of the model may estimate 5, 10, 15, 20 and bigger than 25, 

when observed value is 0. On the other hand, although the model’s convergence seems 

reasonable, the autocorrelation is not good enough to be trustworthy (see Appendix-

A section 1). For this reason, it is favorable to evaluate residuals status. At the end of 

the residual’s checking, the model needs to be modified with some extra techniques 

probably.  

 

This situation can also be seen in the residual vs fitted values and covariate plots 

(Figure 4.5). In the residual plots, the residuals are located between 40, which is upper 

bound, and -20 which is lower bound; hence the residual interval is so wide.  
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Figure 4.5 Residual vs Fitted Values and Covariates of the First Implementation of 

Poisson MCMCglmm 

As justified by the presence of above mentioned problems, it is acknowledged that 

this is not the best model and it needs to be updated. The prediction fails to give the 

fitted values truly according to observed data. In the following parts, interaction 

effects and adding a slope term can be tried as a solution. Besides, the zero-inflated 

Markov Chain Monte Carlo Generalized Linear Mixed Models could be implemented 

to the data, as the data has excessive zero value in general. 

 

4.3.1.2 First Implementation of Zero-Inflated Poisson MCMCglmm 

The dataset of the study and its specifications have been expressed in section 4.1. The 

dataset is a specific longitudinal data with many zeros. At this point, it should be 

remembered that the response of the data used in this study has 83.4% of zeros. This 

situation brings to mind zero-inflation methods. In this section, application and results 

of zero-inflated Poisson model will be provided. 
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First of all, zero-inflated Poisson model used in this section has only the fixed effects 

like Poisson MCMCglmm model that was explained in the previous section. That is 

to say, there are not any interaction effects in the model. Besides, Zero- Inflated 

MCMCglmm is also a type of Multi-Response Model. Main structural differences in 

the model are those: The mean of reserved variable which is called “trait” can be 

added.  Then, the unit shows response values in each row of “traits”, which emerge as 

one type of response in MCMCglmm package for multi-response models. (see section 

3.4).  Considering these, it can be claimed that the first major difference from the first 

implementation of Poisson model is the residual covariance matrix. In Zero-Inflated 

Poisson MCMCglmm, the model works with heterogeneous residual variance. In other 

words, the residual (co)variance matrix allows each unit of the model to have different 

residual variances. In addition, the residual (co)variances between zero inflation and 

the Poisson process cannot be estimated because processes cannot be simultaneously 

observed in one data point. 

The summary table of the model is given in Table 4.3. 

 

Table 4.3 Summary of the First Implementation of Zero-Inflated Poisson 

MCMCglmm 
 

Post 

Mean 

l-95% 

CI 

u-95% 

CI 

Efficient 

Samples 

p-

MCMC 

  

Intercept_Poisson -5.48 -6.29 -4.38 7.59 2x 10-2 ** 

Intercept_ZeroInflated -2.36 -2.78 -1.73 6.67 2x 10-2 ** 

Xlv_mv 2.40 1.67 2.89 4.58 2x 10-2 ** 

Xin_out -1.17 -1.53 -0.67 20.67 2x 10-2 ** 

Month 0.35 0.30 0.39 23.43 2x 10-2 ** 

Xreason1 1.55 0.88 2.31 7.56 2x 10-2 ** 

Xreason2 -4.62 -5.41 -3.35 3.22 2x 10-2 ** 

 

Predicted values of the model can be generated through two process which are Poisson 

process and zero-inflated process (49): 



 

 

 

64 

 

 log(𝜆𝑖) = −5.48 + 2.40𝑋𝑙𝑣𝑚𝑣 − 1.17𝑋𝑖𝑛𝑜𝑢𝑡 + 0.35𝑀𝑜𝑛𝑡ℎ

+ 1.55𝑋𝑟𝑒𝑎𝑠𝑜𝑛1 − 4.62𝑋𝑟𝑒𝑎𝑠𝑜𝑛2 + 𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛̂ . 

(49) 

 

Second process (50) is: 

 

 𝑙𝑜𝑔𝑖𝑡(𝑤0) = log (
𝑤0

1 − 𝑤0
) =  −2.36 (50) 

 

In the first step (49), log(𝜆𝑖) shows the usual generalized linear mixed effect 

regression model of Poisson process, whereas  𝑙𝑜𝑔𝑖𝑡(𝑤0) in equation (50) shows 

regression model of Zero-Inflated Poisson process, which is a logit model by default 

(see section 3.4.1). In zero-inflated process, there exists only the coefficient of 

intercept.  

 

The summary of the model suggests that the parameters of the MCMCglmm of Zero-

Inflated Poisson have the same behavior as the first implementation of Poisson 

MCMCglmm: Intercept, the covariate of Xin_out and the covariate of Xreason2 have 

the negative behavior in the model. However, others have the positive behavior on 

estimation. The results of the model are close to the results of the first implementation 

of Poisson MCMCglmm. However, before comparing the prediction results from two 

different models, it would be more appropriate to look at the trace and density plots 

of the first implementation of zero-inflated Poisson Model (see Appendix-A section 

2). 

   

Even though the autocorrelation problem exists according to autocorrelation plots (see 

Appendix-A section 2) for the first implementation of Zero-Inflated Poisson, it is still 

beneficial to look at the plot of Observed vs. Fitted Values to compare the models 

(Figure 4.6). 
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Figure 4.6 Fitted vs Observed Values of the First Implementation of ZIP 

MCMCglmm 

 

Figures 4.6 and 4.7 make it clear that the same problem in the first implementation of 

Poisson MCMCglmm exists here, too. The model cannot effectively estimate the 

observed values. In the zoomed plots, this situation can be observed clearly. The first 

zoomed plot indicates the fitted vs observed values which are smaller than 10 and 

second zoomed plot also demonstrates the values which are bigger than 10. 
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Figure 4.7   Zoomed Plots for Fitted vs Observed Values of the First Implementation 

of ZIP MCMCglmm 

The model gives slightly a better estimation than the first implementation of Poisson 

MCMCglmm. This result can be observed in first zoomed plot clearly since the range 

of fitted values is between 0 and 20, while the range of fitted values of the first 

implementation of Poisson MCMCglmm takes values bigger than 25. On the other 

hand, in second zoomed plot gives when 10 or bigger values are observed in real 

dataset, fitted values take different values, the range of which changes between 0 and 

20. This situation is an indication of the need for modifications to the model, especially 

when the observed values bigger than 10. 

 

 

Residuals can be plotted versus observed covariates and fitted (Figure 4.8). 
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Figure 4.8 Residual vs Fitted Values and Covariates of the First Implementation of 

ZIP MCMCglmm 

 

Residual plots show that fitted values of the first implementation of Zero-Inflated 

Poisson model are not entirely compatible with observed values. Thus, it is understood 

that ZIP does not fully solve the problems which were encountered in the use of first 

implementation of Poisson models. It is thought that problems generally arise due to 

the observed values which are bigger than 10. With the aim of effectively handling 

this situation, modifications to the models will be applied through next sections.  
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4.3.2 Results of the Models with Added Interaction Effects and Piecewise 

Indicator Variable to the Poisson and Zero-Inflated Poisson 

MCMCglmm 

 In Section 4.3.2, the first implementation of Poisson MCMCglmm and Zero-Inflated 

Poisson MCMCglmm were discussed. These models had only fixed effects. However, 

outputs of estimated values showed that especially the values which were bigger than 

10 did not fit very well. This situation brings to mind options such as adding 

interaction effects and piecewise indicator variable to the models. Therefore, in this 

section, the versions of models with added significant interaction effects and 

piecewise indicator variable are to be discussed. The newly developed models and 

their differences are going to be mentioned as well. 

 

A modification to the first implementation of Poisson and ZIP MCMCglmm were 

necessary because the model did not fit well especially to the observed values bigger 

than 10.  If the data summary of the model is evaluated, it can be easily noticed that 

observed values which are bigger than 10 are seen after June (i.e. Month > 6) (Section 

4.2). The approach offered by Piecewise Linear Regression Technique could be used 

one for this situation. 

 

This method advocates using different intercept and/ or slope parameters to the model. 

In this way, after one point is taken as origin, the intercept and/or slope of the model 

changes. While applying this method, a new variable, “newMonthx”, was added to the 

model. For this, we first define Monthx variable: If Month is smaller than 6 or equals 

to 6, Monthx is 0, or else 1. The newMonthx is defined as the interaction of centered 

Month, i.e. (Month-6), and Monthx. These variables may be formulated as below: 

 

Monthx = if else(Month<=6,0,1)     

newMonthx= (Month-6) x Monthx    
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Both Poisson and zero-inflated Poisson MCMCglmm with being added interaction 

effects and piecewise indicator variable are run by:  

 Using fixed and interaction effects, 

 The number of iteration has been set to 50,000.   

 Burn-in period is taken as 3,000, 

 The thin value has been equaled to 10,  

 Sample size has been 4,700 (After eliminating 3,000 of burn-in period the 

number of iteration is divided by thin value). 

 The variable of the location is used in the models as random effect parameter.  

 

The default prior function was used for the models which were given in this section. 

The default prior function contains three element: B, R and G structures. B structure 

defines the fixed effects’ prior distribution which is multivariate normal with mean 

vector (mu) 0 and variance-covariance matrix being a diagonal with large variances 

(1010).  Also, priors for the variance structure of R and G elements have inverse-

Wishart with expected covariance equals to 1 and degree of belief parameter is 0 

(Hadfield, 2010). 

 

In the following section, Piecewise Linear Regression Technique and significant 

interaction effects will be used to develop the models of Poisson MCMCglmm and 

Zero-Inflated Poisson MCMCglmm. 

4.3.2.1 Poisson MCMCglmm with Interaction Effects and Piecewise 

Indicator Variable  

To begin with, it should be noted that the output of first implementation of Poisson 

model had shown that model was not fitting well for the values bigger than 10. Firstly, 

the method of adding interaction coefficients was tried to solve this problem. The 

interaction effects of Xlv_mv vs Month , Xlv_mv vs Xreason1 and Xin_out vs Month 

become significant in the model (Table 4.4). 
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Table 4.4 Summary of Poisson MCMCglmm with Interaction Effects and Piecewise 

Indicator Variable 

  Post Mean l-95% 

CI 

u-95% 

CI 

Efficient 

Samples 

p-MCMC   

(Intercept) -9.68 -11.64 -7.93 79.06 2x 10-4 *** 

Xlv_mv 4.05 2.26 5.93 56.85 2x 10-4 *** 

Xin_out -2.92 -4.10 -1.83 240.40 2x 10-4 *** 

newMonthx -0.72 -0.93 -0.51 322.05 2x 10-4 *** 

Xreason1 5.21 3.75 6.92 46.71 2x 10-4 *** 

Xreason2 -4.29 -5.58 -3.00 82.56 2x 10-4 *** 

Month 0.67 0.51 0.86 292.14 2x 10-4 *** 

Xlv_mv : Month 0.17 0.07 0.27 586.61 2.13x 10-6 ** 

Xlv_mv:Xreason1 -4.71 -6.55 -3.09 47.40 2x 10-4 *** 

Xin_out: Month 0.22 0.11 0.33 216.25 2x 10-4 *** 

  

After adding interaction effects and slope parameter to the model, model’s open form 

(51) changes as such: 

 

 log(𝑌𝑖𝑗) = −9.68 + 4.05𝑋𝑙𝑣𝑚𝑣 − 2.92𝑋𝑖𝑛𝑜𝑢𝑡 − 0.72𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥

+ 0.67𝑀𝑜𝑛𝑡ℎ + 5.21𝑋𝑟𝑒𝑎𝑠𝑜𝑛1 − 4.29𝑋𝑟𝑒𝑎𝑠𝑜𝑛2

+ 0.17𝑋𝑙𝑣𝑚𝑣𝑥𝑀𝑜𝑛𝑡ℎ − 4.71𝑋𝑙𝑣𝑚𝑣𝑥𝑋𝑟𝑒𝑎𝑠𝑜𝑛1

+ 0.22𝑋𝑖𝑛𝑜𝑢𝑡𝑥𝑀𝑜𝑛𝑡ℎ + 𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛̂ . 

(51) 

 

Under the condition of 𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛 =̂ 0 , the fitted value (51) is ≅0.014, when the same 

scenario is given: interruption due to a fault of operator in lower voltage and non-

urban area in January ( Xlv_mv equals to 1, Xin_out equals to 0, Month equals to 1, 

Xreason1 equals to 1 and Xreason2 equals to 0). On the other hand, newMonthx 

coefficient is invalid here because Month variable is 1 and value is smaller than 6. To 

understand the effect of piecewise indicator variable, Month variable should be 
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changed from 1 to 7.  Thus newMonthx variable takes the value of (7-6) x1 and equals 

to 1. The result generating from this condition is ≅0.03. While the value of Month 

variable is increasing, predicted counts are expected to be increasing, too. The solution 

subsides with this approach completely. Yet, before proceeding with the next stage, a 

check for autocorrelation is needed (see Appendix-B section 1). 

 

According to autocorrelation plot, autocorrelation problem gets higher here compared 

to the first implementation of Poisson MCMglmm. Xreason2 variable is still 

autocorrelated but, intercept, Xreason1 and Xlv_mv variables have also 

autocorrelation problem (see Appendix-B, section-1).  

 

While developed model cannot fix the problems of autocorrelation, the fitted values 

are expected to be better than the first implementation of Poisson MCMCglmm. In 

order to confirm this, it is essential to study the observed vs fitted plot and residual 

plots as presented below (see Figures 4.9 and 4.10). 

 

Figure 4.9 Observed vs Fitted Values of Poisson MCMCglmm with Interaction 

Effects and Piecewise Indicator Variable 
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The plot of observed vs fitted values shows that the difference of observed /fitted 

values decreased from 25 to 6. It is obvious that developed model has increased the 

strength of estimation compared to the first implementation of Poisson MCMCglmm. 

However, still the model cannot rightly estimate the observed values bigger than 10. 

The possible causes might be autocorrelation problem, over-dispersion problem or 

using Poisson distribution. With the aim of overcoming this, ZIP MCMCglmm model 

is to be developed with interaction effects and piecewise indicator variable.  

 

Figure 4.10 Residual vs Fitted Values and Covariates of Poisson MCMCglmm with 

Interaction Effects and Piecewise Indicator Variable 

 

4.3.2.2 Zero-Inflated Poisson MCMCglmm with Interaction Effects and 

Piecewise Indicator Variable 

In the previous section, Poisson MCMCglmm with interaction effects and piecewise 

indicator variable was depicted and its results were compared with that of the first 

implementation of Poisson MCMCglmm. However, it was realized that problems 

which were seen in the last sections were still continuing even in updated Poisson 
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MCMCglmm. In this section, ZIP with interaction and piecewise indicator variable 

model and its efficiency will be discussed.    

 

Significance of covariates of the model can be seen below (Table 4.5). The model 

converge diagnostic plots can be seen at Appendix (see Appendix-B section 2). 

 

Table 4.5 Summary of Zero-Inflated Poisson MCMCglmm with Interaction Effects 

and Piecewise Indicator Variable 

  Post 

Mean 

l-

95% 

CI 

u-

95% 

CI 

Efficient 

Samples 

p-MCMC   

Intercept_Poisson -7.09 -8.65 -5.03 1.95 1x 10-3 *** 

Intercept_ZeroInf -0.15 -0.51 2.77 31.89 4.28x 10-4 *** 

Xlv_mv 4.29 2.67 5.21 6.11 1x 10-3 *** 

Xin_out -2.88 -3.85 -2.06 5.63 1x 10-3 *** 

newMonthx -0.61 -0.82 -0.39 11.23 1x 10-3 *** 

Xreason1 5.35 3.55 6.61 2.26 1x 10-3 *** 

Xreason2 0.91 -0.27 2.22 2.98 1.38x 10-4 *** 

Month 0.52 0.35 0.69 5.79 1x 10-3 *** 

Xlv_mv: Month 0.24 0.14 0.34 6.16 1x 10-3 *** 

Xlv_mv:Xreason1 -4.95 -6.38 -3.43 3.66 1x 10-3 *** 

Xlv_mv:Xreason2 -6.14 -7.60 -4.08 3.54 1x 10-3 *** 

Xin_out: Month 0.15 0.06 0.26 7.04 1x 10-3 *** 

 

The model’s count generating open form for both processes (52) and (53) are: 
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 log(𝜆𝑖) = −7.09 + 4.29𝑋𝑙𝑣_𝑚𝑣 − 2.88𝑋𝑖𝑛_𝑜𝑢𝑡 + 0.52𝑀𝑜𝑛𝑡ℎ

+ 5.35𝑋𝑟𝑒𝑎𝑠𝑜𝑛1 + 0.91𝑋𝑟𝑒𝑎𝑠𝑜𝑛2

− 0.61𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥 + 0.24𝑋𝑙𝑣_𝑚𝑣𝑥𝑀𝑜𝑛𝑡ℎ

− 4.95𝑋𝑙𝑣_𝑚𝑣𝑥𝑋𝑟𝑒𝑎𝑠𝑜𝑛1

− 6.14𝑋𝑙𝑣_𝑚𝑣𝑥𝑋𝑟𝑒𝑎𝑠𝑜𝑛2 + 0.15𝑋𝑖𝑛_𝑜𝑢𝑡𝑥𝑀𝑜𝑛𝑡ℎ

+ 𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛.̂  

(52) 

 𝑙𝑜𝑔𝑖𝑡(𝑤0) = log (
𝑤0

1 − 𝑤0
) =   −0.15 (53) 

 

According to Poisson MCMCglmm with interaction effects and slope, only the 

covariate of Xreason2 behavior has changed from negative to positive. 

 

Unfortunately, autocorrelation problem exists in all covariates of the model (see 

Appendix-B section 2). This problem might cause poor estimations & fits from the 

model. Actually, trace plot gives a hint for this poor mixing. 

 

It is generally known that autocorrelation problem might cause faulty generating 

counts, however, this case needs to be proven for the situation at hand. For this aim, 

below observed vs. fitted values are presented for analysis (Figure 4.11). 
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Figure 4.11 Observed vs Fitted Values of ZIP MCMCglmm with Interaction Effects 

and Piecewise Indicator Variable 

 

 

From the figures, it is to be understood that adding interaction effects and adding 

piecewise indicator variable to the model remained insufficient in fully developing the 

model. In fact, it was discovered that zero-inflated model with added interaction 

effects and piecewise indicator variable mixes more poorly than the first 

implementation of zero-inflated model does. Residual plots could be consulted to 

observe this result clearly (Figure 4.12). 
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Figure 4.12 Residual vs Fitted Values and Covariates of ZIP MCMCglmm with 

Interaction Effects and Slope Parameter 

 

Residual plots of Zero-Inflated Poisson with interaction effects and piecewise 

indicator variable show that model can estimate as many observed values as 200. The 

cause behind this poor mixing and poor estimation in models needs to be investigated. 

Three possible problems can arise here: Autocorrelation, over-dispersion and multi-

collinearity. In order to fix these problems, prior function, variance-covariance matrix 

of fixed effects, number of iteration and thinning interval can be changed. Also, 

different methods such as centering method etc. was tried before, but unfortunately 

these methods cannot solve these problems (see Appendix-D). 
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4.3.3 Results of the Final Models on Poisson, Zero-Inflated Poisson and Hurdle 

Poisson MCMCglmm 

In the last two sections the implementations of Poisson MCMCglmm and zero-inflated 

Poisson MCMCglmm were presented to show that neither of them yielded   problem 

free solutions for modelling electricity interruption data. The diagnostic checks of 

these four models were not good enough to explain the specifications of the data (see 

Appendix-A and Appendix-B). 

 

These results signal towards multi-collinearity problem (see Section 3.1.2.1). With the 

aim of eliminating multi-collinearity problem, standardized covariates will be used in 

this section. Besides, to understand the relationship of the covariates, it is beneficial 

to consider Spearman’s correlation matrix of significant fixed and interaction effects 

(see Figure 4.13). 

 

Figure 4.13 Correlation Matrix of the Significant Covariates 
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The correlation matrix shows that all of the significant covariates of the data are 

somehow correlated with each other. It is clear that especially the covariates of month 

and newMonthx are the most correlated covariates. Due to correlated covariates, 

variance-covariance matrix of the prior function needs to be regulated different from 

the default prior function (see section 4.3.2).  In view of this, a new prior function 

needs to be formed according to the correlated covariates. From now, the new prior 

will have a new variance-covariance matrix with large variances (108) and also the 

large covariances (5x107) for the fixed effects in B structure.  

 

Regarding R Structure, residual variance and also residual covariance cannot be 

observed in zero-inflation or Hurdle or Poisson processes. To cope with this problem, 

fixed residual variance whose value is 1 has been used and degree of belief parameter 

has been taken as 0.002. This prior is called as inverse-gamma prior with its shape 

0.001. Inverse-gamma prior also captures over-dispersion problem for Poisson 

process (Hadfield, 2010). Considering these advantages, inverse-gamma prior has 

been used for all models in this section. 

 

The conditions and the model inputs are changed as follows: 

 Each model is run for varying number of iterations, because of convergence 

issues. 

 Location is still used as random effect component. 

 Burn-in period is still 3,000. 

 Standardized (
𝑋−𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑑(𝑋)
) variables are used. 

 The variable of Xreason2 is eliminated due to serious convergence & 

autocorrelation problems and Xreason1 is redefined. When it takes 1.41, it 

means that the interruption stems from the operator. Otherwise the reasons are 

either external or they are related to security. 
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In this case, the frequency table of the variables are almost the same (Table 4.6). 

The only difference is that Xreason2 eliminated. Hence, the reasons of security 

and external are evaluated together. 

 

 

 

Table 4.6 Frequency Tables of Standardized Electricity Interruption Data 

 Xin_out.std 
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zoned 

(0.99) 
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0
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9
) 
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(0
.9

9
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131 80 

 

 

4.3.3.1 Final Implementation of Poisson MCMCglmm 

 

According to Poisson MCMCglmm which was examined in the previous sections, 

autocorrelation problem of each lag was very serious. To eliminate this problem, 

number of iteration and thin value have been increased. The number of iteration is 

taken 1,000,000 and the thinning interval is taken 500. Model is run with significant 

covariates and the model results have been given below (see Table 4.7). 
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External 
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Table 4.7 Summary Table for the Final Implementation of Poisson MCMCglmm 
 

Post. 

Mean 

l-

95% 

CI 

u-

95% 

CI 

Efficient 

Samples 

p-

MCMC 

  

(Intercept) -4.66 -5.47 -3.97 235.7 < 5x 10-4 *** 

Xlv_mv.std 1.26 0.68 1.87 416.2 < 5x 10-4 *** 

Xin_out.std -0.41 -0.71 -0.12 1870.3 < 2x10-3 ** 

newMonthx.std -2.04 -3.07 -0.97 278.2 < 5x 10-4 *** 

Month.std 3.91 2.41 5.60 260.1 < 5x 10-4 *** 

Xreason1.std 2.05 1.49 2.62 253.7 < 5x 10-4 *** 

Xlv_mv.std:newMonthx.std -1.15 -1.66 -0.58 1318.2 < 5x 10-4 *** 

Xlv_mv.std:Xreason1.std -0.90 -1.36 -0.52 447.4 < 5x 10-4 *** 

Xin_out.std:newMonthx.std 1.26 0.87 1.67 1752.6 < 5x 10-4 *** 

Xreason1.std:newMonthx.std 0.99 0.13 1.82 270.9 <1,6x10-2 * 

Xlv_mv.std:Month.std 1.73 0.98 2.46 1216.9 < 5x 10-4 *** 

Xin_out.std:Month.std -1.23 -1.72 -0.67 1748.1 < 5x 10-4 *** 

Xreason1.std Month.std -1.30 -2.66 -0.08 249.9 <3,9x10-2 * 

       
 

 

Figure 4.14 Trace & Density Plots of Variance Component (top) and Residual 

Variance Component (below) of the Final Implementation of Poisson MCMCglmm 
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The trace and density plots for the all effects of fixed and interaction can be seen at 

Appendix-C. According to Figure 4.14, there are not any trends at the trace plot for 

variance component. It is an evidence for converging the model. Similarly, the residual 

variance component seems to be converged, too. In the plot, units implicates that 

residuals. that  MCMCglmm function always handle with over-dispersion problem 

(Hadfield, 2010).  To check over-dispersion, it needs to be looked at the density plot 

of residuals.  The mean of the density of residuals is not equal to 0. It is close to 0.8. 

It means that the model can deal with over-dispersion problem. 

 

In addition, the results of Geweke test (see section 3.2.1.3) have been offered below 

(Table 4.8) to provide a check of the convergence status of the model. The test results 

also support the output of the trace and density plots. According to Geweke’s test, 

none of the Geweke statistics take z-score greater than upper bound (1.96) or less than 

lower bound (-1.96), which indicates that posterior distribution converged for all the 

covariates. 

Table 4.8 Geweke Diagnostic Test Results for Final Implementation of Poisson 

MCMCglmm. 

Covariates Geweke 

Diagnostic 

z-score 

(Intercept) 0.122 

Xlv_mv.std 0.551 

Xin_out.std 0.668 

newMonthx.std 0.398 

Xreason1.std 0.096 

Month.std -0.413 

Xlv_mv.std:newMonthx.std 0.335 

Xlv_mv.std:Xreason1.std -0.815 

Xin_out.std:newMonthx.std -0.230 

Xreason1.std:newMonthx.std -0.363 

Xlv_mv.std:Month.std -0.370 

Xin_out.std:Month.std 0.052 

Xreason1.std:Month.std 0.388 
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Also, in order to check the stationary and accuracy status of the model, the results of 

Heidelberger-Welch and Halfwidth Diagnostic tests (see section 3.2.1.3) have also 

been presented below (Tables 4.9 and 4.10). The results of the test verify the Geweke 

diagnostic and the trace-density plots. Hence, the convergences of all the covariates 

of the final implementation of Poisson MCMCglmm is verified by all the diagnostics. 

Table 4.9 Heidelberger-Welch Diagnostic Test’s Results for Final Implementation 

of Poisson MCMCglmm. 

Covariates Stationarity 

Test 

p-

value 

(Intercept) passed 0.534 

Xlv_mv.std passed 0.853 

Xin_out.std passed 0.240 

newMonthx.std passed 0.200 

Month.std passed 0.165 

Xreason1.std passed 0.499 

Xlv_mv.std:newMonthx.std passed 0.443 

Xlv_mv.std:Xreason1.std passed 0.734 

Xin_out.std:newMonthx.std passed 0.218 

newMonthx.std:Xreason1.std passed 0.173 

Xlv_mv.std:Month.std passed 0.419 

Xin_out.std:Month.std passed 0.644 

Month.std:Xreason1.std passed 0.142 
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Table 4.10 Halfwidth Diagnostic Test Results for Final Implementation of Poisson 

MCMCglmm. 

Covariates Halfwidth 

Test 

Mean Halfwidth 

(Intercept) passed -4.647 0.064 

Xlv_mv.std passed 1.248 0.033 

Xin_out.std passed -0.416 0.007 

newMonthx.std passed -2.023 0.071 

Month.std passed 3.892 0.112 

Xreason1.std passed 2.036 0.047 

Xlv_mv.std:newMonthx.std passed -1.165 0.015 

Xlv_mv.std:Xreason1.std passed -0.899 0.024 

Xin_out.std:newMonthx.std passed 1.276 0.009 

newMonthx.std:Xreason1.std passed 0.978 0.052 

Xlv_mv.std:Month.std passed 1.756 0.022 

Xin_out.std:Month.std passed -1.239 0.012 

Month.std:Xreason1.std passed -1.283 0.085 
 

The previous versions of Poisson MCMCglmm had significant autocorrelation 

problems. If the autocorrelation status according to the chain of the posterior 

distribution is examined, it can be easily seen that the final implementation of Poisson 

MCMCglmm does not have the autocorrelation problem (see the autocorrelation plots 

at Appendix-C). 

 

At the beginning of the analysis of the final implementation, the results of variance 

inflation (VIF) was very high. Therefore, to cope with this problem, standardized 

variables were used throughout the analysis. This solution has decreased the VIF 

results (Table 4.11), (see Section 3.1.2.1). Thus, all of VIF results for each covariate 

is less than 10 which can be taken as an evidence for the elimination of multi-

collinearity problem. 
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Table 4.11 VIF Results of the Final Implementation of Poisson MCMCglmm 

Covariates VIF 

(Intercept) 1.000 

Xlv_mv.std 1.000 

newMonthx.std 6.072 

Xreason1.std 1.000 

Xlv_mv.std:Xreason1.std 1.000 

newMonthx.std:Xreason1.std 6.072 

Xin_out.std:Month.std 6.072 

Xin_out.std 1.000 

Month.std 6.072 

Xlv_mv.std:newMonthx.std 6.072 

Xin_out.std:newMonthx.std 6.072 

Xlv_mv.std:Month.std 6.072 

Month.std:Xreason1.std 6.072 

 

The diagnostics expose that the model’s assumptions are verified. Therefore, 

regression model of Poisson MCMCglmm (54) can be determined now.  

 

 log{𝐸(𝑌𝑖𝑗|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)}

= −4.66 + 1.26𝑋𝑙𝑣𝑚𝑣 . 𝑠𝑡𝑑 − 0.41𝑋𝑖𝑛𝑜𝑢𝑡 . 𝑠𝑡𝑑

− 2.04𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑 + 3.91𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑

+ 2.05𝑋𝑟𝑒𝑎𝑠𝑜𝑛1. 𝑠𝑡𝑑

− 1.15𝑋𝑙𝑣𝑚𝑣 . 𝑠𝑡𝑑 𝑥 𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑

− 0.90𝑋𝑙𝑣𝑚𝑣 . 𝑠𝑡𝑑 𝑥 𝑋𝑟𝑒𝑎𝑠𝑜𝑛1. 𝑠𝑡𝑑

+ 1.26𝑋𝑖𝑛𝑜𝑢𝑡 . 𝑠𝑡𝑑 𝑥 𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑

+ 0.99𝑋𝑟𝑒𝑎𝑠𝑜𝑛1. 𝑠𝑡𝑑 𝑥 𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑

+ 1.73𝑋𝑙𝑣𝑚𝑣 . 𝑠𝑡𝑑 𝑥 𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑

− 1.23𝑋𝑖𝑛𝑜𝑢𝑡 . 𝑠𝑡𝑑 𝑥 𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑

− 1.30𝑋𝑟𝑒𝑎𝑠𝑜𝑛1. 𝑠𝑡𝑑 𝑥 𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑 + 𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛̂ . 

(54) 
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In the model, all of covariates are used in the standardized version in order to prevent 

multi-collinearity problem. The model’s main effects of the intercept, Xin_out.std, 

newMonthx.std and interaction effects of Xlv_mv.std: newMonthx.std, Xlv_mv.std: 

Xreason1.std, Xin_out.std:Month.std, Xreason1.std: Month.std have negative 

coefficients, whereas other main effects, interaction effects have positive coefficients. 

While the covariates which have negative coefficients cause a decrease in the fitted 

value of the model, the covariates which have positive coefficients cause an increase 

in the fitted value of the model. In addition, variance of the random effect, which is 

blocation, is 1.24. The variance is not too small not to affect the model’s estimation 

result. This implicates that the choice of model is appropriate for the electricity 

interruption dataset. 

 

With the aim of comparing the fitted values of the first implementation and the final 

implementation of the Poisson MCMCglmm using the same scenario which is given 

in section 4.3.2.1, the model standardized covariates will take these values: 

 Standardized Xlv_mv will take 0.99 instead of 1 

 Standardized Xin_out will take -0.99 instead of 0 

 Standardized Month will take -1.59 instead of 1 

 Standardized newMonthx will take -0.82 instead of 0 

 Standardized Xreason1 will take 1.41 instead of 1 

 

The scenario had defined that an interruption value which occurred due to a fault of 

operator in a lower voltage in an un-zoned area in January. The solution of the 

regression model (54) according to this scenario is when  𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛̂ =0:  

 

log{𝐸(𝑌𝑖1|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)} ≅ −4.41 

 

The estimated value of the final implementation of Poisson MCMCglmm with 

standardized variables equals to ≈0.010. It is closer to the observed value of 0 than the 
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estimated value of the first implementation of Poisson MCMCglmm (see section 

4.3.2.1). When other variables are the same, and only the covariate of month is 

changed from January (-1.59) to July (-0.35),  this situation affects the covariates 

elated to the newMonthx. The value of the covariate of newMonthx hence changes 

from -0.82 to -0.35. Then, log{𝐸(𝑌𝑖7|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)} ≅ -2.15 which is  ≈ 0.11. The 

estimated value increases from January to July. Remember that observed values 

increase from January to December (see Figure 4.1). This upwards movement can be 

observed in the fitted values in the final implementation of the model, and it is 

expected that the number of electricity interruption counts should be increased in the 

second half of the year. This increase can be seen in detail at the fitted vs observed 

values (see Figure 4.15). 

 

On the other hand, when all other covariates remained same the interruption count 

occurred in the medium voltage area instead of the lower voltage area: the 

standardized Xlv_mv is taken -0.99 instead of 0. Then, the solution of the Poisson 

MCMCglmm regression gives a smaller value (log{𝐸(𝑌𝑖𝑗|𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛)} ≅ -17.15). The 

estimated value converges closely to 0. The result indicates that the probability of an 

interruption in January due to the operator fault, in un-zoned area, in the medium 

voltage network, is so low, whereas in low voltage network, this probability is more 

likely to occur. On the other hand, the scenario might occur in a zoned area instead of 

un-zoned, and then the estimated value is increased. Except for the reason of operator, 

the estimated value always increases. It means that the probability of the interruption 

counts may be higher due to reasons related to security and external factors.  
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Figure 4.15 Plot for Fitted vs Observed Plot of the Final Implementation of Poisson 

MCMCglmm 

 

 

Figure 4.15 shows that fitted values around zero and it implicates that the fitted values 

are increasing parallel with observed values.  However, it can be clearly seen that the 

residuals spread from -10 up to +10 at the residual plots. It can be originated from the 

number of observed values. The number of observations are really insufficient for 

large interruptions. In the dataset, the number of observed values which are equal to 

10 and bigger than 10 is only 18.  
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Figure 4.16 Residual Plots vs Fitted Values and Covariates for the Final 

Implementation of Poisson MCMCglmm 

 

The residual plots above demonstrate that the residuals are increasing between June 

and December. To eliminate these differences, piecewise indicator variable which is 

newMonthx are added. The piecewise variable causes decreases in the residuals after 

May. Consequently, even though it cannot be completely eliminated, it should be 

noted that it makes significant changes to the first implemented models.  
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Figure 4.17 Plot of the Fitted Values of Final Poisson MCMCglmm vs. Month 

 

In order to observe success of the final Poisson model, it is beneficial to compare 

Figure 4.1 and Figure 4.17. Figure 4.17 shows the fitted values according to Month 

variable. Figure 4.17 and Figure 4.1 seem close to each other. The final Poisson 

MCMCglmm estimate the biggest observation of the dataset as about 45. In addition, 

the fitted values is getting higher after June mostly. It means that piecewise indicator 

variable provides increasing of fitted values properly. 
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Figure 4.18 Plot of Fitted Values for Final Poisson MCMCglmm vs Location 

The success of the final Poisson MCMCglmm can be seen at Figure 4.18. In order to 

understand the differences between observed vs fitted values, Figures 4.18 and 4.2 can 

be evaluated. The plots seems close to each other. To illustrate, we expect to exist the 

biggest fitted value in city center. According to Figure 4.18, fitted value of the model 

exist in the city center. The towns of Orta, Ilgaz, Kızılırmak and Çerkeş have other 

bigger fitted values like being in the observed dataset. Under this results, we may say 

that final Poisson MCMCglmm  can explain the dataset correspondingly. 
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4.3.3.2 Final Implementation of Zero-Inflated Poisson MCMCglmm 

Although the final implementation of Poisson MCMCglmm has satisfactory 

convergence status, the residuals of the model are still a bit high. Zero-inflated Poisson 

MCMCglmm is attempted to fix this problem. These ZIP models have two processes: 

named distribution (here Poisson) and zero-inflated (see section 3.4.1). Therefore, 

firstly all of covariates were run for each of the processes. However, the covariates for 

zero-inflated process did not give any significant results except for the intercept (Table 

4.12).  

 

Table 4.12 Summary Table for the Final Implementation of Zero-Inflated Poisson 

MCMCglmm 

Coefficients Post 

Mean 

l-

95% 

CI 

u-

95% 

CI 

Efficient 

Samples 

p-

MCMC 

  

Intercept_Poisson Process -4.63 -5.44 -3.87 2000 < 5x10-4 *** 

Intercept_ZeroInflated -3.80 -7.90 -5.14 2.689 < 5x10-4 *** 

Xlv_mv.std1 1.23 0.65 1.85 2000 < 5x10-4 *** 

Xin_out.std1 -0.41 -0.72 -0.12 2000 1.4x10-2 * 

newMonthx.std1 -2.03 -3.14 -0.99 1851.88 < 5x10-4 *** 

Month.std1 3.91 2.39 5.68 1831.41 < 5x10-4 *** 

Xreason1.std1 2.02 1.45 2.63 2000 < 5x10-4 *** 

Xlv_mv.std:newMonthx.std1 -1.15 -1.71 -0.65 2000 < 5x10-4 *** 

Xlv_mv.std:Xreason1.std1 -0.89 -1.33 -0.48 1856.51 < 5x10-4 *** 

Xin_out.std:newMonthx.std1 1.27 0.89 1.70 2000 < 5x10-4 *** 

Xreason1.std:newMonthx.std1 0.99 0.12 1.84 1846.39 8x10-3 ** 

Xlv_mv.std:Month.std1 1.74 1.05 2.50 2000 < 5x10-4 *** 

Xin_out.std:Month.std1 -1.23 -1.80 -0.72 2297.97 < 5x10-4 *** 

Xreason1.std:Month.std1 -1.30 -2.65 -0.05 1846.42 2.9x10-2 * 

*The superscript 1 and 2 define the level of the process that 1 implicates as Poisson 

process and 2 implicates zero-inflation process. 

 

Even though intercept of zero-inflated process is significant at the summary table, this 

does not imply that the model has good convergence. Trace and density plots along 

with convergence test showed that the second process of the model did not converge 



 

 

 

92 

 

very well. For this reason, the number of iteration and thinning interval were increased 

step by step. The summary table given as Table 4.12 shows the results when number 

of iterations was 50,000,000 and thinning interval was 25,000. In addition, it should 

be noted that this number of iterations and thinning interval include the last and the 

highest values of the analysis over a period that continue throughout four days. After 

this, it was realized that from that point onwards it is not possible to have appropriate 

convergence anymore, even if the number of iterations and thinning interval are 

increased. However, the intercept of zero-inflated process still does not converge 

completely. Trace and density plots, Geweke, Heilderberger-Welch tests show this 

result in detail (see Figure 4.19, Table 4.13, Table 4.14 and Table 4.15). 

 

 

Figure 4.19 Trace & Density Plots of Variance Component (top) and Residual 

Variance Component (below) for the Final Implementation of ZIP MCMCglmm 
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The results of Geweke Diagnostic show that all of the covariates except for the 

intercept of zero-inflated process are in the interval of the diagnostic which is between 

-1.96 and 1.96. Although number of iterations and thinning interval were increased, 

the result of Geweke diagnostic did not change. Eventually, this situation suggests the 

possibility that the data may not be suitable for the zero-inflated distribution. 

 

 

Table 4.13 Geweke Diagnostic Test Results for Final Implementation of Zero-

Inflated Poisson MCMCglmm. 

Covariates Geweke 

Diagnostic 

z-score 

Intercept_Poisson Process 0.568 

Intercept_ZeroInflated 3.514 

Xlv_mv.std1 0.304 

Xin_out.std1 1.324 

newMonthx.std1 0.978 

Month.std1 -0.687 

Xreason1.std1 -0.485 

Xlv_mv.std:newMonthx.std1 0.490 

Xlv_mv.std:Xreason1.std1 -0.006 

Xin_out.std:newMonthx.std1 -0.742 

newMonthx.std:Xreason1.std1 -0.308 

Xlv_mv.std:Month.std1 -0.695 

Xin_out.std:Month.std1 0.478 

Month.std:Xreason1.std1 0.246 

 

 

According to Geweke diagnostic, intercept of zero-inflated cannot converge very well. 

In parallel with Geweke diagnostic, stationary and accuracy diagnostic which is 

Heilderberger-Welch test gives the same results. In zero-inflated models, this kind of 

converge problems are frequently observed (Hadfield, 2010). 
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Table 4.14 Heidelberger-Welch Diagnostic Test’s Results for Final Implementation 

of Zero-Inflated Poisson MCMCglmm. 

 Covariates Stationarity 

Test 

p-value 

Intercept_Poisson Process passed 0.340 

Intercept_ZeroInflated failed 0.048 

Xlv_mv.std1 passed 0.408 

Xin_out.std1 passed 0.413 

newMonthx.std1 passed 0.163 

Month.std1 passed 0.339 

Xreason1.std1 passed 0.300 

Xlv_mv.std:newMonthx.std1 passed 0.124 

Xlv_mv.std:Xreason1.std1 passed 0.675 

Xin_out.std:newMonthx.std1 passed 0.294 

newMonthx.std:Xreason1.std1 passed 0.799 

Xlv_mv.std:Month.std1 passed 0.070 

Xin_out.std:Month.std1 passed 0.295 

Month.std:Xreason1.std1 passed 0.786 

 

 

Table 4.15 Halfwith Diagnostic Test Results for Final Implementation of Zero 

Inflated Poisson MCMCglmm. 

Covariates Halfwidth 

Test 

Mean Halfwidth 

Intercept_Poisson Process passed -4.633 0.018 

Intercept_ZeroInflated <NA> NA NA 

Xlv_mv.std1 passed 1.233 0.013 

Xin_out.std1 passed -0.413 0.006 

newMonthx.std1 passed -2.039 0.025 

Month.std1 passed 3.916 0.039 

Xreason1.std1 passed 2.028 0.013 

Xlv_mv.std:newMonthx.std1 passed -1.158 0.012 

Xlv_mv.std:Xreason1.std1 passed -0.891 0.010 

Xin_out.std:newMonthx.std1 passed 1.270 0.009 

newMonthx.std:Xreason1.std1 passed 0.991 0.020 

Xlv_mv.std:Month.std1 passed 1.747 0.016 

Xin_out.std:Month.std1 passed -1.233 0.011 

Month.std:Xreason1.std1 passed -1.301 0.030 
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To check the multi-collinearity problem, VIF results must be evaluated (Table 4.16). 

All the VIF results of the covariates are less than 10 (see section 3.1.2.1). Multi-

collinearity problem is not observed in the model. 

 

Table 4.16 VIF Results of the Final Implementation of Poisson MCMCglmm 

Covariates VIF 

Intercept_Poisson Process 1.000 

Intercept_ZeroInflated 1.000 

Xlv_mv.std1 1.000 

Xin_out.std1 1.000 

newMonthx.std1 6.072 

Month.std1 6.072 

Xreason1.std1 1.000 

Xlv_mv.std:newMonthx.std1 6.072 

Xlv_mv.std:Xreason1.std1 1.000 

Xin_out.std:newMonthx.std1 6.072 

newMonthx.std:Xreason1.std1 6.072 

Xlv_mv.std:Month.std1 6.072 

Xin_out.std:Month.std1 6.072 

Month.std:Xreason1.std1 6.072 

 

 

As can be observed from  the values covariates have in the summary table, while the 

covariates of Xlv_mv.std, Month.std, Xreason1.std as well as 

Xin_out.std:newMonthx.std, Xreason1.std:newMonthx.std and 

Xlv_mv.std:Month.std have positive coefficients, other covariates do not have 

positive coefficients. Since the standardized variables are used, the covariates can take 

negative values, too. For example, the covariate of Xlv_mv.std can take -0.99 instead 

of 0, which is the interruption count in medium voltage area, then the covariate has  

decreasing effect on the model response log(𝜆𝑖). Otherwise, in medium voltage area, 

it would take -0.99, and would have positive increasing effect on the response. 

Therefore, to evaluate the changes on the response variable, it would be beneficial to 

go over the estimation of the regression model of ZIP(55) and (56) : 
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For the Poisson process (55): 

 

 log(𝜆𝑖|𝑌𝑖𝑗) =  −4.63 + 1.23𝑋𝑙𝑣_𝑚𝑣. 𝑠𝑡𝑑 − 0.41𝑋𝑖𝑛_𝑜𝑢𝑡. 𝑠𝑡𝑑 −

2.03𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑 + 3.91𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑 + 2.02𝑋𝑟𝑒𝑎𝑠𝑜𝑛1. 𝑠𝑡𝑑 −

1.15𝑋𝑙𝑣_𝑚𝑣. 𝑠𝑡𝑑 𝑥 𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑 −

0.89𝑋𝑙𝑣_𝑚𝑣. 𝑠𝑡𝑑 𝑥 𝑋𝑟𝑒𝑎𝑠𝑜𝑛1. 𝑠𝑡𝑑 +

1.27𝑋𝑖𝑛_𝑜𝑢𝑡. 𝑠𝑡𝑑𝑥 𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑 +

0.99newMonthx. stdxXreason1. std +

 1.74Xlv_mv. std x Month. std –  1.23Xin_out. std x Month. std −

1.30Month. std x Xreason1. std + 𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛̂ . 

(55) 

 

For the zero-inflated process (56) : 

 

 𝑙𝑜𝑔𝑖𝑡(𝑤0) = log (
𝑤0

1 − 𝑤0
) =  −3.80 

(56) 

 

The scenario which was implemented to the first implementation of Poisson 

MCMCglmm (55) was the electricity interruption, occurring due to a fault of the 

operator in a low voltage and non-urban area in January. To evaluate the final 

implementation of ZIP MCMCglmm, this scenario is calculated with the new model. 

The observed value equals to zero. For this reason, zero-inflated process (56) estimates 

𝑤0 gives the P(Yi=0) as ≅0.021. On the other hand, Poisson process (55) calculates 

the log(𝜆𝑖|𝑌𝑖𝑗) ≅  −6.89. Therefore, the model estimates the expected number of 

interruptions as ≅1,01.  
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Figure 4.20 Plot for Fitted vs Observed Plot of the Final Implementation of Zero-

Inflated Poisson MCMCglmm 

 

Fitted vs observed plot (Figure 4.20) of the final implementation of ZIP MCMCglmm 

seems so close to the plot of the final implementation of Poisson MCMCglmm’s plots. 

In this situation zero-inflated process is seen not to converge very well. Nevertheless, 

to overcome this convergence problem and improve the results, hurdle models which 

usually indicate better convergence status should be tried here. 

 

Consequently, the only problem that occurs in the final implementation of Poisson 

MCMCglmm is the high residuals.  It was supposed that the final implementation of 

ZIP MCMCglmm might solve this problem; however, as can be seen on the residual 

plots of the ZIP MCMCglmm, the model is not able to solve this problem (Figure 

4.21). 
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Figure 4.21 Residual Plots of the Final Implementation of ZIP MCMCglmm 

 

4.3.3.3 Hurdle Poisson MCMCglmm 

According to the literature, hurdle models have better convergence than the zero-

inflated models since hurdle model have the ability to handle not only zero-inflation 

but also zero-deflation. (see section 3.4.2) In previous section, the final 

implementation of zero-inflated Poisson MCMCglmm had convergence problem on 

zero-inflation process. To fix this problem, hurdle Poisson MCMCglmm is 

implemented to our Bayesian data analysis. 

At first, the model’s diagnostics showed convergence problem in which number of 

iteration is 1,000,000 and thinning interval is 500. Then, the values of them has been 

increased progressively like zero-inflation Poisson MCMCglmm. After that, the 

model converge the posterior distribution when the number of iterations is 10,000,000 

and thinning interval is 7,500. These values are small than the number of iterations 
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and thinning interval of the zero-inflated model given in previous section (see section 

4.3.3.2). The summary table of significant covariates can be seen below (Table 4.17). 

 

Table 4.17 Summary Table of Hurdle Poisson MCMCglmm 

  Post 
Mean 

l-95% 
CI 

u-
95% 

CI 

Efficient 
Samples 

p-MCMC 
 

Intercept_Poisson Process 0.27 -0.48 1.11 73.87 5.06 x 10-1 
 

Intercept_Hurdle Process 2.85 2.53 3.16 124.11 < 5 x 10-4 *** 

Xlv_mv.std1 -1.29 -2.08 -0.60 94.40 < 5 x 10-4 *** 

Xlv_mv.std2 -0.45 -0.80 -0.12 132.14 5 x 10-3 ** 

Xin_out.std1 -0.30 -0.79 0.22 351.39 2.19 x 10-1 
 

Xin_out.std2 0.40 0.12 0.71 172.51 9 x 10-3 ** 

newMonthx.std1 -0.97 -2.24 0.39 84.41 1.38 x 10-1 
 

newMonthx.std2 1.30 0.68 1.83 113.86 < 5 x 10-4 *** 

Month.std1 2.01 -0.09 3.81 69.31 2.2 x10-2 * 

Month.std2 -2.73 -3.48 -1.95 86.72 < 5 x 10-4 *** 

Xlv_mv.std:newMonthx.std1 -1.93 -3.22 -0.71 76.51 < 5 x 10-4 *** 

Xlv_mv.std:newMonthx.std2 1.18 0.61 1.80 96.10 < 5 x 10-4 *** 

Xlv_mv.std:Month.std1 3.17 1.35 5.22 78.01 < 5 x 10-4 *** 

Xlv_mv.std:Month.std2 -1.68 -2.42 -0.82 72.78 < 5 x 10-4 *** 

Xin_out.std:newMonthx.std1 1.20 0.41 1.96 495.51 3x10-3 ** 

Xin_out.std:newMonthx.std2 -0.85 -1.35 -0.31 121.94 < 5 x 10-4 *** 

Xin_out.std:Month.std1 -1.36 -2.45 -0.29 380.41 1.3x10-2 * 

Xin_out.std:Month.std2 0.78 0.12 1.46 91.79 1.7x10-2 * 
*The superscript 1 and 2 define the level of the process that 1 implicates as Poisson 

process and 2  implicates Hurdle process. 

 

Hurdle models have two process like the zero-inflation models as well. For this reason, 

the variables of the model were run for the each process. Except of the covariates of 

the intercept, Xin_out.std and newMonthx.std for the Poisson process, all the 

covariates are significant. Although both Xin_out.std and newMonthx.std are not 

significant, they cannot be eliminated from the analysis because of the interaction 

effects.  
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When looking at the differences of the same covariates in hurdle and Poisson process, 

intercepts of the processes take positive coefficients. However, the covariate of 

Xlv_mv.std of each process takes negative coefficients. It is understood that intercepts 

always increase the fitted value since using the log link for Poisson process and logit 

link for the hurdle process. However, while the covariate of Xlv_mv.std increases the 

fitted value in medium voltage area (-0.99), it decreases the fitted value in low voltage 

(0.99) area. 

 

Next, it is understood that the model converge very well. In addition, it is not observed 

any autocorrelation between lags (see Appendix-C). Geweke diagnostic and 

Heilderberger-Welch diagnostics show this converge in detail for each of covariate 

(see Table 4.18 and Table 4.19).  
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Table 4.18 Geweke Diagnostic Test Results for Hurdle Poisson MCMCglmm. 

Covariates Geweke 

Diagnostic 

z-score 

Intercept_Poisson Process -0.735 

Intercept_Hurdle Process -1.403 

Xlv_mv.std1 -0.248 

Xlv_mv.std2 -1.007 

Xin_out.std1 0.476 

Xin_out.std2 -0.933 

newMonthx.std1 -0.610 

newMonthx.std2 -0.956 

Month.std1 0.540 

Month.std2 1.114 

Xlv_mv.std:newMonthx.std1 -0.425 

Xlv_mv.std:newMonthx.std2 -1.675 

Xlv_mv.std:Month.std1 0.391 

Xlv_mv.std:Month.std2 1.829 

Xin_out.std:newMonthx.std1 0.279 

Xin_out.std:newMonthx.std2 0.109 

Xin_out.std:Month.std1 -0.449 

Xin_out.std:Month.std2 0.104 

 

According to Geweke diagnostic, it can be seen that z-scores for all of covariates are 

between the interval (-1.96 and 1.96).  
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Table 4.19 Heidelberger-Welch Diagnostic Test’s Results for Hurdle Poisson 

MCMCglmm. 

 Covariates Stationarity 

Test 

p-

value 

Intercept_Poisson Process passed 0.717 

Intercept_Hurdle Process passed 0.603 

Xlv_mv.std1 passed 0.664 

Xlv_mv.std2 passed 0.866 

Xin_out.std1 passed 0.228 

Xin_out.std2 passed 0.652 

newMonthx.std1 passed 0.632 

newMonthx.std2 passed 0.501 

Month.std1 passed 0.671 

Month.std2 passed 0.433 

Xlv_mv.std:newMonthx.std1 passed 0.778 

Xlv_mv.std:newMonthx.std2 passed 0.734 

Xlv_mv.std:Month.std1 passed 0.719 

Xlv_mv.std:Month.std2 passed 0.670 

Xin_out.std:newMonthx.std1 passed 0.086 

Xin_out.std:newMonthx.std2 passed 0.887 

Xin_out.std:Month.std1 passed 0.052 

Xin_out.std:Month.std2 passed 0.962 

 

 

All covariates for two processes in hurdle model passed from the stationarity 

diagnostic.  However, according to the Halfwidth diagnostic, there is an accuracy 

problem for some covariates of the model (see Table 4.20). 
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Table 4.20 Halfwidth Diagnostic Test Results for Hurdle Poisson MCMCglmm 

 Covariates Halfwidth 

Test 

Mean Halfwidth 

Intercept_Poisson Process failed 0.271 0.093 

Intercept_Hurdle Process passed 2.853 0.028 

Xlv_mv.std1 passed -1.295 0.077 

Xlv_mv.std2 passed -0.451 0.029 

Xin_out.std1 passed -0.303 0.026 

Xin_out.std2 passed 0.404 0.023 

newMonthx.std1 failed -0.978 0.148 

newMonthx.std2 passed 1.303 0.056 

Month.std1 failed 2.011 0.243 

Month.std2 passed -2.731 0.085 

Xlv_mv.std:newMonthx.std1 passed -1.937 0.147 

Xlv_mv.std:newMonthx.std2 passed 1.182 0.063 

Xlv_mv.std:Month.std1 passed 3.179 0.223 

Xlv_mv.std:Month.std2 passed -1.680 0.096 

Xin_out.std:newMonthx.std1 passed 1.205 0.035 

Xin_out.std:newMonthx.std2 passed -0.852 0.047 

Xin_out.std:Month.std1 passed -1.369 0.055 

Xin_out.std:Month.std2 passed 0.787 0.070 

 

In order to check the multi-collinearity status, values of the VIF is figured up. 

According to VIF, there is no any covariate which causes the multi-collinearity 

problem, since all the VIF values of each covariate is less than 10 (see Table 4.21).  
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Table 4.21 VIF Results of Final Implementation of Poisson MCMCglmm 

Covariates VIF 

Intercept_Poisson Process 1.000 

Intercept_Hurdle Process 1.000 

Xlv_mv.std1 1.000 

Xlv_mv.std2 1.000 

Xin_out.std1 1.000 

Xin_out.std2 1.000 

newMonthx.std1 6.072 

newMonthx.std2 6.072 

Month.std1 6.072 

Month.std2 6.072 

Xlv_mv.std:newMonthx.std1 6.072 

Xlv_mv.std:newMonthx.std2 6.072 

Xlv_mv.std:Month.std1 6.072 

Xlv_mv.std:Month.std2 6.072 

Xin_out.std:newMonthx.std1 6.072 

Xin_out.std:newMonthx.std2 6.072 

Xin_out.std:Month.std1 6.072 

Xin_out.std:Month.std2 6.072 

 

The diagnostic checks have shown that except the accuracy problem for three 

covariates, all of the covariates converge to the posterior distribution in hurdle Poisson 

MCMCglmm. Next, it needs to be looked at the regression model for the estimation. 

Hurdle regression model has two process like ZIP models (see section 3.4.2). One of 

them is named distribution (here is Poisson) and the other is hurdle process. According 

to the summary table, the open form of the hurdle regression model such as: 
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For the hurdle process (57): 

 𝑙𝑜𝑔𝑖𝑡(𝑤0|𝑌𝑖𝑗) = 2.85 − 0.45𝑋𝑙𝑣_𝑚𝑣. 𝑠𝑡𝑑 + 0.40𝑋𝑖𝑛_𝑜𝑢𝑡. 𝑠𝑡𝑑

+ 1.30𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑 − 2.73𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑

+ 1.18𝑋𝑙𝑣_𝑚𝑣. 𝑠𝑡𝑑 𝑥 𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑

− 1.68𝑋𝑙𝑣_𝑚𝑣. 𝑠𝑡𝑑 𝑥 𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑

− 0.85𝑋𝑖𝑛_𝑜𝑢𝑡. 𝑠𝑡𝑑 𝑥𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑

+ 0.78𝑋𝑖𝑛_𝑜𝑢𝑡. 𝑠𝑡𝑑 𝑥 𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑 

(57) 

For the Poisson process (58): 

 log(𝜆𝑖𝑗|𝑌𝑖𝑗) = 0.27 − 1.29𝑋𝑙𝑣𝑚𝑣 . 𝑠𝑡𝑑 − 0.30𝑋𝑖𝑛𝑜𝑢𝑡 . 𝑠𝑡𝑑

− 0.97𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑 + 2.01𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑

− 1.93𝑋𝑙𝑣𝑚𝑣 . 𝑠𝑡𝑑 𝑥 𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑

+ 3.17𝑋𝑙𝑣𝑚𝑣 . 𝑠𝑡𝑑 𝑥 𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑

+ 1.20𝑋𝑖𝑛𝑜𝑢𝑡 . 𝑠𝑡𝑑 𝑥 𝑛𝑒𝑤𝑀𝑜𝑛𝑡ℎ𝑥. 𝑠𝑡𝑑

− 1.36𝑋𝑖𝑛𝑜𝑢𝑡 . 𝑠𝑡𝑑 𝑥 𝑀𝑜𝑛𝑡ℎ. 𝑠𝑡𝑑 + 𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛̂ . 

(58) 

 

When the random effect takes 0, 𝑏𝐿𝑜𝑐𝑎𝑡𝚤𝑜𝑛̂ = 0, the scenario which was the electricity 

interruption of occurring due to a fault of the operator in a low voltage and non-urban 

area in January is calculated with hurdle model. The observed value equals to zero. 

Under these conditions, zero counts generated from the hurdle process and positive 

counts are generated by using truncated-Poisson process. According to the hurdle 

process, probability of observing 0 is (57)  𝑤0 ≅ 0.99. The result of the hurdle process 

says that the probability of existing the electricity interruption under these conditions 

is 0.99.  The probability of observing positive counts which is 1- 𝑤0 equals to 0.01. 

After all probabilities are calculated, the expected mean value is ≅0.00094 according 

to the model. It means that from the model fitted value is so close to 0.  

The fitted vs observed plot gives a better opinion about the model (see Figure 4.22). 
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Figure 4.22 Fitted vs Observed Values Plot of Hurdle Poisson MCMCglmm 

 

According to fitted vs observed values plot and residual plots, the residuals are higher 

than the final implementation of Poisson and ZIP MCMCglmm. The model can 

estimate 12 when an observed value is 0. This situation can be evaluated at residual 

plots in detail (Figure 4.23). Especially, in the residual plot of Month after June and 

newMonthx, the residuals’ distributed range is higher than the previous models given 

in the section.  

To sum up, according to the literature, hurdle model are expected to be mixing better 

than the ZIP models. However, this situation does not guarantee that the estimation 

gives better results than others.  
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Figure 4.23 Residual Plots vs Covariates for Hurdle Poisson MCMCglmm 

 

4.3.4 Posterior Predictive Checks and Comparison of the Final Models of 

Poisson, Zero-Inflated Poisson and Hurdle Poisson MCMCglmm 

 

In previous sections, 7 different models and their specifications were given. In first 

place, in section 4.3.2, the first implementation of Poisson MCMCglmm and Zero-

Inflated Poisson MCMCglmm without any interaction or other variables were 

explained separately. It was seen that the models were not enough to estimate some 

observed values and some diagnostic checks did not provide satisfactory results. 

Therefore, in section 4.3.3, significant interaction effects and piecewise indicator 

variable were added to the first implementation of Poisson and Zero-Inflated Poisson 

MCMCglmm. Thirdly, according to correlation relation, prior function was changed 

and the variables were standardized against the multi-collinearity problem. Then, the 

number of iterations and thinning intervals were customized against the 
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autocorrelation problem in the final implementation of Poisson and zero-inflated 

Poisson, and also the implementation of hurdle Poisson MCMCglmm was added. 

 

Actually, the models were given in section 4.3.2 and section 4.3.3 show the 

development process of our data analysis. They showed the model problems and gave 

the possible solutions to us. Therefore, it is not necessary to compare the models given 

in the sections 4.3.1 and 4.3.2. However, the final implementation of Poisson and ZIP 

MCMCglmm and hurdle Poisson MCMCglmm need to be compared in detail.  

 

To compare the models, the first method is posterior predictive check. Method 

depends on simulating data from the fitted model and comparing it to observed data 

(Gelman et al., 2014).  To achieve this, 1000 sets of replicated dataset from each of 

fitted model are simulated. For different ranges of observed value, the number of 

replicated data bigger than the observed value is calculated, and then divided by 1,000 

(59).  

 
𝑝 − 𝑣𝑎𝑙𝑢𝑒𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 =

(P (𝑇(𝑦𝑟𝑒𝑝, 𝜃) > 𝑇(𝑦))
1000
⁄  

(59) 

 

where 𝜃 is unknown model parameters, 𝑇(𝑦) is denoted as captured measurement 

from the observed data, and  𝑇(𝑦𝑟𝑒𝑝, 𝜃) is denoted as replicated data from the fitted 

model. The p-values that are smaller than 0.05 or bigger than 0.95 suggest that the 

model is generating data different from observed data. 

 

Therefore, the method of posterior predictive check is applied for different ranges of 

the observed data (see Table 4.22). 
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Table 4.22 Posterior Predictive Checks for Final Implementation of Poisson, ZIP 

and Hurdle Poisson MCMCglmm 

POSTERIOR PREDICTIVE 

CHECKS 

Model* / 

Count 

Range 

Poisson ZIP Hurdle 

Poisson 

=0 0.791 0.768 0 

>0 0.192 0.2 1 

>5 0.303 0.313 0.773 

>10 0.305 0.308 0.268 

>15 0.347 0.386 0.075 

>20 0.189 0.164 0.026 

 

Regarding the Poisson and ZIP models, p-values of the predictive checks are very 

similar to each other. In this case, it can be understood that the final implementation 

of ZIP model is using its Poisson process mostly in their modelling stage. In order to 

understand this hypothesis, it is beneficial to look at the posterior predictive histogram 

of the final implementation of Poisson MCMCglmm (see Figure 4.24). In Figure 4.24, 

the number of observed values equal to 0 exist at the middle of the histogram which 

are generated from the fitted values from the final implementation of Poisson 

MCMCglmm. This situation means that the final implementation of Poisson 

MCMCglmm can be seen adequate for modeling the dataset. 

 

On the other hand, when looking at the p-values of hurdle Poisson for each count 

range, it is realized that the hurdle cannot satisfactorily generate values equaled to 

zero. The dataset has excess zeros whose percentage is 83.4%, but the model cannot 

generate that much fitted values equal to zero. Next, the model is also not able to 

satisfactorily generate fitted values bigger than 0. It is understood here that the hurdle 

model generate the fitted values so close to zero, but it is never able to generate the 

fitted values which equal to zero.  
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Figure 4.24 Posterior Predictive Histogram of the Final Implementation of Poisson 

MCMCglmm 

 

To conclude that, posterior predictive checks show that the final implementation of 

both Poisson and ZIP MCMCglmm has satisfactory estimation of the electricity 

interruption dataset. 

 

Deviance Information Criterion is another evaluation method for comparison of the 

Bayesian models. The deviance “D” is defined as (60): 

 𝐷 = −2log (𝑃𝑟𝑜𝑏(𝑦|Ω)) (60) 

 

where Ω is parameter set of the model. In MCMCglmm package, the mean deviance 

which is �̅� is calculated over all iterations. It is the mean of the latent variables, the 

R-structure and the vector of fixed and random effects. The deviance is evaluated at 

the mean estimation of the parameters. (𝐷(Ω̅)) (Hadfield, 2010). Then, the deviance 

information criterion (61) is that: 
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 𝐷𝐼𝐶 = 2�̅� − 𝐷(Ω̅) (61) 

 

To compare the final implemented models, the results of DIC (61) are given (see Table 

4.23). The minimum DIC gives the best model. In this case, the DIC of Poisson 

MCMCglmm has the minimum DIC value. Then, second preferable model is the final 

implementation of ZIP MCMCglmm. Unfortunately, hurdle Poisson MCMCglmm 

has the worst value of DIC.  

Table 4.23 Deviance Information Criterion for Final Implementation of Poisson, 

ZIP and Hurdle Poisson MCMCglmm 

  Poisson ZIP Hurdle 

DIC 1662.51 1664.296 1946.685 

 

In section 4.3.3, the number of iterations and thinning intervals of the final 

implementation of the models was customized for their autocorrelation status. Hence, 

the estimation time of the models were different as well (see Table 4.24). When 

looking at the computational time table, the longest time belong to the final 

implementation of ZIP MCMCglmm. Then, the computational time of hurdle Poisson 

follows the computation time of ZIP MCMCglmm secondly. Thirdly, the final 

implementation of Poisson MCMCglmm has the shortest computation time.   

 

Table 4.24 Computation Time of Final Implementation of Poisson, ZIP and Hurdle 

Poisson MCMCglmm 

System 

Time 

(second) 

Poisson 

 

ZIP Hurdle 

Poisson 

User 3670.08 38515.78 12225.26    

System 123.46 4279.53 271.21  

Elapsed 3811.55 36945.98 12523.06  

 

 

To conclude that, according to posterior predictive checks, DIC, and computational 

time of the models, the final implementation of Poisson MCMCglmm is the best 
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model for this electricity interruption data. In spite of the literature, Poisson 

distribution gave better estimation than ZIP and hurdle models for the dataset which 

includes %83.4 of zero entity. 



 

 

 

113 

 

CHAPTER 5  

 

5. CONCLUSION 

 

This study aimed to give a framework of evaluation and estimation for the electricity 

interruption dataset which is published by the local electricity distribution companies 

in Turkey. Electricity interruption counts were analyzed by depending on in the frame 

of longitudinal data analysis and Bayesian inference. At the end of the study, it was 

realized that Poisson distribution was adequate for analyzing this type of longitudinal 

data which has 83.4% of excess zero. The data analysis were conducted in the 

statistical tool of R software and its package of MCMCglmm. The MCMCglmm 

package which was published in 2016 is developed by Jarrod Hadfield and its 

development process is still continued by him (Hadfield, 2016).   

 

In the final implementation of Poisson MCMCglmm: 

 Probability of electricity interruption increases from January to July. 

 Probability of electricity interruption is higher in the low voltage network than 

medium voltage network. 

 Probability of electricity interruption is bigger in a zoned area than in un-zoned 

area. 

 

In the first place, the probability of electricity interruption is lower in January than 

July. It is reasonable since the electricity consumption is getting higher in summer 

season because rapid voltage changes related with higher electricity consumption 

cause the electricity interruptions in the network more frequently in summer season. 

Next, the probability of electricity interruption is bigger in low voltage network. This 

result can be explained with infrastructure of the electricity network. Low voltage 

network consist of many electricity network components, and also connection 



 

 

 

114 

 

components. Therefore, the probability of being broken down a component is higher. 

Also, the electricity infrastructure, and also quality of components are lower in the 

low voltage network than the medium voltage network. Moreover, low voltage system 

is more open for illegal interventions causing by residents. All of these reasons make 

the probability of electricity interruption is getting higher. Thirdly, the probability of 

electricity interruption is also higher in zoned area than in un-zoned area since voltage 

changes are observed more frequently in zoned area. The voltage changes made by 

operators in substations and distribution centers increase the probability of electricity 

interruptions in zoned area. However, the electricity consumption is little in un-zoned 

area since population density is very low. Instead of population density, electricity 

distribution lines exist in un-zoned area, and the components of electricity distribution 

lines have better quality than the components of low voltage network. These situations 

make the probability of electricity interruption increase in zoned area. 

 

 

5.1 Limitations of the study 

During the data analysis process, some limitations has been arisen: 

 The package of MCMCglmm could not support the Negative Binomial 

distribution which is suggested by the literature as an alternative distribution 

to Poisson and zero-inflated Poisson. Therefore, negative binomial distribution 

could not be used in our data analysis (Hadfield, 2016). 

 Although the number of iterations and thinning intervals were customized 

according to the models, autocorrelation problem of zero-inflated process in 

the final implementation of ZIP MCMCglmm could not be solved by us. 

 Also, instead of increasing number of iteration and thinning interval, centering 

method was tried to solve autocorrelation problem for previous 

implementations of the models. However, this method could not be successful 

for solving the autocorrelation problem (see Appendix-D). 
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 Even if hurdle models are suggested by the literature for good converge status, 

the hurdle Poisson MCMCglmm could not be give the best estimation result 

in our data analysis. 

 Although the data structure is constituted by EMRA with the regulation 

published in 2008, the regulation is not enough to standardize the electricity 

interruption datasets which are published by the local electricity distribution 

companies for data analysis. Hence, it needs to be improved. 

 In zero-inflated models, zeros of data is expected to be around 30% of the total 

data (Hadfield, 2016). However, the dataset used in this study has 83.4% of 

total observation being zero. This situation can explain why the final ZIP 

MCMCglmm did not fit very well for zero-inflated process. However, there is 

not any limitation for the percentage of zero observation in the literature 

according to our knowledge. For this reason, this study also gives the 

information that ZIP models may not fit very well when zero observation is 

that high. 

 

5.2 Future Studies  

When looking at the Turkish electricity literature, the studies generally focused on the 

consumption of electricity by users. There is not so much study about the data analysis 

of electricity interruption to the best of our knowledge. In order to increase this type 

of studies, the datasets which is constituted by the local electricity distribution 

companies are precious resources. 

 

The electricity interruption datasets which are published by local electricity 

distribution companies have many information about electricity interruptions. Some 

of them are:  

 Duration of electricity interruptions 

 Type of electricity component which causes the electricity interruption  

 The number of residents who are affected from electricity interruption 
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If these resources might be modelled with appropriate data analysis techniques, it 

might give valuable information about the electricity interruptions to the decision 

makers and authorities. Moreover, these models might be used to predict the future 

electricity interruptions in the future. Second, cost of loses due to electricity 

interruptions can be predicted in a future study.  Also, these analysis might be 

conducted and evaluated together for other datasets which belong to different local 

distribution companies if the standardized data conditions can be provided by EMRA 

and TEDAŞ. Consequently, we hope that this study will give a key for the researchers 

who study in this area to discover new resources and statistical technique.
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APPENDICES 

 

A. DIAGNOSTIC CHECKS FOR THE FIRST IMPLEMENTATION OF 

THE MODELS 

 

1. Diagnostic Checks for the first implementation of Poisson MCMCglmm 

 

Figure A.1 The trace and density plots of posterior distributions of (co)variances 

matrices of the first Poisson MCMCglmm. 

 

 

The second diagnostic check of the model will be the queue of   autocorrelation (Figure 

A.2.). 
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Figure A.2:  The visual diagnostic checking for autocorrelation status the first 

implementation of Poisson MCMCglmm. 

  

2. Diagnostic Checks for the first implementation of Zero-Inflated Poisson 

MCMCglmm 

The first diagnostic check’s results are given in the Figure A.3 below. Trace and 

Density plots of two latent variable are: Poisson and Zero-Inflated. 
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Figure A.3 Trace and Density Plots of 2 latent variable: Poisson and Zero-Inflated. 

 

 

Figure A.4 The visual diagnostic checking for autocorrelation status the first 

implementation of Zero-Inflated Poisson MCMCglmm. 
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B. DIAGNOSTIC CHECKS FOR THE POISSON AND ZIP MODELS 

WITH INTERACTION EFFECTS AND PIECEWISE INDICATOR 

VARIABLE 

1. Diagnostic Checks for the Poisson MCMCglmm with Interaction Effects and 

Piecewise Indicator Variable 

 

Figure B.1 Trace and density plots of posterior distributions for Poisson 

MCMCglmm with interaction effects and indicator variable. 

 

Figure B.2 Autocorrelation plots of Poisson MCMCglmm with interaction effects 

and piecewise indicator variable 
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2. Diagnostic Checks for the ZIP MCMCglmm with Interaction Effects and 

Piecewise Indicator Variable 

 

Figure B.3 Trace and density plots of posterior distribution of Zero-Inflated Poisson 

MCMCglmm with interaction effects and piecewise indicator variable 

  

Figure B.4 Autocorrelation Plots for Zero-Inflated Poisson MCMCglmm 

with interaction effects and piecewise indicator variable 
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C. DIAGNOSTIC CHECKS FOR THE FINAL IMPLEMENTATION OF 

POISSON AND ZIP MODELS 

 

1. The final implementation of Poisson MCMCglmm 

 

 

 

Figure C.1 Trace and Density Plots for the final implementation of Poisson 

MCMCglmm with interaction effects and piecewise indicator variable 
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Figure C.1 Continue Trace and Density Plots for the final implementation of 

Poisson MCMCglmm with interaction effects and piecewise indicator variable 
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1.2 Autocorrelation Plots of the final implementation of Poisson MCMCglmm 

 

 

 

 

 

Figure C.2 Autocorrelation Plots for the final implementation of Poisson 

MCMCglmm with interaction effects and piecewise indicator variable 
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2.  The final implementation of zero-Inflated Poisson MCMCglmm 

 

 

Figure C.3 Trace and Density Plots for the final implementation of ZIP 

MCMCglmm with interaction effects and piecewise indicator variable 
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Figure C.3 Continue Trace and Density Plots for the final implementation of 

ZIP MCMCglmm with interaction effects and piecewise indicator variable 
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Figure C.4 Autocorrelation Plots for the final implementation of ZIP 

MCMCglmm with interaction effects and piecewise indicator variable 
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3. The Implementation of Hurdle Poisson MCMCglmm 

 

 

Figure C.5 Trace and Density Plots for the Hurdle Poisson MCMCglmm 

with interaction effects and piecewise indicator variable 
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Figure C.5 Continue Trace and Density Plots for the Hurdle Poisson 

MCMCglmm with interaction effects and piecewise indicator variable 
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Figure C.5 Continue Trace and Density Plots for the Hurdle Poisson 

MCMCglmm with interaction effects and piecewise indicator variable 
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Figure C.6 Autocorrelation Plots for the Hurdle Poisson MCMCglmm with 

interaction effects and piecewise indicator variable 
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Figure C.6 Continue Autocorrelation Plots for the Hurdle Poisson 

MCMCglmm with interaction effects and piecewise indicator variable 
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Figure C.7 Zoomed plots for Observed vs Fitted Values of the Hurdle 

Poisson MCMCglmm with interaction effects and piecewise indicator variable 

 

 

D. THE RESULTS OF MODELS FOR OTHER IMPLEMENTATION 

 

1. Poisson MCMCglmm and Zero-Inflated Poisson MCMCglmm with Method 

of Centering  

 

In this section, centering method will be used to overcome autocorrelation problem in 

developed models, which were built by adding interaction effects and slope 

parameters of Poisson MCMCglmm and Zero-Inflated Poisson MCMCglmm. 

 

Poisson MCMCglmm had autocorrelation problem (see Appendix-A). Therefore, only 

autocorrelation plots of covariates of developed Poisson MCMCglmm will be 

evaluated here (Figure D.1). 
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Figure D.1 Autocorrelation Plots of Covariates for Poisson MCMCglmm with Using 

Centering Method. 

 

Centering Method could solve autocorrelation problem for covariates of developed 

Poisson MCMCglmm by adding interaction effects and slope parameter. 

Autocorrelation problem is still observed on covariates of centered Xlv_mv, 

Xreason1, Xreason2 and also in the interaction of Xlv_mv and Xreason1. 

Consequently, it is understood that autocorrelation problem in this model cannot be 

solved by the methods of centering or increasing number of iterations. 

 

1.2 Zero-Inflated Poisson MCMCglmm with interaction effects and slope 

parameter by using Centering Method 

 

There were not any differences in developed Poisson MCMCglmm with Centering 

Method. Probably, this situation will be the same at developed Zero-Inflated Poisson 

MCMCglmm with Centering, too. To see differences of the autocorrelation status on 
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the model, autocorrelation plots of covariates will be shown below (Figures D.2 and 

D.3). 

 

 

 

Figure D.2 Autocorrelation Plots of Covariates for Zero-Inflated Poisson 

MCMCglmm with using Centering Method  
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Figure D.3 Continue Autocorrelation Plots of Covariates for Zero-Inflated Poisson 

MCMCglmm with using Centering Method  

 

According to autocorrelation plots, centering method could not solve autocorrelation 

problem in Zero-Inflated Poisson MCMCglmm with interaction effects and piecewise 

indicator variable as well. In fact, autocorrelation problem had been observed only at 

the covariate of Xreason2 in the first implementation of Poisson and Zero- Inflated 

Poisson MCMCglmm. Even so, since generating counts did not exactly fit when 

observed values were bigger than 10, the models were needed to be improved by 

adding interaction effects and piecewise indicator variable parameter. During the act 

of fixing and improving the strength of generating counts in models by adding 

interaction effects and slope parameter, it was realized that the autocorrelation 

problem was posing even a higher threat. While this result is understandable given the 

situation at hand since relations between covariates increase as a consequence of 

interaction effects and slope, it needs to be acknowledged that unknown relations 

between covariates might cause wrong generating. 
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E. A PART OF ELECTRICITY INTERRUPTION DATASET 

 

No Location 

M
o

n
th

 

Y
co

u
n

t 

Y
av

e
ra

ge
 

X
lv

_m
v 

X
in

_o
u

t 

X
re

as
o

n
1

 

X
re

as
o

n
2

 

1 Çankırı_atkaracalar_LV_In_external 1 0 0 1 1 0 0 

2 Çankırı_atkaracalar_LV_In_external 2 0 0 1 1 0 0 

3 Çankırı_atkaracalar_LV_In_external 3 0 0 1 1 0 0 

… … … … … … … … … 

289 Çankırı_çerkeş_LV_In_external 1 0 0 1 1 0 0 

290 Çankırı_çerkeş_LV_In_external 2 0 0 1 1 0 0 

291 Çankırı_çerkeş_LV_In_external 3 0 0 1 1 0 0 

292 Çankırı_çerkeş_LV_In_external 4 0 0 1 1 0 0 

293 Çankırı_çerkeş_LV_In_external 5 0 0 1 1 0 0 

294 Çankırı_çerkeş_LV_In_external 6 2 0.2585 1 1 0 0 

295 Çankırı_çerkeş_LV_In_external 7 1 0.617 1 1 0 0 

296 Çankırı_çerkeş_LV_In_external 8 1 0.067 1 1 0 0 

297 Çankırı_çerkeş_LV_In_external 9 0 0 1 1 0 0 

298 Çankırı_çerkeş_LV_In_external 10 0 0 1 1 0 0 

299 Çankırı_çerkeş_LV_In_external 11 6 0.283 1 1 0 0 

… … … … … … … … … 

1093 Çankırı_kurşunlu_MV_In_security 1 0 0 0 1 0 1 

1094 Çankırı_kurşunlu_MV_In_security 2 0 0 0 1 0 1 

1095 Çankırı_kurşunlu_MV_In_security 3 0 0 0 1 0 1 

1096 Çankırı_kurşunlu_MV_In_security 4 0 0 0 1 0 1 

1097 Çankırı_kurşunlu_MV_In_security 5 0 0 0 1 0 1 

1098 Çankırı_kurşunlu_MV_In_security 6 0 0 0 1 0 1 

1099 Çankırı_kurşunlu_MV_In_security 7 0 0 0 1 0 1 

1100 Çankırı_kurşunlu_MV_In_security 8 0 0 0 1 0 1 

… … … … … … … … … 

1723 Çankırı_yapraklı_MV_out_Operator 7 1 2.117 0 0 1 0 

1724 Çankırı_yapraklı_MV_out_Operator 8 2 27.395 0 0 1 0 

1725 Çankırı_yapraklı_MV_out_Operator 9 4 13.875 0 0 1 0 

1726 Çankırı_yapraklı_MV_out_Operator 10 0 0 0 0 1 0 

1727 Çankırı_yapraklı_MV_out_Operator 11 1 34.820 0 0 1 0 

1728 Çankırı_yapraklı_MV_out_Operator 12 1 0.617 0 0 1 0 

 

Table E.1 A Part Of Electricity Interruption Data 


