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ABSTRACT

NOVEL MODEL SELECTION CRITERIA ON HIGH DIMENSIONAL
BIOLOGICAL NETWORKS

Bülbül, Gül Bahar
M.S., Department of Statistics

Supervisor: Prof. Dr. Vilda Purutçuoğlu

June 2019, 129 pages

Gaussian graphical model (GGM) is an useful tool to describe the undirected associ-

ations among the genes in the sparse biological network. To infer such high dimen-

sional biological networks, the l1-penalized maximum-likelihood estimation method

is used. This approach performs a variable selection procedure by using a regular-

ization parameter which controls the sparsity in the network. Thus, a selection of

the regularization parameter becomes crucial to define the true interactions in the bi-

ological networks. In this sense, we suggest to combine some information-theoretic

measures such as CAIC, CAICF and ICOMP with a penalized likelihood approach

in order to yield the true graph. Also, loop-based multivariate adaptive regression

splines (LMARS) can be presented as a nonparametric modelling technique which is

good at dealing with the problem of nonlinearity and collinearity in the data which

the problems arise from high-dimensional networks. In this study, we interfere the

model selection procedure of LMARS by applying our measures to find the correct

structure, while it has been originally introduced with generalized cross validation as

a model selection technique.
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Keywords: Gaussian graphical model, l1-penalized estimation, Loop-based multivari-

ate adaptive regression splines, High dimensional model selection criteria, Information-

theoretic measures.
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ÖZ

YÜKSEK BOYUTLU BİYOLOJİK AĞLAR İÇİN YENİ MODEL SEÇME
TEKNİKLERİ

Bülbül, Gül Bahar

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi: Prof. Dr. Vilda Purutçuoğlu

Haziran 2019 , 129 sayfa

Gaussian grafiksel modeli seyrek biyolojik ağlarda genler arasındaki yönsüz ilişkileri

gösterirken kullanılan, kullanışlı bir parametrik metotdur. Yüksek boyutlu biyolojik

ağların tahmininde, l1-cezalandırmalı tahmin metodu olan grafiksel lasso kullanıl-

maktadır. Grafiksel lasso metodu değişken seçme prosedürü uygular ve ağdaki sey-

rekliği belirlemek için düzenlileştirme parametresi kullanılmaktadır. Bu sebeple, bir

biyolojik ağda bulunan doğru ilişkileri belirlemek için düzenlileştirme parametresi se-

çimi büyük önem kazanmaktadır. Bu bağlamda, biz doğru grafiği elde etmek için ce-

zalandırmalı olabilirlik yaklaşımı ile birlikte bilgi kuramsal metotlar olan CAIC, CA-

ICF ve ICOMP kullanmayı önermekteyiz. Ayrıca, çok yönlü uyarlanabilir regresyon

çizgileri modeli, verideki doğrusal olmama ve ağların yüksek boyutundan kaynakla-

nan kolinerlik problemlerini çözmede başarılı olan parametrik olmayan bir model-

leme tekniği olarak sunulabilir. Döngü tabanlı çok değişkenli uyarlanabilir regresyon

splineları orjinal olarak genelleştirilmiş çapraz geçerlilik ölçütünü model seçme tek-

niği olarak kullanırken, biz bu çalışmada model seçme prosedürüne müdahale ederek

bizim önerdiğimiz ölçüm kriterlerini kullanıp, doğru ağ yapısını bulmayı amaçlamak-

vii



tayız.

Anahtar Kelimeler: Gaussian grafiksel modelleri, l1-cezalandırmalı tahmin metodu,

Çok boyutlu uyarlanabilir regresyon uzanımları, Yüksek boyutlu model seçme kriter-

leri, bilgi-kuramsal kriterleri.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The massive amount of genomics data accelerated the process of understanding the

relations between genes and disease in the higher dimensions. In a small scale, sci-

entists in the field of computational biology try to solve the discoveries of the bio-

logical gene networks by using statistical approaches. In this sense, to model high

dimensional biological networks, Gaussian graphical model (GGM) is considered as

an useful tool to describe the undirected associations among the genes. Also, such

networks are known for their sparsity where their patterns are determined by the in-

verse covariance matrix under the Gaussian assumptions. In higher dimensions, the

statistical inference of the graphical models can be achieved via several penalized

maximum-likelihood estimation methods. They perform a variable selection proce-

dure by applying one or more regularization parameter which controls the sparsity of

the network in a data-dependent way. Therefore, a selection of the regularization pa-

rameter plays a pivotal role to define the true interactions in the biological networks.

In this context, our motivation arises from the selection of the best representation for

such sparse biological networks under high dimensional setting. In this sense, we

suggest to combine some information-theoretic measures such as CAIC, CAICF and

ICOMP with a penalized likelihood approach, namely, graphical lasso algorithm, in

order to yield the true network structure. Then, we compare them with the state-

of-art model selection criteria, AIC and BIC, and the others where there have been

already used for biological networks under higher dimensions, StARS, RIC, EBIC.

In addition to the GGM, MARS, a nonparametric counterpart of the GGM, are used

in the context of this thesis since they are able to handle nonlinearities and collinear-
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ities in the data where the problems arise from high-dimensional networks. While it

was introduced with its computer-intensive method GCV, we insert our information-

theoretic measures to find the true structure of the biological network at the model

selection stage. Finally, we aim to capture the true underlying mechanism of a bi-

ological network by selecting the true modelling strategy with a criterion among a

collection of model selection criteria that we compare. Hereby, via this motivation,

we list the aim of our study in the following part.
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1.2 Aim of the Study

Under Gaussian Graphical Network Setting

• How can we insert information-theoretic measures into penalized likelihood

method, namely graphical lasso algorithm, in order to penalize the covariance

matrix when selecting the best biological network structure under higher di-

mensions?

• Which model selection method achieves to correctly specify the true biological

network structure by correctly defining the regularization parameter ?

• Which variable selection procedure outperforms the others when the dimension

of the networks is increases ?

Under MARS Setting

• How can we combine information-theoretic measures on the model selection

stage with nonparametric modelling approach so called LMARS?

• Which model selection procedure works efficiently as the dimension increases

?

• Which model selection criterion provides an efficient approach in order to cap-

ture the true structure of the high dimensional sparse biological networks?

Overall

• Which modelling approach, GGM or MARS, with which model selection tech-

nique achieves to reflect the true nature of the sparse biological networks by

correctly defining the regularization parameter under high dimensional setting?

• Which network structure (scale-free or random) can be seen as our main objec-

tive to fit our novel applications under both GGM and LMARS setting?
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1.3 Thesis Overview

The twenty first century is known as the Information Era and its name suggests that

the availability of the information offers to reach easily the big data. Specifically,

after Human Genome Project was completed in 2003 which provides the universal

access for complete genome sequences, the studies on bioinformatics have been sub-

stantially raised.

With the notable advances in biotechnology, rendering powerful high-throughput

techniques such as chips and screens to obtain microarray data, the feasibility of such

sequences triggers the investigations on high-throughput genomic data in the molecu-

lar form such as DNA, RNA and protein. Although the vast use of such biotechnolog-

ical methods delivers the huge amounts of large-scale genomic data, uncovering the

complex mechanism in the sparse cellular network entails the challenges in higher

dimensions. Thereby, the understanding of the functionality of such cellular net-

works requires the worldwide interdisciplinary efforts, encompassing mainly statis-

tics [13, 38] molecular biology and computer science. By this way, this worldwide

task has aimed to unravel the complex interactions among molecular constituents

which include DNA, RNA and protein in the cell. In fact, there are various attempts

to embark on a quest interpret, organize and present the high-throughput data in a

standardized way by means of complex networks in several fields that includes from

natural sciences such as biology [13] and physics [15] to social sciences [140] such

as economics [108] and communication [43]. In addition to these areas, graphical

models have already been implemented to address some problems of the complex

networks on the other fields of studies which range from graph theory [62] to arti-

ficial intelligence and machine learning [4]. In the sense of molecular biology, to

examine complex molecular networks by means of high throughput data, graphical

models are preferred as the useful exploratory tools that facilitate the systematic use

of complete genomic sequences. Also, statisticians become a part of this universal

effort when analyzing such complex sparse biological networks in a mathematical

way by taking the randomness into account. From the perspective of system biology,

graphical models pave the way not only for the understanding of the complex cellular

networks but also for the determination of the relations among system components
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in molecular level. Its several applications in microarray data [8, 61, 107, 108] en-

ables to account for complex interactions among biological entities in the complex

networks with the help of graphical models.

Table 1.1: Types of gene networks with respect to scale, presence of edges and topolo-

gies.

Types of Networks

Scale Presence/Absence of Edge Network Topologies
i.Networks on the microscopic sclae

a)Transcption regulatory networks

b)Signal transduction networks

c)Protein interaction networks

ii.Networks on the macroscopic scale

a)Neural Networks

b)Food webs

c) Phylogenetic networks

i.Directed

ii.Undirected

i.Homogeneous Network

a) Random

ii.Non-homogeneous Networks

a)Scale-free

b)Hierarchical

c)Modular

In the sense of system biology, type of networks based on scaling criteria can be

clustered into two basic parts as the microscopic and macroscopic in Table 1.1. In

this sense, we can list the previous group as networks on the microscopic scale, or

intra-cellular networks in which they are comprised of transcription regulation and

signal transduction networks. On the other side, neural networks, ecological net-

works and phylogenetic networks appear on the macroscopic scale. As an example of

intra-cellular networks, protein-protein interaction networks and metabolic networks

take part in the macroscopic side. In the scope of this thesis, we will deal with genes,

specifically, gene regulatory networks under the intra-cellular network concept. These

networks whose entities DNA, RNA and protein are constructed to determine the gene

expression levels of mRNA and protein in the molecular level. As well as the those

constituents, links among them can be represented by means of such networks.

In addition to scaling criterion, the classification of the networks is achieved accord-

ing to whether the direction of links exists or not in the network. Lastly, we put links

into groups according to how they are distributed like in Table 1.1. The manner of ei-
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ther presence of direction or distribution of the links will be mentioned the following

chapters.

Intra-cellular networks whose not only sparse but also complex nature implies that

the number of genes are far greater than the number of observations in the network.

In the following chapters of the thesis, it will be mentioned that there are various ways

how to handle such sparse data structures in higher dimensions.

The concept of learning from graphical models which is used in expert systems and

artificial intelligence theory [109] is basically associated with the processes of fitting

the graphical models in the field of statistics. The learning procedure mainly in-

cludes two overlapping steps called the structure learning and the parameter learning,

in order to both accurately represent the biological map and truly analyze biological

interactions of the entities. The first step is related to finding the proper graphical

structure with sticking to underlying assumptions if there are available. Therefore,

this stage is applied for model selection purposes and is known as the network struc-

ture or the structure learning [80, 81, 109]. On the other hand, the second step is

called parameter learning. This task is used to estimate model parameters according

to the properties of the model, as well as assumptions. Since the large-scale genomic

data include the number of genes that far exceeds the number of observations in the

model, we need to avoid the ubiquitous problem so-called the curse of higher dimen-

sion in order to estimate model parameters. It also implies small n, large p problem

for sparse genomic data that is caused by ill-suited matrices. Thereby, we need to

deal with solving such matrices transforming into optimization problem. Therefore,

inferring parameter estimates in higher dimensions has already been a hot area topic

[27, 75, 107, 109]. In this thesis context, either structure learning or parameter learn-

ing methods will be discussed in the following chapters in a detailed way.

In terms of structure learning, based on modeling approaches, three main methods

are classified as Boolean, deterministic and stochastic approaches, each is directly

connected to distinct point of views in the modeling sense. The first modeling ap-

proach is the Boolean network, the most primitive way to explain the relations be-

tween molecular constituents in complex cellular networks. This method is designed
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to determine next possible status of the genes in the network based on current status.

Also, this model reduces the complexity of the network, but it is unable to reflect true

interactions in the molecular level [8, 126].

The most widely used techniques to represent large scale gene networks are based on

deterministic and stochastic approaches. Deterministic types offer an effective ways

of modeling for the sparse biological networks and are motivated by detecting steady-

state behaviour of these large-scale genomic data with the aim of specifying relations

among genes in the system. Since these types of models make use of differential

equations to identify associations in the complex networks, deterministic models are

so-called differential equation models in the literature. In the sense of modeling,

deterministic models are ability to reveal random nature of the biological networks,

as well as interactions among the entities in the networks so that they can embrace

both parametric and nonparametric approaches to detect such randomness in the net-

works. In the statistical literature, Gaussian graphical models and its derivatives such

time-series graphical chain(TSCGM) [1] are introduced as essential ways to generate

gene networks parametrically. GGM produces undirected graphical representations

by capturing linear interactions among biological components in the network under

some assumptions. In the literature, to relax its linearity assumption, copula GGM

has been proposed [39, 40] and the other modified versions have been implemented

[128]. On the other hand, random forest(RF) [23], neural networks(NN) [76], fuzzy

logic models(FLM) [48, 85, 131] classification and regression trees (CART) [21], as

well as multivariate adaptive regression splines (MARS) [59] and its derivatives so-

called conic MARS (CMARS) [6, 117, 124], robust CMARS [100] are applicable as

nonparametric ways to model the cellular network by taking the steady-state behavior

of the system into account. This nonparametric ways to do so, can be also grouped

under the generalized additive models in the statistical learning [69]. While determin-

istic models are designed to steady-state behaviour of these large-scale genomic data

[16], the stochastic models are specifically adjusted for explaining dynamic behaviour

of the biological network, in turn, dynamic relations between genes in the networks

[65, 127]. In the sense of high-dimensional modeling, deterministic and stochastic

networks dominate the Boolean network in order to capture true nature of the system,

reflecting both its sparsity and complexity of the network. Also, deterministic mod-
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els surpass the stochastic models in terms of interpretation by the way providing the

simpler models than the latter. Therefore, deterministic tools contribute to correctly

the steady-state nature of such sparse biological networks, mimicking successfully

the random behavior of the interactions in the networks.

This thesis covers the both GGM and MARS as linear modelling methods in higher

dimensions, so these will be elaborated in the chapter 2.1.1 and 2.1.3, respectively.

In the literature, GGM, one of the reliable deterministic way to construct complex

biological networks in higher dimensions, so it facilitates model-based analysis of

cellular networks. In sense of deterministic modeling of such sparse biological net-

works, MARS is known as nonparametric analog of GGM. It was introduced by

Jerome Friedman, well-known pioneer statistician, in 1991 as a flexible linear re-

gression modeling that is designed for high dimensional data. The idea of MARS is

motivated by handling nonlinearities and multicollinearities in higher dimensions.

After specifying network structures under deterministic modeling approaches as GGM

and MARS, respectively parametric and nonparametric methods, we continue with

the parameter learning procedure for each method separately. In the learning param-

eter procedure, GGM requires to infer inverse covariance matrices when dealing with

large-scale genomic data [16, 109]. GGM achieves to capture the linear interactions

graphical model, as well as assumes the normality in higher dimensions for microar-

ray data so that it prefers to apply extension and modification of the least squares

regression, replacing with the plain least squares regression [45, 69, 75] in order to

estimate the inverse of the covariance matrices. In the literature, these adaptive proce-

dures based on linear regression ranges from the most primitive one known as subset

selection to dimension reduction algorithm, is named as piecewise linear component.

In the scope of this thesis, we will stress out two well accepted approaches in the

case of inference of GGM, graphical lasso [56] and lasso-based graphical regression

model [95]. While the first offers an exact solution, the latter approach gives an ap-

proximate way to do so. However, they are able to tackle intractability problem of

the covariance matrices by applying particular optimization procedure. In addition to

these two well-known lasso based approaches, there have been several methods for

inferring inverse of the covariance matrices in higher dimensions, including the other
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optimization procedures based on gradient descent [88], coordinate descent [56] and

the derivatives of lasso including fused lasso [118, 122], group-lasso [135], elastic net

[142], adaptive lasso [143], block descent algorithms [11]. Also, nonnegative garotte

[22] and LARS [46] procedures are served as alternative regression methods, rather

than simple linear regression approach. In addition, there exist the other methods

which have mathematical impetus for improving ill-posed estimator in higher dimen-

sions such as [86], Dantzig Selector [26], compressing sensing,[41, 42], Bernstein

polynomials [102].

In the Section 2.2, data-dependent model selection procedures will be examined

where the motivation behind the information based model selection methods lies in

information theory. In the literature on model selection, among all penalized regres-

sion method, sole the lasso procedure simultaneously operates the feature selection

[69] by assuming ||β||p, p ≥ 1. Also, it requires a penalty parameter in order to

penalize the covariance matrix, in turn, coefficients in the gene network. In our thesis

context, the final gene network whose sparsity and interactions are directly affected

by choice of penalty parameter. So, the selection of such penalty parameter is so im-

portant that several model selection procedures have been proposed for higher dimen-

sions such as EBIC [53], StARS [66] and RIC [90] in order to determine the optimal

sparse networks. To select optimal model among a collection of the candidates, in

the statistical literature, AIC [2] and BIC [110] are the well-known state-of-art ap-

proaches. However, any combination of a penalized regression method with a model

selection criteria dominates the others for all the time. Therefore, in this study, in

addition to these model selection methods, CAIC, CAICF and ICOMP are proposed

as alternative model selection criteria in order to choose the proper model in higher

dimensions [17, 18, 19, 20], so they are presented by combining them with graphical

lasso procedure under GGM setting. In the sense of the MARS modeling technique,

it is originally designed to use GCV as a model selection criterion in order to compile

model selection procedure. However, in this thesis, it is aimed to compete its perfor-

mance in terms of some accuracy measures with the suggested procedures, namely,

CAIC, CAICF and ICOMP, as well as AIC and BIC. Thus, we modify the model

selection procedure of the original MARS by replacing GCV with our proposed data-

dependent techniques by constructing separate MARS models for each genes which
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we call them LMARS models [7].

In the application part of this thesis, real data implementations and simulations ob-

tained under distinct topologies and dimensions will be presented for both modelling

approaches GGM and LMARS in Section 3.4 and 3.5, respectively.
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CHAPTER 2

EXISTING METHODOLOGIES AND PROPOSED METHODS

2.1 Modelling Gene Networks

This chapter provides essential information about the existing methodology of model-

ing high dimensional networks: GGM and MARS, respectively, their inference meth-

ods such as graphical lasso and GCV methods will be introduced with the motivation

behind them.

2.1.1 Gaussian Graphical Models

In systems biology graphical models have a crucial role to exhibit the structure of

the network at the molecular level by identifying quantifiable pattern of associations

among these molecular entities in the network.

Generally, graphical models are composed of a collection of vertices, or nodes and a

catalogue of edges among the nodes. In the sense of determining the strength of inter-

actions at the complex intra-cellular web, or gene expression network when nodes are

represented by genes and its products such as proteins, DNA and RNA, edges among

the genes refer to links or interactions among them. In Figure 2.1, p1, p2 and p3 refer

the genes in the simple network structure and links are defined among them. In the

representation of biological systems, GGM can be defined as an useful tool in the

high dimensional setting. Thereby, GGM aims to reflect true underlying mechanism

of the network under the steady-state assumption. It can be classified as deterministic

modeling approach, as well as taking part into model-based approach.
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p1

p2p3

Figure 2.1: A simple representation of a network with three nodes via an undirected

graph.

From a statistical point of view, GGM aims to build multivariate model which in-

cludes random variables are represented by genes in the map, simultaneously links

among components in the network that imply correlations between a pair of node. To-

tally, its construction includes p random variables associated with nodes, or genes in

the network, so the vector for random variables can be denoted by Y = (Y1, · · · , Yp),

each Y(i) could be interpreted as gene expression level of gene i (i=1, · · · , p).

That is, vector Y has a multivariate Gaussian distribution and is represented as in

the following form

Y ∼ N(µ,Σ) (1)

with mean vector µ=(µ1, · · · , µp) and (p × p)-dimensional variance-covariance ma-

trix Σ= (σij)ij .

Since GGM is classified as model-based or parametric approach, and as its name

Gaussian suggests that it posses the oracle properties of the Gaussian normality as-

sumption. It also inherits the linearity concept so that the sole linear dependencies

among a pair of nodes can be assigned by means of GGM.

When grouping model-based approaches in terms of presence/absence of edge, GGM

is belong to the undirected part in Table 1.1. In other words, unlike Bayesian graphi-

cal model, it attempts to form undirected edges among genes [61, 77, 101]. Lacking
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Table 2.1: The classification of the gene networks: Gene clustering, revelance and

association networks.

Gene Networks

1.Gene clustering networks

(Eisen et al., 1998)

2. Gene Relevance Networks

(i.e.,correlation)

(Butte et al., 2000)

3. Gene association networks

and

Covariance Selection Networks

also

Concentration Graph

(Dobra et al., 2004)

(Schäfer and Strimmer, 2005)

(Sctuari and Strimmer, 2010)

(Barabási and Oltvai, 2004)

of direction can be interpreted in a biological way like that the information based on

the direction of the activation or inhibition cannot be learned from this type of models.

Although undirected graphical models distinguish form directed ones by ignoring the

direction of the edges, the latter can be expressed in terms of the other one under the

Markov properties [61, 109].

Under closer inspection of the gene networks in Table 2.1, the analysis based on ge-

nomic data was begun with clustering technique [47]. Then, it evolved to correlation

based examination [24]. Finally, GGM have been formed by the way undergoing the

change in dependence assumption. The sole difference exists between gene relevance

networks and gene association networks in the sense of representing independence

assumption by the fact that while gene relevance network assumes marginal indepen-

dence structure to show interactions among entities, gene association network refers

conditional dependencies for relations [107, 109]. Thereby, GGM was presented as a

covariance selection model [36] and concentration graph [126].

From the GGM scope of view, ignoring of edge is coincided with the conditional

independence assumption, that is, an absence of the link between a pair of genes im-

plies that conditional independence of the corresponding genes exists given all other

genes. It is expressed in a mathematical formula such that Y1 ⊥ Y4 | rest shown in

Figure 2.2.
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Figure 2.2: The simple representation of the conditional independence between the

node 1 and the node 4 for the given node (2,3).

There is a direct approach that conditional dependence, or partial correlations among

genes are inferred from the inverse of the covariance matrix so-called the precision

matrix or concentration matrix. It is denoted by Θ = Σ−1 = Θ(ij). In this sense,

the covariance matrix has a key role for explaining conditional independence under

Gaussian assumption. For example, zeros in the covariance matrix describe condi-

tional independence between two specific genes given the rest. Also, in the precision

matrix, the inverse of the partial variance, located in the diagonal, is expressed as

Θ(ii)=1/var(Yi|rest).

In addition to partial variances, the strength of the partial correlations can be ex-

tracted from the precision matrix, which is denoted as

πij =
−Θij√
ΘiiΘjj

, (2)

where πij represents the partial correlation between Yi and Yj given all the other

variables.

The precision matrix was announced as an original way to derive partial correlations
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[126]. Despite understanding the vitality of the precision matrix in terms of partial

correlations in the gene network, in the high dimensional setting, the challenge for

gene association networks arises in to obtain reliable estimate for the population co-

variance matrix. This inevitable problem stems from the constructional nature of the

genetic networks, which includes a huge number of variables, but relatively few sam-

ples. Therefore, the empirical covariance matrix, S, cannot be served as an unbiased

estimate to infer population covariance matrix. In the small n, large p setting in higher

dimensions, sample covariance matrix suffer from two characteristic problems related

to invertibility and positive-definiteness. In the statistical sense, these two terms are

seamlessly connected to accurate estimates or approximations. Thereby, it is expected

from a reliable estimate to be both invertible and positive-definite. The term invert-

ible implies the well-conditioned matrix where the ratio between its minimum and

maximum singular value is not to be too large, so it has full-rank. Also, an estimate

needs to be the one with non-zero variance to obtain accurate positive-definite covari-

ance matrix.

In the statistical sense, it is aimed to derive partial correlations by the way GGM

can be performed as a set of regression functions, regressing each nodes against the

all other nodes. This procedure refers to construct conditional distributions for each

separated nodes given the rest. Under multivarite normality assumption, this offers

to make use of the remarkable properties of the normal distribution and Y indicates

joint multivariate vector as Y = (Y−p, Yp), Y−p = (Y1, · · · , Yp−1) representing that

the vector includes all nodes, but not the last one. Thereby, the conditional distribu-

tion for Yp is formed as

Yp|Y−p = y ∼ N(µp + (y − µ(−p))
tΣ−1

(−p,−p)σ(−p,p), σ(p,p) − σt(−p,p)Σ−1
(−p,−p)σ(−p,p)),

(3)

where Σ−p,−p refers to ((p− 1)× (p− 1))-dimensional variance-covariance matrix

except the last nodes and σ(−p,p) and σ(p,p) indicates ((p − 1) × 1)-dimensional co-

variance vector associated with Y−p and Yp, and variance for Yp, respectively. Also,

the mean and variance decomposition associated with the Y are obtained like
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µ =

 µ(−p)

µ(p)

 ,Σ =

Σ(−p,−p) σ(−p,p)

σ(p,−p) σ(p,p)

. (4)

This regression scheme yields regression coefficients β=Σ−1
(−p,−p) σ(−p,p), which en-

sures the conditional independence property. So βj = 0 intrinsically indicates that Yp

and Yj are conditionally independent given all the other nodes. This notion can be

also expressible via precision matrix and β = −θ(−p,p)/θ(p,p) is correspondence with

the partial correlations in it.

As a standard procedure to infer Θ, maximum likelihood approach is exploited in

higher dimensions to attain sample covariance matrix. This procedure is achieved

under the consideration that vector Y follows the multivarite normal distribution and

the corresponding joint density function establishes as

f(yi;µ,Σ) = (2π)−n/2|Σ|−1/2 exp
{
− 1

2
(yi − µ)TΣ−1(yi − µ)

}
(5)

and likelihood is defined in terms of two unknown parameters, µ and Σ via

L(µ,Σ) =
n∏
i=1

f(yi;µ,Σ). (6)

Thus, the log-likelihood forms as

l(µ,Σ) = log(L(µ,Σ)) = −n
2

log |Σ| − 1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ). (7)

The Equation (7) can be written also by means of precision matrix Θ as
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l(µ,Θ) =
n

2
log |Θ| − 1

2

n∑
i=1

(yi − µ)TΘ(yi − µ). (8)

Substituting µ by its likelihood estimate ȳ, so it forms

l(Θ) =
n

2
log |Θ| − n

2
Trace(SΘ) (9)

with sample covariance matrix S=(sij)ij defined as

sij =
1

n− 1

n∑
k=1

(y(i)k − ȳ(i))(y(j)k − ȳ(j)), (10)

where ȳ(i) = 1
n

∑n
k=1 and y(i)k represents the k-th observation of the variable Yi. In

all equations from (5) to (8), (.)T denotes the transpose of the given statement.

Hence, the strength of the interactions can be measured via maximum likelihood

procedure, that is sample covariance estimate, Σ̂=S and simultaneously, maximum

likelihood estimate can be determined by Θ̂=S−1.

In small n, large p setting data setting, maximum likelihood approach can generally

results in a poor estimate so-called empirical covariance matrix, or S which is inca-

pable of satisfying the desirable characteristics such as well-conditioned and positive-

definiteness. In other words, MLE estimate that suffers from infinite variance turns

into non-invertible matrix, so no unique least square coefficient estimate can be ac-

quired by following this procedure. Also, even if the MLE estimate is extracted as an

invertible matrix, it tends to produce a fully connected network rather than a sparse

network that it is suitable for the representations of gene association network in high

dimensional setting [8, 56, 57]. As the number of variables in the model increases,

regardless of whether the feature is significant or not, the residual sum of squares

decreases. So, the variable selection procedure based on least squares, in the high

dimensional setting, leads to complex networks, including as much as variables.

In this sense, there are various methods have been proposed in order to infer Θ by
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overcoming such difficulties encountered in higher dimensions under the normality

assumption.

In Section 2.1.2, it will be discussed why the residual sum of squares does not make

sense in the sense of fitting the large p and small n setting [125] and the reason behind

why we need to use penalized likelihood approaches [54] in higher dimensions will

be examined. Firstly, this section provides a brief overview of existing methodology

along with the advantages and disadvantages of suggested approaches, i.e., ridge [72],

lasso [121] and the derivatives of lasso.

Then, in Section 2.1.2, we will discuss the inference procedures for GGM, both makes

use of the lasso properties. In this thesis context, the most accepted structure learning

approaches for GGM, lasso-based regression model and l1-penalized likelihood, re-

spectively, neighborhood selection [95] and graphical lasso [56] will be highlighted.

2.1.2 Inference of GGM

In higher dimensional setting, least square regression does not make sense [69]. So,

some regularization methods and alternative regression procedures have been pro-

posed. In this sense, the ridge and lasso regressions are represented as counterparts

of the least squares with some oracle properties. Therefore, they aim to shrink the

coefficients towards zero by applying a regularization parameter as a constraint. By

this way, they achieves to prune the complexity of the network as we expected from

p� n dimensional setting.

In linear regression, the plain of least squares fitting is designed to obtain estimates

β0, β1, · · · , βp according to minimization of the residual sum of squares and it can be

expressed as below

RSS =
n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2, (11)
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while yi denotes the ith response and xij shows the predictor for the ith observation

and for the jth random variable.

RSS could not be served as a reliable tool in terms of bias and interpretability of

the model in higher dimensional setting [75]. While the least square estimation faces

with high variability problem in p� n case, resulting in poor predictions, as well as

is not capable of finding unique coefficient estimate in the case of infinite variance,

shrinkage methods appear that they use RSS in a constraint or a regularized form

to restrain the common problems of RSS in higher dimensions. Also, LSE tends to

obtain complex models that include the irrelevant variables, but shrinkage methods

provide an efficient way to establish more interpretable models, with the goal of de-

termining the importance of the variables. Thereby, their notion of shrinking RSS

allows to control bias-variance trade-off by lowering the variance as well as to yield

more simpler models, unlike RSS.

To tackle common problems, shrinkage methods include not only the RSS part, but

also the regularization criterion based on the shrinkage penalty, allowing to transform

the way which we obtain the estimates or the coefficients. For example, ridge regres-

sion uses βj2 to restrict the estimates, enforcing the coefficients to reduce towards

almost zero. Its formulae can be written as

n∑
i=1

(yi − β0 −
p∑
j=1

βixij)
2 + λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

β2
j (12)

with λ ≥ 0 that is represented as shrinkage penalty or tuning parameter.

From the Equation (12), it can be concluded that when λ = 0, ridge procedure trans-

forms the simple least square regression, so it uncontrollably will end up with the

estimates like the ones produced by the latter. Associatively, as λ → ∞, while λ

raises up, the more ridge coefficients β̂Rλ turn out to be almost zero.

The way the ridge regression shrinks the coefficients towards zero justifies the use

of ridge, however, ridge regression procedure will result in the model which includes
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all p variables. So, it aims to shrinks the coefficients, but not to reduce towards ex-

actly zero. In the sense of model complexity, it cannot be used for discarding the

variables from the full model. To remedy for diminishing the complexity, lasso re-

gression achieves both variable selection and shrinkage, whereas ridge regression is

only designed to shrink the coefficients. Lasso offers a more efficient way to delete

irrelevant predictors than the ridge since |b| is much bigger than b2 with 0 ≤ |b| ≤ 1

[130]. Therefore, lasso and ridge shares a similar approach like that both operates the

sum of squares in a penalized form, but lasso differs from the ridge with an attractive

feature selection procedure. So, lasso is represented by the following expression

n∑
i=1

(yi − β0 −
p∑
i=1

βixij)
2 + λ

p∑
j=1

|βj| = RSS + λ

p∑
j=1

|βj|. (13)

The l1-constraint is denoted as
∑p

j=1 ≤ t and represents the sum of the absolute value

of the coefficients, leading to the coefficients exact zero. Therefore, it utilizes l1-norm

which is represented by ||β||1 =
∑
|βj| penalty for this purpose, rather than l2-norm

that ridge regression prefers. Comparing to ridge, lasso operates such procedures that

subset selection and shrinkage. Also, unlike ridge regression, lasso is equipped with

the convexity property [69]. The other desired feature is that the lasso procedure leads

to sparse models, performing variable selection [75].

The ridge regression and the lasso form are re-expressed as

minimize
β

n∑
i=1

(yi − β0 −
p∑
i=1

βjxij)
2 (14)

subject to
∑p

j=1 |βj| ≤ s,

minimize
β

n∑
i=1

(yi − β0 −
p∑
i=1

βjxij)
2 (15)

subject to
∑p

j=1 β
2
j ≤ s.

In Equation(14) and (15), s represents the constraint for both an absolute value of the

sum coefficients and the sum of squared value for the coefficients in an absolute form

when (j = 1, · · · , p) and (i = 1, · · · , n).
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β2

β̂

β1

β2

β̂

Figure 2.3: From left to right: lasso and ridge estimation procedures differ from the

usual RSS.

The red circles in Figure 2.3. show the RSS contour whose β̂ refers to the usual least

square coefficient. Furthermore, it indicates how lasso performs feature selection, in

contrast to ridge regression, that is, while the constraint for lasso involves the cor-

ners, making some coefficients exactly zero, the ridge constraint is represented by a

circle, not necessarily leading to zero for them in high dimensional setting. With this

remarkable feature, lasso prevails the ridge due to the fact that lasso operates the vari-

able selection. Therefore, lasso procedure results in simpler models, so both sparser

and interpretable models in the p� n setting.

Focusing on lasso, it can be re-exppressed as a Lagrangian form like that

minimize
β∈<p

1

2

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

||βj||, (16)

where yi and xij take place in a standardized version, represented by 1
n

∑
i yi = 0 and

1
n

∑n
i xij = 0 and λ

∑n
i x

2
ij = 1, implies that the intercept term, β0 will be omitted.

Although the lasso was introduced by a well-known statistician Rob Tibshriani in

1996 [121], inspired from nonnegative garrotte [21], the discovery of LARS (least

angle regression), or homotopy [46, 98] allows lasso to broad its horizon in such a

way that it seeks for entire path to construct piecewise linear paths by following a
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sequential scheme [122]. This provides a different perspective for lasso that the lasso

solution emerges as a forward stagewise regression. Also, in the context of signal

processing, l1-penalty approach was introduced as basis pursuit by Chen et al. [29].

The lasso problem served with an appealing convexity property, Lagrangian form can

be solved by the fact that a quadratic programming (QP) method is utilized to com-

pute convex constraint problem for lasso [69]. That is, coordinate descent procedure

is provided that Lagrangian form offer feasibility in terms of numerical computa-

tion. [56, 57, 130]. Because of finding global optimum, it is achieved via cyclical

coordinate descent scheme in such a way that it operates minimization of the con-

vex function for each coordinate simultaneously, leading to converge global optimum

[69]. Also, in contrast to least square estimation, lasso produce unique solution in

the high dimensional setting p � n . Otherwise, coordinate descent procedure has

ability to perform lasso regression under sparsity with its attractive properties.

Despite convexity, for fixed p, Zho [142, 143] proved that lasso generally does not

exhibit the consistency in terms of feature selection. The lasso investigated under the

case when letting the number of variables goes to infinity with a higher rate than the

number of observations, n. Then, he determined the appropriate conditions, where

the lasso reflects the consistency, to conduct variable selection [95, 138]. Therefore,

it is discovered that lasso is consistent provided that p could not reach the value, with

exp(na) with n ≥ 1 and normally distributed errors. It can be said that lasso does not

seem to be an efficient approach so as to estimate nonzero coefficients since it has a

tendency to over-shrink the coefficients to zero [74]. Also, Zhang and Huang [137]

demonstrated that the lasso attributes to right order of sparsity so that the strategy is

capable of conducting the variable selection under certain conditions. So, all of the

coefficients are greater than (λ/n)
√
kn, where

√
kn is the number of nonzero coeffi-

cients.

To enjoy oracle properties of an estimator that is associated with the detection of the

appropriate number of the nonzero coefficients with the probability that converges to

one, as well as the nonzero coefficients that are required to be asymptotically normal
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with the same mean and covariance, there have been many adjustments of lasso pro-

posed in the literature, by replacing the original loss function, namely, l1-norm with

the novel one.

While all variants make use of the desirable properties of the lasso, they are special-

ized differently in order to overcome distinct problems such as correlated structure,

seen in microarray studies or to strength the procedure in terms of feature selection.

Some examples for these cases will be mentioned in a nutshell [69].

2.1.2.1 Fused Lasso

The fused lasso [118, 122] is the one variant of the lasso that is designed for grouping

parameters by taking the time into account to tackle large correlations in the data

in which coordinate descent and LARS make no sense in this case. Its least square

analogous formula can be written as

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ(1)

n

p∑
j=1

||βj||+ λ(2)
n

p∑
j=2

||βj − βj−1||, (17)

where β=(β0, · · · , βp) and xi=(xi1, · · · , xip)T and λ(1) as well as λ(2) refer to La-

grange multipliers.

This approach establishes two constraints with the goal of restricting the adjacent

coefficients with the additional constraint as λ(2) on neighbouring coefficients. Here,

the coordinate descent procedure is not applicable because of non-separability of this

method [118]. So, there have been proposed some alternative algorithms in the sense

of fitting [56, 57, 69].
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2.1.2.2 Elastic Net

Elastic net approach [142] is another derivative of the lasso and is compromises be-

tween the ridge and lasso penalty as a loss function. Comparing lasso, it aims to

manage highly correlated variables altogether via the following expression

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + (1− λ)||β||22 + λ||β||1, (18)

where ||β||22 refers to l2-norm regularization and ||β||1 denotes l1-norm regulariza-

tion. It is noted that when λ = 1, the elastic net regression turns into lasso. On the

other hand, if λ = 0 case, it becomes as a ridge regression. By this way, it can differ

from the original lasso by means of the unpenalized intercept model [69, 122]. Also,

Zou and Hastie [142] launched the LARS-EN algorithm. This algorithm is adapted

from its precursor, LARS [46], to manage the feature selection problem that lasso

suffers in the high dimensional setting with the aim of learning structure.

2.1.2.3 Group Lasso

It has an ability to operate with a group of variables, rather than individual covariates,

determining the coefficients whether they are zero or nonzero simultaneously. When

qualitative factors exist as our predictors, a set of dummy variables are served to man-

age group of variables [135].

In the linear regression settings, group lasso procedure is able to govern group of

covariates, in turn construct a model involving J group of variables, (j = 1, · · · , J).

Here, collection of covariates is represented in a vectoral form (Z1, · · ·, Zj), where

each is belong to jth groupZj ∈ Rpj . In order to predict response Y , linear regression

model can be expressed as θ0 +
∑J

j=1 Z
T
j θj with a group of pj regression coefficients

θj ∈ <pj . The model forms with a set of N samples (yi, zi,1, zi,2, · · · , zi,J),
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n∑
i=1

(yi − θ0 − zTijθj)2 + λ
J∑
j=1

||θj ||2, (19)

with the Euclidean norm of the vector θj denoted as ||θj||2.

Group lasso is applied in the case of gene-expression arrays when they have a set

of highly correlated genes from the same biological pathway [69, 135]. In the litera-

ture, in order to find the coefficient path for a group lasso [49] apply a such procedure

with the aim of detecting splice-site on some genomic data where the data includes

human DNA with each observation encompassing seven basis (A,G,C, T )7. Further-

more, Yuan and Lin [135] proved that there exists a connection between LARS and

group lasso, as well as non-negative garotte [22] and lasso [121, 122] [135].

2.1.2.4 Adaptive Lasso

It can be considered as weighted lasso procedure and expressed as

n∑
i=1

(yi −
p∑
i=1

xijβj)
2 + λ

p∑
j=1

wj||βj||, (20)

where wj represents known weights for estimates.

It can be evaluated as a convex problem l1-penalty. So, the adaptive lasso possesses

the oracle properties of the lasso such as consistency and uniqueness, for fixed n

when p → ∞ as n → ∞ [143]. Also, it is showed that for p setting, it exhibits

the consistency and efficiency in the sense of variable selection [143]. Moreover, it

is designed to apply the relatively higher penalty for zero coefficients, on the other

hand, the lower penalty for nonzero coefficients with the weighted l1-norm. Thereby,

it can be solved with the LARS[46] procedure and it can be used as a tool for feature

selection [69, 74, 143].
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2.1.2.5 Smoothly Clipped Absolute Deviation Lasso penalty

The penalized log-likelihood procedure with SCAD penalty can be written as

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + SCADλ,α||βj||. (21)

The SCAD penalty can be reformed by its continuous differentible penalty function

and is given by

SCAD
′

λ,α(x) = I(β ≥ λ) +
(αλ− β)+

(α− 1)λ
I(β > λ), (22)

for some α > 2 and β > 0. I refers an indicator function. Here, (αλ − β)+ shows

a quadratic spline function with knots at λ and αλ. If α = ∞, it turns out to lasso

penalty [141].

This penalty is known as smoothly clipped absolute deviation penalty [50]. Corre-

spondingly, it is solved as a quadratic spline function with two knots such as λ and

αλ. Also, SCAD procedure performs hard tresholding penalty function where it does

not excessively facilitate to shrink the large values of the β. It offers continuous so-

lution and is given by

β̂ =


sign(x)(|x| − λ)+, |x| ≤ 2λ.

((α− 1)x− sign(x)αλ)/(α− 2), 2λ < |x| ≤ αλ.

x, |x| ≤ αλ.

For (λ, α), cross validation and generalized cross-validation [32] are originally sug-

gested to find two unknown parameters [50]. In practice, α is chosen as 3.7.
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From the high dimensional framework, the adaptive lasso and SCAD penalties share

the three requirable properties of an estimator where they yields sparse estimates,

consistent model selection and unbiased estimates for large coefficients [141]. How-

ever, at the end of SCAD procedure, it results in denser estimates than AL procedure.

Up to know, it have been mentioned the validity of the versatile penalized likelihood

methods in the linear regression setup from the lasso perspective in high-dimensional

inference problems rather than least square regression. Without loss of generality,

they share the similarity where they exploits some filtering methods such as hard and

soft tresholding [42]. Also, these penalized likelihood procedures can be served as

a tool of variable selection. On closer inspection, to tackle common problems in

the sense of high-dimensional sparse networks, specifically for GGM, inference, or

structure learning, is achieved via Bayesian variable selection to deal with thousands

of variables by means of stochastic algorithm [38] or principle components analysis,

rather than LSE can be preferable in order to infer sparse networks by applying l1-

norm penalty. Also, ridge regression can be implemented as a penalized regression

[72]. Another method, known as shrinkage approach, can be exploited to infer Θ

[16, 107] by controlling bias-variance trade-off. The other approach is based on lim-

ited order of the partial correlations such as second correlations [34, 92, 128]. For

example, Castelo and Roverato [27] use the only first-order partial correlations only,

after this is generalized to q setting and this can be a valid approach for the gene

relevance networks, instead of gene association networks. In addition to the various

inference strategies in higher dimensions, lasso regression surpasses them since it

is capable of governing both inference and feature selection, unlike the others. The

general principle behind the lasso that enforces the coefficients toward exact zero,

satisfies the partial correlation assumption that GGM dictates.

In the sense of achieving high dimensional inference of GGM, the most welcomed

procedures are based on the lasso approach. In the scope of this thesis, neighbour-

hood selection [95] and graphical lasso (GLASSO) [56] will be mentioned as tools

for inference of GGM.
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Firstly, we will examine the penalized regression method, then will continue with

penalized maximum likelihood estimation, respectively. Both is directly related to

the feature selection, and fitting procedures so that it is possible to learn structure

models in addition to fitting procedure [93]. So, at the end of lasso procedure, it is

not required to apply statistical test to infer final network.

So far it have been mentioned that the difficulties of estimating sparse networks from

the data, but the notion of sparsity is also coincided with the biological expectations

from the gene association networks under the high-dimensional setting. This dictates

not only a few number of edges in the network, but also many zeros in the precision

matrix. To provide sparser networks, there exists an efficient approach so that covari-

ance selection [36] procedure is used for this purpose under the assumption of the

conditional independence.

2.1.2.6 Neighbourhood Selection

Meinshausen and Bühlmann [95] introduced an idea of obtaining sparse networks

under a procedure that graphical model can be defined in terms of a set of regression

models. In other words, this method which is driven by regression methodology re-

sults in a group of regression models in which each node is regressed against the other

nodes in the graph. This procedure is so-called neighbourhood selection with Lasso

in order to achieve covariance selection in higher dimensions [16].

To detect conditional independence assumption, the usage of precision matrix and

edges in the graph are served as usual way [85]. In addition, regression coefficients

can be viewed as an indicator of the conditional independence since the neighbour-

hood selection justifies the usage of coefficients. Therefore, it achieves to control the

number of parameters in the network, as well as enabling to reduce many coefficients

to zero. Also, the graph can be interpreted in terms of edges and nodes such that
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G = (Γ,E), while Γ (Γ = 1, · · · , p) represents the set of nodes, E denotes the set of

edges in the graph. In accordance with the edge set E contains a pair of nodes such

as (a,b), it implies that Xa and Xb are conditionally dependent given the rest XΓ a,b.

On the other hand, a pair of nodes does not included in the edge set which refers

conditional independence between the corresponding pair given all the other nodes,

and , simultaneously, it can be also observed as a zero entry by means of precision

matrix, or inverse covariance matrix.

So, the regression model based approach is motivated by lasso regression rather than

simple linear regression. The model is formed as

minimize
β

[||Yp − Y−pβ||22 + λp||β||1], (23)

where λp is a regularization or tuning parameter and l1-lasso regularization refers

to ||β||1 =
∑

i |βip| < λ.

Here, λp is increased, the number of lasso coefficient β which becomes zero is also

increased, accordingly. Therefore, the lasso scheme contributes to the desired spar-

sity by imposing a lasso constraint.

With the neighbour selection purposes, the lasso regression procedure is adjusted for

predicting a variable or one node against the others in order to obtain lasso estimate

β̂a,λ for each βa by using the following expression.

β̂a,λ = minimize
βa=0

(n−1||Ya − Y β||22 + λ||β||1), (24)

where ||β||1 =
∑

b∈Γ(n) |βb| is the l1-norm of the coefficient vector with Ya corre-

sponding under a ∈ Γ(n). This indicating the vector of n observations.

Equation (24) shows that the each node is regressed against the all other variables.

With the aim of identifying the set of neighbours for each node, it is formalized in
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such way that nonzero entries corresponding with specific node in the inverse covari-

ance matrix is attained as a collection of neighbours. It was proven that Equation (24)

neighbourhood coefficient for each node a in the graph asymptotically equals to the

lasso coefficient. So, it offers asymptotic solution, rather than exact solution. It is

noted that Meinshausen and Bühlmann [95] demonstrated even if uniqueness prop-

erty fails for the Equation (24), the collection of the solutions still serves a feasible

convexity. Also, they proved that, comparing with the other penalties regarding with

lp-norm, l1-norm is the one that operates the feature selection, so it inherits oracle

properties in the high dimensional setting when keeping p ≥ 1 [54].

The lasso estimate extracted from a set of regression is an appealing way to infer

partial correlations, as well as managing the structure learning procedure. In other

words, the absence of edges in the graph accounts for also zero regression coefficient

associated with response and the corresponding variable. Since the lasso procedure

achieves to infer final network, in this sense, statistical tests to learn the structure

of the network are not required. However, a symmetricity problem lies behind this

method, implies lasso-regression approach is not need to result in symmetric covari-

ance matrix. In contrast, conditional independence assumption enforces the symmet-

ric covariance matrix in higher dimensions. To tackle this problem, Meinshausen

and Bühlmann [95] suggests two alternative approaches such as AND and OR rule.

While AND rule performs such a way that links are set up when both regression coef-

ficients result in zero, OR rule facilitates that one zero entry in the covariance matrix

is enough to attain the missing edge in the network. So, a network derived by OR rule

turns in more sparser networks than that by AND.

λi = 2

√
Sii
n

Φ−1(1− α

2p2
), (25)

where Sii represents the sample variance for the node Y(i) and Φ refers to the cumu-

lative distribution function of the standard normal.

One way of formalizing the notion of the restriction is achieved via Meinshausen

and Bühlmann [95]’s idea that suffices that the probability of false positives is less
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than λ. In such a way, the larger variability in data requires to apply larger penalty

parameter.

Since the penalized regression method results in an approximate solution to the exact

problem, an exact solution have been proposed by adapting interior point optimization

[115, 135]. Also, the other exact way was developed to solve the penalized likelihood

in a coordinate descent framework [11, 56]. Thereby, the other section will be men-

tioned mainly about GLASSO, served as an exact solution to penalized likelihood

equation in order to infer sparse high dimensional network under the GGM setting.

2.1.2.7 Graphical Lasso

Inheriting the oracle convexity property of the lasso, graphical lasso was introduced

as a powerful regression based method for graph selection in higher dimensions. In

this sense, to construct continuous model, it is assumed that N multivarite observa-

tions follows the multivariate normal distribution with mean µ and covariance Σ.

Under higher dimensions, GGM dictates the conditional independence assumption,

means i and j seems conditionally independent provided that ijth component in the

Σ−1 equals to zero. In a multivarite Gaussian framework, lasso implementation is

aimed to estimate sparse undirected Gaussian graph, so the l1-norm is needed to be

modified as a penalty on the inverse covariance matrix or the precision, expressed as

a optimization procedure. Hence, under normality assumption,

maximize
||Θ||1≤ρ

[log |Θ| − Trace(SΘ)] (26)

with ||Θ||1 =
∑∑∑

i,j ||Θij|| and ρ refers to non-negative tuning parameter.

So, graphical lasso [56] imposes l1-constraint on Σ−1 = Θ, rather on the regression

coefficient, β.

With the help of remarkable convexity property of Θ, the constraint region, as well
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as negative log-likelihood are convex. It can be re-written in a Lagrangian dual form,

in turn, re-expressed as a penalized log-likelihood optimization problem

maximize
Θ

[log |Θ| − Trace(SΘ)− λ||Θ||1], (27)

where λ refers to the non-negative Lagrange multiplier and S represents the empirical

covariance matrix.

Banerjee et al. [11] demonstrated that the dual form of Θ refers to convex opti-

mization problem in a penalized log-likelihood form with putting λ as a constraint.

While the optimal λ value is closer to 0, the penalized optimization problem turns

into usual maximum likelihood procedure. On the other hand, as λ is increased, the

sparser network we obtain, relating to penalized likelihood scheme, rather than its

usual version. Thus, the optimization problem emerges as an estimation for the pre-

cision matrix that has a leading role when determining the sparsity of the network.

Yuan and Lin [135] proposed a novel penalized likelihood method in order to infer

concentration matrix so-called precision matrix. In higher dimensional setting, they

attempts to transform the convex optimization problem into maximization-determination

problem with the interior point algorithm, motivated from Vandenberge et al. [115].

Also, threshold gradient descent (TGD) regularization [58] procedure that exploits

negative log likelihood function as a loss function was suggested with the aim of

estimating sparse Gaussian networks and was examined its implementation on the

cencored data in the scope of pharmagenomics [88].

The l1-norm penalized regression can be viewed as a procedure with the combination

of two overlapping operations. While the first step emerges as a determination proce-

dure to minimize the objective function or loss function, the second step encompasses

the selection of the tuning parameter, referring lambda. Although the natural answer

for the latter step is cross-validation, the first is hard to answer since, in higher di-

mensions, matrix operations require matrix operations such as either diagonalization

or inversion referring the reasons behind the issue related to the first remain obscure.
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In the sense of estimating precision matrix, Banerjee et al. [11] proposed to perform

blockwise coordinate descent procedure by solving the optimization problem for each

column on Σ since, in contrast to graphical lasso [57], they preferred to estimation of

Σ, instead of Σ−1 with the help of convexity of Lagrangian form. By following this

way, they proved that the proper solution for both variance-covariance and precision

matrix must hold some attractive properties, including symmetricity and invertibility.

So, it is possible to obtain a sensible estimate for the precision matrix in higher di-

mensions where the number of variables exceeds the number of observations.

glasso is motivated by coordinate-wise algorithm by pursuing fast coordinate descent

procedure that is suggested by Friedman et al. [56, 57]. They deliver this algorithm as

a competing approach for LARS (homotopy) when dealing with the lasso problems.

The idea behind the coordinate descent procedure is that the penalized log-likelihood

is maximized as an iterative fashion for each node by re-expressing the problem that

resembles lasso regression problem. This coordinate descent procedure is available to

implement in the glasso [57] and huge [139] package in the R programming language.

This procedure offers to specify distinct amounts of penalty values for each variable,

in return, each inverse covariance is penalized differently. So, we can implement to

maximize the penalized log-likelihood in such a form

maximize
Θ

[log |Θ| − Trace(SΘ)− ||Θ ∗Λ||1], (28)

where λ = (λij)ij , with λij = λji and (*) denotes component-wise multiplication. So,

this procedure can be interpreted in such a way that different amounts of regulariza-

tion can be attained to each entry of the precision matrix. Thereby, the optimization

of the penalty parameter is achieved via this coordinate-wise scheme by determining

λ. In relation to, the larger value of λ leads to sparser networks, on the other hand,

the smaller value implies to more connected networks.

In order to determine the sensible λ value, Friedman et al. [56] proposed to apply

k-fold cross-validation by taking into either prediction error or likelihood account.

Associatively, the large data sets result in smaller CV with fully connected graph,
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whereas the smaller data sets obtain the higher CV and correspondingly sparse graph.

So, the larger sets indicate overly connected graph that includes much more links

or edges between pair of observations, that does not reflect true number of interac-

tions. The validity of the performance of cross-validation in the sense of determining

penalty parameter was argued by Meinshausen and Bühlmann [95], suggesting com-

peting alternative for this purpose. Also, it is aimed to penalize likelihood for glasso

problem that Banerjee et al. [11] proposed via the following formulae.

λ(a) = maximize
i≤j,
√
SiiSjj

tn−2(a/2p2)√
n− 2 + t2n−2(a/2p2)

. (29)

where tn−2(ã) denotes the (100 − ã) % of a student-t distribution with (n − 2) de-

grees of freedom, with n the sample size, p is the number of variables, and Sii is

the estimated variance of the ith variable. a can be replaced with a/2p2 in the case

of obtaining more restrictive λ value where the number of variables higher than the

number of observations. The notion of the idea proposed by Banerjee[11] is promoted

to control the λ value according to false positive rate, so λ should surpass the false

positive rate. This procedure highlights the usage of Banerjee’s type of determination

of regularization parameter.

Under GGM setting of the thesis, we aim to use graphical lasso procedure [56] as

a penalized regression technique by combining with our suggested data-dependent

techniques, CAIC, CAICF and ICOMP [17, 18, 19, 20] as variable selection criteria

in order to correctly represent biological networks. Our three criteria are based on

K-L divergence will be examined in Section 2.2.

2.1.3 Multivariate Adaptive Regression Splines and Extensions

GGM is constructed under the parametric modeling approach by holding some as-

sumptions such as normality and the conditional independence to discover interac-

tions among the genes in the biological network. In the field of statistics, the compet-

ing modelling method to parametric one is so-called nonparametric approach which
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offers the relatively flexible way to represent the relations in this sense. The non-

parametric models include various set of models and some of the major methods can

be listed as classification and regression trees [21], random forest [23], generalized

additive models [68] and multivariate adaptive regression splines [59].

Since MARS is regarded as a powerful regression technique, its various applications

have been conducted in the distinct field of statistics, encompassing time series analy-

sis [136], sensitivity analysis of ODE models [87], survival analysis [82]. In addition,

it have been used for subset selection purpose [64]. Moreover, MARS have been con-

sidered from distinct modeling perspectives that while Denison et al. [37] suggested

a Bayesian algorithm for MARS, Banks et al. [12] compared it with LS with polyno-

mials. Finally, it was applied as classification tool for either in the Bayesian setting

[73] or in the boosted regression tree construction [35].

In the scope of this thesis, we focus on MARS modeling approach as a nonpara-

metric regression method with the aim of capturing the true network structure. In this

thesis, we aim to interfere the model selection procedure of the original MARS at the

backward procedure by changing its original criteria with our three data-dependent

suggestions. In the Section 3, its adaptive version, namely, LMARS model is imple-

mented to compare the results with that of GGM with respect to numerous criteria.

In the statistical literature, distinct derivatives of the MARS modeling technique have

been proposed to advance the plain MARS approach in terms of backward elimina-

tion procedure, namely, Conic MARS (CMARS) [124], Bootstrapping CMARS [132]

and Robust CMARS (RCMARS) [117]. Thereby, in this section, it will be mentioned

about the alternative fitting approaches, as well as the method which pure MARS ap-

ply. In the context of the thesis, it is preferred to construct separate MARS models

for each gene where they are designed to compete with lasso procedure which we use

in GGM setting. This perspective leads to Loop-based MARS models, in turn, a set

of models for each gene in the network by taking only the main effects of the genes

[7, 8]. So, we build models for each gene separately in the network rather than the

joint distribution, including all genes in it. Also, the novelity of the use of Loop-based

MARS will be mentioned in the Section 3.5.
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2.1.3.1 MARS

Mars was launched by Friedman [59] as a flexible modeling technique for the high

dimensional data. In place of global parametric modelling, it provides an effective

nonparametric local modelling technique, not requiring either any distributional as-

sumption or the relationship between dependent and independent variables. Thus,

it is capable of handling with nonlinearities in the high dimensional data by divid-

ing whole region into the subregions. In this sense, it achieves to transform non-

differentiable problems to differentiable form by following such a way that it repre-

sents the model including nonlinear functions by means of piecewise linear models

[6]. It was developed from the two precursor ideas that lies into both recursive parti-

tioning and the projection pursuit, respectively, which suffers from the discontinuity

and the additivity in higher dimensions. In contrast, MARS achieves to facilitate the

continuous modelling strategy with the help of continuous derivatives, as well as ad-

ditivity into account in higher dimensional setting [59].

Moreover, MARS pursues two-stage iterative scheme in order to build MARS models,

involving forward and backward steps. In the forward step, the model is constructed

with as possible as much variables, resulting in deliberately over-fitting the model.

The second stage is motivated by discarding the terms which do not lead to consider-

able increase in the residual sum of squares, in turn model. By following such a way,

it aims to choose the simpler models, as well as achieving a good fit to the data. The

generic nonparametric regression model is described by

yi = f(β,x
′

i) + εi. (30)

Here, β refers to the unknown parameter vector and x′i (i = 1, · · · , n) indicates the

vector of predictors for the ith case where yi is corresponding vector of responses.

Also, εi (i = 1, · · · , n) stands for the vector of random error terms and n denotes

the total number of observations. As it is stated beforehand, MARS model does not
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state any assumption on the relation of f(β,x
′

i). In the sense of high dimensional

modeling, MARS prefers linear basis functions rather than original predictors. These

linear basis functions (BFs) are obtained by making some amendments on original

predictors and represented as separately by two reflected pairs via

(x− t)+ =

{
x− t if x ≤ t

0 otherwise ,
(t− x)+ =

{
t− x if x ≥ t

0 otherwise ,
(31)

where (x− t)+ and (t− x)+ indicate the basis linear functions and t denotes the knot

for a pair of such linear functions where each pair is positioned both as positive and as

negative side with the help of the two stated equations. When basis linear functions

are used for smoothing the nonlinearities in the data, the related knot places as an

intersection of them. Therefore, MARS achieves to construct a model with random

variables, consisting of a set of basis linear functions and the corresponding knots.

Thus, its particular parameter space is expressed as below

ϕ = (x− t)+, (t− x)+|t ∈ x1,j, x2,j, · · · , xN,j, (j = 1, 2, · · · , p), (32)

where p represents the number of independent variables. Here, N denotes the number

of observations. Each pair of a linear functions in the parameter space is the reflected

pair of each other. In other words, reflected pairs are defined with a tensor product of

the univarite functions. The basis linear functions are represented as

Bm(Xm) =
Km∏
k=1

[SKm(xKm − tKm)]+. (33)

While XKm indicates the dependent variables in the kth truncated linear in the mth

basis linear functions,Km stands for the number of truncated functions and tKm refers

to the corresponding knot value in it. Here, SKm can be 1 or -1. So, the MARS model

is stated as

y = f(x) = β0 +
M∑
m=1

βmBm(xm) + ε, (34)
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where Bm refers to mth BF and M stands for the number of BFs in the final model.

In the sense of fitting the model parameters, the coefficients for βm are achieved with

the linear regression by minimizing the residual sum of squares.

As we mentioned, MARS model selection is facilitated as a stepwise framework in-

cluding both forward and backward steps. The forward strategy starts with the in-

tercept β0 and continues with considering BFs as a set of candidate BFs in order to

add them iteratively according to their contribution in the model such a way that a

basis function is included in a model if it results in the most amount of reduction in

RSS. After reaching the maximum prespecified number of terms, forward step is con-

cluded with the overfitting model. Iteratively, the backward strategy attempts to trim

the largest model with the aim of restricting the overfitting. This step works to delete

a term from the model if its deletion gives rise to the least amount of reduction in the

RSS. Following such a two-stage iterative way, the final MARS model is produced as

a model with an appropriate size of variables. In the MARS modeling sense, the best

model is associated with the proper number of BFs, as well as the suitable locations

for their corresponding knots. For the model selection purpose, MARS applies the

generalized cross validation (GCV) [32] where it seems an equivalent to the lack-of-

fit criterion, or the distance function. The lack-of-fit formulae is given as

[f̂(x)− f(x)]2. (35)

LOF can be viewed as squared error loss, so it is needed to be minimum. In this sense,

GCV can be expressed as

LOF(f̂M) = GCV(M) =
1

N

N∑
i=1

[yi − f̂M(xi)]
2

/[
1− C(M)

N

]2

(36)

in which yi is the observed response value, f̂M(xi) represents the fitted response

value associated with the ith observed predictor vector as xi= (xi1, xi2, · · · , xip), i =

(1, · · · , N). Also, C(M) is expressed as where M stands for the maximum number

of BFs in the model
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C(M) = Trace(B(BTB)−1BT ) + 1. (37)

Equation (37) represents the cost complexity measure where B is refers to the (M ×
N )-dimensional data matrix of the M basis functions. While (.)T denotes the trans-

pose as used beforehand. So, C(M) indicates the effective number of parameters

which is imposed as a penalty measure for complexity. An adjusted form of C(M) is

implemented by making some changes so that the adaptive cost complexity function

can be restated as C(M)∗ = C(M) + dM in which M is the number of non-constant

basis functions in the MARS model. Here, d in the expression is attributed as a

cost for each basis function and refers a smoothing parameter of the procedure. The

smaller C(M) is calculated results in the largest model with too many BFs. Contra-

dictly, a MARS model selection procedure tends to choose a relatively smaller model

when the larger cost function is implemented, along with minimum GCV. In the ad-

ditive MARS modeling concept, the reason that d is preferable as "2" that it suffices

the expected decrease in the average-squared residual by means of a single knot to

offer a piece-wise linear model. This allows MARS to build an additive model by

determining the upper limit of the Km = 1 [60]. As taken d as a parameter, it can

be specified, or estimated by applying either bootstrapping [44] or cross-validation

methods [32] so as to control degree of smoothness, as well as bias-variance trade-

off. In this context, the ANOVA (analysis of variances) decomposition is established

to exhibit the additivity concept of MARS by collecting all combinations of the basis

linear functions. It is examined as

f̂ = β0 +
∑
km=1

βmBm(xi)+
∑
km=2

βmBm(xi, xj)+
∑
km=3

βmBm(xi, xj, xk)+· · · . (38)

In this representation, while the first sum reflects solely the main effects, the second

and the third terms take account for the interaction effects over all set of a complete

basis functions, respectively, as two-variable and three-variable [78].

James et al. [75] discuss the smoothing splines and presented the minimization of
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the penalized RSS as

PRSS =
N∑
i=1

(yi − f(β, x̃i))
2 +

p∑
j=1

λj

∫
f
′′

j (tj)
2dtj , (39)

where λj is nonnegative tuning parameter. In the PRSS form, f ′′j shows the second

derivative of the basis functions or piecewise linear functions and it penalizes the

variability in f as a penalty. Here, while the term
∑N

i (yi− f(β, x̃i))
2 is presented as

a loss function, the second component in the PRSS accounts for complexity measure.

Also, tj denotes the set of the predictors for jth basis function, so t contains corre-

sponding knot locations and signs, as well as number of factors in that basis function.

It attempts to control λ that has a key role for determining the number of free pa-

rameters, so the level of the flexibility in the model and this smoothing spline repre-

sentation evaluates the cost for each fit by applying the formulae below.

RSScv(λ) =
n∑
i=1

(yi − ĝ(−i)
λ (xi))

2 =
n∑
i=1

[yi − ĝλ(xi)
1− Sλii

]2

. (40)

In Equation (40), ĝ(−i)
λ (xi) refers to the fitted value for a smoothing spline at xi, where

fit uses all of the training data points, excepting the ith (xi, yi), the other side ĝλ(xi)

takes all data points into account when fitting the observations. So, the latter notation

is evaluated for each of leave-one-out cross validation fits, exploiting all data points.

With keeping the analogy to the penalized RSS, in the following subsections, a power-

ful data mining method will be mentioned as an alternative counterpart of the MARS

method.

2.1.3.2 Extensions

CMARS

In the high dimensional context, the overfitting problem is needed to be achieved
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via the sensitive optimization procedures. In this sense, in the statistical literature,

CMARS is introduced as a model-based alternative of MARS by Weber et al. [124]

to compete with it by making the adjustments on the backward [134]. This new proce-

dure is named as CMARS. Here, the "C" is associated with the "Conic", "Convex" as

well as "Continuous" altogether, reflecting the characteristics of the procedure [124].

When CMARS operates the forward step to create BFs, like in the that of MARS, it

differs from the original MARS in that way it enhances the backward step with apply-

ing a conic quadratic optimization technique (CQP) [117, 124, 133] in order to avoid

the overfitting. With this regard, it carries out penalized RSS (PRSS) rather than plain

RSS that MARS performs. PRSS is involved with its two components : lack-of-fit

and the complexity and it is basically presented as below.

PRSS =
N∑
i=1

(yi − f(β, x̃i))
2 +

p∑
j=1

λm

+
Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
Φm

θ2
m[Dα

r,sBm(zm)]2dzm, (41)

where (yi, x̃i) (i = 1, 2, · · · , N) is the N-dimensional vector of the values encom-

passing both dependent and independent parameters where x̃i=(x̃i1, x̃i, · · · , N) (i =

1, 2, · · · , N) and (y1, y2, · · · , yN) are indicated as dependent and independent ones,

respectively. Here, Mmax represents the prespecified number of BFs, and is needed

to be accumulated in the model after the forward step. Moreover, the set of the pa-

rameters for mth BF such as the number of factors and the associated with the knot

locations is re-expressed in a form where V(m)=Km
j |j = 1, 2, · · · , Km for mth knot

and BFs are represented by a vector zm = (zm1 , zm2 , · · · , zmKm )T . In Equation (41),

the notation,
∫

Φm
refers toKm-dimensional parallel integration. λm is considered as

a nonnegative penalty parameters (m = 1, 2, · · · ,Mmax). The partial derivative that

contributes to the mth BF is established by Dα
r,sBm(zm) = ∂|α|Bm

∂α1Vmr ∂α2Zsm
(Zm) where

α=(α1, α2), |α| = (α1, α2) and α1, α2 ∈ 0, 1.

We are attempting to discretize the integrals by the reason that the higher dimensional

integrals cause difficulty in terms of computation [117, 124, 134]. After applying the

discretization procedure, PRSS can be recasted into an open form
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PRSS ≈
N∑
i=1

(Yi − θB(d̃i))
2

+
Mmax∑
m=1

λmθ
2
m

(N+1)Km∑
i=1

(
2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
Φm

[Dα
r,sBm(x̃mi )]2

)
∆x̃mi , (42)

where

∆x̃mi =
Km∏
j=1

(
x̃
l
km
j

σ
kj

+1,kmj

− x̃
l
km
j

σ
kj
,kmj

)
, (43)

In Equation (42),B(d̃i)=(1, B1(x̃1), · · · , B1(x̃M), · · · , BMmax , (x̃
Mmax))T is expressed

with (N × (Mmax+1))-dimensional matrix where it includes d̃ and x̃1, x̃2, x̃Mmax as its

predictors. Here, d̃ denotes the the vector of predictors, containing the elements

as (x̃1, · · ·, x̃M , x̃M+1, · · ·, x̃Mmax)T , each is separately connected to the mth BF

(m = 1, 2, ..,Mmax). In addition, θ=(θ0, θ1, · · · , θMmax)
T points is associated with

mth BF. In the first component in Equation (44), ||.||2 refers Euclidean norm.

Here, Equation (43) refers to the coefficients are associated with σ and l. Respec-

tively, they represent the dimension and coordinate and are presented together as

ljσ = lσ(j = 1, 2, · · · , p) for coefficient x̃ljN+1,j
.

Furthermore, Φ includes all predictors with Φ =
⋃

N
σj=0

∏p
j=1

[
x̃
l
j

σj
+1
,x̃
l
j

σj+1
+1

].

Also, we can reformulate PRSS as a form

PRSS ≈
N∑
i=1

||Y −B(d̃)θ
2||22 +

Mmax∑
m=1

λm

(N+1)Km∑
i=1

L2
imθ

2
m, (44)

where

Lim =

[(
2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
[Dα

r,sBm(x̃m
i )]2

)
4 x̃mi

]1/2

. (45)

Here, L represents the ((Mmax + 1)× (Mmax + 1))-dimensional matrix as
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L=


0 0 . . . 0

0 L1 . . . 0

. . . . . . . . . 0

. . . . . . . . . LMmax

,

with Lm=(L1m, L2m, · · · , LKm(N+1)m)T (m = 1, 2, · · · ,Mmax) and λ = (λ1, λMmax).

Applying the uniform penalization on Equation (44) problem turns into problem in

Equation (46). So, PRSS has ability to transform the usual LSE to the Tikhonov reg-

ularization problem by combining both the loss and the penalty [5]. It performs a

continuous optimization technique so-called conic quadratic programming (CQP) in

its the backward elimination procedure with the aim of parameter estimation [117,

124, 133]. Here, λm conducts a trade-off between bias and variance for each basis

function. It can be rearranged in a Tikhonov regularization as

N∑
i=1

||y − θB(d̃)||22 + λ||Lθ||22. (46)

It is induced that Tikhonov regularization is achieved via the uniform penalty that

means λ value is chosen to be the same for each derivative term in the Equation (46)

[117, 124, 133, 134]. Here, L presents the second derivative of f, as well as ||.||2
denoted Euclidean norm in Equation (46). So, the CQP technique is conducted as

a continuous optimization and presented as a ridge procedure [67]. In the sense of

conic quadratic programming problem, Equation (46) can be re-exprresed as

minimize t
t,θ

, subject to||y − θB(d̃)||2 ≥ t, ||Lθ||2 ≥
√
M̃. (47)

By transforming to two-function optimization problem, it is needed to decide the

appropriate bound M̃ which is denoted by
√
M̃ , referring the optimum corner point

for "L" shape curve.

A bunch of real life analysis to compare CMARS with MARS have been done, us-
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ing different datasets. This concludes that no one dominates the other by giving

superior results for all selected criteria. In the case of simulation studies, MARS

and CMARS models are generated under two alternative interactions setting relying

on two-factor interactions and four-factor interactions, and no statistically significant

difference exists between theirs performance on stability, but paired-t test analysis

shows that CMARS gives better results in terms of some performance measures such

as PRESS, MAE and R2 [133, 134]. CMARS, implemented on simulated data un-

der both three different sizes and scales results in models that as complex as that of

MARS, provides better performance in terms of method free performance measures

under medium to large training samples, excepting MSE.

However, MARS produces better results in the medium to small setting. Also, MARS

operates better than CMARS in terms of stability. Morever, it does not operate a com-

putationally efficient method since the run time for CMARS takes at least three times

higher than that of MARS [124, 133]. A comprehensive applications of CMARS

has been conducted and compared with the other data mining methods by Yerlikaya-

Özkurt et al. [133].

BCMARS

Bootstrapping CMARS [132, 133, 134] is designed to handle the complexity issue

in the final CMARS model. Although, in similar to CMARS, it establishes the mod-

els by performing forward selection procedure up to the maximum number of BFs,

BCMARS procedure attempts to surpass CMARS in order to select less complex

model as a final model. With this regard, it employs bootstrapping, so statistical

sampling tool that has ability both to detect the variable as significant or not and to

delete parameters which may not considerable contribution to the final model. Also,

this computer-intensive method is based on empirical distributions of the parameters

which are obtained with collecting samples from the data set with replacement. The

motivation behind the use of bootstrapping method grounds for avoiding the data de-

pendency of CMARS with the aim of attaining the most suitable corner point in the

sense of conic quadratic optimization [132, 133, 134]. Therefore, it is offered as a

useful tool either to achieve trade-off between loss function and the complexity or to
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find the closest place to the corner of the L-shape curve for
√
M̃ , representing the

maximum point on the curvature.

In conclusion, while BCMARS performs better in terms of accuracy and simplicity of

the final models for medium scale datasets, it shows less efficiency computationally

since it requires the computer intensive technique, so-called bootstrap. The results are

coincided with that of the previous studies, for example, MARS dominates CMARS

with respect to stability under the relatively smaller dimensions [12, 133]. On the

one side, the bootstrap is that driven to obtain more accurate estimators, is used for

assessing accuracy for performance criteria. However, the reason behind it surpasses

MARS and CMARS in terms of accuracy is suspicious since the bootstrapping tech-

nique suffers from the overfitting problem [75].

RCMARS

The Robust CMARS [99, 100] is facilitated with the purpose of robustfying CMARS

so as to reduce the variance of the estimators, simultaneously by decreasing the ef-

fects of the parameters in the final model [100]. In the forward step, it is motivated for

constructing the model that contains as much as large number of variables so-called

Mmax. So, this procedure ends up with the model that implausibly overfits the data set,

sharing similarity in the other counterparts. However, in the backward elimination, it

applies the reformed RSS rather than that of CMARS uses, while keeping the com-

plexity part of the PRSS as the same in the CMARS. Hence, it entails the adjustments

in both input and output domain on the MARS the reason why it treats either input

and output variables as random variables. In other words, RCMARS deals with two

particular uncertainty sets [55] which are represented with Confidence Intervals (CI)

[99, 100]. In the context of the RCMARS modelling procedure, it is performed with

the model which includes uncertainities as below

y = f(x̆) + ε, (48)

where y indicates the response variable and x̆=(x̆1, x̆1, · · · , x̆1) refers a vector of
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predictors, and ε is an error term with zero mean and finite variance. To build each

reflected pairs for the input variables, each x̆j under the normality assumption takes

the form below

x̆j = x̄+ ξj , (j = 1, 2, · · · , p). (49)

In a similar way, the m robustified BFs (m = 1, 2, · · · ,Mmax) are expressed in partic-

ularly based on ( ˘̆xi, ˘̆yi) (i = 1, 2, · · · , N) in place of the (x̆, y̆) with two correspond-

ing uncertainty sets U1 ⊆ <N×Mmax and U2 ⊆ <N . In Equation (49), (x̄) induces

the mean of the input data or average. With respect to analogy between ( ˘̆xi, ˘̆yi) and

(x̆, y̆), the uncertainty sets are associated with either input data or output data, re-

spectively.

x̆ij → ˘̆xij ; ˘̆xij = x̄j + ∆ij, |δij| ≤ ρij; (j = 1, 2, · · · , p; i = 1, 2, · · · , N).

y̆i→ ˘̆yi;
˘̄̆y = ȳ +Hi, |Hi| ≤ vi; (i = 1, 2, · · · , N). (50)

Here, ∆ and H represent the uncertainty sets for either input data or output data, re-

spectively. In addition, ρij and vi show the restriction on the amount of perturbation

in each dimension.

BFs are presented with ( ˘̆xi, ˘̆yi) as data points, as well as corresponding knot values

τ = (τi1, τi2, · · · , τip). In the form of the piecewise linear expansion on uncertainty

sets with

(˘̆x− τ)+ =

{
˘̆x− τ if ˘̆x ≥ τ

0 otherwise ,
(τ − ˘̆x)+ =

{
τ − ˘̆x if ˘̆x ≤ τ

0 otherwise .

(51)

The mth BF can be rearranged into a multiplicative form via

Ψm( ˘̆xi
m

) =
Km∏
j=1

[
( ˘̆xiK

m
j − τkmj )

]
−,+

, (52)

where Ψ indicates the BF encompassing ˘̆x and τ . After applying some modifications
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on both uncertainty sets and BFs, PRSS takes the form

PRSS =
N∑
i=1

( ˘̆yi − f( ˘̆xi))
2 +

Mmax∑
m=1

λm

2∑
|α|=1

α=(α1,α2)T

∑
r<s

r,s∈V (m)

∫
Qm

θ2
m[Dα

r,sΨm(tm)]2dtm.

(53)

Here,
∫
Qm

stands for multidimensional integral. After discretization process is done,

PRSS that is incorporated with uncertainty will be defined as

PRSS ≈ ||˘̆y −Ψ
˘̆

(d)θ)||22 + λ||Lθ||22. (54)

In Equation (54), the form of PRSS including two-objective functions uses the anal-

ogy with the Tikhonov regularization λ ≥ 0, i.e, λ = φ2. So, it can be solved by

CQP [124]. While it achieves the conformity with λ||Lθ||22 as the part of CMARS,

||˘̆y − Ψ(
˘̆

(d)θ)||22 differs from its close alternatives, dealing with uncertainty sets. To

exemplify a robust application of CMARS on the ellipsoidal uncertainty sets, the ro-

bust Tikhonov regularization problem is presented by

min
α

[
maximize

v∈U2
u∈U1

||y̆ + v− (Ψ(b̆) + U)α||22 + φ||Lα||22

]
, (55)

where Ψ(˘̆b) = Ψ(b̆) + U and ˘̆y = y̆ + v shows the known uncertainty sets with

two constraints U ∈ U1, v ∈ U2. Here, U ∈ U1 and U ∈ U2 indicate ellipsoidal

uncertainty sets where U ∈ U1 =P 1/2u|u ∈ RN.Mmax , ||u||2 ≤ ρ and v ∈ U2 =

Q1/2v’|v’ ∈ <N ||v’||2 ≤ v, P and Q stand for symmetric nonnegative matrices.

Also, u represents the vectoral form of U on a ellipsoidal bounded sets.

Robust approximation [14, 63] on the robust CMARS emerges as a durable coun-

terpart of CMARS under the worst-case scenarios, for example, polyhedral or ellip-

soidal uncertainty sets [98, 100]. To exemplify the use of RCMARS on a time series

data, it is used for forecasting electricity prices of Turkey [133].
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Up to know, we have been examined two parametric and nonparametric modelling

approaches, namely, GGM and MARS with its corresponding inference procedures

and model selection procedures, respectively. In this context, we aim to capture true

biological network structure by correctly defining its interactions and the number of

genes in the network under two modelling setups. Thereby, we are searching for

an optimal model selection or variable selection criteria for higher dimensional con-

text. Under GGM setting, we aim to find an model selection criterion to correctly

determine the sparsity of the network and it is presented with glasso procedure as

a penalized regression method. Also, under MARS setting, we aim to interfere the

model selection procedure of the original MARS at its backward step by replacing

GCV with the alternative criteria.

2.2 Model Selection For Biological Networks

In this section, it will be focused on the concept of the statistical model selection.

In the sense of identifying the optimal model among the collection of competing

models, it is aimed to find the best approximating model to the true model. In higher

dimensional network setting, the selection of the appropriate model is associated with

capturing the correct representation for the graphical network, along with specifying

the true connections between its attributes. Without any loss of the generality, there

are two pivotal characteristics which are imputed to so-called best model, where we

always take the interpretability and the accuracy of the predictions into account [114].

While we keep in mind accuracy, it is intended to minimize the difference between

the true model and the fitted model [89]. Also, we desire the model as simple as possi-

ble with regarding the interpretability issue. According to Occam’s Razor, a simpler,

i.e., more parsimonious model, is preferable to the others, in turn, not only reducing

the complexity, but also providing the highest gain of information [17]. Furthermore,

these two characteristics directly entail the determination of the number of variables

in the statistical model. Therefore, this results in variable selection procedure where

the irrelevant variables should be discarded from the model in order to increase the

accuracy while keeping the model as simple as possible. In the literature, the distinct

variable selection methods which are operated on the linear regression models relies
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on either information criteria, penalized likelihood methods, or background knowl-

edge have been proposed [71]. In manner the need for variable selection arises from

the bias-variance trade-off where they are known as the two elements of the squared

error, while effecting the model interpretability directly [90]. For example, [75] stated

that the complex models lead to the decrease in the bias, as well as the increase in the

variance.

In an analogy with the network estimation in higher dimensions, the structure learning

procedure contains two indispensable components, including an estimation method

with a model selection criterion in order to reflect the true interactions among the cor-

rectly defined elements in the network [90]. It is achieved via several selection criteria

by specifying the regularization parameter whose aim at controlling the sparsity pat-

tern in the network [141]. In this sense, the choice of the regularization parameter

plays a vital role in determining the number of nonzero coefficients in the network.

While the fewer number of nonzero coefficients indicates the sparsity of the undi-

rected network, the higher numbers represent the dense networks.

In this setup, we will discuss model selection or variable selection criteria in the high

dimensional setting, encompassing the state-of-art techniques based on information

criteria and the Bayesian paradigm, namely, AIC (Akaike’s Information Criterion)

[2] and BIC (Bayesian Information Criterion) [110], respectively. Although they per-

form well in lower dimensions, they suffer from overfitting in higher dimensions.

Despite traditional methods, the others such as RIC [90], StaRS [66], EBIC [53]

whose depend on penalized likelihood methods was presented as innovative methods

that perform well in the case of higher dimensions [50]. The last but not the least, it

will be proposed the applications of the three versatile procedures based on informa-

tion theory, whose names are CAIC, CAICF and ICOMP, which are served as model

selection criteria in the sense of network selection. Although they were coined by

Bozdogan [17, 18, 19, 20], they have not been attempted to apply on the network

estimation under the n ≤ p case where the number of variables, p, far exceeds the

number of observations n.

Under more closer inspection of the variable selection, in the context of linear regres-

49



sion, the challenge arises from the use of the sole RSS when comparing the candidate

models. By the fact that the addition of the new parameter will always result in a

model with a less RSS, correspondingly, the better model, even if the new variable

has a weak correlation with the response, so it is not seen as a sensible criterion. In

this sense, the variable selection techniques are in need of a penalty for the additional

variables in the model so that they play a paramount role in terms of determining

the choice of penalty for each additional terms [90]. The model selection procedures

are accompanied with distinct choices of regularization parameter in order to detect

the proper number in conjuction with how many variables should be included in the

model.

In the linear regression framework, the RSS representation with a constant regular-

ization parameter can be expressed as

β∗k,λ = minimize
β

(y− xβ)T (y− xβ)

σ2
+ λk, (56)

where k defines the number of nonzero predictors while (.)T is the transpose and λ

stands for the penalty. Here, β represents the coefficient for the specific variable. This

expression can be reformed as

RSSk
σ2

+ λk. (57)

The inclusion of the new variable in a model is justified under the case

RSSk+1

σ2
+ λ(k + 1) ≤ RSSk

σ2
+ λk. (58)

Arranging the equation and putting an estimate σ̂2 in place of the population vari-

ance, we get

RSSk+1 − RSSk
σ̂2

. (59)

Under this representation, model selection or variable selection methods will be clas-
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sified into three groups: constant , λ as a function of p, and λ as a combination of

both p and k [90]. For instance, AIC takes place in the first with its constant as 2,

also BIC is in this group with log(n), where n is fixed. On the other side, RIC is in

the second class since it uses 2 log(p) as a regularization parameter. In the literature,

there exists the modern methods under the third group that has a tuning parameter

as asymptotically equals to 2 log(p/k) and twice 2 log(p/k), respectively, derived by

Foster and Stine [5] and Tibshriani and Knight [120].

However, in the content of this thesis, the differences among the variable selection

methods will be discussed with respect to their underlying theories. In this sense,

AIC is considered as an information theoretic measure, also the proposed methods,

including CAIC, CAICF and ICOMP, are based on the information theory. On the

other hand, BIC lies on the Bayesian paradigm, that requires the background knowl-

edge, i.e., a prior information. Furthermore, RIC is viewed as a risk function, which

is also based on information theory. Also, StARS whose stability approach is served

as a resampling procedure. Finally, EBIC makes BIC adaptive to high dimensional

case, in turn, it is based on the Bayesian paradigm . It is important to note that all

those are the data-driven variable selection methods on the basis of linear regression

setting[49].

2.2.1 AIC

Akaike identified as the information-theoretic, or entropic AIC criterion, accordingly,

AIC (Akaike’s Information Criterion) takes place under the information-criterion

since it seems as an extension of information-theoretic interpretation of the maximum

likelihood [2]. Although AIC stems from the need for model selection of the time se-

ries modelling, it is considered as well-accepted model selection criterion since it

is applicable on very diverse fields, including engineering, operational research and

medical research [123], as well as statistics [49, 50]. So, it is formed to select an

optimal model among the set of candidate models [17, 19].
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The extraction of the information about the true unknown parameter is inferred from

the underlying distribution. It is aimed that the difference between the true model and

the selected model is small as possible, leading to good inference from the selected

model to the true one. As an objective measure of the such difference, the distance

between such two models are used for inferential purposes, regarding to the gain of

information and the closeness between them.

Boltzmann’s [28] generalized entropy, or Kullback-Leibler [83] information quan-

tity are two pioneering ideas introduced as a measure of either the information or

the distance. While generalized entropy is driven by entropy maximization principle,

conversely, it is attempted to minimize the K-L information quantity [17].

Assume that there is a continuous random vector X whose probability density func-

tion represented as f(x|θ) by k-dimensional random vector θ = θK =(θ1, θ2, · · · , θk)
θK ∈ <K . It is supposed that there exists a true parameter vector θ∗ of θ whose

probability density indicated as f(x|θ∗). Here, it is aimed that θ should be as "clos-

est" as to the true parameter vector θ∗. Therefore, it is measurable and defined as

"closeness", or "goodness-of-fit" between f(x|θ∗) and f(x|θ) by using generalized

entropy B of Boltzmann [28], or K-L [83] information quantity I:

B(θ∗;θ) = −I(θ∗;θ). (60)

B is re-expressed as below

B(θ∗;θ) = E[log f(X|θ)− log f(X|θ∗)] (61)

=

∫
f(x|θ∗) log f(x|θ)dx−

∫
f(x|θ∗) log f(x|θ∗)dx (62)

= H(θ∗;θ)−H(θ∗;θ∗), (63)

where E stands for the expectation according to the true distribution f(x|θ∗) of x

with "log" is the natural logarithm. H(θ∗;θ)=
∫
f(x|θ∗) log f(x|θ) dx indicates

the cross-entropy whose ability to detect the goodness of fit of f(X|θ) to f(x|θ∗),
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H(θ∗;θ∗) ≡ H(θ∗) refers to constant for a given log f(x|θ∗), so-called usual

Shannon negative entropy.

Keeping an analogy between entropy and K-L quantity, it is preferable to minimize

K-L information rather than maximizing the entropy:

I(θ∗;θ) = −B(θ∗;θ) (64)

= H(θ∗;θ∗)−H(θ∗;θ). (65)

The reason we only need to estimate the cross-entropy or the expected log likelihood

is thatH(θ∗;θ∗) ≡H(θ∗) is constant.

It is assumed that f(x|θ) satisfies the regularity conditions by carrying out the first

and second partial derivatives for θ ∈ <K , resulting in H(θ∗, θ) is twice differ-

entiable at θ = θ∗ H
′
(θ∗, θ)=0,H(θ∗, θ∗)=−J(θ∗) where J(θ∗) represents the

amount of information coming from f(x|θ∗) based on θ∗. In other words, Fisher

information is nothing but the second derivative of the K-L information quantity, so

analytically H(θ∗, θ) in charge of measuring the curvature at its maximum value,

θ=θ∗. In this sense of justifying I(θ∗;θ) with its paramount properties in its use of

statistical information theory will be listed as below:

1. I(θ∗;θ) ≥ 0 whenever f(x|θ∗) 6= f(x|θ).

2. I(θ∗;θ) = 0 if and only if f(x|θ∗) 6= f(x|θ) i.e., under the condition that the

model is true with the possible ranges of x.

3. x1, x2, · · ·, xn are independent identically distributed.

K-L information quantity for whole sample In(θ∗;θ)=nI(θ∗;θ). The last prop-

erty implies the additivity of the K-L information. These properties makes the K-L

information useful in terms of attaining the information about the true distribution

[17, 18, 19, 20].
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The fact that K-L quantity is not observable, but it can be consistently estimable

from the observed data. Thereby, mean log likelihood is intended for the usage as a

measure of the goodness of fit of a model in order to minimize K-L quantity [20].

H(θ∗;θ) = E[log f(X|θ)], (66)

=

∫
f(x|θ∗) log f(x|θ)dx. (67)

It is supposed that the data are generated from n independent observations from the

probability density f(x|θ) which is stated as k-dimensional random vector θ = θk

=(θ1, θ2, · · · , θk) . Also, the log likelihood function with respect to the data via

L(θ) = f(x1, · · · , xn|θ) =
n∏
i=1

f(xi|θ), (68)

ln(θ) = logL(θ) =
n∑
i=1

log f(xi|θ), (69)

1

n
ln(θ) =

1

n
logL(θ) =

1

n

n∑
i=1

log f(xi|θ) = lnn θ, (70)

where L(θ) refers to ln (θ) called the natural logarithm function and can be rear-

ranged as sum of i.i.d. random variables log f(xi|θ) (i = 1, 2, · · · , n). It is concluded

with the average or mean log likelihood of the sample represented with lnn θ which

is described as an estimator of the "distance" between the true probability density

f(x|θ∗) and the model f(x|θ). Aiming to infer I(θ∗;θ), Ĩ(θ∗;θ) is used as an

estimator for this purpose. The equation takes the form

Ĩ(θ∗;θ) = H̃(θ∗;θ)− H̃(θ∗;θ∗). (71)
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Also, it can be rearranged as

H̃(θ∗;θ) = −Ĩ(θ∗;θ) + H̃(θ∗;θ∗). (72)

It is provided that maximizing the expected log likelihood H̃(θ∗;θ) asymptoti-

cally equals to minimizing the K-L information quantity, Ĩ(θ∗;θ) since H̃(θ∗;θ∗)

≡ H̃(θ∗) is ignorable as a constant. Let θ = θ(x) represent an estimate of θ pro-

vided by a sample of n observations x = (x1, x2, · · · , xn). The mean log likelihood

in log(n) is stated as a natural estimator of the expected likelihood, H̃(θ∗;θ).

I(θ∗; θ̂) = −B(θ∗; θ̂) =

∫
log

[
f(x|θ∗)
f(xg|θ̂)

]
f(x|θ∗)dx. (73)

In this sense, the risk function is formed as below

Ex[I(θ
∗; θ̂)] =

∫
I(θ∗; θ̂)f(x|θ∗)dx. (74)

2I(θ∗;θk) ∼= 2I(θ∗; θ̂k), (75)

2I(θ∗; θ̂k) ∼= ||θ∗ − θ̂k||2J , (76)

∼= ||θ∗ − θ∗k||2J + ||θ∗k − θ̂k||2J . (77)

Taking the expectation of Equation (77) and multiplying by n, we obtain

2nE(I(θ∗; θ̂k)) ∼= E[n||θ∗ − θ∗k||2J + n||θ∗k − θ̂k||2J ], (78)

= n||θ∗ − θ∗k||2J + [n||θ∗k − θ̂k||2J ]. (79)
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The first term in Equation (79) refers to the bias an the second term is adjusted for

measuring the variance of random error (θ∗k− θ̂k). In case of sufficiently large n, we

get

n||θ∗k − θ̂k||2J = ||(n)1/2θ∗k − θ̂k||2J
a.d.∼ χ2

k, (80)

where χ2 represents the chi-square distribution with k degrees of freedom. Also, a.d.

is referred to the asymptotically distributed. This implies that E(χ2) = k and for

large n, we states the overall risk of a statistical model with its two components as

2nE(I(θ∗; θ̂k)) ∼= n||θ∗ − θ∗k||2J + k (81)

∼= δ + k. (82)

In Equation (82), the overall risk is designed to measure the deviations from the true

parameter vector

kηK = −2 log λ
a.d.∼= E[−2 log λ] = E[χ

′2
v(δ)] = δ + k. (83)

with E[χ
′2
v(δ)] and δ is obtained in such a form that

δ = n||θ∗ − θ∗k||2J ∼= −2 log λ− v. (84)

= −2 log λ− (K − k). (85)

It can be represented as

−2nE[B(θ∗; θ̂)] = 2nE[I(θ∗; θ̂)] ∼= −2 log λ− (K − k) + k. (86)
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The right hand side obviously take this form

−2 log λ− (K − k) + k = −2 log
L(θ̂k)

L(θ̂K)
− (K − k) + k (87)

−2nE[B(θ∗; θ̂)] = 2nE[I(θ∗; θ̂)] (88)

∼= −2 logL(θ̂k) + 2k + 2 logL(θ̂K)−K (89)

∼= kηK + 2k −K. (90)

Rather than taking K-L quantity I(θ∗, θ̂) as the loss function, the expected loss func-

tion, or E[I(θ∗, θ̂)], renders a reasonable estimate for the risk function. The fact that

it is valid for at least n is sufficiently large, and K and k are relatively large integers.

The risk function, R is stated as

R(θ̃K ; θ̂k) =
1

n
(−2 log λ+ 2k −K), (91)

kvK = kδK = −2
n∑
i=1

log
f(xi|θ̂k)

f(xi|θ̂K)
+ 2k. (92)

Here, it is aimed to search for θ̂k that makes the R(θ̃K; θ̂k) in accordance with

2nE[I(θ∗, θ̂)] the minimum. In this sense, it is enough to evaluate kvK, simulta-

neously, ignoring the constant term in Equation (101), so the simpler form can be

obtained pertaining AIC via

AIC(k) = −2
n∑
i=1

log f(xi|θ̂k) + 2k (93)

= −2 logL(θ̂k) + 2k (94)

AIC serves as a methodological way when compare k models by selecting the model

with minimum AIC over k = 1, 2, · · · , K. AIC(k) presents an unbiased estimator
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of minus twice the mean expected log likelihood. Correspondingly, −1
2
AIC(k) refers

asymptotically an unbiased estimator of the mean expected log likelihood and its

likelihood model is L(k) = −1
2
AIC(k).

2.2.2 CAIC

In the statistical information theory, there has been discussed the virtue of the con-

sistency known as a large sample property. Although the AIC scheme does not con-

sidered as consistent, it achieves to estimate true distibution by means of minimizing

negentropy, or expected log likelihood for large n [84]. In particular, AIC aims at con-

trolling the both overfitting and underfitting risks when dealing with the bias arising

from log likelihood ratio of maximum likelihood estimates. In this section Consis-

tent Akaike Criterion [17] will be mentioned that CAIC is motivated by enhancing

the AIC with two amendments. CAIC was developed by Bozdogan [17] in such a

way that it is analytically extended to make AIC consistent and to penalize overfitting

more harshly. In other words, it designed to obey the desirable AIC principles, as

well as advancing it in two ways. As we introduced before, mean log likelihood en-

compasses the bias causing from maximum likelihood estimates of the paramaters. In

the concept of AIC, the bias is associated with the noncentrality parameter δ known

as unknown but deterministic constant. It is obvious that it can be affected by the

distributional choices, as well as sample size. Furthermore, it plays a leading role in

order to specify the model among the set of them by determining the power of the test

that we apply. Thereby, the bias can be reduced somehow by adding some correction

factor, like in AIC. From the AIC framework, the test statistic is taken as noncentral

chi-squre distribution and the degrees of freedom is defined as an increasing function

of the sample size n [79].

v = a(n)(K − k). (95)

with a(n) represents the penalty parameter depending on an increasing function of n.

It is easy to see that AIC choose a(n)=1. When selecting a(n), two issues are needed
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to be taken into account [33]. It is aimed to determine the correct dimension should be

high in probability, or the correct order for finite samples. In addition, consistency is

required as a remarkable property that makes the use of the procedure valid for large

n. To achieve these two, CAIC exploits a(n)=log(n) along with v = (K − k) log(n),

instead of a(n) = 1.

CAIC(k) = −2 logL(θ̂k) + k[(log(n)) + 1]. (96)

To justify the use of CAIC, the proof is given below starting from Equation (75) in

AIC

2nE[I(θ∗; θ̂)] ∼= δ + k. (97)

The noncentrality parameter differs from the AIC by taking v = (K−k) log(n) rather

than v = (K − k)

δ ∼= −2 log λ− v. (98)

δ ∼= −2 log λ− (K − k) log(n). (99)

Rewriting the Equation (89) in terms of CAIC, we get

2nE[I(θ∗; θ̂)] ∼= −2 logL(θ̂k) + k log(n) + k + 2 logL(θ̂K)−K log(n). (100)

CAIC(k) = −2 logL(θ̂k) + k log(n) + k + 2 logL(θ̂K)−K log(n). (101)

CAIC seems as a consistent estimator of the 2nE[I], or twice the expected K-L in-

formation and after dropping the constants from Equation (101), the simpler form is

obtained as below

CAIC(k) = −2 logL(θ̂k) + k[(log(n)) + 1]. (102)
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2.2.3 CAICF

Under the class of the variable selection relying on statistical information theory, like

the others including AIC, CAIC, CAICF was produced to estimate minus twice the

expected entropy by Bozdogan [17] and is motivated from the intent to penalize the

overparametrization more strongly, as well as achieving the consistency, especially

for large n, but at the same time satisfying the Akaike’s original principles. Aiming

at fulfill these purposes, CAICF differs from its analogues by the way it preserve the

term 2 logL(θ̂K) in Equation (112). It behaves f(x|θ∗) as the true density, rather

than f(x|θ∗k). In this sense, unlike AIC, it suggests a different approximation for

L(θ̂K) that is used for inferring the likelihood function L(θ∗) of the true model. By

applying maximum likelihood estimates, it is capable of estimating the unknown pa-

rameters of both the true and approximate models.

CAICF(k) = −2 logL(θ̂k) + k[log(n) + 2] + log |J(θ̂k)|, (103)

= AIC(k) + k log(n) + log |J(θ̂k)|. (104)

Suppose that the true parameter vector θ∗ fulfills the restricted model, reducing the

number of parameters.

MODEL(k) : θk = (θ1, θ2, · · · , θk, 0, · · · , 0), (105)

where O refers the ”order of” with θ∗k − θ̂k = O(n−1/2) Maximum likelihood es-

timates, under regularity conditions, MLE θ̂k of θ∗k is a sufficient statistic for θ∗k, at

least asymptotically. This is obviously proved by the factorization theorem of the

likelihood can substantiate the sufficiency [31].

Theorem 1: A maximum likelihood estimator θ̃k is asysmptotically distributed as
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multivarite normal vector θ∗k and the covariance matrix n(J)−1.

θ̂k
a.d.≡ Nk(θ

∗
k; (nJ(θ∗k))−1) (106)

in accordance with the asymptotic multivariate normal density of

g(θ̂k) =
|nJ(θ∗k)|1/2

((2π)k/2
exp

{
−1

2
(θ̂k − θ∗k)

′
nJ(θ∗k)(θ̂k − θ∗k)

}
. (107)

So, Equation (108) is presented with θ̂k as its corresponding the maximum likelihood

estimate of θ∗k and the inverse covariance matrix, C(θ∗k), is shown by

C(θ∗k) =

[
− ∂2 logL(θ∗k)

∂θ∂θ
′

]
∼= nJ(θ∗k), (108)

where J(θ∗k) stands for the Fisher information matrix at θ∗k according to one observa-

tion. Particularly for large samples, the likelihood of true density, f(x|θ∗) at f(x|θ∗k)

can be approximated by L(θ∗k, θ̂k) = g(θ∗k)L(θ∗k) = g(θ∗k) exp logL(θ∗k) in such a

way that the product of Taylor series expansions of g(θ∗k) and exp logL(θ∗k) around

the θ̂k provides the L(θ∗k; θ̂k) as

L(θ∗k; θ̂k) =
(nk|J(θ∗k)|)1/2

(2π)k/2
exp

{
−1

2
(θ̂k − θ∗k)

′
nJ(θ∗k)(θ̂k − θ∗k)

}
[1 +O(n−1/2)].

(109)

The asymptotic sufficiency is obviously indicated by the factorization criterion like

that

L(θ∗k) = h(x)L(θ∗k, θ̂k), (110)

where h(x) is free of the particular parameter vector θ, and L(θ∗k; θ̂k) form a basis for
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sufficient θ∗k, relying on x only via θ̂k=θ̂k(x). Substituting the L(θ̂K) with L(θ∗k) by

the way of supposing the θ∗ as true parameter vector, along with θ∗k as the restricted

or pseudotrue parameter vector and we obtain

kηK = −2 logL(θ̂k) + 2 logL(θ̂∗k). (111)

From Equations (110) and (111), we get

logL(θ̂∗k) = log h(x) + logL(θ∗k, θ̂k), (112)

After modifying second term in Equation (112), we obtain

logL(θ̂∗k) = log h(x) +
k

2
log(n) +

1

2
log |J(θ̂k)| −

k

2
log(2π)

−1

2
(θ̂k − θ∗k)

′
nJ(θ∗k)(θ̂k − θ∗k) + log[1 +O(n−1/2)]. (113)

By multiplying both sides by 2 and simplifying the equation by the way of using the

fact that log[1+O(n−1/2)] is order n−1/2 and (θ∗k−θ̂k) refers of order n−1/2, nJ(θ∗k)

is order of n, resulting in (θ∗k)
′
nJ(θ∗k)(θ̂k − θ∗k) is of order O(∞), we attain

2 logL(θ∗k) = 2 log h(x) + k log(n) + log |J(θ∗k)| − k log(2π) +O(n−1/2). (114)

By ignoring the constant terms such as h(x) and O(n−1/2), we get

2 logL(θ∗k) = k log(n) + log |J(θ∗k)|. (115)

Simplifying Equation (111), we get

kηK = −2 logL(θ̂k) + (n) + log |J(θ∗k)| (116)
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Here, we are interested in estimating J(θ∗k) by J(θ̂k) in Equation (116) since θ̂k is

the MLE of θ∗k. In place of the result in Equation (89), we have

2nE[I(θ∗; θ̂)] ∼= −2 logL(θ̂k) + k log(n) + log |J(θ∗k)||J(θ∗k)|+ 2k −K (117)

∼= −2 logL(θ̂k) + k[log(n) + 2] + log |J(θ∗k)||J(θ∗k)| −K (118)

Reducing this equation, we get

CAICF(k) = −2 logL(θ̂k) + k[log(n) + 2] + log |J(θ∗k)| (119)

= AIC(k) + k log(n) + log |J(θ∗k)| (120)

It is easy to show that the first two factors in Equation (120) is the analogue of the

CAIC, and also Schwarz’s criterion [110]. It is obvious to indicate that CAICF has

ability to make AIC analytically consistent, rather than heuristically depending on

the arbitrary choice of the correct model in AIC. It is aimed at penalize more strongly

than its counterparts do, especially in large samples. However, like the analogues of

the model criteria in the statistical information theory, it attempts to infer minus twice

the expected entropy. It is important to note that it does not motivated by the Bayesian

approach [17]. The Fisher information matrix, J(θ∗k), rendered as the penalty term

from CAICF, plays a pivotal role in terms of either theory and application of the

CAICF. In this manner, the determination of the correct probability model does not

seem as necessary condition to fit the model when implementing the model selection

criteria. No matter the true distribution is normal or nonnormal, maximum likelihood

procedure produces such consistent estimates for both mean and variance that they

obey the normality assumption. That is, the consistency of the mean log likelihood

is guaranteed to yield the robust estimation that induces as specification tests. Here,

we are interested in checking whether the true probability model is misspecified or

not. In this sense, a basic test of the information matrix equivalence is conducted to

check the model misspecification. To achieve this purpose, two matrices are defined
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as below

Jn(θ∗k) = − 1

n

n∑
i=1

∂2 log f(xi|θ∗k)

∂θr∂θs
. (121)

Rn(θ∗k) =
1

n

n∑
i=1

∂ log f(xi|θ∗k)

∂θr
.
∂ log f(xi|θ∗k)

∂θs
. (122)

The expectations take the following form

J(θ∗k) = −E

[
1

n

n∑
i=1

∂2 log f(xi|θ∗k)

∂θr∂θs

]
, (123)

R(θ∗k) = E

[
1

n

n∑
i=1

∂ log f(xi|θ∗k)

∂θr
.
∂ log f(xi|θ∗k)

∂θs

]
(124)

with r, s = 1, 2, · · · , k. When

Cn(θ∗k) = Jn(θ∗k)
−1Rn(θ∗k)Jn(θ∗k)

−1 ≡ J−1
n RnJ

−1
n , (125)

C(θ∗k) = J(θ∗k)
−1R(θ∗k)J(θ∗k)

−1 ≡ J−1RJ−1 (126)

with positive-definite Fisher Information matrix, J(θ∗k) and the covariance matrix,

C(θ∗k). [17] indicates the following fact provided that the model is correctly speci-

fied.

Theorem 2(Information matrix equivalence): f(x) ≡ (x|θ∗) for θ∗ in ΩK , then

we obtain θ∗ = θ∗k and J(θ∗k)=R(θ∗k) with its covariance C(θ∗k) = J(θ∗k)
−1 =

R(θ∗k)
−1. If the model is not correctly specified, J(θ∗k)

−1 is not hold to be equal

to R(θ∗k)
−1. On the other hand, it is supposed to be correctly defined model, the

Hessian matrix can be presented in two such ways that Hessian form and outer

product form are represented by J(θ∗k)
−1, R(θ∗k)

−1 , respectively. This leads to

J(θ∗k)
−1 − R(θ∗k)

−1 = 0, but its observable analogues referring its consistent es-

timators, J(θ̂k)
−1 − R(θ̂k)

−1 = 0, are used to employ a test statistic to control

whether the model misspecification exist or not. In the statistical information theory,

model misspecifications can cause many considerable results, producing inconsistent
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estimates for parameters. In this manner, a test of the inconsistency of the estimates

for either parameter or covariance matrix can be checked by the same way of con-

ducting a test for a model specification.

The problem in finding the J(θ̂k) can be caused from singularity in the matrix, or

indefinite, resulting no unique value that makes the K-L information quantity mini-

mum at θ∗, the true parameter vector. In accordance, the expected mean log likeli-

hood can be able to obtain more than one optimal parameters to satisfy the equality

z(θ) = z(θ∗). Therefore, the inability of the identifiability of θ concludes with

the information matrix that suffer from singularity problem [113]. Furthermore, it is

expected that we obtain the estimators with not only the higher variance, but also the

lower accuracy. Thereby, the CAICF is offered as versatile model selection criterion

since it manage the model selection procedure, simultaneously, operate the control for

J(θ̂k). After holding the nonsingularity condition of the Fisher information matrix,

it will be implemented to produce unique estimates.

2.2.4 ICOMP

In the context of information theory, ICOMP (Information Complexity Criterion)

was proposed by Bozdogan [17, 19] in order to select the best approximating model

among the set of candidate models given a finite data set. It is aimed that this model

selection procedure should end up with the the best model that makes the criterion

optimal.

Tracing back to the article Akaike [2] and Bozdogan [17, 18, 19, 20], AIC, under

the information-theoretic decision theory, was served as an approximately unbiased

estimator of the mean expected log-likelihood of a model [106]. Also, BIC was in-

troduced by Gideon Schwarz [110] as an approximation to the posterior probability

of the model by the way the best model refers the smallest one containing the true pa-

rameter vector [70]. Furthermore, "leave-one-out" cross-validation method has been

indicated to be equal to the AIC [112, 114].
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Unlike the other criteria that focus either the only on complexity or information,

ICOMP has ability to be comprised of two such concepts as information and com-

plexity theory to evaluate the statistical model, simultaneously. In a statistical model,

the amount of information that includes some complexity accounts for not only the

nature but also the degree of the intricate connections among the model components.

In this sense, the complexity take into the interconnections among the model compo-

nents account. In the statistical sense, the information-based model selection criteria

is aimed at predicting the true model by using its best observable analogue that en-

sures us the optimal fit to the true one. In this manner, I and COMP in ICOMP, stand

for Information and complexity, respectively. Although AIC, a generic example of the

information based criterion,is composed of sole the lack of fit and the lack of parsi-

mony, ICOMP, being inspired from information-based complexity index van Emden

[119], is designed to embrace the lack of fit, the lack of parsimony, as well as the pro-

fusion of complexity. In Equation (86), as we have already stated that the first term,

or −2 logL(θ̂k), refers to the the lack of fit and the other, or 2k, known as the lack

of parsimony, penalizes the number of free parameter. However, keeping the lack of

parsimony in the loss function, ICOMP encompasses an additional penalty, so-called

profusion of complexity, preferring to penalize covariance complexity rather than the

number of parameters directly in AIC.

It is given as

ICOMP(IFIM) = −2 logL(θ̂k) + 2C(Σ̂Model) (127)

where−2 logL(θ̂k) is the maximized log-likelihood function with the maximum like-

lihood estimate of the parameter vector, θ̂k, and C refers a real-valued complexity

measure. In this sense, the complexity is assessed by the estimated covariance matrix

of the parameter vector of the model, Σ̂Model = ˆ
cov(θ̂k). The covariance matrix in

ICOMP loss function is employed by Cramer-Rao lower bound (CRLB) matrix that

represented by inverse Fisher information matrix (IFIM), F̂−1. Also, it is expressed

as below
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F̂−1 =

{
− E

(
∂2 logL(θ)

∂θ∂θ
′

)
θ̂

}−1

(128)

Here, the matrix of second partial derivatives of the log-likelihood function of the

fitted model is computed at the maximum likelihood estimators θ̂.

ICOMP, whose ability of managing the whole parameter space of the model, ensures

not only the accuracy but also the optimal precision of the parameter estimates given

a statistical data. That is, the estimated variances and covariances are denoted in the

diagonal and off-diagonal elements of IFIM, respectively.

ICOMP(IFIM) = −2 logL(θ̂k) + 2C1(F̂−1), (129)

No matter the model is linear/nonlinear, the above expression pertaining ICOMP is

valid for either multivariate or univariate case with

C1(F̂−1) =
s

2
log

[
TraceF̂−1

s

]
−1

2
log |F̂−1|, (130)

where C1 indicates the maximal information complexity of the estimated Fisher in-

formation matrix with s =dim(F̂−1) = rank(F̂−1).

ICOMP is adjusted to give new insights into the functionality of the entropic data-

adaptive penalty by not exploiting the fixed constant that AIC and its counterparts’

use.

Since ICOMP relies on the information theory, it makes use of two additive terms:

one is the lack of fit and the other refers the complexity of the parameter estimates of

a model in conjunction with the inference uncertainty and the parametric uncertainty,

respectively. This way it is motivated from the entropy maximization principle, or

minimizing its negative, it can be represented as an approximation to the sum of two

K-L distances [83].
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K-L(θ∗,θ) =
n∑
i=1

∫
log

[
fi(Yi,θ

∗)fi(Yi,θ
∗)

]
dYi−

n∑
i=1

∫
log

[
fi(Yi,θ)fi(Yi,θ

∗)

]
dYi.

(131)

where a vector Y of independent observations Y1, Y2, · · · , Yn is assumed to be pro-

duced from the usual multiple linear regression with Y = Xβ + ε.

Supposed that θ∗ refers the vector of (β,σ2) of the true parameters and θ denotes

the vector of parameters corresponding with any value. The K(θ∗, θ) represents the

the distance between the two densities f(Y,θ∗) and f(Y,θ). The KL term can be

expressed by using just its second term, ignoring the its first constant term. There-

fore, it turns out the problem that the second term,−
∑∑∑n

i E[(Yi, θ)] to be unbiasedly

estimated through −
∑∑∑n

i log f i(Yi, θ), i.e., minus the log likelihood of the obser-

vation computed at θ. Suppose that a restricted model, i.e., R, with its maximum

likelihood estimator θ̂R can be generated to infer the true paramater θ. For this pur-

pose, −
∑∑∑n

i log f i(Yi, θR) is applied as an unbiased observable analogue of the

−
∑∑∑i

n log f i(Yi, θ). Also, it provides asymptotic covariance matrix Σθ̂R for MLE

θ̂R. This refers to Equation (125).

Focusing on the complexity measure of ICOMP, it is originally inspired by the covari-

ance complexity index of van Emden [119] and proposed to penalize the covariance

complexity of the model by using C0,

C0(Σ) =
1

2

k∑
j=1

logσ2
jj −

1

2
log |Σ|, (132)

where k denotes the dimension of Σ and the σ2
jj are represented in the diagonal ele-

ments of Σ. When Σ is a diagonal matrix, C0(Σ) equals to the zero. In case of θ

is a normal random vector with covariance matrix, i.e. Σ, then C0(Σ) can be seen

as the K-L distance between multivariate normal density of θ and the product of the

marginal densities of the components of θ. However, C0 whose incapability of in-
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variance is restricted under orthonormal transformations. To tackle this, Bozdogan

[17, 18, 19] suggested the concept of maximal informational complexity measured

by C1.

C1(Σ) = maximize
T

C0(Σ) =
k

2
log

Trace(Σ)

k
− 1

2
log |Σ|, (133)

where T refers the set of orthonormal transformations and k stands for the dimension

of Σ.

So,C1 is designed to be invariant in terms of both scalar multiplication and orthonor-

mal transformation. Also, it is known for its monotonicity since C1(Σ) is defined as

a monotonically increasing function of the dimension k of Σ.

The complexity of the Σθ̂R
can be viewed as the K-L distance between the joint

density and the product of marginal densities represented by a normal random vector

with covariance matrix Σθ̂R.

Under orthonormal transformations of that normal random vector, the covariance ma-

trix is guaranteed to be reach its maximum. In other words, under regularity condi-

tions, θ̂R is approximately normal provided that θ̂R is certainly normally distributed.

Furthermore, the complexity of Σθ̂R
is achieved to occur at its maximum under all or-

thogonal transforms of the the K-L distance between the joint density and the product

of marginal densities for θR. Thereby, ICOMP is expressed with minus twice sum of

log-likelihood−
∑∑∑n

i log f i(Yi, θR) and its complexity measure, Σθ̂R
.

Complexity of the model Rk is represented by C1(Rk) = C1(β̂k, ε̂k) with the

joint vector of estimated parameters and residuals under modelRk, (β̂k, ε̂k).

For multiple regression models, the least squares (maximum likelihood) estimator

β̂k and the residual vector ε̂k are assumed to be independent. With the additivity

property ofC1(β̂k, ε̂k) can be rewritten asC1(β̂k, ε̂k) = C1(β̂k) +C1(ε̂k). Also,

β̂k is normally distributed by N(β(k), σ
2(X

′

kXk)
−1) in which β(k) is the projection of
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the true parameter β on the space (β0, · · · , βk, 0, · · · , 0) and Xk is the matrix of in-

dependent variables included in model Rk. So the complexity of β̂k is the complexity

of its non-singular covariance matrix [20].

C1(Σ̂β̂k
) = C1(σ2(X

′

kXk)
−1) = C1((X

′

kXk)
−1). (134)

Equation (134) is achieved via the invariance property of the complexity under scalar

multiplication. The problem emerges from n-dimensional residual vector ε̂k of model

rK is normally distributed with N(0, σ2P ) where P = I − Xk(X
′

kXk)
−1X

′

k and P

is singular [111]. This makes the complexity of P infinite in such a manner that P in-

cludes not only n-q eigenvalues with value 1, but also q eigenvalues equal to 0 where

rank(P ) = n − q with q = k + 1. By this way, the complexity is intended to gov-

ern the eigenvalues of the covariance matrix by quantifying the inequalities between

them. In the sense of numerical analysis, this plays a pivotal role in order to deter-

mine the condition number of the matrix where the lower condition number is though

as a good indication for well-conditioned matrix, however, the higher values indicate

the ill-conditioned matrix [119]. Here, C1 has ability to manage automatically the

condition number by following such a way that the number is taken as an equivalent

to the ratio of the maximum to the minimum eigenvalues. Therefore, since it can be

identified as a K-L distance, it can be easily combined with the badness-of-fit term

whose excitability of K-L distance in the information theory .

This is stated that the complexity of zero for ε̂k where the random errors whose co-

variance matrix is σ2In, so it is easy to show that C1(σ2I) = 0 for ε̂k in terms of

its projection onto lower-dimensional subspace ε̂k. We are interesting in minimizing

the complexity based information criterion for the multiple regression model, and it

is represented by

ICOMPan(rk) = −2 log(maximized likelihood) + 2anC1((X
′

kXk)
−1) (135)

with a sequence of positive numbers, an. For example, the criterion ICOMP1 is asso-

ciated with an = 1 and all n.
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ICOMPan(rk) = n log(2π) + n log

[
RSSk
n

]
+ n (136)

+ anq log

[
Trace((X

′

kXk)
−1)

q

]

− an log

[
det(X

′

kXk)
−1

]
.

Also, RSSk is the residual sum of squares of the model rk. It is pointed out that, in the

case of q = 1, ICOMP1(rk) or ICOMPan(rk) results in−2 log(maximized likelihood).

Furthermore, the other measure of a model complexity for a model rk, the esti-

mated parameters for the complexity is represented by the vector, i.e., (β̂k, σ̂
2
k) with

σ̂2
k = RSSk/n. It is assumed that (β̂k and σ̂2

k) are independently estimated parame-

ters and its associated covariance matrix is presented as

Q =

σ2(X
′

kXk) 0

0 2σ4(n−q
n2 )

 .

As n→∞,Q is asymptotically equals to the inverse Fisher information matrix IFIM

arranged by

F−1 =

σ2(X
′

kXk) 0

0 2σ4/n

 .

The matrix Q is induced by the distribution of RSSk/σ2 [111]. When the estimated

parameters whose covariance matrix could not written in closed form, the complexity

of (β̂k, σ̂
2
k) is employed with an estimated inverse-Fisher information matrix. Also,

it is represented as C1Σ̂(β̂kσ̂
2
k)=C1(F̂−1) where ˆF−1 and σ̂k is used rather than

F−1 with σ. Correspondingly, the covariance matrix of (β̂k, σ̂
2
k) is observable, it

is indicated as C1(Q̂) with C1Σ̂(β̂k). These two complexities are obtained as so

closely with each other when the ratio q/n is small.

So, ICOMPIFIM an and ICOMPCOVan are represented as below
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ICOMPIFIMan(mk) = −2 log(maximized likelihood) + 2anC1(F̂−1) (137)

= n log(2π) + n log

[
RSSk
n

]
+ n (138)

+ an(q + 1) log

[
Trace(X

′

kXk)−1 + 2σ̂2
k/n

q + 1

]

− an log det((X
′

kXk)
−1)− an log

(
2σ̂2

k

n

)
,

ICOMPCOVan(mk) = −2 log(maximized likelihood) + 2anC1(Q̂) (139)

= n log(2π) + n log

[
RSSk
n

]
+ n (140)

+ an(q + 1) log

[
Trace(X

′

kXk)−1 + 2σ̂2
k(n−q

n2 )

q + 1

]

− an log det((X
′

kXk)
−1)− an log

(
2σ̂2

k

(n− q
n2

))
.

2.2.5 BIC

BIC, motivated from the Bayesian framework, was proposed as a model evaluation

tool by Gideon Schwarz [110]. Furthermore, it is aimed to find the smallest model

containing the true model whose highly depend on the choice of prior in Bayesian

paradigm. In this setup, BIC is not based on the K-L distance which from AIC arises.

In BIC, the regularization parameter, λ, relies on sample size n rather than constant

value like in AIC. For n ≥ 8, it is designed to penalize more strongly than does AIC.

Also, it is presented as

BIC(k) = −2 logL(θ̂k) + k log(n). (141)
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Like in AIC, BIC attempts to control both the lack of fit and the lack of parsimony,

simultaneously. Furthermore, it is assumed that the observations are independently

and identically distributed. Also, it entails asymptotically consistency property with

the help of maximum likelihood estimator so that it achieves to choose the model

truly with the probability reaching to one [103]. On the other hand, the usual BIC

seems more liberal for model selection as the model space increases [30].

In coding theory, BIC is coincided with the Minimum Description Length (MDL)

[105].

2.2.6 EBIC

The difficulty in consistency arises in the case of small-n-large-p. As the number of

covariates, p increases, BIC procedure leads to inconsistency. The reason for EBIC

was designed to produce consistent results in higher dimensional settings [53].

EBICγ(k) = −2 logL(θ̂k) + k log(n) + 2γ log η(Kj) (142)

θ̂(k) is the maximum likelihood estimator of θ(k) and from the Bayesian frame-

work, P (k) represents the prior probability of models. Note that EBIC differs from

BIC such that it prefers to assign probability ηξ(Kj) to p(Kj) rather than η(kj)

(j = 1, 2, · · · , K). The prior probability over s ∈ Sj is selected with probability

η−τ (Kj) τ = 1− ξ. In BICη(k), the first two terms are presented as Laplace approx-

imation to −2 log(m(Y|k)) and the other term is constant with a constraint.

In this framework, given k and the prior density of θ(k) in πθ(k), the posterior prob-

ability is yielded as

P (k|Y) =
m(Y|k)p(k)∑

k∈K
p(k)m(Y|k)

, (143)
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where m(Y|k) is the likelihood of the model space K with

m(Y|k) =

∫
f(y;θ(k))πθ(k)dθ(k). (144)

Under Bayesian perspective,
∑
k∈K

p(k)m(Y|k) refers a constant whose optimal prior

entails k∗ = maximum
k∈K

m(Y|k)p(k). Supposed that the model K is divided as equal

dimensions in such a way that
⋃K
j=1Kj , each subspace Kj over K is assigned to an

equal probability p(k|Kj) = 1/η(Kj) with totally j covariates η(kj) =
(
K
j

)
.

2.2.7 modified RIC

RIC, which was motivated by risk inflation criteria, was served as a canonical variable

selection procedure under the multiple regression [52].

In the decision making context, RIC was designed to be interested in predictive risk

function. On the other hand, in the statistical assessment context, this is coincided

with the expected loss function. Since the risk function will be expressed in terms

of the expected squared error of prediction, where X represents the future prediction

values, its risk function, R(β, β̂) will be presented as

R(β, β̂) = Eβ|Xβ̂ −Xβ|2. (145)

Suppose that X is taken as fixed values from the generic multiple regression model,

Y = Xβ + ε withX = [X1, X2, X2, · · · , Xp] and β = (β1, · · · , βp)
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RI(β̂) = maximize
β

E||Xβ − Xβ̂||2

E||Xβ − Xβ̂∗||2
(146)

In the RI function, while nominator is nothing but the usual least square function, the

denominator work on the restricted parameter space by taking into the only nonzero

β′is account where β̂∗ is inferred from the β vector.

In this case, the smaller RI we have, the better performance we obtain. Correspond-

ingly, in the canonical variable selection, the model achieves to minimize the RI. This

is because λ = 2 log(p). In the decision making process, this indicates that the model

reaches its minimax via RI under the assumption that the predictors are orthogonal

[52].

Lysen [90] suggested the use of randomly rotated matrices rather than that of the

actual data. In this sense, a permutation matrix is known as a special case of a rota-

tion matrix. The only difference is caused by the stringency of an assumption which

we make. For instance, whereas the randomly rotated matrices expect a spherically

symmetric error distribution, randomly permuted matrices solely assume that the ob-

servations come from an independently distributed arbitrary errors. Therefore, Lysen

[90] introduced as a data-dependent variable selection scheme we which call the per-

muted inclusion criterion by preferring to permutations than rotations since it is easy

to calculate.

This scheme is motivated from a data generation procedure where the predictor space

X, Xj is augmented from the original predictor space, X. In this setup, covariance

structure is not affected by such procedure, so it remain unchanged. For augmented

data, the correlation structure is exploited in the case of variable selection since it is

also the same as in the original dataset.

In terms of deciding the penalty parameter α, permuted inclusion criterion is asymp-

totically coincided with the risk inflation criterion of 2 log(p). However, the choice

of a tuning parameter, α is based on a specified cutoff value, a quantile of a distribu-
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tion. Thereby, this procedure is named as modified RIC with α = 2 log(p/k) and is

associated with 0.95 quantile in order to select a variable set.

Unlike the state-of-art variable selection procedures such as AIC or BIC, the mod-

ified RIC promotes to eliminate the irrelevant X ′is by reducing theirs’ associated β′is

to the exactly zero.

Unlike StARS, which uses subsampling or cross-validation, it is interested in directly

estimating the optimal regularization parameter by changing the p value with the aim

of constructing the true graphical representation with its true connections. However,

it suffers from the underselection.

2.2.8 StARS

The undirected graph can be presented in terms of its edges and nodes G = (Γ,E), whileΓ

(Γ = 1, · · · , p) refers the set of vertices, E denotes the set of edges in the graph. In

order to infer the adjacency matrix of the graph G, it will be used the E notation, also.

Suppose that a random vector is presented byX = (X1, X2, · · · , Xp) corresponding

with Gaussian p. It is assumed that the absence of an edge between the pair of nodes

such as (a, b) implies that Xa and Xb are conditionally independent given the rest

XΓa,b, provided that ωab = 0 where ω=Σ−1.

ω̂ = minimize
ω≥0

{
− lnω + λ||ω||1

}
. (147)

Friedman et al.[56] provides an efficient algorithm to evaluate ω̂(λ) with a collection

of λ’s changing from small to large mentioned in Section 3.4.

StARS is operated in order to decide λ associated with Ĝ(λ). As the λ increases,

the more sparse network we obtain. Correspondingly, the smaller Λ result in sparse

76



networks by taking that Λ = 1/λ. In particular, Λ = 0 denotes to the graph with no

edges. Over a grid of regularization parameters Gn = Λ1, · · · ,ΛK , it is intended to

find the optimal Λ̂ ∈ Gn for the parameter selection purposes. The reason behind it

attempts to "overselect" rather than "underselect", it is driven from choosing Ê(Λ̂)

encompasses the true graph E with high probability. In manner the StARS procedure

is designed to find Λ pertaining to stability.

It is assumed that N random subsamples S1, · · ·, SN are taken from X1, · · ·,Xn,

each size of t = t(n) with 1 ≤ t(n) ≤ n. There exists totally
(
n
t

)
subsamples,

each is randomly drawn without replacement. For each Λ ∈ Gn, it is ability to

build a graph for each subsample in conjunction with N estimated matrices such that

Êt
1(Λ) · · · , Êt

N(Λ).

On closer inspection, ψΛ
ab(.) is denoted, along with one edge (a, b) and a partic-

ular value of Λ. ψΛ
ab(Sj) = 1 refers to the existence of edge between (a, b), on

the other hand, ψΛ
ab(Sj) = 0 refers to its absence. This indicates that θtab(Λ) =

P (ψΛ
ab(X1, · · · , Xn) = 1). It is aimed to infer θ̂tab(Λ) using the such equality that

θ̂tab(Λ) = 1
N

∑N
j=1 ψ

Λ(Sj).

In the StARS procedure, the parameters are denoted by ξtab(Λ) = 2θtab(Λ)(1−θtab(Λ)).

Instead of the parameters, its estimated analogues are used and represented by ξ̂tab(Λ) =

2θ̂tab(Λ)(1− θ̂tab(Λ)). Here, it is obvious that the main purpose of the stability proce-

dure lies on calculating the total instability by taking mean of all edges by the way

D̂t(Λ) =
∑
ξ̂tab/

(
p
2

)
a≤b

. It is easy to show that D̂t(0) = 0 at zero boundary, while D̂t(Λ)

tends to change simultaneously with Λ. Although the increase in Λ results in denser

graph, this does not reflect the true nature of the gene networks. Therefore, the choice

of D̂t(Λ) is determined in a methodological way that D̄t(Λ) = maximize
0≤t≤Λ

D̂t(b).

Specifically, Λ̂S = maximize

{
Λ : D̄t(Λ) ≤ β

}
with a prespecified boundary β.

Although choosing Λ is closely depend on the choice of β, β takes the default value

as 0.05. The reason why the StARS procedure relies on subsampling scheme, it is

need to be determined to the effective sample size, t, for each selected graph. For

77



instance, the subsampling block size t has also greater effect on Ê, θ̂, ω̂, D̂.

In the huge package in R [139], StARS [66] was presented as a natural way to de-

termine regularization parameter with the aim of finding the optimal network so that

it can be applied with three estimation methods in higher dimensions. Despite boot-

strap, it offers a random sampling scheme without replacement for specifying the Λ

for high dimensional networks. Although this procedure provides a theoretically effi-

cient way to do so, it suffers from "overselection".

After giving the details of the several model selection criteria for high dimensional

context in this section (Section 2.1.4), we will continue with Section 3. In Section 3,

we intend to explain the novelty which we introduce under two modelling approaches:

GGM and LMARS. Firstly, we apply our data-driven model selection criteria (CAIC,

CAICF, ICOMP) on graphical lasso algorithm in order to determine the sparsity for

biological network structure. Although RIC[85], EBIC[51] and StARS[66] are pre-

ferred as high dimensional model selection criteria and applied with graphical lasso

algorithm to select optimal λ parameter when constructing Gaussian graphical mod-

els, we prefer to use our suggested K-L information based criteria for sparse network

structure, each criterion is combined with graphical lasso procedure and plays an

important role for detecting interactions between genes in the network structure. Sec-

ondly, it is aimed to use our (K-L) information based criteria at the backward step

of the model selection procedure of the LMARS models, although LMARS models

were originally introduced with its GCV[30] criterion so as to find an optimal model

[6, 7].
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CHAPTER 3

APPLICATIONS

3.1 Descriptions of Simulated Data

In this section, several simulation scenarios in high dimensional settings are gener-

ated so as to compare data-driven model selection criteria in terms of distinct accuracy

measures mentioned in Section in 3.1.3. Our comparisons are separated into two parts

according to modeling approaches: parametric and non-parametric.

Firstly, the parametric way of modeling the high dimensional networks, namely,

GGMs are constructed under two versatile architectural structure: random and scale-

free. Also, the estimation of Σ−1 are done by preferring the exact approach, namely,

graphical lasso [56] with its blockwise coordinate descent algorithm rather than an ap-

proximate option, or MB [95] to do so. The use of log-likelihood in a penalized fash-

ion makes glasso different than MB since the latter could not produce the maximum

likelihood estimator. Therefore, glasso offers a way to exploit the data-dependent

model selection criteria as a penalty parameter, including EBIC, AIC, BIC, CAIC,

CAICF and ICOMP, unlike MB approach. It is concluded that the latter is not appli-

cable for data-adaptive criteria whose based on likelihood [56]. Simulation scenarios

are accomplished with 50 observations under three dimensional settings, encompass-

ing 50, 100, 500, for each model selection criterion, including AIC, BIC, RIC EBIC,

StARS, CAIC, CAICF, and ICOMP.

Secondly, in the second part of this chapter, we aim to interfere the original model

selection procedure of the MARS by the way we replace the our suggestions with

GCV. So, the loop-based MARS algorithm is presented with both its original forward
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stage and the adjusted backward stage. It is done under two structural form of the

network: random and scale-free. Under these settings, the suggested data-adaptive

model selection criteria, namely, CAIC, CAICF and ICOMP [17, 20] are compared

with state-of-art model selection criteria: AIC [2], BIC [110] and GCV [32]. There

are distinct (n × p)-dimensional settings by including p 50, 100, 500 with 50 obser-

vations for each.

All GGM simulations are achieved via the undirected graphical estimation packages:

glasso (graphical lasso) [56] and huge [139] packages in the R programming language

3.5. On the other hand, LMARS [6, 9] simulations are done in R by its two specific

packages: earth package [96] in R, the MARS modelling stage, as well as huge pack-

age in the data generation process.

In particular, it is intended to show the novelity how we achieve to insert CAIC,

ICOMP, CAICF into both glasso and the adjusted loop-based MARS algorithm. Also,

the use of the suggested methods in high dimensional settings.

Our analyses are generally done under two distinct topologies: scale-free and random

networks [13] seen from Figure 3.1 and Figure 3.2. Although random networks have

been developed previously in the field of graph theory, the scale-free networks are the

most representative for the cellular networks among them [13]. Each network setup is

based on deep mathematical background. For instance, in the random networks, it is

assumed that each pair of nodes is connected with the probability p, leading to most

of the genes have the same number of links. On the other hand, scale-free networks

are ruled by the power-law degree distribution with probability P τ whose τ refers to

the degree component. This is the reason for obtaining not only a relatively small

number of nodes whose probability of being connected are higher, but also the most

nodes having the less probability than the other counterparts in the random networks.

Therefore, in the scale-free networks, interactions are much more concentrated on a

relatively small number of nodes known as hubs. Overall, scale-free network struc-

ture is coincided with our expectation from the systems biology [13], so our main

objective is to fit our novel algorithms into scale-free network with the help of the

probability theory behind it.
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Figure 3.1: The simulated gene networks show scale-free and random, respectively.

They are produced with 500 genes by CAICF.

Scale-free Random

Figure 3.2: The simulated gene networks show scale-free and random, respectively.

They are produced with 50 genes by RIC.

Scale-free Random

3.2 Description of Real Data

We apply our likelihood based model selection suggestions to six real datasets where

the first two are known as benchmark datasets. While the rest refer to the microarray
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data, each contains p = 11 genes with different number of observations, except that

the Dataset 6 including p = 9 genes.

I. We use two benchmark datasets: gene expression and cell-signaling data. The

former is based on Affymetrix GeneChip microarrays for gene expression lev-

els and contains p = 100 genes and n = 60 observations. On the other hand,

the second includes p = 11 proteins and n = 11672 cells. Our dataset resem-

bles a data set known as flow cytometry of Sachs et al. [3]. We use it to produce

an undirected network via GGM [56].

On the other hand, the four microarray datasets whose number of genes are

11 are described in the study of Bahçivancı et al. [10] in details. These are

mentioned as Data II, III and IV.

II. E-GEOD-9891-Transcription Profiling of 285 Human Ovarian Tumour Data:

The data consist a cohort of 285 patients whose epithelial ovarian, primary peri-

toneal, or fallopian tube cancer has been diagnosed between 1992 and 2006.

This data set is mainly extracted from the Australian Ovarian Cancer Study

with totally 285 patients. It is aimed to determine the novel subtypes of the

overian tumour in relation to both clinical and pathological features.

III. E-GEOD-63678-Expression Data from Vulvar, Cervical, Endometrial, Car-

cinoma Tissue:

The data include totally 35 samples where 18 cancer samples are from cervical,

endometrial, and vulvar, respectively, 5,7 and 6. The others whose 17 normal

samples from each type of these cancers are hybridized with the cancer sam-

ples on the Affymetrix HG133-A-2.0 platform with 12.000 distinct microarray

chips which are represented by different genes. It is aimed to detect the similar

features among these cancer types in the embryonic stem cells and the newly

discovered cell population of the squamocolumnar junction of the cervix, which

it hosts the early cancer’s events.

IV. E-GEOD-81248-Expression Data from HEY Cells:

This dataset includes 12 observations for 11 core genes, where each is extracted

from mRNA expression on Affymetrix U133 Plus 2 chips. In this dataset, two
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samples of distal naive cells whose local cells include both unstimulated (con-

trol) and stimulated (LPS or poly(I:C)) exomes so as to indicate whether the

exomes with TLR simulated cells have an ability to explain the TLR activation

in distal cells in vitro or not.

V. E-GEOD-48926-Expression data from C33-A cell line (cervix carcinoma

cell line)

In this dataset, there exist 9 genes out of 11 core genes where they are labeled

as MAP2K1, MAPK1, CEBPB, CTNNB1, TFAM, PDIA3, IMP3, ERBB2 and

CDH4. Also, the levels of gene expression are extracted and hybridized on the

Affymetrix platform. Here, C33-A cells are taken from three different cultures

where the cells are grown exponentially [3].

3.3 Accuracy Measures

In this section, we identify the performance measures in order to compare perfor-

mances of the model selection criteria that have mentioned in the Section 3.3. In par-

ticular, our focus is on the accuracy assessment whose well-known tools are known

as accuracy (acc), precision (pre), recall (rec) and F-measure (F). In a methodological

way, they are motivated by the accuracy of the binary classification. In this con-

text, a confusion matrix is used to evaluate such accuracy measures by classifying the

objects into different class. There are four distinct classes: true positive (TP), true

negative (TN), false positive (FP), false negative (FN). While TP refers the number of

correctly specified objects that have positive label, TN shows the number of correctly

classified as negative when they indicates the actually negative objects. On the other

hand, FP implies the number of misclassified objects that have labeled as wrongly

positive and FN demonstrates the number of misclassified objects that have negative

label. A confusion matrix is comprised of four classes and it is shown by Table 3.1.

Accuracy: The accuracy refers to the ratio of correctly labelled two objects to all

classified objects. It is written mathematically as
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Table 3.1: Confusion matrix

Observed Class

Positive Negative

Predicted Class
Positive TP FP

Negative FN TN

Accuracy =
TP + TN

TP + FP + TN + FN
. (148)

Precision: Precision serves as another accuracy measure and is ability to identify

the proportion of the true positive objects to the truly labeled two classes by formula

Precision =
TP

TP + FP
. (149)

Recall: Recall is the other accuracy tool and calculates the ratio of objects that are

correctly labeled as positive to both the truly detected as positive and falsely labeled

as negative. In terms of diagnostic testing, recall is named as sensitivity [75].

Recall =
TP

TP + FN
. (150)

F-measure: F-measure is used to evaluate accuracy in terms of the harmonic mean

of the precision and the recall. Despite its original formulae [104], in the field of

machine learning and data mining, it is aimed to measure balance between precision

and recall. It is stated as

F-measure = 2× Precision× Recall
Precision + Recall

. (151)
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3.4 Applications on GGM

3.4.1 GGM Simulations

In all GGM settings, glasso estimation procedures are applied under the following

procedure (Algorithm 1).

1. Generate networks whose sample size is 50 under three distinct dimensional

settings where the numbers of genes includes 50, 100 and 500 from the Gaus-

sian graphical model.

2. Apply an iterative approach to estimate the precision matrix where λ is chosen

by RIC as a selection criterion. When Θ = Σ−1, graphical lasso algorithm

offers a solution for this estimation procedure based on penalized log-likelihood

and is given by

maximize
Θ

[
log det Θ− Trace(SΘ)− λ||Θ||1

]
, (152)

where λ = λjk refers to λjk = λkj λjk =
√
λjλk offers different amounts of

regularization for each variable. However, we assume that we apply the same

amount of regularization for each Θ in a model. Let W be the estimate of Σ

where Θ= Σ−1 and S be the empirical covariance matrix. Here, the convex

optimization problem will be solved in a cyclical approach. The matrices cor-

responding withW , S and Θ can be presented by

W =
(
w1,1 ··· w1,p

wT1,p ··· Wp,p

)
, S =

( s1,1 ··· s1,p
sp,1 ··· Sp,p,

)
, Θ =

(
θ1,1 ··· θ1,p
ΘT1,p ··· θp,p

)
. (153)

The lasso function yields the score function as below.
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Θ−1− S − λSign(Θ) = 0. (154)

W − S − λSign(Θ) = 0. (155)

After replacing the derivative of log det(Θ), or Θ−1 with W, in this algorithm,

we attempts to exemplify the last column by taking Sign(β) = −Sign(Θ−p,p)

W−p,−pβ − s−p,p + λSign(β) = 0. (156)

So, the lasso problem can be rewritten as below

minimize
β

(y − Xβ)t(y − Xβ) + λ||β||1. (157)

From the linear least squares regression framework, estimates are evaluated

with its inner products as XtX and Xty and are represented as

XtXβ − Xty + λSign(β) = 0. (158)

The lasso problem is evolved into an optimization problem where it entails

three objectives lasso(W−p,−p, s−p,p, λ) to solve it. The lasso problem is effi-

ciently solved via the below algorithm, known as coordinate descent procedure.

(a) Initialize

W = S + λI. (159)

(b) Repeat until convergence

i.

W−p,−pβ − s−p,p + λsign(β) = 0, (160)
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β̂ ←
S
(
uj −

∑
k 6=j
Vkjβ̂k, λij

)
Vjj

(161)

S(x, t) = Sign(x)(|x| − t)+, (162)

where V = Wp,p and u = s−p,p. Let Σ−1 = W . Here, S is the soft-

treshold operator. β̂ is known for its sparsity. This algorithm works

in a fast fashion which requires just rp computations.

ii. Update w−p,p with W−p,−p β̂.

(c) Obtain

Θ̂p,p =
1

wp,p − wt−p,pβ̂
, and Θ−p,p = −W−1

−p,−pw
t
−p,pΘp,p. (163)

In this stage, the precision matrices for 20 different penalty parameters

which are estimated by RIC. In our case, we provide its corresponding

log-likelihood values along the regularization path.

3. Determine the optimal tuning parameter by using a criterion from a collection

of them encompassing AIC, BIC, CAIC, CAICF, ICOMP, StARS, EBIC and

RIC. In other words, they are employed to pick the best estimate along the

whole path.

4. Update Θ̂ with respect to selected tuning parameter in Step 2(c) in order to

obtain the matrix whose elements are 0 and 1’s.

For simulation studies the huge package in R is implemented to glasso algorithm

with scr=FALSE argument, indicating the lossless screening rule [94, 129], rather

than lossy [51, 56, 57]. The first rule creates a small block of the inverse covariance

matrix where Sij ≥ λ for i 6= j. By this way, the ith node or variable is separated

from the final estimator. It is motivated from the convex optimization. Therefore,

the graphical lasso problem in the previous algorithö is a reduced to a collection of

smaller graphical lasso problem, each is aimed to compute block diagonals with cor-

responding blocks as C1, C2, · · · , CK is that |Sij| ≥ λ for all i ∈ CK , j ∈ Cj, k 6= K.

To achieve such a lossless screening procedure, the related algorithm is demonstrated

by the following algorithm (Algorithm 2).
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The differences between the results arise from the model selection criteria where

the same inference method is applied as lasso procedure. In all settings, the lossless

[94, 129] screening rule or graphical lasso with blocks is employed as a default for

which preselecting the neighbourhood is not applied before the graph estimation.

1. Let A denote a (p × p)-dimensional matrix whose off-diagonal elements are

of the form A
′

ii = 1|S′ii|>λ
and whose diagonal elements equal one.

2. Identify the K ≥ 1 connected components of the graph for which A is the

adjacency matrix. For each k = 1, · · · , K, let Ck denote the set of indices of

the features in the kth connected component.

3. Without loss of generality, assume that the features are ordered such that if i

∈ Ck, i
′ ∈ Ck′ and k < k′ then i < i′.

4. The solution of the graphical lasso problem (1.2) takes the following form

Θ =



Θ1 0 · · · 0

0 Θ2 · · · ·
· · · · · ·
· · · · · ·
· · · · · 0

0 · · · 0 ΘK


,

where Θk solves the graphical lasso problem applied only to the square sym-

metric submatrix of S consisting of the features whose indices are in Ck.

Note that if Ck = i, the ith node is completely unconnected from all other

nodes then Θk is a scalar equal to 1/(Sii + λ).

In addition to algorithms we use in our simulation studies, the flowchart representa-

tion of the graph estimation from GGM model construction to model selection stage

is given in Figure 3.3.

Although StARS is driven to achieve the consistency of the regularization path,

RIC works on randomly rotated data to select the minimum regularization without
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Table 3.2: Comparisons of model selection criteria under 1000 Monte Carlo runs

under different topologies and dimensional settings (p = 50, 100, 500) with respect

to accuracy measures.

Networks Scale-free Random

Measures Criterion 50 100 500 50 100 500

F

AIC

0.493 0.461 0.360 0.494 0.427 0.310

pre 0.631 0.613 0.522 0.689 0.619 0.510

rec 0.564 0.503 0.424 0.523 0.498 0.399

acc 0.917 0.954 0.961 0.912 0.936 0.979

F

BIC

0.460 0.402 0.295 0.499 0.414 0.309

pre 0.601 0.548 0.440 0.697 0.605 0.492

rec 0.542 0.486 0.393 0.533 0.495 0.403

acc 0.920 0.935 0.973 0.915 0.934 0.976

F

RIC

0.486 0.340 0.297 0.498 0.424 0.304

pre 0.629 0.538 0.441 0.694 0.619 0.494

rec 0.560 0.499 0.392 0.528 0.495 0.398

acc 0.915 0.932 0.975 0.915 0.936 0.976

F

EBIC

0.484 0.393 0.296 0.498 0.428 0.599

pre 0.631 0.537 0.449 0.689 0.620 0.650

rec 0.547 0.492 0.388 0.533 0.494 0.691

acc 0.916 0.930 0.975 0.914 0.937 0.978

F

StARS

0.491 0.398 0.291 0.501 0.424 0.310

pre 0.635 0.547 0.434 0.685 0.607 0.507

rec 0.554 0.485 0.388 0.539 0.507 0.402

acc 0.917 0.933 0.974 0.912 0.934 0.976

F

CAIC

0.481 0.617 0.696 0.485 0.417 0.311

pre 0.616 0.788 0.906 0.681 0.612 0.499

rec 0.561 0.615 0.629 0.519 0.486 0.407

acc 0.910 0.953 0.968 0.911 0.934 0.976

F

CAICF

0.292 0.165 0.065 0.383 0.245 0.123

pre 0.179 0.093 0.035 0.251 0.146 0.068

rec 0.796 0.711 0.491 0.814 0.777 0.628

acc 0.770 0.784 0.914 0.793 0.810 0.929

F

ICOMP

0.507 0.505 0.525 0.408 0.403 0.398

pre 0.340 0.378 0.578 0.256 0.252 0.248

rec 1.000 1.000 0.999 1.000 1.000 1.000

acc 0.910 0.934 1.000 0.941 0.970 0.994
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Data GGM model construction Lossless Screening Model Selection

Figure 3.3: Flowchart simply represents the GGM graph estimation procedure from

model construction to model selection.

giving a guarantee for consistency. StARS and RIC suffer from overselection and un-

derselection, respectively [139]. While the dimension increases from 50 to 500, the

performance of the both procedures decrease in terms of F-measure, precision and re-

call. This is also valid for EBIC. The state of art model selection procedures, namely,

AIC and BIC also are harmed by increasing the dimension in terms of the recall and

precision under both topologies. The results are coincided with our expectation where

the both is not designed to work efficiently under high-dimensional settings [25]. On

the other hand, CAIC and ICOMP achieve to increase their F-measure, precision

and recall as the dimension increases under scale-free network structure, except for

ICOMP in the second highest dimension.

Under all dimensional settings, ICOMP provides the best results with respect to the

recall under both structures. In terms of accuracy measures, it performs efficiently

than its other counterparts in higher dimensions. As the dimension increases, the

performance of ICOMP is also raised according to accuracy for all settings, this is

valid for also the other types of network structures such as hubs [25]. In particular,

we obtain the highest accuracy measure among all counterparts under both network

settings. Otherwise, CAIC scale-free networks achieve the best results in terms of the

precision measures under the scale-free topology.

3.4.2 GGM Applications on Real Data

The first dataset represents the high dimensional network where p >> n. In this

sense, ICOMP gives similar results that are obtained with the high-dimensional model

selection criteria, namely, StARS, RIC and EBIC, based on all performance measures

that we compare. This is valid for also CAIC. However, ICOMP outperforms them in

terms of detecting the interactions of the original structure.
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True Network RIC ICOMP

Figure 3.4: From left the right: The true gene expression network, RIC and ICOMP

representations. RIC is not able to capture the interactions in the network. ICOMP

achieves to detect some interactions in the gene network.

Particularly for precision, it is important to note that all high dimensional criteria ob-

tain one, like ICOMP and CAIC. On the other hand, AIC and BIC could not achieve

this.

In terms of accuracy, our three suggestions including CAIC, CAICF and ICOMP,

and the criteria produced for high dimensional networks outperform AIC and BIC for

two benchmark datasets. Also, they increase their power when we apply them on high

dimensional dataset i.e., gene expression, unlike the state-of-art selection techniques.

On the other hand, cell signal dataset do not represent the high dimensional network

where p >> n. Therefore, in terms of F-measure and precision, AIC and BIC give

similar results that lower than the rest obtain.

Our real datasets with 11 genes represent a complete graph where each gene is con-

nected to each other. Also, these datasets are known as dense network and do not

reflect the high dimensional network structure. So, we do not expect to obtain op-

timal results with our suggested criteria as well as RIC, EBIC and StARS. For all

complete graphs, there exists no false positive value. So, we get the precision value

equals 1 for all criteria which we compare.
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Table 3.3: Comparisons of model selection criteria for six real data sets with respect

to accuracy measures.

Datasets

Measures Criterion Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

F

AIC

0.355 0.564 0.167 0.754 0.593 0.880

pre 0.758 0.758 1.000 1.000 1.000 1.000

rec 0.555 0.555 0.091 0.605 0.422 0.785

acc 0.769 0.769 0.091 0.605 0.422 0.785

F

BIC

0.355 0.564 0.740 0.754 0.593 0.194

pre 0.758 0.758 1.000 1.000 1.000 1.000

rec 0.555 0.555 0.587 0.605 0.422 0.107

acc 0.769 0.769 0.587 0.605 0.422 0.107

F

RIC

0.393 0.690 0.297 0.498 0.424 0.304

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.526 0.244 0.392 0.528 0.495 0.398

acc 0.991 0.717 0.392 0.528 0.495 0.398

F

EBIC

0.393 0.690 0.167 0.198 0.593 0.167

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.526 0.244 0.091 0.111 0.425 0.091

acc 0.991 0.717 0.091 0.111 0.425 0.091

F

StARS

0.393 0.690 0.167 0.198 0.194 0.290

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.526 0.244 0.091 0.111 0.107 0.174

acc 0.991 0.717 0.091 0.111 0.107 0.174

F

CAIC

0.393 0.690 0.625 0.198 0.393 0.880

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.526 0.244 0.455 0.111 0.719 0.785

acc 0.991 0.717 0.455 0.111 0.719 0.785

F

CAICF

0.343 0.641 0.740 0.773 0.167 0.880

pre 0.208 0.758 1.000 1.000 1.000 1.000

rec 0.968 0.555 0.587 0.630 0.09 0.785

acc 0.929 0.769 0.587 0.630 0.09 0.785

F

ICOMP

0.393 0.690 0.593 0.198 0.167 0.296

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.526 0.244 0.423 0.111 0.091 0.174

acc 0.991 0.717 0.423 0.111 0.091 0.174

92



True Network RIC ICOMP

Figure 3.5: From left the right: The true full graph with 11 genes, RIC and ICOMP

representations. RIC is not able to capture any interactions in the network. ICOMP

achieves to detect some interactions in the gene network.

Also, for all complete graphs, we do not expect to see the true negative value so

that the recall and accuracy measures are the same for each criterion.

For datasets including 3, 4 and 6, CAICF achieves to get the best results with re-

spect to recall and accuracy. While it is coincided with BIC for Data 3, CAIC and

AIC give the same results in terms of F-measure, recall and accuracy for Data 6 ,like

CAICF. For Data 5, AIC and BIC get the same results which refer to the best in terms

of recall and accuracy. Similar to RIC, EBIC and StARS, the performance of the

ICOMP decreases somehow for the complete data sets where they do not represent

high dimensional sparse network structure. However, it can be able to capture some

interactions in the true structure.

3.5 Applications on LMARS

Like in the GGM simulations, to compare the accuracy measures of versatile model

selection procedures in order to represent the gene network, LMARS scheme is im-

plemented for each gene in a two-stage iterative fashion that including the forward

and backward. In our simulation studies, we ameliorate the backward steps of that,
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keeping the forward as the same as in the original MARS algorithm. In our LMARS

algorithm, the least squares which are suggested in original work is replaced with

our proposed model selection procedures including CAIC, CAICF and ICOMP in the

backward step. Also, we implement the state-of-art model selection criteria in order

to compete the accuracy measures.

Loop based MARS

Under MARS setting, it is required to make adjustments on the original MARS pro-

cedure to explain the relations for each gene in a graphical network. In this sense, we

modify the original method by LMARS is seen as a nonparametric analogous to the

lasso regression [9]. In our LMARS analysis, we aim to construct a MARS regression

model by taking only the main effects of the genes for each node against the rest in

the network.

To illustrate the LMARS model construction, we design a toy set whose graphical

network not only is represented by Figure 2.1, but also its adjancecy matrix and lasso

equations are shown in Equation (164), respectively. In our design, p1 is modeled

against the others (p2, p3). Correspondingly, when p1 represents the response in the

regression, the others stand for explanatory variables. Here, p1 can be explained by

solely taking the effect of p2, which means that p1 is related to p2. Thus, this relation

is expressed in the first row of A.

A3,3 =


1 1 0

1 1 1

0 1 1

 p1 = 1.2 + 3p2

p2 = p1 + 2.7p3

p3 = 4.8p2

(164)

In our LMARS analysis, it is aimed to reveal a gene network representation and the

LMARS procedure where we interfere the model selection is shown in Figure 2.1.
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3.5.1 LMARS Simulations

In the high dimensional biological network context, we generate our random vari-

ables, i.e., genes in the network via the huge package with R under the multivariate

normality assumption. Under this setting, we generate three and two distinct sce-

narios in terms of dimensions and topology, respectively. When the dimension of

gene networks changes from 50 to 500, there exits two distinct topologies: scale-free

and random. Then, we build our Loop-based MARS models so as to modify origi-

nal MARS strategy to our study. In this sense, we construct separate MARS models

for each gene in the network in order to decide the relations between the rest of the

genes, only taking its main effects. Below both forward and backward strategies are

presented with respect to each MARS model associated with taking one gene as a

response in model. Here, the earth package in R is used to employ the MARS strat-

egy where all alternative criteria which we use are inserted by hand in its elimination

procedure.

The corresponding MARS algorithm can be written in terms of its pseudocodes which

are represented in the following procedure (Algorithm 3).

In the forward algorithm, we construct a model with respect to LOF. At the step 6, 10

and 11 in the Algorithm 3, step functions are used as truncated power basis functions

(q = 1). In the MARS strategy, Line 6 represents the parent basis function which

includes a subset of the complete tensor product basis functions with knots whose

first derivatives are continuous at different data values. Here, this algorithm yields

Mmaxq = 1.

Under the MARS setting, we aim to interfere the model selection procedure of MARS

where we modify its backward algorithm by replacing its original criteria with CAIC,

CAICF, ICOMP as well as AIC and BIC in order to determine the basis functions and

the corresponding knot values in the final model.
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1: procedure Construct Full Modelw.r.t. GCV

2: B1(x)← 1;M ← 2 M > Mmax;LOF*←∞
3: for m ∈ (1 : M − 1) to : do

4: for v /∈ {v(k,m)|1 ≤ k ≤ Km} to : do

5: for t ∈ {xvj|Bm(xj) > 0} to : do

6: g ←
∑M−1

i=1 aiBi(x) + aMBm(x)[+(xv − t)]+ + aM+1Bm(x)[−(xv −
t)]+;

7: lof ← minimizea1,a2,··· ,aM+1
LOF(g)

8: if lof < lof∗ then,

9: lof∗ ← lof; m∗ ← m; v∗ ← v; t∗ ← t;

10: Bm(x)← Bm*(x)[+(xv∗ − t∗)]+
11: BM+1(x)← Bm∗(x)[−(xv∗ − t∗)]
12: M ←M + 2

Figure 3.6: Algorithm 3 shows the forward step of MARS.

Therefore, in the backward strategy, we delete our basis functions according to criterion

that we prefer rather than using GCV. Also, it is important to mention that removing

basis linear functions does not cause discontinuity in the predictor space since the

subregions overlap.

In Algorithm 4, V (m) = v(k,m)Kmax1 represents the variable set where the mth ba-

sis function is presented by Bm. Totally, in the deletion algorithm, we totally get

Mmax − 1 models by iteratively lowering its number of basis functions one by one in

the sequence J∗. Then, we determine the best model with its proper basis functions

in the prespecified sequence.

In accordance with the MARS procedure, its process can be easily seen from the

flowchart representation in Figure 3.8.

By following the steps in the Figure 3.8 for each selection criterion, we conduct our
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1: procedure Choose BF’sw.r.t. Model Selection Criteria

2: J∗ = 1, 2, · · · ,Mmaximize; K∗ ← J∗

3: Criterion*← minimize{aj |j∈J∗}Criterion(
∑

j∈j∗ ajBj(x))

4: for M=Mmax to 2 to do b←∞; L← K∗;

5: for to m=2 to M do K ← L− {m}
6: Criterion← minimize{ak|k∈K}Criterion(

∑
k∈K∗ akBk(x))

7: if Criterion < b then b← Criterion; K∗ ← K

8: if Criterion < Criterion* then Criterion← Criterion*; J∗ ← K

Figure 3.7: Algorithm 4 shows the backward step of MARS.

simulation study under the MARS setting. We aim to compare our model selection

criteria under two topologies: scale-free and random as the dimension of the gene

networks increased from 50 to 500. Thus, we obtain Table 3.4.

For Table 3.4, we obtain the precision values as one for each criterion under three

dimensions and two topologies. This indicates that MARS is succeed to not detect

falsely positive interaction between the genes under all scenarios.

In generally, when the dimension increases, F-measure decreases or remain the same

under each topology. This is valid for also recall values. However, it is important to

mention that CAICF achieves to not only increase its F-measure but also to obtain

the best F-measure under scale-free structure when the dimension changes from 50

to 100. Like CAICF under scale-free, BIC and ICOMP increases their F-measures

in the highest dimension under the random topology, as well as obtaining the best F

values in this setup.

In terms of accuracy, each criterion tends to raise their accuracy measures although

the dimension increases. This result indicates that the detection of the FN values is

lowered when comparing either TP or TN values when the dimension increases.

Under scale-free topology for the both lowest and highest dimensional settings, CAIC

get the best values with respect to accuracy, on the other hand, for the moderate di-

mensional setting, ICOMP is the best. Also, under this topology, CAICF gets the
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Model Selection Criteria

Choose BFs

Node Selection and Model building

Final MARS model

Figure 3.8: Adaptive LMARS model selection procedure: We use the alternative

model selection criteria instead of GCV in the backward step in order to determine

the final model.

98



Table 3.4: Comparisons of model selection criteria under 1000 Monte Carlo runs un-

der different topologies and dimensional settings with respect to accuracy measures.

Networks Scale-Free Random

Measures Criterion 50 100 500 50 100 500

F

AIC

0.399 0.386 0.389 0.402 0.404 0.395

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.253 0.244 0.246 0.256 0.254 0.246

acc 0.931 0.962 0.993 0.940 0.970 0.994

F

BIC

0.400 0.390 0.380 0.410 0.390 0.411

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.253 0.247 0.242 0.247 0.253 0.256

acc 0.932 0.964 0.990 0.932 0.964 0.994

F

GCV

0.399 0.393 0.393 0.414 0.397 0.397

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.253 0.248 0.244 0.262 0.248 0.248

acc 0.931 0.964 0.992 0.942 0.969 0.994

F

CAIC

0.402 0.393 0.386 0.416 0.407 0.409

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.255 0.247 0.243 0.264 0.257 0.257

acc 0.932 0.964 0.992 0.943 0.971 0.994

F

CAICF

0.399 0.401 0.380 0.416 0.411 0.399

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.253 0.253 0.240 0.264 0.260 0.250

acc 0.930 0.967 0.993 0.943 0.941 0.994

F

ICOMP

0.399 0.399 0.388 0.403 0.402 0.404

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.253 0.249 0.245 0.253 0.252 0.253

acc 0.931 0.970 0.992 0.940 0.970 0.994

99



compatible results with the CAIC and ICOMP. Under random network setting, CAIC

has the best accuracy measures for the first two dimensions, but for the highest dimen-

sion, AIC, GCV, ICOMP, CAICF and BIC reach the same highest accuracy value.

3.5.2 LMARS Applications on Real Data

In our application studies, we use the same datasets as we apply in the GGM studies.

Therefore, we have three datasets that represent the complete graph of the eleven core

genes where each gene is connected to each other with a set of numbers: 12, 35 and

287. Also, there exists another complete graph that contains nine genes with three

observations.

From Table 3.5, we reach the similar results with that of the simulation studies in

terms of precision, so we get the precision values as one. Although the datasets in-

cluding 3 to 6 contains only the fully connected genes, the first two datasets contain

also the unconnected genes to the some of the nodes in the network. Therefore, ob-

taining the precision values as one still indicates that under the MARS setting, criteria

achieve to not connect the genes falsely (FN=0).

On the other hand, for fully connected gene networks (Data 3, Data 4, Data 5 and

Data 6), recall and accuracy values are the same for each criterion since the TN val-

ues are also the zero for such dense networks (FP=0).

Particularly for Data 1, each criterion under the LMARS setting succeeds to capture

both positive and negative relations correctly the most of the time since they achieve

to yield the higher results in terms of F and accuracy measures, simultaneously.

In terms of performance measures that we use, we do not get any significant dif-

ference among criteria. Thus, we get the same performance measures in terms of F,

precision, recall and accuracy measures for each model selection criterion which we

compare.
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Table 3.5: Comparisons of model selection criteria under 1000 Monte Carlo runs un-

der different topologies and dimensional settings with respect to accuracy measures.

Datasets

Measures Criterion Data 1 Data 2 Data 3 Data 4 Data 5 Data 6

F

AIC

0.713 0.407 0.091 0.091 0.091 0.091

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.557 0.256 0.167 0.167 0.167 0.167

acc 0.992 0.734 0.167 0.167 0.167 0.167

F

BIC

0.713 0.407 0.091 0.091 0.091 0.091

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.557 0.256 0.167 0.167 0.167 0.167

acc 0.992 0.734 0.167 0.167 0.167 0.167

F

GCV

0.713 0.407 0.091 0.091 0.091 0.091

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.557 0.256 0.167 0.167 0.167 0.167

acc 0.992 0.734 0.167 0.167 0.167 0.167

F

CAIC

0.713 0.407 0.091 0.091 0.091 0.091

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.557 0.256 0.167 0.167 0.167 0.167

acc 0.992 0.734 0.167 0.167 0.167 0.167

F

CAICF

0.713 0.407 0.091 0.091 0.091 0.091

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.557 0.256 0.167 0.167 0.167 0.167

acc 0.992 0.734 0.167 0.167 0.167 0.167

F

ICOMP

0.713 0.407 0.091 0.091 0.091 0.091

pre 1.000 1.000 1.000 1.000 1.000 1.000

rec 0.557 0.256 0.167 0.167 0.167 0.167

acc 0.992 0.734 0.167 0.167 0.167 0.167
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From the statistical modeling perspective, all complete graph structures are associ-

ated with the overfitted model where it must include all variables or genes. This is the

fact that AIC is known for its susceptibility to choose the overfitted model [17, 110].

Therefore, it is expected that AIC tends to select the full model encompassing all

variables. Particularly for the high dimensional biological networks, we expect to

find the full model or the most complex model among many alternatives by detect-

ing all interactions in the network. However, AIC fails in terms of determining all

connections among genes. In our complete gene set applications, all model selection

criteria choose the same MARS model with defining same connections in the network

structure.

As the sample size increases, all criteria attempt to find more connections among

genes in the network. For example, specifically, for nine complete gene structure,

each establishes the model by taking only the intercept. However, all criteria de-

tect the relations among three genes in the network where it actually includes eleven

connected genes with twelve observations for each gene. On the other hand, for the

datasets including the same genes with 35 and 287 observations, they achieve to de-

tect relations among five genes in the network.

Under the MARS setting, we are inspired from the paper that has been published

by Kartal-Koc and Bozdogan (2015) [78]. In this study, they interfere the model se-

lection procedure of the original MARS in such a way that ICOMP is replaced with

GCV. In this sense, they compare them by constructing both linear and nonlinear

models. Also, they concluded that ICOMP outperforms GCV, so it can be applicable

on more complex models [78].

Under the LMARS setting, we examine the models that are chosen by each crite-

rion which we compare with respect to complexity for the MARS model [59]. This

gives a way to determine the specific choice for the variables. In this sense, we an-

alyze the MARS equations with their basis linear functions by following [78].The

corresponding MARS models are presented for each model selection procedure.
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Table 3.6: Data 3 is composed of 11 genes and 287 observations.

MODEL:

y=7.92+0.14BF1+0.61BF2-0.07BF3-0.02BF4+0.04BF5+0.22BF6

+0.53BF7+0.01BF8

where BF1=max(0,9.15254-CEBPB), BF2=max(0,CEBPB-

9.15254), BF3=max(0,11.2887-CTNNB1), BF4=max(0,CTNNB1-

11.2887), BF5=max(0,8.3396-TFAM), BF6=max(0,TFAM-8.3396),

BF7=max(0,3.98463-PDIA3), BF8=max(0,PDIA3-3.98463)

Important Variables: PDIA3, TFAM, CEBPB, CTNNB1

GCV: 0.12 RSS: 28.8 RSq: 0.09.

Here, RSq = 1 − RSS/TSS is used for measuring performance on data as the co-

efficient of determination where RSS =
∑n

i=1(y− ŷ)2 is the residual sum-of-squares

and TSS =
∑n

i=1(y − ȳ)2 is the total sum-of-squares [91].

When we have the fully interconnected gene set with 287 observations, we obtain

the same MARS model by using each criteria. In Table 3.6, y represents the "MBD3".

In the sense of modeling fully connected genes, we conclude that an increase in the

number of observations help to detect more relations and this is valid for each crite-

rion. When we have Data 5, all model selection criteria achieve to detect the model

including "PDIA3" and "TFAM" as basis linear functions. In Table 3.8, the response

value is represented by "MBD3".

The other datasets which we use contain one hundred genes and eleven genes, cor-

respondingly with 60 and 16072 observations for each gene in the network. Not all

genes are connected to each other in these two sets. Specifically, the first dataset rep-
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Table 3.7: Data 4 is composed of 11 genes and 35 observations.

MODEL:

y=7.27+0.56MAP2K1-0.24MAP2K1+0.15TP53+0.26TP53-

0.75IMP3+0.03IMP3+0.76CHD4+0.86CHD4

where BF1=max(0,9.1186-MAP2K1, BF2=max(0,MAP2K1-9.1186),

BF3=max(0,8.4999-TP53), BF4=max(0,TP53-8.4999), BF5=max(0,5.93102-

IMP3), BF6=max(0,IMP3-5.93102), BF7=max(0,9.44477-CHD4),

BF8=max(0,CHD4-9.44477)

Important Variables: MAP2K1,TP53,IMP3,CHD4

GCV: 0.18 RSS: 1.66 RSq: 0.80

Table 3.8: Data 5 is composed of 11 genes and 12 observations.

MODEL:

y=4.78+1.34TFAM+0.02TFAM-0.25PDIA3+1.02PDIA3

where BF1=max(0,10.23-TFAM),BF2=max(0,TFAM-10.23),BF3=max(0,

8.009-PDIA3),BF4=max(0,PDIA3-8.009)

Important Variables: PDIA3, TFAM

GCV: 1.04 RSS: 0.77 RSq: 0.96
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resents the sparse graph.

Stone [114] mentions the similarity between AIC and CV that when the sample size

increases, minimizing the AIC is equivalent to minimizing CV for any model. So,

they yield the same complex model, like in AIC, when the number of observations

are increased. Also, this can be described as the overfitting problem, as the model

become more flexible, we may face with such a problem. In the MARS setting, as

MARS refers a flexible modelling technique, AIC and GCV result in the same over-

fitted model in the purpose of the model selection [96].

On the other hand, ICOMP has tendency to choose much simpler and interpretable

models when comparing GCV in the high dimensional context. Kartal-Koc and Boz-

dogan [78] discuss the differences between GCV and ICOMP in the sense that when

GCV is prone to choose complex models, ICOMP selects the simpler one [116].

In the application of the cell signal dataset, we obtain similar results in terms of the

gene network structure. While AIC constructs a MARS model including seven genes

and GGV chooses a model with including 5 genes, ICOMP and BIC build the one

which uses important genes in the network structure. With respect to the response,

each procedure takes the "V4" as a response for its corresponding model.

In Table 3.9 and 3.10, the selected MARS equations are written as with its corre-

sponding true network structure. In the Cell Signal Network, although each gene is

connected to at least one gene in the cell, V3, V8 and V11 play the greater role in the

mechanism of this cell.

In Table 3.9, the selected MARS equations are written with respect to its correspond-

ing true network structure in Figure 3.9.

Aiming to determine the important genes in the high-dimensional network structure,

ICOMP tends to capture the only crucial ones. On the other hand, AIC obtains the

complicated model that makes hard to interpret the cell mechanism. Like AIC, GCV

also finds a next complicated model to explain the system. AIC applies the lowest
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Table 3.9: Data 2 (i.e., Cell Signal Dataset) is composed of 11 genes and 11672

observations.

MARS Model with AIC

y=35.01-0.02V2-0.62V2+0.401V3+2.095V3+2.13V5+2.15V5-

2.12V6+1.085V6-1.18V7+0.275V7-0.04V9+0.33V9+1.05V11-1.34V11

where BF1=max(0,V2-257), BF2=max(0,257-V2), BF3=max(0,V3-

963), BF4=max(0,1963-V3), BF5=max(0,V5-75), BF6=max(0,313-

V5), BF7=max(0,V6-313), BF8=max(0,313-V6), BF9=max(0,91.4-V7),

BF10=max(0,V7-91.4), BF11=max(0,445-V9), BF12=max(0,V9-445),

BF13=max(0,V11-256), BF14=max(0,256-V11)

Important Variables: V2, V3, V5, V6, V7, V9, V11

GCV: 10124.69 RSS: 117861763 RSq: 0.672

MARS Model with GCV and CAIC:

y=58.31+0.43V2-0.38V2+1.93V8+2.074V8-1.12V5+0.95V5-

2.12V6+1.085V6-0.86V7+0.638V7

where BF1=max(0,V2-73.0), BF2=max(0,73.0-V2), BF3=max(0,V8-

121), BF4=max(0,121-V8), BF5=max(0,V5-189), BF6=max(0,189-

V5), BF7=max(0,V6-204), BF8=max(0,204-V6), BF9=max(0,68.3-V7),

BF10=max(0,V7-68.3)

Important Variables: V2, V5, V6, V7, V8

GCV: 989.90 RSS: 109001050 RSq: 0.978

MARS model with BIC, ICOMP and CAICF

y=59.02-3.75V3+2.045V3+1.93V8-2.95V8+2.51V11+0.98V11

where BF1=max(0,20.2-V8), BF2=max(0,V8-20.2), BF3=max(0,87.5-V3),

BF4=max(0,V3-87.5), BF5=max(0,V11-313), BF6=max(0,313-V11)

Important Variables: V3, V8, V11

GCV: 936.8001 RSS: 109240280 RSq: 0.984
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Cell Signal Network

Figure 3.9: Representation of the true network for cell signalling network.

penalty when comparing the other criteria we use, it has a tendency to pick a model

with including many terms. This result is clarified by the use of RSS value we men-

tioned in Section3, since any inclusion reduces to RSS value for a model, even we

add the insignificant terms. On the other hand, although GCV is based on RRS in

a more penalized version, it suffers from choosing the unnecessary variables to the

MARS model, also. Thereby, this result is also verified by the conclusion that the

Kartal-Koc and Bozdoğan [78] reach when the numbers are grater than one hundred,

ICOMP and BIC choose the simplest with using the true variables.

Also, we use Gene Expression dataset to compare our model selection criteria in

terms of the MARS equations. On the other hand, the associated true network is rep-

resented in Table 3.8. Here, under the MARS setting, we aim to construct MARS

models for this network.

In terms of the MARS equations corresponding with this dataset, GCV and AIC act

similarly by the way they choose the overselected model where they include more

BF’s than that of ICOMP and BIC. Thus, as we mentioned beforehand, we can con-

clude that this is coincided with our expectation regarding the statistical evaluation

theory [71, 116, 141]. Also, it is verified by the systems biology [107].
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Table 3.10: (Data 1) Gene Expression Data set is composed of 100 genes and 60

observations.

MODEL with AIC, GCV and CAIC:

y= 9.308-0.510Gene15-1.577Gene15-0.148Gene16+ 0.232Gene16 +

0.199Gene32 + 0.788Gene32 - 0.704Gene43 - 0.601Gene43 - 0.623Gene34

-0.846Gene34 - 0.511Gene37 - 0.234Gene37 - 0.336Gene39 - 0.747Gene39

+0.989Gene44 + 0.159Gene44 + 0.378Gene48+ 0.22Gene48 + 0.229Gene61

+ 2.251Gene61

where BF1=max(0,8.578-Gene15), BF2=max(0,Gene15-

8.578),BF3=max(0,Gene38.899-Gene16), BF4=max(0,Gene16-

8.899), BF5=max(0,9.020-Gene32), BF6=max(0,Gene32-9.020),

BF7=max(0,8.873-Gene43), BF8=max(0,Gene43-8.873), BF9=max(0,8.486-

Gene34), BF10=max(0,Gene34-8.486), BF11=max(0,7.683-

Gene37), BF12=max(0,Gene37-7.683), BF13=max(0,9.225-

Gene39), BF14=max(0,Gene39-9.225), BF15=max(0,7.318-

Gene44), BF16=max(0,Gene44-7.318), BF17=max(0,8.798-

Gene48), BF18=max(0,Gene48-8.798), BF19=max(0,9.034-Gene61),

BF20=max(0,Gene61-9.034)

Important Variables: Gene15, Gene16, Gene32, Gene34, Gene37, Gene39,

Gene43, Gene44, Gene48, Gene61

GCV: 3.36 RSS: 18.45 RSq: 0.672

MARS model with ICOMP, BIC and CAICF

y= 11.38- 1.51Gene44+ 1.77Gene44- 0.18Gene74+ 1.433Gene74+

3.21Gene78+ 2.341Gene78+0.04Gene43-1.23Gene43

where BF1=max(0,9.089-Gene44), BF2=max(0,Gene44-9.089), BF3=max(0,

7.049-Gene74), BF4=max(0,Gene74-7.049), BF5=max(0,14.57-Gene78),

BF6=max(0,Gene78-14.57), BF7=max(0,10.09-Gene43), BF8=max(0,

Gene43-10.09)

Important Variables: Gene43, Gene44, Gene74, Gene78 GCV: 2.96

RSS: 10.45 RSq: 0.602
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Gene Expression Network

Figure 3.10: Representation of the true network for the gene expression network.

Among our data, the sole Gene Expression Data set yields a sparse network whose

relatively small number of genes is connected to each other in the high dimensional

setting where the number of genes exceeds the number of number of observations

(p > n).

In the representation of the true Gene Expression network, ICOMP detects the impor-

tant variables in the description network. Here, our two proposed methods, CAICF

and ICOMP result in more simpler models than that of AIC and GCV. They are

achieved via taking only the important effects, or not including the genes that have

moderate effects on the biological mechanism. Therefore, this result is more coin-

cided with our expectation from a sparse biological network structure. In terms of

BIC and CAIC, the first tends to select simpler models like ICOMP. On the other

hand, the latter acts as AIC in this setup. Also, this result is justified by the statisti-

cal theory of the model evaluation. In the statistical model selection context, BIC is

attributed as the consistent model selection procedure, but, this is not valid for AIC

[97]. Thus, BIC produce more simpler models than that of AIC because of the fact

that BIC uses a heavier penalty than AIC applies [112]. Also, Shao [112] mentions

that CV does not perform a consistent model selection procedure and employs poorly
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when dealing with high dimensional data. [95].
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CHAPTER 4

CONCLUSION

In this study, we focus on the model selection procedure in higher dimensions which

plays a crucial role when determining the final structure of the gene network. In this

thesis, it is expected to capture the true undirected interactions in the network by us-

ing two different statistical modeling techniques: GGM and LMARS.

In the first part of the analyses, the background information is reviewed and clas-

sified as three main parts: while the first two include modelling approaches, namely,

GGM and MARS and one is related to the model selection procedures form the main

part of this thesis study.

Hereby, initially, GGM is reviewed as a parametric way to model a high dimen-

sional network where it requires some important assumptions which are conditional

independence and normality. Then, its several inference methods are separated into

mainly two parts: penalized likelihood methods and regression methods. In this the-

sis, we focus on graphical lasso (glasso) algorithm which is designed to penalize the

covariance matrix, in turn, coefficients in the model by using the assumption of con-

ditional independence. In general, the underlying method belongs to the penalized

likelihood method, so it works with a penalty parameter to correctly determine the

sparsity in the network. Also, it achieves to define the important genes in the net-

work in such a way that it can be the effects of the some genes to zero in the network

structure. In this sense, its other counterparts under penalized likelihood methods

are reviewed, so we encompass ridge and lasso approaches as well as its derivatives

so-called SCAD, AL, Elastic net as alternative inference methods to determine the

sparsity of the network.
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In the second part of the background information, we present MARS as a nonpara-

metric flexible way to model a high dimensional network. In this section, the use of

MARS as a nonparamteric technique in higher dimensions is justified by explaining

its potential capabilities for dealing with nonlinearities and collinearities that arises

from higher dimensions. Then, its original model selection procedure, so-called GCV,

is introduced. Otherwise, the derivatives of MARS known as conic MARS, robust

CMARS, bootstrapping MARS and BCMARS are reviewed. Among many alterna-

tives of the MARS models, LMARS is used since it is designed to construct separate

gene models for each by taking the only main effects of the genes.

Finally, the model selection procedures are examined. From the generic statistical

point of view, the RSS value is seen as a common way to determine the final model

and the philosophy behind it is given. Also, the information theory provides another

statistical way to pick up the best approximated model to the true distribution by using

the K-L divergence. Since the data-dependent model selection procedures are ruled

by this theory, its philosophy behind the K-L divergence is mentioned. Furthermore,

the data-dependent model selection procedures are introduced in the methodology

part. Here, the selected methods are based on likelihood-based approach, except

StARS. To compete them, we have the state-of-art model selection criteria known as

AIC and BIC. When both AIC and BIC are powerful under lower dimensions, they

lose their power as the dimension increases. To tackle high dimensional problems, as

given in the same part, RIC, EBIC and StARS have been proposed. While the first

two (RIC and EBIC) stand for information based approaches, StARS conducts a sub-

sampling procedure. So, it does not make use of the good asysmptotical properties of

the likelihood theory. Although high dimensional model selection approaches have

already been existed in the statistical literature so as to determine the final structure

by defining the sparsity of the network, they suffer from either overselection or un-

derselection, respectively, for StARS and both RIC and EBIC. Therefore, we suggest

to apply CAIC, CAICF and ICOMP as the model selection procedures in order to

represent the true high dimensional network structure under both GGM and MARS

settings.
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After giving the necessary background information, we continue with the application

and the simulation studies under two modelling setups. Therefore, we can separate

this section mainly into two parts according to the model which we apply. Here each

includes the both real data applications and the simulation studies.

In the sense of real data applications, we use six data sets where the first two refer

to the benchmark data, the rest represents dense network structures including fully

connected genes. Among all datasets, only the first dataset indicates the sparse gene

expression network structure whose number of genes far exceeds the number of ob-

servations. However, the number of observations is greater than the number of genes

in the network for the others that include eleven core cancer genes, except the sixth

one which contains only nine genes.

On the other side, in terms of simulation studies, we generate distinct scenarios un-

der two different topologies: scale-free and random structures. While the important

mathematical philosophies support to construct such topologies, scale-free is more

coincided with our expectation from the biology since it represents the hubs in the

network structure. In other words, under the scale-free topology, some genes, called

hubs in the network, have more crucial role than the others, so we expect to see the

connections are more concentrated on such hubs in this structure. Otherwise, our

scenarios are simulated with respect to different dimensional setups, namely 50, 100,

500 genes, with 50 observations for each gene in the network structure.

Under the GGM setting, the penalized likelihood procedure, namely, the graphical

lasso algorithm, requires a penalty parameter to control the sparsity of the network

structure. In this section, the graphical lasso algorithm whose coordinate descent

procedure and its blockwise version, which we called the lossless screening under

the huge package in R, are mentioned with its corresponding pseudocodes and its

flowchart representation to explain the procedure. This versatile regression proce-

dure simultaneously achieves the variable selection procedure while penalizing the

covariance of the model. Thus, the selection of the penalty parameter plays a pivotal

role not only to determine sparsity of the network, but also, to decide which genes

we include into the final model. So, we suggest to use CAIC, CAICF and ICOMP
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as a variable selection procedure in this setup, since they are motivated from the in-

formation theory and the particularly ICOMP is designed to take the complexity and

interactions into account. Our objective is to compare our suggestions with both the

state-of-art model selection criteria, AIC and BIC, and the high dimensional model

selection methods: RIC, EBIC and StARS. We compare them in terms of accuracy

measures: F-measure, precision, recall and accuracy.

• Under GGM Simulation Studies

– ICOMP outperforms the rest in terms of accuracy measures under both

scale-free and random network topologies, even for the highest dimen-

sional setting.

– ICOMP dominates the others in terms of recall under all dimensional set-

tings for each topology.

• Under GGM Application Studies

– ICOMP achieves to capture some of the interactions in the network while

high dimensional model selection procedures (RIC,EBIC and StARS) can-

not detect any interactions.

– Our proposed procedures are more efficient on the sparse networks Data

1 and 2 structure than the dense networks Data 3-6.

Under the MARS setting, we aim to modify two stage iterative algorithms that MARS

originally use in order to pick the best final model. This is done by changing the back-

ward algorithm in such a way that we replace GCV with our proposed data-dependent

model selection procedures. In this section, the associated LMARS algorithm and the

flowchart representation are given. Here, our objective is to compare our suggested

model selection procedures with GCV and other classical model selection methods

(AIC and BIC) in terms of either accuracy measures or MARS models selected by

each criterion.

114



• Under LMARS Simulation Studies

– When the dimension increases, CAIC obtains the the best results in terms

of accuracy under the scale-free topology for both the lowest and the high-

est settings. Under this topology, ICOMP succeeds to get the best accu-

racy measure for the moderate dimensional setup. In terms of F measures,

CAIC, CAICF and GCV get the best results, respectively, for the dimen-

sions from the lowest to highest. According to recall, ICOMP obtains the

best value under the highest scale-free dimension.

– Under random networks, in terms of accuracy, each criterion achieves to

obtain the best for the highest dimensional setting. With respect to re-

call, CAIC outperforms the others under the highest dimensional random

structure.

• Under MARS Application Studies

– While GCV and AIC tend to more complicated MARS models that are

hard to interpret, ICOMP achieves to choose the simplest and interpretable

model by taking solely the important genes in the network structure.

Overall

• ICOMP outperforms the others in terms recall under all dimensional settings

for both topologies under the GGM setting. This also far exceeds the values

under the LMARS setting.

• Each criterion achieves to not detect falsely positive value (prec=1) under the

LMARS setting.

• In terms of accuracy for the two highest dimensions, ICOMP succeeds in the

best values under the GGM setting for each topology. Particularly for the high-

est setting, ICOMP achieves to obtain an accuracy measure as 1.

• Our suggested model selection methods operate the efficient procedure in terms

of accuracy measures for sparse networks than the dense ones.
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• Scale-free network structure can be seen as our main objective in order to fit our

novel applications under GGM and MARS settings since this structure satisfies

our expectation from systems biology along with probability theory.

This thesis broadens our perspectives not only for model selection procedure of LMARS

but also for the variable selection procedure where the penalized likelihood approach

uses a penalty parameter in order to penalize the regression under GGM setting.

As the future study, since our suggested model selection criteria are compatible with

both parametric and nonparametric modelling approaches, we consider to apply our

suggested data-dependent model selection criteria on other modelling approaches,

i.e., neural networks. Also, they can be combined with several penalized likelihood

approaches, i.e., adaptive lasso or group lasso.
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[9] Ağraz, M. and Purutçuoğlu, V. (2017). Different types of modellings and the

inference of model parameters for complex biological systems. Master’s thesis,

Middle East Technical University.

117

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48926
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48926
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