
DATA MINING FOR REGIONAL AND GRAPH-STRUCTURED DATA
OBJECTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

DERYA DİNLER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

INDUSTRIAL ENGINEERING

MAY 2019

Approval of the thesis:

DATA MINING FOR REGIONAL AND GRAPH-STRUCTURED DATA
OBJECTS

submitted by DERYA DİNLER in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Industrial Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yasemin Serin
Head of Department, Industrial Engineering

Assist. Prof. Dr. Mustafa Kemal Tural
Supervisor, Industrial Engineering, METU

Prof. Dr. Nur Evin Özdemirel
Co-supervisor, Industrial Engineering, METU

Examining Committee Members:

Prof. Dr. Sinan Gürel
Industrial Engineering, METU

Assist. Prof. Dr. Mustafa Kemal Tural
Industrial Engineering, METU

Assoc. Prof. Dr. Cem İyigün
Industrial Engineering, METU

Assoc. Prof. Dr. Ayşegül Altın Kayhan
Industrial Engineering, TOBB ETÜ

Assist. Prof. Dr. Mustafa Gökçe Baydoğan
Industrial Engineering, Boğaziçi University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Derya Dinler

Signature :

iv

ABSTRACT

DATA MINING FOR REGIONAL AND GRAPH-STRUCTURED DATA
OBJECTS

Dinler, Derya

Ph.D., Department of Industrial Engineering

Supervisor: Assist. Prof. Dr. Mustafa Kemal Tural

Co-Supervisor : Prof. Dr. Nur Evin Özdemirel

May 2019, 204 pages

Three research problems are addressed in this study. The first one is a semi-supervised

clustering problem with instance-level constraints where each data object is either a

closed convex bounded polytope or a closed disk. We first model the problem of

computing the centroid of a given cluster as a second order cone programming prob-

lem. Also, a subgradient algorithm is adopted for its faster solution. We then pro-

pose a mixed-integer second order cone programming formulation and six heuristic

approaches for the considered clustering problem. Finally, we compare solution ap-

proaches in terms of computational time and quality on randomly generated and real

life datasets.

The second problem deals with mining a single graph to find central group of nodes

of the graph. For the identification of central nodes, we utilize the group betweenness

centrality (GBC) measure. We propose a method that first computes upper and lower

bounds on the GBC of several groups. The method then eliminates groups with upper

bounds that are lower than the maximum lower bound obtained to find candidates for

the optimal group. Finally, an approximating or the optimal group can be returned to

v

the user. We conduct computational experiments with randomly generated and real

life networks to test the performance of the proposed method.

The last problem is the clustering of m-ary trees where nodes are unweighted, edges

are unweighted or weighted, and node correspondence is known. To measure the

distance between two trees, we utilize vertex/edge overlap (VEO) and graph edit dis-

tance (GED) measures from the literature. To find a representative (centroid) tree for

a given set of trees, we propose exact and heuristic solution approaches. We test our

algorithms on randomly generated and real life datasets.

Keywords: data mining, semi-supervised clustering, centrality, clustering, regional

data, group betweennes centrality, tree-structured data, vertex/edge overlap, graph

edit distance, optimization, heuristics

vi

ÖZ

BÖLGESEL VE ÇİZGE-YAPILI VERİ NESNELERİ İÇİN VERİ
MADENCİLİĞİ

Dinler, Derya

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Mustafa Kemal Tural

Ortak Tez Yöneticisi : Prof. Dr. Nur Evin Özdemirel

Mayıs 2019 , 204 sayfa

Bu çalışmada üç problem ele alınmıştır. İlk problem veri nesnelerinin kapalı konveks

sınırlı politoplar ya da kapalı diskler olduğu durumlar için yarı gözetimli kümeleme

problemidir. Kümeleme öncesi belirtilmiş bir takım nesne düzeyi kısıtlar olduğu dü-

şünülmektedir. Verilen bir küme için küme merkezi bulma problemi ikinci dereceden

konik programlama yardımıyla formüle edilmiştir. Ayrıca hızlı şekilde çözümler elde

etmek için alt gradyan metodu yardımıyla da çözülmüştür. Sonrasında ise ele alınan

kümele problemi için karmaşık tamsayılı ikinci dereceden konik proramlama formü-

lasyonu ve altı tane sezgisel yöntem önerilmiştir. Son olarak, çözüm yöntemleri çö-

züm kalitesi ve çözüm zamanı açısından hem rassal olarak üretilen hem de gerçek

hayat veri setleri kullanılarak karşılaştırılmıştır.

İkinci problem verilen bir çizgede en merkezi düğüm grubunu bulma problemidir.

Merkezi düğümleri bulmak için grup aradalık merkeziliği (GAM) kullanılmıştır. Prob-

lemi çözmek için önerilen yöntemde istenen tüm düğüm gruplarının GAM değerine

alt ve üst sınırlar hesaplanır, üst sınırı bulunan en büyük alt sınırdan küçük olan grup-

vii

lar elenir ve optimal düğüm grubu olabilecek adaylar kalır. Geliştirilen metodun per-

formansını ölçmek için hem rassal olarak üretilmiş hem de gerçek hayattan ağlarla

sayısal çalışmalar yapılmıştır.

Son problem m-li ağaç veri nesnelerinin kümelenmesidir. Ağaçlardaki düğümler ağır-

lıksızken, kenarlar ağırlıksız ya da ağırlıklı olabilir. Ayrıca herhangi bir ağaç üze-

rinde verilen bir düğümün başka bir ağaç üzerinde hangi düğüme denk olduğunun

bilindiği varsayılmaktadır. Problemin çözümü için k-means tabanlı yöntemler öneril-

miştir. İki ağaç arasındaki mesafeyi ölçmek için literatürde kullanılan düğüm/kenar

örtüşmesi (DKÖ) ve çizge düzeltme uzaklığı (ÇDU) ölçüleri kullanılmıştır. Verilen

bir ağaç kümesini temsil edecek ağacı bulma problemi için matematiksel formülas-

yonlar ve bunlar için etkili çözüm yöntemleri önerilmiştir. Geliştirilen yöntemlerin

performanslarını ölçmek için hem rassal olarak üretilen hem de gerçek hayattan veri

setleri kullanılmıştır.

Anahtar Kelimeler: veri madenciliği, yarı-gözetimli kümeleme, merkezilik, küme-

leme, bölgesel veri, grup aradalık merkeziliği, ağaç-yapılı veri, düğüm/kenar örtüş-

mesi, çizge düzeltme uzaklığı, eniyileme, sezgiseller

viii

To the future, no matter what it holds...

ix

ACKNOWLEDGMENTS

I gratefully acknowledge those who have helped me, academically and psychologi-

cally, in completing this thesis, and apologize in advance to the ones whose names

are not mentioned in this limited page.

First of all, I would like to thank my advisors Assist. Prof. Dr. Mustafa Kemal Tural

and Prof. Dr. Nur Evin Özdemirel for their support, guidance, effort and patience

throughout the thesis period. It was a pleasure to work with them.

I would also thank to the committee members Prof. Dr. Sinan Gürel and Assoc. Prof.

Dr. Ayşegül Altın Kayhan for their feedbacks in every 6-month which increased the

quality of the work. Along with them, the committee members Assoc. Prof. Dr. Cem

İyigün and Assist. Prof. Dr. Mustafa Gökçe Baydoğan made invaluable comments.

Being a teaching and research assistant in METU-IE department during this period

made many things possible. I had the chance to collaborate with valuable professors

and colleagues, to teach amazing students and to make some scientific contributions.

I am proud of being a member of this department both as a student and an assistant.

It is also pleasure to acknowledge all my friends for not leaving me alone and easing

my work with their great ideas and supports. Specially, I would like to thank Derya

İpek Eroğlu for being a great fellow in every way. She kindly supported me by making

our long working hours enjoyable and taking care of my concerns. I would also thank

to Gamze Erel for being there whenever I need her. Along with them, I am thankful

for Haluk Damgacıoğlu, Yasemin Limon and Elif Akça since they made me feel like

we were always side by side despite long distance.

Last but not the least, I am grateful for my family because of their endless support,

love and understanding.

This study was supported by the Scientific and Technological Research Council of

Turkey (TUBITAK) under grant 2211.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xv

LIST OF FIGURES . xxi

CHAPTERS

1 INTRODUCTION . 1

1.1 Semi-supervised Clustering for Regional Data Objects 3

1.2 Data Mining for Central Nodes in a Graph-structured Data Object . . 5

1.3 Data Mining for Finding Centroid Trees in the Clustering of Tree-
structured Data Objects . 7

2 SEMI-SUPERVISED CLUSTERING FOR REGIONAL DATA OBJECTS . 11

2.1 Introduction . 11

2.2 Literature Review . 13

2.2.1 Unsupervised Clustering . 13

2.2.2 Semi-supervised Clustering 16

2.2.2.1 Semi-supervised Clustering with Labeled Data 19

xi

2.2.2.2 Semi-supervised Clustering with Instance-Level Con-
straints . 19

2.2.2.3 Semi-supervised Clustering with Cluster-Level Constraints 20

2.2.2.4 Feasibility Issues for the Clustering with Constraints . . 21

2.2.3 Clustering of Uncertain Data 22

2.3 Notation . 24

2.4 Computation of the Centroid of a Given Cluster 25

2.4.1 An SOCP Formulation for the CCP 26

2.4.2 Subgradient Algorithm for the CCP 28

2.5 Semi-supervised Clustering with Reginal Data 32

2.5.1 An MISOCP Formulation for the SSC 32

2.5.2 K-means based Algorithms for the SSC 35

2.5.2.1 UCOP-k-means . 35

2.5.2.2 UPC-k-means . 36

2.5.2.3 UCVQE . 39

2.5.2.4 USeeded-k-means and UConstrained-k-means 41

2.5.3 Agglomerative Hiearchical Clustering based Algorithm for the
SSC . 44

2.5.4 More on Literature of Semi-supervised Clustering 46

2.6 Computational Studies . 48

2.6.1 Performance Measures . 52

2.6.2 Computational Results . 54

2.6.2.1 Artificial Datasets . 54

2.6.2.2 Real Life Datasets . 67

xii

2.7 Conclusion and Future Work . 80

3 DATA MINING FOR CENTRAL NODES IN A GRAPH-STRUCTURED
DATA OBJECT . 83

3.1 Introduction . 83

3.2 Notation . 85

3.3 Betweenness and Group Betweenness Centrality 86

3.3.1 Bounds on the Group Betweenness Centrality 89

3.4 Computation of the New Bounds . 90

3.4.1 Preprocessing Step . 92

3.4.2 Upper Bounds . 92

3.4.3 Lower Bounds . 95

3.4.4 Illustrative Example . 97

3.4.5 An Algorithm for the Group with the Highest GBC Value . . . 99

3.5 Computational Experiments . 101

3.5.1 Selection of Bounds . 101

3.5.2 Randomly Generated Graphs 109

3.5.3 Real-life Networks . 113

3.6 Conclusion and Future Work . 118

4 DATA MINING FOR FINDING CENTROID TREES IN THE CLUSTER-
ING OF TREE-STRUCTURED DATA OBJECTS 121

4.1 Introduction . 121

4.2 Literature Review . 122

4.3 Notation and Problem Description 129

4.4 Finding Representative Tree of a Given Population of Trees 132

xiii

4.4.1 Unweighted Vertex/Edge Overlap (UWVEO) 132

4.4.2 Unweighted Graph Edit Distance (UWGED) 135

4.4.3 Weighted Vertex/edge Overlap (WVEO) 137

4.4.4 Weighted Graph Edit Distance (WGED) 138

4.5 Clustering of Tree-Structured Data 140

4.6 Computational Studies . 142

4.6.1 Parameter Selection . 142

4.6.1.1 Performance Measures 146

4.6.1.2 Results for tree-kmeans-UWVEO 147

4.6.1.3 Results for tree-kmeans-UWGED 150

4.6.1.4 Results for tree-kmeans-WVEO 154

4.6.1.5 Results for tree-kmeans-WGED 158

4.6.2 Comparison of tree-kmeans-UWVEO, tree-kmeans-UWGED
and kmodes . 163

4.6.3 Comparison of tree-kmeans-WVEO, tree-kmeans-WGED and
kmeans . 170

4.6.4 Performance on real life datasets 174

4.7 Conclusion and Future Work . 180

5 CONCLUSION . 183

REFERENCES . 189

CURRICULUM VITAE . 205

xiv

LIST OF TABLES

TABLES

Table 2.1 Complexity of the clustering feasibility problem 22

Table 2.2 Comparison of SM and SOCP in terms of computational time (in

seconds) . 32

Table 2.3 Parameters for rectangular region genaration 55

Table 2.4 Solution time (in seconds) for small size instances with actively

generated constraints . 57

Table 2.5 Performance measures (percent deviation of global and local objec-

tive function value from the best global and local value found (ObjG and

ObjL), rand index (Rand), pairwise F-measure (FM), and mutual informa-

tion (MI)) for P20,2,10 where constraints are generated actively 58

Table 2.6 Performance measures (percent deviation of global and local ob-

jective function value from the best global and local value found in the

corresponding row (ObjG and ObjL)) for the problem instance with 100

rectangular data objects and 5 centroids 64

Table 2.7 Performance measures (percent deviation of global and local ob-

jective function value from the best global and local value found for the

problem instance (ObjG’ and ObjL’)) for the problem instance with 100

rectangular data objects and 5 centroids 65

Table 2.8 Performance measures (rand index (Rand), F-measure (FM), and

mutual information (MI)) for the problem instance with 100 rectangular

data objects and 5 centroids . 66

xv

Table 2.9 Fat and Oil dataset . 67

Table 2.10 Performance measures (rand index (Rand), F-measure (FM), and

mutual information (MI)) for the Fat and Oil dataset 68

Table 2.11 Interval valued Iris dataset . 71

Table 2.12 Performance measures (rand index (Rand), F-measure (FM), and

mutual information (MI)) for interval valued Iris dataset 72

Table 2.13 Performance measures (rand index (Rand), F-measure (FM), and

mutual information (MI)) for interval valued Wine dataset 76

Table 2.14 P-values for the effect of algorithm on different performance mea-

sures for each constraint generation and initialization combination 77

Table 2.15 Best algorithm(s) for different performance measures for each con-

straint generation and initialization combinations 77

Table 2.16 P-values for the effects of constraint generation, initialization and

the number of constraints on different performance measures of algorithms 78

Table 2.17 Performance measures (rand index (Rand), F-measure (FM), and

mutual information (MI)) of UConstrained k-means for the interval valued

Gamma dataset . 79

Table 3.1 The performances of different bounds on the Zachary, and randomly

generated preferential attachment (PA) and Erdös-Renyi (ER) graphs in

terms of the percentage of finding the best bounds for different group sizes 104

Table 3.2 The total computational time of different bounds on the Zachary,

and randomly generated preferential attachment (PA) and Erdös-Renyi

(ER) graphs for all of the groups with different group sizes 105

xvi

Table 3.3 The number of possible groups; the number of remaining groups

after elimination by YAT-HW and KCBl-KCBu bounds; the total time

spent for YAT-HW and KCBl-KCBu bound calculations; and the total

time spent for KCBl-KCBu bound calculations with the original method

in [92] on the Zachary, and randomly generated preferential attachment

(PA) and Erdös-Renyi (ER) graphs for different group sizes 106

Table 3.4 The mean and median gaps for YAT-HW and KCBl-KCBu bound

pairs; and the mean gaps between the selected bounds (YAT and HW)

and the exact values on the Zachary, and randomly generated preferential

attachment (PA) and Erdös-Renyi (ER) graphs for all of the groups with

different group sizes . 107

Table 3.5 The number of remaining groups after elimination by YAT-HW

bound and the total time spent for YAT-HW bound calculations on ran-

domly generated different Erdös-Renyi and preferential attachment graphs

for all groups with different k values . 110

Table 3.6 The mean and median gaps for YAT-HW bound pair on randomly

generated different Erdös-Renyi and preferential attachment graphs for all

of the groups with different group sizes k 111

Table 3.7 The estimated and exact GBC values, the gap and the optimality gap

for the best group returned by Algorithm 10 for randomly generated dif-

ferent Erdös-Renyi and preferential attachment graphs for different group

sizes k . 112

Table 3.8 The mean and median gaps for YAT-HW bound pair on randomly

generated different Erdös-Renyi and preferential attachment graphs for

randomly selected 10000 groups with different large group sizes k 112

xvii

Table 3.9 The number of all possible groups formed with the 20 nodes with

the highest betweenness values; the number of remaining groups after

elimination by YAT-HW bound pair; the total time spent for YAT-HW

bound calculations; mean and median gaps for YAT-HW bound pair; the

estimated and exact GBC values together with the optimality gaps for the

best group returned by Algorithm 10; and the exact GBC value of the

group with the highest GBC value on the Facebook network for different

group sizes k . 113

Table 3.10 The number of remaining groups among randomly selected 1000

groups after elimination by YAT-HW bound pair; mean and median gaps

for YAT-HW bound pair; the estimated and exact GBC values for the best

group returned by Algorithm 10; and the total time spent for YAT-HW

bound calculations and exact GBC calculations on HepTh network for

different group sizes k . 116

Table 3.11 The number of remaining groups among randomly selected 1000

groups after elimination by YAT-HW bound pair; mean and median gaps

for YAT-HW bound pair; the estimated and exact GBC values for the best

group returned by Algorithm 10; and the total time spent for YAT-HW

bound calculations and exact GBC calculations on HepPh network for

different group sizes k . 117

Table 4.1 The properties of randomly generated problem instances in Small-

DataUW . 144

Table 4.2 The properties of randomly generated problem instances in Large-

DataUW . 144

Table 4.3 The properties of randomly generated problem instances in Small-

DataW . 145

Table 4.4 The properties of randomly generated problem instances in Large-

DataW . 145

Table 4.5 The performance of tree-kmeans-UWVEO on SmallDataUW 149

xviii

Table 4.6 The performance of tree-kmeans-UWVEO on LargeDataUW 149

Table 4.7 The performance of tree-kmeans-UWGED on SmallDataUW 151

Table 4.8 The performance of tree-kmeans-UWGED on LargeDataUW 152

Table 4.9 Wilcoxon signed rank test in terms of AvPD on SmallDataUW for

tree-kmeans-UWGED . 153

Table 4.10 Nondominated parametric settings for tree-kmeans-UWGED (1 means

nondominated; 0 means dominated) . 153

Table 4.11 The performance of tree-kmeans-WVEO on SmallDataW 156

Table 4.12 The performance of tree-kmeans-WVEO on LargeDataW 157

Table 4.13 Nondominated parametric settings for tree-kmeans-WVEO (1 means

nondominated; 0 means dominated) . 158

Table 4.14 The performance of tree-kmeans-WGED on SmallDataW 161

Table 4.15 The performance of tree-kmeans-WGED on LargeDataW 162

Table 4.16 Nondominated parametric settings for tree-kmeans-WGED (1 means

nondominated; 0 means dominated) . 163

Table 4.17 Comparison of tree-kmeans-UWVEO, tree-kmeans-UWGED and

kmodes with respect to BPD of UWVEO objective 166

Table 4.18 Comparison of tree-kmeans-UWGED, tree-kmeans-UWVEO and

kmodes with respect to BPD of UWGED objective 167

Table 4.19 Comparison of tree-kmeans-UWVEO, tree-kmeans-UWGED and

kmodes with respect to external performance measures 169

Table 4.20 Comparison of tree-kmeans-WVEO, tree-kmeans-WGED and k-

means with respect to BPD of WVEO objective 170

Table 4.21 Comparison of tree-kmeans-WGED, tree-kmeans-WVEO and kmeans

with respect to BPD of WGED objective 171

xix

Table 4.22 Comparison of tree-kmeans-WVEO, tree-kmeans-WGED and kmeans

with respect to external performance measures 172

Table 4.23 Outlier case . 173

Table 4.24 Results for clustering whole dataset with different data representations177

Table 4.25 p-values obtained by Kruskal-Wallis test for the equality of age me-

dians . 178

Table 4.26 p-values obtained by Wilcoxon rank sum test for the equality of

pairwise age medians . 179

xx

LIST OF FIGURES

FIGURES

Figure 2.1 An example problem instance with n = 50 and k = 3, and its

solution . 56

Figure 2.2 Performance measures (global objective function value, rand in-

dex, pairwise F-measure and mutual information) for the problem in-

stance with 200 rectangular data objects and 5 centroids where con-

straints are generated actively . 59

Figure 2.3 The best partition found by the algorithms (also the desired par-

tition) for the Iris dataset . 73

Figure 2.4 Partitions for the Wine dataset 78

Figure 2.5 Partitions for Gamma dataset 80

Figure 3.1 A graph with n = 5 . 96

Figure 3.2 Complete graph with vertex set S = {2, 3, 4, 5} and edge weights

P (i, j) . 98

Figure 3.3 Zachary’s karate club network 102

Figure 3.4 Randomly generated preferential attachment network with n =

30 and e = 2, PA . 102

Figure 3.5 Randomly generated Erdös-Renyi graph with n = 30 and p =

0.2, ER . 103

xxi

Figure 3.6 Distribution of gaps for YAT-HW and KCBl-KCBu bound pairs

for different group sizes on the Zachary’s network 108

Figure 3.7 Average time to calculate lower bound, lower bound and upper

bound, and exact value of GBC of a single group on HepTh network

for different group sizes . 116

Figure 3.8 Average time to calculate lower bound, lower bound and upper

bound, and exact value of GBC of a single group on HepPh network for

different group sizes . 118

Figure 4.1 An example of a population P = {T1, T2, T3} of 3-ary trees, its

generator G, and support tree ST . 130

Figure 4.2 Small dataset with 4 3-ary trees 141

Figure 4.3 Conditional frequencies of edges appearing in the dataset in Fig-

ure 4.2 . 141

Figure 4.4 Information of patients in brain artery data 174

Figure 4.5 Binary trees for patient 2 with child and radius correspondence,

respectviely . 175

xxii

CHAPTER 1

INTRODUCTION

Data mining, the science of extracting new and useful information from data, has

gained a lot of attention recently among scientists and in society as a whole due to the

wide availability of huge datasets and the increased power of computers. According

to [110], the amount of data produced worldwide during the year 2002 and stored

on paper, film, magnetic media, and optical devises was estimated to be between

3,400,000 and 5,600,000 terabytes. These numbers are about twice the size of the

data produced during the year 1999 [109]. The amount of data that has exploded year

over year introduced new challenges and led to continued innovation in data storage

and data mining techniques.

A fundamental categorization in data mining techniques is:

1. Supervised learning,

2. Unsupervised learning.

In supervised learning, the dataset is split into training data and test data. Observa-

tions in the training data are provided with desired or known output values (labels)

which are used to construct a function that predicts the output values of the observa-

tions in the test data. Classification and regression are good examples of supervised

learning problems. Typically, supervised learning algorithms require a large training

dataset, which is not always available or may be very costly to acquire. In unsuper-

vised learning, however, there is no learning from known cases (no training data),

but instead one tries to find intrinsic “natural” structures in “unlabeled” data. As un-

supervised learning methods are completely unguided, the structure extracted from

the data may not always be relevant to the analyst or user. If there exists some prior

1

knowledge, the analyst can apply semi-supervised learning methods which incorpo-

rate some prior knowledge into the learning process to extract the desired structure

from the data. Clustering is one of the most widely used unsupervised data mining

techniques.

In this study, three research problems are addressed. The first problem is a semi-

supervised clustering problem where the locations of the data objects are subject to

uncertainty, i.e., instead of crisp points in the feature space, they are defined as re-

gions. The second one is the problem of finding a group of central nodes on a given

graph considering the group betweenness centrality (GBC) measure. The third one is

the problem of clustering a given population of graph structured data objects (m-ary

trees) into groups.

Before the explanation of the problems in more detail, it is beneficial to give some

general information about clustering as it constitutes two thirds of the thesis. Cluster-

ing is used to partition unlabeled data objects into groups (clusters) so that the objects

in a group will be similar to each other with respect to some similarity criteria (i.e.,

high intra-cluster similarity) and different from the objects in other groups (i.e., high

inter-cluster dissimilarity). In some clustering problems, the number of clusters to

be formed, k, is given as a parameter. In some others, however, k may be unknown.

Clustering has been employed in many disciplines such as statistics, biology, market-

ing and medicine. It has mainly been used for three purposes:

• to discover the underlying structure of the data,

• to find natural classification of data objects by identifying similarities among

them, and

• to organize and summarize the data [83].

In some cases, clustering can be used as a preprocessing tool for other tasks such as

regression, principal component analysis, and association analysis. See for instance

[48] in which the authors used clustering techniques to reduce complexity in solving

automated planning problems.

In the following subsections, most related literature, and our motivations and contri-

2

butions are summarized for each research problem of the thesis.

1.1 Semi-supervised Clustering for Regional Data Objects

Most of the clustering studies in the literature are devoted to the analysis of fixed

(point) data in the feature space. However, in some recent cases data objects may

be regions or graphs instead of points. Such data objects arise because of improving

technology/measurement capabilities and the need for deeper analyses which lead to

collect more complex datasets. For example, in [18], authors discuss the need for in-

terval valued version of one of the most famous classification datasets, namely the Iris

dataset. In the original version of the dataset, four features of 150 irises are provided.

In other words, there are 150 points in R4. However, authors aggregate individual

observations that are collected under similar conditions and obtain 30 interval valued

observations, i.e., 30 hyper-rectangles in R4.

In addition to interval valued observations, there may be uncertainty in the location of

the data objects due to several reasons such as imprecision in measurement, reporting

error, randomness, and so on. In such cases, using a region to represent a data object

is more appropriate than using a point. For instance, consider forests in a certain

region that are to be clustered to build a given number of fire stations. The initial site

of a possible fire in a forest is not known in advance. In this case, each forest can

be thought of as a region and the location of a possible fire can be represented by

a probability distribution over the forest. Other examples are the facility location or

coverage problems where the demand may come from geographical regions instead

of individual customers.

The first problem considered in this thesis is the semi-supervised clustering of data

objects, whose locations are subject to uncertainty and represented as regions. Each

uncertainty set is assumed to be either a polytope or a closed disk. The distance

between the centroid of a cluster and an uncertain/regional data object is measured

as the distance between the centroid and the farthest point of the data object. Hence

one of the aims in our clustering problem is to minimize the weighted sum of squared

maximum Euclidean distances between the data objects and the centroids of their

3

respective clusters

Semi-supervised learning is at the intersection of supervised and unsupervised learn-

ing and able to eliminate disadvantages of both learning types. Since it can be used

when there is only small amount of prior information about the data, the cost and time

to obtain large amounts of training data for supervised learning is avoided. Also, as

we have some amount of information to use in the learning process, the process is

not completely unguided as in the unsupervised learning which may lead to extract-

ing irrelevant information. Moreover, studies show that even with a small amount of

prior information the clustering performance can be improved and computing time of

the learning process can be decreased significantly [144]. Thus, in recent decades,

semi-supervised clustering has attracted the attention of researchers and practitioners

in several disciplines.

Prior information used in semi-supervised clustering may have different sources and

forms. This information may arise from expert opinion, user feedback, or needs of

the problem owner expressed as a few labeled data objects or constraints. The user

may specify some instance-level constraints indicating that the data objects should be

in the same cluster (must-link constraints) or in different clusters (cannot-link con-

straints). Alternatively, she may define some cluster-level constraints limiting the

size or radii of the clusters. If prior information is allowed to be violated in the final

clustering it is called soft information, otherwise it is hard information.

In our problem, to cluster the regional data objects into given number of clusters, we

assume that there are some soft instance level must-link and cannot-link constraints.

Hence, the overall aim is to minimize the sum of two terms: (1) total violation cost of

the unsatisfied instance level constraints and (2) weighted sum of squared Euclidean

distances between the farthest points of the data objects and the centroids of the clus-

ters they are assigned to.

Studies that are most relevant to our problem are [10, 11, 43, 116, 145] which deal

with semi-supervised clustering of point data objects. It should be noted that, to the

best of our knowledge, all of semi-supervised clustering literature deals with point

data objects. In [145], authors propose an extension of k-means for semi-supervised

clustering of point data objects when there are hard instance-level constraints. In the

4

existence of soft instance-level constraints, [11] and [43] provide k-means based al-

gorithms. When there is prior information in the form of labeled data, in [10], authors

propose two extensions of k-means, one for hard information case and one for soft

information case. In [116], an agglomerative hierarchical clustering algorithm is pro-

vided in the presence of hard must-link constraints and soft cannot-link constraints.

The main contribution of our study to the literature of semi-supervised clustering is to

address the regional data objects. Specifically, first the centroid computation problem

is investigated for a cluster of regional data objects. For this purpose, a second order

cone programming formulation which is an extension of a previous formulation in

[54] is developed, and a novel subgradient method is proposed for its solution. While

the formulation in [54] considers polygons in R2., our formulation here handles poly-

topes and disks in Rd. Next, for the considered semi-supervised clustering problem,

a novel mixed-integer second order cone programming formulation is proposed and

six different semi-supervised clustering algorithms from the literature (five of them

are k-means based and one of them is agglomerative hierarchical clustering based)

are modified to make them applicable for the case of regional data objects. Finally,

the solution approaches are compared on artificial and real-life datasets.

1.2 Data Mining for Central Nodes in a Graph-structured Data Object

The second problem of the thesis considers data mining for a single graph-structured

data object. It aims to find a given number of central nodes in terms of group be-

tweenness centrality (GBC) measure on an unweighted, undirected and connected

graph.

Central node identification problems are essential mainly in network analysis (social

networks, collaboration networks, computer networks, and so on). The answer of the

question that "Which group of nodes is the most central in a graph?" is purpose and

context dependent. The answer changes with the centrality measure in use. Degree

centrality, closeness centrality, and betweenness centrality are some frequently used

measures in the literature. Each one has different application areas since each has

different assumptions [114]. Degree centrality of a node is equal to the degree of the

5

node. This measure assumes that the larger the number of connections of the node,

the higher its importance. For example, consider that we have a social network where

nodes represent individuals and edges represent their friendship. If one wants to find

the most popular individual in the network and defines the popularity as the number

of friends, degree centrality is the most appropriate measure in this case. On the

other hand, if we have a network where nodes represent residental areas and edges

represent roads between them, and want to locate a hospital on the network, closeness

centrality will be the most appropriate measure. Because closeness centrality of a

node is inversely proportional to the total distance of that node to the other nodes in

the network. In other words, this measure assumes that the closer the node to all other

nodes, the higher its importance.

Betweenness centrality which is the one used in this thesis assumes that information

flows through shortest paths. This has several applications. For instance, for an in-

vestor who wishes to locate a roadhouse on a road network where edges represent

roads and nodes represent intersection points of roads, the betweenness centrality is

the most appropriate measure. Because the drivers, i.e., flows on the network, have

a tendecy to use shortest paths between their origins and destinations. Since the in-

vestor needs to increase the number of people who are driving by the roadhouse as

each one is a potential customer, his problem is actually the problem of finding the

node with the highest betweenness centrality on the network. Another application

can be found in computer networks where nodes represent individual users and edges

represent information flows between users. If one needs to locate a server on the

network, she should use betweenness centrality to improve the performance since

information flows through shortest paths.

GBC is an extension of betweenness centrality quantifying the centrality of a group of

nodes instead of a single node. The GBC of a group of nodes measures the influence

the group has on communications between every pair of nodes in the network under

the shortest path assumption. Finding the most central group of nodes (in terms of

GBC) with given size, say k, is a combinatorial problem. To calculate the GBC of

a group, in [125], authors propose an exact algorithm requiring O(k3) time after a

preprocessing step taking O(n3) time where n is the number of nodes in the network.

Also, a bounding procedure is provided in [92]. To find upper and lower bounds for

6

the GBC of a group, this procedure requires O(n3 + k3) time.

For the problem of finding a group of nodes of a given size that has the highest GBC

value, we propose a new method that first computes upper and lower bounds for

the GBC of different groups and then eliminates groups with upper bounds that are

lower than the maximum lower bound obtained to find candidates for the optimal

group. Our method combines good properties of the studies by [125] and [92]. It

uses the preprocessing step of [125] which takes O(n3) time. After the preprocessing

step, our algorithm uses the bounding scheme in [92] with stronger and more time-

efficient upper and lower bounds found in the probability theory literature to bound

GBC values of several groups successively. For each group, time to find bounds

is O(k2). The proposed method is tested on both randomly generated and real-life

networks. Experiments show that just by using the bounds, only a small fraction

of groups remains as candidates for the optimal group. Thus, with our method, the

problem of finding the most central group of nodes can be solved in a more time-

efficient manner. Assume that we have s groups among which we need to find the

most central group. Time of the algorithm in [125] is O(n3 + sk3) while time of our

method is O(n3 + sk2 + lk3) where l is the number of remaining groups after the

elimination based on the bounds and l� s.

1.3 Data Mining for Finding Centroid Trees in the Clustering of Tree-structured

Data Objects

The last problem of the thesis assumes that data objects to be clustered are trees. As

it is stated before, in recent years, more complex datasets consisting of data objects

which are not points are available. Tree-structured data objects arise in many do-

mains, however, clustering of them is a challenging problem and is not studied much

in the literature. In [5], the authors represent each patient’s brain artery structure with

a tree. Using MRA image of a patient’s brain, they obtain a binary tree where nodes

represent split-up points of vessels, edges represent vessels between split-up points,

and node correspondence is known. Then, they show that age and sex of patients are

related with brain artery structures. Clustering of brain artery structures can reveal

further effects of age and sex on these structures.

7

In this study we investigate clustering of m-ary rooted trees where node correspon-

dence is known, nodes are unweighted, and edges can be either weighted or un-

weighted. To measure the similarity between a tree-structured data object and a clus-

ter centroid which is also a tree, we utilize the vertex/edge overlap measure. To find

the distance between them, we use the graph edit distance measure. We develop four

mathematical programming formulations to find the optimal centroid trees of clusters

and propose solution procedures, when these two measures are used for the case of

weighted or unweighted edges. The aim is to maximize the sum of vertex/edge over-

laps or to minimize the sum of graph edit distances between the data objects and the

centroids they are assigned to.

In [65], the author considers three clustering problems one of which is the same as

our problem. To cluster m-ary trees with known node correspondence, she proposes

an extension of the k-means algorithm which uses Hamming distance as the distance

measure. The graph edit distance measure we use is equivalent to Hamming distance

when edges are unweighted, but we also consider the weighted version of this prob-

lem. In addition, we consider the additional similarity measure of vertex/edge overlap

for both the unweighted and weighted versions. Thus, we compare our three novel

approaches with an existing solution approach.

In [108, 107], clustering of retinal vessel structures is considered. Each patient’s reti-

nal vessel structure is represented by an m-ary tree where nodes show the split-up

points of retinal vessels, edges show the vessels between nodes, and node correspon-

dence is known. To cluster those trees, authors use k-means algorithms with different

distance measures after transforming each tree to a point in a low dimensional space.

The performances of the algorithms to separate normal and retinopathy patients are

not good even in the presence of visually separable clusters. Unlike this studies which

transform trees into points in Euclidean space, we work on the original tree space. To

the best of our knowledge, there are not any other studies on direct clustering of tree-

structured data objects with known node correspondence.

As it is stated before, most of the clustering literature is devoted to point data ob-

jects. The main contribution of our study is to cluster tree-structured data objects in

their original space and to propose three novel solution approaches for this purpose.

8

To find the centroid tree of a given cluster of trees, we provide mathematical pro-

gramming formulations for each of four different measures, namely unweighted and

weighted vertex/edge overlap, and unweighted and weighted graph edit distance. We

solve these formulations (except the one for the weighted vertex/edge overlap) to op-

timality. Then, for the clustering of tree-structured data objects, we propose k-means

based algorithms for each of the four different measures. Finally, we compare our

approaches with the traditional k-modes and k-means algorithms on both randomly

generated and real-life datasets.

The outline of this thesis is as follows. In Chapter 2, we provide details of our work

on semi-supervised clustering of regional data. In Chapter 3, the focus is on the

identification of the central nodes on a single graph. In Chapter 4, we describe our

work on clustering of tree-structured data objects.

9

10

CHAPTER 2

SEMI-SUPERVISED CLUSTERING FOR REGIONAL DATA OBJECTS

2.1 Introduction

Traditional clustering algorithms use only (fixed) data points as input data objects.

However, there can be uncertainty in the location of the data objects. In such cases,

as taking the location of the data objects as fixed points will be a naive assumption, the

data objects can be considered as multi-dimensional regions in the space. Clustering

of data objects whose locations are uncertain appears in several real life settings, see

e.g. [84].

As clustering algorithms are completely unguided, the structures obtained are not

always relevant or useful to the user. In some cases, the data analyst may have a pri-

ori (domain) knowledge about the underlying structure of the data. With completely

unlabeled data or a few number of labeled data, the supervised learning techniques

like classification may not be suitable. One way of learning from such data would

be to completely ignore the prior knowledge and apply unsupervised learning meth-

ods. As it is noted, this may however result in extracting irrelevant structure from

the data. Another way of learning from such data is by means of semi-supervised

learning which incorporates the prior knowledge to the learning process to improve

the quality of the result. In the last two decades, semi-supervised clustering which

is also known as constrained clustering or clustering with side information has at-

tracted several researchers as it has been observed that even with a small amount of

prior knowledge, the clustering performance can be improved and running time of the

process can be decreased significantly [144].

In this study, we consider a semi-supervised clustering problem in the presence of

11

instance-level constraints where the locations of the data objects are subject to un-

certainty. Uncertainty in the location of the data objects may arise due to several

reasons. Thus, the clustering of uncertain data is an important issue which should be

addressed.

The distance between an uncertain data object and the representative centroid is sub-

ject to change for each realization of the location of the data object. Our aim is to

minimize the sum-of squares objective function in the worst-case. In other words, for

any realization of the locations of the data objects, the evaluated objective function

should not be greater than the optimal objective function value. For this reason, the

distance between the centroid of a cluster and a regional data object is measured in

terms of the maximum distance between them. This objective function is also mean-

ingful in the sense that any realization of a data object is not expected to be very far

away from the representative cluster centroid as the worst-case scenario is considered.

Each uncertainty set is assumed to be a polytope or disk. Given a (bounded) regional

data object, we can take its convex hull as the maximum distanced point from a given

centroid does not change. We can then approximate the convexified object in any ac-

curacy with a polytope. So, the solution techniques provided in this chapter are more

generally applicable to any bounded, not necessarily convex, regional data objects.

A related problem is the problem of minimizing the maximum of the maximum dis-

tances between the regional data objects and the cluster centers in the presence of

instance-level constraints. This problem is a generalization of the well studied clus-

tering/facility location problem that minimizes the maximum radius among the clus-

ters which is known as the k-center problem (k represents the number of clusters to

be formed), see e.g., [31]. The problem will be considered in this study, on the other

hand, reduces to the minimum-sum-of-squares (semi-supervised) clustering problem

when all the regional data objects are points.

Given a cluster consisting of some regional data, the problem of how to compute

its centroid is a significant problem since it appears as a subproblem in many of the

clustering algorithms proposed. Therefore its solution is of great importance and we

consider this problem first. We provide mathematical formulation and application of

subgradient method for the problem.

12

After the single cluster case, we provide mathematical programming formulation and

some heuristic approaches to find a partition of regional data objects which is ex-

pected to be in accordance with a given number of instance-level constraints. The

objective function of the problem is to minimize the total of the sum of the violation

costs of the unsatisfied instance level constraints and a weighted sum of squared max-

imum Euclidean distances between the locations of the data objects and the centroids

of the clusters they are assigned to.

Finally, we compare all of the proposed solution methods in terms of solution quality

and computational time on both randomly generated and real life datasets.

The rest of the chapter is organized as follows: In Section 2.2, we provide a brief

literature review on unsupervised clustering, semi-supervised clustering, and cluster-

ing in the presence of uncertainty. In Section 2.3, we introduce the notation used

throughout the chapter. In Section 2.4, we discuss solution approaches that compute

the centroid of a given cluster consisting of regional data objects. In Section 2.5,

we provide mathematical programming formulation and heuristic approaches, which

are modifications of the algorithms from the literature, for the considered clustering

problem. The computational studies are presented in Section 3.5 and we conclude in

Section 2.7 with some future research directions.

2.2 Literature Review

2.2.1 Unsupervised Clustering

A common approach in clustering is to consider an optimization problem and solve

the resulting problem using exact algorithms, heuristics, or approximation algorithms.

Different objective functions have been employed in the literature. The most com-

monly used one is to minimize the sum-of-squared distances between each data object

and the centroid of the cluster the object belongs to. Here, the centroid of a cluster

can be considered as the representative of the cluster.

Most clustering algorithms can be categorized as hierarchical or partitional. Hierar-

chical clustering algorithms build a hierarchy of clusters by merging (agglomerative

13

methods) or splitting (divisive methods) clusters successively [59]. The hierarchy

of clusters is usually represented by a tree known as dendrogram. By cutting the

dendrogram at the proper level, clustering with the desired number of clusters can

be obtained. For more on hierarchical clustering algorithms, [112, 118, 155] can be

reviewed.

Agglomerative hierarchical clustering algorithms begin with each data object in a

separate cluster and in a progressive manner merge two clusters that are the closest to

reduce the number of clusters by one until all the data objects are in a single cluster.

The steps of a basic agglomerative hierarchical clustering algorithm are as follows:

Algorithm 1 Agglomerative Hierarchical Clustering

1: Let Ci = {xi}, for every i = 1, 2, . . . , n and let C = {C1, C2, . . . , Cn}
2: for k = n to 1 do

3: Dendrogram(k) = C

Let (u, v) = argmini 6=j: Ci,Cj∈C ρ (Ci, Cj)

Cu = Cu
⋃
Cv and C = C \ Cv

4: end for

where X = {x1, ..., xn} indicates the set of point data objects to be clustered, n is

the number of data objects and ρ (Ci, Cj) represents the distance between the clusters

Ci and Cj and (u, v) the arguments of the closest two clusters. Distance between two

clusters can be measured in several different ways. In single linkage clustering, the

distance between two clusters is measured by the minimum distance between the data

objects in the two clusters. In complete linkage clustering, distance between clusters

is measured by the two most distant objects rather than the closest ones. Average

linkage clustering uses on the other hand the average distance between the objects in

the two clusters. There are several other ways to measure distances between groups,

see for instance [155].

Partitional clustering algorithms, on the other hand, attempts to construct a one-level

clustering of the data objects without a hierarchy. The problem of clustering a given

number of point data objects so that the sum-of-squares objective function is min-

imized is NP-hard in general [115] and thereof heuristic solution approaches have

been widely used. The k-means algorithm [111], which is among the most popu-

14

lar data mining algorithms, and its variants are the most commonly used partitional

clustering heuristics proposed for the problem. Note that because of its easy to im-

plement nature, simplicity, efficiency, and empirical success, its framework has also

been commonly used in algorithms developed for semi-supervised clustering prob-

lems. The steps of k-means algorithm are based on two simple observations. First, if

the centers of the clusters are known, then each data object is assigned to the cluster

whose center is closest to the object. Second, if all the data objects belonging to a

cluster are known, then the center of the cluster is computed by averaging all data

objects in the cluster. Algorithm 2 shows the details of the k-means algorithm where

k represents the number of clusters to be formed. Algorithm starts with a set of clus-

ter centroids which can, for instance, be selected at random. Then, the assignment

and update steps are repeated until convergence is achieved. In the assignment step,

each data object is assigned to the closest cluster (in terms of the distances between

the object and the centroids). In the update step, the coordinates of each centroid are

updated as the average of the coordinates of the data objects belonging to the cluster.

Algorithm 2 k-means

1: Initialization: Start with initial cluster centroids, µj , j ∈ {1, . . . , k}.
2: repeat

3: Let Cj = ∅, for all j ∈ {1, . . . , k}.
4: Assignment: Assign each data object xi ∈ X , i ∈ {1, . . . , n} to the closest

cluster j∗, and let xi ∈ Cj∗ , where j∗ = argminj ‖xi − µj‖.
5: Update: Update the cluster centroids by averaging the data objects assigned to

them, i.e.,

µj =

∑
xi∈Cj

xi

|Cj|
, i ∈ {1, . . . , n}, j ∈ {1, . . . , k}.

6: until Convergence is achieved.

7: return Partition {C1, . . . , Ck} of X .

The k-means algorithm converges to a local solution, but the convergence can be

slow. The final clustering is highly dependent on the set of initial cluster centroids and

therefore the algorithm may be run several times with different set of initial centroids

with the hope of getting better solutions. Several initialization heuristics have been

proposed in the literature to be able to start with a good set of initial centroids, see,

15

e.g., [34]. Due to the known problems with the classical k-means algorithm, several

variants of the algorithm have been developed [74, 77, 104].

Note that the review in this section is by no means complete since the topic is not di-

rectly relevant to the problem we consider. We just reviewed the important definitions

and algorithms which are used in the rest of the study.

2.2.2 Semi-supervised Clustering

In some cases, there may be some priori knowledge about the underlying structure of

the data. This knowledge can arise from expert opinion, user feedback, or the needs

of the problem owner. Incorporating such knowledge into the clustering process and

hence allowing the user to guide the process toward the desired partitioning of the

data or help the clustering algorithm avoid local minima is known as semi-supervised

clustering and has received extensive attention recently.

Semi-supervised clustering techniques have been successfully applied in several fields.

In gene clustering based on gene expression data obtained with DNA microarrays,

databases of co-occurrence data have been used to generate constraints forcing that

certain genes must be in the same cluster [60, 129, 153].

In some agricultural areas, each farmer cultivates a large number of small and dis-

persed land parcels. This has several disadvantages. A solution to this problem

would be land consolidation which refers to the process that the farmers surrender

their dispersed parcels in order to receive a more continuous equivalent land area.

Land consolidation is clearly a clustering problem with several constraints. Firstly,

neighboring parcels should be assigned to a farmer. Secondly, the total land area of

a farmer should not change much after consolidation. Thirdly, the quality of soil of

each farmer’s land should also not change by too much. There are other constraints

about the geometry of the land a farmer receives, such as it should not be a continuous

long but narrow land [21].

In text clustering, the goal is to automatically categorize a large number of text doc-

uments into smaller and manageable groups (clusters) based on their content. The

user may specify that some documents should be clustered into the same group as

16

they have similar contents or have the same authors and/or some documents should

be separated from each other due to the differences in their subjects [79].

For more applications of semi-supervised clustering, the survey written by Davidson

and Basu [42] can be investigated.

In semi-supervised clustering, the prior knowledge can appear in the form of labeled

data or constraints. In the former one, labels of some of the data objects are known,

but the amount of available information (number of known labels) may not sufficient

to perform classification. In such cases, one can perform clustering instead of classi-

fication incorporating the known labels in some way to the clustering procedure.

Instead of having labeled data, there may be some constraints on the data objects or

clusters. For example, there may be constraints on pairs of data objects in the form

of pairwise relations. This type of knowledge is generally more practical. Getting the

true labels of the data objects may require too much effort or may be costly, while

whether pairs of data objects belong to the same cluster or different clusters can be

easily specified by an expert.

Constraints encountered in clustering problems can be categorized as instance-level

and cluster-level constraints. Instance-level constraints are pairwise must-link and

cannot-link constraints on some pairs of data objects. A must-link constraint between

two data objects is used to indicate that the objects are to be placed in the same

cluster. A cannot-link constraint between two data objects, on the other hand, is

used to indicate that the objects are to be placed in different clusters. It should be

noted that prior information in the form of pairwise constraints is weaker than the

prior information in the form of labeled data [91]. While labeled data can easily be

transformed into pairwise constraints, the labels of data objects cannot be inferred

from pairwise constraints.

In addition to instance-level constraints, there can be several other constraints in a

semi-supervised clustering problem. Balancing constraints would force the sizes of

the clusters to be comparable. More generally, given data objects with associated

positive weights, one may restrict the total weight of the data objects in each cluster

(this is known as the capacitated clustering problem). In particular, if all the weights

17

are one, then the size of each cluster is restricted. There could be constraints that put

lower or upper bounds on the radii of the clusters. Given an initial clustering of the

data, one may want to obtain a clustering that is “different” from the initial one. All

such constraints, i.e., the constraints different from instance-level constraints, can be

named as cluster-level constraints.

In semi-supervised clustering algorithms, the given constraints can be considered as

hard or soft. Hard constraints must be satisfied in the final clustering given by the

algorithm. Soft constraints, however, are allowed to be violated by incurring some vi-

olation costs which are usually incorporated in the objective function. The advantage

of algorithms considering constraints as soft over algorithms considering constraints

as hard is that the former usually better handles noisy constraints. Algorithms in

which the constraints are taken as hard may not find a feasible partition if there is

noise with the constraints. While algorithms may end up with no partition at all in

hard constraint case, the algorithms find a partition in every case with some amount

of constraint violations in the soft constraint case.

Semi-supervised clustering algorithms fall into three categories [12], namely search

based methods, distance based methods and hybrid methods. In search based meth-

ods, clustering algorithms are modified to incorporate the prior knowledge into the

clustering task. In other words, the solution space to be searched is adjusted accord-

ing to the constraints. Common techniques in search based methods are modifying

the objective function by adding penalty terms for unsatisfied constraints, enforcing

constraints to be satisfied and using prior knowledge to initialize clusters. In distance

based methods, an existing clustering method is generally used but the distance mea-

sure of the method is modified in accordance with the prior knowledge. The distance

measure is adjusted in such a way that data objects that should be placed in the same

cluster will be closer to each other while data objects that should be placed in differ-

ent clusters will be farther away from each other. Hybrid methods incorporate search

and distance based methods and usually outperform the individual methods [12].

18

2.2.2.1 Semi-supervised Clustering with Labeled Data

Semi-supervised clustering with limited number of labeled data can be considered as a

multi objective optimization problem with objectives of maximizing intra-cluster sim-

ilarity, maximizing inter-cluster dissimilarity and minimizing cluster impurity which

is a measure of the consistency between the partition and the prior knowledge (labels).

To solve such a multi objective optimization problem Basu et al.[10] proposes an al-

gorithm which is a modifications of k-means and Demiriz et al. [47] uses a genetic

algorithm. These methods can be categorized as search based method.

The same problem can also be handled in two stages instead of considering it as a

multi objective optimization problem. In the first stage, cluster impurity is considered.

In this stage, data objects are transformed into a new space using the prior knowledge

on hand. This transformation is done in such a way that objects having the same label

will be closer to each other and objects with different labels will be farther away from

each other in the new space. This first stage is called as distance metric learning.

After the metric is learnt, cluster dispersion is considered in the second stage where

traditional clustering algorithms are generally employed. Such methods are distance

based methods. In [161], authors propose a parametric distance learning method for

the clustering problem with labeled data.

2.2.2.2 Semi-supervised Clustering with Instance-Level Constraints

In search based methods for clustering with constraints, the problem can be consid-

ered as a multi objective optimization problem as in the case with clustering in the

presence of some labeled data. In addition to cluster dispersion, a measure of con-

straint violation is used as another objective instead of using cluster impurity. Such

methods generally modify the well known clustering algorithms like k-means and

COBWEB to solve the problem (see, e.g. [144], [145], [11], [146], [44], [9]). Alter-

natively, there are graph-theoretic solution method [158] and an algorithm that make

use of instance-level constraints in an agglomerative hierarchical clustering [116].

Distance based methods handle the same problem in two stages. In the first stage, a

new distance metric which brings must linked data objects closer and pushes cannot

19

linked data objects apart is defined. A measure of dispersion as a function of this

newly defined distance metric is then used in the second stage for clustering. [91],

[87] and [35] propose new distance metrics that uses the instance level constraints.

Xing et al. [154] finds the optimal distance metric for a given set of instance level con-

straints by a convex optimization model. Bar-Hillel et al. [8] uses relative component

analysis (RCA) clustering with instance level constraints.

Hybrid methods benefit from the advantages of both search based and distance based

methods and generally perform better than the individual methods. Lately, noticing

this potential, some authors proposed hybrid methods (see, e.g., [12], [17], [13]).

Law et al. [98, 99] also address the problem of clustering with instance level con-

straints. Most of the methods mentioned so far consider the constraints as correct

and consistent. Authors consider the constraints as random variables and propose an

expectation-maximization (EM) algorithm in their study.

2.2.2.3 Semi-supervised Clustering with Cluster-Level Constraints

Semi-supervised clustering with cluster-level constraints did not receive too much at-

tention as clustering with instance level constraints in data mining community. Con-

straints like forcing the sizes of the groups (clusters) to be comparable and putting

lower or upper bounds on the radii or diameter of the groups are generally used in

facility location problems. A facility location problem is the problem of finding loca-

tions of a predetermined number of facilities to serve the customers so as to optimize

a certain objective like a function of distances between facilities and customers as-

signed to them. If we consider the facility locations as cluster centers, customers as

data objects and the objective to be optimized in the facility location problem as a

cluster dispersion measure, facility location problem with such constraints and the

clustering with cluster-level constraints are very alike. For example, in [57], Drezner

proposes two heuristics and an optimal algorithm for the p-center problem encoun-

tered in the facility location literature which can be considered as clustering with

upper bounds on the radii of the clusters.

The methods proposed for clustering with cluster-level constraints are all search based

20

methods. A distance metric learning in such problems is not applicable as there is no

aim of bringing some data objects closer to each other while pulling some others

apart.

In the paper by Davidson and Ravi [43], instance-level constraints and two types of

cluster-level constraints are used in a search based agglomerative hierarchical cluster-

ing algorithm. The cluster level constraints considered are δ–constraint that enforces

a distance of at least δ between any two data objects that are not in the same cluster

and ε–constraint that requires that for any data object if there is any other object in the

same cluster, then there should be at least one object which is at most ε away from it.

[7] and [69] propose algorithms to find balanced clusters (with equal size). Balancing

constraints can be seen as a special case of size constraints which put constraints on

the size of each cluster (or on the total weight of the data objects in each cluster in the

case with weights on the data objects). This is known as the capacitated clustering

problem. Zhu et al. [162] provide 0-1 integer linear programming problem. Bradley

et al. [25] also uses integer programming but thanks to the unimodularity of their

problem they solve LP. [67] modifies k-means algorithm. [140] uses a graph based

algorithm. Other solutions approaches and applications of the capacitated clustering

problem can be found in [38, 68, 117].

Gonzales [70] considers the clustering problem that minimizes the maximum inter-

cluster distance. He proposes an approximation algorithm which has O(kn) time

complexity where k is the number of clusters and n is the number of data objects.

2.2.2.4 Feasibility Issues for the Clustering with Constraints

In this section, we review the complexity of the clustering feasibility problem under

constraints that is the problem of finding a feasible partition of the data satisfying

all of the given constraints. Four types of constraints have been considered in the

literature [43, 44, 91]; namely must-link, cannot-link, δ, and ε constraints. Two types

of feasibility problems are considered:

• Given a value of k, does there exist a feasible partition of the data into k clusters

21

satisfying all the given constraints?

• Given the constraints, does there exist a feasible partition of the data (into any

number of clusters) satisfying all the constraints?

The complexity results are due to [43, 44, 91]. The following table summarizes the

complexity of the clustering feasibility problem under different combinations of the

constraints and is taken from [43].

Table 2.1: Complexity of the clustering feasibility problem

Constraint Combination k given k not given

Cannot-link NP-complete [44, 91] P [43]

Must-link and δ P [44] P [43]

Must-link and ε NP-complete [44] P [43]

δ and ε P [44] P [43]

Must-link, Cannot-link, δ and ε NP-complete [44] NP-complete [43]

In general, the feasibility problem with only must-link constraints can be solved in

polynomial time whether k is given or not. The feasibility problem with only cannot-

link constraints is polynomial time solvable when k is not given, but is NP-complete

in general when k (≥ 3) is specified. The feasibility problem with only δ constraint or

only ε constraint can be solved in polynomial time in both cases. Note that, in general,

when a combination of ε constraint and must-link constraints are given, the feasibility

problem becomes NP-complete for a fixed value of k even though the problem is easy

if only one of the constraint types is given.

2.2.3 Clustering of Uncertain Data

The uncertainty in the location of the data objects can be due to various reasons,

e.g., imprecision in measurements, sampling error, reporting errors, randomness in-

herent in various phenomena. In such cases, taking the locations of the data objects

as regions is more appropriate than taking them as fixed points. Clustering of data

objects whose locations are uncertain (i.e. data objects can be represented as regions)

22

is an important issue and appears in several real life settings. Consider, for exam-

ple, clustering of digital cameras whose different aspects (e.g., image quality, battery

performance) are rated by users [84]. The ratings of each camera can be represented

by a multivariate probability distribution on a multidimensional region. If the worst-

case scenarios are important, then the density of the distribution is of no relevance,

but rather the multidimensional region that the distribution is defined over (where

the density is nonzero) is important. If certain cameras are (not) to be placed in the

same cluster, some instance level constraints can be introduced to guide the clustering

algorithm in the direction of the desired clustering.

Another example would be clustering of cities based on atmospheric conditions like

temperature and humidity on a particular month. As the atmospheric conditions may

vary during a specific month, each city may be represented by a multivariate prob-

ability distribution on a multidimensional region which is not necessarily a hyper-

rectangle as temperature and humidity are not independent.

When data objects are represented by regions or multivariate probability distributions,

the distance between an object and a given point can be measured in different ways,

such as

• expected distance,

• maximum distance,

• minimum distance.

The expected distance is generally used when the distance to every point in the region

is important. If the realizations of the distribution occur frequently, then the use of

the expected distance may be justified. For uncertain (or regional) data objects, the

expected distance has been used in a number of studies in the clustering and facility

location literature.

In [36], the authors use expected distances and propose an extension of the k-means

algorithm for clustering of uncertain data objects each of which is represented by an

uncertainty region and a probability density function. An improved versions of this al-

gorithm are proposed in [119] and [100]. They aim to reduce the number of expected

23

distance calculations and the time needed for those calculations. As the computation

of the expected distance between an uncertain object and a point is expensive, the au-

thors in [72] propose an extension of the k-medoids algorithm [88] which computes

the expected distances once at the beginning.

Expected distance has also been used in the facility location literature for the cases

where the customers are represented by regions or with probability distributions, see,

e.g., [106, 15, 40, 4, 33].

One disadvantage of using expected distances is that the centroid found may be very

far away from certain realizations of the locations of the data objects. In cases where

the worst case scenarios are important, e.g., when locating emergency facilities or

when looking for robust solutions, the maximum distance is rather used, see e.g.,

[54, 85, 86, 58].

The minimum distance is usually used in the facility location community for the prob-

lems where drop-off and take-away points of a regional demanding entity, i.e., cus-

tomer, are on the boundary of the region and the internal distribution within the region

is of no concern, see e.g., [28, 29]. A survey on facility location problems where the

customers are represented by regions or with probability distributions is given in [50].

2.3 Notation

In this section, the notation is introduced. The data objects that are to be clustered are

assumed to be either polytopes or disks in d-dimensional Euclidean space Rd. Let

Ri denote the ith regional data object, i ∈ {1, 2, . . . , n + m}. It is assumed that the

first n objects, i.e., R1, R2, . . . , Rn, represent polytopes and the last m objects, i.e.,

Rn+1, Rn+2, . . . , Rn+m, represent closed disks. The set of coordinates of corners of

polytope Ri is denoted by `i (⊂ Rd) for every i ∈ {1, 2, . . . , n} (so Ri has |`i| many

corners). The center and radius of disk Ri is denoted by oi and ri, respectively, for

any i ∈ {n + 1, n + 2, . . . , n + m}. Associated with the ith regional data object Ri,

there is a positive weight αi, i ∈ {1, 2, . . . , n+m}.

A partition,C1, C2, . . . , Ck, of the n+m regional data objects,R1, R2, . . . , Rn+m, into

24

k clusters is looked for given some must-link and cannot-link constraints. Here Cj

represents the jth cluster and its centroid is denoted by µj for any j ∈ {1, 2, . . . , k}.
The set of all must-link and cannot-link constraints are indicated by ML and CL,

respectively. Any constraint {i1, i2} ∈ ML implies that the regional data objects Ri1

and Ri2 are to be placed in the same cluster. A cannot-link constraint {i1, i2} ∈ CL,

on the other hand, is used to express the condition that the regional data objects Ri1

and Ri2 should not be placed in the same cluster. When the constraints are taken as

hard constraints, no constraint violation is allowed in the final clustering. In the soft

constraint case, however, constraints are allowed to be violated in the final clustering.

In this case, violation costs (penalties) are incurred by violated constraints. The cost

associated with the violation of a must-link constraint and a cannot-link constraint are

assumed to be equal to c1 > 0 and c2 > 0, respectively.

2.4 Computation of the Centroid of a Given Cluster

Given a cluster consisting of some polytopes and disks, the problem of how to com-

pute its centroid, namely the centroid computation problem (CCP), is considered in

this section. This problem appears as a subproblem in many of the clustering algo-

rithms discussed in this chapter and therefore its solution is of great importance.

Assume that cluster C consists of n polytopes and m closed disks in Rd. Its centroid

µ∗ ∈ Rd is the point in the Euclidean space that minimizes the sum of squares of the

maximum Euclidean distances between the regional data objects and µ∗. Mathemati-

cally, we have

µ∗ = argmin
µ∈Rd

φ(µ), (2.1)

where

φ(µ) =
n∑
i=1

αi(max
pi∈`i

(‖pi − µ‖))2 +
n+m∑
i=n+1

αi(‖oi − µ‖+ ri)
2. (2.2)

Here, maxpi∈`i(‖pi − µ‖) is the maximum Euclidean distance between µ and the

polytopeRi, i ∈ {1, 2, . . . , n}which is obtained by considering the distances between

µ and the corners ofRi and taking the maximum. The term ‖oi−µ‖+ri in the second

summation is the maximum distance between µ and the disk Ri, i ∈ {n + 1, n +

2, . . . , n + m}, which is equal to the distance between µ and the center of the disk,

25

oi, plus the radius ri of the disk. Note that as the sum and the maximum of convex

functions are convex, φ is a convex function.

The rest of this section is devoted to solution approaches for the CCP. In Section 2.4.1,

a second order cone programming (SOCP) formulation for the problem is introduced.

This formulation shows that the CCP can be solved in polynomial time. A similar

SOCP formulation for the CCP with only polygonal data objects is formulated in

[54]. In Section 2.4.2, a subgradient algorithm is proposed to be able to solve the

CCP faster. This is important as the CCP is solved several times as a subproblem in

some clustering algorithms considered in this chapter.

2.4.1 An SOCP Formulation for the CCP

A second order cone programming (SOCP) problem is the problem of optimizing a

linear objective function over second order cone constraints. It is a convex optimiza-

tion problem of the form

minimize υTx

subject to ‖Atx+ bt‖ ≤ γTt x+ θt, t = 1, 2, . . . , w. (SOCP)

Here, x ∈ Rq denotes the vector of decision variables, and υ ∈ Rq, At ∈ Rqt×q, bt ∈
Rqt , γt ∈ Rq, θt ∈ R denote the problem parameters. The constraints of (SOCP)

are called second order cone constraints. Note that a linear inequality aTx ≤ β can

easily be written as a second order cone constraint as ‖Ax+ b‖ ≤ γTx+ θ, where A

is the matrix of all zeros, b is the vector of all zeros, γ = −a and θ = β. Therefore

SOCP problems generalize linear programming (LP) problems. Like LP problems,

SOCP problems are polynomial time solvable. Several numerically stable and com-

putationally efficient implementations of solution algorithms have been developed for

SOCP problems. For an overview of SOCP, examples, application areas and solution

approaches, the reader is referred to [105], [3].

A mixed integer second order cone programming (MISOCP) problem is a related

problem in which some or all decision variables in (SOCP) are constrained to take

on integer values. MISOCP problems are NP-hard in general and usually solved by

branch-and-bound algorithms that call an SOCP solver at each node of the branch-

26

and-bound tree.

An SOCP formulation for the CCP is proposed in [54] for the case when all the data

objects are polygons in the plane. So, the formulation provided is not novel, but it is

extended here to also handle the other regional data objects, namely disks, considered

in this chapter. Let ei denote the squared maximum distance between the polytope

Ri and the cluster centroid µ, i ∈ {1, 2, . . . , n}, and fi denote the squared maximum

distance between the diskRi and the cluster centroid µ, i ∈ {n+1, n+2, . . . , n+m}.
An SOCP formulation for the CCP problem is given below.

minimize
(∑n

i=1 αiei +
∑n+m

i=n+1 αifi
)

subject to ei ≥ ‖pi − µ‖2, i = 1, 2, . . . , n, pi ∈ `i,

fi ≥ δ2
i , i = n+ 1, n+ 2, . . . , n+m, (SOCP-CCP)

δi − ri ≥ ‖oi − µ‖, i = n+ 1, n+ 2, . . . , n+m.

The objective function minimizes the weighted sum of squared maximum Euclidean

distances between the data objects and the cluster centroid. The first set of con-

straints imply that ei is greater than or equal to the squared distance between the

cluster centroid and every corner of Ri for any i ∈ {1, 2, . . . , n}. The sense of the

objective function and the positive coefficient αi make sure that in an optimal solu-

tion ei is equal to the squared maximum distance among all. Similarly, the second

and the third sets of constraints enforce that fi is greater than or equal to the squared

maximum Euclidean distance between the cluster centroid and the disk Ri for any

i ∈ {n + 1, n + 2, . . . , n + m}. The objective function ensures the equality in an

optimal solution.

The first and second sets of constraints are not in the form of second order cone

constraints. They can, however, be converted into equivalent second order cone con-

straints [3].

The worst case complexity of an SOCP formulation in general is O(v2
√
N
∑N

i=1 ni),

where v is the number of decision variables, N is the number of cone constraints,

and ni is the dimension of the ith cone constraint [105]. In (SOCP-CCP), there are n

and m decision variables representing the square of the maximum distances of poly-

topes and disks from the cluster centroid, respectively, m decision variables denoting

27

the maximum distances of disks from the cluster centroid, and d decision variables

expressing the coordinates of the cluster centroid. Thus, there are v = n + 2m + d

decision variables in total. The number of cone constraints related with polytope i is

equal to the number of corners of the polytope, i.e, |`i|. Therefore there are
∑n

i=1 |`i|
cone constraints for polytopes. For each disk, there are 2 cone constraints. There-

fore, the total number of cone constraints in the formulation is N =
∑n

i=1 |`i|+ 2m.

Since each cone constraint is of at most dimension d + 1, the term
∑N

i=1 ni can be

rewritten as N(d + 1). Then, the worst case complexity of the SOCP formulation is

O((n+m+d)2d(
∑n

i=1 |`i|+m)3/2). It should be noted that the worst case complex-

ity increases with the number of regional data objects, the number of corners of the

polytopes, and the dimension of the regional data objects. For more on the time and

space complexity of the SOCP problems, the reader is referred to [3, 105].

2.4.2 Subgradient Algorithm for the CCP

The CCP is a convex but nonsmooth minimization problem and therefore the subgra-

dient method that was originally proposed by Shor [132] would be a suitable solution

alternative. The method, at each iteration, takes a step in the direction of a negative

subgradient as

µs+1 = µs − τsg(µs). (2.3)

Here, µs is the centroid at the sst iteration, τs is the step size at the sst iteration, and

g(µs) is a subgradient of φ (as defined in Equation (2.2)) at µs.

We first characterize the subdifferential of φ, ∂φ, at any solution µ ∈ Rd, which

is the set of all subgradients at µ. Let φ1(µ) =
∑n

i=1 αi(maxpi∈`i(‖pi − µ‖))2 and

φ2(µ) =
∑n+m

i=n+1 αi(‖oi − µ‖+ ri)
2. Then, we have

∂φ(µ) = ∂φ1(µ) + ∂φ2(µ). (2.4)

Although φ1 is nondifferentiable, it can be written as the maximum of a certain num-

ber of differentiable functions as

φ1(µ) = max
pi∈`i, i=1,...,n

(
n∑
i=1

αi ‖pi − µ‖2

)
= max

Ω=1,...,
∏n
i=1|`i|

φ1
Ω(µ). (2.5)

28

The function φ1
Ω is said to be ‘active’ at µ if φ1

Ω(µ) = φ1(µ). Let I(µ) be the set

of indices of all ‘active’ functions at µ and I(µ) = {Ω|φ1
Ω(µ) = φ1(µ)}. Note that

∂φ1
Ω(µ) is equal to the gradient of φ1

Ω at µ. Thus, we have by [24]

∂φ1(µ) = conv
⋃

Ω∈I(µ)

∂φ1
Ω(µ). (2.6)

In our computational experiments, to obtain an ‘active’ function at µ we take one of

the equidistant farthest points of each polytope data object from µ.

Now, we characterize ∂φ2. Let φ2
i (µ) = αi(‖oi−µ‖+ri)

2 = αi(‖oi−µ‖2 +2ri‖oi−
µ‖ + r2

i) which is nondifferentiable for each i ∈ {n + 1, n + 2, . . . , n + m}. Since

φ2(µ) =
∑n+m

i=n+1 φ
2
i (µ), we have

∂φ2(µ) =
n+m∑
i=n+1

∂φ2
i (µ), (2.7)

where

∂φ2
i (µ) =

αi

(
2(µ− oi) + 2ri

(oi − µ)

‖oi − µ‖

)
, if µ 6= oi

αi (2(µ− oi) + 2ri{u : ‖u‖ ≤ 1}) , otherwise.
(2.8)

An important aspect of the subgradient method is the size of the step taken at each

iteration. We conduct some preliminary computational experiments to make a selec-

tion among different step size rules presented in the literature. The step size rules

used in the experiments are:

• Square summable but nonsummable step size rule [23]:

Any step size satisfying
∑∞

s=1 τ
2
s <∞,

∑∞
s=1 τs =∞,

• Nonsummable diminishing step size rule [23]:

Any step size satisfying lims→∞ τs = 0,
∑∞

s=1 τs =∞,

• Polyak step size rule [124]:

τs =
φ(µs)−φ(s)best+γs
‖g(µs)‖2 where φ(s)

best = min {φ(µ1), . . . , φ(µs)},
∑∞

s=1 γ
2
s < ∞ and∑∞

s=1 γs =∞. φ(s)
best − γs is an estimation of φ∗, the optimal objective function

value of the problem, at iteration s.

29

All of the mentioned rules guarantee convergence to the optimal solution of the CCP.

Setting a reasonable stopping criteria is another decision to be made. A common

stopping criterion is to stop the algorithm when the difference between upper and

lower bounds on φ∗ is less than a threshold value, ε. φ(s)
best can be used as an upper

bound on φ∗. For a lower bound on φ∗, we implement the formula proposed in [23].

A lower bound on φ∗ at iteration s, φ(s), is

φ(s) =
2
∑s

i=1 τiφ(µi)−D2 −
∑s

i=1 τ
2
i ‖g(µi)‖2

2
∑s

i=1 τi
, (2.9)

whereD is an upper bound on the distance between the initial solution and the optimal

solution. As the sequence
{
φ(s)
}

is not necessarily nondecreasing, the best lower

bound on φ∗ till iteration s, φ(s)
worst, is computed as φ(s)

worst = max
{
φ(1), . . . , φ(s)

}
.

Another stopping criterion is to stop the algorithm when the number of iterations

reaches a predefined number. Combining the two stopping criteria, we terminate the

algorithm when φ(s)
best − φ

(s)
worst ≤ ε or the maximum number of iterations is achieved.

We design a full factorial experiment with the following design factors

• Step size rule (4 levels : Polyak step size rule with γs = 5
s
, Polyak step size rule

with γs = 10
s

, square summable but nonsummable step size rule with τs = 1/s,

nonsummable diminishing step size rule with τs = 1/
√
s),

• ε (3 levels : 0.001, 0.0001, 0.00001),

• Maximum number of iterations (3 levels : 100, 500, 1000).

Considering the trade off between the solution quality and solution time, we select

nonsummable diminishing step size rule with τs = 1/
√
s, ε = 0.00001 and maximum

number of iterations=100.

The steps of the subgradient method for a given instance of the CCP with polytopes

and closed disks are given in Algorithm 3, named as SM.

Solving the CCP in a time efficient manner is crucial since it is solved as a subprob-

lem in the algorithms discussed in the next section. The proposed solution methods,

namely, the SOCP formulation and SM, are compared in terms of the solution times

30

Algorithm 3 SM

1: Initialization: Start with an initial cluster centroid, µ0 ∈ Rd and set iteration

number s = 0.

2: loop

3: Find a farthest point of each polytope Ri, i ∈ {1, 2, . . . , n} from the cluster

centroid µs (ties are arbitrarily broken) and for each disk Ri, i ∈ {n + 1, n +

2, . . . , n+m} check whether µs = oi or not.

4: Find a subgradient of φ at µs, g(µs), using Equation (2.4).

5: Calculate the step size, τs = 1/
√
s.

6: Set µs+1 = µs − τsg(µs).

7: Calculate the objective function value at µs+1, φ(µs+1), by Equation (2.2).

8: Find lower bound on φ∗ at µs+1, φ(s+1), by Equation (2.9).

9: Find φ(s+1)
best and φ(s+1)

worst.

10: if φ(s+1)
best − φ

(s+1)
worst ≤ ε or s+ 1 = 100 then

11: return Optimal cluster centroid, µs+1.

12: else

13: Set s = s+ 1.

14: end if

15: end loop

for a number of randomly generated problem instances with only rectangular data

objects in the plane and the results are shown in Table 2.2. The performance of SM

is better than that of the SOCP formulation. Thus, to solve the CCP appearing as

subproblems in the algorithms discussed in Section 2.5, we prefer SM over the SOCP

formulation. The subgradient algorithm needs O(1/ε2) iterations [141]. The details

of the time complexity for an iteration are as follows. In Step 3 of the algorithm, to

find the farthest point of a polygon from the cluster centroid, the distances between

the cluster centroid and each corner of the corresponding polytope need to be com-

puted. Calculating the distance between two points in the Euclidean space Rd takes

O(d) time. Thus, in the worst case, the time required to find the farthest point of a

polytope from the cluster centroid isO(d`) where ` = max{|`1|, . . . , |`n|}. Checking

whether the cluster centroid and the center of a disk are the same or not requires O(d)

time. Therefore the total time required in Step 3 is O(nd` + md). In Step 4, finding

31

Table 2.2: Comparison of SM and SOCP in terms of computational time (in seconds)

n SM SOCP

5 0.023 0.484

10 0.017 0.511

20 0.033 0.852

50 0.079 1.894

100 0.150 3.753

200 0.300 7.361

500 0.776 18.661

∂φ1(µ) and ∂φ2(µ) takes O(nd) and O(md) time, respectively. Step 5 and Step 6

require O(1) and O(d) time, respectively. Time required in Step 7 is the same as that

in Step 3 since the same operations are executed, i.e., finding maximum distances

between data objects and the cluster centroid. Step 8 takes O(d) time. Finally, each

one of the remaining steps requires O(1) time. In total, each iteration of SM requires

O(d(n` + m)) time where ` = max{|`1|, . . . , |`n|}. The space complexity of the

algorithm is linear in the size of the input.

2.5 Semi-supervised Clustering with Reginal Data

In this section, we first give a mathematical programming formulation for the con-

sidered clustering problem, namely, the semi-supervised clustering problem (SSC),

which is only able to solve small size instances to optimality. After reviewing some

algorithms from the literature proposed mainly for semi-supervised clustering prob-

lems in which the data objects are represented as fixed points, we provide some mod-

ifications to make them applicable to the SSC.

2.5.1 An MISOCP Formulation for the SSC

Let aij be a binary variable introduced to assign Ri to Cj , i ∈ {1, 2, . . . , n + m},
j ∈ {1, 2, . . . , k}. The variable will take the value 1 if and only if Ri is assigned to

32

Cj . Also, let v1
i1i2

be a binary variable defined to check whether a must-link constraint

{i1, i2} ∈ ML is violated or not. The variable will take the value 1 if and only if Ri1

and Ri2 are placed into different clusters. Similarly, let v2
i1i2

be a binary variable

defined for a cannot-link constraint {i1, i2} ∈ CL and it will take the value 1 if and

only if Ri1 and Ri2 are placed into the same cluster.

Redefining ei and fi as the square of the farthest distance between polytope Ri,

i ∈ {1, 2, . . . , n}, and the nearest cluster centroid, and the square of the farthest

distance between disk Ri, i ∈ {n + 1, n + 2, . . . , n + m}, and the nearest cluster

centroid, respectively, an MISOCP formulation for the SSC is given below.

minimize
∑n

i=1 αiei +
∑n+m

i=n+1 αifi + c1

∑
{i1,i2}∈ML v

1
i1i2

+ c2

∑
{i1,i2}∈CL v

2
i1i2

subject to ei + (1− aij)M ≥ ‖pi − µj‖2, i = 1, 2, . . . , n, pi ∈ `i, j = 1, 2, . . . , k,

fi ≥ δ2
i , i = n+ 1, n+ 2, . . . , n+m,

δi − ri + (1− aij)M ≥ ‖oi − µj‖, i = n+ 1, . . . , n+m, j = 1, . . . , k,∑k
j=1 aij = 1, i = 1, 2, . . . , n+m,

ai1j − ai2j ≤ v1
i1i2
, {i1, i2} ∈ML, j = 1, 2, . . . , k, (MISOCP-SSC)

ai2j − ai1j ≤ v1
i1i2
, {i1, i2} ∈ML, j = 1, 2, . . . , k,

ai1j + ai2j ≤ v2
i1i2

+ 1, {i1, i2} ∈ CL, j = 1, 2, . . . , k,

aij ∈ {0, 1} , i = 1, 2, . . . , n+m, j = 1, 2, . . . , k,

v1
i1i2
∈ {0, 1} , {i1, i2} ∈ML,

v2
i1i2
∈ {0, 1} , {i1, i2} ∈ CL,

where M is a big number. The objective function minimizes the total of the sum

of the violation costs of instance level constraints and the weighted sum of squared

maximum Euclidean distances between the data objects and the centroids of the clus-

ters they are assigned to. The first set of constraints together with the sense of

the objective function and the positive coefficient αi imply that ei is equal to the

squared maximum Euclidean distance between Ri and the centroid of the cluster

Ri is assigned to for every i ∈ {1, 2, . . . , n}. Similarly, the second and the third

sets of constraints ensure that fi is forced to be equal to the squared maximum Eu-

clidean distance between Ri and the centroid of the cluster Ri is assigned to for every

i ∈ {n+ 1, n+ 2, . . . , n+m} in an optimal solution by the objective function. The

33

fourth set of constraints indicates that each data object is assigned to exactly one clus-

ter. The fifth and sixth sets of constraints together with the objective function impose

that the variable v1
i1i2

takes the value 1 in an optimal solution if and only if the data

objectsRi1 andRi2 for {i1, i2} ∈ML are assigned to different clusters. Similarly, the

seventh set of constraints and the objective function make sure that the variable v2
i1i2

takes the value 1 in an optimal solution if and only if the data objects Ri1 and Ri2 for

{i1, i2} ∈ CL are assigned to the same cluster. The other constraints are integrality

constraints.

The first three sets of constraints can be converted into second order cone constraints,

see e.g., [3]. The remaining sets of constraints are linear constraints that an MISOCP

formulation can handle.

This formulation is weak mainly due to the presence of the big-M in the formulation.

It can be used to solve small size problem instances to optimality, but it becomes time

and memory inefficient for medium or large size problem instances. Therefore, we

need time and memory efficient algorithms to solve the SSC.

Note that the above MISOCP formulation is proposed for the soft instance level con-

straints case. However, it can be easily modified for the hard instance level constraints

case in two ways. The first way is setting c1 and c2 to very big numbers and check-

ing the objective function value or the values of the binary variables obtained after

solving the above MISOCP formulation. The second way of making instance level

constraints hard is by modifying the decision variables, the objective function, and

the constraints of the model. In that case, the decision variables v1
i1i2

, {i1, i2} ∈ ML

and v2
i1i2

, {i1, i2} ∈ CL are not required. Thus, the terms related with those variables

in the objective function and the integrality constraints related with those variables

are deleted from the model. Moreover, instead of the fifth, sixth, and seventh sets of

constraints, the following two sets of constraints are added to the model to ensure that

must-link and cannot-link constraints are certainly satisfied:

ai1j = ai2j, {i1, i2} ∈ML, j = 1, 2, . . . , k,

ai1j + ai2j ≤ 1, {i1, i2} ∈ CL, j = 1, 2, . . . , k.

In the next two subsections, we describe five algorithms that are modifications of the

34

traditional k-means algorithm and an agglomerative hierarchical clustering algorithm

for the solution of the SSC. These algorithms are extensions of the algorithms pro-

posed in the literature for the solution of the semi-supervised clustering problems

with point data objects.

2.5.2 K-means based Algorithms for the SSC

In this subsection, we provide the details of COP-k-means [145], PC-k-means [11],

and CVQE [44] which are k-means based algorithms proposed for semi-supervised

clustering problems with point data objects in the presence of instance level con-

straints. Moreover, we review two k-means based algorithms proposed for semi-

supervised clustering problems with point data objects in the presence of a few num-

ber of labeled data, namely Seeded-k-means and Constrained-k-means [10]. These

algorithms are also applicable in the existence of instance level constraints after small

modifications. All of these algorithms are modified for the solution of the SSC and the

modified versions are called as UCOP-k-means, UPC-k-means, UCVQE, USeeded-

k-means and UConstrained-k-means, respectively. We next provide the details of the

original and the modified versions of the algorithms.

2.5.2.1 UCOP-k-means

The initialization and update steps of COP-k-means are the same as those of the k-

means. The assignment step of COP-k-means, however, is different. Each data object

is assigned to the closest ‘appropriate’ cluster. For a data object, a cluster is ‘appro-

priate’ if its placement in the cluster does not violate any instance level constraint

considering the data objects that have already been assigned to the clusters. In this

sense, the instance level constraints are handled as hard constraints. As the authors of

COP-k-means noted, the assignment step of the algorithm is order-dependent. The al-

gorithm may return an empty partition when an ‘appropriate’ cluster cannot be found

for a data object.

We now provide the details of UCOP-k-means which is a modified version of COP-

k-means for the SSC. The first modification is in the assignment step. We measure

35

closeness by the maximum distance between the regional (polytopes or disks) data

objects and the cluster centroids. At the very beginning of the algorithm we randomly

order the data objects in order to lessen the effect of order-dependence and keep

that ordering until the end of the algorithm. If an ‘appropriate’ cluster is not found

for a given data object in the first iteration, we re-order the data objects and re-start

the assignment step until a partition is obtained for the first iteration. In the next

iterations, if an empty partition is returned, we stop the algorithm and return the best

solution found so far considering the objective function of the MISOCP formulation.

The second modification is in the update step of the algorithm. We use the subgradient

method proposed in Section 2.4.2. The assignment and update steps of UCOP-k-

means alternate until assignments found in two successive iterations are the same or

the number of iterations reaches a predefined maximum number of iterations. The

details of UCOP-k-means are given in Algorithm 4.

2.5.2.2 UPC-k-means

The update step of PC-k-means is the same with that of the k-means. The instance

level constraints are considered in the initialization and assignment steps of PC-k-

means. In the initialization step of PC-k-means, equivalence classes (chunklets) are

formed by taking the transitive closure of the must-link constraints. Let the number

of such chunklets be ζ . If ζ ≥ k, then the centroids of the largest k of them (in

terms of size) are used as the initial centroids. If ζ < k, then using the centroids of

all the chunklets, ζ centroids are initialized. For the (ζ + 1)th cluster centroid, a data

object which has a cannot-link constraint with every chunklet is used if such an object

exists. The remaining centroids are initialized by randomly perturbing the global

centroid. A modified objective function that is the same with the objective function

of the MISOCP formulation in Section 2.5.1, consisting of the minimum-sum-of-

squares objective function used in the k-means and the constraints violation cost, is

considered in the assignment step of PC-k-means. Each data object is assigned to the

cluster that minimizes the contribution to the objective function value. Since some

constraints may be violated, constraints are handled as soft. Note that the objective

function value obtained after an assignment step is highly order-dependent.

36

Algorithm 4 UCOP-k-means

1: Initialization: Start with initial cluster centroids, µj , j ∈ {1, . . . , k}.
2: Order the data objects randomly and letRi′ , i′ ∈ {1, 2, . . . , n+m} be the ordered

data objects.

3: repeat

4: Assignment:

5: for i′ = 1 to n+m do

6: Assign the data object Ri′ to the cluster j∗ such that following conditions

are satisfied:

(1) j∗ = argminj maxpi′∈`i
′ ‖pi′ − µj‖ for polytopes while

j∗ = argminj ‖oi′ − µj‖ for disks, subject to:

(2) @ i′1, i′1 ∈ {1, . . . , i′ − 1}, such that {i′, i′1} ∈ML and Ri′1
∈ Ck

where k 6= j∗,

(3) @ i′2, i′2 ∈ {1, . . . , i′ − 1}, such that {i′, i′2} ∈ CL and Ri′2
∈ Cj∗ ,

and let Ri′ ∈ Cj∗ .
7: if @ j∗ satisfying the above conditions AND It is the first iteration then

8: Go to Step 2.

9: else if @ j∗ satisfying the above conditions then

10: Go to Step 18.

11: end if

12: end for

13: Update:

14: for j = 1 to k do

15: Update µj by SM considering the data objectsRi′ ∈ Cj , i′ ∈ {1, . . . , n+m}.
16: end for

17: until Convergence is achieved.

18: return Best partition of the data objects found so far.

We made some modifications to solve the SSC with PC-k-means and name the mod-

ified algorithm as UPC-k-means. Starting with the initial cluster centroids obtained

by using the given instance level constraints, we order the data objects randomly at

the beginning of the algorithm to reduce the effect of the order-dependence and keep

that ordering through the iterations similar to UCOP-k-means. We use the maximum

37

distance between the data objects and the cluster centroids in the assignment step and

the subgradient method in the update step of the algorithm. UPC-k-means terminates

with the best solution found, considering the objective function of the MISOCP for-

mulation, when the same convergence condition used in UCOP-k-means is satisfied.

The details of UPC-k-means are given in Algorithm 5.

Algorithm 5 UPC-k-means

1: Initialization: Start with initial cluster centroids, µj , j ∈ {1, . . . , k}, obtained

using the instance level constraints.

2: Order the data objects randomly and letRi′ , i′ ∈ {1, 2, . . . , n+m} be the ordered

data objects.

3: repeat

4: Assignment:

5: for i′ = 1 to n+m do

6: Assign the data object Ri′ to the cluster j∗ such that the contribution to the

objective function is minimized, where

j∗ = argminjαi′(max
pi′∈`i

′
(‖pi′ − µj‖))2 +

∑
{
i′, i′1

}
∈ ML,

i′1 ∈ {1, . . . , i
′ − 1}

Ri′1
6∈ Cj

c1 +
∑

{
i′, i′2

}
∈ CL,

i′2 ∈ {1, . . . , i
′ − 1}

Ri′2
∈ Cj

c2

for polytopes and

j∗ = argminjαi′(‖oi′ − µj‖+ ri′)
2 +

∑
{
i′, i′1

}
∈ ML,

i′1 ∈ {1, . . . , i
′ − 1}

Ri′1
6∈ Cj

c1 +
∑

{
i′, i′2

}
∈ CL,

i′2 ∈ {1, . . . , i
′ − 1}

Ri′2
∈ Cj

c2

for disks and let Ri′ ∈ Cj∗ .
7: end for

8: Update:

9: for j = 1 to k do

10: Update µj by SM considering the data objectsRi′ ∈ Cj , i′ ∈ {1, . . . , n+m}.
11: end for

12: until Convergence is achieved.

13: return Best partition of the data objects found so far.

38

2.5.2.3 UCVQE

The initialization step of the CVQE (Constrained Vector Quantization Error) algo-

rithm is the same with that of the k-means. To improve the clustering performance,

instance level constraints are taken into account in both the assignment and update

steps of CVQE. Let oiML(t) and oi′ML(t) be the indices of the first and second data

objects of the tth must-link constraint, respectively, and oiCL(t) and oi′CL(t) be the

indices of the first and second data objects of the tth cannot-link constraint, respec-

tively. Furthermore, let ciML(t) and ci′ML(t) denote the indices of the clusters to

which oiML(t) and oi′ML(t) are assigned, respectively, and ciCL(t) and ci′CL(t) denote

the indices of the clusters to which oiCL(t) and oi′CL(t) are assigned, respectively.

Also, by VML and VCL we represent the sets of indices of the violated must-link and

cannot-link constraints, respectively. In the assignment step of CVQE, the following

objective function E is considered.

E =
k∑
j=1

Ej, (2.10)

where

Ej =
∑

i:xi∈Cj

αi ‖xi − µj‖2 +
∑

t∈VML, ciML(t)=j

∥∥µj − µci′ML(t)

∥∥2

+
∑

t∈VCL, ciCL(t)=j

∥∥µj − µh(ci′CL(t))

∥∥2
.

Here h(j) returns the index of the nearest cluster to cluster j, where the distance

between two clusters is measured by the distance between their centroids. Objective

function E consists of two main terms; namely, a distortion term and a constraint

violation term. Similar to the k-means, the distortion term is a weighted sum of

squared Euclidean distances between the data objects and the centroids of the clusters

they are assigned to. The constraint violation term on the other hand is computed

by considering the distances between the cluster centroids. The cost of violating a

must-link constraint is the distance between the cluster centroids to which the must

linked data objects are assigned. The cost of violating a cannot-link constraint is the

distance between the centroid of the cluster to which the cannot linked data objects

are assigned and the nearest cluster centroid.

39

In CVQE, each pair of data objects belonging to a constraint is considered simultane-

ously. After checking all k2 possible assignments, the two data objects in a constraint

are assigned to the clusters that minimize the objective function E in Equation 2.10.

The data objects which do not belong to any instance level constraint are assigned to

the closest cluster.

In the update step of CVQE, the centroids are updated with the formula

µj =
yj
zj

(2.11)

where

yj =
∑

i:xi∈Cj

αixi +
∑

t∈VML, ciML(t)=j

µci′ML(t) +
∑

t∈VCL, ciCL(t)=j

µh(ci′CL(t))

and

zj =
∑

i:xi∈Cj

αi +
∑

t∈VML, ciML(t)=j

1 +
∑

t∈VCL, ciCL(t)=j

1.

With Equation 2.11, the cluster centroid that holds the first data object belonging to

a violated must-link constraint is moved towards the cluster centroid that holds the

second data object of the constraint. Moreover, the cluster centroid that holds both of

the data objects belonging to a violated cannot-link constraint is moved towards the

nearest cluster centroid.

In the final partition found by CVQE, some of the constraints may be violated, i.e.,

constraints are handled as soft. Note that the assignment step is highly order-dependent.

Both the order of the constraints and the order of the data objects in a constraint affect

the assignments.

For the solution of the SSC problem, we made some modifications to CVQE and

called this modified version as UCVQE. First of all, we order the instance level con-

straints randomly to reduce the effect of the order-dependence and keep that ordering

through the iterations. The next modification is in the assignment step. To find the

distance between a regional data object and a cluster centroid, we used the maximum

distance. The updated objective function is

UE =
k∑
j=1

UEj (2.12)

40

where

UEj =
∑

i∈{1,...,n}:Ri∈Cj

αi(max
pi∈`i
‖pi − µj‖)2 +

∑
i∈{n+1,...,n+m}:Ri∈Cj

αi(‖oi − µj‖+ ri)
2

+
∑

t∈VML, ciML(t)=j

∥∥µj − µci′ML(t)

∥∥2
+

∑
t∈VCL, ciCL(t)=j

∥∥µj − µh(ci′CL(t))

∥∥2
.

Finally, in the update step, to be able to utilize the update function in 2.11, we re-

quire the summation
∑

i:xi∈Cj
αixi. Since our data objects are regions instead of points,

finding the required summation is not straightforward. To resolve this issue, we first

use the proposed subgradient algorithm, SM, to update the cluster centroids and then

“correct” the centroids by Equation 2.11 using µj
∑

i:xi∈Cj
αi instead of

∑
i:xi∈Cj

αixi. The

algorithm iterates until the convergence condition used in UCOP-k-means and UPC-

k-means is satisfied and then returns the best solution found, in terms of the objective

function of the MISOCP formulation. The details of UCVQE are given in Algorithm

6.

2.5.2.4 USeeded-k-means and UConstrained-k-means

Seeded-k-means and Constrained-k-means are originally proposed for semi-supervised

clustering problems with point data objects in the existence of labeled data. The

initialization steps of these algorithms are different than that of the k-means. The

algorithms start with an initial grouping (partition) of the data objects that are asso-

ciated with a label and the centroids of these groups are used as the initial centroids.

The authors assume that at least one labeled data is available for each cluster and

thus there will be exactly k groups in the initialization. Seeded-k-means does not

consider the prior information after the initialization step and assigns each data ob-

ject to the closest cluster. Thus the prior information is considered as soft. Different

than Seeded-k-means, Constrained-k-means considers the prior information in the as-

signment step in addition to the initialization step. Only unlabeled data objects are

reassigned while the assignments of labeled data are kept unchanged during the as-

signment step. Thus, Constrained-k-means considers the prior information as hard.

The update steps of both algorithms are the same with that of the k-means.

41

Algorithm 6 UCVQE
1: Initialization: Start with initial cluster centroids, µj , j ∈ {1, . . . , k}.

2: Order the instance level constraints randomly and let ORi, i ∈ {1, 2, . . . , |ML| + |CL|} denote

the ith constraint in the ordered list.

3: repeat

4: Assignment:

5: Let π and ω be the sets of indices of the polytopes and disks assigned to a cluster. Let π = { },

ω = { }, VML = { }, and VCL = { }.

6: for i = 1 to |ML|+ |CL| do

7: if ORi ∈ML then

8: Update π and ω by including RoiML(ORi) and Roi′ML(ORi) in the corresponding sets.

Assign RoiML(ORi) and Roi′ML(ORi) to the clusters j∗1 and j∗2 , respectively, satisfying

{j∗1 , j∗2} = argmin{j1,j2}UEj1 + UEj2 .

9: if j1 6= j2 then

10: VML = VML ∪ {ORi}

11: end if

12: end if

13: if ORi ∈ CL then

14: Update π and ω by including RoiCL(ORi) and Roi′CL(ORi) in the corresponding sets.

Assign RoiCL(ORi) and Roi′CL(ORi) to the clusters j∗1 and j∗2 , respectively, satisfying

{j∗1 , j∗2} = argmin{j1,j2}UEj1 + UEj2 .

15: if j1 = j2 then

16: VCL = VCL ∪ {ORi}

17: end if

18: end if

19: end for

20: Assign the data objects that do not belong to any instance level constraint to the closest cluster

in terms of the maximum distance.

21: Update:

22: for j = 1 to k do

23: Update µj by SM considering the data objects Ri ∈ Cj , i ∈ {1, 2, . . . , n+m}.

24: end for

25: for j = 1 to k do

26: Correct µj using µj
∑

i:xi∈Cj
αi instead of

∑
i:xi∈Cj

αixi in Equation 2.11.

27: end for

28: until Convergence is achieved.

29: return Best partition of the data objects found so far.

42

Since the labeled data can easily be transformed into instance level constraints, these

two algorithms can also be used for semi-supervised clustering problems in the exis-

tence of instance level constraints after small modifications. The first modification for

both algorithms is in the initialization steps. For the instance level constraints case,

the number of initial groups may not be equal to k. We can use, for example, the

procedure proposed in PC-k-means [11] for the initialization of Seeded-k-means and

Constrained-k-means with instance level constraints. For Constrained-k-means, we

modify the assignment step in addition to the initialization step. We form chunklets

by using only must-link constraints and consider each chunklet as a single data object

(by this way the data objects belonging to the same chunklet will never split). Then,

each chunklet is assigned to the closest cluster which is the cluster minimizing the

weighted sum of squares of the distances between the cluster centroid and the data

objects of the chunklet. The remaining data objects that do not belong to any chun-

klet are assigned to the closest ‘appropriate’ cluster. Note that the assignment step of

Constrained-k-means for instance level constraints is order-dependent. It may not be

possible to find an ‘appropriate’ cluster for all the data objects in all iterations. Thus

we utilize the same random ordering process used in UCOP-k-means. We order the

data objects that do not belong to any chunklet randomly at the beginning of the algo-

rithm and use that ordering during the iterations. But if an ‘appropriate’ cluster is not

found for a data object in the first iteration, we re-order those data objects randomly

and re-start the assignment of them until a feasible partition for the first iteration is

obtained. If an ‘appropriate’ cluster is not found for a data object in the following it-

erations, we return the best solution found so far. While Seeded-k-means for instance

level constraints considers constraints as soft, Constrained k-means for instance level

constraints handles them as hard constraints.

After foregoing modifications for instance level constraints, in order to use Seeded-

k-means and Constrained-k-means for the SSC, we made additional changes and

call these changed versions as USeeded-k-means and UConstrained-k-means, respec-

tively. As in the previously mentioned algorithms we use the maximum distance

between the data objects and the cluster centroids in the assignment steps to mea-

sure closeness and apply the proposed subgradient method for the update steps of the

algorithms. The algorithms iterate until the convergence condition used in UCOP-k-

43

means and UPC-k-means is satisfied and then return the best solution found, in terms

of the objective function of the MISOCP formulation. The details of USeeded-k-

means and UConstrained-k-means are given in Algorithm 7 and Algorithm 8, respec-

tively.

Algorithm 7 USeeded-k-means

1: Initialization: Start with initial cluster centroids, µj , j ∈ {1, . . . , k}, obtained

using the instance level constraints.

2: repeat

3: Assignment:

4: for i = 1 to n+m do

5: Assign the data object Ri to the cluster j∗ such that

j∗ = argminj maxpi∈`i ‖pi − µj‖ for polytopes while

j∗ = argminj ‖oi − µj‖ for disks and let Ri ∈ Cj∗ .
6: end for

7: Update:

8: for j = 1 to k do

9: Update µj by SM considering the data objects Ri ∈ Cj , i ∈ {1, . . . , n+m}.
10: end for

11: until Convergence is achieved.

12: return Best partition of the data objects found so far.

2.5.3 Agglomerative Hiearchical Clustering based Algorithm for the SSC

In [116], the authors propose an agglomerative hierarchical clustering algorithm,

AHCP, in the existence of instance level constraints. The classical agglomerative

hierarchical clustering algorithms begin with each data object as a separate clus-

ter and merge the two least dissimilar clusters in each iteration until all the data

objects are in the same cluster. Dissimilarity can be measured in different ways,

e.g., using the centroid method or the Ward method. In the centroid method, the

dissimilarity of two clusters is measured by the distance between their centroids.

For a cluster Cj with centroid µj and the data objects in that cluster, y ∈ Cj , let

E(Cj) =
∑

y∈Cj ‖y − µj‖. In the Ward method, the dissimilarity of Cj1 and Cj2 is

44

Algorithm 8 UConstrained-k-means
1: Initialization: Start with initial cluster centroids, µj , j ∈ {1, . . . , k}, obtained using the instance

level constraints.

2: Form chunklets. Let ECψ , ψ ∈ {1, 2, . . . , ζ}, be the ψth chunklet and πψ and ωψ be the set of

polytopes and disks belonging to ECψ , respectively.

3: repeat

4: Assignment:

5: for ψ = 1 to ζ do

6: Assign chunklet ECψ to the cluster j∗ such that

j∗ = argmin
j

∑
i∈πψ

αi(max
pi∈`i

‖pi − µj‖)2 +
∑
i∈ωψ

αi(‖oi − µj‖+ ri)
2

and let Ri ∈ Cj∗ , i ∈ πψ or i ∈ ωψ .

7: end for

8: Let Ri, i ∈ {1, 2, . . . , ν}, be the ith data object that does not belonging to any ECψ , ψ ∈

{1, 2, . . . , ζ}.

9: OrderRi, i ∈ {1, 2, . . . , ν} randomly and letRi′ , i′ ∈ {1, 2, . . . , ν} be the ordered data objects.

10: for i′ = 1 to ν do

11: Assign the data object Ri′ to the cluster j∗ such that the following conditions are satisfied:

(1) j∗ = argminj maxpi′∈`i
′ ‖pi′ − µj‖ for polytopes and j∗ = argminj ‖oi′ − µj‖ for

disks, subject to:

(2) @ i′2, i′2 ∈ {1, . . . , i′ − 1}, such that {i′, i′2} ∈ CL and Ri′2 ∈ Cj∗ ,

and let Ri′ ∈ Cj∗ .

12: if @ j∗ satisfying the above conditions AND It is the first iteration then

13: Go to Step 9.

14: else if @ j∗ satisfying the above conditions then

15: Go to Step 23.

16: end if

17: end for

18: Update:

19: for j = 1 to k do

20: Update µj by SM considering the data objects Ri ∈ Cj , i ∈ {1, 2, . . . , n+m}.

21: end for

22: until Convergence is achieved.

23: return Best partition of the data objects found so far.

45

defined as E(Cj1 ∪ Cj2)− E(Cj1)− E(Cj2).

AHCP starts with forming chunklets by using the must link constraints. Then, it

considers each chunklet and each data object that is not placed into any chunklet

as separate clusters and merge the two least dissimilar clusters until k clusters are

obtained. Thus, in the final partition, all of the must link constraints are satisfied.

To measure the dissimilarity of two clusters, the authors, in addition to the classical

dissimilarity measures, use a violation term related to the cannot link constraints.

Note that AHCP considers cannot link constraints as soft constraints although must

link constraints are handled as hard constraints.

For the SSC, we modify AHCP and name it as UAHCP. Let us redefine E(Cj) as

E(Cj) =
∑

Ri ∈ Cj ,

Ri is a polytope

αi(max
pi∈`i

(‖pi − µj‖))2 +
∑

Ri ∈ Cj ,

Ri is a disk

αi(‖oi − µj‖+ ri)
2. (2.13)

Then, we define the dissimilarity of Cj1 and Cj2 , $(Cj1 , Cj2), as

$(Cj1 , Cj2) = E(Cj1 ∪ Cj2)− E(Cj1)− E(Cj2) +
∑

Ri1 ∈ Cj1 ,

Ri2 ∈ Cj2 ,

{i1, i2} ∈ CL

c2 . (2.14)

Moreover, to find the centroids of the clusters obtained throughout the algorithm we

implement the proposed subgradient method. The details of UAHCP are given in

Algorithm 9.

2.5.4 More on Literature of Semi-supervised Clustering

We have conducted an extensive literature review on semi-supervised clustering in

order to find algorithms different than the aforementioned algorithms. We have found

some different semi-supervised clustering algorithms for point data objects. When

we extend them for the problem considered in this chapter, the extensions turned out

to be not significantly different from the already considered extensions.

In [131], authors take must-link and cannot-link constraints into consideration while

clustering point data objects. To solve the problem, they propose a k-means based al-

gorithm. The initialization and update steps of this algorithm are the same as those of

46

Algorithm 9 UAHCP

1: Form the chunklets. Let ECψ, ψ ∈ {1, 2, . . . , ζ} be the ψth chunklet and πψ and

ωψ be the set of polytopes and disks belonging to ECψ, respectively.

2: Let Ri, i ∈ {1, 2, . . . , ν}, be the ith data object that does not belong to any ECψ,

ψ ∈ {1, 2, . . . , ζ}.
3: Start with initial clusters C = {Cj}, j ∈ {1, 2, . . . , ζ+ ν} with centers µj , where

µj , j ∈ {1, 2, . . . , ζ}, is found by SM considering the data objects in ECj , and

µj , j ∈ {ζ + 1, ζ + 2, . . . , ζ + ν}, is the geometric center of the data object Rj−ζ .

4: repeat

5: Merge Cu and Cv where

(u, v) = argmin
j1 6= j2,
Cj1 ∈ C,
Cj2 ∈ C

$(Cj1 , Cj2).

6: Let Cu = Cu
⋃
Cv and C = C \ Cv.

7: until k clusters remained.

8: return Partition {C1, . . . , Ck} of the data objects.

the k-means. In the first assignment step, chunklets which are formed by using must-

link constraints are assigned to the nearest cluster centroids and these assignments

are not changed during the algorithm. The remaining data objects which do not be-

long to any must-link constraints are reassigned to the closest ‘appropriate’ clusters

throughout the iterations. When we try to modify this algorithm for the solution of

our problem, it resembles to UConstrained-k-means.

Soft-seeded-k-means [78] is another k-means based algorithm proposed in the liter-

ature for semi-supervised clustering of point data objects. The algorithm considers

some number of labeled data as prior information. The update step of the algorithm

is the same as that of the k-means. In the initialization step, centroids (obtained by

taking average of data points) of initial partition of the labeled objects are used. If

the number of those centroids is smaller than the number of clusters to be formed,

the remaining centroids are randomly selected among the unlabeled data objects. In

the assignment step, an objective function which is the sum of reassignment penalty

47

and the distance between the data object and the cluster centroid is considered. Each

data object is assigned to the cluster centroid which minimizes the objective function.

When we try to modify this algorithm for the solution of our problem, it becomes

very similar to UPC-k-means.

In [148], labeled data is used as prior information and a k-means based algorithm is

proposed for the solution of semi-supervised clustering of point data objects. The

update step of the algorithm is the same as that of the k-means. In the initialization

step, authors consider both complete seed (there exists at least one labeled data object

for each cluster) and incomplete seed cases. For the complete seed version, centroids

of initial partition of the labeled objects are used. For the incomplete seed version,

authors use two different methods to obtain centroids for which no seed (data ob-

ject) is provided. In the first method, the data object which is farthest to previously

obtained centroids is selected as next centroid and the procedure is repeated until

the required number of centroids is obtained. In the second method, centroids are

randomly selected among the unlabeled data objects. In the assignment step of the

algorithm, only unlabeled data objects are reassigned to the closest centroids. After

the modification of this algorithm for the solution of our problem, it resembles to

UConstrained-k-means.

A k-means based algorithm is proposed for the solution of semi-supervised clustering

of point data objects in the existence of only must-link constraints in [149]. The

initialization and update steps of the algorithm are the same as those of the k-means.

In the assignment step, chunklets are formed and they are considered as a single data

object. Then, each data object (some are chunklets) is assigned to the closest cluster.

The modified version of this algorithm for the solution of our problem is very similar

to UConstrained-k-means.

2.6 Computational Studies

All of the algorithms are coded with MATLAB R2015a and run on a computer with

Intel Core i7, 3.4 GHz processor and 8 GB RAM. To solve the SOCP problems (given

in Section 2.4), SDPT3 solver of CVX [41] with MATLAB interface is utilized. For

48

the solution of the MISOCP problems, Gurobi solver [73] with MATLAB interface is

used.

To compare the performances of the proposed algorithms for the SSC, we make use

of the problem instances from the literature. For each selected problem instance, the

following four sets of instance level constraints are generated:

1. Only must-link constraints,

2. Only cannot-link constraints,

3. Random constraints,

4. Constraints by active learning [11].

While generating a constraint, we select two data objects. If their labels are the same,

a must-link constraint, otherwise a cannot-link constraint is generated. To observe

which type of instance level constraint is more informative, we created the first three

sets of constraints. Pairs of data objects are picked randomly until the required num-

ber of constraints, which is changed during the computational studies to see the effects

of it on the clustering performance, is achieved.

Instead of randomly generating the constraints, the fourth set of constraints is formed

with the method proposed by Basu et al. [11]. The method actively selects infor-

mative constraints in two phases, namely the explore and consolidate phases. It is

assumed that we can make a given number of pairwise comparisons of labels of the

data objects, say Q. In the explore phase, farthest-first traversal scheme that tries to

select data objects that are far from each other is utilized. Firstly, a data object is cho-

sen at random and placed into the first neighborhood. At the beginning of each step,

the data object which is farthest from the data objects placed into the neighborhoods

is found (i.e., maximizing the minimum distance). Then, the new data object is placed

in an existing neighborhood if a must-link constraint can be generated after checking

the labels of the new data object and a data object from each neighborhood. Other-

wise, a new neighborhood is formed and the new data object is placed into it. The

explore phase proceeds until k neighborhoods are generated or the maximum number

of pairwise comparisons, Q, is made. If there exists extra pairwise comparisons at

49

the end of the explore phase, the method continues with the consolidate phase. At the

beginning of this phase, the centroid of each of the k neighborhoods is found. Then,

a data object that is not placed into a neighborhood is randomly selected and the dis-

tance between this data object and the centroids of the neighborhoods are calculated.

Starting with the neighborhood with the closest centroid, pairwise comparisons of la-

bels of the new data object and a data object from the neighborhood is made until the

new data object is placed into a neighborhood, i.e., a must-link constraint is gener-

ated. The consolidate phase continues until Q pairwise comparisons are made. Note

that the distance between a (regional) data object and another (regional) data object

or a cluster centroid is calculated by the maximum distance between them and the

centroids of neighborhoods are found by the subgradient method proposed in Section

2.4.2.

The choice of the violation costs, c1 and c2, is an important aspect of semi-supervised

clustering. If these costs are set to 0, then the algorithms act as unsupervised clus-

tering algorithms. If they are set to a positive value, a tradeoff between constraints

violations and distances between the data objects and the centroids is included into

the problem. Constraints are handled as soft constraints if the violation costs are not

chosen too high. When the violation costs are set to infinity (or to a large enough

number), constraints become hard constraints. c1 and c2 can be defined by the user

based on the degree of importance of the constraints. In [11], the authors set the

values of c1 and c2 to a constant which is the average distance between pairs of data

objects in the problem instance. In our experimental studies, for a given problem

instance, we fixed c1 and c2 to the average maximum distance between pairs of data

objects.

Similar to the traditional k-means, the final partition of the data objects by all of the

methods mentioned in Section 2.5.2 is highly depended on the initial cluster cen-

troids. Thus, the algorithms may be initialized with different sets of initial centroids

and the best solution among them (in terms of the objective function value) may be

returned to the user or a method can be developed to find good initial centroids. In our

experimental studies, the following three different initialization procedures are used:

1. Random initialization,

50

2. Initialization by the method in [11],

3. Initialization by means of the agglomerative hierarchical clustering.

In the first procedure, the initial cluster centroids are randomly generated from the

convex hull of the data objects. As the solution returned is highly dependent on the

set of initial cluster centroids, we make 20 replications and the best solution found

among these 20 replications is taken as the solution returned. Note that with this

initialization procedure, USeeded-k-means is just an extension of the traditional k-

means for regional data objects. The instance level constraints are not utilized in any

step of USeeded-k-means and thus it behaves as an unsupervised clustering algorithm

for regional data objects.

We apply the initialization scheme proposed in [11] as the second initialization pro-

cedure. The details of the procedure are given in Section 2.5.2.2. In this procedure,

ζ chunklets are formed using the must-link constraints. If ζ ≥ k, then the centroids

of the largest k chunklets, which are found by SM, are used as the initial centroids.

If ζ < k, then the centroids of all the chunklets are utilized as first ζ initial centroids.

Next, a data object which has a cannot-link constraint with every chunklet is searched

and if one is found, its geometric center is set as the (ζ + 1)th cluster centroid. The

remaining centroids are initialized by random perturbations of the global centroid. If

at least one of the cluster centroids is required to be generated by random perturba-

tion, the procedure is repeated 20 times (i.e., 20 replications) to obtain different sets

of cluster centroids. Otherwise, there is only one set of initial centroids.

UAHCP proposed in Section 2.5.3 is a myopic algorithm. Merging two clusters that

minimizes the dissimilarity measure in Equation 2.14 in an iteration may result in

facing more constraint violation costs in the following iterations. Thus, the partition

found by UAHCP may not be a good partition considering the objective function

value of the MISOCP formulation. As a third initialization procedure, to improve

upon the solution found by UAHCP, we give the cluster centroids found by UAHCP

to the algorithms proposed in Section 2.5.2 with the goal of starting with a good set

of initial centroids. By this procedure, only one set of initial centroids is provided to

the algorithms (i.e., one replication).

51

2.6.1 Performance Measures

We use six performance measures to evaluate the algorithms. Given a problem in-

stance and a fixed number of constraints to be generated (and the method that they

will be generated by), we generate 20 sets of constraints and find the (best) partition

of the data objects by the proposed algorithms for each set of constraints (and ob-

tain the values of the performance measures). The averages of the values of the 20

performance measures are then reported.

Our performance measures are global and local objective function value, solution

time, rand index, pairwise F-measure, and mutual information. Since we have an

optimization problem, objective function values as performance measures came to

our minds naturally. But we did not restrict ourselves with those since objective

function values are difficult for direct interpretation. Although by looking objective

function values we can see the effects of constraint generation type, initialization

procedure and the number of constraints on the solution quality, they do not provide

direct information on agreement between found partition and desired partition unless

we do not know cost of violating a single constraint and the weighted sum of squared

maximum Euclidean distances in the optimal solution. Thus, we have rand index,

pairwise F-measure, and mutual information which are widely used in the literature to

quantify agreement. Each performance measure has own advantages and an algorithm

performing best in one measure may not be the best for another. Therefore, having

many performance measures instead of one is beneficial for preventing bias against

the algorithms.

As seen in the MISOCP formulation, the objective function is the total of the vi-

olation costs of the unsatisfied instance level constraints and the weighted sum of

squared maximum Euclidean distances. We name this value as the local objective

function value. This way of calculating the objective function value may be mis-

leading in certain comparisons because of the differences between the algorithms in

handling the given instance level constraints. UCOP-k-means and UConstrained-k-

means handle the given constraints as hard while the MISOCP formulation, UPC-k-

means, UCVQE, and USeeded-k-means consider them as soft. Also, UAHCP con-

siders the given must-link constraints as hard and the given cannot-link constraints

52

as soft. Therefore, the partition found by the algorithms for the given instance level

constraints should be compared with the desired/correct partition of the data objects.

In addition to the violation of the given constraints, violation of the constraints ob-

tained by the pairwise comparisons of all the data objects should be included in the

calculation of the objective function value of the partition obtained. We call this value

as the global objective function value. The lower the objective function values (both

local and global), the better the performance.

The rand index is generally used to measure the agreement between the found parti-

tion and the desired partition of the data objects [116, 145]. Higher the rand index,

the better the performance. Let ρ1 be the number of pairs of data objects placed into

the same cluster in the found partition while they are in the same cluster at the desired

partition, ρ2 be the number of pairs of data objects placed into different clusters in the

found partition while they are in different clusters at the desired partition. With the

total number of (n + m)(n + m − 1)/2 pairs of data objects in a problem instance,

rand index is calculated as

Rand =
ρ1 + ρ2

(n+m)(n+m− 1)/2
. (2.15)

Pairwise F-measure is another performance evaluation metric used in the literature

[11]. It is the harmonic mean of pairwise precision and recall. Higher the pairwise

F-measure, the better the performance. Let η be the number of pairs of data objects

placed into the same cluster in the found partition and % be the number of pairs of

data objects belonging to the same cluster in the desired partition. Then, the pairwise

precision, recall, and F-measure are calculated as

Precision =
ρ1

η
, (2.16)

Recall =
ρ1

%
, (2.17)

F −measure =
2(Precision)(Recall)

Precision+Recall
. (2.18)

Similar to the rand index, the mutual information determines the amount of simi-

larity between the found partition and the desired partition of the data objects [11,

53

134]. Thus, the higher the mutual information, the better the performance. Let

C = {C1, C2, . . . , Ck} be the found partition, Γ = {Γ1, Γ2, . . . , Γk} be the cor-

rect/desired partition, ςjcjf be the number of data objects clustered into Cjf while they

actually belong to Γjc . Then, the mutual information is calculated as

Mutual =
1

(n+m)

k∑
jf=1

k∑
jc=1

ςjcjf

log(
ςjcjf

(n+m)∑k
ι=1 ς

jc
ι
∑k
ι=1 ς

ι
jf

)

log(k2)
. (2.19)

The maximum possible values of the rand index, pairwise F-measure, and mutual

information are 1, 1, and 0.5, respectively. Note that the mutual information can take

values less than 0.5 even when the found partition is exactly the same as the desired

partition.

2.6.2 Computational Results

2.6.2.1 Artificial Datasets

To compare the performances of the proposed algorithms for the SSC, we make use

of the datasets generated in [54]. In that paper, the authors consider a multi-facility

location problem with polygonal demand regions that aims to minimize the weighted

sum of squared maximum Euclidean distances between the facilities and the demand

regions. The problem considered is equivalent to the unsupervised clustering problem

with polygonal uncertainty. We selected six problem instances with rectangular data

objects whose sides are parallel to the standard coordinate axes used in [54], namely

problem instances with n = 10 and k = 2, n = 10 and k = 3, n = 20 and k = 2,

n = 20 and k = 3, n = 50 and k = 3, n = 100 and k = 5, and n = 200 and k = 5,

where n is the number of rectangular data objects and k is the number of clusters to

be formed.

While constructing a rectangular region, the authors first randomly generate the co-

ordinates of the southern west corner and the side lengths of the region from the dis-

crete uniform distributions with specified parameters. Then, they construct the other

corners of the region by using the coordinates of southern west corner and the side

lengths. The maximum values used for the discrete uniform distributions to generate

54

Table 2.3: Parameters for rectangular region genaration

Number of Maximum value for x and y Maximum value for

regions coordinate of southern west corners side lengths

10 100 10

20 150 10

50 200 8

100 300 8

200 500 8

the problem instances are provided in Table 2.3. For all distributions 1 is used as the

minimum value. The details of the problem instances (data, objective function values,

and the assignments of the demand regions to the facilities for the best (or optimal)

solutions) can be found at the website “http://tol.ie.metu.edu.tr/test-instances” (date

accessed: April 20th, 2019).

The best solutions (assignments of the demand regions/data objects to the facilities/

clusters) found for the problem instances by the methods proposed in [54] are utilized

as a priori information for the SSC problem. Note that the best solutions given are

not necessarily the optimal solutions of the considered facility location problem. An

example problem instance with n = 50 and k = 3, and its solution utilized as a priori

information is given in Figure 2.1.

As it is noted, the MISOCP formulation provided in Section 2.5.1 is weak mainly

due to the presence of the big-M ’s in the formulation. None of the large size prob-

lem instances (where n = 100 and n = 200) is solved within reasonable times with

the MISOCP formulation. Even the medium size problem instance, the instance with

n = 50 and k = 3, is not solved to optimality within an hour by the MISOCP formula-

tion. The optimality gap for this problem instance with 5 actively selected constraints

is 54.3% after 21 hours of computation. To show the usability of the MISOCP formu-

lation, we solve the small size problem instances (where n = 10 and n = 20). The

solution times for these instances are reported in Table 2.4. Pn,k,nc in the table repre-

sents a problem instance with n rectangular data objects, k clusters and nc instance

level constraints generated by the active learning scheme described in Section 3.5. To

55

0 50 100 150 200 250
0

50

100

150

200

250

Centroid 1
Centroid 2
Centroid 3

Figure 2.1: An example problem instance with n = 50 and k = 3, and its solution

initialize the k-means based algorithms, we utilize the second initialization procedure

mentioned in Section 3.5. Results in Table 2.4 indicate that even though the MISOCP

formulation solves small size instances to optimality in reasonable times (around 1

minute), it is the slowest solution approach for all the problem instances given in the

table. To see which factors, namely the number of data objects, the number of clus-

ters, and the number of instance level constraints, have significant effect on the solu-

tion times, we analyze the data in Table 2.4 as a factorial design. Using a 10% signif-

icance level, the solution time of all the algorithms increases with the increase in the

number of data objects in the problem instance. Also, the solution time decreases as

the number of instance level constraints provided increases. The effect of the number

of clusters depends on the algorithm. While solution time increases when the num-

ber of clusters increases for the MISOCP formulation, UPC-k-means, and UAHCP,

the effect of the number of clusters on solution time is not statistically significant for

UCOP-k-means, UCVQE, USeeded-k-means, and UConstrained-k-means.

56

Table 2.4: Solution time (in seconds) for small size instances with actively generated

constraints

Problem MISOCP UCOP- UPC- UCVQE* USeeded- UConstrained- UAHCP

instance k-means* k-means* k-means* k-means*

P10,2,5 8.232 0.048 0.038 0.023 0.039 0.041 0.287

P10,2,10 4.470 0.040 0.035 0.017 0.034 0.036 0.050

P10,2,20 4.202 0.041 0.035 0.016 0.034 0.035 0.018

P10,2,40 4.197 0.041 0.035 0.016 0.034 0.035 0.018

P10,3,5 27.837 0.047 0.041 0.018 0.039 0.043 0.379

P10,3,10 18.908 0.041 0.033 0.019 0.032 0.034 0.084

P10,3,20 14.692 0.040 0.032 0.015 0.031 0.033 0.016

P10,3,40 15.778 0.038 0.033 0.015 0.031 0.033 0.016

P20,2,10 71.335 0.075 0.064 0.030 0.063 0.070 1.148

P20,2,20 20.211 0.075 0.065 0.030 0.063 0.066 0.116

P20,2,50 19.582 0.075 0.064 0.029 0.063 0.066 0.034

P20,2,100 20.075 0.075 0.064 0.029 0.063 0.066 0.033

P20,3,10 67.184 0.080 0.069 0.032 0.081 0.073 1.348

P20,3,20 65.040 0.078 0.068 0.031 0.066 0.069 0.170

P20,3,50 47.693 0.078 0.068 0.031 0.066 0.069 0.035

P20,3,100 47.682 0.078 0.068 0.030 0.066 0.069 0.035

* Algorithm is initialized by the second initialization procedure given in Section 3.5.

In Table 2.5, we provide the values of the performance measures of the algorithms

for a selected problem instance, P20,2,10, where the constraints are generated by the

active learning scheme and the k-means based algorithms are initialized by the sec-

ond initialization procedure mentioned in Section 3.5. The MISOCP formulation is

the best solution approach since the partition found by it is the same with the desired

partition. This is due to the fact that the desired partition given for this instance is

the optimal solution of the unsupervised clustering problem considered in [54]. Note

that the desired partitions for the larger problem instances are not necessarily the op-

timal solutions of the unsupervised clustering problem considered in [54]. UAHCP is

the second best solution approach. The worst approach is USeeded-k-means. This is

expected as USeeded-k-means does not consider instance level constraints after the

initialization step. The performances of the remaining algorithms are similar. Al-

though the best performer is the MISOCP formulation, we do not provide the results

57

Table 2.5: Performance measures (percent deviation of global and local objective

function value from the best global and local value found (ObjG and ObjL), rand

index (Rand), pairwise F-measure (FM), and mutual information (MI)) for P20,2,10

where constraints are generated actively

Algorithms ObjG ObjL Rand FM MI

MISOCP 0.000 0.00 1.000 1.000 0.500

UCOP-k-means* 265.262 16.64 0.944 0.941 0.439

UPC-k-means* 233.351 11.03 0.951 0.949 0.444

UCVQE* 255.883 11.03 0.946 0.944 0.438

USeeded-k-means* 278.428 19.05 0.941 0.938 0.432

UConstrained-k-means* 233.351 11.03 0.951 0.949 0.444

UAHCP 218.731 16.73 0.956 0.953 0.448

* Algorithm is initialized by the second initialization procedure given in Section 3.5.

of this approach for larger instances due to its time ineffectiveness.

In Figure 2.2, we compare all the algorithms except the MISOCP formulation for a

selected problem instance, problem instance with 200 rectangular data objects and 5

centroids, where the instance level constraints are generated by the active learning

procedure. Also, all three initialization methods are utilized for the k-means based

algorithms. In the figure legend, Algorithm/init represents the results for the spec-

ified algorithm initialized by the initth initialization method. As it can be seen from

the figure, all of the performance measures tend to improve as the number of instance

level constraints increases for all (or most of) the algorithms (and for all type of ini-

tialization methods). Similar results are observed for the other problem instances as

well. Note that, however, the improvements obtained by the random initializations is

not as large as the improvements obtained by the other initializations. Therefore we

do not report the results for random initializations in the rest of the study.

In Tables 2.6, 2.7, and 2.8, we report the values of the performance measures of the

algorithms for the problem instance with 100 rectangular data objects and 5 centroids.

In these tables, Hconst,init,nc represents that the problem instance is solved with nc

instance level constraints generated by constth constraint generation method and the

58

10 20 30 50 100 150 200

Number of constraints

0

1

2

3

G
lo

ba
l O

bj
ec

tiv
e

F
un

ct
io

n
V

al
ue

×108

10 20 30 50 100 150 200

Number of constraints

0.85

0.9

0.95

1

R
an

d
In

de
x

10 20 30 50 100 150 200

Number of constraints

0.6

0.7

0.8

0.9

1

P
ai

rw
is

e
F

-m
ea

su
re

10 20 30 50 100 150 200

Number of constraints

0.3

0.35

0.4

0.45

0.5

M
ut

ua
l I

nf
or

m
at

io
n

UAHCP
USeeded-k-means/1
UPC-k-means/1
UConstrained-k-means/1
UCOP-k-means/1
UCVQE/1
USeeded-k-means/2
UPC-k-means/2
UConstrained-k-means/2
UCOP-k-means/2
UCVQE/2
USeeded-k-means/3
UPC-k-means/3
UConstrained-k-means/3
UCOP-k-means/3
UCVQE/3

Figure 2.2: Performance measures (global objective function value, rand index, pair-

wise F-measure and mutual information) for the problem instance with 200 rectangu-

lar data objects and 5 centroids where constraints are generated actively

k-means based algorithms are initialized with the initth initialization method. Note

that when we provide only cannot-link constraints to the problem, the initialization

by the method in [11] is the same with the random initialization. Thus, for the cannot-

link constraints case, we only report the results with the initialization by means of the

agglomerative hierarchical clustering.

59

In Table 2.6, percent deviations of global and local objective function values are pro-

vided. Percent deviations of global (local) objective function values in each row are

calculated by using the minimum global (local) objective function value found in the

corresponding row. The best value in each row for global and local objective function

values are highlighted in the table. Based on the values in Table 2.6, the following

conclusions can be drawn.

• When we consider the percent deviations of global objective function values,

UConstrained-k-means is the best algorithm when either only must-link con-

straints are provided and the k-means based algorithms are initialized by means

of the agglomerative hierarchical clustering, or the constraints are generated ac-

tively and either the method in [11] or the agglomerative hierarchical clustering

is used to initialize the k-means based algorithms. For the remaining combina-

tions of constraint generation and initialization procedures, UAHCP performs

better than the other algorithms.

• Considering deviations of local objective function values, it can be seen that

UAHCP outperforms the others when the method in [11] is utilized for the ini-

tialization of the k-means based algorithms and either constraints are generated

randomly or only must-link constraints are available. When only cannot-link

constraints are provided and the agglomerative hierarchical clustering is used

for the initialization of the k-means based algorithms, UPC-kmeans beats the

other algorithms. UConstrained-k-means results in the best performance for the

remaining combinations of constraint generation and initialization procedures.

Row based percent deviations of global and local objective function values (as calcu-

lated in Table 2.6) are useful in determining which algorithm is the best for a given

combination of constraint generation and initialization procedures. In Table 2.7, we

provide the percent deviations of global (local) objective function values from the

best global (local) objective function value found for the problem instance among all

combinations of constraint generation and initialization procedures. Note that since

an initialization procedure is not required for UAHCP, the blocks for different initial-

ization procedures, for a given instance level constraint generation type, contain the

same values. In each column, for each number of instance level constraints, the best

60

values are highlighted in the table. By this way we can decide on which combination

of constraint generation and initialization procedures results in better performance for

a given algorithm. The following results are inferred from Table 2.7.

• In terms of the percent deviation of global objective function value, the best

combination is to generate instance level constraints by active learning and to

initialize the algorithm by the method in [11] for UCOP-k-means and USeeded-

k-means. For UPC-k-means, providing only must-link constraints and initializ-

ing the algorithm with the agglomerative hierarchical clustering or generating

constraints actively and initializing the algorithm by the method in [11] are bet-

ter than the other combinations of constraint generation and initialization proce-

dures. Obtaining constraints by active learning is the best constraint generation

procedure for UCVQE. When the active learning is used for the algorithm, both

of the initialization procedures (the method in [11] and the agglomerative hi-

erarchical clustering) are good choices. For UConstrained-k-means, providing

only must-link constraints and utilizing the agglomerative hierarchical cluster-

ing to initialize the algorithm outperforms the other combinations of constraint

generation and initialization procedures.

• According to the percent deviations of local objective function values, provid-

ing only must-link constraints and using agglomerative hierarchical clustering

in initialization is the best combination for UCOP-k-means. For UPC-k-means,

USeeded-k-means, and UConstrained-k-means, the best combination is to gen-

erate instance level constraints by active learning and to initialize the algorithm

by the method in [11]. Like in the percent deviations of global objective func-

tion values, obtaining constraints by active learning is the best constraint gen-

eration procedure and using the method in [11] or agglomerative hierarchical

clustering in initialization are good alternatives for UCVQE.

• For UAHCP, providing only must-link constraints is the best way of improv-

ing the performance in terms of the percent deviation of both global and local

objective function values.

• Must-link constraints and the actively generated constraints are more informa-

tive than cannot-link constraints and randomly generated constraints.

61

• Although both initialization procedures have similar performances, initializa-

tion by the method in [11] is slightly better than initialization by agglomerative

hierarchical clustering.

Rand index, pairwise F-measure, and mutual information values are reported in Ta-

ble 2.8. Similar to Table 2.7, the blocks for different initialization procedures, for a

given instance level constraint generation type, contain the same values for UAHCP

since the algorithm does not require an initialization procedure. In each row, the best

value for each performance measure is highlighted to see which algorithm is better

for a given constraint generation and initialization combination. Also, in each col-

umn, for each number of instance level constraints, the best values are boldfaced to

determine which constraint generation and initialization combination leads to better

performance for a given algorithm. The following results are deduced from the table.

• UConstrained-k-means and UAHCP perform better than the other algorithms

in terms of all performance measures. When we investigate each combina-

tion of constraint generation and initialization procedures, it can be seen that

UConstrained-k-means is the best algorithm when instance level constraints are

generated actively (selecting method in [11] or agglomerative hierarchical clus-

tering as the initialization procedure makes no difference), or only must-link

constraints are provided and the algorithm is initialized by agglomerative hi-

erarchical clustering. For the remaining combinations of constraint generation

and initialization procedures, UAHCP is better than UConstrained-k-means.

• For UCOP-k-means and USeeded-k-means, the best combination of constraint

generation and initialization procedures is obtained by generating constraints

actively and initializing the algorithms with the method in [11] according to all

of the performance measures.

• For UPC-k-means, providing only-must link constraints and initializing the al-

gorithm by agglomerative hierarchical clustering, or generating constraints by

the active learning procedure and initializing the algorithm by the method in

[11] result in better performance in terms of all performance measures.

• For UCVQE, the best constraint generation procedure is active learning. The

62

initialization procedures (method in [11] and agglomerative hierarchical clus-

tering) do not make much difference for actively learned constraints.

• Generating only must-link constraints and using agglomerative hierarchical

clustering based initialization is the best constraint generation and initialization

combination for UConstrained-k-means considering all performance measures.

• Providing only must-link constraints to UAHCP outdoes other constraint gen-

eration alternatives in all performance measures.

According to solution time, USeeded-k-means is the best algorithm for all combina-

tions of constraint generation and initialization procedures. But it should be noted

that all of the algorithms except UAHCP solve a problem instance in less than a sec-

ond. Thus, in terms of the solution time, all k-means based algorithms perform good.

UAHCP’s solution times are also acceptable since its solution times are around 2

minutes for a problem instance with any combination of constraint generation and

initialization procedures.

63

Table 2.6: Performance measures (percent deviation of global and local objective function value from the best global and local value found

in the corresponding row (ObjG and ObjL)) for the problem instance with 100 rectangular data objects and 5 centroids

Problem UCOP-k-means UPC-k-means UCVQE USeeded-k-means UConstrained-k-means UAHCP

instance ObjG ObjL ObjG ObjL ObjG ObjL ObjG ObjL ObjG ObjL ObjG ObjL

H1,2,10 61.86 39.86 63.01 38.70 64.08 57.12 63.73 52.28 61.30 34.82 0.00 0.00
H1,2,30 151.63 90.14 151.06 76.06 162.89 140.16 156.53 133.99 138.09 64.25 0.00 0.00
H1,2,50 183.35 77.47 164.83 64.20 183.27 112.30 183.65 112.14 150.19 43.69 0.00 0.00
H1,2,80 201.08 56.64 127.04 29.55 184.39 68.77 184.32 70.29 124.77 19.54 0.00 0.00
H1,2,100 111.30 17.57 64.89 10.98 95.63 24.84 95.63 24.84 0.00 1.57 59.62 0.00

H1,3,10 4.79 1.11 2.54 1.18 3.23 6.85 3.32 7.23 0.00 0.00 2.02 15.29
H1,3,30 55.85 12.09 34.11 6.20 43.71 27.67 46.38 28.91 0.00 0.00 52.67 8.76
H1,3,50 97.37 21.77 57.32 7.32 118.96 40.69 102.39 36.19 0.00 0.00 90.21 3.92
H1,3,80 155.01 18.73 143.18 10.21 165.08 23.62 177.93 26.70 0.00 0.00 143.22 1.61
H1,3,100 180.75 9.06 73.34 2.82 186.97 18.58 186.97 18.58 0.00 0.00 229.54 1.64

H2,3,10 11.01 0.65 10.51 0.00 9.60 3.53 10.99 4.99 10.94 0.27 0.00 55.37
H2,3,30 26.16 0.41 26.31 0.00 25.10 14.93 27.60 13.89 27.34 0.44 0.00 36.53
H2,3,50 21.84 0.97 19.07 0.00 19.00 17.55 21.93 19.81 21.13 1.07 0.00 24.24
H2,3,80 29.61 0.00 27.50 1.36 31.35 29.33 32.65 29.65 33.15 0.84 0.00 19.51
H2,3,100 32.06 3.10 21.29 0.00 32.73 32.26 34.50 33.91 37.69 3.91 0.00 25.43

H3,2,10 1.05 0.00 1.29 0.55 0.00 2.63 1.99 3.19 1.79 0.36 26.72 6.72
H3,2,30 48.23 21.35 49.27 17.95 47.43 38.25 46.48 32.55 45.92 15.53 0.00 0.00
H3,2,50 73.15 33.69 75.67 30.59 80.09 65.87 74.14 60.50 76.33 26.06 0.00 0.00
H3,2,80 126.49 50.52 133.84 45.88 128.33 104.02 129.68 101.28 127.40 37.37 0.00 0.00
H3,2,100 157.50 81.38 162.27 79.63 147.13 145.66 155.25 152.31 144.88 63.75 0.00 0.00

H3,3,10 8.23 0.38 8.09 0.55 5.04 4.02 7.46 6.16 7.79 0.00 0.00 25.76
H3,3,30 14.95 1.19 14.51 0.00 16.51 16.05 14.48 12.15 15.76 0.21 0.00 17.92
H3,3,50 28.25 5.37 22.35 2.19 23.50 22.58 25.46 26.31 19.55 0.00 0.00 17.16
H3,3,80 36.54 7.25 33.51 4.58 48.61 50.90 33.38 30.00 21.43 0.00 0.00 15.42
H3,3,100 24.67 9.91 17.81 9.96 42.57 60.95 19.23 37.43 1.59 0.00 0.00 10.33

H4,2,10 1.40 0.16 3.07 0.00 1.67 4.29 1.83 4.01 0.00 6.30 34.60 23.21
H4,2,30 7.49 14.93 2.21 1.72 8.78 7.88 7.48 7.98 0.00 0.00 70.79 17.33
H4,2,50 16.63 28.47 17.41 8.25 20.77 11.68 22.31 12.70 0.00 0.00 130.80 9.57
H4,2,80 57.72 44.68 9.98 1.49 25.59 5.47 29.04 6.60 0.00 0.00 215.78 5.84
H4,2,100 20.28 16.24 25.34 3.65 35.83 4.69 35.83 4.69 0.00 0.00 139.20 3.90

H4,3,10 30.25 3.58 28.24 0.00 26.59 1.23 28.55 3.88 26.99 0.08 0.00 26.94
H4,3,30 11.18 12.63 6.02 4.27 6.03 9.77 10.12 14.18 0.00 0.00 51.97 14.66
H4,3,50 22.16 29.56 21.69 9.58 18.99 10.64 22.05 12.68 0.00 0.00 128.07 9.47
H4,3,80 29.63 51.93 13.34 3.10 22.17 5.05 29.04 6.60 0.00 0.00 215.78 5.84
H4,3,100 23.09 22.89 25.75 3.14 35.83 4.69 35.83 4.69 0.00 0.00 139.20 3.90

64

Table 2.7: Performance measures (percent deviation of global and local objective function value from the best global and local value found

for the problem instance (ObjG’ and ObjL’)) for the problem instance with 100 rectangular data objects and 5 centroids

Problem UCOP-k-means UPC-k-means UCVQE USeeded-k-means UConstrained-k-means UAHCP

instance ObjG’ ObjL’ ObjG’ ObjL’ ObjG’ ObjL’ ObjG’ ObjL’ ObjG’ ObjL’ ObjG’ ObjL’

H1,2,10 4334.12 123.04 4365.86 121.19 4395.09 150.56 4385.42 142.84 4318.89 115.01 2639.55 59.47
H1,2,30 3894.08 145.59 3884.95 127.40 4072.86 210.20 3971.82 202.22 3679.11 112.15 1487.27 29.16
H1,2,50 2493.50 101.48 2323.98 86.42 2492.74 141.02 2496.25 140.84 2190.03 63.13 815.30 13.53
H1,2,80 1086.75 63.16 794.91 34.95 1020.95 75.80 1020.69 77.38 785.97 24.52 294.16 4.16
H1,2,100 336.22 20.32 240.41 13.58 303.87 27.77 303.87 27.77 106.44 3.95 229.54 2.34

H1,3,10 2714.02 39.86 2653.41 39.95 2671.89 47.80 2674.46 48.32 2585.28 38.32 2639.55 59.47
H1,3,30 1520.30 33.11 1294.33 26.12 1394.14 51.61 1421.85 53.09 939.67 18.76 1487.27 29.16
H1,3,50 849.74 33.03 657.00 17.25 953.63 53.70 873.87 48.78 381.19 9.25 815.30 13.53
H1,3,80 313.26 21.72 294.10 12.99 329.58 26.73 350.40 29.89 62.06 2.52 294.16 4.16
H1,3,100 180.75 9.81 73.34 3.53 186.97 19.40 186.97 19.40 0.00 0.69 229.54 2.34

H2,3,10 4963.71 74.44 4941.06 73.31 4899.59 79.44 4962.75 81.95 4960.57 73.78 4461.53 169.28

H2,3,30 4618.83 81.84 4624.63 81.10 4579.23 108.14 4672.89 106.26 4663.06 81.89 3640.46 147.25
H2,3,50 4089.58 89.05 3994.37 87.22 3991.89 120.08 4092.65 124.31 4065.26 89.24 3338.54 132.61
H2,3,80 3685.12 96.03 3623.71 98.69 3736.04 153.53 3773.87 154.15 3788.73 97.68 2820.47 134.28
H2,3,100 3323.99 101.21 3044.76 95.15 3341.46 158.10 3387.25 161.33 3469.97 102.79 2492.77 144.78

H3,2,10 2956.76 95.99 2963.97 97.06 2925.10 101.14 2985.25 102.24 2979.21 96.70 3733.42 109.17

H3,2,30 4295.19 128.59 4325.99 122.17 4271.40 160.43 4243.29 149.69 4226.62 117.62 2865.15 88.37
H3,2,50 3987.53 130.62 4046.86 125.28 4151.34 186.15 4010.86 176.87 4062.58 117.46 2260.66 72.51
H3,2,80 4317.96 166.31 4461.22 158.09 4353.85 260.96 4380.01 256.10 4335.65 143.04 1850.58 76.92
H3,2,100 4524.59 203.20 4610.29 200.28 4338.51 310.65 4484.25 321.77 4297.94 173.73 1695.99 67.16

H3,3,10 4048.73 66.95 4043.47 67.23 3926.79 73.01 4019.24 76.57 4031.98 66.31 3733.42 109.17

H3,3,30 3308.55 61.65 3295.29 59.74 3354.57 85.38 3294.48 79.16 3332.46 60.08 2865.15 88.37
H3,3,50 2927.59 55.15 2788.33 50.47 2815.31 80.49 2861.67 85.97 2722.24 47.24 2260.66 72.51
H3,3,80 2563.31 64.40 2504.26 60.31 2798.71 131.30 2501.67 99.27 2268.50 53.28 1850.58 76.92
H3,3,100 2139.01 66.53 2015.94 66.60 2460.46 143.86 2041.38 108.23 1724.60 51.52 1695.99 67.16

H4,2,10 2888.58 86.35 2937.78 86.05 2896.70 94.03 2901.33 93.51 2847.38 97.77 3867.08 129.23
H4,2,30 1172.20 32.87 1109.75 17.59 1187.50 24.72 1172.13 24.83 1083.59 15.60 1921.42 35.64
H4,2,50 656.71 35.09 661.76 13.83 683.56 17.43 693.59 18.50 548.82 5.15 1397.46 15.21
H4,2,80 395.03 46.57 245.19 2.82 294.19 6.85 305.02 7.99 213.87 1.31 891.12 7.22
H4,2,100 126.83 16.24 136.37 3.65 156.15 4.69 156.15 4.69 88.58 0.00 351.09 3.90

H4,3,10 5067.26 87.04 4987.52 80.57 4921.79 82.80 4999.68 87.59 4937.99 80.71 3867.08 129.23

H4,3,30 1378.76 33.25 1310.19 23.35 1310.29 29.86 1364.74 35.07 1230.12 18.30 1921.42 35.64
H4,3,50 702.05 36.36 698.98 15.33 681.29 16.45 701.35 18.59 556.57 5.25 1397.46 15.21
H4,3,80 306.86 53.91 255.75 4.44 283.44 6.42 305.02 7.99 213.87 1.31 891.12 7.22
H4,3,100 132.13 22.89 137.15 3.14 156.15 4.69 156.15 4.69 88.58 0.00 351.09 3.90

65

Table 2.8: Performance measures (rand index (Rand), F-measure (FM), and mutual information (MI)) for the problem instance with 100

rectangular data objects and 5 centroids

Problem UCOP-k-means UPC-k-means UCVQE USeeded-k-means UConstrained-k-means UAHCP

instance Rand FM MI Rand FM MI Rand FM MI Rand FM MI Rand FM MI Rand FM MI

H1,2,10 0.83 0.61 0.31 0.83 0.61 0.31 0.83 0.61 0.31 0.83 0.61 0.31 0.83 0.62 0.31 0.90 0.75 0.37

H1,2,30 0.85 0.64 0.33 0.85 0.65 0.33 0.84 0.63 0.32 0.84 0.64 0.33 0.86 0.67 0.34 0.94 0.85 0.42
H1,2,50 0.90 0.76 0.39 0.91 0.78 0.39 0.90 0.76 0.38 0.90 0.76 0.38 0.91 0.80 0.40 0.97 0.92 0.45
H1,2,80 0.96 0.89 0.45 0.97 0.92 0.46 0.96 0.90 0.45 0.96 0.90 0.45 0.97 0.92 0.46 0.99 0.97 0.48
H1,2,100 0.98 0.96 0.48 0.99 0.97 0.48 0.99 0.97 0.48 0.99 0.97 0.48 0.99 0.99 0.49 0.99 0.97 0.48

H1,3,10 0.89 0.74 0.37 0.89 0.74 0.37 0.89 0.74 0.37 0.89 0.74 0.37 0.90 0.75 0.37 0.90 0.75 0.37
H1,3,30 0.94 0.85 0.42 0.95 0.87 0.43 0.94 0.86 0.42 0.94 0.86 0.42 0.96 0.91 0.45 0.94 0.85 0.42
H1,3,50 0.96 0.91 0.45 0.97 0.93 0.46 0.96 0.90 0.44 0.96 0.91 0.44 0.98 0.96 0.47 0.97 0.92 0.45
H1,3,80 0.99 0.96 0.48 0.99 0.97 0.48 0.99 0.96 0.47 0.98 0.96 0.47 1.00 0.99 0.49 0.99 0.97 0.48
H1,3,100 0.99 0.98 0.48 1.00 0.99 0.49 0.99 0.98 0.48 0.99 0.98 0.48 1.00 0.99 0.49 0.99 0.97 0.48

H2,3,10 0.80 0.52 0.27 0.81 0.52 0.27 0.81 0.53 0.27 0.80 0.52 0.27 0.80 0.52 0.27 0.83 0.59 0.30
H2,3,30 0.82 0.55 0.28 0.82 0.55 0.28 0.82 0.56 0.28 0.82 0.54 0.28 0.82 0.54 0.28 0.86 0.66 0.33
H2,3,50 0.84 0.60 0.30 0.84 0.61 0.30 0.84 0.61 0.31 0.84 0.60 0.30 0.84 0.60 0.30 0.87 0.68 0.34
H2,3,80 0.85 0.64 0.32 0.86 0.65 0.32 0.85 0.64 0.32 0.85 0.64 0.32 0.85 0.63 0.31 0.89 0.72 0.36
H2,3,100 0.87 0.67 0.33 0.88 0.70 0.34 0.87 0.67 0.33 0.87 0.67 0.33 0.86 0.66 0.32 0.90 0.76 0.37

H3,2,10 0.88 0.72 0.35 0.88 0.71 0.35 0.88 0.72 0.36 0.88 0.71 0.35 0.88 0.71 0.35 0.85 0.64 0.33
H3,2,30 0.83 0.60 0.30 0.83 0.60 0.30 0.83 0.62 0.31 0.83 0.62 0.31 0.83 0.61 0.31 0.89 0.72 0.36
H3,2,50 0.84 0.62 0.31 0.84 0.62 0.31 0.84 0.62 0.31 0.84 0.63 0.32 0.84 0.62 0.31 0.91 0.78 0.39
H3,2,80 0.83 0.59 0.30 0.83 0.58 0.29 0.83 0.60 0.30 0.83 0.60 0.31 0.83 0.59 0.30 0.93 0.82 0.40
H3,2,100 0.82 0.56 0.29 0.82 0.57 0.28 0.83 0.61 0.31 0.82 0.60 0.30 0.83 0.60 0.29 0.93 0.83 0.41

H3,3,10 0.84 0.60 0.31 0.84 0.60 0.31 0.84 0.61 0.31 0.84 0.61 0.31 0.84 0.60 0.31 0.85 0.64 0.33
H3,3,30 0.87 0.67 0.34 0.87 0.68 0.34 0.87 0.67 0.34 0.87 0.68 0.34 0.87 0.67 0.34 0.89 0.72 0.36
H3,3,50 0.88 0.71 0.35 0.89 0.72 0.36 0.89 0.72 0.36 0.89 0.72 0.35 0.89 0.73 0.36 0.91 0.78 0.39
H3,3,80 0.90 0.75 0.37 0.90 0.75 0.37 0.89 0.75 0.37 0.90 0.76 0.37 0.91 0.78 0.38 0.93 0.82 0.40
H3,3,100 0.91 0.79 0.39 0.92 0.80 0.39 0.90 0.77 0.38 0.92 0.80 0.39 0.93 0.83 0.41 0.93 0.83 0.41

H4,2,10 0.89 0.72 0.36 0.88 0.72 0.36 0.89 0.72 0.36 0.89 0.72 0.36 0.89 0.73 0.36 0.85 0.63 0.33
H4,2,30 0.95 0.88 0.43 0.95 0.89 0.43 0.95 0.88 0.43 0.95 0.88 0.43 0.96 0.89 0.44 0.92 0.81 0.40
H4,2,50 0.97 0.93 0.46 0.97 0.93 0.46 0.97 0.93 0.46 0.97 0.93 0.45 0.98 0.94 0.46 0.94 0.86 0.42
H4,2,80 0.98 0.96 0.47 0.99 0.97 0.48 0.99 0.97 0.48 0.99 0.96 0.47 0.99 0.97 0.48 0.96 0.91 0.44
H4,2,100 0.99 0.98 0.48 0.99 0.98 0.48 0.99 0.98 0.48 0.99 0.98 0.48 0.99 0.99 0.49 0.98 0.96 0.47

H4,3,10 0.80 0.51 0.26 0.80 0.52 0.26 0.81 0.52 0.27 0.80 0.52 0.26 0.81 0.52 0.27 0.85 0.63 0.33
H4,3,30 0.94 0.86 0.42 0.95 0.87 0.42 0.95 0.87 0.43 0.94 0.86 0.42 0.95 0.87 0.43 0.92 0.81 0.40
H4,3,50 0.97 0.93 0.46 0.97 0.93 0.46 0.97 0.93 0.46 0.97 0.93 0.45 0.98 0.94 0.46 0.94 0.86 0.42
H4,3,80 0.99 0.96 0.48 0.99 0.97 0.48 0.99 0.97 0.48 0.99 0.96 0.47 0.99 0.97 0.48 0.96 0.91 0.44
H4,3,100 0.99 0.98 0.48 0.99 0.98 0.48 0.99 0.98 0.48 0.99 0.98 0.48 0.99 0.99 0.49 0.98 0.96 0.47

66

2.6.2.2 Real Life Datasets

To test the performances of the proposed algorithms on higher dimensional regional

data objects, we make use of four real life datasets.

The first one is the Fat and Oil dataset [20] which can be seen in Table 2.9. It consists

of features of oil and fat collected from 6 plants and 2 animals, i.e., there are 8 data

objects. In [121], the authors cluster these data objects into 3 categories based on

the values of specific gravity (GRA), freezing point (FRE), Iodine value (IOD), and

saponification (SAP). Note that each data object in the dataset is a hyper-rectangle in

R4.

Table 2.9: Fat and Oil dataset

Observation Name GRA FRE IOD SAP Label

1 Linseed [0.930 , 0.935] [-27 , -18] [170 , 204] [118 , 196] 1

2 Perilla [0.930 , 0.937] [-5 , -4] [192 , 208] [188 , 197] 1

3 Cotton [0.916 , 0.918] [-6 , -1] [99 , 113] [189 , 198] 2

4 Sesame [0.920 , 0.926] [-6 , -4] [104 , 116] [187 , 193] 2

5 Camellia [0.916 , 0.917] [-21 , -15] [80 , 82] [189 , 193] 2

6 Olive [0.914 , 0.919] [0 , 6] [79 , 90] [187 , 196] 2

7 Beef [0.860 , 0.870] [30 , 38] [40 , 48] [190 , 199] 3

8 Hog [0.858 , 0.864] [22 , 32] [53 , 77] [190 , 202] 3

Table 2.10 reports rand index, pairwise F-measure, and mutual information values for

Fat and Oil dataset. Fconst,init,nc represents that the fat and oil data is solved with nc

instance level constraints generated by constth constraint generation method and the

k-means based algorithms are initialized with the initth initialization method. Based

on the results obtained in Section 2.6.2.1, we provide the values of the performance

measures for only two constraint generation techniques in this section, namely must

link constraints and actively generated constraints, since they are the most informative

ones. As can be seen from the table, all of the algorithms find the optimal clustering

for all constraint generation and initialization combinations; and all different number

of constraints used, except UPC-k-means for F1,2,5. This can be attributed to the small

size of the dataset and we therefore also considered another high dimensional real life

dataset consisting of 30 data objects.

67

Table 2.10: Performance measures (rand index (Rand), F-measure (FM), and mutual information (MI)) for the Fat and Oil dataset

Problem UCOP-k-means UPC-k-means UCVQE USeeded-k-means UConstrained-k-means UAHCP

instance Rand FM MI Rand FM MI Rand FM MI Rand FM MI Rand FM MI Rand FM MI

F1,2,1 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F1,2,2 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F1,2,3 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F1,2,5 1.00 1.00 0.47 0.99 0.98 0.46 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F1,2,10 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F1,3,1 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F1,3,2 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F1,3,3 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F1,3,5 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F1,3,10 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,2,1 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,2,2 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,2,3 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,2,5 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,2,10 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,3,1 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,3,2 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,3,3 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,3,5 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

F4,3,10 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47 1.00 1.00 0.47

68

For the objective function values (both global and local), the same results are ob-

tained. According to solution time, all of the k-means based algorithms are better

than UAHCP and they perform similarly. It should be noted that even UAHCP solves

an instance of fat and oil data in less than one third of a second. Note that we do not

report all the values for these performance measures for the datasets in this section.

We just provide a short summary since we believe that the external performance mea-

sures (rand index, F-measure and mutual information) are more important than these

ones in real life.

The second dataset that we use in our computational experiments is the well-known

Iris dataset [64]. The original dataset consists of 150 individual observation classified

into three classes (50 observations in each class). The classification task is performed

based on 4 attributes; namely sepal length, sepal width, petal length, and petal width.

In [18], the interval valued 30 observations of irises are provided. Each interval valued

observation is generated by aggregating consecutive 5 individual observations (taking

the minimum and maximum values of those 5 individuals). The authors state that

such a transformation may be valid when the aggregated observations are collected

under similar conditions. For example, in this case, the aggregated irises may be five

different flowers of the same plant. Table 2.11 provides the interval valued iris data

where each data object is a hyper-rectangle in R4.

Table 2.12 reports rand index, pairwise F-measure, and mutual information values for

the interval valued Iris dataset. Similar to the previous notation, Iconst,init,nc represents

that the iris data is solved with nc instance level constraints generated by constth

constraint generation method and the k-means based algorithms are initialized with

the initth initialization method. The following conclusions can be drawn from the

table.

• Except the combination of provision of only must link constraints and initial-

ization by the method in [11], all of the algorithms perform well for all other

constraint generation and initialization combinations.

• For the combination of constraint generation by only must link constraints and

initialization by the method in [11], the best algorithm is UAHCP. All the re-

maining algorithms have similar performances. It should be noted that, there

69

is an improvement in all the performance measures for all k-means based algo-

rithms when the number of instance level constraints increases.

• UAHCP is able to find the optimal clustering in all cases.

• The actively generated constraints are more informative than must link con-

straints.

• Initialization by hierarchical clustering is better than initialization by the method

in [11].

The same results are obtained for the objective function values (both global and lo-

cal). According to solution time, although UAHCP is worse than all k-means based

algorithms, it is still able to solve an instance of the iris data in less than 5 seconds.

In Figure 2.3, partitioning of the iris data is provided. Since each observation is on

R4, we first applied principal component analysis (PCA), which is a well known

dimensionality reduction technique, to data and then used the first three principal

components (PC), which explain 99.48% of the variability in the data, to obtain 3-

dimensional plot in Figure 2.3. Note that the data objects in the figure are points

in R3. After finding assignments for interval valued observations with the solution

methods proposed, we assume that the individual observations used to obtain the

corresponding interval valued observations have the same assignments. The best par-

tition found by the algorithms is the same with the desired (true) partition and it is

provided in the figure.

70

Table 2.11: Interval valued Iris dataset

Observation Sepal length Sepal Width Petal length Petal Width Label

1 [4.6 , 5.1] [3.0 , 3.6] [1.3 , 1.5] [0.2 , 0.2] Setosa

2 [4.4 , 5.4] [2.9 , 3.9] [1.4 , 1.7] [0.1 , 0.4] Setosa

3 [4.3 , 5.8] [3.0 , 4.0] [1.1 , 1.6] [0.1 , 0.2] Setosa

4 [5.1 , 5.7] [3.5 , 4.4] [1.3 , 1.7] [0.3 , 0.4] Setosa

5 [4.6 , 5.4] [3.3 , 3.7] [1.0 , 1.9] [0.2 , 0.5] Setosa

6 [4.7 , 5.2] [3.0 , 3.5] [1.4 , 1.6] [0.2 , 0.4] Setosa

7 [4.8 , 5.5] [3.1 , 4.2] [1.4 , 1.6] [0.1 , 0.4] Setosa

8 [4.4 , 5.5] [3.0 , 3.5] [1.2 , 1.5] [0.1 , 0.2] Setosa

9 [4.4 , 5.1] [2.3 , 3.8] [1.3 , 1.9] [0.2 , 0.6] Setosa

10 [4.6 , 5.3] [3.0 , 3.8] [1.4 , 1.6] [0.2 , 0.3] Setosa

11 [5.5 , 7.0] [2.3 , 3.2] [4.0 , 4.9] [1.3 , 1.5] Versicolor

12 [4.9 , 6.6] [2.4 , 3.3] [3.3 , 4.7] [1.0 , 1.6] Versicolor

13 [5.0 , 6.1] [2.0 , 3.0] [3.5 , 4.7] [1.0 , 1.5] Versicolor

14 [5.6 , 6.7] [2.2 , 3.1] [3.9 , 4.5] [1.0 , 1.5] Versicolor

15 [5.9 , 6.4] [2.5 , 3.2] [4.0 , 4.9] [1.2 , 1.8] Versicolor

16 [5.7 , 6.8] [2.6 , 3.0] [3.5 , 5.0] [1.0 , 1.7] Versicolor

17 [5.4 , 6.0] [2.4 , 3.0] [3.7 , 5.1] [1.0 , 1.6] Versicolor

18 [5.5 , 6.7] [2.3 , 3.4] [4.0 , 4.7] [1.3 , 1.6] Versicolor

19 [5.0 , 6.1] [2.3 , 3.0] [3.3 , 4.6] [1.0 , 1.4] Versicolor

20 [5.1 , 6.2] [2.5 , 3.0] [3.0 , 4.3] [1.1 , 1.3] Versicolor

21 [5.8 , 7.1] [2.7 , 3.3] [5.1 , 6.0] [1.8 , 2.5] Virginica

22 [4.9 , 7.6] [2.5 , 3.6] [4.5 , 6.6] [1.7 , 2.5] Virginica

23 [5.7 , 6.8] [2.5 , 3.2] [5.0 , 5.5] [1.9 , 2.4] Virginica

24 [6.0 , 7.7] [2.2 , 3.8] [5.0 , 6.9] [1.5 , 2.3] Virginica

25 [5.6 , 7.7] [2.7 , 3.3] [4.9 , 6.7] [1.8 , 2.3] Virginica

26 [6.1 , 7.2] [2.8 , 3.2] [4.8 , 6.0] [1.6 , 2.1] Virginica

27 [6.1 , 7.9] [2.6 , 3.8] [5.1 , 6.4] [1.4 , 2.2] Virginica

28 [6.0 , 7.7] [3.0 , 3.4] [4.8 , 6.1] [1.8 , 2.4] Virginica

29 [5.8 , 6.9] [2.7 , 3.3] [5.1 , 5.9] [1.9 , 2.5] Virginica

30 [5.9 , 6.7] [2.5 , 3.4] [5.0 , 5.4] [1.8 , 2.3] Virginica

71

Table 2.12: Performance measures (rand index (Rand), F-measure (FM), and mutual information (MI)) for interval valued Iris dataset

Problem UCOP-k-means UPC-k-means UCVQE USeeded-k-means UConstrained-k-means UAHCP

instance Rand FM MI Rand FM MI Rand FM MI Rand FM MI Rand FM MI Rand FM MI

I1,2,5 0.86 0.81 0.38 0.85 0.81 0.38 0.85 0.81 0.38 0.85 0.81 0.38 0.85 0.81 0.38 1.00 1.00 0.50

I1,2,10 0.84 0.79 0.37 0.84 0.78 0.37 0.82 0.77 0.36 0.83 0.78 0.37 0.84 0.79 0.37 1.00 1.00 0.50

I1,2,20 0.97 0.96 0.48 0.97 0.96 0.48 0.95 0.94 0.46 0.97 0.96 0.47 0.97 0.96 0.47 1.00 1.00 0.50

I1,2,30 0.98 0.98 0.49 0.99 0.99 0.49 0.99 0.98 0.49 0.99 0.98 0.49 0.99 0.99 0.49 1.00 1.00 0.50

I1,2,40 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I1,3,5 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I1,3,10 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I1,3,20 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I1,3,30 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I1,3,40 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,2,5 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,2,10 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,2,20 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,2,30 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,2,40 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,3,5 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,3,10 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,3,20 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,3,30 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

I4,3,40 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00 0.50

72

-0.8

1.5

-0.6

-0.4

1

-0.2

4

0

0.5

0.2

2

0.4

0

0.6

0

0.8

-0.5

-2-1

-1.5 -4

Cluster 1
Cluster 2
Cluster 3

Figure 2.3: The best partition found by the algorithms (also the desired partition) for

the Iris dataset

The third real life dataset is Wine dataset from UCI repository [103]. The dataset

contains 178 individual (point) observations classified into three classes. Each obser-

vation corresponds to 13 continuous attributes of a wine which is cultivated from one

of the three cultivars. The attributes are malic acid, ash, alcalinity of ash, magnesium,

total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, color intensity, hue,

OD280/OD315 of diluted wines and proline. Similar to procedure used to obtain in-

terval valued Iris dataset, we obtained interval valued Wine dataset by aggregating 2

consecutive observations. Such a transformation may be valid when the aggregated

observations are two measurements taken from the same wine. Note that each data

object in this dataset is a hyper-rectangle in R13.

73

Table 2.13 reports rand index, pairwise F-measure, and mutual information values for

the interval valued Wine dataset. Wconst,init,nc in the table represents that the wine data

is solved with nc instance level constraints generated by constth constraint generation

method and the k-means based algorithms are initialized with the initth initialization

method. To see which algorithm is better for a given constraint generation and ini-

tialization combination, the best value for each performance measure is highlighted

in each row. Also, one-way ANOVA is performed to see the effect of algorithm on

performance measures for each constraint generation and initialization combination.

The p-values are reported in Table 2.14 and the best algorithm(s) provided in Table

2.15. Similarly, to determine which constraint generation and initialization combina-

tion leads to better performance for a given algorithm, the best values are boldfaced

in each column for each number of instance level constraints. Also, we analyzed the

results as a full factorial experiment for each performance measure of each algorithm

by setting constraint generation method, initialization procedure and the number of

constraints as factors. The p-values are reported in Table 2.16.

The following conclusions can be obtained.

• Based on Table 2.14, it is clear that the algorithm selected has significant effect

on performance measures for different constraint generation and initialization

combinations in general when we accept the significance level as 0.1. Based on

Table 2.15, although there is no significant difference between UConstrained-

k-means and UAHCP, they perform better than the other algorithms in terms of

all performance measures for all constraint generation and initialization com-

binations. Note that the algorithms in each cell of Table 2.15 are provided in

descending order with respect to performance.

• Based on Table 2.16, constraint generation methods do not significantly dif-

fers from each other for different performance measures of different algorithms

in general. On the other hand, initialization procedure selected has significant

effect on performance most of the time and it seems that initialization with

method in [11] is better based on Table 2.13. Moreover, the number of con-

straints has significant positive effect on performance in general. It can be seen

from Table 2.13, providing more constraints results in better performance.

74

• For all k-means based algorithms, the best combination of constraint gener-

ation and initialization is the combination of providing must-link constraints

and initializing the algorithms with the method in [11] in general.

• Providing only must-link constraints to UAHCP is better than generating con-

straints actively.

For the objective function values (both global and local), similar results are obtained.

According to solution time, k-means based algorithms solve an instance of the wine

data in approximately 20 seconds when UAHCP requires approximately 15 minutes

to solve an instance.

The desired partition and the best partition found for the wine data are provided in

Figure 2.4. Similar to the procedure followed to plot partitioning of the iris data,

we applied PCA and used first three PCs, which explain 99.99% of the variability in

the data, to obtain the plots. Also, we assumed that the assignments of the individual

observations are the same with the assignments of the interval valued observations for

which they are used. The best partition was found by UConstrained-k-means where

we provided 80 must-link constraints and used the method in [11] as the initialization

procedure.

75

Table 2.13: Performance measures (rand index (Rand), F-measure (FM), and mutual information (MI)) for interval valued Wine dataset

Problem UCOP-k-means UPC-k-means UCVQE USeeded-k-means UConstrained-k-means UAHCP

instance Rand FM MI Rand FM MI Rand FM MI Rand FM MI Rand FM MI Rand FM MI

W1,2,5 0.73 0.63 0.24 0.73 0.63 0.24 0.73 0.63 0.24 0.73 0.63 0.24 0.73 0.64 0.25 0.71 0.64 0.24

W1,2,10 0.72 0.63 0.24 0.72 0.62 0.23 0.72 0.62 0.23 0.72 0.62 0.23 0.73 0.64 0.25 0.72 0.65 0.25

W1,2,20 0.76 0.66 0.26 0.74 0.63 0.25 0.74 0.63 0.24 0.74 0.63 0.25 0.77 0.68 0.28 0.74 0.66 0.26

W1,2,50 0.76 0.64 0.27 0.74 0.62 0.24 0.75 0.63 0.24 0.74 0.62 0.24 0.85 0.78 0.34 0.77 0.71 0.29

W1,2,80 0.77 0.65 0.30 0.74 0.61 0.23 0.74 0.61 0.23 0.74 0.61 0.23 0.93 0.89 0.41 0.86 0.82 0.36

W1,3,5 0.71 0.62 0.23 0.71 0.62 0.23 0.71 0.62 0.23 0.71 0.62 0.23 0.71 0.63 0.24 0.71 0.64 0.24

W1,3,10 0.71 0.62 0.23 0.71 0.62 0.23 0.71 0.62 0.23 0.71 0.62 0.23 0.72 0.64 0.24 0.72 0.65 0.25

W1,3,20 0.72 0.62 0.24 0.72 0.62 0.23 0.71 0.62 0.23 0.72 0.62 0.23 0.74 0.66 0.25 0.74 0.66 0.26

W1,3,50 0.73 0.64 0.26 0.72 0.62 0.23 0.72 0.62 0.23 0.72 0.62 0.23 0.77 0.71 0.29 0.77 0.71 0.29

W1,3,80 0.75 0.64 0.28 0.73 0.61 0.23 0.73 0.62 0.23 0.73 0.61 0.23 0.86 0.82 0.36 0.86 0.82 0.36

W4,2,5 0.71 0.62 0.24 0.71 0.62 0.23 0.72 0.62 0.24 0.71 0.62 0.23 0.74 0.63 0.25 0.73 0.63 0.24

W4,2,10 0.73 0.62 0.24 0.72 0.62 0.23 0.72 0.62 0.24 0.72 0.62 0.23 0.76 0.65 0.25 0.74 0.64 0.25

W4,2,20 0.75 0.63 0.25 0.74 0.62 0.24 0.75 0.63 0.24 0.74 0.62 0.24 0.77 0.66 0.26 0.74 0.65 0.25

W4,2,50 0.76 0.64 0.26 0.74 0.61 0.23 0.74 0.62 0.23 0.74 0.61 0.23 0.83 0.74 0.31 0.78 0.70 0.28

W4,2,80 0.80 0.68 0.29 0.74 0.61 0.23 0.74 0.63 0.24 0.74 0.61 0.23 0.91 0.86 0.39 0.82 0.77 0.32

W4,3,5 0.72 0.62 0.23 0.72 0.62 0.23 0.73 0.62 0.23 0.72 0.62 0.23 0.73 0.63 0.24 0.73 0.63 0.24

W4,3,10 0.74 0.62 0.24 0.73 0.61 0.23 0.73 0.62 0.23 0.73 0.61 0.23 0.75 0.64 0.24 0.74 0.64 0.25

W4,3,20 0.73 0.63 0.24 0.72 0.63 0.24 0.73 0.63 0.24 0.72 0.63 0.24 0.73 0.64 0.25 0.74 0.65 0.25

W4,3,50 0.75 0.63 0.26 0.73 0.62 0.24 0.75 0.64 0.25 0.73 0.62 0.24 0.79 0.70 0.29 0.78 0.70 0.28

W4,3,80 0.75 0.63 0.26 0.73 0.62 0.23 0.74 0.63 0.24 0.73 0.62 0.23 0.82 0.77 0.32 0.82 0.77 0.32

76

Table 2.14: P-values for the effect of algorithm on different performance measures

for each constraint generation and initialization combination

Performance measures

Constraint type & Initialization Rand FM MI

Must-link & Method in [11] 0.18 0.02 0.05

Must-link & Agglomerative hierarchical clustering 0.16 0.02 0.06

Active & Method in [11] 0.04 0.02 0.03

Active & Agglomerative hierarchical clustering 0.05 0.01 0.02

Table 2.15: Best algorithm(s) for different performance measures for each constraint

generation and initialization combinations

Constraint type Performance measures

& Initialization Rand FM MI

Must-link UConstrained-k-means UConstrained-k-means UConstrained-k-means

& Method in [11] UAHCP UAHCP UAHCP

Must-link UAHCP UAHCP UAHCP

& AHC UConstrained-k-means UConstrained-k-means UConstrained-k-means

Active UConstrained-k-means UConstrained-k-means UConstrained-k-means

& Method in [11] UAHCP UAHCP

Active UConstrained-k-means UAHCP UAHCP

& AHC UAHCP UConstrained-k-means UConstrained-k-means

77

Table 2.16: P-values for the effects of constraint generation, initialization and the

number of constraints on different performance measures of algorithms

Performance Measure Constraint type Initialization Number of constraints

Rand of UCOP-k-means 0.15 0.00 0.00

FM of UCOP-k-means 0.68 0.03 0.03

MI of UCOP-k-means 0.12 0.00 0.00

Rand of UPC-k-means 0.34 0.01 0.03

FM of UPC-k-means 0.08 0.94 0.05

MI of UPC-k-means 0.19 0.37 0.12

Rand of UCVQE 0.10 0.05 0.03

FM of UCVQE 0.19 0.93 0.55

MI of UCVQE 0.21 0.42 0.52

Rand of USeeded-k-means 0.32 0.01 0.03

FM of USeeded-k-means 0.10 0.99 0.04

MI of USeeded-k-means 0.21 0.41 0.11

Rand of UConstrained-k-means 0.80 0.00 0.00

FM of UConstrained-k-means 0.19 0.01 0.00

MI of UConstrained-k-means 0.14 0.01 0.00

Rand of UAHCP 0.74 - 0.00

FM of UAHCP 0.01 - 0.00

MI of UAHCP 0.10 - 0.00

-10

-8

60

-6

-4

40

-2

1000

0

2

20

4

6

500

8

0

10

0-20

-40 -500

Cluster 1
Cluster 2
Cluster 3

(a) Desired partition

-10

-8

60

-6

-4

40

-2

1000

0

2

20

4

6

500

8

0

10

0-20

-40 -500

Cluster 1
Cluster 2
Cluster 3

(b) Best partition found

Figure 2.4: Partitions for the Wine dataset

78

The last real life dataset we used is the interval valued Gamma dataset. The original

version of the dataset, MAGIC Gamma Telescope dataset, is obtained from the UCI

repository [103]. It contains 19020 individual observations classified into two classes.

Each observation has 10 attributes. To obtain the interval valued Gamma dataset, we

aggregated 5 consecutive observations. Note that each of the 3803 data objects in the

obtained interval dataset is a hyper-rectangle in R10.

For this dataset, we utilized, based on the previous results, the best two algorithms,

namely, UConstrained-k-means and UAHCP, and the best constraint generation and

initialization pair, namely must-link constraints and initialization by the method in

[11]. UConstrained-k-means solves an instance of the interval valued Gamma dataset

in about 25 minutes, while UAHCP could not solve an instance within the given 3

hour time limit. This is expected as UAHCP considers the possibility of merging

O((n + m)3) clusters in the generation of the dendrogram making it not suitable for

large scale instances.

Table 2.17 reports rand index, pairwise F-measure, and mutual information values

obtained with UConstrained-k-means. G1,2,nc in Table 2.17 represents that the gamma

data is solved with nc must-link constraints by utilizing the method in [11] as the

initialization procedure. Values of performance measures increase with the number of

constraints indicating that the agreement between the found partition and the desired

partition improves.

Table 2.17: Performance measures (rand index (Rand), F-measure (FM), and mutual

information (MI)) of UConstrained k-means for the interval valued Gamma dataset

Problem UConstrained-k-means

instance Rand FM MI

G1,2,100 0.68 0.73 0.11

G1,2,500 0.69 0.74 0.12

G1,2,1000 0.70 0.74 0.13

G1,2,2000 0.76 0.80 0.18

G1,2,3000 0.83 0.85 0.26

79

-600

400

-400

-200

200 400

0

3000

200

200

400

-200 100

600

0-400
-100

-600 -200

Cluster 1
Cluster 2

(a) Desired partition

-600

400

-400

-200

200 400

0

3000

200

200

400

-200 100

600

0-400
-100

-600 -200

Cluster 1
Cluster 2

(b) Best partition found

Figure 2.5: Partitions for Gamma dataset

Figure 2.5 shows the desired partition and the best partition found for the gamma

data. Again, we used the first three PCs, which explain 83.34% of the variability

in the data, to obtain the plots and assumed that the assignments of the individual

observations are the same with the assignments of the interval valued observations

for which they are used. The best partition was found in the case where we provided

3000 constraints.

2.7 Conclusion and Future Work

We considered a semi-supervised clustering problem with regional data objects that

aims to minimize the total of the sum of the violation costs of the unsatisfied instance

level constraints and a weighted sum of squared maximum Euclidean distances be-

tween the locations of the data objects and the centroids of the clusters they are as-

signed to. It is assumed that the data objects are closed convex bounded polytopes

and/or closed disks.

We first considered the problem of computing the centroid of a given cluster (CCP)

and formulated the problem as an SOCP which can be solved in polynomial time.

80

We then adapted the subgradient method to the problem which turned out to be faster

than the SOCP formulation.

For the solution of the considered semi-supervised clustering problem (SSC), seven

solution approaches, namely MISOCP formulation, UCOP-k-means, UPC-k-means,

UCVQE, USeeded-k-means, UConstrained-k-means, and UAHCP are proposed and

compared using six performance measures on both artificial and real life datasets.

The MISOCP formulation turned out to be applicable only for small size instances.

For medium size instances, UConstrained-k-means and UAHCP perform better than

the other algorithms in most of the cases. For large size instances, UAHCP becomes

time inefficient making UConstrained-k-means the overall best. Each iteration of

the UConstrained-k-means takes O ((1/ε2)kd(n`+m) + k|CL|(n+m)) time and

linear space. The details are as follows. In Steps 5 - 7 of the algorithm, for each

polytope and disk in the chunklets, farthest distances to the nearest cluster centroid

are calculated. Time required to find farthest distance to a cluster centroid is O(d`)

and O(d) for a polytope and for a disk, respectively. Note that to determine the

nearest cluster, we need to check farthest distances to all clusters. As the number of

polytopes and disks in the chunklets is at most the number of polytopes and disks

in the problem instance, Steps 5 - 7 take O(nkd` + mkd) time in total. In Step 9,

random ordering of the data objects not belonging to any chunklet is required. Since

the maximum number of such data objects can be the total number of data objects

in the problem instance, i.e., n + m, Step 9 needs O(n + m) time in the worst case.

In Steps 10 - 17, each data object not belonging to any chunklet is assigned to the

nearest appropriate cluster. For a polytope, in the search of the nearest appropriate

cluster, finding the farthest distances to all cluster centroids takes O(kd`) time and

checking the appropriateness of a cluster requires at most |CL| comparisons. In the

worst case, the appropriate cluster for a data object can be the kth nearest cluster

and so k|CL| comparisons can be required. Thus, for a polytope, O(kd` + k|CL|)
time is needed. Similarly, for a disk, O(kd + k|CL|) time is required. Note that

the number of polytopes and disks not belonging to any chunklet can be at most the

number of polytopes and disks in the problem instance. Therefore, Steps 10 - 17

require O(n(kd`+ k|CL|) +m(kd+ k|CL|)) time in the worst case. Finally, in Step

20, SM requiring O((1/ε2)d(n` + m)) time is run k times. In total, each iteration of

81

the UConstrained-k-means takes O ((1/ε2)kd(n`+m) + k|CL|(n+m)) time.

To solve each problem instance, we implemented different combinations of constraint

generation and initialization procedures and considered different numbers of con-

straints. Eventually, we obtained more than a thousand results to compare for each

performance measure and provided a summary of the results.

As a future work, one can consider regional representatives instead of point represen-

tatives (i.e, centroids). Also, fuzzy versions of the problem, where the assumption of

assigning each regional data object to a single cluster is relaxed, can be studied.

The publications related with this chapter can be found in [51, 52].

82

CHAPTER 3

DATA MINING FOR CENTRAL NODES IN A GRAPH-STRUCTURED

DATA OBJECT

3.1 Introduction

As it is stated before, traditional data mining techniques deal with data points, i.e.,

data objects which are represented by numerical vectors in the space. But improving

technology and measurement capabilities, and the need for deeper analyses result

in collecting more complex datasets as well as larger datasets [113]. Such complex

datasets may include images, shapes and graphs. In Chapter 3 and Chapter 4, we will

focus on data mining for graph-structured data objects.

Graph mining problems arise in many areas such as biology, neuroscience, medical

imaging, computer or social networks [2]. They are of two types. In the first type,

there is only one graph and aim is to mine the graph based on the edge behavior to

find the dense regions on the graph or to identify the central nodes of the graph etc.

In the second type, there are many graphs and aim is to mine the graphs based on the

overall structural behavior. In this chapter, we will address the first type while the

second type is considered in the next chapter.

Identification of central nodes in a graph is an essential problem in network analysis.

Applications include finding the most influential nodes in a social network where the

nodes are usually the individuals and the edges between them represent interactions,

collaborations, or influences [114] and identifying nodes of high importance in the

transmission of information, viruses etc. in a computer network where the nodes

could be the individual devices on the network and the edges represent connections

between them [32].

83

Which node/group of nodes is the most central in a graph? Answer is purpose and

context dependent. Numerous measures have been introduced in the literature in order

to identify the most central vertex in a network including degree centrality, closeness

centrality, betweenness centrality and eigenvector centrality [114], [150]. Most of

these measures have been extended to groups of vertices with the aim of identifying

the most central groups of vertices in a network, e.g., group degree centrality, group

closeness centrality, and group betweenness centrality [62].

Group centrality measures have found numerous applications. Ni et al. [120] used

group degree, closeness, and betweenness centralities to explore the role of disci-

plines in knowledge communication and interaction networks. Kchiche and Kamoun

[89] studied group centrality based deployment strategies of roadside units in vehic-

ular networks. In [56], the authors proposed a method for finding candidate locations

for additional deployment of network monitors using group betweenness centrality.

Given a network and a group size k, the problem of finding a subset of the vertices of

size k that is the most central (according to a predefined criterion) is a combinatorial

problem. The number of possible subsets to explore may grow too much necessitating

efficient computation or approximation of centrality of several groups successively.

In this chapter, our focus is on the successive computation of the bounds on the group

betweenness centrality of several groups efficiently. Betweenness centrality of a ver-

tex in a network represents the total influence it has on communications between

every pair of vertices in the network assuming that information flows through the

shortest paths. Group betweenness centrality (GBC) of a group of vertices measures

the influence the group has on communications collectively.

Given a group size k, the problem of finding k vertices in a graph with the high-

est group betweenness centrality is an NP-hard problem [126]. Therefore heuristic

approaches [126] and approximation algorithms [56] have been proposed in the liter-

ature. Kolaczyk et al. [92] proposed lower and upper bounds on the group between-

ness centrality and therefore their approach can be used to estimate group between-

ness centrality of any given subset of the vertices. The proposed upper bound (in its

strongest form) requires the solution of an NP-hard problem, namely the traveling

salesman problem, and hence is not practical. In this chapter, we propose improve-

84

ments on their method. We replace the upper and lower bounds proposed in [92] with

stronger bounds from the literature. The upper bound, in addition to being stronger,

is much faster to compute. Moreover, we introduce a modification to their method

which enables faster computation of the bounds for several groups successively.

The organization of this chapter is as follows. In Section 3.2, the notation is provided.

Betweenness and group betweenness centralities are introduced in Section 3.3. Sec-

tion 3.4 details the bounds proposed for the group betweenness centrality and their

faster computation for several groups successively. An illustrative example is also

provided in Section 3.4. Section 3.5 contains the results of the computational exper-

iments performed on randomly generated and real-life networks. Finally, conclusion

is provided in Section 3.6.

3.2 Notation

Let G = (V,E) be a simple, unweighted, undirected, and connected graph, where

V is the set of its vertices and E ⊆ V × V is the set of its edges. We assume that

n = |V | and m = |E|. We say that vertices u and w are adjacent if {u,w} ∈
E. A walk from vertex u to w is a sequence of vertices u0 = u, u1, . . . , u` = w

such that ui and ui+1 are adjacent for every i ∈ {0, 1, . . . , ` − 1}. The length of

this walk is equal to `. A walk can also be represented by a sequence of edges

{u0, u1}, {u1, u2}, . . . , {u`−1, u`} with the ending vertices of the edges being the

same as the starting vertices of the following edges. If all the edges are different

in a walk, then the walk is called a path. By d(u,w), we denote the length of a

shortest path from u to w. Clearly, we have that d(u,w) = d(w, u) for every pair of

vertices u,w ∈ V . We assume that d(u, u) = 0 for every vertex u ∈ V .

For two vertices u and w ∈ V , σuw represents the number of shortest paths from u

to w and is equal to σwu. It is assumed that σuu = 1 for every vertex u ∈ V . The

number of shortest paths from u to w that pass through v ∈ V is denoted by σuw(v).

We have that

σuw(v) =

σuvσvw, if d(u,w) = d(u, v) + d(v, w),

0, otherwise.
(3.1)

85

3.3 Betweenness and Group Betweenness Centrality

Betweenness centrality of a vertex v ∈ V , BC(v), represents the total influence v has

on communications between every pair of vertices in G assuming that information

flows through shortest paths. More formally, we have that

BC(v) =
∑

{u,w}∈V×V |u,w 6=v|u<w

σuw(v)

σuw
. (3.2)

In the above sum, the condition that u and w have to be different from v can be

removed. In this case the betweenness centrality of each vertex v increases by the

constant n− 1 and is denoted by BC(v). We have that

BC(v) =
∑

{u,w}∈V×V |u<w

σuw(v)

σuw
= BC(v) + n− 1. (3.3)

BC(v) and BC(v) can be normalized by dividing them, respectively, by
(
n−1

2

)
and(

n
2

)
to make them into measures between 0 and 1. By this normalization, the be-

tweenness centrality can also be stated probabilistically. For instance, BC(v)/
(
n
2

)
represents the probability that the information sent between a pair of distinct vertices

chosen uniformly at random passes through v if the information flows through one

of the shortest paths selected uniformly at random. BC(v), BC(v), and their nor-

malized versions are all equivalent in the sense that having the value of one of the

measures for a vertex, one can immediately obtain the values of the others for the

same vertex by multiplication/division by a constant and/or addition/subtraction of a

constant. Therefore in terms of the complexity of computing the betweenness central-

ity of a single vertex or betweenness centralities of all the vertices in a graph, the four

measures are all equivalent. Furthermore, if one orders the vertices by non-increasing

value of betweenness centrality, the four measures give exactly the same ordering.

Until the paper by Brandes [26], the fastest algorithms for the computation of the

betweenness centralities of all the vertices in an undirected graph required O(n3)

time and O(n2) space. Brandes [26] introduced the notion of the dependency of a

vertex u ∈ V on a vertex v ∈ V , δu(v), defined as

δu(v) =
∑

w∈V |w 6=u

σuw(v)

σuw
, (3.4)

86

which represents the total fraction of shortest paths that start at u and pass through v.

After exploiting an observation that the partial sums in Equation 3.4 obey a recursive

relation, he showed that δu(v) values for all u, v ∈ V can be computed in O(nm)

time. In terms of the δu(v)’s, the betweenness centrality of a vertex v can be written

as

BC(v) =
∑
u∈V

δu(v)

2
. (3.5)

After the computation of all the dependencies which take O(nm) time, taking the

above sum for all the vertices in V requiresO(n2) time resulting in theO(nm) overall

time complexity (and a space requirement of O(n + m)) for the computation of all

betweenness centrality values.

Betweenness centrality of individual vertices can be extended to groups of vertices in

different ways. Let S be a subset of the vertices V . One way to extend betweenness

centrality to groups of vertices is by counting the shortest paths that pass through all

the vertices in S and using this quantity in Equations 3.2 or 3.3 in place of σuw(v).

This notion was introduced by Kolaczyk et al. [92] and called as the co-betweenness

centrality. Formally, letting σ#
uw(S) represent the number of shortest paths between

u and w that pass through all the vertices in S, the co-betweenness centrality of S,

C(S), is defined as

C(S) =
∑

{u,w}∈V×V |u,w 6∈S|u<w

σ#
uw(S)

σuw
. (3.6)

If the end vertices of the shortest paths are allowed to be in S, then we have

C(S) =
∑

{u,w}∈V×V |u<w

σ#
uw(S)

σuw
. (3.7)

When S = {u} for some u ∈ V or S = {u,w} for two vertices u,w ∈ V , we use

the notations C(u) and C(u,w), respectively, for C(S). C(S) and C(S) in a similar

fashion can be normalized to obtain measures whose values are between 0 and 1.

Another way to extend betweenness centrality to groups of vertices is by counting

the shortest paths that pass through at least one of the vertices in S. Considering a

road network with roadside equipments to be placed on certain vertices, the group

87

betweenness centrality of a set of vertices S defined in this manner represents the

likelihood that a vehicle traveling between a random pair of vertices through one of

the shortest paths selected uniformly at random meets at least one roadside equipment

along its way to destination.

Letting σ∗uw(S) denote the number of shortest paths between u andw that pass through

at least one vertex in S, the group betweenness centrality (GBC) of a vertex set S,

GB(S), is defined as

GB(S) =
∑

{u,w}∈V×V |u,w 6∈S|u<w

σ∗uw(S)

σuw
. (3.8)

Similarly, allowing the end vertices of the shortest paths to be in S, we define,GB(S)

as

GB(S) =
∑

{u,w}∈V×V |u<w

σ∗uw(S)

σuw
. (3.9)

Brandes [27] proposed a method to find the GBC of a single subset of vertices of size

k inO(nm) time. His method is not practical for finding the group (of size k) with the

highest GBC value as this would take O
(
nm
(
n
k

))
time. Puzis et al. [125] proposed

an algorithm to compute successively the GBC of subsets of vertices of a given size

k. The algorithm has a preprocessing step taking O(n3) time after which the compu-

tation of each GBC of a set of vertices of size k takes O(k3) time. In a recent paper

[142], the authors introduced mixed integer programming formulations for the prob-

lem of finding a group of k vertices with the highest GBC value and demonstrated

the applicability of their method on medium size sparse instances. In this study, we

do not compute the exact GBC values. Similar to [125], a preprocessing step com-

putes certain quantities. After the preprocessing step, lower and upper bounds on the

GBC value of a set of vertices of size k are computed and this step takes O(k2) time

for each group of size k. We show in the computational experiments that with these

bounds, several groups can be eliminated from further consideration in the search for

a group with the highest GBC value.

Path betweenness centrality is another generalization of the betweenness centrality

from a single vertex to a sequence of vertices. The reader is referred to [125] for

more details on the path betweenness centrality. For the special case in which we

88

have a subset S = {s1, s2} of size two, the path betweenness centrality of (s1, s2) is

equal to the co-betweenness centrality of S.

3.3.1 Bounds on the Group Betweenness Centrality

Kolaczyk et al. [92] proposed a method providing lower and upper bounds on the

GBC of a subset S of V . For a subset T of S, they introduced the co-betweenness of

T with respect to S, CS(T), as

CS(T) =
∑

{u,w}∈V×V |u,w 6∈S|u<w

σ#
uw(T)

σuw
. (3.10)

With this definition, they showed that the group betweenness centrality of S, GB(S),

can be bounded as

∑
s∈S

CS(s)−
∑

{s1,s2}∈S×S|s1<s2
CS(s1, s2) ≤ GB(S) ≤

∑
s∈S

CS(s)−
k−1∑
j=1

CS(sj, sj+1),

(3.11)

where s1, s2, . . . , sk is any ordering of the vertices in S. Computation of the best

upper bound, i.e., finding the ordering s1, s2, . . . , sk such that the upper bound is the

smallest, is in general an NP-hard problem as it can be transformed into the traveling

salesman problem. Computation of the co-betweenness centrality of each vertex and

the co-betweenness centrality of every pair of distinct vertices with respect to S takes

O(n3) time. Computation of the lower bound in Equation 3.11 takes O(k2) time

and the computation of the best upper bound takes exponential time in k. When the

ordering of the vertices is fixed a priori, the computation of the upper bound takes

O(k) time, however in this case the bound usually becomes very loose.

When one wants to compute successively the bounds on the GBC of several groups,

say S1, . . . , S`, all the quantities in Equation 3.11 need to be recomputed with respect

to all these groups. This is because there is no simple relation between CS(u, v) and

CW (u, v) for two different groups S and W containing the same vertices u and v.

We propose the following modifications in computing the bounds on the GBC.

1. An upper bound, which is stronger than the strongest one in Equation 3.11, is

89

proposed that is faster to compute than finding the strongest upper bound in

Equation 3.11.

2. A lower bound, which is stronger than the one in Equation 3.11, is proposed.

The upper and lower bounds proposed are adaptations of the existing bounds in

probability theory literature to the problem considered in this study.

3. A preprocessing step, which eliminates the dependency to the group in con-

sideration, is proposed that computes all the necessary quantities (betweenness

and co-betweenness values) in O(n3) time. After the preprocessing step, there

is no need to recompute the co-betweenness values for the computation of the

GBC of different groups. This results in faster computation of the bounds for

successive groups. For each group of size k, the computation of the new bounds

take O(k2) time whereas, in the method proposed in [92], the computation of

the bounds take O(n3 + k2) time if the ordering of the vertices is fixed a priori

or O(n3 + f(k)) time if the best upper bound in Equation 3.11 is computed

where f(k) is not bounded by any polynomial of k.

3.4 Computation of the New Bounds

In this section, we explain the modifications we propose to bound the GBC of several

groups successively. First, to make things easier to explain, we will use the following

normalized version of the GBC.

GBN(S) =
∑

{u,w}∈V×V |u<w

σ∗uw(S)

σuw
/

(
n

2

)
. (3.12)

The ratio
σ∗uw(S)

σuw
represents the probability that the information sent between u and

w passes through at least one of the vertices in S (under the assumptions that the in-

formation flows through the shortest paths and if there are more than one shortest path

between u and w, the information flows through one of the shortest paths chosen uni-

formly at random from all shortest paths between u and w.). Therefore GBN(S) can

be interpreted as the probability that the information sent between a pair of distinct

vertices chosen uniformly at random from V passes through at least one of the vertices

90

in S if the information flows through one of the shortest paths selected uniformly at

random. This probabilistic interpretation already exists in the literature, see e.g. [63].

For a vertex u ∈ V , let E(u) denote the event that the information sent between a

pair of distinct vertices chosen uniformly at random passes through u. Similarly, let

E(u,w) be the event that the information sent between a pair of distinct vertices cho-

sen uniformly at random passes through both u and w, i.e., E(u,w) = E(u)∩E(w).

We denote by P (u) and P (u,w) the probabilities that eventsE(u) andE(u,w) occur,

respectively, i.e., P (u) = prob(E(u)) and P (u,w) = prob(E(u,w)), where prob(E)

represents the probability that event E occurs.

With these definitions, we have that

GBN(S) = prob(∪v∈SE(v)). (3.13)

In probability theory, there is a vast literature on bounding the probability of union of

events in terms of the individual probabilities and joint probabilities of up to q < |S|
events. Such bounds are known as the bounds of order q. As the value of q increases,

the quality of the bounds and the complexity of their computation increase in general.

With these considerations, we consider using bounds of order 2 that employ P (u)

and P (u,w) values. So, once P (u) values for every u ∈ V and P (u,w) values for

every pair of distinct vertices u,w ∈ V are computed in a preprocessing step, one can

use these quantities to compute successively bounds on the GBC of several groups.

Note that the quantities used to bound the GBC of a group S in Equation 3.11 are

dependent on the group S, and hence all the quantities need to be recomputed from

scratch for every group which makes the method in Kolaczyk et al. [92] less efficient.

For a vertex u ∈ V , we have that P (u) = BC(u)/
(
n
2

)
and for a distinct pair of

vertices u,w ∈ V , we have that P (u,w) = C(u,w)/
(
n
2

)
. Note that, by definition, we

have that P (u) = P (u, u) for every vertex u ∈ V . In the preprocessing step of our

algorithm, all betweenness centrality values BC(u), u ∈ V and all co-betweenness

centrality values C(u,w), u, w ∈ V, u 6= w are computed.

91

3.4.1 Preprocessing Step

In the preprocessing step, we start with computing for every pair of distinct vertices

u,w ∈ V , the distance d(u,w) and the number of shortest paths σuw between them.

These values can be computed by breadth first search in O(nm) time [26]. We then

compute δu(v) values for every u, v ∈ V which can be done in O(nm) time. For each

vertex u ∈ V , the betweenness centrality value BC(u) is computed using Equation

3.5 and P (u) is obtained by P (u) = BC(u)/
(
n
2

)
. Computation of all BC(u) and

P (u) values from the computed δu(v) values take O(n2) time.

Finally, in the end of the preprocessing step, P (u,w) values are computed by using

P (u,w) = C(u,w)/
(
n
2

)
for every pair of distinct vertices u,w ∈ V . To be able

to compute C(u,w) values, let us consider two distinct vertices s, t ∈ V . Let us

compute the fraction of the shortest paths from s to t that pass first through u and

then through w. This fraction can be calculated by the product of two fractions: the

fraction of the shortest paths from s to t that pass through w and the fraction of the

shortest paths from s to w that pass through u. Adding all such fractions for every

pair of distinct vertices s, t ∈ V , we obtain C(u,w). Mathematically, we have

C(u,w) =
∑
s∈V

 ∑
t∈V |t6=s

σst(w)

σst

 σsw(u)

σsw

from which we obtain

C(u,w) =
∑
s∈V

δs(w)
σsw(u)

σsw
. (3.14)

Every C(u,w) can be computed by Equation 3.14 in O(n) time. Therefore the total

time to computeC(u,w) and P (u,w) values for all pairs of distinct vertices u,w ∈ V
is O(n3). Overall the preprocessing step takes O(n3) time.

3.4.2 Upper Bounds

The upper bound in Equation 3.11 for the GBC of a subset S ⊆ V of size k used

in [92] can be rewritten for the normalized group betweenness centrality defined in

Equation 3.12 as a bound of order two as

92

GBN(S) ≤
∑

i∈S P (i)−
∑k−1

j=1 P (sj, sj+1), (KCBu)

where s1, s2, . . . , sk is any ordering of the vertices in S. This upper bound is abbre-

viated as KCBu following the initials of the last names of the authors in [92] (for all

of the following upper bounds, we use the initials of the last names of the authors

who proposed them for the abbreviation). Even though this upper bound is equiva-

lent to the upper bound in Equation 3.11, the dependencies of the betweenness and

co-betweenness values on the group in consideration is successfully eliminated.

Consider a complete graph Kk of order k with vertices s1, s2, . . . , sk. Let the weight

of the edge {u,w} be P (u,w). Finding the best upper bound in KCBu amounts to

finding the maximum weighted subgraph that is a cycle containing all the vertices of

Kk but from which exactly one edge is deleted. This problem can be transformed into

the traveling salesman problem and is therefore hard to solve. The authors in [92]

used complete enumeration in their computational experiments to find the ordering

resulting in the maximum weight, i.e., resulting in the smallest upper bound. Note that

any cycle containing all the vertices of Kk but from which exactly one edge is deleted

is spanning, i.e., contains all the vertices of the graph, and is connected; and hence is

a spanning tree of Kk. The upper bound in KCBu can be made stronger by using an

upper bound of order two from the literature that finds a maximum weighted spanning

tree in Kk and uses the corresponding weight in place of the term
∑k−1

j=1 P (sj, sj+1)

[82, 152]. Clearly the weight of a maximum weighted spanning tree is never less than

the weight of a maximum weighted cycle containing all the vertices of Kk but from

which exactly one edge is deleted as the latter is also a spanning tree. Therefore the

following bound, called as HW, which is based on the maximum weighted spanning

tree computation is never weaker than the upper bound KCBu. For a given subset S

of V , HW bound is computed as

GBN(S) ≤
∑

i∈S P (i) −maxT∈Γ

∑
{i,j}∈ET P (i, j) (HW)

where Γ is the set of all spanning trees of the complete graph with vertex set S and

edge weights P (i, j) for {i, j} ∈ ET and ET is the set of edges of T . Surprisingly,

the problem of finding a maximum weighted spanning tree is much easier than the

travelling salesman problem and the complexity of this upper bound is at mostO(k2).

93

In [55], the authors define the following Bonferroni-type inequality for the union of a

finitely many events for any r ∈ N

(−1)rP (∪v∈SE(v)) ≥ (−1)r
∑
I ⊆ S

0 < |I| ≤ r

(−1)|I|−1P (∩i∈IE(i)) +
∑
I ⊆ S

|I| = r + 1

P (∩i∈IE(i))

∑
i∈I E(i)∑
v∈S E(v)

.

(3.15)

When r = 1, we obtain from Inequality 3.15 the following upper bound of order two,

called as DT, on the normalized GBC for a given subset S of V .

GBN(S) ≤
∑

i∈S P (i) −
∑
{i,j}∈S×S,i<j P (i, j)

P (i)+P (j)∑
i∈S P (i)

(DT)

Note that the complexity of computing the upper bound DT is O(k2) for a given

subset of vertices S of size k.

In [157], the authors propose two upper bounds, which we call as YATu1 and YATu2,

for the probability of the union of finitely many events. For a given subset S of V ,

YATu1 and YATu2 are given as

GBN(S) ≤
(

1
mini∈S ci

+ 1∑
i∈S ci

)∑
i∈S ciP (i)− 1

(mini∈S ci)
∑
i∈S ci

∑
i∈S
∑
j∈S cicjP (i, j), (YATu1)

GBN(S) ≤ mini∈S
{∑

j∈S cjP (i,j)−(minj∈S cj)P (i)∑
j∈S cj−minj∈S cj

}
+
(

1
mini∈S ci

+ 1∑
i∈S ci−mini∈S ci

)∑
i∈S ciP (i)

− 1
(mini∈S ci)(

∑
i∈S ci−mini∈S ci)

∑
i∈S
∑
j∈S cicjP (i, j), (YATu2)

where ci is a positive real number for each i ∈ S. The authors prove that YATu2

dominates YATu1 for every choice of ci’s. According to some computational exper-

iments using randomly generated ci’s, the authors claim that the best upper bounds

are obtained when all ci’s are equal. Thus, we set each ci to 1 in our computational

experiments. Note that the upper bounds do not change if we multiply all ci’s by the

same positive constant. The upper bounds YATu1 and YATu2 can be computed in

O(k2) time.

In the search for different upper bounds of order two, it turned out that most of the

bounds we found in the literature are dominated by HW in terms of quality. For

instance, the upper bounds proposed in [93] and [97] are also appropriate for the

problem considered in this study. However, it has been proved in [22] that these

upper bounds are dominated by HW. Thus we only used KCBu, HW, DT, YATu1,

and YATu2 in our computational experiments.

94

3.4.3 Lower Bounds

The lower bound for the GBC of a subset S ⊆ V of size k used in [92] can be

rewritten for the normalized group betweenness centrality as a bound of order two as

∑
i∈S P (i)−

∑
{i,j}∈S×S,i<j P (i, j) ≤ GBN(S), (KCBl)

which takes O(k2) time to compute once the betweenness and co-betweenness cen-

trality values are given. This bound, abbreviated as KCBl, is the classical Bonferroni

inequality of order two. There are stronger bounds in the literature with the same

O(k2) time complexity. For all of the following lower bounds, we use the initials of

the last names of the authors who proposed them for the abbreviation.

In [156], the authors propose a lower bound of order two, called as YAT, which is

shown to be stronger than the classical Bonferroni bound of order two. For a given

subset S of V of size k, YAT is computed as

β +
∑

i∈S αi

(
1

χ
(
γi
αi

) − γi
αi
−χ
(
γi
αi

)
[
1+χ

(
γi
αi

)][
χ
(
γi
αi

)]) ≤ GBN(S), (YAT)

where χ(.) is a function defined as

χ(x) =

x− 1 if x ≥ 2 is an integer,

bxc otherwise,

β = max
{
0,maxi∈S

{∑
j∈S P (i, j)− (k − 1)P (i)

}}
, αi = P (i)−β, γi =

∑
j∈S P (i, j)−kβ.

This bound can be computed in O(k2) time.

Another bound that is stronger than the classical Bonferroni bound of order two is

proposed in [96] which we call as KAT. Even though YAT is stronger than KAT in

terms of quality, KAT may have better performance in terms of computational time.

For a given subset S of V of size k, KAT is calculated as∑
i∈S

(
θiP (i)

2∑
j∈S P (i,j)+(1−θi)P (i) + (1−θi)P (i)2∑

j∈S P (i,j)−θiP (i)

)
≤ GBN(S), (KAT)

where θi =
∑
j∈S,j 6=i P (i,j)

P (i)
−
⌊∑

j∈S,j 6=i P (i,j)

P (i)

⌋
.

As a last lower bound, we consider the bound proposed in [66, 93], called as GK. To

the best knowledge of the authors, there is no other lower bound of order two that is

95

theoretically stronger than GK and that has a smaller time complexity. For a given

subset S of V of size k, GK is computed as

(
∑
i∈S δiP (i))

2∑
i,j∈S δiδjP (i,j)

≤ GBN(S), (GK)

where δ1, . . . , δk is the solution of the following system of linear equations
P (1) P (1, 2) · · · P (1, k)

P (2, 1) P (2) · · · P (2, k)
...

...
...

...

P (k, 1) P (k, 2) · · · P (k)

δ1

δ2

...

δk

 =

P (1)

P (2)
...

P (k)

 .

Although there are some other lower bounds of order two in the literature, we did not

consider them in this study. This is because they are either computationally expensive

or dominated by an already considered lower bound. For example, the lower bounds

proposed in [45] and [46] are special cases of KAT and they are always less than or

equal to KAT as it is proved in [96]. In [76], the author improves lower bounds pro-

posed in [45], [46], and [96] by optimization over subsets of events. But the improved

versions of these bounds are computationally expensive since they require exponen-

tial time in the group size k. Another bound is proposed in [39]. In [94], the authors

proved that this bound is dominated by the bound proposed in [45]. Hence, it is dom-

inated by KAT. In [157], the authors propose two lower bounds whose calculations

require the solution of the knapsack problem. Even though these lower bounds dom-

inate GK, we did not consider them in our computational experiments because the

knapsack problem is an NP-hard problem. Therefore, we utilized only KCBl, YAT,

KAT, and GK in this study.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

 1

 2

 3

 4

 5

Figure 3.1: A graph with n = 5

96

3.4.4 Illustrative Example

In this subsection, we illustrate upper and lower bound calculations for the normalized

GBC on a small graph with 5 vertices, V = {1, . . . , 5}, which is given in Figure 3.1.

Betweenness and co-betweenness values are calculated by Equation 3.5 and Equation

3.14, respectively, are put in the matrix C which is given below.

C =

4 2 1 2 2

2 5 1.5 3 1

1 1.5 4 4 1.5

2 3 4 7 3

2 1 1.5 3 5

Note that the diagonal entries of C are equal to the betweenness centrality values, i.e.,

C(i, i) = BC(i).

The normalized values, i.e., P (i) and P (i, j) values, are given below in the matrix P .

P = C/

(
n

2

)
=

0.4 0.2 0.1 0.2 0.2

0.2 0.5 0.15 0.3 0.1

0.1 0.15 0.4 0.4 0.15

0.2 0.3 0.4 0.7 0.3

0.2 0.1 0.15 0.3 0.5

.

Consider the subset S = {2, 3, 4, 5} of V . The complete graph with vertex set S and

edge weights P (i, j) is given in Figure 3.2. The maximum weighted subgraph that is

a cycle containing all the vertices of the graph in Figure 3.2 but from which exactly

one edge is deleted is 5-3-4-2. Thus,

KCBu = P (2) + P (3) + P (4) + P (5)− P (5, 3)− P (3, 4)− P (4, 2) = 1.25.

On the other hand, the maximum weighted spanning tree consists of the edges {2, 4},
{3, 4}, and {4, 5}. Therefore,

HW = P (2) + P (3) + P (4) + P (5)− P (2, 4)− P (3, 4)− P (4, 5) = 1.1.

97

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 2

 3

 4

 5

0.1
5

0
.3

0
.1

0.4

0
.1

5

0.3

Figure 3.2: Complete graph with vertex set S = {2, 3, 4, 5} and edge weights P (i, j)

We have that
∑

i∈S P (i) = P (2) + P (3) + P (4) + P (5) = 2.1 and hence

DT = 2.1− P (2, 3)P (2) + P (3)

2.1
− P (2, 4)P (2) + P (4)

2.1
− · · · − P (4, 5)P (4) + P (5)

2.1
= 1.37.

Also,
∑

i∈S
∑

j∈S P (i, j) = P (2, 2) +P (2, 3) + · · ·+P (4, 5) +P (5, 5) = 4.9. Thus,

Y ATu1 =

(
1 +

1

4

)
2.1− 1

4
4.9 = 1.4,

Y ATu2 = min

{
P (2, 3) + P (2, 4) + P (2, 5)

3
, . . . ,

P (5, 2) + P (5, 3) + P (5, 4)

3

}
+

(
1 +

1

3

)
2.1−

1

3
4.9 = 1.35.

Similarly, we calculate lower bounds as KCBl = 0.7, Y AT = 0.93, KAT = 0.93,

and GK = 0.97. Using the upper and lower bounds, we can define the gap on the

normalized GBC of S as

GAP = min {1, UpperBound} −max {0, LowerBound} . (3.16)

For this small example HW results in the best upper bound while GK finds the best

lower bound. By Equation 3.16, GAP = 0.03 meaning that the exact normalized

GBC value of S is estimated between 0.97 and 1 with a 3% gap.

98

3.4.5 An Algorithm for the Group with the Highest GBC Value

For an efficient search of a group of size k with the highest GBC value from among

a given set of groups of size k, we propose Algorithm 10. It is based on the idea that

a group cannot be the best group in the given set, i.e., the one with the highest GBC

value, if there exists another group in the set whose lower bound is greater than the

upper bound of the group in consideration. Thus, the algorithm executes the following

two-step procedure: (1) find lower and upper bounds on the GBC of the given groups,

(2) eliminate the groups having an upper bound that is lower than the maximum lower

bound and find the remaining groups which are candidates for the best group in the

set. Algorithm 10 in addition to returning the gap also returns the optimality gap for

each group in the candidate list. The optimality gap of a group provides an upper

bound on the difference between the GBC value of the best group in the given set

and the GBC value of the group in consideration. Hence, the optimality gap shows

the user the quality of the approximation. The details of the algorithm are shown in

Algorithm 10.

For a given graph G = (V,E) and group size k, our algorithm can be applied for

different purposes. For example, if k is small, then all possible subsets of V of size

k can be generated with the aim of finding bounds on the GBC of each subset. On

the other hand, in a road network, one may have candidate locations, T ⊆ V where

the roadside equipments can be installed. In this case, one may generate all subsets

of T of size k for the purpose of choosing among the candidate locations. As a third

example, if the user has a predetermined set of candidate groups, obtained for example

as a result of another computational experiment or expert opinion, then s/he may give

this set as an input to estimate their GBC values. Consider a case where there is a cost

associated with each vertex and the cost of a group cannot exceed a given budget. In

this case, the user may do some preliminary computations to determine the input set

that will be given to the algorithm. Note that our algorithm after the preprocessing

step can find bounds on the GBC of any group irrespective of its size. For the purpose

of simplicity, we assume that all the subsets given as inputs to the algorithm are of

the same size k.

The running time of Algorithm 10 is O(n3 +sk2), where s is the number of groups in

99

Algorithm 10
1: Input: Subsets S1, . . . , Ss of V of size k.

2: Preprocessing: Compute the matrix P = [P (i, j)].

3: for i = 1 to s do

4: Find a lower bound on the GBC of Si, LB(Si).

5: Find an upper bound on the GBC of Si, UB(Si).

6: end for

7: Find the group Si∗ with maximum lower bound, where i∗ = argmaxi{LB(Si)}.
8: Find the group Sj∗ with maximum upper bound, where j∗ = argmaxi{UB(Si)}.

9: Initialize the list of candidate groups for the best group, C = {Si∗}.
10: for i = 1 to s do

11: if UB(Si) ≥ LB(Si∗) then

12: Add Si to the candidate list, C = C ∪ {Si}.
13: Find gap for Si, GAP (Si) = min {1, UB(Si)} −max {0, LB(Si)}.
14: if i 6= j∗ then

15: Calculate the optimality gap for Si,

optGAP (Si) = min {1, UB(Sj∗)} −max {0, LB(Si)}.
16: else

17: Find the group Sj∗∗ with the second maximum upper bound,

where j∗∗ = argmaxi∈{1,2,...,s}\{j∗}{UB(Si)}.
18: Calculate the optimality gap for Si,

optGAP (Si) = max {0,min {1, UB(Sj∗∗)} −max {0, LB(Si)}}.
19: end if

20: end if

21: end for

22: return C, GAP , optGAP .

the input set. If there are a polynomial number of groups (in n) in the input set, then

the algorithm runs in polynomial time. On the other hand, if there are an exponential

number of groups in the input set, then the algorithm runs in exponential time.

Algorithm 10 returns all groups that are candidates for the optimal group. One may

compute the exact GBC values of these groups, for example with the method proposed

100

by [125], in order to find the optimal group. Note that if the method proposed in

[125] is used, the evaluation of the exact GBC for each group takes O(k3) time and

no additional preprocessing will be needed as the preprocessing steps of the method

in [125] and Algorithm 10 are the same. One may also device branch-and-bound like

procedures to arrive at the optimal group without computing the exact GBC values of

all the groups in the candidate list C.

3.5 Computational Experiments

3.5.1 Selection of Bounds

Selection of upper and lower bounds to be used in Algorithm 10 is crucial in order

to have good estimates of the GBC values, i.e., in order to have small gaps. In this

subsection, we illustrate successive lower and upper bound calculations on the GBC

of several groups on three small networks. The first network is the Zachary’s karate

club network [159]. In his study, Zachary collected information about 34 members of

a university karate club, i.e., n = 34. An edge between two vertices indicates that the

corresponding members interact with each other. Figure 3.3 graphically displays the

Zachary’s karate club network.

The second network is randomly generated by implementing a preferential attachment

procedure for the network growth. The procedure starts with a graph with two vertices

and an edge between them and adds vertices one by one until the desired number of

vertices is achieved. In each step, the procedure attaches the new vertex to e existing

vertices with a probability which is proportional to the degrees of the existing vertices.

The number of edges to be added in each step, e, affects the density of the generated

graph. We generated a small network with 30 vertices by adding 2 edges in each

step. A graphical display of the preferential attachment network generated is given in

Figure 3.4.

The last network is randomly generated by the Erdös-Renyi graph model. This model

takes two inputs. The first input is the number of vertices, n. The second one is

the probability of adding an edge between vertex i ∈ {1, . . . , n} and vertex j ∈

101

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

 1

 2

 3

 4

 5

 6
 7

 8 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33
 34

Figure 3.3: Zachary’s karate club network

-3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

 1

 2

 3

 4

 5

 6

 7
 8

 9

 10

 11

 12

 13

 14

 15

 16 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

Figure 3.4: Randomly generated preferential attachment network with n = 30 and

e = 2, PA

102

-4 -3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

 1

 2

 3

 4
 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21
 22

 23

 24

 25

 26

 27

 28

 29

 30

Figure 3.5: Randomly generated Erdös-Renyi graph with n = 30 and p = 0.2, ER

{1, . . . , n}, p. This input can be considered as the density parameter. As p goes to 1

from 0, the graph becomes denser. By taking n = 30 and p = 0.2, we generated an

Erdös-Renyi graph which is given in Figure 3.5.

We calculated the lower and upper bounds provided in Section 3.4 for all possible

groups of size 3 through 7, i.e., k = 3, 4, 5, 6, 7, for three networks defined above.

For each group, we found the best lower bound (i.e., the highest) and the best upper

bound (i.e., the lowest). Table 3.1 reports the number of possible groups for each net-

work and group size combination, and the performances of different bounds in terms

of the percentage of finding the best bounds. Also, Table 3.2 provides the total com-

putational time spent to find the lower and upper bounds for all of the groups for each

network and group size combination. Lower bounds YAT and KAT have similar com-

putational times and give the same bounds for almost all groups outperforming KCBl

and GK. In three network and group size combination, YAT beats KAT in terms of the

percentage of finding the best bound. In our further computational experiments, we

will use YAT since it is both experimentally and theoretically better than KAT [156].

When the group size is 3, upper bounds KCBu and HW find the same bounds for all

the groups. For other group sizes, HW outperforms KCBu and gives the strongest

103

Table 3.1: The performances of different bounds on the Zachary, and randomly gen-

erated preferential attachment (PA) and Erdös-Renyi (ER) graphs in terms of the per-

centage of finding the best bounds for different group sizes

Group # of Lower bounds Upper bounds

Network size groups KCBl YAT KAT GK KCBu HW DT YATu1 YATu2

3 5984 98.88 100.00 98.88 0.00 100.00 100.00 14.84 14.84 29.71

4 46376 95.55 99.99 99.99 0.01 48.95 100.00 5.58 5.58 5.61

Zachary 5 278256 89.49 100.00 100.00 0.00 18.64 100.00 2.09 2.09 2.09

6 1344904 81.63 99.99 99.99 0.01 5.93 100.00 0.75 0.75 0.75

7 5379616 73.28 99.98 99.98 0.02 1.64 100.00 0.25 0.25 0.25

3 4060 99.61 100.00 99.61 0.00 100.00 100.00 8.72 8.72 28.13

4 27405 97.16 100.00 100.00 0.00 57.93 100.00 1.64 1.64 1.64

PA 5 142506 91.03 100.00 100.00 0.00 26.84 100.00 0.24 0.24 0.24

6 593775 80.82 100.00 100.00 0.00 9.79 100.00 0.02 0.02 0.02

7 2035800 66.88 100.00 100.00 0.00 2.80 100.00 0.00 0.00 0.00

3 4060 99.21 100.00 99.21 0.00 100.00 100.00 2.66 2.66 13.72

4 27405 98.17 100.00 100.00 0.00 67.60 100.00 0.24 0.24 0.24

ER 5 142506 95.50 100.00 100.00 0.00 37.12 100.00 0.01 0.01 0.01

6 593775 88.60 100.00 100.00 0.00 17.46 100.00 0.00 0.00 0.00

7 2035800 77.22 100.00 100.00 0.00 7.24 100.00 0.00 0.00 0.00

bounds. Moreover, computational time of HW is much better than that of KCBu.

Even though computational times of other upper bounds are better than that of HW,

they are worse than HW in terms of the quality. Thus we will utilize HW as the upper

bound in the further computational experiments.

Following the procedure in Algorithm 10, i.e., finding bounds on the GBC of groups

and eliminating groups based on the bounds, to compare the performance of the se-

lected YAT-HW pair with that of KCBl-KCBu pair in [92], we provide the number of

remaining groups after the elimination step and the total time spent to find the lower

and upper bounds for all of the possible groups in Table 3.3. The columns 6 and 7 of

Table 3.3, are the sum of the columns 4 and 8, and the sum of the columns 3 and 7 of

Table 3.2, respectively. The preprocessing steps of Algorithm 10 take approximately

0.016, 0.012, and 0.013 seconds for Zachary, PA, and ER networks, respectively.

Theoretically, YAT and HW outperform KCBl and KCBu, respectively. We confirm

that YAT-HW pair outperform KCBl-KCBu pair computationally as well. The num-

ber of remaining groups is larger for KCBl-KCBu bounds. Moreover, as the group

104

Table 3.2: The total computational time of different bounds on the Zachary, and ran-

domly generated preferential attachment (PA) and Erdös-Renyi (ER) graphs for all of

the groups with different group sizes

Group Total time (in s) for lower bounds Total time (in s) for upper bounds

Network size KCBl YAT KAT GK KCBu HW DT YATu1 YATu2

3 0.02 0.03 0.02 0.02 0.15 0.05 0.02 0.01 0.02

4 0.12 0.21 0.15 0.17 1.69 0.49 0.17 0.10 0.18

Zachary 5 0.74 1.25 0.89 1.06 15.14 3.64 1.03 0.72 1.20

6 3.64 6.06 4.33 5.12 125.00 21.04 4.96 3.70 6.19

7 14.97 24.90 17.80 21.10 1183.11 99.37 20.75 15.86 26.79

3 0.02 0.03 0.02 0.03 0.16 0.05 0.02 0.01 0.02

4 0.11 0.14 0.12 0.14 1.04 0.31 0.11 0.07 0.11

PA 5 0.40 0.72 0.48 0.57 8.10 1.97 0.57 0.39 0.66

6 1.72 2.91 2.08 2.48 56.70 9.83 2.27 1.74 2.93

7 5.90 9.70 6.94 8.30 440.26 36.11 7.62 5.83 9.83

3 0.02 0.03 0.02 0.02 0.16 0.05 0.02 0.01 0.02

4 0.11 0.18 0.13 0.15 1.01 0.31 0.10 0.07 0.11

ER 5 0.39 0.64 0.46 0.54 7.72 1.84 0.53 0.37 0.62

6 1.63 2.69 1.92 2.28 56.33 9.25 2.26 1.65 2.81

7 5.86 9.44 6.88 7.94 441.30 37.16 7.67 6.00 10.18

Total time 35.63 58.91 42.24 49.92 2337.88 221.46 48.08 36.55 61.68

size increases, the time for KCBl-KCBu pair increases more rapidly than the time

for YAT-HW pair. This is mainly because of the complete enumeration used in the

KCBu calculations. Based on Table 3.3, we can conclude that YAT-HW pair is more

efficient than KCBl-KCBu pair in terms of both solution quality (i.e., the number of

remaining groups) and computational time. Furthermore, in the last column of Table

3.3, the computation time to find the lower and upper bounds for all of the groups

with the original method proposed in [92] is provided. Here the code shared by the

authors of [92] is used. By comparing the last two columns of Table 3.3, the impact of

the preprocessing step we introduced can be seen. Also, looking at the columns with

the headers YAT-HW (fourth and sixth columns) and KCBl-KCBu (fifth and seventh

columns), the effects of using the stronger bounds can be observed. We can con-

clude that both the introduction of the preprocessing step and the use of the improved

bounds have significant contributions in the reduction of the computational time.

For the Zachary’s network, by using YAT and HW in bound calculations, only the

group {1, 33, 34} remains after the elimination step when k = 3. Thus, the group

105

Table 3.3: The number of possible groups; the number of remaining groups after

elimination by YAT-HW and KCBl-KCBu bounds; the total time spent for YAT-HW

and KCBl-KCBu bound calculations; and the total time spent for KCBl-KCBu bound

calculations with the original method in [92] on the Zachary, and randomly generated

preferential attachment (PA) and Erdös-Renyi (ER) graphs for different group sizes

Group Number of Number of remaining groups Total time (in s) Total time (in s) for

Network size groups YAT-HW KCBl-KCBu YAT-HW KCBl-KCBu the method in [92]

3 5984 1 1 0.08 0.17 161.97

4 46376 8 24 0.69 1.82 1154.53

Zachary 5 278256 202 643 4.89 15.88 7054.35

6 1344904 3422 10301 27.10 128.65 33439.85

7 5379616 37148 132138 124.26 1198.07 134224.18

3 4060 1 1 0.08 0.17 72.45

4 27405 1 4 0.45 1.15 469.92

PA 5 142506 69 193 2.69 8.50 2361.80

6 593775 1855 4788 12.74 58.42 9764.25

7 2035800 23475 66238 45.81 446.16 30515.88

3 4060 1 1 0.08 0.18 70.81

4 27405 10 11 0.48 1.11 478.87

ER 5 142506 138 170 2.49 8.11 2484.75

6 593775 1259 2149 11.94 57.96 10359.22

7 2035800 10828 23114 46.59 447.16 35481.35

with the highest GBC, i.e., the optimal group, consists of members 1, 33, and 34. In

Figure 3.3, it can be seen that these members are among the key vertices in the graph.

Also, lower and upper bounds for this group are 0.846 and 0.854, respectively. Thus,

the GBC value of {1, 33, 34} is estimated to be at least as 0.846 with 0.8% gap. By

using the exact algorithm takingO(k3) time in [125], the GBC of {1, 33, 34} is found

as 0.846. When we increase the group size to 4, the results are still quite good. Only

8 groups among 46376 groups remain as candidates for the optimal group.

For the PA network, when k = 3 only the group {1, 3, 6} remains after the elimination

step and its GBC value is estimated to be at least 0.784 with 1.5% gap. With the

method in [125], the GBC value is calculated as 0.786. When k = 4, we are also able

to find the optimal group which is {1, 3, 5, 6}. The estimated GBC value is at least

0.872 with 4.5% gap where the exact value is 0.887. In Figure 3.4, the vertices 1, 3,

5, and 6 seem to be central vertices as it is expected.

106

Table 3.4: The mean and median gaps for YAT-HW and KCBl-KCBu bound pairs;

and the mean gaps between the selected bounds (YAT and HW) and the exact val-

ues on the Zachary, and randomly generated preferential attachment (PA) and Erdös-

Renyi (ER) graphs for all of the groups with different group sizes

Group Mean Gap Median Gap Mean Gap

Network size YAT-HW KCBl-KCBu YAT-HW KCBl-KCBu YAT-Exact HW-Exact

3 0.002 0.003 0.002 0.002 0.000 0.002

4 0.008 0.012 0.006 0.008 0.002 0.006

Zachary 5 0.017 0.027 0.013 0.019 0.005 0.013

6 0.031 0.050 0.024 0.036 0.009 0.022

7 0.048 0.080 0.040 0.060 0.015 0.033

3 0.003 0.003 0.002 0.002 0.001 0.003

4 0.010 0.013 0.008 0.009 0.002 0.008

PA 5 0.022 0.029 0.018 0.022 0.005 0.017

6 0.038 0.053 0.033 0.042 0.011 0.028

7 0.060 0.086 0.053 0.073 0.018 0.042

3 0.003 0.003 0.002 0.002 0.001 0.003

4 0.011 0.012 0.010 0.010 0.002 0.009

ER 5 0.024 0.027 0.022 0.024 0.005 0.018

6 0.042 0.050 0.039 0.043 0.011 0.031

7 0.066 0.079 0.062 0.070 0.018 0.047

The optimal group is {4, 8, 29} for the ER network when k = 3. The estimated GBC

value is at least 0.581 with 0.4% gap where the exact GBC value is found as 0.581.

The vertices 4, 8, and 29 are among the central vertices as it can be seen in Figure

3.5.

Table 3.4 shows the mean and median gaps for YAT-HW and KCBl-KCBu bound

pairs for different group sizes. For a given group size and a network, median values

are smaller than the mean values for both YAT-HW and KCBl-KCBu bound pairs

showing that the gap distributions of both pairs are right skewed. In other words,

obtaining small gaps are more likely than large gaps for both YAT-HW and KCBl-

KCBu bound pairs. As an illustrative example, in Figure 3.6 the distribution of gaps

for YAT-HW and KCBl-KCBu bound pairs for different group sizes on the Zachary’s

network is provided. It can also be verified from Figure 3.6 that the distributions

of the gaps are right skewed. If we investigate the first and second rows of Figure

3.6 separately, it can be seen that the gaps tend to increase as the group size increases

107

Gap
0 0.05 0.1

R
el

at
iv

e
F

re
qu

en
cy

0

0.2

0.4

0.6

(a) YAT-HW, k = 4

Gap
0 0.05 0.1

R
el

at
iv

e
F

re
qu

en
cy

0

0.2

0.4

0.6

(b) YAT-HW, k = 5

Gap
0 0.05 0.1

R
el

at
iv

e
F

re
qu

en
cy

0

0.2

0.4

0.6

(c) YAT-HW, k = 6

Gap
0 0.05 0.1

R
el

at
iv

e
F

re
qu

en
cy

0

0.2

0.4

0.6

(d) KCBl-KCBu, k = 4

Gap
0 0.05 0.1

R
el

at
iv

e
F

re
qu

en
cy

0

0.2

0.4

0.6

(e) KCBl-KCBu, k = 5

Gap
0 0.05 0.1

R
el

at
iv

e
F

re
qu

en
cy

0

0.2

0.4

0.6

(f) KCBl-KCBu, k = 6

Figure 3.6: Distribution of gaps for YAT-HW and KCBl-KCBu bound pairs for dif-

ferent group sizes on the Zachary’s network

regardless of the lower-upper bound pair in use. Same conclusion can also be obtained

from Table 3.4. To see the effect of lower-upper bound selection, Figure 3.6 can be

analyzed column by column. The gaps found by YAT-HW are smaller than those

found by KCBl-KCBu for each group size. The same conclusion can also be drawn

from Table 3.4. We can conclude that YAT-HW pair is better than KCBl-KCBu pair

once again. Thus, we use YAT and HW in Steps 4 and 5 of Algorithm 10, respectively.

The last two columns of Table 3.4 report the mean gaps between the selected lower

and upper bounds and the exact GBC values calculated by the method in [125] for

different networks and group sizes, respectively. The mean values corresponding to

the gaps between the exact values and the YAT bounds are smaller than the values for

the gaps between the exact values and the HW bounds. It is an indicator of the fact

that the exact values are closer to the lower bounds for all different cases provided in

Table 3.4. If the user desires Algorithm 10 to return a single group instead of a list of

candidate groups we can return the group having the highest lower bound.

108

3.5.2 Randomly Generated Graphs

To see the effects of graph size and graph density on the computational results, we

made experiments with different randomly generated graphs. We generated nine dif-

ferent graphs using the Erdös-Renyi graph model by selecting n = 40, n = 60, and

n = 80; and p = 0.1, p = 0.3, and p = 0.5. ERn,p represents the Erdös-Renyi graph

with n vertices whose edges are added with probability p. Also, we constructed

six different graphs with the preferential attachment procedure by setting n = 40,

n = 60, and n = 80; and e = 2 and e = 5. We will use the notation PAn,e to

represent the preferential attachment graph with n vertices and e edges added in each

step. The details of the Erdös-Renyi graph model and the preferential attachment

procedure are given in Section 3.5.1.

Table 3.5 reports the number of remaining groups after the elimination step and the

total time to find the lower and upper bounds for all possible groups for different

group sizes on different graphs. It should be noted that the time it takes for the pre-

processing step for each graph is smaller than 0.1 seconds. As it can be seen from the

table, the number of remaining groups is small for all graph-group size combinations.

Indeed, we can find the optimal group for some combinations. For a given graph, the

number of remaining groups increases in general with the group size meaning that

finding the optimal group becomes harder for larger group sizes. Moreover, it can

be concluded from the table that for a given group size, the computational time is

not much affected by the density of the graph, but the graph size, i.e., the number of

vertices, is an important factor for the time. Also, the computational time increases

with the group size.

Table 3.6 shows the mean and median gaps for all graphs and group sizes. Gaps

are very small for all graph-group size combinations. Also, we can conclude that

for a given graph, gaps increase with the group size as the mean and median values

increase. In addition, regardless of the graph and the group size, distributions of the

gaps tend to be right skewed since the median values are smaller than or equal to the

mean values.

As discussed before, the lower bounds computed by YAT-HW bound pair are closer to

109

Table 3.5: The number of remaining groups after elimination by YAT-HW bound and

the total time spent for YAT-HW bound calculations on randomly generated different

Erdös-Renyi and preferential attachment graphs for all groups with different k values

Number of remaining groups Total time (in s)

Graph k = 3 k = 4 k = 5 k = 3 k = 4 k = 5

ER40,0.1 3 2 18 0.33 3.05 21.07

ER40,0.3 1 2 15 0.30 2.96 19.42

ER40,0.5 9 78 1263 0.28 2.92 21.60

ER60,0.1 2 1 1 1.05 15.36 172.24

ER60,0.3 1 2 23 1.00 14.70 165.15

ER60,0.5 2 11 227 1.04 14.49 172.52

ER80,0.1 1 1 5 2.38 56.55 809.79

ER80,0.3 1 2 42 2.52 50.04 851.48

ER80,0.5 1 23 535 2.55 51.68 835.92

PA40,2 1 12 187 0.31 2.63 20.53

PA40,5 2 5 23 0.29 2.87 21.77

PA60,2 1 1 29 1.01 13.67 170.09

PA60,5 2 3 22 1.04 17.34 170.11

PA80,2 1 77 878 2.33 45.30 709.23

PA80,5 2 5 6 2.38 48.56 773.08

the exact GBC values than the upper bounds. With this observation, Algorithm 10 can

be modified to return a single group which is the group with the highest lower bound

together with the gap and optimality gap of the returned group. Table 3.7 provides

the GBC values of the best group returned by (the modified) Algorithm 10 for each

graph and group size combination. ‘Estimated’ columns are the lower bounds on the

GBC values of the group returned by Algorithm 10 with the gaps (i.e., the difference

between the upper bound and the lower bound) provided in the parenthesis while

‘Exact’ columns are the GBC values of the returned groups calculated by the method

in [125]. ‘optGAP’ columns are the optimality gaps of the returned groups. The

estimated values are very close to the exact values. Indeed, they are the same most of

the time. The optimality gaps are also very small in all the cases. Also, it should be

noted that the GBC values of the optimal groups are the same with the GBC values

of the groups returned by Algorithm 10 except the group for PA40,2 when k = 5.

For this graph-group size combination the most central group of vertices has a GBC

110

Table 3.6: The mean and median gaps for YAT-HW bound pair on randomly generated

different Erdös-Renyi and preferential attachment graphs for all of the groups with

different group sizes k

Mean Gap Median Gap

Graph k = 3 k = 4 k = 5 k = 3 k = 4 k = 5

ER40,0.1 0.002 0.007 0.015 0.001 0.006 0.013

ER40,0.3 0.001 0.004 0.009 0.001 0.004 0.008

ER40,0.5 0.002 0.005 0.011 0.001 0.004 0.010

ER60,0.1 0.001 0.003 0.006 0.001 0.002 0.005

ER60,0.3 0.001 0.002 0.004 0.001 0.002 0.003

ER60,0.5 0.001 0.002 0.005 0.001 0.002 0.004

ER80,0.1 0.000 0.001 0.003 0.000 0.001 0.003

ER80,0.3 0.000 0.001 0.002 0.000 0.001 0.002

ER80,0.5 0.000 0.001 0.003 0.000 0.001 0.003

PA40,2 0.002 0.006 0.014 0.001 0.005 0.011

PA40,5 0.002 0.005 0.010 0.001 0.004 0.009

PA60,2 0.001 0.003 0.007 0.001 0.002 0.005

PA60,5 0.001 0.002 0.005 0.001 0.002 0.004

PA80,2 0.000 0.001 0.003 0.000 0.001 0.002

PA80,5 0.000 0.001 0.003 0.000 0.001 0.002

value of 0.861. Although we have returned a group different than the optimal group,

there is only 0.4% difference between the GBC values of the returned group and the

optimal group. Based on Table 3.7, we can conclude that Algorithm 10 returns the

optimal group for most of the time and the lower bound returned estimates the GBC

value quite well. When the algorithm is unable to return the optimal group, the group

returned by the algorithm is nearly optimal (i.e., the optimality gap is very small).

Time for finding bounds for all possible groups increases dramatically with the group

size. Therefore, for large values of k, we randomly selected 10000 groups and found

the gaps by calculating the bounds just for those groups. The mean and median gaps

for large k values on different graphs are provided in Table 3.8. For each graph-group

size combination, we can provide bounds with quite small gaps in nearly 1 second.

Like the conclusions obtained from Table 3.6, we can say that the gaps increase with

the group size for a given graph and the distributions of the gaps are right skewed.

111

Table 3.7: The estimated and exact GBC values, the gap and the optimality gap for the

best group returned by Algorithm 10 for randomly generated different Erdös-Renyi

and preferential attachment graphs for different group sizes k

k=3 k=4 k=5

Graph Est. (GAP) Exact optGAP Est. (GAP) Exact optGAP Est. (GAP) Exact optGAP

ER40,0.1 0.563 (0.003) 0.563 0.007 0.681 (0.017) 0.681 0.020 0.757 (0.033) 0.758 0.037

ER40,0.3 0.253 (0.001) 0.253 0.000 0.323 (0.004) 0.323 0.000 0.389 (0.008) 0.389 0.007

ER40,0.5 0.206 (0.001) 0.206 0.002 0.267 (0.005) 0.267 0.005 0.326 (0.009) 0.327 0.011

ER60,0.1 0.327 (0.001) 0.327 0.001 0.411 (0.003) 0.411 0.000 0.489 (0.006) 0.489 0.000

ER60,0.3 0.168 (0.001) 0.168 0.000 0.218 (0.002) 0.219 0.002 0.266 (0.003) 0.266 0.004

ER60,0.5 0.137 (0.001) 0.137 0.000 0.180 (0.002) 0.180 0.001 0.221 (0.003) 0.221 0.004

ER80,0.1 0.223 (0.000) 0.223 0.000 0.283 (0.001) 0.283 0.000 0.339 (0.005) 0.339 0.003

ER80,0.3 0.117 (0.000) 0.117 0.000 0.154 (0.001) 0.154 0.000 0.189 (0.002) 0.189 0.002

ER80,0.5 0.103 (0.000) 0.103 0.000 0.135 (0.001) 0.135 0.001 0.166 (0.002) 0.166 0.003

PA40,2 0.744 (0.010) 0.747 0.000 0.798 (0.029) 0.808 0.033 0.847 (0.051) 0.857 0.056

PA40,5 0.403 (0.007) 0.403 0.003 0.492 (0.018) 0.492 0.005 0.565 (0.032) 0.565 0.032

PA60,2 0.614 (0.002) 0.614 0.000 0.716 (0.015) 0.716 0.000 0.760 (0.030) 0.772 0.033

PA60,5 0.316 (0.005) 0.316 0.001 0.405 (0.011) 0.405 0.004 0.480 (0.019) 0.481 0.024

PA80,2 0.785 (0.054) 0.785 0.000 0.838 (0.088) 0.842 0.058 0.875 (0.099) 0.879 0.107

PA80,5 0.375 (0.004) 0.375 0.005 0.454 (0.015) 0.454 0.004 0.521 (0.026) 0.521 0.025

Table 3.8: The mean and median gaps for YAT-HW bound pair on randomly gener-

ated different Erdös-Renyi and preferential attachment graphs for randomly selected

10000 groups with different large group sizes k

Mean Gap Median Gap

Graph k = 7 k = 8 k = 9 k = 10 k = 7 k = 8 k = 9 k = 10

ER40,0.1 0.042 0.061 0.083 0.108 0.039 0.058 0.081 0.106

ER40,0.3 0.026 0.039 0.054 0.072 0.024 0.037 0.053 0.071

ER40,0.5 0.029 0.042 0.058 0.077 0.029 0.043 0.058 0.077

ER60,0.1 0.016 0.023 0.031 0.042 0.015 0.022 0.030 0.041

ER60,0.3 0.011 0.017 0.024 0.032 0.011 0.016 0.023 0.031

ER60,0.5 0.013 0.019 0.026 0.034 0.013 0.019 0.026 0.034

ER80,0.1 0.008 0.011 0.016 0.020 0.007 0.011 0.015 0.020

ER80,0.3 0.006 0.010 0.013 0.018 0.006 0.009 0.013 0.018

ER80,0.5 0.007 0.011 0.015 0.019 0.007 0.011 0.015 0.019

PA40,2 0.037 0.054 0.074 0.097 0.032 0.048 0.067 0.089

PA40,5 0.028 0.041 0.056 0.075 0.025 0.038 0.053 0.071

PA60,2 0.018 0.027 0.037 0.049 0.015 0.023 0.033 0.044

PA60,5 0.013 0.018 0.025 0.034 0.011 0.016 0.023 0.030

PA80,2 0.009 0.012 0.017 0.023 0.007 0.010 0.014 0.019

PA80,5 0.007 0.010 0.014 0.018 0.006 0.009 0.012 0.016

112

Table 3.9: The number of all possible groups formed with the 20 nodes with the

highest betweenness values; the number of remaining groups after elimination by

YAT-HW bound pair; the total time spent for YAT-HW bound calculations; mean and

median gaps for YAT-HW bound pair; the estimated and exact GBC values together

with the optimality gaps for the best group returned by Algorithm 10; and the exact

GBC value of the group with the highest GBC value on the Facebook network for

different group sizes k

Group # of Remaining Total time Gap GBC of group by Algorithm 10 GBC of

size groups groups (in s) Mean Median Est. (GAP) Exact optGAP opt. group

3 1140 3 0.037 0.002 0.001 0.790 (0.027) 0.790 0.024 0.790

4 4845 7 0.116 0.007 0.003 0.856 (0.113) 0.874 0.019 0.874

5 15504 97 0.377 0.017 0.010 0.873 (0.114) 0.891 0.127 0.900

6 38760 879 1.074 0.030 0.022 0.875 (0.132) 0.902 0.125 0.910

7 77520 4896 2.270 0.049 0.039 0.876 (0.145) 0.907 0.124 0.917

3.5.3 Real-life Networks

To measure the performance of Algorithm 10 on large scale networks, we utilize

three real-life networks from [101]. The first network is named as Social Circles:

Facebook. We will refer to this network as the Facebook network in the rest of the

study. The network contains 4039 vertices and 88234 edges. Each vertex represents

an individual and if two individuals are friends on Facebook there is an undirected

edge between the corresponding vertices.

The number of vertices of the Facebook network is quite high to compute the bounds

on the GBC of all possible groups. After the computation of P (i, j) values in the

preprocessing step taking approximately 80 minutes, we find the 20 vertices with the

highest betweenness centrality values, P (i), and use those vertices as the vertices

from which the best group will be chosen. Table 3.9 reports the results for the Face-

book network. Columns 2, 3, and 4 represent the number of possible groups, the

number of remaining groups after the elimination step, and the total computational

time to find bounds for all groups, respectively. The mean and median gaps are stored

in columns 5 and 6, respectively. Moreover, for the best group -the one with the

highest lower bound- returned by Algorithm 10, the estimated GBC values with gaps

113

(given in parenthesis), the exact GBC values, and the optimality gaps are provided in

columns 7, 8, and 9, respectively. In the last column, the GBC value of the group with

the highest GBC is provided. Similar to the results obtained in the previous sections,

we can make the following observations.

• The number of remaining groups as candidates for the best group are quite

small when they are compared with the number of all groups. As the group size

increases, finding the best group becomes harder as the number of remaining

groups increases.

• The total computational time increases with the group size.

• Gaps are very small and tend to be right skewed as the median values are

smaller than the mean values.

• For the best group returned by Algorithm 10, the estimated and exact GBC

values are very close meaning that Algorithm 10 makes good estimations on

the GBC values without calculating them exactly. Moreover, the optimality

gaps are very small.

• Even though Algorithm 10 could not return the group with the highest GBC

value in some cases, the GBC value of the group returned is not very far away

from the optimal value.

The second real-life network is called as High Energy Physics - Theory Collaboration

Network which will be referred as the HepTh network in the rest of the study. The

original network contains 9877 nodes and 25998 edges. Each node represents an

author who submitted a paper to High Energy Physics - Theory category between

January 1993 and April 2003 (124 months). If two authors co-authored a paper there

is an undirected edge between the corresponding nodes. Since the original network

is disconnected, we utilized the largest connected component of the network. Also,

we did not include the edges that connect a vertex to itself, i.e., loops. Finally, we

obtained a network consisting of 8638 nodes and 24806 edges.

Like the Facebook network, given a group size k ≥ 3, the number of all possible

groups of size k is quite high for the HepTh network. After the preprocessing step

114

taking approximately 14 hours, we randomly selected 1000 groups for each different

group size and reported the results only for those groups in Table 3.10. Column 2, 3,

and 4 provide the number of remaining groups among 1000 randomly selected groups

after the elimination step, and the mean and median gaps of these groups, respectively.

For the best group, i.e., the group having the highest lower bound, the estimated GBC

values with gaps in parenthesis and the exact GBC values are provided in columns

5 and 6, respectively. Last two columns store the total time to calculate bounds on

the GBC values and total time to compute the exact GBC values for all 1000 groups,

respectively. Based on Table 3.10, we obtain results similar to the already obtained

ones; namely, the remaining number of groups are small, gaps are quite small and tend

to be right skewed, Algorithm 10 makes good estimations on the GBC values without

exact calculations, there is positive correlation between the computational time and

the number of groups. Moreover, Algorithm 10 is much more efficient than exact

GBC calculations in terms of computational time and time saving of it becomes more

significant as the group size increases. As an example, let us make a rough estimate

to compute possible time saving that can be obtained by our method. When the group

size is 100, the total time to compute the exact GBC values of 1000000 random groups

is estimated to be around 54689.6 seconds. On the other hand, instead of computing

the exact GBC values, if one employs Algorithm 10, the total time spent to compute

the bounds for all of these 1000000 groups would be around 2419.1 seconds. If 1000

groups remain after the elimination step (which is proportional to 1 in 1000), the total

time to find the best group would take around 2419.1+54.6896 = 2473.7896 seconds

which is much smaller than 54689.6 seconds. This is expected since computing the

exact GBC value of a group has an O(k3) time complexity while the calculation

of lower and upper bounds on the GBC value takes O(k2) time. The average time

to compute the exact GBC and the bounds for a single group are demonstrated in

Figure 3.7 which shows that as the group size increases the time savings by the bound

computations increase. Figure 3.7 also displays the average time to compute only

the lower bound for a single group. As the lower bounds estimate the exact GBC

values quite well in our computational experiments, one may prefer computing only

the lower bounds especially if the number of groups to be explored is quite high.

115

Table 3.10: The number of remaining groups among randomly selected 1000 groups

after elimination by YAT-HW bound pair; mean and median gaps for YAT-HW bound

pair; the estimated and exact GBC values for the best group returned by Algorithm 10;

and the total time spent for YAT-HW bound calculations and exact GBC calculations

on HepTh network for different group sizes k

Group Remaining Gap GBC of group by Algorithm 10 Total time (in s)

size groups Mean Median Est. (GAP) Exact Algorithm 10 Exact

10 1 0.0000 0.0000 0.0418 (0.0001) 0.0418 0.0563 0.0955

20 1 0.0000 0.0000 0.0653 (0.0001) 0.0653 0.1010 0.4829

30 2 0.0001 0.0000 0.0575 (0.0001) 0.0575 0.1631 1.4966

40 1 0.0001 0.0001 0.0801 (0.0005) 0.0801 0.2675 3.4536

50 1 0.0002 0.0002 0.0944 (0.0006) 0.0945 0.4412 6.9800

60 1 0.0003 0.0003 0.0948 (0.0008) 0.0949 0.6708 12.0829

70 1 0.0004 0.0004 0.1012 (0.0011) 0.1013 0.9958 19.1056

80 1 0.0006 0.0005 0.1288 (0.0017) 0.1289 1.3466 28.3024

90 1 0.0008 0.0007 0.1292 (0.0023) 0.1295 1.8030 40.0195

100 1 0.0010 0.0009 0.1462 (0.0028) 0.1465 2.4191 54.6896

10 20 30 40 50 60 70 80 90 100
Group Size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
ve

ra
ge

 T
im

e
(s

ec
on

ds
)

LB+UB
LB
Exact

Figure 3.7: Average time to calculate lower bound, lower bound and upper bound,

and exact value of GBC of a single group on HepTh network for different group sizes

116

The last real-life network is High Energy Physics - Phenomenology Collaboration

Network which will be referred as the HepPh network hereafter. There are 12008

nodes and 118521 edges in the network. Similar to the HepTh network, the HepPh

network is disconnected and it represents the co-authorship of the authors who sub-

mitted a paper to High Energy Physics - Phenomenology category between January

1993 and April 2003 (124 months). In the largest connected component of the net-

work, there are 11204 nodes and 117619 edges (after removing the loops).

The preprocessing step of the HepPh network takes approximately 31 hours. Table

3.11 reports the results for randomly selected 1000 groups for different group sizes.

Also, the time saving acquired by bounds instead of exact calculations is provided in

Figure 3.8. For the HepPh network, the same result are obtained.

Table 3.11: The number of remaining groups among randomly selected 1000 groups

after elimination by YAT-HW bound pair; mean and median gaps for YAT-HW bound

pair; the estimated and exact GBC values for the best group returned by Algorithm 10;

and the total time spent for YAT-HW bound calculations and exact GBC calculations

on HepPh network for different group sizes k

Group Remaining GAP GBC of group by Algorithm 10 Total time (in seconds)

size groups Mean Median Est. (Gap) Exact Algorithm 10 Exact

10 1 0.0000 0.0000 0.0289 (0.0000) 0.0289 0.1399 0.6253

20 1 0.0000 0.0000 0.0437 (0.0000) 0.0437 0.1215 0.7911

30 1 0.0000 0.0000 0.0411 (0.0000) 0.0411 0.1847 1.5800

40 1 0.0000 0.0000 0.0533 (0.0001) 0.0533 0.2994 3.7888

50 2 0.0001 0.0001 0.0582 (0.0002) 0.0582 0.4346 6.9452

60 1 0.0001 0.0001 0.0770 (0.0004) 0.0770 0.6848 11.7659

70 1 0.0002 0.0002 0.0736 (0.0006) 0.0737 0.9976 18.6951

80 1 0.0002 0.0002 0.0896 (0.0006) 0.0896 1.3499 27.7952

90 1 0.0003 0.0003 0.0946 (0.0010) 0.0946 1.8467 39.4611

100 2 0.0004 0.0004 0.0962 (0.0008) 0.0962 2.6795 53.9695

117

10 20 30 40 50 60 70 80 90 100
Group Size

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
ve

ra
ge

 T
im

e
(s

ec
on

ds
)

LB+UB
LB
Exact

Figure 3.8: Average time to calculate lower bound, lower bound and upper bound,

and exact value of GBC of a single group on HepPh network for different group sizes

3.6 Conclusion and Future Work

In this chapter, we propose an algorithm that computes successively bounds on the

GBC of several groups of vertices of a given graph. The algorithm combines good

properties of Puzis et al. [125] and Kolaczyk et al. [92]. It starts with a preprocessing

step as is done in [125] which takes O(n3) time, where n is the number of vertices

in the graph. After the preprocessing step, it finds stronger upper and lower bounds,

in comparison with the bounds given in [92], on the GBC value of several groups

successively for each one requiring O(k2) time. We show experimentally that by just

using the bounds, only a small fraction of groups remain as candidates for the optimal

group. We can then apply the method in [125] to the candidate groups to find the

optimal group. Note that as we have experimentally shown, this can be much faster

than applying the method in [125] to all the groups given as input. Our bounds are

not only stronger than the bounds given in [92], they are also much faster to compute.

We achieve this by eliminating the dependency of the co-betweenness values to the

group in consideration. We have shown computationally that the gap values returned

by the algorithm are small. This shows that the bounds nicely approximate the GBC

values. The algorithm also returns an optimality gap which gives the user an upper

118

bound on the difference between the GBC value of the group with the highest lower

bound and the optimal GBC value. If the user is satisfied with the optimality gap, s/he

may not continue computing the exact GBC values of the candidate groups.

For the networks with a heavy right-tailed distribution of GBCs, there exist groups

of vertices controlling a significant portion of the information flow in the network.

For such networks the group with the highest GBC can not be obtained from a few

random samples. Therefore it is important to be able to compute in an efficient way

successively the GBC of several groups.

In large scale real life networks, enumeration of all possible groups and the compu-

tation of the bounds for each group may not be practical. In such cases, one may

employ various combinatorial optimization methods to find the optimal group of a

given size k without enumerating all possible groups. One possible future research

direction related to this study may be the following. Assume that one is looking for

the optimal group (in terms of the highest GBC value) of size k in a large scale net-

work. Once the preprocessing step is performed in Algorithm 10, one can find bounds

on the GBC of a group of any size. For example, after the computation of the bounds

on the GBC of a group, say T , of size ` < k, it may be possible to bound the GBC

of any group S of size k containing T . If the upper bound is small enough it may be

possible to eliminate all groups of size k containing the set T from further consider-

ation. Such branch-and-bound style algorithms may reduce the number of groups to

be enumerated in the search for an optimal group.

In the search for the group with the highest group betweenness centrality value, some

groups may be immediately discarded and the number of subsets given as input to the

algorithm can therefore be reduced. For example, there exists an optimal group that

does not contain any leaf vertex (a vertex of degree 1) if k is less than or equal to

the number of non-leaf vertices. This is because if a leaf vertex v and the vertex u it

is adjacent to are both in a group, then discarding v from the group does not reduce

the GBC value of the group. If the vertex v belongs to a group, but not the vertex u,

then one can discard v from the group, add u to the group and this operation does not

decrease the GBC value of the group. Similarly, if a vertex w and all vertices adjacent

to w are in a group, then deletion of w from the group does not change the GBC value

119

of the group. Such preprocessing approaches to reduce the number of subsets that

will be given as input to the proposed algorithm are left as future research directions.

Finally, although it is NP-hard to find the group with the highest GBC, it is not cur-

rently known whether the problem of finding the group with the highest YAT is NP-

hard or not. This is an open question at present and is yet to be investigated.

The publication related with this chapter can be found in [53].

120

CHAPTER 4

DATA MINING FOR FINDING CENTROID TREES IN THE CLUSTERING

OF TREE-STRUCTURED DATA OBJECTS

4.1 Introduction

In the previous chapter, we focused on a single graph to find its central nodes. In

this chapter, we have more than one graph and we aim to mine them to discover

the underlying information. To be more specific, we address a clustering problem in

which each data object is a tree, which is a connected graph which does not include

any cycle.

Tree clustering problems appear in many areas. Data objects in these problems may

be binary trees or rooted trees. Edges in those trees can be unweighted or weighted.

When the edges are unweighted, only topology (i.e., existence/nonexistence of edges)

is considered. In the weighted case, trees are clustered based on one or more at-

tributes in addition to the topology. Node correspondence in the trees to be clustered

can be known or unknown. When the node correspondence is unknown, before find-

ing the distance or similarity between two trees one should map the nodes of those

trees which brings extra computational complexity. Nodes in those trees can be un-

weighted or weighted. Also, nodes may be labeled or unlabeled. For example, in

[5], the branching structure of brain vessels of a patient is represented as a binary tree

where both nodes and edges are unweighted and node correspondence is known. By

clustering a dataset consisting of such binary trees, we may distinguish the patients

with brain tumor from the normal patients. Similarly, in [107], authors represent the

branching structure of retinal vessels of a patient as a rooted tree where edges are

weighted, nodes are unweighted and node correspondence is known. Then, they aim

121

to see the difference between the retinopathy patients and normal patients by clus-

tering those rooted trees. Another example is available in [90]. Authors represent

the mitosis pattern of a blood cell from a mice as a labeled binary tree where node

correspondence is unknown and both nodes and edges are unweighted. By using a

k-means based algorithm, they try to understand the effects of different biological ex-

perimental settings on mitosis patterns. Moreover, the term "tree clustering problem"

also appears in the area of XML document clustering since an XML document can be

represented as a rooted labeled tree [2].

In this chapter, we consider the clustering of m-ary trees where node correspondence

is known, nodes are unweighted, and edges can be both unweighted or weighted. An

m-ary tree is a special tree in which each node can have just one edge incident to it

(except the root node) and at most m edges incident from it. By using two differ-

ent measures to find distance/closeness between trees (namely; vertex/edge overlap

and graph edit distance), we propose k-means based solution approaches for both

unweighted and weighted edge cases.

The chapter is organized as follows: In Section 4.2, we review the related literature.

Section 4.3 introduce the notation used throughout the chapter. In Section 4.4, we

provide mathematical programming formulations that find the centroid (representa-

tive) tree of a given cluster of trees (with unweighted or weighted edges) by using

vertex/edge overlap and graph edit distance with node correspondence. In Section

4.5, we give a sketch of algorithm, which is a k-means based algorithm, for the clus-

tering of trees. In Section 4.6, after setting the parameters of tree-kmeans algorithms

(for different similarity measures in both unweighted and weighted edge cases), we

give the comparison of our algorithms with well known kmodes and kmeans. More-

over, the results of an application with a real-life data is provided in the same section.

Finally, in Section 4.7, we conclude the study.

4.2 Literature Review

In [65], author focuses on the statistical aspects (appropriateness: to be able to reveal

the underlying structure of the data and steadiness: to be able to obtain more reliable

122

results with the increase in the number of data objects) of tree clustering problems.

She considers three types of problem. In the first type, there are m-ary trees as in

our study and Hamming distance is used as distance measure. Phylogenetic trees,

i.e., binary trees where leaf nodes are labeled, are considered as the second type

of problem and modified Hamming distance which uses hypergraphs and Robinson

Foulds distance which counts the number of changes (by deleting or adding nodes)

needed to obtain one tree from another are discussed as distance measures. Lastly,

m-ary trees with weighted nodes are studied and a distance measure which takes

the number of different nodes and the difference between the weights’ of nodes into

consideration is utilized. Then, author propose an extension of k-means algorithm

to solve the problems. She states that the centroid tree of a given cluster of trees is

the tree which minimizes the sum of distances between trees and the centroid, and it

is computable for the first type of problem in such that a node exists in the centroid

tree if and only if it appears in at least half of the trees in the cluster. She tests

the performance of the proposed algorithm on the first type of problem, for which

centroid tree is computable, with two datasets.

[108] and [107] consider the retinal vascular image of a patient which can be repre-

sented as a rooted tree. Root node of the tree is the first split-up point of the ves-

sel entering to the retina and then for every split-up point, a new node is defined.

Thanks to this rooted tree construction scheme, node correspondence is known. The

edge between two nodes represents the vessel between the corresponding split-up

points and the length, tortuosity and radius of the corresponding vessel can be used as

edge’s weights. By clustering of those rooted trees with weighted edges where node

correspondence is known, authors aim to see the difference between the retinopa-

thy patients and normal patients. In both of the studies, authors use a new matrix

representation for trees. By this way, trees can be considered as points in high dimen-

sional space. They use nonnegative matrix factorization (NMF) for dimensionality

reduction. In order to preserve tree structures such as if an edge (vessel) has pos-

itive radius then it cannot have zero length, authors modified NMF so as to handle

some constraints related with tree structures. After the implementation of structure-

constrained NMF, trees are represented as points in the low dimensional space and

kmeans algorithm is used for clustering of those points. In [108], inner product and

123

Euclidean distance are considered as distance measures and inner product resulted

in better performance. In [107], NCut algorithm is applied for clustering in addi-

tion to kmeans and L1 norm is used as distance measure. NCut algorithm outper-

forms kmeans. Also, performance comparison of L1 norm with those of L2 norm

-Euclidean distance-, quotient Euclidean distance and Torsello’s metric reveals that

L1 norm is better than others.

In [90], mitosis pattern of a blood cell from a mice is represented as a labeled bi-

nary tree. With different biological experimental settings (i.e., different stimulating

factors), authors obtain different lineage trees from blood cells. By clustering those

trees, they aim to see a difference between lineage trees emerging in different con-

ditions. Although node correspondence is unknown in this study, it is the one of the

most relevant studies to our study since it proposes a k-means based algorithm for

clustering. In the assignment step of the algorithm, the distance between a tree and a

representative tree of a cluster is measured by constrained tree edit distance by [160]

or maximal similarity common subtree by [137] which can be utilized with 4 differ-

ent functions. In the update step of the algorithm, to find the representative tree of

a cluster, they start with a random tree and apply a single transformation (relabeling

of a node or removing a leaf node or creation of a child for a leaf node) and keep

this transformation if it improves the objective function. The trial of transformations

are repeated until there is not predetermined number of improvements in a row. They

evaluate the performance of the algorithm with different distance measures on both

artificial and real datasets.

A related problem is the clustering of general graphs where node correspondence is

known. In [136], authors consider a internet network with individual IP addresses as

nodes and interactions between them as edges and want to analyze interactions pat-

terns on the network. For the same set of nodes (individuals), they obtain different

graphs whose edges are constructed based on different activities such as HTTP, DNS

etc. for different time intervals. For instance, a graph may represent interactions be-

tween nodes based on the DNS activities for a given time interval and the total number

of bytes transferred between nodes may be used as edges’ weights. Then, by cluster-

ing those different graphs for different activities and different time intervals, they try

to define activities/time intervals with similar interaction patterns. This information

124

can be used while designing networks (by selecting hubs, setting capacities etc.). In

[95], authors cluster brain connectomes of 114 individuals. To obtain the brain con-

nectomes of the individuals, 70 cortical regions of a brain are defined. Each node on

a connectome represents a center of a cortical region and connectivity between cor-

tical regions are represented by edges. By using hierarchical clustering with Ward’s

method, those 114 connectomes are clustered in two clusters such that highly creative

individuals are in one cluster while the remainings are in other cluster. As a distance

measure, a new measure called as DELTACON is utilized.

As it is mentioned before, another related problem is XML document clustering prob-

lem in which data objects are rooted labeled trees. The solution methods for this

problem can be categorized into two as distance based and summary based meth-

ods. Distance based methods calculate the distances between documents and uses

those distances in order to find clusters. Summary based methods first obtain sum-

maries from the documents and then clusters documents according to the similarities

to summaries. The study of Chawathe [37] is an example of distance based solution

approaches. Author utilizes the tree edit distance to compute the distance between

two XML documents. Tree edit distance [143] is the most commonly used measure

to find distance between two trees. It is basically the cost of transforming the first

tree into other (or vice versa) by relabeling, deleting, or inserting nodes which have

different predetermined costs. But it should be noted that computing the tree edit dis-

tance is computationally demanding. The study of Aggarwal et al. [1] is an example

of summary based methods. Authors propose a k-means based algorithm whose up-

date step finds frequent substructures (cluster summaries). In the assignment step of

the algorithm, the distance between a tree and a cluster is measured as the fraction of

covered nodes of the tree by the cluster summary. We eliminate XML document clus-

tering studies since they are not in the scope of this study. In this study, we assume

that the node correspondence is known but in an XML document clustering problem

the node correspondence is unknown.

Tree clustering problem in which node correspondence is unknown can also be en-

countered in areas except XML document clustering. For example, in [139] and

[102], RNA secondary structures are tried to be clustered after representing them as

rooted labeled trees. In both of the studies, tree edit distance is utilized to find the

125

distance between two trees. [139] uses PAM (partition around medoids) clustering

while [102] applies hierarchical clustering. Moreover, in [16] and [71], authors use

tree clustering concept for web page clustering. In the first one, authors represent

JavaScripts of web pages as rooted labeled trees and cluster them by hierarchical

clustering to determine malicious web pages. In the second one, authors use shared

near neighbor clustering algorithm to cluster web pages based on their similarities

after characterizing them as trees. Tree edit distance based measures are used in both

studies. Furthermore, 2D figures can be categorized with tree notion. In [138] and

[61], 2D figures are represented by their skeletons which are trees and distance be-

tween two figures is calculated with tree edit distance. By using the distance matrix

representing the pairwise distances between figures, [138] uses pairwise clustering.

[61] applies SVM (support vector machine) to classify figures. Besides, tree cluster-

ing problem with unknown node correspondence appears in neuroscience. In [75],

neuronal cells are represented as 3D rooted labeled trees and distance between them

are calculated with a measure based on constrained tree edit distance. Then, hierar-

chical clustering is utilized to cluster those cells. In a recent study [135], clustering

of statute books of local governments, in which statute books are represented as trees

and tree edit distance is utilized for similarity evaluations, implies geographical lo-

cality.

Although the literature which considers clustering of trees where node correspon-

dence is known is very limited, there is more literature on the components of the

problem. Two major components which should be addressed in this study are

• an appropriate measure to find distance/closeness between two trees,

• a method to find centroid (representative) tree for a given cluster of trees.

The problem of finding the distance between two graphs where node correspondence

is known is encountered in the problem of anomaly detection in dynamic graphs. Re-

member the problem considered in Chapter 3. The object to be analyzed is a single

(static) graph which is a snapshot of a real-life situation. Instead of a single snap-

shot, we may take multiple snapshots over time and may have a sequence of graphs

where node correspondence is known. Such sequence of graphs is called as dynamic

graph. Then, anomaly detection in dynamic graph is the problem of finding the time

126

in which the properties of the graph is highly different than those in other times [127].

To find the anomaly, one needs to compare graphs of adjacent times by looking at the

distance/closeness between them. In a recent study [95], authors utilize their distance

measure, DELTACON, to find anomalies in a dynamic graph. They compare DELTA-

CON with 6 best state-of-the-art similarity measures; namely vertex/edge overlap,

graph edit distance, signature similarity and 3 variations of λ-distance. Vertex/edge

overlap is proposed by [122]. It is based on an idea that if two graphs share many

vertices and edges, they are similar. It can be defined as the fraction of the number

of common nodes and edges to the total number of nodes and edges in two graphs.

Graph edit distance is the most commonly used measure to find distance between two

graphs whose concept is firstly proposed in 1983 [128]. It is an extension of tree

edit distance and is basically the cost of transforming one graph into other by rela-

beling, deleting, or inserting nodes. Computing the graph edit distance when node

correspondence is unknown is also computationally demanding. But when node cor-

respondence is known there is no need for relabeling operation that is the main source

of complexity and graph edit distance can be easily computed [49]. Signature sim-

ilarity is proposed by [122]. It is based on an idea that if two graphs have similar

signatures, they are similar. Signature of a graph is the random projection of graph’s

feature space into smaller dimensional feature space. λ-distance [151] is simply the

Euclidean distance between the eigenvalues of matrices representing the graphs. 3

variations of this distance measure come from the different matrix representations of

graphs; namely adjacency, laplacian and normalized laplacian matrices.

In this study, we use vertex/edge overlap as the first distance measure to find similarity

between two trees because of its relative ease of computation and appropriateness to

the problem considered here. Also, it is relatively new measure, proposed in 2010,

and not studied to much in the literature. As the second distance measure we use

graph edit distance (known node correspondence version) because the same reasons

considered for the first measure (ease of computation and appropriateness). Note

that where edges are unweighted it is equivalent to Hamming distance considered in

[65]. Since graph edit distance is a generalization of tree edit distance and we have

trees instead of general graphs in this study, we also search the literature for tree edit

distance. In [19], author surveys algorithms to find tree edit distance (for unknown

127

node correspondence) between two trees. He summarizes those algorithms in terms

of cases in which they can be used and time and space complexities. To the best of

our knowledge, tree edit distance for known node correspondence is not studied in

the literature.

The second component of the clustering problem in this study, i.e., finding centroid

tree, mainly studied by statisticians. Their main aim is to convert trees to numerical

values so the traditional data mining techniques such as regression can be used to

analyze the data. [147], [5] and [6] use the idea of Principal Component Analysis

(PCA) which is introduced by Pearson [123]. For point data objects in a space, PCA

finds a basis of the space which explains most of the variation in the data. First

principal component explains the largest variation, second contains the second largest

variation and so on. In [147], driving data is the blood vessels structure in brain which

can be represented as binary tree where node correspondence is known as mentioned

before. The binary tree for the brain structure of a patient is obtained from Magnetic

Resonance Angiography (MRA) brain image. The root node of the tree is the first

split-up point of the main vessel entering the brain. Edges represent the vessel parts

and the nodes are the split-up points of the vessels. To find principal components

for the binary tree space, which are also binary trees, authors consider optimization

problems but they obtain results for toy examples. In [5], authors consider the same

data and propose a PCA which enables the first real data analysis of binary brain trees.

Results show that age and brain vessel structure are related. Two different approaches

to PCA for binary trees are also provided in [6]. Although, these approaches are more

complex and more expensive (computationally) than the approach in [5], they result in

improved data analysis. Note that these studies are not directly related to the problem

of finding a centroid tree of a given cluster of trees. But the first principal components

found by these studies can be considered as a centroid tree. It should be also noted

that PCA for binary tree data is challenging issue because of highly non-Euclidean

nature. In [130], authors use Dyck path representation which is a tool for analysis of

branching processes of binary trees for brain structures. By this representation, trees

are converted to curves. Their approach is a bridge between tree space and standard

Euclidean space.

In this study, to find the centroid tree of a given cluster we use mathematical program-

128

ming formulations. After the formulation of the problem for each selected distance

measure, we optimally/heuristically solve the problem. Details will be explained in

Section 4.4.

4.3 Notation and Problem Description

A tree is a connected graph that has no cycles. A graph is a tree if and only if there is

a unique path joining every pair of vertices. In this paper, the objects of interest are

rooted trees with one distinguished vertex called the root. In a rooted tree, the parent

of a vertex is the vertex that is visited first on the unique path joining that vertex to

the root. Every vertex except the root has a unique parent. If u is the parent of v,

then v is said to be a child of u. The level of a vertex is the length of the unique path

joining that vertex to the root. Note that the level of the root is zero. The height of a

rooted tree is the maximum of the levels of its vertices. When representing the edges

of a rooted tree, we use the convention that the first vertex of an edge is the parent

of the second vertex. In other words, if u is the parent of v, then we write the edge

joining them as (u, v). If w is the parent of u, then (w, u) is called the parent of (u, v),

and (u, v) is called a child of (w, u). Two edges having the same parent are called

siblings. An edge (w, y) is an ascendant of edge (u, v), if (w, y) lies on the unique

path joining (u, v) to the root. (u, v) is said to be a descendant of (w, y) if (w, y) is

an ascendant of (u, v). The level of an edge (u, v) is equal to the level of the vertex v.

For two edges (u, v) and (w, y) in a rooted tree, we say that (u, v) is at a higher level,

if it is closer to the root.

An m-ary tree is a rooted tree in which each vertex has at most m children. A 2-ary

tree is also called a binary tree. A complete m-ary tree is an m-ary tree in which

each vertex except the vertices in the last level (i.e., vertices whose levels are equal

to the height of the tree) has exactly m children. In this study, we have a population

P = {T1, T2, . . . , Tnt}where nt is the population size. Each of these trees is a subtree

of a given completem-ary tree called the generator of the population. We assume that

each tree in P has the same root as the generator. We denote by Vi and Ei the vertex

and edge sets of Ti, i ∈ {1, 2, . . . , nt}, respectively. Given a complete m-ary tree and

its planar drawing with the root at the top, we call the leftmost child of a vertex the first

129

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.5

1

1.5

2

2.5

3

3.5

 1

 3 5

 16

(a) T1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.5

1

1.5

2

2.5

3

3.5

 1

 4 5

 12 13 14 17

(b) T2

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.5

1

1.5

2

2.5

3

3.5

 1

 3 4

 9 12 13

(c) T3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.5

1

1.5

2

2.5

3

3.5

 1

 3 4 5

 9 10 11 12 13 14 15 16 17

(d) Generator G of P

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.5

1

1.5

2

2.5

3

3.5

 1

 3 4 5

 9 12 13 14 16 17

(e) Support tree ST of P

Figure 4.1: An example of a population P = {T1, T2, T3} of 3-ary trees, its generator

G, and support tree ST

left child, the second leftmost child as the second left child, and so on. To have the

node correspondence between the vertices in different m-ary trees in the population,

we label the vertices of the generator recursively from top to bottom starting with the

root as follows. The root is labeled with 1. A vertex which is the lth left child of a

vertex having label n is labeled with mn+ (l− 1). A subtree of a generator does not

only take its vertices and edges but also the labels of its vertices from the generator.

Given a population P = {T1, T2, . . . , Tnt} of trees generated by the complete m-ary

tree G, we construct another tree ST = (SV, SE) by taking SV as
⋃i=nt
i=1 Vi and SE

as
⋃i=nt
i=1 Ei. The tree ST is called the support tree of the population P and is also

a subtree of the generator G. We denote by nv and ne the number of vertices and

the number of edges in the support tree, respectively. For an edge j ∈ SE, ch(j),

desc(j), and asc(j) represent the set of children, descendants, and ascendants of j in

the support tree, respectively. Note that a given population of trees can be generated

by different generators. If the generator is unknown, a possible way to construct it is

to take the smallest completem-ary tree containing the support tree of the population.

In Figure 4.1, an example of a population, its generator, and support tree are provided.

With the help of the support tree, each tree in the population can be represented by a

130

vector. For this purpose, we order the edges of the support tree level by level from top

to bottom, and then from left to right within each level. Let eij be a binary parameter

representing the existence of the jth edge (in the ordered list) of the support tree in

Ti. Then, Ei can be represented as a vector
−→
Ei = [eij], j ∈ {1, 2, . . . , ne}. For

instance,
−→
E3 = [1 1 0 1 1 1 0 0 0] is the vector representation of T3 in Figure 4.1.

This representation, which uses the edges of the support tree instead of those of the

generator, is more handy for offline applications where the population is not subject

to change.

In this study, the edges of the trees in the population may have some attributes (i.e.,

the edges of the trees can be weighted). For example, if each tree in the population

represents the brain structure of a patient, then the edges may have attributes such as

length and radius. Assuming that each edge has na attributes, we denote by wijt the

value of the tth attribute of the jth edge of the support tree for Ti. Here, if an edge is

non-existent in a tree, then the value of an attribute for that edge is taken as zero. (In

other words, we assume that the values of all attributes, i.e., the weights, are positive

for the edges that exist.) In the weighted case, each tree Ti is represented by a weight

vector
−→
Wi = [wijt], j ∈ {1, 2, . . . , ne}, t ∈ {1, 2, . . . , na}. For example, the weight

vector of T3 in Figure 4.1 can be
−→
W3 = [0.1 0.5 0 0.4 0.8 0.2 0 0 0] when there is a sin-

gle attribute and it can be
−→
W3 = [0.1 0.5 0 0.4 0.8 0.2 0 0 0 | 0.9 0.8 0 0.9 0.7 0.5 0 0 0]

when there are two attributes.

Given two (unweighted or weighted) trees T1 and T2, d(T1, T2) and s(T1, T2) represent

the distance and the similarity between them, respectively. In this study, we aim to

partition a given population P = {T1, T2, . . . , Tnt} of trees into a given number k of

clusters C1, C2, . . . , Ck and find a representative (centroid) tree CTc for each cluster

c ∈ {1, 2, . . . , k} as

minimize
∑

c∈{1,2,...,k}

∑
i:Ti∈Cc

d(Ti, CTc), (4.1)

or

maximize
∑

c∈{1,2,...,k}

∑
i:Ti∈Cc

s(Ti, CTc). (4.2)

In the next section, we define the similarity and distance measures used in this study

and discuss how the centroid tree of a given subpopulation of trees can be computed.

131

4.4 Finding Representative Tree of a Given Population of Trees

For a given subpopulation (cluster) C ⊆ P = {T1, T2, . . . , Tnt} of trees, finding a

tree that represents all the trees in C well is an important problem that appears as a

subproblem in centroid-based clustering algorithms.

The centroid tree, CT , of C is defined to be the tree that minimizes (maximizes) the

sum of the distances (similarities) between the trees in the cluster C and the centroid

tree CT . Mathematically, we have

CT = argmin
CT∈Γ

∑
i:Ti∈C

d(Ti, CT) or CT = argmax
CT∈Γ

∑
i:Ti∈C

s(Ti, CT), (4.3)

where Γ is the set of all subtrees of the support tree.

Let CT = (CV,CE) be a centroid tree with vertex set CV and edge set CE. Assume

that cej is a binary variable representing the existence of the jth edge of the support

tree in CT . Then,
−−→
CE = [cej], j ∈ {1, 2, . . . , ne}, is the vector representation of

CE. Let cwjt be the value of the tth attribute of the jth edge of the support tree in

CT . Similarly, we have
−−→
CW = [cwjt], j ∈ {1, 2, . . . , ne}, t ∈ {1, 2, . . . , na} as the

weight vector of CT .

The distance or similarity measure used is crucial in the centroid finding problem

defined above. Next, we will consider the measures used in this study for the un-

weighted and weighted trees separately. Note that when the trees are unweighted, the

clustering is done based only on the topologies of the trees in the population.

4.4.1 Unweighted Vertex/Edge Overlap (UWVEO)

In [122], the authors define a similarity measure named as the vertex/edge overlap

(VEO) based on the idea that if two graphs share many vertices and edges, then they

are similar. The VEO of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted by

V EO(G1, G2), is defined as

V EO(G1, G2) =
|V1 ∩ V2|+ |E1 ∩ E2|
|V1|+ |V2|+ |E1|+ |E2|

. (4.4)

Using the fact that the number of vertices in a tree is equal to the number of edges in

132

the tree plus one, the VEO of two trees TA = (VA, EA) and TB = (VB, EB) generated

by a generator G can be rewritten as

V EO(TA, TB) =
2 |EA ∩ EB|+ 1

2 |EA|+ 2 |EB|+ 2
. (4.5)

Note that, in obtaining the numerator of Equation 4.5, we also use the fact that the

intersection of TA and TB is a tree.

Using the VEO as the distance measure, the centroid finding problem can be formu-

lated as a nonlinear integer program (NIP) as follows.

maximize fV EOuw =
∑

i:Ti∈C
2
∑ne

j=1 eijcej + 1

2
∑ne

j=1 eij + 2
∑ne

j=1 cej + 2

subject to cej ≤ cej′ , j′ ∈ {1, 2, . . . , ne}, j ∈ ch(j′),

cej ∈ {0, 1}, j ∈ {1, 2, . . . , ne}. (NIP-UWVEO)

The objective function maximizes the sum of the similarities between the centroid

tree and the trees in the cluster. The first set of constraints preserves the parent-

child relations of the edges. An edge j which is a child of the edge j′ may appear

in CT only if j′ is in CT . The next set of constraints are the binary restrictions on

the variables. For the sake of simplicity, let us represent the solution space (feasible

region) of the above formulation as CE and the solution space of the relaxed problem,

i.e., the problem in which the second set of constraints is replaced with 0 ≤ cej ≤ 1,

j ∈ {1, 2, . . . , ne}, as CER. We first show that when the objective function of (NIP-

UWVEO) is replaced with a linear objective function, then the resulting optimization

problem can be solved as a linear program (LP) after relaxing the binary restrictions.

Proposition 1. CER is an integral polytope, i.e., it has integral extreme points.

Proof. Assume that
−−→
CE∗ is an extreme point of CER that is fractional, i.e., it has at

least one fractional component. Consider the set S of all edges j with 0 < ce∗j < 1.

As
−−→
CE∗ is fractional, S is non-empty. There exists an ε such that ce∗i + ε ≤ 1 and

ce∗i − ε ≥ 0 for all i ∈ S. Consider the two solutions
−−→
CE∗1 and

−−→
CE∗2 in CER that

are obtained from
−−→
CE∗ as follows.

−−→
CE∗1 is obtained from

−−→
CE∗ by adding ε to the

fractional components of
−−→
CE∗, and

−−→
CE∗2 is obtained from

−−→
CE∗ by subtracting ε from

the fractional components of
−−→
CE∗. Clearly, the solutions

−−→
CE∗1 and

−−→
CE∗2 satisfy the

parent child restrictions in (NIP-UWVEO). We have that
−−→
CE∗ = 0.5

−−→
CE∗1 + 0.5

−−→
CE∗2

133

showing that
−−→
CE∗ is not an extreme point of CER. This shows by contradiction that

CER is integral.

Since there are decision variables in both the numerator and the denominator in (NIP-

UWVEO), the objective function is nonlinear. Note, however, that when we fix the

centroid tree size, i.e., the number of edges in the centroid tree, the objective function

becomes linear. Consider now the problem of finding a centroid tree of a given size

cs. In this case, we can replace
∑ne

j=1 cej in the denominator of the objective function

of (NIP-UWVEO) with cs and linearize the objective function. After adding the con-

straint,
∑ne

j=1 cej = cs, the formulation becomes the following integer linear program

(ILP).

maximize fV EOuw(cs) =
∑

i:Ti∈C
2
∑ne

j=1 eijcej + 1

2
∑ne

j=1 eij + 2cs + 2

subject to cej ≤ cej′ , j′ ∈ {1, 2, . . . , ne}, j ∈ ch(j′),∑ne
j=1 cej = cs, (ILP-UWVEO)

cej ∈ {0, 1}, j ∈ {1, 2, . . . , ne}.

Proposition 2. The linear programming relaxation of (ILP-UWVEO) has at least one

integral optimal solution. Moreover, from a fractional optimal solution of the linear

programming relaxation of (ILP-UWVEO), an alternative integral optimal solution

can be easily obtained.

Proof. Assume that
−−→
CE∗ is a fractional optimal solution of the linear programming

relaxation of (ILP-UWVEO). Consider the set S of all edges j with 0 < ce∗j < 1.

Note that S cannot be a singleton. Let coefj represent the coefficient of the variable

cej in the objective function for the edge j. For two edges j, j̄ ∈ S with j ∈ desc(j̄),

it is clear that coefj ≤ coefj̄ as eij ≤ eij̄ . On the other hand, if coefj < coefj̄ , we can

increase the objective function value by decreasing ce∗` by some small positive value ε,

where ` ∈ desc(j) is an edge at the lowest level with fractional ce∗` and by increasing

ce∗ν by ε, where ν ∈ asc(j̄) is an edge at the highest level with fractional ce∗ν . Thus, we

have shown that for two edges j, j̄ ∈ S with j ∈ desc(j̄), it holds that coefj = coefj̄ .

If j, j̄ ∈ S are two edges with no ascendant or descendant relationship, then it also

holds true that coefj = coefj̄ . To prove this, assume coefj < coefj̄ . Let ` ∈ desc(j)
be the edge at the lowest level with fractional ce∗` and ν ∈ asc(j̄) be the edge at the

134

highest level with fractional ce∗ν . The objective function value can be increased by

decreasing ce∗` by some small positive value ε and increasing ce∗ν by ε resulting in a

contradiction. We have thus shown that in an optimal solution the coefficients of the

fractional variables in the objective function are all the same, i.e., coefj = coefj̄ for

all j, j̄ ∈ S.

If S = ∅, the optimal solution is integral. Otherwise, an alternative optimal solution

that is integral can be obtained from
−−→
CE∗ as follows. It is clear that

∑
j∈S ce

∗
j is

an integer, say s. Let S̄ be a subset of S such that |S̄| = s and no edge in S̄ is a

descendant of an edge in S \ S̄. We set ce∗j to 1 for all edges in S̄ and to 0 for all

edges in S \ S̄ to obtain an alternative optimal solution that is integral.

To obtain an optimal solution of (NIP-UWVEO), we can then solve the LP relaxation

of (ILP-UWVEO) for all possible integer cs values (and obtain an integral alterna-

tive optimal solution when it is necessary) and select the solution with the highest

objective function value.

Note that for different cs values, resulting ILPs are knapsack problems with some

precedence relations. Because the coefficients of the variables in the objective func-

tion are non-increasing as we move down the tree, one can optimally solve the LP

relaxation of (ILP-UWVEO) by the following greedy method. Add the edges (cho-

sen among the unadded edges starting with the highest coefficient) one by one to the

centroid tree until cs many edges are added. If among the unadded edges, there are

multiple edges with the highest coefficient, add the one that is closest to the root node

(breaking ties arbitrarily).

4.4.2 Unweighted Graph Edit Distance (UWGED)

A commonly used measure of dissimilarity between two graphs is the graph edit

distance (GED) proposed in [128]. GED between two graphs is the minimum cost

of transforming one of the graphs into the other by relabeling, deleting, or inserting

nodes/edges where each operation has a predetermined cost. The computation of

the GED is in general a difficult problem. However, when the node correspondence

is known, there is no need for the relabeling operation which is the main source of

135

complexity. In this case, the GED can be easily computed [49]. If only the topological

changes are considered, i.e., the cost of deleting or inserting a node or an edge is 1, the

GED between G1 = (V1, E1) and G2 = (V2, E2) with a known node correspondence

is calculated as follows.

GED(G1, G2) = |V1|+ |V2| − 2 |V1 ∩ V2|+ |E1|+ |E2| − 2 |E1 ∩ E2| (4.6)

Given two trees TA = (VA, EA) and TB = (VB, EB) generated using the generator

G, the graph edit distance GED(TA, TB) between TA and TB can be computed as

follows where we use the facts that TA ∩ TB is a tree and the number of vertices in a

tree is equal to the number of edges in the tree plus one.

GED(TA, TB) = 2 |EA|+ 2 |EB| − 4 |EA ∩ EB| (4.7)

The ILP formulation of the centroid finding problem with the unweighted GED as the

distance measure is given below.

minimize fGEDuw =
∑nt

i=1

(∑ne
j=1 eij +

∑ne
j=1 cej − 2

∑ne
j=1 eijcej

)
subject to ce ∈ CE. (ILP-UWGED)

The constraints in (ILP-UWGED) are the same as those in (NIP-UWVEO). The ob-

jective function minimizes the sum of graph edit distances between the centroid tree

and the trees in the dataset and is linear. As proved in Proposition 1, (ILP-UWGED)

can be solved to optimality by solving its LP relaxation.

Note that the objective function of the above formulation can be rewritten as follows.

fGEDuw =
nt∑
i=1

ne∑
j=1

(eij + cej − 2eijcej) =
nt∑
i=1

ne∑
j=1

(eij(1− cej) + cej(1− eij))

=
ne∑
j=1

nt∑
i=1

|eij − cej| .

(4.8)

It can be seen that for each j ∈ {1, 2, . . . , ne}, the sum
∑nt

i=1 |eij − cej| is minimized

when cej is equal to the median of the eij, i ∈ {1, 2, . . . , nt}. Note that if the median

of the eij’s is 0.5, then both values cej = 0 or 1 also minimize
∑nt

i=1 |eij − cej|.
If these solutions can be combined so that the parent-child relations hold true, i.e.,

136

the contraints ce ∈ CE are satisfied, then an optimal solution of (ILP-UWGED) is

obtained.

Proposition 3. An optimal solution of (ILP-UWGED) can be obtained by taking ce∗j
as 1 when

∑nt
i=1 eij∗ >

nt
2

and as 0 otherwise.

Proof. Note that when
∑nt

i=1 eij∗ >
nt
2

, the median of the eij∗’s is 1. In this case,

taking ce∗j as 1 minimizes
∑nt

i=1

∣∣eij∗ − ce∗j ∣∣. On the other hand, when
∑nt

i=1 eij∗ ≤
nt
2

,

eij∗ = 0 is a minimizer of
∑nt

i=1

∣∣eij∗ − ce∗j ∣∣. As for two edges j, j′ with j ∈ ch(j′),

we have
∑nt

i=1 eij′ ≥
∑nt

i=1 eij , this solution satisfies the parent-child constraints and

therefore an optimal solution of (ILP-UWGED).

Note that another optimal solution of (ILP-UWGED) can be obtained by taking ce∗j as

1 when
∑nt

i=1 eij∗ ≥
nt
2

and as 0 otherwise. Although the objective function value of

(ILP-UWGED) remains the same, when we have multiple clusters, having different

centroid tree may affect the final clustering result. Thus, we consider this issue in

parameter selection.

4.4.3 Weighted Vertex/edge Overlap (WVEO)

In this study, we have weights on the edges but not on the vertices of the trees. We

define the weighted VEO between two trees with weights on the edges as the ratio

of the total edge weight overlap to the total edge weights when a single attribute

exists. In case of multiple attributes, these ratios are added up. Given two trees

TA = (VA, EA) and TB = (VB, EB), let wAjt and wBjt represent the weights of edge

j ∈ EA ∪ EB for the attribute t ∈ {1, 2, . . . , na} in TA and TB, respectively. Then,

mathematically, the weighted VEO between TA and TB is given by

V EOw(TA, TB) =
na∑
t=1

∑
j∈EA∪EB min(wAjt, wBjt)∑
j∈EA wAjt +

∑
j∈EB wBjt

. (4.9)

Note that EA ∪ EB in the numerator and EA and EB in the denominator in Equa-

tion 4.9 can all be replaced by the set of edges in the support tree because for non-

existent edges we assign a weight value of zero. Letting yijt, i ∈ {1, 2, . . . , nt},

137

j ∈ {1, 2, . . . , ne}, t ∈ {1, 2, . . . , na} represent min(wijt, cwjt), a nonlinear pro-

gramming (NLP) formulation of the centroid finding problem when VEOw is used as

the distance measure is as follows.

maximize fV EOw =
∑nt

i=1

∑na
t=1

∑ne
j=1 yijt∑ne

j=1 wijt+
∑ne
j=1 cwjt

(NLP-WVEO)

subject to yijt ≤ wijt, i ∈ {1, . . . , nt}, j ∈ {1, . . . , ne}, t ∈ {1, . . . , na},
yijt ≤ cwjt, i ∈ {1, . . . , nt}, j ∈ {1, . . . , ne}, t ∈ {1, . . . , na}.

This formulation can be decomposed. For each attribute, the following NLP formu-

lation can be solved.

maximize f tV EOw =
∑nt

i=1

∑ne
j=1 yijt∑ne

j=1 wijt+
∑ne
j=1 cwjt

subject to yijt ≤ wijt, i ∈ {1, 2, . . . , nt}, j ∈ {1, 2, . . . , ne}, (NLP-WVEOt)

yijt ≤ cwjt, i ∈ {1, 2, . . . , nt}, j ∈ {1, 2, . . . , ne}.

To solve (NLP-WVEOt), we propose a heuristic, namely an iterative multi dimen-

sional descent search algorithm. The algorithm starts with some initial weights for

cwjt’s, j ∈ {1, . . . , ne}, and tries to improve the objective function value by changing

the weights. The edges are ordered at the beginning of each algorithmic cycle con-

sisting of ne iterations. In each iteration, it finds the best value of cwjt for a particular

edge j ∈ {1, . . . , ne} among the given weights 0, w1jt, . . . , wnt,jt while keeping the

weights of other edges constant. These iterations are repeated for the edges one by

one considering the ordering of the edges in the current algorithmic cycle. Then, a

new cycle begins. Cycles continue until it is guaranteed that the current solution can-

not be improved any further. In this algorithm, the starting weights and the ordering

of edges within a cycle may affect the final centroid tree. Thus, we tried different

alternatives for these parameters.

4.4.4 Weighted Graph Edit Distance (WGED)

In [49], the authors used the graph edit distance to measure the distance between

graphs having edge weights. We define the weighted GED between two trees TA =

(VA, EA) and TB = (VB, EB), denoted by GEDw(TA, TB), as follows.

GEDw(TA, TB) =
na∑
t=1

∑
j ∈ EA\EB

wAjt +
∑

j ∈ EB\EA

wBjt +
∑

j ∈ EA∩EB

|wAjt − wBjt| ,

(4.10)

138

where wAjt and wBjt are the weights of edge j ∈ EA ∪ EB for the attribute t ∈
{1, 2, . . . , na} in TA and TB, respectively. Note that the definition used in [49] in-

cludes a scaling parameter which is not used here.

By using the weighted GED as the distance measure, the centroid finding problem

can be formulated as a mixed integer nonlinear program (MINLP) as follows.

minimize fGEDw =
∑nt
i=1

∑na
t=1

∑ne
j=1 eij(1− cej)wijt +

∑ne
j=1(1− eij)cejcwjt

+
∑ne
j=1 eijcej |wijt − cwjt|

subject to ce ∈ CE. (MINLP-WGED)

The objective function in (MINLP-WGED) minimizes the sum of weighted graph edit

distances between the centroid tree and the trees in the dataset. It is nonlinear due to

the existence of the absolute values and the decision variables multiplied together.

Proposition 4. The solution in which cw∗jt is the median of w1jt, w2jt, . . . , wnt,jt

when nt is odd and is the smallest (largest) of the middle two observations when nt

is even for each j ∈ {1, 2, . . . , ne} and t ∈ {1, 2, . . . , na} and ce∗j is 1 if and only if

any cw∗jt, t ∈ {1, 2, . . . , na} is greater than 0 for each j ∈ {1, 2, . . . , ne}, is optimal.

Proof. Using our convention that the weight of a non–existent edge is 0, the objective

function of (MINLP-WGED) can be rewritten as follows

fGEDw =
nt∑
i=1

na∑
t=1

ne∑
j=1

|wijt − cwjt| . (4.11)

To see this, we consider four cases fixing i, j, and t and show in each case that

eij(1− cej)wijt + (1− eij)cejcwjt + eijcej |wijt − cwjt| (4.12)

is equal to

|wijt − cwjt| . (4.13)

In case 1, eij = cej = 0. In this case, wijt = cwjt = 0 and therefore (4.12) and (4.13)

are both 0. In case 2, eij = cej = 1. In this case, (4.12) reduces to (4.13). In case 3,

eij = 0 and cej = 1. In this case, wijt = 0 and both (4.12) and (4.13) are equal to

cwjt. In case 4, eij = 1 and cej = 0. In this case, cwjt = 0 and both (4.12) and (4.13)

are equal to wijt.

139

The formulation (MINLP-WGED) with the objective in (4.11) can be decomposed.

For each cwjt, j ∈ {1, . . . , ne}, t ∈ {1, . . . , na},
∑nt

i=1 |wijt − cwjt| is to be min-

imized. The solution, cw∗jt, minimizing this objective, i.e., the sum of absolute dif-

ferences, is the median value of w1jt, . . . , wnt,jt when nt is odd and is any value

between the middle two observations when nt is even. Choosing each cw∗jt as the

smallest (or the largest) of the middle two observations and ce∗j as 1 if and only if any

cw∗jt, t ∈ {1, . . . , na} is greater than 0 for each j ∈ {1, . . . , ne} make sure that the

parent-child relationships are satisfied.

In the presence of alternative optimal solutions, i.e., when there are an even num-

ber of trees in the centroid finding problem, selecting one of them does not affect

the objective function value for the cluster in consideration, but this selection may

eventually affect the overall objective function value of the final clustering. Different

alternative optimal centroid trees may result in convergence to different partitioning

results. Thus, we consider this issue in parameter selection.

4.5 Clustering of Tree-Structured Data

K-means algorithm [111], which is the most popular clustering algorithm because

of its ease of implementation, simplicity, efficiency and empirical success, can be

utilized to solve the tree clustering problem. After starting with initial centroid trees,

the algorithm repeats the assignment and update steps until convergence. General

framework of tree-kmeans algorithms is given in Algorithm 11.

Algorithm 11 tree-kmeans
1: Initialization: Obtain initial centroid trees.

2: repeat

3: Assignment: Assign each tree Ti ∈ P to the most similar cluster.

4: Update: Update each centroid tree by considering trees assigned to it.

5: until Assignments do not change.

6: return Partition of P .

140

Selection of initial centroid trees, i.e., selection of edges from the support tree to be

included in the initial centroid trees and setting their weights for the weighted cases,

is an important issue in k-means, since the algorithm may converge different parti-

tionings with different starting points. To be able to preserve topological structures

in the dataset, in each replication we use frequency based random selection to decide

edges of the initial centroid trees. This selection procedure can be explained with

an example. Consider a small dataset with 4 3-ary trees given in Figure 4.2 whose

support tree with edge labels representing the conditional frequencies of the edges is

given in Figure 4.3. For example, edge (1,3) appears in half of the trees and edge

(3,11) appears in all of the trees in which its parent edge appears. Starting from the

edges in the first level of the support tree, we generate a random number and if it is

smaller than the corresponding conditional relative frequency, we include the edge in

the initial centroid tree. Then, we continue with the edges in the next level whose

parent edges are already included in the centroid tree. For the weighted case, we tried

two different alternatives for the weight of an edge in an initial centroid tree; namely,

mean and median of nonzero weights for the corresponding edge in the dataset. De-

tails of the alternative selection procedure are provided in Section 4.6.1.

Figure 4.2: Small dataset with 4 3-ary trees

Figure 4.3: Conditional frequencies of edges appearing in the dataset in Figure 4.2

141

In the assignment steps, each tree in the data is assigned to the closest centroid tree

(which is the tree minimizing the GED or maximizing the VEO between the tree and

the centroid tree). In the update steps, the centroid trees are updated by considering

the trees assigned to them. The details of finding the centroid tree of a given cluster

are discussed in Section 4.4.

4.6 Computational Studies

4.6.1 Parameter Selection

In order to test the performances of the algorithms under different parametric settings

and decide on which setting is the best, we generated 2 unweighted and 2 weighted

random datasets. For the data generation, we use a procedure which is based on the

random data generation scheme in [90]. The original procedure in [90] has 3 inputs

to generate labeled binary trees, namely a matrix with transition probabilities (pvals),

vector with probabilities to continue (ContProbability) and discontinuity factor (γ).

For example, assume that there can be two different node labels, a and b, in a tree and

the parameters are as follows.

pvals =

0.6 0.4

0.7 0.3

 , ContProbability =

0.9

0.8

 , γ = 0.7

Starting with a labeled node as a root node, this node will have at least one children,

i.e., the generation procedure will continue with probability 0.9 if its label is a, or

with probability 0.8 if its label is b. If the random variable generated for the continue

decision is smaller than the corresponding ContProbability, next step is to decide on

the labels of the children. The labels are sampled using multinomial distribution with

parameters 0.6 and 0.4 if parent node’s label is a, or with parameters 0.7 and 0.3 if

parent node’s label is b. This means that a labeled node will get a labeled child with

probability 0.6 and b labeled child with probability 0.4, while b labeled node will get

a labeled child with probability 0.7 and b labeled child with probability 0.3. For each

newly added leaf node the procedure is repeated. While going down to the levels of

generated tree, ContProbability is reduced by multiplying it with γ.

142

Since the trees in the problem considered in this study are not labeled, we do not

require a transition probabilities matrix. To generate an m-ary tree, a vector (p) with

probabilities of generating 1st, 2nd,..., mth left child of a node and a discontinuity

factor (γ) are sufficient. For example, assume that to generate a 3-ary tree the param-

eters are as follows. A node in the second level of a tree will have left-most child with

probability 0.9 ∗ 0.7 ∗ 0.7, middle child with probability 0.2 ∗ 0.7 ∗ 0.7 and right-most

child with probability 0.1 ∗ 0.7 ∗ 0.7.

p =

0.9

0.2

0.1

 , γ = 0.7

The details of random datasets are given in Tables 4.1, 4.2, 4.3 and 4.4; namely Small-

DataUW, LargeDataUW, SmallDataW and LargeDataW. In each data set we have

50 problem instances. Each problem instance in SmallDataUW and LargeDataUW

consists of two equally sized groups (clusters) of trees generated with different pa-

rameters. We try to differentiate clusters according to tree topologies in such a way

that trees in the first cluster are left aligned while trees in the second cluster are right

aligned. The cluster sizes in SmallDataUW is 20 while it is 30 in LargeDataUW.

On the other hand, there are four equally sized clusters in the problem instances of

SmallDataW and LargeDataW. We attempt to diversify clusters based on the edge

weights in addition to tree topologies such that the first cluster consists of left aligned

trees with edge weights that are randomly generated between 0 and 0.5, the second

cluster is formed with left aligned trees with edge weights that are random between

0.5 and 1, the third cluster comprises of right aligned trees with random edge weights

between 0 and 0.5, and there are right aligned trees with random edge weights be-

tween 0.5 and 1 in the last cluster. The cluster sizes are 10 and 15 for SmallDataW

and LargeDataW, respectively. In those tables, we also report the properties of the

problem instances, namely the average and maximum number of levels in individual

trees, average and maximum number of edges in individual trees, average and maxi-

mum number of edges in the support trees of problem instances. For example, in the

first five problem instances of SmallDataUW provided in Table 4.1, in the generation

procedure, discounting factor is taken as 0.6, 20 3-ary trees are generated with p1 and

20 3-ary trees are generated with p2. In total, there are 40 3-ary trees in each instance.

143

Table 4.1: The properties of randomly generated problem instances in SmallDataUW

Instance γ(1) p
(2)
1 p

(2)
2

of Levels(3) # of Edges(4) ne(5)

Avg. Max. Avg. Max. Avg. Max.

1-5 0.6 (0.9,0.1,0.1) (0.1,0.1,0.9) 2.10 6 2.53 9 22.6 29

6-10 0.6 (0.8,0.2,0.2) (0.2,0.2,0.8) 2.11 5 3.02 14 27.6 34

11-15 0.6 (0.7,0.3,0.3) (0.3,0.3,0.7) 2.24 5 3.37 14 34.0 37

16-20 0.6 (0.6,0.4,0.4) (0.4,0.4,0.6) 2.28 6 3.82 16 34.0 47

21-25 0.6 (0.5,0.5,0.5) (0.5,0.5,0.5) 2.54 5 4.18 15 39.8 45

26-30 0.8 (0.9,0.1,0.1) (0.1,0.1,0.9) 3.17 8 4.07 17 47.0 62

31-35 0.8 (0.8,0.2,0.2) (0.2,0.2,0.8) 3.06 8 4.65 18 58.6 64

36-40 0.8 (0.7,0.3,0.3) (0.3,0.3,0.7) 3.43 8 5.96 26 88.6 113

41-45 0.8 (0.6,0.4,0.4) (0.4,0.4,0.6) 3.75 9 7.08 24 111.6 129

46-50 0.8 (0.5,0.5,0.5) (0.5,0.5,0.5) 4.12 10 8.97 36 142.6 162

(1) Discounting factor
(2) Probabilities of generating (left, middle, right) children of a node in different clusters for the corresponding instances
(3) Average and maximum number of levels of all trees in the corresponding instances
(4) Average and maximum number of edges in all trees in the corresponding instances
(5) Average and maximum number of edges of support trees of the corresponding instances

Table 4.2: The properties of randomly generated problem instances in LargeDataUW

Instance γ(1) p
(2)
1 p

(2)
2

of Levels(3) # of Edges(4) ne(5)

Avg. Max. Avg. Max. Avg. Max.

1-5 0.7 (0.9,0.1,0.1) (0.1,0.1,0.9) 2.40 6 2.97 12 34.40 41

6-10 0.7 (0.8,0.2,0.2) (0.2,0.2,0.8) 2.58 7 3.73 18 51.4 55

11-15 0.7 (0.7,0.3,0.3) (0.3,0.3,0.7) 2.81 7 4.53 19 68.0 81

16-20 0.7 (0.6,0.4,0.4) (0.4,0.4,0.6) 2.83 7 4.83 17 73.2 82

21-25 0.7 (0.5,0.5,0.5) (0.5,0.5,0.5) 3.10 7 5.68 24 84.0 92

26-30 0.9 (0.9,0.1,0.1) (0.1,0.1,0.9) 4.28 13 5.87 23 112.2 133

31-35 0.9 (0.8,0.2,0.2) (0.2,0.2,0.8) 4.65 14 8.01 39 207.4 246

36-40 0.9 (0.7,0.3,0.3) (0.3,0.3,0.7) 5.43 14 11.76 52 339.2 390

41-45 0.9 (0.6,0.4,0.4) (0.4,0.4,0.6) 6.14 15 14.92 65 472.4 575

46-50 0.9 (0.5,0.5,0.5) (0.5,0.5,0.5) 7.42 16 22.43 93 746.4 857

(1) Discounting factor
(2) Probabilities of generating (left, middle, right) children of a node in different clusters for the corresponding instances
(3) Average and maximum number of levels of all trees in the corresponding instances
(4) Average and maximum number of edges in all trees in the corresponding instances
(5) Average and maximum number of edges of support trees of the corresponding instances

144

Table 4.3: The properties of randomly generated problem instances in SmallDataW

Instance γ(1) p
(2)
1 , p(2)2 p

(2)
3 , p(2)4 w

(3)
1 ,w(3)

3 w
(3)
2 ,w(3)

4

of Levels(4) # of Edges(5) ne(6)

Avg. Max. Avg. Max. Avg. Max.

1-5 0.6 (0.9,0.1,0.1) (0.1,0.1,0.9) U(0,0.5) U(0.5,1) 1.91 4 2.26 7 19.4 22

6-10 0.6 (0.8,0.2,0.2) (0.2,0.2,0.8) U(0,0.5) U(0.5,1) 2.07 6 2.84 10 26.8 34

11-15 0.6 (0.7,0.3,0.3) (0.3,0.3,0.7) U(0,0.5) U(0.5,1) 2.29 5 3.54 12 33.4 41

16-20 0.6 (0.6,0.4,0.4) (0.4,0.4,0.6) U(0,0.5) U(0.5,1) 2.42 5 4.09 15 43.4 49

21-25 0.6 (0.5,0.5,0.5) (0.5,0.5,0.5) U(0,0.5) U(0.5,1) 2.51 6 4.36 13 41.2 52

26-30 0.8 (0.9,0.1,0.1) (0.1,0.1,0.9) U(0,0.5) U(0.5,1) 2.84 10 3.48 14 37.6 45

31-35 0.8 (0.8,0.2,0.2) (0.2,0.2,0.8) U(0,0.5) U(0.5,1) 3.19 8 4.82 16 64.4 77

36-40 0.8 (0.7,0.3,0.3) (0.3,0.3,0.7) U(0,0.5) U(0.5,1) 3.45 9 6.39 22 86.0 101

41-45 0.8 (0.6,0.4,0.4) (0.4,0.4,0.6) U(0,0.5) U(0.5,1) 3.84 9 7.92 34 120.6 140

46-50 0.8 (0.5,0.5,0.5) (0.5,0.5,0.5) U(0,0.5) U(0.5,1) 4.21 9 9.23 37 150.0 164
(1) Discounting factor
(2) Probabilities of generating (left, middle, right) children of a node in different clusters for the corresponding instances
(3) Probability distributions for generating edge weights in different clusters for the corresponding instances
(4) Average and maximum number of levels of all trees in the corresponding instances
(5) Average and maximum number of edges in all trees in the corresponding instances
(6) Average and maximum number of edges of support trees of the corresponding instances

Table 4.4: The properties of randomly generated problem instances in LargeDataW

Instance γ(1) p
(2)
1 , p(2)2 p

(2)
3 , p(2)4 w

(3)
1 ,w(3)

3 w
(3)
2 ,w(3)

4

of Levels(4) # of Edges(6) ne(6)

Avg. Max. Avg. Max. Avg. Max.

1-5 0.7 (0.9,0.1,0.1) (0.1,0.1,0.9) U(0,0.5) U(0.5,1) 2.29 7 2.79 10 33.40 42

6-10 0.7 (0.8,0.2,0.2) (0.2,0.2,0.8) U(0,0.5) U(0.5,1) 2.55 7 3.66 13 52.80 60

11-15 0.7 (0.7,0.3,0.3) (0.3,0.3,0.7) U(0,0.5) U(0.5,1) 2.71 7 4.41 17 61.20 80

16-20 0.7 (0.6,0.4,0.4) (0.4,0.4,0.6) U(0,0.5) U(0.5,1) 2.83 7 4.82 25 75.40 84

21-25 0.7 (0.5,0.5,0.5) (0.5,0.5,0.5) U(0,0.5) U(0.5,1) 3.07 7 5.59 27 83.60 91

26-30 0.9 (0.9,0.1,0.1) (0.1,0.1,0.9) U(0,0.5) U(0.5,1) 4.14 12 5.51 24 103.20 122

31-35 0.9 (0.8,0.2,0.2) (0.2,0.2,0.8) U(0,0.5) U(0.5,1) 4.75 13 8.85 64 238.40 274

36-40 0.9 (0.7,0.3,0.3) (0.3,0.3,0.7) U(0,0.5) U(0.5,1) 5.25 14 11.56 71 350.60 427

41-45 0.9 (0.6,0.4,0.4) (0.4,0.4,0.6) U(0,0.5) U(0.5,1) 6.22 15 17.88 88 583.80 628

46-50 0.9 (0.5,0.5,0.5) (0.5,0.5,0.5) U(0,0.5) U(0.5,1) 6.97 17 21.62 84 716.00 865
(1) Discounting factor
(2) Probabilities of generating (left, middle, right) children of a node in different clusters for the corresponding instances
(3) Probability distributions for generating edge weights in different clusters for the corresponding instances
(4) Average and maximum number of levels of all trees in the corresponding instances
(5) Average and maximum number of edges in all trees in the corresponding instances
(6) Average and maximum number of edges of support trees of the corresponding instances

The average number of levels in those trees is 2.10 while the number of levels in the

maximum leveled tree is 6. Trees have 2.53 edges on the average while there are 9

edges in the largest tree. There are 22.6 edges, on the average, in the support trees of

those problem instances and the maximum sized support tree has 29 edges.

145

4.6.1.1 Performance Measures

For different parametric settings, we solve each problem instance 10 times (i.e., make

10 replications) and compute the percent deviations of the objective function values

from the best solution (among all replications of all different parametric settings) for

that problem instance. Moreover, we calculate the rand index, which is explained in

Section 2.6.1, for each replication by assuming that the desired partition of trees in

the problem instance is the partition in the data generation procedure.

For a single problem instance, we consider five performance measures; namely aver-

age percent deviation of the objective function value across the replications, average

rand index across the replications, percent deviation of the best replication, rand in-

dex of the best replication, and the total computation time for the replications. We can

mathematically state these performance measures as follows. Let Dir be the percent

deviation of the objective function value obtained for problem instance i in replica-

tion r from the best objective function value obtained for the problem instance. Also,

let Rir represent the rand index of the solution for problem instance i in replication r.

Then, the first and second performance measures are follows.

AvPDi =

∑10
r=1Dir

10

AvRIi =

∑10
r=1Rir

10

Let the best replication for problem instance i be the replication with the minimum

percent deviation, i.e., ri = argminrDir. Then, the third and fourth performance

measures are given below.

BPDi = Di,ri

BRIi = Ri,ri

Finally, let Sir be the solution time (in seconds) of problem instance i in replication

r. Then, the last performance measures is

CTi =
10∑
r=1

Sir.

146

Note that the problem instances in Tables 4.1-4.4 are divided into 10 batches of size

5 such that the generation parameters are the same in a batch. For example, problem

instances 1 through 5 constitute a batch while problem instances 6 through 10 form

another batch. In the following subsections, we report the average performance over

the problem instances with the same generation parameters. By this way, we aim to

see the effect of different tree topologies and different edge weights on the clustering

performance. Thus, the performance measures for each batch, b ∈ {1, . . . , 10}, are

AvPD =

∑
iAvPDi

5
, AvRI =

∑
iAvRIi

5
,

BPD =

∑
iBPDi

5
, BRI =

∑
iBRIi

5
, CT =

∑
iCTi
5

,

where i ∈ {5(b− 1) + 1, . . . , 5b}.

4.6.1.2 Results for tree-kmeans-UWVEO

For tree-kmeans-UWVEO algorithm, there are not any parameters to be decided. The

details of the algorithm are given in Algorithm 12.

Tables 4.5 and 4.6 report the performance of tree-kmeans-UWVEO on SmallDataUW

and LargeDataUW, respectively. Average percent deviation (AvPD) values are small.

Also, it seems that AvPD values are not affected by the topological separability of

the problem instances, i.e., there are not visible trends in the values such as "they

increase when problem instances become topologically less separable." Average rand

index (AvRI) values decrease when the problem instances become topologically less

separable. For example, for the instances 26-30 of SmallDataUW in which trees of

different clusters can be separable as left and right aligned, AvRI value is 0.91 while

it is 0.50 for the instances 46-50 of SmallDataUW in which all trees are random.

Actually, the latter setting is used for control purposes and its AvRI is not expected

to be larger than 0.5. Best solution’s percent deviation (BPD) values are all 0 by

definition. As AvRI values, best solution’s rand index (BRI) values are smaller for

the problem instances which are topologically less separable. Also note that BRI

values are larger than AvRI values which indicates that the solutions that are better in

terms of objective value perform well in terms of an external evaluation measure such

as rand index. Note that problem instances with larger indexes have larger support

147

Algorithm 12 tree-kmeans-UWVEO
1: Initialization: Obtain initial centroid trees.

2: Obtain support tree, ST = (SV, SE) where SV =
⋃i=nt
i=1 Vi, SE =

⋃i=nt
i=1 Ei, and let ne = |SE|.

3: Let ce(c)j = 0, j = 1, . . . , ne, c = 1, . . . , k.

4: for j=1 to ne do

5: condFreqj =
∑i=nt
i=1 eij
nt

/
∑i=nt
i=1 eij′
nt

where j ∈ ch(j′).

6: for c=1 to k do

7: if rand() <= condFreqj then

8: ce
(c)
j = 1

9: end if

10: end for

11: end for

12: repeat

13: Assignment: Assign each tree Ti ∈ P to the most similar cluster.

14: Let Cc = {}, c = 1, . . . , k.

15: for i=1 to nt do

16: Find the most similar cluster c∗, where c∗ = argmaxc
2
∑ne
j=1 eijce

(c)
j +1

2
∑ne
j=1 eij +2

∑ne
j=1 ce

(c)
j +2

and

let Ti ∈ Cc∗ .

17: end for

18: Update: Update each centroid tree by considering trees assigned to it.

19: Let max
(c)
fV EO

= 0, c = 1, . . . , k, and ce
(c)
j = 0, j = 1, . . . , ne, c = 1, . . . , k.

20: for c=1 to k do

21: for s=1 to ne do

22: Let ce(c)∗j = 0, j = 1, . . . , ne and f
(c)
V EO = 0.

23: for j=1 to ne do

24: Calculate the coefficient of ce(c)j , coef (c)
j =

∑
i:Ti∈Cc

2eij
2
∑ne
j=1 eij +2s+2

25: end for

26: Sort coefficients in descending order and let coef (c)
j1

, ..., coef
(c)
jne

be the ordering.

27: for t=1 to s do

28: Set ce(c)∗jt
= 1 and f

(c)
V EO = f

(c)
V EO + coef

(c)
jt

29: end for

30: f
(c)
V EO = f

(c)
V EO +

∑
i:Ti∈Cc

1
2
∑ne
j=1 eij +2s+2

31: if f (c)
V EO ≥ max

(c)
fV EO

then

32: ce
(c)
j = ce

(c)∗
j , j = 1, . . . , ne

33: max
(c)
fV EO

= f
(c)
V EO

34: end if

35: end for

36: end for

37: until Assignments do not change.

38: return Partition {C1, . . . , Ck} of P .

148

Table 4.5: The performance of tree-kmeans-UWVEO on SmallDataUW

Instance AvPD AvRI BPD BRI CT

1-5 2.36 0.85 0.00 0.92 0.91

6-10 2.73 0.69 0.00 0.80 1.25

11-15 2.84 0.57 0.00 0.60 1.74

16-20 2.31 0.50 0.00 0.51 1.82

21-25 2.21 0.50 0.00 0.51 2.31

26-30 1.82 0.91 0.00 0.95 3.13

31-35 2.60 0.73 0.00 0.81 4.81

36-40 2.20 0.55 0.00 0.56 11.58

41-45 2.12 0.54 0.00 0.58 19.52

46-50 2.12 0.50 0.00 0.50 39.26

Table 4.6: The performance of tree-kmeans-UWVEO on LargeDataUW

Instance AvPD AvRI BPD BRI CT

1-5 0.76 0.88 0.00 0.89 2.61

6-10 1.62 0.71 0.00 0.74 5.11

11-15 1.96 0.58 0.00 0.60 10.21

16-20 2.36 0.51 0.00 0.51 10.68

21-25 1.82 0.50 0.00 0.49 14.53

26-30 1.25 0.91 0.00 0.95 28.64

31-35 2.98 0.69 0.00 0.79 109.86

36-40 1.96 0.55 0.00 0.60 414.50

41-45 1.15 0.50 0.00 0.49 1203.53

46-50 1.93 0.50 0.00 0.50 3799.06

trees which bring higher computational burden. Thus, total solution time (CT) values

increase when we go down the rows of the tables.

149

4.6.1.3 Results for tree-kmeans-UWGED

There is a single parameter to be decided in tree-kmeans-UWGED algorithm. It is

related with the decision on the inclusion of the edges for which the median is 0.5 in

the update step. We call design factor EU (initials of "Edge Update") from this point

on for which we try the following two alternatives,

1. Do not include

2. Include

In the first alternative, we do not include any of the edges for which the median is 0.5.

Similarly, in the second alternative, we include all such edges.

Tables 4.7 and 4.8 report the results for different levels of EU on SmallDataUW and

LargeDataUW, respectively. To decide the parametric setting giving the best perfor-

mance, we use Wilcoxon signed rank test for the pairwise comparison of different

parametric settings. Wilcoxon signed rank test is a non-parametric test used to com-

pare two alternatives, X and Y, by testing the following hypothesis.

H0 : E(X) = E(Y)

H1 : E(X) 6= E(Y) or H1 : E(X)− E(Y) > 0 or H1 : E(X)− E(Y) < 0

Let xi, i = 1, . . . , n, and yi, i = 1, . . . , n, be the observation values of X and Y, re-

spectively. To apply Wilcoxon signed rank test, the differences between observations

should be calculated and ranked in descending order based on the absolute values,

i.e., |xi− yi| values should be ranked in descending order. Let ri, i = 1, . . . , n, be the

rank of ith observation. Then, the sign of xi − yi should be assigned to ri. Last, the

test statistic is calculated by summing the signed ranks, i.e., w0 = ri + . . . , rn. If the

hypothesis is two-sided, null hypothesis is rejected when w0 > w1−α/2 or w0 < wα/2.

If the hypothesis is right-tailed, i.e. H1 : E(X) − E(Y) > 0, we reject the null

hypothesis when w0 > w1−α. On the other hand, w0 < wα is the rejection criteria

when the hypothesis is left-tailed. Note that α is the user defined significance level of

the hypothesis test and we take it as 5%. The formula for critical value is as follows:

wα = zα

√
n(n+1)(2n+1)

6
.

150

Table 4.7: The performance of tree-kmeans-UWGED on SmallDataUW

Instance EU AvPD AvRI BPD BRI CT

1-5
1 8.21 0.88 0.00 0.93 0.33

2 22.03 0.80 0.00 0.93 0.32

6-10
1 8.44 0.70 0.00 0.82 0.33

2 8.81 0.69 0.00 0.82 0.32

11-15
1 6.12 0.58 0.00 0.59 0.34

2 7.52 0.56 0.00 0.59 0.35

16-20
1 5.58 0.50 0.14 0.51 0.36

2 6.72 0.50 0.18 0.51 0.36

21-25
1 5.69 0.50 0.00 0.50 0.39

2 6.18 0.50 0.00 0.49 0.35

26-30
1 5.50 0.88 0.00 0.95 0.38

2 13.98 0.82 0.00 0.95 0.37

31-35
1 6.82 0.66 0.00 0.80 0.42

2 8.91 0.63 0.00 0.78 0.39

36-40
1 2.88 0.56 0.00 0.59 0.47

2 5.20 0.52 0.31 0.59 0.43

41-45
1 3.09 0.52 0.16 0.54 0.51

2 3.82 0.51 0.00 0.52 0.50

46-50
1 1.59 0.49 0.06 0.49 0.59

2 2.08 0.49 0.13 0.49 0.58

Suppose that we are trying to select best parametric setting in terms of AvPD. Table

4.9 summarizes the application of Wilcoxon signed rank test to compare parametric

setting alternatives, EU is 1 and EU is 2, for SmallDataUW. As it can be seen from

the table, the test statistic is -55. If H1 : E(X) − E(Y) > 0, the critical value

is 32.38. Thus, we fail to reject H0 : E(X) = E(Y). On the other hand, when

H1 : E(X) − E(Y) < 0 the critical value is -32.38. In that case, we reject H0 :

E(X) = E(Y) and accept H1 : E(X) − E(Y) < 0. This means that the algorithm

has better performance when EU is 1 since smaller AvPD values are desired. In other

words, EU=1 setting dominates EU=2 setting. Table 4.10 reports the nondominated

parametric settings for tree-kmeans-UWGED in terms of each performance measure

on each dataset. As it can be seen from the table, the algorithm has better performance

151

Table 4.8: The performance of tree-kmeans-UWGED on LargeDataUW

Instance EU AvPD AvRI BPD BRI CT

1-5
1 12.34 0.80 0.00 0.92 0.51

2 17.22 0.75 0.00 0.89 0.46

6-10
1 8.78 0.66 0.00 0.75 0.54

2 10.23 0.63 0.00 0.75 0.53

11-15
1 4.46 0.56 0.00 0.61 0.58

2 5.15 0.56 0.00 0.61 0.56

16-20
1 3.70 0.51 0.00 0.51 0.64

2 4.59 0.51 0.00 0.51 0.60

21-25
1 3.34 0.50 0.00 0.50 0.67

2 4.45 0.49 0.34 0.49 0.63

26-30
1 8.84 0.82 0.00 0.94 0.67

2 9.34 0.81 0.00 0.93 0.68

31-35
1 5.85 0.61 0.00 0.78 0.80

2 6.13 0.59 0.04 0.77 0.76

36-40
1 2.37 0.53 0.48 0.62 1.06

2 2.86 0.52 0.50 0.56 1.04

41-45
1 2.04 0.50 0.85 0.50 1.29

2 2.19 0.50 0.00 0.50 1.32

46-50
1 2.86 0.50 0.14 0.49 1.99

2 2.77 0.49 0.46 0.49 2.02

when the first parametric setting (EU=1) is used. The details of the algorithm are

given in Algorithm 13.

If we investigate the rows of 4.7 and 4.8 in which EU is 1, we can observe some trends

as in previous section. AvPD and AvRI values seem to be affected by the topological

separability of the problem instances. AvPD increases and AvRI decreases when

problem instances become topologically less separable. BPD values are very small

(0 in most of the cases). This indicates that the selected parametric setting gives the

near best performance (the best performance in most of the cases). BRI values are

larger for the problem instances which are topologically more separable. Also note

that the solutions that are better in terms of objective value are generally better in

terms of rand index since BRI values are larger than AvRI values in general. Finally,

152

Table 4.9: Wilcoxon signed rank test in terms of AvPD on SmallDataUW for tree-

kmeans-UWGED

Observation EU = 1 EU = 2 Difference
Rank

Signed Rank

(Instance batch) (X) (Y) (X-Y) (R)

1-5 8.21 22.03 -13.82 1 -1

6-10 8.44 8.81 -0.38 10 -10

11-15 6.12 7.52 -1.41 5 -5

16-20 5.58 6.72 -1.15 6 -6

21-25 5.69 6.18 -0.49 9 -9

26-30 5.50 13.98 -8.48 2 -2

31-35 6.82 8.91 -2.09 4 -4

36-40 2.88 5.20 -2.32 3 -3

41-45 3.09 3.82 -0.73 7 -7

46-50 1.59 2.08 -0.49 8 -8

Table 4.10: Nondominated parametric settings for tree-kmeans-UWGED (1 means

nondominated; 0 means dominated)

Dataset
Performance Setting

Measure 1 2

SmallDataUW

AvPD 1 0

AvRI 1 0

BPD 1 1

BRI 1 1

CT 1 0

LargeDataUW

AvPD 1 0

AvRI 1 0

BPD 1 1

BRI 1 0

CT 1 1

Total 10 4

CT values increase with the size of the support tree.

153

Algorithm 13 tree-kmeans-UWGED
1: Initialization: Obtain initial centroid trees.

2: Obtain support tree, ST = (SV, SE) where SV =
⋃i=nt
i=1 Vi, SE =

⋃i=nt
i=1 Ei, and let ne = |SE|.

3: Let ce(c)j = 0, j = 1, . . . , ne, c = 1, . . . , k.

4: for j=1 to ne do

5: condFreqj =
∑i=nt
i=1 eij
nt

/

∑i=nt
i=1 eij′
nt

where j ∈ ch(j′).

6: for c=1 to k do

7: if rand() <= condFreqj then

8: ce
(c)
j = 1

9: end if

10: end for

11: end for

12: repeat

13: Assignment: Assign each tree Ti ∈ P to the most similar cluster.

14: Let Cc = {}, c = 1, . . . , k.

15: for i=1 to nt do

16: Find the most similar cluster c∗, where c∗ = argminc
∑ne
j=1

∣∣∣eij − ce(c)j ∣∣∣ and

let Ti ∈ Cc∗ .

17: end for

18: Update: Update each centroid tree by considering trees assigned to it.

19: Let ce(c)j = 0, j = 1, . . . , ne, c = 1, . . . , k.

20: for c=1 to k do

21: for j=1 to ne do

22: if
∑
i:Ti∈Cc

eij

|Cc|
> 0.5 then

23: ce
(c)
j = 1, j = 1, . . . , ne.

24: end if

25: end for

26: end for

27: until Assignments do not change.

28: return Partition {C1, . . . , Ck} of P .

4.6.1.4 Results for tree-kmeans-WVEO

There are three decisions to be made in tree-kmeans-WVEO algorithm. First one is

related with the initial centroid trees. While constructing the initial centroid trees,

in addition to the decision on the inclusion of the edges for which we use frequency

based random selection as explained before, we need to decide on the weights of

the edges. This design factor will be called WSI (initials of "Weight Selection in

Initialization") after now and we try the following two alternatives for the weight of

an edge in an initial centroid tree.

1. Mean of nonzero weights in the problem instance

154

2. Median of nonzero weights in the problem instance

Next decision is the starting weights of the edges in the update step. We call this

design factor SWU (initials of "Starting Weight in Update") and the following three

alternatives are tested.

1. Weights of previous iteration

2. Mean of nonzero weights in the cluster

3. Median of nonzero weights in the cluster

The last one is the order of edges whose weights to be optimized while keeping other

edges’ weights fixed. We call this design factor SEU (initials of "Starting Edge in

Update") and the following three alternatives are tested.

1. Fixed

2. Descending in weight

3. Descending in frequency

In the first alternative, we keep order of the edges fixed during the algorithm. The

order is the order of the edges in the support tree. In the second alternative, we

reorder the edges according to their weights in each optimization cycle. In the last

alternative, we order edges according to their appearance frequencies in the cluster

and the order may change during the algorithm since clusters change.

Tables 4.11 and 4.12 report the results for different factor level combinations on

SmallDataW and LargeDataW, respectively. Table 4.13 provides the nondominated

parametric settings. According to this table, setting 6 (WSI=1, SWU=2, SEU=3)

and setting 13 (WSI=2, SWU=2, SEU=1) perform better than other settings. Select-

ing SWU=2 is common in both of the alternatives. Thus, we can fix this selection.

Between WSI=1 and WSI=2, we choose WSI=1 since it is more concordant with

SWU=2 selection. SEU=1 and SEU=3 actually imply similar things. If we use order

of the edges in the support tree (SEU=1), we implicitly consider the frequencies of

155

Table 4.11: The performance of tree-kmeans-WVEO on SmallDataW

Ins. WSI SWU SEU AvPD AvRI BPD BRI CT Ins. WSI SWU SEU AvPD AvRI BPD BRI CT

1-5

1 1 1 3.66 0.76 0.80 0.78 1.31

26-30

1 1 1 5.22 0.75 1.71 0.78 1.95
1 1 2 4.48 0.76 0.65 0.79 0.86 1 1 2 4.38 0.76 0.57 0.78 1.47
1 1 3 4.28 0.75 1.39 0.78 1.16 1 1 3 4.30 0.76 0.85 0.79 2.04
1 2 1 5.24 0.75 1.61 0.78 2.13 1 2 1 5.69 0.75 1.77 0.80 3.58
1 2 2 7.66 0.75 2.93 0.76 0.90 1 2 2 9.70 0.74 4.67 0.77 1.43
1 2 3 4.27 0.76 0.20 0.80 2.10 1 2 3 3.75 0.76 0.52 0.78 3.84
1 3 1 3.95 0.76 0.64 0.78 1.92 1 3 1 4.62 0.75 1.20 0.78 3.63
1 3 2 6.90 0.74 2.35 0.77 1.05 1 3 2 8.82 0.75 3.87 0.76 1.54
1 3 3 3.59 0.76 0.54 0.78 1.99 1 3 3 3.94 0.75 0.33 0.78 4.11
2 1 1 3.97 0.76 0.10 0.80 1.23 2 1 1 4.23 0.76 1.12 0.78 2.03
2 1 2 3.51 0.77 0.60 0.79 0.95 2 1 2 4.79 0.75 0.86 0.78 1.54
2 1 3 4.84 0.75 1.25 0.77 1.17 2 1 3 3.94 0.76 0.01 0.80 2.01
2 2 1 4.13 0.76 0.75 0.79 2.05 2 2 1 3.68 0.76 1.23 0.80 4.05
2 2 2 7.05 0.75 3.18 0.77 0.99 2 2 2 8.87 0.75 4.13 0.76 1.74
2 2 3 4.17 0.76 0.94 0.77 1.99 2 2 3 4.37 0.76 0.13 0.79 4.33
2 3 1 3.71 0.76 0.71 0.78 1.96 2 3 1 4.00 0.76 0.71 0.80 3.92
2 3 2 7.21 0.76 2.65 0.79 0.99 2 3 2 7.89 0.76 3.54 0.78 1.66
2 3 3 4.44 0.76 0.64 0.78 2.02 2 3 3 4.59 0.75 0.52 0.78 4.18

6-10

1 1 1 2.94 0.69 0.41 0.71 1.48

31-35

1 1 1 4.18 0.71 0.90 0.72 3.36
1 1 2 2.97 0.70 0.74 0.72 1.22 1 1 2 3.99 0.70 1.29 0.70 2.36
1 1 3 2.56 0.70 0.34 0.71 1.49 1 1 3 4.44 0.70 1.63 0.75 3.67
1 2 1 2.33 0.70 0.47 0.73 2.74 1 2 1 4.27 0.70 1.54 0.70 6.50
1 2 2 8.33 0.68 3.99 0.68 1.44 1 2 2 11.30 0.69 6.71 0.72 2.63
1 2 3 2.26 0.70 0.50 0.71 2.96 1 2 3 4.18 0.70 0.81 0.72 6.79
1 3 1 2.57 0.70 0.83 0.73 2.75 1 3 1 4.66 0.69 0.73 0.71 7.15
1 3 2 8.98 0.68 4.24 0.71 1.32 1 3 2 9.92 0.70 4.48 0.71 2.44
1 3 3 1.95 0.70 0.39 0.71 2.93 1 3 3 3.97 0.70 0.65 0.71 7.71
2 1 1 2.69 0.69 0.38 0.72 1.48 2 1 1 4.20 0.69 0.69 0.70 3.20
2 1 2 2.99 0.69 0.43 0.71 1.20 2 1 2 4.02 0.70 0.67 0.72 2.45
2 1 3 3.03 0.69 0.76 0.71 1.46 2 1 3 3.92 0.70 0.45 0.72 3.19
2 2 1 2.47 0.70 0.37 0.71 3.04 2 2 1 4.12 0.71 0.48 0.72 7.15
2 2 2 8.52 0.69 4.19 0.71 1.25 2 2 2 10.59 0.69 5.29 0.70 2.63
2 2 3 2.54 0.70 0.36 0.72 2.85 2 2 3 4.04 0.70 0.57 0.73 7.68
2 3 1 3.21 0.69 0.41 0.72 2.73 2 3 1 3.83 0.71 0.59 0.72 7.03
2 3 2 8.52 0.68 3.41 0.70 1.25 2 3 2 12.04 0.68 5.87 0.70 2.66
2 3 3 2.39 0.70 0.45 0.72 3.04 2 3 3 4.78 0.70 0.70 0.71 7.28

11-15

1 1 1 3.89 0.68 1.21 0.69 1.99

36-40

1 1 1 4.82 0.66 1.84 0.68 5.52
1 1 2 3.90 0.68 1.48 0.68 1.62 1 1 2 4.61 0.66 0.88 0.68 3.75
1 1 3 4.49 0.67 0.52 0.69 2.06 1 1 3 5.02 0.66 1.35 0.68 5.37
1 2 1 4.23 0.68 0.76 0.69 3.74 1 2 1 4.31 0.66 0.83 0.69 11.16
1 2 2 8.91 0.67 5.30 0.68 1.64 1 2 2 14.19 0.64 8.89 0.66 3.64
1 2 3 3.28 0.68 0.55 0.70 4.05 1 2 3 4.41 0.67 0.51 0.71 11.40
1 3 1 4.39 0.68 0.82 0.70 3.98 1 3 1 4.49 0.67 0.63 0.69 10.43
1 3 2 9.42 0.66 5.28 0.68 1.81 1 3 2 13.83 0.64 8.15 0.66 3.56
1 3 3 3.25 0.69 0.47 0.71 4.26 1 3 3 4.37 0.67 0.39 0.71 10.99
2 1 1 3.91 0.68 0.36 0.70 1.99 2 1 1 5.39 0.66 0.45 0.69 5.30
2 1 2 4.19 0.68 0.55 0.70 1.48 2 1 2 5.19 0.67 1.74 0.67 3.80
2 1 3 4.01 0.68 0.34 0.70 2.05 2 1 3 4.56 0.67 0.68 0.69 5.33
2 2 1 3.28 0.69 0.27 0.70 3.88 2 2 1 4.41 0.67 0.45 0.70 10.97
2 2 2 8.89 0.67 4.55 0.70 1.55 2 2 2 13.39 0.66 8.33 0.68 3.98
2 2 3 3.55 0.68 1.38 0.68 4.03 2 2 3 4.67 0.67 1.07 0.67 11.03
2 3 1 3.86 0.68 0.46 0.70 3.93 2 3 1 4.55 0.66 1.00 0.68 11.11
2 3 2 8.44 0.67 4.90 0.70 1.79 2 3 2 13.57 0.65 9.20 0.68 3.48
2 3 3 4.08 0.68 1.75 0.69 4.07 2 3 3 4.73 0.67 1.25 0.69 11.27

16-20

1 1 1 4.11 0.65 0.77 0.66 2.62

41-45

1 1 1 5.62 0.64 1.24 0.66 6.91
1 1 2 4.38 0.65 1.08 0.66 2.03 1 1 2 4.48 0.65 1.66 0.67 4.84
1 1 3 4.67 0.64 1.36 0.66 2.69 1 1 3 4.11 0.65 1.28 0.68 6.93
1 2 1 4.06 0.64 1.54 0.66 5.56 1 2 1 4.25 0.65 0.98 0.67 14.40
1 2 2 11.15 0.64 6.92 0.64 2.23 1 2 2 14.62 0.63 9.77 0.66 5.18
1 2 3 3.92 0.65 0.94 0.66 5.13 1 2 3 4.14 0.65 0.91 0.67 16.03
1 3 1 4.15 0.65 0.58 0.66 5.24 1 3 1 4.25 0.65 0.95 0.68 14.44
1 3 2 9.79 0.64 5.28 0.68 2.03 1 3 2 12.51 0.64 7.85 0.68 5.50
1 3 3 4.53 0.65 0.42 0.67 5.74 1 3 3 4.50 0.65 1.04 0.67 15.45
2 1 1 5.14 0.64 1.91 0.65 2.58 2 1 1 4.40 0.65 1.11 0.66 7.44
2 1 2 4.45 0.65 0.80 0.65 2.03 2 1 2 4.15 0.65 0.98 0.67 5.05
2 1 3 4.15 0.65 0.55 0.66 2.74 2 1 3 3.95 0.65 0.91 0.67 7.26
2 2 1 3.87 0.65 1.28 0.66 5.71 2 2 1 4.15 0.65 0.36 0.67 14.28
2 2 2 11.60 0.64 5.87 0.66 1.97 2 2 2 13.34 0.64 7.02 0.66 4.86
2 2 3 4.29 0.65 0.96 0.67 5.86 2 2 3 4.72 0.64 1.88 0.65 13.60
2 3 1 4.37 0.65 1.34 0.66 5.62 2 3 1 4.38 0.65 0.76 0.67 14.27
2 3 2 9.90 0.65 5.14 0.65 2.42 2 3 2 13.53 0.64 8.64 0.66 4.86
2 3 3 4.43 0.64 0.67 0.65 5.96 2 3 3 4.31 0.65 1.37 0.66 15.89

21-25

1 1 1 3.41 0.64 0.43 0.65 2.69

46-50

1 1 1 3.94 0.64 1.30 0.64 9.46
1 1 2 3.85 0.64 0.68 0.64 1.80 1 1 2 4.08 0.64 0.81 0.65 6.35
1 1 3 3.66 0.64 0.73 0.65 2.62 1 1 3 4.54 0.65 1.75 0.64 9.20
1 2 1 3.56 0.64 0.46 0.66 5.21 1 2 1 5.55 0.64 1.96 0.64 18.69
1 2 2 8.45 0.63 4.91 0.64 1.98 1 2 2 13.62 0.63 9.06 0.64 6.23
1 2 3 3.14 0.64 0.37 0.65 5.35 1 2 3 4.84 0.64 1.48 0.66 19.42
1 3 1 3.43 0.64 0.40 0.65 5.87 1 3 1 6.09 0.63 3.00 0.65 19.73
1 3 2 8.56 0.63 3.65 0.65 2.17 1 3 2 14.05 0.63 9.47 0.64 6.29
1 3 3 4.18 0.63 1.08 0.65 5.73 1 3 3 5.01 0.64 1.07 0.65 19.13
2 1 1 3.85 0.64 1.15 0.64 2.82 2 1 1 4.25 0.64 0.66 0.67 9.76
2 1 2 3.47 0.64 0.55 0.65 1.83 2 1 2 5.25 0.64 1.63 0.67 6.04
2 1 3 3.74 0.64 0.62 0.65 2.72 2 1 3 4.35 0.65 0.92 0.66 9.32
2 2 1 3.53 0.64 0.79 0.64 5.49 2 2 1 5.15 0.64 2.09 0.66 20.20
2 2 2 8.17 0.63 4.02 0.66 1.99 2 2 2 14.13 0.63 8.62 0.64 5.56
2 2 3 4.10 0.64 1.22 0.64 5.19 2 2 3 5.46 0.63 1.59 0.67 19.35
2 3 1 3.44 0.64 0.80 0.64 5.45 2 3 1 5.19 0.64 0.96 0.65 20.04
2 3 2 7.83 0.64 3.79 0.64 1.92 2 3 2 15.08 0.63 10.34 0.64 6.01
2 3 3 3.68 0.64 1.19 0.66 5.86 2 3 3 5.06 0.64 1.08 0.66 19.99

156

Table 4.12: The performance of tree-kmeans-WVEO on LargeDataW

Ins. WSI SWU SEU AvPD AvRI BPD BRI CT Ins. WSI SWU SEU AvPD AvRI BPD BRI CT

1-5

1 1 1 4.05 0.73 0.78 0.76 3.42

26-30

1 1 1 3.94 0.74 0.75 0.76 8.25
1 1 2 5.14 0.73 0.99 0.76 2.70 1 1 2 4.26 0.75 0.61 0.77 6.13
1 1 3 4.38 0.73 0.23 0.77 3.15 1 1 3 4.98 0.74 0.72 0.75 8.57
1 2 1 4.05 0.74 0.50 0.76 6.34 1 2 1 3.51 0.75 0.86 0.76 18.34
1 2 2 10.36 0.72 4.77 0.74 2.61 1 2 2 12.75 0.74 8.62 0.73 8.69
1 2 3 4.64 0.73 0.98 0.76 7.30 1 2 3 4.10 0.74 0.69 0.76 19.17
1 3 1 4.77 0.74 0.34 0.76 6.91 1 3 1 4.04 0.74 0.60 0.77 18.51
1 3 2 10.27 0.73 6.29 0.73 2.49 1 3 2 13.21 0.74 9.13 0.75 6.24
1 3 3 4.33 0.73 0.93 0.76 7.34 1 3 3 4.38 0.74 0.58 0.75 19.52
2 1 1 4.27 0.73 0.89 0.75 3.51 2 1 1 4.06 0.74 1.15 0.75 9.15
2 1 2 4.39 0.74 0.32 0.75 2.48 2 1 2 3.71 0.75 0.40 0.77 6.46
2 1 3 3.54 0.74 0.60 0.75 3.50 2 1 3 4.12 0.74 0.77 0.75 7.78
2 2 1 3.54 0.74 0.00 0.77 6.49 2 2 1 3.51 0.75 0.96 0.77 19.56
2 2 2 9.43 0.73 5.29 0.75 3.05 2 2 2 12.34 0.74 8.25 0.74 6.71
2 2 3 3.62 0.74 0.41 0.75 7.50 2 2 3 3.53 0.75 0.86 0.77 22.88
2 3 1 3.93 0.74 0.39 0.77 6.76 2 3 1 4.47 0.74 0.86 0.75 19.84
2 3 2 9.98 0.73 3.90 0.73 2.16 2 3 2 12.43 0.74 7.16 0.76 7.13
2 3 3 3.68 0.74 0.11 0.77 7.80 2 3 3 4.01 0.74 0.93 0.76 20.29

6-10

1 1 1 2.17 0.72 0.04 0.73 5.31

31-35

1 1 1 3.75 0.72 0.77 0.74 25.58
1 1 2 2.34 0.71 0.40 0.72 3.68 1 1 2 3.87 0.72 0.49 0.73 16.99
1 1 3 2.49 0.72 0.33 0.72 4.87 1 1 3 3.70 0.72 0.38 0.73 27.42
1 2 1 2.28 0.71 0.42 0.72 10.33 1 2 1 4.59 0.71 0.44 0.73 62.19
1 2 2 12.54 0.69 7.74 0.71 4.04 1 2 2 23.60 0.69 15.49 0.72 16.62
1 2 3 2.70 0.71 0.13 0.72 10.40 1 2 3 3.52 0.72 0.25 0.73 65.40
1 3 1 3.13 0.71 0.18 0.72 10.50 1 3 1 3.67 0.72 0.57 0.74 62.45
1 3 2 12.68 0.70 6.36 0.73 3.73 1 3 2 23.08 0.68 16.90 0.70 19.45
1 3 3 2.40 0.72 0.21 0.73 11.81 1 3 3 4.62 0.71 1.04 0.73 67.75
2 1 1 2.80 0.72 0.20 0.72 4.97 2 1 1 4.40 0.71 0.88 0.73 24.70
2 1 2 2.54 0.72 0.28 0.73 3.79 2 1 2 4.28 0.72 0.44 0.72 17.35
2 1 3 2.88 0.72 0.19 0.73 5.34 2 1 3 3.75 0.72 0.38 0.74 25.22
2 2 1 2.02 0.71 0.31 0.72 10.58 2 2 1 3.86 0.72 0.51 0.73 59.38
2 2 2 12.21 0.70 6.77 0.71 4.74 2 2 2 22.18 0.68 17.89 0.70 18.26
2 2 3 2.45 0.72 0.07 0.73 11.17 2 2 3 3.35 0.72 0.67 0.73 68.63
2 3 1 2.46 0.72 0.42 0.72 11.82 2 3 1 4.92 0.71 0.39 0.71 58.12
2 3 2 12.66 0.70 6.43 0.71 4.39 2 3 2 23.16 0.67 16.20 0.70 18.26
2 3 3 2.34 0.72 0.04 0.73 11.34 2 3 3 4.72 0.71 0.88 0.71 66.98

11-15

1 1 1 3.45 0.67 0.47 0.68 6.57

36-40

1 1 1 4.69 0.66 0.78 0.68 41.25
1 1 2 2.88 0.68 0.79 0.67 4.53 1 1 2 4.69 0.66 0.59 0.67 28.22
1 1 3 3.82 0.67 0.42 0.68 6.24 1 1 3 4.16 0.66 0.32 0.67 45.47
1 2 1 2.99 0.67 0.19 0.68 14.87 1 2 1 4.85 0.66 0.34 0.67 104.46
1 2 2 13.59 0.66 9.76 0.66 5.44 1 2 2 26.49 0.64 20.51 0.66 30.20
1 2 3 3.60 0.67 0.41 0.69 14.96 1 2 3 5.16 0.66 0.49 0.66 110.95
1 3 1 3.57 0.67 0.30 0.68 15.18 1 3 1 5.09 0.66 0.72 0.68 98.21
1 3 2 11.42 0.66 7.36 0.67 4.92 1 3 2 27.38 0.63 21.37 0.65 27.21
1 3 3 3.30 0.67 0.71 0.68 16.05 1 3 3 6.56 0.65 1.10 0.68 99.76
2 1 1 3.57 0.67 0.63 0.68 6.22 2 1 1 5.00 0.66 0.64 0.67 40.98
2 1 2 4.76 0.67 0.34 0.68 4.68 2 1 2 4.52 0.66 0.81 0.66 27.22
2 1 3 4.16 0.67 0.83 0.69 6.42 2 1 3 5.37 0.66 0.73 0.66 41.33
2 2 1 3.84 0.67 0.59 0.68 14.41 2 2 1 4.79 0.66 0.57 0.66 105.05
2 2 2 12.98 0.66 9.56 0.70 4.78 2 2 2 27.08 0.64 20.77 0.66 29.29
2 2 3 2.61 0.67 0.43 0.70 17.55 2 2 3 3.96 0.66 0.49 0.67 110.42
2 3 1 3.26 0.68 0.37 0.68 14.69 2 3 1 5.54 0.66 0.60 0.68 102.39
2 3 2 12.19 0.66 7.72 0.66 4.94 2 3 2 27.51 0.64 22.23 0.66 26.94
2 3 3 3.16 0.68 0.50 0.69 16.02 2 3 3 5.44 0.66 0.61 0.67 110.17

16-20

1 1 1 2.84 0.64 0.39 0.64 8.68

41-45

1 1 1 3.89 0.63 0.90 0.65 98.09
1 1 2 3.96 0.64 0.70 0.65 5.21 1 1 2 5.37 0.63 1.35 0.65 56.42
1 1 3 3.17 0.65 0.36 0.65 8.79 1 1 3 4.12 0.64 1.04 0.63 96.93
1 2 1 3.43 0.64 0.40 0.64 19.21 1 2 1 5.62 0.62 1.11 0.64 218.50
1 2 2 16.35 0.63 11.98 0.63 5.60 1 2 2 24.77 0.62 17.08 0.65 52.88
1 2 3 3.95 0.64 0.40 0.65 19.67 1 2 3 4.71 0.62 0.92 0.64 254.91
1 3 1 3.15 0.65 0.34 0.65 19.15 1 3 1 4.77 0.63 0.69 0.64 228.74
1 3 2 16.17 0.62 9.95 0.63 5.84 1 3 2 24.60 0.62 16.82 0.63 51.56
1 3 3 3.39 0.64 0.74 0.65 22.01 1 3 3 4.74 0.63 1.47 0.64 241.24
2 1 1 3.22 0.64 0.44 0.64 8.01 2 1 1 4.27 0.63 0.74 0.65 100.79
2 1 2 3.38 0.64 0.57 0.64 6.40 2 1 2 5.85 0.62 1.86 0.63 59.06
2 1 3 3.24 0.64 0.39 0.64 8.50 2 1 3 3.74 0.63 1.10 0.64 87.03
2 2 1 3.23 0.64 0.43 0.64 18.35 2 2 1 4.63 0.63 0.51 0.65 249.88
2 2 2 14.98 0.62 11.26 0.63 6.17 2 2 2 25.60 0.61 19.69 0.62 54.32
2 2 3 3.12 0.65 0.32 0.65 21.94 2 2 3 4.58 0.63 1.43 0.64 240.17
2 3 1 3.61 0.64 0.52 0.64 18.44 2 3 1 4.19 0.63 1.00 0.65 234.36
2 3 2 14.84 0.63 10.52 0.64 7.82 2 3 2 25.61 0.61 18.27 0.64 52.04
2 3 3 3.99 0.64 0.75 0.65 20.05 2 3 3 4.98 0.63 0.92 0.65 256.54

21-25

1 1 1 3.50 0.64 0.98 0.66 9.23

46-50

1 1 1 3.86 0.63 1.13 0.64 135.68
1 1 2 3.30 0.65 0.87 0.66 6.62 1 1 2 4.69 0.63 1.22 0.64 87.31
1 1 3 2.86 0.64 0.43 0.65 10.08 1 1 3 4.34 0.63 0.44 0.63 140.09
1 2 1 3.23 0.65 0.40 0.66 21.59 1 2 1 4.99 0.63 1.22 0.64 331.43
1 2 2 13.96 0.63 10.33 0.65 7.12 1 2 2 22.67 0.61 16.34 0.64 64.50
1 2 3 3.79 0.64 0.40 0.66 22.67 1 2 3 4.90 0.63 1.63 0.64 352.23
1 3 1 2.63 0.65 0.31 0.66 21.63 1 3 1 4.68 0.63 0.73 0.64 317.34
1 3 2 13.71 0.64 10.39 0.64 7.56 1 3 2 23.91 0.61 18.79 0.63 65.15
1 3 3 3.61 0.64 0.43 0.65 24.32 1 3 3 4.85 0.63 0.84 0.64 317.41
2 1 1 2.73 0.65 0.36 0.65 9.77 2 1 1 4.17 0.63 0.66 0.63 144.05
2 1 2 3.15 0.65 0.46 0.65 6.47 2 1 2 5.10 0.63 1.66 0.64 82.09
2 1 3 2.54 0.65 0.77 0.64 9.60 2 1 3 4.31 0.63 0.59 0.65 142.24
2 2 1 3.10 0.65 0.53 0.67 22.21 2 2 1 4.45 0.63 1.09 0.66 324.50
2 2 2 14.72 0.63 11.49 0.63 7.07 2 2 2 23.00 0.61 17.27 0.64 67.05
2 2 3 3.11 0.65 0.56 0.65 22.68 2 2 3 4.12 0.63 1.27 0.63 323.89
2 3 1 2.98 0.65 0.84 0.67 20.77 2 3 1 6.23 0.63 2.25 0.63 326.70
2 3 2 13.42 0.63 8.51 0.65 7.13 2 3 2 22.92 0.61 17.88 0.64 63.76
2 3 3 3.26 0.65 0.40 0.65 23.86 2 3 3 4.98 0.62 1.23 0.66 347.81

157

Table 4.13: Nondominated parametric settings for tree-kmeans-WVEO (1 means

nondominated; 0 means dominated)

Dataset
Performance Setting

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SmallDataW

AvPD 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0

AvRI 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1

BPD 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0

BRI 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0

CT 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1

LargeDataW

AvPD 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0

AvRI 1 1 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0

BPD 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0

BRI 1 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1

CT 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1

Total 5 3 5 2 0 7 4 0 6 2 4 6 8 0 6 6 0 4

the edges. The possibility of an edge which is at higher levels of support tree having

larger frequency is high. Thus, SEU=1 and SEU=3 are not conflicting and we can

arbitrarily select one of them. All in one, we decide to continue with setting 6. The

details of the algorithm are given in Algorithm 14.

When we analyze the performance of the algorithm with the selected parametric set-

ting, we can obtain the following results. AvPD and BPD values do not seem to be

affected by the topological separability of the problem instances. They do not gradu-

ally increase/decrease with the topological changes. On the other hand, AvRI and BRI

values are larger for the problem instances which are topologically more separable.

Also, BRI values are larger than AvRI values. This is a sign of that the solutions which

are better in terms of objective value are generally better in terms of rand index. Fi-

nally, solving the problem instances with larger support trees is computationally more

demanding as CT values increase with the size of the support tree.

4.6.1.5 Results for tree-kmeans-WGED

There are three decisions in tree-kmeans-WGED algorithm. First one is the selection

of weights in initial random centroid trees (WSI). We try the same alternatives ex-

plained in previous section. The second one is the decision on the inclusion of the

edges, which appear exactly half of the trees in the cluster, in the centroid tree in up-

date step (EU). We try the same levels explained previously. Last decision is on the

158

Algorithm 14 tree-kmeans-WVEO
1: Initialization: Obtain initial centroid trees.

2: Obtain support tree, ST = (SV, SE) where SV =
⋃i=nt
i=1 Vi, SE =

⋃i=nt
i=1 Ei, and let ne = |SE|.

3: Let ce(c)j = 0, j = 1, . . . , ne, c = 1, . . . , k, and cw(c)
jt = 0, j = 1, . . . , ne, t = 1, . . . , na, c = 1, . . . , k

4: for j=1 to ne do

5: condFreqj =
∑i=nt
i=1 eij
nt

/

∑i=nt
i=1 eij′
nt

where j ∈ ch(j′).

6: for c=1 to k do

7: if rand() <= condFreqj then

8: ce
(c)
j = 1

9: for t=1 to na do

10: cw
(c)
jt =

∑
i:eij=1 wijteij∑
i:eij=1 eij

11: end for

12: end if

13: end for

14: end for

15: repeat

16: Assignment: Assign each tree Ti ∈ P to the most similar cluster.

17: Let Cc = {}, c = 1, . . . , k.

18: for i=1 to nt do

19: Find the most similar cluster c∗, where c∗ = argmaxc
∑na
t=1

∑ne
j=1 min(wijt,cw

(c)
jt)∑ne

j=1 wijt+
∑ne
j=1 cw

(c)
jt

and let Ti ∈ Cc∗ .

20: end for

21: Update: Update each centroid tree by considering trees assigned to it.

22: Let ce(c)j = 0, j = 1, . . . , ne, c = 1, . . . , k.

23: for c=1 to k do

24: for t=1 to na do

25: for j=1 to ne do

26: Let cw(c)
jt =

∑
i:Ti∈Cc&eij=1 wijteij∑
i:Ti∈Cc&eij=1 eij

, and cw(c)∗
jt = cw

(c)
jt .

27: end for

28: repeat

29: Sort edges in descending order with respect to their frequencies in Cc and let j1, ..., jne be the ordering.

30: for s=1 to ne do

31: Let maxf = 0

32: for i : Ti ∈ Cc do

33: cw
(c)
jst

= wijst

34: f =

∑ne
j=1 min(wijt,cw

(c)
jt)∑ne

j=1 wijt+
∑ne
j=1 cw

(c)
jt

35: if f ≥ maxf then

36: cw
(c)∗
jst

= wijst

37: maxf = f

38: end if

39: end for

40: cw
(c)
jst

= cw
(c)∗
jst

41: end for

42: until All cw(c)
jt values do not change.

43: end for

44: end for

45: until Assignments do not change.

46: return Partition {C1, . . . , Ck} of P .

159

weights of the edges, for which we need to take median of even number of values, in

the centroid tree. For those edges’ weights there exist infinitely many medians. This

issue is actually problematic for the edges which appear in exactly half of the trees in

the cluster. In that case, values in the middle will be 0 and a positive value, let say b.

It is clear that if the edge exists in a tree, its weight is greater than or equal to b or it

does not exist at all. Taking a value between 0 and b as median will not represent the

data well. We will call this factor WU (initials of "Weight Update") and we try the

following two alternatives. Assume that a and b are the values in the middle.

1. a

2. b

Tables 4.14 and 4.15 report the results of tree-kmeans-WGED for different factor level

combinations on SmallDataW and LargeDataW, respectively. Table 4.16 provides

the nondominated parametric settings based on the results in Tables 4.14 and 4.15.

Setting 1 (WSI=1, WU=1, EU=1), Setting 5 (WSI=2, WU=1, EU=1) and Setting

6 (WSI=2, WU=1, EU=2) have the same nondomination results and perform better

than other settings. Since WU=1 selection is common in all alternatives we can fix

this selection. Then, EU=1 and EU=2 imply the same numerical values. If we choose

EU=1, the corresponding edge will not be included in the centroid tree. If we choose

EU=2, the corresponding edge will be included in the centroid tree but its weight

will be selected as 0. Thus, we can arbitrarily select one of EU=1 and EU=2. Since

EU=1 appears in two of three alternatives and it is also selected in Section 4.6.1.3,

we continue with EU=1 selection. Since taking median of weights is the optimal

solution for a given cluster, we believe that taking the median of weights in initial

centroid trees is more appropriate than taking the mean. All in all, we choose Setting

5. The details of the algorithm are given in Algorithm 15.

Analysis of the performance of the algorithm with the selected parametric setting re-

veals the following observations. As tree-kmeans-WGED algorithm, AvPD and BPD

values do not seem to increase/decrease by the topological separability of the problem

instances. It is expected because in the weighted problem instances the only source of

complication is not the topology. Weights also have important effect in the objective

function. However, AvRI and BRI values increase with the topological separability of

160

Table 4.14: The performance of tree-kmeans-WGED on SmallDataW

Ins. WSI WU EU AvPD AvRI BPD BRI CT Ins. WSI SWU SEU AvPD AvRI BPD BRI CT

1-5

1 1 1 11.31 0.73 0.26 0.78 0.75

26-30

1 1 1 11.06 0.67 2.78 0.69 0.78

1 1 2 11.75 0.73 0.55 0.76 0.80 1 1 2 11.91 0.69 2.88 0.74 0.75

1 2 1 10.69 0.73 1.62 0.75 0.81 1 2 1 8.86 0.66 0.70 0.71 0.83

1 2 2 11.42 0.71 0.99 0.75 0.72 1 2 2 8.91 0.65 0.98 0.68 0.75

2 1 1 12.02 0.74 0.35 0.78 0.76 2 1 1 13.91 0.67 3.50 0.75 0.88

2 1 2 10.17 0.75 0.64 0.78 0.79 2 1 2 9.12 0.71 0.77 0.75 0.87

2 2 1 11.39 0.72 2.70 0.78 0.74 2 2 1 12.50 0.66 4.09 0.69 0.81

2 2 2 12.10 0.70 1.69 0.77 0.77 2 2 2 11.64 0.67 1.66 0.72 0.84

6-10

1 1 1 10.37 0.62 3.32 0.67 0.70

31-35

1 1 1 9.79 0.62 3.59 0.70 0.88

1 1 2 9.81 0.62 3.80 0.64 0.75 1 1 2 9.48 0.64 3.78 0.63 0.81

1 2 1 8.82 0.63 0.84 0.65 0.68 1 2 1 8.29 0.60 0.88 0.65 0.86

1 2 2 9.36 0.60 1.90 0.64 0.73 1 2 2 9.51 0.54 2.62 0.54 0.82

2 1 1 10.16 0.62 3.32 0.69 0.74 2 1 1 10.11 0.61 2.87 0.58 0.80

2 1 2 10.16 0.62 1.92 0.65 0.74 2 1 2 10.43 0.62 4.33 0.67 0.82

2 2 1 9.66 0.62 1.61 0.65 0.72 2 2 1 8.93 0.60 1.41 0.66 0.90

2 2 2 11.24 0.57 3.33 0.68 0.66 2 2 2 7.91 0.59 0.63 0.59 0.82

11-15

1 1 1 10.78 0.62 3.76 0.63 0.78

36-40

1 1 1 10.16 0.56 2.81 0.50 0.95

1 1 2 10.63 0.62 0.85 0.63 0.74 1 1 2 11.11 0.57 4.99 0.51 0.98

1 2 1 10.07 0.62 1.86 0.63 0.82 1 2 1 9.35 0.53 1.51 0.47 0.99

1 2 2 9.82 0.59 2.15 0.64 0.77 1 2 2 8.74 0.51 3.21 0.56 0.96

2 1 1 10.38 0.63 2.66 0.61 0.78 2 1 1 10.39 0.58 4.24 0.52 0.94

2 1 2 12.33 0.63 2.40 0.67 0.76 2 1 2 11.33 0.55 4.52 0.49 0.86

2 2 1 9.99 0.60 1.88 0.62 0.71 2 2 1 10.54 0.52 3.10 0.46 0.92

2 2 2 10.31 0.57 2.84 0.64 0.70 2 2 2 9.09 0.51 2.57 0.52 0.90

16-20

1 1 1 5.77 0.61 2.33 0.61 0.90

41-45

1 1 1 10.05 0.57 0.90 0.47 1.14

1 1 2 6.53 0.61 1.68 0.67 0.82 1 1 2 10.80 0.56 3.39 0.52 1.14

1 2 1 5.53 0.59 0.84 0.62 0.81 1 2 1 10.51 0.54 3.72 0.52 1.17

1 2 2 6.89 0.55 1.15 0.60 0.75 1 2 2 9.73 0.49 2.08 0.41 1.08

2 1 1 5.95 0.61 1.89 0.63 0.83 2 1 1 12.28 0.56 4.39 0.55 1.30

2 1 2 6.58 0.61 0.81 0.63 0.83 2 1 2 11.93 0.56 6.10 0.45 1.14

2 2 1 6.76 0.60 2.45 0.61 0.81 2 2 1 10.83 0.54 3.76 0.52 1.07

2 2 2 6.11 0.56 1.09 0.62 0.79 2 2 2 8.39 0.49 1.11 0.44 1.11

21-25

1 1 1 8.35 0.59 2.86 0.60 0.84

46-50

1 1 1 9.56 0.54 2.02 0.47 1.34

1 1 2 7.86 0.59 1.35 0.59 0.76 1 1 2 9.37 0.56 3.51 0.56 1.14

1 2 1 8.12 0.56 2.12 0.55 0.84 1 2 1 8.32 0.53 1.35 0.46 1.31

1 2 2 7.47 0.54 0.90 0.58 0.75 1 2 2 8.37 0.50 2.35 0.41 1.30

2 1 1 7.53 0.58 1.89 0.55 0.82 2 1 1 9.27 0.56 2.33 0.49 1.35

2 1 2 8.96 0.58 4.37 0.58 0.77 2 1 2 9.97 0.54 2.44 0.46 1.20

2 2 1 8.14 0.58 3.14 0.60 0.81 2 2 1 9.31 0.54 4.61 0.47 1.28

2 2 2 8.12 0.53 3.08 0.59 0.74 2 2 2 8.23 0.48 1.77 0.49 1.22

161

Table 4.15: The performance of tree-kmeans-WGED on LargeDataW

Ins. WSI WU EU AvPD AvRI BPD BRI CT Ins. WSI SWU SEU AvPD AvRI BPD BRI CT

1-5

1 1 1 10.25 0.67 0.92 0.71 1.13

26-30

1 1 1 7.37 0.69 1.59 0.74 1.59

1 1 2 11.29 0.67 1.48 0.75 1.12 1 1 2 8.02 0.68 1.61 0.71 1.45

1 2 1 11.99 0.64 1.80 0.74 1.16 1 2 1 9.22 0.62 1.80 0.72 1.54

1 2 2 10.81 0.66 1.03 0.75 1.23 1 2 2 8.31 0.64 2.02 0.75 1.42

2 1 1 8.25 0.69 1.27 0.75 1.23 2 1 1 7.51 0.67 2.03 0.73 1.48

2 1 2 9.17 0.70 1.21 0.75 1.23 2 1 2 6.67 0.68 0.91 0.71 1.46

2 2 1 9.18 0.69 1.67 0.73 1.13 2 2 1 7.32 0.67 1.18 0.69 1.57

2 2 2 12.30 0.66 0.80 0.75 1.04 2 2 2 7.63 0.65 2.05 0.73 1.43

6-10

1 1 1 5.91 0.67 0.22 0.70 1.22

31-35

1 1 1 10.46 0.59 3.13 0.59 1.91

1 1 2 6.24 0.66 0.32 0.71 1.32 1 1 2 10.89 0.58 4.13 0.53 2.07

1 2 1 6.83 0.65 1.19 0.70 1.20 1 2 1 10.99 0.55 3.68 0.50 1.83

1 2 2 7.03 0.62 0.57 0.71 1.19 1 2 2 8.96 0.53 0.70 0.55 1.83

2 1 1 6.77 0.66 1.15 0.70 1.19 2 1 1 10.49 0.58 2.64 0.60 1.92

2 1 2 6.43 0.67 0.59 0.69 1.24 2 1 2 9.76 0.55 2.59 0.52 1.93

2 2 1 6.36 0.67 0.94 0.67 1.22 2 2 1 10.02 0.55 2.70 0.46 1.81

2 2 2 6.92 0.63 1.38 0.68 1.23 2 2 2 10.05 0.49 3.10 0.51 1.81

11-15

1 1 1 5.63 0.59 1.81 0.60 1.30

36-40

1 1 1 11.94 0.49 2.83 0.43 2.30

1 1 2 5.56 0.61 0.42 0.61 1.13 1 1 2 12.32 0.52 3.45 0.46 2.28

1 2 1 5.93 0.58 1.88 0.58 1.20 1 2 1 10.98 0.45 2.26 0.41 2.24

1 2 2 6.95 0.53 3.01 0.57 1.18 1 2 2 9.99 0.44 2.05 0.35 2.17

2 1 1 6.09 0.60 1.74 0.67 1.23 2 1 1 11.67 0.51 1.27 0.42 2.22

2 1 2 6.25 0.59 2.14 0.65 1.20 2 1 2 11.81 0.52 3.74 0.44 2.28

2 2 1 6.21 0.57 1.87 0.62 1.22 2 2 1 11.91 0.47 2.74 0.41 2.04

2 2 2 5.71 0.54 1.51 0.62 1.25 2 2 2 11.65 0.48 2.38 0.39 2.22

16-20

1 1 1 8.66 0.55 3.44 0.55 1.34

41-45

1 1 1 10.33 0.49 3.55 0.43 3.41

1 1 2 8.23 0.56 2.99 0.56 1.27 1 1 2 11.13 0.49 5.84 0.42 3.26

1 2 1 8.41 0.55 2.36 0.59 1.27 1 2 1 10.71 0.47 3.83 0.47 3.91

1 2 2 8.05 0.53 3.12 0.56 1.19 1 2 2 10.38 0.42 2.49 0.29 3.60

2 1 1 8.14 0.57 2.86 0.58 1.30 2 1 1 11.20 0.50 5.43 0.52 4.00

2 1 2 6.18 0.56 0.85 0.59 1.34 2 1 2 11.38 0.48 6.22 0.47 3.42

2 2 1 6.73 0.57 2.00 0.58 1.27 2 2 1 11.18 0.45 3.81 0.35 3.42

2 2 2 7.31 0.53 2.36 0.49 1.36 2 2 2 9.98 0.40 2.89 0.32 3.53

21-25

1 1 1 5.99 0.57 2.51 0.59 1.35

46-50

1 1 1 11.84 0.46 3.92 0.36 4.81

1 1 2 5.51 0.58 2.65 0.56 1.53 1 1 2 12.29 0.47 5.60 0.46 5.07

1 2 1 5.70 0.56 1.31 0.55 1.31 1 2 1 11.71 0.44 2.85 0.39 4.36

1 2 2 5.05 0.52 1.14 0.52 1.38 1 2 2 10.43 0.41 3.21 0.29 4.64

2 1 1 6.27 0.58 3.47 0.55 1.31 2 1 1 12.82 0.47 4.12 0.36 4.67

2 1 2 6.29 0.56 1.63 0.54 1.36 2 1 2 13.13 0.48 4.77 0.40 4.85

2 2 1 6.18 0.56 2.69 0.58 1.24 2 2 1 12.87 0.45 5.10 0.38 4.53

2 2 2 5.66 0.53 1.83 0.55 1.33 2 2 2 11.22 0.42 3.12 0.35 4.49

162

Table 4.16: Nondominated parametric settings for tree-kmeans-WGED (1 means

nondominated; 0 means dominated)

Dataset
Performance Setting

Measure 1 2 3 4 5 6 7 8

SmallDataW

AvPD 0 0 1 1 0 0 0 1

AvRI 1 1 0 0 1 1 0 0

BPD 0 0 1 1 0 0 0 1

BRI 1 1 0 0 1 1 0 0

CT 1 0 1 0 1 1 0 0

LargeDataW

AvPD 1 1 0 1 1 1 1 1

AvRI 1 1 0 0 1 1 0 0

BPD 1 1 1 1 1 1 1 1

BRI 1 1 1 0 1 1 0 0

CT 1 1 0 0 1 1 0 1

Total 8 7 5 4 8 8 2 5

the problem instances in general. Unlike the previous algorithms’ results, BRI values

are not always larger than AvRI values. In other words, the solutions which are better

in terms of objective value may not be better in terms of rand index. This is the re-

sult of the nonlinear objective function provided in Section 4.4.4. Finally, CT values

increase when we go down the rows of the result tables. Thus, we can deduce that

the solution time required to solve the problem instances with larger support trees are

greater than time required for instances with smaller support trees.

4.6.2 Comparison of tree-kmeans-UWVEO, tree-kmeans-UWGED and kmodes

After the construction of the support tree, remember that we can represent the edge

set of tree Ti as a vector, namely
−→
Ei = [eij], j ∈ {1, . . . , ne} where where eij is a

binary parameter representing the existence of jth edge of the support tree in Ti. With

this representation, we can consider each tree as a point in Rne. As it is mentioned

before, kmeans algorithm is the most commonly used algorithm to group given points

into clusters. However, it is mostly suitable for numerical data. In our case
−→
Ei is

a categorical data. Thus, to group such points into clusters, Huang proposes the

163

Algorithm 15 tree-kmeans-WGED
1: Initialization: Obtain initial centroid trees.

2: Obtain support tree, ST = (SV, SE) where SV =
⋃i=nt
i=1 Vi, SE =

⋃i=nt
i=1 Ei, and let ne = |SE|.

3: Let ce(c)j = 0, j = 1, . . . , ne, c = 1, . . . , k, and cw
(c)
jt = 0, j = 1, . . . , ne, t = 1, . . . , na, c = 1, . . . , k

4: for j=1 to ne do

5: condFreqj =
∑i=nt
i=1 eij
nt

/
∑i=nt
i=1 eij′
nt

where j ∈ ch(j′).

6: for c=1 to k do

7: if rand() <= condFreqj then

8: ce
(c)
j = 1

9: for t=1 to na do

10: Sort wijt values, where i : eij = 1, in ascending order and let cw(c)
jt be (

⌊∑
i:eij=1 eij+1

2

⌋
)st

value of the ordered list

11: end for

12: end if

13: end for

14: end for

15: repeat

16: Assignment: Assign each tree Ti ∈ P to the most similar cluster.

17: Let Cc = {}, c = 1, . . . , k.

18: for i=1 to nt do

19: Find the most similar cluster c∗, where c∗ = argminc
∑na
t=1

∑ne
j=1

∣∣∣wijt − cw
(c)
jt

∣∣∣ and

let Ti ∈ Cc∗ .

20: end for

21: Update: Update each centroid tree by considering trees assigned to it.

22: for c=1 to k do

23: Let ce(c)j = 0, j = 1, . . . , ne, and cw
(c)
jt = 0, j = 1, . . . , ne, t = 1, . . . , na.

24: for j=1 to ne do

25: if
∑
i:Ti∈Cc

eij

|Cc| > 0.5 then

26: ce
(c)
j = 1, j = 1, . . . , ne

27: Sort wijt values, where i : Ti ∈ Cc, in ascending order and let cw(c)
jt be (

⌊
|Cc|+1

2

⌋
)st value of

the ordered list

28: end if

29: end for

30: end for

31: until Assignments do not change.

32: return Partition {C1, . . . , Ck} of P .

kmodes algorithm [80]. This algorithm is an extension of kmeans for categorical

domain. It tries to minimize the sum of Hamming distances between data objects and

cluster centroids they are assigned to. Assume that we aim to group categorical data

164

Algorithm 16 kmodes

1: Start with initial random cluster centroids, centj = [csj].

2: Let Cj = ∅, for all j ∈ {1, . . . , k}.
3: for i=1 to n do

4: Assign Xi to the closest cluster j∗, where j∗ = argminj
∑d

s=1 1xsi 6=csj

and let Xi ∈ Cj∗

5: Update centj∗ by letting csj values be the mode of xsi where i : Xi ∈ Cj∗

6: end for

7: repeat

8: for i=1 to n do

9: Assume that Xi ∈ Cji and find Cj∗ , where j∗ = argminj
∑d

s=1 1xsi 6=csj

10: if ji 6= j∗ then

11: Let Cji = Cji \Xi and update centji by letting csji values be the mode of

xsi where i : Xi ∈ Cji
12: Let Cj∗ = Cj∗

⋃
Xi and update centj∗ by letting csj∗ values be the mode

of xsi where i : Xi ∈ Cj∗

13: end if

14: end for

15: until Assignments do not change in a full cycle.

16: return Partition {C1, . . . , Ck}.

objects Xi = [xsi], i = 1, . . . , n, s = 1, . . . , d, into k clusters whose centroids are

centj = [csj], j = 1, . . . , k, s = 1, . . . , d, respectively. Let Ixsi 6=csj be the indicator

function taking value 1 when xsi 6= csj . Then, Algorithms 16 shows the detail of

kmodes.

First, in order to validate tree-kmeans-UWVEO, for each other algorithm and each

instance, the best solution found is taken and the corresponding VEO objective func-

tion value is computed. If tree-kmeans-UWVEO does what it is intended to do, we

expect that the best solution found by it has a higher VEO value than the VEO values

of the best solutions found by the other algorithms. For this purpose, for each in-

stance, we select the best solution (among 10 replications) found by each algorithm.

We compute the VEO objective values of these solutions and choose the one with the

165

maximum VEO value. We find the percent deviation of the VEO value of the best

solution found by each algorithm from this overall maximum. We then report the av-

erage percent deviation over the instances in a batch. We follow a similar logic for the

tree-kmeans-UWGED, taking the minimum of the GED values of the best solutions

found by the algorithms.

Table 4.17 provides the comparison of the algorithms in terms of the VEO objective.

The tree-kmeans-UWVEO always finds the best solutions in terms of the VEO ob-

jective as expected. Moreover, the solutions obtained by the tree-kmeans-UWGED

usually have a higher VEO value than those obtained by the kmodes. Also, the aver-

age percent deviations presented in the table for tree-kmeans-UWGED and kmodes

tend to increase as the problem size increases and as the topological separability de-

creases.

Table 4.17: Comparison of tree-kmeans-UWVEO, tree-kmeans-UWGED and

kmodes with respect to BPD of UWVEO objective

SmallDataUW

Instance 1-5 6-10 11-15 16-20 21-25 Average

tree-kmeans-UWVEO 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-UWGED 0.22 0.56 0.86 1.84 6.59 2.01

k-modes 0.22 0.56 4.26 1.81 5.38 2.44

Instance 26-30 31-35 36-40 41-45 46-50 Average

tree-kmeans-UWVEO 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-UWGED 0.00 2.19 5.39 7.75 11.15 5.30

k-modes 0.00 5.80 7.62 11.48 24.13 9.80

LargeDataUW

Instance 1-5 6-10 11-15 16-20 21-25 Average

tree-kmeans-UWVEO 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-UWGED 0.00 1.61 4.14 3.99 7.03 3.35

k-modes 0.00 3.96 2.60 3.27 8.96 3.76

Instance 26-30 31-35 36-40 41-45 46-50 Average

tree-kmeans-UWVEO 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-UWGED 0.81 3.68 9.26 17.84 23.73 11.06

k-modes 6.66 17.99 19.82 21.56 25.90 18.38

166

Table 4.18: Comparison of tree-kmeans-UWGED, tree-kmeans-UWVEO and

kmodes with respect to BPD of UWGED objective

SmallDataUW

Instance 1-5 6-10 11-15 16-20 21-25 Average

tree-kmeans-UWGED 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-UWVEO 0.00 4.17 2.31 2.22 8.76 3.49

k-modes 0.00 0.00 4.85 0.34 1.39 1.32

Instance 26-30 31-35 36-40 41-45 46-50 Average

tree-kmeans-UWGED 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-UWVEO 0.00 7.27 13.70 8.37 19.57 9.78

k-modes 0.00 1.46 2.26 3.89 4.36 2.40

LargeDataUW

Instance 1-5 6-10 11-15 16-20 21-25 Average

tree-kmeans-UWGED 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-UWVEO 0.00 1.18 11.08 11.40 12.24 7.18

k-modes 0.00 3.48 0.88 0.08 5.04 1.90

Instance 26-30 31-35 36-40 41-45 46-50 Average

tree-kmeans-UWGED 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-UWVEO 0.17 2.50 8.30 27.26 29.28 13.50

k-modes 5.70 6.48 4.54 2.38 4.22 4.67

The comparison of the algorithms in terms of the GED objective is given in Table

4.18. In this case, the tree-kmeans-UWGED always finds the best solutions in terms

of the GED objective. The solutions obtained by the k-modes are usually better than

those obtained by the tree-kmeans-UWVEO. This may be attributed to the fact that

even though k-modes and tree-kmeans-UWGED differ in some algorithmic steps,

they both consider the same objective function.

In addition to previously defined performance measures, we use new performance

measures based on adjusted rand index, f-measure and mutual information. As it is

stated before, the rand index is frequently used to measure the agreement between the

found partition and the desired partition. However there are some known problems

with this index [81]. Therefore as an improvement of the rand index, the adjusted

rand index is proposed to overcome some of its limitations [81]. The higher the

adjusted rand index, the better the performance. Let Γ = {Γ1, Γ2, . . . , Γk} be the

correct/desired partition, C = {C1, C2, . . . , Ck} be the found partition, ςjcjf be the

167

number of data objects clustered into Cjf while they actually belong to Γjc , ς•jf be

the number of data objects clustered into Cjf , and ςjc• be the number of data objects

belong to Γjc . Then, the adjusted rand index is calculated as

ARI =

∑k
jf=1

∑k
jc=1

(ςjcjf
2

)
−
∑k
jf=1 (

ς•jf
2

)
∑k
jc=1 (ς

jc
•
2)

(n+m2)

1
2

(∑k
jf=1

(ς•jf
2

)
+
∑k

jc=1

(
ςjc•
2

))
−
∑k
jf=1 (

ς•
jf
2

)
∑k
jc=1 (ς

jc
•
2)

(n+m2)

. (4.14)

F-measure and mutual information are already explained in Section 2.6.1. For a single

problem instance, we define adjusted rand index of the best replication (BARIi), f-

measure of the best replication (BFMi), mutual information of the best replication

(BMIi). Let Air, Fir and Mir be the adjusted rand index, f-measure and mutual

information for problem instance i in replication r, respectively. Assume the index of

best replication in terms of the objective function value for problem instance i is ri.

Then, new performance measures for a single problem instance are given below.

BARIi = Ai,ri

BFMi = Fi,ri

BMIi = Mi,ri

The new performance measures for each problem instance batch, b ∈ {1, . . . , 10},
are

BARI =

∑
iBARIi

5
, BFM =

∑
iBFMi

5
, BMI =

∑
iBMIi

5
,

where i ∈ {5(b− 1) + 1, . . . , 5b}.

Table 4.19 reports the values of the external performance measures over the prob-

lem instances in each batch. It can be seen from the table that, the performances of

tree-kmeans-UWVEO and tree-kmeans-UWGED are very similar and they both out-

perform k-modes algorithm, especially for the instances in LargeDataUW. Moreover,

the performances of all algorithms get worse as the instances become less separable

(i.e., as we move from batch 1-5 to 21-25 and from 26-30 to 46-50.).

168

Table 4.19: Comparison of tree-kmeans-UWVEO, tree-kmeans-UWGED and

kmodes with respect to external performance measures

Instance Algoritmh
SmallDataUW LargeDataUW

BRI BARI BFM BMI BRI BARI BFM BMI

1-5

tree-kmeans-UWVEO 0.92 0.85 0.92 0.39 0.89 0.78 0.89 0.36

tree-kmeans-UWGED 0.93 0.86 0.93 0.40 0.92 0.84 0.92 0.38

kmodes 0.92 0.85 0.92 0.39 0.86 0.73 0.86 0.34

6-10

tree-kmeans-UWVEO 0.80 0.60 0.80 0.28 0.74 0.47 0.74 0.20

tree-kmeans-UWGED 0.82 0.64 0.82 0.29 0.75 0.51 0.75 0.21

kmodes 0.82 0.64 0.82 0.29 0.71 0.42 0.74 0.18

11-15

tree-kmeans-UWVEO 0.60 0.19 0.60 0.08 0.60 0.19 0.60 0.08

tree-kmeans-UWGED 0.59 0.19 0.59 0.08 0.61 0.22 0.62 0.10

kmodes 0.55 0.10 0.57 0.05 0.57 0.14 0.59 0.06

16-20

tree-kmeans-UWVEO 0.51 0.03 0.54 0.02 0.51 0.02 0.51 0.01

tree-kmeans-UWGED 0.51 0.02 0.51 0.02 0.51 0.02 0.51 0.02

kmodes 0.50 0.00 0.52 0.01 0.51 0.03 0.52 0.02

21-25

tree-kmeans-UWVEO 0.51 0.01 0.50 0.01 0.49 -0.01 0.49 0.00

tree-kmeans-UWGED 0.50 -0.01 0.49 0.01 0.50 -0.01 0.49 0.00

kmodes 0.50 0.01 0.52 0.01 0.49 -0.01 0.57 0.00

tree-kmeans-UWVEO 0.67 0.34 0.67 0.16 0.65 0.29 0.64 0.13

Average tree-kmeans-UWGED 0.67 0.34 0.67 0.16 0.66 0.32 0.66 0.14

(1-25) kmodes 0.66 0.32 0.67 0.15 0.63 0.26 0.66 0.12

26-30

tree-kmeans-UWVEO 0.95 0.90 0.95 0.43 0.95 0.90 0.95 0.43

tree-kmeans-UWGED 0.95 0.90 0.95 0.43 0.94 0.89 0.94 0.42

kmodes 0.95 0.90 0.95 0.43 0.87 0.74 0.90 0.36

31-35

tree-kmeans-UWVEO 0.81 0.62 0.80 0.27 0.79 0.59 0.79 0.26

tree-kmeans-UWGED 0.80 0.59 0.79 0.26 0.78 0.57 0.78 0.25

kmodes 0.70 0.41 0.74 0.18 0.58 0.17 0.68 0.09

36-40

tree-kmeans-UWVEO 0.56 0.13 0.58 0.06 0.60 0.19 0.60 0.08

tree-kmeans-UWGED 0.59 0.19 0.59 0.08 0.62 0.24 0.65 0.11

kmodes 0.55 0.10 0.62 0.05 0.49 0.00 0.65 0.01

41-45

tree-kmeans-UWVEO 0.58 0.17 0.59 0.07 0.49 -0.01 0.50 0.00

tree-kmeans-UWGED 0.54 0.09 0.55 0.04 0.50 0.01 0.57 0.01

kmodes 0.50 0.01 0.57 0.01 0.49 0.00 0.63 0.01

46-50

tree-kmeans-UWVEO 0.50 0.00 0.49 0.01 0.50 -0.01 0.51 0.00

tree-kmeans-UWGED 0.49 -0.01 0.52 0.01 0.49 0.00 0.62 0.01

kmodes 0.49 0.00 0.62 0.01 0.49 0.00 0.63 0.00

tree-kmeans-UWVEO 0.68 0.36 0.68 0.17 0.67 0.33 0.67 0.16

Average tree-kmeans-UWGED 0.68 0.35 0.68 0.16 0.67 0.34 0.71 0.16

(26-50) kmodes 0.64 0.28 0.70 0.14 0.58 0.18 0.70 0.09

169

Table 4.20: Comparison of tree-kmeans-WVEO, tree-kmeans-WGED and k-means

with respect to BPD of WVEO objective

SmallDataW

Instance 1-5 6-10 11-15 16-20 21-25 Average

tree-kmeans-WVEO 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-WGED 27.63 32.79 34.57 33.18 26.12 30.86

kmeans 27.61 29.49 30.79 27.11 30.03 29.00

Instance 26-30 31-35 36-40 41-45 46-50 Average

tree-kmeans-WVEO 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-WGED 38.78 35.77 45.66 40.45 45.73 41.28

kmeans 29.43 35.05 36.93 39.37 35.77 35.31

LargeDataW

Instance 1-5 6-10 11-15 16-20 21-25 Average

tree-kmeans-WVEO 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans–WGED 25.84 33.47 34.14 38.07 43.11 34.93

kmeans 33.33 32.35 33.29 34.16 35.42 33.71

Instance 26-30 31-35 36-40 41-45 46-50 Average

tree-kmeans-WVEO 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-WGED 36.49 43.05 54.71 57.85 61.13 50.65

kmeans 33.54 44.45 50.54 50.18 51.08 45.96

4.6.3 Comparison of tree-kmeans-WVEO, tree-kmeans-WGED and kmeans

After the construction of the support tree, remember that we can represent the weights

of tree Ti as a vector; namely
−→
Wi = [wijt], j ∈ {1, . . . , ne}, t ∈ {1, . . . , na} where

wijt is a numerical value representing the weight of jth edge of support tree for at-

tribute t in Ti. With this representation, we can consider each tree as a point in Rne∗na.

To cluster
−→
Wi’s we can utilize kmeans algorithm.

To compare tree-kmeans-WVEO and tree-kmeans-WGED with kmeans on Small-

DataW and LargeDataW, we follow the same procedure explained in previous part.

First, we compare the algorithms in terms of the VEO and GED objectives in Tables

4.20 and 4.21, respectively. The tree-kmeans-WVEO and the tree-kmeans-WGED

always find the best solutions in terms of their own objectives, showing that the pro-

posed solution methods serve their purposes. The k-means algorithm finds the worst

solutions in terms of both objectives.

170

Table 4.21: Comparison of tree-kmeans-WGED, tree-kmeans-WVEO and kmeans

with respect to BPD of WGED objective

SmallDataW

Instance 1-5 6-10 11-15 16-20 21-25 Average

tree-kmeans-WGED 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-WVEO 18.15 24.29 28.74 31.62 31.81 26.92

kmeans 44.22 39.15 48.27 49.05 44.76 45.09

Instance 26-30 31-35 36-40 41-45 46-50 Average

tree-kmeans-WGED 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-WVEO 23.41 16.78 39.26 54.10 48.74 36.46

kmeans 45.80 53.81 56.13 55.38 53.63 52.95

LargeDataW

Instance 1-5 6-10 11-15 16-20 21-25 Average

tree-kmeans-WGED 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-WVEO 24.76 24.41 23.73 29.81 34.00 27.34

kmeans 58.30 55.18 53.84 53.47 52.94 54.74

Instance 26-30 31-35 36-40 41-45 46-50 Average

tree-kmeans-WGED 0.00 0.00 0.00 0.00 0.00 0.00

tree-kmeans-WVEO 20.16 31.03 50.18 45.49 64.65 42.30

kmeans 56.21 61.92 61.12 70.76 70.71 64.14

Second, we compare the algorithms in Table 4.22 in terms of the values of the external

performance measures. It can be seen from the table that, the tree-kmeans-WVEO

outperforms the other algorithms. Moreover, its performance is stable with respect to

increases in the sizes of the trees (as we move from batch 1-5 to 26-30, from 6-10 to

31-35, and so on) and the number of trees in the datasets (as we move from left to

right in the table). The performances of tree-kmeans-WGED and kmeans are similar

in most of the batches and both of these algorithms perform worse as the sizes of the

trees and the number of trees in the dataset increase. Furthermore, the performances

of all algorithms get worse as the instances become topologically less separable (i.e.,

as we go down from batch 1-5 to 21-25 and from 26-30 to 46-50 in the table).

Third, we compare the performances of the algorithms in the existence of outliers.

Outliers may appear in datasets because of measurement errors, coding errors (for

example, storing data in terms of millimeters instead of centimeters) or experimental

errors etc. Note that the optimal centroid for a given cluster is obtained by taking

171

Table 4.22: Comparison of tree-kmeans-WVEO, tree-kmeans-WGED and kmeans

with respect to external performance measures

Instance Algoritmh
SmallDataW LargeDataW

BRI BARI BFM BMI BRI BARI BFM BMI

1-5

tree-kmeans-WVEO 0.89 0.70 0.77 0.39 0.89 0.72 0.79 0.39

tree-kmeans-WGED 0.73 0.39 0.57 0.27 0.73 0.40 0.58 0.27

k-means 0.73 0.39 0.57 0.28 0.69 0.33 0.54 0.24

6-10

tree-kmeans-WVEO 0.77 0.41 0.56 0.26 0.81 0.52 0.64 0.30

tree-kmeans-WGED 0.66 0.27 0.49 0.20 0.67 0.30 0.52 0.21

k-means 0.66 0.26 0.48 0.20 0.63 0.24 0.48 0.19

11-15

tree-kmeans-WVEO 0.80 0.47 0.60 0.30 0.79 0.45 0.59 0.29

tree-kmeans-WGED 0.60 0.20 0.45 0.17 0.65 0.26 0.49 0.18

k-means 0.67 0.27 0.48 0.20 0.66 0.25 0.48 0.18

16-20

tree-kmeans-WVEO 0.75 0.35 0.51 0.25 0.75 0.34 0.51 0.24

tree-kmeans-WGED 0.57 0.15 0.42 0.13 0.57 0.16 0.43 0.13

k-means 0.66 0.24 0.46 0.17 0.61 0.18 0.44 0.14

21-25

tree-kmeans-WVEO 0.75 0.35 0.51 0.25 0.75 0.35 0.51 0.25

tree-kmeans-WGED 0.65 0.23 0.46 0.17 0.57 0.14 0.42 0.12

k-means 0.64 0.22 0.45 0.16 0.59 0.16 0.43 0.13

Average
tree-kmeans-WVEO 0.79 0.45 0.59 0.29 0.80 0.48 0.61 0.29

(1-25)
tree-kmeans-WGED 0.64 0.25 0.48 0.19 0.64 0.25 0.49 0.18

k-means 0.67 0.27 0.49 0.20 0.64 0.23 0.47 0.18

26-30

tree-kmeans-WVEO 0.97 0.92 0.94 0.46 0.91 0.77 0.83 0.41

tree-kmeans-WGED 0.70 0.37 0.56 0.26 0.69 0.34 0.54 0.24

k-means 0.74 0.43 0.59 0.29 0.70 0.36 0.55 0.24

31-35

tree-kmeans-WVEO 0.85 0.62 0.71 0.35 0.84 0.58 0.69 0.33

tree-kmeans-WGED 0.65 0.29 0.51 0.21 0.54 0.16 0.44 0.14

k-means 0.64 0.26 0.49 0.22 0.59 0.19 0.45 0.16

36-40

tree-kmeans-WVEO 0.79 0.44 0.58 0.29 0.80 0.47 0.61 0.29

tree-kmeans-WGED 0.55 0.15 0.43 0.13 0.48 0.11 0.42 0.11

k-means 0.58 0.15 0.42 0.14 0.48 0.11 0.42 0.11

41-45

tree-kmeans-WVEO 0.76 0.38 0.54 0.26 0.74 0.35 0.52 0.23

tree-kmeans-WGED 0.55 0.15 0.43 0.13 0.39 0.05 0.39 0.06

k-means 0.52 0.10 0.39 0.11 0.43 0.04 0.38 0.06

46-50

tree-kmeans-WVEO 0.75 0.35 0.51 0.24 0.74 0.34 0.52 0.23

tree-kmeans-WGED 0.50 0.09 0.39 0.10 0.37 0.03 0.38 0.05

k-means 0.58 0.15 0.42 0.13 0.44 0.04 0.38 0.07

Average
tree-kmeans-WVEO 0.82 0.54 0.66 0.32 0.81 0.50 0.63 0.30

(26-50)
tree-kmeans-WGED 0.59 0.21 0.46 0.17 0.49 0.14 0.44 0.12

k-means 0.61 0.22 0.46 0.18 0.53 0.15 0.44 0.13

172

Table 4.23: Outlier case

Instance Algoritmh
SmallDataW LargeDataW

BRI BARI BFM BMI BRI BARI BFM BMI

1-5

tree-kmeans-WVEO 0.90 0.74 0.80 0.40 0.93 0.82 0.87 0.43

tree-kmeans-WGED 0.72 0.39 0.57 0.27 0.71 0.38 0.57 0.25

k-means 0.60 0.25 0.49 0.18 0.59 0.25 0.50 0.18

6-10

tree-kmeans-WVEO 0.80 0.46 0.59 0.29 0.85 0.60 0.70 0.33

tree-kmeans-WGED 0.61 0.23 0.47 0.18 0.57 0.18 0.45 0.15

k-means 0.53 0.14 0.43 0.12 0.57 0.19 0.46 0.14

11-15

tree-kmeans-WVEO 0.80 0.47 0.60 0.28 0.80 0.47 0.61 0.29

tree-kmeans-WGED 0.55 0.14 0.42 0.13 0.58 0.19 0.45 0.15

k-means 0.53 0.13 0.42 0.12 0.49 0.09 0.41 0.09

16-20

tree-kmeans-WVEO 0.76 0.37 0.53 0.25 0.76 0.38 0.54 0.26

tree-kmeans-WGED 0.60 0.18 0.44 0.15 0.53 0.14 0.42 0.11

k-means 0.53 0.12 0.41 0.11 0.50 0.10 0.41 0.09

21-25

tree-kmeans-WVEO 0.75 0.36 0.52 0.25 0.75 0.33 0.50 0.25

tree-kmeans-WGED 0.59 0.18 0.44 0.14 0.55 0.13 0.41 0.11

k-means 0.55 0.13 0.42 0.12 0.52 0.12 0.41 0.10

Average
tree-kmeans-WVEO 0.80 0.48 0.61 0.29 0.82 0.52 0.64 0.31

(1-25)
tree-kmeans-WGED 0.62 0.22 0.47 0.17 0.59 0.20 0.46 0.15

k-means 0.55 0.16 0.43 0.13 0.53 0.15 0.44 0.12

26-30

tree-kmeans-WVEO 0.89 0.73 0.80 0.40 0.88 0.70 0.78 0.37

tree-kmeans-WGED 0.65 0.29 0.51 0.22 0.67 0.31 0.53 0.23

k-means 0.52 0.16 0.44 0.14 0.56 0.22 0.49 0.16

31-35

tree-kmeans-WVEO 0.83 0.56 0.67 0.33 0.81 0.51 0.63 0.30

tree-kmeans-WGED 0.65 0.30 0.52 0.21 0.59 0.21 0.47 0.18

k-means 0.53 0.15 0.43 0.13 0.45 0.08 0.41 0.09

36-40

tree-kmeans-WVEO 0.77 0.42 0.57 0.27 0.78 0.43 0.58 0.27

tree-kmeans-WGED 0.48 0.09 0.40 0.10 0.37 0.04 0.39 0.06

k-means 0.48 0.07 0.38 0.09 0.40 0.05 0.40 0.07

41-45

tree-kmeans-WVEO 0.74 0.33 0.51 0.23 0.74 0.35 0.52 0.24

tree-kmeans-WGED 0.46 0.07 0.39 0.09 0.36 0.03 0.38 0.05

k-means 0.48 0.09 0.40 0.10 0.41 0.04 0.38 0.06

46-50

tree-kmeans-WVEO 0.75 0.35 0.52 0.24 0.74 0.35 0.52 0.23

tree-kmeans-WGED 0.44 0.06 0.38 0.08 0.36 0.02 0.38 0.05

k-means 0.46 0.07 0.38 0.09 0.43 0.04 0.38 0.06

Average
tree-kmeans-WVEO 0.80 0.48 0.61 0.29 0.79 0.47 0.61 0.28

(26-50)
tree-kmeans-WGED 0.54 0.16 0.44 0.14 0.47 0.12 0.43 0.11

k-means 0.49 0.11 0.41 0.11 0.45 0.09 0.41 0.09

173

median of the weights in tree-kmeans-WGED while it is the mean of the weights in

kmeans. As it is known, mean is influenced by outliers while median is more robust.

To see the performance of the algorithms in cases where there are outliers, in each

problem instance, a tree is selected at random from each of the second and fourth

clusters. The edge weights of these trees are multiplied by 10 to turn the trees into

outliers. The results of the computational experiments on the instances with outliers

are summarized in Table 4.23. When we compare these results with the results in

Table 4.22, it is clear that the performance of the kmeans decreases significantly with

the existence of outliers while both of our proposed methods are robust to outliers.

4.6.4 Performance on real life datasets

In [14], authors try to find the possible correlations between brain artery structures,

and age and sex of patients. For that purpose, they use new representation of brain

artery structures, which is called as persistent homology representation, and find that

brain structures change with sex and age. There are 109 patients; 98 of them are

healthy and 11 of them are with brain tumor. They shared the data of 98 normal

patients as supplemental material. For each patient, sex (47 female, 46 male, 2 male

to female), age (ranging between 19 and 79) and handedness (89 right handed, 6

left handed, 1 ambidextrous, 2 left/ambidextrous) information are available. Figure

4.4 summarizes the number of patients with different characteristics. We remove the

male-to-female, ambidextrous, and left/ambidextrous individuals from the dataset and

carry out the computational experiments on the data of 93 individuals.

The main problem here is to obtain branching structure of patients from the available

Figure 4.4: Information of patients in brain artery data

174

Figure 4.5: Binary trees for patient 2 with child and radius correspondence, re-

spectviely

data. For each patient, the output of tube-tracking algorithm used in [5], which takes

MRA images as input, is provided. The output consists of two main parts. In the first

part, there is information about approximately 120000 points on brain vessels. For

each point, x/y/z coordinates, id of vessel part on which the corresponding point lies,

id of parent vessel part, attachment point of current vessel part to the parent vessel

part, radius of vessel at the corresponding point etc. are stored. In the second part,

there is information about only branching points of the brain vessels. The number

of these points are around 50. By using the information provided in the second part,

starting from the first split-up point of the vessel entering to the brain as root node,

we define a node for each split-up point and an edge between nodes represent the

vessel between the corresponding split-up points. As edge weights, we store two

information; namely median radius (ranging between 0.5 and 3.9717 mm) of the cor-

responding vessel and the length (ranging between 1 and 2372 tube tracking ticks) of

the vessel. Figure 4.5 shows the binary tree representations of brain vessels of patient

2 which is constructed by using nearly 50 branching points. In the representation,

there are 99 nodes and 98 edges. Note that the leaf nodes of the trees define the vessel

ends. In the left part of the figure, node correspondence is obtained by locating the

nodes with higher number of child to the left as discussed in [5]. The other node

correspondence method discussed in [5] is that put the thicker edge to the left. The

binary tree obtained with this method is provided in the right part of Figure 4.5. As it

can be seen from the figure, we can obtain two different tree structures with different

correspondence methods. In total, we may represent each brain artery tree in four

175

ways: using one of the two different topologies (child or radius correspondence), and

with or without edge weights. We normalize the weights (length and radius) of each

edge of a brain artery tree to a value within 0.5-1 range. The reason behind the selec-

tion of this range instead of 0-1 range is to differentiate between non-existent edges,

i.e., edges with 0 weight, and edges with too small weights.

Properties of the dataset can be summarized as follows. The average number of levels

in brain artery trees is 15.27 while the maximum leveled tree has 25 levels. The aver-

age number of edges is 95.65 whereas the largest tree has 188 edges. Moreover, the

number of edges in the support tree is 942 and 3738 when we use child correspon-

dence and radius correspondence, respectively.

In [5], the authors find that brain topology and age are correlated. Moreover, the

study in [30] shows that age is correlated with total vessel length and average vessel

radius. In addition to age effects, some studies such as [130] and [133] report some

sex effect. In this study, we cluster the brain artery trees in order to see whether or

not the observed age and sex effects pronounce themselves in the resulting clusters.

We group the whole data into 4 clusters where the tree topologies, and the length and

radius of the vessels (in the weighted case) are the inputs of the algorithms. Note that

the age and sex of the individuals are not given as input to the algorithms.

The clustering results are provided in Table 4.24. For each algorithm, we make 10

replications and report the results for the best found solution. The first column of Ta-

ble 4.24 shows the type of the node correspondence method used. The second column

indicates whether the trees are weighted or unweighted. The third column specifies

the algorithm used and the remaining columns show the clustering results. For in-

stance, when we obtain the topologies with child correspondence, do not consider

any weight, and use tree-kmeans-UWGED for clustering, there are 8 females and 4

males in the first cluster of the best replication. In this cluster, the median ages of

females and males are 33.5 and 44.0, respectively. The age effect is visible among fe-

males in this solution since the median ages of the females in different clusters (33.5,

37.0, 48.0, and 57.0) are well-separated. In general, the age effect is more pronounced

among females than males, which we think is an interesting result. Moreover, when

two clusters have similar median ages for a sex, there is usually a larger difference

176

Table 4.24: Results for clustering whole dataset with different data representations

Correspondence Weight Algorithm Cluster
Median Age Count

Female Male Female Male

Child

None

tree-kmeans-UWVEO

C1 34.0 49.0 8 11

C2 39.5 37.0 14 7

C3 41.0 44.0 11 12

C4 52.5 44.0 14 16

tree-kmeans-UWGED

C1 33.5 44.0 8 4

C2 37.0 43.0 15 15

C3 48.0 49.0 17 16

C4 57.0 36.0 7 11

k-modes

C1 36.0 41.5 24 18

C2 39.0 NaN 1 0

C3 47.0 43.5 14 14

C4 52.5 45.5 8 14

tree-kmeans-WVEO

C1 33.5 43.5 12 12

C2 41.0 52.0 13 13

C3 48.0 37.0 13 9

C4 57.0 28.5 9 12

tree-kmeans-WGED

C1 39.5 37.0 18 9

Length & C2 40.0 50.0 14 13

Radius C3 44.5 47.5 4 10

C4 48.0 33.5 11 14

k-means

C1 36.0 41.0 10 13

C2 39.0 47.0 14 8

C3 44.5 42.0 12 10

C4 48.0 47.0 11 15

Radius

None

tree-kmeans-UWVEO

C1 27.0 46.0 7 12

C2 42.5 38.5 12 14

C3 43.0 49.5 15 12

C4 48.0 46.5 13 8

tree-kmeans-UWGED

C1 NaN 58.0 0 1

C2 34.5 45.5 16 20

C3 44.0 42.0 21 16

C4 52.5 48.0 10 9

k-modes

C1 NaN 68.0 0 1

C2 40.0 39.0 15 16

C3 43.0 44.0 22 19

C4 52.5 49.0 10 10

tree-kmeans-WVEO

C1 34.5 52.5 16 14

C2 44.0 36.0 1 5

C3 44.5 41.0 12 11

C4 50.5 49.5 18 16

tree-kmeans-WGED

C1 36.5 56.0 12 9

Length & C2 37.5 36.0 8 10

Radius C3 40.0 41.0 14 17

C4 51.0 47.5 13 10

k-means

C1 37.0 34.0 2 1

C2 40.0 48.0 20 20

C3 46.0 40.5 22 22

C4 55.0 43.0 3 3

between the median ages of the other sex. This is an indication of the age and sex in-

teraction. For example, in the second and third clusters of the solution obtained with

tree-kmeans-UWVEO for the unweighted case in which the topologies are obtained

with radius correspondence, the median ages of females are almost equal (42.5 and

177

Table 4.25: p-values obtained by Kruskal-Wallis test for the equality of age medians

Corres. Weight Algorithm Female Male

Child

tree-kmeans-UWVEO 0.20 0.75

None tree-kmeans-UWGED 0.21 0.74

k-modes 0.29 0.98

Length &
tree-kmeans-WVEO 0.10 0.03

Radius
tree-kmeans-WGED 0.85 0.25

k-means 0.32 0.99

Radius

tree-kmeans-UWVEO 0.18 0.64

None tree-kmeans-UWGED 0.06 0.44

k-modes 0.40 0.45

Length &
tree-kmeans-WVEO 0.15 0.35

Radius
tree-kmeans-WGED 0.38 0.25

k-means 0.41 0.67

43.0). However, the median ages of males are 38.5 and 49.5, respectively.

To test the null hypothesis that the median ages of the clusters for a given sex are

the same, we apply Kruskall-Wallis test. The alternative hypothesis is that at least

one of the clusters’ median age for the given sex is different. Table 4.25 reports

the p-values. Note that sufficiently large sample sizes are necessary to produce re-

sults that are statistically significant at the 5% significance level. In our case, for any

partition, the average number of females and males in a cluster are 11.75 and 11.5,

respectively. For this reason, we consider p-values ≤ 0.3 as indication of some evi-

dence supporting the alternative hypothesis. In Table 4.25, p-values smaller than 0.1

are dark-shaded indicating a high level of evidence against the null hypothesis while

those that are between 0.1 and 0.3 are light-shaded indicating weaker evidence. For

example, Kruskal-Wallis test for the equality of median ages of female individuals

in different clusters when we use radius correspondence and unweighted edges in

tree-kmeans-UWGED algorithm results in a p-value of 0.06 indicating a high level

of evidence supporting the alternative hypothesis. The investigation of the table re-

veals that the age effect is more apparent on females as most of the shaded cells are

in the column corresponding to the female individuals. Another observation is that

child correspondence seems better than radius correspondence in terms of separat-

ing the clusters based on their median ages. Moreover, both tree-kmeans-UWVEO

and tree-kmeans-UWGED are better than k-modes and both tree-kmeans-WVEO and

178

Table 4.26: p-values obtained by Wilcoxon rank sum test for the equality of pairwise

age medians

Corres. Weight Algorithm Clusters Female Male

Child

None

tree-kmeans-UWVEO

C1/C2 0.41 0.55

C1/C3 0.89 0.52

C1/C4 0.06 0.34

C2/C3 0.43 0.82

C2/C4 0.31 0.71

C3/C4 0.11 0.63

tree-kmeans-UWGED

C1/C2 0.70 0.80

C1/C3 0.17 0.78

C1/C4 0.29 0.77

C2/C3 0.06 0.77

C2/C4 0.24 0.39

C3/C4 0.82 0.31

k-modes

C1/C2 0.94 NaN

C1/C3 0.48 0.98

C1/C4 0.07 0.83

C2/C3 0.80 NaN

C2/C4 0.44 NaN

C3/C4 0.21 0.91

tree-kmeans-WVEO

C1/C2 0.30 0.48

C1/C3 0.15 0.72

C1/C4 0.01 0.11

C2/C3 0.72 0.09

C2/C4 0.13 0.00

Length & C3/C4 0.44 0.12

Radius

tree-kmeans-WGED

C1/C2 0.83 0.48

C1/C3 0.77 0.64

C1/C4 0.62 0.27

C2/C3 0.78 0.98

C2/C4 0.38 0.06

C3/C4 0.64 0.20

Radius

None

tree-kmeans-UWVEO

C1/C2 0.05 0.37

C1/C3 0.06 0.64

C1/C4 0.10 0.70

C2/C3 1.00 0.27

C2/C4 0.72 0.41

C3/C4 0.61 1.00

tree-kmeans-UWGED

C1/C2 NaN 0.46

C1/C3 NaN 0.47

C1/C4 NaN 0.20

C2/C3 0.03 0.43

C2/C4 0.08 0.28

C3/C4 0.85 0.84

tree-kmeans-WVEO

C1/C2 0.71 0.29

C1/C3 0.09 0.34

C1/C4 0.03 0.62

C2/C3 1.00 0.60

C2/C4 0.95 0.11

Length & C3/C4 0.88 0.24

Radius

tree-kmeans-WGED

C1/C2 0.94 0.15

C1/C3 0.38 0.09

C1/C4 0.21 0.07

C2/C3 0.58 0.98

C2/C4 0.15 0.71

C3/C4 0.31 0.96

179

tree-kmeans-WGED are better than k-means in terms of separability of the resulting

median ages of the clusters.

As a post hoc analysis, we make pairwise comparisons of the median ages of the

clusters for a given sex by using Wilcoxon rank sum test whose null hypothesis is that

the medians of two clusters are the same. This test is only applied to the partitions

having a p-value of ≤ 0.3 as a result of Kruskall-Wallis test for at least one sex.

The resulting p-values are displayed in Table 4.26. For example, when we use child

correspondence and weighted edges in tree-kmeans-WVEO, the median ages of the

females in Cluster 1 and Cluster 4 are different at the 10% significance level since the

corresponding p-value is 0.01. The median ages of males in those clusters are also

different to a certain degree with a corresponding p-value of 0.11. In our view, the

p-values displayed in Table 4.26 provide supporting evidence of the finding that brain

artery structures are correlated with age and sex.

4.7 Conclusion and Future Work

In this chapter, we consider a non-traditional clustering problem in which data ob-

jects are m-ary trees. There are three assumptions of the problem: node corre-

spondence is known, nodes are unweighted and edges can be both unweighted or

weighted. We propose kmeans based algorithms for the solution of the problem;

namely tree-kmeans-UWVEO, tree-kmeans-UWGED, tree-kmeans-WVEO and tree-

kmeans-WGED. In the initialization steps of the algorithms, we have a procedure,

which preserves the properties of the data, to obtain initial centroid trees. In the as-

signment steps, we have utilized unweighted VEO, unweighted GED, weighted VEO

and weighted GED measures, respectively. To find the centroid tree of the given

cluster of trees in the assignment steps, for each measure, we first mathematically

formulated the problem and then proposed heuristic approach. Except the heuristic

for the weighted VEO, all approaches are proven to find the optimal centroid of the

given cluster. We tested our algorithms with randomly generated datasets and com-

pared the results with well known traditional algorithms: kmodes and kmeans. The

results showed the efficiency of proposed methods. Moreover, we applied our algo-

rithms to a real-life dataset and observed that the relationship between the brain artery

180

structures versus the age and sex can be discovered by means of clustering.

As a future work, one may consider to include preliminary knowledge (such as in-

stance level constraints used in Chapter 2) to the clustering process to improve the

clustering performance. To the extend we see, the performances of tree clustering al-

gorithms are not well. For example, in [107], clustering accuracy is around 0.7 even

though there exists visually separable clusters. By providing a few instance-level

constraints or a few data objects with label, one can improve the clustering perfor-

mances. Thus, in order to be able to handle preliminary knowledge, our algorithms

can be modified or completely new algorithms may be developed .

Another extension can be the relaxation of the known node correspondence assump-

tion. In that case, appropriate distance/similarity measures and heuristics for the cen-

troid finding problems with these measures should be defined. But it should be noted

that when the node correspondence is unknown, the distance/similarity measures are

computationally complex.

Moreover, weights associated with vertices can be considered in addition to the edge

weights.

The study in this chapter has been submitted to Annals of Operations Research for

publication.

181

182

CHAPTER 5

CONCLUSION

Improving technology and measurement capabilities, and the need for deeper anal-

yses result in collecting more and more data which makes data mining, the science

of extracting new and useful information from data, more important day by day. We

address three data mining problems in this thesis.

In the first problem, we consider semi-supervised clustering of regional data objects

where the aim is to minimize the sum of the violation costs of the unsatisfied instance

level must-link and cannot-link constraints plus the weighted sum of squared maxi-

mum Euclidean distances between the data objects and the centroids of the clusters

they are assigned to. Semi-supervised learning is at the intersection of supervised

and unsupervised learning. It has attracted the attention of the researchers in last

decades since it improves the performance of unsupervised learning when there is a

small amount of information which is not enough to use supervised learning [144].

Regional data objects mainly arise because the uncertainty in the location of the data

objects in feature space can be represented by regions. These uncertainities may oc-

cur becasue of several reasons such as imprecision in measurements, sampling error,

reporting errors, and so on. Also, when we have interval valued datasets, each data

object is defined as a region, i.e., a hyper-rectangle, see e.g., [18].

In this thesis it was assumed that the data objects were closed convex polytopes and/or

closed disks in Rn. We proposed two solution approaches for computing the centroid

of a given cluster consisting of regional data objects, namely a mathematical pro-

gramming formulation (i.e., SOCP formulation) and an adaptation of the subgradient

method. These two solution methods, whose detailed time complexity analysis were

also provided, were computationally compared on several instances and the subgra-

183

dient method turned out to be very efficient in terms of solution time. We then con-

sidered seven solution approaches for finding a partition of regional data objects into

a given number of clusters which is expected to be in accordance with a given set

of instance-level constraints. These approaches are an MISOCP formulation, UCOP-

k-means, UPC-k-means, UCVQE, USeeded-k-means, UConstrained-k-means, and

UAHCP. The first one is a mathematical programming formulation, the next five are

extensions of k-means based algorithms proposed for semi-supervised clustering with

point data objects, and the last one is an extension of an agglomerative hierarchical

clustering algorithm. The proposed subgradient method is utilized in these algorithms

for centroid computation. Solution approaches were compared using three different

initialization procedures (for k-means based algorithms), four different instance level

constraint generation techniques, different numbers of instance level constraints, and

six different performance measures on an artificial two-dimensional dataset and four

real-life higher dimensional datasets. The MISOCP formulation turned out to be

applicable only for small size instances. For larger size instances, UConstrained-

kmeans and UAHCP performed better than the other algorithms, in most of the cases.

UConstrained-k-means turned out to be the best solution method when we take the

solution time into account. The study is published as an article in Neurocomputing,

see [52]. Also, a book chapter related with the literature review on this problem can

be found in [51].

As a future work for this first problem, one can consider regional centroids instead of

point ones. In that case, after introducing new distance measures to find the distance

between two regions, our algorithms can be modified accordingly. Also, fuzzy ver-

sion of the problem, where the assumption of assigning each regional data object to

a single cluster is relaxed, can be studied. Moreover, in this study, we compared our

algorithms in terms of several performance measures. Based on their effectiveness on

semi-supervised clustering, multi-objective solution approaches optimizing several

performance measures simultaneously can be considered as another future research

direction.

The second problem considered in this thesis is the problem of finding a group of

central nodes in a graph. In this problem, we aim to mine a single graph based on

the edge behaviour. The identification of central nodes in a graph may arise in sev-

184

eral domains such as social networks, computer networks, vehicular networks, and

so on. In this study, we utilized the group betweenness centrality (GBC) measure

which assumes that information flows through shortest paths. The GBC of a group of

nodes measures the influence the group has on communication between every pair of

nodes in the network under the shortest paths assumption. This assumption is valid

in several applications. For example, assume that an investor wants to locate a few

roadhouses. To increase his profit, he needs to increase the number of people who

are driving by the roadhouses since each one is a potential customer. As the drivers

have a tendecy to use the shorthest paths between their origins and destinations, the

investor’s problem is a problem of finding the group of nodes with the highest GBC

on the road network.

Given a group size, the problem of finding the group of vertices with the highest

GBC is a combinatorial problem. We proposed a method that first computes upper

and lower bounds on the GBC of several groups after a preprocessing step taking time

proportional to the cube of the number of vertices in the network. The computation

of the bounds on the GBC for each group requires a running time proportional to

the square of the group size. After computation of bounds, we eliminate groups

with upper bounds that are lower than the maximum lower bound obtained to find

candidates for the optimal group. Our method brings an improvement over the method

in [92] and uses the method in [125] as preprocessing step. The method uses a given

number of subsets of vertices as input and returns a list of candidate groups (for the

group with the highest GBC value) and a group with the highest lower bound together

with the optimality gap. The method we improve upon has to be restarted for each

group, which makes the method less efficient for the computation of the GBC of

several groups. In addition, the bounds used in our method are stronger and/or faster

to compute in general.

We also utilized an algorithm from the literature (which finds the exact GBC value

for a given group) in order to compare the output of the proposed algorithm and the

optimal group. We conducted computational experiments with several randomly gen-

erated graphs, one small and three large scale real life networks. Our computational

experiments show that in the search for a group of a certain size with the highest GBC

value, our method reduces the number of candidate groups substantially and in some

185

cases gives the optimal group without exactly computing the GBC values which is

computationally more demanding. Moreover, the group returned by the proposed al-

gorithm (the one with the highest lower bound) is the same with the optimal group

(if it is available) for almost all instances and the exact GBC values are closer to the

lower bounds. The study is published in Networks, see [53].

As a future work for the second problem, some elegant methods can be developed

to decrease the number of groups given as input to the algorithm since enumeration

of all possible groups and the computation of the bounds for each one may not be

practical in large networks. For example, in the search for the optimal group of size

k, after the computation of the bounds on the GBC of a group, say T, of size < k, it

may be possible to bound the GBC of any group S of size k containing T. If the upper

bound is small enough it may be possible to eliminate all groups of size k containing

the set T from further consideration. Moreover, in the search for the optimal group

of size k, if k is less than or equal to the number of non-leaf vertices, there exists an

optimal group that does not contain any leaf vertex. Because if a leaf vertex v and the

vertex u it is adjacent to are both in a group, then discarding v from the group does

not reduce the GBC value of the group. Similarly, if the vertex v belongs to a group,

but the vertex u does not, then one can discard v from the group, add u to the group

and this operation does not decrease the GBC value of the group. Such methods to

reduce the number of groups that will be given as input to the proposed algorithm can

be developed. Another future research direction is to find the group with the highest

lower bound. Although it is NP-hard to find the group with the highest GBC, it is not

currently known whether the problem of finding the group with the highest YAT is

NP-hard or not.

The third problem considered in this thesis is the clustering of tree-structured data

objects. Such data objects are results of improving technology/measurement capabil-

ities and the need for deeper analyses which lead to collecting more complex datasets.

Tree-structured data objects appear in many applications such as brain artery analy-

sis, retinal vessel clustering, protein sequence classification, and so on. The clustering

literature is mostly devoted to point data objects. Clustering tree-structured data ob-

jects is a challenging problem which is not considered much in the literature. Thus,

in this study, we assumed that data objects are m-ary rooted trees where node corre-

186

spondence is known, nodes are unweighted, and edges can be either unweighted or

weighted.

For the solution of the problem, we proposed a k-means based algorithm which starts

with initial centroid trees and repeats tree-to-cluster assignment and centroid update

steps until convergence. In the assignment step, to measure the distance between two

trees, we utilized vertex/edge overlap and graph edit distance. In the update step,

to find a centroid tree for a given set of trees, we provided mathematical program-

ming formulations. When edges are unweighted, we proposed a Nonlinear Integer

Programming formulation and an Integer Linear Programming formulation for ver-

tex/edge overlap and graph edit distance, respectively. We solved these formulations

to optimality. When edges are weighted, we proposed a Nonlinear Programming for-

mulation and a Mixed Integer Nonlinear Programming formulation for vertex/edge

overlap and graph edit distance, respectively. For vertex/edge overlap, we developed

a heuristic not guaranteeing optimality. For graph edit distance, we solved the for-

mulation to optimality. We experimented with randomly generated datasets to select

parameters of the algorithms. After setting the parameters, we compared our ap-

proaches with k-modes (for unweighted edges) and k-means (for weighted edges) on

randomly generated datasets. Moreover, we conducted computational experiments

with a real life brain artery dataset and found out the relationship between the brain

artery structures versus the age and sex of the individuals. Our approaches performed

better than k-modes and k-means in terms of discovering this relationship. The study

is submitted to Annals of Operations Research for publication.

As a future work, we may introduce some preliminary knowledge in the form of la-

beled data or instance-level constraints (as in the first problem) to the clustering pro-

cess. As tree-structured data clustering is a newly emerging issue, the performances of

the algorithms in the literature are not very good and they may be improved by semi-

supervised learning as for their point and regional data object counterparts. To be

able to handle preliminary knowledge, our algorithms can be modified or completely

new algorithms may be developed. Another extension can be the relaxation of the as-

sumptions of the study, namely known node correspondence and unweighted nodes.

In this case, after defining appropriate distance/similarity measures, one may try to

modify our algorithms or define new solution approaches for the problem. However,

187

for the unknown node correspondence case, it should be noted that the distance/simi-

larity measures are computationally complex. Finally, one may work on adapting the

proposed methods to clustering of general graphs.

188

REFERENCES

[1] C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki. Xproj: a framework

for projected structural clustering of xml documents. In Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 46–55. ACM, 2007.

[2] C. C. Aggarwal and H. Wang. A survey of clustering algorithms for graph

data. In Managing and mining graph data, pages 275–301. Springer, 2010.

[3] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical

programming, 95(1):3–51, 2003.

[4] A. Aly and A. Marucheck. Generalized weber problem with rectangular re-

gions. The Journal of the Operational Research Society, 13:983–989, 1982.

[5] B. Aydin, G. Pataki, H. Wang, E. Bullitt, and J. Marron. A principal component

analysis for trees. The Annals of Applied Statistics, pages 1597–1615, 2009.

[6] B. Aydın, G. Pataki, H. Wang, A. Ladha, E. Bullitt, and J. Marron. New ap-

proaches to principal component analysis for trees. Statistics in Biosciences,

4(1):132–156, 2012.

[7] A. Banerjee and J. Ghosh. Scalable clustering algorithms with balancing con-

straints. Data Mining and Knowledge Discovery, 13(3):365–395, 2006.

[8] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance func-

tions using equivalence relations. In Proceedings of 20th International Con-

ference on Machine Learning, volume 3, pages 11–18, 2003.

[9] S. Basu. Semi-supervised Clustering: Probabilistic Models, Algorithms and

Experiments. PhD thesis, Austin, TX, USA, 2005. AAI3187658.

[10] S. Basu, A. Banerjee, and R. Mooney. Semi-supervised clustering by seeding.

In Proceedings of 19th International Conference on Machine Learning, pages

19–26. Citeseer, 2002.

189

[11] S. Basu, A. Banerjee, and R. J. Mooney. Active semi-supervision for pairwise

constrained clustering. In Proceedings of the SIAM International Conference

on Data Mining, volume 4, pages 333–344. SIAM, 2004.

[12] S. Basu, M. Bilenko, and R. J. Mooney. Comparing and unifying search-based

and similarity-based approaches to semi-supervised clustering. In Proceedings

of the ICML-2003 workshop on the continuum from labeled to unlabeled data

in machine learning and data mining systems, pages 42–49. Citeseer, 2003.

[13] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-

supervised clustering. In Proceedings of 10th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 59–68. ACM,

2004.

[14] P. Bendich, J. S. Marron, E. Miller, A. Pieloch, and S. Skwerer. Persistent

homology analysis of brain artery trees. The annals of applied statistics,

10(1):198, 2016.

[15] C. Bennet and A. Mirakhor. Optimal facility location with respect to several

regions. Journal of Regional Science, 14:131–136, 1974.

[16] L. Biao, Z. Kejun, F. Huamin, and L. Yang. A new approach of clustering

malicious javascript. In Software Engineering and Service Science (ICSESS),

2014 5th IEEE International Conference on, pages 157–160. IEEE, 2014.

[17] M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric

learning in semi-supervised clustering. In Proceedings of 21st international

conference on Machine learning, pages 11–18. ACM, 2004.

[18] L. Billard and E. Diday. Principal Component Analysis, page 166. John Wiley

& Sons Inc., Hoboken, NJ, 2007.

[19] P. Bille. A survey on tree edit distance and related problems. Theoretical

computer science, 337(1-3):217–239, 2005.

[20] H.-H. Bock. Analysis of symbolic data: Exploratory methods for extract-

ing statistical information from complex data. Studies in Classification, Data

Analysis, and Knowledge Organization., 2000.

190

[21] S. Borgwardt, A. Brieden, and P. Gritzmann. Geometric clustering for the

consolidation of farmland and woodland. The Mathematical Intelligencer,

36(2):37–44, 2014.

[22] E. Boros, A. Scozzari, F. Tardella, and P. Veneziani. Polynomially computable

bounds for the probability of the union of events. Mathematics of Operations

Research, 39(4):1311–1329, 2014.

[23] S. Boyd and A. Mutapcic. Subgradient methods. Lecture notes of EE364b,

Stanford University, Winter Quarter, 2006, 2007.

[24] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, USA, 2004.

[25] P. S. Bradley, K. P. Bennett, and A. Demiriz. Constrained k-means clustering.

Technical report, Microsoft Corperation, 2000.

[26] U. Brandes. A faster algorithm for betweenness centrality. The Journal of

Mathematical Sociology, 25(2):163–177, 2001.

[27] U. Brandes. On variants of shortest-path betweenness centrality and their

generic computation. Social Networks, 30(2):136 – 145, 2008.

[28] J. Brimberg and G. Wesolowsky. Locating facilites by minimax relative to

closest points of demand areas. Computers and Operations Research, 29:625–

636, 2002.

[29] J. Brimberg and G. Wesolowsky. Minisum location with closest euclidean

distances. Annals of Operations Research, 11:151–165, 2002.

[30] E. Bullitt, D. Zeng, B. Mortamet, A. Ghosh, S. R. Aylward, W. Lin, B. L.

Marks, and K. Smith. The effects of healthy aging on intracerebral blood

vessels visualized by magnetic resonance angiography. Neurobiology of aging,

31(2):290–300, 2010.

[31] H. Calik, M. Labbé, and H. Yaman. Location Science, chapter p-Center Prob-

lems, pages 79–92. Springer International Publishing, Cham, 2015.

[32] G. S. Canright and K. Engø-Monsen. 3.3 - some relevant aspects of network

analysis and graph theory. In J. Bergstra and MarkBurgess, editors, Handbook

191

of Network and System Administration, pages 361 – 424. Elsevier, Amsterdam,

2008.

[33] E. Carrizosa, E. Conde, M. Munoz-Marquez, and J. Puerto. The general-

ized weber problem with expected distances. RAIRO Operations Research,

29(1):35–57, 1995.

[34] M. E. Celebi, H. A. Kingravi, and P. A. Vela. A comparative study of efficient

initialization methods for the k-means clustering algorithm. Expert Systems

with Applications, 40(1):200 – 210, 2013.

[35] H. Chang and D.-Y. Yeung. Locally linear metric adaptation for semi-

supervised clustering. In Proceedings of 21st international conference on Ma-

chine learning, pages 153–160. ACM, 2004.

[36] M. Chau, R. Cheng, B. Kao, and J. Ng. Advances in Knowledge Discovery

and Data Mining: 10th Pacific-Asia Conference, PAKDD 2006, Singapore,

April 9-12, 2006. Proceedings, chapter Uncertain Data Mining: An Example in

Clustering Location Data, pages 199–204. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2006.

[37] S. S. Chawathe. Comparing hierarchical data in external memory. In VLDB,

volume 99, pages 90–101, 1999.

[38] C.-A. Chou, W. A. Chaovalitwongse, T. Y. Berger-Wolf, B. DasGupta, and

M. V. Ashley. Capacitated clustering problem in computational biology. Com-

puters and Operations Research, 39(3):609–619, 2012.

[39] K. L. Chung and P. Erdos. On the application of the borel-cantelli lemma.

Transactions of the American Mathematical Society, 72(1):179–186, 1952.

[40] L. Cooper. A random locational equilibrium problem. Journal of Regional

Sciences, 14:47–54, 1974.

[41] I. CVX Research. CVX:Matlab software for disciplined convex programming,

version 2.0., Apr. 2011.

[42] I. Davidson and S. Basu. A survey of clustering with instance level constraints.

ACM Transactions on Knowledge Discovery from Data, 1:1–41, 2007.

192

[43] I. Davidson and S. Ravi. Agglomerative hierarchical clustering with con-

straints: Theoretical and empirical results. In A. M. Jorge, L. Torgo, P. Brazdil,

R. Camacho, and J. Gama, editors, Knowledge Discovery in Databases:

PKDD 2005, pages 59–70. Springer-Verlag, Berlin Heidelberg, 2005.

[44] I. Davidson and S. Ravi. Clustering with constraints: Feasibility issues and the

k-means algorithm. In Proceedings of 2005 SIAM International Conference

on Data Mining, pages 138–149. SIAM, 2005.

[45] D. Dawson and D. Sankoff. An inequality for probabilities. Proceedings of

the American Mathematical Society, 18(3):504–507, 1967.

[46] D. De Caen. A lower bound on the probability of a union. Discrete mathemat-

ics, 169(1-3):217–220, 1997.

[47] A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised cluster-

ing using genetic algorithms. Artificial neural networks in engineering, pages

809–814, 1999.

[48] L. Dicken and J. Levine. Applying clustering techniques to reduce complexity

in automated planning domains. In Proceedings of 11th International Confer-

ence on Intelligent Data Engineering and Automated Learning – IDEAL 2010,

volume 6283, pages 186–193, 2010.

[49] P. Dickinson and M. Kraetzl. Novel approaches in modelling dynamics of net-

worked surveillance environment. In Proc. of the 6th Intl. Conf. of Information

Fusion, volume 1, pages 302–309, 2003.

[50] D. Dinler, M. Tural, and C. Iyigun. Location problems with demand regions.

In B. Kara, I. Sabuncuoglu, and B. Bidanda, editors, Global Logistic Manage-

ment. CRC Press, 2014.

[51] D. Dinler and M. K. Tural. A Survey of Constrained Clustering, pages 207–

235. Springer International Publishing, Cham, 2016.

[52] D. Dinler and M. K. Tural. Robust semi-supervised clustering with polyhedral

and circular uncertainty. Neurocomputing, 265:4–27, 2017.

193

[53] D. Dinler and M. K. Tural. Faster computation of successive bounds on the

group betweenness centrality. Networks, 71(4):358–380, 2018.

[54] D. Dinler, M. K. Tural, and C. Iyigun. Heuristics for a continuous multi-facility

location problem with demand regions. Computers and Operations Research,

62:237–256, 2015.

[55] K. Dohmen and P. Tittmann. Bonferroni-type inequalities and binomially

bounded functions. Discrete Mathematics, 310(6):1265–1268, 2010.

[56] S. Dolev, Y. Elovici, R. Puzis, and P. Zilberman. Incremental deployment of

network monitors based on group betweenness centrality. Information Pro-

cessing Letters, 109(20):1172 – 1176, 2009.

[57] Z. Drezner. The p-centre problem-heuristic and optimal algorithms. Journal

of the Operational Research Society, pages 741–748, 1984.

[58] Z. Drezner and G. Wesolowsky. Location models with groups of demand

points. INFOR, 38:359–372, 2000.

[59] R. O. Duda and P. E. Hart. Pattern classification and scene analysis, volume 3.

Wiley, New York, 1973.

[60] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and

display of genome-wide expression patterns. In Proceedings of the National

Academy of Sciences of the United States of America, volume 95, pages 14863–

14868. National Academy Sciences, 1998.

[61] A. Erdem and S. Tari. A similarity-based approach for shape classification

using aslan skeletons. Pattern Recognition Letters, 31(13):2024–2032, 2010.

[62] M. G. Everett and S. P. Borgatti. The centrality of groups and classes. The

Journal of Mathematical Sociology, 23(3):181–201, 1999.

[63] M. Fink and J. Spoerhase. Maximum betweenness centrality: Approximability

and tractable cases. In WALCOM, pages 9–20. Springer, 2011.

[64] R. A. Fisher. The use of multiple measurements in taxonomic problems. An-

nals of eugenics, 7(2):179–188, 1936.

194

[65] A. Flesia. Unsupervised classification of tree structured objects. In BIOMAT

2008, pages 280–299. 2009.

[66] S. Gallot. A bound for the maximum of a number of random variables. Journal

of Applied Probability, 3(2):556–558, 1966.

[67] N. Ganganath, C.-T. Cheng, and K. T. Chi. Data clustering with cluster size

constraints using a modified k-means algorithm. In Proceedings of 2014 In-

ternational Conference on Cyber-Enabled Distributed Computing and Knowl-

edge Discovery, pages 158–161. IEEE, 2014.

[68] S. Geetha, G. Poonthalir, and P. Vanathi. Improved k-means algorithm for

capacitated clustering problem. INFOCOMP Journal of Computer Science,

8(4):52–59, 2009.

[69] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh. Optimal energy aware

clustering in sensor networks. Sensors, 2(7):258–269, 2002.

[70] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance.

Theoretical Computer Science, 38:293–306, 1985.

[71] T. Gowda and C. A. Mattmann. Clustering web pages based on structure and

style similarity (application paper). In 2016 IEEE 17th International Confer-

ence on Information Reuse and Integration (IRI), pages 175–180, July 2016.

[72] F. Gullo, G. Ponti, and A. Tagarelli. Scalable Uncertainty Management: Sec-

ond International Conference, SUM 2008, Naples, Italy, October 1-3, 2008.

Proceedings, chapter Clustering Uncertain Data Via K-Medoids, pages 229–

242. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[73] I. Gurobi Optimization. Gurobi optimizer reference manual, 2013.

[74] P. Hansen and N. Mladenovic. J-means: a new local search heuristic for mini-

mum sum of squares clustering. Pattern recognition, 34(2):405–413, 2001.

[75] H. Heumann and G. Wittum. The tree-edit-distance, a measure for quantifying

neuronal morphology. Neuroinformatics, 7(3):179–190, 2009.

[76] F. M. Hoppe. Improving probability bounds by optimization over subsets.

Discrete Mathematics, 306(5):526–530, 2006.

195

[77] R. Howard. Classifying a population into homogeneous groups. In J. R.

Lawrence, editor, Operational Research in the Social Sciences. Tavistock Pub-

lication, London, 1966.

[78] J. Hu, M. Singh, and A. Mojsilovic. Categorization using semi-supervised

clustering. In 19th International Conference on Pattern Recognition, ICPR

2008, pages 1–4. IEEE, 2008.

[79] Y. Huang and T. M. Mitchell. Text clustering with extended user feedback. In

Proceedings of 29th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 413–420. ACM, 2006.

[80] Z. Huang. A fast clustering algorithm to cluster very large categorical data sets

in data mining. DMKD, 3(8):34–39, 1997.

[81] L. Hubert and P. Arabie. Comparing partitions. Journal of classification,

2(1):193–218, 1985.

[82] D. Hunter. An upper bound for the probability of a union. Journal of Applied

Probability, pages 597–603, 1976.

[83] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern recognition

letters, 31(8):651–666, 2010.

[84] B. Jiang, J. Pei, Y. Tao, and X. Lin. Clustering uncertain data based on prob-

ability distribution similarity. Knowledge and Data Engineering, IEEE Trans-

actions on, 25(4):751–763, 2013.

[85] J. Jiang and Y. Xu. Minisum location problem with farthest euclidean dis-

tances. Mathematical Methods of Operations Research, 64:285–308, 2006.

[86] J. Jiang and X. Yuan. A barzilai-borwein-based heuristic algorithm for locat-

ing multiple facilities with regional demand. Computational Optimization and

Applications, 51:1275–1295, 2012.

[87] S. D. Kamvar, D. Klein, and C. D. Manning. Spectral learning. In Proceedings

of 18th International Joint Conference of Artificial Intelligence, pages 561–

566. Stanford InfoLab, 2003.

196

[88] L. Kaufman and P. J. Rousseeuw. Partitioning Around Medoids (Program

PAM), pages 68–125. John Wiley and Sons, Inc., 2008.

[89] A. Kchiche and F. Kamoun. Access-points deployment for vehicular networks

based on group centrality. In 2009 3rd International Conference on New Tech-

nologies, Mobility and Security, pages 1–6. IEEE, 2009.

[90] V. Khakhutskyy, M. Schwarzfischer, N. Hubig, C. Plant, C. Marr, M. A. Rieger,

T. Schroeder, and F. J. Theis. Centroid clustering of cellular lineage trees.

In International Conference on Information Technology in Bio-and Medical

Informatics, pages 15–29. Springer, 2014.

[91] D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level constraints to

space-level constraints: Making the most of prior knowledge in data clustering.

In Proceedings of 19th International Conference on Machine Learning, pages

307–314. Stanford, 2002.

[92] E. D. Kolaczyk, D. B. Chua, and M. Barthélemy. Group betweenness and

co-betweenness: Inter-related notions of coalition centrality. Social Networks,

31(3):190 – 203, 2009.

[93] E. G. Kounias. Bounds for the probability of a union, with applications. The

Annals of Mathematical Statistics, 39(6):2154–2158, 1968.

[94] S. Kounias and J. Marin. Best linear bonferroni bounds. SIAM Journal on

Applied Mathematics, 30(2):307–323, 1976.

[95] D. Koutra, J. T. Vogelstein, and C. Faloutsos. Deltacon: A principled massive-

graph similarity function. In Proceedings of the 2013 SIAM International Con-

ference on Data Mining, pages 162–170. SIAM, 2013.

[96] H. Kuai, F. Alajaji, and G. Takahara. A lower bound on the probability of a

finite union of events. Discrete Mathematics, 215(1):147–158, 2000.

[97] S. M. Kwerel. Bounds on the probability of the union and intersection of m

events. Advances in Applied Probability, 7(2):431–448, 1975.

[98] M. H. C. Law, A. Topchy, and A. K. Jain. Clustering with soft and group

constraints. In A. Fred, T. M. Caeli, R. P. W. Duin, A. C. Campilho, and

197

D. Ridder, editors, Structural, Syntactic, and Statistical Pattern Recognition,

pages 662–670. Springer-Verlag, Berlin Heidelberg, 2004.

[99] M. H. C. Law, A. P. Topchy, and A. K. Jain. Model based clustering with prob-

abilistic constraints. In Proceedings of 2005 SIAM International Conference

on Data Mining, pages 641–645. Citeseer, 2005.

[100] S. D. Lee, B. Kao, and R. Cheng. Reducing uk-means to k-means. In Proceed-

ings of the Seventh IEEE International Conference on Data Mining Workshops,

ICDMW ’07, pages 483–488, Washington, DC, USA, 2007. IEEE Computer

Society.

[101] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[102] F. A. Lessa, T. Raiol, M. M. Brigido, D. S. Martins Neto, M. E. M. Walter,

and P. F. Stadler. Clustering rfam 10.1: Clans, families, and classes. Genes,

3(3):378–390, 2012.

[103] M. Lichman. UCI machine learning repository, 2013.

[104] A. Likas, N. Vlassis, and J. J. Verbeek. The global k-means clustering algo-

rithm. Pattern recognition, 36(2):451–461, 2003.

[105] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-

order cone programming. Linear Algebra and its Applications, 284:193–228,

1998.

[106] R. Love. A computational procedure for optimally locating a facility with

respect to several rectangular regions. Journal of Regional Sciences, 12:233–

242, 1972.

[107] N. Lu and H. Miao. Clustering tree-structured data on manifold. IEEE

transactions on pattern analysis and machine intelligence, 38(10):1956–1968,

2016.

[108] N. Lu and Y. Wu. Clustering of tree-structured data. In Information and Au-

tomation, 2015 IEEE International Conference on, pages 1210–1215. IEEE,

2015.

198

http://snap.stanford.edu/data

[109] P. Lyman and H. R. Varian. How much information 2000?, 2000.

[110] P. Lyman and H. R. Varian. How much information 2003?, 2003.

[111] J. MacQueen. Some methods for classification and analysis of multivariate ob-

servations. In Proceedings of 5th Berkeley symposium on mathematical statis-

tics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[112] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information

Retrieval. Cambridge University Press, Cambridge, England, 2008.

[113] J. S. Marron and A. M. Alonso. Overview of object oriented data analysis.

Biometrical Journal, 56(5):732–753, 2014.

[114] I. McCulloh, H. Armstrong, and A. N. Johnson. Social network analysis with

applications. Hoboken, New Jersey John Wiley & Sons, Inc, 2013.

[115] N. Megiddo and K. J. Supowit. On the complexity of some common geometric

location problems. SIAM journal on computing, 13(1):182–196, 1984.

[116] S. Miyamoto and A. Terami. Constrained agglomerative hierarchical clus-

tering algorithms with penalties. In Proceedings of 2011 IEEE International

Conference on Fuzzy Systems, pages 422–427. IEEE, 2011.

[117] J. M. Mulvey and M. P. Beck. Solving capacitated clustering problems. Euro-

pean Journal of Operational Research, 18(3):339–348, 1984.

[118] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms.

The Computer Journal, 26(4):354–359, 1983.

[119] W. K. Ngai, B. Kao, C. K. Chui, R. Cheng, M. Chau, and K. Y. Yip. Efficient

clustering of uncertain data. In Proceedings of the Sixth International Con-

ference on Data Mining, ICDM ’06, pages 436–445, Washington, DC, USA,

2006. IEEE Computer Society.

[120] C. Ni, C. R. Sugimoto, and J. Jiang. Degree, closeness, and betweenness:

Application of group centrality measurements to explore macro-disciplinary

evolution diachronically. In Proceedings of ISSI, pages 1–13, 2011.

199

[121] J. Ouyang and I. K. Sethi. A novel distance measure for interval data. In PRIS,

pages 49–58, 2007.

[122] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina. Web graph similarity for

anomaly detection. Journal of Internet Services and Applications, 1(1):19–30,

2010.

[123] K. Pearson. On lines and planes of closest fit to system of points in space.

philiosophical magazine, 2, 559-572, 1901.

[124] B. T. Polyak. Minimization of unsmooth functionals. USSR Computational

Mathematics and Mathematical Physics, 9(3):14–29, 1969.

[125] R. Puzis, Y. Elovici, and S. Dolev. Fast algorithm for successive computation

of group betweenness centrality. Physical Review E, 76:056709, Nov 2007.

[126] R. Puzis, Y. Elovici, and S. Dolev. Finding the most prominent group in com-

plex networks. AI Communications, 20(4):287–296, 2007.

[127] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F. Sam-

atova. Anomaly detection in dynamic networks: a survey. Wiley Interdisci-

plinary Reviews: Computational Statistics, 7(3):223–247, 2015.

[128] A. Sanfeliu and K.-S. Fu. A distance measure between attributed relational

graphs for pattern recognition. IEEE transactions on systems, man, and cyber-

netics, (3):353–362, 1983.

[129] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Fried-

man. Module networks: identifying regulatory modules and their condition-

specific regulators from gene expression data. Nature genetics, 34(2):166–176,

2003.

[130] D. Shen, H. Shen, S. Bhamidi, Y. Muñoz Maldonado, Y. Kim, and J. S. Marron.

Functional data analysis of tree data objects. Journal of Computational and

Graphical Statistics, 23(2):418–438, 2014.

[131] K. Shin and A. Abraham. Two phase semi-supervised clustering using back-

ground knowledge. In International Conference on Intelligent Data Engineer-

ing and Automated Learning, pages 707–712. Springer, 2006.

200

[132] N. Z. Shor. Application of the gradient method for the solution of network

transportation problems. In Scientific Seminar on Theory and Application of

Cybernetics and Operations Research, volume 1, pages 9–17. Academy of

Sciences, 1962.

[133] S. Skwerer, E. Bullitt, S. Huckemann, E. Miller, I. Oguz, M. Owen, V. Pa-

trangenaru, S. Provan, and J. Marron. Tree-oriented analysis of brain artery

structure. Journal of Mathematical Imaging and Vision, 50(1-2):126–143,

2014.

[134] A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures on web-

page clustering. In Workshop on Artificial Intelligence for Web Search (AAAI

2000), pages 58–64, 2000.

[135] Y. Takenaka and T. Wakao. Similarity measure among structures of local gov-

ernment statute books based on tree edit distance. In Knowledge and Systems

Engineering (KSE), 2015 Seventh International Conference on, pages 49–54.

IEEE, 2015.

[136] H. S. Thota, V. V. Saradhi, and T. Venkatesh. Network traffic analysis using

principal component graphs. 2013.

[137] A. Torsello, D. Hidovic-Rowe, and M. Pelillo. Polynomial-time metrics for

attributed trees. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 27(7):1087–1099, 2005.

[138] A. Torsello, A. Robles-Kelly, and E. R. Hancock. Discovering shape classes

using tree edit-distance and pairwise clustering. International Journal of Com-

puter Vision, 72(3):259–285, 2007.

[139] H. H. Tsang and K. C. Wiese. Sarna-ensemble-predict: the effect of different

dissimilarity metrics on a novel ensemble-based rna secondary structure pre-

diction algorithm. In Computational Intelligence in Bioinformatics and Com-

putational Biology, 2009. CIBCB’09. IEEE Symposium on, pages 8–15. IEEE,

2009.

[140] A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-based

201

clustering in large databases. In J. V. Bussche and V. Vianu, editors, Database

Theory, pages 405–419. Springer-Verlag, Berlin Heidelberg, 2001.

[141] L. Vandenberghe. Subgradient method. Lecture notes of EE236c, University

of California, Los Angeles, Spring Quarter, 2016.

[142] A. Veremyev, O. A. Prokopyev, and E. L. Pasiliao. Finding groups with maxi-

mum betweenness centrality. Optimization Methods and Software, 32(2):369–

399, 2017.

[143] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Jour-

nal of the ACM (JACM), 21(1):168–173, 1974.

[144] K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In Pro-

ceedings of 17th International Conference on Machine Learning, pages 1103–

1110. Standford, 2000.

[145] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clus-

tering with background knowledge. In Proceedings of 18th International Con-

ference on Machine Learning, volume 1, pages 577–584. Williams College,

2001.

[146] K. L. Wagstaff. Intelligent clustering with instance-level constraints. PhD

thesis, 2002.

[147] H. Wang and J. Marron. Object oriented data analysis: Sets of trees. The

Annals of Statistics, 35(5):1849–1873, 2007.

[148] X. Wang, C. Wang, and J. Shen. Semi-supervised k-means clustering by opti-

mizing initial cluster centers. In International Conference on Web Information

Systems and Mining, pages 178–187. Springer, 2011.

[149] Y. Wang, Y. Xiang, J. Zhang, and S. Yu. Internet traffic clustering with con-

straints. In 8th International Wireless Communications and Mobile Computing

Conference (IWCMC), pages 619–624. IEEE, 2012.

[150] S. Wasserman and K. Faust. Social network analysis: Methods and applica-

tions, volume 8. Cambridge university press, 1994.

202

[151] R. C. Wilson and P. Zhu. A study of graph spectra for comparing graphs and

trees. Pattern Recognition, 41(9):2833–2841, 2008.

[152] K. Worsley. An improved bonferroni inequality and applications. Biometrika,

69(2):297–302, 1982.

[153] I. Xenarios, E. Fernandez, L. Salwinski, X. J. Duan, M. J. Thompson, E. M.

Marcotte, and D. Eisenberg. Dip: the database of interacting proteins: 2001

update. Nucleic acids research, 29(1):239–241, 2001.

[154] E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng. Distance metric learning

with application to clustering with side-information. In Proceedings of the

Advances in neural information processing systems 15, pages 505–512. MIT

Press, 2002.

[155] R. Xu and D. Wunsch. Clustering, volume 10. John Wiley & Sons, Hoboken,

New Jersey, 2008.

[156] J. Yang, F. Alajaji, and G. Takahara. New bounds on the probability of a

finite union of events. In Information Theory (ISIT), 2014 IEEE International

Symposium on, pages 1271–1275. IEEE, 2014.

[157] J. Yang, F. Alajaji, and G. Takahara. On bounding the union probability us-

ing partial weighted information. Statistics & Probability Letters, 116:38–44,

2016.

[158] S. X. Yu and J. Shi. Segmentation given partial grouping constraints. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(2):173–183,

2004.

[159] W. W. Zachary. An information flow model for conflict and fission in small

groups. Journal of anthropological research, pages 452–473, 1977.

[160] K. Zhang. A constrained edit distance between unordered labeled trees. Algo-

rithmica, 15(3):205–222, 1996.

[161] Z. Zhang, J. T. Kwok, and D.-Y. Yeung. Parametric distance metric learning

with label information. In Proceedings of the International Joint Conference

on Artificial Intelligence, pages 1450–1452, 2003.

203

[162] S. Zhu, D. Wang, and T. Li. Data clustering with size constraints. Knowledge-

Based Systems, 23(8):883–889, 2010.

204

205

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name : Dinler, Derya

Nationality : Turkish (TC)

Date and Place of Birth : 11 November 1989, Silivri

Phone : +90 555 852 43 32

E-mail : dinler@metu.edu.tr

EDUCATION

Degree Institution Year of Graduation

PhD METU Industrial Engineering 2019

MS METU Operations Research 2013

BS METU Industrial Engineering 2011

High School Bolu Science High School, Bolu 2006

WORK EXPERIENCE

Year Place Enrollment

2019-Present Hacettepe University Instructor

2011-2019 METU Research Assistant

2013-2018 Aselsan Project Member

2010-2011 METU Student Assistant

2010-2011 Renault Project Member

June 2011 Renault Intern

June 2009 Banvit Intern

FOREIGN LANGUAGES

English – Proficient user, Turkish – Native speaker

PUBLICATIONS

1. Dinler, D., & Tural M. K. (2018). Faster Computation of Successive Bounds on the

Group Betweenness Centrality, Networks, 71 (4), 358-380.

https://doi.org/10.1002/net.21817

https://doi.org/10.1002/net.21817

206

2. Dinler, D., & Tural M. K. (2017). Robust Semi-Supervised Clustering with

Polyhedral and Circular Uncertainty, Neurocomputing, 265, 4-27.

http://dx.doi.org/10.1016/j.neucom.2017.04.073

3. Dinler, D., & Tural, M. K. (2016). A Minisum Location Problem with Regional

Demand Considering Farthest Euclidean Distances. Optimization Methods and

Software, 31 (3), 446-470. http://dx.doi.org/10.1080/10556788.2015.1121486

4. Dinler, D., & Tural, M. K. (2016). A Survey of Constrained Clustering. In E. Celebi,

K. Aydin (Eds.), Unsupervised Learning Algorithms (pp. 207-235). Switzerland:

Springer.

5. Dinler, D., Tural, M. K., & Iyigun, C. (2015). Heuristics for a Continuous Multi-

facility Location Problem with Demand Regions. Computers & Operations Research,

62, 237-256. http://dx.doi.org/10.1016/j.cor.2014.09.001

6. Damgacioglu, H., Dinler, D., Ozdemirel, N. E., & Iyigun, C. (2015). A Genetic

Algorithm for the Uncapacitated Single Allocation Planar Hub Location Problem.

Computers & Operations Research, 62, 224-236.

http://dx.doi.org/10.1016/j.cor.2014.09.003

7. Dinler, D., Tural, M. K., & Iyigun, C. (2014). Location Problems with Demand

Regions. In B. Y. Kara, I. Sabuncuoglu, B. Bidanda (Eds.), Global Logistics

Management (pp. 237-252). Boca Raton: Taylor & Francis (CRC Press).

http://dx.doi.org/10.1080/10556788.2015.1121486
http://dx.doi.org/10.1016/j.cor.2014.09.001
http://dx.doi.org/10.1016/j.cor.2014.09.003

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS

