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ABSTRACT 

 

ASSESSMENT OF POROSITY-PERMEABILITY VARIATION ON THE 

RESPONSE OF SANDY SOILS VIA HYPOPLASTICITY MODEL  

 

Bayraktaroğlu, Hilmi 

Master of Science, Civil Engineering 

Supervisor: Assoc. Prof. Dr. Nejan Huvaj Sarıhan 

Co-Supervisor: Assoc. Prof. Dr. H. Ercan Taşan 

 

June 2019, 134 pages 

 

Hydro-mechanical characteristic of the saturated sands is highly influenced by their 

porosity and permeability. During loading, unloading and reloading compaction of 

sands, loosening and re-compaction take place, which leads to changes in pore volume 

and permeability. In order to accurately simulate these real-life conditions, new 

variables and phenomena should be investigated using sophisticated numerical tools 

and equipment. 

In this study, the behavior of water saturated sands subjected to cyclic and dynamic 

loading is analyzed numerically and experimentally. For the finite element analyses, 

a three-dimensional fully coupled two-phase finite element is developed and 

implemented on the basis of a two-phase model in order to consider the pore water 

pressure development in saturated sands. In addition, an extended hypoplastic 

constitutive model is used to describe the material behavior of sandy soils. The 

porosity-permeability variation is taken into account by implementation of Kozeny-

Carman relationship. Using the experimental test results both performed in laboratory 

and documented in the literature, the influence of porosity-permeability variation on 

the mechanical behavior of sandy soils is investigated by comparing the strain and 

pore pressure accumulations. The necessity of the consideration of porosity-
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permeability variation for realistic modeling of the cyclic and dynamic behavior of 

saturated sandy soils is assessed.  

The laboratory experiments and numerical methods required to determine thirteen 

parameters of the hypoplastic constitutive model are explained systematically. The 

hypoplastic material parameters of a sandy soil is determined and then compared with 

the recommended parameters available in the literature for the same type of soil. In 

addition, hypoplastic model parameters of various sands that are commonly used in 

the modeling of the soil under dynamic loading are presented. This thesis will 

contribute to researchers working on the numerical modeling of material behavior 

using finite element method in geotechnical engineering. 

 

Keywords: Porosity-permeability relationship, Hypoplasticity, Two-phase model, 

Finite element method, Laboratory experiments 
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ÖZ 

 

BOŞLUK ORANI-GEÇİRİMLİLİK İLİŞKİSİNİN KUMLU ZEMİN 

DAVRANIŞINA ETKİSİNİN HİPOPLASTİSİTE MODELİ İLE 

DEĞERLENDİRİLMESİ 

 

Bayraktaroğlu, Hilmi 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Danışmanı: Doç. Dr. Nejan Huvaj Sarıhan 

Ortak Tez Danışmanı: Doç. Dr. H. Ercan Taşan 

 

Haziran 2019, 134 sayfa 

 

Suya doygun kumların hidromekanik davranışları zeminin gözeneklilik yapısı ve 

geçirimlilik özelliklerinden büyük ölçüde etkilenmektedir. Yükleme ve boşaltmanın 

birbirini takip ettiği deformasyon eğrilerinde kumlar sürekli olarak yumuşama ve 

sıkışmaya maruz kalırlar. Maruz kalınan yükler sonucu değişen boşluk hacimleri 

zeminin geçirgenlik katsayısını değiştirmektedir. Bahsedilen gerçek yaşam koşullarını 

doğru bir şekilde simüle etmek için, yeni değişkenlerin ve kavramların kullanıldığı 

gelişmiş nümerik modeller ve ekipmanlar kullanılmalıdır. 

Bu çalışmada, suya doygun kumlu zeminlerin tekrarlı ve dinamik yüklemeler altındaki 

davranışı nümerik ve deneysel yöntemler kullanılarak analiz edilmiştir. Üç boyutlu 

sonlu elemanlar analizlerinde, aşırı boşluk suyu basıncı değişimleri iki fazlı modele 

dayanan üç boyutlu elemanlar yardımıyla incelenmiştir. Buna ek olarak zemin 

davranışının modellenmesi için genişletilmiş hipoplastik bünye modeli kullanılmıştır. 

Geçirimliliğin gözenekliliğe bağlı değişimi Kozeny-Carman ilişkisinin modele 

tanımlanmasıyla elde edilmiştir. Gerçekleştirilen deneyler ile birlikte, literatürde 

mevcut deneysel sonuçlarda kullanılarak gözeneklilik-geçirimlilik arasındaki ilişkinin 

kumlu zeminlerin mekanik davranışı üzerindeki etkisi, deformasyon ve boşluk suyu 
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basınçları karşılaştırılarak incelenmiştir. Suya doygun kumlu zeminlerin tekrarlı ve 

dinamik yük altındaki davranışlarının gerçekçi olarak modellenmesi sırasında 

gözeneklilik-geçirimlilik değişimlerinin göz önünde bulundurulması gerekliliği 

değerlendirilmiştir. 

Bu çalışmada hipoplastik bünye modelinin on üç parametresinin belirlenmesi için 

gerekli laboratuvar deneyleri ve yöntemler sistematik bir şekilde açıklanmıştır. Kumlu 

bir zeminin model parametreleri belirlenmiş ve literatürde aynı zemin tipi için önerilen 

malzeme parametre değer aralıklarıyla karşılaştırılmıştır. Ayrıca dinamik yük etkisi 

altındaki zeminlerin modellenmesinde kullanılmış olan çeşitli kumların hipoplastik 

bünye model parametreleri de sunulmaktadır. Bu çalışmanın, geoteknik 

mühendisliğinde sonlu elemanlar yöntemi ile malzeme davranışının modellenmesi 

üzerine çalışan araştırmacılar için katkı sağlayacağı düşünülmektedir. 

Anahtar Kelimeler: Gözeneklilik-geçirimlilik ilişkisi, Hipoplastisite, İki-fazlı model, 

Sonlu elemanlar metodu, Laboratuvar deneyleri 
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CHAPTER 1  

 

1. INTRODUCTION 

The application of numerical tools continues to increase within the geotechnical 

engineering community. New challenges in geotechnical engineering, increasing 

complexity and constraints both in time and space and difficult soil conditions force 

geotechnical engineers to go beyond the realm of their previous experience and 

knowledge. Numerical modeling represents an ideal approach to managing and 

addressing these challenges and aids decision makers in selecting among alternatives. 

It is extremely important to understand the mechanical behavior and possible failure 

mechanisms of geotechnical structures. Simulations and modeling help us to 

understand these mechanisms and provide safe designs by taking into account 

different loading scenarios to predict anticipating problems that can occur during the 

lifetime of a project. These virtual experiments enable us to perform complex 

deformation, soil-structure interaction and liquefaction analyses which are hard or 

impossible to do with analytical methods. 

A constitutive model basically refers to a mechanism describing the relationship 

between the stress and the strain in a material. Considering the nature of the soil, 

numerical simulation of the mechanical behavior of complex coupled geotechnical 

problems require sophisticated constitutive models (Vakili et al. 2013). That is why 

selecting an appropriate constitutive model is the key for the accuracy of the numerical 

analyses. Type of the material, multi-phase calculations, loading scenario, complexity 

of the geometry and boundary conditions are some of the main parameters which 

should be considered while selecting a suitable material model. The knowledge of the 

capabilities, advantages and disadvantages of the selected material model enables us 

to determine limits where the accurate simulations can be performed. 
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1.1. Problem Statement 

The finite element method (FEM) is one of the most commonly used numerical 

technique for simulating the mechanical behavior of soil and designing engineering 

problems. The FEM works on the principle of divide and rule which means 

transforming a physical system having infinite unknowns into small finite elements 

having a finite number of unknowns. These unknowns are called as degree of 

freedoms. Instead of solving the problem for the entire body in one operation, the 

solutions are formulated for each member and combined to obtain the solution for the 

entire body. In this regard, the analysis of a model is a mathematical description of the 

physical system where the validity of the calculations mainly depends on the material 

model used to describe the mechanical behavior, the applicable boundary conditions 

and assumptions implemented into the model to simplify the complexity of the 

physical system. Today, in order to overcome the effects of these simplifications and 

idealizations, predefined safety factors are used which most of the time lead us to 

overly safe designs and uneconomical solutions.  

One of the commonly made assumptions in geotechnical engineering is related with 

the permeability of the soil which is one of the most important parameters controlling 

the hydromechanical behavior of the coupled two-phase systems, especially under 

cyclic and dynamic loading conditions. Because of the relatively high permeable 

characteristics of the sandy soils, the pore water pressure development observed 

during the deformation process dissipates very quickly. That is why the time 

dependent settlements are generally not considered for this type of soils. Based on this 

reasonable idealization, the effect of the deformation dependent porosity change on 

the permeability of the soil is ignored. In other words, together with the settlements 

and all the other deformations, permeability is also not considered as a time dependent 

variable and instead a constant value is assigned to idealize the dissipation mechanism 

of the two-phase sandy soil system. 
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The behavior of soils under cyclic and dynamic loading is recognized as one of the 

most challenging fields of soil mechanics due to the inherently strong coupling effects 

inside the two-phase physical system and lack of reliable constitutive models that 

realistically capture the mechanical behavior of soil under cyclic loading (Niemunis 

et al. 2005; Tang and Hededal 2014). Saturated soils under cyclic and dynamic loading 

conditions tend to build-up of pore pressure, shear strength degradation and softening 

(Martin et al. 1975; Andersen 2007; Cary and Zapata 2016). The accumulation of 

irreversible strains in the soil due to cyclic and dynamic loading leads to pore pressure 

development which has to be considered in the design of geotechnical structures. So 

that understanding the factors affecting the development process of pore pressure 

accumulation is critical for a proper description of the soil behavior under cyclic and 

dynamic loading. 

As geotechnical engineers, we always assume that there is no time dependent 

settlements in sandy soils. This assumption is made by comparing the deformation 

process of sand and clay. In clayey soils consolidation may take years however in 

sandy soils it takes seconds, minutes or hours depending on the grain size distribution 

and loading type. Step by step small rate loading may not create a difference but in 

case of high frequency loading (e.g. earthquake) the hydro-mechanical behavior of the 

soil becomes much more complex that we cannot handle with this simplified 

permeability assumptions anymore. For example, for a liquefaction analysis, we have 

to consider the instantly changing, dynamic hydro-mechanical behavior of the soil. 

Under different types of structural and environmental loading, interconnected solid 

particles with intermediate pores filled with fluid may lead to built-up of pore pressure, 

shear strength degradation and yielding material softening. Therefore, it creates risks 

on the stability of the structures and foundation systems and difficulties during design 

process. The pore pressure accumulation caused by dynamic loading conditions 

should be investigated carefully in design of foundation systems. Especially, for the 

structures under heavy cyclic and dynamic loadings. 
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1.2. Research Objectives 

In this thesis, complex drainage mechanism of the fully saturated sandy soils (two-

phase system) is investigated and the effects of it on the mechanical behavior, 

especially under cyclic and dynamic loading conditions, are determined by using 

numerical and experimental simulations. 

It is acknowledged that the compressibility and the permeability are two coupled 

factors that affect the hydro-mechanical behavior and overall response of the saturated 

soils (Liang et al. 2017). During the deformation, porosity of the soil changes and 

depending on that change, permeability of the soil also changes (Di and Sato 2003). 

One of the fundamental objectives of this thesis is to identify the geotechnical 

engineering problems where the porosity-permeability variation is considered 

necessary for a sufficiently accurate description of the complex deformation 

mechanisms such as compression, swelling or even liquefaction (Bayraktaroglu and 

Taşan 2018).  

In order to achieve the above-mentioned objectives following steps are taken: 

- Hypoplastic constitutive model with intergranular strain concept is 

implemented into the ANSYS to describe the stress-strain behavior of the soil. 

- A sophisticated numerical model based on the three-dimensional fully coupled 

two-phase finite element is developed for the saturated sands. 

- A comparison among the variety of porosity-permeability relationships 

available in the literature is carried out. 

- The Kozeny-Carman relationship is selected and then implemented into the 

model to investigate the effect of porosity variation on the hydromechanical 

behavior of the saturated soil. 

- The accuracy of the improved model is verified using the experimental data 

both obtained from literature and performed in the laboratory. 

- The necessity of the porosity-permeability relationship is discussed for 

different type of geotechnical problems. 
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1.3. Scope 

This thesis investigates the effect of permeability variation on the mechanical behavior 

of saturated sandy soils. Unlike the current application, the stress and the strain 

relationship is investigated by taking into account a porosity dependent permeability 

equation. The theoretical and experimental background of these equations is explained 

in Chapter 2. Moreover, a summary of the constitutive models used to simulate the 

mechanical behavior of the sandy soils are presented and two-phase model which is 

required for a coupled analysis of the fully saturated system is discussed within the 

same chapter. In Chapter 3, the accuracy of the finite element model developed for the 

predefined problem is verified by using element tests available in the literature and a 

laboratory experiment carried out in our department. Three different real-world case 

studies including an earthquake induced dyke centrifuge test and a jacket type gravity-

based offshore wind turbine foundation subjected to cyclic loading are numerically 

modelled in Chapter 4. Last of all, in Chapter 5, based on the numerical results, the 

necessity of the consideration of porosity-permeability variation for the realistic 

modelling of geotechnical structures subjected to cyclic and dynamic loading is 

assessed. Conclusions and suggestions for future studies are presented. 

1.4. Notation and Tensor Operations 

In this thesis, the notations of the well known continuum mechanics books are adopted 

(Malvern 1969), (Truesdell and Noll 1965). Scalars are indicated by using regular 

symbols and characters (e.g. 𝜀, 𝐹, 𝛼). Vectors and second-order tensors (rank 2) are 

distinguished by bold typeface (e.g. 𝐍, 𝐓, 𝐯). Calligraphy letter is used for the fourth-

order tensors (e.g. L, D ). Kronecker’s symbol, 𝛿𝑖𝑗 equals to 1 for 𝑖 = 𝑗 and zero 

otherwise. Permutation symbol, 𝑒𝑖𝑗𝑘 = 1 for {𝑖, 𝑗, 𝑘} ⊂ {{1,2,3}, {2,3,1}, {3,1,2}} and 

𝑒𝑖𝑗𝑘 = −1 for {𝑖, 𝑗, 𝑘} ⊂ {{1,3,2}, {2,1,3}, {3,2,1}}, 𝑒𝑖𝑗𝑘 = 0 for any other scenario. 
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Proportional tensors are indicated by using tilde (e.g. 𝐓 ∼ 𝐃) and normalized tensors 

denoted by an arrow (e.g. �⃗⃗� ). The unit tensor of second and fourth order are denoted 

by 𝟏 (or 𝛿𝑖𝑗) and I (or 𝐼𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙) respectively. 

The following tensor operations are used throughout this thesis: 

Table 1.1. Tensor operations 

Operations 
Mathematical 

Representation 
Explanations 

𝐚 · 𝐛 𝑎𝑖𝑏𝑖 Single contraction (multiplication 

with one dummy index) 

𝐜 · 𝐝 𝑐𝑖𝑗𝑑𝑗𝑘  

𝐀 ∶ 𝐁 𝐴𝑖𝑗𝐵𝑖𝑗 Double contraction (multiplication 

with two dummy indices) 

‖𝐃‖ √𝐷𝑖𝑗𝐷𝑖𝑗 Euclidean norm (or 𝐿2 norm) 

𝐚 ⊗ 𝐛 𝑎𝑖𝑗𝑏𝑘𝑙 Dyadic multiplication 

(𝐚 × 𝐛)𝒊 𝑒𝑖𝑗𝑘𝑎𝑗𝑏𝑘 Vector multiplication 

𝛁𝐚 𝑎𝑖,𝑗 Gradient 

𝛁 · 𝐚 𝑎𝑖𝑗,𝑖 Divergence 

𝛁s𝐚 1
2⁄ (𝑎𝑖,𝑗 + 𝑎𝑗,𝑖) Symmetric part of the gradient 

�⃗⃗� =
𝐀

‖𝐀‖
 

 Normalized tensors 

tr(𝐚) 𝑎𝑖𝑖 Trace 

tr(𝐀𝐓 · 𝐁) 𝐴𝑖𝑗𝐵𝑖𝑗 Relation between trace and double 

contraction 

dev(𝐜) 𝑐𝑖𝑗 − tr(𝐜)𝛿𝑖𝑗 Deviator 

�̇� 𝑐𝑖𝑗,𝑡 or 𝜕𝐜 𝜕𝑡⁄  Time derivative 
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CHAPTER 2  

 

2. RESEARCH BACKGROUND 

Theoretical modeling of the geotechnical structures requires well-defined constitutive 

models that can capture the non-linear behavior of the soil. The formulation of the 

stress-strain response of the soil in these models is the key to successfully predict the 

mechanical behavior of the geotechnical structures (Carter 2006). However, it is a fact 

that none of the constitutive models can fully represent all aspects of the behavior of 

the soil but should consider some important features (Herle 2008). There are plenty of 

constitutive models available in the literature from very basic linear elastic models to 

complex plastic models and unfortunately, the important details and idealizations 

considered while developing these models are often poorly understood or ignored by 

the researchers and geotechnical engineers (Li and Borja 2005). In this chapter 

development of a complex constitutive model (both formulation and parameter 

determination), hypoplasticity, will be presented and prediction capabilities, 

application scope, merits and shortcoming of the model will be discussed. 

In this thesis, fully saturated sandy soil is considered as a two-phase mixture consisting 

of solid grains and fluid occupying the pores in the skeleton. Computational procedure 

and formulations required for the coupled finite element analysis of the two-phase 

model are emphasized.  

Using the permeability relationships developed for porous media available in the 

literature, effects of the permeability variation on the mechanical behavior of the 

saturated sandy soils are investigated under various loading conditions. The 

experimental and theoretical background of the selected relationships is discussed. 

The complexity of the fluid flow through the porous media is described together with 

the limitations of it. Numerical implementation of the porosity-permeability 

relationship into the two-phase model is formulated in order to accurately simulate the 

geotechnical engineering problems.  
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2.1. Constitutive Models 

Prediction of the deformation mechanism of soil has always been one of the greatest 

interests in geotechnical engineering. The mathematical description of this mechanism 

is idealized by using constitutive models. In other words, the relationship between the 

stress and strain components are linked by using constitutive equations. Role of these 

equations and numerical modeling within geotechnical engineering is very well 

illustrated by (Burland 1987) and (Barbour and Krahn 2004) as shown in Figure 2.1. 

 

Figure 2.1. Modified Burland triangle 

According to Professor Burland geotechnical engineering practice consists of three 

main activities. By linking these three activities which are the most important aspects 

of geotechnical engineering, what is called Burland Triangle is obtained. Burland 

triangle perfectly illustrates the relationship between the different aspects of 

geotechnical engineering and summarizes the considerations we need to keep in mind 

while performing numerical simulations and using various constitutive models. Figure 

also describes constitutive models as an idealized mathematical system which is 
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obtained from observation of site conditions and understanding of soil behavior 

through laboratory and field tests. On the other hand, understanding of these complex 

physical systems and predicting soil behavior require some conceptual knowledge of 

constitutive modeling (Carter 2006). 

The continuum models developed for the numerical investigation of soil behavior 

cover a large spectrum from very simple elastic and perfectly plastic models to 

sophisticated models with several yield surfaces, including complex hardening and 

softening laws (Hofstetter et al. 2016). An example classification that shows the 

hierarchical relationship between the widely used constitutive models is given in 

Figure 2.2.  

 

Figure 2.2. Example of a classification of constitutive models (Herle, 2008) 

The selection of the constitutive model depends on the scope of the problem and the 

level of accuracy planning to be achieved. Even though it is mathematically possible 

to model a highly nonlinear system by using a linear material model, the results 

obtained at the end of the simulation will not be reliable and will not represent the real 

respond of the physical system, especially in case of large deformations. That is why 

the constitutive models used to predict the actual deformations should be selected very 

carefully in geotechnical engineering due to highly nonlinear, plastic and complex 

nature of the soil.  

Today’s increasing computational power enables and promotes engineer to simulate 

complex physical systems by using advanced highly accurate constitutive models.  
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However, together with the increasing complexity, it becomes more difficult to 

understand conceptual background and control the limitations of these mathematical 

expressions (Runesson 2006) and (Herle 2008).  

In this thesis, elasticity has been used for the numerical validation of the two-phase 

element and determination of the initial conditions. In addition to the elasticity, 

hypoplasticity has been used for the numerical simulation of the mechanical behavior 

of the sandy soils. A detailed description of the constitutive models used in this thesis 

with the finite element analyses, procedure of parameter determination and calibration 

have been presented in the following sections. 

2.1.1. Linear Elasticity 

Linear elasticity is one of the simplest constitutive law which describes the material 

behavior using a linear relationship between stress, 𝛔 and strain, 𝛆 components. In 

elasticity, the stress-strain relationship at a point is considered as rate independent 

(sequence of operations and history of loading do not affect the current stress-strain 

state). The most general linear relation among all the components of the stress and 

strain tensor is defined by generalized Hooke’s law as shown in the Equation (2.1), 

 𝛔 = C · 𝛆 (2.1) 

For an elastic isotropic material, elasticity or stiffness tensor, C can be obtained by 

taking inverse of the compliance tensor, 

C =
E

(1 + 𝜈)(1 − 2𝜈)

[
 
 
 
 
 
 
 
 
1 − 𝜈 𝜈 𝜈 0 0 0

𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0
1 − 2𝜈

2
0 0

0 0 0 0
1 − 2𝜈

2
0

0 0 0 0 0
1 − 2𝜈

2 ]
 
 
 
 
 
 
 
 

 (2.2) 

where E is Young’s modulus and 𝜈 is Poisson’s ratio.  
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The linear elasticity turns out to be an excellent predictor for the investigation of small 

strain deformations and can be used for the loose sands at small-strain level (Nader 

2012). Considering the path dependent, nonlinear and inelastic response of the soil, 

the linear behavior can be considered valid only for the very small deformations with 

a strain value less than 10−5 (Jardine et al. 1984; Niemunis and Herle 1997). 

In this thesis, linear elastic material model is used for the verification of the two-phase 

model by comparing the numerical result with the analytical solution. Even though 

the grain particles are considered as incompressible, at least under the loads 

geotechnical engineers dealing with, a linear elastic material model employed for 

consideration of grain compressibility. Finally, and most importantly, linear elasticity 

is used to calculate the initial stress state of the soil which is required for the initiation 

of the more complex hypoplastic constitutive model. 

2.1.2. Hypoplasticity 

The stress-strain behavior of the cohesionless soils can be realistically modeled by 

using an incrementally non-linear constitutive model, hypoplasticity. Unlike the 

elastoplastic models, the hypoplasticity does not distinguish between the elastic and 

plastic deformation and does not contain any yield surface, plastic potential, flow and 

hardening rule (Kolymbas 1985; Bauer, Calibration of a comprehensive hypoplastic 

model for granular materials 1996). In addition, hypoplasticity provides an alternative 

mathematical description for granular soils by means of a single tensorial equation. In 

other words, switch functions that are used in elastoplastic models to differentiate the 

loading and unloading paths are replaced by a single nonlinear tensorial equation that 

can capture the dissipative behavior, plastic flow and nonlinearity with a more 

comprehensible and easier way (Kolymbas 1993; Chatra and Dadagoudar 2010). The 

model is suitable to consider the effects of stress level (barotropy), densification 

(pyknotropy), dilatancy and material softening which is observable during shearing of 

granular materials (Bayraktaroglu and Taşan 2018; Gudehus, A comprehensive 
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constitutive equation for granular materials 1996; Bauer, Calibration of a 

comprehensive hypoplastic model for granular materials 1996).  

The effects of deformation direction and soil state on stiffness, dilatation, shrinkage 

and peak friction angle are considered in hypoplastic model. The influence of the 

stress distributions and unit weight change on the mechanical behavior of the soil is 

also taken into account. 

In hypoplastic model, granular medium (skeleton and pore volume) is considered as a 

continuum and the state of representative volume is characterized by the current 

granular effective stress (Cauchy stress), 𝐓 and the void ratio, 𝐞 as shown in Equation 

(2.8) (Herle and Mayer 2009). Therefore, instead of modeling each grain, which is 

what discrete element method (DEM) is based on (Yun et al. 2008; Siu and Lee 2004), 

behavior of the soil is considered in a general manner (macro-scale modeling) in 

hypoplasticity. This approach enables us to perform efficient and relatively fast 

numerical analyses especially for the full-scale geotechnical engineering problems 

such as dams and offshore foundations. Indeed, it would be great to be able to analyze 

such huge problems using more detailed micro-scale modeling with DEM and predict 

the mechanical behavior from granulometric properties. But, considering the current 

computational power of the computers, numerical micro-scale modeling of samples 

with more than 105 particles, which includes the consideration of the deformation path 

(movement) of each individual grains and their contact forces, is not feasible and far 

from being practical (Niemunis 2002; Chavez Abril 2017).  

Over the years, various hypoplastic formulations have been proposed to model 

nonlinear stress-strain relationship (stiffness) of the system and all these different 

versions of the hypoplastic models have been developed over similar tensorial 

expressions such as L and 𝐍 as shown in Equation (2.3). 

 𝐓
∘

= L ∶ 𝐃 + 𝐍 · ‖𝐃‖ (2.3) 
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In above given equation, the rate of nonlinear stress propagation (or objective stress 

rate tensor), 𝐓
∘
 which is the Jaumann stress rate of the effective stresses 𝐓 is formulated 

using fourth and second order constitutive tensors L and 𝐍. These tensors control the 

linearity and nonlinearity in strain rate (stretching) tensor, 𝐃 respectively (Heeres 

2001; Wu et al. 1993). The first term of the Equation (2.3), L ∶ 𝐃 is linear in 𝐃 and 

used to identify the particular case where the soil behavior is hypoelastic; on the other 

hand, the second term, 𝐍 · ‖𝐃‖ is nonlinear in 𝐃 and responsible from the path 

dependent deformations. Remember that, the Euclidean norm of strain rate equals to: 

‖𝐃‖ = √DijDij and tensorial double multiplication is denoted by L : 𝐃 = LijklDkl 

(Table 1.1). 

Hypoplasticity is a path-dependent and rate-independent constitutive model 

(Niemunis 2002), that is, rather than the duration of the deformation process, the 

sequence of deformations is used to formulate the stress response of the granular 

system. Due to this rate-independency, the first derivative of the 𝐓 is positively 

homogeneous of the first degree with respect to 𝐃 as indicated in Equation (2.4) 

(Kolymbas 1999). 

 h(𝐓, 𝐞, λ𝐃) = λh(𝐓, 𝐞, 𝐃) for λ > 0 (2.4) 

The change of stiffness and corresponding effects on nonlinear behavior is controlled 

by changing the sign of the strain rate, 𝐃 (Meißner 2014). Note that, due to the 

nonlinear nature of the model, Equation (2.5) is not linear in 𝐃 which also provides 

the differentiation of the loading and unloading paths. 

 h(𝐓, 𝐞, −𝐃) ≠ −h(𝐓, 𝐞, 𝐃) (2.5) 

Hypoplastic model has been developed based on phenomenological and macroscopic 

approach (Niemunis 2002). Similar to the previously developed phenomenological 

models, the mathematical formulations describing the stress-strain relationship have 

been derived from the experimental data obtained from well-defined physical tests and 

relevant principles of physics (Winde H. P. 2015) and (Runesson 2006). Unlike the       

data-based empirical models and physics-based analytical models which rely purely 
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on the fundamental laws of physics (e.g. conservation of mass and energy), 

phenomenological hypoplastic model relates these two approaches and link them to 

formulate the mechanical behavior of the soil (Aubram et al. 2015).  

Before going into further detail about hypoplasticity, the important assumptions and 

considerations required to idealize granular system and formulate the stress-strain 

relationship using hypoplasticity will be given as follows: 

• The state of the soil is defined solely by the stress tensor 𝐓 and void ratio 𝐞. 

• The model is defined within the pressure dependent lower and upper void ratio 

limits (Figure 2.7. 

• During the deformation process, each individual grain is considered as 

mechanically and granulometrically permanent (simple grain skeleton). 

Deformation of a single grain, (i.e. abrasion or crushing), is ignored. The 

displacement of the granular system is considered to be the result of the 

rearrangement of the particles (Herle and Gudehus 1999). 

• The formation of the macrovoids which is observed in case of the existence of 

the voids larger than mean particle size (e > emax), Figure 2.3 and formation 

of clumps and flocculation (especially in the existence of water) are not taken 

into account in hypoplasticity (Niemunis 2002). For e > emax grain contacts 

disappear, so that a skeleton no longer exists (Herle and Gudehus 1999). 

 

Figure 2.3. Macrovoids 

• Physico-chemical effects and cementation between the particles are not taken 

into account (Kolymbas 1985). 
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• The deformation and strain accumulations are formulated based on 

homogeneous boundary conditions so that shear localizations are ignored 

(Niemunis and Herle 1997; Niemunis 2002). 

• Since the model is rate independent, time dependent behavior such as creep 

and relaxation cannot be investigated by using hypoplastic model (visco-

hypoplastic models developed by Niemunis or Wu can be used for the 

consideration of rate dependency). 

In the following parts of the Chapter 2, a review of the mathematical background and 

applicability of the hypoplastic constitutive model for the cyclic loaded granular soils 

are presented. The laboratory experiments and numerical methods required to 

determine the model parameters are explained systematically. 

2.1.2.1. Basic Hypoplasticity 

The theory of hypoplasticity was developed by Kolymbas in 1985 as an alternative to 

elastoplastic models (Kolymbas 1985). Over the years, various modifications and 

improvements have been proposed by (Wu et al. 1993; Wu and Bauer 1994; Kolymbas 

et al. 1995; Bauer 1996; Gudehus 1996; Wu et al., Hypoplastic constitutive model 

with critical state for granular materials 1996). In this thesis, Wolffersdorff ’s version 

of  hypoplasticity (von Wolffersdorff 1996) with the so-called intergranular strain 

concept (Niemunis and Herle 1997) has been used to simulate the mechanical behavior 

of the granular soil (Molenkamp et al. 2010). In order to point out the difference 

between the hypoplastic models, the terms so-called “basic hypoplasticity” and 

“reference model” have been used for the hypoplastic models defined without 

intergranular strain concept and the version improved by von Wolffersdorff 

respectively. 

Although the basic hypoplastic models perform very accurate simulations for granular 

materials subjected to monotonic loading conditions, prediction capability of them 

under cyclic and dynamic loadings are not that good (Anaraki, Hypoplasticity 

Investigated: Parameter Determination and Numerical Simulation 2008; Dung 2010; 
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Molenkamp et al. 2010). Numerical simulations performed using basic hypoplasticity 

revealed some shortcomings in the small strain region as an excessive accumulation 

of plastic deformation and pore pressure, especially during the change of loading 

direction (i.e. loading and unloading) (Niemunis and Herle 1997). The detailed 

information regarding the outcomes of these shortcomings and the solution proposed 

by (Niemunis and Herle 1997) are presented in the next part: “Extended 

Hypoplasticity”. 

The first version of the hypoplastic constitutive law, which is developed by (Kolymbas 

1985), was defined with a single state variable, granular effective stress 𝐓 and sets of 

material constants 𝐶1, 𝐶2,  𝐶3 and 𝐶4 determined from the critical state Equation (2.6) 

and (2.7) (Kolymbas 1985; Wu 1992). 

 𝐓
∘

= 𝐓
∘
(𝐓, 𝐃) (2.6) 

 𝐓
∘

= 𝐶1

1

2
(tr𝐓)𝐃 + 𝐶2

tr(𝐓 · 𝐃)

tr𝐓
𝐓 + [𝐶3

𝐓 · 𝐓

tr𝐓
+ 𝐶4

𝐓∗ · 𝐓∗

tr𝐓
] ‖𝐃‖ (2.7) 

Later, these material constants were formulated in terms of the void ratio 𝐞. 

Determination of material parameters from the granulometric properties of the soil 

made the calibration procedure easier. Also, with that improvement, constitutive 

model gained the ability of investigating the effects of changing void ratio (Bauer 

1996; von Wolffersdorff 1996). The general form of the void ratio dependent 

hypoplastic equation took the following form, 

 𝐓
∘
(𝐓, 𝐞, 𝐃) = L(𝐓, 𝐞) ∶ 𝐃 + 𝐍(𝐓, 𝐞) · ‖𝐃‖ (2.8) 

The above given Equation (2.8), was further modified by (Gudehus 1996) to include 

the influence of the stress level (barotropy) and the densification (pyknotropy) on the 

mechanical behavior of the soil. This modification led model to a consistent 

description of the SOM state (Sweeping out of memory) (Bauer et al. 2003). The 

modified constitutive equation proposed by Gudehus reads as,  

 𝐓
∘

= 𝑓sL ∶ 𝐃 + 𝑓s𝑓d𝐍 · ‖𝐃‖ (2.9) 
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 OR  

 𝐓
∘

= 𝑓s[L ∶ 𝐃 + 𝑓d𝐍 · ‖𝐃‖] (2.10) 

Here the constitutive tensors L and 𝐍 are factorized with the void ratio dependent 

dimensionless scalar factors 𝑓s and 𝑓d to control the influence of the barotropy and 

pyknotropy. The influence of the current void ratio and the mean pressure is taken into 

account by the barotropy factor 𝑓s and the pyknotropy factor 𝑓d is used to incorporate 

strain softening and critical state concepts into the model (Bauer 1995). 

Soils have a unique characteristic that they can change in volume when they sheared. 

Referring to the fundamental knowledge of the soil mechanics, under continuous 

shearing, depending on the initial condition, soil contracts or dilates and independent 

from the initial condition, comes into a state where the material keeps deforming at 

constant stress and volume. The mathematical correspondence of the previous 

sentence is implemented into the elastoplasticity with the critical state concept. The 

counterpart of this approach in hypoplasticity can be obtained as follows, 

 For 𝐞 = 𝐞c and 𝐓 = 𝐓c, continued shear takes place at a stationary stress state 

and constant void ratio, 

 �̇� = 0 (or ε̇v = 0) and 𝐓
∘

= 0 (2.11) 

 Using the general form of the hypoplastic constitutive relationship given in 

the Equation (2.10), 

 𝐓
∘

= 𝑓s[L ∶ 𝐃 + 𝑓d𝐍 · ‖𝐃‖] = 0 (2.12) 

 

By definition, in order to describe the critical state, the factor 𝑓d is formulated 

such that 𝑓d = 1 must be satisfied for 𝐞 = 𝐞c, see Equation (2.34). Then the 

direction of the strain rate (a kind of flow rule) is obtained as, 

 �⃗⃗� =
𝐃

‖𝐃‖
= −L−𝟏

: 𝐍 (2.13) 

 By using the definition of the Euclidean norm given in the Table 1.1, left hand 

side of the Equation (2.13) can be written as, 

 �⃗⃗� : �⃗⃗� = ‖�⃗⃗� ‖
𝟐

=
𝐃:𝐃

‖𝐃‖2
= 1 (2.14) 
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 Inserting the Equation (2.13) into the relation given in the Equation (2.14) we 

obtain, 

 (L−𝟏
: 𝐍): (L−𝟏

: 𝐍) − 1 = 0 (2.15) 

 

So far, for all the derivations, only one of the conditions (𝐓
∘

= 0) stated in 

Equation (2.11) has been used. But, in order to fully satisfy the critical state 

conditions given in the Equation (2.11), �̇� = 0 (or ε̇v = 0) should also be 

incorporated. 

 By definition, the volumetric strain can be written as, 

 εv = ε11 + ε22 + ε33 (2.16) 

 OR  

 εv = tr(𝛆) (2.17) 

 The constant volume at failure is,  

 ε̇v = tr(�̇�) = tr(𝐃) = 0 (2.18) 

 
1

‖𝐃‖
tr(𝐃) = tr (

𝐃

‖𝐃‖
) = tr(�⃗⃗� ) = 0 (2.19) 

 
Finally, combining the Equation (2.13) and the Equation (2.19), a failure 

surface defined by tensors L and 𝐍 is obtained, Equation (2.20). 

 tr(L−𝟏
: 𝐍) = 0 (2.20) 

 
For a better mathematical representation, Equation (2.20) can be rewritten as 

follows, 

 tr(L−𝟏
: 𝑵) = tr (𝟏: (L−𝟏

: 𝐍)) (2.21) 

 tr (𝟏: (L−𝟏
: 𝐍)) = 0 (2.22) 

 𝟏: (L−𝟏
: 𝐍) = 0 (2.23) 

 where 𝟏 is the unit tensor. 

For all 𝐓 ∈ {𝐓|𝐓
∘

= 𝟎} ∩ 𝐞 ∈ {𝐞|�̇� = 0},  Equation (2.23 or 2.20) describes the critical 

stress state. This stress and void ratio dependent yield function can be generalized as, 

 𝑦(𝐓, 𝐞) = 𝟏: (L−𝟏
: 𝐍) = 0 (2.24) 
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Unlike the previous versions of the hypoplasticity, (von Wolffersdorff 1996) 

implemented a predefined well-established critical state concept adopted from 

(Matsuoka and Nakai 1974) into the model previously developed by (Gudehus, A 

comprehensive constitutive equation for granular materials 1996). This model which 

is referred as the reference model nowadays considered as a standard basic hypoplastic 

model for granular soils. The mathematical representation of the modified L and 𝐍 

tensors, which include the (Matsuoka and Nakai 1974) failure criterion, can be written 

as, 

 L =  𝑓s
1

�̂� ∶ �̂�
(𝐹2I + 𝑎2�̂� ⊗ �̂�) (2.25) 

 𝐍 = 𝑓s𝑓d
𝑎 · 𝐹

�̂� ∶ �̂�
(�̂� + �̂�∗) (2.26) 

Using these modified tensor Equations (2.25 and 2.26), the constitutive equation of 

the von Wolffersdorff’s hypoplastic model can be written as, 

 𝐓
∘

= 𝑓s
1

tr(�̂�𝟐)
(𝐹2𝐃 + 𝑎2tr(�̂�𝐃)�̂� + 𝑓d𝑎𝐹(�̂� + �̂�∗)‖𝐃‖) (2.27) 

where, 

❖ �̂� = 𝐓 tr(𝐓)⁄  is dimensionless (normalized) stress obliquity and �̂�∗ = �̂� −
1

3
𝟏 

is dimensionless stress deviator. Note that, tr(𝐓) 3⁄  corresponds to mean 

pressure. 

❖ The term I (fourth order unit tensor) is given by, 

 I𝒊𝒋𝒌𝒍 = 0.5 · (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (2.28) 

❖ The scalar coefficients 𝑎 and 𝐹 are adapted from the Matsuoka-Nakai failure 

criterion. The yield surface and the shape of the deviatoric plane obtained using 

these coefficients are given in Figure 2.5. 

 𝑎 =
√3(3 − sin 𝜑c)

2√2 sin𝜑c

 (2.29) 
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 𝜑c: critical state friction angle (Hypoplastic model parameter)  

 𝐹 = √
1

8
tan2 𝜓 +

2 − tan2 𝜓

2 + √2 tan𝜓 cos 3𝜃
−

1

2√2
tan𝜓 (2.30) 

 with,  

 tan𝜓 = √3‖�̂�∗‖ (2.31) 

 cos 3𝜃 = −√6
tr(�̂�∗ · �̂�∗ · �̂�∗)

[�̂�∗ ∶ �̂�∗]
3 2⁄

 (2.32) 

The geometrical representation of the tan𝜓 and Lode angle 𝜃 are given in 

Figure 2.4. 

❖ The scalar barotropy (stress level) factor 𝑓s, 

 𝑓s =

ℎs

𝑛 (
𝑒i

𝑒)
𝛽

(
1 + 𝑒i

𝑒i
) (

−tr(𝐓)
ℎs

)
1−𝑛

3 + 𝑎2 − 𝑎√3(
𝑒i0 − 𝑒d0

𝑒c0 − 𝑒d0
)
𝛼  (2.33) 

❖ The scalar pyknotropy (densification) factor 𝑓d, 

 𝑓d = (
𝑒 − 𝑒d

𝑒c − 𝑒d
)
𝛼

 (2.34) 

The parameters used to formulate above given equations: 𝜑c, ℎs, 𝑛, 𝑒d0, 𝑒c0, 𝑒i0, 𝛼 

and 𝛽 are the hypoplastic constitutive model parameters obtained from the laboratory 

experiments. The physical meanings of these parameters are given in Table 2.1 and 

methods used to determine them are detailly explained in section 2.1.2.3. 
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Table 2.1. Hypoplastic Model parameters (Bayraktaroglu 2018, Reyes et al. 2009) 

Parameter Physical Meaning 

𝜑c Critical state friction angle 

ℎs and 𝑛 Controls the shape of the compression curve 

𝑒d0, 𝑒i0 and 𝑒c0 

Reference void ratios (minimum, maximum 

and critical respectively) controlling limiting 

void ratios at zero pressure (stress free state) 

𝛼 
Describes the transition between peak and 

critical stress and controls the dilatancy 

𝛽 
Controls the relation between the relative 

density and stiffness 

 

The angles  𝜓 and 𝜃, which are used to formulate coefficients 𝑎 and 𝐹, locates the 

position of Cauchy stress  𝐓 in the space of principal stresses as shown in Figure 2.4. 

 

Figure 2.4. The geometrical representation of the tan ψ and Lode angle θ in the stress space. 

Implementation of a failure criterion into a constitutive model is essential for the 

realistic representation of the soil behavior upon failure. For that purpose, within the 

framework of the constitutive model, an admissible stress range should be defined 
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using a failure criterion (Puzrin 2012). Furthermore, a control mechanism should be 

employed such that the stresses beyond the predefined range are projected back to 

yield surface together with a flow (preferably non-associative) and a hardening rule 

(Wichtmann, Explicit Accumulation Model for Non-cohesive Soils under Cyclic 

Loading 2005). 

Among the many failure criteria (e.g. Tresca, von-Mises, Mohr-Coulomb) 

hypoplasticity incorporates the Matsuoka-Nakai failure criterion. Compare to the 

other failure criteria, Matsuoka-Nakai has neither a circular (von-Mises) nor a 

hexagonal (Mohr-Coulomb) deviatoric plane. Similar to the relation between Tresca 

and von-Mises criteria; Matsuoka-Nakai criterion is formulated by averaging the 

Mohr-Coulomb in such a way that both criteria match at Mohr-Couloms’s hexagonal 

corners (triaxial compression and extension) Figure 2.6 (Matsuoka and Nakai 1974). 

The shape of the failure criterion is illustrated in Figure 2.5. 

 

Figure 2.5. Matsuoka-Nakai failure criterion (a) in deviatoric plane (b) in 3D principal stress space  

The implementation of the Matsuoka-Nakai criterion do not just provide a better 

approximation of the soil behavior, but also the smoothened path provides a better 

numerical efficiency at the corners. From computational point of view, it is a known 

fact that vertices at failure surfaces require more computational power (Bocchi 2014; 

Winde H. P. 2015).  

  

  

  

        

  

  

  

(a) (b)
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Figure 2.6. Failure criterion of Matsuoka-Nakai and Mohr-Coulomb (Wichtmann, 2005) 

The influence of the stress level (barotropy) and densification (pyknotropy) on the 

stiffness of the system is taken into account by using Equation 2.33 and 2.34 

respectively. In these equations, reference void ratios with “0” indices (𝑒d0, 𝑒i0 and 

𝑒c0, given in Table 2.1) and mean stress dependent limiting void ratios 𝑒d, 𝑒i and 𝑒c 

are used. Here, 𝑒d and 𝑒i defines admissible states (in other words, possible minimum 

and maximum void ratios) at any stress, p. The shaded area in Figure 2.7. represents 

the inadmissible area. 

 

Figure 2.7. Relation between limiting void ratios and mean effective stress 

According to (Bauer 1996) the void ratio curves are affinitive to each other as a 

function of the mean effective stress and asymptotically approach a threshold value at 

high stresses. This coincides with the investigations of (Lee and Seed 1967). The 

mathematical formulation of the afore-mentioned relation is given in Equation 2.35, 
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𝑒i

𝑒i0
=

𝑒c

𝑒c0
=

𝑒d

𝑒d0
= exp [− (

3 · p

ℎs
)
𝑛

] (2.35) 

where mean effective stress p = tr(𝐓) 3⁄ . 

In this part, the mathematical description of the von Wolffersdorff’s version of 

hypoplasticity, reference model, is summarized.  Development of the single tensorial 

equation that describes the stress change due to the rearrangements of the particles is 

formulated. Flow rule, switching functions and failure surface are emerged as             

by-products of the model (they are not defined explicitly in hypoplasticity) (Tejchman 

2008).  

Although the model has a good predictive capability for the soils subjected to 

monotonic loading conditions, it is hard to say the same thing for the repetitive (e.g. 

cyclic and dynamic) loadings. The limitations of the model and the proposed solution 

by (Niemunis and Herle 1997) is explained in detail and outputs of both models 

compared in the next part of the thesis. 

2.1.2.2. Extended Hypoplasticity 

The extended hypoplastic model which is also referred as hypoplastic model with 

intergranular strain (IGS) was developed by (Niemunis and Herle 1997) based on the 

von Wolffersdorff’s reference model. 

Even though the effect void ratio is taken into account and loading/unloading path is 

differentiated with a single tensorial equation, the increase of the stiffness due to 

change of loading direction is not reproduced adequately in the basic hypoplastic 

models (Wichtmann, Explicit Accumulation Model for Non-cohesive Soils under 

Cyclic Loading 2005). According to the (Niemunis 2002), basic hypoplastic models 

exhibit a too low shear stiffness in case of shear deformations near p-axis. As a result, 

model yields excessive deformation and pore pressure accumulations, especially at 

small stress cycles. Unlike the hysteresis loops, a saw-tooth like behavior (ratcheting) 

is produced. For a better illustration of the ratcheting effect, a consolidated undrained 
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(CU) triaxial test is simulated both with and without intergranular strain concepts, 

Figure 2.8.  

 

Figure 2.8. Simulation of an undrained cyclic triaxial (CU) test with and without intergranular strain 

Let’s also mathematically investigate the excessive stress and strain accumulations 

and corresponding ratcheting effect. For the simplicity of the tensorial calculations, 

assume a 1D consolidation problem where the general form of the hypoplastic 

constitutive model, Equation 2.3 can be converted to a scalar form, 

 T
∘

= L · D + N · |D| (2.36) 

assuming a small stress and void ratio change we can conclude that ±∆ε = ±D · ∆t 

where the sign “±” refers to loading and unloading. Multiplying the both side of the 

Equation 2.36 with ∆t, the corresponding stress increment ∆T can be obtained as, 

 ∆T = L · ∆ε + N · |∆ε| (2.37) 

For a full small strain cycle with a path: 0 → ∆ε → 0 → −∆ε → 0, stress accumulation 

becomes, 

 ∆T𝑎𝑐𝑐 = L · ∆ε + N · |∆ε| − L · ∆ε + N · |−∆ε| = 2N|∆ε| (2.38) 

Similarly, for a small stress cycle, strain accumulation becomes, 
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 ∆εacc =
∆T

L+N
+

−∆T

L − N
=

−2N

L2 − N2
∆T (2.39) 

In both calculations, the results are overpredicted. Graphical representation of the 

small strain induced stress accumulation and small stress induced strain accumulation 

are presented in Figure 2.9. 

 

Figure 2.9. Excessive (a) stress and (b) strain accumulations during small strain and stress cycles 

The effects of small strain deformation and path dependence on the soil stiffness are 

started to be investigated with the advancements in the laboratory experiments 

(Jardine et al. 1984; Tatsuoka 1988; Viggiani and Atkinson 1995). Together with that 

experimental data, engineers started to improve their constitutive model so that the 

path dependent behavior is taken into account. In elastoplasticity, the term 

“hardening” is used for that and today most of the advanced elastoplastic models 

include that rule. Theoretical background of the IGS concept is actually similar to the 

kinematic-hardening rule. Both are developed to take into account the stiffness change 

upon reversal of loading or deformation directions. 

In order to overcome these shortcomings and enhance the cyclic capability of the 

model, a new state parameter so-called intergranular strain, 𝐡 is introduced to the 

model, 𝐓
∘
(𝐓, 𝐞, 𝐃, 𝐡), by (Niemunis and Herle 1997). The main idea behind this new 

concept is to create an interface zone that captures the large micro-deformations 

(macroscopic measure of micro-deformations) and stores recent deformation history 
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(Niemunis and Herle 1997). Figure 2.10 very well illustrates the intergranular strain 

concept. In this figure, at the end of the three different deformation paths, soils reach 

a state at point * where they have the same current stress, void ratio and strain rates, 

but different stiffness. Here, bold arrow ends represent the recent deformation history 

and strain rate tensor, 𝐃 is independent from them, however, 𝐡 is defined according 

to them.  

 

Figure 2.10. Relation between intergranular strain, h and deformation history (Niemunis, 2002) 

During deformation, the intergranular strain, 𝐡 increases up to its maximum value, 𝑅 

and remain constant under further deformation. For a better understanding, 1D 

representation of the micro-level deformations between two particles is given in 

Figure 2.11. According to the extended version of the model, the total deformation is 

composed of two stage: first small strain deformations occur in the intergranular zone 

(ε < 𝑅), and then together with the sliding, irreversible rearrangement of particles 

takes place (Masin 2012). 

 

Figure 2.11. 1-D interpretation of the intergranular strain (Niemunis & Herle, 1997) 

Depending on the change in deformation direction, stiffness of soil changes. 

According to the measures, maximum stiffness occurs upon a complete (i.e. 180°) 

strain rate reversal (Atkinson et al. 1990). The stiffness increase after 180° and 90° 
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reversals are represented by ER and ET respectively, in Figure 2.12. In other words, 

ER is the stiffness of the soil when the angle between 𝐡  and �⃗⃗�  is equal to 180°. 

 

Figure 2.12. Characteristic stiffness values for model calibration 

Immediately after the reversal, if shearing continues in the same direction, the stiffness 

values start to decrease and become “almost” equal to each other at ε = ε𝑆𝑂𝑀 (The 

subscript SOM is an abbreviation for “swept-out memory”). Here the important point 

is, the response of the model highly depends on the deformation history until the strain 

reaches ε𝑆𝑂𝑀. After that point, the strain reversal at point * is assumed to be no longer 

affecting the actual respond of the system. At point ε𝑆𝑂𝑀, soil reaches a state in which 

deformation history (or memory) is forgotten (Gudehus 2011). From a mathematical 

point of view, it is assumed that ε𝑆𝑂𝑀 is reached when the additional stiffness due to 

change in deformation direction (e.g. ER − E0) decreases 10% of its maximum value. 

The mathematical formulation of the extended model is constructed over the von 

Wolffersdorff’s reference model. Different from the general form given in        

Equation 2.3, instead of the tensors L and 𝐍, a fourth order stiffness tensor, M is used 

as shown in Equation 2.40. 
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 𝐓
∘

= M(𝐓, 𝐞, 𝐡) ∶ 𝐃 (2.40) 

In this equation, stiffness tensor M is calculated using two hypoplastic tensors L(𝐓, 𝐞) 

and 𝐍(𝐓, 𝐞) and additional state variable 𝐡. 

For an arbitrary value of intergranular strain (0 ≤ 𝐡 ≤ 𝑅), depending on the angle 

between 𝐡  and 𝐃, two distinct conditions need to be formulated:  

- reversal angle is less than 90° (or 𝐡 : 𝐃 > 0) 

- reversal angle is greater or equal to 90° (or 𝐡 : 𝐃 ≤ 0) 

The general form of the “interpolated” stiffness tensor M for any arbitrary                    

𝐡 ∈ {𝐡|0 ≤ 𝐡 ≤ 𝑅} can be written as, 

M = [𝜌χ 𝑚T + (1 − 𝜌χ) 𝑚R] L+{ 
𝜌χ (1 − 𝑚T) L ∶ 𝐡 𝐡 + 𝜌χ𝐍𝐡    for 𝐡 : 𝐃 > 0 

𝜌χ (𝑚R − 𝑚T) L ∶ 𝐡 𝐡                for 𝐡 : 𝐃 ≤ 0
 (2.41) 

where, 

 The normalized magnitude of the intergranular strain, 𝜌 is equal to,  

 𝜌 =
‖𝐡‖

𝑅
 (2.42) 

 The direction of the intergranular strain is defined as,  

 𝐡 = { 
𝐡

‖𝐡‖
     for 𝐡 ≠ 0

    0        for 𝐡 = 0

 (2.43) 

 𝑚T, 𝑚R and χ are material constants (Table 2.2).  

The stress envelopes developed by Equation 2.41 for 𝜌 = 1 and 𝜌 = 0 are depicted in 

the Figure 2.13. Let’s make a deep review for these two special cases and try to 

understand why the term interpolated is used for Equation 2.41: 

First, the case with a fully mobilized intergranular strain, 𝜌 = 1 or 𝐡 = 𝑅 (point B in 

Figure 2.13): 
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- For a monotonic deformation with 𝐃 ~ 𝐡  in which the angle between 𝐃 and  𝐡  

is equal to 0° and 𝐡 : 𝐃 > 0, Equation 2.41 can be simplified to, 

 M = L + 𝐍𝐡  (2.44) 

 
Here note that, 𝐃 = 𝐡 ‖𝐃‖ and 𝐍𝐡 : 𝐃 = 𝐍‖𝐃‖. So, if both sides of the 

Equation 2.44 is multiplied by 𝐃, we obtain: 

 𝐓
∘

= M : 𝐃 = L ∶ 𝐃 + 𝐍 · ‖𝐃‖ (2.45) 

 which corresponds to hypoplastic behavior without intergranular strain. 

- For a complete strain reversal with 𝐃~ − 𝐡  in which the angle between the 

tensors is equal to 180° and  𝐡 : 𝐃 < 0, Equation 2.41 can be simplified to, 

 M = 𝑚R L (2.46) 

 where the stiffness value takes the maximum value.  

- For a 90° change in the direction of deformation, 𝐃 ⊥ 𝐡  and 𝐡 : 𝐃 = 0, 

Equation 2.41 can be simplified to, 

 M = 𝑚T L (2.47) 

 with a range 𝑚R > 𝑚T > 1  

Second, the case with 𝜌 = 0 (point A in Figure 2.13): 

- Independent from the direction of 𝐃,  

 M = 𝑚R L (2.48) 

Above the boundaries of the 𝜌, (i. e.  𝐡 = 𝑅 and 𝐡 = 0)  are defined. But what will be 

the stiffness for  𝜌 ∈ {𝜌|0 < 𝜌 < 𝑅}? Answer: The stiffness tensor will be interpolated 

by a weighted factor 𝜌χ as shown in Equation 2.41. 

The evolution of the deformation dependent intergranular strain tensor is given as, 

 𝐡
∘

= {
 I − 𝐡 𝐡 𝜌𝛽R     for 𝐡 : 𝐃 > 0 

𝐃                     for 𝐡 : 𝐃 ≤ 0
 (2.49) 
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where, 𝛽R is a material constant that controls the evolution of the intergranular strain 

rate. The evolution of intergranular strains for 𝛽R = 1 is illustrated for a simple 1-D 

model in Figure 2.14. 

 

Figure 2.13. Modification of stiffness with mR and mT (Niemunis, 2002) 

 

Figure 2.14. Evolution of the intergranular strain (Niemunis & Herle, 1997) 
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Table 2.2. Additional material parameters for intergranular strain 

Parameter Physical Meaning 

𝑚T Multiplier for stiffness increase after 90° reversal  

𝑚R Multiplier for stiffness increase after 180° reversal 

𝑅 Radius of intergranular strain range 

𝛽R Exponent controlling the rate 𝐡
∘

  

χ Exponent controlling the stiffness degradation 

 

One of the best ways of understanding a constitutive model and finding out the 

limitations of it is to understand the role of each parameter within their constitutive 

framework. In the next part, the laboratory experiments and numerical methods 

required to determine thirteen parameters of the hypoplastic constitutive model are 

explained systematically. 

2.1.3. Parameter Determination 

The extended hypoplastic model developed by Niemunis and Herle (1997) requires 

thirteen material parameters in which eight of them are coming from the basic 

hypoplasticity and remaining five parameters are added later to properly simulate the 

soil behavior and increase the accuracy under repetitive loading conditions. While 

these eight parameters listed in Table 2.1 are determined from the simple laboratory 

tests and granulometric properties (Herle 1997; Herle and Gudehus 1999); 

intergranular properties are used for the remaining five parameters given in Table 2.2 

(Niemunis and Herle 1997; Niemunis 2002). 

According to my personal experience, understanding the physical or mathematical 

role of a parameter within the constitutive model it belongs provides a comprehensive 

perspective and also helps during the calibration procedure of the model parameters. 

In the previous part, hypoplastic constitutive model is formulated using material 

parameters and now, the methods and experiments required to determine these 

parameters will be discussed in detail. 
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As you noticed during the formulation of the constitutive relations, together with some 

physical parameters (e.g. 𝜑c, 𝑒max, 𝑒min), theoretical parameters (e.g. 𝑒i0, 𝛼 and 𝛽) 

are also introduced to the system. Some of these parameters are obtained “directly” 

from the standard geotechnical tests such as angle of repose, triaxial tests; however, 

some of them, especially the theoretical parameters, are calibrated to simulate true 

behavior in a most realistic way. For the determination of these theoretical parameters, 

the general form given in Equation 2.27 is reduced to two-dimensional, axially 

symmetric triaxial compression test conditions, T1 > T2 = T3, as follows, 

Ṫ1 = 𝑓s
(T1 + 2T2)

2

T1
2 + 2T2

2 (D1 + 𝑎2
T1D1 + 2T2D2

(T1 + 2T2)
2

T1 + 𝑓d
𝑎

3

5T1 − 2T2

T1 + 2T2

√D1
2 + 2D2

2) (2.50) 

Ṫ2 = 𝑓s
(T1 + 2T2)

2

T1
2 + 2T2

2 (D2 + 𝑎2
T1D1 + 2T2D2

(T1 + 2T2)
2

T2 + 𝑓d
𝑎

3

4T2 − T1

T1 + 2T2

√D1
2 + 2D2

2) (2.51) 

Note that, 𝐹 = 1 for axially symmetric condition. For more detail check Equation 2.30 

and Figure 2.4. 

Within the scope of this thesis, a set of laboratory experiments were conducted and 

hypoplastic material parameters of the sand used in these experiments are determined 

in our laboratory. Additional useful methods to determine these model parameters are 

developed and also some improvements are presented. 

2.1.3.1. Critical Friction Angle, φc 

The internal friction angle of a soil at critical state is called as the critical friction angle, 

𝜑c. Since the friction angle, 𝜑 is a relative density dependent material parameter, 

during a deformation, depending on the change in density, it’s magnitude changes. So, 

it is not a material specific parameter. However, independent from the initial relative 

density and deformation path, after a large monotonic shearing, soil reaches a steady 

state (or critical state) where the material keeps deforming under constant stress and 

volume. During this unique state, both the stress and volumetric strain rate vanishes 

as it previously described in Equation 2.11. 
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The critical friction angle, 𝜑c can be determined from simple shear, direct shear or 

triaxial tests. However, considering the simplicity and repeatability, angle of repose 

test proposed by (Miura et al. 1997) is suggested as an alternative to these tests by 

(Herle and Gudehus 1999). According to the data available in the literature, it is 

reasonable to assume 𝜑c ≈ 𝜑rep, Table 2.3. 

Table 2.3. Comparison of angle of repose and critical friction angle (Herle & Gudehus, 1999) 

Material 
Angle of 

repose, 𝝋𝐫𝐞𝐩(°) 

Critical angle of 

friction, 𝝋𝐜(°) 
Test Type* 

Hochstetten gravel 35.7 36.5 ds 

Hochstetten sand 34.0 34.0 txd, ds  

Hostun RF sand 32.0 32.0 txd 

Karlsruhe sand 29.1 30.0 txd 

Lausitz sand 33.0 32.2 txd 

Toyoura sand 30.4 30.9 txu 

Zbraslav sand 30.8 29.7 ds 

* ds: direct shear test, txd: drained triaxial test, txu: undrained triaxial test 

The angle of repose is the angle of a soil heap formed by slowly pouring the material 

(Figure 2.15). The procedure of the determination of the angle of repose is detailly 

described in  (JGS 1996; Miura et al. 1997). In this method, the factors affecting the 

𝜑rep can be listed as: amount of material used to form heap, pouring speed and the 

surface that heap is created. All these factors affecting the 𝜑rep is investigated in 

(Miura et al. 1997). 
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Figure 2.15. Determination of angle of repose 

The angle of repose is determined as, 

 tan(𝜑rep) ≅
2H

D
 (2.52) 

Due to the nature of the soil material, grains are not perfectly spherical and because of 

that even though the height of the heap is constant from every angle of view; the actual 

angle of the slope is not. In order to eliminate this error, during the experiment instead 

of manually measuring H and D values, an image processing tool that captures the 

slopes is developed in MATLAB. The angle of the heap is measured from eight 

different angles with high accuracy and the average value is taken as 𝜑rep. The 

proposed method briefly includes the following steps: 

- First, the camera is stabilized using a tripod. 

- Each heap formation is photographed from eight different angles by rotating 

the plate each time with an angle of 45°. 

- Considering the possible lens distortion (fisheye effect), all the images are 

calibrated using computer vision toolbox “undistortFisheyeImage”. For 

details: www.mathworks.com/help/vision/ug/fisheye-calibration-basics.html 

- Images are first converted to gray scale (Figure 2.17) and then binary images 

(Figure 2.18), note that a black backdrop is used to ease these procedures. 

- An algorithm that traces the boundaries of the sand is found. 

www.mathworks.com/help/vision/ug/fisheye-calibration-basics.html
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- Finally, using the position of the dots near boundaries, a first-degree regression 

line is fitted and then the slope of the line is calculated. 

- The detailed description of the method and the code is available on: 

https://blog.metu.edu.tr/e187152/applications/ 

 

Figure 2.16. Lens distortion corrected image before the processing 

 

Figure 2.17. Original image is converted to grayscale 

 

Figure 2.18. Grayscale image is converted to binary image 

https://blog.metu.edu.tr/e187152/applications/
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Figure 2.19. Binary image with outputs 

In this thesis, using the above-mentioned image-processing method, three angle of 

repose tests have been performed. The results obtained from these tests are proposed 

in Figure 2.20. Here, y-axis represents the cumulative average value of the 𝜑rep. 

 

Figure 2.20. Output of the proposed new method 

As a result, 𝜑c (or 𝜑rep) is determined as 33.45° with a standard deviation of 0.01°. 

Note that, the critical friction value determined from angle of repose test is used for 

the determination of the Matsuoka-Nakai failure criterion, Equation 2.29. 

An additional comment: while performing the angle of repose test and observing the 

flow of sand particles, I have noticed that after a certain point any additional sand 
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particle poured on the heap continues to flow without negligible change in volume and 

angle of the heap just like the soil behavior we observe during the continuous shearing 

in critical state. 

2.1.3.2. Granulate Hardness, hs and Exponent n 

The granulate hardness ℎs and exponent 𝑛 are two main parameters controlling the 

stiffness of the system. The parameter ℎs is the only model parameter with the 

dimension of stress and referred as reference pressure. Note that, ℎs do not represent 

the stiffness of the individual grains but skeleton as a whole. On the other hand, the 

exponent 𝑛 accounts for the pressure sensitivity and controls the nonlinear relationship 

between ℎs and mean pressure ps = tr(𝐓) 3⁄ .  

Referring to Equation 2.35, for any particular initial void ratio at zero pressure, 𝑒p0 in 

which 𝑒d0 ≤ 𝑒p0 ≤ 𝑒i0, the change in void ratio under a mean pressure ps can be 

formulated using Equation 2.53, 

 𝑒p = 𝑒p0 · exp [−(
3 · ps

ℎs
)
𝑛

] (2.53) 

The influence of parameters ℎs and 𝑛 on compression curve is described in            

Figure 2.21. While the exponent 𝑛 changes the curvature; granulate hardness ℎs 

changes the slope of the compression curve.  

 

Figure 2.21. Influence of exponent n (a) and granulate hardness hs (b) on compression curve 
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In order to determine ℎs and 𝑛 parameters, an isotropic compression test or oedometer 

test with initially very loose specimen needs to be performed.  

 

Figure 2.22. Determination of the exponent n from compression curve, Herle (1997) 

Using a compression test result (e.g. Figure 2.22), ℎs and 𝑛 values can be calculated 

as follows, 

 𝑛 =
ln (

𝑒p1𝐶c2
𝑒p2𝐶c1

⁄ )

ln(
ps2

ps1
⁄ )

 (2.54) 

 ℎs = 3 · ps (
𝑛 · 𝑒p

𝐶c
)

1 𝑛⁄

 (2.55) 

 where, 

 ps =
1

3
(Ts1 + 2 · Ts2) 

 Ts1 : vertical stress and Ts2 : lateral stress 

       For an oedometer test => Ts2 = 𝐾0 ∗ Ts1 

 𝐾0 = 1 − sin𝜑c 

 
Note that Jaky’s equation valid only for the normally consolidated soils. In 

order to make sure that initially loose specimen should be prepared. 

 In Equation 2.55, 𝐶c and 𝑒p values correspond to ps where ps1 ≤ ps ≤ ps2 

 Note that, in order to calculate ℎs, first we need to calculate exponent 𝑛. 

1

1
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ln  ( ps)
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In Equation 2.54, ps1 and ps2 and corresponding void ratios 𝑒p1 and 𝑒p2 values define 

the range at which the parameters ℎs and 𝑛 will be valid. So that, it is important to 

select a reasonable range that will include the stresses planning to be investigated. 

In this thesis in order to calculate ℎs and 𝑛 parameters, a series of oedometer tests have 

been conducted. Among them, the one with the highest initial void ratio was selected 

to calculate these stiffness parameters. First, a polynomial equation is fitted to 

oedometer data and then derivative of it used to calculate 𝐶c1 and 𝐶c2 values 

corresponding to ps1 = 10 kPa and ps2 = 600 kPa stress ranges Figure  2.23.  

 

Figure 2.23. Oedometer test result and corresponding polynomial fit 

The next part is the determination of the granulate hardness ℎs, but the question is 

which ps value should be selected between 10 and 600 kPa. In order to investigate 

the ps dependent ℎs variation, another graph ps vs. ℎs is plotted, Figure 2.24. At the 

end, the average value of the ℎs within the selected range is selected. 



 

 

 

41 

 

 

Figure 2.24. Variation of hs with mean stress, ps 

 

2.1.3.3. Void Ratio Parameters 

The void ratio is one of the three state parameters used to describe the state of the 

system in hypoplasticity and the way it is used is little different. In this part, other than 

the maximum and minimum void ratio terms which are used in classical soil 

mechanics; an additional term called void ratio at zero pressure will be used. 

Considering the environment that we live where all the objects expose to gravitational 

acceleration, it is difficult to state a variable without mention about quantity of it. For 

example, let’s discuss the following statement: “Maximum void ratio of the type A 

soil is 0.94”. The statement would be true if the mass of soil used to measure this 

maximum void ratio value were given. Otherwise, as the amount of the soil increase, 

the maximum void ratio will decrease due to the Newton’s second law (F = m · a). 

Another imaginative alternative that would make this statement correct is performing 

this test at a gravity free environment. In that case, quantity no longer influences the 

result. 
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In the next part, methods to determine limiting void ratios 𝑒i0, 𝑒d0 and critical void 

ratio 𝑒c0 will be discussed. Note that, in this thesis, any void ratio with zero indices 

refers to void ratio at zero pressure (or gravity free space). 

2.1.3.3.1. Minimum Void Ratio, ed0 

The parameter 𝑒d0 is the minimum void ratio at zero pressure and slightly lower than 

the minimum void ratio 𝑒min which is obtained from standard index tests. Among 

these tests, a small amplitude cyclic shearing under constant pressure is the most 

effective densification method (Youd 1972). For example, comparing two different 

densification paths: one under monotonic increasing mean stress (blue line in       

Figure 3.13)  and other one under constant pressure with cyclic shearing (green line in 

Figure 3.13), how effective the cyclic shearing can be observed easily.  

 

Figure 2.25. Pressure dependent change of minimum void ratio 

Note that, the red line in Figure 3.13 represents the lower boundary limit (or densest 

state) soil can reach under the corresponding mean pressure, p and the formulation of 

that pressure dependent lower boundary limit is given in the Equation 2.35. Using this 

information, once we get the stiffness parameters (ℎs, 𝑛) and perform cyclic shearing 

test under a constant mean pressure measure p, using the Equation 2.35 we can back 

calculate the minimum void ratio at zero pressure, 𝑒d0.  
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As an alternative to the proposed back calculation method, a comparison between 𝑒d0 

and 𝑒min values obtained from index tests reveal the following useful relationship, 

  𝑒d0 ≈  𝑒min (2.56) 

Here, the imperfect densifications in the standard index tests are compensated by the 

vanishing pressure at 𝑒d0. Finally, the popular standard tests used to find the minimum 

void ratio, 𝑒min can be listed as: ASTM D4253, DIN 18126, JGS 0161 and Muszynski 

(2006). 

2.1.3.3.2. Maximum Void Ratio, ei0 

The maximum void ratio at zero pressure, 𝑒i0 is a state where all the particles are just 

in contact with each other with zero contact force in a gravity free space. Considering 

the described environment, the experimental determination of the 𝑒i0 is almost 

impossible and the classical index tests used to calculate maximum void ratio, 𝑒max 

always underestimates the actual value of the 𝑒i0 due to gravitational force. One way 

to approximate this quantity is idealizing the granular structure using granulometric 

properties of the soil such as grain shape, angularity, distribution of grain size etc.  

Let’s consider a case in which equal size spherical particles are packed as shown in 

Figure 2.26 (a). In that case the theoretical maximum void ratio, 𝑒i0 will be equal to, 

 (𝑒i0)spheres =
(4r)3 − 8 · (4 3⁄ πr3)

8 · (4 3⁄ πr3)
≅ 0.91 (2.57) 

Comparing the above given theoretical result with experimental 𝑒max value obtained 

from standardized tests (e.g. ASTM D4254, DIN 18126) yields, 

 𝑒i0 = 1.2 𝑒max (2.58) 

Similarly, for an idealized soil consisting of identical cubes, Figure 2.26 (b), the ratio 

becomes, 

 𝑒i0 = 1.3 𝑒max (2.59) 
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Figure 2.26. Idealized packing of spheres and cubes at minimum density 

Note that, these idealized geometric representations do not take into account the grain 

size distribution effects. So, let’s think what would be the 𝑒i0 𝑒max⁄  ratio if the 

previous idealizations were repeated with different sizes of spheres or cubes? 

According to (Herle 1997), for natural quartz sands, the ratio 𝑒i0 𝑒max⁄  can be assumed 

as 1.15.  

The popular standard tests used to find the maximum void ratio, 𝑒max are ASTM 

D4254, DIN 18126, JGS 0161 and Muszynski 2006. 

2.1.3.3.3. Critical Void Ratio, ec0 

The parameter 𝑒c0 can be defined as the zero-pressure extrapolation of the critical void 

ratio, 𝑒c. Analogously to the back-calculation method that is used for the determination 

of the 𝑒d0; 𝑒c0 can be calculated using the 𝑒c value at critical state. After the 

determination of the 𝑒c with conventional triaxial tests, using the Equation 2.35 the 

critical void ratio at zero pressure, 𝑒c0 can be back calculated. 

Although the critical state parameters 𝜑c and 𝑒c can be determined from the triaxial 

tests, it is difficult to keep a homogeneous deformation up to the critical state 

(Santamarina and Cho 2001; Been et al. 1991). A comparison between 𝑒c0 and 𝑒max 

for different sands, Table 2.4, reveals that maximum void ratio, 𝑒max determined from 

standard index test can be used as an estimate of 𝑒c0. 
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Table 2.4. Comparison of critical void ratio at zero pressure and maximum void ratio, Herle 1997 

Material 𝒆𝐦𝐚𝐱 𝒆𝐜𝟎 

Hostun sand 0.98 0.96 

Lausitz sand 0.85 0.85 

Ottawa sand 0.79 0.76 

Toyoura sand 0.98 0.98 

Zbraslav sand 0.82 0.80 

As a result, the void ratio parameters 𝑒d0, 𝑒i0 and 𝑒c0 can be estimated in terms of the 

𝑒min and 𝑒max values determined from simple standard geotechnical tests. Based on 

the experimental results and theoretical estimations performed by (Herle and Gudehus 

1999), following relations are obtained, 

 𝑒d0 ≈ 𝑒min (2.60) 

 𝑒c0 ≈ 𝑒max (2.61) 

 𝑒i0 ≈ (1.1 − 1.3) · 𝑒max (2.62) 

 

2.1.3.4. Exponent α 

The exponent 𝛼 is introduced into the constitutive model during the formulation of the 

pyknotropy factor, 𝑓d in Equation 2.34. The role of the exponent 𝛼 can be described 

as controlling the relation between the relative density and peak friction angle. In other 

words, the exponent 𝛼 differentiates the loose and dense soil behaviors and controls 

the transition between peak and critical states as shown in Figure 2.27. 

 

Figure 2.27. Transition from peak to critical state with exponent α 
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In order to determine exponent 𝛼, a triaxial test with a dense specimen needs to be 

performed. It is important to use dense specimen for the investigation of the peak state. 

In that case, before reaching the critical state soil will experience a peak state where 

the vertical stress rate, Ṫ1 will be vanished. So, introducing the peak state condition 

Ṫ1 = 0, into Equation 2.50, 𝛼 can be obtained as, 

 𝛼 =

ln(3
D1 + 𝑎2T1

2D1 + 2𝑎2T1T2D2

𝑎(5T1 − 2T2)√D1
2 + 2D2

2
)

ln (
𝑒 − 𝑒d

𝑒c − 𝑒d
)

 (2.63) 

Inserting the peak ratios, 

Kp =
T1

T2
 , sin𝜑p =

T1 − T2

T1 + T2
 and tan 𝜈p = −

D1 + 2D2

D1
 (2.64) 

 where,  

 Kp: peak ratio, 𝜑p: peak friction angle and 𝜈: dilatancy angle  

into the Equation 2.63, 𝛼 can be rewritten as, 

 

𝛼 =

ln

(

 6
(2 + Kp)

2
+ 𝑎2Kp(Kp − 1 − tan 𝜈p)

𝑎(2 + Kp)(5Kp − 2)√4 + 2(1 + tan 𝜈p))

 

ln (
𝑒 − 𝑒d

𝑒c − 𝑒d
)

 

(2.65) 

 

2.1.3.5. Exponent β 

The exponent 𝛽 is introduced into the constitutive model during the formulation of the 

pyknotropy factor, 𝑓s in Equation 2.33. The role of this parameter is to control the 

incremental stiffness modulus. Using Equation 2.50, the effect of 𝑓s can be clarified 

as, Ṫ1 = 𝑓s · f(T1, T2, D1, D2) with incremental stiffness, E = Ṫ D⁄ . What this 

simplification tells us is the stress increment at any point (in this case the current stress 

and strain rate are represented by T1, T2 and D1, D2) is not just controlled by the current 
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stress and strain rate but also with a factor so-called 𝑓s. Let’s also simplify the 

parameter 𝑓s,  

 𝑓s = (
𝑒i

𝑒
)
𝛽

· f(𝑒i, 𝐓, material constants) (2.66) 

Here the factor 𝑓s is controlled with exponent 𝛽, current stress state 𝐓, current void 

ratio 𝑒 and corresponding upper boundary limit 𝑒i. The function of 𝛽 is to control the 

effect of density on the soil stiffness. For example, in case of a dense material where  

𝑒 ≪ 𝑒i, the influence of 𝛽 will be higher compared to a loose material with 𝑒 ≈ 𝑒i. 

In order to determine the exponent 𝛽, isotropic compression test can be used. In case 

of an isotropic compression test (T1 = T2 = T3), using Equation 2.50, the stress rate 

can be written as, 

 Ṫ1 = 𝑓s(3 + 𝑎2 − 𝑓d𝑎√3)D1 (2.67) 

Then the incremental stiffness E becomes, 

 E =
Ṫ1

D1
= 𝑓s(3 + 𝑎2 − 𝑓d𝑎√3) (2.68) 

Substituting the Equation 2.33 into the incremental stiffness, the exponent 𝛽 becomes, 

 
𝛽 =

ln (E
3 + 𝑎2 − 𝑓d0𝑎√3

3 + 𝑎2 − 𝑓d𝑎√3

𝑒i

1 + 𝑒i
(
3𝑝
ℎs

)
𝑛−1

)

ln(
𝑒i

𝑒⁄ )
 

(2.69) 

 where,  

 𝑓d0 =
𝑒i0 − 𝑒d0

𝑒c0 − 𝑒d0
  

In order to simplify the calculation of 𝛽, you may also perform two different tests with 

different initial densities and formulate 𝛽 at same mean pressure, 𝑝 and then Equation 

2.69 takes the following form, 

 
𝛽 =

ln(
E2

E1
(
3 + 𝑎2 − 𝑓d1𝑎√3

3 + 𝑎2 − 𝑓d2𝑎√3
))

ln(
𝑒1

𝑒2
⁄ )

 
(2.70) 
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Although it is not suggested, oedometer test can also be used for the determination of 

the exponent 𝛽.  

Unless the sample is very dense, the effect of parameter 𝛽 is negligible. So that, in 

case of a very loose sample, it is sufficient to assume 𝛽 ≈ 1. 

Concluding remark for the first part of the parameter determination: 

As you noticed hypoplasticity requires a certain number of parameters. The above-

mentioned formulations which are derived from the constitutive equation itself are 

used for the determination of these parameters. Considering the inevitable small errors 

that occur during the experiments, it is certain that these calculated parameters have 

some ± errors. In order to eliminate the effect of these errors, after the determination 

of each parameter, I have numerically simulated each test using these parameters and 

then calibrated some of them to get more consistent results. 

In this thesis, the tests performed for the determination of the hypoplastic constitutive 

model parameters are summarized in Table 2.5. 

Table 2.5. Summary of parameter determination 

Parameter Test and Methodology 

𝜑c Angle of repose test proposed by Miura (1997) 

ℎs, 𝑛 Oedometer test with initially loose dry soil 

𝑒d0, 𝑒c0, 𝑒i0 Standard index tests, for comparison purposes tests 

proposed by JGS and Muszynski (2006) are performed. 

𝛼 Drained triaxial test with initially dense specimen 

𝛽 Two drained triaxial tests with initially different densities. 

So far, all the parameters required for the basic hypoplasticity is investigated and the 

way to calculate them is explained in detail. In the next part, intergranular model 

parameters required for the extended hypoplasticity will be investigated. 
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2.1.3.6. Intergranular Strain Parameters 

The intergranular strain effects upon stress or strain reversals are introduced to 

hypoplasticity with additional five parameters. Similar to the previous eight 

parameters, these five parameters are also determined from the experimental test 

results using calibration techniques and parametric studies. As a brief summary, 

- The parameter 𝑅 corresponds to the maximum value of the intergranular strain 

𝐡 and represents the intergranular strain range in which the soil behaves 

elastically. For the determination of this parameter it is suggested to perform a 

small strain triaxial test with several path reversals. Immediately after the path 

reversals (180° change in strain direction) the stiffness of the system remains 

constant within the range of 𝑅 as shown in Figure 2.12 with ER. 

- The parameter 𝑚R controls the stiffness increase upon 180° change in strain 

path, Figure 2.12. In addition, for soil without a deformation history 𝐡 = 0 or 

𝜌 = 0, the initial stiffness of the soil is also governed by 𝑚RE0. In order to 

determine the stiffness factor 𝑚R, a small strain triaxial test with a path reversal 

can be used. Immediately after the reversal, the stiffness becomes 𝑚RE0. In 

order to calculate E0, an additional small strain monotonic triaxial test with the 

same initial density should be performed. But note that, reliability of the results 

is questionable due to the limit of accuracy of the strain transducers. As an 

alternative shear wave experiment such as bender element test is suggested by 

(Mašín 2019).  

- The parameter 𝑚T controls the stiffness increase upon 90° change in strain 

path, Figure 2.12. Compare to the 𝑚R the determination of the stiffness factor 

𝑚T is more difficult. Unfortunately, wave propagation tests cannot be used for 

the determination of 𝑚T. The way of calculation is similar to the 𝑚R, after the 

90° change in strain path stiffness of the soil increases to 𝑚TE0. Triaxial tests 

with accurate local strain measurements are required. 

- The exponent χ (𝜒 > 1) which is incorporated into the constitutive framework 

in Equation 2.41, is used to interpolate the stiffness degradation from ER to E0. 
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Upon 180° strain reversal, using Equation 2.41, the stiffness degradation given 

in Figure 2.12 can be approximated as follows: 

 E = {
𝑚RE0  (or ER)                            for ε < 𝑅    (a)

E0 + E0(𝑚R − 1)[1 − 𝜌χ]       for ε > 𝑅    (b)
 (2.71) 

For the determination of the exponent χ, a triaxial test with a complete strain 

reversal can be used. Following to strain reversal, a continued monotonic 

deformation for ε > 𝑅 results in a stiffness degradation approximated by 

Equation 2.71(b), this relation can be used for the calibration of exponent χ. 

- The parameter 𝛽R controls the evolution of intergranular strain as shown in 

Equation 2.49. In this equation, 𝛽R introduces a kind of power law 

interpolation with 𝜌𝛽R. Following the determination of the 𝑅, χ and ε𝑆𝑂𝑀, the 

exponent 𝛽R can be predicted using the diagram given in Figure 2.28. As an 

alternative, stiffness degradation curve can also be used for the calibration of 

𝛽R. 

 

Figure 2.28. Corrolation of Br vs. εsom/R for different X, Niemunis & Herle (1997) 

Due to the complexity of the intergranular strain parameters, very limited data of 

calibrated sands are available in the literature. Besides their complexity, the 

determination of these five additional parameters is also difficult and requires sensitive 

LVDT, sophisticated dynamic and static test setups (e.g. bender element test setup, 

cyclic triaxial tests). Therefore, for most practical applications, parametric studies are 

performed to calibrate these parameters. 
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For a complete description of the experimental and parametric determinations of these 

additional five parameters it is recommended to read:  

- Extended hypoplastic models for soils (Niemunis 2002) 

- Modelling of soil behaviour with hypoplasticity (Mašín 2019) 

In this thesis, a calibration procedure based on the limited data available in the 

literature is carried out, Table 2.6. Checking the granulometric properties of the sands, 

an initial set of parameters are selected as follows: 

𝑅 𝑚R 𝑚T 𝛽R χ 

10−4 5.0 2.0 0.5 6.0 

Then using the stiffness degradation curves and cyclic test results model parameters 

are calibrated over 𝑅 and χ so that the numerical results are fitted to the experimental 

test results, Appendix A. 

Table 2.6. Extended hypoplastic model parameters for different types of sands 

Material 𝑹 𝒎𝐑 𝒎𝐓 𝜷𝐑 χ 

Berlin Sand 10−4 5.0 2.0 0.4 6.0 

Toyoura Sand 2x10−5 8.0 4.0 0.1 1.0 

Baskarp Sand 10−4 6.0 6.0 0.15 1.0 

Castro Sand 10−4 5.0 2.0 0.5 6.0 

Hochstetten Sand 10−4 5.0 2.0 0.5 6.0 

During the calibration procedure, it is important to know the range of the parameters. 

Otherwise, even though numerical prediction fits well with a single experimental test, 

results will be inconsistent for remaining tests. Considering true soil behavior 

following ranges will be helpful while calibrating the model parameters: 

- The stiffness factors 𝑚R > 𝑚T > 1 

- The exponent 𝜒 > 1 

- The exponent 𝛽R < 1 

- The maximum intergranular strain 𝑅 ≈ 10−5 − 10−4   
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2.2. Two-Phase Model 

The nature of the soil consists of three phases which are solid grains, liquid and gas. 

Since this study investigates the behavior of the fully saturated sands, two phase 

system consisting of a solid phase, skeleton and a fluid phase occupying the pores are 

adopted as shown in Figure 2.29. The heterogeneous structure of the soil and 

dissipation of the fluid within the porous media are idealized with the principles of 

continuum mechanics. 

 

Figure 2.29. Two-phase model 

The existence of water highly influences the mechanical behavior of the soil. 

Considering a fully saturated system, deformation occurs depending on the rate at 

which the water is being squeezed out of the voids. In order to accurately simulate this 

dissipation phenomenon in which pressurized water flows through pore voids, a so-

called two-phase model is required. A two-phase implemented finite element accounts 

for the pore pressure accumulations and allows effective stress based constitutive 

models to simulate mechanical behavior properly. 

Two-phase model was first formulated by (Biot 1941) for quasi-static condition and 

the presence of the fluid flow was taken into account with a Darcy’s law implemented 

poroelasticity theory. Later, the model was extended for the investigation of the 

transient effects (i.e. wave propagation within the porous media) by introducing 

dynamic coupling between fluid and solid particles (Biot 1956; Biot 1962). 

Pore fluid

Soil grain
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Zienkiewicz & Shiomi (1984) further modified (and also simplified) the model to take 

into account material nonlinearity and large deformation problems. 

In this thesis, the u-p model developed by Zienkiewicz & Shiomi (1984) is used for 

the coupled FE analysis. Here, u and 𝑝 stand for the absolute displacements of the 

solid skeleton and pore water pressure respectively. In this model, Terzaghi’s principle 

of effective stresses is used and the fluid velocity is described by the Darcy’s law.  

The total stress (Equation 2.72) applied to the two-phase system is split into two part: 

pore pressures (Equation 2.73) and skeleton (or effective) stress (Equation 2.74). 

 𝝈 = [𝜎x   𝜎y   𝜎z   𝜏xy   𝜏yz   𝜏zx]
T
 (2.72) 

 𝐩 = −α𝐦𝑝 (2.73) 

 𝝈′ = 𝝈 + α𝐦𝑝 (2.74) 

 where,  

 

The parameter α = 1 − K Ks⁄  controls the deformation of the skeleton. 

K and Ks are the bulk modulus of skeleton and single grain respectively. 

If the grains are considered as incompressible (Ks ≫ K),  

α → 1 and 𝐩 = −𝐦𝑝 

 
The parameter 𝐦 = [1   1   1   0   0   0]T is used to convert scalar 

hydrostatic pressure, 𝑝 into a vector form, 𝐩. 

In the porous media, the velocity of fluid relative to the solid particles is referred as 

Darcy (or filter) velocity, 𝐰. Using Darcy’s law, filter velocity of a flow taking place 

between two points with a pressure difference of ∇𝑝 is defined as, 

 𝐰 = 𝐯f − 𝐯s =
𝐤p

𝜂w

(−∇𝑝 + 𝜌w𝐛) (2.75) 

 where,  

 𝐯f : Velocity of fluid 𝜂w : Dynamic viscosity of water  

 𝐯s : Velocity of solid ∇𝑝 : Gradient of pore pressure  

 𝐤p : Permeability matrix 𝐛 : Body force acceleration  

 𝜌w : Density of water   
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The conservation equations required to be solved in order to formulate the coupled 

two-phase model are given as follows: 

- Using the Terzaghi’s effective stress definition (Equation 2.74), the balance of 

momentum for the solid-fluid mixture can be written as: 

 𝐋𝐓(𝝈′ − 𝐦𝑝) + 𝜌𝐛 = 𝜌�̈� + 𝜁�̇� + 𝜌w[�̇� + 𝐰∇T𝐰] (2.76) 

 where,  

 𝝈′ : Effective stress vector 𝜌 : Density of the total body  

 𝜁 : Damping ratio   

 

𝐋𝐓 is a divergence operator and given as, 

𝐋𝐓 =

[
 
 
 
 
𝜕

𝜕x⁄ 0 0 𝜕
𝜕y⁄ 0 𝜕

𝜕z⁄

0 𝜕
𝜕y⁄ 0 𝜕

𝜕x⁄ 𝜕
𝜕z⁄ 0

0 0 𝜕
𝜕z⁄ 0 𝜕

𝜕y⁄ 𝜕
𝜕x⁄ ]

 
 
 
 

 
 

The term 𝜌w[�̇� + 𝐰∇T𝐰] given in right hand side of the Equation (2.76), 

represents the acceleration of the relative movement between the components 

of two-phase model. According to (Zienkiewicz et al. 1999; Lewis and 

Schrefler 1998), this value is small enough to neglect and also elimination of 

this inertial component increases the computational efficiency. For 𝜌w[�̇� +

𝐰∇T𝐰] → 0, Equation (2.76) is simplified to, 

 𝐋𝐓(𝝈′ − 𝐦𝑝) + 𝜌𝐛 = 𝜌�̈� + 𝜁�̇� (2.77) 

- For the flow conservation, ignoring the effects of thermal changes, the mass 

balance (or continuity equation) of the flow can be written as: 

 ∇T𝐰 + 𝐦𝐓𝐋�̇� +
�̇�

𝑄*
= 0 (2.78) 

- Combining the conservation Equations (2.75) and (2.78) we obtain, 

 ∇T
𝐤p

𝜂w

(−∇𝑝 + 𝜌w𝐛) + 𝐦𝐓𝐋�̇� +
�̇�

𝑄*
= 0 (2.79) 

 where,  
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𝑄* : Volumetric stiffness of 

aaaa the two-phase system 
∇𝑝 : Gradient of pore pressure 

 Here the coupled volumetric stiffness of the two-phase system expressed as, 

 
1

𝑄∗
=

𝑛

𝐾w
+

1 − 𝑛

𝐾s
 (2.80) 

 𝐾w : Bulk modulus of water 𝐾s : Bulk modulus of solid grains 

 𝑛 : Porosity of the soil  

Note that the permeability matrix, 𝐤p given in the Equation (2.79) is defined 

as Darcy’s permeability which is different from the hydraulic conductivity that 

we use in soil mechanics. For an isotropic case, the permeability matrix, 𝐤p 

can be defined as, 

 𝐤p = 𝑘p · 𝐈  (2.81) 

 where,  

 𝑘p : Darcy’s permeability (m2) 𝐈: Unit matrix 

The relation between the hydraulic conductivity of the soil and Darcy’s 

permeability can be defined as, 

 𝑘d =
𝜌w · 𝑔

𝜂w
𝑘p (2.82) 

 𝑘d : Hydraulic conductivity (m s⁄ ) 𝑔: Gravitational acceleration 

The conservation equations (2.77) and (2.79) are differential equations that are used 

for the formulation of the two-phase, u-p model. While using these equations, be 

aware that they are obtained through some modifications such as the variable 𝐰 is 

eliminated, so that only two variables are left: u and p, both solid and fluid are 

considered as incompressible. All these simplifications and modifications are 

performed either for increasing computational efficiency or omitting negligible 

quantities like thermal effects. 

The finite element implementation of the u-p model is essential when we consider the 

complex problems that we are dealing with. To do that first, previously defined 
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differential equations needs to be converted into their weak form. And then the weak 

form of the original conservation equations should be approximated using weighted 

residual methods. The detailed weak formulation and discretization of the Equations 

(2.77) and (2.79) are provided in (Albers et al. 2012; Taşan H. E. 2011; Potts and 

Zdravković 1999; Papadrakakis and Stavroulakis 2009). In these articles, weighted 

residual method (or in particular Galerkin method) is used to obtain weak 

formulations. In the next part, the discretized system obtained from Equations (2.77) 

and (2.79) are summarized. 

Consider a domain Ω surrounded by a boundary Γ is filled with a two-phase mixture.  

Within that domain displacement and pore pressure fields are approximated as, 

 𝐮 = 𝐍u�̅� (2.83) 

 𝑝 = 𝐍p�̅� (2.84) 

 where,  

 𝐍u and 𝐍p represents the appropriate shape functions. 

 �̅� and �̅� are corresponding nodal vector of unknowns  

The resulting local coupled system of equations are formulated as, 

 𝐌�̈̅� + 𝐂�̇̅� + 𝐊�̅� − 𝐐�̅� = 𝐟u (2.85) 

 and  

 𝐐T�̇̅� + 𝐒�̇̅� + 𝐇�̅� = 𝐟p (2.86) 

 or combining the Equations (2.85) and (2.86),  

 [
𝐌 𝟎
𝟎 𝟎

] [
�̈̅�
�̈̅�
] + [

𝐂 𝟎
𝐐T 𝐒

] [
�̇̅�
�̇̅�
] + [

𝐊 −𝐐
𝟎 𝐇

] [
�̅�
�̅�
] = [

𝐟u
𝐟p

] (2.87) 

 within that system of equations,  

 𝐌 : Mass matrix 𝐂 : Damping matrix 

 𝐊 : Stiffness matrix 𝐐 : Coupling matrix 

 𝐟u : The load vector of solid 𝐇 : Permeability matrix 
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 𝐟p : The load vector of fluid  

 Formulation of these matrices are given as, 

 𝐌 = ∫𝐍u
T𝜌𝐍udΩ

𝛀

 
𝐂 = ∫𝐍u

T𝜁𝐍udΩ

𝛀

 

𝜁 : Damping ratio 

 𝐊 = ∫𝐁T𝐃t𝐁dΩ

𝛀

 𝐐 = ∫𝐁T𝐦𝐍pdΩ

𝛀

 

 𝐒 = ∫𝐍p
T

1

𝑄∗
𝐍pdΩ

𝛀

 𝐇 = ∫𝐁p
T𝐤p𝐁pdΩ

𝛀

 

 𝐟u = ∫𝐍u
T𝜌𝐛dΩ + ∮𝐍u

T�̃�dΓ

Γ𝛀

 𝐟p = ∫𝐁p
T𝐤p𝜌w𝐛dΩ − ∮𝐍p

T�̃�dΓ

Γ𝛀

 

 

Note that, 𝐁 = 𝐋𝐍u and 𝐁p = ∇𝐍p are derivative of the shape functions; 

�̃� and �̃� are surface traction and pore pressure at Γ and 𝐃t is the tangential 

modulus matrix. 

To solve the system of Equations (2.87), a time integration procedure is carried out by 

using the Newmark method (Taşan H. E. 2011). 

Based on the pre-defined u-p model, a three-dimensional 20-node coupled element 

called u20p8 is implemented in ANSYS. Triquadratic and trilinear shape functions 

have been used for the displacement and pore pressure respectively. In u20p8 coupled 

element: 20 represents the total number of nodes within the element and 8 represents 

the number of the nodes with additional pressure degree of freedom. To sum up, this 

element is defined by 20 nodes having four degrees of freedom (ux, uy, uz and 𝑝) at 

each corner, Figure 2.30. 
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Figure 2.30. Three-dimensional coupled two-phase element, u20p8  

The choice of a higher order (20 nodes) is due to ensure the stability of the element 

(Zienkiewicz et al. 1986). Coupled problems under static and dynamic loading present 

pore pressure oscillations if the permeability is very low and the fluid is quasi-

incompressible when formulated in the framework of a low order numerical model 

with equal order interpolation in displacements and pore pressure. In order to avoid 

this problem, the order of interpolation for the displacement field must be higher than 

for the pressure field (Zienkiewicz and Shiomi 1984). 

Finally, let’s discuss the reason why we need to implement a coupled element in a 

finite element software such as ANSYS or ABAQUS. Even though these highly 

advance softwares have some predefined coupled elements (e.g. CPT212-217 in 

ANSYS), they are not allowed to be used with the user-defined constitutive models. 

So, you have to either select a constitutive model that already available in the ANSYS 

material model library (currently, none of them is suitable to investigate the cyclic 

behavior of soil) and then you can use available coupled CPT elements or implement 

a constitutive model that meets your expectations and then also implement a suitable 

element for the coupled analyses, just like we did in this thesis work. 

The verification of the finite element model with u-p approximated coupled two-phase 

element (u20p8) is performed in Chapter 3. 
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2.3. Porosity-Permeability Relationship 

Permeability is one of the main parameters that control the drainage, pore pressure 

build-up, dissipation, and settlements, briefly overall mechanical behavior of saturated 

soils. Therefore, in the previous section, a permeability dependent dissipation function 

is incorporated into the system with the implementation of the two-phase model. 

Although this implementation has provided ability of taking into account pore 

pressure developments and dissipation induced nonlinear deformations, a single 

predefined permeability constant is used for all of those operations.  

Under cyclic and dynamic loading conditions, loosening and re-compaction take place 

which lead to change in porosity. Depending on that change, permeability of soil also 

changes. To properly simulate this dynamic behavior, it is important to take 

permeability variation into account (Shahir et al. 2012). Otherwise, using initial 

permeability coefficient obtained through standard geotechnical tests (e.g. constant 

head permeability test) in dynamic problems such as earthquake simulations may 

cause erroneous pore pressure and settlement calculations. For example, according to 

an experiment carried out by (Ueng et al. 2015) permeability of soil increased 4 times 

its original value during the liquefaction and then decreased back to 0.9 times its 

original value after all the excess pore pressures dissipated. Also, (Ishihara, Review 

of the predictions for model 1 in the VELACS Program 1994) reviewed the VELACS 

centrifuge shaking table tests where the permeability again increased 6 to 7 times its 

original value during the liquefaction and commented on the necessity of the 

consideration of the permeability variation.   

Even though there are variety of equations in the literature that establish a relation 

between porosity and permeability, numerical implementation of these equations to 

geotechnical problems is rare.  

Evaluation of variation of permeability is a highly complicated topic and depends on 

many factors. Before going into further detail about it, let’s first discuss the factors 

affecting the permeability and fluid flow within the porous media. 
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2.3.1. Factors affecting Permeability 

Permeability is affected by several factors. The most effective factors can be listed as: 

- degree of saturation 

- particle size and shape 

- particle size distribution 

- void ratio 

- mineral composition 

- properties of permeating fluid (mainly viscosity and density) 

- geometrical structure of the porous network 

- surface interaction between the permeating fluid and the soil skeleton 

Among these factors except the void ratio, all the remaining parameters can be 

assumed constant during deformation. Although the geometrical structure of the 

porous network changes, especially during the large shear deformations, within the 

continuum framework, its effect on permeability is neglected. 

Many researchers (Hazen 1892; Kozeny 1927; Carman 1956; Terzaghi et al. 1964; 

Kenney et al. 1984; Alyamani and Sen 1993) have attempted to develop empirical 

equations for predicting permeability from grain size distribution parameters. In the 

next part selected two relationships reflecting the influence of the soil characteristics 

on permeability is discussed in a comparative way. 

2.3.2. Hazen’s Equation 

Allen Hazen (1982) developed an empirical relationship for predicting the 

permeability of granular materials: 

 k = CH · (D10)
2 (2.88) 

 where,  

 k : coefficient of permeability (m/sec)  

 CH : Hazen’s empirical coefficient (ranges from 40 to 120) ≈ 100 

 D10 : Particle size (cm) for which 10% of the soil is finer 
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It has been more than a century since it was developed, and Hazen’s equation is still 

one of the most commonly used empirical equation to determine permeability. 

However, this method does not account for the permeability change that we are 

looking for and includes several limitations that create a potential source of bias such 

as it does not cover the whole fraction of a soil sample, but only the D10. 

2.3.3. Kozeny-Carman Relationship 

The Kozeny-Carman equation is a well-known, widely accepted, semi-empirical, 

semi-theoretical formula developed for predicting the permeability of porous media. 

The equation is first developed by (Kozeny 1927) and later modified by (Carman 

1937) and took the following form: 

 k =
𝛾

𝜇
 

1

CKC
 

1

S0
2  (

𝑒3

1 + 𝑒
) (2.89) 

 where,  

 𝛾 : unit weight of permeant  

 𝜇 : viscosity of permeant  

 CKC : Kozeny-Carman coefficient  

 S0 : specific surface area per unit volume of particles (1/cm)  

 𝑒 : void ratio  

The specific surface area S0 is not a common parameter and there is no specific ASTM 

standard for the calculation of it. However, the geotechnical textbooks use some 

idealizations as follows: 

- Assuming all the particles are equal spheres, S0 becomes: 

 
S0 =

Surface Area

Volume
=

πD2

1
6⁄ πD3

=
6

D
 

 

- Considering the fact that the particle shapes are not spherical, S0 can be            

re-calculated using a shape factor, SF. 

 S0 =
SF

D
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For the determination of the particle shape factor SF, (Fair et al. 1933) carried 

out an experimental study on different type of sands and suggested following 

values given in Table 2.7. 

Table 2.7. Particle shape factors, Fair, Hatch, & Hudson, (1933)  

Shape of Sand Shape Factor 

Spherical 6.0 

Rounded 6.1 

Sharp 7.0 

Angular 7.7 

- In this step, instead of a constant D value, an effective particle diameter Deff is 

defined, so that the particle size distribution (both varying particle sizes and 

corresponding % portions) is taken into account. 

 Deff =
100 %

∑(f Dave⁄ )i
  

 in which,  

 f : fraction of particles between two sieve sizes % 

 

Dave : average particle diameter corresponding to smaller and larger 

sieve sizes (cm) 

Dave = Dlarger,i
0.404 × Dsmaller,i

0.595 

 
Note that the exponents, 0.404 and 0.595 are selected considering the 

log-linear particle size distribution. 

Finally, Equation 2.89 takes the following form, 

k =
𝛾

𝜇
 

1

CKC
 (

100 %

∑[fi (Dlarger,i
0.404 × Dsmaller,i

0.595)⁄ ]
)

2

 
1

SF2
 (

𝑒3

1 + 𝑒
) (2.90) 

𝛾 𝜇⁄ = 9.93 × 104  1 cm·s⁄  for 20°C  

It is now clear how the theory of the model is based on the direct relation between the 

media properties and flow resistance in pore channels. Comparing to Hazen’s 

equation, in Kozeny-Carman equation, rather than the effective particle size D10, the 

entire particle size distribution and particle shape are taken into account. 
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Similar to many other permeability relationships, the Kozeny-Carman equation is also 

valid for the laminar flow conditions. However, under dynamic and cyclic loading as 

a result of the repetitive pore pressure build-up and relaxation, the condition of flow 

continuously changes. At this point, it would be more convenient to develop a 

relationship that accounts for the dynamic flow conditions. Although the actual 

dissipation mechanism, which is resulted from pore water generation/dissipation, is 

not simulated adequately (due to the complex porous flow), it is noted that Kozeny-

Carman equation can still improve the cyclic and dynamic prediction of the soil 

behavior. 

The main reason of selecting Kozeny-Carman relationship among the many 

alternatives is due to fairly good results obtained in estimating the permeability of 

sandy soils. Some of these results taken from various studies are shown in Figure 2.31, 

2.32, 2.33 and 2.34. 

 

Figure 2.31. Comparison of measured and predicted permeabilities, Luijendijk & Gleeson (2015)  

According to the experimental research carried out by (Luijendijk and Gleeson 2015), 

Figure 2.31, predictions obtained using Kozeny-Carman equation are quite accurate. 
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Figure 2.32. Comparison of measured and predicted permeabilities, Ren et al., (2016) 

Another set of permeability tests are carried out by (Ren et al. 2016) which is given in 

Figure 2.32, also shows a good agreement with Kozeny-Carman equation. Note that, 

Kozeny-Carman equation is not suggested for the soils with high fines content, as you 

can see from the Figure 2.32, there is a relatively high deviation in clayey soils and 

deviation decreases as the particle size increases, towards to sandy soils. 

 

Figure 2.33. Comparison of measured and predicted permeabilities, (Lala, 2017)  

1E 12

1E 11

1E 10

1E 9

1E 8

1E 7

1E  

1E 5

1E 4

1E 3

1E 2

1E 1

1E 0

P
re
d
ic
te
d
 k
 u
s
in
g
 K

o
ze

n
y
 C

a
rm

a
n
 (
c
m
/s
)

Sandy soils
Silty soils

1E 12 1E 11 1E 10 1E 9 1E 8 1E 7 1E  1E 5 1E 4 1E 3 1E 2 1E 1 1E 0

Measured k (cm/s)

Clayey soils

ZOOM

45 



 

 

 

65 

 

 

Figure 2.34. Comparison of empirical relations, Hussain & Nabi, (2016)  

Finally, (Hussain and Nabi 2016) carried out a research and compared different 

permeability prediction equations based on the constant head permeability test as 

shown in Figure 2.34. Among them, the maximum accuracy is obtained through the 

Kozeny-Carman equation. 

The flow in porous media is idealized using the two-phase model and a void ratio and 

particle size dependent Kozeny-Carman equation. During deformation, together with 

the void ratio values, the permeability of each finite element is also updated after each 

loading steps and so that not just the overall permeability change, but also local 

permeability changes are calculated. An element-based solution is used for the local 

permeability variations. 

The Kozeny-Carman implemented a fully coupled model is validated by conducting a 

laboratory experiment which is detailly explained in the next chapter. 

 

 

 

 



 

 

 

66 

 

CHAPTER 3  

 

3. VERIFICATION AND VALIDATION OF NUMERICAL MODEL 

In the previous chapter, all the implementations and numerical approximations that 

are used for the investigation of the cyclic and dynamic behavior of the saturated sandy 

soils are described: 

- A fully coupled two-phase model is implemented into the finite element 

framework for the investigation of the pore pressure accumulations and 

corresponding effects on dynamic soil behavior. 

- The stress-strain relationship of the soil is described using a constitutive model 

called hypoplasticity. 

- Finally, porosity-permeability relationship is implemented for a more realistic 

representation of the flow characteristics within the porous media. 

In this chapter, all these steps are verified and validated using experimental test results 

or comparing with analytical solutions. 

3.1. Verification and Validation of the Two-Phase Model 

In this part, the implementation of the previously described two-phase model is 

verified using an analytical solution proposed by (Booker 1974). Booker’s coupled 

analytical solution shows a satisfactory agreement with the experimental results 

available in the literature (Meroi and Schrefler 1995; Gambolati et al. 1984) so that 

verification procedure can also be considered as a validation of the model. 

The complex nonlinear behavior of  fully saturated soil can be divided into two rather 

less complex components: one the nonlinearity within the solid phase itself due to the 

rearrangements of particles and the other one is due to the solid-fluid interaction 

during the pore volume change. These two are highly connected to each other (coupled 

problem) and they are difficult to be solved together.  One simplistic approach is to 

model these two behaviors independently from each other and then couple them to 
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form a realistic soil behavior, an inductive approach. For example, remember the 

Terzaghi’s and Biot’s poroelasticity theory where the soil is idealized with a 

poroelastic model, so that they could investigate the nonlinear behavior arises from 

the time dependent dissipation of fluid. 

Similar to Biot and Terzaghi, in the Booker’s 3D consolidation problem, the soil 

medium is idealized with a linear elastic material model and then time dependent 

consolidation of a fully saturated soil layer subjected to a static surcharge loading was 

investigated using two-phase u20p8 element. The geometry of the problem and its 

finite element implementation with corresponding boundary conditions are given in 

Figure 3.1 and Figure 3.2, respectively.   

 

Figure 3.1. Model geometry and description 

In Booker’s article, the problem is solved both for the rough and smooth base 

boundary conditions. In the rough case, the nodes at z = 0 m are clamped in all 

directions (fixed support). In this thesis, comparisons are also performed using rough 

base boundary conditions. All the boundaries are set to be impermeable except the 

ground surface. Note that, the loading surface area is also permeable. 
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Figure 3.2. Finite element model with boundary conditions 

 

 

Figure 3.3. Comparison of degree of consolidation for a finite layer 
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Figure 3.4. Comparison of degree of consolidation for a finite layer 

 

 

Figure 3.5. Comparison of degree of consolidation for a finite layer 
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Figure 3.6. Comparison of degree of consolidation for a finite layer 

 

 

Figure 3.7. Displacement comparisons for different Poisson’s ratio values 
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The finite element results and Booker’s analytical solutions which are compared for 

different a/h  and Poisson’s ratios in Figure 3.3, 3.4, 3.5 and 3.6 are in perfect 

agreement. The finite element results given in Figure 3.7 are also coherent. As the 

Poisson’s ratio approaches to 𝜈 → 0.5 model behaves undrained. Even though the 

model is permeable due to the high Poisson’s ratio, not much settlements are observed 

for 𝜈 = 0.48. The material parameters used in the finite element analyses are listed in 

the Table 3.1. 

In all these comparisons, the width of the loading surface is selected as a = 4 m and 

the depth of the soil layer changed according to the given a/h ratio. Considering the 

elastic soil behavior, degree of consolidation and time factor are formulated as 

follows, 

 U =
uz − uz0

uz∞ − uz0
 (3.1) 

 
uz0 and uz∞ are displacements at the ground surface under the loading 

surface at t = 0 and t → ∞, respectively. 

 Time factor, Tv =
c∗ · t

h2
 (3.2) 

 
Note that c∗ is an adjusted consolidation coefficient which uses Young’s 

modulus of the soil, 

 c∗ =
𝑘 · E

𝛾𝑤

(1 − 𝜈)

(1 − 2𝜈) · (1 + 𝜈)
 

Table 3.1. Material parameters used in FE analysis and analytical solutions 

Description Symbol Value 

Young’s Modulus E 4 × 104  kN m3⁄  

Poisson’s Ratio ν 0.0, 0.25, 0.48 

Hydraulic Conductivity k 2 × 10−6  m s⁄  

Unit weight of water 𝛾𝑤 9.81 kN m3⁄  
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Dissipation of the water is illustrated by using the contour plots given in Figure 3.8, 

3.9 and 3.10 obtained directly from the finite element analyses. At t ≈ 0 sec., the 

applied surface load is resisted by an increase in pore pressure and then together with 

the dissipation loads are transferred to the solid skeleton. Figures below prove that the 

coupled behavior is simulated successfully. 

 

Figure 3.8. Pore pressure contour plots at t ≈ 0 sec. 

 

 

Figure 3.9. Pore pressure contour plots at t = 15 sec. 
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Figure 3.10. Pore pressure contour plots at t = 3600 sec. 

 

3.2. Verification and Validation of the Coupled Numerical Model 

In this thesis, the extended hypoplasticity developed by (Niemunis and Herle 1997) 

has been used and all the simulations are performed using the ANSYS. The 

implementation of the model in ANSYS is already verified by (Taşan H. E. 2011). 

Here also the verification procedure is repeated using an undrained cyclic triaxial 

simulation. Note that, it is important to have a validated two-phase model before 

conducting an undrained simulation where the excess pore pressure developments 

expected to occur. 

Since the two-phase model is already validated in the previous part, now using coupled 

analysis (both hypoplasticity and two-phase model together) an undrained cyclic 

triaxial test is simulated and then compared with the simulation result provided by 

Niemunis & Herle (1997), results show satisfactory agreement as shown in the    

Figure 3.11.  
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In this simulation, first, the specimen is consolidated under 300 kPa cell pressure and 

then cyclic deviatoric stress with an amplitude of 30 kPa is applied for shearing. The 

hypoplastic material parameters of the Hochstetten sand used in this simulation are 

available in (Niemunis and Herle 1997). 

 

Figure 3.11. Numerical comparison of an undrained cyclic triaxial test 

Since the implementation of the model in ANSYS is verified, now we can validate it 

using experimental test data. 

3.2.1. Numerical Simulation of Cyclic Element Tests 

In this part, a consolidated undrained cyclic triaxial tests and a constant volume cyclic 

shear test are simulated, and then numerical results are compared with the 

experimental data. 

The first test was performed by (Wichtmann 2016). This test is labeled as test TCUI7 

in the book. Karlsruhe sand with an initial relative density, 𝐼D0 = 0.67 was used in the 

experiment. The hypoplastic material parameters of the sand which is adopted from 

(Stutz 2016) are presented in Table 3.2. 
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Table 3.2. Hypoplastic material parameters for Karlsruhe Sand, Sturm (2009) 

𝜑c ℎs[MPa] 𝑛 𝑒d0 𝑒c0 𝑒i0 𝛼 𝛽 

32.8° 625 0.33 0.67 1.05 1.21 0.18 1.12 
 

𝑅 𝑚R 𝑚T 𝛽R χ 

10−4 6.0 3.5 0.2 6.0 

The specimen was first isotropically consolidated under 200 kPa cell pressure and 

then sheared with a 60 kPa amplitude cyclic deviatoric stress. 

 

Figure 3.12. Experimental and simulation results of the undrained cyclic triaxial test 

Second, an undrained cyclic simple shear test reported in (C-CORE 2004) is 

simulated. The Fraser River sand with an initial relative density, 𝐼D0 = 0.44 was used 

in the experiment. The specimen was first consolidated under 200 kPa normal stress 

and then sheared with a cyclic stress ratio of CSR = 0.08 as described in Figure 3.13. 

Note that, for a cyclic simple shear test, the cyclic stress ratio, CSR is defined as, 

 CSR =
τcyc

σ′vc,0
 (3.3) 

 τcyc : cyclic shear stress and σ′vc : vertical effective stress  
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Figure 3.13. Schematic of simple shear test with stack rings 

A single u20p8 finite element given in Figure 3.14 was used to simulate the cyclic 

simple shear test. The bottom nodes (no. 1,2,3,4,9,10,11 and 12) were fixed in all three 

directions. The nodes located in the middle of the element (no. 17,18,19 and 20) were 

modeled such that during shearing they will share the displacement equally. To do 

that, in ANSYS using the CP command an additional a set of coupled degree of 

freedom was defined for the selected nodes. The same procedure was also followed 

for the nodes located at the top (no. 5,6,7,8,13,14,15 and 16). During the consolidation 

stage, the pore pressure degree of freedoms were set free for all 8 nodes and during 

shearing set free option was removed so that the pore pressures started to accumulate. 

The boundary conditions of the element and loading configuration are illustrated in 

Figure 3.14. 

 

Figure 3.14. cyclic simple shear boundary conditions koy 
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The hypoplastic material parameters of the Fraser River sand were taken from 

(Holloer 2006) is given in the Table 

Table 3.3. Hypoplastic material parameters for FraserRiver Sand, Holler (2006) 

𝜑c ℎs[MPa] 𝑛 𝑒d0 𝑒c0 𝑒i0 𝛼 𝛽 

35.0° 1600 0.39 0.62 0.94 1.08 0.20 1.0 
 

𝑅 𝑚R 𝑚T 𝛽R χ 

10−4 2.5 9.0 0.25 9.0 

 

According to (Idriss and Boulanger 2008) excess pore water ratio 𝑟u for a cyclic simple 

shear test is defined as, 

 𝑟u =
∆p

σ′vc,0
 (3.4) 

using this ratio, initiation of the liquefaction (or partial liquefaction) for 𝑟u ≅ 1.0 is 

investigated in Figure 3.16. The response of the Fraser River sand to undrained cyclic 

shear test is given in Figures 3.15 and 3.16. 

 

Figure 3.15. cyclic simple shear simulation result koy 
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Figure 3.16. Excess pore pressure developments with increasing cycle numbers 

Note that, these undrained simulations are conducted using hypoplastic constitutive 

model with u20p8 finite element. Referring to the formulation of the hypoplasticitiy, 

the failure surface and plastic potential which are emerged as by-products of the model 

show that the vector of plastic strain rate is not normal to the yield surface which 

corresponds to non-associative flow rule. The non-associative flow rule helps us to 

produce the volumetric contraction or dilation response induced by shear loading. 

Since the material is simulated with the fully coupled two-phase finite element, the 

contractive or dilative response produces pore water pressure changes, simulating the 

undrained response. 

All three experiments help us to validate the coupled numerical model for the dynamic 

and cyclic problems. 

3.2.2. Numerical Simulation of a Laboratory Experiment 

The experiments in the previous part were simulated for undrained conditions. During 

shearing, under cyclic loading conditions, there was no in or out flow. Although these 

experiments show us the capability of the coupled model to accurately predict the 

cyclic behavior of soil; they are not suitable for the investigation of the porosity-
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permeability implementation. In order to validate the porosity-permeability 

relationship, an experimental setup was prepared.  

In this part, before discussing the result of the experiment, first, the characteristics of 

the sand used in the experiment and then the test setup itself will be described. 

3.2.2.1. Characterization of Sand 

A large amount of well-graded sand was prepared for the experiment. The particle size 

distribution of the soil determined by following the ASTM-D6913 is given in       

Figure 3.17. According to the USCS, soil is classified as well graded sand (SW). 

 

Figure 3.17. Particle size distribution of the sand 

The specific gravity of the sand was determined using the ASTM-D854 standard. The 

test results are listed in Table 3.4. 

Table 3.4. Specific gravity of the sand 

 Test-1 Test-2 Test-3 Test-3 Ave. StdV 

𝜌d [g cm3⁄ ] 2.681 2.683 2.679 2.683 𝟐. 𝟔𝟖𝟐 0.002 
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The critical friction angle of the sand is determined using the previously described 

image processing method. Three different angle of repose test has been conducted and 

as a result, 𝜑c (or 𝜑rep) is determined as 33.45° with a standard deviation of 0.01°, 

Figure 3.18. 

 

Figure 3.18. Determination of the critical friction of the sand using image processing  

Minimum and maximum void ratios are determined according to the JGS 0161. The 

details of the test procedures are described in (Anaraki 2008). The test results are listed 

in Table 3.5 and 3.6. 

Table 3.5. Maximum void ratio of the sand with JGS 0161 

 Test-1 Test-2 Test-3 Test-4 Test-5 Test-6 Ave. StdV 

Void Ratio 0.930 0.907 0.915 0.923 0.926 0.908 𝟎. 𝟗𝟏𝟖 0.009 

 

Table 3.6. Minimum void ratio of sand with JGS 0161 

 Test-1 Test-2 Test-3 Test-4 Ave. StdV 

Void Ratio 0.648 0.617 0.632 0.617 𝟎. 𝟔𝟐𝟗 0.0149 

In order to determine the stiffness parameters ℎs, 𝑛 of the sand a series of oedometer 

tests are performed. Among them, the one with maximum initial void ratio has been 
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selected for the calculation of ℎs and 𝑛 parameters. After determination of these 

parameters, the oedometer test was simulated and a perfect agreement was obtained 

as shown in Figure 3.19. 

 

Figure 3.19. Comparison of oedometric response of the sand 

For the determination of the exponent 𝛼, a triaxial test with a dense specimen has been 

conducted and it is determined as 0.25. Since loose sand was used for the test, the 

parameter 𝛽 is assumed to be equal to 1.0 according to the recommendation of (Herle 

and Gudehus 1999). Finally, for the determination of the intergranular strains 

parametric calibration procedure suggested by (Masin, 2019) was followed. 

The hydraulic properties of the sand at different void ratios were determined by 

performing a set of constant head permeability tests according to the ASTM-2434, 

Figure 3.20. Test results are provided in Table  3.7, Test-1 and Test-3 correspond to 

loosest and densest states, respectively. 
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Figure 3.20. Determination of hydraulic conductivity of sand using constant head test 

Table 3.7. Hydraulic conductivity values of the sand 

m sec.⁄  Test-1 Test-2 Test-3 

Constant Head 7.78E10−4 5.12E10−4 2.90E10−4 

Kozeny-Carman 7.65E10−4 5.09E10−4 3.41E10−4 

The constant head permeability test results were also compared with the predicted 

values obtained from Kozeny-Carman relationship using Equation 2.90. Note that, 

particle size distribution is given in Figure 3.17. has been used for the calculation of 

the Kozeny-Carman predictions. 

3.2.2.2. Experimental Setup 

A column shape container with 18.7 cm × 18.7 cm internal cross section and 75.0 cm 

internal height was designed for the experiment, Figure 3.21. Inside of the container 

was covered with the plexiglass in order both to increase the visibility of the soil 

specimen during the test and decrease the total mass of the container. 
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Figure 3.21. Real (left) and designed (right) container and detailed information 

In order to measure the pore pressure developments, three pore pressure transducers 

have been located at bottom, top and middle of the specimen. Unfortunately, even 

though the pore pressure development trend was captured, no useful data could be 

obtained. The most possible reason is that the direction of the flow was parallel to the 

surface of the transducers, Figure 3.22, which prevented accurate pore pressure 

measurements. 

 

Figure 3.22. Pore pressure transducer 

In order to make sure that a fully saturated soil sample is prepared, first water was 

added though the inlet valve located at the bottom of the container and then soil sample 
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was poured into the water. This procedure was repeated for every 2 cm heights. At the 

end of the procedure, the height of the specimen was 67.3 cm. Note that, in order to 

prevent the segregation of particles, the drop height kept almost zero during the 

procedure. 

A fully automated MTS 250 kN high rate test machine was used for the application of 

the cyclic loading in Materials of Construction Laboratory, METU, Figure 3.23. 

  

Figure 3.23. MTS high rate test system 
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Finally, an overall view of the setup is presented in the Figure 3.24. 

 

Figure 3.24. Overall representation of the experimental test setup 
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3.2.2.3. Numerical and Experimental Results 

In order to validate the numerical model under the drained condition above described 

experimental setup was prepared. After the preparation of the fully saturated sandy 

soil with a relative density of 𝐼𝐷 = 0.43, the vertical stress given in Figure 3.25 is 

applied to the specimen. 

 

Figure 3.25. Time vs. Applied cyclic load 

The hypoplastic material parameters of the sand which was obtained through 

following the parameter determination steps are given in the Table 3.8. 

Table 3.8. Hypoplastic parameters of the sand used in the experiment 

𝜑c ℎs[kPa] 𝑛 𝑒d0 𝑒c0 𝑒i0 𝛼 𝛽 

33.631° 43418 0.571 0.629 0.918 1.056 0.25 1.0 
 

𝑅 𝑚R 𝑚T 𝛽R χ 

2.4 × 10−4 5.0 2.0 0.5 5.0 

The Kozeny-Carman constant which is determined from Equation 2.90 and Table 3.7 

is equal to 0.001897. 

During the numerical modeling of the experiments, there are some important issues 

needs to be considered. Due to the limitation of the MTS machine, the vertical load is 
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actually not directly applied to the specimen, but specimen (the whole frame) moved 

so that the loading pattern given in Figure 3.25 is formed, the position of loading frame 

is given in Figure 3.24. Since the specimen itself moving throughout the experiment, 

within the numerical analysis inertia forces were also taken into account using mass 

matrices. 

 

Figure 3.26. Displacement vs. time 

 

 

Figure 3.27. Displacement vs. vertical stress 

0 10 20 30 40 50  0 70

Time  sec. 

 20

 15

 10

 5

0

5

D
is
p
la
ce

m
en

t 
 m

m
 

FE Result Experiment Result

0 1 2 3 4 5

Displacement  mm 

 20

0

20

40

 0

80

100

120

140

1 0

180

V
er
ti
ca

l 
S
tr
es

s 
 k

P
a 

FE Result

Experiment Result



 

 

 

88 

 

Although the loading condition was not ideal, still a satisfactory results have been 

obtained through numerical modeling as shown in Figure 3.26 and 3.27. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

89 

 

CHAPTER 4  

 

4. CASE STUDIES 

Cyclic behavior of soil is highly complex and depends on many factors such as void 

ratio, drainage conditions, degree of saturation, loading characteristics et cetera. In the 

previous chapters, how the drainage mechanisms can influence the cyclic behavior of 

the soil tried to be explained. In this chapter, real size geotechnical problems will be 

simulated, and for the various loading conditions, the effects of the porosity-

permeability relationship on the mechanical behavior of the soil will be investigated. 

4.1. Soil-Column Model 

In order to investigate the effects of the porosity-permeability variation on the cyclic 

behavior of the sand, a set of simulations similar to the one performed experimentally 

in the previous has been conducted on a soil column model given in Figure 4.1. In 

these numerical simulations, Hochstetten sand was used with the parameters provided 

in Table 4.1. 

Table 4.1. Hochstetten sand hypoplastic material parameters, Niemunis & Herle (1997) 

𝜑c ℎs[MPa] 𝑛 𝑒d0 𝑒c0 𝑒i0 𝛼 𝛽 

33.0° 1000 0.25 0.55 0.95 1.05 0.25 1.0 
 

𝑅 𝑚R 𝑚T 𝛽R χ 

1.0 × 10−4 5.0 2.0 0.5 6.0 

The boundary conditions were created such that the soil exposed to vertical cyclic 

loading in a rigid box. To do that, the nodes at the bottom of the model were fixed in 

Z-direction and the nodes located at the four sides of the model were fixed in the 

direction vertical to the surface they belong to. For example, the nodes located at      

X = 0 are fixed in the X-direction. A free drainage condition was defined at the top 

surface of the model by setting the pore pressure degree of freedoms of the nodes 

located at z = h to zero and all the remaining surfaces assumed to be impermeable. 



 

 

 

90 

 

 

Figure 4.1. Soil column and applied cyclic load  

A set of parametric analysis has been conducted to understand how the porosity-

permeability variation affects the pore pressure and displacement accumulations. The 

first numerical simulation was performed for the geometry and the initial conditions 

listed in Table 4.2. 

Table 4.2. Model geometry and initial conditions 

Model Parameters Value 

a h⁄  0.2 

h 10 m 

Relative density, 𝐼𝐷 0.64 

Period, T 6 sec. 

Amplitude, 𝜎𝑎𝑚𝑝 400 kPa 

kinitial 1 × 10−4 m/sec. 

CKC 5.05 × 10−4 

Two analyses, one with and another without the porosity-permeability relationship 

implementation have been performed. The results are provided in Figures 4.2, 4.3 and 

4.4. In these figures “with KC” refers to Kozeny-Carman relationship implemented 

model. 
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Figure 4.2. Displacements at the mid-depth of the soil column 

 

 

Figure 4.3. Excess pore pressure developments at the mid-depth of the soil column 
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Figure 4.4. Excess pore pressure difference between KC and without KC simulations 

The maximum value of the excess pore water pressures is reached at the first cycle of 

the cyclic loading in both analyses. In case of the analysis with KC, the compaction 

of soil within a loading cycle causes simultaneous reduction in its permeability 

whereby the drainage condition is affected in an unfavourable manner. Hence the 

excess pore pressure values of the Kozeny-Carman implemented model are higher 

than those without that implementation, Figure 4.3. 

In Figure 4.4, the excess pore pressure developments of the two analyses are 

compared. In that figure, the excess pore pressure values of the model without KC 

implementation is subtracted from the KC implemented model. This difference can be 

used to compare the dissipation rate of the water during cyclic loading, because higher 

pressure is maintained as the permeability of the soil decreases.  

According to Figure 4.4, in “without KC” case, a relatively fast dissipation occurs and 

as a result, larger settlements take place, Figures 4.2. 

There are many parameters that affect this dynamic highly coupled dissipation 

procedure. For example, considering the soil-column example described above, the 
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increase in the ratio a h⁄  decreases the difference between two analyses, however, 

increase in the frequency or amplitude of the loading increases the gap between two 

cases. An example simulation is provided below. The same exact model was simulated 

with a higher frequency and amplitude cyclic loading, T = 2 sec. and 𝜎𝑎𝑚𝑝 = 1 MPa, 

and results are provided in Figures 4.5 and 4.6. 

 

Figure 4.5. Excess pore pressure developments at the mid-depth of the soil column 
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Figure 4.6. Excess pore pressure difference between KC and without KC simulations 

Note that, these analyses are performed with the loading path provided in Figure 4.1. 

The cyclic load started from zero, increased up to its maximum value and then 

decreased back to zero again. So, what would happen if we monotonically increased 

the load up to a certain value, let’s say a cyclic mean value, and then apply a cyclic 

loading? The answer to this question is provided in the conclusion part. 

In this specific geometry, as expected the maximum deformation occurs at the top of 

the model where the cyclic load is applied, and it gradually decreases towards to 

bottom of the model. The relatively high level of deformation close to the upper 

surface creates a less permeable zone where the water starts to build-up pore pressure.  

Comparing both analyses “with KC” and “without KC”, a more rapid dissipation takes 

place in “without KC” case, Figure 4.6 and a higher pore pressure amplitude is 

maintained in “with KC” case, Figure 4.5. 
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4.2. Numerical Modeling of a Dyke Subjected to Dynamic Loading 

The second case study was carried out by the Center for Cold Ocean Resource 

Engineering (C-CORE) in 2004. A collaborative research project was launched 

between the University of British Columbia (UBC), the Memorial University of 

Newfoundland (MUN) and C-CORE. The purpose of the project was to optimize soil 

liquefaction treatment using numerical and centrifuge testing and so reducing the cost 

associated with soil liquefaction (C-CORE 2004). A total of eight centrifuge tests have 

been carried out in this project and in this part, one of them was numerically modeled 

for the investigation of the effects of the porosity permeability relationship. 

4.2.1. Description of the Model 

In order to perform a numerical simulation of an experiment, the boundary and loading 

conditions have to be fully understood and then implemented into the model. So that, 

in this part, the basic mechanism of the centrifuge test will be explained briefly. Note 

that all this information will be used in the next part where we construct our model.  

The test which has been conducted with a centrifuge having a working radius of         

5.5 m with a maximum acceleration of 200𝑔 is shown in Figure 4.7. 

 

Figure 4.7. C-CORE’s 5.5m-radius, 200g capacity Actidyn centrifuge (C-Core) 
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One of the biggest challenges of the investigation of the geotechnical engineering 

problems in a laboratory environment is the poor representation of the field stress 

conditions. In other words, in the field, the behavior of the sample highly depends on 

the self-weight of it. But due to the obvious limitations of the facilities (both in time 

and space) small scale models have to be conducted. That is where the geotechnical 

centrifuge testing comes into play and by spinning the soil sample increases the weight 

so that the stress condition in the field is captured. 

Although the centrifuge tests are one of the most commonly used and reliable methods 

for the testing physical scale models of geotechnical systems, they still have some 

limitations comparing the true behavior in the field. For example, in this part, a dyke 

consist of several layers of sand was simulated with a scale of 1:70 within a rigid frame 

whereas in reality soil is continuous. 

In order to perform centrifuge experiment, first, the length of the centrifuge arm and 

target acceleration are set and then the physical model is prepared and placed into the 

swinging bucket, Figure 4.7. But in this experiment, an earthquake was simulated. So 

how to simulate an earthquake within a spinning bucket? To do that a special 

earthquake simulator shown in Figure 4.8 has been used. 

 

Figure 4.8. Earthquake Simulator (C-CORE) 
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The 2D side view of the model is given in Figure 4.9. The model has a 51.6 m length 

and 20 m width in Z-direction and composed of three sand layers. At the bottom, a 

1.4 m highly permeable drainage layer formed by coarse sand in order to create a one-

dimensional saturation front. A 5 m of dense sand overlaid by the same type of loose 

liquefiable sand layer. The relative densities of these loose and dense sand layers are 

provided as 40% and 80% respectively (C-CORE 2004). Note that water level is 1 m 

above at the crest and 8 m at the toe. 

 

Figure 4.9. 2D model configuration 

The finite element model consisting of the coupled two-phase u20p8 element is given 

in Figure 4.10. All the nodes at the bottom of the model were fixed in Y-direction 

according to the coordinate system defined in Figure 4.9 and 4.10. The sides of the 

model are also fixed in the relative vertical dimensions. For example, all the nodes 

located at the Z=0 m surface were fixed in the Z direction. Similarly, the nodes located 

at the remaining three sides: Z=20, X=0 and X=51.6  also fixed in the corresponding 

vertical directions. During the preparation of the physically reduced scale model, a 

stain-less steel bucket has been used. Hence, the friction between the side of the bucket 

and the sand was neglected in the numerical modeling. Finally, except the ground 

surface of the model, all the remaining boundaries are modeled as impermeable so that 

pore pressures could build-up.  
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Figure 4.10. Finite element model used in simulations with meshing structure 

In this centrifuge experiment, the Fraser River sand that has been previously used for 

the simulation of the cyclic direct simple shear test has been used. The hypoplastic 

material parameters of the sand are given in Table 3.3. Using the material parameters 

and the provided relative densities, the initial void ratios of the loose and dense 

specimen were calculated as 𝑒0, loose = 0.812 and 𝑒0, dense = 0.684. 

The hydraulic conductivity of the loose sand at 40% relative density was provided as 

kd, loose = 4.3 × 10−4  m s⁄ . And also, the particle size distribution of the Fraser river 

sand has been given in the C-CORE report. Using all these data and Equation 2.90, 

the Kozeny-Carman constant is determined as  CKC = 1.455 × 10−4  m s⁄ . Using this 

constant, the initial permeability of the finite element model is set equal to the initial 

hydraulic conductivity of the experimental model. Note that, since dense and loose 

sand layers composed of same sand materials, they have same granular properties. So 

that, the Kozeny-Carman coefficient determined for the loose layer is also used for the 

dense layer. Using that coefficient, the initial permeability of the dense layer was 

determined as kd, dense = 2.76 × 10−4  m s⁄ . 
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The behavior of the coarse drainage layer is assumed to be linearly elastic with a 

modulus of elasticity of Edrainage = 105 kN m2⁄  and Poisson’s ratio, 𝜐drainage = 0.3 

due to missing soil data. The hydraulic conductivity of the drainage layer was set to 

100 times the loose sand layer’s hydraulic conductivity value,                          

kd, drainage = 4.3 × 10−2  m s⁄ . This is also suggested by the C-CORE. Considering 

the remaining part of the system, the porosity-permeability dependence of the drainage 

layer is neglected. 

4.2.2. Numerical Simulation and Results 

Before simulating the earthquake loading conditions, the numerical analysis was 

performed under gravitational load only. By doing so, the required state parameters of 

the hypoplastic constitutive model have been obtained. After that, the earthquake load 

given in Figure 4.11 was applied to the system. Considering the centrifuge test and the 

bucket where the experiment was conducted, and keeping mind that there is no friction 

between the bucket and soil, the dynamic load given in Figure 4.11 was applied to the 

nodes located at Y=0 m surface, also both X=0 m and X=51.6 m surfaces. The reason 

of applying earthquake loading to the nodes located at Y=0 is the existing drainage 

layer at the bottom. 

 

Figure 4.11. Horizontal earthquake input 
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A solid, durable data acquisition system is extremely important for a centrifuge test. 

Because the devices and acquisition systems used in these tests have to withstand 200 

times the Earth’s gravity. At least 20 times what the human body can withstand. In 

this experiment, some of the LVDTs are broken during the test. So that, for the 

comparison of the numerical results with the experimental data, P3 and P6 pore 

pressure transducers and for the displacements LVDT3 and LVDT4 data were used. 

The location of these devices is given in Table 4.3. 

Table 4.3. Location of pore pressure transducers and LVDTs 

 X Y Z 

P3 10.0 m 22.0 m 10.0 m 

P6 24.5 m 18.0 m 7.0 m 

LVDT3 35.0 m 20.5 m 10.0 m 

LVDT4 45.0 m 17.0 m 10.0 m 

The effects of the porosity-permeability relationship were investigated using the pore 

pressure accumulation and displacement results given in Figures 4.12, 4.13, 4.14 and 

4.15. Note that each comparison consists of two numerical simulations: one with the 

Kozeny-Carman implemented and another one without that implementation. 

 

Figure 4.12. Time histories of excess pore pressures at P3 
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Figure 4.13. Time histories of excess pore pressures at P6 

 

 

Figure 4.14. Time histories of vertical displacements at LVDT3 
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Figure 4.15. Time histories of vertical displacements at LVDT4 

The quality of the excess pore water pressure predictions varies; although it is 

satisfactory for the given two cases. However, comparing the results obtained from 

the experiment, displacements are not predicted adequately in the simulations. The 

comparison of the experimental test with the FE results, especially the pore pressure 

predictions, proves that the simulations with Kozeny-Carman implementation yield 

more satisfactory results comparing to one without the porosity-permeability 

relationship implementation. 

The main difference between the two simulations is, in the case of “without KC”, the 

accumulated pore pressure starts to decrease rapidly after the completion of the 

dynamic earthquake loading process. However, according to the experimental test 

results, the simulation with the Kozeny-Carman relationship allows a more accurate 

pore pressure dissipation phase. 

4.3. Numerical Modeling of an Offshore Gravity Foundation 

A gravity-based jacket type offshore wind turbine foundation has been modeled to 

investigate the effects of the changing permeability on the cyclic behavior of a wind 

turbine foundation. 
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Offshore foundations are exposed to extreme loading conditions due to harsh and 

marine aggressive environment. In such a condition, depending on the number of the 

extreme cycles, amplitude and frequency of the loading, soil underneath these huge 

structures may start to build-up excess pore pressure and eventually due to the stiffness 

degradation severe tilts may occur. Over 25 years of design life, number of cycles an 

offshore structure would be subjected to is approximately 107 cycles of wave loading 

which is the dominant cyclic load component. 

In this part, a true scale offshore foundation system adopted from (Sturm 2011) was 

numerically simulated under varying loading conditions. The geometry of the offshore 

structure is given in Figure 4.16. The minimum required weight of the offshore 

structure was determined according to the height of the 25 years returned period of 

the wave. All the detailed information regarding the decision of the size of the 

structure and the determination of the design loads are provided in the related article. 

In this study, rather than the realistic representation of the behavior of an offshore 

structure, the effects of the porosity-permeability variation were focused. In other 

words, the loading scenarios were not determined for the optimum design, but for the 

investigation of the porosity-permeability effects. 

 

Figure 4.16. Geometry and dimensions of the concrete foundation, Sturm (2011) 

h 51 m

d 38 m
a 7 ma 7 m
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The geometry of the finite element model is given in Figure 4.18. In order to eliminate 

the effects of the boundary conditions, the radius and the depth of the model were 

selected as 60 meter. Great attention was paid for an effective soil meshing, Figure 

4.19.  

Since the model is symmetric and loading is applied in one direction, half of the model 

is simulated. The boundary conditions are selected such that there will be no vertical 

displacement at the bottom of the model and also radial displacements are prevented 

at the outer radius of the soil. Since the model is symmetric, the degree of freedom of 

the nodes at the Y=0 is set to zero in Y direction. 

In this study, the parameters of the Baskarp sand which is provided in Table 4.4 were 

used. According to the provided initial condition, the relative density of the sand 

before the placement of the offshore structure is equal to, 𝐼𝐷 = 60% and 

corresponding hydraulic conductivity is given as, kd = 5.5 × 10−5  m s⁄ . Using 

Equation 2.90, the Kozeny-Carman constant is determined as 3.3338 × 10−4  m s⁄ . 

Table 4.4. Baskarp sand hypoplastic material parameters, Sturm (2011) 

𝜑c ℎs[MPa] 𝑛 𝑒d0 𝑒c0 𝑒i0 𝛼 𝛽 

32.5° 18000 0.26 0.505 0.862 0.991 0.11 1.0 
 

𝑅 𝑚R 𝑚T 𝛽R χ 

1.0 × 10−4 6.0 6.0 0.15 1.0 

Using the above provided boundary and initial conditions, the numerical model first 

analyzed under gravitational loading only, without any lateral loading on it. And then 

lateral load increased up to Hmean value and finally cycling loading with an amplitude 

of Hcyc
amp

 was initiated as shown in the Figure 4.17. Note that, before the initiation of 

the loading, a zero lateral load region is shown in the Figure 4.17. This is the time 

domain where the analysis was performed for the determination of the deformations 

due to the soil’s and structure’s own weights. In this numerical model, for the 

simplicity of the calculations, all the components of the load (e.g. wind, wave) were 

applied to the system from the top of the offshore structure. 
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Figure 4.17. Description of idealized lateral loading on the offshore wind turbine structure 

The soil structure interaction between the offshore turbine and soil was established 

using sophisticated CONTA174 and TARGE170 elements in ANSYS. The friction 

coefficient of the contact surface was assumed to be equal to the critical state soil 
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friction angle as suggested by the (Sturm 2011). Using these elements, after the 

placement of the structure an impermeable zone underneath the footings were created. 

 

Figure 4.18. 3D FE model of offshore gravity base foundation system 

 

 

Figure 4.19. Finite element mesh of soil underneath the offshore structure 
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During the consolidation stage, the mass of the structure increased linearly in order to 

prevent possible convergence problems. To do that, the density of the structure 

increased linearly using MPCHG command in ANSYS. In order to minimize the effect 

of the inevitably accumulated rounding error, only the first 15 cycles are investigated 

in the numerical analyses.  

Finally, hypoplastic material model together with two-phase u20p8 finite element was 

used for the investigation of the cyclic behavior of the soil. On the other hand, the 

offshore structure was modeled using a linear elastic material model with a very high 

elasticity modulus, simply assumed to be rigid. 

The cyclic load given in Figure 4.20 is applied to the system from the top of the 

structure in the positive X direction according to the coordinate system defined in 

Figure 4.18. 

 

Figure 4.20. Offshore structure applied cyclic loading 

The resulting displacements and excess pore pressure developments underneath the 

footings of the offshore structure are given in Figure 4.21, 4.22 and 4.23. In these 

figures, the right and left legs correspond to the half footings. The right leg is located 

in the positive X direction and expose to the major cyclic loading whereas the left leg 

is located in the negative X direction. 
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Figure 4.21. Displacements at right and left half legs of the offshore structure  

 

Figure 4.22. Excess pore pressure developments at the right half leg of the offshore structure 

0 10 20 30 40 50  0 70 80
Time  sec 

 0.09

 0.085

 0.08

 0.075

 0.07

 0.0 5

 0.0 

 0.055

 0.05

 0.045
D
is
p
la
ce

m
en

t 
 m

 

with KC without KC

with KC without KC

Left Leg

Right Leg

End of the consolidation 

due to selft weight

0 10 20 30 40 50  0 70 80
  0

 40

 20

0

20

40

 0

80

Time  sec 

E
x
ce

ss
 P
o
re
 P
re
ss
u
re
  
k
P
a 

with KC without KC

Right Leg



 

 

 

109 

 

 

Figure 4.23. Excess pore pressure developments at the left half leg of the offshore structure 

According to the results provided above, there is no significant difference between the 

two cases: with and without Kozeny-Carman implementation. The main reasons for 

this similarity are the initial condition and the consolidation stage defined before the 

initiation of the cyclic loading. Majority of the displacements take place during the 

installation (or placement) of the gravity foundation due to the self-weight of the 

structure. During the self-weight induced consolidation, it is assumed that there is no 

excess pore pressure development underneath the offshore structure. Also note that, 

due to the void ratio decrease around the offshore footings, the permeability of the soil 

in these are already reduced without any change in excess pore pressure, so that it is 

reasonable to have no difference between two cases. Since the permeability is directly 

defined by the current void ratio, the majority of the change in permeability occurred 

during the installation without any excess pore pressure developments.  

For the illustrative purposes, the excess pore water pressure contours and lateral 

displacements of the offshore structure at the peaks of the 5th and 15th cycles are given 

in the Figures 4.24, 4.25, 4.26, 4.27, 4.28 and 4.29.  
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Figure 4.24. Excess pore pressure developments, 5th cycle 

 

Figure 4.25. Excess pore pressure developments, 5th cycle 
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Figure 4.26. Lateral displacement in the loading direction, 5th cycle 

 

 

Figure 4.27. Excess pore pressure developments, 15th cycle 
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Figure 4.28. Excess pore pressure developments, 15th cycle 

 

Figure 4.29. Lateral displacement in the loading direction, 15th cycle 
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CHAPTER 5  

 

5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES 

5.1. Summary 

In this thesis, the effects of the porosity dependent permeability variation on the 

mechanical behavior of the soil were investigated for various type of geotechnical 

problems such as an earthquake induced dyke and jacket type offshore gravity 

foundation system. The hypoplastic constitutive model together with a fully coupled 

two-phase u20p8 finite element has been used for the numerical investigations. The 

variation of permeability is defined as a function of the current void ratio and 

implemented into the finite element framework using the Kozeny-Carman 

relationship. 

Before performing the geotechnical simulations, all the steps and implementations are 

verified and validated one by one. The available experimental studies have been used 

for the validation of the hypoplasticity and the two-phase model. Finally, the Kozeny-

Carman implementation is validated by conducting a laboratory experiment. During 

this experiment, hypoplastic material properties of the sand used in the test were 

determined and during this parameter determination stage, some improvements to ease 

the determination of these parameters were suggested such as image processing for 

the determination of the critical friction angle.  

In the finite element model, both the solid and fluid particles are considered to be 

linearly elastic (compressible). The bulk modulus of the grains and water are taken as 

Ks = 2 × 109 kPa and Kw = 2 × 106 kPa, respectively. Although the compressibility 

of the solid and fluid particles has a negligible influence on the mechanical behavior 

of granular soils, their consideration enables further possible uses of the model. 

The finite element software ANSYS has been used for the numerical analyses. 
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5.2. Conclusions 

The results of this study can be summarized as follows: 

- The selection of a suitable constitutive model is key for the realistic prediction 

of the soil behavior. Although there are many constitutive models available in 

the literature, developed for the granular soils, only some of them are capable 

of maintaining this highly nonlinear stress-strain relationship during the 

dynamic and cyclic loading conditions. At this point, the extended 

hypoplasticity provided satisfactory results and made it possible to investigate 

complex soil behavior. The accuracy of the model is already verified by many 

researchers and its popularity continuously increases. As a drawback of the 

model, the determination of the hypoplastic material parameters are complex 

and some of them have no physical corresponding which make them difficult 

to understand. The second difficulty in hypoplasticity is the variability of the 

material parameters. Hypoplastic material parameters are defined within a 

stress range so that it is possible to find two different sets of parameters for a 

single type of soil. For example, although the maximum and minimum void 

ratios do not vary for a single type of sand, the parameters ℎs and 𝑛 which are 

defined within a predefined stress range may vary a lot depending on the stress 

range selection. 

 

- The complex fluid particle interaction in fully saturated soils is taken into 

account by the implementation of the two-phase model. For the numerical 

simulation of the water saturated sands, u20p8 finite element is used together 

with the hypoplastic constitutive model. Using two element test results, one 

undrained cyclic triaxial and undrained cyclic simple shear test, it has been 

shown that the complex response of the soil skeleton and its interaction with 

the pore water which results in pore pressure developments, can be reproduced 

numerically, including the liquefaction phenomena. It should be noted that the 

adopted two-phase model which is based on formulation developed by 
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Zienkiewicz & Shiomi (1984) neglects the wave propagations and considers a 

relatively slow speed flow in porous media. Although this assumption is valid 

for the static or slow speed monotonic loading conditions, the importance of 

the wave propagation phenomena should be investigated for a more accurate 

dynamic response of porous media. 

 

- For the investigation of the porosity-permeability variation, among the many 

alternatives, void ratio dependent Kozeny-Carman relationship is selected. 

Although this relationship is developed for the slow speed laminar flow 

conditions, the numerical simulation of the earthquake loaded dyke proved that 

the Kozeny-Carman equation can still improve the dynamic prediction of the 

saturated soil behavior.  

 

- Three different case studies were carried out for the investigation of the effects 

of the porosity-permeability variation on the fully saturated sandy soils. In the 

first simulation, soil in an impermeable rigid box exposing vertical cyclic 

loading was simulated for various conditions. Note that, this is also the 

geometry of the experimental setup that was used for the validation of the 

Kozeny-Carman relationship. Although this model does not correspond to any 

physical soil condition, the rather simple boundary and 1D flow conditions 

help carrying out parametric studies. (An example for the effects of the 

increasing frequency and amplitude of the cyclic loading has already 

provided.) Overall higher excess pore pressure generations were determined 

for the analysis with KC compared to the simulation without KC. And a result 

considerably larger settlements were generated in “without KC” case. In this 

part, it is found that application of any monotonic slow speed loading prior to 

the cyclic loading, reduces the effects of the Kozeny-Carman implementation. 

Note that, the development of excess pore pressure depends on the type of 

loading. In case of deformation without significant pore pressure development, 

although the permeability changes, effects of it becomes negligible. Overall 

higher excess pore pressure generations were determined for the analysis with 
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KC compared to the simulation without KC. And a result considerably larger 

settlements were generated in “without KC” case. 

 

- The second case study was carried out for an earthquake induced dyke. In this 

experiment, since there was no prior significant loading before the earthquake, 

the effects of the implemented permeability relationship were observed more 

clearly. A comparatively more accurate pore pressure dissipation phase was 

predicted with the Kozeny-Carman implementation. 

 

- Finally, the behavior of a jacket type offshore gravity foundation system was 

investigated. Before the initiation of the lateral cyclic loading, the installation 

procedure of the offshore structure was simulated. The results show that the 

majority of the loading took place during this consolidation stage. Referring to 

the previous explanation of the slow loading scenario, again the decrease in 

void ratio without a significant change in pore pressure decreased the influence 

of the effects of the Kozeny-Carman implementation. As a result, no 

significant difference could be detected with the implementation of the 

permeability relationship.  

 

- The influence of the porosity permeability variation on the mechanical 

behavior of the soil was tired to be formulated using Kozeny-Carman equation. 

Together with the different size and type of case studies, the necessity of the 

consideration of the permeability implementation was questioned. As a result, 

it is suggested to consider porosity dependent permeability variation for an 

accurate simulation of the dynamic soil problems.  

5.3. Future Studies 

The particle-fluid interaction underpins the key behavior of granular soils in many 

applications. Conventional approaches have been based on continuum, 

phenomenological theories of porous media offer limited information at the 

microscale governing the interacted system of particles and fluid. At this point, the 

microscopic behavior of the fluid-particle interaction may provide insights to the 
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overall understanding of granular materials. The investigation of the porosity-

permeability relationship not just by the void ratio but also considering other important 

micro level factors such as the granulometric properties of the sand and dynamic load 

induced wave propagation within the porous domain would definitely increase the 

accuracy of the model and provide a better understanding for the dynamic behavior of 

the soil. To do that a coupled CFD-DEM numerical tool can be developed to simulate 

the fluid-particle interactions in granular soils.
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APPENDICES 

A. Triaxial Test Results 

In this part, the undrained cyclic triaxial test data used to calibrate hypoplastic material 

parameters of the sand are presented. All three triaxial test specimens with different 

initial relative densities were first consolidated under 150 kPa cell pressure and then 

sheared with a 50 kPa cyclic deviatoric stress. 

 

Figure 5.1. The undrained cyclic triaxial test results with a relative density of 0.34. 

 

Figure 5.2. The undrained cyclic triaxial test results with a relative density of 0.61. 
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Figure 5.3. The undrained cyclic triaxial test results with a relative density of 0.82. 
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