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ABSTRACT 

 

PLASTIC OBJECT DETECTION WITH AN INFRARED 

HYPERSPECTRAL IMAGE 

 

Diri, Mehmet Fatih 

Master of Science, Geodetic and Geographic Information Technologies 

Supervisor: Prof. Dr. Mehmet Lütfi Süzen 

Co-Supervisor: Assoc. Prof. Dr. Koray K. Yılmaz  

June 2019, 94 pages 

 

Undoubtedly, a world without plastic, which is the most important production material 

in almost every area, seems inconceivable today. The production and consumption 

chain, by which induced this versatile use, has caused plastic pollution that has 

devastating effects on the environment and natural ecosystems.  

In this thesis, which written with the motivation of contributing to the fight against 

plastic pollution and to be useful developing effective and sustainable policies, plastic 

pollution and pollutant types have been investigated; plastic objects have been 

examined in terms of physical, chemical and spectral aspects; and have been detected 

on land with an unsupervised manner through shortwave infrared hyperspectral image. 

15.5-meter resolution 224 band hyperspectral image which was acquired by AVIRIS 

is used. In this study, 15 different study field, each of which include significant plastic 

object samples like a greenhouse, an artificial turf football pitch, a solar panel, and a 

tent, is determined within the image scene. 

The positive value of spectral absorption around 1.72 µm, which is associated with 

the presence of plastic, has been mathematically expressed using two neighboring 

shoulders. This algorithm, which has the capability of detecting plastic objects on land 

quickly and precisely without needing any reference data and using only 3 shortwave 
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infrared bands, has been named as Plastic Existence Index (PEI).  The positive values 

generated as a result of the algorithm has been called Post Index Positive Value 

(PIPV). 

Since it was not possible to collect any data from the ground, the reference data has 

been produced by visual inspection method on the true color composite AVIRIS 

image. After implementation results have been compared with reference data, it is seen 

that highly-satisfactory outcomes have been obtained which mean value of UA is 

90.51%, PA is 89.04% and OA is 97.37. 

 

Keywords: plastic pollution, hyperspectral, shortwave infrared, unsupervised 

classification, feature detection   
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ÖZ 

 

KIZILÖTESİ HİPERSPEKTRAL GÖRÜNTÜYLE PLASTİK NESNE 

TESPİTİ 

 

Diri, Mehmet Fatih 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Danışmanı: Prof. Dr. Mehmet Lütfi Süzen 

Ortak Tez Danışmanı: Doç. Dr. Koray K. Yılmaz 

Haziran 2019, 94 sayfa 

 

Kuşkusuz, hemen hemen her alanda en önemli üretim malzemesi olan plastiğin 

olmadığı bir dünya bugün düşünülemez gözükmektedir. Bu çok yönlü kullanımın 

neden olduğu üretim ve tüketim zinciri, çevre ve doğal ekosistemler üzerinde yıkıcı 

etkileri olan plastik kirliliğine sebep olmaktadır. 

Plastik kirliliği ile mücadeleye katkıda bulunmak ve etkili ve sürdürülebilir politikalar 

geliştirmek konusunda faydalı olma motivasyonuyla yazılmış bu tez çalışmasında, 

plastik kirliliği ve kirletici türleri araştırılmış; plastik objeler fiziksel, kimyasal ve 

spektral yönleri açısından incelenmiş; ve kısa dalga kızılötesi hiperspektral görüntü 

ile denetimsiz bir şekilde karada tespit edilmiştir. 

Çalışmada 15.5-metre çözünürlüğünde 224 hiperspektral banda sahip AVIRIS 

görüntüsü kullanılmıştır. Bu görüntüde sera, suni çim futbol sahası, güneş paneli ve 

çadır gibi önemli plastik nesne örnekleri içeren 15 farklı çalışma alanı belirlenmiştir. 

1.72 µm civarında oluşan spektral absorbsiyon plastiğin varlığıyla ilişkilendirilmiş ve 

iki komşu omuz noktası kullanılarak matematiksel olarak ifade edilmiştir. Herhangi 

bir referans veriye ihtiyaç duymadan ve sadece 3 kısa dalga kızılötesi bant kullanarak 

karadaki plastik nesneleri hızlı ve hassas bir şekilde tespit edebilme yeteneğine sahip 

olan bu algoritmaya Plastik Varlık İndeksi (PEI) adı verilmiştir. Algoritma sonucunda 
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üretilen pozitif değerler ise Endeks Sonrası Pozitif Değer (PIPV) olarak 

adlandırılmıştır. 

Zeminden veri toplamak mümkün olmadığından, referans veri, gerçek renk kompoziti 

olarak oluşturulan AVIRIS görüntüsü üzerinde görsel inceleme yöntemiyle manuel 

olarak üretilmiştir. Uygulama sonuçları referans verilerle karşılaştırıldığında oldukça 

tatmin edici sonuçlar alındığı ve ortalama kullanıcı doğruluğunun %90.51, ortalama 

üretici doğruluğunun %89.04, ortalama genel doğruluğun ise %97.37 olduğu 

görülmüştür. 

 

Anahtar Kelimeler: plastik kirliliği, hiperspektral, kısa dalga kızılötesi, denetimsiz 

sınıflandırma, özellik çıkarımı   
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CHAPTER 1  

 

1. INTRODUCTION 

 

Undoubtedly, a world without plastic, which is the most important production material 

in almost every area, seems inconceivable today. It is used in a wide range of products 

from plastic household appliances to medical products, from car parts to electronic 

products. This versatile use increases plastic production and the raising production 

triggers consumption. This chain of production and consumption, which can be 

considered industrially successful, has caused plastic pollution problem that has 

devastating effects on the environment and natural ecosystems.  

Researches show that more than half of the plastic products are produced as packaging 

and disposable products and that they enter the world ecosystem as garbage in the year 

of production. A plastic waste, which takes up to 1000 years to dissolve in nature, 

pollutes the oceans, poisons the soil, kills plants and animals. Plastics and chemicals 

in it are also seriously threatening human health. When these destructive effects are 

examined, it may be considered that the use of plastic should be prohibited. However, 

it is not possible and not even logical. Instead, introducing some limitations on use, 

production and consumption can be an effective solution. 

Academics and environmentalists pay highly attention to the impact of plastic 

pollution on the seas and the oceans. However, plastic pollution on land, which not 

only poses a threat to soil and plants and living beings on it but also affects the marine 

ecosystems extremely negatively, has not been adequately investigated.  

In this thesis, plastic and plastic pollution has been discussed in many respects and 

plastic presence has been detected on the land by using some special remote sensing 

techniques and technologies in order to make a positive contribution to the solution of 

plastic pollution and protection of the natural environment. 
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1.1. Hydrocarbon, Polymer and Plastic 

In order to understand the plastic in detail, it is significantly necessary to first 

understand the hydrocarbon and then the polymer.  

Hydrocarbon, one of the most important classes of organic compounds, is mixed of 

carbon and hydrogen (Olah & Molnár, 2003). Carbon atoms cluster as groups to 

compose the structure of hydrocarbon, and hydrogen atoms are linked to them in 

various combinations.  

Although hydrocarbons are composed of only two types of atoms, they are highly 

diverse. This diversity is caused by the lengths and variations of the interatomic bonds 

and the combinations that may occur depending on them like illustrated in Figure 1.1.  

 

Figure 1.1. Ball and Stick Model for molecules of methane (CH4), ethane (C2H6), and 

propane (C3H8) (Hydrocarbons, 2012). 

Hydrocarbons can be found in plants, animals and even in the human body. They are 

the main constituent of a great number of materials, primarily as petroleum products 

and polymers and plastics. 

Polymers are atomic mass compounds built by the process of reacting monomer 

molecules jointly in a chemical reaction called polymerization. There are three forms 

of polymers: elastomers, fibers, and plastics (Ouellette & Rawn, 2015).  

Elastomers are known for their flexible structure. After distortion, they recover their 

original form. Every sole string in elastomers can be extended by stretching but after 

pressure pass, atomic structure comes back to original conformation. Basically, 

hybridized carbon atoms provide its elasticity. Rubber is the most known elastomer.  
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Fibers occur when polymer strings are aligned the same direction. It is classified in 

two classes: short fiber and long or continuous fiber. Synthetic turf/grass, which is one 

of the plastic objects to be aimed to detected in this study, is also a fiber sample. 

Plastic, made from polymer, is a universal term used to define a multitude of synthetic 

(manmade) or semi-synthetic materials (Woodford, 2018). Plastic material is made up 

of polymers, which can be soft or rigid in many colors and in transparent form. 

The name of plastic comes from plastikos that means can be shaped in Greek (Liddell 

& Scott, 1897). Plastic is made by conversion of natural substances or through 

synthesis from main chemical compounds derived from coal, oil and natural gas. 

Refinement of unprocessed oil is the beginning phase of plastic material production. 

This process separates the highly-viscous oil into lighter units called fractions which 

are basically a compound of hydrocarbon chains. Naphtha, one of the fractions, is 

significant for plastic production. 

Because of their versatility, durability, low cost, and easy manufacturing process, 

plastics are used in a many products in different scales. Plastic is a lightweight material 

that substitutes its heavier metallic predecessors like iron or alloys. From healthcare 

and agriculture to construction energy, plastic is used in everywhere.  

The majority of plastics have good corrosion resistance to chemicals like acid or alkali. 

For example, polytetrafluoroethylene (PTFE) has excellent chemical stability and 

even better than gold. Majority of plastics are poor electrical conductors. For this 

reason, plastic is used in many applications in the electronics and machinery industry. 

Additionally, it has good isolation and used for thermal isolation. Plastics can be hard 

as steel and stone or soft as cotton and chewing gum and even a knife can be made 

using different variations. There are many types of plastics and each has its own 

properties, though they can be divided into two major families: thermoplastics and 

thermosets. 

The Society of the Plastic Industry (SPI) created a system to facilitate the recycling 

process in 1988 to classify different type of plastic which are polyethylene 
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terephthalate (PET or PETE), high-density polyethylene (HDPE), vinyl (Polyvinyl 

Chloride or PVC), low-density polyethylene (LDPE), and polypropylene (PP) or 

polystyrene (PS) can be seen in Figure 1.2. 

 

Figure 1.2. SPI Plastic Resin Identification Coding System (Merrington, 2017). 

Poly (ethylene terephthalate) - PET or PETE is the plastic used to bottle the vast of 

drinks. Approximately one-fourth of plastic bottles are PET. PET bottles can be clear; 

they are tough and conserve carbon dioxide well (Carraher, 2008). 

High-density polyethylene - HDPE is a specific variation of PE. HDPE constitutes 

approximately 50% of the plastic bottle market. Milk, juices, margarine and lots of 

food packages on the market are HDPE. It is robust and can be shaped easily. 

Poly (vinyl chloride) - PVC or V is used as pure or a mix for generating a variety of 

products like pipes, package films, solid detergents, and containers. 

Low-density polyethylene - LDPE is more elastic than and not as durable as HDPE.  

Its shapeless form makes it more poriferous than HDPE, but it blocks moisture better. 

It is a significant material for bread and trash bags. 

Polypropylene - PP has a strong resistance to chemicals. PP constitutes nearly 50% of 

the plastic bottle market and used for juices, milk, margarine, etc. packages. 

Polystyrene - PS is used to make a variety of pots, styropor plates, dishes, cups, etc. 
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1.2. Plastic Pollution Problem 

Plastic pollution is the chemical debris which has an enormous negative impact on the 

environment and wildlife habitat. Natural polymers like rubber and silk abound in 

nature, but they do not play a role in plastic pollution, due to the fact that they do not 

persist in nature. However, the industrial type of plastic which produced primarily 

from petroleum is developed particularly to beat natural deterioration and can persist 

in nature for centuries. 

While their broad-scale production and usage only date back to ~1950, 348 million 

metric tons of plastics produced in 2017. To comprehend the magnitude of plastic 

pollution in lands and oceans, plastic pollution must be understood in numbers. 

Approximately 8.3 billion tons of plastics, of which 8.4% were predicted to be 

recycled and 9.6% burned, was produced around the world up till now (Geyer, et al., 

2017). 

Around 4.9 billion tons, ~59% of produced plastics were discarded and inevitably 

entered the environment illustrated in Figure 1.4 (Geyer, et al., 2017). 

 

Figure 1.3. Production, use, and cycle of plastics (Geyer, et al., 2017) 
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1.3. Plastic Pollutant Types 

Plastic pollutants can be classified into four main classes which given in Table 1.1.  

 Table 1.1. Plastic Pollutant Classes (Andrady, 2017) 

Class Seen with Size 

Macroplastics Naked eye > 25 mm. 

Mesoplastics Naked eye or optical microscope 25 mm. – 5 mm. 

Microplastics Optical microscope 5 mm. - 1  μm 

Nanoplastics Electron microscope < 1  μm 

 

Macroplastics exist in bag, packaging, and landfills which derived from industrial 

components (Barnes, et al., 2009). Macroplastics, which partially cause the formation 

of microplastics, play an active role in plastic pollution. 

Macroplastic pollution is a worldwide issue and is seen as a standout amongst the most 

serious types of contamination in shorelines, freshwater bodies and marine 

environment. They are commonly characterized as having a size > 25 mm. (Romeo, 

et al., 2015), Some of them smell like food and ingested by different marine species 

like fish and seabirds, the effect is presented in Figure 1.5 (Derraik, 2002).  

 

Figure 1.4. Albatross that poisoned by the macroplastics (Jordan, 2009) 
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The issue of macroplastic pollution has been revealed in the 1990s and is currently 

secured by a few universal guidelines.  

Microplastics are tiny parts of plastic and one of the most significant factors of water 

sources pollution. They have usually accumulated in urban and municipal centers and 

water sources. Microplastic dimensions are less than 5 mm according to U.S. National 

Oceanic and Atmospheric Administration (NOAA).  

Plastic debris is also classified as either primary or secondary. In this context, there 

are two types of microplastics. First one is any plastic particles which were produced 

smaller than 5 mm. on purpose. Microfibers or fabric pieces are known samples of 

these types of primary microplastics. Secondary microplastics are plastic particle 

which dimensions are more than 5 mm. like bottles or bags but turn into very small 

pieces within a period of degradation and distortion (Hammer, et al., 2012). These 

kind of microplastics can even turn into nanoplastics. 

Due to the fact that it contaminates water and land easily and quickly, microplastics 

and nanoplastics are extremely destructive for the environment. 

1.4. Effects of Plastic Pollution 

192 countries which have coasts to Atlantic, Pacific and Indian oceans, or the 

Mediterranean and the Black Sea, generated approximately 275 million tons of plastic 

debris in 2010 (Jambeck, et al., 2015). It is estimated that 4,8 to 12,7 million tons of 

plastic debris which is equivalent to 1,7% to 4,6% of total waste entered the ocean in 

the same year (Jambeck, et al., 2015). This garbage entering the oceans is toxic to 

marine life. Planktonic organisms, fish species, birds, marine mammals, sea turtles 

and eventually the human race are exposed to these highly noxious chemicals by 

means of the food chain. One being in anywhere in this food chain may come to face 

with cancer, immune faults, and birth defects (Fernandez, et al., 1999).  

Due to some factors like wind and ocean flows, coastal and urban geography, and 

trade roads, the spread of plastic debris in nature is changeable. People also play a 



 

 

 

8 

 

critical role in this issue. Plastics may cause a distribution of organisms to remote 

locations, and may also be carriers for certain chemicals, such as organic pollutants 

and heavy metals. As a result of the release of harmful plastics chemicals to the soil, 

the groundwater and other water sources are polluted and damage the ecosystem. It 

also harms the species that drink this contaminated water. Tap waters are also under 

the threat. Level of tap waters, which include the pollutants of plastics is %83 (Mason, 

et al., 2018). 

Plastic debris effects on land are not limited to water and ecosystem. Due to the fact 

that degradation of many different types of plastics in landfills through nylon-eating 

bacteria, methane gas arise which has a significant effect on global warming. 

Additionally, the release of dangerous chemicals on land causes breeding areas for 

diseases and reducing beneficial natural cycle. 

Plastic pollution has serious effects not only on nature and animals but also on humans. 

Because almost everything includes plastics, the great majority of the human 

population are exposed to the chemicals. Plastics, because of the use of chemicals 

during production, can cause an endocrine defect and have cancerogenic effects on 

human (Barnes, et al., 2009). These chemical additives used in plastic production can 

cause dermatitis in case of direct contact with skin. As mentioned before chemicals 

derived from plastics contaminated tap water. In the US, 95% of adults have an 

appreciable rating of Bisphenol A (BPA) in their urine. BPA exposure has been 

associated with some health problems like thyroid hormone-disruptions, infertility 

defects, reproductive health and maturation of sex (North & Halden, 2013). 

To summarize, the plastic and the chemicals in it have destructive effects in many 

respects on the environment and all species living in it. 

 

 

 

https://en.wikipedia.org/wiki/Thyroid_hormone
https://www.seslisozluk.net/destructive-nedir-ne-demek/
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1.5. Problem Statement 

Scientific studies have mostly focused on plastic pollution in seas and oceans, and 

there is not considerable amount of study on the plastic pollution based on land. 

However, the plastic pollution in marine environment is mostly caused by pollution 

formed mainly on land and coasts. For instance, any size of plastic on the land 

undergoes a series of dissolution, transforms into microplastics and enters the soil and 

water, and then enters the seas and oceans under the influence of rivers and wind.  

For this reason, plastic pollution on land, which not only poses a threat to soil and 

plants and living beings on it but also affects the marine ecosystems extremely 

negatively, should be investigated and then the results should be analyzed. 

While plastic detection on land is a challenging issue, it is possible via remotely sensed 

images using a number of specific techniques. As a result of this determination, for 

example, synthetic polymers used for agricultural purposes, in other words 

plasticulture can be detected. Thus, it is possible to decide on the level of the use of 

plastic in agriculture and whether it requires restriction. By means of this detection, 

future planning can also be done by determining the rate of increase or decrease of 

plastic usage at past years on land. 
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1.6. Thesis Contribution 

This thesis consisted of investigations and practices to define plastics in a broad 

perspective, to present brief information about types and effects of plastic pollution 

and to emphasize the abilities of short wave infrared bands with a high amount of 

spectral information to detect plastic objects. 

It has been observed that there are academic studies using multispectral and 

hyperspectral data for plastic detection. However, a practice to detect plastic objects 

used for different purposes in different locations with one single algorithm has not 

been seen. In addition, academic studies have mostly focused on plastic pollution in 

marine environment. Studies about plastic pollution on land are insufficient. 

The thesis aims to further develop algorithms that use spectral information and having 

capabilities of quickly and precisely detecting different types of plastic objects used 

for different purposes in different locations on land with using only 3 shortwave 

infrared (SWIR) bands and without reference data. 

Although there is valuable information in almost every region of the SWIR spectrum, 

the PEI algorithm has been developed to use only 3 bands of the SWIR spectrum. The 

reason for this approach is that the payload, which is planned to work in harmony with 

the PEI algorithm, is intended to be developed in a simple, low-cost and 

uncomplicated way. 
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CHAPTER 2  

 

2. BACKGROUND INFORMATION AND LITERATURE SURVEY 

 

Plastic object detection (POD) can be carried out in many different ways and in a 

variety of different environments. Detection method can be classified by the source 

and type of data or by technique used. This section, the common methods used and 

adopted are mentioned, can also be considered as a literature review. 

2.1.  Data Types Used for Plastic Object Detection 

It is possible to categorize data to three classes on account of POD. These are 

multispectral, hyperspectral and synthetic aperture radar (SAR) images. 

Multispectral imagery (MSI) and hyperspectral imagery (HSI) can be used in analysis 

using spectral signatures. Simply, the main distinction between MSI and HSI is the 

count and the interval size of the bands. MSI is generally under 10 bands and HSI 

gathers more than 100 narrower bands.  These amazing imageries provide significant 

information that cannot gather with visible or single band images. MSI and HSI can 

be used to extract target data like distinguishing proof of a compound (Gundlach, 

2012). 

SAR lights up an objective and after that measure and process the reflectance of signal 

like other radars. Moreover, SAR utilizes the forward movement of the UA-mounted 

radar to deliver the impact of a long radio wire without having a physically long 

reception apparatus (Gundlach, 2012). These systems are generally more complicated 

than conventional optical systems because of convoluted architecture of antenna and 

prerequisites of processing procedures. Despite the fact that SAR images can partially 

look like electro optical images, radar images can offer unique and valuable 

information. 
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Data types used for POD can be classified into three main categories; ground, aerial 

and satellite based in terms of source and acquisition.  

Ground based imageries are relatively more successful in POD due to the fact that it 

is not exposed to the atmosphere and its effects. El-Magd, et al. (2014) used ASD 

spectrometer to examine spectral properties of water and contaminants. In some 

studies, multiple data sources are used together for better results. Scafutto, et al. (2017) 

used both ground based and aerial based spectrometers for simultaneous measument 

of materials.  

In a ground-based implementation, the study area can be considered as a laboratory 

environment. These high-tech systems utilize many regions of the electromagnetic 

spectrum, but get benefit more from reflection and absorption values in the near 

infrared and shortwave infrared region for special purposes. These electro-optical 

systems have a technical ability to easily extract plastic and even determine the type 

of the plastic. An example of such applications can be seen in the Figure 2.1. 

 

Figure 2.1. SVM classification map for plastic waste sorting using SWIR (Karaca, et 

al., 2013) 
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Determination of the type of plastic provides more efficient recycling process. Ground 

based image which is generally used for industrial purposes, is not suitable for 

environmental studies. 

Aerial imageries are important sources for POD. Aerial images are obtained with the 

help of special cameras, which can be mounted on aircraft or unmanned aerial vehicles 

(UAV) and customized according to the needs. An aerial image has some advantages 

like being able to cover larger areas than ground-based imageries and to offer high 

spatial resolution than satellite imageries. Another important advantage of the aerial 

imageries is that the platforms, where they are produced, are can quickly and easily 

be taken action and modified. Sensors used in such platforms may also contain more 

than two hundred bands to record the radiation values in each region of the 

electromagnetic spectrum more effectively given in Table 2.1.  

Table 2.1. Some Airborne Hyperspectral Sensors (Thenkabail & Lyon, 2016) 

Sensor Number of Bands Spectral Range(µm) 

AISA Eagle Up to 488 0.40 – 0.97 

AISA Eaglet Up to 410 0.40 – 1.00 

AISA Hawk 254 0.97 – 2.50 

AISA Dual Up to 500 0.40 – 2.50 

AISA Owl Up to 84 8.00 – 12.00 

AVIRIS 224 0.40 – 2.50 

CASI-550 288 0.40 – 1.00 

CASI-1500 288 0.38 – 1.05 

SASI-600 100 0.95 – 2.45 

MASI-600 64 3.00 – 5.00 

TASI-600 32 8.00 – 11.50 

DAIS 7915 79 0.43 – 12.30 

DAIS 21115 211 0.40 – 12.00 

EPS-H 150 0.43 – 12.50 

HYDICE 210 0.40 – 2.50 

HyMap 128 0.45 – 2.48 

Hyspex 704 0.40 – 2.50 

PROBE-1 128 0.40 – 2.50 
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Satellites imageries are indispensable data source for remote sensing applications. 

Satellite imageries have low spatial resolution compared to aerial photographs but 

used frequently in environmental research as it can cover larger areas. Platforms 

producing satellite images record radiation values from many regions of the 

electromagnetic spectrum, such as platforms that producing air imageries, but may be 

relatively low in terms of the number of bands they contain.  

Although satellite imageries types differ according to the technique used and the 

purpose; for POD, satellite image which contain near infrared and short wave infrared 

bands can be more practical. Asadzadeh and de Souza Filho (2016) simulated the 

WorldView-3 SWIR bands using libraries spectra and some datasets to examine the 

hyrdocarbon detection performance of WorldView-3. 

It is beneficial to look at the comparison of some satellites which produce shortwave 

infrared imageries which given in table 2.2 due to the fact that they can be an 

alternative to the data which is a shortwave infrared airborne image that used in this 

study. 

Table 2.2. Satellites with Shortwave Infrared Bands 

Satellite 

Spatial 

Resolution 

(SWIR) 

Spectral Range  

(SWIR) 

Number 

of Bands 

(SWIR) 

WorldView-3 3.7 m. 1.19 µm - 2.36 µm 8 

Aster 30 m. 1.60 µm - 2.43 µm 6 

EO-1 Hyperion 30 m. 0.85 µm - 2.57 µm 172 

Landsat-7 30 m. 1.55 µm - 1.75 µm,  2.09 µm - 2.35 µm 2 

Landsat-8 30 m. 1.56 µm - 1.65 µm,  2.11 µm - 2.30 µm 2 

Sentinel-2 20 m. – 60 m.   1.37 µm, 1.61 µm, 2.20 µm  (center) 3 
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2.2. Techniques Used for Plastic Object Detection 

POD through remote sensing components and technologies is a significant and 

intriguing but also compelling issue. As mentioned in sections 2.1.1 and 2.1.2 POD 

can be carried out in a variety of data source and type. Depending on the characteristic 

of the data, the technique used also varies. 

If a MSI is used as the data type for POD, conventional supervised classification 

techniques are commonly used. Support Vector Machine (SVM), Maximum 

Likelihood (ML) and Random Forest (RF) are the supervised techniques used widely 

for the POD.   

ML is used more than other supervised classification techniques. The ground of the 

ML classification is probability density function which supposes that the stats 

distribution is normal for each class and computes the probability that a pixel member 

of a class.  Agüera, et al. (2008) used ML classifier, hough transform and loop 

elimination to detect and describe greenhouses. 

RF and SVM algorithms, which comparatively new classification techniques, are 

nonparametric. The RF is a committee-based learning method which uses decision-

tree, whereas SVM is a classifier built on statistical learning concept (Koç San, 2013). 

Chen, et al. (2016) proposed a new technique uses textural and spectral features 

together for POD, interpreted performance of SVM and then compared it with ML.  

Spectral analysis or Infrared Reflectance Spectroscopy is another significant 

technique used for POD using NIR and SWIR imageries. All material has a specific 

spectral signature which can be considered as a function of reflectance or emissivity 

of the wavelength (Gundlach, 2012). Spectral reflectance can change dependent on 

physical structure, compound attributes, temperature elements, illumination and 

atmospheric circumstances of the material. The spectral signatures can be found in 

libraries to help analysis.  
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A spectral analysis to be used for POD is generally can be called Infrared Reflectance 

Spectroscopy (IRS). Masoumi, et al. (2012) developed a “two-filter” identification 

system based on NIR reflectance spectroscopy which, consist of two different optical 

systems to separate two specific wavelengths, that examining some parameters like 

contamination of surface, thickness and label of sample to classify plastic waste. 

There are many different indices in the literature to identify different materials using 

spectral information, such as the most well-known Normalized Difference Vegetation 

Index (NDVI). These indices are created with image processing techniques with the 

help of a number of software or more easily using band ratios. Antonio and Tarantino 

(2015) used three different indices in addition to NDVI which are plastic surface 

index, rescaled brightness temperature and normalized difference sandy index for 

POD. 

SAR imageries are also surprisingly used for POD. It is possible to detect plastic object 

by applying RF and SVM algorithms to the backscattering intensity obtained from the 

C-Band Full Polarization SAR image, which has been subjected to a number of 

processes and made more suitable to the POD (Chen & Li, 2017). 

In addition to main methods, basic techniques of image processing also used for 

enhancement of POD. El-Magd, et al. (2014) used streching and convolution filters 

for disciriminate oil spills.  
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2.3. Optical Properties of Plastic Objects 

The optical properties of plastic objects vary depending on many parameters. For 

example, if the plastic floats over the water, the reflected spectrum changes due to 

different refractive indices.  

Pure plastics such as PE are homogeneous and cause less scattering because they are 

brighter (Kutz, 2011).  The use of heterogeneous substances in the homogenous object 

causes scattering of light (Hong & Pine, 2005). Depending on the purpose, when an 

object is more opaque it absorbs more light. Covering the plastic with a coat may 

reduce scattering and increase reflection.  

Two cases are remarkable for the optical properties of a plastic object: 

i. Small plastic particles scatter light more than larger plastics. 

ii. Reducing the refractive index contrast between the plastic particle and its 

surrounding environment reduces the amount of light scattered by the plastic 

particle (Law, et al., 2014). 

For these reasons, the amount of light scattered by the plastic particles in the water is 

relatively high (1.333), while the amount of light scattered by the plastic in the air is 

tolerable due to the fact that the refractive index of the air is close to 1 under normal 

conditions (1.003). 

Another mentionable parameter is the structure of the surface. On a flat and smooth 

surface, the reflected light and the incoming light make the same angle as the normal 

and no scattering occurs. On the rough surface, light is scattered in several directions 

(Albregtsen, 2008).   

In brief, various parameters such as chemical properties, color, texture, opacity, 

surface roughness, reflection and scattering properties of plastic object affect the 

optical properties of light reflected from plastic. 
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2.4. Spectral Properties of Plastic Object 

The spectral reflection of a substance may vary depending on the ambient conditions, 

the production method and the equipment used. Plastic spectra, in addition to these 

factors, depends on various parameters like plastic type, homogeneity, size and color. 

In this section, the spectra of different types of plastics acquired in different 

environments by using different equipment and techniques has been examined. 

Although the spectra generated from the satellite image are not the same with spectra 

generated in laboratory environment due to the atmosphere and effects of it even if the 

material is the same, it is still significantly similar. This proposal can be seen in clearly 

in Figure 2.2 which shows spectra comparison of alunite acquired from four different 

sensors. 

 

Figure 2.2. Spectra comparison of alunite from four hyperspectral sensors (Smith, et 

al., 2016) 
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In this context it is more meaningful to look at the spectra which purified as much as 

possible from atmospheric effects and external parameters in the reliable libraries.  

Jet Propulsion Laboratory (JPL) spectral library which another name is ECOSTRESS 

suitable for this examination. More than 3400 man-made and natural material spectra 

can be found in ECOSTRESS (Ecostress Spectral Library, n.d.). Three samples, 

respectively white fiberglass unspecified rubber, white rubberized coating and black 

unspecified rubber obtained from the laboratory are given below. 

White fiberglass unspecified rubber (Sample No.: 0834UUURBR), which particle size 

is solid, classified as a manmade roofing material. The plot shows that an absorption, 

which neighbor to two shoulders, exists around 1.72 µm which is important point in 

terms of the prediction of plastic existence. Plot can be seen in Figure 2.4.  

 

Figure 2.3. Spectra of white fiberglass unspecified rubber (Ecostress Spectral 

Library, n.d.) 

White rubberized coating (Sample No.: 0795UUURBR), which particle size is solid, 

manmade roofing material, sub classified as rubber. The plot is similar to the white 

fiberglass unspecified rubber plot and shows that an absorption, which neighbor to 

two shoulders, exists around 1.72 µm. can be seen in Figure 2.6. 
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Figure 2.4. Spectra of white rubberized coating (Ecostress Spectral Library, n.d.) 

Black unspecified rubber (Sample No.: 0833UUURBR), which particle size is solid 

and classified as a manmade roofing material, sub classified as rubber. As the material 

is black, it is clearly seen that the light is absorbed greatly. It is difficult to make a 

prediction if this material is plastic or not by looking only at its spectral plot can be 

seen in Figure 2.6. 

 

Figure 2.5. Spectra of black unspecified rubber (Ecostress Spectral Library, n.d.) 
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United States Geological Survey (USGS) Spectroscopy Library is another valuable 

source that can be utilized. USGS Lab focuses on identifying materials via remote 

sensing technologies on the earth and solar system. Five samples, respectively HDPE, 

LDPE, PETE, PVC and Vinyl, obtained from the laboratory given below. 

Spectral behavior of HDPE plastic (Sample ID.: GDS351), which classified as a 

manmade material can be seen in Figure 2.7 (Kokaly, et al., 2017). There is an 

absorption, which neighbor to two shoulders, exists around 1.72 µm. 

 

Figure 2.6. Spectra of HDPE plastic (Kokaly, et al., 2017) 

LDPE plastic (Sample ID.: GDS402) spectra, which classified as a manmade material 

can be seen in Figure 2.8. Sample is a piece of plastic bag (Kokaly, et al., 2017). There 

is an apparent absorption, which neighbor to two shoulders, exists around 1.72 µm. 



 

 

 

22 

 

 

Figure 2.7. Spectra of LDPE plastic (Kokaly, et al., 2017)  

PETE plastic (Sample ID.: GDS383) spectra is acquired from piece of a blue food 

container (Kokaly, et al., 2017) can be seen in Figure 2.9. There is also an apparent 

absorption, which neighbor to two shoulders, exists around 1.72 µm.  

 

Figure 2.8. Spectra of PETE plastic (Kokaly, et al., 2017) 
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PVC plastic (Sample ID.: GDS338) spectra, which classified as a manmade material 

can be seen in Figure 2.10. Sample is a piece of white PVC pipe (Kokaly, et al., 2017). 

An absorption can be seen around 1.72 µm which neighbor to two shoulders. 

 

Figure 2.9. Spectra of PVC plastic (Kokaly, et al., 2017) 

Vinyl plastic (Sample ID.: GDS372) spectra can be seen in Figure 2.11. Sample is a 

piece of white plastic vinyl sheet (Kokaly, et al., 2017). An absorption can be seen 

around 1.72 µm which neighbor to two shoulders. 

 

Figure 2.10. Spectra of vinyl plastic (Kokaly, et al., 2017) 
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CHAPTER 3  

 

3. DATASET, TARGETS AND METHODOLOGY 

 

3.1. Data and Parameters 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is an Earth Remote 

Sensing tool which has 224 spectral bands, distributed between 380 and 2500 

nanometers. Each of 224 different detectors has nearly 10-nanometer wavelength 

sensitive range that provides to cover the entire range between 380 nm and 2500 nm. 

In this thesis, HSI, which is calibrated, orthocorrected and atmospherically 

uncorrected radiance data, is used that acquired by AVIRIS f170612t01p00r10 

number flight, under the direction of the researcher Robert Green (AVIRIS Data 

Portal, 2019). Quicklook of image can be seen in Figure 3.1. 

 

Figure 3.1. Quicklook Image (AVIRIS Data Portal, 2019) 

The flight was held to cover an area of 446 kilometers in the northwest-southeast 

direction and 27 kilometers wide in the northeast-southwest direction in Los Angeles 

basin on 12.06.2017.  Some technical specifications of the flight are given in table 3.1. 

Table 3.1. Technical Specifications of the Flight f170612t01 (AVIRIS Data Portal, 

2019) 

Site Name Solar Elevation Solar Azimuth Rotation 

Southern California 70.5 241.64 66 
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The image, acquired by flight f170612t01, projection is UTM Zone 11 North and 

datum is WGS-84. Flight is rated as 85% clean and ground sample distance (GSD) is 

15.5 meter. The starting and ending coordinates of image are given in table 3.2 

(AVIRIS Flight: f170612t01, 2019). 

Table 3.2. Starting and Ending Coordinates (AVIRIS Flight: f170612t01, 2019) 

NASA Log# Run ID Start Lat. Start Long. Stop Lat. Stop Long. 

14203 p00_r10 34.471216 -119.0403167  33.0481311 -114.996019  

 

3.2. Major Study Area and Study Fields 

The whole image, which has been consciously chosen due to the fact that it contains 

various significant samples of plastic objects, is determined major study area which 

can be seen in Figure 3.2.  

 

Figure 3.2. Study Area 

In addition to study area, 15 divergent study field (SF) has been determined in this 

446-kilometer-long large area shown in Figure 3.3.   
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Figure 3.3. Study Fields 
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As a result of investigation these 15 SF, 4 different usage type of plastic objects, which 

discussed in section 3.3 and 3.4, have been detected with different size and spectra can 

be seen in Table 3.3. 

Table 3.3. Study Fields Specifications 

SF No Latitude Longitude Area Usage 

SF1 34.38056 118.92764 4.71 km2 Greenhouse 

SF2 34.42079 118.77579 4.44 km Greenhouse 

SF3 34.15469 118.28343 0.45 km Artificial Football Pitch 

SF4 34.06912 117.78984 1.30 km Artificial Football Pitch and Solar Panel 

SF5 33.99201 117.73056 1.15 km Artificial Football Pitch and Solar Panel 

SF6 34.03849 117.66385 1.74 km Artificial Football Pitch and Solar Panel 

SF7 33.95424 117.56258 3.05 km Artificial Football Pitch and Tent 

SF8 34.00124 117.52425 1.19 km Artificial Football Pitch and Solar Panel 

SF9 33.91193 117.49670 0.40 km Artificial Football Pitch 

SF10 33.85522 117.39299 1.62 km Greenhouse 

SF11 33.80288 117.17344 15.55 km Greenhouse 

SF12 33.77350 117.07937 0.65 km Tent-like Structure 

SF13 33.73639 117.01055 4.49 km Solar Panel 

SF14 33.51189 116.16044 7.98 km Greenhouse 

SF15 33.46610 116.08084 45.55 km 
Greenhouse, Solar Panel and Tent-like 

Structure 
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3.3. Target Objects Specifications 

Due to the low resolution of the image used in this study, it is aimed to detect large 

sized plastics such as greenhouses. It is considered that if the techniques used to allow 

possible to detect large size plastics in the low-resolution image, it will be possible to 

detect small size plastics in the high-resolution image using the same techniques 

There are many plastic objects of different sizes in the study area. Obviously study 

fields are chosen according to the existence and density of plastic as mentioned in 

section 3.2. A brief look at the targeted plastic objects, which aimed to be detected in 

this thesis, such as greenhouses and plastic mulched farmlands, artificial football 

pitches, solar panels and tent-like structures may be useful. 

Greenhouses have provided a positive contribution to agricultural production and 

brought the plasticulture term to literature. On the other hand, they also have played a 

significant role in soil pollution. Previously, glass was usually used to cover 

greenhouses, but for the last few decades’ plastic has been used more. The use of 

plastics in agriculture is not only in the form of conventional greenhouses but also as 

plastic mulched farmland can be seen in Figure 3.4. The main plastic types used for 

covering greenhouses and plastic mulched farmlands are polycarbonate, polyethylene, 

fiberglass, acrylic and PVC (vinyl). 

 

Figure 3.4. Plastic greenhouses and plastic mulched farmlands (Chen & Li, 2017) 
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Another plastic object that is larger than the greenhouses is artificial football pitches. 

The usual football pitches are natural grass, but some special types of them are covered 

with synthetic/artificial turf/grass. Synthetic turf/grass is another form of plastic which 

can be seen in Figure 3.5. It is mostly formed by fibers which derived from 

polypropylene or nylon. 

 

Figure 3.5. Components of synthetic turf/grass and seam damage on it. (Jastifer, et 

al., 2019) 

Solar panels are not made up by plastic material, but generally, have a specific 

protective covering which usually consists of glass. This protective covering material 

can also have made up of plastic. Ethylene tetrafluoroethylene (ETFE) or 

Polyethylene terephthalate (PET) are commonly used as covering material of solar 

panel illustrated in Figure 3.6 (Svarc, 2018). 

 

Figure 3.6. Plastic protective covering material and other layers of solar panel 

(Svarc, 2018) 
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The last plastic object aimed to be detected is tent or tent-like structure. The tent can 

be of many different sizes and types for its intended use. PVC (vinyl) is usually used 

in the production of plastic tents can be seen in Figure 3.7. 

 

Figure 3.7. Vinyl personnel tents and vinyl tent strips (Lloyd, et al., 2013) 
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3.4. Spectra Samples of Target and Non-Target Objects 

In this section, the spectral behaviors of the target plastic objects in the study fields 

are investigated. Spectra samples from four main objects which mention in section 3.3 

has been gathered from AVIRIS image. 

Figure 3.8 shows that greenhouse spectra have absorption around 1.72 µm which 

indicate that potential of plastic existence. Typical shoulder-feature-shoulder norm is 

also formed. 

 

Figure 3.8. Spectra of greenhouse in SF1 

 

Figure 3.9 shows that, solar panel have absorption around 1.72 µm which indicate that 

potential of plastic existence.  Right shoulder can be interpreted as weak.  
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Figure 3.9. Spectra of solar panel in SF6 

Figure 3.10 shows that, solar panel have absorption around 1.72 µm which indicate 

that potential of plastic existence The rate of absorption in the solar panels may vary 

on material used.  

 

Figure 3.10. Spectra of solar panel in SF5 

 



 

 

 

34 

 

Figure 3.11 shows that, artificial football pitch spectra have absorption around 1.72 

µm which indicate that potential of plastic existence. Plot clearly shows that the right 

shoulder is much stronger than in the greenhouse and solar panel. 

 

Figure 3.11. Spectra of synthetic turf/grass in SF3 

Figure 3.11 shows that, tent-like structure spectra have absorption around 1.72 µm 

which indicate that potential of plastic existence. Typical shoulder-feature-shoulder 

norm also formed. 

 

Figure 3.12. Spectra of tent in SF15 
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A glance at the spectra of other materials and substances around 1.72 µm in the same 

image allows comparison with the plastic spectra. 

When the soil spectra are examined, it is seen that almost straight line is formed around 

1.72 µm can be seen in Figure 3.13. This linear behavior indicates the absence of 

plastic. 

 

Figure 3.13. Spectra of soil 

While exhibiting a different character, the asphalt's spectra also turns into an almost 

straight line around 1.72 µm, such as the soil's spectra, which again indicates the 

absence of plastic can be seen in Figure 3.14. 

 

Figure 3.14. Spectra of asphalt 
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3.5. Outline of the Plastic Existence Index Algorithm 

It is beneficial to investigate Hydrocarbon Index (HI) before defining Plastic Existence 

Index (PEI).  

HI is a mathematical algorithm which developed by Kühn, et al. (2004) for the direct 

detection of HC. HI basically evaluates the geometry around 1.73 µm. and runs a 

perpendicular line (BB’) as a HC existence indicator illustrated in Figure 3.15. 

According to HI algorithm, plot geometry forms two cases: 

i. If A, B and C constitute a triangle, then HI>0, then HC exist.  

ii. If A, B, and C constitute nearly a straight line, then HI=0, then HC is 

absent. 

 

Figure 3.15. Enlarged view of spectra around 1.73 µm (Kühn, et al., 2004) 

 



 

 

 

37 

 

HI can be calculated with using Equation 3.1 (Kühn, et al., 2004). 

 𝐻𝐼 = (𝜆𝐵 − 𝜆𝐴)
𝑅𝐶 − 𝑅𝐴

𝜆𝐶 − 𝜆𝐴
+ 𝑅𝐴 − 𝑅𝐵 (3.1) 

  

The formula can also be expressed as shown in Equation 3.2 (Kühn, et al., 2004). 

 𝐻𝐼 =
(𝜆𝐵 − 𝜆𝐴)

(𝜆𝐶 − 𝜆𝐴)
× (𝑅𝐶 − 𝑅𝐴) + 𝑅𝐴 − 𝑅𝐵 (3.2) 

 

where RA; λA, RB; λB, RC; λC are radiance/wavelength pairs (Kühn, et al., 2004). 

Kühn, et al., (2004) stated that 1.73 µm is the key point for HC detection in their 

HyMAP data. However, when the spectra of different plastic materials in AVIRIS data 

are examined, it is seen that point 1.72 µm is more meaningful for POD which given 

in Figure 3.8, Figure 3.9, Figure 3.10, Figure 3.11, and Figure 3.12. 

Moreover, plastic spectra samples in reliable libraries support this suggestion which 

given in Figure 2.5, Figure 2.6, Figure 2.8, Figure 2.9, Figure 2.10, Figure 2.11, and 

Figure 2.12. 

In addition to the values observed from AVIRIS data, since the spectral values 

examined from reliable libraries are taken as a reference, 1721.231 nm has been 

determined as the feature point, which symbolized with the B. 

When spectra plots are analyzed, it has been observed that left shoulder is longer that 

right shoulder. Correspondingly, the A is selected as a distant point, 1681.383 nm as 

left shoulder in order to obtain a greater curve and thus make the HI line more 

prominent. 

1731.92, which is very close to B and known to be used in the detection of HC, has 

been consciously left inside the geometry. Since a downward movement is generally 

seen after the point 1741.153 nm which is the closest point after 1731.92, this point 

has been chosen as right shoulder to maintain geometrical form. 
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As a result of the algorithm implemented with selected bands (A:1681.383 nm, 

B:1741.153 nm, C: 1721.231), it is observed that plastic objects take positive data 

values and extracted from non-plastic objects. When the spectral profiles of plastic 

objects are examined, it is observed that the data values are mostly intensified between 

50 and 150 can be seen in Figure 3.16 and Figure3.17. 

 

Figure 3.16. Spectral profile of a greenhouse in SF15 

 

Figure 3.17. Spectral profile of a greenhouse in SF11 
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It is observed that non-plastic objects such as soil and water take negative values 

extensively but can also take a very small proportion of positive value can be seen in 

Figure 3.18 and Figure 3.19. 

 

Figure 3.18. Undesirable noise-like pixel around greenhouses in the west of the 

Salton Sea (SF15) 

 

 

Figure 3.19. Undesirable noise-like pixels around greenhouses and corresponding 

22.10.2016 dates high-resolution satellite image (SF11) 
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The reasons for this unexpected situation, which is thought to be caused by multiple 

issues, have been explained by examining the situation in two different study field. 

 Lenz, et al. (2015) stated that atmospheric water has an absorption feature around 

1730 Nm. Some plastic objects in the study area are very close to the water masses 

can be seen in Figure 3.18.  Due to the fact that the concentration of water vapor in 

the air is intense near water masses, data values of a non-plastic object near these areas 

may include positive values. 

Additionally, in areas like soil and rocks, which sample of it can be seen in Figure 

3.19, where there is no plastic existence, oil or its derivative hydrocarbon seepage or 

another chemical substance effect also may cause positive data values.  

Another important factor is the resolution of the image. A plastic whose size is below 

the image resolution can blend with a non-plastic object and form mixed pixel issue 

and this probably results in positive data values.   

When the spectral profiles of these non-plastic objects and areas are examined, it is 

observed that positive data values are generally intensified in the range 0 through 10 

given in Figure 3.20 and 3.21. 

 

Figure 3.20. Spectral profile of noise-like pixel around greenhouses in the west of 

the Salton Sea in SF15 
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Figure 3.21. Spectral profile of the noise-like pixels in the north of the greenhouse in 

SF11 

With taking account of spectral profiles of the non-plastics objects that take positive 

values, reducing the amount of the output value of the algorithm amount as N, 

substantially eliminate this situation which can be defined as hyperspectral algorithm-

noise.  

It is true that some pixels will be lost as a result of this process. But note that main 

purpose is the detection of a certain size of the plastic, which is directly related to the 

resolution of the image, and this loss has been considered as negligible.  

The constant N value, which is a tool that acquires sharper results and to get rid of the 

noise-like pixels, has been determined as 10. 

The comparative image before and after the reducing process can be seen in Figure 

3.22.  and Figure 3.23. 
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Figure 3.22. Noisy-like pixels before and after the reducing process in SF15 

 

 

Figure 3.23. Noisy-like pixels before and after the reducing process in SF11 
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After corrections and changes mentioned above, the algorithm has been referred to as 

the plastic existence index (PEI) henceforth. 

Considering this modification, it is useful to examine how the formula is composed. 

The formula has been developed based on the similarity theorem as shown in Figure 

3.24. 

 

Figure 3.24. Geometrical expression of the algorithm 

Equation 3.3 and Equation 3.4 are obtained as a result of similarity theorem using 

index point difference values. 

 
(𝑅𝐴 − 𝑅𝐵ʹ)

(𝜆𝐵 − 𝜆𝐴)
=

(𝑅𝐴 − 𝑅𝐶)

(𝜆𝐶 − 𝜆𝐴)
  (3.3) 

 

 (𝑅𝐵ʹ − 𝑅𝐴) =
(𝜆𝐵 − 𝜆𝐴)

(𝜆𝐶 − 𝜆𝐴)
× (𝑅𝐶 − 𝑅𝐴)   (3.4) 
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If equivalent of the (RBʹ-RA) expression in Equation 3.4 is inserted to Equation 3.1, 

Equation 3.5 is obtained. 

 𝐻𝐼 = 𝑅𝐵ʹ − 𝑅𝐴 + 𝑅𝐴 − 𝑅𝐵  (3.5) 

 

Consequently, if RBʹ = RB there is no positive value BBʹ line which means there is no 

plastic. The magnitude of BBʹ, which is directly related to the radiance value, gives a 

clue to the level of purity and homogeneity of the plastic object. 

For a clear understanding of the algorithm steps, the flowchart of the algorithm is 

shown in Figure 3.25. 

 

Figure 3.25. Flowchart of PEI Algorithm 
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CHAPTER 4  

 

4. IMPLEMENTATION OF THE METHODOLOGY 

 

4.1. Data Preprocessing  

Data size is 23.91 GB. In order to process this great size image more efficiently, 15 

different subset images have been generated from it based on the SF borders. 

Corrections have not applied to data, only the format is converted to TIFF in order to 

eliminate problems that may occur during the implementation of the algorithm and 

related processes in QGIS, ENVI and MATLAB programs.  

After the image has been resized, the reference data which can be called ground truth 

has been determined for the purpose of assessing the accuracy of the results. The 

ground truth has been produced manually based on the true color composite AVIRIS 

data can be seen in Figure 4.1. 

Due to the fact that GSD of the image is rather low (15.5 meter) it is possible to have 

some errors in the ground truth. In order to minimize these errors as much as possible, 

the ground truth has been tried to produce as precisely as possible. 

It is considered that the detection process using the same image will contain very 

similar errors resulting from the GSD and that the errors in the same direction will 

eliminate each other and that a slight improvement in the error tolerances will occur. 

Ground truth data, which produced in vector format and .shp extension, has been 

converted to raster image format and tiff extension in order to compare with PEI 

Algorithm results. 



 

 

 

46 

 

 

Figure 4.1. Manually produced ground truth data 
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4.2. Plastic Existence Index Algorithm Results 

Based on the equations mentioned in section 3.5, PEI can be computed as shown in 

Equation 4.1.  

𝑃𝐸𝐼 = (
(1721 𝑛𝑚 − 1681 𝑛𝑚)

(1741 𝑛𝑚 − 1681 𝑛𝑚)
× (𝑅1741 − 𝑅1681) + 𝑅1681 − 𝑅1721) − 10 (4.1) 

 

And it can be expressed that shown in Equation 4.2. 

𝑃𝐸𝐼 = (0.67 × (𝑅1741 − 𝑅1701) + 𝑅1701 − 𝑅1731) − 10 (4.2) 

where 10 is noise killer constant value. 

 

Resultant can be written in ENVI Band Math as follows as given in Equation 4.3. 

𝑃𝐸𝐼 = (0.67 × ((𝑓𝑙𝑜𝑎𝑡(𝐵146) − 𝑓𝑙𝑜𝑎𝑡(𝐵140)) + 𝑓𝑙𝑜𝑎𝑡(𝐵140) − 𝑓𝑙𝑜𝑎𝑡(𝐵144) − 10 (4.3) 

The presence of the plastic has been successfully detected as a result of implementing 

the function given in Equation 4.3. Results have been visualized with the figures given 

below. 

PEI Algorithm results in both positive and negative values. Since the presence of a 

plastic object is associated with positive values, it is thought that using a new term 

which named Post Index Positive Value (PIPV) for positive output values is 

conceptually useful.  

The interval between the maximum and minimum PIPV, except outliners, has been 

divided into 30 equal and converted to a color scale from blue to red for a better visual 

experience.  
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The lightest tone of blue represents the smallest positive value resulting from the 

algorithm, in other words, the plastic object with the lowest spectral reflection.  

The darkest tone of red represents the highest positive value resulting from the 

algorithm, in other words, the plastic object with the highest spectral reflection. 

Histogram of correctly classified plastic pixels is given in figures between 5.1 and 

5.15, in section 5.1. 

The following figures present comparative images of each study field Same concept 

is in every figure for ease of examination. The image generated after PEI Algorithm 

is shown with A, 12.06.2017 dated true color composite (R:647.97 nm, G:550.30 nm, 

B:453.07 nm) AVIRIS image is shown with B, and high-resolution satellite image that 

can be found closest to 12.06.2017 and corresponding to SFs is shown in C. In order 

to give some details, D has been formed in some figures. 

Figure 4.2 presents the comparative images of the SF1. The greenhouses, which 

marked with red rectangles in 4.2.C., have been successfully detected by the 

algorithm. PIPV is between 1.33 and 105.66. 

 

Figure 4.2. PEI Algorithm results and comparative images of SF1 

Figure 4.3 presents the comparative images of the SF2. The greenhouses have been 

successfully detected by the algorithm. PIPV is between 2.66 and 101.66. 
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Figure 4.3. PEI Algorithm results and comparative images of SF2 

Figure 4.4 presents the comparative images of the SF3. Four artificial football pitches 

have been successfully detected by the algorithm. PIPV is between 0.66 and 233.00. 

Next to the artificial football pitches, there are three more football fields, which are 

relatively larger and covered with natural grass. The PIPV of these fields is below 

zero.   

  

Figure 4.4. PEI Algorithm results and comparative images of SF3 

Figure 4.5 presents the comparative images of the SF4. An artificial football pitch and 

solar panel have been successfully detected by the algorithm. PIPV is between 0.66 

and 130.00. 
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Figure 4.5. PEI Algorithm results and comparative images of SF4 

Figure 4.6 presents the comparative images of the SF5. An artificial football pitch and 

solar panels have been successfully detected by the algorithm. PIPV is between 1.00 

and 233.33. An artificial football pitch is marked with a cyan rectangle and solar 

panels are marked with a magenta rectangle in 4.6.C. PIPV of nearby green areas is 

below zero.   

 

Figure 4.6. PEI Algorithm results and comparative images of SF5 

Figure 4.7 presents the comparative images of the SF6. An artificial football pitch and 

solar panels have been successfully detected by the algorithm. An artificial football 

pitch is marked with a cyan rectangle and solar panels are marked with a magenta 

rectangle in 4.7.C. The algorithm has also identified 4 buildings as plastic. The unusual 

situation here has also been addressed in the Chapter 5. PIPV is between 1.11 and 

87.66. 



 

 

 

51 

 

 

Figure 4.7. PEI Algorithm results and comparative images of SF6 

Figure 4.8 presents the comparative images of the SF7. Four adjacent and one discrete 

artificial football pitches and a tent have been successfully detected by the algorithm. 

An artificial football pitches are marked with a cyan rectangle in 4.8.C. Tent can be 

seen in detail in 4.8.D. PIPV is between 1.66 and 183.33.  

 

Figure 4.8. PEI Algorithm results and comparative images of SF7 

Figure 4.9 presents the comparative images of the SF8. An artificial football pitch and 

solar panels have been successfully detected by the algorithm. An artificial football 

pitch is marked with a cyan rectangle and solar panels are marked with a magenta 

rectangle in 4.9.C.  PIPV is between 1.00 and 108.33. 
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Figure 4.9. PEI Algorithm results and comparative images of SF8 

Figure 4.10 presents the comparative images of the SF9.  An artificial football pitch 

has been successfully detected by the algorithm. PIPV is between 4.66 and 77.66. 

 

Figure 4.10. PEI Algorithm results and comparative images of SF9 

Figure 4.11 presents the comparative images of the SF10. A greenhouse cluster has 

been successfully detected by the algorithm. PIPV is between 2.66 and 90.00. 

 

Figure 4.11. PEI Algorithm results and comparative images of SF10 
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Figure 4.12 presents the comparative images of the SF11. Two discrete greenhouses 

have been successfully detected by the algorithm. PIPV is between 0.66 and 125.00. 

 

Figure 4.12. PEI Algorithm results and comparative images of SF11 

Figure 4.13 presents the comparative images of the SF12. A tent-like structure has 

been successfully detected by the algorithm. PIPV is between 0.66 and 85.66. 

 

Figure 4.13. PEI Algorithm results and comparative images of SF12 

Figure 4.14 presents the comparative images of the SF13. Solar panel cluster has been 

successfully detected by the algorithm. The PIPV of the gaps between the panels are 

relatively below zero. PIPV is between 3.00 and 201.66.  
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Figure 4.14. PEI Algorithm results and comparative images of SF13 

Figure 4.15 presents the comparative images of the SF14. The greenhouse has been 

successfully detected by the algorithm. Since greenhouses may vary depending on the 

time, there may be differences between the two adjacent dated recent images, as seen 

in 4.15.C and 4.15.D. PIPV is between 2.00 and 81.00.  

 

Figure 4.15. PEI Algorithm results and comparative images of SF14 

Figure 4.16 presents the PEI algorithm output of SF15. Figure 4.17 presents 

12.06.2017 dated true color composite (R:647.97 nm, G:550.30 nm, B:453.07 nm) 

AVIRIS image and Figure 4.18 presents 01.07.2017 dated high-resolution satellite 

image corresponding to SF15.  

Greenhouses, tent-like structure and, solar panels have been successfully detected by 

the algorithm. Solar panels are marked with a magenta rectangle and a tent-like 

structure is marked with a yellow rectangle in Figure 4.17. 
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 PIPV in SF15 is between 1.33 and 228.33. In SF15, the constant change of 

greenhouses can be observed from spectral changes, as well as from high-resolution 

satellite images.  

As can be seen in Figure 4.17, there is water in the northeast of SF15. Atmospheric 

water has an absorption feature around 1730 nm. (Lenz, Schilling, Gross, & 

Middelmann, 2015) Since this case is thought to may affect the PEI algorithm 

negatively, the water part of the image has been masked. 

 

Figure 4.16. PEI Algorithm results of SF15 
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Figure 4.17. True color composite AVIRIS image corresponding to SF15 

 

Figure 4.18. High-resolution satellite image corresponding to SF15 
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4.3. Spectral Math Function Outputs 

Spectral Math Function (SMF) implements the PEI Algorithm and calculate the PIPV 

results. In addition, the function compares the ground truth and algorithm output, 

generate the confusion matrix, and correspondingly produce accuracy rates. The 

function can be found in Appendix A. Below is brief information about the images 

presented in figures. 

Result of PEI Algorithm is shown as the first image of the figure plates. To obtain this 

image, the bands have been first selected and then the PEI algorithm was coded in the 

MATLAB environment by applying the formula given in Equation 4.2. In this image, 

both positive and negative values are displayed. 

PIPV is shown as the second image of the figure plates. This image, which derived 

from the first image, shows only positive values of the PEI Algorithm result. In 

calculation and operation performed with MATLAB, generally, char and double data 

types are used. Therefore, the resulting values are converted to double data type. Gray 

values in the first and second images are directly related to the magnitude of values 

acquired from the algorithm results that can be interpreted as the strength of spectral 

radiance and degree of plastic object existence. 

Mask of PIPV is shown as the third image of the figure plates. Masking the PIPV is a 

process that each pixel in the image is identified to be a member of a class without 

using any training data, it is actually an unsupervised classification. This image shows 

two discrete class clustered using the values generated by the PEI algorithm. The first 

class contains all values that are greater than zero, and the second class contains all 

values that are smaller than zero. The classification is based only on whether they are 

positive or negative, regardless of the magnitude of the values. 

Ground truth is presented as the fourth image of the figure plates. Ground truth, which 

has been manually produced using the true color composite of AVIRIS image, has 

been generated to make comparison with the PIPV masked image shown in the third 

image and thus to perform accuracy assessments.  
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The figures below named from Figure 4.19 to Figure 4.33, show how the SMF 

Algorithm works in different study fields and the results of the algorithm from SF1 to 

SF15, respectively. Same concept is in every figure for ease of examination. 

 

Figure 4.19. SMF output of SF1  

 

Figure 4.20. SMF output of SF2 
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Figure 4.21. SMF output of SF3 

 

 

Figure 4.22. SMF output of SF4 
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Figure 4.23. SMF output of SF5 

 

 

Figure 4.24. SMF output of SF6 
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Figure 4.25. SMF output of SF7 

 

 

Figure 4.26. SMF output of SF8 
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Figure 4.27. SMF output of SF9 

 

 

Figure 4.28. SMF output of SF10 
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Figure 4.29. SMF output of SF11 

 

 

Figure 4.30. SMF output of SF12 
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Figure 4.31. SMF output of SF13 

 

 

Figure 4.32. SMF output of SF14 
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Figure 4.33. SMF output of SF15 
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CHAPTER 5  

 

5. RESULTS AND DISCUSSIONS 

 

5.1. Accuracy Assessment 

The result of plastic detection is an unsupervised image classified as two separate 

classes as plastic and non-plastic. The detection and pixel based classification process 

is successful, but it is imperfective without the accuracy assessment, the last step for 

complete classification. 

While conducting the accuracy assessment, it is aimed to determine the coherence 

between the data obtained as a result of classification and the ground truth representing 

the actual earth values. Thus, the degree of representation of the classes obtained as a 

result of the classification is determined. Ground truth can be generated from actual 

values obtained from field work at certain points or can be produced by aerial 

photographs or satellite images.  

The ground truth used in this thesis has been produced manually by a visual 

interpretation with using a true color composite of 15.5-meter resolution AVIRIS data. 

This reference data, which is relatively inadequate for objects smaller than the spatial 

resolution, is quite sufficient for a plurality of plastic objects that have been 

successfully detected. 

The most common method used to determine the classification accuracy is the error 

matrix called as confusion matrix. Confusion matrix; is a square order of numbers 

arranged in rows and columns in the number of pixels assigned as a specific type of 

terrain cover according to the actual terrain cover obtained from the ground truth 

(Jensen & Lulla, 1987). In other words, the confusion matrix compares the relationship 

between the known reference data, as known as ground truth, and their corresponding 

data acquired from the process of classification.  
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Many accuracy criteria can be acquired by using the confusion matrix. The most 

commonly used of these are user accuracy, producer accuracy, and overall accuracy. 

(Yan, 2003)  

User Accuracy (UA) or precision represents the probability that the pixel assigned to 

any class actually belongs to that class. It is calculated by dividing the number of 

pixels or objects that are correctly classified for each class to the total number of pixels 

or objects classified in that category which is given in Equation 5.1. 

Producer Accuracy (PA) or sensitivity refers to the possibility of classifying a pixel or 

object in its actual value. It is calculated by dividing the number of pixels or objects 

that are correctly classified for each class to the sum of the actual cover type sampling 

number selected for that class which is given in Equation 5.2. 

If these UA and PA values are close to 100 and close to each other, the accuracy of 

classification can be considered as good. Otherwise, if one of these two values is close 

to 100 and the other one is too low, or the two values are too low, the selected training 

areas or the algorithm used may need to be re-evaluated. 

Overall Accuracy (OA) is calculated for each class by dividing the total number of 

classified pixels to the total number of reference pixels which given in Equation 5.3. 

OA presents a general assessment of the accuracy of classes. 

The accuracy criteria can be calculated in a simple way according to the formulas 

given below. 

𝑈𝐴 =
a

(a + b)
 (5.1) 

𝑃𝐴 =
a

(a + c)
 (5.2) 

𝑂𝐴 =
 (a + d)

(a + b + c + d)
 

(5.3) 
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where: 

a = number of pixels classified as X when observed as X in reference 

b = number of pixels classified as X when observed as not X in reference 

c = number of pixels not classified as X when observed as X in reference 

d = number of pixels classified as not X when observed as not X in reference 

 

Confusion matrixes of plastic classes in study fields, which produced in accordance 

with the rules determined in these definitions, is given in tables between 5.1 and 5.15. 

Histograms, which are an integrant part of accuracy assessment components, give in 

figures between 5.1 and 5.15. Histograms values have consisted of correctly classified 

pixels. 

Table 5.1. Confusion Matrix of Plastic Class in SF1 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 558 75 

Non-Plastic 15 13210 

 

 

Figure 5.1. Correctly classified as plastic pixels’ histogram (SF1) 
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Table 5.2. Confusion Matrix of Plastic Class in SF2 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 970 162 

Non-Plastic 39 7028 

 

 

Figure 5.2. Correctly classified as plastic pixels’ histogram (SF2) 

 

Table 5.3. Confusion Matrix of Plastic Class in SF3 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 99 6 

Non-Plastic 19 998 

 

 

Figure 5.3. Correctly classified as plastic pixels’ histogram (SF3) 
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Table 5.4. Confusion Matrix of Plastic Class in SF4 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 89 11 

Non-Plastic 6 1920 

 

 

Figure 5.4. Correctly classified as plastic pixels’ histogram (SF4) 

 

Table 5.5. Confusion Matrix of Plastic Class in SF5 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 102 8 

Non-Plastic 24 766 

 

 

Figure 5.5. Correctly classified as plastic pixels’ histogram (SF5) 
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Table 5.6. Confusion Matrix of Plastic Class in SF6 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 131 3 

Non-Plastic 54 1150 

 

 

Figure 5.6. Correctly classified as plastic pixels’ histogram (SF6) 

 

Table 5.7. Confusion Matrix of Plastic Class in SF7 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 232 28 

Non-Plastic 8 5791 

 

 

Figure 5.7. Correctly classified as plastic pixels’ histogram (SF7) 



 

 

 

73 

 

Table 5.8. Confusion Matrix of Plastic Class in SF8 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 71 13 

Non-Plastic 1 752 

 

 

Figure 5.8. Correctly classified as plastic pixels’ histogram (SF8) 

 

Table 5.9. Confusion Matrix of Plastic Class in SF9 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 31 2 

Non-Plastic 6 267 

 

 

Figure 5.9. Correctly classified as plastic pixels’ histogram (SF9) 
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Table 5.10. Confusion Matrix of Plastic Class in SF10 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 251 33 

Non-Plastic 9 1027 

 

 

Figure 5.10. Correctly classified as plastic pixels’ histogram (SF10) 

 

Table 5.11. Confusion Matrix of Plastic Class in SF11 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 1135 64 

Non-Plastic 233 37767 

 

 

Figure 5.11. Correctly classified as plastic pixels’ histogram (SF11) 
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Table 5.12. Confusion Matrix of Plastic Class in SF12 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 52 24 

Non-Plastic 1 428 

 

 

Figure 5.12. Correctly classified as plastic pixels’ histogram (SF12) 

 

Table 5.13. Confusion Matrix of Plastic Class in SF13 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 1202 35 

Non-Plastic 300 2754 

 

 

Figure 5.13. Correctly classified as plastic pixels’ histogram (SF13) 
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Table 5.14. Confusion Matrix of Plastic Class in SF14 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 552 52 

Non-Plastic 19 2402 

 

 

Figure 5.14. Correctly classified as plastic pixels’ histogram (SF14) 

 

Table 5.15. Confusion Matrix of Plastic Class in SF15 

  Observed Pixels 

  Plastic Non-Plastic 

Classified Pixels 
Plastic 6069 516 

Non-Plastic 710 113461 

 

 

Figure 5.15. Correctly classified as plastic pixels’ histogram (SF15) 
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Number of pixels and accuracy criteria regarding study fields are given in Table 5.16. 

The table also presents the types of detected objects in study fields.  

Table 5.16. Object Types, Number of Pixels and Accuracy Criteria Regarding Study 

Fields 

Study 

Fields 
Object Types 

Number 

of Pixel 
UA PA OA 

SF1 Greenhouse 13858 97.4 % 88.1 % 99.3 % 

SF2 Greenhouse 8199 85.7 % 96.1 % 97.5 % 

SF3 Football Pitch 1122 94.3 % 83.9 % 97.7 % 

SF4 Football Pitch, Solar Panel 2026 89.0 % 93.7 % 99.1 % 

SF5 Football Pitch, Solar Panel 900 92.7 % 80.1 % 96.4 % 

SF6 Football Pitch, Solar Panel 1338 98.8 % 70.8 % 95.7 % 

SF7 Football Pitch, Tent 6059 89.2 % 96.7 % 99.4 % 

SF8 Football Pitch, Solar Panel 837 84.5 % 98.6 % 98.3 % 

SF9 Football Pitch 306 93.9 % 83.8 % 97.4 % 

SF10 Greenhouse 1320 88.4 % 96.5 % 96.8 % 

SF11 Greenhouse 39199 94.7 % 83.0 % 99.2 % 

SF12 Tent 505 68.4 % 98.1 % 95.0 % 

SF13 Solar Panel 4291 97.2 % 80.0 % 92.2 % 

SF14 Greenhouse 3025 91.4 % 96.7 % 97.6 % 

SF15 
Greenhouse, Football Pitch 

and Solar Panel 
120756 92.1 % 89.5 % 98.9 % 
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Accuracy criteria have resulted in a highly satisfactory degree which mean value of 

UA is 90.51%, PA is 89.04% and OA is 97.37. It is useful to examine the results of 

UA, PA, and OA, which are correlated with each other but have different meanings. 

UA values are quite high except for the error in SF12 class. When the confusion matrix 

of SF12 is analyzed, it can be seen that 52 of the 72 pixels are classified as plastic as 

should be but 24 pixels are misclassified. This error has reduced the UA accuracy 

criterion to 68%. The source of the error may be related to the reliability of the ground 

truth or the performance of the algorithm. 

PA values are also high except for the error in SF6 class. When the confusion matrix 

of SF6 is analyzed, it can be seen that 131 of 185 pixels which should be in the plastic 

class can be detected but 54 pixels cannot be detected. In PIPV image of SF6, it is 

clearly seen that there are four more buildings detected as plastic. This unexpected 

situation has been discussed in section 5.2.  

OA values are excessively high with values up to 99%. The reason for these extreme 

results is that negative PIPVs in the images are overwhelmingly more than positive 

PIPV. 

 

 

 

 

 

 

 

 

 



 

 

 

79 

 

5.2.  Discussions of the Results 

Different types of plastic objects have been successfully detected with the 

implementation of PEI Algorithm and SMF. However, it is crucial to evaluate the 

results of the implementations, objectively.  

When the histograms of correctly classified plastic pixels are examined, a number of 

inferences can be made as follows. 

 The highest spectral reflectance has been seen in football pitches. Football pitches 

have a slightly better spectral reflection than other plastic objects. It is thought that the 

reason for this better reflection is related with that artificial turf is more homogenous 

than other objects and additionally, pitches, due to the fact they are clean and well-

maintained, reflect their chemical properties better. As can be seen in Figure 3.13, the 

absorption of the pitches around 1.72 µm is significantly higher than other objects. 

The lowest spectral reflectance has been seen in greenhouses. Since the greenhouses 

can be changed easily and quickly depending on the season and needs, it is possible 

to see them which composed of a different material or installed in different time even 

if they are side by side in the same field. This variability, which affects spectral 

reflectance, has also been seen in greenhouses in many study fields. In addition, 

greenhouses are pervious due to their use and are not made of a very solid material 

and can easily lose their form. The weak and pervious structure of the material 

negatively affects the spectral reflection. According to the observation made from the 

high-resolution satellite image, greenhouses which in the same color and the same 

type and are physically similar have nearly same spectral reflectance. 

The spectral reflection of the solar panels is variable as seen in Figure 3.9 and 3.10. It 

is thought that the colors of the solar panels with different spectral reflections are 

different, they can be produced in different materials, and the types of materials cause 

different the spectral reflections. The difference can be seen in Figure 4.6 and 4.7. 
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Since it is known that the newer material reflects its spectral characteristics better than 

of degraded one, it is thought that football pitches in SF3 are relatively new can be 

seen in Figure 4.4. This assumption has been confirmed that, by the observation made 

from high-resolution satellite images, the pitches were built after 24.03.2015. The 

opposite of this situation has been observed in the football pitches in SF4 can be seen 

in Figure 4.5. It has been seen that the football pitch in SF4, which has a lower spectral 

reflection than the football pitches in SF3, was built before 1994 as a result of 

observation made from high-resolution satellite images. This shows that the aging 

material gradually lost its spectral properties. The relation between the newness of the 

material and the spectral character of it has been also observed in solar panels in SF5 

with more than 230 PIPV and a tent-like in SF15 with more than 225 PIPV can be 

seen in Figure 4.6 and Figure 4.16. 

In PIPV image of SF6, it is clearly seen that there are four more objects detected as 

plastic in addition to the two objects which exists in the ground truth and detected 

successfully. When the high-resolution satellite image of this region is examined, it 

has been observed that these four objects are four buildings of similar type and similar 

color marked with a red rectangle in Figure 5.16. 

 

Figure 5.16 High-resolution satellite image corresponding to SF6 
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It is thought that the roofing materials of these buildings are probably plastic materials, 

and if so, this case which perceived as an error, actually shows that the algorithm 

performs quite well. Unfortunately, there is no data that can confirm this prediction.  

Some plastic objects, which detection is impossible in visual inspection in the true 

color composite image because of the low resolution, has been clearly seen in PIPV 

masked image while they are not seen in ground truth image. This case has been seen 

many outputs. Difference between the images, which can be interpreted as an error, 

also naturally reduces the degree of accuracy. However, it is thought that this error is 

not related to the performance of the algorithm but rather to the reliability of the 

ground truth. It is considered that when a higher resolution image is used, a better 

ground truth with higher accuracy can be produced and the algorithm will perform 

better. 
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CHAPTER 6  

 

6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

In this thesis, which written with the motivation of contributing to the fight against 

plastic pollution and to be useful developing effective and sustainable policies, plastic 

pollution and pollutant types have been investigated; plastic objects have been 

examined in terms of physical, chemical and spectral aspects; and have been detected 

on land with an unsupervised manner through shortwave infrared hyperspectral image 

and significant plus successful results have been obtained. 

The data used to detect the presence of plastic on the land is 15.5-meter resolution 224 

band hyperspectral image, which is calibrated, orthocorrected and atmospherically 

uncorrected radiance data, that acquired by AVIRIS. 15 different study field, each of 

which is divergent from each other and consisting of significant plastic object samples 

like a greenhouse, an artificial turf football pitch, a solar panel, and a tent has been 

selected in this image that covering an area of 10704 km2. 

As a result of a set of research, it is observed that plastic objects have a significant 

absorption around 1.72 µm. The positive value of this absorption has been associated 

with the presence of plastic and the feature of absorption has been mathematically 

expressed using two neighboring shoulders adjacent to the absorption. As a 

consequence of examining many different plastic spectra, the right shoulder was 

chosen as 1.74 µm and the left shoulder as 1.68 µm, which is a relatively remote point. 

It is seen that data values of plastic objects are generally between 50 and 150 and can 

reach up to 250. In order to get rid of the undesirable noisy-like pixels, of which the 

majority are thought to be non-plastic, the 10, which is noise killer constant, has been 

subtracted from the results. This algorithm, which has the capability of detecting 

plastic objects on land quickly and precisely without needing any reference data and 
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using only 3 shortwave-infrared bands, has been named as Plastic Existence 

Algorithm and the positive values generated as a result of the algorithm has been 

called Post Index Positive Value. 

In Study Field-7, except for large objects such as the football pitch and solar panels, a 

small tent has been also successfully detected. The tent, which is 18 meters wide and 

38 meters long, has been identified as 3 pixels in a 15.5-meter resolution image. This 

detection, of which comparative image is given in Figure 6.1, indicates that the 

algorithm is successful at a pixel level. 

 

Figure 6.1. Comparative images of pixel level detection of tent in SF7 

Since it is not possible to collect any data from the ground, the reference data or in 

other name ground truth has been produced manually by visual inspection method on 

the true color composite AVIRIS image, where red band: 647.97 nm, green band: 

550.30 nm and blue band: 453.07 nm. 

Implementation results have been compared with ground truth and pixels correctly 

classified as plastic are determined. It is seen that highly-satisfactory outcomes have 

been obtained as a result of this comparison. 
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6.2. Recommendations 

In this thesis, the presence of plastic is associated with 1721 nm, since many types of 

plastics show the same character around that point. On the other hand, when the 

spectrum of plastic objects has been analyzed as a single graph, which can be seen in 

Figure 6.2, it has been observed that there are also other points that could be used as 

absorption feature. These points can be listed as 946 nm, 1129 nm, 1472 nm, 2006 nm 

and 2056 nm respectively. As mentioned before, the presence of water and moisture 

can be problematic in terms of the applied algorithm. An absorption feature to be 

selected from this list by considering the absorption of water can eliminate the 

problems caused by water and moisture. 

 

Figure 6.2. Combined spectra of four target 

The low resolution of the image used in the thesis study, which is 15.5 meters, caused 

some problems in the production of the reference data as well as the performance of 

the algorithm. If a high-resolution image is used, the algorithm most probably 

performs better and more reliable reference data can have been generated. The high-

resolution image also allows for the detection of smaller plastic objects. Thus, 

problems such as mixed pixel not be encountered, and the algorithm will not be 

required a constant called noise killer. 
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The SWIR, which makes the invisible visible, is extremely valuable. In this thesis, 

three SWIR bands have been used with the purpose of fast and precise plastic 

detection. However, it is also possible to detect and identify other materials using 

different regions of the SWIR. In terms of environmental pollution, the detection of 

heavy metals contaminating water with SWIR should be researched. 
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APPENDICES 

 

A. Spectral Math Function MATLAB Codes 

% These lines are coded to detect the existence of plastic with 

using shortwave infrared bands. 

  
% Codes implement PEI Algorithm and calculate the PIPV results.  
% In addition, the function compares the ground truth and algorithm 

% output, generate the confusion matrix, and correspondingly produce 

% accuracy rates.  

 

 

clear all;close all;clc; 

  

%Import of Hyperspectral Data 

im = imread('STR15.tif'); 

im = double(im); 

  

%Band Selection: 

B1680 = im(:,:,140); %point A, 1681.383 nm 

B1731 = im(:,:,144); %point B, 1721.231 nm 

B1741 = im(:,:,146); %point C, 1741.153 nm 

  

%PEI Algorithm Implementation 

PEI=((0.67*((B1741-B1680))+B1680-B1731))-10; 

figure;imagesc(PEI) 

title('PEI Algorithm Result') 

colormap(gray) 

  

%Post Index Positive Value Determination 

PIPV = double((PEI>0)).*PEI; 

figure;imagesc(PIPV) 

title('Post Index Positive Values') 

colormap(gray) 

  

%Post Index Positive Value Mask 

MPIPV = double((PEI>0)); 

figure;imagesc(MPIPV) 

title('Mask of PIPV') 

colormap(gray) 
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%Import of Ground Truth Data 

GTRU=imread('GTR15.tif'); 

GTRU = GTRU>0; 

GTRU = imresize(GTRU,[size(im,1) size(im,2)],'nearest'); 

GTRU = double(GTRU); 

figure;imagesc(GTRU); 

title('Ground Truth') 

colormap(gray) 

  

%PEI Algorithm and Ground Truth Data Comparison 

i1 = find(im(:,:,1)==0); 

GTRU(i1)=NaN; 

MPIPV(i1)=NaN; 

  

%Accuracy Assessment 

  

OA = length(find(GTRU==MPIPV))/(length(MPIPV(:))-length(i1)) 

  

Cf_Mat = confusionmat(MPIPV(:),GTRU(:)) 

  

UA = Cf_Mat(2,2)/(Cf_Mat(2,2)+Cf_Mat(1,2)) 

  

PA = Cf_Mat(2,2)/(Cf_Mat(2,2)+Cf_Mat(2,1)) 

  

%OA can be also calculated as: 

  

OA=(Cf_Mat(1,1)+Cf_Mat(2,2))/(Cf_Mat(1,1)+Cf_Mat(1,2)+Cf_Mat(2

,1)+Cf_Mat(2,2)) 

  

%Histogram of PIPV/Pixel Numbers 

i2 = find(GTRU>0); 

figure;  

histogram(PIPV(i2),5) 

title('PIPV Histogram') 

xlabel('PIPV'); 

ylabel('Pixel Numbers'); 

 

% Generated by MATLAB on 19-May-2019 03:09:15 


