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ABSTRACT 

 

PHYSICAL SUBSPACE IDENTIFICATION FOR HELICOPTERS 

 

Avcıoğlu, Sevil 
Doctor of Philosophy, Aerospace Engineering 
Supervisor: Assist. Prof. Dr. Ali Türker Kutay 

 

May 2019, 184 pages 

 

Subspace identification is a powerful tool due to its well-understood 

techniques based on linear algebra (orthogonal projections and intersections of 

subspaces) and numerical methods like QR and singular value decomposition. 

However, the state space model matrices which are obtained from 

conventional subspace identification algorithms are not necessarily associated 

with the physical states. This can be an important deficiency when physical 

parameter estimation is essential. This holds for the area of helicopter flight 

dynamics where physical parameter estimation is mainly conducted for 

mathematical model improvement, aerodynamic parameter validation and 

flight controller tuning. The main objective of this study is to obtain helicopter 

physical parameters from subspace identification results. In order to achieve 

this objective, N4SID subspace identification algorithm is implemented for a 

multi-role helicopter using both FLIGHTLAB simulation and real flight test 

data. After obtaining state space matrices via subspace identification, 

constrained nonlinear optimization methodologies are utilized for extracting 

the physical parameters. The state space matrices are transformed into 

equivalent physical forms via both “Sequential Quadratic Programming” and 

“Interior Point” nonlinear optimization algorithms. The required objective 

function is generated by summing the square of similarity transformation 
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equations. The constraints are selected with physical insight. Many runs are 

conducted for randomly selected initial conditions. It can be concluded that all 

of the parameters with high significance can be obtained with a high level of 

accuracy for the data obtained from the linear model. This strongly supports 

the idea behind this study. Results for the data obtained from the nonlinear 

model are also evaluated to be satisfactory in the light of statistical error 

analysis. Results for the real flight test data are also evaluated to be good for 

the helicopter modes that are properly excited in the flight tests. 

 

 

Keywords: Subspace Identification, Parameter Estimation, Similarity Transformation, 

Optimization, Helicopter Dynamics.  
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ÖZ 

 

HELİKOPTERLER İÇİN FİZİKSEL ALT UZAY ESASLI SİSTEM 

TANIMLAMA 

 

Avcıoğlu, Sevil 
Doktora, Havacılık ve Uzay Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Ali Türker Kutay 
 

Mayıs 2019, 184 sayfa 

 

Alt uzay esaslı sistem tanımlama yöntemi oldukça güçlü bir sistem tanımlama 

yöntemidir. Bu özelliği kendini kanıtlamış dikey izdüşüm ve alt uzayların kesişimi 

gibi doğrusal cebir yöntemleri ile QR ayrıştırması ve tekil değerlerine ayrıştırma gibi 

sayısal açıdan sağlam sayısal yöntemlerin kullanılmasından gelir. Ancak, alt uzay 

esaslı sistem tanımlama yöntemi ile elde edilen durum uzay modeli herzaman fiziksel 

durum vektörleri ile eşleşmeyebilir. Bu sebeple; alt uzay esaslı sistem tanımlama 

yöntemi fiziksel parametre kestiriminin önemli olduğu çalışmalar için yetersiz 

kalmaktadır. Bu durum, fiziksel parametre kestiriminin matematik model iyileştirme, 

aerodinamik parametre doğrulama ve uçuş kontrolcüsü iyileştirme faaliyetlerinde 

kullanıldığı helikopter uçuş dinamiği alanında da geçerlidir. Bu çalışmanın ana amacı 

helikopter fiziksel parameterlerini alt uzay esaslı sistem tanımlama yöntemi ile 

kestirebilmektir. Bu amacı gerçekleştirmek için, bir genel maksat taarruz 

helikopterine ait veriler kullanılarak N4SID alt uzay esaslı sistem tanımlama yöntemi 

uygulanmıştır. Gerekli veriler FLIGHTLAB uçuş benzetimlerinden ve gerçek uçuş 

testlerinden elde edilmiştir. Alt uzay esaslı sistem tanımlama yöntemi ile elde edilen 

sistem matris elemanları doğrusal olmayan optimizasyon yöntemleri kullanılarak 

fiziksel parametrelere çevrilmiştir. Bunun için “Sıralı Karesel Programlama” ve “İç 

Nokta” optimizasyon algoritmaları kullanılmıştır. Burada amaç fonksiyonu benzerlik 
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dönüşüm denklemlerinin karelerinin toplamı olarak ifade edilmiştir. Kısıtlar 

oluşturulurken parametrelerin fiziksel anlamlarından yararlanılmıştır. Kısıtlar 

dahilinde, rastgele seçilmiş değerler ile çok sayıda optimizasyon yapılmıştır. Sonuçlar 

göstermektedir ki; doğrusal helikopter modelinden yola çıkılarak yapılan sistem 

tanımlama faaliyeti kapsamında, fiziksel anlamda baskın olan parametreler oldukça 

yüksek doğrulukla elde edilebilmiştir. Bu durum; kullanılan yöntemin doğruluğunu 

kuvvetli bir biçimde desteklemektedir. Doğrusal olmayan helikopter modelinden yola 

çıkılarak tekrarlanan sistem tanımlama ve fiziksel parametre kestirimi faaliyeti de 

istatistiksel doğruluk analizi sonuçlarına göre başarılı olmuştur. Çalışma ayrıca gerçek 

uçuş test verileri kullanılarak tekrar edilmiş, düzgün olarak uyarılabilen uçuş modları 

ile ilişkili parameterler kestirilebilmiştir. 

 

Anahtar Kelimeler: Alt Uzay Esaslı Sistem Tanımlama, Parametre Kestirimi, 

Benzerlik Dönüşümü, Optimizasyon, Helikopter Dinamiği 
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𝐿𝛿𝑙𝑎𝑡 , 𝐿𝛿𝑙𝑜𝑛, … : force to control input derivatives,  𝑑𝑒𝑔
𝑠2∙%

 

𝑔 : gravity force, 𝑓𝑡
𝑠2

 

𝜌 : air density, 𝑠𝑙𝑢𝑔
𝑓𝑡3

 

𝑎0 : main rotor lift curve slope, 1
𝑟𝑎𝑑

 

𝜇 : advance ratio 

𝛺 : main rotor speed 



 

 
 

xxi 
 

𝑅 : main rotor radius, 𝑓𝑡 

𝐴𝑏 : blade area, 𝑓𝑡2 

𝑀𝑎 : mass of helicopter, 𝑙𝑏 

𝑠 : rotor solidity 
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CHAPTER 1  

 

1. INTRODUCTION 

 

The aim of this study is extraction of physical parameters from subspace identification 

results via optimization techniques. The implementation is realized on to a multi-role 

twin engine helicopter. 

1.1. Literature Survey 

The helicopters are composed of numerous interacting subsystems. These are main 

rotor, fuselage, engine, flight control system, empennage and tail rotor. The helicopter 

flight dynamics can be modeled as the combination of the inertial, aerodynamic and 

the flight control forces acting on corresponding interactive subsystems. The effects 

of these forces are varying with the flight conditions. The interactions between the 

helicopter subsystems cause nonlinearity in system dynamics and bring some 

difficulties in modeling of the helicopter flight. These nonlinearities may not be easily 

modeled by analytical or numerical ways. In that case, wind tunnel and the flight test 

practices may be necessary to predict the indeterminate dynamics. No matter wind 

tunnel testing is utilized or not, the final step for the validation of helicopter design is 

flight testing. Flight testing is also opportunity for the flight dynamist to predict the 

helicopter model more accurately. System identification which is the way of model 

determination from experimental data can be utilized in the scope of flight data 

analysis. 

 

System identification is a foundational research field which is used to generate the 

dynamic model of a system by using input and output data set. System identification 

may be categorized mainly into three main groups: Output-Error Methods, Equation 

Error Methods and Subspace Identification methods. 
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The output error method is introduced in the 1960s. The objective of the Output Error 

Method is based on adjusting the values for the unknown parameters in the model to 

obtain the best possible fit between the measured output data, 𝑦𝑚𝑒𝑎𝑠 and the estimated 

model response, 𝑦𝑒𝑠𝑡 (1). The best fit is obtained by iterating the model parameters. 

The measurement error noise matrix 𝑅 is calculated as in (2).  

 

𝑒(𝑡) = 𝑦𝑚𝑒𝑎𝑠(𝑡) − 𝑦𝑒𝑠𝑡(𝑡) (1) 

𝑅 =  
1

𝑁
∑[𝑦𝑚𝑒𝑎𝑠(𝑡) − 𝑦𝑒𝑠𝑡(𝑡)] ∙ [𝑦𝑚𝑒𝑎𝑠(𝑡) − 𝑦𝑒𝑠𝑡(𝑡)]

𝑇

 (2) 

 

The minimum of the cost function J(χ) with respect to the unknowns χ is obtained by 

satisfying all first derivatives function 𝛿𝐽(χ) 𝛿χ⁄  are zero.  

This leads to a set of nonlinear equations that can only be solved iteratively with the 

main steps:  

• calculation of the cost function 𝐽 

• calculation of the matrix 𝑅 

• update of the unknowns χ by minimizing the cost function 𝐽(χ)  

• calculation of an output vector 𝑦𝑒𝑠𝑡 

 

Applications of output error method on helicopter systems are numerous. D. Banerjee 

and J.W. Harding [1] use flight test data to identify the AH-64 Apache attack 

helicopter by output error method. Kaletka [2] estimates the 6 DOF model of the BO 

105 helicopter by utilizing Maximum Likelihood output error method. SA 330 Puma 

is another platform which is identified by output error method [3]  

 

The equation error method is another widely used method in helicopter identification 

studies [4], [5] and [6]. In this method, the cost function which is defined directly in 
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terms of an input-output equation is minimized via least square techniques. For a 

system model given in (3), the equation error is defined as in (4) where the states, 

derivative of the states and the inputs are measurable (𝑥𝑚𝑒𝑎𝑠, 𝑥̇𝑚𝑒𝑎𝑠, 𝑢𝑚𝑒𝑎𝑠). 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (3) 

𝑒 = 𝑥̇𝑚𝑒𝑎𝑠 − 𝐴𝑥𝑚𝑒𝑎𝑠 + 𝐵𝑢𝑚𝑒𝑎𝑠 (4) 

 

There are many algorithms which utilize these methods. There are many system 

identification tools as well. CIFER (Comprehensive Identification from Frequency 

Response) which is one of the a well-known one, has been studied on a wide range of 

helicopters like BO-105 [7] UH-60 [8], Yamaha R-50 [9], OH-58D [10], SH-2G [11] 

and AH-64 [12], [13]  and on a quadrotor [14]. Higher order models for the Raptor 50 

and Evolution EX small-scale UAV helicopters were identified in [15] and [16]. The 

frequency domain system identification method developed by Tischler and Remple 

[17] was implemented for R44 helicopter in [18]. 

 

As an alternative to these classical methods which are mentioned above, subspace 

identification [19] attracted attention in the helicopter design society recently. 

Subspace identification differs from the classical system identification methods in 

many aspects. In principle, the models of constructing sequences are different. In 

classical techniques, first the system matrices are obtained, and then the states are 

estimated. However, in case of subspace identification first the states are estimated 

directly from input-output data, then the system matrices are obtained. 

 

The schematic illustration of these procedure differences is given in Figure 1.1. These 

differences bring some advantages such as computation accuracy and convergence.  
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Figure 1.1. Schematic Illustration of the Basic Differences between Classical Methods and Subspace 

Methods [19] 

 

Additionally, subspace identification algorithms utilize sound techniques based on 

linear algebra (orthogonal projections and intersections of subspaces) and numerical 

methods like QR and singular value decomposition. One of the main novelties of the 

subspace identification is to demonstrate how the Kalman filter states can be obtained 

from input-output data using linear algebra tools (QR and singular value 

decomposition). Hence, the identification problem becomes a linear least squares 

problem in the unknown system matrices. Another novelty is in the field of 

parameterization. Although classical system identification algorithms require a certain 

user-specified parameterization, subspace identification algorithms use full state space 

models and the only the order of the system is required as “parameter”. In fact, in 

subspace identification algorithms, the order of the system can be predicted by 

inspection of certain singular values. 
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By having the opportunity to obtain the reduced model directly from input-output data 

without having to compute the high order model, subspace identification algorithms 

always constitute models with as low order as possible. 

 

The development of subspace identification algorithms is based on 1990s. The system 

model identification idea from the concepts like between subspaces or the singular 

value decomposition which are seemingly unrelated are started to be combined 

cleverly in 1970s ([20]-[29]). Finally the complete algorithms are dated to 1990s to 

2000s ([19], [30] and [31]). The detailed historical progress of subspace identification 

algorithms is explained in [19]. 

 

The current subspace algorithms such as [19] and [31] have proven extremely 

successful in dealing with the estimation of discrete-time state space models. One class 

of subspace identification algorithm which is called as “Multivariable Output-Error 

State sPace” (MOESP) [30] based on the idea of estimating a basis of the observability 

subspace directly from data. The other class of algorithm called as “Numerical 

algorithms for Subspace State Space System IDentification” (N4SID) relies on the 

estimation of the state sequence for the system as an intermediate step for the 

estimation of the state space model. The details of these algorithms with the extended 

versions are explained in [19] and [31]. 

 

The interest of helicopter design society on subspace identification methods arise in 

the last decade. Until now, some variants of subspace identification algorithms like 

N4SID ([19]-[32]) and MOESP ([33]-[35]) were applied on a number of helicopter 

simulation data. As a further step, a real flight test application is performed both for 

EH101 helicopter [36] and ACT/FHS the DLR’s research helicopter [37]. In [38], 

subspace identification methods were used for the identification of a helicopter 

including rotor and engine dynamics. In this study where DLR’s research helicopter 

ACT/FHS is analyzed, the subspace identification is utilized to assure the maximum 
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likelihood system identification results regarding the system order and eigenvalues. 

The MOESP method was applied for a small-scale unmanned rotorcraft model in [39]. 

 

These studies showed that subspace identification method can be an alternative for 

helicopter systems due to having many advantages like parameterization, convergence 

and model reduction [19] as mentioned above. On the other hand, the state space 

model matrices which are obtained from conventional subspace identification 

algorithms are not necessarily associated with the physical parameters [19]. Physical 

parameter estimation based on subspace identification for helicopter systems is still 

being investigated.  

 

The main objective of this study is to obtain helicopter physical parameters from 

subspace identification results. There are previous studies on this problem ([40]-[42]) 

utilizing Laguerre filters to convert the discrete time state space models into 

continuous models. Another approach for finding the physical parameters from 

subspace identification results is “optimization”. As it is mentioned before, the system 

matrices 𝐴, 𝐵, 𝐶, 𝐷 which are found by subspace identification method do not 

necessarily have a direct physical interpretation. However, they have a conceptual 

relevance [19]. The similarity transformation of a discrete LTI system, 𝑥̅ = 𝑇−1𝑥 

leads to a new set of state space matrices in Eq. (14) - (16) [43]. 

 

𝐴̅ = 𝑇−1𝐴𝑇 (5) 

𝐵̅ = 𝑇−1𝐵 (6) 

𝐶̅ = 𝐶𝑇 (7) 

The aim is to find the 𝐴̅, 𝐵̅, 𝐶̅ matrices with the similarity transformation matrix 𝑇 

which lead us to the physical parameters.  
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The objective function (8) is defined as the sum squares of the difference between the 

right and left side of the similarity transformation equations Eq. (5)-(7) where the 

equality and the inequality constraints are determined with physical insight.  

 

𝑚𝑖𝑛
𝑥
𝑓(𝑥) = 𝑚𝑖𝑛

𝑥
(‖𝐴̅(𝑥) − 𝑇(𝑥)−1𝐴𝑇(𝑥)‖𝐹 + ‖𝐵̅(𝑥) − 𝑇(𝑥)

−1𝐵‖𝐹

+ ‖𝐶̅(𝑥) − 𝐶𝑇(𝑥)‖𝐹) 

(8) 

There are a limited number of studies in the literature which tackle with the 

identification problem by this approach ([44]-[49]). These studies propose simple cost 

functions (like least squares or quadratic) and most of them are applied for relatively 

simple systems like inverted pendulum or mass spring systems. However, helicopter 

identification may require far more variables to be solved. Therefore, it may require 

more advanced optimization algorithms. Due to the nonlinear characteristics of the 

objective function, this problem can be handled by NonLinear Programming (NLP) 

([44]-[46]). In the literature, there exist a number of algorithms for solving NLP 

problems. In our case, we decided to concentrate on “large-scale” NLP algorithms 

where the total number of variables is greater than one hundred. In [50], Benson 

compares this type of algorithms in terms of efficiency. The preliminary study 

investigated in [51] is about estimating helicopter physical parameters from subspace 

identification. “Interior Point” algorithm was used in [51] to solve the aforementioned 

optimization problem. Regarding the “large-scale” NLP algorithm performance 

examination by Benson in [50], we selected both “Interior Point” algorithm and 

“Sequential Quadratic Programming” algorithm for our optimization problem. 

 

Other improvements are made on constraint and initial value selections by introducing 

a variety of conditions. In addition, in [51], the required data is only obtained from 

linear model simulations. However, in this study, the methodology is extended for 

nonlinear model simulation data and real flight test data of a tactical helicopter (multi-

role helicopter). The outcome will be critical in many aspects like model 
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improvement, wind tunnel data validation and flight controller design. The conducted 

study is summarized in the following paragraph. 

 

As a first step, data gathering is studied. The excitation signal is selected as 3-2-1-1, 

which is commonly recommended for helicopter practices [17]. The input signal 

frequency content and amplitude are adjusted for exciting the helicopter body 

dynamics properly [17]. This will ensure the quality of system identification. As a 

second step N4SID algorithm [19] is applied to obtain the state-space model of the 

helicopter for a certain flight condition. The obtained state-space matrices, which are 

not necessarily associated with the physical states, are required to be transformed into 

the physical state-space matrices in order to obtain the stability and control derivatives. 

The similarity transformation theory [44] is utilized in conjunction with constrained 

nonlinear optimization for this purpose. The objective function, sum of the square of 

similarity transformation equations ([44]-[49]) is minimized to obtain the physical 

state-space matrices and the corresponding similarity transformation matrix. 

 

In the above summarized optimization problem, two algorithms are experimented. 

These are “Sequential Quadratic Programming” and “Interior Point” ([52]-[54]) 

algorithms. They are selected considering both the size of the unknowns (over one 

hundred in this problem) and the nonlinear form of the objective function. The 

implementation of these algorithms for extracting physical parameters from subspace 

identification results is a candidate for being a prime in the field of helicopter flight 

dynamics. 

 

Initial values of the parameters in optimization experiments are selected randomly. 

Constraints of the physical parameters may be selected considering typical error 

budgets of wind tunnel testing and aerodynamic prediction tools for helicopter 

systems or by using common practices of aerospace vehicle modeling. However, for 

convenience, constraints are selected considering linearized outputs of FLIGHTLAB 

with several error margins from [-10% 10%] to [-90% 90%] in this study. The physical 
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value for each parameter is estimated by minimizing the objective function via the 

above-mentioned algorithms under given constraints and initial values. The 

optimizations are repeated for different initial conditions in order to increase the 

confidence level. The percentage estimation errors are calculated for each parameter 

in every run. The physical parameters obtained at the end of the optimization are used 

for time domain verification of the model. The time domain output of the model is 

compared with the actual measurement using Theil’s inequality coefficient (TIC) 

metric ([55], [56]). After obtaining promising results for the methodology, the study 

is repeated for the same helicopter by using nonlinear simulation data and real flight 

test data. 

 

1.2 Main Contributions 

There are three main contributions of this study. The first one is successful 

implementation of subspace identification to a multi-role twin engine helicopter. The 

second contribution is the extraction of physical parameters from subspace 

identification results via optimization techniques. The third major contribution is the 

application of identification inputs in all four input channels of the helicopter for the 

same test case to extract both direct and cross coupling derivatives by utilizing 

subspace identification. With these contributions we are aiming to enhance the 

implementation of subspace identification technique for helicopters. 

 

1.3 Organization of the Thesis 

The main objective of this study is presented in Chapter 1. Then the literature survey 

is introduced to define the problem properly. Background information on system 

identification techniques are presented here. Research is concentrated on the problem 

of physical parameter estimation from subspace identification results. The nonlinear 

optimization methodologies are searched for solving the problem. Then the main 

contributions are summarized in this chapter.  
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In Chapter 2, the theory of subspace identification is introduced. The main focus is 

given on a robust subspace algorithm which proved to work well on practical data. 

The problem of finding physical parameter estimation and the similarity 

transformation approach are mentioned here. 

 

In Chapter 3, the model-structure of the helicopter is defined for our specific problem. 

The inputs, outputs and the states are introduced here. The main assumptions about 

the stability and control derivatives are also mentioned in this chapter.  

 

The optimization procedure and the objective function are explained in Chapter 4. 

Both “Sequential Quadratic Programming” and “Interior Point” algorithms are briefly 

mentioned here. The formation of the objective function in accordance with the model 

structure is defined here. The basic assumptions about constraints, the initial values 

and the constants are also given in this chapter.  

 

In Chapter 5, the implementation of the methodology is introduced on a multi-role 

helicopter. Data gathering, subspace identification and parameter estimation 

methodology is introduced for given specific flight conditions. 

 

In Chapter 6, several conditions for the selected algorithm, boundary condition and 

initial values are examined, and the numerical results are presented. The 

implementation for nonlinear simulation output and real flight test data are presented 

here too. 

 

Finally, the obtained results and the outcome of the research are discussed in Chapter 

7. 
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CHAPTER 2  

 

2. SUBSPACE IDENTIFICATION THEORY 

 

2.1. Introduction to Linear System Identification 

Dynamic systems can be expressed as mathematical models. These models are used 

for design improvement, simulation, analysis and training. Typically, they provide 

advantageous in many circumstances where the real system testing is too expensive, 

too difficult or too time consuming. Especially for the rotorcrafts systems, it is almost 

impossible to validate a flight control system without mathematical model 

verifications on the ground since the challenging maneuvers performed in the air may 

contain in serious risks. 

 

The mathematical model of the air vehicle systems can be derived from nonlinear 

equations-of-motion, typically by implementing several simplifying assumptions. 

However, for relatively more complex systems like rotorcrafts, a simplified model 

may not be sufficient for simulating the performance of the final implementation. In 

such a case the mathematical model improvement can be achieved via system 

identification techniques. In general practice, the collected input and output data is 

used to find parameters of predefined model structure. In this context, system 

identification is described as dynamic extension of curve fitting. In the final step, the 

model is validated with the experimental data which were not used in the system 

identification experiment. 

 

Being an alternative to classical system identification methods subspace identification 

is based on finding the state space models by using only experimental input-output 

data set. The general overview of subspace identification is supplied in the following 

paragraph. 
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2.2. State Space Representation of Dynamic Systems 

In subspace identification method, the dynamic model of the system is restricted to 

discrete time, linear, time-invariant, state space models. Mathematically, these models 

are defined by the following set of difference equations1: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 (9) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘 (10) 

with 

𝐸 [(
𝑤𝑝
𝑣𝑝
) (𝑤𝑞

𝑇 𝑣𝑞
𝑇)] = (

𝑄 𝑆

𝑆𝑇 𝑅
) 𝛿𝑝𝑞 ≥ 0 (11) 

 

In this model, the vectors 𝑢𝑘 ∈ ℝ𝑚 and 𝑦𝑘 ∈ ℝ𝑙 are the input and outputs at time 

instant 𝑘. The size of the input and output are denoted m and l respectively. 

 

The state vector of the process at discrete time instant 𝑘 is represented as 𝑥𝑘 ∈ ℝ𝑛 

where the size of it is equal to 𝑛. 𝑣𝑘 ∈ ℝ𝑙 and 𝑤𝑘 ∈ ℝ𝑛are stochastic signals. It is 

assumed that they are zero mean, stationary, white noise vector sequences. 

 

𝐴 ∈ ℝ𝑛×𝑛 matrix which is called as system matrix describes the dynamics of the 

system. 𝐵 ∈ ℝ𝑛×𝑚 is called as input matrix which represents the linear transformation 

by which the control inputs influence states in the next time step. 𝐶 ∈ ℝ𝑙×𝑛 is the 

output matrix which describes the linear relation between the states and the outputs 

(measurements) yk. The 𝐷 ∈ ℝ𝑙×𝑚m matrix is the direct feedthrough term. In general 

practice, this term is most often 0 for continuous time systems. The covariance 

                                                 
1 E denotes the expected value operator and 𝛿𝑝𝑞 the Kronecker delta. 
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matrices of the process and measurement noise sequences 𝑣𝑘 ∈ ℝ𝑙 and 𝑤𝑘 ∈ ℝ𝑛 are 

called as 𝑄 ∈ ℝ𝑛×𝑛, 𝑆 ∈ ℝ𝑛×𝑙 and 𝑅 ∈ ℝ𝑙×𝑙.  

 

In subspace identification theory, the matrix pair {𝐴, 𝐶} is assumed to be observable. 

It means that all modes in the system can be observed in the output, 𝑦𝑘. Also, the 

matrix pair {𝐴, [𝐵 𝑄
1

2]} is required to be controllable for subspace identification 

algorithms. In other words, all modes of the system are excited by either the 

deterministic input 𝑢𝑘 and/or the stochastic input 𝑤𝑘 [19]. 

 

The graphical representation of discrete time and time-invariant state space model is 

given in Figure 2.1. 

 
Figure 2.1. Discrete-time and time-invariant State Space Model of Dynamic Systems 

 

 

2.3. Brief Overview on Subspace Identification Theory [19] 

Subspace identification theory is based on system theory, linear algebra and statistics. 

The linear algebra tools (QR and singular value decomposition) are utilized to find the 

system states. Once these states are known, the problem turns into a linear least 

squares problem. Since the problem converted into a linear form, it can be solved 

easier when compared to “classical” prediction error methods [57]. 

 

B ∆
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In subspace identification algorithms, only the order of the system requires to be 

selected as a parameter. However, for classical methods, there has been an extensive 

amount of research to determine so-called canonical models, i.e. models with a 

minimum number of parameters.  The problems arise from with these minimal 

parameterizations are listed in detail in [19]. 

 

Due to the order reduction and consequently the matrix size reduction accomplished 

by using QR and singular value decompositions, the subspace identification 

algorithms are quite fast. Also, they are faster than (again) the “classical” 

identification methods, such as Prediction Error Methods, because they are not 

iterative. By extension, there are no convergence problems. In addition to all of these, 

numerical robustness is guaranteed since subspace identification algorithms are 

proven by numerical linear algebra. 

 

2.4. Geometric Tools [19] 

Subspace identification algorithms use of several geometric tools. These geometric 

tools are defined in the following paragraphs. The matrices 𝐴 ∈ ℝ𝑝×𝑗, 𝐵 ∈ ℝ𝑞×𝑗 and 

𝐶 ∈ ℝ𝑟×𝑗  are assumed to be given here below. 

 

 

2.4.1. Orthogonal Projections 

The projection of the row space of a matrix B ∈ ℝq×jonto the row space of B ∈ ℝq×j 

is denoted as ∏B where the related equation is given (12). 

 

∏𝐵 ≝ 𝐵𝑇 ∙ (𝐵𝐵𝑇)† ∙ 𝐵, (12) 
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The operator “( )†” denotes the Moore-Penrose pseudo-inverse of the matrix. The 

projection of the row space of the matrix 𝐴 ∈ ℝ𝑝×𝑗 on the row space of the matrix 

𝐵 ∈ ℝ𝑞×𝑗 is given in (13). Here the boldface notation denotes the row space onto 

which one projects. 

 

𝐴 ∕ 𝑩 ≝ 𝐴 ∙ ∏𝐵  = 𝐴 ∙ 𝐵
𝑇 ∙ (𝐵𝐵𝑇)† ∙ 𝐵 (13) 

 

The orthogonal projection of the row space of the matrix 𝐴 ∈ ℝ𝑝×𝑗 on the row space 

of the matrix 𝐵 ∈ ℝ𝑞×𝑗 is illustrated in a simplest way in Figure 2.2 to make it more 

understandable.  

 
Figure 2.2. Orthogonal Projection Representation in a Simple Form2 

 

2.4.2. Oblique Projections 

Oblique projection is projection of a matrix onto the linear combinations of two non-

orthogonal matrices. In other words, project the row space of 𝐴 orthogonally on the 

joint row space of 𝐵 and 𝐶; and decompose the result along the row space of 𝐶. 

Mathematically, the orthogonal projection of the row space of 𝐴 on the joint row space 

of 𝐵 and 𝐶 can be given in (14). 

                                                 
2  ( )⊥ denotes orthogonal complement of the row space of ( ). 

A/B˔
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𝐴 ∕ (
𝑪
𝑩
) ≝ 𝐴 ∙ (𝐶𝑇 𝐵𝑇) ∙ (

𝐶𝐶𝑇 𝐶𝐵𝑇

𝐵𝐶𝑇 𝐵𝐵𝑇
)
†

∙ (
𝐶
𝐵
) (14) 

 

The oblique projection the row space of the matrix 𝐴 along the row space of the matrix 

𝐵 onto the row space of the matrix 𝐶 is illustrated in a simplest way in Figure 2.3 to 

make it more understandable.  

 
Figure 2.3. Oblique Projection Representation in a Simple Form3 

 

2.4.3. Singular Value Decomposition 

The order of the system is determined according to the results of Singular Value 

Decomposition (SVD). Singular values are another expression of the principal angles 

and directions. 

 

Definition 1 Principal angles and directions 

For given two matrices A ∈ ℝp×j, B ∈ ℝq×j , the singular value decomposition is 

expressed as in (15). 

 

𝐴𝑇 ∙ (𝐴𝐴𝑇)† ∙ 𝐴𝐵𝑇 ∙ (𝐵𝐵𝑇)† ∙ 𝐵 = 𝑈𝑆𝑉𝑇 (15) 

                                                 
3  ( )⊥ denotes orthogonal complement of the row space of ( ). 
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Here the principal directions between the row spaces of 𝐴 and 𝐵 matrices are 

equivalent with the rows of 𝑈𝑇 and the rows of 𝑉𝑇. Also the row spaces of A and B 

matrices are related with the singular values (the diagonal of S) which is equal to the 

cosines of the principal angles in between them. The formulas are as given in (16). 

 

[𝑨∡𝐵] ≝ 𝑈𝑇 

[𝐴∡𝑩] ≝ 𝑉𝑇 

[𝐴∡𝐵] ≝ 𝑆𝑇 

(16) 

2.4.4. Statistical Approaches 

In subspace identification algorithms, some statistical assumptions work very well if 

large number of data is available. In subspace identification it is assumed that there 

are infinitely many data sets available (𝑗 ⟶ ∞) and that the data is “ergodic”.  

 

To make it more illustrative, consider that there are two given sequences 𝑎𝑘 ∈ ℝ𝑛𝑎  

and 𝑒𝑘 ∈ ℝ𝑛𝑒 , 𝑘 = 0,1, … , 𝑗. The sequence 𝑒𝑘 is a zero mean sequence as given in 

Eq.(17) and independent from 𝑎𝑘 (Eq. (18)) 

𝐸[ek] = 0 (17) 

𝐸[𝑎𝑘𝑒𝑘] = 0 (18) 

Due to the assumptions of ergodicity and the infinite number of data can be driven: 

The expectation operator 𝐸 which is the average over an infinite number of 

experiments can be replaced with the operator 𝐸𝑗 which is applied to the sum of 

variables. For instance, for the correlation between ak and ek we get: 
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𝐸[𝑎𝑘𝑒𝑘] = lim
𝑗→∞

[
1

𝑗
∑𝑎𝑖𝑒𝑖

𝑇

𝑗

𝑖=0

] (19) 

= 𝐸𝑗 [∑𝑎𝑖𝑒𝑖
𝑇

𝑗

𝑖=0

] (20) 

Here the operator 𝐸𝑗 is defined as in (21). 

𝐸𝑗[█] ≝ lim
j→∞

1

j
[█] (21) 

In the light of this information, consider two given sequences of input 𝑢𝑘 and noise 

𝑒𝑘: 

𝑢 ≝ (𝑢0  𝑢1  ⋯  𝑢𝑗) (22) 

𝑒 ≝ (𝑒0  𝑒1  ⋯  𝑒𝑗) (23) 

It can be found that the expected value of the sum of the vectors  𝑢 and 𝑒 becomes 

zero as it is seen in Eq. (24) under the assumptions that an infinite number of data 

available (a large set of data samples) and the data are ergodic. 

𝐸𝑗 [∑𝑢𝑖𝑒𝑖
𝑇

𝑗

𝑖=0

] = 0 (24) 

Eq. (24) leads to 

𝐸𝑗[𝑢 ∙ 𝑒
𝑇] = 0 (25) 

Geometric interpretation of this result is that the input vector 𝑢 is perpendicular to the 

noise vector 𝑒. This is a precious inference because it is used in subspace identification 

algorithms to subtract the noise effects.  
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𝐸𝑗[‖𝑒/𝑢‖] = 0 (26) 

 

2.5. Subspace Identification for Deterministic Systems 

The subspace identification problem is formulated for deterministic LTI systems 

which are not disturbed by noise. Let such a system be given by 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 , (27) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 , (28) 

where xk ∈ ℝn, uk ∈ ℝm and yk ∈ ℝl. The process noise wk and the measurement 

noise vk do not exist for deterministic systems. The goal of subspace identification is 

to find the state space matrices 𝐴, 𝐵, 𝐶, 𝐷 and the state vector x𝑘 ∈ ℝn up to a 

similarity transformation in the presence of the input  𝑢𝑘 ∈ ℝ𝑚 and output data set 

𝑦𝑘 ∈ ℝ
𝑙.  

 

It is definite that most of the real systems contain noise. However, we start to explain 

the theory of subspace identification from a deterministic system which is easier to 

understand. Subspace identification starts with the construction of Block Hankel 

matrices. 

 

2.5.1. Blok Hankel Matrices 

Block Hankel matrices are constituted from the input-output data set. The form of the 

input Block Hankel matrix is given in (29). 
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𝑈0|2𝑖−1 ≝

[
 
 
 
 
 
 
 
 
 
 
𝑢0 𝑢1 𝑢2 𝑢3 . . . 𝑢𝑗−1
𝑢1 𝑢2 𝑢3 𝑢4 . . . 𝑢𝑗
. . . . . . . .
. . . . . . . .
. . . . . . . .
𝑢𝑖 𝑢𝑖+1 𝑢𝑖+2 𝑢𝑖+3 . . . 𝑢𝑗+𝑖−1
𝑢𝑖+1 𝑢𝑖+2 𝑢𝑖+3 𝑢𝑖+4 . . . 𝑢𝑗+𝑖
. . . . . . . .
. . . . . . . .
. . . . . . . .

𝑢2𝑖−1 𝑢2𝑖 𝑢2𝑖+1 𝑢2𝑖+2 . . . 𝑢2𝑖+𝑗−2]
 
 
 
 
 
 
 
 
 
 

 

 

(29) 

 

Here the number of block index 𝑖 defines the approximate order of the system being 

identified. The only requirement for 𝑖 being larger than the estimated order of the 

system. The number of columns (𝑗) is formulated as in (30) where 𝑠 is the total number 

of data samples.  

𝑗 = 𝑠 − 2𝑖 + 1 (30) 

The subscript of 𝑈0|2𝑖−1denote the first and last element of the first column in the 

block Hankel matrix of inputs. 𝑈0|2𝑖−1 is combination of two equally sized matrices. 

By definition, the first part of the matrix 𝑈0|𝑖is called as Block Hankel matrices of past 

inputs. Other representation of this matrix is 𝑈𝑝where the subscript “𝑝” stands for 

“past”. The second part of the matrix 𝑈𝑖|2𝑖−1 is called as Block Hankel matrices of 

future inputs. Similarly, it is symbolized as 𝑈𝑓 where the subscript “𝑓” stands for 

“future”. Another Block Hankel matrices used in subspace identification theory are 

𝑈𝑝
+and 𝑈𝑓−are obtained by shifting the borders of 𝑈𝑝  and 𝑈𝑓. 

 

This notation which is adopted from [64] and [19] also holds for the other Block 

Hankel matrices of the outputs: 𝑌0|2𝑖−1, 𝑌0|𝑖, 𝑌𝑖|2𝑖−1, 𝑌𝑝, 𝑌𝑓, 𝑌𝑝+and 𝑌𝑓−. 𝑌0|𝑖 (𝑌𝑝) is 

called as Block Hankel matrices of past inputs.𝑌𝑖|2𝑖−1 (𝑌𝑓) is called as Block Hankel 
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matrices of future inputs. Also, 𝑌𝑝+ and 𝑌𝑓− are obtained by shifting the borders of 

𝑌𝑝 and 𝑌𝑓.  

 

𝑌0|2𝑖−1 =

[
 
 
 
 
 
 
 
 
 
 
𝑦0 𝑦1 𝑦2 𝑦3 . . . 𝑦𝑗−1
𝑦1 𝑦2 𝑦3 𝑦4 . . . 𝑦𝑗
. . . . . . . .
. . . . . . . .
. . . . . . . .
𝑦𝑖 𝑦𝑖+1 𝑦𝑖+2 𝑦𝑖+3 . . . 𝑦𝑗+𝑖−1
𝑦𝑖+1 𝑦𝑖+2 𝑦𝑖+3 𝑦𝑖+4 . . . 𝑦𝑗+𝑖
. . . . . . . .
. . . . . . . .
. . . . . . . .

𝑦2𝑖−1 𝑦2𝑖 𝑦2𝑖+1 𝑦2𝑖+2 . . . 𝑦2𝑖+𝑗−2]
 
 
 
 
 
 
 
 
 
 

 (31) 

Another Block Hankel matrix which is formulated in (32) is 𝑊𝑝 obtained by 

combining the past inputs and outputs. 

𝑊0|𝑖−1 ≝ (
𝑈0|𝑖−1
𝑌0|𝑖−1

) = (
𝑈𝑝
𝑌𝑝
) = 𝑊𝑝 (32) 

𝑊𝑝
+ matrix is obtained by shifting the borders of 𝑈𝑝  and 𝑌𝑝 as defined in Eq. (33). 

𝑊𝑝
+  = (

𝑈𝑝
+

𝑌𝑝
+) (33) 

2.5.2. State Sequence Matrix 

Another important matrix is “state sequence matrix"  𝑋𝑖 for subspace identification 

algorithms. The state sequence matrix, 𝑋𝑖 is shown in Eq. (34) as more explicit form. 

In this equation, 𝑖 stands for the subscript of the first element of the state sequence. 

𝑋𝑖 = (𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 𝑥𝑖+3 … 𝑥𝑖+𝑗−1) ∈ ℝ𝑛×𝑗 (34) 
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2.5.3. System Related Matrices 

The extended observability matrix Γi is extensively used in subspace identification 

algorithms. Explicit representation of the observability matrix Γi is shown as in 

Eq.(35). Here it is assumed that the system is observable. 

 

Γi ≝

(

 
 

𝐶
𝐶𝐴
𝐶𝐴2

…
𝐶𝐴𝑖−1)

 
 
∈ ℝ𝑙𝑖×𝑛 (35) 

 

The reversed extended controllability matrix ∆𝑖 (where the subscript 𝑖 denotes the 

number of block columns) represented as: 

 

∆𝑖 ≝ (𝐴𝑖−1𝐵 𝐴𝑖−2𝐵 𝐴𝑖−3𝐵 𝐴𝑖−4𝐵 … 𝐵) ∈ ℝ
𝑛×𝑚𝑖 (36) 

 

The lower block triangular Toeplitz matrix 𝐻İ is defined as: 

 

Hi ≝

(

 
 

𝐷 0 0 … 0
𝐶𝐵 𝐷 0 … 0
𝐶𝐴𝐵 𝐶𝐵 𝐷 … 0
… … … … …

𝐶𝐴𝑖−2𝐵 𝐶𝐴𝑖−3𝐵 𝐶𝐴𝑖−4𝐵 … 𝐷)

 
 
∈ ℝ𝑙𝑖×𝑚𝑖 (37) 

 

Here it is assumed that the system is controllable. 

 

2.5.4. Main Theorems for Deterministic Subspace Identification Algorithms 

Theorem 1 Matrix input-output equations ([19], Chapter 2) 

The following Theorem which is widely used in subspace identification algorithms 

states how the linear state space relations of formula (27) - (28) can be reformulated 
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in a matrix form. The proof of (38)-(40) follows directly from state space equations 

given in (27) -(28).  

 

𝑌𝑝 = Γ𝑖𝑋𝑝 + 𝐻𝑖𝑈𝑝 (38) 

𝑌𝑓 = Γ𝑖𝑋𝑓 + 𝐻𝑖𝑈𝑓 (39) 

𝑋𝑓 = 𝐴
𝑖𝑋𝑝 + Δ𝑖𝑈𝑝 (40) 

 

The geometric representation of the equation (39) is given in Figure 2.4. Here the 

vectors in the row space of 𝑌𝑓 are obtained as a sum of linear combinations of vectors 

in the row space of 𝑋𝑓 and linear combinations of vectors in the row space of 𝑈𝑓. 

 

 

 

Figure 2.4. Geometric Representation of 𝑌𝑓 in terms of 𝑋𝑓 and 𝑈𝑓 

 

Main Theorem ([19], Chapter 2) 

This theorem indicates that the state sequence 𝑋𝑖 and the extended observability 

matrix Γ𝑖 can be extracted from the given input-output data set (𝑈𝑝, 𝑈𝑓, 𝑌𝑝, 𝑌𝑓). 

This can be expressed in two ways: 
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• The state sequence 𝑋𝑓 can be determined directly from the given input-output 

data, without knowledge of the system matrices 𝐴, 𝐵, 𝐶 and 𝐷. 

•  The extended observability matrix Γi can be determined directly from the 

given input-output data. 

 

Definition 2: Persistency of excitation ([19], Chapter 2) 

The input sequence 𝑢𝑘 ∈ ℝ
𝑙𝑖×𝑛is persistently exciting of order 2𝑖 if the input 

covariance matrix (41) has full rank. 

 

𝑅𝑢𝑢 ≝ Φ[𝑈0|2𝑖−1, 𝑈0|2𝑖−1]  (41) 

 

Theorem 2: Deterministic Identification ([19], Chapter 2) 

Under the assumptions that: 

1. The input 𝑢𝑘 is persistently exciting of order 2𝑖 (Definition 2). 

2. The intersection of the row space of 𝑈𝑓 (the future inputs) and the row 

space of 𝑋𝑝 (the past states) is empty. 

3. The user-defined weighting matrices 𝑊1 ∈ ℝ
𝑙𝑖×𝑙𝑖 and 𝑊2 ∈ ℝ

𝑗×𝑗 are such 

that 𝑊1 is full rank and 𝑊2 obeys: 𝑟𝑎𝑛𝑘(𝑊𝑝) = 𝑟𝑎𝑛𝑘(𝑊𝑝 ∙ 𝑊2) where 𝑊𝑝 

is the block Hankel matrix containing the past inputs and outputs. 

 

and 𝑂𝑖 is defined as the oblique projection: 

𝑂𝑖 ≝ 𝑌𝑓/𝑈𝑓𝑊𝑝 (42) 

 

and the singular value decomposition: 

𝑊1𝑂𝑖W2 = (U1 U2) (
S1 0
0 0

) (
V1
T

V2
T) (43) 
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= 𝑈1𝑆1𝑉1
𝑇 (44) 

 

We have  

1. The matrix 𝑂𝑖 is equal to the product of the extended observability matrix and 

the states: 

𝑂𝑖 = Γ𝑖𝑋𝑖 (45) 

2. The order of the system (27)- (28) is equal to the number of singular values in 

equation (43) different from zero. 

 

3. The extended observability matrix 𝛤𝑖 is equal to: 

Γ𝑖 = 𝑊1
−1𝑈1𝑆1

1/2
𝑇 (46) 

where  𝑇 ∈ ℝ𝑛×𝑛 is an arbitrary non-singular similarity transformation. 

4. The part of the state sequence 𝑋𝑖 that lies in the column space of 𝑊2 can be 

recovered from: 

𝑋𝑖𝑊2 = 𝑇
−1𝑆1

1/2
𝑉1
𝑇 (47) 

5. The state sequence 𝑋𝑖 is equal to: 

𝑋𝑖 = Γ𝑖
†𝑂𝑖 (48) 

The proof of the Theorem which provides some insight in how subspace identification 

results are typically derived is given in Appendix A.  

 

2.5.5. Algorithms for Deterministic Systems 

According to [19], the system matrices 𝐴, 𝐵, 𝐶 and 𝐷 can be computed in two different 

ways: 

• finding the state sequence matrix 𝑋𝑖 
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• finding the extended observability matrix Γ𝑖  

The schematic illustration deterministic identification procedure is presented in Figure 

2.5. The system matrices can be computed by using any of the two ways. 

 
Figure 2.5. An overview of the deterministic subspace identification procedure [19] 

 

The algorithms which are based on Theorem 2 will be outlined in the following 

paragraphs.  

 

2.5.5.1. Algorithm 1 ([19], Chapter 2) 

The algorithm starts with oblique projection 𝑂𝑖 calculations. 

𝑂𝑖−1 ≝ 𝑌𝑓
−/𝑈𝑓

−𝑊𝑝
+ (49) 

= 𝛤𝑖−1𝑋𝑖+1 (50) 

Then 𝑋𝑖+1 can be calculated from (50) as below: 
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𝑋𝑖+1 = Γ𝑖−1
†𝑂𝑖−1 (51) 

Then with 𝑈𝑖|𝑖 and 𝑌𝑖|𝑖 matrices which are optained from input-output data and the 

state sequence matrices calculated by the equations (48) and (51) we can estimate the 

system matrices A, B, C and D according to least square approach (52). 

(
𝑋𝑖+1
𝑌𝑖|𝑖

) = (
𝐴 𝐵
𝐶 𝐷

) (
𝑋𝑖
𝑈𝑖|𝑖
) (52) 

 

With this approximation, it is possible to solve all of the system matrices in one step. 

However, in the following algorithm these matrices are estimated in two separate 

steps. First 𝐴, 𝐶 matrices are determined then the rest of the system matrices (𝐵,𝐷) are 

estimated. The algorithm steps are explained in the following paragraph.  

 

2.5.5.2. Algorithm 2 ([19], Chapter 2) 

After calculating the extended observability matrix Γi, the system matrices are 

determined in two separate steps. 

 

Determination of 𝐴 and 𝐶 matrices 

The matrices 𝐴 and 𝐶 can be determined from the extended observability matrix Γi. 

The shift structure of the matrix Γi is used for this purpose [66]. 

= Γ𝑖𝐴 = Γ𝑖 (53) 

Where Γidenotes Γi without the first l (number of outputs) rows. Then the matrix A 

can be determined by equation (54). Then the C matrix is determined as the first 𝑙 rows 

of Γi 

𝐴 = Γ𝑖
† ∙ Γ𝑖 (54) 

Determination of 𝐵 and 𝐷 matrices 
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In the next stage, 𝐵 and 𝐷 matrices are computed. When we rearrange the input-output 

equation (39), we find that, 

Γ𝑖
⊥𝑌𝑓 = Γ𝑖

⊥𝐻𝑖𝑈𝑓 (55) 

 
Where Γi⊥ ∈ ℝ(li−n)×li is a full row rank matrix satisfying Γi⊥ ∙ Γi = 0.  

 

If we multiply the equation (55) with 𝑈𝑓
† we obtain (56) where the linear least square 

approach is applicable. Here the matrices Γ𝑖⊥, 𝑌𝑓 , 𝑈𝑓
† are all known matrices. The only 

unknown is 𝐻𝑖 matrix which is the combination of known matrices 𝐴, 𝐶 and the 

unknown matrices 𝐵,𝐷. 

Γ𝑖
⊥𝑌𝑓𝑈𝑓

†  = Γ𝑖
⊥𝐻𝑖 (56) 

 

For simplicity, the left-hand side of the equation is symbolized with ℳ and Γ𝑖⊥ with 

ℒ. Then the equation (56) can be written as; 

 

(ℳ1 ℳ2 … ℳ𝑖)

= (ℒ1 ℒ2 … ℒ𝑖)

(

 
 

𝐷 0 0 … 0
𝐶𝐵 𝐷 0 … 0
𝐶𝐴𝐵 𝐶𝐵 𝐷 … 0
… … … … …

𝐶𝐴𝑖−2𝐵 𝐶𝐴𝑖−3𝐵 𝐶𝐴𝑖−4𝐵 … 𝐷)

 
 

 

 

(57) 

 

Where ℳ𝑘 ∈ ℝ
(li−n)×m and ℒ𝑘 ∈ ℝ(li−n)×l . Then the equation (57) is rewritten as  

 

(ℳ1 ℳ2 … ℳ𝑖) =

(

 
 

ℒ1 ℒ2 … ℒ𝑖−1 ℒ𝑖
ℒ2 ℒ3 … ℒ𝑖 0
ℒ3 ℒ4 … 0 0
… … … … …
ℒ𝑖 0 … 0 0)

 
 
(
𝐼𝑙 0
0 Γ𝑖

) (
𝐷
𝐵
) (58) 
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Then 𝐵 and 𝐷 matrices formulated in (58) are computed with least square approach. 

 

2.6. Facts on Real World Applications 

So far, we discussed subspace identification algorithms for deterministic systems. 

However, the real system measurements generally contain noise terms. Therefore, for 

real-life applications, the systems (Eq. (9) - (10)) are modeled with the process and 

measurement noise 𝑤𝑘 and 𝑣𝑘. 

 

From many available subspace identification methods in literature [19] the “Robust 

Subspace Algorithm” is utilized on this study. This method is proved with many 

industrial data and it is suggested for practical applications ([19], Chapter 4, Algorithm 

3). The required information about theory and the algorithm is given in the following 

paragraphs. 

 

Theorem 3 Matrix input-output equations ([19], Chapter 4) 

The matrix input-output equations for the combined system (similar to the matrix input 

output equations (38) - (40)) are defined in the following Theorem. 

 

𝑌𝑝 = Γ𝑖𝑋𝑝 + 𝐻𝑖𝑈𝑝 + 𝑌𝑝
𝑠 (59) 

𝑌𝑓 = Γ𝑖𝑋𝑓 + 𝐻𝑖𝑈𝑓 + 𝑌𝑓
𝑠 (60) 

𝑋𝑓 = 𝐴
𝑖𝑋𝑝 + Δ𝑖𝑈𝑝 (61) 

 

Where 𝑌𝑝𝑠 and 𝑌𝑓𝑠 are the stochastic terms. 
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Theorem 4 Orthogonal projection 

 

Under the assumptions that: 

1. The deterministic input 𝑢𝑘 is uncorrelated with the process noise 𝑤𝑘 and 

measurement noise 𝑣𝑘  

2. The input 𝑢𝑘 is persistently exciting of order 2𝑖 (Definition 2) 

3. The number of measurements goes to infinity 𝑗 → ∞ 

4. The process noise 𝑤𝑘  and the measurement noise 𝑣𝑘 are not identically zero. 

 

Then  

𝑍𝑖 ≝ 𝑌𝑓/ (
𝑾𝒑

𝑼𝒇
) (62) 

= Γ𝑖𝑋̂𝑖 + 𝐻𝑖Uf (63) 

 

With Kalman filter state sequence  

𝑋̂𝑖 ≝ 𝑋̂𝑖[𝑋̂0,𝑃0]
 (64) 

 

Where X̂0 is the initial state sequence matrix and P0 is initial state covariance matrix. 

 

Optimal prediction: 

 

Another projection matrix in the theory of robust subspace identification is the 

prediction matrix Zi which can be computed from the input output data, without having 

the system matrices. The prediction matrix (𝑍𝑖) is considered as an optimal prediction 

of the future output (𝑌𝑓) on the subspace formed by Block Hankel matrices of past 
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inputs and outputs (𝑊𝑝) and the Block Hankel matrices of the future input (𝑈𝑓). The 

corresponding formulation is shown in Eq. (65). 

𝑍𝑖 = 𝑌𝑓/ (
𝑊𝑝
𝑈𝑓
) (65) 

Here, it is proposed to combine the past (𝑊𝑝 ) and the future inputs (𝑈𝑓.) linearly to 

predict the future outputs (Yf) [19]. 

 

Theorem 5 Combined Identification ([19], Chapter 4) 

 

Under the assumptions that: 

 

1. The deterministic input 𝑢𝑘 is uncorrelated with the process noise 𝑤𝑘 and 

measurement noise 𝑣𝑘  

2. The input 𝑢𝑘 is persistently exciting of order 2𝑖 (Definition 2) 

3. The number of measurements goes to infinity 𝑗 → ∞ 

4. The process noise 𝑤𝑘  and the measurement noise 𝑣𝑘 are not identically zero. 

5. The user-defined weighting matrices 𝑊1 ∈ ℝ
𝑙𝑖×𝑙𝑖 and 𝑊2 ∈ ℝ

𝑗×𝑗 are such that 

𝑊1 is full rank and 𝑊2 obeys: 𝑟𝑎𝑛𝑘(𝑊𝑝) = 𝑟𝑎𝑛𝑘(𝑊𝑝 ∙ 𝑊2) where 𝑊𝑝 is the 

block Hankel matrix containing the past inputs and outputs. 

 

and 𝑂𝑖 is defined as the oblique projection: 

𝑂𝑖 ≝ 𝑌𝑓/𝑈𝑓𝑊𝑝 (66) 

 

and the singular value decomposition: 

𝑊1𝑂𝑖W2 = (U1 U2) (
S1 0
0 0

) (
V1
T

V2
T) (67) 
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We have  

1. The matrix 𝑂𝑖 is equal to the product of the extended observability matrix and 

the states: 

𝑂𝑖 = Γ𝑖𝑋𝑖 (68) 

2. The order of the system (9)-(10) is equal to the number of singular values in 

equation (43) different from zero. 

 

3. The extended observability matrix 𝛤𝑖 is equal to: 

Γ𝑖 = 𝑊1
−1𝑈1𝑆1

1/2
𝑇 (69) 

where  𝑇 ∈ ℝ𝑛×𝑛 is an arbitrary non-singular similarity transformation. 

4. The part of the state sequence 𝑋𝑖 that lies in the column space of 𝑊2 can be 

recovered from: 

𝑋𝑖𝑊2 = 𝑇
−1𝑆1

1/2
𝑉1
𝑇 (70) 

5. The state sequence 𝑋̃𝑖 is equal to: 

𝑋̃𝑖 = Γ𝑖
†𝑂𝑖 (71) 

 

2.6.1. Algorithm 3 – Robust Subspace Identification ([19], Chapter 4) 

The algorithm starts with oblique projection 𝑂𝑖 (66) and orthogonal projection 𝑍𝑖  (62), 

𝑍𝑖+1 (72) calculations. 

𝑍𝑖+1 = Yf
−/ (

Wp
+

Uf
− ) (72) 

= Γ𝑖−1𝑋̂𝑖+1 + 𝐻𝑖−1Uf
− (73) 
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𝑋̂𝑖+1 ≝ 𝑋̂𝑖+1[𝑋̂0,𝑃0]
 (74) 

 

Reduction of the size of oblique projection matrix 𝑂𝑖 will simplify the rest of the 

matrix operations Thus, SVD is calculated for 𝑂𝑖 (67). By inspecting the singular 

values the 𝑈1 and 𝑆1 matrices are calculated to determine extended observability 

matrix Γ𝑖 (69). Here the weight matrices 𝑊1 and 𝑊2 are assumed as identity which is 

compatible with Theorem 5. 

 

Then some set of linear equations which are quite complicated are solved to find 𝐴 

and 𝐶 matrices. The equations (75)-(78) are used to generate the linear least square 

problem given in (79). Here 𝜌𝑣 ,  𝜌𝑤 are the covariances of the process and 

measurement noise of the residuals and an intermediate matrix κ is given as in (80). 

 

𝑋̂𝑖+1 = 𝐴𝑋̂𝑖 + 𝐵𝑈𝑖|𝑖 +𝐾𝑖(𝑌𝑖|𝑖 − 𝐶𝑋̂𝑖 − 𝐷𝑈𝑖|𝑖) (75) 

𝑌𝑖|𝑖 = 𝐶𝑋̂𝑖 +  𝐷𝑈𝑖|𝑖 + (𝑌𝑖|𝑖 − 𝐶𝑋̂𝑖 − 𝐷𝑈𝑖|𝑖) (76) 

𝑋̂𝑖 = Γ𝑖
† ∙ [𝑍𝑖 −𝐻𝑖𝑈𝑓] (77) 

𝑋̂𝑖+1 = Γ𝑖−1
† ∙ [𝑍𝑖+1 − 𝐻𝑖−1𝑈𝑓

−] (78) 

(
𝛤𝑖−1
† 𝑍𝑖+1
𝑌(𝑖|𝑖)

) = (
𝐴
𝐶
)𝛤𝑖

†𝑍𝑖 + 𝜅𝑈𝑓 + (
𝜌𝑤
𝜌𝑣
) (79) 

𝜅 ≝ (
𝐵|Γi−1

† 𝐻𝑖−1 − 𝐴Γi
†𝐻𝑖

𝐷|0 − 𝐶Γi
†𝐻𝑖

) (80) 
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After finding A and C matrices from (79), the Γi and Γi−1 matrices are recomputed to 

get better estimation on the remaining system matrices  𝐵 and 𝐷 matrices where both 

{𝐴, 𝐶} and {𝛤𝑖, 𝛤𝑖−1 } are used. 

𝐵,𝐷 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐵,𝐷 ‖(
𝛤𝑖−1
† 𝑍𝑖+1
𝑌(𝑖|𝑖)

) − (
𝐴
𝐶
)𝛤𝑖

†𝑍𝑖 − 𝜅(𝐵, 𝐷)𝑈𝑓‖
𝐹

 (81) 

 

The matrices 𝐵 and 𝐷 are calculated by solving the minimization problem shown in 

Eq. (81). The intermediate steps are explained in [19] in more detail.  

 

2.7. Similarity Transformation 

The system matrices 𝐴, 𝐵, 𝐶, 𝐷 found through the above given formulation does not 

necessarily have a direct physical interpretation but they have a conceptual relevance 

[19]. According to the similarity transformation theory [43] the state vector of a 

discrete LTI system can be transformed into another state vector. This is shown in Eq. 

(82). 

𝑥𝑝ℎ𝑦 = 𝑇
−1𝑥 (82) 

 

Such an operation leads to a new set of state space matrices as shown in Eq. (83)-(85) 

However, 𝐷 and 𝐷𝑝ℎ𝑦 matrix are not state dependent. Therefore, these matrices are 

not included in the similarity transformation equations. 

𝐴𝑝ℎ𝑦 = 𝑇
−1𝐴𝑇 (83) 

𝐵𝑝ℎ𝑦 = 𝑇
−1𝐵 (84) 

𝐶𝑝ℎ𝑦 = 𝐶𝑇 (85) 
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In this study, our primary aim is to obtain the 𝐴𝑝ℎ𝑦, 𝐵𝑝ℎ𝑦, 𝐶𝑝ℎ𝑦 matrices with the 

corresponding similarity transformation matrix, 𝑇 which is invertible. This will 

hopefully lead us to the physical parameters. Since both the physical system matrices 

and the similarity transformation matrix is lacking, a candidate solution is the 

minimization of the difference between the left hand side and the right hand side of 

Eq. (83)-(85).  

𝑇𝐴𝑝ℎ𝑦 = 𝐴𝑇 (86) 

𝑇𝐵𝑝ℎ𝑦 = 𝐵 (87) 

This can be achieved by an optimization that makes use of the lower bound of the sum 

squares of the difference between the right and left sides, (83)-(85). It may be 

important to mention that Eq. (83) and Eq. (84) are highly nonlinear and difficult to 

solve it [47]. The forms shown in Eq. (86) and Eq. (87) are chosen instead of Eq. (83) 

and Eq. (84) to reduce the difficulty. 

This optimization problem may have infinitely many solutions if we do not define 

well-founded constraints. At this point, a good model structure proposition becomes 

crucial for the estimation of the state space model which is constructed from the 

physical parameters. 
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CHAPTER 3  

 

3. MODEL STRUCTURE 

 

The model structure determination is highly related with the dynamics concerned for 

identification. The model structure of an aerospace vehicle is usually obtained from 

the governing 6-DOF flight-dynamics equations. These equations inherently contain 

a substantial number of parameters required for validating mathematical models, wind 

tunnel test results and for tuning the flight controller gains. The 6-DOF nonlinear 

equations of motion for a helicopter can be written as shown in Eq. (88) - Eq. (93) 

[58] with forces and moments represented by the small perturbation theory. In these 

equations, the force derivatives are normalized by mass, and the moment derivatives 

are normalized by the corresponding moments of inertia. Moreover for the moment 

derivatives, a pre-multiplication by the inertia tensor has been carried out so that they 

implicitly include products of inertia terms (i.e., 𝐼𝑥𝑦, 𝐼𝑥𝑧 , etc.) [58]. 

 

𝑢̇ =  𝑋𝑢𝑢 + 𝑋𝑣𝑣 + 𝑋𝑤𝑤 + 𝑋𝑝𝑝 + (𝑋𝑞 − 𝑤0)𝑞 + (𝑋𝑟 + 𝑣0)𝑟 − 𝑔𝑐𝑜𝑠𝜃0𝜃 

+𝑋𝛿𝑙𝑎𝑡𝛿𝑙𝑎𝑡 + 𝑋𝛿𝑙𝑜𝑛𝛿𝑙𝑜𝑛 + 𝑋𝛿𝑝𝑒𝑑 𝛿𝑝𝑒𝑑 + 𝑋𝛿𝑐𝑜𝑙𝛿𝑐𝑜𝑙 

(88) 

𝑣̇ = 𝑌𝑢𝑢 + 𝑌𝑣𝑣 + 𝑌𝑤𝑤 + (𝑌𝑝 + 𝑤0)𝑝 + 𝑌𝑞𝑞 + (𝑌𝑟 − 𝑢0)𝑟

+ 𝑔𝑐𝑜𝑠𝜙0𝑐𝑜𝑠𝜃0𝜙 − 𝑔𝑠𝑖𝑛𝜙0𝑠𝑖𝑛𝜃0𝜃 + 𝑌𝛿𝑙𝑎𝑡 𝛿𝑙𝑎𝑡

+ 𝑌𝛿𝑙𝑜𝑛𝛿𝑙𝑜𝑛 + 𝑌𝛿𝑝𝑒𝑑 𝛿𝑝𝑒𝑑 + 𝑌𝛿𝑐𝑜𝑙 𝛿𝑐𝑜𝑙   

(89) 

𝑤̇ = 𝑍𝑢𝑢 + 𝑍𝑣𝑣 + 𝑍𝑤𝑤 + (𝑍𝑝 − 𝑣0)𝑝 + (𝑍𝑞+𝑢0)𝑞 + 𝑍𝑟𝑟

− 𝑔𝑠𝑖𝑛𝜙0𝑐𝑜𝑠𝜃0𝜙 − 𝑔𝑐𝑜𝑠𝜙0𝑠𝑖𝑛𝜃0𝜃 

(90) 
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+𝑍𝛿𝑙𝑎𝑡𝛿𝑙𝑎𝑡 + 𝑍𝛿𝑙𝑜𝑛𝛿𝑙𝑜𝑛 + 𝑍𝛿𝑝𝑒𝑑𝛿𝑝𝑒𝑑 + 𝑍𝛿𝑐𝑜𝑙𝛿𝑐𝑜𝑙 

𝑝̇ = 𝐿𝑢𝑢 + 𝐿𝑣𝑣 + 𝐿𝑤𝑤 + 𝐿𝑝𝑝 + 𝐿𝑞𝑞

+ 𝐿𝑟𝑟+𝐿𝛿𝑙𝑎𝑡𝛿𝑙𝑎𝑡 + 𝐿𝛿𝑙𝑜𝑛𝛿𝑙𝑜𝑛 + 𝐿𝛿𝑝𝑒𝑑𝛿𝑝𝑒𝑑 + 𝐿𝛿𝑐𝑜𝑙𝛿𝑐𝑜𝑙 
(91) 

𝑞̇ = 𝑀𝑢𝑢 +𝑀𝑣𝑣 +𝑀𝑤𝑤 +𝑀𝑝 +𝑀𝑞𝑞 +𝑀𝑟𝑟+𝑀𝛿𝑙𝑎𝑡𝛿𝑙𝑎𝑡 +𝑀𝑙𝑜𝑛𝛿𝑙𝑜𝑛

+𝑀𝛿𝑝𝑒𝑑𝛿𝑝𝑒𝑑 +𝑀𝛿𝑐𝑜𝑙𝛿𝑐𝑜𝑙  
(92) 

𝑟̇ = 𝑁𝑢𝑢 + 𝑁𝑣𝑣 + 𝑁𝑤𝑤 + 𝑁𝑝𝑝 + 𝑁𝑞𝑞 + 𝑁𝑟𝑟 + 𝑁𝛿𝑙𝑎𝑡𝛿𝑙𝑎𝑡 + 𝑁𝛿𝑙𝑜𝑛𝛿𝑙𝑜𝑛

+ 𝑁𝛿𝑝𝑒𝑑𝛿𝑝𝑒𝑑 + 𝑁𝛿𝑐𝑜𝑙𝛿𝑐𝑜𝑙 
(93) 

𝜙̇ = 𝑝 + 𝑞𝑠𝑖𝑛𝜙0𝑡𝑎𝑛𝜃0 + 𝑟𝑐𝑜𝑠𝜙0𝑡𝑎𝑛𝜃0 
(94) 

𝜃̇ = 𝑞𝑐𝑜𝑠𝜙0 − 𝑟𝑠𝑖𝑛𝜃0 
(95) 

 

These equations can be represented in the state space form as shown in Eq. (96) with 

the motion states and the controls inputs given in Eq. (97) and Eq. (98) respectively. 

The proposed model structure has 8 states and 4 inputs. 

𝑥̇𝑝ℎ𝑦 = 𝐴𝑝ℎ𝑦𝑥𝑝ℎ𝑦 + 𝐵𝑝ℎ𝑦𝑢 (96) 

xphy = [u v w p q r ϕ θ] (97) 

u = [δlat δlon δped δcol] (98) 

 

The physical system matrices 𝐴𝑝ℎ𝑦 and 𝐵𝑝ℎ𝑦 are shown in Eq. (99) and Eq. (100) 

respectively. 
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𝐴𝑝ℎ𝑦 

=

[
 
 
 
 
 
 
 
 
𝑋𝑢 𝑋𝑣 𝑋𝑤 𝑋𝑝 𝑋𝑞 − 𝑤0 𝑋𝑟 + 𝑣0 0 −𝑔𝑐𝜃0
𝑌𝑢 𝑌𝑣 𝑌𝑤 𝑌𝑝 + 𝑤0 𝑌𝑞 𝑌𝑟 − 𝑢0 𝑔𝑐𝜙0𝑐𝜃0 −𝑔𝑠𝜙0𝑠𝜃0
𝑍𝑢 𝑍𝑣 𝑍𝑤 𝑍𝑝 − 𝑣0 𝑍𝑞 + 𝑢0 𝑍𝑟 −𝑔𝑠𝜙0𝑐𝜃0 −𝑔𝑐𝜙0𝑠𝜃0
𝐿𝑢 𝐿𝑣 𝐿𝑤 𝐿𝑝 𝐿𝑞 𝐿𝑟 0 0

𝑀𝑢 𝑀𝑣 𝑀𝑤 𝑀𝑝 𝑀𝑞 𝑀𝑟 0 0

𝑁𝑢 𝑁𝑣 𝑁𝑤 𝑁𝑝 𝑁𝑞 𝑁𝑟 0 0

0 0 0 1 𝑠𝜙0𝑡𝜃0 𝑐𝜙0𝑡𝜃0 0 0
0 0 0 0 𝑐𝜃0 −𝑠𝜃0 0 0 ]

 
 
 
 
 
 
 
 

 

 

(99) 

𝐵𝑝ℎ𝑦 =

[
 
 
 
 
 
 
 
 
𝑋𝑙𝑎𝑡 𝑋𝑙𝑜𝑛 𝑋𝑝𝑒𝑑 𝑋𝑐𝑜𝑙
𝑌𝑙𝑎𝑡 𝑌𝑙𝑜𝑛 𝑌𝑝𝑒𝑑 𝑌𝑐𝑜𝑙
𝑍𝑙𝑎𝑡 𝑍𝑙𝑜𝑛 𝑍𝑝𝑒𝑑 𝑍𝑐𝑜𝑙
𝐿𝑙𝑎𝑡 𝐿𝑙𝑜𝑛 𝐿𝑝𝑒𝑑 𝐿𝑐𝑜𝑙
𝑀𝑙𝑎𝑡 𝑀𝑙𝑜𝑛 𝐿𝑝𝑒𝑑 𝑀𝑐𝑜𝑙
𝑁𝑙𝑎𝑡 𝑁𝑙𝑜𝑛 𝑁𝑝𝑒𝑑 𝑁𝑐𝑜𝑙
0 0 0 0
0 0 0 0 ]

 
 
 
 
 
 
 
 

 

 

(100) 

When the rest of the state space matrices are concerned, with the assumption that all 

of the system states are perfectly measurable, the associated 𝐶𝑝ℎ𝑦 is an identity matrix 

and according to our problem formulation 𝐷𝑝ℎ𝑦 is equal to zero. 

 

Since all of the states are assumed to be perfectly measurable, the total number of 

parameters to be estimated in 𝐴𝑝ℎ𝑦, 𝐵𝑝ℎ𝑦 and 𝑇 matrices are 36, 24 and 64 

respectively. Therefore, altogether there are 124 unknowns. Such a problem can be 

classified as an optimization problem with large number of variables. The solution 

methodology is explained in the following paragraph. 
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It is important to understand the physical behavior of these parameters prior to 

estimation. In other words, initial value assessment and constraint value selection with 

physical intuition is important to get a solution [45]. 

 

Each stability and control derivative are made up of a contribution from different 

components of a helicopter such as main rotor, tail rotor, fuselage, stabilizers etc. The 

significant stability and control derivatives are defined briefly by referencing [58] and 

[59] in the following paragraphs. The detail explanations with formulations and the 

illustrations are given in [58] and [59]. 

 

3.1. Derivative of Forces with respect to Translational Velocity Components 

(𝑿𝒖,  𝑿𝒗,  𝑿𝒘, 𝒀𝒖, 𝒀𝒗,  𝒀𝒘, 𝒁𝒖,  𝒁𝒗, 𝒁𝒘)  

Perturbation in translational velocity changes the rotor flapping which causes change 

in forces and moments around rotor, fuselage and empennage. The derivatives 

𝑋𝑢,  𝑌𝑣,  𝑋𝑣,  𝑌𝑢 which are coupled at low speeds, becomes independent from each other 

with an increasing forward velocity [58]. Direct force damping 𝑋𝑢 and 𝑌𝑣 which reflect 

the drag and side force on the rotor–fuselage combination respectively changes 

linearly with speed [58]. The coupling derivatives 𝑋𝑣 and 𝑌𝑢 are less significant 

compared to the direct derivatives as it is expected.   

 

The approximation for heave damping derivative can be written as in Eq. (18) for 

forward flight condition, [58]. 

 

𝑍𝑤 = −
𝜌𝑎0𝜇(𝛺𝑅)𝐴𝑏

2𝑀𝑎
(

4

8𝜇 + 𝑎0𝑠
) (101) 
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3.2. Derivative of Forces with respect to Translational Velocity Components 

(𝑿𝒖,  𝑿𝒗,  𝑿𝒘, 𝒀𝒖, 𝒀𝒗,  𝒀𝒘, 𝒁𝒖,  𝒁𝒗, 𝒁𝒘)  

The speed and incidence stability 𝑀𝑢, 𝑀𝑤 have major effect on longitudinal stability. 

Although the main rotor moments do not significantly change with forward velocity, 

the pitching moment contributions of the fuselage and empennage become significant 

due to aerodynamic loads. Positive 𝑀𝑢 indicates speed stability whereas negative 𝑀𝑤 

refers incidence stability [58]. 

 

Pitching moment due to sideslip 𝑀𝑣 is also another important parameter. The changes 

in sideslip cause significant variations in downwash at the horizontal stabilizer [58]. 

 

The derivatives 𝐿𝑢, 𝐿𝑤,  𝑁𝑢,  𝑁𝑤 couple with each other at the low-frequency 

longitudinal and lateral motions of the helicopter.  

 

Dihedral effect (𝐿𝑣) and weathercock stability (𝑁𝑣) parameters are significant sideslip 

derivatives. A positive value for 𝑁𝑣 implies stability. A negative value for 𝐿𝑣 implies 

stability [58]. 

 

3.3. Derivative of Forces with respect to Translational Velocity Components 

(𝑿𝒖,  𝑿𝒗,  𝑿𝒘, 𝒀𝒖, 𝒀𝒗,  𝒀𝒘, 𝒁𝒖,  𝒁𝒗, 𝒁𝒘)  

The derivatives 𝑋𝑞 ,  𝑌𝑝 change significantly by main rotor contributions. These 

derivatives contribute significantly to the pitch and roll damping characteristics [58]. 

 

3.4. Derivative of Moments with respect to Angular Velocity Components 

(𝑳𝒑,  𝑳𝒒,  𝑳𝒓, 𝑴𝒑, 𝑴𝒒,  𝑴𝒓, 𝑵𝒑, 𝑵𝒒, 𝑵𝒓) 

The direct and coupled damping derivatives 𝐿𝑝,  𝐿𝑞 , 𝑀𝑝, 𝑀𝑞 are significantly 

important derivatives in system dynamics. The direct damping derivatives 𝐿𝑝, 𝑀𝑞 
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indicate short-term, small and moderate amplitude, handling characteristics, while the 

cross-damping derivatives  𝐿𝑞 , 𝑀𝑝 characterize the level of pitch–roll and roll–pitch 

couplings [58]. 

 

The derivatives 𝐿𝑟 , 𝑁𝑝, 𝑁𝑟  have influence on the character of the lateral / directional 

stability and control characteristics of the helicopter [58].In general, the derivatives 

𝐿𝑟 , 𝑁𝑝 are presumed to be less significant compare to their primary 

counterparts  𝐿𝑝, 𝑁𝑟 [59]. 

 

3.5. General View on Stability Derivatives 

The parameters which implicate powerful information about helicopter flight stability 

are tabulated in Table 3.1 with the expected values for satisfying stability [58]. Prior 

knowledge of the helicopter flight stability under examination may give hint about the 

sign of these derivatives. 

 

As it is mentioned above, there exists 60 parameters to be estimated (36 parameters in 

𝐴𝑝ℎ𝑦 and 24 parameters in 𝐵𝑝ℎ𝑦) in our problem. However, they are not all the same 

in the sense of significance. Some of them are quite insignificant compared to the 

others. In fact, these “insignificant” parameters vary from helicopter to helicopter due 

to their dynamic characteristics. Flight region is another factor determining the set of 

“insignificant” parameters. In common practice, the stability parameters 𝑋𝑣, 𝑋𝑤, 𝑌𝑢, 

𝑌𝑤, 𝑍𝑢, 𝑍𝑣, 𝑀𝑤, 𝑀𝑟, 𝑁𝑤 and the control parameters 𝑋 𝛿𝑝𝑒𝑑 , 𝑌 𝛿𝑝𝑒𝑑 , 𝑀 𝛿𝑝𝑒𝑑 , 𝑌 𝛿𝑝𝑒𝑑  are 

assumed as “insignificant”. Therefore, these may set to zero. Moreover for flight 

conditions with high forward velocity (where the inertial velocities are so dominant) 

the aerodynamic effects may be negligible (e.g., 𝑍𝑞, 𝑌𝑟) [58]. 
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Table 3.1. Derivatives with Expected Values to Ensure Stability 

Stability Criteria Expected Value 

Dihedral effect 𝐿𝑣 < 0 

Roll damping 𝐿𝑝 < 0 

Yaw to roll coupling 𝐿𝑟 > 0 

Static speed stability 𝑀𝑢 > 0 

Incidence stability 𝑀𝑤 < 0 

Pitch damping 𝑀𝑞 < 0 

Weathercock stability 𝑁𝑣 > 0 

Adverse yaw 𝑁𝑝 < 0 

Yaw damping 𝑁𝑟 < 0 

Drag damping 𝑋𝑢 < 0 

Side Force Damping  𝑌𝑣 < 0 

Heave Damping 𝑍𝑤 < 0 
 

3.6. Derivative of Forces with respect to Control Inputs (𝒁𝜹𝒄𝒐𝒍 , 𝒁𝜹𝒍𝒐𝒏
, 𝒀𝜹𝒑𝒆𝒅  ) 

Heave control sensitivity (𝑍𝛿𝑐𝑜𝑙) mainly affected by the blade loading and tip speed. 

The control sensitivity increases with forward speed [58].The derivative of thrust with 

respect to longitudinal cyclic  (𝑍𝛿𝑙𝑜𝑛) increases almost linearly with increasing speed. 

 

The derivative of thrust with respect to the main rotor collective (𝑍𝛿𝑐𝑜𝑙) and with 

respect to the longitudinal cyclic (𝑍𝛿𝑙𝑜𝑛) which can be obtained from the thrust and 

uniform inflow equations can be formulated as in Eq. (102) and in Eq. (103) [58]. 

 

𝑍𝛿𝑐𝑜𝑙 = −
4

3

𝑎0𝐴𝑏𝜌(𝛺𝑅)
2𝜇(1 + 𝜇2)

(8𝜇 + 𝑎0𝑠)𝑀𝑎
 (102) 
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𝑍𝛿𝑙𝑜𝑛 = −2
𝑎0𝐴𝑏𝜌(𝛺𝑅)

2𝜇2

(8𝜇 + 𝑎0𝑠)𝑀𝑎
 (103) 

 

The side force is mainly affected by tail rotor thrust which changes directly with the 

pedal input (𝑌𝛿𝑝𝑒𝑑). 

 

3.7. Derivative of Moments with respect to Control Inputs (𝑴𝜹𝒄𝒐𝒍
, 𝑳𝜹𝒄𝒐𝒍

, 

𝑵𝜹𝒑𝒆𝒅, 𝑳𝜹𝒑𝒆𝒅, 𝑳𝜹𝒍𝒂𝒕, 𝑳𝒍𝒐𝒏 ,  𝑴𝜹𝒍𝒂𝒕
,𝑴𝜹𝒍𝒐𝒏

) 

Changes in collective control may cause pitching and rolling moment (𝑀
𝛿𝑐𝑜𝑙

, 𝐿𝛿𝑐𝑜𝑙). 

In fact, the changes in rotor thrust may generate a moment if there exists a thrust offset. 

Moreover, the changes in flapping due to the collective input generate hub moment 

proportional to the flap angle. 

 

The pedal input is directly related with tail rotor thrust which has significant impact 

on the yawing moment (𝑁
𝛿𝑝𝑒𝑑

). The cross-coupling derivative (𝐿𝛿𝑝𝑒𝑑) is also 

significant in rotor dynamics.  Both 𝑁𝛿𝑝𝑒𝑑, 𝐿𝛿𝑝𝑒𝑑  derivatives increase with forward 

speed [58]. 

 

The direct and coupled flap responses to cyclic control inputs 

(𝐿𝛿𝑙𝑎𝑡, 𝐿𝑙𝑜𝑛 , 𝑀𝛿𝑙𝑎𝑡, 𝑀𝛿𝑙𝑜𝑛) change with the stiffness number; and they are practically 

independent of forward speed [58]. 

 

Understanding the behavior of these parameters under certain flight conditions will be 

useful in the estimation of their values. The initial value assessment and the constraint 

selections of the optimization problem whose explanation is presented in the following 

chapters are performed under the guidance of the information given in this chapter. 
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CHAPTER 4  

 

4. PARAMETER ESTIMATION WITH NONLINEAR CONSTRAINT 

OPTIMIZATION THEORY 

 

Consider an optimization problem; 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 min 𝑓(𝜒)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜒 ∈ Ω
 (104) 

 

The real-valued function  f: ℝn ⟶ℝ  which is desired to be minimized is named as 

the objective function. The vector χ is a vector with n independent variables: χ =

 [x1, x2, x3, … , xn]
T ∈ ℝn. The set Ω is a subset of ℝn called the constraint set or 

feasible set. In our problem, the objective function shown in Eq. (105) is the sum 

squares of the difference between the right and left side of the similarity 

transformation equations shown in Eq. (86), (87) and Eq. (85) ([44]-[46])  

𝑚𝑖𝑛
𝜒
𝑓(𝜒) = 𝑚𝑖𝑛

𝑥
(‖𝑇(𝜒)𝐴𝑝ℎ𝑦(𝜒) − 𝐴𝑇(𝜒)‖𝐹 + ‖𝑇

(𝜒)𝐵𝑝ℎ𝑦(𝜒) − 𝐵‖𝐹

+ ‖𝐶𝑝ℎ𝑦(𝜒) − 𝐶𝑇(𝜒)‖𝐹) 
(105) 

 

In the literature, there exist a number of algorithms for solving NonLinear 

Programming (NLP) problems ([44]-[46]). In our case, we decided to concentrate on 

“large-scale” NLP algorithms where the total number of variables is greater than one 

hundred. In [50] Benson compares these types of algorithms in terms of efficiency. In 

this respect we utilized both the IP (Interior-Point) method and the SQP (Sequential 

Quadratic Programming) for our optimization problem. 
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The interior methods, which are also called as barrier methods, are used to transform 

a constrained problem into an unconstrained problem or into a sequence of 

unconstrained problems [35]. Interior Point Algorithms, in general sense, are based on 

searching the optimum solution by starting from an available point and continuing 

gradually to get better ones which lie in the interior points of the available area. 

Consider that our objective function 𝑓(𝜒), which is aimed to be minimized, is 

subjected to the constraint function, 𝑔(𝜒) ≤ 0. The barrier problem aims to find 

infimum of a function 𝑓(𝜒) + μB(χ) where 𝑔(𝜒) < 0.  Here B(χ) is a barrier function 

that is nonnegative and continuous over the region {χ ∶  g(χ)  <  0} and approaches ∞ 

as the boundary of the region {χ ∶  g(χ)  ≤  0} is approached from the interior. More 

specifically, problem is reformulated in Eq. (106) with Frisch's logarithmic barrier 

function [60] for each barrier parameter μ > 0, and nonnegative slack variables, 𝑠𝑖.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 min
𝑋,𝑠
𝑓(𝜒) − μ∑ln(𝑠𝑖) ,

𝑖

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝜒) + 𝑠 = 0

 (106) 

 

 

As μ converges to zero, the approximate problem (Eq. (106)) becomes a sequence of 

equality constrained problems which are easier to solve than the original inequality 

constrained problem. 

 

SQP is also one of the most effective methods for nonlinearly constrained optimization 

problems [52]. It provides successful results for both small and large-scale problems. 

For SQP, we can express our optimization problem as given in (107). 

 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 min𝑓(𝜒)

𝑜𝑣𝑒𝑟 𝜒 ∈ ℝ𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ(𝜒) = 0
𝑔(𝜒) ≤ 0

 (107) 
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The idea behind the SQP is to model the objective function at the current iterate 𝜒𝑘 by 

a quadratic programming sub problem. Then a new iterate 𝜒𝑘+1 is defined by 

minimizing the sub problem [52]. In general practice, the SQP methods are executed 

in two stages. These are step computation and the Hessian approximation. Merit 

function is used to ensure that the SQP method converges from remote starting points.  

 

Both IP and SQP algorithms are readily available in the optimization toolbox of 

MATLAB with a wide variety options for the user. The fmincon solver of MATLAB 

is utilized as the optimization tool for our problem. The IP and SQP algorithms are 

utilized here under a variety of initial conditions and constraints. 

 





 

 
 

49 
 

CHAPTER 5  

 

5. IMPLEMENTATION ON HELICOPTER SYSTEMS 

 

The method described on the previous sections is implemented first on simulated flight 

data. For this purpose, we used a nonlinear model of a multi-role helicopter which was 

developed in FLIGHTLAB environment. The FLIGHTLAB Model Editor (FLME) is 

used for data entry. FLME structure (Figure 5.1) allowed us to allocate the data 

according to hierarchical modules that correspond to a physical or a logical subsystem 

of the helicopter. The model is composed of main rotor, tail rotor, airframe and flight 

control modules. 

 

The “Main Rotor” is modeled with “Blade Element” approach. The number of blades, 

rotor radius, rotational speed with direction, rotor hub location, shaft tilt, swashplate 

phase angle and blade tip loss factor properties are supplied. The blade structure is 

selected as “Articulated”. The rigid blade model includes both flapping and lead-lag 

dynamics. The damper of the lead-lag dynamics is modeled as linear. The physical 

parameters like torque offset, rotor precone angle, precone / flapping / feathering/lead-

lag hinge offset, flapping hinge / lag damper spring stiffness, flapping hinge / linear 

lag damper damping coefficient, flap / lag spring undeformed angle and effective 

delta-3 angle are modeled. The geometric / inertial blade is generated in many equally 

spaced segments. The aerodynamic data is generated by wind tunnel tests and the 

FLUENT analysis results are used as a complementary source. The main rotor air 

loads are represented with a quasi-unsteady aerodynamics model featuring stall delay 

due to rotation empirical corrections. The air load entry is performed according to the 

blade segments which are consistent with airfoil radial station positions. Peters-He 

Finite State model is selected for induced velocity model. The inflow harmonics are 
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selected as three. The inflow correction data is modeled from empirical data regarding 

the ground effect and wake distortion effect. Peters-He 3-state interference model is 

generated to simulate the main rotor interference on fuselage, tail rotor and tail 

surfaces.  

 

 

Figure 5.1. FLME Interface of FLIGHTLAB 

 

“Actuator Disk Model” is used for “Tail Rotor” module. The blade properties like 

number of tail rotor blades, rotor radius, rotational speed with direction, hub location, 

cant angle, blade tip loss factor, lift curve slope, rotor head drag coefficient, effective 

rotor head drag area, airfoil constant drag coefficient, solidity weighted blade chord, 

linear blade twist, delta 3 angle, partial of coning with respect to thrust, blockage effect 

properties, inflow / profile drag correction, induced inflow / coning time constants are 

modeled in this module. 

 



 

 
 

51 
 

Airframe model is comprised of fuselage, horizontal tail and vertical tail components. 

The “Rigid Fuselage” model is generated with vehicle center of gravity, mass, moment 

of inertia in pitch, roll, yaw axis and the total product of inertias. All of the associated 

aerodynamic data belongs to wind tunnel test results and numerical analysis performed 

in FLUENT environment. 

 

The flight stability augmentation system model is embedded in the flight control 

module. Rate feedback stabilization systems for roll, pitch and yaw channels are 

enabled to increase system stability. These stabilization systems also include the main 

rotor and tail rotor actuator models. Actuator models are linear. 

 

The “ideal engine” model is selected for propulsion system. The number of engines, 

nominal engine torque and main rotor to engine gear ratio properties are produced as 

engine properties. 

 

The FLIGHTLAB model is trimmed (Figure 5.2) and flight simulations are performed 

in several flight maneuvering conditions like hovering, forward flight, climb. The 

model is verified by comparing the simulation results with the related flight test data. 

Both simulations and the flight test efforts are repeated with several environmental 

conditions for verification. 
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Figure 5.2. Xanalysis Interface of FLIGHTLAB for Trim Analysis 

 
 

5.1. Implementation with Linear Model Data 

 

Two linearization approaches are available in FLIGHTLAB [67]. These are “averaged 

genq" and “steady perturbation" (Figure 5.3). The “averaged genq" method estimates 

the stability and control matrices by perturbing the system model at each rotor 

azimuth. Then the resultant derivatives are by averaging the resulting partial 

derivatives over one rotor revolution. On the other hand, the “steady perturbation" 

method obtains the derivatives by perturbing the state or control, running the model 

to steady state, and then averaging the resulting partial derivatives over one rotor 

revolution [67].  

 

Both methods are practiced in this study and the method selection is performed by 

comparing the linear model responses with the nonlinear model simulations. Since the 

“averaged genq" method gives better results, it is selected for our problem. 
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The nonlinear FLIGHTLAB model is linearized around a specific trim point (level 

flight at 70 knots, 2000 ft MSL). Linearization is performed again using the 

linearization feature of FLIGHTLAB Xanalysis interface. 

 

 
Figure 5.3. Xanalysis Interface of FLIGHTLAB for Linearization 

 

Linear model configuration is selected from “Xanalysis” interface [67]. In this 

process, inputs (Eq. (109)) are selected as longitudinal cyclic, lateral cyclic, collective 

and pedal; the states are selected as (Eq. (110)) roll angle, pitch angle; translational 

velocity components (longitudinal, lateral and vertical velocity), and angular velocity 

components (roll, pitch and yaw rates). The outputs are assigned to the states (Eq. 

(111). 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 (108) 

𝑖𝑛𝑝𝑢𝑡𝑠     ∶  𝛿𝑙𝑜𝑛, 𝛿𝑙𝑎𝑡, 𝛿𝑐𝑜𝑙, 𝛿𝑝𝑒𝑑 (109) 

𝑠𝑡𝑎𝑡𝑒𝑠     ∶   𝜙, 𝜃, 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟 (110) 
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𝑜𝑢𝑡𝑝𝑢𝑡𝑠  ∶   𝜙, 𝜃, 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟 (111) 

 

 

The expanded form on the basis of the input-state-output configuration is given in 

Appendix B. 

 

Model linearization is applicable around the trim point. Trim condition is determined 

according to the model verification status. Trim condition at 70 knot forward velocity 

where the model data coincide with the flight test results is selected as the initial 

condition for linearization. Pressure altitude is selected as 2000 ft and the ambient 

temperature is chosen as 15 °C. Appropriate trim targets and trim variables are set 

before trim analysis. For forward velocity condition body accelerations are set as trim 

targets. Pilot control inputs and the Euler angles are defined as trim variables which 

are released as free to solve trim equations. After trim analysis, linearization analysis 

is performed to calculate the linear model in FLIGHTLAB environment. Then the 

model structure is converted to the form given in Eq. (112). The transformation 

equations are defined in Appendix B. 

 

[
 
 
 
 
 
 
 
𝑢̇
𝑣
𝑤̇
𝑝̇
𝑞̇
𝑟̇
𝜑̇

𝜃̇ ]
 
 
 
 
 
 
 

= 𝐴 ∙

[
 
 
 
 
 
 
 
𝜑
𝜃
𝑢
𝑣
𝑤
𝑝
𝑞
𝑟 ]
 
 
 
 
 
 
 

+ 𝐵 ∙

[
 
 
 
𝛿𝑙𝑎𝑡
𝛿𝑙𝑜𝑛
𝛿𝑝𝑒𝑑
𝛿𝑐𝑜𝑙 ]

 
 
 
 (112) 

where  
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𝐴

=

[
 
 
 
 
 
 
 
 
𝑋𝑢 𝑋𝑣 𝑋𝑤 𝑋𝑝 𝑋𝑞 − 𝑤0 𝑋𝑟 + 𝑣0 0 −𝑔𝑐𝜃0
𝑌𝑢 𝑌𝑣 𝑌𝑤 𝑌𝑝 + 𝑤0 𝑌𝑞 𝑌𝑟 − 𝑢0 𝑔𝑐𝜙

0
𝑐𝜃0 −𝑔𝑠𝜙

0
𝑠𝜃0

𝑍𝑢 𝑍𝑣 𝑍𝑤 𝑍𝑝 − 𝑣0 𝑍𝑞 + 𝑢0 𝑍𝑟 −𝑔𝑠𝜙
0
𝑐𝜃0 −𝑔𝑐𝜙

0
𝑠𝜃0

𝐿𝑢 𝐿𝑣 𝐿𝑤 𝐿𝑝 𝐿𝑞 𝐿𝑟 0 0

𝑀𝑢 𝑀𝑣 𝑀𝑤 𝑀𝑝 𝑀𝑞 𝑀𝑟 0 0

𝑁𝑢 𝑁𝑣 𝑁𝑤 𝑁𝑝 𝑁𝑞 𝑁𝑟 0 0

0 0 0 1 𝑠𝜙
0
𝑡𝜃
0

𝑐𝜙
0
𝑡𝜃0 0 0

0 0 0 0 𝑐𝜃0 −𝑠𝜃0 0 0 ]
 
 
 
 
 
 
 
 

 
(113) 

𝐵 =

[
 
 
 
 
 
 
 
 
𝑋𝑙𝑎𝑡 𝑋𝑙𝑜𝑛 𝑋𝑝𝑒𝑑 𝑋𝑐𝑜𝑙
𝑌𝑙𝑎𝑡 𝑌𝑙𝑜𝑛 𝑌𝑝𝑒𝑑 𝑌𝑐𝑜𝑙
𝑍𝑙𝑎𝑡 𝑍𝑙𝑜𝑛 𝑍𝑝𝑒𝑑 𝑍𝑐𝑜𝑙
𝐿𝑙𝑎𝑡 𝐿𝑙𝑜𝑛 𝐿𝑝𝑒𝑑 𝐿𝑐𝑜𝑙
𝑀𝑙𝑎𝑡 𝑀𝑙𝑜𝑛 𝐿𝑝𝑒𝑑 𝑀𝑐𝑜𝑙
𝑁𝑙𝑎𝑡 𝑁𝑙𝑜𝑛 𝑁𝑝𝑒𝑑 𝑁𝑐𝑜𝑙
0 0 0 0
0 0 0 0 ]

 
 
 
 
 
 
 
 

 (114) 

 

The obtained linear model is transferred to MATLAB environment, which will be 

utilized for the rest of the analysis. 

 

Now we shall proceed by generating input and output data required for identification. 

One of the most optimal input signal types which meet the well-known requirement 

of persistently exciting ([17], [37]) is 3-2-1-1. This input signal is sequentially applied 

for each channel during the same identification test. The input signal frequency 

content and amplitude shall be well adjusted for exciting the helicopter body dynamics 

properly ([17]). In the light of this, frequency content of the input signal is adjusted to 

cover a frequency range of 0.1-1 Hz. Signal to noise ratio is also taken into account 

while selecting the amplitudes of the input signals. Moreover, helicopter is not allowed 

to drift away from the trim condition too much ([17]). For this purpose, input signal 

amplitudes are limited in such a way that the helicopter attitude angles stay in the 
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range of ± 10 deg around the specific trim point and the helicopter angular velocity 

components shall not exceed ± 10 deg/s. These considerations about the input design 

are expected to ensure the quality of identification. Constructed signals for each input 

channel are shown in Figure 5.4. MATLAB ‘fft’ command is used to check the 

frequency content of the input signal. Single-sided amplitude spectrum of the input 

signals is shown in Figure 5.5. 

 

 

Figure 5.4. Input Signals (3-2-1-1) 
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Figure 5.5. Single-Sided Amplitude Spectrum of Each Input Signal 

 

The input signals are fed to the linear model in MATLAB environment to generate the 

outputs required for identification. The outputs were selected as roll angle, pitch angle; 

translational velocity components (longitudinal, lateral and vertical velocity), and 

angular velocity components (roll, pitch and yaw rates). Time domain responses of 

the system to the inputs given in Figure 5.4 are illustrated in Figure 5.6. 
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One important issue for input output data set is linearity. During the parametric estimation phase, 

the linearity between input output couples will give information about the accuracy of the 

corresponding parameters ([17]). A “coherence” value which is higher than 0.6 implies that there 

is satisfying system response linearity for the corresponding input frequencies ([17]). The equation 

of “coherence function” is given in (115). 

𝛾𝑥𝑦
2 (𝑓) =

|𝐺̂𝑥𝑦(𝑓)|
2

|𝐺̂𝑥𝑥(𝑓)||𝐺̂𝑦𝑦(𝑓)|
 (115) 

 

According to this formulation, the coherence values between inputs and the outputs for each signal 

are illustrated separately in Figure 5.7 - Figure 5.10. To clarify, if we look at Figure 5.7, we observe 

that the relation between lateral cyclic input and roll rate is satisfying for the desired frequency 

range (0.1-1 Hz). Same comment is valid for the lateral cyclic input and roll angle pair. These 

coherence plots given in Figure 5.7 - Figure 5.10 are associated with the physical parameters to be 

estimated in the following chapter.  

 

Since we have an input and output set, we can initiate the identification process. The sampling 

time is selected as 1/150 to be compatible with real system sensor properties (see Paragraph 6.8).  

First the Block Hankel Matrices, (𝑌𝑓 ,  𝑈𝑓 ,  𝑊𝑝 ) which have significant importance in subspace 

identification, are constructed by using the available input and output data set. In our problem, the 

row number Block Hankel Matrices will be 16 (2𝑛 where n is selected as 8) and the column number 

will be 59854 (See Eq. (30)). The obtained Block Hankel Matrices will be used to compute the 

oblique projection matrix 𝑂𝑖 At this stage the RQ decomposition algorithm is utilized to reduce 

the computational load and to avoid rank deficiency during the projection operations. After 

obtaining the oblique projection matrix, SVD method is used to inspect and reduce the order of 

the system. The U and S matrices of SVD are used to compute the extended observability matrix, Γi. 

Moreover, the prediction matrix 𝑍𝑖 is computed again by using the Block Hankel Matrices. Finally, 

𝐴 and 𝐶 matrices are computed by using Eq. (79); 𝐵 and 𝐷 matrices are computed by using Eq. 

                                                 
4 For 40 s simulation data with 150 hz 
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(81). These discrete time linear model matrices are then converted into their continuous time 

counterparts using “d2c” command of MATLAB. “tustin” discretization method is used for this 

purpose. This “inverse-discretization” operation is required since we are seeking for the continuous 

time form of the system model in order to obtain the physical parameters. 
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Figure 5.7. Coherences between Lateral Cyclic Input and the System Outputs 
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Figure 5.8. Coherences between Longitudinal Cyclic Input and the System Outputs 
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Figure 5.9. Coherences between Pedal Input and the System Outputs 
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Figure 5.10. Coherences between Collective Input and the System Outputs 
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The true system matrices and their counterparts that are obtained by identification are shown in 

Appendix C. Although a direct comparison between these two systems is not correct and not a 

recommended practice, we would like to emphasize the following for clarity. When we inspect 

these two systems (the true one and the identified counterpart), we can see that they have nearly 

identical poles (Table 5.1). However, the numerical values of the matrix elements are quite 

different. This is an expected phenomenon as it was mentioned before. 

 
Table 5.1. Eigenvalue Comparison 

True Model Subspace Id. Results 

 − 7.7321 −7.7319 
  − 3.6525 ± 0.2764𝑖   − 3.6525 ±  0.2763𝑖  
−0.6125 ±  0.0779𝑖 −0.6124 ±  0.0782𝑖 
0.0095 ±  0.2070𝑖 0.0095 ±  0.2070𝑖 

−0.1377 −0.1377 
 

The outputs of the true model and the model obtained through subspace identification under the 

same 3-2-1-1 control input set are presented in Figure 5.11 
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The subspace identification process worked well as expected. Now we can continue 

our route for the physical parameter estimation. Based on the equations of the 

similarity transformation theory (Eq.(85) - Eq. (87)), the objective function presented 

in Eq. (105)) is symbolically generated for our problem. MATLAB symbolic toolbox 

is used for this purpose. The obtained symbolic objective function is shown in Figure 

5.12. 

 
min
𝜒
f(𝜒)

= min
𝜒

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥125 𝑥126 𝑥127 𝑥128 𝑥129 𝑥130 𝑥131 𝑥132
𝑥133 𝑥134 𝑥135 𝑥136 𝑥137 𝑥138 𝑥139 𝑥140
𝑥141 𝑥142 𝑥143 𝑥144 𝑥145 𝑥146 𝑥147 𝑥148
𝑥149 𝑥150 𝑥151 𝑥152 𝑥153 𝑥154 𝑥155 𝑥156
𝑥157 𝑥158 𝑥159 𝑥160 𝑥161 𝑥162 𝑥163 𝑥164
𝑥165 𝑥166 𝑥167 𝑥168 𝑥169 𝑥170 𝑥171 𝑥172
𝑥173 𝑥174 𝑥175 𝑥176 𝑥177 𝑥178 𝑥179 𝑥180
𝑥181 𝑥182 𝑥183 𝑥184 𝑥185 𝑥186 𝑥187 𝑥188]

 
 
 
 
 
 
 

.

[
 
 
 
 
 
 
 
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 0 −𝑔𝑐𝜃0
𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑔𝑐𝜙0𝑐𝜃0 −𝑔𝑠𝜙0𝑠𝜃0
𝑥13 𝑥14 𝑥15 𝑥16 𝑥17 𝑥18 −𝑔𝑠𝜙0𝑐𝜃0 −𝑔𝑐𝜙0𝑠𝜃0
𝑥19 𝑥20 𝑥21 𝑥22 𝑥23 𝑥24 0 0
𝑥55 𝑥26 𝑥27 𝑥28 𝑥29 𝑥30 0 0
𝑥31 𝑥32 𝑥33 𝑥34 𝑥35 𝑥36 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
−0.012 −0.100
−0.054 −0.194 0.682
0.026 −2.968

0.146

0.021
0.042 0.111 0.062 −0.116 −0355 −0.278 −3.900 0.617
0 0.006 −0.032 0.974 −0.169 0.628 −0.599 −8.194]

 
 
 
 
 
 
 

.

[
 
 
 
 
 
 
 
𝑥125 𝑥126 𝑥127 𝑥128 𝑥129 𝑥130 𝑥131 𝑥132
𝑥133 𝑥134 𝑥135 𝑥136 𝑥137 𝑥138 𝑥139 𝑥140
𝑥141 𝑥142 𝑥143 𝑥144 𝑥145 𝑥146 𝑥147 𝑥148
𝑥149 𝑥150 𝑥151 𝑥152 𝑥153 𝑥154 𝑥155 𝑥156
𝑥157 𝑥158 𝑥159 𝑥160 𝑥161 𝑥162 𝑥163 𝑥164
𝑥165 𝑥166 𝑥167 𝑥168 𝑥169 𝑥170 𝑥171 𝑥172
𝑥173 𝑥174 𝑥175 𝑥176 𝑥177 𝑥178 𝑥179 𝑥180
𝑥181 𝑥182 𝑥183 𝑥184 𝑥185 𝑥186 𝑥187 𝑥188]

 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟐

 

+ 

(

 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥125 𝑥126 𝑥127 𝑥128 𝑥129 𝑥130 𝑥131 𝑥132
𝑥133 𝑥134 𝑥135 𝑥136 𝑥137 𝑥138 𝑥139 𝑥140
𝑥141 𝑥142 𝑥143 𝑥144 𝑥145 𝑥146 𝑥147 𝑥148
𝑥149 𝑥150 𝑥151 𝑥152 𝑥153 𝑥154 𝑥155 𝑥156
𝑥157 𝑥158 𝑥159 𝑥160 𝑥161 𝑥162 𝑥163 𝑥164
𝑥165 𝑥166 𝑥167 𝑥168 𝑥169 𝑥170 𝑥171 𝑥172
𝑥173 𝑥174 𝑥175 𝑥176 𝑥177 𝑥178 𝑥179 𝑥180
𝑥181 𝑥182 𝑥183 𝑥184 𝑥185 𝑥186 𝑥187 𝑥188]

 
 
 
 
 
 
 

.

[
 
 
 
 
 
 
 
𝑥37 𝑥38 𝑥39 𝑥40
𝑥41 𝑥42 𝑥43 𝑥44
𝑥45 𝑥46 𝑥47 𝑥48
𝑥49 𝑥50 𝑥51 𝑥52
𝑥53 𝑥54 𝑥55 𝑥56
𝑥57 𝑥58 𝑥59 𝑥60
0 0 0 0
0 0 0 0 ]

 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
0.005 0.110
−0.014

−0.029 0.080
−0.874

−0.807 0.687
−0.050 −1.114 1.176 0.030
2.654 0.585 0.854 0.548]

 
 
 
 
 
 
 

)

 
 
 
 
 

𝟐

 

 

+

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥61 𝑥62 𝑥63 𝑥64 𝑥65 𝑥66 𝑥67 𝑥68
𝑥69 𝑥70 𝑥71 𝑥72 𝑥73 𝑥74 𝑥75 𝑥76
𝑥77 𝑥78 𝑥79 𝑥80 𝑥81 𝑥82 𝑥83 𝑥84
𝑥85 𝑥86 𝑥87 𝑥88 𝑥89 𝑥90 𝑥91 𝑥92
𝑥93 𝑥94 𝑥95 𝑥96 𝑥97 𝑥98 𝑥99 𝑥100
𝑥101 𝑥102 𝑥103 𝑥104 𝑥105 𝑥106 𝑥107 𝑥108
𝑥109 𝑥110 𝑥111 𝑥112 𝑥113 𝑥114 𝑥115 𝑥116
𝑥117 𝑥118 𝑥119 𝑥120 𝑥121 𝑥122 𝑥123 𝑥124]

 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
−1.254 −0.134

−0.874 0.051
0.006

−0.003 0.014 −0.001

−0.032 0.0027
0.010 −0.075 −0.005

−0.001 ]
 
 
 
 
 
 
 

.
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𝑥141 𝑥142 𝑥143 𝑥144 𝑥145 𝑥146 𝑥147 𝑥148
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𝑥157 𝑥158 𝑥159 𝑥160 𝑥161 𝑥162 𝑥163 𝑥164
𝑥165 𝑥166 𝑥167 𝑥168 𝑥169 𝑥170 𝑥171 𝑥172
𝑥173 𝑥174 𝑥175 𝑥176 𝑥177 𝑥178 𝑥179 𝑥180
𝑥181 𝑥182 𝑥183 𝑥184 𝑥185 𝑥186 𝑥187 𝑥188]

 
 
 
 
 
 
 

)
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Figure 5.12. The Symbolic Representation of the Objective Function 5 

                                                 
5 Some elements of the state space matrices are intentionally hidden. 
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There are infinitely many solutions for this minimization. However, our aim is to reach 

to a solution that corresponds to the physical domain. Thus, constraint determination 

and initial value assessment becomes an important issue. Constraints of the physical 

parameters may be selected considering typical error budgets of wind tunnel testing 

and aerodynamic prediction tools for helicopter systems or by using common practices 

of aerospace vehicle modeling. However, for convenience we conducted the analysis 

for different symmetric and asymmetric constraint levels. Here, we assume that the 

constraints for each parameter are equal to the true parameter values with [-10% 10%] 

error in regular intervals up to [-90% 90%] error. These nine set of analysis are 

performed to investigate the effect of the constraints on the convergence of the 

solution. The initial values are randomly selected between these lower and upper 

bounds (constraints). In order to assure that the solution is consistent, the 

optimizations are repeated for 180 times starting from randomly selected initial 

conditions (20 run for each set of constraints). It is expected that the analysis will 

converge almost to the same results for each set of initial conditions; and they will 

hopefully be close to the true values. 

 

Differently from SQP algorithms, the middle point of the lower and upper bounds 

plays very important role for IP algorithm [52]. The common practice is setting the 

initial iteration to the midpoint of finite bounds. Therefore, starting from the 

symmetric error bound (i.e [-10% 10%]). However, in real application this is 

infeasible. Therefore, the optimizations are repeated for the different asymmetric 

constraint levels (i.e. [-10% 20%], [-10% 30%]) to better understand the performance 

of the IP algorithm. 

 

Another method for constraint selection is contained in the knowledge helicopter 

flight stability. With this additional knowledge, we proceed by reshaping the 

constraints according to the physical contents of the relevant parameters. For instance, 

if we have a priori information about the stability characteristics then we can estimate 

the sign of the stability characteristic. More specifically, if we have an idea about the 
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pitch damping characteristics of the system for a predefined flight condition, we can 

set a sign constraint for the relevant derivative (𝑀𝑞). All of the stability related 

parameters which are listed in Table 3.1 are bounded according to the stability 

characteristics of our system under examination. Then, we can eliminate the 

insignificant parameters which are mentioned in Chapter 3. In addition to these, the 

constraints for some derivatives (𝑍𝑤, 𝑍𝛿𝑐𝑜𝑙  and 𝑍𝛿𝑙𝑜𝑛) are set by calculating the 

approximations equations (Eq. (101) - Eq. (103) for this study. The constraints for all 

of the stability and control derivatives defined in the first step (true parameter values 

with [-10% 10%] error in regular intervals up to [-90% 90%] error) are combined with 

the constraint values for the ones specified here. Then the optimization simulations 

are repeated for these confined space constraints set which is acquired by intersecting 

of these values. 

 

Until now we discussed the constraints for stability and control parameters (36 

parameters in 𝐴𝑝ℎ𝑦 and 24 parameters in 𝐵𝑝ℎ𝑦). However, the above-mentioned 

methods of selection for the constraints do not hold for the similarity transformation 

matrix, 𝑇. The 𝑇 matrix whose elements are not physical do not have any constraints 

in our problem. Besides, considering Eq. (85), the initial value of 𝑇 matrix is set to the 

inverse of the 𝐶 matrix (obtained by subspace identification). This is not a compulsory 

practice; however, a clever initialization of 𝑇 that complies with the equations of the 

similarity transformation theory speeds up the computations. Verification is 

performed by repeating the optimizations for randomly selected initial values for 𝑇 

matrix. 

 

After constructing the objective function, setting up of the constraints and the initial 

conditions, we can now proceed to the optimization process. As mentioned before the 

fmincon solver of MATLAB is utilized. The IP and SQP algorithms are tested with 

the above-mentioned constraint and initial condition settings. Moreover, the fmincon 

solver is externally assisted by the symbolic gradient of the objective function during 
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the optimization process. This symbolic gradient is computed via the “gradient” 

command of MATLAB. 

 

The process of physical subspace identification can be summarized as in Figure 5.13 

 

 

Figure 5.13. Physical Subspace Identification Procedure with Simulation Model Generated Data 
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CHAPTER 6  

 

6. NUMERICAL RESULTS 

 

In this chapter, the numerical results are presented for different optimization problems. 

These are tackled in five case studies which are categorized according to the utilized 

optimization algorithm, parameter constraint determination and the initial condition 

settings.  

 

6.1. Case 1-Interior Point algorithm 

In this case study, IP algorithm is used for optimization. The analyses are constructed 

for different symmetric constraint levels. Here, we examined nine different constraint 

set for the parameters of 𝐴𝑝ℎ𝑦 and  𝐵𝑝ℎ𝑦 matrices. We assume that the constraints are 

equal to the true parameter values with [-10% 10%] error in regular intervals up to [-

90% 90%] error. The parameters of the 𝑇 matrix elements do not have a physical 

meaning; so, they are not constrained. The initial values of the parameters which 

belong to 𝐴𝑝ℎ𝑦 and  𝐵𝑝ℎ𝑦 matrices are selected randomly between these constraints. 

With the assumption that all of the system states are perfectly measurable, the 

associated 𝐶𝑝ℎ𝑦 is an identity matrix and according to our problem formulation 𝐷𝑝ℎ𝑦 

is equal to zero. These assumptions for 𝐶𝑝ℎ𝑦 and 𝐷𝑝ℎ𝑦 matrices are hold for all of the 

case studies presented in this thesis. All of the conditions examined in Case 1 are 

summarized in Table 6.1. 
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Table 6.1. Summary of Analysis Conditions for Case 1 (Interior Point algorithm) 

 

alg. 

constraint (error bound) 

for the parameters of 

initial condition 

for the parameters of 
number 

of run 
𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 

Case 1.1 IP6 [-10% 10%] NA random sel.7 const8 20 

Case 1.2 IP [-20% 20%] NA random sel. const 20 

Case 1.3 IP [-30% 30%] NA random sel. const 20 

Case 1.4 IP [-40% 40%] NA random sel. const 20 

Case 1.5 IP [-50% 50%] NA random sel. const 20 

Case 1.6 IP [-60% 60%] NA random sel. const 20 

Case 1.7 IP [-70% 70%] NA random sel. const 20 

Case 1.8 IP [-80% 80%] NA random sel. const 20 

Case 1.9 IP [-90% 90%] NA random sel. const 20 

 

According to Table 6.1, 180 (20x9) optimization runs are performed in total. Iteration 

index versus minimization output curves of each parameter (each stability and control 

derivatives) are gathered from all of the optimization runs. To make it more 

understandable, the results are presented in three groups. In the first group of figures 

(Figure 6.2, Figure 6.3) the optimization runs are presented for Case 1.1 – Case 1.3. In 

the second group (Figure 6.4, Figure 6.5), the results of Case 1.4 – Case 1.6 are 

illustrated. In the last group the results of Case 1.7 – Case 1.9 are presented in Figure 

6.6 and Figure 6.7. Each figure contains 60 (20x3) optimization runs that are initiated 

for 3 different constraint sets and initiated from 60 (20x3) different initial values.  Due 

to simplicity, the initial values and the convergence results are illustrated in normalized 

                                                 
6 “IP” denotes “Interior-Point”  

7 “random sel.” denotes “random selection” 

8 “const.” denotes “constant” 
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form. For this purpose, the y axis of each subplot is normalized with the true value of 

corresponding parameter. In other words, if optimization outputs converge to 1.0 this 

would mean that the estimation is perfect for that parameter. If we look at Figure 6.1 

which is one of the 36 subplots of Figure 6.2, y axis shows the convergence results of 

the parameter 𝑋𝑢 in normalized form. The initial values which are selected randomly 

are within the bounds defined in the legend of the plot. For the problem defined in 

Case 1.1 – Case 1.3, it is seen that the parameter 𝑋𝑢 converges to the true value 

perfectly after about 80th iteration. 

 

 
Figure 6.1. Convergence of Stability Derivative “𝑋𝑢” (Case 1.1 – Case 1.3) 

 

For Case 1.1 – Case 1.3, it is seen that all of the parameters converge to the same value 

independently of the constraint levels and the initial values (Figure 6.2, Figure 6.3). In 

addition, the optimization results converge to “1” which is the normalized true value. 

However, according to Figure 6.4 and Figure 6.5, the convergence performance 

slightly deteriorates with larger constraint ranges (Case 1.3 – Case 1.6). In the last 

group, deteriorations become more visible where the constraint ranges are largest 

compare to the other three groups. Convergence results of this group (Case 1.7 – Case 

1.9) are given in Figure 6.6 and Figure 6.7. 

 

 



 

   
 

 
F

ig
u

re
 6

.2
. C

on
ve

rg
en

ce
 o

f S
ta

bi
lit

y 
D

er
iv

at
iv

es
 (C

as
e 

1.
1 

– 
C

as
e 

1.
3)

 

 
 

74 



 

   
 

 
F

ig
u

re
 6

.3
. C

on
ve

rg
en

ce
 o

f C
on

tro
l D

er
iv

at
iv

es
 (C

as
e 

1.
1 

– 
C

as
e 

1.
3)

 

75



 

   
 

 
F

ig
u

re
 6

.4
. C

on
ve

rg
en

ce
 o

f S
ta

bi
lit

y 
D

er
iv

at
iv

es
 (C

as
e 

1.
4 

– 
C

as
e 

1.
6)

 

 
 

76 



 

   
 

 
F

ig
u

re
 6

.5
. C

on
ve

rg
en

ce
 o

f C
on

tro
l D

er
iv

at
iv

es
 (C

as
e 

1.
4 

– 
C

as
e 

1.
6)

 

77



 

   
 

 

F
ig

u
re

 6
.6

. C
on

ve
rg

en
ce

 o
f S

ta
bi

lit
y 

D
er

iv
at

iv
es

 (C
as

e 
1.

7 
– 

C
as

e 
1.

9)
 

 
 
78



 

   

 

 

F
ig

u
re

 6
.7

. C
on

ve
rg

en
ce

 o
f C

on
tro

l D
er

iv
at

iv
es

 (C
as

e 
1.

7 
– 

C
as

e 
1.

9)
 

79



 

 
 

80 
 

The results convergence to the normalized true value for the majority of the 

optimization runs. However, a metric is required for quantitative analysis. For this 

purpose, percent estimation errors are calculated for each parameter. The formulation 

of the percent estimation error is given in Eq. (116).  

 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (%) =
𝑎𝑏𝑠(𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒)

𝑎𝑏𝑠(𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒)
× 100 (116) 

 

However, the question is how we define the “estimated value”. In other words, there 

are many results for many iteration indexes. For this purpose, some averaging 

calculations are performed. But it should be noticed that averaging is meaningful only 

when convergence is achieved. In our problem, for one optimization run, the mean 

value is calculated for a set of points where the convergence is ensured. For this 

purpose, “mean” function of MATLAB is utilized here. For example, the mean value 

of last 50 results is set as the convergence result of 𝑁𝛿𝑝𝑒𝑑 for the corresponding 

optimization run given Figure 6.6. The points for which the mean value is calculated 

are roughly shown with red dashed line in Figure 6.6. However, considering the 

number of runs for one specific condition (Figure 6.7) there will be 20 different mean 

values.  At this point “K-Means” algorithm is used to refine the result. “kmeans” 

function of MATLAB is performed to get the “estimated value” of each parameter 

which used for “estimation error” calculations as given in Eq. (116). 
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Figure 6.8. Convergence of  𝑁𝛿𝑝𝑒𝑑  for One Optimization Run 

 

 

Figure 6.9. Convergence of  𝑁𝛿𝑝𝑒𝑑  for Twenty Optimization Runs 

 

The estimation error values obtained from the results are presented through Figure 6.2 

- Figure 6.7 are tabulated in Table 6.2 and Table 6.3. These results are close to perfect. 
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Table 6.2. Percentage Estimation Errors of Stability Derivatives – Case 1 

 

 

  

Case 1.1 Case 1.2 Case 1.3 Case 1.4 Case 1.5 Case 1.6 Case 1.7 Case 1.8 Case 1.9
[-10% 10%] [-20% 20%] [-30% 30%] [-40% 40%] [-50% 50%] [-60% 60%] [-70% 70%] [-80% 80%] [-90% 90%]

x1 Xu 0.003 0.007 0.012 0.011 0.023 0.001 0.028 0.054 0.028
x2 Xv 0.000 0.000 0.000 0.000 0.000 0.130 0.001 0.392 0.001
x3 Xw 0.004 0.008 0.013 0.013 0.019 0.308 0.008 0.007 0.007
x4 Xp 0.003 0.004 0.003 0.004 0.018 0.966 0.044 2.410 0.079
x5 Xq 0.036 0.068 0.075 0.108 0.257 1.039 0.075 0.059 0.254
x6 Xr 0.000 0.000 0.001 0.001 0.006 0.240 0.012 0.570 0.021
x7 Yu 0.000 0.001 0.002 0.002 0.005 0.003 0.008 0.038 0.010
x8 Yv 0.001 0.006 0.016 0.027 0.078 1.861 0.092 0.712 0.133
x9 Yw 0.000 0.001 0.002 0.001 0.002 0.431 0.001 1.756 0.000
x10 Yp 0.495 0.821 1.106 1.025 1.390 2.987 1.506 6.240 1.438
x11 Yq 0.003 0.008 0.014 0.012 0.041 0.443 0.066 1.744 0.078
x12 Yr 0.007 0.013 0.017 0.017 0.017 0.165 0.031 0.462 0.035
x13 Zu 0.008 0.017 0.028 0.026 0.058 0.043 0.077 0.077 0.085
x14 Zv 0.002 0.003 0.001 0.001 0.011 2.105 0.019 5.667 0.027
x15 Zw 0.002 0.014 0.028 0.036 0.081 0.238 0.082 1.866 0.130
x16 Zp 0.311 0.499 0.611 0.621 0.679 2.189 0.613 7.060 0.630
x17 Zq 0.012 0.015 0.008 0.013 0.009 0.036 0.035 0.019 0.019
x18 Zr 0.011 0.003 0.020 0.003 0.101 2.243 0.237 0.281 0.292
x19 Lu 0.002 0.003 0.005 0.005 0.016 0.044 0.031 0.056 0.033
x20 Lv 0.044 0.087 0.142 0.139 0.350 2.424 0.543 5.736 0.729
x21 Lw 0.009 0.007 0.011 0.001 0.013 2.017 0.030 4.702 0.037
x22 Lp 0.013 0.012 0.003 0.004 0.009 2.985 0.019 7.756 0.023
x23 Lq 0.001 0.048 0.061 0.147 0.118 0.688 0.016 1.867 0.048
x24 Lr 0.031 0.034 0.069 0.040 0.046 2.826 0.114 7.329 0.112
x25 Mu 0.049 0.108 0.179 0.170 0.375 0.068 0.491 0.151 0.547
x26 Mv 0.008 0.024 0.051 0.041 0.177 2.220 0.338 6.229 0.434
x27 Mw 0.013 0.028 0.040 0.040 0.110 0.069 0.138 4.165 0.228
x28 Mp 0.114 0.034 0.107 0.070 0.342 3.295 0.330 6.540 0.316
x29 Mq 0.013 0.010 0.008 0.014 0.011 0.018 0.007 0.218 0.016
x30 Mr 0.000 0.004 0.016 0.011 0.071 2.224 0.137 6.005 0.180
x31 Nu 0.008 0.016 0.029 0.027 0.095 0.265 0.161 0.422 0.187
x32 Nv 0.059 0.085 0.078 0.081 0.060 2.784 0.191 7.215 0.294
x33 Nw 0.003 0.007 0.010 0.006 0.019 2.187 0.013 6.112 0.024
x34 Np 0.384 0.381 0.331 0.283 0.137 2.876 0.076 7.881 0.032
x35 Nq 0.066 0.112 0.139 0.133 0.118 1.057 0.027 2.525 0.047
x36 Nr 0.087 0.088 0.072 0.073 0.050 0.615 0.027 1.937 0.021

estimation error %

parameter symbol
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Table 6.3. Percentage Estimation Errors of Control Derivatives – Case 1 

 
 

The physical system matrices are constructed using the above presented optimization 

results. Then the true model and the estimated one are simulated with the same 3-2-1-

1 excitation signals (Figure 6.10). The results show that simulation responses of “true 

model”, “SID model” and “Physical SID model” to 3-2-1-1 excitation signals are 

almost the same for Case 1.1 to Case 1.9.  

 

In order to verify that our identification is still valid under different inputs, a doublet 

input is applied in four channels sequentially in another single test case. The inputs 

and the outputs of this test case are given in Figure 6.11 and Figure 6.12 and 

respectively. After that, TIC values are calculated to make quantitative analysis. 

Case 1.1 Case 1.2 Case 1.3 Case 1.4 Case 1.5 Case 1.6 Case 1.7 Case 1.8 Case 1.9
[-10% 10%] [-20% 20%] [-30% 30%] [-40% 40%] [-50% 50%] [-60% 60%] [-70% 70%] [-80% 80%] [-90% 90%]

x37 Xδlat 0.003 0.011 0.023 0.019 0.092 0.259 0.184 0.736 0.245
x38 Xδlon 0.053 0.112 0.172 0.164 0.276 0.312 0.309 0.302 0.302
x39 Xδped 0.000 0.000 0.001 0.000 0.001 0.046 0.002 0.161 0.003
x40 Xδcol 0.001 0.003 0.006 0.004 0.030 0.101 0.054 0.431 0.093
x41 Yδlat 0.056 0.189 0.400 0.339 1.430 3.534 2.582 9.091 3.191
x42 Yδlon 0.001 0.005 0.015 0.011 0.099 0.451 0.253 1.614 0.386
x43 Yδped 0.269 0.699 1.300 1.158 3.802 2.254 6.244 1.910 7.470
x44 Yδcol 0.012 0.038 0.079 0.065 0.308 2.069 0.652 4.920 0.890
x45 Zδlat 0.049 0.143 0.290 0.247 1.069 2.327 2.098 5.754 2.762
x46 Zδlon 0.634 1.345 2.092 1.995 3.640 4.061 4.397 4.808 4.660
x47 Zδped 0.001 0.002 0.003 0.003 0.010 0.046 0.015 0.101 0.017
x48 Zδcol 0.030 0.142 0.274 0.265 0.506 1.024 0.641 1.258 0.709
x49 Lδlat 0.987 1.347 1.613 1.554 2.022 0.982 2.204 2.509 2.261
x50 Lδlon 0.287 0.627 1.006 0.926 1.822 1.864 2.270 3.795 2.412
x51 Lδped 0.758 1.343 1.868 1.766 2.671 1.092 3.047 0.187 3.180
x52 Lδcol 0.249 0.548 0.853 0.804 1.472 1.288 1.754 4.092 1.833
x53 Mδlat 0.258 0.558 0.874 0.819 1.577 4.393 2.049 8.354 2.215
x54 Mδlon 0.269 0.480 0.652 0.619 0.923 1.207 1.095 1.213 1.153
x55 Mδped 0.003 0.007 0.015 0.012 0.052 1.818 0.103 5.003 0.139
x56 Mδcol 0.033 0.114 0.206 0.185 0.452 1.272 0.652 1.153 0.708
x57 Nδlat 1.101 1.872 2.452 2.295 3.146 6.035 3.438 11.035 3.459
x58 Nδlon 0.234 0.552 0.915 0.860 1.866 3.924 2.454 6.882 2.749
x59 Nδped 0.069 0.205 0.350 0.262 0.533 0.188 0.682 0.589 0.659
x60 Nδcol 0.274 0.562 0.855 0.766 1.328 3.222 1.565 5.198 1.563

estimation error %

parameter symbol
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TIC is a tool of verification used for the comparison of time domain outputs of the true 

model and the estimated counterpart. TIC is calculated using the two time domain 

outputs according to Eq.(117) ([61]-[63]). 

 

𝑇𝐼𝐶 =  
√(1 𝑁⁄ )∑ [𝑧(𝑡𝑘) − 𝑦(𝑡𝑘)]2

𝑁
𝑘=1

√(1 𝑁⁄ )∑ [𝑧(𝑡𝑘)]2
𝑁
𝑘=1 + √(1 𝑁⁄ )∑ [𝑦(𝑡𝑘)]2

𝑁
𝑘=1

 (117) 

 

TIC is defined as the ratio of the RMS value of the residuals to the summation of RMS 

value of the true model outputs and RMS value of the estimated model outputs. TIC 

value may vary between 0 and 1 where 0 corresponds to a perfect estimation. As a rule 

of thumb, TIC values under 0.3 mean that the two models are complying [61]. 

 

The calculated TIC values for the verification signal outputs (Figure 6.12) are 

tabulated in Table 6.4. The maximum TIC value is less than 0.055 which is quite 

smaller than 0.3. This verifies that the physical subspace identification results are 

highly complying with the true model and indicates that our estimation is quite 

accurate. Also the comparison of the true model outputs with the outputs of the model 

obtained through subspace identification and the outputs of the model obtained 

through physical subspace identification which are shown in Figure 6.10 and Figure 

6.12 support our quantitative outcome. 
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Table 6.4. TIC Values for Case 1 (for Verification Signal) 

optimization batch for constraint set TIC value 

Case 1.1 [-10% 10%] 0.0042 

Case 1.2 [-20% 20%] 0.0055 

Case 1.3 [-30% 30%] 0.0066 

Case 1.4 [-40% 40%] 0.0064 

Case 1.5 [-50% 50%] 0.0079 

Case 1.6 [-60% 60%] 0.0230 

Case 1.7 [-70% 70%] 0.0083 

Case 1.8 [-80% 80%] 0.0548 

Case 1.9 [-90% 90%] 0.0083 

 

 

 

Figure 6.11. Verification Input Signals (Doublet)  
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6.2. Case 2-SQP algorithm 

 

In this case study, SQP algorithm is used for optimization. The analyses are 

constructed for similar conditions as given in “Case 1”. All of the assumptions on 

initial conditions and the constraints are also valid for this case. The only difference 

from the previous case study is the optimization algorithm type. The summary of the 

conditions for this case study are given in Table 6.5. 

 
Table 6.5. Summary of Analysis Conditions for Case 2 (SQP algorithm) 

 

alg. 

constraint (error bound) 

for the parameters of 

initial condition 

for the parameters of 
number 

of run 
𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 

Case 2.1 SQP [-10% 10%] NA random sel. const 20 

Case 2.2 SQP [-20% 20%] NA random sel. const 20 

Case 2.3 SQP [-30% 30%] NA random sel. const 20 

Case 2.4 SQP [-40% 40%] NA random sel. const 20 

Case 2.5 SQP [-50% 50%] NA random sel. const 20 

Case 2.6 SQP [-60% 60%] NA random sel. const 20 

Case 2.7 SQP [-70% 70%] NA random sel. const 20 

Case 2.8 SQP [-80% 80%] NA random sel. const 20 

Case 2.9 SQP [-90% 90%] NA random sel. const 20 

 

 

According to Table 6.5, 180 (20x9) optimization runs are performed in total. Iteration 

index versus minimization output curves of each parameter (each stability and control 

derivatives) are gathered from all of the optimization runs. To make it more 

understandable, the results are grouped as in Case 1. In the first group of figures 

(Figure 6.13, Figure 6.14), the optimization runs are presented for Case 2.1 – Case 2.3. 

In the second group (Figure 6.15, Figure 6.16), the results of Case 2.4 – Case 2.6 are 

illustrated. In the last group (Figure 6.17, Figure 6.18), the convergence results are 
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presented for Case 2.7 – Case 2.9. As in Case 1, each figure contains 60 (20x3) 

optimization runs that are initiated for 3 different constraint sets and 60 (20x3) 

different initial values.  

 

For Case 2.1 – Case 2.3, we can see that all of the derivatives except 𝑌𝑤, 𝑍𝑣, 𝑀𝛿𝑝𝑒𝑑 

converge almost to the same value for all of the optimization run. The derivatives 

𝑌𝑤, 𝑍𝑣, 𝑀𝛿𝑝𝑒𝑑 have relatively low level of significance in helicopter dynamics. 

Therefore, this is an expected phenomenon. The results are complying with the 

fundamentals of the estimation theory. It is not possible to estimate a parameter which 

is not significant or even which does not exist. These findings provide us valuable 

physical insight about the model of the system being identified. The results show that, 

rest of the parameters converge to the same value independently from the constraint 

levels and the initial values. In addition, the optimization results converge to the 1 

which is the normalized true value. 

 

For Case 2.4 – Case 2.6 where the constraints are enlarged to [-60% 60%] error 

bounds, all of the derivatives except 𝑌𝑤, 𝑌𝑞 , 𝑀𝑟 , 𝑀𝛿𝑝𝑒𝑑 converge to true value (Figure 

6.15 and Figure 6.16). Again, these derivatives which do not converged have low level 

of significance. In this group, more iterations are required for the optimizations to 

converge when compared to the first group (Case 2.1 – Case 2.3). However, the 

differences in iteration numbers are not so big.  

 

In the last group (Case 2.7 – Case 2.9), all of the derivatives except 

𝑌𝑢, 𝑌𝑤, 𝑌𝑞 , 𝑀𝑟 , 𝑀𝛿𝑝𝑒𝑑  converge to true values (Figure 6.17, Figure 6.18). Again, the 

derivatives which do not converged have low level of significance. Compared to the 

first two groups, we observe that, some of the optimization runs cannot converge to a 

solution. However, considering the total number of runs these are a few. Also, more 

iteration is required for optimization to converge when compared to the first and 

second groups. 
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The estimation error values are calculated according to Eq. (116). The results are 

tabulated in Table 6.6 and Table 6.7. 

 

Table 6.6. Percentage Estimation Errors of Stability Derivatives – Case 2 

 

  

Case 2.1 Case 2.2 Case 2.3 Case 2.4 Case 2.5 Case 2.6 Case 2.7 Case 2.8 Case 2.9
[-10% 10%] [-20% 20%] [-30% 30%] [-40% 40%] [-50% 50%] [-60% 60%] [-70% 70%] [-80% 80%] [-90% 90%]

x1 Xu 0.075 0.170 0.135 0.197 0.286 0.336 0.187 0.106 0.099
x2 Xv 3.364 4.233 2.799 1.428 1.875 4.598 6.397 10.913 11.927
x3 Xw 0.007 0.406 0.474 0.191 0.467 0.948 0.646 1.085 2.808
x4 Xp 0.148 0.258 0.642 0.802 2.336 7.298 0.691 9.825 10.038
x5 Xq 0.019 0.043 1.478 0.841 4.551 4.168 2.234 7.352 5.343
x6 Xr 1.158 1.775 0.534 0.912 1.020 3.305 0.444 0.795 3.617
x7 Yu 0.058 2.107 2.937 1.540 0.402 9.326 8.580 12.546 6.529
x8 Yv 0.054 0.167 0.183 1.233 3.025 0.596 0.813 1.960 8.220
x9 Yw 0.156 0.927 1.077 7.139 1.420 2.151 2.829 0.329 6.252
x10 Yp 1.624 0.263 1.677 0.951 4.735 8.421 3.955 2.274 2.162
x11 Yq 0.716 1.202 7.008 4.515 1.938 13.995 0.663 5.164 18.951
x12 Yr 0.031 0.015 0.020 0.072 0.096 0.296 0.077 0.547 0.569
x13 Zu 0.528 0.826 0.625 1.553 1.408 1.099 0.246 7.513 10.223
x14 Zv 1.004 5.680 0.421 4.010 2.200 12.865 11.616 12.844 10.145
x15 Zw 0.082 0.111 0.433 0.329 0.505 0.598 0.398 4.077 5.003
x16 Zp 0.370 0.365 0.168 0.484 0.845 5.382 0.305 0.886 8.812
x17 Zq 0.014 0.172 0.059 0.143 0.212 0.095 0.078 0.247 0.226
x18 Zr 1.008 1.838 0.053 1.719 0.949 8.009 4.358 5.908 4.211
x19 Lu 1.074 0.955 1.112 1.033 0.497 4.622 1.516 1.969 5.016
x20 Lv 0.230 0.191 0.076 0.597 0.472 5.432 0.979 3.587 9.574
x21 Lw 0.027 0.042 0.212 0.672 0.172 6.036 1.373 1.873 6.128
x22 Lp 0.041 0.024 0.008 0.039 0.075 5.971 0.010 0.379 8.984
x23 Lq 0.084 0.208 0.162 0.004 0.209 0.349 0.521 1.573 8.092
x24 Lr 0.064 0.070 0.048 0.179 0.102 6.094 0.222 0.214 8.852
x25 Mu 0.875 0.648 0.931 0.557 0.509 0.061 0.747 1.091 1.818
x26 Mv 6.859 5.478 6.949 5.966 5.740 14.365 2.615 17.520 14.930
x27 Mw 0.196 0.041 1.309 0.852 1.565 2.838 1.468 9.680 12.945
x28 Mp 0.345 0.105 0.009 0.258 0.461 6.266 0.159 7.499 5.358
x29 Mq 0.007 0.011 0.089 0.068 0.107 0.222 0.068 0.387 0.883
x30 Mr 3.514 2.413 1.330 6.740 18.109 7.485 6.253 4.209 3.177
x31 Nu 0.800 0.655 0.629 0.802 0.805 1.346 0.971 0.050 0.620
x32 Nv 0.319 0.226 0.035 0.199 0.840 6.664 0.128 7.434 9.516
x33 Nw 0.114 0.270 0.371 1.091 0.372 6.191 5.204 11.506 15.605
x34 Np 0.185 0.057 0.095 0.099 0.523 6.141 0.317 8.086 9.084
x35 Nq 0.196 0.139 0.090 0.239 0.581 2.981 0.564 4.518 2.684
x36 Nr 0.030 0.012 0.031 0.007 0.172 1.454 0.100 2.387 2.361

estimation error %

parameter symbol
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Table 6.7. Percentage Estimation Errors of Control Derivatives – Case 2 

 

 

The physical system matrices are constructed using the above presented optimization 

results. Then the true model and the estimated one are simulated with the same 3-2-1-

1 excitation signals (Figure 5.4). The results show that simulation responses of “true 

model”, “SID model” and “Physical SID model” to 3-2-1-1 excitation signals are 

almost the same for Case 2.1 to Case 2.9. The simulation results are illustrated in 

Figure 6.19. 

 
 

Case 2.1 Case 2.2 Case 2.3 Case 2.4 Case 2.5 Case 2.6 Case 2.7 Case 2.8 Case 2.9
[-10% 10%] [-20% 20%] [-30% 30%] [-40% 40%] [-50% 50%] [-60% 60%] [-70% 70%] [-80% 80%] [-90% 90%]

x37 Xδlat 0.115 0.076 0.241 0.184 0.374 1.545 0.204 1.382 2.302
x38 Xδlon 0.016 0.014 0.079 0.040 0.277 0.269 0.130 0.485 0.393
x39 Xδped 1.637 1.339 1.209 0.976 1.634 5.231 1.501 6.682 7.735
x40 Xδcol 0.038 0.037 0.469 0.236 1.456 2.286 0.710 1.739 2.518
x41 Yδlat 0.282 0.269 0.279 0.303 0.226 5.812 0.313 7.748 8.742
x42 Yδlon 0.148 0.260 0.027 0.049 0.121 6.229 0.096 7.718 9.359
x43 Yδped 0.078 0.086 0.090 0.060 0.144 6.158 0.066 7.999 8.354
x44 Yδcol 0.599 0.324 0.892 0.907 0.433 4.897 0.823 7.789 7.444
x45 Zδlat 0.347 0.443 0.385 0.466 0.467 3.444 0.373 3.940 8.611
x46 Zδlon 0.015 0.120 0.055 0.109 0.131 0.172 0.071 0.086 0.106
x47 Zδped 0.589 0.176 0.138 0.921 0.572 6.808 0.138 8.433 9.316
x48 Zδcol 0.012 0.093 0.028 0.083 0.107 1.030 0.041 0.264 0.351
x49 Lδlat 0.077 0.081 0.072 0.086 0.066 6.056 0.075 3.020 8.275
x50 Lδlon 0.250 0.262 0.246 0.241 0.234 5.775 0.276 2.811 8.667
x51 Lδped 0.069 0.063 0.062 0.072 0.072 6.052 0.052 1.876 8.909
x52 Lδcol 0.191 0.180 0.171 0.255 0.169 5.590 0.348 0.630 9.126
x53 Mδlat 0.093 0.471 0.363 0.110 0.383 5.930 0.253 0.687 9.394
x54 Mδlon 0.193 0.234 0.164 0.241 0.306 0.458 0.181 0.460 0.045
x55 Mδped 1.763 2.787 3.004 10.859 12.893 5.708 10.096 4.225 1.421
x56 Mδcol 0.634 0.422 0.672 0.390 0.339 1.595 0.719 2.038 1.227
x57 Nδlat 0.198 0.006 0.300 0.073 0.728 5.932 0.667 7.993 8.996
x58 Nδlon 0.272 0.214 0.091 0.242 0.615 5.547 0.238 4.658 4.499
x59 Nδped 0.058 0.023 0.015 0.070 0.066 1.291 0.029 0.412 1.113
x60 Nδcol 0.021 0.086 0.177 0.101 0.179 4.722 0.281 4.236 3.759

estimation error %

parameter symbol
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The doublet input is applied in four channels sequentially for verification. The inputs 

and the outputs of this test case are given in Figure 6.11 and Figure 6.20 respectively. 

TIC values are calculated according to Eq.(117) and presented in Table 6.8. 

 
Table 6.8. TIC Values for Case 2 (for Verification Signal) 

optimization batch for constraint set TIC value 

Case 2.1 [-10% 10%] 0.0021 

Case 2.2 [-20% 20%] 0.0022 

Case 2.3 [-30% 30%] 0.0023 

Case 2.4 [-40% 40%] 0.0022 

Case 2.5 [-50% 50%] 0.0029 

Case 2.6 [-60% 60%] 0.0109 

Case 2.7 [-70% 70%] 0.0024 

Case 2.8 [-80% 80%] 0.0181 

Case 2.9 [-90% 90%] 0.0179 
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Now we can compare the results of the IP algorithm with the results of the SQP 

algorithm in the sense of convergence performance. When we compare the results of 

Case 1 with the results of Case 2, it seems that IP algorithm is superior then SQP. 

Although all of the derivatives are converged in Case 1, there are some deficiencies in 

Case 2. In addition, Convergence is faster in Case 1 compared to Case 2 regarding the 

required iteration numbers. Also, the convergence seems better in Case 1 compared to 

Case 2. In other words, the convergence characteristics are more obvious in the results 

of Case 1. Considering the “estimation error” values and the TIC values, again Case 1 

results are superior to those of Case2. However, we are suspicious about the results 

due to one feature of the IP algorithm. It is known that the middle point of the lower 

and upper bounds plays very important role for IP algorithm [52]. The common 

practice is setting the initial iteration to the midpoint of finite bounds. Selecting a 

symmetric error bound (i.e [-10% 10%]) will provide a solution in a few steps. 

However, in a real application it is quite unfeasible. Therefore, the optimizations are 

repeated for the different asymmetric constraint levels (i.e. [-10% 20%], [-10% 30%]) 

to better understand the performance of the IP algorithm. For this reason, Case 3 

analysis is performed to examine the effect of different asymmetric constraint levels 

on the optimization results. 

 

 
6.3. Case 3 – Interior Point vs. SQP under asymmetric constraint conditions 

 

The aim of this study is to compare the performance of the IP algorithm with the results 

of SQP algorithm under asymmetric constraint levels. The summary of the conditions 

for this case study are given in Table 6.9. 
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Table 6.9. Summary of Analysis Conditions for Case 3 (Interior Point vs. SQP under asymmetric 

constraint conditions) 

 

alg. 

constraint (error bound) 

for the parameters of 

initial condition 

for the parameters of 
number 

of run 
𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 

Case 3.1 IP [-10% 10%] NA random sel. const 20 

Case 3.2 IP [-10% 20%] NA random sel. const 20 

Case 3.3 IP [-10% 30%] NA random sel. const 20 

Case 3.4 SQP [-10% 10%] NA random sel. const 20 

Case 3.5 SQP [-10% 20%] NA random sel. const 20 

Case 3.6 SQP [-10% 30%] NA random sel. const 20 

 

According to Table 6.9, 120 (20x6) optimization runs are performed in total. Iteration 

index versus minimization output curves of each parameter (each stability and control 

derivatives) are gathered from all of the optimization runs. The results are analyzed in 

two groups. In the first group, the “Interior Point” algorithm is examined under 

symmetric and asymmetric constraint levels ([-10% 10%], [-10% 20%], [-10% 30%]). 

The convergence results are illustrated in Figure 6.21 and Figure 6.22. It is observed 

that some certain derivatives do not converge to the same value for different constraint 

levels. Also, for those parameters, the asymmetric constraint conditions ([-10% 20%], 

[-10% 30%] ) do not converge to the true value whereas true values are achieved for 

symmetric constraint levels ([-10% 10%]. These results support our suspicion.  

 

However, for Case 3.4- Case 3.6 where the SQP algorithm is utilized, the results are 

not much affected due to symmetric and asymmetric constraint levels (Figure 6.23 and 

Figure 6.24). It is observed that the parameters with low level of significance do not 

converge for SQP algorithm whereas they converge to different values for different / 

unrepeatable constraint levels in case of IP algorithm. Figure 6.25 summarizes these 

findings. 
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Figure 6.25. Comparison in Convergence of Control Derivatives (Case3) 
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6.4. Case 4 Arbitrary initial value for T matrix 

 

As we mentioned before we set the initial value of 𝑇 matrix to the inverse of the 𝐶 

matrix (obtained by subspace identification). In this way, we aim to speed up the 

computations if 𝑇 complies with the Eq. (85). We aim to show that, our results which 

are found by the previous optimizations are not achieved by chance. Thus, we examine 

the performance of our solution method for arbitrary initialization of 𝑇. Then we 

compare the results with the previous analysis given in Case2. The summary of the 

conditions for this case study are given in Table 6.10. 

 

According to Table 6.10, 360 (20x9x2) optimization runs are performed in total. In 

addition to 180 optimization runs which are generated in Case 2, additional 180 runs 

are generated with arbitrary initialization of 𝑇 (Case 4.10-Case 4.18). Then the results 

are compared with each other. For example, the results of Case 2.1 are compared with 

Case 4.10 where the only difference is initialization of 𝑇. This comparison is continued 

until to analysis the last pair (Case 4.9 and Case 4.18). The results are compared by 

minimization output curves of each parameter with respect to iteration index. The 

findings are illustrated in Figure 6.26 - Figure 6.43. The results show that obtaining a 

solution is possible with the arbitrary initialization of 𝑇. The only degradation is that 

the optimization takes a little bit more time with arbitrary initialization.  

 

The percentage estimation error results given in Table 6.11 and Table 6.12 support the 

idea that the results found by the methodology cannot be by chance. 

 

The physical system matrices are constructed using the above presented optimization 

results (Case 4.10 - Case 4.18). Then the true model and the estimated one are 

simulated with the same 3-2-1-1 excitation signals (Figure 5.4). The results show that 

simulation responses of “true model”, “SID model” and “Physical SID model” to 3-2-

1-1 excitation signals are almost the same for Case 4.10 to Case 4.18. The simulation 

results are illustrated in Figure 6.44. 
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Table 6.10. Summary of Analysis for Case 4 (Arbitrary Initial Point for T Matrix) 

 

alg. 

constraint (error 

bound) 

for the parameters of 

initial condition 

for the parameters of 
number 

of run 

𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 

Case 4.1 SQP [-10% 10%] NA9 random sel. const 20 

Case 4.2 SQP [-20% 20%] NA random sel. const 20 

Case 4.3 SQP [-30% 30%] NA random sel. const 20 

Case 4.4 SQP [-40% 40%] NA random sel. const 20 

Case 4.5 SQP [-50% 50%] NA random sel. const 20 

Case 4.6 SQP [-60% 60%] NA random sel. const 20 

Case 4.7 SQP [-70% 70%] NA random sel. const 20 

Case 4.8 SQP [-80% 80%] NA random sel. const 20 

Case 4.9 SQP [-90% 90%] NA random sel. const 20 

Case 4.10 SQP [-10% 10%] NA random sel. 20 

Case 4.11 SQP [-20% 20%] NA random sel. 20 

Case 4.12 SQP [-30% 30%] NA random sel. 20 

Case 4.13 SQP [-40% 40%] NA random sel. 20 

Case 4.14 SQP [-50% 50%] NA random sel. 20 

Case 4.15 SQP [-60% 60%] NA random sel. 20 

Case 4.16 SQP [-70% 70%] NA random sel. 20 

Case 4.17 SQP [-80% 80%] NA random sel. 20 

Case 4.18 SQP [-90% 90%] NA random sel. 20 

  

                                                 
9 NA  means “Not Applicable” 
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Table 6.11. Percentage Estimation Errors of Stability Derivatives – Case 4 

 

  

Case 4.10 Case 4.11 Case 4.12 Case 4.13 Case 4.14 Case 4.15 Case 4.16 Case 4.17 Case 4.18
[-10% 10%] [-20% 20%] [-30% 30%] [-40% 40%] [-50% 50%] [-60% 60%] [-70% 70%] [-80% 80%] [-90% 90%]

x1 Xu 0.351 0.262 0.388 2.101 0.326 0.296 0.321 0.408 1.551
x2 Xv 0.623 4.271 2.339 1.154 0.968 1.347 2.108 2.439 3.479
x3 Xw 0.221 1.029 0.051 2.438 1.940 2.598 2.316 3.431 2.195
x4 Xp 1.306 2.191 2.064 2.856 1.377 2.225 2.201 5.057 8.006
x5 Xq 4.184 5.487 5.643 3.411 1.476 1.369 1.078 1.269 2.305
x6 Xr 0.381 0.786 0.739 4.573 0.155 0.243 1.646 1.910 0.821
x7 Yu 4.400 4.126 2.108 0.623 2.834 2.485 9.578 8.434 11.822
x8 Yv 0.646 1.584 2.827 0.216 1.452 4.333 1.316 4.068 5.274
x9 Yw 0.297 0.172 3.345 5.231 6.495 2.463 2.238 1.713 13.789
x10 Yp 2.035 0.257 0.971 0.824 5.285 1.624 8.550 1.582 15.855
x11 Yq 4.983 0.678 0.421 2.165 5.373 11.098 5.606 6.163 8.605
x12 Yr 0.057 0.138 0.067 0.046 0.153 0.139 0.086 0.274 1.054
x13 Zu 2.310 0.868 3.360 1.247 6.277 6.032 5.713 5.954 11.994
x14 Zv 0.080 1.656 3.123 1.015 10.479 6.853 4.674 8.701 12.330
x15 Zw 0.355 0.334 1.158 0.321 3.744 2.390 3.531 4.360 6.895
x16 Zp 0.428 0.229 0.214 0.138 1.850 2.440 1.373 2.906 9.642
x17 Zq 0.270 0.102 0.322 0.197 0.139 0.005 0.231 0.375 0.706
x18 Zr 3.181 4.237 1.886 0.185 1.510 2.261 2.124 3.099 10.719
x19 Lu 0.754 1.065 1.542 1.002 0.275 2.198 2.206 1.323 5.070
x20 Lv 1.545 1.346 0.392 0.450 0.866 3.117 0.649 3.170 11.862
x21 Lw 0.753 0.746 2.079 0.481 0.848 4.913 0.969 6.219 15.504
x22 Lp 0.029 0.013 0.010 0.034 0.049 2.913 0.088 3.957 0.080
x23 Lq 0.057 0.192 1.104 0.272 0.379 3.117 0.401 3.860 0.964
x24 Lr 0.357 0.544 0.095 0.127 0.227 3.027 0.196 4.292 0.842
x25 Mu 0.460 0.590 0.112 1.139 0.073 0.417 0.162 0.839 1.264
x26 Mv 6.904 8.645 5.598 8.073 7.418 10.423 6.904 12.657 15.945
x27 Mw 0.612 1.133 3.718 0.504 10.520 7.856 10.062 13.984 14.819
x28 Mp 0.557 0.548 0.104 0.095 1.737 3.106 1.478 3.257 12.698
x29 Mq 0.042 0.079 0.194 0.081 0.626 0.492 0.603 0.878 0.923
x30 Mr 3.465 5.174 3.114 1.910 9.086 13.767 12.391 12.102 16.112
x31 Nu 0.638 0.991 0.716 0.869 0.606 1.072 0.910 0.656 7.648
x32 Nv 0.866 0.342 0.873 0.059 0.572 2.947 0.495 2.260 3.366
x33 Nw 1.137 2.269 3.367 1.579 1.009 0.290 1.086 2.219 5.995
x34 Np 0.217 0.178 0.006 0.195 0.482 3.580 0.682 4.155 0.396
x35 Nq 0.350 0.081 0.259 0.239 0.914 1.589 1.054 1.784 4.452
x36 Nr 0.007 0.000 0.058 0.028 0.068 0.728 0.141 0.875 2.621

estimation error %

parameter symbol
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Table 6.12. Percentage Estimation Errors of Control Derivatives – Case 4 

 

 

  

Case 4.10 Case 4.11 Case 4.12 Case 4.13 Case 4.14 Case 4.15 Case 4.16 Case 4.17 Case 4.18
[-10% 10%] [-20% 20%] [-30% 30%] [-40% 40%] [-50% 50%] [-60% 60%] [-70% 70%] [-80% 80%] [-90% 90%]

x37 Xδlat 8.574 0.436 0.388 4.307 0.530 0.057 0.443 0.208 5.852
x38 Xδlon 0.332 0.334 0.351 5.929 0.304 0.123 0.280 0.288 0.171
x39 Xδped 9.811 0.587 0.944 0.973 5.978 8.341 6.130 7.899 5.443
x40 Xδcol 1.701 1.753 1.813 1.245 0.151 0.275 0.024 0.479 0.329
x41 Yδlat 6.992 0.230 0.249 0.269 10.046 12.483 10.007 13.453 24.588
x42 Yδlon 10.000 0.132 0.244 0.257 17.302 19.758 17.509 20.387 30.517
x43 Yδped 10.000 0.142 0.121 0.102 18.624 15.742 18.650 14.728 1.215
x44 Yδcol 10.000 0.400 0.147 0.870 27.795 28.473 27.122 30.131 39.063
x45 Zδlat 10.000 0.415 0.521 0.253 17.412 19.443 17.300 19.784 24.604
x46 Zδlon 5.608 0.089 0.166 0.062 5.764 5.915 5.719 5.701 5.721
x47 Zδped 9.820 1.045 1.070 0.075 15.183 9.474 14.153 8.271 11.556
x48 Zδcol 0.719 0.065 0.141 0.140 0.780 1.323 0.732 0.978 0.819
x49 Lδlat 2.550 0.013 0.087 0.048 2.526 0.590 2.464 0.059 15.648
x50 Lδlon 3.099 0.176 0.337 0.183 3.059 5.924 3.007 6.832 17.300
x51 Lδped 3.692 0.135 0.065 0.050 3.838 0.703 3.833 0.160 3.174
x52 Lδcol 2.200 0.151 0.091 0.252 2.193 3.521 2.100 5.955 2.958
x53 Mδlat 4.118 0.245 0.384 0.199 5.573 6.094 5.189 6.228 3.212
x54 Mδlon 1.407 0.233 0.385 0.106 1.445 1.558 1.504 1.785 1.998
x55 Mδped 2.666 4.553 3.495 8.280 21.044 20.305 20.457 27.302 24.054
x56 Mδcol 1.546 0.526 0.023 0.400 3.128 2.937 3.002 3.632 1.781
x57 Nδlat 3.878 0.017 0.144 0.138 3.369 6.074 2.892 7.697 18.934
x58 Nδlon 3.680 0.207 0.157 0.185 2.980 5.851 2.840 6.213 15.510
x59 Nδped 0.800 0.083 0.048 0.006 0.917 0.296 1.032 0.346 5.417
x60 Nδcol 1.930 0.004 0.104 0.017 1.952 4.026 1.791 4.184 13.350

parameter symbol
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The doublet input is applied in four channels sequentially for verification. The inputs 

and the outputs of this test case are given in Figure 6.11 and Figure 6.45 respectively. 

TIC values are calculated according to Eq.(117). Results are listed in Table 6.13.  

 
Table 6.13. TIC Values for Case 4 (for Verification Signal)10 

optimization batch for constraint set 
TIC value 

(Case 4.1 to Case 4.9) 

TIC value 

(Case 4.10 to Case 4.18)  

Case 4.1 vs. Case 4.10 [-10% 10%] 0.0021 0.0103 

Case 4.2 vs. Case 4.11 [-20% 20%] 0.0022 0.0036 

Case 4.3 vs. Case 4.12 [-30% 30%] 0.0023 0.0038 

Case 4.4 vs. Case 4.13 [-40% 40%] 0.0022 0.0066 

Case 4.5 vs. Case 4.14 [-50% 50%] 0.0029 0.0041 

Case 4.6 vs. Case 4.15 [-60% 60%] 0.0109 0.0192 

Case 4.7 vs. Case 4.16 [-70% 70%] 0.0024 0.0040 

Case 4.8 vs. Case 4.17 [-80% 80%] 0.0181 0.0241 

Case 4.9 vs. Case 4.18 [-90% 90%] 0.0179 0.0883 

 

 

 

                                                 
10 Remember that the scenarios Case 2.1 to Case 2.9 are the same with Case 4.1 to Case 
4.9. 
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6.5. Case 5- Constraint with additional physical properties 

Until now we assumed that we have priori information about all of the parameters 

within an uncertainty range (from [-10% 10%] to [-90% 90%]). However, we may not 

have information about some of the parameters and even about their error boundaries 

in some real-life applications. In this case study, we forced well known parameters to 

their “known” values and relaxed the constraints (increased the boundaries) for the 

other ones. First it is assumed that all of the parameters are known with some 

uncertainty (from [-10% 10%] to [-30% 30%]). Then we constrained certain 

parameters to their priori values as it is explained below.  

 

• The insignificant parameters are set to zero as a common practice. As it is 

mentioned in Chapter 3, the stability parameters 𝑋𝑣, 𝑋𝑤, 𝑌𝑢, 𝑌𝑤, 𝑍𝑢, 𝑍𝑣, 𝑀𝑤, 

𝑀𝑟, 𝑁𝑤, 𝑍𝑞, 𝑌𝑟and the control parameters 𝑋 𝛿𝑝𝑒𝑑 , 𝑌 𝛿𝑝𝑒𝑑 , 𝑀 𝛿𝑝𝑒𝑑 , 𝑌 𝛿𝑝𝑒𝑑  are 

assumed as “insignificant” and they are set to zero. 

• Assuming that we have priory information on the helicopter stability 

characteristics, the sign information of the stability derivatives (as presented in 

Chapter 3, Table 3.1) are assigned as constraints. 

• For some parameters such as  𝑍𝑤, 𝑍𝛿𝑐𝑜𝑙or 𝑍𝛿𝑙𝑜𝑛it is possible to assign values by 

only considering the physical characteristics of the helicopter. We set 𝑍𝑤 to the 

value obtained from Eq.(100), 𝑍𝛿𝑐𝑜𝑙  to the value obtained from Eq.(102) and 

𝑍𝛿𝑙𝑜𝑛  to the value obtained from Eq. (103). 

 

The conditions analyzed in this case study are summarized in Table 6.14. According 

to Table 6.14, 120 (20x3x2) optimization runs are analyzed in total. In addition to the 

60 optimization runs which are generated in Case 2, additional 60 runs are created with 

additional constraints (Case 5.4-Case 5.6). Then the results are compared with each 

other. For example, the results of Case 5.1 (or Case2.1, they are the same) are 

compared with results of Case 5.4. Comparisons are continued until to the last pair 

Case 5.3 and Case 5.6. The results are compared in terms of minimization output 
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curves. The findings are illustrated in Figure 6.46 to Figure 6.51. The percentage 

estimation error results are given in Table 6.15 and Table 6.16. 

 
Table 6.14. Summary of Analysis Conditions for Case 5 (Constraint with additional physical 

properties) 

 

alg. 

constraint (error bound) 

for the parameters of 

initial condition 

for the parameters of 
number 

of run 
𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 𝐴𝑝ℎ𝑦 𝐵𝑝ℎ𝑦 𝑇 

Case 5.1 SQP [-10% 10%] NA random sel. const 20 

Case 5.2 SQP [-20% 20%] NA random sel. const 20 

Case 5.3 SQP [-30% 30%] NA random sel. const 20 

Case 5.4 SQP 
[-10% 10%] 
+ additional 

physical 
constraints 

NA random sel. const 20 

Case 5.5 SQP 
[-20% 20%] 
+ additional 

physical 
constraints 

NA random sel. const 20 

Case 5.6 SQP 
[-30% 30%] 
+ additional 

physical 
constraints 

NA random sel. const 20 

 

By examining Figure 6.46 - Figure 6.51, Table 6.15 and Table 6.16 we can see that 

most of the insignificant parameters such as 𝑋𝑟 , 𝑌𝑞 , 𝑍𝑝 do not converge to their true 

values. However most of the significant parameters that are related with the dynamics 

being excited such as 𝑋𝑞 , 𝑌𝑟 , 𝐿𝑝, 𝑀𝑞 , 𝑁𝑟 , 𝐿𝑙𝑎𝑡 , 𝑀𝑙𝑜𝑛, 𝑁𝑝𝑒𝑑 converge. It is good that the 

methodology still works for the significant parameters in such scenarios. 

 

The physical system matrices are constructed using the above presented optimization 

results (Case 5.4 - Case 5.6). Then the true model and the estimated one are simulated 

with the same 3-2-1-1 excitation signals (Figure 5.4). The results show that simulation 

responses of “true model”, “SID model” and “Physical SID model” to 3-2-1-1 
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excitation signals are satisfactory for Case 5.4 to Case 5.6. The simulation results are 

illustrated in Figure 6.52. 
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Table 6.15. Percentage Estimation Errors of Stability Derivatives – Case 511 

 

  

                                                 
11 “add. const.” denotes “additional constraints” 

NA : Not Applicable 

Case 5.1 Case 5.2 Case 5.3 Case 5.4 Case 5.5 Case 5.6

[-10% 10%] [-20% 20%] [-30% 30%] [-10% 10%]
+ add. const.    

[-20% 20%]
+ add. const

[-30% 30%]
+ add. const

x1 Xu 0.075 0.170 0.135 7.045 2.928 3.684
x2 Xv 3.364 4.233 2.799 NA NA NA
x3 Xw 0.007 0.406 0.474 NA NA NA
x4 Xp 0.148 0.258 0.642 9.032 20.000 30.000
x5 Xq 0.019 0.043 1.478 9.449 5.257 3.522
x6 Xr 1.158 1.775 0.534 10.000 20.000 28.560
x7 Yu 0.058 2.107 2.937 NA NA NA
x8 Yv 0.054 0.167 0.183 5.938 13.994 25.241
x9 Yw 0.156 0.927 1.077 NA NA NA
x10 Yp 1.624 0.263 1.677 NA NA NA
x11 Yq 0.716 1.202 7.008 9.953 20.000 25.111
x12 Yr 0.031 0.015 0.020 3.362 3.207 1.984
x13 Zu 0.528 0.826 0.625 NA NA NA
x14 Zv 1.004 5.680 0.421 NA NA NA
x15 Zw 0.082 0.111 0.433 NA NA NA
x16 Zp 0.370 0.365 0.168 0.491 0.981 1.472
x17 Zq 0.014 0.172 0.059 0.995 0.457 1.009
x18 Zr 1.008 1.838 0.053 10.000 20.000 30.000
x19 Lu 1.074 0.955 1.112 9.991 5.005 13.089
x20 Lv 0.230 0.191 0.076 7.712 20.000 30.000
x21 Lw 0.027 0.042 0.212 10.000 20.000 30.000
x22 Lp 0.041 0.024 0.008 0.278 0.345 0.018
x23 Lq 0.084 0.208 0.162 3.936 5.862 6.998
x24 Lr 0.064 0.070 0.048 1.736 2.334 1.449
x25 Mu 0.875 0.648 0.931 10.000 12.234 10.826
x26 Mv 6.859 5.478 6.949 NA NA NA
x27 Mw 0.196 0.041 1.309 10.000 7.266 3.189
x28 Mp 0.345 0.105 0.009 10.000 20.000 30.000
x29 Mq 0.007 0.011 0.089 0.928 0.662 0.360
x30 Mr 3.514 2.413 1.330 NA NA NA
x31 Nu 0.800 0.655 0.629 5.163 3.701 3.747
x32 Nv 0.319 0.226 0.035 4.671 17.154 24.020
x33 Nw 0.114 0.270 0.371 NA NA NA
x34 Np 0.185 0.057 0.095 1.282 3.207 2.121
x35 Nq 0.196 0.139 0.090 10.000 7.967 3.123
x36 Nr 0.030 0.012 0.031 0.189 0.640 0.028

estimation error %

parameter symbol
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Table 6.16. Percentage Estimation Errors of Control Derivatives – Case 512 

 

 

                                                 
12 “add. const.” denotes “additional constraints” 

NA : Not Applicable 

Case 5.1 Case 5.2 Case 5.3 Case 5.4 Case 5.5 Case 5.6

[-10% 10%] [-20% 20%] [-30% 30%]
[-10% 10%]
+ add. const.    

[-20% 20%]
+ add. const

[-30% 30%]
+ add. const

x37 Xδlat 0.115 0.076 0.241 0.015 0.974 1.581
x38 Xδlon 0.016 0.014 0.079 9.995 9.717 8.732
x39 Xδped 1.637 1.339 1.209 10.000 20.000 30.000
x40 Xδcol 0.038 0.037 0.469 10.000 20.000 30.000
x41 Yδlat 0.282 0.269 0.279 9.414 9.523 9.592
x42 Yδlon 0.148 0.260 0.027 8.257 7.638 10.266
x43 Yδped 0.078 0.086 0.090 NA NA NA
x44 Yδcol 0.599 0.324 0.892 NA NA NA
x45 Zδlat 0.347 0.443 0.385 9.161 7.799 7.460
x46 Zδlon 0.015 0.120 0.055 NA NA NA
x47 Zδped 0.589 0.176 0.138 10.000 20.000 30.000
x48 Zδcol 0.012 0.093 0.028 NA NA NA
x49 Lδlat 0.077 0.081 0.072 2.554 3.441 4.574
x50 Lδlon 0.250 0.262 0.246 2.503 3.180 3.542
x51 Lδped 0.069 0.063 0.062 4.825 4.751 4.259
x52 Lδcol 0.191 0.180 0.171 3.334 6.593 10.435
x53 Mδlat 0.093 0.471 0.363 7.977 19.450 30.000
x54 Mδlon 0.193 0.234 0.164 2.631 2.386 2.971
x55 Mδped 1.763 2.787 3.004 10.000 20.000 30.000
x56 Mδcol 0.634 0.422 0.672 NA NA NA
x57 Nδlat 0.198 0.006 0.300 1.978 0.152 4.374
x58 Nδlon 0.272 0.214 0.091 5.999 4.137 6.528
x59 Nδped 0.058 0.023 0.015 3.132 3.434 2.811
x60 Nδcol 0.021 0.086 0.177 1.349 1.022 2.771

estimation error %

parameter symbol
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The doublet input is applied in four channels sequentially for verification. The inputs 

and the outputs of this test case are given in Figure 6.11 and Figure 6.53 respectively. 

TIC values are calculated according to Eq.(117). Results are listed in Table 6.17. 

 

Table 6.17. TIC Values for Case 5 (for Verification Signal)
 13 

optimization batch for constraint set 
TIC value 

(Case 2.1 to Case.2.3) 

TIC value 

(Case 5.1 to Case 5.3)  

Case 2.1 vs. Case 5.1 [-10% 10%] 0.0021 0.0103 

Case 2.2 vs. Case 5.2 [-20% 20%] 0.0022 0.0036 

Case 2.3 vs. Case 5.3 [-30% 30%] 0.0023 0.0038 

 

                                                 
13Remember that the scenarios Case 2.1 to Case 2.3 are the same with Case 5.1 to Case 
5.3. 
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6.6. Discussion on Results 

 

6.6.1. Comparison of Algorithm Type: IP or SQP 

We compare these two algorithms: IP and SQP. If we only consider the results of Case 

1 and Case 2 we see that the interior-point” algorithm is superior to SQP in many 

aspects. The quality of convergence seems better for the Interior-Point” algorithm 

compared to SQP. All of the derivatives converge easily in Case 1 where the IP 

algorithm is utilized whereas there are some deficiencies in Case 2 where the SQP 

algorithm is used. Convergence behavior of the IP algorithm is quite obvious in the 

presented. Moreover, the convergence rate is another advantage of the IP algorithm. 

As we mentioned above, with considering “estimation error” values and the TIC 

values, again the IP results are superior to those of SQP. In summary, by inspecting 

the results of Case 1 and Case 2 we can conclude that IP is better than SQP. However, 

results of Case 3 will modify our opinion.  

Case 3 show that IP results are quite sensitive to the midpoint of the constraints. This 

was an expected phenomenon since IP algorithm sets the initial iteration point to the 

midpoint of the finite bounds. In the light of this, the optimizations are repeated for the 

different asymmetric constraint levels (i.e. [-10% 20%], [-10% 30%]) where the 

midpoint is different than the true value. In Case3, it is observed that some certain 

derivatives do not converge to the same value for different constraint levels. Moreover, 

for those parameters, the asymmetric constraint conditions ([-10% 20%], [-10% 30%]) 

do not converge to the true value. The true values can only be achieved with symmetric 

constraint levels ([-10% 10%]. However, for SQP algorithm, the results do not change 

too much with asymmetric constraint levels (Figure 6.23 and Figure 6.24). It is 

observed that parameters which have low level of significance do not converge for 

SQP algorithm whereas they converge to different values for different unrepeatable 

constraint levels with IP algorithm. This finding is summarized in Figure 6.25. Since 

symmetric constraint settings are not always feasible due to the real-life uncertainties, 

the IP algorithm results can be misleading for our problem. SQP algorithm seems to 
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be more trustworthy since the results are not affected too much from asymmetric 

constraints. 

6.6.2. Comparison of Constraint Levels ([-10% 10%] … [-90% 90%])) 

Numerical results indicate that there is not a distinct change in the convergence of the 

results due to expansion of the constraint limits. It is observed that some deterioration 

occurs in convergence with increasing constraint levels. This happens especially for 

the derivatives that are not much significant. These deteriorations do not affect the 

results too much. It is important to point out that as long as the sign information of the 

parameters is correct or consistent with helicopter flight dynamics the level of 

constraint levels do not blow up the optimization. However, if we go beyond 100% 

percent error in the constraint levels we may end up with false results.  

 

6.6.3. Discussion on the Results Regarding the Initial Values of T Matrix 

In Case 4, we examined the performance of our solution method for arbitrary 

initialization of T matrix. The analysis showed that it is still possible find good results. 

This is an important outcome that it is not necessary for matrix 𝐶 to be equal to identity 

for the methodology to work well. 

 

6.6.4. Discussion on the Case with Additional Physical Constraints 

Analysis showed that when we impose additional physical constraints on the problem 

by using priori information on some well-known parameters, the degree of freedom of 

the optimization process decreases. The optimization algorithm forces the rest of the 

parameters to compensate for the absence of these well-known parameters. This causes 

the insignificant parameters to converge to constraint limits instead of true values. 

However, it was showed that the methodology still works for most of the significant 

parameters in such scenarios. 
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6.6.5. Discussion on Parameter Accuracy 

One important metric for parameter accuracy is “sensitivity”. The inverse of the 

sensitivity, named as insensitivity, is a metric for how much a parameter can be 

changed from the estimated value without causing error in minimization of the 

objective function more than a given amount [70]. The formulation of the insensitivity 

is presented in Eq. (118) where ℋ is hessian of the objective function given in Eq. 

(105). 

𝐼𝑥𝑖 = (ℋ𝑥𝑖𝑥𝑖
)
−1/2

 (118) 

 

The parameter insensitivities are generally presented as normalized percentages of the 

converged parameter values [17]: The formulation is given in Eq. (119). 

𝐼𝑥̅𝑖 = |
𝐼𝑥𝑖
𝑥𝑖
| × 100% (119) 

 

As a rule of thumb, the parameters which have 𝐼𝑥̅𝑖 < 10%  is assumed as reliable. For 

our problem, the (normalized) insensitivity values are calculated for each parameter 

by using the equations (118) and (119). According to the results, the derivatives 

𝑋𝑞 , 𝑌𝑝, 𝑌𝑟 , 𝑍𝑝, 𝑍𝑞 , 𝑍𝑟 , 𝐿𝑝, 𝐿𝑞 , 𝐿𝑟 , 𝑀𝑝, 𝑀𝑞 , 𝑁𝑝, 𝑁𝑞 , 𝑁𝑟. satisfy the reliability criteria 

defined above.  

This finding is complying with the convergence results of the parameters defined in 

this chapter. We observe that the significant parameters which are mentioned in 

Chapter 3 converge well in the case studies defined in this chapter. Most of these 

parameters also satisfy the insensitivity criteria. 
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6.7. Implementation for Nonlinear Simulation 

Up to now we have presented many test cases dealing with alternative optimization 

algorithms, different constraints and initial conditions. These are presented for proving 

the concept behind the methodology. For this purpose, we have only utilized the 

outputs of the linear model until now. From here on we will present the implementation 

of the methodology to nonlinear simulation data and real flight test data. SQP 

optimization algorithm and only one set of constraint level [-30% 30%]) is used for 

these. 

We can now present the case of nonlinear simulation. In this case, the whole 

identification process is repeated using FLIGHTLAB nonlinear simulation data. 

“Nonlinear Response” utility is used for this purpose. Before executing a time response 

run, desired inputs and outputs are set from “Xanalysis” interface. Scripts are 

generated to define specific input-output data whose configuration is defined in the 

beginning of this chapter.  

 

The corresponding time domain output comparisons are shown in Figure 6.54. The 

obtained TIC value for this case is 0.324 which is also acceptable. 

 

As we mentioned above, we selected the model order as 8 in order to be compatible 

with the model defined in the linear case. However, it may be possible to obtain better 

output matching with a higher order model selection. For example, if we selected the 

order by including the main rotor, inflow and engine we may get more accurate fits. 

Time domain output comparisons of the model with an order of 11 are given in Figure 

6.55. Parameter estimation for higher order models can be an another research study. 
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6.8. Implementation to Real Flight Test Data 

 

The proposed methodology is implemented to a previously recorded flight test data of 

a multi-role helicopter. The helicopter was instrumented with GPS aided INS, air data 

system and other various flight test equipment. GPS aided INS was the major data 

source for this study for obtaining the translational velocity components (longitudinal, 

lateral and vertical), angular velocity components (roll, pitch and yaw) and Euler 

angles (roll and pitch). A data consistency check was conducted between the GPS 

aided INS and air data systems for assuring the reliability of the test data. The pilot 

control inputs (lateral cyclic, longitudinal cyclic, pedal and collective) were measured 

by the relevant actuation systems during the flight test. The mentioned flight test data 

was recorded by both onboard and ground (telemetry) data acquisition systems. 

INS data sampling frequency (150 Hz) and pilot input sampling frequency (62.5 Hz) 

were not equal for this case. In order to prepare the data for the analysis, pilot input 

recordings were up sampled to the INS frequency by linear interpolation. It can be 

mentioned that in this flight test the frequency range of pilot inputs is around 1 Hz 

which assures that there is no possibility of aliasing due to this up sampling process. 

 

In this flight test, the helicopter was initially trimmed at 110 knots level flight 

condition at 7300 ft sea level altitude. 3 sets of longitudinal cyclic doublet inputs were 

applied sequentially by the pilot for excitation (Figure 6.56). The other control 

channels were only used for maintaining the trim condition. Since excitation to the 

helicopter is only given in the longitudinal channel, the flight test data being studied 

is only convenient for the identification of the longitudinal derivatives. Consequently 

𝐿𝑝,  𝐿𝑞 , 𝐿𝑟 , 𝑀𝑝, 𝑀𝑞 , 𝑀𝑟 , 𝑁𝑝, 𝑁𝑞 ,  𝑁𝑟 ,  𝐿𝛿𝑙𝑜𝑛 , 𝑀𝛿𝑙𝑜𝑛 , 𝑁𝛿𝑙𝑜𝑛 are the derivatives being 

estimated and the rest of the derivatives are set to zero during the process. The initial 

values for the physical parameters are set to be equal to the linearization outputs of 

FLIGHTLAB model. The constraints are selected by trial and error here. 
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In the scope of real flight test data implementation, it is observed that a time delay 

correction is required in the pilot inputs. Time delays unique to each control channel 

are determined by matching the model behavior with the flight test data. They are 

found to be between 0.1-0.3 seconds. The main reason behind these time delays is 

evaluated to be associated with the quasi steady assumption of 6-DOF helicopter 

modeling [17]. The issue can be attributed to transient rotor dynamics. 

 

The TIC value for flight test data implementation is obtained as 0.31. This indicates 

that the results are again acceptable. The comparison of the real flight test 

measurements with the outputs of the model obtained through subspace identification 

and the outputs of the model obtained through physical subspace identification are 

shown in Figure 6.57. 

 

 
Figure 6.56. Input Signals of Real Flight Test 
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Figure 6.57. Comparison of Outputs for Longitudinal Cyclic Doublet Excitations (Identification 

Using Flight Test Data) 
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CHAPTER 7  

 

7. CONCLUSIONS AND FUTURE WORK 

 

7.1. Conclusions 

 In this thesis, the subspace identification methodology is implemented on a multi-role 

twin engine helicopter. The studies are focused on the problem of physical parameter 

estimation from subspace identification results. Nonlinear optimization 

methodologies are searched for solving the physical parameter estimation. 

 

In Chapter 2, the theory of subspace identification is presented. “Robust Subspace 

Identification” algorithm which proved to work well on practical data is explained in 

detail. The problem of physical parameter estimation is defined and a solution 

methodology is proposed. 

 

In Chapter 3, the physical parameters that are aimed to be estimated are defined. The 

equations of motion for 6-DOF helicopter model are introduced and the model 

structure is presented with its inputs, outputs and the states. The main assumptions 

about the physical parameters are mentioned and the importance of these parameters 

is explained. 

 

The optimization problem is introduced in Chapter 4. The objective function is defined 

and the reasoning behind the algorithm selection is explained. Accordingly, both SQP 

and IP algorithms are briefly mentioned. The basic assumptions about constraints, 

initial values and constant terms are also given in this chapter.  

 

Implementation of subspace identification on the multi-role helicopter is introduced 

in Chapter 5. First, the model generation, trim analysis and linearization of 
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FLIGHTLAB model are described. Input signal design and linear response outputs are 

illustrated. After that, the implementation of subspace identification method by using 

generated input output data set. The eigenvalues of the estimated model are compared 

with the ones of the true model. Time domain simulation outputs of the estimated 

model are compared with the true one. Then the required objective function is 

constructed for physical parameter estimation. The methodology for constraint 

selection and initial value assessment are described for our optimization problem. 

 

The numerical results obtained for different optimization problems are presented in 

Chapter 6. Five case studies are examined. Two algorithms are utilized: IP and SQP. 

The performances of these algorithms are analyzed for several constraint and initial 

value set. The convergence results are compared in many aspects like convergence 

behavior, convergence rate, etc. Percentage error values are calculated for the physical 

parameters for each test case. TIC values are computed between the estimated models 

and the true model. The optimization algorithms are repeated for several times starting 

from randomly selected initial conditions to test the confidence level. Consistent 

results are achieved for different initial conditions. The method that is proved with 

linear model data until this point is tested with nonlinear simulation and real flight 

data. 

 

 

Numerical results of Case 1 and Case 2 indicate that there is not a distinct change in 

the convergence results due to expansion in constraint limits. Numerical results of 

Case 1, Case 2 and Case 3 present that both algorithms are capable of finding the 

physical parameters. However, SQP algorithm seems more trustworthy due to the 

consistency of the convergence results which are not affected by the symmetry of the 

constraints. Case 4 deals with the performance of optimization for arbitrary 

initialization of T matrix. The analysis results indicate that it is still possible to find a 

solution when the initial condition of 𝑇 matrix is not equal to the inverse of 𝐶 matrix. 
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The study showed that using the methodology it is possible to estimate all of the 

significant physical parameters with one identification test. The methodology uses the 

advantages of MIMO identification to estimate many parameters at a time. This is 

quite important for the helicopter systems which have coupled dynamics. 

Implementation of the methodology on real flight data showed that the physical 

subspace identification methodology is well applicable to real world practices. 

 

7.2. Future Work 

In real flight test applications, the helicopters and even other conventional flight 

vehicles are generally excited by using one control input. Excitation of the system 

simultaneously from all of the input channels may cause the system to enter into a 

nonlinear flight regime. Therefore, these are avoided due to safety reasons and the 

limitations of the system identification theory that is based on linear assumptions. 

However, as a future study, blending all of the subspace identification results which 

are obtained from different flight maneuvering conditions into one optimization 

problem may provide a solution for the estimation of all the stability and control 

derivatives all at a time. To obtain a better estimation, weight function assignment can 

be practiced according to the reliability of the subspace identification results of the 

relevant dynamics. Weighting of the parameters according to the coherence function 

between the inputs and the outputs for optimization may give better results. 

 

Identifying higher order modes of the helicopter like flapping dynamics, engine etc. 

which enlarges the size of the unknown parameters and correspondingly complicates 

the optimization problem. This can be another challenging issue to be solved. 

 

There are many options for initial value assignment and constraint determination of 

the parameters. Analysis and test data obtained in the scope of flight stability, handling 

qualities and wind tunnel testing activities can be utilized for this purpose.  
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In this study all of the analyses are conducted for one single trim point. In future, this 

methodology can be repeated for several flight conditions and the obtained models 

can be stitched together to find a nonlinear model for the system from physical 

subspace identification. 
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APPENDICES 

 

A. Proof of Theorem 2 [19] 

From the formulas (38) and (40); we find that 𝑋𝑓 can be written as linear combination 

of the past inputs 𝑈𝑝 and the outputs 𝑌𝑝 as follows: 

𝑋𝑓 = 𝐴
𝑖𝑋𝑝 + Δ𝑖𝑈𝑝  

= 𝐴𝑖[Γ𝑖
†𝑌𝑝 − Γ𝑖

†𝐻𝑖𝑈𝑝] + Δ𝑖𝑈𝑝  

= 𝐴𝑖 [Δ𝑖 − 𝐴
𝑖Γ𝑖

†
𝐻𝑖𝑈𝑝]𝑈𝑝 + [𝐴

𝑖Γ𝑖
†
] 𝑌𝑝 (A.1) 

= 𝐿𝑝𝑊𝑝  

with  

𝐿𝑝 = 𝐴
𝑖 [Δ𝑖 − 𝐴

𝑖Γ𝑖
†
𝐻𝑖𝑈𝑝|𝐴

𝑖Γ𝑖
†
]  

 

with (A.2), the formula (39) can be rewritten as; 

𝑌𝑓 = 𝛤𝑖𝐿𝑝𝑊𝑝 + 𝐻𝑖𝑈𝑓 (A.2) 

From this formula and using the definition of oblique projection ([19], equation 1.7) 

given in (A.3) the first claim of Theorem can be proven as; 
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𝐴/𝐵𝑪 = [𝐴/𝑩
⊥][𝐶/𝑩⊥]†𝐶 (A.1) 

𝑌𝑓𝛱𝑈𝑓
⊥ = 𝛤𝑖𝐿𝑝𝑊𝑝𝛱𝑈𝑓

⊥ + 𝐻𝑖 𝑈𝑓𝛱𝑈𝑓
⊥

⏟  
=0

 
 

𝑌𝑓/𝑈𝑓
⊥ = 𝛤𝑖𝐿𝑝𝑊𝑝/𝑈𝑓

⊥ (A.2) 

𝑌𝑓/𝑼𝒇
⊥[𝑊𝑝/𝑼𝒇

⊥]
†
𝑊𝑝⏟            

𝑂𝑖

= 𝛤𝑖 𝐿𝑝𝑊𝑝⏟  
=𝑋𝑓

  

𝑂𝑖 = 𝛤𝑖𝑋𝑓  

Where we have used the fact that [𝑊𝑝/𝑼𝑓⊥][𝑊𝑝/𝑼𝑓⊥]
†
𝑊𝑝 = 𝑊𝑝. This is not trivial, 

since 𝑊𝑝/𝑼𝑓⊥ is rank deficient for purely deterministic systems which implies that 

[𝑊𝑝/𝑼𝑓
⊥][𝑊𝑝/𝑼𝑓

⊥]
†
 is different from identity. 
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B. State Space Model Representation In FLIGHTLAB 

The similarity transformation approximation is utilized to convert the state space 

model structure from FLIGHTLAB form (Eq. B.1) to the model structure given in Eq. 

(112). The structure of the similarity transformation matrix 𝑇 (Eq.B.2) is constructed 

according to the linear relation between the state space model structures given in Eq. 

B.1 and Eq. (112) where the stability derivative matrix 𝐴 is given in Eq. (113) and the 

control derivative matrix is given in Eq.(114). The elements of FLIGHTLAB model 

matrices given in Eq. B.1 are matched with the elements of system model given in Eq. 

(113) and Eq.(114) with the equality written through Eq.(B.3) to Eq.(B.33). 

 

[
 
 
 
 
 
 
 
𝜑̇

𝜃̇
𝑢̇
𝑣̇
𝑤̇
𝑝̇
𝑞̇
𝑟̇ ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝜑̇

𝜕𝜑

𝜕𝜑̇

𝜕𝜃

𝜕𝜑̇

𝜕𝑢

𝜕𝜑̇

𝜕𝑣

𝜕𝜑̇

𝜕𝑤

𝜕𝜑̇

𝜕𝑝

𝜕𝜑̇

𝜕𝑞

𝜕𝜑̇

𝜕𝑟

𝜕𝜃̇

𝜕𝜑

𝜕𝜃̇

𝜕𝜃

𝜕𝜃̇

𝜕𝑢

𝜕𝜃̇

𝜕𝑣

𝜕𝜃̇

𝜕𝑤

𝜕𝜃̇

𝜕𝑝

𝜕𝜃̇

𝜕𝑞

𝜕𝜃̇

𝜕𝑟
𝜕𝑢̇

𝜕𝜑

𝜕𝑢̇

𝜕𝜃

𝜕𝑢̇

𝜕𝑢

𝜕𝑢̇

𝜕𝑣

𝜕𝑢̇

𝜕𝑤

𝜕𝑢̇

𝜕𝑝

𝜕𝑢̇

𝜕𝑞

𝜕𝑢̇

𝜕𝑟
𝜕𝑣̇

𝜕𝜑

𝜕𝑣̇

𝜕𝜃

𝜕𝑣̇

𝜕𝑢

𝜕𝑣̇

𝜕𝑣

𝜕𝑣̇

𝜕𝑤

𝜕𝑣̇

𝜕𝑝

𝜕𝑣̇

𝜕𝑞

𝜕𝑣̇

𝜕𝑟
𝜕𝑤̇

𝜕𝜑

𝜕𝑤̇

𝜕𝜃

𝜕𝑤̇

𝜕𝑢

𝜕𝑤̇

𝜕𝑣

𝜕𝑤̇

𝜕𝑤

𝜕𝑤̇

𝜕𝑝

𝜕𝑤̇

𝜕𝑞

𝜕𝑤̇

𝜕𝑟
𝜕𝑝̇

𝜕𝜑

𝜕𝑝̇

𝜕𝜃

𝜕𝑝̇

𝜕𝑢

𝜕𝑝̇

𝜕𝑣

𝜕𝑝̇

𝜕𝑤

𝜕𝑝̇

𝜕𝑝

𝜕𝑝̇

𝜕𝑞

𝜕𝑝̇

𝜕𝑟
𝜕𝑞̇

𝜕𝜑

𝜕𝑞̇

𝜕𝜃

𝜕𝑞̇

𝜕𝑢

𝜕𝑞̇

𝜕𝑣

𝜕𝑞̇

𝜕𝑤

𝜕𝑞̇

𝜕𝑝

𝜕𝑞̇

𝜕𝑞

𝜕𝑞̇

𝜕𝑟
𝜕𝑟̇

𝜕𝜑

𝜕𝑟̇

𝜕𝜃

𝜕𝑟̇

𝜕𝑢

𝜕𝑟̇

𝜕𝑣

𝜕𝑟̇

𝜕𝑤

𝜕𝑟̇

𝜕𝑝

𝜕𝑟̇

𝜕𝑞

𝜕𝑟̇

𝜕𝑟 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
𝜑
𝜃
𝑢
𝑣
𝑤
𝑝
𝑞
𝑟 ]
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+

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝜑̇

𝜕𝛿𝑙𝑜𝑛

𝜕𝜑̇

𝜕𝛿𝑙𝑎𝑡

𝜕𝜑̇

𝜕𝛿𝑐𝑜𝑙

𝜕𝜑̇

𝜕𝛿𝑝𝑒𝑑

𝜕𝜃̇

𝜕𝛿𝑙𝑜𝑛

𝜕𝜃̇

𝜕𝛿𝑙𝑎𝑡

𝜕𝜃̇

𝜕𝛿𝑐𝑜𝑙

𝜕𝜃̇

𝜕𝛿𝑝𝑒𝑑
𝜕𝑢̇

𝜕𝛿𝑙𝑜𝑛

𝜕𝑢̇

𝜕𝛿𝑙𝑎𝑡

𝜕𝑢̇

𝜕𝛿𝑐𝑜𝑙

𝜕𝑢̇

𝜕𝛿𝑝𝑒𝑑
𝜕𝑣̇

𝜕𝛿𝑙𝑜𝑛

𝜕𝑣̇

𝜕𝛿𝑙𝑎𝑡

𝜕𝑣̇

𝜕𝛿𝑐𝑜𝑙

𝜕𝑣̇

𝜕𝛿𝑝𝑒𝑑
𝜕𝑤̇

𝜕𝛿𝑙𝑜𝑛

𝜕𝑤̇

𝜕𝛿𝑙𝑎𝑡

𝜕𝑤̇

𝜕𝛿𝑐𝑜𝑙

𝜕𝑤̇

𝜕𝛿𝑝𝑒𝑑
𝜕𝑝̇

𝜕𝛿𝑙𝑜𝑛

𝜕𝑝̇

𝜕𝛿𝑙𝑎𝑡

𝜕𝑝̇

𝜕𝛿𝑐𝑜𝑙

𝜕𝑝̇

𝜕𝛿𝑝𝑒𝑑
𝜕𝑞̇

𝜕𝛿𝑙𝑜𝑛

𝜕𝑞̇

𝜕𝛿𝑙𝑎𝑡

𝜕𝑞̇

𝜕𝛿𝑐𝑜𝑙

𝜕𝑞̇

𝜕𝛿𝑝𝑒𝑑
𝜕𝑟̇

𝜕𝛿𝑙𝑜𝑛

𝜕𝑟̇

𝜕𝛿𝑙𝑎𝑡

𝜕𝑟̇

𝛿𝜕𝑐𝑜𝑙

𝜕𝑟̇

𝜕𝛿𝑝𝑒𝑑
 
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∙

[
 
 
 
𝛿𝑙𝑜𝑛
𝛿𝑙𝑎𝑡
𝛿𝑐𝑜𝑙
𝛿𝑝𝑒𝑑]

 
 
 
 

 

𝑇 =

[
 
 
 
 
 
 
 
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0]

 
 
 
 
 
 
 

 (B.2) 

𝜕𝜑̇

𝜕𝜑
=
𝜕𝜑̇

𝜕𝜃
=
𝜕𝜑̇

𝜕𝑢
=
𝜕𝜑̇

𝜕𝑣
=
𝜕𝜑̇

𝜕𝑤
=

𝜕𝜑̇

𝜕𝛿𝑙𝑎𝑡 
=

𝜕𝜑̇

𝜕𝛿𝑙𝑜𝑛 
=

𝜕𝜑̇

𝜕𝛿𝑝𝑒𝑑 
=

𝜕𝜑̇

𝜕𝛿𝑐𝑜𝑙 
= 0 (B.3) 

𝜕𝜑̇

𝜕𝑝
=  1  (B.4) 

𝜕𝜑̇

𝜕𝑞
=  𝑠𝑖𝑛𝜙0𝑡𝑎𝑛𝜃0 (B.5) 
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𝜕𝜑̇

𝜕𝑟
=  𝑟𝑐𝑜𝑠𝜙0𝑡𝑎𝑛𝜃0 (B.6) 

𝜕𝜃̇

𝜕𝑞
=  𝑐𝑜𝑠𝜙0    (B.7) 

𝜕𝜃̇

𝜕𝑟
=  −𝑠𝑖𝑛𝜃0 (B.8) 

𝜕𝜃̇

𝜕𝜑
=
𝜕𝜃̇

𝜕𝜃
=
𝜕𝜃̇

𝜕𝑢
=
𝜕𝜃̇

𝜕𝑣
=
𝜕𝜃̇

𝜕𝑤
=
𝜕𝜃̇

𝜕𝑝
=

𝜕𝜃̇

𝜕𝛿𝑙𝑎𝑡 
=

𝜕𝜃̇

𝜕𝛿𝑙𝑜𝑛 
=

𝜕𝜃̇

𝜕𝛿𝑝𝑒𝑑 
=

𝜕𝜃̇

𝜕𝛿𝑐𝑜𝑙 
= 0 

(B.9) 

𝜕𝑢̇

𝜕𝜑
= 0   (B.10) 

𝜕𝑢̇

𝜕𝜃
=  −𝑔𝐶𝑜𝑠𝜃0 (B.11) 

𝜕𝑢̇

𝜕𝑢
= 𝑋𝑢  (B.12) 

𝜕𝑢̇

𝜕𝑣
= 𝑋𝑣 (B.13) 

𝜕𝑢̇

𝜕𝑤
= 𝑋𝑤 (B.14) 

𝜕𝑢̇

𝜕𝑝
= 𝑋𝑝   (B.15) 

𝜕𝑢̇

𝜕𝑞
= 𝑋𝑞 −𝑤0 (B.16) 

𝜕𝑢̇

𝜕𝑟
= 𝑋𝑟 + 𝑣0 (B.17) 

𝜕𝑣̇

𝜕𝜑
= 𝑔𝑐𝑜𝑠𝜙0𝑐𝑜𝑠𝜃0   (B.18) 
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𝜕𝑣̇

𝜕𝜃
= −𝑔𝑠𝑖𝑛𝜙0𝑠𝑖𝑛𝜃0 (B.19) 

𝜕𝑢̇

𝜕𝛿𝑙𝑎𝑡
= 𝑋𝛿𝑙𝑎𝑡  (B.20) 

𝜕𝑢̇

𝜕𝛿𝑙𝑜𝑛
= 𝑋𝛿𝑙𝑜𝑛  (B.21) 

𝜕𝑢̇

𝜕𝛿𝑝𝑒𝑑
= 𝑋𝛿𝑝𝑒𝑑  (B.22) 

𝜕𝑢̇

𝜕𝛿𝑐𝑜𝑙
= 𝑋𝛿𝑐𝑜𝑙  (B.23) 

𝜕𝑣̇

𝜕𝑢
= 𝑌𝑢   (B.24) 

𝜕𝑣̇

𝜕𝑣
= 𝑌𝑣 (B.25) 

𝜕𝑣̇

𝜕𝑤
= 𝑌𝑤 (B.26) 

𝜕𝑣̇

𝜕𝑝
= 𝑌𝑝 +𝑤0 (B.27) 

𝜕𝑣̇

𝜕𝑞
= 𝑌𝑞 (B.28) 

𝜕𝑣̇

𝜕𝑟
= 𝑌𝑟 − 𝑢0 (B.29) 

𝜕𝑣̇

𝜕𝛿𝑙𝑎𝑡
= 𝑌𝛿𝑙𝑎𝑡    (B.30) 

𝜕𝑣̇

𝜕𝛿𝑙𝑜𝑛
= 𝑌𝛿𝑙𝑜𝑛  (B.31) 

𝜕𝑣̇

𝜕𝛿𝑝𝑒𝑑
= 𝑌𝛿𝑝𝑒𝑑  (B.32) 
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𝜕𝑣̇

𝜕𝛿𝑐𝑜𝑙
= 𝑌𝛿𝑐𝑜𝑙  (B.33) 
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C. True Model vs. Subspace Identification Results 

 

A matrix (true model): 

[
 
 
 
 
 
 
 
−0.045 0.002
0.004 −0.103 −116.225
−0.033 2.468
−0.004 2.180
0.004
−0.004
0 0 0 1 −0.002 0.060 0 0
0 0 0 0 1 0.032 0 0 ]

 
 
 
 
 
 
 

 

 

 

A matrix (subspace identification result): 

[
 
 
 
 
 
 
 
−0.012 −0.100
−0.054 −0.194 0.682
0.026 −2.968

0.146

0.021
0.042 0.111 0.062 −0.116 −0355 −0.278 −3.900 0.617
0 0.006 −0.032 0.974 −0.169 0.628 −0.599 −8.194]
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B matrix (true model): 

[
 
 
 
 
 
 
 
−0.0142 0.0461
0.0790

0.2406 0.0031
0.0409

0.0156
0 0 0 0
0 0 0 0 ]

 
 
 
 
 
 
 

 

 

B matrix (subspace identification result): 

[
 
 
 
 
 
 
 
0.005 0.110
−0.014

−0.029 0.080
−0.874

−0.807 0.687
−0.050 −1.114 1.176 0.030
2.654 0.585 0.854 0.548]

 
 
 
 
 
 
 

 

 

 

 

C matrix (true model): 

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

 

 

C matrix (subspace identification result): 

[
 
 
 
 
 
 
 
−1.254 −0.134

−0.874 0.051
0.006

−0.003 0.014 −0.001

−0.032 0.0027
0.010 −0.075 −0.005

−0.001 ]
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D matrix (true model): 

[
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0]

 
 
 
 
 
 
 

 

 

 

D matrix (subspace identification result): 

[
 
 
 
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0]
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