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ABSTRACT

PHYSICAL SUBSPACE IDENTIFICATION FOR HELICOPTERS

Avcioglu, Sevil
Doctor of Philosophy, Aerospace Engineering
Supervisor: Assist. Prof. Dr. Ali Tiirker Kutay

May 2019, 184 pages

Subspace identification is a powerful tool due to its well-understood
techniques based on linear algebra (orthogonal projections and intersections of
subspaces) and numerical methods like QR and singular value decomposition.
However, the state space model matrices which are obtained from
conventional subspace identification algorithms are not necessarily associated
with the physical states. This can be an important deficiency when physical
parameter estimation is essential. This holds for the area of helicopter flight
dynamics where physical parameter estimation is mainly conducted for
mathematical model improvement, aerodynamic parameter validation and
flight controller tuning. The main objective of this study is to obtain helicopter
physical parameters from subspace identification results. In order to achieve
this objective, N4SID subspace identification algorithm is implemented for a
multi-role helicopter using both FLIGHTLAB simulation and real flight test
data. After obtaining state space matrices via subspace identification,
constrained nonlinear optimization methodologies are utilized for extracting
the physical parameters. The state space matrices are transformed into
equivalent physical forms via both “Sequential Quadratic Programming” and
“Interior Point” nonlinear optimization algorithms. The required objective

function is generated by summing the square of similarity transformation



equations. The constraints are selected with physical insight. Many runs are
conducted for randomly selected initial conditions. It can be concluded that all
of the parameters with high significance can be obtained with a high level of
accuracy for the data obtained from the linear model. This strongly supports
the idea behind this study. Results for the data obtained from the nonlinear
model are also evaluated to be satisfactory in the light of statistical error
analysis. Results for the real flight test data are also evaluated to be good for

the helicopter modes that are properly excited in the flight tests.

Keywords: Subspace Identification, Parameter Estimation, Similarity Transformation,

Optimization, Helicopter Dynamics.
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0z

HELIKOPTERLER iCiN FiZIKSEL ALT UZAY ESASLI SISTEM
TANIMLAMA

Avcioglu, Sevil
Doktora, Havacilik ve Uzay Miihendisligi
Tez Danigmani: Dr. Ogr. Uyesi Ali Tiirker Kutay

Mayis 2019, 184 sayfa

Alt uzay esash sistem tanimlama yontemi oldukca giiclii bir sistem tanimlama
yontemidir. Bu 6zelligi kendini kanitlamis dikey izdiisiim ve alt uzaylarin kesisimi
gibi dogrusal cebir yontemleri ile QR ayristirmasi ve tekil degerlerine ayristirma gibi
sayisal agidan saglam sayisal yontemlerin kullanilmasindan gelir. Ancak, alt uzay
esaslt sistem tanimlama yontemi ile elde edilen durum uzay modeli herzaman fiziksel
durum vektorleri ile eslesmeyebilir. Bu sebeple; alt uzay esasli sistem tanimlama
yontemi fiziksel parametre kestiriminin 6nemli oldugu caligmalar i¢in yetersiz
kalmaktadir. Bu durum, fiziksel parametre kestiriminin matematik model iyilestirme,
aerodinamik parametre dogrulama ve ucus kontrolciisii iyilestirme faaliyetlerinde
kullanildig: helikopter ugus dinamigi alaninda da gecerlidir. Bu ¢calismanin ana amaci
helikopter fiziksel parameterlerini alt uzay esasli sistem tanimlama yontemi ile
kestirebilmektir. Bu amact gerceklestirmek i¢in, bir genel maksat taarruz
helikopterine ait veriler kullanilarak N4SID alt uzay esasli sistem tanimlama yontemi
uygulanmistir. Gerekli veriler FLIGHTLAB ugus benzetimlerinden ve gercek ugus
testlerinden elde edilmistir. Alt uzay esasli sistem tanimlama yontemi ile elde edilen
sistem matris elemanlar1 dogrusal olmayan optimizasyon yontemleri kullanilarak
fiziksel parametrelere ¢evrilmistir. Bunun igin “Siral1 Karesel Programlama” ve “I¢

Nokta” optimizasyon algoritmalar1 kullanilmistir. Burada amag fonksiyonu benzerlik

vil



doniistim denklemlerinin karelerinin toplami1 olarak ifade edilmistir. Kisitlar
olusturulurken parametrelerin fiziksel anlamlarindan yararlanilmistir. Kisitlar
dahilinde, rastgele se¢ilmis degerler ile cok sayida optimizasyon yapilmistir. Sonuglar
gostermektedir ki; dogrusal helikopter modelinden yola ¢ikilarak yapilan sistem
tanimlama faaliyeti kapsaminda, fiziksel anlamda baskin olan parametreler olduk¢a
yiiksek dogrulukla elde edilebilmistir. Bu durum; kullanilan yontemin dogrulugunu
kuvvetli bir bicimde desteklemektedir. Dogrusal olmayan helikopter modelinden yola
cikilarak tekrarlanan sistem tanimlama ve fiziksel parametre kestirimi faaliyeti de
istatistiksel dogruluk analizi sonuglarina gore basarili olmustur. Calisma ayrica gergek
ucus test verileri kullanilarak tekrar edilmis, diizgiin olarak uyarilabilen ugus modlar1

ile iliskili parameterler kestirilebilmistir.

Anahtar Kelimeler: Alt Uzay Esashi Sistem Tanimlama, Parametre Kestirimi,

Benzerlik Doniisiimii, Optimizasyon, Helikopter Dinamigi
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CHAPTER 1

INTRODUCTION

The aim of this study is extraction of physical parameters from subspace identification
results via optimization techniques. The implementation is realized on to a multi-role

twin engine helicopter.
1.1. Literature Survey

The helicopters are composed of numerous interacting subsystems. These are main
rotor, fuselage, engine, flight control system, empennage and tail rotor. The helicopter
flight dynamics can be modeled as the combination of the inertial, acrodynamic and
the flight control forces acting on corresponding interactive subsystems. The effects
of these forces are varying with the flight conditions. The interactions between the
helicopter subsystems cause nonlinearity in system dynamics and bring some
difficulties in modeling of the helicopter flight. These nonlinearities may not be easily
modeled by analytical or numerical ways. In that case, wind tunnel and the flight test
practices may be necessary to predict the indeterminate dynamics. No matter wind
tunnel testing is utilized or not, the final step for the validation of helicopter design is
flight testing. Flight testing is also opportunity for the flight dynamist to predict the
helicopter model more accurately. System identification which is the way of model
determination from experimental data can be utilized in the scope of flight data

analysis.

System identification is a foundational research field which is used to generate the
dynamic model of a system by using input and output data set. System identification
may be categorized mainly into three main groups: Output-Error Methods, Equation

Error Methods and Subspace Identification methods.



The output error method is introduced in the 1960s. The objective of the Output Error
Method is based on adjusting the values for the unknown parameters in the model to
obtain the best possible fit between the measured output data, y,,..s and the estimated
model response, Y. (1). The best fit is obtained by iterating the model parameters.

The measurement error noise matrix R is calculated as in (2).

e(t) = ymeas(t) — Yest (1) (1

T

1
R = NZ[ymeas(t) — Vest (O] * [Vimeas(t) = Yest ()] (2)

The minimum of the cost function J()) with respect to the unknowns ¥ is obtained by
satisfying all first derivatives function o] (X)/ 5y are zero.

This leads to a set of nonlinear equations that can only be solved iteratively with the
main steps:

e calculation of the cost function |

e calculation of the matrix R

e update of the unknowns x by minimizing the cost function J())

e calculation of an output vector Y,

Applications of output error method on helicopter systems are numerous. D. Banerjee
and J.W. Harding [1] use flight test data to identify the AH-64 Apache attack
helicopter by output error method. Kaletka [2] estimates the 6 DOF model of the BO
105 helicopter by utilizing Maximum Likelihood output error method. SA 330 Puma

1s another platform which is identified by output error method [3]

The equation error method is another widely used method in helicopter identification

studies [4], [5] and [6]. In this method, the cost function which is defined directly in



terms of an input-output equation is minimized via least square techniques. For a
system model given in (3), the equation error is defined as in (4) where the states,

derivative of the states and the inputs are measurable (X,,e0s, Xmeas» Wmeas)-

x =Ax + Bu 3)

€ = Xmeas — AXmeas T BUmeas 4)

There are many algorithms which utilize these methods. There are many system
identification tools as well. CIFER (Comprehensive Identification from Frequency
Response) which is one of the a well-known one, has been studied on a wide range of
helicopters like BO-105 [7] UH-60 [8], Yamaha R-50 [9], OH-58D [10], SH-2G [11]
and AH-64 [12], [13] and on a quadrotor [14]. Higher order models for the Raptor 50
and Evolution EX small-scale UAV helicopters were identified in [15] and [16]. The
frequency domain system identification method developed by Tischler and Remple

[17] was implemented for R44 helicopter in [18].

As an alternative to these classical methods which are mentioned above, subspace
identification [19] attracted attention in the helicopter design society recently.
Subspace identification differs from the classical system identification methods in
many aspects. In principle, the models of constructing sequences are different. In
classical techniques, first the system matrices are obtained, and then the states are
estimated. However, in case of subspace identification first the states are estimated

directly from input-output data, then the system matrices are obtained.

The schematic illustration of these procedure differences is given in Figure 1.1. These

differences bring some advantages such as computation accuracy and convergence.



input-output
data uy,yj
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Figure 1.1. Schematic Illustration of the Basic Differences between Classical Methods and Subspace
Methods [19]

Additionally, subspace identification algorithms utilize sound techniques based on
linear algebra (orthogonal projections and intersections of subspaces) and numerical
methods like QR and singular value decomposition. One of the main novelties of the
subspace identification is to demonstrate how the Kalman filter states can be obtained
from input-output data using linear algebra tools (QR and singular value
decomposition). Hence, the identification problem becomes a linear least squares
problem in the unknown system matrices. Another novelty is in the field of
parameterization. Although classical system identification algorithms require a certain
user-specified parameterization, subspace identification algorithms use full state space
models and the only the order of the system is required as “parameter”. In fact, in
subspace identification algorithms, the order of the system can be predicted by

inspection of certain singular values.



By having the opportunity to obtain the reduced model directly from input-output data
without having to compute the high order model, subspace identification algorithms

always constitute models with as low order as possible.

The development of subspace identification algorithms is based on 1990s. The system
model identification idea from the concepts like between subspaces or the singular
value decomposition which are seemingly unrelated are started to be combined
cleverly in 1970s ([20]-[29]). Finally the complete algorithms are dated to 1990s to
2000s ([19], [30] and [31]). The detailed historical progress of subspace identification

algorithms is explained in [19].

The current subspace algorithms such as [19] and [31] have proven extremely
successful in dealing with the estimation of discrete-time state space models. One class
of subspace identification algorithm which is called as “Multivariable Output-Error
State sPace” (MOESP) [30] based on the idea of estimating a basis of the observability
subspace directly from data. The other class of algorithm called as “Numerical
algorithms for Subspace State Space System IDentification” (N4SID) relies on the
estimation of the state sequence for the system as an intermediate step for the
estimation of the state space model. The details of these algorithms with the extended

versions are explained in [19] and [31].

The interest of helicopter design society on subspace identification methods arise in
the last decade. Until now, some variants of subspace identification algorithms like
N4SID ([19]-[32]) and MOESP ([33]-[35]) were applied on a number of helicopter
simulation data. As a further step, a real flight test application is performed both for
EHI101 helicopter [36] and ACT/FHS the DLR’s research helicopter [37]. In [38],
subspace identification methods were used for the identification of a helicopter
including rotor and engine dynamics. In this study where DLR’s research helicopter

ACT/FHS is analyzed, the subspace identification is utilized to assure the maximum



likelihood system identification results regarding the system order and eigenvalues.

The MOESP method was applied for a small-scale unmanned rotorcraft model in [39].

These studies showed that subspace identification method can be an alternative for
helicopter systems due to having many advantages like parameterization, convergence
and model reduction [19] as mentioned above. On the other hand, the state space
model matrices which are obtained from conventional subspace identification
algorithms are not necessarily associated with the physical parameters [19]. Physical
parameter estimation based on subspace identification for helicopter systems is still

being investigated.

The main objective of this study is to obtain helicopter physical parameters from
subspace identification results. There are previous studies on this problem ([40]-[42])
utilizing Laguerre filters to convert the discrete time state space models into
continuous models. Another approach for finding the physical parameters from
subspace identification results is “optimization”. As it is mentioned before, the system
matrices A,B,C,D which are found by subspace identification method do not
necessarily have a direct physical interpretation. However, they have a conceptual
relevance [19]. The similarity transformation of a discrete LTI system, ¥ = T~ 'x

leads to a new set of state space matrices in Eq. (14) - (16) [43].

A=T1AT (5)
B=T"1B (6)
C=CT (7

The aim is to find the A, B, C matrices with the similarity transformation matrix T

which lead us to the physical parameters.



The objective function (8) is defined as the sum squares of the difference between the
right and left side of the similarity transformation equations Eq. (5)-(7) where the

equality and the inequality constraints are determined with physical insight.

min f(x) = min(l4G) = TG) AT @) lr + 1B @) = TG) Bl
®)
+11CG) = CTEIIR)

There are a limited number of studies in the literature which tackle with the
identification problem by this approach ([44]-[49]). These studies propose simple cost
functions (like least squares or quadratic) and most of them are applied for relatively
simple systems like inverted pendulum or mass spring systems. However, helicopter
identification may require far more variables to be solved. Therefore, it may require
more advanced optimization algorithms. Due to the nonlinear characteristics of the
objective function, this problem can be handled by NonLinear Programming (NLP)
([44]-[46]). In the literature, there exist a number of algorithms for solving NLP
problems. In our case, we decided to concentrate on “large-scale” NLP algorithms
where the total number of variables is greater than one hundred. In [50], Benson
compares this type of algorithms in terms of efficiency. The preliminary study
investigated in [51] 1s about estimating helicopter physical parameters from subspace
identification. “Interior Point” algorithm was used in [51] to solve the aforementioned
optimization problem. Regarding the “large-scale” NLP algorithm performance
examination by Benson in [50], we selected both “Interior Point” algorithm and

“Sequential Quadratic Programming” algorithm for our optimization problem.

Other improvements are made on constraint and initial value selections by introducing
a variety of conditions. In addition, in [51], the required data is only obtained from
linear model simulations. However, in this study, the methodology is extended for
nonlinear model simulation data and real flight test data of a tactical helicopter (multi-

role helicopter). The outcome will be critical in many aspects like model



improvement, wind tunnel data validation and flight controller design. The conducted

study is summarized in the following paragraph.

As a first step, data gathering is studied. The excitation signal is selected as 3-2-1-1,
which is commonly recommended for helicopter practices [17]. The input signal
frequency content and amplitude are adjusted for exciting the helicopter body
dynamics properly [17]. This will ensure the quality of system identification. As a
second step N4SID algorithm [19] is applied to obtain the state-space model of the
helicopter for a certain flight condition. The obtained state-space matrices, which are
not necessarily associated with the physical states, are required to be transformed into
the physical state-space matrices in order to obtain the stability and control derivatives.
The similarity transformation theory [44] is utilized in conjunction with constrained
nonlinear optimization for this purpose. The objective function, sum of the square of
similarity transformation equations ([44]-[49]) is minimized to obtain the physical

state-space matrices and the corresponding similarity transformation matrix.

In the above summarized optimization problem, two algorithms are experimented.
These are “Sequential Quadratic Programming” and “Interior Point” ([52]-[54])
algorithms. They are selected considering both the size of the unknowns (over one
hundred in this problem) and the nonlinear form of the objective function. The
implementation of these algorithms for extracting physical parameters from subspace
identification results is a candidate for being a prime in the field of helicopter flight

dynamics.

Initial values of the parameters in optimization experiments are selected randomly.
Constraints of the physical parameters may be selected considering typical error
budgets of wind tunnel testing and aerodynamic prediction tools for helicopter
systems or by using common practices of aerospace vehicle modeling. However, for
convenience, constraints are selected considering linearized outputs of FLIGHTLAB

with several error margins from [-10% 10%] to [-90% 90%] in this study. The physical



value for each parameter is estimated by minimizing the objective function via the
above-mentioned algorithms under given constraints and initial values. The
optimizations are repeated for different initial conditions in order to increase the
confidence level. The percentage estimation errors are calculated for each parameter
in every run. The physical parameters obtained at the end of the optimization are used
for time domain verification of the model. The time domain output of the model is
compared with the actual measurement using Theil’s inequality coefficient (TIC)
metric ([55], [56]). After obtaining promising results for the methodology, the study
is repeated for the same helicopter by using nonlinear simulation data and real flight

test data.

1.2 Main Contributions

There are three main contributions of this study. The first one is successful
implementation of subspace identification to a multi-role twin engine helicopter. The
second contribution is the extraction of physical parameters from subspace
identification results via optimization techniques. The third major contribution is the
application of identification inputs in all four input channels of the helicopter for the
same test case to extract both direct and cross coupling derivatives by utilizing
subspace identification. With these contributions we are aiming to enhance the

implementation of subspace identification technique for helicopters.

1.3 Organization of the Thesis

The main objective of this study is presented in Chapter 1. Then the literature survey
is introduced to define the problem properly. Background information on system
identification techniques are presented here. Research is concentrated on the problem
of physical parameter estimation from subspace identification results. The nonlinear
optimization methodologies are searched for solving the problem. Then the main

contributions are summarized in this chapter.



In Chapter 2, the theory of subspace identification is introduced. The main focus is
given on a robust subspace algorithm which proved to work well on practical data.
The problem of finding physical parameter estimation and the similarity

transformation approach are mentioned here.

In Chapter 3, the model-structure of the helicopter is defined for our specific problem.
The inputs, outputs and the states are introduced here. The main assumptions about

the stability and control derivatives are also mentioned in this chapter.

The optimization procedure and the objective function are explained in Chapter 4.
Both “Sequential Quadratic Programming” and “Interior Point” algorithms are briefly
mentioned here. The formation of the objective function in accordance with the model
structure is defined here. The basic assumptions about constraints, the initial values

and the constants are also given in this chapter.

In Chapter 5, the implementation of the methodology is introduced on a multi-role
helicopter. Data gathering, subspace identification and parameter estimation

methodology is introduced for given specific flight conditions.

In Chapter 6, several conditions for the selected algorithm, boundary condition and
initial values are examined, and the numerical results are presented. The
implementation for nonlinear simulation output and real flight test data are presented

here too.

Finally, the obtained results and the outcome of the research are discussed in Chapter

7.
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CHAPTER 2

SUBSPACE IDENTIFICATION THEORY

2.1. Introduction to Linear System Identification

Dynamic systems can be expressed as mathematical models. These models are used
for design improvement, simulation, analysis and training. Typically, they provide
advantageous in many circumstances where the real system testing is too expensive,
too difficult or too time consuming. Especially for the rotorcrafts systems, it is almost
impossible to validate a flight control system without mathematical model
verifications on the ground since the challenging maneuvers performed in the air may

contain in serious risks.

The mathematical model of the air vehicle systems can be derived from nonlinear
equations-of-motion, typically by implementing several simplifying assumptions.
However, for relatively more complex systems like rotorcrafts, a simplified model
may not be sufficient for simulating the performance of the final implementation. In
such a case the mathematical model improvement can be achieved via system
identification techniques. In general practice, the collected input and output data is
used to find parameters of predefined model structure. In this context, system
identification is described as dynamic extension of curve fitting. In the final step, the
model is validated with the experimental data which were not used in the system

identification experiment.

Being an alternative to classical system identification methods subspace identification
is based on finding the state space models by using only experimental input-output
data set. The general overview of subspace identification is supplied in the following

paragraph.
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2.2. State Space Representation of Dynamic Systems

In subspace identification method, the dynamic model of the system is restricted to
discrete time, linear, time-invariant, state space models. Mathematically, these models

are defined by the following set of difference equations':

Xew1 = Ay, + Biy + w ©)
Yie = Cxye + Dy + v, (10)

with
E [(?y/ﬁ) (Wi vi)|= (SQT }S?) 8pg = 0 (11)

In this model, the vectors u, € R™ and y, € R! are the input and outputs at time

instant k. The size of the input and output are denoted m and I respectively.

The state vector of the process at discrete time instant k is represented as x; € R"
where the size of it is equal to n. v, € R! and w;, € R"are stochastic signals. It is

assumed that they are zero mean, stationary, white noise vector sequences.

A € R™™ matrix which is called as system matrix describes the dynamics of the

system. B € R™™

is called as input matrix which represents the linear transformation
by which the control inputs influence states in the next time step. C € R " is the
output matrix which describes the linear relation between the states and the outputs
(measurements) yi. The D € R™™m matrix is the direct feedthrough term. In general

practice, this term is most often 0 for continuous time systems. The covariance

1 E denotes the expected value operator and 6,,, the Kronecker delta.
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matrices of the process and measurement noise sequences v, € R! and w;, € R are

called as Q € R™", § € R™*! and R € R™*!,

In subspace identification theory, the matrix pair {A, C} is assumed to be observable.

It means that all modes in the system can be observed in the output, y,. Also, the

1
matrix pair {A, [B QE]}is required to be controllable for subspace identification

algorithms. In other words, all modes of the system are excited by either the

deterministic input u; and/or the stochastic input wy, [19].

The graphical representation of discrete time and time-invariant state space model is

given in Figure 2.1.

Wy
l X1 X
U | B T I . c > Vi

A 4

D

Figure 2.1. Discrete-time and time-invariant State Space Model of Dynamic Systems

2.3. Brief Overview on Subspace Identification Theory [19]

Subspace identification theory is based on system theory, linear algebra and statistics.
The linear algebra tools (QR and singular value decomposition) are utilized to find the
system states. Once these states are known, the problem turns into a linear least
squares problem. Since the problem converted into a linear form, it can be solved

easier when compared to “classical” prediction error methods [57].
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In subspace identification algorithms, only the order of the system requires to be
selected as a parameter. However, for classical methods, there has been an extensive
amount of research to determine so-called canonical models, i.e. models with a
minimum number of parameters. The problems arise from with these minimal

parameterizations are listed in detail in [19].

Due to the order reduction and consequently the matrix size reduction accomplished
by using QR and singular value decompositions, the subspace identification
algorithms are quite fast. Also, they are faster than (again) the ‘“classical”
identification methods, such as Prediction Error Methods, because they are not
iterative. By extension, there are no convergence problems. In addition to all of these,
numerical robustness is guaranteed since subspace identification algorithms are

proven by numerical linear algebra.

2.4. Geometric Tools [19]

Subspace identification algorithms use of several geometric tools. These geometric
tools are defined in the following paragraphs. The matrices A € RP*/, B € R?%J and

C € R™/ are assumed to be given here below.

2.4.1. Orthogonal Projections

The projection of the row space of a matrix B € R9onto the row space of B € R

is denoted as [[g where the related equation is given (12).

[z £ B" - (BB")" B, (12)
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The operator “( )1 denotes the Moore-Penrose pseudo-inverse of the matrix. The
projection of the row space of the matrix A € RP*/ on the row space of the matrix
B € R9J is given in (13). Here the boldface notation denotes the row space onto

which one projects.

A/B< A-[]g =A-BT-(BBT)"-B (13)

The orthogonal projection of the row space of the matrix A € RP*J on the row space
of the matrix B € R9*/ is illustrated in a simplest way in Figure 2.2 to make it more

understandable.

A/B" A

: » g
A/B

Figure 2.2. Orthogonal Projection Representation in a Simple Form2

2.4.2. Oblique Projections

Oblique projection is projection of a matrix onto the linear combinations of two non-
orthogonal matrices. In other words, project the row space of A orthogonally on the
joint row space of B and C; and decompose the result along the row space of C.
Mathematically, the orthogonal projection of the row space of A on the joint row space

of B and C can be given in (14).

2 (" )* denotes orthogonal complement of the row space of ( ).
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as(§)za-cr - (65, ggi)*-(g) (14)

The oblique projection the row space of the matrix A along the row space of the matrix
B onto the row space of the matrix C is illustrated in a simplest way in Figure 2.3 to

make it more understandable.

B

v
(@)

A/sC

Figure 2.3. Oblique Projection Representation in a Simple Form3

2.4.3. Singular Value Decomposition

The order of the system is determined according to the results of Singular Value
Decomposition (SVD). Singular values are another expression of the principal angles

and directions.

Definition 1 Principal angles and directions

For given two matrices A € RP*, B € R9J | the singular value decomposition is

expressed as in (15).

AT - (AATYt - ABT - (BBt -B = USVT (15)

3 ()t denotes orthogonal complement of the row space of ().
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Here the principal directions between the row spaces of Aand B matrices are
equivalent with the rows of UT and the rows of V7. Also the row spaces of A and B
matrices are related with the singular values (the diagonal of S) which is equal to the

cosines of the principal angles in between them. The formulas are as given in (16).

[A3B] & UT
[AsB] © VT (16)
[A3B] « ST

2.4.4. Statistical Approaches

In subspace identification algorithms, some statistical assumptions work very well if
large number of data is available. In subspace identification it is assumed that there

are infinitely many data sets available (j — o) and that the data is “ergodic”.

To make it more illustrative, consider that there are two given sequences a; € R™a
and e, € R", k = 0,1, ...,j. The sequence e, is a zero mean sequence as given in

Eq.(17) and independent from a; (Eq. (18))

Ele,] = 0 (17)

Elager] =0 (18)

Due to the assumptions of ergodicity and the infinite number of data can be driven:
The expectation operator E which is the average over an infinite number of
experiments can be replaced with the operator E; which is applied to the sum of

variables. For instance, for the correlation between ay and e, we get:

17



i,
Elaie;] = ]le ]—z a;e; (19)

* =0
J
= E] Z aiel.T (20)
i=0
Here the operator Ej is defined as in (21).
def 13 1

In the light of this information, consider two given sequences of input u; and noise

ek

u (uo Uy - uj) (22)

e (e e; - €) (23)

It can be found that the expected value of the sum of the vectors u and e becomes
zero as it is seen in Eq. (24) under the assumptions that an infinite number of data

available (a large set of data samples) and the data are ergodic.

j
Ei|) wel[=0 (24)
2
Eq. (24) leads to
Eilu-e™ =0 (25)

Geometric interpretation of this result is that the input vector u is perpendicular to the
noise vector e. This is a precious inference because it is used in subspace identification

algorithms to subtract the noise effects.
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Eyllle/ull] = 0 6

2.5. Subspace Identification for Deterministic Systems

The subspace identification problem is formulated for deterministic LTI systems

which are not disturbed by noise. Let such a system be given by

Xi+1 = Axy + Buy, (27)

Yk = ka + Duk, (28)

where x, € R?, u, € R™ and y, € Rl The process noise wy and the measurement
noise vy do not exist for deterministic systems. The goal of subspace identification is
to find the state space matrices A, B,C,D and the state vector X, € R™ up to a
similarity transformation in the presence of the input u, € R™ and output data set

Yk € Rl.

It is definite that most of the real systems contain noise. However, we start to explain
the theory of subspace identification from a deterministic system which is easier to
understand. Subspace identification starts with the construction of Block Hankel

matrices.

2.5.1. Blok Hankel Matrices

Block Hankel matrices are constituted from the input-output data set. The form of the

input Block Hankel matrix is given in (29).
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- U Uy Uy Uz Uj_q
Uy Uy Us Uy U;
Uojzi—1 | i Uit1  Uiyz Uipz - o o Ujgi-1 (29)
Uir1  Uiy2  Ui4z Ujpg - o Uj+i
[ Upi—1  Uzi  Uziy1 U2i42 - - - Ujpj—2l]

Here the number of block index i defines the approximate order of the system being
identified. The only requirement for i being larger than the estimated order of the
system. The number of columns (j) is formulated as in (30) where s is the total number

of data samples.

j=s—2i+1 (30)

The subscript of Upz;—1denote the first and last element of the first column in the
block Hankel matrix of inputs. Upz;—4 is combination of two equally sized matrices.
By definition, the first part of the matrix Uy);is called as Block Hankel matrices of past
inputs. Other representation of this matrix is U,where the subscript “p” stands for
“past”. The second part of the matrix Uj,;_; is called as Block Hankel matrices of
future inputs. Similarly, it is symbolized as Uy where the subscript “f” stands for
“future”. Another Block Hankel matrices used in subspace identification theory are

U, and Uy are obtained by shifting the borders of U, and Uy.
This notation which is adopted from [64] and [19] also holds for the other Block

Hankel matrices of the outputs: Yy 2;_1, Yoii» Yij2i—1, ¥p, ¥, ¥ and Y. Yo (Yp) is

called as Block Hankel matrices of past inputs.Y; ;1 (¥7) is called as Block Hankel
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matrices of future inputs. Also, ¥, and Y, are obtained by shifting the borders of

Y, and Yz,
- Yo V1 Y2 Y3 o Vi-1 T
V1 Y2 Y3 /7 Y
Yozica =| Yi  Yi+r Visz  Vitz - - - Vj+i-1 (31)
Yi+1  Yi+2 Yi+3  Yita - - - Vi+i
V2i-1 Y2i  YV2i+r DY2i+2z - - - V2itj-2d

Another Block Hankel matrix which is formulated in (32) is W, obtained by

combining the past inputs and outputs.

o (Yoli-1 U,
Woji-1 = (Y0|i—1> B (Yp> =W (32)

W; matrix is obtained by shifting the borders of U, and Y), as defined in Eq. (33).

+
wy = <Up) (33)

+
YP
2.5.2. State Sequence Matrix

Another important matrix is “state sequence matrix" X; for subspace identification
algorithms. The state sequence matrix, X; is shown in Eq. (34) as more explicit form.

In this equation, i stands for the subscript of the first element of the state sequence.

X; = (X Xiy1 Xiy2 Xitz - Xiyjo1) € R™Y (34)
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2.5.3. System Related Matrices

The extended observability matrix I is extensively used in subspace identification
algorithms. Explicit representation of the observability matrix [; is shown as in

Eq.(35). Here it is assumed that the system is observable.

[

[ & | cA% | e REX® (35)

cii-

The reversed extended controllability matrix A; (where the subscript i denotes the

number of block columns) represented as:
A (471B A2B A3B AC*B .. B) €ERMM (36)

The lower block triangular Toeplitz matrix H; is defined as:

D 0 0 .. 0
CB D 0 . 0 o
H; & k CAB CB D o) € Rlixmi (37)
CA™ 2B CA'"3B CA"™*B .. D

Here it is assumed that the system is controllable.

2.5.4. Main Theorems for Deterministic Subspace Identification Algorithms

Theorem 1 Matrix input-output equations ([19], Chapter 2)
The following Theorem which is widely used in subspace identification algorithms

states how the linear state space relations of formula (27) - (28) can be reformulated
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in a matrix form. The proof of (38)-(40) follows directly from state space equations

given in (27) -(28).

Y, =X, + H;U, (38)
Y; = IiX; + H;Us (39)
(40)

X; = A'X, + AU,

The geometric representation of the equation (39) is given in Figure 2.4. Here the

vectors in the row space of Yy are obtained as a sum of linear combinations of vectors

in the row space of X and linear combinations of vectors in the row space of Uy.

Figure 2.4. Geometric Representation of Y; in terms of Xy and Uy

Main Theorem ([19], Chapter 2)
This theorem indicates that the state sequence X; and the extended observability

matrix ['; can be extracted from the given input-output data set (U, U, Yp, Y5).

This can be expressed in two ways:
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e The state sequence Xy can be determined directly from the given input-output
data, without knowledge of the system matrices A, B, C and D.

e The extended observability matrix I'; can be determined directly from the

given input-output data.

Definition 2: Persistency of excitation ([19], Chapter 2)
The input sequence u, € R¥*Mis persistently exciting of order 2i if the input

covariance matrix (41) has full rank.
Ruy & ®[Uppzi-1, Uopai-1] “1)

Theorem 2: Deterministic Identification ([19], Chapter 2)
Under the assumptions that:
1. The input uy is persistently exciting of order 2i (Definition 2).
2. The intersection of the row space of Uy (the future inputs) and the row

space of X, (the past states) is empty.

3. The user-defined weighting matrices W; € R¥*!% and W, € R/*/ are such
that W, is full rank and W, obeys: rank(W,) = rank(W, - W,) where W,
is the block Hankel matrix containing the past inputs and outputs.
and O; is defined as the oblique projection:

0: & Yy /y W, (42)

and the singular value decomposition:

T
W,0,W, = (U Uy) (501 8) <¥1T> (43)
2
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= U8 V1T (44)

We have

1.

The matrix O; is equal to the product of the extended observability matrix and
the states:

Oi = FiXi (45)

The order of the system (27)- (28) is equal to the number of singular values in

equation (43) different from zero.

The extended observability matrix I'; is equal to:
I, = Wy tu,S;/%T (46)
where T € R™™ is an arbitrary non-singular similarity transformation.

The part of the state sequence X; that lies in the column space of W, can be

recovered from:

X,W, = T8y (47)

The state sequence X; is equal to:

Xi = Fi-l-ol' (48)

The proof of the Theorem which provides some insight in how subspace identification

results are typically derived is given in Appendix A.

2.5.5. Algorithms for Deterministic Systems

According to [19], the system matrices A, B, C and D can be computed in two different

ways:

finding the state sequence matrix X;
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¢ finding the extended observability matrix I’;
The schematic illustration deterministic identification procedure is presented in Figure

2.5. The system matrices can be computed by using any of the two ways.

input-output
data up . s

¥

system matrices
AB.C.D

Figure 2.5. An overview of the deterministic subspace identification procedure [19]

The algorithms which are based on Theorem 2 will be outlined in the following

paragraphs.

2.5.5.1. Algorithm 1 ([19], Chapter 2)

The algorithm starts with oblique projection O; calculations.

0;-1 = Yf_/UfVVp+ (49)

= li_1Xi41 (50)

Then X;,, can be calculated from (50) as below:
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Xiy1 = r‘i—1Jr0i—1 G

Then with U;); and Y;); matrices which are optained from input-output data and the

state sequence matrices calculated by the equations (48) and (51) we can estimate the

system matrices A, B, C and D according to least square approach (52).

()= (o) &

With this approximation, it is possible to solve all of the system matrices in one step.
However, in the following algorithm these matrices are estimated in two separate
steps. First A, C matrices are determined then the rest of the system matrices (B, D) are

estimated. The algorithm steps are explained in the following paragraph.

2.5.5.2. Algorithm 2 ([19], Chapter 2)

After calculating the extended observability matrix [, the system matrices are

determined in two separate steps.

Determination of A and C matrices
The matrices A and C can be determined from the extended observability matrix Ij.

The shift structure of the matrix I is used for this purpose [66].

=NA=T; (53)
Where Tidenotes I without the first I (number of outputs) rows. Then the matrix A
can be determined by equation (54). Then the C matrix is determined as the first [ rows

of Fi

A=T"T, (54)

Determination of B and D matrices
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In the next stage, B and D matrices are computed. When we rearrange the input-output

equation (39), we find that,

'Y = I}"H; Uy (55)
Where I}t € RE-M1 jg 3 full row rank matrix satisfying I}* - Tj = 0.

If we multiply the equation (55) with U; we obtain (56) where the linear least square

approach is applicable. Here the matrices I}, Yr, U }r are all known matrices. The only

unknown is H; matrix which is the combination of known matrices A, C and the

unknown matrices B, D.

IMY,Ul =T, (56)

For simplicity, the left-hand side of the equation is symbolized with M and I'}* with

L. Then the equation (56) can be written as;

My, M, .. M)

D 0 0 . 0
CB D 0 . 0

=Ly L, .. L)| c4B CB D 0 (57)
CA"2B CA'3B CA"™*B .. D/

Where M, € RE*M and £, € R Then the equation (57) is rewritten as

/L1 L, Li_4 Ll\

L, Ly . L 0\, o
l D

M, M, .. Mi)=\L3 L, .. 0 0)(0 Fi)(B) (58)
L, 0 0 0
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Then B and D matrices formulated in (58) are computed with least square approach.

2.6. Facts on Real World Applications

So far, we discussed subspace identification algorithms for deterministic systems.
However, the real system measurements generally contain noise terms. Therefore, for
real-life applications, the systems (Eq. (9) - (10)) are modeled with the process and

measurement noise wy and vy.

From many available subspace identification methods in literature [19] the “Robust
Subspace Algorithm” is utilized on this study. This method is proved with many
industrial data and it is suggested for practical applications ([19], Chapter 4, Algorithm
3). The required information about theory and the algorithm is given in the following

paragraphs.

Theorem 3 Matrix input-output equations ([19], Chapter 4)
The matrix input-output equations for the combined system (similar to the matrix input

output equations (38) - (40)) are defined in the following Theorem.

Y, = T;X, + HiUp + Y3 (59)
Yy =X + HiUp + Y7 (60)
Xe = A'X, + AU, (61)

Where Yps and st are the stochastic terms.
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Theorem 4 Orthogonal projection

Under the assumptions that:
1. The deterministic input u,; is uncorrelated with the process noise w; and
measurement noise vy
2. The input uy is persistently exciting of order 2i (Definition 2)
3. The number of measurements goes to infinity j — oo

4. The process noise w; and the measurement noise v, are not identically zero.

Then
def Wp
7, éyf/(Uf) (62)
= Fi)?i + Hl'Uf (63)

With Kalman filter state sequence

a
L

X=X,

(64)

[Xo0.Po]

Where X, is the initial state sequence matrix and P, is initial state covariance matrix.
Optimal prediction:

Another projection matrix in the theory of robust subspace identification is the
prediction matrix Z; which can be computed from the input output data, without having

the system matrices. The prediction matrix (Z;) is considered as an optimal prediction

of the future output (Yr) on the subspace formed by Block Hankel matrices of past
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inputs and outputs (W},) and the Block Hankel matrices of the future input (Uys). The

corresponding formulation is shown in Eq. (65).
Z; =Y/ <Wp> (65)
i f Uf

Here, it is proposed to combine the past (W, ) and the future inputs (Ur.) linearly to

predict the future outputs (Yr) [19].
Theorem 5 Combined Identification ([19], Chapter 4)
Under the assumptions that:

1. The deterministic input u,; is uncorrelated with the process noise w; and
measurement noise vy

The input uy, is persistently exciting of order 2i (Definition 2)

The number of measurements goes to infinity j — oo

The process noise w;, and the measurement noise v, are not identically zero.

a &~ N

The user-defined weighting matrices W, € R¥*¥ and W, € R/*J are such that
W; is full rank and W, obeys: rank(W,) = rank(W, - W,) where W, is the

block Hankel matrix containing the past inputs and outputs.
and O; is defined as the oblique projection:

0: & Yy /y W, (66)

and the singular value decomposition:

T
W10;W, = (Uy  Uy) (SO1 8) (X%) (67)
2
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We have
1. The matrix 0; is equal to the product of the extended observability matrix and

the states:

0; =TiX; (68)

2. The order of the system (9)-(10) is equal to the number of singular values in

equation (43) different from zero.

3. The extended observability matrix I; is equal to:
I, = Wy tu,S;/%T (69)
where T € R™" is an arbitrary non-singular similarity transformation.

4. The part of the state sequence X; that lies in the column space of W, can be

recovered from:
XW, = T718}/%yT (70)

5. The state sequence X; is equal to:

X, =T1"0, (71)

2.6.1. Algorithm 3 — Robust Subspace Identification ([19], Chapter 4)

The algorithm starts with oblique projection O; (66) and orthogonal projection Z; (62),

Zi+1(72) calculations.

A
Zin =Y/ () (72)
f
= i—1)?i+1 + H;_1Ug (73)
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)?l'-l-l = Xi_l_l[)?o,Po] (74)

Reduction of the size of oblique projection matrix 0; will simplify the rest of the
matrix operations Thus, SVD is calculated for O; (67). By inspecting the singular
values the U; and S; matrices are calculated to determine extended observability
matrix [ (69). Here the weight matrices W, and W, are assumed as identity which is

compatible with Theorem 5.

Then some set of linear equations which are quite complicated are solved to find A
and C matrices. The equations (75)-(78) are used to generate the linear least square
problem given in (79). Here p,, p, are the covariances of the process and

measurement noise of the residuals and an intermediate matrix k is given as in (80).

Xiv1 = AX; + BUy; + K;(Yy; — CX; — DUy) (75)

Yyji = CX;+ DUy; + (Yy; — CX; — DUy) (76)

Xivr = Tiot"+ [Ziga — HiaUf | (78)
I—i1zi+1 _ A T Pw

( Vo )= (7) 5tz + v + () (79)

BIIY H,_. — AT H,
K'lﬂ< |1—1 -1 i l> (80)

B D|0 — CT'H;
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After finding A and C matrices from (79), the I and Ij_; matrices are recomputed to
get better estimation on the remaining system matrices B and D matrices where both
{A,C}and {I;, I;_; } are used.

B,D = argming

rt.z.,
( i—-1 1> —_ (?) ['iTZi — K(B, D)Uf (81)

Y

F

The matrices B and D are calculated by solving the minimization problem shown in

Eq. (81). The intermediate steps are explained in [19] in more detail.

2.7. Similarity Transformation

The system matrices A4, B, C, D found through the above given formulation does not
necessarily have a direct physical interpretation but they have a conceptual relevance
[19]. According to the similarity transformation theory [43] the state vector of a
discrete LTI system can be transformed into another state vector. This is shown in Eq.

(82).

Xpny =T 'x (82)

Such an operation leads to a new set of state space matrices as shown in Eq. (83)-(85)
However, D and Dy, matrix are not state dependent. Therefore, these matrices are

not included in the similarity transformation equations.

Apny = T™1AT (83)
Bpny =T7'B (84)
Cpny = CT (85)
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In this study, our primary aim is to obtain the Appy, Bpny, Cpny matrices with the
corresponding similarity transformation matrix, T which is invertible. This will
hopefully lead us to the physical parameters. Since both the physical system matrices
and the similarity transformation matrix is lacking, a candidate solution is the
minimization of the difference between the left hand side and the right hand side of

Eq. (83)-(85).

TAppy = AT (86)

TByn, = B (87)

This can be achieved by an optimization that makes use of the lower bound of the sum
squares of the difference between the right and left sides, (83)-(85). It may be
important to mention that Eq. (83) and Eq. (84) are highly nonlinear and difficult to
solve it [47]. The forms shown in Eq. (86) and Eq. (87) are chosen instead of Eq. (83)
and Eq. (84) to reduce the difficulty.

This optimization problem may have infinitely many solutions if we do not define
well-founded constraints. At this point, a good model structure proposition becomes
crucial for the estimation of the state space model which is constructed from the

physical parameters.

35






CHAPTER 3

MODEL STRUCTURE

The model structure determination is highly related with the dynamics concerned for
identification. The model structure of an aerospace vehicle is usually obtained from
the governing 6-DOF flight-dynamics equations. These equations inherently contain
a substantial number of parameters required for validating mathematical models, wind
tunnel test results and for tuning the flight controller gains. The 6-DOF nonlinear
equations of motion for a helicopter can be written as shown in Eq. (88) - Eq. (93)
[58] with forces and moments represented by the small perturbation theory. In these
equations, the force derivatives are normalized by mass, and the moment derivatives
are normalized by the corresponding moments of inertia. Moreover for the moment
derivatives, a pre-multiplication by the inertia tensor has been carried out so that they

implicitly include products of inertia terms (i.€., Iyy, Iy, €tc.) [58].

u= Xyu+X,v+X,w+X,p+ (Xg —wp)q + (Xy + )1 — gcos6y6

(88)
+X 51001t + X6,5,010n + X, Opea + Xs,4,0co1
v=Yyu+Y,v+Y,w+ (Y, +wyp+Y,q+ (¥ —upr
+ gcospocosbop — gsingosinby0 + Y5, , 6iac (89)
+ Ys,0,010n Yo,y Opea + Y5, Ocot
w=Zu+Z,v+Z,w+ (Z, —vo)p + (Zg+uo)q + Z,r 00)

— gsing,cos8yp — gcosgysinb,0
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+Z<Slat61at + 2610n6lon + Z8ped6ped + Zé‘col(SCOI

p=Lu+L,yv+L,w+Lyp+Lsq

o1
+ er+L6lat6lat + L810n6lon + L6ped6ped + L66016col
q=Mu+ M+ M,w+ Mp+ Myq+ Mr+Ms,, 510t + Mionbion
92)
+ M6p3d6ped + Mdcolacol
7= Nyu+ Nyv + Nyw + Nyp + Nyq + Npv + Ng, 610t + Ny, Sion
93)
+ N8p9d6ped + N5col5col
¢ = p + gsing,tanb, + rcosp,tand, ©4)
95)

6 = gcosg, — rsinb,

These equations can be represented in the state space form as shown in Eq. (96) with
the motion states and the controls inputs given in Eq. (97) and Eq. (98) respectively.

The proposed model structure has 8 states and 4 inputs.

Xphy = ApnyXpny + Bpnyu (96)
Xphy = [u v w p qr d) e] (97)
u= [613t 6lon 8ped 8c01] (98)

The physical system matrices Ay, and By, are shown in Eq. (99) and Eq. (100)

respectively.
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phy
Xy X Xu Xp Xqg—wo Xyt 0 —gchy
Yo Y Y, Y,+w Y, Y, —uy gcpocly —gspyshy
Zy Zy, Zyw Zp—vy Zgt+ug Z, —gspocly —gcpysh,
_ L, L, L, Lp Lq L, 0 (99)
M, M, M, M, M, M, 0 0
N, N, N, Np Nq N, 0 0
0 0 0 1 Shotly  Chotby 0 0
(0 0 0 0 c6, —s6, 0 0
[Xiat  Xion Xpea Xcot]
Ylat Ylon Yped Ycol
Zlat Zlon Zped Zcol
Bphy= Llat Llon Lped Lcol
Mgt Mion  Lpea Mcor (100)
Nlat Nlon Nped Ncol
0 0 0 0
L0 0 0 0

When the rest of the state space matrices are concerned, with the assumption that all

of the system states are perfectly measurable, the associated Cyy,, 1s an identity matrix

and according to our problem formulation D, is equal to zero.

Since all of the states are assumed to be perfectly measurable, the total number of
parameters to be estimated in Appy, Bppy, and T matrices are 36, 24 and 64
respectively. Therefore, altogether there are 124 unknowns. Such a problem can be
classified as an optimization problem with large number of variables. The solution

methodology is explained in the following paragraph.
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It is important to understand the physical behavior of these parameters prior to
estimation. In other words, initial value assessment and constraint value selection with

physical intuition is important to get a solution [45].

Each stability and control derivative are made up of a contribution from different
components of a helicopter such as main rotor, tail rotor, fuselage, stabilizers etc. The
significant stability and control derivatives are defined briefly by referencing [58] and
[59] in the following paragraphs. The detail explanations with formulations and the

illustrations are given in [58] and [59].

3.1. Derivative of Forces with respect to Translational Velocity Components
(Xw, Xy, X, Yy, Y3, ¥y, Zy, Z,, Z)

Perturbation in translational velocity changes the rotor flapping which causes change
in forces and moments around rotor, fuselage and empennage. The derivatives
X, Y, X, Y, which are coupled at low speeds, becomes independent from each other
with an increasing forward velocity [58]. Direct force damping X,, and Y, which reflect
the drag and side force on the rotor—fuselage combination respectively changes
linearly with speed [58]. The coupling derivatives X,, and Y, are less significant

compared to the direct derivatives as it is expected.

The approximation for heave damping derivative can be written as in Eq. (18) for

forward flight condition, [58].

Zy =

_ pagh(QR)4A, ( 4 ) (101)

2M, 8u + ags
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3.2. Derivative of Forces with respect to Translational Velocity Components
Xuw Xo, Xy, Yo, Yo, Yy, 24, Z,, Z,))

The speed and incidence stability M,,, M,,, have major effect on longitudinal stability.
Although the main rotor moments do not significantly change with forward velocity,
the pitching moment contributions of the fuselage and empennage become significant
due to aerodynamic loads. Positive M,, indicates speed stability whereas negative M,,

refers incidence stability [58].

Pitching moment due to sideslip M, is also another important parameter. The changes

in sideslip cause significant variations in downwash at the horizontal stabilizer [58].

The derivatives L, L,,, Ny, N, couple with each other at the low-frequency

longitudinal and lateral motions of the helicopter.

Dihedral effect (L,,) and weathercock stability (N,,) parameters are significant sideslip
derivatives. A positive value for N,, implies stability. A negative value for L, implies

stability [58].

3.3. Derivative of Forces with respect to Translational Velocity Components
(X, Xy, Xw, Yu, Yy, Yy, 2y, Z,, Z,)

The derivatives X, ¥, change significantly by main rotor contributions. These

derivatives contribute significantly to the pitch and roll damping characteristics [58].

3.4. Derivative of Moments with respect to Angular Velocity Components
(L, Ly Ly, My, My, M,,N,,N,, N,)

The direct and coupled damping derivatives Ly, Ly, M,, M, are significantly

important derivatives in system dynamics. The direct damping derivatives Ly, M,
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indicate short-term, small and moderate amplitude, handling characteristics, while the
cross-damping derivatives Lg, M, characterize the level of pitch-roll and roll-pitch

couplings [58].

The derivatives L, N, N, have influence on the character of the lateral / directional
stability and control characteristics of the helicopter [58].In general, the derivatives
L., N, are presumed to be less significant compare to their primary

counterparts Ly, N, [59].

3.5. General View on Stability Derivatives

The parameters which implicate powerful information about helicopter flight stability
are tabulated in Table 3.1 with the expected values for satisfying stability [58]. Prior
knowledge of the helicopter flight stability under examination may give hint about the

sign of these derivatives.

As it is mentioned above, there exists 60 parameters to be estimated (36 parameters in
Appy and 24 parameters in Bpp,,) in our problem. However, they are not all the same
in the sense of significance. Some of them are quite insignificant compared to the
others. In fact, these “insignificant” parameters vary from helicopter to helicopter due
to their dynamic characteristics. Flight region is another factor determining the set of
“insignificant” parameters. In common practice, the stability parameters X,,, X,,, ¥y,

Yw, Zy, Z,, My,, M., N, and the control parameters Xgped, Y(gped, M(«;ped, Y are

8ped
assumed as “insignificant”. Therefore, these may set to zero. Moreover for flight
conditions with high forward velocity (where the inertial velocities are so dominant)

the aerodynamic effects may be negligible (e.g., Z,, ¥;) [58].
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Table 3.1. Derivatives with Expected Values to Ensure Stability

Stability Criteria Expected Value
Dihedral effect L,<0
Roll damping L,<0
Yaw to roll coupling L.->0
Static speed stability M, >0
Incidence stability M, <0
Pitch damping M, <0
Weathercock stability N, >0
Adverse yaw N, <0
Yaw damping N, <0
Drag damping X, <0
Side Force Damping Y, <0
Heave Damping Z,<0

3.6. Derivative of Forces with respect to Control Inputs (Z5_,, ’Z%n' Y,gpe a)

Heave control sensitivity (Z5.,,) mainly affected by the blade loading and tip speed.
The control sensitivity increases with forward speed [58].The derivative of thrust with

respect to longitudinal cyclic (Zs,,, ) increases almost linearly with increasing speed.

The derivative of thrust with respect to the main rotor collective (Z5_,,) and with
respect to the longitudinal cyclic (Zs,, ) which can be obtained from the thrust and

uniform inflow equations can be formulated as in Eq. (102) and in Eq. (103) [58].

g -2 aoApp(QR)?u(1 + u?)
Scor = 73 (Bu + aps)M,

(102)
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aoA,p(2R)?u?
Zs = —2 0App(QR)*p (103)
ton Bu + aygs)M,

The side force is mainly affected by tail rotor thrust which changes directly with the
pedal input (Y(gpe 2)-

3.7. Derivative of Moments with respect to Control Inputs (Mawl,ngl,

Nsped' Laped’ Lalat' Ll‘m ’ M‘slat’ M5lon)

Changes in collective control may cause pitching and rolling moment (M Soo’ Ls.,)-

In fact, the changes in rotor thrust may generate a moment if there exists a thrust offset.
Moreover, the changes in flapping due to the collective input generate hub moment

proportional to the flap angle.

The pedal input is directly related with tail rotor thrust which has significant impact

on the yawing moment (N 5ped). The cross-coupling derivative (L(gpe 2) 1s also

significant in rotor dynamics. Both N, ,L derivatives increase with forward

speed [58].

The direct and coupled flap responses to cyclic control inputs
(Ls,gp Lion» Ms, 40 Ms,,,) change with the stiffness number; and they are practically

independent of forward speed [58].

Understanding the behavior of these parameters under certain flight conditions will be
useful in the estimation of their values. The initial value assessment and the constraint
selections of the optimization problem whose explanation is presented in the following

chapters are performed under the guidance of the information given in this chapter.
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CHAPTER 4

PARAMETER ESTIMATION WITH NONLINEAR CONSTRAINT
OPTIMIZATION THEORY

Consider an optimization problem;

minimize min f(y)
: ¢ (104)
subjectto y €Q

The real-valued function f: R™ — R which is desired to be minimized is named as
the objective function. The vector x is a vector with n independent variables: x =
[X1, Xp,X3,...,Xp]T € R™. The set Q is a subset of R" called the constraint set or
feasible set. In our problem, the objective function shown in Eq. (105) is the sum
squares of the difference between the right and left side of the similarity

transformation equations shown in Eq. (86), (87) and Eq. (85) ([44]-[46])

min £ () = min (700 Ay () = ATl + TG Byy ) = B,
(105)

+ ”Cphy()() - CT(X)”F)

In the literature, there exist a number of algorithms for solving NonLinear
Programming (NLP) problems ([44]-[46]). In our case, we decided to concentrate on
“large-scale” NLP algorithms where the total number of variables is greater than one
hundred. In [50] Benson compares these types of algorithms in terms of efficiency. In
this respect we utilized both the IP (Interior-Point) method and the SQP (Sequential

Quadratic Programming) for our optimization problem.
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The interior methods, which are also called as barrier methods, are used to transform
a constrained problem into an unconstrained problem or into a sequence of
unconstrained problems [35]. Interior Point Algorithms, in general sense, are based on
searching the optimum solution by starting from an available point and continuing
gradually to get better ones which lie in the interior points of the available area.
Consider that our objective function f(y), which is aimed to be minimized, is
subjected to the constraint function, g(y) < 0. The barrier problem aims to find
infimum of a function f () + uB(x) where g(x) < 0. Here B(Y) is a barrier function
that is nonnegative and continuous over the region {x : g(x) < 0} and approaches o
as the boundary of the region {) : g(x) < 0} is approached from the interior. More
specifically, problem is reformulated in Eq. (106) with Frisch's logarithmic barrier

function [60] for each barrier parameter p > 0, and nonnegative slack variables, s;.
minimize rglfinf()() — uz In(s;),
,S
i

subject to g +s=0

(106)

As 1 converges to zero, the approximate problem (Eq. (106)) becomes a sequence of
equality constrained problems which are easier to solve than the original inequality

constrained problem.
SQP is also one of the most effective methods for nonlinearly constrained optimization
problems [52]. It provides successful results for both small and large-scale problems.

For SQP, we can express our optimization problem as given in (107).

minimize min f(y)

over x ER" (107)
subjectto h(y) =0
g =0
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The idea behind the SQP is to model the objective function at the current iterate y; by
a quadratic programming sub problem. Then a new iterate yj,; is defined by
minimizing the sub problem [52]. In general practice, the SQP methods are executed
in two stages. These are step computation and the Hessian approximation. Merit

function is used to ensure that the SQP method converges from remote starting points.

Both IP and SQP algorithms are readily available in the optimization toolbox of
MATLAB with a wide variety options for the user. The fmincon solver of MATLAB
is utilized as the optimization tool for our problem. The IP and SQP algorithms are

utilized here under a variety of initial conditions and constraints.
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CHAPTER 5

IMPLEMENTATION ON HELICOPTER SYSTEMS

The method described on the previous sections is implemented first on simulated flight
data. For this purpose, we used a nonlinear model of a multi-role helicopter which was
developed in FLIGHTLAB environment. The FLIGHTLAB Model Editor (FLME) is
used for data entry. FLME structure (Figure 5.1) allowed us to allocate the data
according to hierarchical modules that correspond to a physical or a logical subsystem
of the helicopter. The model is composed of main rotor, tail rotor, airframe and flight

control modules.

The “Main Rotor” is modeled with “Blade Element” approach. The number of blades,
rotor radius, rotational speed with direction, rotor hub location, shaft tilt, swashplate
phase angle and blade tip loss factor properties are supplied. The blade structure is
selected as “Articulated”. The rigid blade model includes both flapping and lead-lag
dynamics. The damper of the lead-lag dynamics is modeled as linear. The physical
parameters like torque offset, rotor precone angle, precone / flapping / feathering/lead-
lag hinge offset, flapping hinge / lag damper spring stiffness, flapping hinge / linear
lag damper damping coefficient, flap / lag spring undeformed angle and effective
delta-3 angle are modeled. The geometric / inertial blade is generated in many equally
spaced segments. The aerodynamic data is generated by wind tunnel tests and the
FLUENT analysis results are used as a complementary source. The main rotor air
loads are represented with a quasi-unsteady aerodynamics model featuring stall delay
due to rotation empirical corrections. The air load entry is performed according to the
blade segments which are consistent with airfoil radial station positions. Peters-He

Finite State model is selected for induced velocity model. The inflow harmonics are
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selected as three. The inflow correction data is modeled from empirical data regarding
the ground effect and wake distortion effect. Peters-He 3-state interference model is
generated to simulate the main rotor interference on fuselage, tail rotor and tail

surfaces.

File Model Help |

B+ O Rotorcraft Model 4
— O Solution Parameters Main Rotor | q%
B— @ Environment
<» Main Rotor

0O Blade Element & Blade Element
< Blade Structure
O Articulated ) ) .
B Blade property " Disk Main Retor (Coll/Cyclic)

B Structural nodes " Ducted Fan

LA

" Finite Element

BE—<> Airloads

BE—<% Induced Velocity
E—< Rotor Interference
BT Tail Rotor

O Disk Tail Rotor (Coll only)
< Rotor3

—< Rotord

—< Wing

f— O Airframe

s— O External Body

H— Propulsion

#— O Flight Control

— @ External Program Coupling
s— @ User-defined subsystem

| nodel0 | rotorl r

Figure 5.1. FLME Interface of FLIGHTLAB

“Actuator Disk Model” is used for “Tail Rotor” module. The blade properties like
number of tail rotor blades, rotor radius, rotational speed with direction, hub location,
cant angle, blade tip loss factor, lift curve slope, rotor head drag coefficient, effective
rotor head drag area, airfoil constant drag coefficient, solidity weighted blade chord,
linear blade twist, delta 3 angle, partial of coning with respect to thrust, blockage effect
properties, inflow / profile drag correction, induced inflow / coning time constants are

modeled in this module.
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Airframe model is comprised of fuselage, horizontal tail and vertical tail components.
The “Rigid Fuselage” model is generated with vehicle center of gravity, mass, moment
of inertia in pitch, roll, yaw axis and the total product of inertias. All of the associated
aerodynamic data belongs to wind tunnel test results and numerical analysis performed

in FLUENT environment.

The flight stability augmentation system model is embedded in the flight control
module. Rate feedback stabilization systems for roll, pitch and yaw channels are
enabled to increase system stability. These stabilization systems also include the main

rotor and tail rotor actuator models. Actuator models are linear.

The “ideal engine” model is selected for propulsion system. The number of engines,
nominal engine torque and main rotor to engine gear ratio properties are produced as

engine properties.

The FLIGHTLAB model is trimmed (Figure 5.2) and flight simulations are performed
in several flight maneuvering conditions like hovering, forward flight, climb. The
model is verified by comparing the simulation results with the related flight test data.
Both simulations and the flight test efforts are repeated with several environmental

conditions for verification.
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| Trim
Results
Trim variables... Algorithm: 0: Newton; 1: Newton-Hooke; 2:Hooke-Jeeves |0
e Max No. ?terat?ons for 1st outer trim loop 30
Max Mo. iterations for all outer trim loops except the 1st 10
Select gutputs.. Max steady state iteration number 20
Newton: automatic relaxation flag: 1: on; 0: off 1
Newton: relaxation factor <1.0 and >0 05
Number of multiple trims 1
Number of outer trim loops 10
Number of revolutions for averaging 1
Trim variable limit check: >=1: on; else: off 0
Trim wvariable limit margin factor 0.95
Trim wariable relaxation for Hooke-Jeeves 0.618
Trim wariable tolerance for Hooke- |eeves 0.001
Run | Apply | Reset | Close | Help

Figure 5.2. Xanalysis Interface of FLIGHTLAB for Trim Analysis

5.1. Implementation with Linear Model Data

Two linearization approaches are available in FLIGHTLAB [67]. These are “averaged
geng" and “steady perturbation" (Figure 5.3). The “averaged genq" method estimates
the stability and control matrices by perturbing the system model at each rotor
azimuth. Then the resultant derivatives are by averaging the resulting partial
derivatives over one rotor revolution. On the other hand, the “steady perturbation"
method obtains the derivatives by perturbing the state or control, running the model
to steady state, and then averaging the resulting partial derivatives over one rotor

revolution [67].
Both methods are practiced in this study and the method selection is performed by

comparing the linear model responses with the nonlinear model simulations. Since the

“averaged genq" method gives better results, it is selected for our problem.
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The nonlinear FLIGHTLAB model is linearized around a specific trim point (level
flight at 70 knots, 2000 ft MSL). Linearization is performed again using the
linearization feature of FLIGHTLAB Xanalysis interface.

Linearization

Results

Select jnputs... Control state: 0: Reduce all; 1: Retain all ]

Finite difference: 0: forward; 1: central 1
Select states...

Flag: -1: geng/eframe; 0: geng; 1: steady 0
Select gutputs... Mumber of steps to average linearization 25

Option: 0: No model reduction; 1: reduction 1

Perturbation factor 0.02

Propulsion state: 0: Reduce all; 1: from state list |0
Steady state tolerance 0.0005

Run ‘ Apply ‘ Reset | Close | Help

Figure 5.3. Xanalysis Interface of FLIGHTLAB for Linearization

Linear model configuration is selected from “Xanalysis” interface [67]. In this
process, inputs (Eq. (109)) are selected as longitudinal cyclic, lateral cyclic, collective
and pedal; the states are selected as (Eq. (110)) roll angle, pitch angle; translational
velocity components (longitudinal, lateral and vertical velocity), and angular velocity
components (roll, pitch and yaw rates). The outputs are assigned to the states (Eq.

(111).

x = Ax + Bu (108)
inputs : 610n' 61at' 6(,‘01' 6ped (109)
states : ¢,0,u,v,w,p,q, 1 (110)
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outputs : ¢,0,u,v,w,p,q, 7 (111)

The expanded form on the basis of the input-state-output configuration is given in

Appendix B.

Model linearization is applicable around the trim point. Trim condition is determined
according to the model verification status. Trim condition at 70 knot forward velocity
where the model data coincide with the flight test results is selected as the initial
condition for linearization. Pressure altitude is selected as 2000 ft and the ambient
temperature is chosen as 15 °C. Appropriate trim targets and trim variables are set
before trim analysis. For forward velocity condition body accelerations are set as trim
targets. Pilot control inputs and the Euler angles are defined as trim variables which
are released as free to solve trim equations. After trim analysis, linearization analysis
is performed to calculate the linear model in FLIGHTLAB environment. Then the
model structure is converted to the form given in Eq. (112). The transformation

equations are defined in Appendix B.

-2 0
v 6

w u [slat]

p v 6lon

q =A w + B [6ped (112)
T p 6col

@ q

L] Ly

where
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X, X, Xy Xp Xq—wo X+ 0 —gcl,

Y. Y, Y, Y,+w Y, Y,—uy gcp,cly —gso,sb

Zy Z, Zy, Z,—vy Z;tu Z, —gsp,c8y —gcd,sby (113)
L, L, L, L, L, L, 0 0

M, M, M, M, M, M, 0 0

N, N, N, N, N, N, 0 0
0 0 0 1 s¢,to co,tto 0 0

L 0 0 0 0 chy —s0, 0 0

B = Liagt  Lion Lped Leor (]]4)

The obtained linear model is transferred to MATLAB environment, which will be

utilized for the rest of the analysis.

Now we shall proceed by generating input and output data required for identification.
One of the most optimal input signal types which meet the well-known requirement
of persistently exciting ([17], [37]) is 3-2-1-1. This input signal is sequentially applied
for each channel during the same identification test. The input signal frequency
content and amplitude shall be well adjusted for exciting the helicopter body dynamics
properly ([17]). In the light of this, frequency content of the input signal is adjusted to
cover a frequency range of 0.1-1 Hz. Signal to noise ratio is also taken into account
while selecting the amplitudes of the input signals. Moreover, helicopter is not allowed
to drift away from the trim condition too much ([17]). For this purpose, input signal

amplitudes are limited in such a way that the helicopter attitude angles stay in the
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range of + 10 deg around the specific trim point and the helicopter angular velocity
components shall not exceed + 10 deg/s. These considerations about the input design
are expected to ensure the quality of identification. Constructed signals for each input
channel are shown in Figure 5.4. MATLAB ‘fft’ command is used to check the
frequency content of the input signal. Single-sided amplitude spectrum of the input

signals is shown in Figure 5.5.
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Figure 5.4. Input Signals (3-2-1-1)
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Figure 5.5. Single-Sided Amplitude Spectrum of Each Input Signal

The input signals are fed to the linear model in MATLAB environment to generate the
outputs required for identification. The outputs were selected as roll angle, pitch angle;
translational velocity components (longitudinal, lateral and vertical velocity), and
angular velocity components (roll, pitch and yaw rates). Time domain responses of

the system to the inputs given in Figure 5.4 are illustrated in Figure 5.6.
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One important issue for input output data set is linearity. During the parametric estimation phase,
the linearity between input output couples will give information about the accuracy of the
corresponding parameters ([17]). A “coherence” value which is higher than 0.6 implies that there
is satisfying system response linearity for the corresponding input frequencies ([17]). The equation

of ““coherence function” is given in (115).

] |GAxy(Ji)|2 (115)
|G (D] Gyy (D]

]7x2y (f) =

According to this formulation, the coherence values between inputs and the outputs for each signal
are illustrated separately in Figure 5.7 - Figure 5.10. To clarify, if we look at Figure 5.7, we observe
that the relation between lateral cyclic input and roll rate is satisfying for the desired frequency
range (0.1-1 Hz). Same comment is valid for the lateral cyclic input and roll angle pair. These
coherence plots given in Figure 5.7 - Figure 5.10 are associated with the physical parameters to be

estimated in the following chapter.

Since we have an input and output set, we can initiate the identification process. The sampling
time is selected as 1/150 to be compatible with real system sensor properties (see Paragraph 6.8).

First the Block Hankel Matrices, (Yr, Ur, W, ) which have significant importance in subspace
identification, are constructed by using the available input and output data set. In our problem, the
row number Block Hankel Matrices will be 16 (2n where n is selected as 8) and the column number
will be 5985* (See Eq. (30)). The obtained Block Hankel Matrices will be used to compute the
oblique projection matrix O; At this stage the RQ decomposition algorithm is utilized to reduce
the computational load and to avoid rank deficiency during the projection operations. After
obtaining the oblique projection matrix, SVD method is used to inspect and reduce the order of
the system. The U and S matrices of SVD are used to compute the extended observability matrix, [.
Moreover, the prediction matrix Z; is computed again by using the Block Hankel Matrices. Finally,

A and C matrices are computed by using Eq. (79); B and D matrices are computed by using Eq.

4 For 40 s simulation data with 150 hz
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(81). These discrete time linear model matrices are then converted into their continuous time
counterparts using “d2¢” command of MATLAB. “tustin” discretization method is used for this
purpose. This “inverse-discretization” operation is required since we are seeking for the continuous

time form of the system model in order to obtain the physical parameters.
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The true system matrices and their counterparts that are obtained by identification are shown in
Appendix C. Although a direct comparison between these two systems is not correct and not a
recommended practice, we would like to emphasize the following for clarity. When we inspect
these two systems (the true one and the identified counterpart), we can see that they have nearly
identical poles (Table 5.1). However, the numerical values of the matrix elements are quite

different. This is an expected phenomenon as it was mentioned before.

Table 5.1. Eigenvalue Comparison

True Model Subspace Id. Results
—7.7321 —7.7319
—3.6525 + 0.2764i —3.6525 £ 0.2763i
—0.6125 + 0.0779i —0.6124 + 0.0782i
0.0095 + 0.2070i 0.0095 + 0.2070i
—0.1377 —0.1377

The outputs of the true model and the model obtained through subspace identification under the

same 3-2-1-1 control input set are presented in Figure 5.11
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The subspace identification process worked well as expected. Now we can continue

our route for the physical parameter estimation. Based on the equations of the

similarity transformation theory (Eq.(85) - Eq. (87)), the objective function presented

in Eq. (105)) is symbolically generated for our problem. MATLAB symbolic toolbox

is used for this purpose. The obtained symbolic objective function is shown in Figure

5.12.

minf(y)
X
X125 X126 X127
X133 X134 X135
| X141 X142 X143
X149 X150 X151
X157 X158 X159
X165 X166 X167
X173 X174 X175
lxlsl X182 X183
= min
* —0.012 —0.100
—0.054 -0.194
0.026
0.021
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Figure 5.12. The Symbolic Representation of the Objective Function °

5 Some elements of the state space matrices are intentionally hidden.
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There are infinitely many solutions for this minimization. However, our aim is to reach
to a solution that corresponds to the physical domain. Thus, constraint determination
and initial value assessment becomes an important issue. Constraints of the physical
parameters may be selected considering typical error budgets of wind tunnel testing
and aerodynamic prediction tools for helicopter systems or by using common practices
of aerospace vehicle modeling. However, for convenience we conducted the analysis
for different symmetric and asymmetric constraint levels. Here, we assume that the
constraints for each parameter are equal to the true parameter values with [-10% 10%]
error in regular intervals up to [-90% 90%] error. These nine set of analysis are
performed to investigate the effect of the constraints on the convergence of the
solution. The initial values are randomly selected between these lower and upper
bounds (constraints). In order to assure that the solution is consistent, the
optimizations are repeated for 180 times starting from randomly selected initial
conditions (20 run for each set of constraints). It is expected that the analysis will
converge almost to the same results for each set of initial conditions; and they will

hopefully be close to the true values.

Differently from SQP algorithms, the middle point of the lower and upper bounds
plays very important role for IP algorithm [52]. The common practice is setting the
initial iteration to the midpoint of finite bounds. Therefore, starting from the
symmetric error bound (i.e [-10% 10%]). However, in real application this is
infeasible. Therefore, the optimizations are repeated for the different asymmetric
constraint levels (i.e. [-10% 20%], [-10% 30%]) to better understand the performance
of the IP algorithm.

Another method for constraint selection is contained in the knowledge helicopter
flight stability. With this additional knowledge, we proceed by reshaping the
constraints according to the physical contents of the relevant parameters. For instance,
if we have a priori information about the stability characteristics then we can estimate

the sign of the stability characteristic. More specifically, if we have an idea about the
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pitch damping characteristics of the system for a predefined flight condition, we can
set a sign constraint for the relevant derivative (My). All of the stability related
parameters which are listed in Table 3.1 are bounded according to the stability
characteristics of our system under examination. Then, we can eliminate the
insignificant parameters which are mentioned in Chapter 3. In addition to these, the
constraints for some derivatives (Z,,, Zs_, and Zs, ) are set by calculating the
approximations equations (Eq. (101) - Eq. (103) for this study. The constraints for all
of the stability and control derivatives defined in the first step (true parameter values
with [-10% 10%] error in regular intervals up to [-90% 90%] error) are combined with
the constraint values for the ones specified here. Then the optimization simulations
are repeated for these confined space constraints set which is acquired by intersecting

of these values.

Until now we discussed the constraints for stability and control parameters (36
parameters in App, and 24 parameters in B,p,). However, the above-mentioned
methods of selection for the constraints do not hold for the similarity transformation
matrix, T. The T matrix whose elements are not physical do not have any constraints
in our problem. Besides, considering Eq. (85), the initial value of T matrix is set to the
inverse of the C matrix (obtained by subspace identification). This is not a compulsory
practice; however, a clever initialization of T that complies with the equations of the
similarity transformation theory speeds up the computations. Verification is
performed by repeating the optimizations for randomly selected initial values for T

matrix.

After constructing the objective function, setting up of the constraints and the initial
conditions, we can now proceed to the optimization process. As mentioned before the
fmincon solver of MATLAB is utilized. The IP and SQP algorithms are tested with
the above-mentioned constraint and initial condition settings. Moreover, the fmincon

solver is externally assisted by the symbolic gradient of the objective function during
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the optimization process. This symbolic gradient is computed via the “gradient”

command of MATLAB.

The process of physical subspace identification can be summarized as in Figure 5.13

data gathering

___________________________________________________________________________ g

g . p . arameter estimation
model structure objective function, constraint selection p

.. L. model verification
determination optimization

min (1) = min [T 0l ) - TGO, + Ty 0 B,

Howto -0l R Fe

Figure 5.13. Physical Subspace Identification Procedure with Simulation Model Generated Data
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CHAPTER 6

NUMERICAL RESULTS

In this chapter, the numerical results are presented for different optimization problems.
These are tackled in five case studies which are categorized according to the utilized
optimization algorithm, parameter constraint determination and the initial condition

settings.

6.1. Case 1-Interior Point algorithm

In this case study, IP algorithm is used for optimization. The analyses are constructed
for different symmetric constraint levels. Here, we examined nine different constraint

set for the parameters of A, p, and Bpp, matrices. We assume that the constraints are

equal to the true parameter values with [-10% 10%] error in regular intervals up to [-
90% 90%] error. The parameters of the T matrix elements do not have a physical
meaning; so, they are not constrained. The initial values of the parameters which

belong to Ay, and Bpp, matrices are selected randomly between these constraints.

phy
With the assumption that all of the system states are perfectly measurable, the

associated Cppy, 1s an identity matrix and according to our problem formulation D,

is equal to zero. These assumptions for Cpp,, and Dy,p, matrices are hold for all of the

phy
case studies presented in this thesis. All of the conditions examined in Case 1 are

summarized in Table 6.1.

71



Table 6.1. Summary of Analysis Conditions for Case 1 (Interior Point algorithm)

constraint (error bound) initial condition
number
alg. for the parameters of for the parameters of
of run
Apny | Bpny | T | Apny | Bpny T
Case 1.1 Ip¢ [-10% 10%] NA random sel.’ const® 20
Case 1.2 IP [-20% 20%] NA random sel. const 20
Case 1.3 1P [-30% 30%] NA random sel. const 20
Case 1.4 1P [-40% 40%] NA random sel. const 20
Case 1.5 1P [-50% 50%] NA random sel. const 20
Case 1.6 1P [-60% 60%] NA random sel. const 20
Case 1.7 1P [-70% 70%] NA random sel. const 20
Case 1.8 1P [-80% 80%] NA random sel. const 20
Case 1.9 1P [-90% 90%] NA random sel. const 20

According to Table 6.1, 180 (20x9) optimization runs are performed in total. Iteration
index versus minimization output curves of each parameter (each stability and control
derivatives) are gathered from all of the optimization runs. To make it more
understandable, the results are presented in three groups. In the first group of figures
(Figure 6.2, Figure 6.3) the optimization runs are presented for Case 1.1 — Case 1.3. In
the second group (Figure 6.4, Figure 6.5), the results of Case 1.4 — Case 1.6 are
illustrated. In the last group the results of Case 1.7 — Case 1.9 are presented in Figure
6.6 and Figure 6.7. Each figure contains 60 (20x3) optimization runs that are initiated
for 3 different constraint sets and initiated from 60 (20x3) different initial values. Due

to simplicity, the initial values and the convergence results are illustrated in normalized

¢ “IP” denotes “Interior-Point”
7 “random sel.” denotes “random selection”

8 “const.” denotes “constant”
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form. For this purpose, the y axis of each subplot is normalized with the true value of
corresponding parameter. In other words, if optimization outputs converge to 1.0 this
would mean that the estimation is perfect for that parameter. If we look at Figure 6.1
which is one of the 36 subplots of Figure 6.2, y axis shows the convergence results of
the parameter X, in normalized form. The initial values which are selected randomly
are within the bounds defined in the legend of the plot. For the problem defined in
Case 1.1 — Case 1.3, it is seen that the parameter X, converges to the true value

perfectly after about 80™ iteration.

[-30% 30%] |:
[-20% 20%] |
[-10% 10%] |

05 | i j
0 a0 100 180
iteration number

Figure 6.1. Convergence of Stability Derivative “X,,”” (Case 1.1 — Case 1.3)

For Case 1.1 — Case 1.3, it is seen that all of the parameters converge to the same value
independently of the constraint levels and the initial values (Figure 6.2, Figure 6.3). In
addition, the optimization results converge to “1” which is the normalized true value.
However, according to Figure 6.4 and Figure 6.5, the convergence performance
slightly deteriorates with larger constraint ranges (Case 1.3 — Case 1.6). In the last
group, deteriorations become more visible where the constraint ranges are largest
compare to the other three groups. Convergence results of this group (Case 1.7 — Case

1.9) are given in Figure 6.6 and Figure 6.7.
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The results convergence to the normalized true value for the majority of the
optimization runs. However, a metric is required for quantitative analysis. For this
purpose, percent estimation errors are calculated for each parameter. The formulation

of the percent estimation error is given in Eq. (116).

) ) abs(estimated value — true value)
estimation error (%) = abs (trie value) x 100 (116)

However, the question is how we define the “estimated value”. In other words, there
are many results for many iteration indexes. For this purpose, some averaging
calculations are performed. But it should be noticed that averaging is meaningful only
when convergence is achieved. In our problem, for one optimization run, the mean
value is calculated for a set of points where the convergence is ensured. For this
purpose, “mean” function of MATLAB is utilized here. For example, the mean value

of last 50 results is set as the convergence result of Ng ped for the corresponding

optimization run given Figure 6.6. The points for which the mean value is calculated
are roughly shown with red dashed line in Figure 6.6. However, considering the
number of runs for one specific condition (Figure 6.7) there will be 20 different mean
values. At this point “K-Means” algorithm is used to refine the result. “kmeans”
function of MATLAB is performed to get the “estimated value” of each parameter

which used for “estimation error” calculations as given in Eq. (116).
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Figure 6.9. Convergence of N(;pe 4 for Twenty Optimization Runs

The estimation error values obtained from the results are presented through Figure 6.2

- Figure 6.7 are tabulated in Table 6.2 and Table 6.3. These results are close to perfect.
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Table 6.2. Percentage Estimation Errors of Stability Derivatives — Case 1

estimation error %

N Case 1.1 Case1.2 | Casel3 [ Casel4 | Casel.5 [ Casel.6 | Casel.7 | Casel.8 | Casel.9
parameter) symbol t=00 o 0% 20%][-30% 30%][-40% 40%]1-50% S0%][[-60% 60%]|[-70% 70%]|[-80% S0%]|L-90% 90%]
% X, 0.003 0.007 0.012 0.011 0.023 0.001 0.028 0.054 0.028
% X, 0.000 0.000 0.000 0.000 0.000 0.130 0.001 0.392 0.001
X3 Xy 0.004 0.008 0.013 0.013 0.019 0.308 0.008 0.007 0.007
Xa X, 0.003 0.004 0.003 0.004 0.018 0.966 0.044 2.410 0.079
X X4 0.036 0.068 0.075 0.108 0.257 1.039 0.075 0.059 0.254
X X, 0.000 0.000 0.001 0.001 0.006 0.240 0.012 0.570 0.021
X Y, 0.000 0.001 0.002 0.002 0.005 0.003 0.008 0.038 0.010
Xg Y, 0.001 0.006 0.016 0.027 0.078 1.861 0.092 0.712 0.133
Xo Y, 0.000 0.001 0.002 0.001 0.002 0.431 0.001 1.756 0.000
X10 Y, 0.495 0.821 1.106 1.025 1.390 2.987 1.506 6.240 1.438
X11 Y, 0.003 0.008 0.014 0.012 0.041 0.443 0.066 1.744 0.078
X1 Y, 0.007 0.013 0.017 0.017 0.017 0.165 0.031 0.462 0.035
X13 Z 0.008 0.017 0.028 0.026 0.058 0.043 0.077 0.077 0.085
X14 zZ 0.002 0.003 0.001 0.001 0.011 2.105 0.019 5.667 0.027
Xus Z, 0.002 0.014 0.028 0.036 0.081 0.238 0.082 1.866 0.130
Xae z, 0311 0.499 0.611 0.621 0.679 2.189 0.613 7.060 0.630
X1z Z, 0.012 0.015 0.008 0.013 0.009 0.036 0.035 0.019 0.019
X1 z 0.011 0.003 0.020 0.003 0.101 2.243 0.237 0.281 0.292
X1 L 0.002 0.003 0.005 0.005 0.016 0.044 0.031 0.056 0.033
%20 L, 0.044 0.087 0.142 0.139 0.350 2.424 0.543 5.736 0.729
Xo1 Ly 0.009 0.007 0.011 0.001 0.013 2.017 0.030 4702 0.037
X2 L 0.013 0.012 0.003 0.004 0.009 2.985 0.019 7.756 0.023
Xo3 L, 0.001 0.048 0.061 0.147 0.118 0.688 0.016 1.867 0.048
Yo L 0.031 0.034 0.069 0.040 0.046 2.826 0.114 7.329 0.112
Xas M, 0.049 0.108 0.179 0.170 0375 0.068 0.491 0.151 0.547
%26 M, 0.008 0.024 0.051 0.041 0.177 2.220 0.338 6.229 0.434
Xp7 M, 0.013 0.028 0.040 0.040 0.110 0.069 0.138 4.165 0.228
Xog M, 0.114 0.034 0.107 0.070 0.342 3.295 0.330 6.540 0316
%26 M, 0.013 0.010 0.008 0.014 0.011 0.018 0.007 0218 0.016
Xa0 M, 0.000 0.004 0.016 0.011 0.071 2.224 0.137 6.005 0.180
Xa1 N, 0.008 0.016 0.029 0.027 0.095 0.265 0.161 0.422 0.187
Xa2 N, 0.059 0.085 0.078 0.081 0.060 2.784 0.191 7215 0.294
Xa3 N, 0.003 0.007 0.010 0.006 0.019 2.187 0.013 6.112 0.024
Xsa N, 0.384 0.381 0.331 0.283 0.137 2.876 0.076 7.881 0.032
Xas N, 0.066 0.112 0.139 0.133 0.118 1.057 0.027 2.525 0.047
Xag N, 0.087 0.088 0.072 0.073 0.050 0.615 0.027 1.937 0.021
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Table 6.3. Percentage Estimation Errors of Control Derivatives — Case 1

estimation error %
Case 1.1 Case 1.2 Case 1.3 Case 1.4 Case 1.5 Case 1.6 Case 1.7 Case 1.8 Case 1.9
parameter) symbol [ 00 5 0 00 20%41l[-30% 30%]|[-40% 40%]|L-50% S0%I|L-60% 60%I|[-70% 70%]|[-80% 80%]|[-90% 90%]
X37 Xsiat 0.003 0.011 0.023 0.019 0.092 0.259 0.184 0.736 0.245
35 | Xoion 0.053 0.112 0.172 0.164 0.276 0312 0.309 0.302 0.302
Xss | Xspea | 0.000 0.000 0.001 0.000 0.001 0.046 0.002 0.161 0.003
Xa0 Xscol 0.001 0.003 0.006 0.004 0.030 0.101 0.054 0.431 0.093
Xa1 Yoiat 0.056 0.189 0.400 0.339 1.430 3.534 2.582 9.091 3.191
Xa2 Ysion 0.001 0.005 0.015 0.011 0.099 0.451 0.253 1.614 0.386
i3 | Yeped | 0.269 0.699 1.300 1.158 3.802 2.254 6.244 1.910 7.470
Xaa Ysco 0.012 0.038 0.079 0.065 0.308 2.069 0.652 4.920 0.890
Xas Zoiat 0.049 0.143 0.290 0.247 1.069 2.327 2.098 5.754 2.762
a5 | Zoion 0.634 1.345 2.092 1.995 3.640 4.061 4397 4.808 4.660
Xi7 | Zspea | 0.001 0.002 0.003 0.003 0.010 0.046 0.015 0.101 0.017
Xag Zscol 0.030 0.142 0.274 0.265 0.506 1.024 0.641 1.258 0.709
Xa Ltat 0.987 1.347 1.613 1.554 2.022 0.982 2.204 2.509 2.261
Xs0 Lsion 0.287 0.627 1.006 0.926 1.822 1.864 2.270 3.795 2412
Xs1 Lsped 0.758 1.343 1.868 1.766 2.671 1.092 3.047 0.187 3.180
X5 Lscor 0.249 0.548 0.853 0.804 1472 1.288 1.754 4.092 1.833
Xs3 M | 0258 0.558 0.874 0.819 1.577 4393 2.049 8.354 2215
Xsa | Mson | 0.269 0.480 0.652 0.619 0.923 1.207 1.095 1213 1.153
Xss | Mspeg | 0.003 0.007 0.015 0.012 0.052 1.818 0.103 5.003 0.139
Xss | Msceo | 0.033 0.114 0.206 0.185 0.452 1272 0.652 1.153 0.708
Xs7 Nejat 1.101 1.872 2452 2.295 3.146 6.035 3.438 11.035 3.459
xss | Naion 0.234 0.552 0915 0.860 1.866 3.924 2.454 6.882 2.749
Xss | Nsped | 0.069 0.205 0.350 0.262 0.533 0.188 0.682 0.589 0.659
Xeo Necor 0.274 0.562 0.855 0.766 1.328 3.222 1.565 5.198 1.563

The physical system matrices are constructed using the above presented optimization
results. Then the true model and the estimated one are simulated with the same 3-2-1-
1 excitation signals (Figure 6.10). The results show that simulation responses of “true
model”, “SID model” and “Physical SID model” to 3-2-1-1 excitation signals are

almost the same for Case 1.1 to Case 1.9.

In order to verify that our identification is still valid under different inputs, a doublet
input is applied in four channels sequentially in another single test case. The inputs
and the outputs of this test case are given in Figure 6.11 and Figure 6.12 and

respectively. After that, TIC values are calculated to make quantitative analysis.
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TIC is a tool of verification used for the comparison of time domain outputs of the true
model and the estimated counterpart. TIC is calculated using the two time domain

outputs according to Eq.(117) ([61]-[63]).

L) o) — (e

TIC =
JY) Tl @R + () B @F

(117)

TIC is defined as the ratio of the RMS value of the residuals to the summation of RMS
value of the true model outputs and RMS value of the estimated model outputs. TIC
value may vary between 0 and 1 where 0 corresponds to a perfect estimation. As a rule

of thumb, TIC values under 0.3 mean that the two models are complying [61].

The calculated TIC values for the verification signal outputs (Figure 6.12) are
tabulated in Table 6.4. The maximum TIC value is less than 0.055 which is quite
smaller than 0.3. This verifies that the physical subspace identification results are
highly complying with the true model and indicates that our estimation is quite
accurate. Also the comparison of the true model outputs with the outputs of the model
obtained through subspace identification and the outputs of the model obtained
through physical subspace identification which are shown in Figure 6.10 and Figure

6.12 support our quantitative outcome.
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Table 6.4. TIC Values for Case 1 (for Verification Signal)

optimization batch for constraint set TIC value
Case 1.1 [-10% 10%)] 0.0042
Case 1.2 [-20% 20%)] 0.0055
Case 1.3 [-30% 30%)] 0.0066
Case 1.4 [-40% 40%)] 0.0064
Case 1.5 [-50% 50%] 0.0079
Case 1.6 [-60% 60%] 0.0230
Case 1.7 [-70% 70%] 0.0083
Case 1.8 [-80% 80%] 0.0548
Case 1.9 [-90% 90%] 0.0083
g \
El
0 2 4 6 8 10 12 14
time (s)
g
3
w
0 2 4 6 8 10 12 14
time (s)
g
°
g
2=
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Figure 6.11. Verification Input Signals (Doublet)
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6.2. Case 2-SQP algorithm

In this case study, SQP algorithm is used for optimization. The analyses are
constructed for similar conditions as given in “Case 1”. All of the assumptions on
initial conditions and the constraints are also valid for this case. The only difference
from the previous case study is the optimization algorithm type. The summary of the

conditions for this case study are given in Table 6.5.

Table 6.5. Summary of Analysis Conditions for Case 2 (SQP algorithm)

constraint (error bound) initial condition
number
alg. for the parameters of for the parameters of
of run
Apny | Bpny T Apny | Bpny T

Case 2.1 SQP [-10% 10%] NA random sel. const 20
Case 2.2 | SQP [-20% 20%] NA random sel. const 20
Case 2.3 SQP [-30% 30%] NA random sel. const 20
Case2.4 | SQP [-40% 40%] NA random sel. const 20
Case 2.5 SQP [-50% 50%] NA random sel. const 20
Case 2.6 SQP [-60% 60%] NA random sel. const 20
Case 2.7 SQP [-70% 70%] NA random sel. const 20
Case 2.8 SQP [-80% 80%] NA random sel. const 20
Case 2.9 SQP [-90% 90%] NA random sel. const 20

According to Table 6.5, 180 (20x9) optimization runs are performed in total. Iteration
index versus minimization output curves of each parameter (each stability and control
derivatives) are gathered from all of the optimization runs. To make it more
understandable, the results are grouped as in Case 1. In the first group of figures
(Figure 6.13, Figure 6.14), the optimization runs are presented for Case 2.1 — Case 2.3.
In the second group (Figure 6.15, Figure 6.16), the results of Case 2.4 — Case 2.6 are
illustrated. In the last group (Figure 6.17, Figure 6.18), the convergence results are
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presented for Case 2.7 — Case 2.9. As in Case 1, each figure contains 60 (20x3)
optimization runs that are initiated for 3 different constraint sets and 60 (20x3)

different initial values.

For Case 2.1 — Case 2.3, we can see that all of the derivatives except Yy, Zy,, Mspeq
converge almost to the same value for all of the optimization run. The derivatives
Yu, Zy, Mspeq have relatively low level of significance in helicopter dynamics.
Therefore, this is an expected phenomenon. The results are complying with the
fundamentals of the estimation theory. It is not possible to estimate a parameter which
is not significant or even which does not exist. These findings provide us valuable
physical insight about the model of the system being identified. The results show that,
rest of the parameters converge to the same value independently from the constraint
levels and the initial values. In addition, the optimization results converge to the 1

which is the normalized true value.

For Case 2.4 — Case 2.6 where the constraints are enlarged to [-60% 60%] error
bounds, all of the derivatives except Yy, Yg, M., Mspeq converge to true value (Figure
6.15 and Figure 6.16). Again, these derivatives which do not converged have low level
of significance. In this group, more iterations are required for the optimizations to
converge when compared to the first group (Case 2.1 — Case 2.3). However, the

differences in iteration numbers are not so big.

In the last group (Case 2.7 — Case 2.9), all of the derivatives except
Y, Yo, Yg, My, Mspeq converge to true values (Figure 6.17, Figure 6.18). Again, the
derivatives which do not converged have low level of significance. Compared to the
first two groups, we observe that, some of the optimization runs cannot converge to a
solution. However, considering the total number of runs these are a few. Also, more
iteration is required for optimization to converge when compared to the first and

second groups.
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The estimation error values are calculated according to Eq. (116). The results are

tabulated in Table 6.6 and Table 6.7.

Table 6.6. Percentage Estimation Errors of Stability Derivatives — Case 2

estimation error %
Case 2.1 Case2.2 | Case2.3 Case 2.4 | Case2.5 Case 2.6 | Case2.7 | Case2.8 Case 2.9
parameter) symbol [0, 0 00, 20%]1-30% 30%]|[-40% 40%]|L-50% S0%I|L-60% 60%I|[-70% 70%]|[-80% 80%]|[-90% 90%]

%1 X 0.075 0.170 0.135 0.197 0.286 0.336 0.187 0.106 0.099
X, X, 3.364 4233 2.799 1.428 1.875 4.598 6.397 10.913 11.927
X3 X, 0.007 0.406 0.474 0.191 0.467 0.948 0.646 1.085 2.808
Xq X, 0.148 0.258 0.642 0.802 2.336 7.298 0.691 9.825 10.038
Xs Xq 0.019 0.043 1.478 0.841 4551 4.168 2234 7352 5343
X6 X, 1.158 1.775 0.534 0.912 1.020 3305 0.444 0.795 3.617
X7 Y, 0.058 2.107 2.937 1.540 0.402 9.326 8.580 12.546 6.529
Xs Y, 0.054 0.167 0.183 1.233 3.025 0.596 0.813 1.960 8.220
Xo Y, 0.156 0.927 1.077 7.139 1.420 2.151 2.829 0.329 6.252
X10 Y, 1.624 0.263 1.677 0.951 4.735 8.421 3.955 2.274 2.162
Xu1 Y, 0.716 1.202 7.008 4515 1.938 13.995 0.663 5.164 18.951
X1 Y, 0.031 0.015 0.020 0.072 0.096 0.296 0.077 0.547 0.569
X13 Z 0.528 0.826 0.625 1.553 1.408 1.099 0.246 7513 10.223
X1a zZ 1.004 5.680 0.421 4.010 2.200 12.865 11616 | 12.844 | 10.145
Xus z, 0.082 0.111 0.433 0.329 0.505 0.598 0.398 4.077 5.003
Y16 Z, 0.370 0.365 0.168 0.484 0.845 5.382 0.305 0.886 8.812
X1z Z, 0.014 0.172 0.059 0.143 0212 0.095 0.078 0.247 0.226
X1 z 1.008 1.838 0.053 1.719 0.949 8.009 4358 5.908 4211
X1 L 1.074 0.955 1.112 1.033 0.497 4622 1.516 1.969 5.016
%20 L, 0.230 0.191 0.076 0.597 0.472 5.432 0.979 3.587 9.574
Yo1 L, 0.027 0.042 0212 0.672 0.172 6.036 1373 1.873 6.128
X2 L, 0.041 0.024 0.008 0.039 0.075 5.971 0.010 0.379 8.984
Yo L, 0.084 0.208 0.162 0.004 0.209 0.349 0.521 1.573 8.092
X24 L 0.064 0.070 0.048 0.179 0.102 6.094 0.222 0.214 8.852
Xos M, 0.875 0.648 0.931 0.557 0.509 0.061 0.747 1.091 1.818
Xo6 M, 6.859 5.478 6.949 5.966 5.740 14.365 2.615 17520 | 14.930
Xa7 M, 0.196 0.041 1.309 0.852 1.565 2.838 1.468 9.680 12.945
Xog M, 0.345 0.105 0.009 0.258 0.461 6.266 0.159 7.499 5.358
Yo M, 0.007 0.011 0.089 0.068 0.107 0.222 0.068 0.387 0.883
X30 M, 3.514 2413 1.330 6.740 18.109 7.485 6.253 4.209 3.177
Xa1 N, 0.800 0.655 0.629 0.802 0.805 1.346 0.971 0.050 0.620
Xa3 N, 0319 0.226 0.035 0.199 0.840 6.664 0.128 7.434 9.516
X33 Ny 0.114 0.270 0.371 1.091 0372 6.191 5.204 11.506 | 15.605
X34 N, 0.185 0.057 0.095 0.099 0.523 6.141 0317 8.086 9.084
Xas N, 0.196 0.139 0.090 0.239 0.581 2.981 0.564 4518 2.684
X3 N, 0.030 0.012 0.031 0.007 0.172 1.454 0.100 2.387 2.361
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Table 6.7. Percentage Estimation Errors of Control Derivatives — Case 2

estimation error %

Case 2.1 Case2.2 | Case2.3 Case 2.4 | Case2.5 Case2.6 | Case2.7 | Case2.8 | Case2.9
parameter) symbol [0, 0 00, 20%4]l[-30% 30%]|[-40% 40%]|L-50% S0%I|L-60% 60%I|[-70% 70%]|[-80% 80%]|[-90% 90%]
Xa7 Xsiat 0.115 0.076 0.241 0.184 0374 1.545 0.204 1.382 2.302
35 | Xeion 0.016 0.014 0.079 0.040 0.277 0.269 0.130 0.485 0.393
Xss | Xsped 1.637 1.339 1.209 0.976 1.634 5231 1.501 6.682 7.735
Xa0 Xscol 0.038 0.037 0.469 0.236 1.456 2.286 0.710 1.739 2.518
Xa1 Yeiat 0.282 0.269 0.279 0303 0.226 5.812 0313 7.748 8.742
X2 | Yeion 0.148 0.260 0.027 0.049 0.121 6.229 0.096 7718 9.359
i3 | Yepea | 0078 0.086 0.090 0.060 0.144 6.158 0.066 7.999 8.354
Xaa Ysco 0.599 0.324 0.892 0.907 0.433 4.897 0.823 7.789 7.444
Xas Zoat 0.347 0.443 0.385 0.466 0.467 3.444 0373 3.940 8.611
a5 | Zoion 0.015 0.120 0.055 0.109 0.131 0.172 0.071 0.086 0.106
Xi7 | Zspea | 0.589 0.176 0.138 0.921 0.572 6.808 0.138 8.433 9316
Xag Zscol 0.012 0.093 0.028 0.083 0.107 1.030 0.041 0.264 0.351
Xao Liat 0.077 0.081 0.072 0.086 0.066 6.056 0.075 3.020 8275
Xs0 Lion 0.250 0.262 0.246 0.241 0.234 5775 0.276 2.811 8.667
Xs1 | Loped | 0.069 0.063 0.062 0.072 0.072 6.052 0.052 1.876 8.909
X5 Lscor 0.191 0.180 0.171 0.255 0.169 5.590 0.348 0.630 9.126
Xs3 | Mga | 0.093 0.471 0363 0.110 0.383 5.930 0.253 0.687 9.394
Xsa | Mgon | 0.193 0.234 0.164 0.241 0.306 0.458 0.181 0.460 0.045
Xss | Mepeg | 1.763 2.787 3.004 10859 | 12.893 5.708 10.096 4225 1.421
Xss | Mseo | 0.634 0.422 0.672 0.390 0.339 1.595 0.719 2.038 1.227
Xs7 Nejot 0.198 0.006 0.300 0.073 0.728 5.932 0.667 7.993 8.996
s | Newon | 0.272 0214 0.091 0.242 0.615 5.547 0.238 4.658 4.499
Xss | Nsped | 0.058 0.023 0.015 0.070 0.066 1.291 0.029 0.412 1.113
Xeo Necor 0.021 0.086 0.177 0.101 0.179 4722 0.281 4236 3.759

The physical system matrices are constructed using the above presented optimization
results. Then the true model and the estimated one are simulated with the same 3-2-1-
1 excitation signals (Figure 5.4). The results show that simulation responses of “true
model”, “SID model” and “Physical SID model” to 3-2-1-1 excitation signals are
almost the same for Case 2.1 to Case 2.9. The simulation results are illustrated in

Figure 6.19.
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The doublet input is applied in four channels sequentially for verification. The inputs
and the outputs of this test case are given in Figure 6.11 and Figure 6.20 respectively.

TIC values are calculated according to Eq.(117) and presented in Table 6.8.

Table 6.8. TIC Values for Case 2 (for Verification Signal)

optimization batch for constraint set TIC value
Case 2.1 [-10% 10%] 0.0021
Case 2.2 [-20% 20%)] 0.0022
Case 2.3 [-30% 30%)] 0.0023
Case 2.4 [-40% 40%)] 0.0022
Case 2.5 [-50% 50%)] 0.0029
Case 2.6 [-60% 60%)] 0.0109
Case 2.7 [-70% 70%] 0.0024
Case 2.8 [-80% 80%] 0.0181
Case 2.9 [-90% 90%)] 0.0179
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Now we can compare the results of the IP algorithm with the results of the SQP
algorithm in the sense of convergence performance. When we compare the results of
Case 1 with the results of Case 2, it seems that IP algorithm is superior then SQP.
Although all of the derivatives are converged in Case 1, there are some deficiencies in
Case 2. In addition, Convergence is faster in Case 1 compared to Case 2 regarding the
required iteration numbers. Also, the convergence seems better in Case 1 compared to
Case 2. In other words, the convergence characteristics are more obvious in the results
of Case 1. Considering the “estimation error” values and the TIC values, again Case 1
results are superior to those of Case2. However, we are suspicious about the results
due to one feature of the IP algorithm. It is known that the middle point of the lower
and upper bounds plays very important role for IP algorithm [52]. The common
practice is setting the initial iteration to the midpoint of finite bounds. Selecting a
symmetric error bound (i.e [-10% 10%]) will provide a solution in a few steps.
However, in a real application it is quite unfeasible. Therefore, the optimizations are
repeated for the different asymmetric constraint levels (i.e. [-10% 20%], [-10% 30%])
to better understand the performance of the IP algorithm. For this reason, Case 3
analysis is performed to examine the effect of different asymmetric constraint levels

on the optimization results.

6.3. Case 3 — Interior Point vs. SQP under asymmetric constraint conditions

The aim of this study is to compare the performance of the IP algorithm with the results
of SQP algorithm under asymmetric constraint levels. The summary of the conditions

for this case study are given in Table 6.9.
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Table 6.9. Summary of Analysis Conditions for Case 3 (Interior Point vs. SQP under asymmetric

constraint conditions)

constraint (error bound) initial condition
number
alg. for the parameters of for the parameters of
of run
Apny | Bpny | T | Apny | Bpny | T

Case 3.1 IP [-10% 10%] NA random sel. const 20
Case 3.2 1P [-10% 20%] NA random sel. const 20
Case 3.3 IP [-10% 30%] NA random sel. const 20
Case 3.4 | SQP [-10% 10%] NA random sel. const 20
Case 3.5 SQP [-10% 20%] NA random sel. const 20
Case 3.6 | SQP [-10% 30%] NA random sel. const 20

According to Table 6.9, 120 (20x6) optimization runs are performed in total. Iteration
index versus minimization output curves of each parameter (each stability and control
derivatives) are gathered from all of the optimization runs. The results are analyzed in
two groups. In the first group, the “Interior Point” algorithm is examined under
symmetric and asymmetric constraint levels ([-10% 10%], [-10% 20%], [-10% 30%]).
The convergence results are illustrated in Figure 6.21 and Figure 6.22. It is observed
that some certain derivatives do not converge to the same value for different constraint
levels. Also, for those parameters, the asymmetric constraint conditions ([-10% 20%],
[-10% 30%] ) do not converge to the true value whereas true values are achieved for

symmetric constraint levels ([-10% 10%]. These results support our suspicion.

However, for Case 3.4- Case 3.6 where the SQP algorithm is utilized, the results are
not much affected due to symmetric and asymmetric constraint levels (Figure 6.23 and
Figure 6.24). It is observed that the parameters with low level of significance do not
converge for SQP algorithm whereas they converge to different values for different /
unrepeatable constraint levels in case of IP algorithm. Figure 6.25 summarizes these

findings.
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Figure 6.25. Comparison in Convergence of Control Derivatives (Case3)
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6.4. Case 4 Arbitrary initial value for T matrix

As we mentioned before we set the initial value of T matrix to the inverse of the C
matrix (obtained by subspace identification). In this way, we aim to speed up the
computations if T complies with the Eq. (85). We aim to show that, our results which
are found by the previous optimizations are not achieved by chance. Thus, we examine
the performance of our solution method for arbitrary initialization of T. Then we
compare the results with the previous analysis given in Case2. The summary of the

conditions for this case study are given in Table 6.10.

According to Table 6.10, 360 (20x9x2) optimization runs are performed in total. In
addition to 180 optimization runs which are generated in Case 2, additional 180 runs
are generated with arbitrary initialization of T (Case 4.10-Case 4.18). Then the results
are compared with each other. For example, the results of Case 2.1 are compared with
Case 4.10 where the only difference is initialization of T. This comparison is continued
until to analysis the last pair (Case 4.9 and Case 4.18). The results are compared by
minimization output curves of each parameter with respect to iteration index. The
findings are illustrated in Figure 6.26 - Figure 6.43. The results show that obtaining a
solution is possible with the arbitrary initialization of T. The only degradation is that

the optimization takes a little bit more time with arbitrary initialization.

The percentage estimation error results given in Table 6.11 and Table 6.12 support the

idea that the results found by the methodology cannot be by chance.

The physical system matrices are constructed using the above presented optimization
results (Case 4.10 - Case 4.18). Then the true model and the estimated one are
simulated with the same 3-2-1-1 excitation signals (Figure 5.4). The results show that
simulation responses of “true model”, “SID model” and “Physical SID model” to 3-2-
1-1 excitation signals are almost the same for Case 4.10 to Case 4.18. The simulation

results are illustrated in Figure 6.44.
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Table 6.10. Summary of Analysis for Case 4 (Arbitrary Initial Point for T Matrix)

constraint (error o N
initial condition

bound) number
alg. for the parameters of
for the parameters of of run
Apny | Bpny | T | Apny | Bpny | T

Case 4.1 | SQP | [-10% 10%] NA® random sel. const 20

Case 4.2 | SQP | [-20% 20%] NA random sel. const 20

Case4.3 | SQP | [-30% 30%] NA random sel. const 20

Case4.4 | SQP | [-40% 40%] NA random sel. const 20

Case 4.5 | SQP | [-50% 50%] NA random sel. const 20

Case 4.6 | SQP | [-60% 60%] NA random sel. const 20

Case 4.7 | SQP | [-70% 70%] NA random sel. const 20

Case 4.8 | SQP | [-80% 80%] NA random sel. const 20

Case 4.9 | SQP | [-90% 90%] NA random sel. const 20

Case 4.10 | SQP | [-10% 10%] NA random sel. 20
Case 4.11 | SQP | [-20% 20%] NA random sel. 20
Case 4.12 | SQP | [-30% 30%)] NA random sel. 20
Case 4.13 | SQP | [-40% 40%] NA random sel. 20
Case 4.14 | SQP | [-50% 50%] NA random sel. 20
Case 4.15 | SQP | [-60% 60%] NA random sel. 20
Case 4.16 | SQP | [-70% 70%] NA random sel. 20
Case 4.17 | SQP | [-80% 80%] NA random sel. 20
Case 4.18 | SQP | [-90% 90%] NA random sel. 20

NA means “Not Applicable”
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Table 6.11. Percentage Estimation Errors of Stability Derivatives — Case 4

estimation error %

Case 4.10 | Case4.11 | Case4.12 | Case 4.13 | Case 4.14 | Case 4.15 | Case 4.16 | Case 4.17 | Case 4.18
parameter) symbol |0 o 0% 20%]|[-30% 30%]|[-40% 40%]|[-50% 50%]|[-60% 60%]|[-70% 70%]|[-80% 80%]|[-90% 90%]
% X, 0351 0.262 0.388 2.101 0.326 0.296 0.321 0.408 1.551
X, X, 0.623 4271 2339 1.154 0.968 1.347 2.108 2.439 3.479
X3 Xy 0.221 1.029 0.051 2438 1.940 2.598 2316 3.431 2.195
Xa X, 1.306 2.191 2.064 2.856 1377 2.225 2.201 5.057 8.006
X Xq 4.184 5.487 5.643 3411 1.476 1.369 1.078 1.269 2.305
X X, 0.381 0.786 0.739 4.573 0.155 0.243 1.646 1.910 0.821
X Y, 4.400 4.126 2.108 0.623 2.834 2485 9.578 8.434 11.822
Xs Y, 0.646 1.584 2.827 0216 1.452 4333 1.316 4.068 5.274
Xo Y, 0.297 0.172 3345 5231 6.495 2.463 2.238 1.713 13.789
X10 Y, 2.035 0.257 0.971 0.824 5.85 1.624 8.550 1.582 15.855
X11 Y, 4.983 0.678 0.421 2.165 5373 11.098 5.606 6.163 8.605
X1 Y, 0.057 0.138 0.067 0.046 0.153 0.139 0.086 0.274 1.054
Xu3 Z 2310 0.868 3.360 1.247 6.277 6.032 5713 5.954 11.994
X14 zZ 0.080 1.656 3.123 1.015 10.479 6.853 4,674 8.701 12.330
X1 Z, 0355 0.334 1.158 0321 3.744 2.390 3.531 4360 6.895
X1 z, 0.428 0.229 0214 0.138 1.850 2.440 1.373 2.906 9.642
X17 Z, 0270 0.102 0.322 0.197 0.139 0.005 0.231 0375 0.706
X1 z 3.181 4237 1.886 0.185 1.510 2.261 2.124 3.099 10.719
X1 L, 0.754 1.065 1.542 1.002 0275 2.198 2.206 1.323 5.070
Xa0 L, 1.545 1.346 0.392 0.450 0.866 3.117 0.649 3.170 11.862
Xo1 Ly 0.753 0.746 2.079 0.481 0.848 4913 0.969 6.219 15.504
Xa L 0.029 0.013 0.010 0.034 0.049 2.913 0.088 3.957 0.080
%o L 0.057 0.192 1.104 0.272 0.379 3.117 0.401 3.860 0.964
Yo L 0.357 0.544 0.095 0.127 0.227 3.027 0.196 4292 0.842
Xos M, 0.460 0.590 0.112 1.139 0.073 0.417 0.162 0.839 1.264
Xo6 M, 6.904 8.645 5.598 8.073 7.418 10.423 6.904 12657 | 15.945
Yo7 M, 0.612 1.133 3718 0.504 10.520 7.856 10062 | 13.984 | 14.819
Xog M, 0.557 0.548 0.104 0.095 1.737 3.106 1.478 3257 12.698
%26 M, 0.042 0.079 0.194 0.081 0.626 0.492 0.603 0.878 0.923
Xa0 M, 3.465 5.174 3.114 1.910 9.086 13767 | 12.391 12102 | 16112
Xa1 N, 0.638 0.991 0.716 0.869 0.606 1.072 0.910 0.656 7.648
X3 N, 0.866 0.342 0.873 0.059 0.572 2.947 0.495 2.260 3.366
Xa3 N, 1.137 2.269 3.367 1.579 1.009 0.290 1.086 2219 5.995
Xaq N, 0217 0.178 0.006 0.195 0.482 3.580 0.682 4.155 0.396
Xas N, 0.350 0.081 0.259 0.239 0.914 1.589 1.054 1.784 4452
Xa N, 0.007 0.000 0.058 0.028 0.068 0.728 0.141 0.875 2.621
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Table 6.12. Percentage Estimation Errors of Control Derivatives — Case 4

Case 4.10 | Case4.11 | Case4.12 | Case4.13 | Case4.14 | Case 4.15 | Case 4.16 | Case 4.17 | Case 4.18
parameter) symbol [-10% 10%]|[-20% 20%][[-30% 30%]|[-40% 40%]|[-50% 50%]|[-60% 60%][[-70% 70%][[-80% 80%]|[-90% 90%]
Xa7 Xsiat 8.574 0.436 0.388 4307 0.530 0.057 0.443 0.208 5.852
Xag Xsion 0.332 0.334 0.351 5.929 0.304 0.123 0.280 0.288 0.171
Xss | Xepea | 9811 0.587 0.944 0.973 5978 8.341 6.130 7.899 5.443
Xa0 Xscol 1.701 1.753 1.813 1.245 0.151 0.275 0.024 0.479 0.329
Xa1 Ysiat 6.992 0.230 0.249 0.269 10.046 12.483 10.007 13453 | 24.588
Xa2 Yson | 10.000 0.132 0.244 0.257 17.302 19.758 17.509 | 20387 | 30.517
13 | Vepea | 10.000 0.142 0.121 0.102 18.624 15.742 18.650 14.728 1215
Xaa Yseor | 10.000 0.400 0.147 0.870 27795 | 28473 | 27122 | 30.131 39.063
Xas Zoiat 10.000 0415 0.521 0.253 17.412 19.443 17.300 19.784 | 24.604
Xa Zsion 5.608 0.089 0.166 0.062 5.764 5915 5719 5.701 5721
X7 | Zopea | 9-820 1.045 1.070 0.075 15.183 9.474 14.153 8.271 11.556
Xag Zsco 0.719 0.065 0.141 0.140 0.780 1.323 0.732 0.978 0.819
Xa Liat 2.550 0.013 0.087 0.048 2.526 0.590 2.464 0.059 15.648
Xs0 Lsion 3.099 0.176 0.337 0.183 3.059 5.924 3.007 6.832 17.300
Xs1 Lsped 3.692 0.135 0.065 0.050 3.838 0.703 3.833 0.160 3.174
Xs Lscol 2.200 0.151 0.091 0.252 2.193 3.521 2.100 5.955 2.958
Xs3 Msa:e | 4.118 0.245 0.384 0.199 5.573 6.094 5.189 6.228 3212
sa | Mion 1.407 0.233 0.385 0.106 1.445 1.558 1.504 1.785 1.998
Xss | Mopea | 2666 4.553 3.495 8.280 21.044 | 20305 | 20457 | 27302 | 24.054
xss | Mcol 1.546 0.526 0.023 0.400 3.128 2.937 3.002 3.632 1.781
Xs7 Najat 3.878 0.017 0.144 0.138 3.369 6.074 2.892 7.697 18.934
Xsg Nion 3.680 0.207 0.157 0.185 2.980 5.851 2.840 6213 15.510
Xss | Nspea | 0.800 0.083 0.048 0.006 0.917 0.296 1.032 0.346 5.417
X60 Ncol 1.930 0.004 0.104 0.017 1.952 4.026 1.791 4.184 13.350
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The doublet input is applied in four channels sequentially for verification. The inputs

and the outputs of this test case are given in Figure 6.11 and Figure 6.45 respectively.

TIC values are calculated according to Eq.(117). Results are listed in Table 6.13.

Table 6.13. TIC Values for Case 4 (for Verification Signal)10

optimization batch for constraint set TIC value TIC value
(Case 4.1 to Case 4.9) | (Case 4.10 to Case 4.18)
Case 4.1 vs. Case 4.10 | [-10% 10%)] 0.0021 0.0103
Case 4.2 vs. Case 4.11 | [-20% 20%] 0.0022 0.0036
Case 4.3 vs. Case 4.12 | [-30% 30%)] 0.0023 0.0038
Case 4.4 vs. Case 4.13 | [-40% 40%)] 0.0022 0.0066
Case 4.5 vs. Case 4.14 | [-50% 50%] 0.0029 0.0041
Case 4.6 vs. Case 4.15 | [-60% 60%] 0.0109 0.0192
Case 4.7 vs. Case 4.16 | [-70% 70%] 0.0024 0.0040
Case 4.8 vs. Case 4.17 | [-80% 80%] 0.0181 0.0241
Case 4.9 vs. Case 4.18 | [-90% 90%] 0.0179 0.0883

10 Remember that the scenarios Case 2.1 to Case 2.9 are the same with Case 4.1 to Case

4.9.
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6.5. Case 5- Constraint with additional physical properties

Until now we assumed that we have priori information about all of the parameters
within an uncertainty range (from [-10% 10%] to [-90% 90%]). However, we may not
have information about some of the parameters and even about their error boundaries
in some real-life applications. In this case study, we forced well known parameters to
their “known” values and relaxed the constraints (increased the boundaries) for the
other ones. First it is assumed that all of the parameters are known with some
uncertainty (from [-10% 10%] to [-30% 30%]). Then we constrained certain

parameters to their priori values as it is explained below.

e The insignificant parameters are set to zero as a common practice. As it is
mentioned in Chapter 3, the stability parameters X,,, X,,, Yy, Yo, Zy, Zy,, My,

M,, N, Z,, Y.and the control parameters X Spe d,Y5pe o M Spear Y are

Sped
assumed as “insignificant” and they are set to zero.

e Assuming that we have priory information on the helicopter stability
characteristics, the sign information of the stability derivatives (as presented in
Chapter 3, Table 3.1) are assigned as constraints.

e For some parameters such as Z,,, Zs_ or Zs,  itis possible to assign values by
only considering the physical characteristics of the helicopter. We set Z,, to the
value obtained from Eq.(100), Z5_ , to the value obtained from Eq.(102) and
Zs

1on, 10 the value obtained from Eq. (103).

The conditions analyzed in this case study are summarized in Table 6.14. According
to Table 6.14, 120 (20x3x2) optimization runs are analyzed in total. In addition to the
60 optimization runs which are generated in Case 2, additional 60 runs are created with
additional constraints (Case 5.4-Case 5.6). Then the results are compared with each
other. For example, the results of Case 5.1 (or Case2.l, they are the same) are
compared with results of Case 5.4. Comparisons are continued until to the last pair

Case 5.3 and Case 5.6. The results are compared in terms of minimization output
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curves. The findings are illustrated in Figure 6.46 to Figure 6.51. The percentage

estimation error results are given in Table 6.15 and Table 6.16.

Table 6.14. Summary of Analysis Conditions for Case 5 (Constraint with additional physical

properties)

constraint (error bound) initial condition
number
alg. for the parameters of for the parameters of
of run
Apny | Bpny T | Apny | Bpny | T

Case 5.1 | SQP [-10% 10%] NA random sel. const 20
Case 5.2 | SQP [-20% 20%] NA random sel. const 20
Case 5.3 | SQP [-30% 30%] NA random sel. const 20

[-10% 10%]
Case 5.4 | SQP + addlt.lonal NA random sel. const 20
physical
constraints
[-20% 20%]
Case 5.5 | SQP + addlt.lonal NA random sel. const 20
physical
constraints
[-30% 30%]
Case 5.6 | SQP + additional NA random sel. const 20
physical
constraints

By examining Figure 6.46 - Figure 6.51, Table 6.15 and Table 6.16 we can see that
most of the insignificant parameters such as X, Y, Z,, do not converge to their true
values. However most of the significant parameters that are related with the dynamics
being excited such as Xg, Y, L,, My, Ny, Ligt, Mion, Npeq converge. It is good that the

methodology still works for the significant parameters in such scenarios.

The physical system matrices are constructed using the above presented optimization
results (Case 5.4 - Case 5.6). Then the true model and the estimated one are simulated
with the same 3-2-1-1 excitation signals (Figure 5.4). The results show that simulation

responses of “true model”, “SID model” and “Physical SID model” to 3-2-1-1
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excitation signals are satisfactory for Case 5.4 to Case 5.6. The simulation results are

illustrated in Figure 6.52.
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Table 6.15. Percentage Estimation Errors of Stability Derivatives — Case 5!

estimation error %
Case 5.1 Case 5.2 Case 5.3 Case 5.4 Case 5.5 Case 5.6
parameter| symbol [-10% 10%] | [-20% 20%] | [-30% 30%] [-10% 10%] | [-20% 20%] | [-30% 30%)]
+ add. const. | + add. const | + add. const

X1 Xy 0.075 0.170 0.135 7.045 2.928 3.684
X2 Xy 3.364 4.233 2.799 NA NA NA
X3 Xw 0.007 0.406 0.474 NA NA NA
Xa Xp 0.148 0.258 0.642 9.032 20.000 30.000
X5 Xq 0.019 0.043 1.478 9.449 5.257 3.522
X X; 1.158 1.775 0.534 10.000 20.000 28.560
X7 Yy 0.058 2.107 2.937 NA NA NA
Xg Y, 0.054 0.167 0.183 5.938 13.994 25.241
Xo ' 0.156 0.927 1.077 NA NA NA
X10 Y, 1.624 0.263 1.677 NA NA NA
X11 Yq 0.716 1.202 7.008 9.953 20.000 25.111
X12 Y, 0.031 0.015 0.020 3.362 3.207 1.984
X13 Z, 0.528 0.826 0.625 NA NA NA
X14 Z, 1.004 5.680 0.421 NA NA NA
X15 Z, 0.082 0.111 0.433 NA NA NA
X16 Z, 0.370 0.365 0.168 0.491 0.981 1.472
X17 Z, 0.014 0.172 0.059 0.995 0.457 1.009
X18 Z, 1.008 1.838 0.053 10.000 20.000 30.000
X19 L, 1.074 0.955 1.112 9.991 5.005 13.089
X20 L, 0.230 0.191 0.076 7.712 20.000 30.000
X21 L 0.027 0.042 0.212 10.000 20.000 30.000
X22 L, 0.041 0.024 0.008 0.278 0.345 0.018
X23 Ly 0.084 0.208 0.162 3.936 5.862 6.998
Xoa4 L, 0.064 0.070 0.048 1.736 2.334 1.449
X5 M, 0.875 0.648 0.931 10.000 12.234 10.826
X26 M, 6.859 5.478 6.949 NA NA NA
X27 M, 0.196 0.041 1.309 10.000 7.266 3.189
X28 M, 0.345 0.105 0.009 10.000 20.000 30.000
X29 M, 0.007 0.011 0.089 0.928 0.662 0.360
X30 M, 3.514 2.413 1.330 NA NA NA
X31 Ny 0.800 0.655 0.629 5.163 3.701 3.747
X3 N, 0.319 0.226 0.035 4.671 17.154 24.020
X33 Ny 0.114 0.270 0.371 NA NA NA
X34 Np 0.185 0.057 0.095 1.282 3.207 2.121
X35 Ng 0.196 0.139 0.090 10.000 7.967 3.123
X36 N, 0.030 0.012 0.031 0.189 0.640 0.028

11 <

NA : Not Applicable

add. const.” denotes “additional constraints”

142




Table 6.16. Percentage Estimation Errors of Control Derivatives — Case 5%

estimation error %
Case 5.1 Case 5.2 Case 5.3 Case 5.4 Case 5.5 Case 5.6
arameter| symbol -10% 10% -20% 20% -30% 30%
i e [-10% 10%] | [-20% 20%] | [-30% 30%] E— add. const]. [+ add. consz E— add. consz

X37 Xsiat 0.115 0.076 0.241 0.015 0.974 1.581
X3 Xslon 0.016 0.014 0.079 9.995 9.717 8.732
X39 Xsped 1.637 1.339 1.209 10.000 20.000 30.000
Xa0 Xscol 0.038 0.037 0.469 10.000 20.000 30.000
X41 Ysiat 0.282 0.269 0.279 9.414 9.523 9.592
Xa2 Ysion 0.148 0.260 0.027 8.257 7.638 10.266
Xa3 Ysped 0.078 0.086 0.090 NA NA NA
Xaa Yscol 0.599 0.324 0.892 NA NA NA
Xa5 Zs1at 0.347 0.443 0.385 9.161 7.799 7.460
X46 Zslon 0.015 0.120 0.055 NA NA NA
Xa7 Zsped 0.589 0.176 0.138 10.000 20.000 30.000
Xa8 Zscol 0.012 0.093 0.028 NA NA NA
Xa9 Lsjat 0.077 0.081 0.072 2.554 3.441 4.574
Xs50 Lsion 0.250 0.262 0.246 2.503 3.180 3.542
Xs51 Lsped 0.069 0.063 0.062 4.825 4.751 4.259
Xs52 Lscol 0.191 0.180 0.171 3.334 6.593 10.435
Xs53 Msjat 0.093 0.471 0.363 7.977 19.450 30.000
Xs54 Msion 0.193 0.234 0.164 2.631 2.386 2.971
Xs5 Méped 1.763 2.787 3.004 10.000 20.000 30.000
Xs6 Mscol 0.634 0.422 0.672 NA NA NA
Xs57 Nsjat 0.198 0.006 0.300 1.978 0.152 4.374
Xs58 Nsion 0.272 0.214 0.091 5.999 4.137 6.528
Xs59 Nsped 0.058 0.023 0.015 3.132 3.434 2.811
X60 Nscol 0.021 0.086 0.177 1.349 1.022 2.771

12 <

NA : Not Applicable

add. const.” denotes “additional constraints”
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The doublet input is applied in four channels sequentially for verification. The inputs

and the outputs of this test case are given in Figure 6.11 and Figure 6.53 respectively.

TIC values are calculated according to Eq.(117). Results are listed in Table 6.17.

Table 6.17. TIC Values for Case 5 (for Verification Signal) 3

TIC value TIC value
optimization batch for constraint set
(Case 2.1 to Case.2.3) | (Case 5.1 to Case 5.3)
Case 2.1 vs. Case 5.1 [-10% 10%] 0.0021 0.0103
Case 2.2 vs. Case 5.2 [-20% 20%] 0.0022 0.0036
Case 2.3 vs. Case 5.3 [-30% 30%] 0.0023 0.0038

BRemember that the scenarios Case 2.1 to Case 2.3 are the same with Case 5.1 to Case

5.3.

145




(uonenuirg [9poJA Jeaur] Sursn uonedynuapy) sfeusis uoneydxy j2[qno( Io0j sindinQ jo uosuredwo)) "£G°g ainbi-

“1su02 Ayd “ppe +[%60€ %0¢e-] aIs “Ayd ——
J5u09 Aud “ppe +[9602 %02-] AIS “Aud (s) swmn (s) swmn
“1su02 Ayd “ppe +[%60T %0T-] aIs “Ayd —— 8 9 4 4 0 vT zt ot 8 9 4 4
[/ [
|lepow aniy
° N
L~ 2 ZERN
T ™~ @ —~ TN | N———
Q
e
(s) swn (s) swn
vT T ot 8 9 4 4 0 T T ot 8 9 4 4
\\../ .l./ - PN
o)
— e /N N .f
N \ aunnuEREEENERE AEENRY e -
n
/
(s) awmn (s) awn
vT 4 o1 8 9 4 4 0 T 4 ot 8 9 4 4
Iy o
\. 2 e P
—~ 2 —_ L N
Nt — T
N\ S N 4
/
(s) swn (s) swn
T 43 o1 8 9 4 4 0 T 4 ot 8 9 4 4
n
o
—~ L~ / L o .
NS ENUggENOEN S T T
Q
/ z
=

(Bap) ¢

(sng) m

(sny) A

(sp)n

146



6.6. Discussion on Results

6.6.1. Comparison of Algorithm Type: IP or SQP

We compare these two algorithms: IP and SQP. If we only consider the results of Case
1 and Case 2 we see that the interior-point” algorithm is superior to SQP in many
aspects. The quality of convergence seems better for the Interior-Point” algorithm
compared to SQP. All of the derivatives converge easily in Case 1 where the IP
algorithm is utilized whereas there are some deficiencies in Case 2 where the SQP
algorithm is used. Convergence behavior of the IP algorithm is quite obvious in the
presented. Moreover, the convergence rate is another advantage of the IP algorithm.
As we mentioned above, with considering “estimation error” values and the TIC
values, again the IP results are superior to those of SQP. In summary, by inspecting
the results of Case 1 and Case 2 we can conclude that IP is better than SQP. However,

results of Case 3 will modify our opinion.

Case 3 show that IP results are quite sensitive to the midpoint of the constraints. This
was an expected phenomenon since IP algorithm sets the initial iteration point to the
midpoint of the finite bounds. In the light of this, the optimizations are repeated for the
different asymmetric constraint levels (i.e. [-10% 20%], [-10% 30%]) where the
midpoint is different than the true value. In Case3, it is observed that some certain
derivatives do not converge to the same value for different constraint levels. Moreover,
for those parameters, the asymmetric constraint conditions ([-10% 20%], [-10% 30%])
do not converge to the true value. The true values can only be achieved with symmetric
constraint levels ([-10% 10%]. However, for SQP algorithm, the results do not change
too much with asymmetric constraint levels (Figure 6.23 and Figure 6.24). It is
observed that parameters which have low level of significance do not converge for
SQP algorithm whereas they converge to different values for different unrepeatable
constraint levels with IP algorithm. This finding is summarized in Figure 6.25. Since
symmetric constraint settings are not always feasible due to the real-life uncertainties,

the IP algorithm results can be misleading for our problem. SQP algorithm seems to
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be more trustworthy since the results are not affected too much from asymmetric

constraints.
6.6.2. Comparison of Constraint Levels ([-10% 10%] ... [-90% 909%]))

Numerical results indicate that there is not a distinct change in the convergence of the
results due to expansion of the constraint limits. It is observed that some deterioration
occurs in convergence with increasing constraint levels. This happens especially for
the derivatives that are not much significant. These deteriorations do not affect the
results too much. It is important to point out that as long as the sign information of the
parameters is correct or consistent with helicopter flight dynamics the level of
constraint levels do not blow up the optimization. However, if we go beyond 100%

percent error in the constraint levels we may end up with false results.

6.6.3. Discussion on the Results Regarding the Initial Values of T Matrix

In Case 4, we examined the performance of our solution method for arbitrary
initialization of T matrix. The analysis showed that it is still possible find good results.
This is an important outcome that it is not necessary for matrix C to be equal to identity

for the methodology to work well.

6.6.4. Discussion on the Case with Additional Physical Constraints

Analysis showed that when we impose additional physical constraints on the problem
by using priori information on some well-known parameters, the degree of freedom of
the optimization process decreases. The optimization algorithm forces the rest of the
parameters to compensate for the absence of these well-known parameters. This causes
the insignificant parameters to converge to constraint limits instead of true values.
However, it was showed that the methodology still works for most of the significant

parameters in such scenarios.
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6.6.5. Discussion on Parameter Accuracy

One important metric for parameter accuracy is “sensitivity”. The inverse of the
sensitivity, named as insensitivity, is a metric for how much a parameter can be
changed from the estimated value without causing error in minimization of the
objective function more than a given amount [70]. The formulation of the insensitivity
is presented in Eq. (118) where H is hessian of the objective function given in Eq.

(105).

L, = (Hp) " (118)

The parameter insensitivities are generally presented as normalized percentages of the

converged parameter values [17]: The formulation is given in Eq. (119).

I,

~
B |

X 100% (119)

Xi

As a rule of thumb, the parameters which have I_xl. < 10% is assumed as reliable. For
our problem, the (normalized) insensitivity values are calculated for each parameter
by using the equations (118) and (119). According to the results, the derivatives
X Yo, Vi Zp, Zg, Zyy Ly, Ly, Ly, My, Mg, Ny, Ng, N, satisfy  the reliability criteria
defined above.

This finding is complying with the convergence results of the parameters defined in
this chapter. We observe that the significant parameters which are mentioned in

Chapter 3 converge well in the case studies defined in this chapter. Most of these

parameters also satisfy the insensitivity criteria.
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6.7. Implementation for Nonlinear Simulation

Up to now we have presented many test cases dealing with alternative optimization
algorithms, different constraints and initial conditions. These are presented for proving
the concept behind the methodology. For this purpose, we have only utilized the
outputs of the linear model until now. From here on we will present the implementation
of the methodology to nonlinear simulation data and real flight test data. SQP
optimization algorithm and only one set of constraint level [-30% 30%]) is used for

these.

We can now present the case of nonlinear simulation. In this case, the whole
identification process is repeated using FLIGHTLAB nonlinear simulation data.
“Nonlinear Response” utility is used for this purpose. Before executing a time response
run, desired inputs and outputs are set from ‘“Xanalysis” interface. Scripts are
generated to define specific input-output data whose configuration is defined in the

beginning of this chapter.

The corresponding time domain output comparisons are shown in Figure 6.54. The

obtained TIC value for this case is 0.324 which is also acceptable.

As we mentioned above, we selected the model order as 8 in order to be compatible
with the model defined in the linear case. However, it may be possible to obtain better
output matching with a higher order model selection. For example, if we selected the
order by including the main rotor, inflow and engine we may get more accurate fits.
Time domain output comparisons of the model with an order of 11 are given in Figure

6.55. Parameter estimation for higher order models can be an another research study.
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6.8. Implementation to Real Flight Test Data

The proposed methodology is implemented to a previously recorded flight test data of
a multi-role helicopter. The helicopter was instrumented with GPS aided INS, air data
system and other various flight test equipment. GPS aided INS was the major data
source for this study for obtaining the translational velocity components (longitudinal,
lateral and vertical), angular velocity components (roll, pitch and yaw) and Euler
angles (roll and pitch). A data consistency check was conducted between the GPS
aided INS and air data systems for assuring the reliability of the test data. The pilot
control inputs (lateral cyclic, longitudinal cyclic, pedal and collective) were measured
by the relevant actuation systems during the flight test. The mentioned flight test data
was recorded by both onboard and ground (telemetry) data acquisition systems.

INS data sampling frequency (150 Hz) and pilot input sampling frequency (62.5 Hz)
were not equal for this case. In order to prepare the data for the analysis, pilot input
recordings were up sampled to the INS frequency by linear interpolation. It can be
mentioned that in this flight test the frequency range of pilot inputs is around 1 Hz

which assures that there is no possibility of aliasing due to this up sampling process.

In this flight test, the helicopter was initially trimmed at 110 knots level flight
condition at 7300 ft sea level altitude. 3 sets of longitudinal cyclic doublet inputs were
applied sequentially by the pilot for excitation (Figure 6.56). The other control
channels were only used for maintaining the trim condition. Since excitation to the
helicopter is only given in the longitudinal channel, the flight test data being studied
is only convenient for the identification of the longitudinal derivatives. Consequently
Ly, Ly, Ly, My, My, M,, Ny, Ny, Ny, Ls,,,Ms,, ., N5, are the derivatives being
estimated and the rest of the derivatives are set to zero during the process. The initial
values for the physical parameters are set to be equal to the linearization outputs of

FLIGHTLAB model. The constraints are selected by trial and error here.
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In the scope of real flight test data implementation, it is observed that a time delay
correction is required in the pilot inputs. Time delays unique to each control channel
are determined by matching the model behavior with the flight test data. They are
found to be between 0.1-0.3 seconds. The main reason behind these time delays is
evaluated to be associated with the quasi steady assumption of 6-DOF helicopter

modeling [17]. The issue can be attributed to transient rotor dynamics.

The TIC value for flight test data implementation is obtained as 0.31. This indicates
that the results are again acceptable. The comparison of the real flight test
measurements with the outputs of the model obtained through subspace identification
and the outputs of the model obtained through physical subspace identification are

shown in Figure 6.57.
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Figure 6.56. Input Signals of Real Flight Test
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1. Conclusions

In this thesis, the subspace identification methodology is implemented on a multi-role
twin engine helicopter. The studies are focused on the problem of physical parameter
estimation from subspace identification results. Nonlinear optimization

methodologies are searched for solving the physical parameter estimation.

In Chapter 2, the theory of subspace identification is presented. “Robust Subspace
Identification” algorithm which proved to work well on practical data is explained in
detail. The problem of physical parameter estimation is defined and a solution

methodology is proposed.

In Chapter 3, the physical parameters that are aimed to be estimated are defined. The
equations of motion for 6-DOF helicopter model are introduced and the model
structure is presented with its inputs, outputs and the states. The main assumptions
about the physical parameters are mentioned and the importance of these parameters

is explained.

The optimization problem is introduced in Chapter 4. The objective function is defined
and the reasoning behind the algorithm selection is explained. Accordingly, both SQP
and IP algorithms are briefly mentioned. The basic assumptions about constraints,

initial values and constant terms are also given in this chapter.

Implementation of subspace identification on the multi-role helicopter is introduced

in Chapter 5. First, the model generation, trim analysis and linearization of
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FLIGHTLAB model are described. Input signal design and linear response outputs are
illustrated. After that, the implementation of subspace identification method by using
generated input output data set. The eigenvalues of the estimated model are compared
with the ones of the true model. Time domain simulation outputs of the estimated
model are compared with the true one. Then the required objective function is
constructed for physical parameter estimation. The methodology for constraint

selection and initial value assessment are described for our optimization problem.

The numerical results obtained for different optimization problems are presented in
Chapter 6. Five case studies are examined. Two algorithms are utilized: IP and SQP.
The performances of these algorithms are analyzed for several constraint and initial
value set. The convergence results are compared in many aspects like convergence
behavior, convergence rate, etc. Percentage error values are calculated for the physical
parameters for each test case. TIC values are computed between the estimated models
and the true model. The optimization algorithms are repeated for several times starting
from randomly selected initial conditions to test the confidence level. Consistent
results are achieved for different initial conditions. The method that is proved with
linear model data until this point is tested with nonlinear simulation and real flight

data.

Numerical results of Case 1 and Case 2 indicate that there is not a distinct change in
the convergence results due to expansion in constraint limits. Numerical results of
Case 1, Case 2 and Case 3 present that both algorithms are capable of finding the
physical parameters. However, SQP algorithm seems more trustworthy due to the
consistency of the convergence results which are not affected by the symmetry of the
constraints. Case 4 deals with the performance of optimization for arbitrary
initialization of T matrix. The analysis results indicate that it is still possible to find a

solution when the initial condition of T matrix is not equal to the inverse of C matrix.
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The study showed that using the methodology it is possible to estimate all of the
significant physical parameters with one identification test. The methodology uses the
advantages of MIMO identification to estimate many parameters at a time. This is
quite important for the helicopter systems which have coupled dynamics.
Implementation of the methodology on real flight data showed that the physical

subspace identification methodology is well applicable to real world practices.

7.2. Future Work

In real flight test applications, the helicopters and even other conventional flight
vehicles are generally excited by using one control input. Excitation of the system
simultaneously from all of the input channels may cause the system to enter into a
nonlinear flight regime. Therefore, these are avoided due to safety reasons and the
limitations of the system identification theory that is based on linear assumptions.
However, as a future study, blending all of the subspace identification results which
are obtained from different flight maneuvering conditions into one optimization
problem may provide a solution for the estimation of all the stability and control
derivatives all at a time. To obtain a better estimation, weight function assignment can
be practiced according to the reliability of the subspace identification results of the
relevant dynamics. Weighting of the parameters according to the coherence function

between the inputs and the outputs for optimization may give better results.

Identifying higher order modes of the helicopter like flapping dynamics, engine etc.
which enlarges the size of the unknown parameters and correspondingly complicates

the optimization problem. This can be another challenging issue to be solved.
There are many options for initial value assignment and constraint determination of

the parameters. Analysis and test data obtained in the scope of flight stability, handling

qualities and wind tunnel testing activities can be utilized for this purpose.
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In this study all of the analyses are conducted for one single trim point. In future, this
methodology can be repeated for several flight conditions and the obtained models
can be stitched together to find a nonlinear model for the system from physical

subspace identification.
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APPENDICES

A. Proof of Theorem 2 [19]

From the formulas (38) and (40); we find that X; can be written as linear combination

of the past inputs U, and the outputs Y}, as follows:

Xr = A'X, + AU,
= Ay, - YHU,] + AU,

= At [, - AL B, | U, + 4T,

(A.1)
= LWy
with
with (A.2), the formula (39) can be rewritten as;
Ye = LLW, + H; Uy (A.2)

From this formula and using the definition of oblique projection ([19], equation 1.7)

given in (A.3) the first claim of Theorem can be proven as;
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A/5C = [A/B*][C/B*]TC (A.1)

Vellys = DLy Wpllys + Hy Ul

=0

1 _ 1
Yf/Uf - FiLPM/P/Uf (A.2)

-I-
YU W, /UF] W, = LW,
0; =Xr

Where we have used the fact that [% / U}'] [Wp /U ]Jc']Jer = W,. This is not trivial,

since W, /U } is rank deficient for purely deterministic systems which implies that

[W,/UF][W,/UF] " is different from identity.
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B. State Space Model Representation In FLIGHTLAB

The similarity transformation approximation is utilized to convert the state space
model structure from FLIGHTLAB form (Eq. B.1) to the model structure given in Eq.
(112). The structure of the similarity transformation matrix T (Eq.B.2) is constructed
according to the linear relation between the state space model structures given in Eq.
B.1 and Eq. (112) where the stability derivative matrix A is given in Eq. (113) and the
control derivative matrix is given in Eq.(114). The elements of FLIGHTLAB model
matrices given in Eq. B.1 are matched with the elements of system model given in Eq.

(113) and Eq.(114) with the equality written through Eq.(B.3) to Eq.(B.33).

0¢ 09 ¢ 0@ 99 I 09 9]
dp 46 du dv ow dp aq or
06 96 06 96 96 96 b 98
dp 90 Ou dv aw dp dq or
ou odu ou Adu dou Ju ou I
dp 90 OJu dv aw dp dq or
ov dv v v v v v IV
dp 90 Ju v aw dp dq or|.
oW Ow oW dw W dw AW Iw
dp 96 ou v Ow dp dq Or
op dp 9p dp 0p dp 9p Ip
dp 060 du dv ow dp dq Or
0 9q 99 9q 99 9q 099 94
dp 060 du dv ow dp dq Or
or or 9r o or o ar OF
09 96 du dv ow dp dq orl

(B.1)
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Py,
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96
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C. True Model vs. Subspace Identification Results

A matrix (true model):

[—0.045 0.002
0.004 —0.103 —116.225
—0.033 2.468
—0.004 2.180
0.004
—0.004
0 0 0 1 -0.002 0.060 0 O
0 0 0 0 1 0.032 0 O
A matrix (subspace identification result):
(—0.012 —0.100
—0.054 —0.194 0.682
0.026 —2.968
0.146
0.021
0.042 0.111 0.062 -0.116 -0355 -0.278 -3.900 0.617
0 0.006 —0.032 0974 -0.169 0.628 —0.599 —8.194-
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B matrix (true model):

[—0.0142
0.0790
0.2406 0.0031
0.0409
0 0 0
0 0 0

C matrix (true model):

1 0 0 0 0 0 0 O
0100 0 0 OO
0 01 00 0 0O
0 001 0 0 0O
0 0001 0 O0O0
0 000 010 O0
0 0000 01O
0 0 0 0 0O 0 1

C matrix (subspace identification result):

[—1.254
—0.874
—0.003
—0.032
0.010
-—0.001

0.04617

—0.134

—0.075

0.006
0.014
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[ 0.005 0.1107
—0.014
—0.029 0.080
—0.874
—0.807 0.687
—-0.050 -1.114 1.176 0.030
L 2.654 0.585 0.854  0.548
0.051
—0.001
0.0027
—0.005

B matrix (subspace identification result):




D matrix (subspace identification result):

0 0 0 O

D matrix (true model):

0 0 0 O

0 0 0 O
0 0 0 O
0 0 0 O

0 0 0O

0 0 0O

0 0 0 O
0 0 0 O

0 0 0 O
0 0 0 O
0 0 0 O

0 0 0O

0 0 0O

0 0 0 O
0 0 0 O
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