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ABSTRACT 

 

MODELING OF THE NONLINEAR BEHAVIOR OF SEMI-RIGID 

CONNECTIONS IN STEEL FRAMED STRUCTURES AND ITS 

INFLUENCE ON THREE DIMENSIONAL ANALYSIS OF STRUCTURAL 

SYSTEMS 

 

Özel, Halil Fırat 

Doctor of Philosophy, Civil Engineering 

Supervisor: Prof. Dr. Afşin Sarıtaş 

 

May 2019, 102 pages 

 

In steel frame structures, introducing the nonlinear force-deformation behavior of 

frame members with flexible joints will show closer results to the actual behavior. In 

this thesis, a mixed formulation frame finite element is developed from a nonlinear 

force-based method that can include localized semi-rigid connection response. The 

formulation of the element uses the three-fields Hu-Washizu-Barr principle, where 

displacement shape function approximation is omitted with the use of a force-based 

approach. The proposed element formulation can accurately capture the spread of 

plasticity along element length and section depth with a single element for each beam 

and column member. Introducing flexible connections to frame members does not 

necessitate additional nodes where the degrees of freedom do not increase. Also, 

nonlinear geometric effects and a correct shear area definition are applied to the 

elements with the use of the proposed element. Accuracy and robustness of the 

proposed element are presented at both member level and structural level for both the 

two-dimensional and three-dimensional rigid and semi-rigid steel frame structures. 

Verifications are conducted by considering studies presented in the literature, as well 

as the results obtained using advanced nonlinear finite element programs. 
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ÖZ 

 

ÇELİK YAPILARDA YARI RİJİT BAĞLANTILARIN DOĞRUSAL 

OLMAYAN DAVRANIŞININ MODELLENMESİ VE ÜÇ BOYUTLU 

YAPISAL ÇÖZÜMLEMELERE OLAN ETKİSİNİN ARAŞTIRILMASI 

 

Özel, Halil Fırat 

Doktora, İnşaat Mühendisliği 

Tez Danışmanı: Prof. Dr. Afşin Sarıtaş 

 

Mayıs 2019, 102 sayfa 

 

Çelik çerçeve yapılarında, çerçeve bağlantı elemanlarının esnek bağlantılarla doğrusal 

olmayan kuvvet deformasyon davranışının uygulanması, yapının gerçek davranışa 

daha yakın sonuçlar gösterecektir. Bu tezde, yarı-rijit bağlantının etkisini içerebilen, 

doğrusal olmayan kuvvet bazlı yöntemden türetilmiş karma formülasyonlu çerçeve 

sonlu elemanı geliştirilmiştir. Elemanın formülasyonunda, kuvvet-bazlı yaklaşımın 

kullanılmasıyla deplasman şekli fonksiyonu yaklaşımının ihmal edildiği üç boyutlu 

Hu-Washizu-Barr prensibini kullanılmıştır. Önerilen eleman formülasyonuyla, her 

kiriş ve kolon elemanı için tek bir elemanla birlikte, plastisitenin eleman uzunluğu ve 

kesit derinliği boyunca yayılması hassas bir şekilde yakalanabilmektedir. Çerçeve 

elemanlarına esnek bağlantıların tanıtılmasıyla ilave düğüm noktalarının eklenmesine 

gerek duyulmayarak elemanın serbestlik derecesi artmamıştır. Ayrıca, önerilen model 

doğrusal olmayan geometrik etkilerini ve doğru bir kesme alanı tanımını elemana 

uygulamaktadır. Önerilen elemanın doğruluğu ve çözümsel sağlamlığı hem iki 

boyutlu hem de üç boyutlu rijit ve yarı-rijit çelik çerçeve yapılarda hem eleman 

seviyesinde hem de yapısal düzeyde sunulmaktadır. Literatürde sunulan çalışmaların 

yanı sıra, ileri düzey doğrusal olmayan sonlu elemanlar programları kullanılarak elde 

edilen sonuçlar da dikkate alınarak doğrulamalar yapılmıştır. 
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Anahtar Kelimeler: Çelik yapılar, sonlu eleman modeli, yarı-rijit bağlantılar, titreşim 
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CHAPTER 1  

 

1.  INTRODUCTION 

 

1.1. General 

 

Steel framed structures are constructed on site from prefabricated members. Steel 

members are connected to each other either through welding or by the use of bolts. 

For the purposes of structural analysis, behavior of the connection regions in steel 

framed structures is mostly idealized as either shear type (pinned) or moment type 

(rigid) in practice. While this provides a simple analysis approach, assessment of the 

real response of structures both in practice and research necessitates consideration of 

the force-deformation characteristics of all parts. In reality, moment connections have 

some flexibility and shear connections have some rigidity combined in their real 

behavior with nonlinearity included. Therefore, this behavior exposes another 

category for connections as partially restrained or also called as semi-rigid for the 

purpose of design and as well as modeling and analysis. The issue to incorporate 

especially the nonlinear behavior of semi-rigid connections prompts the need for an 

accurate modeling of both the monotonic and the hysteretic behavior of the 

connections and accurate representation of spread of inelasticity along each frame 

element length. Although significant amount of experiments and analytical modeling 

of connections have been performed by researchers, implementation and use of an 

accurate and robust modeling of steel framed structures with semi-rigid connections 

into structural analysis is still an ongoing research issue. 

 

Researchers have studied the effects of dynamic behavior of steel structures in the past 

and many decided to take the effect of flexible connection regions on describing the 

behavior of structures. Laboratory tests demonstrate that the experimental results and 
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numerical simulations better match each other when the linear flexible behavior of 

connections are introduced in the mathematical models. Another issue according to 

the researchers is the need for accurate and robust modeling of the nonlinear behavior; 

thus, inelastic material behavior with nonlinear geometry is introduced to the element 

formulations. For this purpose, researchers simply added springs and dashpot systems 

at the ends of the frame members that are modeled as linear elastic members in order 

to obtain the energy dissipation arising due to connection behavior besides element 

end plastification during seismic excitations on steel structures. Besides the flexibility 

at connection regions, it is also realized that including a realistic shear deformation 

behavior of steel members will allow the capture of drift estimations of buildings more 

accurately. Thus, for an accurate modeling of steel frame members, the use of 

Timoshenko beam theory is followed, where there is also a need for the use of a 

realistic shear correction coefficient for the widely used steel sections in practice. 

 

According to the literature, introducing flexibility to the joints will affect the design 

of steel frames, where conservative solutions and less reliable design can be converted 

to economic and safer results by introducing semi-rigid joint behavior on the structure. 

The use of hybrid systems that contain both semi-rigid and fully rigid connections in 

an optimized way can provide a better performing structural system during earthquake 

excitations. There are studies that focus on the development of replaceable energy 

dissipating beam-column connections in steel structures, as well. Despite these efforts, 

the main design philosophy in practice is still mostly to protect the connection region 

from yielding in moment resisting frames and keep the plastification to the beams for 

the purpose of performance-based design. However, the connection regions of 

structures built in the past do not all conform to the guidelines that have evolved 

especially after Northridge Earthquake in 1994. Thus, for the purpose of structural 

assessment in practice and research, it is crucial to capture all the nonlinear actions 

that can take place in a steel framed structure under extreme events.  
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The amount of studies on the emphasis of introducing connection behavior on 

structural analysis of steel frame structures reveal the importance of the issue. The 

pursuit for accurate and robust analysis of steel framed structures first of all starts with 

an accurate frame element formulation that can capture deformation characteristics, 

spread of inelasticity and implement localized connection response in an accurate and 

robust manner. These motivation points led to the research study undertaken in this 

thesis.  

 

1.2. Objective and Scope 

 

Modeling of the nonlinear force-deformation behavior of frame members with 

connection regions in steel frame structures will present closer results to the actual 

behavior. For this purpose, a mixed formulation frame finite element that can 

incorporate localized semi-rigid connection response is developed from nonlinear 

force/flexibility method in this thesis.  

 

The formulation of the element starts with a variational form that bases on the use of 

three-fields Hu-Washizu-Barr principle by [1] and [2]. The proposed element 

incorporates Timoshenko beam theory assumptions with an accurate representation of 

shear area for widely used steel sections. The element can also model the linear or 

nonlinear behavior of connection regions through a localized inclusion of the 

connection region at any point along its length without further specification of nodes 

and degrees of freedom at element or structural level. Consideration of connection 

regions is merely additional monitoring points that are just as the same as the 

monitoring sections that track the spread of inelasticity along element length.   

 

The formulation of the element uses force interpolation functions and does not need 

the description of displacement field along its length and localized connection regions. 
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In a displacement-based finite element approach, the presence of localized 

connections would introduce discontinuous deformations at a connection region on 

member length and thus this necessitates the introduction of nodes and degrees of 

freedom to the structural model at an expense in modeling and implementation effort. 

Furthermore, the displacement-based elements would also require additional effort in 

correct description of shape functions for varying geometry, stiffness and mass 

distributions even for the linear elastic case. On the other hand, the proposed element 

in this thesis can calculate the stiffness and mass distributions over the whole element 

and connection regions through the use of force-based interpolation functions that are 

always continuous along a member even when localized connections are present. 

Furthermore, the element formulation circumvents the need for further placement of 

nodes and degrees of freedom at both member and structural level.     

 

The accuracy of the element is verified under static and dynamic cases considering 

linear and nonlinear responses. First, the dynamic characteristics of members with 

varying geometry and material distribution is assessed with the presence of semi-rigid 

connections. Vibration frequencies and mode shapes for both the rigid and semi-rigid 

connection cases are studied at member level and structural system level for validation 

of the proposed formulation with results available in the literature as well as 

simulations undertaken in available simple and advanced finite element programs.  

  

The proposed element formulation can also accurately capture spread of plasticity 

along element length and section depth through the use of single element use per span 

for each beam and column member even in the presence of nonlinear connection 

regions. Accuracy and robustness of the proposed element are presented at both 

member level and structural level for both the planar and three-dimensional rigid and 

semi-rigid steel frame structures. Verifications are undertaken by considering 

available studies presented in the literature, as well as the results obtained through the 

use of advanced nonlinear finite element programs.  
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In this thesis, there are five chapters. Besides the introduction chapter that is presented 

up to now, the second chapter covers the literature survey including the frame finite 

element models with displacement based and force-based approaches, nonlinear 

analysis of frame elements with semi-rigid connections and vibration characteristics 

of frame elements again with the semi-rigid connections. In the third chapter, the 

derivation of two- and three-dimensional forced based frame element with the semi-

rigid connection is presented. After this derivation, the validation is conducted through 

two- and three-dimensional benchmark and generated examples for vibration 

characteristics and nonlinear analysis of the systems in the fourth chapter. Finally, 

conclusions are made in the fifth chapter which is the last chapter.   
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

2.1. Finite Element Method 

 

The term finite element was first used by Clough [3]. In different fields of engineering, 

finite element method (FEM) became the most effective analysis method to be used 

both in research and practice. FEM has based on approximate solutions through the 

use of discrete number of independent elements aggregated and mapped to represent 

the whole continuous structure. The assemblage of these discrete members presents 

the structure with idealized elements. Researchers give popularity to this tool with its 

increasing developments.  

 

The physical problems are induced to mathematical problems in engineering analysis 

and structural design. The physical problem contains a structural system with applied 

loads. The alteration of the physical problem is achieved with possible assumptions 

that are directing to differential equations representing the mathematical model. After 

a physical problem is converted to a mathematical model, the finite element analysis 

is used to solve the problem. The solution technique of finite element model is a 

numerical procedure; therefore, the drawbacks of a numerical procedure are inherently 

present in FEM, as well. The accuracy of the solution should be satisfied otherwise 

solution has to be refined with different parameters, such as using more elements to 

represent the continuum (called as mesh refinement in FEM) until enough accuracy is 

obtained. The finite element solution is unique to its problem and all the assumptions 

should be formed to the foreseen response of the model. That is why the mathematical 

model should correctly idealize the properties and behavior of the actual physical 

problem that will be obtained by numerical analysis. 
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The finite element method is a numerical method that is as accurate as the accuracy of 

the representation of the utilized mathematical model, which is derived from a 

physical situation. However, the exact match between mathematical and physical 

models is impossible, that is why the possible close solution to the real situation is 

enough to obtain sensible results. In finite element analysis, different types of 

procedures exist to deal with the physical model for more accurate results. There are 

two methods that can be utilized. These are Displacement Based Finite Element 

Method and Force Based Finite Element Method. These methods will be discussed in 

the following sections of this chapter. 

 

Force method and displacement method are used in structural analyses. Both methods 

are widely used and have different outcomes on the solution. Force method is used to 

determine the element forces through satisfying joint or node compatibilities. On the 

other hand, the displacement method calculates joint displacements to satisfy the 

equilibrium equations. Both formulation methods are used in structural analysis, yet, 

displacement method gained popularity in the last century due to its ease with regards 

to its implementation for structural model development and analysis, especially with 

two-dimensional plane stress elements, three dimensional solid elements, and plate 

and shell finite elements. This led to the dominance of displacement based finite 

element methods throughout all finite element formulations, from static to dynamic, 

as well as linear to nonlinear analysis.  

 

Despite the popularity of displacement-based elements, the use of force-based 

formulation remained in use at least for linear elastic case for frame finite elements, 

i.e. the flexibility matrix of the element is obtained and then inverted to get the linear 

elastic element stiffness matrix. Extension of this approach to the nonlinear case was 

thought to be the difficulty in the adaptation of this approach within a displacement-

based finite element solution platform that tries to find the solution of applied loads to 

the resistance of the structure.  



 

 

9 

 

The breakthrough development happened in late 1990s after the formulation of 

nonlinear force-based frame finite element model by researchers at UC Berkeley and 

University of Rome La Sapienza [4]  The research studies in the last 2 decades further 

demonstrated the extreme superiority of the force-based approach in frame finite 

element model development, and the current thesis provides further contribution to 

this development.  

 

The finite element model is based on the assumptions on the geometry of the system, 

material properties, boundary conditions, loading, kinematics of the body. The 

problem is discretized to small elements that are dividing the model into discrete finite 

elements. Hence, element response is determined by the final state of the variables. 

The method in essence is a trial procedure of changing the sizes of the elements with 

possible minimum calculation time, which could be called as robustness of solution, 

i.e. speed with high accuracy.  

 

In the following sections, different application approaches of finite element methods 

that are “Displacement Based Finite Element Method” and “Force Based Finite 

Element Method” will be discussed. After the explanation of finite element methods, 

the flexible connection, in other words semi-rigid connections, in the structural 

members will be presented. Semi-rigid connection will be discussed in detail since it 

is the main scope issue of this thesis. Also, geometric corrections such as shear area 

correction of steel structural members and secondary effects of the members will be 

discussed in the proceeding sections. 
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2.1.1. Displacement Based Finite Element Method 

 

Displacement based finite element analysis is a method of structural analysis where 

joint displacements are state variables determined by boundary conditions, geometry 

of the structure, material model and loading. Then, joint displacements are used to 

calculate internal forces and stresses. Algorithm is straightforward and easy to apply, 

displacement based finite element analysis are chosen for the analysis of the structures. 

The principal of virtual work is conducted through the presentation of the 

displacement based finite element analysis. Virtual work principle denotes that the 

total internal virtual work done is equated to the total external virtual work done by 

applying a virtual small displacement to the system.  

 

∫𝜺′𝑇𝝈𝑑𝑉

 

𝑉

= ∫𝒖′𝑇𝒇𝑩 𝑑𝑉

 

𝑉

+ ∫𝒖′𝑇𝒇𝑺 𝑑𝑉

 

𝑉

+ ∑𝒖𝑖
′𝑇

 

𝑖

(𝑭𝒄)𝑖 (2.1) 

 

where 𝑓𝐵 denotes body forces, 𝑓𝑆 is traction forces, 𝐹𝑐 is concentrated loads,  𝜀′ is the 

virtual strains, 𝑢′ are the virtual displacements and 𝜎 are the stresses which are in 

equilibrium with the external loads. 

 

The nodes and element equilibrium are equated in the displacement-based finite 

element analysis whether the analysis type is linear or nonlinear, but not the 

differential equilibrium. The stress-strain relationship, strain-displacement, and 

displacement limitation are fully met [5]. Displacement-based finite element satisfies 

equilibrium of displacement conditions. However, fully satisfying the boundary 

conditions is not possible and internal stresses can be far from correct. Although 

granting the continuity of the derivatives in differentials, increasing the element mesh 

or changing the shape functions may lead to better results. Yet, this leads to more 

calculation time. 
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2.1.2. Force Based Finite Element Method 

 

Force based finite element method is based on deriving unknown displacements 

strains and stresses in the variational form of total potential energy. Force based finite 

element formulation is also called as mixed formulation finite element because 

formulation is presented with independent displacements and the element forces or 

stresses.     

 

In the more generalized form, the variational function of the solution has three-fields, 

namely the displacements, stress and strains, and is also called as Hu-Washizu 

functional [2]. The functional is written as follows:  

 

𝛱HW = ∫ 𝛿𝒆𝑇 (�̂�(𝒆(𝑥)) − 𝒃(𝑥, 𝐿)𝒒 − 𝒔𝑝(𝑥))
𝐿

0

 𝑑𝑥 

           −𝛿𝒒𝑇 ∫ 𝒃𝑇(𝑥, 𝐿)𝒆(𝑥) 𝑑𝑥
𝐿

0

− 𝛿𝒖𝑇𝒑𝑎𝑝𝑝 = 0 

(2.2) 

 

This functional formulation is the weak form of the compatibility and equilibrium of 

the system. The force-based approach depends on exact equilibrium solution within 

the basic system. Equilibrium is exact in between elements and section. Force based 

finite elements can be implemented to work in displacement-based finite element 

solutions through static condensation of element stresses and strains.  

 

Force-based finite element model is noticeable where structural problems with the 

locking effect of the shear on the members. The displacement-based model presents 

smaller displacements under the locking effect and this tends to wrong behavior under 

both linear and nonlinear analysis. That is why in this study force based finite element 
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is adapted for nonlinear structural analysis of framed structures that also include semi-

rigid connections. 

 

2.2. Semi-Rigid Connections 

 

In practice, beam to column connections is either as shear type (pinned) or moment 

type (rigid) in the implementation of finite element analysis of steel structures. 

However, the actual behavior can be summarized as moment connections with some 

flexibility or shear connections with some rigidity, together with nonlinearity. The 

American Institute of Steel Construction (AISC) classifies two types of buildings as 

fully restrained (FR) and partially restrained (PR) in the Load and Resistance Factored 

Design Specification. In addition, type PR includes two cases which are depending on 

whether the connection is restrained or not. The case without restraint is called a 

simple connection. If the connection is restraint, strength, stiffness, and ductility are 

included in the design of the connection. The European standard Eurocode 3 describes 

three types of framing as simple, continuous and semi-continuous. These definitions 

decide that there are three types of connections and the and that the degree of semi-

rigid action is largely dependent on the type of structure. 

 

The behavior of the semi rigid connection can be defined by moment rotation (M- θr) 

curves. The rotation in these curves represents the rotation of the section among the 

neutral axis. The typical moment rotation curves for the beam-column can be obtained 

from several databases: Lui and Chen [6], Kishi and Chen [7], etc. Also, connections 

can be modelled by various methods. These are direct implementation through 

laboratory tests, component models and detailed finite element analysis models.  
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Figure 2.1. Semi-rigid Connection Behavior Representation [7] 

 

Initial stiffness ratio, Rki and secant stiffness ratio, Rks are stiffness parameters for 

semi-rigid connections in Figure 2.1. These ratios are defined in different approaches 

and one should choose properly. Since the nonlinear behavior of the connection can 

occur at low-stress levels, the initial stiffness value of the connection is not enough to 

define the response of the connection. For this case, the secant stiffness ratio can be 

used. The rotational stiffness ratio is defined with the formula; 

 

𝑅𝑘 =
λEI

𝐿𝑏
 (2.3) 
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Figure 2.2. Moment Rotation Behavior of Semi-rigid Connection [7] 

 

Rotational stiffness ratio in above equation is determined with the length and inertia 

of the member, elasticity modulus and coefficient λ. The rotational stiffness of semi-

rigid connections is defined to range between values of λ 2 and 20. When λ is equal 

and less than 2, the connection is considered as a simple connection (shear type) and 

when λ is equal and more than 20, the connection is considered as a rigid connection 

(moment type), where the values are provided by AISC Specification [8]. In between, 

the connection is considered as semi-rigid. In the Figure 2.2, moment rotation curves 

of several connection types are plotted where they can be considered as semi-rigid 

since their behavior is in between the rigid and pinned connection behaviors. Other 
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specifications on level of semi-rigidity is presented by, Eurocode  [9], Bjorhovde et 

al. [10], Nethercot et al. [11] and Goto and Miyashita [12]. 

 

There are different types of connection formulations in the literature. The one 

presented in Equation (2.3) is a representation of the linear model. However, the 

characteristics of the semi-rigid connections are nonlinear as members. That is why, 

researchers developed several formulations for the semi-rigid connections. In this 

study, the Power Model and Exponential Model are used. Yet besides these 

formulations, there are Polynomial Model, Bounding Line Model, Richard-Abbot 

Model and Hardening Models. The power model and exponential model will be 

discussed in the following paragraphs. 

 

There are several power models that were developed for the different types of 

connection. There are two or three parameters in their functions. A two-parameter 

model [13], [14] has the form of; 

 

𝜃𝑟 = 𝑎𝑀𝑏 (2.4) 

 

 where a and b are curve-fitting parameters obtained from experiments. Colson and 

Louveau [15] presented a three-parameter power model as: 

   

𝜃𝑟 =
|𝑀|

𝑅𝑘𝑖

1

(1 − |𝑀 𝑀𝑢⁄ |𝑛)
 (2.5) 

 

where Rki is the initial stiffness, Mu is the ultimate moment capacity of the connection, 

and n is the shape parameter. Kishi and Chen [16] proposed also a three-parameter 

power model which is obtained by removing the strain-hardening stiffness of the 

Richard-Abott model [17]: 
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𝜃𝑟 =
𝑀

𝑅𝑘𝑖 {1 − (
𝑀
𝑀𝑢

)
𝑛

}

 
(2.6) 

 

where Rki, Mu, and n are the same as above. Kishi and Chen model is derived from 

Richard and Abott model [17] with removing the strain hardening stiffness.  The shape 

parameter n can be developed with the method of least squares for the variances 

between the forecast moments and the experimental test data [18], [19]. This power 

model can implement the second-order nonlinear structural analysis more accurately 

[20].  

 

Lui and Chen [6] utilized an exponential function in order to curve-fit the experimental 

data. This model is good at presenting the monotonic nonlinear joint behavior. The 

exponential model is denoted by a function as in the following form; 

 

𝑀 = 𝑀0 + ∑𝐶𝑗 [1 − 𝑒𝑥𝑝
−

|𝜃𝑟|
2𝑗𝛼] + 𝑅𝑘𝑓|𝜃𝑟|

𝑛

𝑗=1

 (2.7) 

 

As discussed previously, in addition to the two ideal cases considered in practice 

(simple/shear/pinned connection case and rigid/moment connection case), the third 

case is the semi-rigid case. The joints assumed as rigid or pinned in the analysis should 

be implemented to meet rigid joint and nominally pinned joint classifications 

according to the design codes, respectively. The semi-rigid frame model should be 

dealt carefully. Thus, connections can be implemented as springs with moment-

rotational relationships that can vary from linear elastic to non-linear type, allowing 

the degree of ductility of the connections. The design of a linear-elastic model of 

structural analysis requires linear-elastic modeling of connections. An elastic perfectly 

plastic behavior, a bilinear joint model is necessary for analysis. Hence, complexity 

of the model is determined by the connection behavior. Different analysis results 
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cannot be covered in where nonlinear joint modeling exists. The analysis of member 

and connection forces, displacements and frame stability are determined with semi-

rigid connections when the valid connection response is included. Detailing the 

problem depends on the problem itself. It is important to use sophisticated approaches 

where necessary. Further detailing may lead to loss of time. That is why separate 

analyses are made for the design of semi-rigid frames for their serviceability design 

and ultimate limit designs. 

 

Linear springs with initial stiffness are enough at a service load level for the analysis 

under serviceability when the joint is far below that of the strength. However, under 

factored loads for design case, the response of the connection is important, and the 

analysis should be consisted to ensure the characteristics of the real behavior. Since 

the response would be nonlinear when the forces reach to the strength of the 

connections. Therefore, material and geometry nonlinearities as well as stability 

checks should be taken into account. 

 

2.2.1. Nonlinear Analysis with Semi-rigid Connections 

 

In order to denote the actual behavior of steel structures many researchers tend to take 

the effect of the semi-rigid connections on the behaviors of the structures. [21] and 

[22] conducted laboratory studies on the semi-rigidly jointed steel frames convoyed 

with numerical analyses. Studies showed a perfect match with the laboratory test 

results and the numerical studies when introducing the semi-rigid joints. Connections 

in steel structures are described in two categories to specify design and analysis 

phases. The behavior of steel connections is deliberated as simple (shear) or moment 

type (fixed). Meanwhile the expected behavior of a connection should show a relative 

rotation together with moment transfer. This is called semi-rigid connection, that is 

the actual response of the connection.  
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The framing of a structural system is the geometric arrangement of the beams, 

columns, braces and shear walls. The joints of these members are referred to as the 

connections of the elements. However, it is crucial to make enough strength of 

members and the necessary connections for the demand. This framing system is set to 

carry design loads as well as the serviceability states of the structure. Design loads of 

the structure are gravitational and lateral loads. Hence, a structure could be a 

combination of braced members and unbraced members, which are determined and 

designed with sophisticated approaches. At this point, a designer should decide 

whether the framing is rigid or flexible using the connections of the members.   

 

The lateral stiffness of a rigid frame is mainly due to the rigid joints connected to the 

bending of the frame elements connections. The joints should have enough strength, 

stiffness and small deformation. Deformations should be small to not affect the 

distribution of internal forces and moments on frames. A rigid frame may withstand 

additional loads without bracing if there is additional support for stability. The frame 

has to resist the design forces on its own, including gravity and lateral forces. Hence, 

it has sufficient lateral stability against lateral vibration when exposed to horizontal 

wind and earthquake loads. Rigid frame systems perform better in the case of cyclic 

loads or earthquakes, even if rigid connections result in a less economical structure. 

 

A simple frame attributed to a structural system where the beams and columns are 

flexibly connected, and the system cannot withstand significant lateral loads. The 

stability is satisfied by attaching the simple frame to bracing systems. Brace systems 

support lateral loads, and both frame and brace systems support gravity loads. The 

lateral load response is small in many cases of braced systems so that the second-order 

effects of the frame design can be neglected. Figure 2.2 shows the representative 

sketches of simple and rigid connection frames. 

 



 

 

19 

 

 

Figure 2.3. Representation of Simple (Left) and Rigid (Right) Connections [23] 

 

Pinned connection frames are manufactured and assembled easier and for steel 

structures, it is better to join the members without connecting the flanges. The bolted 

joints are normally preferred instead of welded joints which require careful application 

and more qualified workers. If the system is prepared with simple connections, the 

sizing of beams and columns is a simple process. Reducing the horizontal drift with 

simple connections and brace systems is more convenient than using rigid frame 

systems with rigid connections. 

 

2.2.2. Frame Elements of Semi-rigid Connections 

 

Assessment of the seismic loads represented on structures is affected by their vibration 

characteristics. Therefore, implementing accurate finite element models becomes 

important for vibration study and dynamic analysis of steel framed structures. At this 

point, the presence of connections in steel structures further increases the importance 

of the employed numerical models. In order to simplify the analysis, shear 

deformations can be neglected in slender members, for example, beams and columns 

that are the framing elements in steel structures; nevertheless, the accumulation of 

error due to this simplification in a 10 story steel building with 6 m bays and a 40 story 

Simple (Shear) 

Connection 

Rigid (Moment) 

Connection 
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steel building with 3 m bays yields to 10% and 30% underestimation of roof drifts, 

respectively [24]. Therefore, neglecting shear deformations and rotary inertia effects 

in the mass matrix may further create errors due to the usage of lumped mass matrix 

and single element discretization along the member. It is also vital to deliberate the 

actual behavior of the connections that connect the structural members.  

 

Researchers have broadly studied the influences of dynamic behavior of steel framed 

structures in the last two decades. Many researchers suggested considering the effect 

of the semi-rigid connections in the analysis and design stages [25], [26]. According 

to the studies [27], introducing semi-rigidity to pinned joints will affect the design, 

hence pinned connection design tends to conservative solutions and less consistent 

design. Razavi and Abolmaali [28] revealed that semi-rigid frames showed better 

results than fully rigid ones under the study of flexibility of the connections in high-

rise steel buildings. 

 

Tests on flexible connections in steel framed structures are conducted by Chui and 

Chan [21] and Nader and Astaneh-Asl [22] which is conducted with numerical 

analyses and showed the reputation of considering semi-rigid connection in structural 

models. Hence, consideration of semi-rigidity at connection region is important, it is 

also vital to consider possible inelastic behavior and nonlinear geometric effects on 

frame members in conducting dynamic analysis [29]–[31]. The studies present 

significant amount of research on the study on the dynamic behavior of steel framed 

structures which is carried with semi-rigid connections through the use of finite 

element method [31]–[37]. Present design codes also attempt to deliver the effect of 

semi-rigid connection response for steel framed structures under dynamic loads, and 

studies try to assess the code suggestions. Sophianapoulos [38] related Eurocode 

approach with closed form solutions in one of similar studies, where the outcomes 

from both methods presented that responses show good match with each other in the 

fundamental modes of vibration; but, in the higher modes, the difference of the semi-

rigid connections became distinct and results varied from each other. Studies on the 
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stability of structures which are proposed by Shakourzadeh et al. [39] and Minghini et 

al. [40] presented substantial change on critical loading on members, stability and 

strength responses because of the presence of semi-rigid connection. Both studies 

taken the displacement-based finite element formulations. The comparisons were done 

for small structures with small amount of connections in these studies. Numbers of 

degrees of freedom were limited. However, increasing number of members and 

connections in large structures would need to increase matrix sizes and solution times 

with displacement-based element analyses in many cases of practice. Hence 

increasing element number in order to catch nonlinear material response would present 

accuracy problems. However, force-based elements have been confirmed to perform 

vigorously [41]–[43]. 

 

Galvo et al. [34], da Silva et al. [33], Al-Aasam and Mandal [37] have established 

FEM formulations to inspect the dynamic behavior of steel frames with semi-rigid 

connections. These studies expose that proper modeling of the connections have 

important part on the dynamic behavior of steel framed structures. Therefore, it is 

necessary to mention that structural design codes propose the effect of structures under 

dynamic response. Present design codes provide the influence of structures under 

dynamic response.  

 

Finite element models should distinguish the modeling of the mass and stiffness 

matrices for both beam and column members in order to get transverse shear 

deformations and rotary inertia along a member’s length accurately. The partial fixity 

is presented by the existence of connections. Partial fixity at connection areas of steel 

structures significantly affects the vibration characteristics of steel framed structures. 

Also, it is also important to consider possible inelastic behavior and nonlinear 

geometric effects on frame members [29]–[31] in carrying out the dynamic analysis 

with using of semi-rigidity at the connection region. The studies cover a noteworthy 

number of researches on the examination of the dynamic behavior of steel framed 

structures with semi-rigid connections with the use of the finite element method [31]–
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[37]. Present design codes also try to deliver the effect of semi-rigid response for steel 

structures under dynamic actions. Research studies also attempt to assess the code 

proposals.   

 

Studies of [43] showed the effects of semi-rigid connections under cycling loading. 

These studies conducted with experimental results for two-dimensional steel semi-

rigid framed structures. The dynamic behavior of steel structures depends on the 

description of semi-rigid joints on the structure. The study of [44] presented the 

requirement of defining semi-rigid joints for exact modelling of vibration 

characteristics on structures. Again in dynamic point of view for semi-rigid 

connections, three-dimensional studies of [31] revealed the consequence of flexible 

joints on steel framed structures under cyclic loading.  

 

The study by Özel, Saritas and Tasbahji [45] showed the need of presenting 

connection in the structure for correct modeling of vibration characteristics. Base-

plate connections also require similar tendency on connection behavior. 

Abdollahzadeh and Ghobadi [46], showed the assessment of column base or base-

plate with experimental, analytical and FEM model under static loading that was 

presented by [47]. The basic mathematical formulations for column base-plates were 

conducted by Stamatapoulos and Ermopoulos [47] to exhibit the flexibility on joint 

behavior of column base-plates under dynamic loading. 

 

The strength along the members of structure controls the performance of the building. 

On the other hand, deformations control the serviceability of structures. Hence, 

deformations in different directions have consequence on each other due to the 

continuum phenomenon of the bodies. Shear deformations tend to determine the 

lateral flexibility of steel frames. The study by Charney et al.  [48] presents the 

influences of the shear deformations on the members. The use of the shear effects on 

the members are presented with the definition of effective shear area. In this thesis, 
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the effective shear area model is adopted from the study of Charney et al.  [48]. The 

studies on the shear properties of the sections on linear basis [49] and nonlinear basis 

[50], [51] display the importance of this study among the behavior of systems. 

 

In order to achieve a precise dynamic analysis of steel framed structures, vibration 

characteristics of steel beams, braces and columns with semi-rigid connections should 

be studied. For a better representation of the semi-rigidity, the exact behavior of the 

members should be conducted.  

 

The brace frame members are another element of the steel framed structures. In order 

to mention a complete system, it is important to focus carefully on the behavior of 

these members. The behavior of brace end connections for steel framed structures is 

conducted in [52], [53]. Most of the cases for the brace end connections are under the 

axial load deformation [54]–[56] and only the flexibility of axial deformation should 

be taken into account. 

 

Nonlinear three-dimensional frames with semi-rigid connection studies are carried out 

by researchers. The study of Nguyen and Kim [57] presents three-dimensional semi-

rigid steel frames accounting for the second-order effects with the use of stability 

functions which are generated from the solution of beam–columns under axial force 

and bending moments and the semi-rigid beam-to-column connection is generated by 

a 3D nonlinear multi-spring element. Chiorean studied on large deflection distributed 

plasticity analysis of three-dimensional semi-rigid frames [58]. In study [58], 

Maxwell-Mohr rule and second-order force-based functions are used to generate 

second-order inelastic flexibility-based element and semi-rigid connections are 

introduced with zero-length elements. Another study is done by Thai and Kim [59]. 

Thai and Kim proposes a distributed plasticity analysis of semi-rigid steel frames with 

geometric and material nonlinearities [59]. P-delta effects, residual stresses and 
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inelastic behavior of materials are considered using a fibre model and the semi-rigid 

connections at beam ends are generated with a zero-length connection element. 

 

Studies on semi-rigid steel framed structures for trying to reveal better predictions 

shows the necessity for accurate modeling approaches. Therefore, a frame finite 

element with semi-rigid connections is generated in this study for static analysis and 

vibration assessment of steel framed structures. The element formulation depends on 

the three-field Hu-Washizu-Barr principle with the implementation of force-based 

interpolation functions. The model lets precise determination of vibration frequencies 

of members with semi-rigid connections by using single element without the need for 

displacement field. Hence, this approach limits the calculation time and error in the 

analysis of steel framed structures. Also, an accurate shear correction factor for I-

sections is considered to obtain closer match with exact solutions. Available finite 

element programs (SAP2000, ANSYS and OpenSees) and benchmark examples are 

utilized for the verification of the proposed model. 

 

As an important benchmark, the proposed model with semi-rigid connections is 

compared with advanced research oriented finite element program [60], which also 

incorporates force based element, but where semi-rigid connections can only be 

included through the introduction of extra springs with new nodes, degrees of freedom 

and constraint conditions to be specified. Thus, the approach in OpenSees requires an 

increase in modeling effort and sizes of matrices to be stored and inverted in the 

solution of nonlinear equations. The proposed model and OpenSees’s model elements 

are compared in the validation studies. Another novelty in current model is the force-

based mass matrix use as proposed by [61], while OpenSees models use lumped mass 

matrix approximation.  
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CHAPTER 3  

 

3. FRAME ELEMENT FORMULATION 

 

3.1. Frame Element Formulation for 2D Case 

 

In this section, the formulation of two-dimensional frame element is presented. The 

cases of static and dynamic variational formulations are undertaken through the use of 

three-fields variational formulation and force-based approach. Spread of inelasticity 

through the element is presented by fiber discretization of the section.  

 

3.1.1. Basics of Element Formulation for 2D Case 

 

A two-dimensional formulation is conducted through the element formulation for a 

cantilever beam with three free degrees of freedom at its free end, which is then 

transformed to the complete system that has six degrees of freedom. The kinematics 

of deformation through the continuum of beam is defined with Timoshenko beam 

theory, which allows section rotations to be independent from the derivative of the 

beam deflection. As a result, the difference between the section rotation and slope of 

beam’s axis allow for the inclusion of shear deformations along the length of the beam, 

which is by the way set to zero in the Euler Bernoulli beam theory. The section 

displacements on a material point which deforms in xy-plane can be calculated by 

deliberating Timoshenko beam theory as follows; 

 

{
ux(x, y)
uy(x, y)

} = {
u(x) − yθ(x)

v(x)
} (3.1) 
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where ux and uy are the x and y-direction displacements which are the displacement 

functions in x and y-directions at any point on the cross-section. u(x) is the 

displacement of any point along the beam’s axis, i.e. x-axis. v(x) is the transverse 

deflection along on any point at (x,0) in y direction. Rotation of the beam around z-

axis is (x).   

 

Figure 3.1. Deformed Beam Sketch 

 

The strain,  contains the normal strain, xx along the member and shear strain, xy, 

where these parameters are computed as follows; 

 

εxx = u′(x) − yθ′(x) = εa(x) − yκ(x) (3.2a) 

 

γxy = −θ(x) + v′(x) (3.2b) 

 

𝒆(𝑥) = [𝜀𝑎(𝑥) 𝜅(𝑥) 𝛾(𝑥)]𝑇 (3.2c) 

 

ε = {
u′(x) − yθ

′(x)

−θ(x) + v′(x)
} = {

εa(x) − yκ(x)
γ(x)

} = as(y, z) e(x) (3.2d) 

 

where e(x) is the section deformation vector. 𝜀𝑎(𝑥) is the axial strain in the normal 

direction of the section, 𝛾(𝑥) the shear deformation (sliding) of the section and 𝜅(𝑥) 

Original beam 

Deformed beam 

y A 

B 
x 

B’ 

A’ (x) 

v(x) u(x) 
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the curvature of the section about z-axis.  𝒂𝑠(𝑦, 𝑧) is the compatibility matrix of the 

section and is calculated as follows; 

 

𝐚𝑠(𝑦, 𝑧) = [
1 −𝑦 0
0 0 1

] (3.3) 

 

                      

Figure 3.2. Two-dimensional Complete System 

 

Element formulation is conducted as a frame element with two end nodes in xy-plane 

(Figure 3.2). The element in complete system has 3 degrees of freedom per node and 

6 degrees of freedom in total, where this is transformed to a basic system by removing 

the 3 rigid body modes of displacement through a transformation that gives the 3 

deformation modes left for the basic system. The transformed element is based on the 

cantilever basic system that is shown in Figure 3.3. The transformation matrix, a 

interacts the whole system nodal forces p and nodal displacements u to the basic 

equation elements q and element deformations v along the length L of the beam 

through the following equation; 

 

𝒗 = 𝒂𝒖  (3.4a) 

 

𝐩 = 𝐚𝑇𝒒 (3.4b) 

 

𝐚 = [
−1 0 0 1 0 0
0 −1 −𝐿 0 1 0
0 0 −1 0 0 1

] (3.4c) 

  

p1, u1 

p2, u2 

p3, u3 p6, u6 

p5, u5 

p4, u4 

y 

x 
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Figure 3.3. Cantilever Basic System Forces and Deformations 

 

Element section forces s(x) are composed of axial force N(x) along beam’s x-axis, 

shear force in perpendicular direction V(x) along y direction, and moment M(x) around 

z-axis. s(x) can also be defined with basic element forces q at free nodes by employing 

the force interpolation matrix b(x,L) and sp(x) which is the particular solution for 

constant distributed loads in the axial and transverse directions, namely wx and wy, 

respectively. 

 

𝒔(𝑥) = [𝑁(𝑥) 𝑀(𝑥) 𝑉(𝑥)]𝑇 (3.5a) 

 

𝒔(𝑥) = 𝒃(𝑥, 𝐿)𝒒 + 𝒔𝑝(𝑥) (3.5b) 

 

𝒃(𝑥, 𝐿) = [
1 0 0
0 (𝐿 − 𝑥) 1
0 1 0

]  (3.5c) 

 

 

𝐬𝑝(𝑥) = [

(𝐿 − 𝑥) 0

0 (𝐿 − 𝑥)2/2
0 (𝐿 − 𝑥)

]  {
𝑤𝑥

𝑤𝑦
} (3.5d) 

 

 

q1, v1 

y 

x 

q3, v3 

q2, v2 

L 
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3.1.2. Variational Method and Finite Element Formulation with 

Vibration for 2D Case 

 

Independent element nodal displacements u, element basic forces q, and section 

deformations e create the variational form of the element by using three-fields Hu-

Washizu functional and applied as part of the beam finite element formulation [62]. 

Derivation of the dynamic case is reached through applying the inertial forces 𝒎�̈� 

acting at nodes by taking into account D’Alembert’s principle to become the following 

variational form of the element. 

 

𝛿𝛱HW = ∫ 𝛿𝒆𝑇 (�̂�(𝒆(𝑥)) − 𝒃(𝑥, 𝐿)𝒒 − 𝒔𝑝(𝑥))
𝐿

0

 𝑑𝑥 

−𝛿𝒒𝑇 ∫ 𝒃𝑇(𝑥, 𝐿)𝒆(𝑥) 𝑑𝑥
𝐿

0

+ 𝛿𝒒𝑇𝒂𝒖  

+𝛿𝒖𝑇𝒂𝑇𝒒 + 𝛿𝒖𝑇𝒎�̈� − 𝛿𝒖𝑇𝒑𝑎𝑝𝑝 = 0 

(3.6) 

  

The above equation is also found by considering the general Hu-Washizu variational 

form with dynamic case by Barr [1]. Equation (3.6) ought to embrace for arbitrary 𝛿𝒖, 

𝛿𝒒 and 𝛿𝒆. Therefore, the following three equations must be fulfilled in order for the 

Hu-Washizu-Barr variational to be zero.  

 

𝒎�̈� + 𝒑 ≡ 𝒑𝑎𝑝𝑝 (3.7a) 

 

𝐩 = 𝐚𝑇𝒒 (3.7b) 

  

𝒗 ≡ ∫ 𝒃𝑇(𝑥, 𝐿)𝒆(𝑥)𝑑𝑥
𝐿

0

 (3.8a) 

 

𝐯 = 𝐚𝒖 (3.8b) 
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�̂�(𝒆(𝑥)) ≡ 𝒃(𝑥, 𝐿)𝒒 + 𝒔𝑝(𝑥) (3.9) 

 

The equation of motion that is Equation (3.7a and 3.7b) holds for linear or nonlinear 

material responses, hence this equation can be generated for each element to attain the 

structure’s equation of motion. A numerical time integration scheme can be conducted 

to obtain a solution as given in [63]. The effect of viscous damping can be attained by 

implementing 𝒄�̇� to the left-hand side of the equation. Where c is the damping matrix. 

It is also possible to get resisting forces p not only in terms of displacements, u but 

also as a function of velocities, �̇� using a material model that takes into account time-

dependent properties, such as visco-elastic or visco-plastic material models, but this 

approach is not undertaken in the analysis of civil engineering structures. Any energy 

dissipation which could not be modeled with hysteretic nonlinear models could be 

modeled through the use of viscous damping matrix c in structural analysis. For linear 

section response, section deformations can be obtained as 𝒆 = 𝒌𝑠
−1 �̂� to get the section 

deformations from section forces with the usage of section stiffness matrix 𝒌𝑠. The 

change of section deformations e to Equation (3.8a) thus gives: 

 

𝒗 = 𝒇 𝒒;  (3.10a) 

 

𝐟 = ∫ 𝒃𝑇(𝑥, 𝐿)𝒇𝑠(𝑥) 𝒃(𝑥, 𝐿)𝑑𝑥
𝐿

0

 (3.10b) 

 

In the equations (3.10a and 3.10b), f is the flexibility matrix of the element. The 

section flexibility matrix is fs which is calculated by taking inversion of the section 

stiffness matrix ks. Additional substitution of above equation presents; 

 

𝒎�̈� + 𝒌𝒖 = 𝒑𝑎𝑝𝑝 (3.11a) 
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𝐤 = 𝐚𝑇𝒇−1𝒂 (3.11b) 

 

where k is the 6×6 element stiffness matrix in the whole structure.  

 

3.1.3. Presence of Semi-rigid Connections in Element Formulation for 

2D Case 

 

Incidence of semi-rigid connections is adapted with the discretized version of 

continuous integrals above for the calculation of basic element deformations; 

 

𝒗 = 𝒗Frame + 𝒗Con (3.12a) 

 

𝒗Frame = ∑𝒃𝑇(𝑥𝑖)𝒆𝑖𝑤𝐼𝑃𝑖

𝑛𝐼𝑃

𝑖=1

  (3.12b) 

  

 𝐯Con = ∑𝒃𝑇(𝑥𝑖)𝜟𝑆𝐶,𝑖

𝑛𝑆𝐶

𝑖=1

 (3.12c) 

 

where nIP is the total number of sections used for the capture of the nonlinear response 

of the element and nSC is the whole number of semi-rigid connections current along 

the element; wIP is the weight of integration equivalent to corresponding integration 

location for a discretized section, and finally 𝜟𝑆𝐶 = [𝛿𝑆𝐶
𝑎𝑥𝑖𝑎𝑙 𝜃𝑆𝐶 𝛿𝑆𝐶

𝑠ℎ𝑒𝑎𝑟]𝑇 is the 

vector of deformations  of semi-rigid connection with axial deformation 𝛿𝑆𝐶
𝑎𝑥𝑖𝑎𝑙, 

rotation 𝜃𝑆𝐶  and shear 𝛿𝑆𝐶
𝑠ℎ𝑒𝑎𝑟. Introducing a semi-rigid connection along member in 

Figure 3.1 does not modify the force vector under small deformations, hence above 

Equations (3.1) to (3.6) are not affected by this operation. Element flexibility matrix 

is similarly generated as follows: 
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𝒇 = 𝒇Frame + 𝒇Con (3.13a) 

 

𝒇Frame = ∑𝒃𝑇(𝑥𝑖)𝒇𝑠,𝑖𝒃(𝑥𝑖)𝑤𝐼𝑃𝑖

𝑛𝐼𝑃

𝑖=1

  (3.13b) 

 

 

𝐟Con = ∑𝒃𝑇(𝑥𝑖)𝒇𝑆𝐶,𝑖𝒃(𝑥𝑖)

𝑛𝑆𝐶

𝑖=1

 (3.13c) 

 

Equations (3.8) and (3.9) are linked to the element state determination, which means 

these equations can be conducted independent of Equation (3.7), and then the solution 

can be reduced into Equation (3.7). The equations of motion are accumulated for all 

elements. This process was shown for the linear elastic case above. Generally, state 

determination of the element involves an iterative solution in the case of nonlinear 

behavior, where Equations (3.7) to (3.9) are required to be solved. This solution needs 

the generation of element flexibility matrix f under nonlinear response, where taking 

derivative of element deformations v wherein Equation (3.8) according to the element 

forces q which finalizes into the same flexibility integration expression given in 

Equation (3.10); however, the section stiffness will be nonlinear this time. Finally,  

specifics of the solution for the dynamic case at element level is analogous to the 

nonlinear static case offered in [43].  

 

3.1.4. Section Response for 2D Case 

 

Section response can be attained by the basic assumptions presented in Timoshenko 

beam theory before. The plane sections before deformation remain plane after 

deformation along the length of the beam by the usage of section compatibility matrix 

as given in Equation (3.2). At this point, a correction term will be introduced to this 
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matrix, called as the shear correction factor s as follows; 

 

𝒂𝑠 = 𝒂𝑠(𝑦) = [
1 −𝑦 0

0 0 √𝜅𝑠
] (3.14) 

  

Shear correction factor s can be obtained as the inverse of the  suggested by Cowper 

[64] for I-section: 

 

𝜅 =
1

10(1 + ν)(1 + 3m)2
[(12+72m+150m2+90m3) 

+ν(11+66m+135m2+90m3) 

+30n2(m+m2)+5νn2(8m+9m2)] 

(3.15a) 

 

m=
2𝑏𝑓𝑡𝑓

𝑑 𝑡𝑤
 and n=

𝑏𝑓

𝑑
 (3.15b) 

 

Derivation of the above equation for the rectangular shapes vanishes the terms with 

flange parameters. Then, setting Poisson’s ratio to zero generates the form factor for 

the rectangular section as 6/5. In the study presented by Charney et al. [48], major axis 

shear deformations were examined for I-sections in the AISC section database, and 

the subsequent easy form factor was anticipated.   

 

𝜅=0.85+2.32
𝑏𝑓𝑡𝑓

𝑑 𝑡𝑤
 (3.16) 

 

In this study, both of the form factors presented in Equations (3.15) and (3.16) have 

been utilized in executing the validation studies.  
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By utilizing the section compatibility matrix as, section forces can be retrieved by 

integration of the stresses. This satisfies the material constitutive relations 𝝈 = 𝝈(𝜺), 

and the derivative of section forces s with the section deformations results wherein the 

section stiffness matrix ks. 

 

𝒔 = ∫𝒂𝑠
𝑇𝝈 𝑑𝐴

𝐴

 (3.17a) 

 

𝛔 = (
𝜎𝑥𝑥

𝜎𝑥𝑦
) (3.17b) 

 

𝐤𝑠 = ∫𝒂𝑠
𝑇𝒌𝑚𝒂𝑠 𝑑𝐴

𝐴

 (3.17c) 

 

where the material tangent modulus km is gained by the stress-strain relation by the 

use of km=∂σ(ε)/∂ε. Hence, inverse of the section stiffness matrix, which is the section 

flexibility matrix is utilized in generation of element flexibility matrix in Equation 

(3.13). 

 

Behavior of the generated local connection response can be nonlinear generally. The 

comprehensive evidence is given in [43] according to the types of mathematical 

models that can be utilized in generation of the flexibility influence of the connection 

in Equation (3.13). 
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3.1.5. Force Based Consistent Mass Matrix for 2D Case 

 

The mass matrix used for the proposed element with semi-rigid connections is attained 

by the use of a force-based approach presented by Soydas and Saritas [61]. This 

approach was first applied by Molins et al. [65]. This method indirectly deliberates 

the displacement field along the element length which is calculated in a simple manner 

using unit dummy load method. The generation of the consistent mass matrix is done 

by the determination of the section mass matrix. The mass is considered as a 

distributed load by the length of the beam in the basic cantilever system. The section 

mass matrix is generated by the following equation: 

 

𝒎𝑠(𝑥) = ∫𝒂𝑠
𝑇𝜌(𝑥, 𝑦) 

𝐴

𝒂𝑠 𝑑𝐴 (3.18) 

 

In calculation of the section mass matrix in above equation, shear correction factor, 

should not be applied in conducting section compatibility matrix as. Mass matrix of 

the force-based element can be presented in the complete system which is used in 

Equation (3.7a), which is in 6×6 form as: 

𝒎 = [
𝒎00 𝒎0𝐿

𝒎𝐿0 𝒎𝐿𝐿
] (3.19) 

 

The components of element mass matrix are generated in 3×3 sub-matrices  

𝒎𝐿𝐿 = 𝒇−1 ∫ 𝒃𝑇(𝑥, 𝐿)𝒌𝑠
−1(𝑥) (∫ 𝒃𝑇(𝑥, 𝜉)𝒎𝑠(𝜉)𝒇𝑝(𝜉)𝒇−1𝑑𝜉

𝐿

𝑥

)
𝐿

0

𝑑𝑥 (3.20a) 

 

𝒎𝐿0 = 𝒇−1 ∫ 𝒃𝑇(𝑥, 𝐿)𝒌𝑠
−1(𝑥) (∫ 𝒃𝑇(𝑥, 𝜉)𝒎𝑠(𝜉)(𝒃

𝑇(0, 𝜉)
𝐿

𝑥

𝐿

0

 

        −𝒇𝑝(𝜉)𝒇−1𝒃𝑇(0, 𝐿))𝑑𝜉)𝑑𝑥 

(3.20b) 
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𝒎0𝐿 = 𝒎𝐿0 = −𝒃(0, 𝐿)𝒎𝐿𝐿 + ∫ 𝒃(0, 𝑥)𝒎𝑠(𝑥)𝒇𝑝(𝑥)𝒇−1𝑑𝑥
𝐿

0

 (3.20c) 

 

𝒎00 = −𝒃(0, 𝐿)𝒎𝐿0 + ∫ 𝒃(0, 𝑥)𝒎𝑠(𝑥) (𝒃𝑇(0, 𝑥) −
𝐿

0

              𝒇𝑝(𝑥)𝒇−1𝒃𝑇(0, 𝐿)) 𝑑𝑥  

(3.20d) 

 

 

The element flexibility matrix f is taken as given in Equation (3.10). The partial 

flexibility matrix fp is calculated as follows: 

 

𝒇𝑝(𝑥) = ∫ 𝒃𝑇(𝜉, 𝑥)𝒌𝑠
-1(𝑥)𝒃(𝜉, 𝑥)𝑑𝜉

𝑥

0

 (3.21) 

 

The integral terms in Equations (3.20) and (3.21) are presented to the existence of 

semi-rigid connections without the necessity for more discretization of the element. 

 

3.2. Frame Element Formulation for 3D Case 

 

In this section, the formulation of a three-dimensional frame element is presented. The 

cases of static variational formulations are conducted with a force-based frame 

element. Spread of inelasticity through the element is presented by fiber discretization 

of the section similar to the previous two-dimensional case. 
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3.2.1. Kinematic Relations for 3D Case 

 

The three-dimensional formulation is conducted through the element formulation of a 

cantilever beam again. The continuum is satisfied with reduced degrees of freedom to 

a cantilever beam. Timoshenko beam theory allows the beam rotation independent of 

beam’s deflection and this creates shear deformation of the beam which is not included 

in the Euler Bernoulli beam theory. Displacements on a material point on the section 

of a beam that deforms in xyz-space can be obtained by calculating Timoshenko beam 

theory as follows; 

 

{

𝑢𝑥(𝑥, 𝑦, 𝑧)
𝑢𝑦(𝑥, 𝑦, 𝑧)

𝑢𝑧(𝑥, 𝑦, 𝑧)

} = {

𝑢(𝑥) − 𝑦𝜃𝑧(𝑥) + 𝑧𝜃𝑦(𝑥)

𝑣(𝑥) − 𝑧𝜃𝑥(𝑥)
𝑤(𝑥) + 𝑦𝜃𝑥(𝑥)

} (3.22) 

 

where ux(x,y,z), uy(x,y,z) and uz(x,y,z) the x, y and z-direction displacements which 

are the displacement functions in x, y and z directions at any point in the cross-section. 

u(x) is the displacement of any point along the x-axis. v(x) and w(x) are the transverse 

deflections along on any point at (x,0) in y and z-direction. Rotation of the beam 

around x-axis is x(x), around y-axis is y(x) and around z-axis is z(x). The strain,  

contains the normal strain, xx along the member and shear strain, xy, where these 

parameters are computed as follows;  

 

𝜺 = {

𝜀𝑥𝑥

𝛾𝑥𝑦

𝛾𝑥𝑧

} = {

𝑢′(𝑥) − 𝑦𝜃𝑧
′ (𝑥) + 𝑧𝜃𝑦

′ (𝑥)

−𝜃𝑧(𝑥) + 𝑣 ′(𝑥) − 𝑧𝜃𝑥
′ (𝑥)

𝜃𝑦(𝑥) + 𝑤 ′(𝑥) + 𝑦𝜃𝑥
′ (𝑥)

} (3.23a) 

 

𝜺 = {

𝜀𝑎(𝑥) − 𝑦𝜅𝑧(𝑥) + 𝑧𝜅𝑦(𝑥)

𝛾𝑦(𝑥) − 𝑧𝜑(𝑥)

𝛾𝑧(𝑥) + 𝑦𝜑(𝑥)

} (3.23b) 

 



 

 

38 

 

𝜺 = 𝒂𝑠(𝑦, 𝑧) 𝒆(𝑥) (3.23c) 

where e(x) is the section deformation vector. 

𝒆(𝑥) = [𝜀𝑎(𝑥) 𝜅𝑧(𝑥) 𝜅𝑦(𝑥) 𝛾𝑦(𝑥) 𝛾𝑧(𝑥) 𝜑(𝑥)]𝑇 (3.24) 

 

𝜀𝑎(𝑥) is the axial strain along the beam’s x-axis, ( )x is torsional rate of twist along 

beam’s x-axis, 𝛾𝑦(𝑥) and 𝛾𝑧(𝑥) are the shear deformations of the sections along y and 

z-axis, respectively, and 𝜅𝑦(𝑥) and 𝜅𝑧(𝑥) are curvatures of the sections about y and z 

axes. Section deformations are generated from section displacements from the 

comparison of the terms of Equation (3.23).  𝒂𝑠(𝑦, 𝑧) is the compatibility matrix of 

the section and is given as follows; 

 

𝒂𝑠(𝑦, 𝑧) = [
1 −𝑦 𝑧 0 0 0
0 0 0 1 0 −𝑧
0 0 0 0 1 𝑦

] (3.25) 

 

3.2.2. Basic System without Rigid Body Modes and Force 

Interpolation Functions for 3D Case 

 

Element formulation is conducted as a frame element with two end nodes in xyz. Thus, 

the complete structure system is reduced to a basic system which is derived to interpret 

the member elements state determination of the structure. The complete system in 

Figure 3.4 is reduced from 12 displacement modes that contain 6 rigid body modes to 

only 6 deformation modes through the use of a basic system. The produced element is 

based on the cantilever basic system where the left-hand side of the system only 

permits rotations in y and z-direction, and the right-hand side permits the only 

displacement in x-direction and rotations in x, y and z-direction that is shown in Figure 

3.5. The transformation matrix, a interacts the whole system nodal forces p and nodal 

displacements u to the basic equation elements q and element deformations v along 

the length L of the beam through following equation; 
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𝒗 = 𝒂𝒖 (3.26) 

 

𝒑 = 𝒂𝑇𝒒;  and 𝐚 =

[
 
 
 
 
 
−1 0 0 0 0 0 1 0 0 0 0 0
0 −1 0 0 0 −𝐿 0 1 0 0 0 0
0 0 −1 0 𝐿 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0 0 0 0 1]

 
 
 
 
 

 (3.27) 

 

 

Figure 3.4. Three-dimensional Complete System 

 

Figure 3.5. Basic System Forces and Deformations 

 

Basic element forces at free end, 𝒒 are given in Figure 3.5 and presented in Equation 

(3.27). These forces are internal section forces, 𝒔(𝑥) by using the force interpolation 

matrix 𝒃(𝑥, 𝐿) for the cantilever beam as follows; 

 

𝒔(𝑥) = [𝑁(𝑥) 𝑀𝑧(𝑥) 𝑀𝑦(𝑥) 𝑉𝑦(𝑥) 𝑉𝑧(𝑥) 𝑇(𝑥)]𝑇 = 𝒃(𝑥, 𝐿)𝒒 (3.28a) 

 

p1, u1 

p2, u2 

p3, u3 

p6, u6 

p5, u5 

p4, u4 

y 

z 

x 

p12, u12 
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𝒃(𝑥, 𝐿) =

[
 
 
 
 
 
1 0 0 0 0 0
0 (𝐿 − 𝑥) 0 0 0 1
0 0 (𝑥 − 𝐿) 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0]

 
 
 
 
 

  (3.28b) 

 

By using Equation (3.28), it can get exact equilibrium between the forces at free end 

of the element and forces at any section that is x units away from the fixed end. Axial 

force 𝑁(𝑥), shear force in y and z directions 𝑉𝑦(𝑥), 𝑉𝑧(𝑥) and moments about x, y and 

z-axis 𝑇(𝑥), 𝑀𝑦(𝑥), 𝑀𝑧(𝑥) are section forces. 

 

3.2.3. Variational Base and Finite Element Formulation for 3D Case 

 

Independent element nodal displacements u, element basic forces q, and section 

deformations e create the variational form of the element by using three-fields Hu-

Washizu functional and applied as part of beam finite elements by [41] and [62].  

 

𝛿𝛱HW = ∫ 𝛿𝒆𝑇 (�̂�(𝒆(𝑥)) − 𝒃(𝑥, 𝐿)𝒒 − 𝒔𝑝(𝑥))
𝐿

0
 𝑑𝑥 −

                𝛿𝒒𝑇 ∫ 𝒃𝑇(𝑥, 𝐿)𝒆(𝑥) 𝑑𝑥
𝐿

0
− 𝛿𝒖𝑇𝒑𝑎𝑝𝑝 = 0  

(3.29) 

 

Above equation can also be retrieved by considering the general Hu-Washizu 

variational form. Equation (3.29) should hold for arbitrary 𝛿𝒖, 𝛿𝒒 and 𝛿𝒆, thus the 

following three equations should be satisfied in order for the Hu-Washizu variational 

to be zero. 

 

𝒗 ≡ ∫ 𝒃𝑇(𝑥, 𝐿)𝒆(𝑥)𝑑𝑥
𝐿

0

  (3.30a) 
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𝐯 = 𝐚𝒖 (3.30b) 

 

�̂�(𝒆(𝑥)) ≡ 𝒃(𝑥, 𝐿)𝒒 (3.31) 

 

Section deformations can be obtained as 𝒆 = 𝒌𝑠
−1 �̂� to get the section deformations 

from section forces with the usage of section stiffness matrix 𝒌𝑠 for linear elastic 

material response. The change of section deformations e to Equation (3.30a) gives: 

 

𝐚𝒖 = 𝒗 = 𝒇 𝒒;  where 𝐟 = ∫ 𝒃𝑇(𝑥, 𝐿)𝒇𝑠(𝑥) 𝒃(𝑥, 𝐿)𝑑𝑥
𝐿

0

 (3.32) 

 

In the equation above, f is the flexibility matrix of the element. The section flexibility 

matrix is fs which is calculated by taking inversion of the section stiffness matrix ks. 

Additional substitution of above equation presents; 

 

𝒌𝒖 = 𝒑𝑎𝑝𝑝;  where 𝐤 = 𝐚𝑇𝒇−1𝒂 (3.33) 

 

where k is the 12×12 element stiffness matrix in the whole system. 
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3.2.4. Presence of Semi-rigid Connections in Element Formulation for 

3D Case 

 

At this point in the element formulation, presence of semi-rigid connections will be 

adapted through the following discretized version of above the calculation of basic 

element deformations: 

 

𝒗 = 𝒗Frame + 𝒗Con; (3.34a) 

 

𝐯Frame = ∫𝒃𝑇(𝑥)𝒆(𝑥)𝑑𝑥;
𝐿

 (3.34b) 

 

 𝒗Con = ∑𝒃𝑇(𝑥𝑖)𝜟𝑆𝐶,𝑖

𝑛𝑆𝐶

𝑖=1

 (3.34c) 

 

𝚫𝑆𝐶 = [𝛿𝑆𝐶
𝑎𝑥𝑖𝑎𝑙 𝜃𝑍,𝑆𝐶 𝜃𝑌,𝑆𝐶 𝛿𝑌,𝑆𝐶

𝑠ℎ𝑒𝑎𝑟 𝛿𝑍,𝑆𝐶
𝑠ℎ𝑒𝑎𝑟 𝜑𝑆𝐶]

𝑇
 (3.34d) 

 

The first integral can be numerically calculated by using a quadrature rule to get 

inelastic behavior along the member nIP is the total number of sections used for the 

design of the nonlinear response of the element and 𝜟𝑆𝐶 is the vector of deformations  

of semi-rigid connection with axial deformation 𝛿𝑆𝐶
𝑎𝑥𝑖𝑎𝑙, rotation 𝜃𝑌,𝑆𝐶, 𝜃𝑍,𝑆𝐶 and shear 

𝛿𝑌,𝑆𝐶
𝑠ℎ𝑒𝑎𝑟, 𝛿𝑍,𝑆𝐶

𝑠ℎ𝑒𝑎𝑟 and torsion 𝜑𝑆𝐶.  

 

Introducing a semi-rigid connection along the member in Figure 3.5 does not modify 

the force vector under small deformations, hence the above Equations (3.22) to (3.29) 

are not affected by this operation. Element flexibility matrix is similarly generated as 

follows:  
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𝒇 = 𝒇Frame + 𝒇Con; (3.35a) 

 

𝐟Frame = ∫𝒃𝑇(𝑥)𝒇𝑠(𝑥)𝒃(𝑥)𝑑𝑥;
𝐿

  (3.35b) 

 

𝐟Con = ∑𝒃𝑇(𝑥𝑖)𝒇𝑆𝐶,𝑖𝒃(𝑥𝑖)

𝑛𝑆𝐶

𝑖=1

 (3.35c) 

 

Equations (3.30) and (3.31) are linked to the element state determination. Generally, 

state deterioration of the element involves an iterative solution in the case of nonlinear 

behavior, where Equations (3.30) to (3.31) are required to be solved. This solution 

needs the generation of element flexibility matrix f under nonlinear response, where 

taking derivative of element deformations v wherein Equation (3.30) according to the 

element forces q which finalizes into the same flexibility integration expression given 

in Equation (3.32); however, the section stiffness will be nonlinear this time. 

 

3.2.5. Section Response for 3D Case 

 

Section response can be attained by the basic assumption. The plane sections before 

deformation keep on plane after deformation among the length of the beam by the 

usage of section compatibility matrix as given in Equation (3.23). The section 

compatibility matrix has the shear correction factor s as follows; 

 

𝒂𝑠 = 𝒂𝑠(𝑦) = [

1 −𝑦 𝑧 0 0 0

0 0 0 √𝜅𝑠𝑦 0 −𝑧

0 0 0 0 √𝜅𝑠𝑧 𝑦

] (3.36) 

 

Shear correction factor s can be obtained as the inverse of the form factor suggested 

by [48] for I-section about the major bending axis: 
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𝜅𝑠 = 1/𝜅 (3.37a) 

 

𝜅=0.85+2.32
𝑏𝑓𝑡𝑓

𝑑 𝑡𝑤
 (3.37b) 

 

By utilizing the section compatibility matrix as, section forces can be obtained by 

integration of the stresses. This satisfies the material constitutive relations ( )=σ σ ε , 

and the derivative of section forces s with the section deformations results wherein the 

section stiffness matrix ks 

 

𝒔 = ∫𝒂𝑠
𝑇𝝈 𝑑𝐴

𝐴

;  where 𝛔 = (

𝜎𝑥𝑥

𝜎𝑥𝑦

𝜎𝑥𝑧

) (3.38) 

 

𝒌𝑠 =
𝜕𝒔

𝜕𝒆
= ∫ 𝒂𝑠

𝑇
𝜕𝝈(𝜺)

𝜕𝒆
 𝑑𝐴

𝐴

= ∫𝒂𝑠
𝑇𝒌𝑚𝒂𝑠 𝑑𝐴

𝐴

 (3.39) 

 

where the material tangent modulus km is gained by the stress-strain relation by the 

use of km=∂σ(ε)/∂ε. Numerical evaluation of the integrals in (3.38) and (3.39) can use 

Gauss-quadrature, the midpoint or the trapezoidal rule. While Gauss-quadrature gives 

improved results for smooth strain distributions and stress-strain relations, and the 

midpoint rule is desirable for strain distributions and stress-strain relations with 

discontinuous slopes. Hence, the section stiffness matrix inverse, which is the section 

flexibility matrix is utilized in generation of element flexibility matrix in Equation 

(3.35). 
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CHAPTER 4  

 

4. NUMERICAL VERIFICATIONS 

 

Verification studies for the proposed frame element with localized semi-rigid 

connections for steel structures are conducted in this chapter. For this purpose, both 

two dimensional (2D) and three dimensional (3D) examples under various loading and 

boundary conditions are considered in order to assess the accuracy of the frame 

element proposed in this thesis. Comparisons are conducted with respect to available 

examples and solutions in the literature, as well as example problems generated in this 

thesis. When necessary, available finite element programs used in practice and 

research are considered in order to provide comparison of the similarities and 

differences between various solution platforms, as well. First, vibration studies are 

considered in order to provide the accuracy of proposed element in capturing stiffness 

and mass distributions under linear elastic response. Then, nonlinear behavior of frame 

elements and structures with the presence of semi-rigid connections is studied with 

the use of proposed element. For both cases of validation, member level and structure 

level examples are presented.  

 

4.1. Verification of Vibration Characteristics  

 

4.1.1. Cantilever Beam Example 

 

The first validation is done for the proposed approach with different commercially 

available programs. A cantilever I beam that is rigidly fixed at one end is modeled in 

ANSYS as shown in Figures 4.1 where a finite element analysis can be conducted for 

a detailed analysis. This model in ANSYS is chosen as the control (benchmark) model 
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for the proposed frame element in the absence of connections, i.e. representing the 

rigid connection case. The closed form solution for a cantilever beam with solid 

circular section is compared in [66] and the results showed very good match which 

can be understood as the proposed frame finite element formulation presents a good 

accuracy when compared with the closed form solutions.   The cantilever beam 

geometry is selected as IPE270 section with varying length to depth (L/d) ratios (cross-

section properties of this section are later shown in Figure 4.2). The radius fillet of 

IPE270 section is not applied to the model. For analysis, L/d aspect ratio of the beam 

is varied as 10, 5 and 2 for the study of long to short beam cases. Elasticity modulus, 

Poisson’s ratio and density of the beam are taken as 200 GPa, 0.3 and 7832 kg/m3, 

respectively. ANSYS finite element model is created with the use of 3D Solid187 

element discretized with fine mesh in order to get numerically converged exact 

solution with the use of that program. 

 

 

Figure 4.1. Representative 3D I Beam Generated in ANSYS 
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Fundamental vibration frequencies obtained from ANSYS simulations are presented 

in Table 4.1.  

 

Table 4. 1 ANSYS Results for Cantilever I-Beam with Rigid Connection 

L/d 
1st Bending 

(Hz) 

2nd Bending 

(Hz) 

1st Axial 

(Hz) 

10 42.154 227.13 468.35 

5 155.66 649.25 937.13 

2 671.28 NA 2358.7 

 

The results obtained from ANSYS and with the use of proposed element will also be 

compared with the popularly used commercial structural analysis program SAP2000. 

The model in SAP2000 is prepared by the use of linear elastic frame elements, as well.  

 

In Table 4.2, results obtained with the use of proposed frame element and SAP2000 

solutions are presented. The analyses with the use of proposed element and SAP2000 

are carried out with the use of 4 and 32 elements   

 

The accuracy of SAP2000 elements is greatly influenced by the use of lumped mass 

matrix, while the proposed element uses distributed mass matrix calculated from 

force-based approach. In order to capture 2nd bending mode accurately, at least 4 

elements should be used with proposed approach, and 32 elements solution gives 

perfect match with ANSYS. Accuracy of the proposed approach is observed to be due 

to the use of force-based stiffness and mass matrix calculations, as well as due to the 

use of an accurate shear correction coefficient proposed by [48]. 

 

With respect to the short beam case, the kinematics of deformation observed in 

ANSYS model was not exactly replicated with the use of Timoshenko beam theory 

assumptions, the error in vibration mode calculations are increased to about 2-3% in 
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1st bending mode with the use of 32 elements with proposed approach, and this is 

accepted as a reasonable error.   

 

Table 4. 2 SAP2000 and Proposed Model Results for Cantilever I-Beam with Rigid Connection 

L/d Mode Type 
SAP 2000 Proposed Model 

Nel =4 Err. % Nel =32 Err. % Nel = 4 Err. % Nel = 32 Err. % 

10 

1st Bending (Hz) 41.31 2.0 42.42 0.6 42.10 0.1 42.08 0.2 

2nd Bending (Hz) 213.86 5.8 232.29 2.3 229.21 0.9 226.95 0.1 

1st Axial (Hz) 464.90 0.7 467.95 0.1 470.91 0.5 467.95 0.1 

5 

1st Bending (Hz) 154.23 0.9 157.83 1.4 155.51 0.1 155.32 0.2 

2nd Bending (Hz) 643.50 0.9 692.52 6.7 671.87 3.5 659.15 1.5 

1st Axial (Hz) 930.23 0.7 935.45 0.2 941.83 0.5 935.90 0.1 

2 

1st Bending (Hz) 692.52 3.2 702.25 4.6 686.56 2.3 684.10 1.9 

2nd Bending (Hz) 2136.75 NA 2277.90 NA 2080.12 NA 2030.62 NA 

1st Axial (Hz) 2325.58 1.4 2341.92 0.7 2354.57 0.2 2339.74 0.8 

 

After studying the cantilever beam with IPE270 section, different steel sections as 

shown in Figure 4.2 are going to be investigated. The considered sections will provide 

different vibration characteristics to the cantilever beam as a result of the variation of 

their depth to width as well as flange and web thicknesses.  

 

 

Figure 4.2. Sections used in Validation Analysis (dimensions in mm) 

 



 

 

49 

 

The considered beam sections are divided into two groups. The first group of I-

sections consists of European sections: HEB180, IPE270 and IPE750×147 (Figure 

4.2). The second group of I-sections considered in this study was also considered in 

the literature  [37], and these are W36×135, W24×250 and W14×730 (Figure 4.2). 

The accuracy of the mass and stiffness matrices resulting from the proposed element 

formulation are verified for these I-sections. Length to depth (L/d) ratio of the beam 

is chosen again as 10, 5 or 2 in order to study both the long beam and short beam 

cases. Elasticity modulus, Poisson’s ratio and density are taken as 200 GPa, 0.3 and 

7832 kg/m3, respectively.  

 

The proposed model is first tested with the 3D model created in ANSYS environment. 

ANSYS model is accepted as the governing or control model for this comparison 

study. It is important to take into consideration some modelling approximations that 

have a crucial effect on the finite element analysis, as the element type, meshing 

elements, boundary conditions. In order to eliminate the influence of vibrations due to 

local flange and web distortions that could take place in some of the sections 

considered in Figure 4.2, the web of I-beam in ANSYS model is stiffened with plates 

in Figure 4.3 that have negligible mass and stiffness, and as a result one to one 

comparison with the proposed frame element became possible. It is important to recall 

that the kinematics of Timoshenko beam theory considered in the proposed frame 

element formulation does not allow any flange and web distortion to take place. For 

this purpose, the geometry of the wide flange beams in ANSYS is stiffened with 1 mm 

thick stiffeners, with 1×10-10 kg/m3 density. These are supplemented along the length 

of the elements to restraint the flanges and decrease their distortion behavior; hence, 

assuming such a flange restraining method converges to a realistic behavior of wide-

flange beams in structures. After employing the geometry, 3D solid mesh is produced 

using the SOLID187 element in ANSYS as shown in below figure, where this element 

provides 10 nodes and quadratic displacement behavior to the elements with improved 

strain formulation.  
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Figure 4.3. Representative 3D I Beam Generated in ANSYS with Stiffeners 

 

The ratios of the natural frequencies obtained from proposed model to ANSYS model 

are presented in Figures 4.4 and 4.5. The ANSYS FEM model is taken as a control 

model for the steel sections presented in Figure 4.2. Therefore, this ratio will denote 

the error between the benchmark (control) model and the proposed model. The results 

of the cantilever beams are denoted for its first bending, second bending and axial 

modes of beams for different length to depth ratios. For the two groups of cross-

sections, compact and non-compact sections present significantly smaller error, but, 

for the deeper sections, approximately 10% error is retrieved for the short beam aspect 

ratios.  
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Figure 4.4. Proposed Model over ANSYS Natural Frequencies for European Sections 
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Figure 4.5. Proposed Model over ANSYS Natural Frequencies for American Sections 

 

From the comparisons with ANSYS results for the rigid connection case, it is observed 

that the proposed frame element model overall provides better match than SAP2000 

to the results obtained in ANSYS. In the next stage, the case of semi-rigid connections 

will be studied through the use of proposed frame element and SAP2000 program as 

a means for comparison of the differences between the two solution approaches in 

capturing the vibration characteristics of flexibly connected members. For this 

purpose, IPE270 section is considered for the analysis of the cantilever beam with 

flexible connection at its base. SAP2000 program is chosen for the simplicity of 

defining flexible connections with acceptable accuracy which is mentioned earlier in 

cantilever beam examples with rigid connections. 
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The base of the cantilever beam is introduced with a flexible connection with 

flexibility provided with λEI/L formula. E, I and L are the elasticity modulus, the 

moment of inertia of cross section and length of the beam, respectively. The 

connection stiffness ratio for the semi-rigid case is varied as λ = 2, 11 and 20, where 

λ is the ratio of connection stiffness to flexural rigidity EI/L of the beam, where λ = 2 

represents a behavior that is closer to pinned connection, and λ = 20 represents a 

behavior that is approach rigid connection.  

 

Analyses results obtained with the use of SAP2000 solutions are presented in Table 

4.3 with the use of 4 and 32 elements, and the results obtained with the proposed frame 

element analysis are presented with the use of 1 and 4 elements in Table 4.4. It is 

evident that the introduction of semi-rigid connection in the proposed frame element 

highly changes its accuracy with the use of 1 element solution for it, and more element 

discretization is now needed even to capture 1st bending mode accurately. Introduction 

of localized connection results in a discontinuity in element’s response through single 

element discretization for the capture of vibration modes. The results of the proposed 

element analysis with 4 elements is observed to be very close to the results of 

SAP2000 solution with 32 elements, which clearly demonstrates the superiority of the 

proposed element.  

 

 

 

 

 

 

 

 



 

 

54 

 

Table 4. 3 SAP2000 Results for Cantilever I-Beam with Semi-Rigid Connection 

 L/d 10 

Nel 
Mode 

Type 
=2 =11 =20 

4 

 

B1(Hz) 24.29 35.68 37.92 

B2(Hz) 178.86 197.90 203.54 

N(Hz) 444.44 459.14 464.25 

32 

 

B1(Hz) 24.75 36.52 38.86 

B2(Hz) 192.75 214.04 220.46 

N(Hz) 467.95 467.95 467.95 

 L/d 5 

Nel 
Mode 

Type 
=2 =11 =20 

4 

 

B1(Hz) 94.66 135.34 142.94 

B2(Hz) 596.66 624.61 631.71 

N(Hz) 930.23 930.23 930.23 

32 

 

B1(Hz) 96.39 138.22 146.11 

B2(Hz) 640.21 671.14 678.89 

N(Hz) 935.45 935.45 935.45 

 L/d 2 

Nel 
Mode 

Type 
=2 =11 =20 

4 

 

B1(Hz) 508.13 644.33 664.89 

B2(Hz) 2136.75 2136.75 2136.75 

N(Hz) 2325.58 2325.58 2325.58 

32 

 

B1(Hz) 515.20 653.17 673.86 

B2(Hz) 2277.90 2277.90 2277.90 

N(Hz) 2341.92 2341.92 2341.92 

B1: 1st Bending, B2: 2nd Bending, N: 1st Axial 
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Table 4. 4 Proposed Model Results for Cantilever I-Beam with Semi-Rigid Connection 

 L/d 10 

Nel 
Mode 

Type 
=2 =11 =20 

1 

 

B1(Hz) 41.43 42.05 42.19 

B2(Hz) 352.54 373.32 378.90 

N(Hz) 515.94 515.94 515.94 

4 

 

B1(Hz) 25.10 36.54 38.76 

B2(Hz) 199.00 215.61 220.42 

N(Hz) 470.91 470.91 470.91 

 L/d 5 

Nel 
Mode 

Type 
=2 =11 =20 

1 

 

B1(Hz) 153.81 156.51 157.09 

B2(Hz) 1031.87 1031.87 1031.87 

N(Hz) 1149.86 1182.72 1190.30 

4 

 

B1(Hz) 97.03 137.22 144.62 

B2(Hz) 637.96 658.35 663.43 

N(Hz) 941.83 941.83 941.83 

 L/d 2 

Nel 
Mode 

Type 
=2 =11 =20 

1 

 

B1(Hz) 699.33 712.83 715.15 

B2(Hz) 2579.68 2579.68 2579.68 

N(Hz) 3137.40 3123.86 3121.53 

4 

 

B1(Hz) 505.54 639.38 659.39 

B2(Hz) 2062.07 2074.72 2076.94 

N(Hz) 2354.57 2354.57 2354.57 

B1: 1st Bending, B2: 2nd Bending, N: 1st Axial 

 

In the following graphs, proposed model and SAP2000 model results are presented 

with the increased number of mesh sizes for the rigid and semi-rigid connection cases 

with flexibility ratio varied as 2, 11 and 20. The relative error of SAP2000 results with 

respect to the proposed model results are plotted for aspect ratio L/d=2 in Figure 4.6, 

L/d=5 in Figure 4.7, and L/d=10 in Figure 4.8. The element numbers are chosen as 2, 

4, 8, 16 and 32 in both analyses.  
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Figure 4.6. Relative Error (%) vs. Number of Elements for Rigid and Semi-rigid Connections, L/d=2 

 



 

 

57 

 

 

Figure 4.7. Relative Error (%) vs. Number of Elements for Rigid and Semi-rigid Connections, L/d=5 
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Figure 4.8. Relative Error (%) vs. Number of Elements for Rigid and Semi-rigid Connections, L/d=10 

 

It is observed that the first bending and axial vibration frequencies obtained in both 

models are very close to each other for fine mesh cases, but SAP2000 results 

demonstrated higher error compared to the proposed model for the 2nd bending mode 

for the short beam case L/d=2 and intermediate beam case L/d=5.  However, the plots 

clearly demonstrate that as the length of the beam increases accuracy of SAP2000 for 

2nd bending mode also improves. It is suspected that the shear area considered in 

SAP2000 by default is the reason for the error, while the proposed model uses a correct 

shear are for this section. Overall, it is concluded that SAP2000 requires at least 4 to 

8 elements to provide a reasonable estimation of even the 1st bending mode, and users 

of SAP2000 should consider finer mesh discretization for dynamic analysis of small 

structural systems that have few structural members. 
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4.1.2. Two-Dimensional Portal Frame Example 

 

The second verification example is a portal frame taken from the study by [37]. The 

semi-rigid connections are presented at both ends of the beam in this structure. British 

UB254x146x37 section is placed for the beam and UC203x203x60 sections are placed 

for the columns. Modulus of elasticity is taken as 200GPa. The length of the beam is 

2.9 m and the height of the columns is 3.0 m (see Figure 4.9).  

 

 

Figure 4.9. Sketch of the Portal Frame [37] 

 

Above portal frame is analysed with proposed model as well as by the use of SAP2000 

program for joint stiffness ratio  ranging from pinned to rigid case, i.e. joint stiffness 

is equal to  times EI/L of beam. The joint stiffness is defined by partial fixity at the 

ends of the frame element in SAP2000 model which introduces additional nodes and 

degrees of freedom to the system. The element numbers for the SAP2000 model are 

varied as 1, 2, 4, 8 and 32 per member, and the proposed model uses only 1 element 

per member, where the results are presented in Figure 4.10. It is evident that 1 and 2 

element solutions in SAP2000 gives highly inaccurate solutions for all joint stiffness 

ratios, and at least 4 elements per member are needed in SAP2000 in order to get the 

accuracy reached by the use of single element with proposed frame element model. 

By the way, fundamental vibration mode shapes obtained from the proposed model 

are presented in Figure 4.11 for representative purposes.  
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Figure 4.10.  Fundamental Natural Frequency vs. Joint Stiffness Ratio for Various Sizes of SAP2000 

Model Mesh 

 

 

Figure 4.11.  Mode Shapes of the Portal Frame for Rigid and Pinned Connections 
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4.1.3. Three Bays Six Stories Planar Frame Example with Beam to 

Column Connections 

 

This example is a 3 bays and 6 stories steel frame composed of European sections 

HEB260 for columns and IPE300 for beams which is proposed in the study by [37]. 

HEB260 section has 260 mm height and width, 7.5 mm flange and 10 mm web 

thicknesses; IPE300 section has 300 mm height, 150 mm width, and 10.7 mm flange 

and 7.1 mm web thicknesses. The beams are 6.0 m in length and the columns are 3.75 

m in height.  

 

 

Figure 4.12.  3 Bays 6 Stories Frame with Beam to Column Semi-Rigid Connections 
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The proposed model results are compared with the results of SAP2000 analysis and 

the results provided in the study by  [37] that provides an approximate closed-form 

solution as well as analyses undertaken in ABAQUS. The ABAQUS solutions were 

undertaken by the use of beam finite elements and the connection regions were 

modeled through the use of spring elements with the introduction extra nodes and 

degrees of freedom in [37]. Furthermore, SAP2000 also requires the introduction of 

extra nodes in order to introduce spring elements to represent connection region. On 

the other hand, the proposed element does not require such a modeling effort, and 

furthermore the matrix sizes are not increased due to such requirement.   

 

In this example, semi-rigid connections are present at both ends of each beam, where 

connection stiffness is varied from pinned to rigid cases. Results from different 

analysis cases are provided in Figure 4.13 for the fundamental vibration frequency. 

Comparison of the results show that all three numerical simulations (proposed, 

SAP2000 and ABAQUS) clearly provide very close match, where the proposed model 

provides exact solution through the use of 1 element per member, while SAP2000 

requires at least 4 elements per member. Furthermore, approximate closed-form 

solution by [37] overestimates the fundamental frequencies especially for the rigid 

connection case. The impact of using 1 element per member in capturing the vibration 

characteristics of the given large structural systems clearly demonstrate reduced effort 

in modeling and analysis through smaller mass and stiffness matrix assemblies, where 

this will especially provide much more robustness in time history analysis. The 

proposed model uses in total 42 elements, while 204 elements are used in SAP2000 

(details of ABAQUS analysis are not present in [37]). 
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Figure 4.13.  Fundamental Natural Frequency vs. Joint Stiffness Ratio for 3 Bays 6 Stories Steel Framed 

Structure 

 

For mid-rise to high-rise structures, it is known that the higher modes of vibration play 

a significant role on the dynamic forces acting on the structures. Therefore, 

representation of higher modes of vibration in numerical analysis is critical in 

correctly estimating the real performance of structures. higher structures, considering 

high order vibration modes becomes vital. For this purpose, 2nd and 3rd vibration 

modes of the given structure in Figure 4.13 are studied, where [37] also provided 

ABAQUS solutions in their study. Following the same discretization considered for 

proposed element with 1 element per span and for SAP2000 with 4 elements per span, 

the results of three simulations are now presented in Figures 4.15 and 4.16 for 2nd and 

3rd fundamental vibration frequencies for the structures, respectively.  
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The results clearly demonstrate perfect match between the proposed model and 

SAP2000 model, while ABAQUS solution slightly overestimates the frequencies for 

the 2nd mode. For the 3rd mode, ABAQUS solutions give more than 5% error compared 

to proposed model, where we suspect that this could be due to discretization mistake 

in [37], and this clearly demonstrate the numerical implications of using less accurate 

elements in modeling the behavior of structural systems.  

 

Figure 4.14. Second Mode Frequency vs. Joint Stiffness Ratio for 3 Bays 6 Stories Steel Framed 

Structure 
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Figure 4.15. Third Mode Frequency vs. Joint Stiffness Ratio for 3 Bays 6 Stories Steel Framed 

Structure 

 

For the purposes of representation, vibration shapes for 1st, 2nd and 3rd modes acquired 

with the proposed model are presented in Figure 4.16 for the cases ideally approaching 

rigid and pinned connections in the simulations.  

 

The verification analysis on this structure evidently displays the necessity to give 

distinct attention for the use of structural analysis programs for the calculation of 

vibration characteristics of structures and the evaluation of seismic loads represented 

on these structures. Incorrect definition of shear effects, neglecting rotary inertias by 

using a lumped mass matrix or not knowing the accuracy of the used structural 
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analysis program in general could result in significant mistakes in the analysis and 

design stages of structural systems.  

 

Finally, it is important to mention that the presence of superimposed story masses in 

buildings should be taken into account in analysis, as well. with the proposed frame 

element. It is known that the occurrence of story superimposed dead loads in the 

analysis of buildings decreases the necessity for the use of the consistent mass matrix 

in capturing the fundamental modes of vibration. However, there is still the necessity 

to capture vibration characteristics of many structural systems with high precision. 

This can only be done by representing shear stiffness and considering rotary inertia 

effects through the use of accurate frame element models. The proposed frame element 

model with semi-rigid connections is demonstrated to provide better results and 

vigorous solutions for steel structures compared to available programs and techniques 

in the literature. 

 

 

Figure 4.16. Mode Shapes of the 3 Bays 6 Stories Structure 

 

 

     Fundamental Mode                  2nd Mode                          3rd Mode 
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4.1.4. Three Bays Six Stories Frame Example with Column Base 

Connection 

 

The previous example, the 3 bay and 6 stories steel frame, is introduced with column 

baseplate connection as well as beam-column connection which is presented in Figure 

4.17. Again, the beams are 6.0 m in length and the columns are 3.75 m in height.  The 

columns and beams of the structure contain HEB260 beams and IPE300 columns. 

Semi-rigid connections are assigned at both ends of each beam, and column bases. 

 

 

Figure 4.17. 3 Bay 6 Story Frame with Column Base Semi-Rigid Connections 
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The presence of the column base connection affects the vibration characteristic of 

structure. In the Figure 4.18, the change of fundamental vibration frequency is plotted 

against varying beam to column and column base joint stiffness ratios. The outcome 

of the semi-rigid connection at both beam-column joints and column bases show an 

important variation on the dynamic behavior of the steel structure that should be 

correctly represented carefully. The bold blue region on the 3D graph shows both 

beam-column and column base connections tend to behave as pinned connection and 

the bold red region at the top of the plot denotes connection behaviors that are close 

to fixed connection. In between these results are denoted as semi-rigid behavior of 

connection on both beams ends and column bases. For representative purposes, 

vibration shapes obtained from the proposed model are plotted in Figure 4.19 for rigid 

beam to column connections with rigid and pinned column base connections.  

 

 

Figure 4.18. Fundamental Natural Frequency vs. Joint Stiffness Ratio of Beam-column and Column 

Base Connection Interaction for 3 Bays 6 Stories Steel Framed Structure 
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Figure 4.19. Mode Shapes of the 3 Bays 6 Stories Structure with Column Base Flexibility only 

 

4.1.5. Two-dimensional Portal Frame Example with Brace Member 

 

This example presents the importance of gusset plate axial flexibility on the vibration 

characteristic on a structure. The portal frame with brace that is presented in Figure 

4.20 is considered for this purpose, and braces are introduced as shown in Figure 4.20. 

The height of the portal frame is 3 m and the span is 2.9 m with UC203X203X60 

columns, UB254X146X37 beam and RHS70*5 brace. This example is utilized for the 

verification of proposed element’s ability to present axial stiffness in an inclined 

component’s response as brace members. Semi-rigid connection does not necessitate 

to introduce new nodes and new degrees of freedom to the structure even for the case 

of axial deformation effects that will represent the gusset plate for the current example.  

 

Gusset plates are considered at the ends of the brace and the flexibility of these gusset 

plates are designated with a ratio,  that is gained by axial rigidity of the brace member 

divided by the length, which is EA/L. The range of the  value is plotted in Figure 

4.20 with corresponding normalized fundamental natural frequency of the braced 

portal frame. This study is also analyzed with SAP2000 and compared with proposed 

model which presents a very good match between proposed model and SAP2000 

model in Figure 4.20.  
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Figure 4.20. Normalized Natural Frequency vs. Joint Stiffness Ratio for Braced Portal Frame 

 

4.2. Verification of Nonlinear Analysis 

 

4.2.1. Three-dimensional Portal Frame Example 

 

A portal frame model in three dimensions as shown in Figure 4.21 is generated with 

OpenSees software and by using the proposed frame element model. OpenSees 

software is a good tool to generate three dimensional examples with its frame finite 

element formulation. Model height is taken as 3 m and bays in each direction are taken 

as 6 m. Each node on the elements has six degrees of freedom. All beam and column 

elements have a linear geometry transformation. That means second order P-Delta 

effects are ignored. For all columns HEB180 steel section is considered, and for all 

beams IPE240 steel section is considered. The structure is first considered to be all 

connected rigidly to each other and to the ground, where this case is named as rigid 

case. Alternative case is created by considering beam to column connections to be 
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semi-rigid while column bases are fixed to the ground rigidly, and this case is named 

as the semi-rigid case. Elasticity modulus, Poisson’s ratio, yield stress and density are 

taken as 210 GPa, 0.3, 275 MPa and 7832 kg/m3, respectively. In this model, 5 

monitoring sections are used for beams and columns with Gauss integration. Cross-

sections of the beams are divided into 5 layers on flanges and 10 layers on web and 

the thickness of the flanges and web are divided into 2 layers and cross-sections of the 

columns are divided into 10 layers on flanges and web and the thickness of the flanges 

and web are divided into 2 layers.   

 

For semi-rigid case, connection stiffness ratio is chosen as λ=2, 11 and 20, where λ is 

the ratio of connection stiffness over flexural rigidity EI/L of the connecting beam. 

Bilinear material of steel with a strain-hardening ratio of 1 × 10−6 is utilized to define 

both beams and columns and they are generated with nonlinear force beam-column 

element in OpenSees. A lateral displacement of 200 mm is imposed such that the 

columns bend about their strong axes. 

 

 

Figure 4.21.  3D Portal Frame Model 
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In order to model a semi-rigid beam-column connection in the OpenSees model, the 

node which joins beam to the column is duplicated and a zero-length rotational spring 

is added between the additional node and joint, and furthermore constraint conditions 

are imposed for the rest of the degrees of freedom between the two nodes. While such 

a modeling effort is necessary in OpenSees, the proposed frame element model does 

not require the introduction of extra nodes and degrees of freedom and the 

specification of constraint conditions in order to introduce the localized connection 

response to the structural system.  

 

In order to verify the linear elastic and nonlinear behavior of proposed frame element 

model with OpenSees, connection response is taken as first linear elastic and the 

results are compared in Figure 4.22. In the second case, connection responses are 

considered as bilinear with hardening slope of 1×10-6 of initial elastic slope. The yield 

moment of the connections are taken as My,c=βMp,beam with β=0.5, where Mp,beam is 

the plastic moment capacity of the beam calculated from the multiplication of yield 

stress y of steel with the plastic modulus Z for IPE240 section, and the load-

displacement plots are presented in Figure 4.23 for both the proposed model 

simulation and OpenSees. For all simulations, the results show perfect match for all 

cases that are considered. It is demonstrated that without the need to define extra 

nodes, degrees of freedom and the use of zero-length rotational springs, the proposed 

model is able to perfectly capture the nonlinear spread of plasticity along element 

length, section depth, and furthermore also capture the presence of nonlinearity 

localizing at the connection region. In Figure 4.23, the lateral load carrying capacity 

of the structure is reduced due to the presence of nonlinearity at connection regions as 

demonstrated by [67]. As a result, the beam ends cannot reach to their capacity but 

remain elastic, while the connections yield as its capacity is chosen less than beam’s 

plastic capacity, and thus limit the lateral capacity of the structure.  
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Figure 4.22. Response of the Structure under Bilinear Material Behavior for Beams and Columns and 

Linear Elastic Behavior for Connections 

 

  

Figure 4.23.  Response of the Structure under Bilinear Material Behavior for Beams and Columns and 

Bilinear Behavior for Connections 
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The effects of the linear elastic flexibility of connections on the nonlinear response of 

structure are presented in Figure 4.24 more clearly, where this figure contains the cases 

shown in Figure 4.22. It is evident that even the linear elastic flexibility of the 

connection greatly affects the energy dissipation characteristics of steel structural 

systems, let alone the nonlinearity that can occur in the connection regions.  

 

 

Figure 4.24. Proposed Model Response with Linear Elastic Connection Responses and Rigid 

Connection Response 

 

This time, lateral displacement of 200 mm on left and 100 mm on right of the floor 

are applied in the strong direction of the column tips to create torsion on the floor of 

the portal frame.  The purpose is to visualize a 3D deformation on the structure. The 

bilinear material behavior and reduced bilinear connection behavior is selected for this 

comparison study. In Figure 4.25, the rotation of the floor versus torque generated at 

the base of the portal frame with different λ values of the beam end connections are 

presented. The comparison with proposed model and OpenSees model showed perfect 

match. 
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Figure 4.25.  Torsional Response of the Structure under Bilinear Material Behavior for Beams and 

Columns and Bilinear Behavior for Connections 

 

After the validation of the basic accuracy of the proposed model, examples present in 

the literature are now considered in the next for verification of the accuracy of the 

proposed model in capturing the responses of three-dimensional complex structural 

systems with or without the presence of semi-rigid connections.  

 

4.2.2. Three-dimensional 20 Story Structure with Plan Irregularity 

and Rigid Connections 

 

This 20 stories structure has all rigid connections and a plan irregularity as shown in 

Figure 4.26, and it was first analyzed in the study of [68]. Due to the complexity of 

the structure, this is considered as one of the benchmark examples to pursue in 

assessing the nonlinear behavior of developed structural analysis programs in 

research. In this thesis, the analysis of this building is pursued, and the results provided 

recently in the literature by Liu et al. [69] and Chiorean [58] are given, as well. 
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This building has the following section properties as shown in plan view in Figure 

4.26 and perspective view in Figure 4.27: beams are assigned W12x26, W21x57 and 

W16x36 sections and columns are assigned W8x31, W10x60, W12x87, W12x106, 

W14x132, W14x145, W14x159 and W14x176 sections. The geometric properties of 

these sections are presented in Table 4.5. There are two loading cases on the system. 

Lateral wind load is defined as area load of 0.96 kN/m2. The wind load is applied in 

the global Y-direction as point load on the nodes and uniform floor load of 4.8 kN/m2 

is applied, as well. These loads are distributed to the nodes with magnitude of their 

own tributary areas. 

 

 

Figure 4.26.  20 Story Structure Plan View [58] 

 

Elasticity modulus, Poisson’s ratio and yield strength is taken as 200 GPa, 0.3 and 

344.8 MPa, respectively. In the proposed frame element model analysis, 5 monitoring 

sections are used for beams and columns with Gauss-Lobatto integration. Cross-

sections of the beams are divided into 6 layers on flanges and 9 layers on web along 

their width directions, and the thickness of the flanges and web are divided into 2 



 

 

77 

 

layers each; cross-sections of the columns are divided into 12 layers on flanges and 9 

layers on web along their width directions, and the thickness of the flanges and web 

are divided into 2 layers each. In this analysis, geometric transformation of the beams 

is assumed as linear and rigid-end zone offsets are ignored, and P-delta transformation 

is considered for the columns. In the present study, torsional constant is calculated 

from the Galambos formula [70] which is 𝐽 = (2𝑏𝑓𝑡𝑓 + 𝑑′′𝑡𝑤)/3 where bf is width of 

the flange, tf is the thickness of the flange, 𝑑′′ is net web height and tw is web thickness. 

However, further definition of torsional effects with warping could be necessary for I 

beam sections, yet, for steel structures, this can be neglected with plausible amount of 

error. Consideration of torsional rigidity in the study by Liu et al. [69] and Chiorean 

[58] are not discussed and could be polar moment inertia of the sections.  
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Figure 4.27.  20 Story Structure 3D Perspective View [58] 

 

 

 

 

 

 



 

 

79 

 

Table 4. 5 Section Properties for 20 Story Frame 

 
Depth (h) Width (w) 

Web 

Thickness (tw) 

Flange 

Thickness (tf) 
Area Ix Iy 

 
mm mm mm mm mm2 mm4 mm4 

W12x26 310.388 164.846 5.842 9.652 4967.732 84911210.82 7200803.66 

W16x36 402.844 177.419 7.493 10.922 6838.696 186471678.7 10197669.9 

W21x57 535.94 166.624 10.287 16.51 10774.17 486990768 12736681.6 

W8x31 203.2 203.073 7.239 11.049 5870.956 45785456.82 15442185.9 

W10x60 259.588 256.032 10.668 17.272 11354.82 141934916.1 48282845.4 

W12x87 318.262 307.975 13.081 20.574 16516.1 308011254.9 100311774 

W12x 106 327.406 310.388 15.494 25.146 20128.99 388343920.1 125285659 

W14x132 372.364 374.015 16.383 26.162 25032.21 636834081.2 228094821 

W14x145 375.4 393.7 17.3 27.7 27548 711756000 281789000 

W14x159 380.5 395.4 18.9 30.2 30129 790840000 311341000 

W14x176 386.6 397.5 21.1 33.3 33419 890735000 348802000 

 

This example is analyzed with proposed frame elements through incremental 

application of the lateral load and recording of the displacement of node A in global 

Y-direction shown in Figure 4.27 in terms of base shear divided by total applied load 

which is referred as base shear ratio. The results obtained with proposed frame element 

are compared with the results presented by Liu et al. [69] and Chiorean [58] in Figure 

4.38. The model by Liu et. al [69] presents a refined plastic hinge method and Chiorean 

[58] uses second-order force-based element. In the study by Chiorean [58], the cross-

section properties of I-sections are more accurately modeled in order to include the 

fillet regions, and the residual stresses were also considered, while in proposed model 

these fillet regions are neglected and residual stresses are not considered in the 

simulations. Modeling and formulation approaches are suspected to be the cause of 

slight variation in the results. As stated above, whether or not rigid-end zone offsets 

are present, or the definition of torsional rigidity could also cause slight variations in 

the response. Overall, the nonlinear load-displacement behavior of this complex 

irregular structure with rigid connections is satisfactorily followed with respect to 

benchmark solutions presented in the literature, and the accuracy of the proposed 

frame element formulation for rigid connection case confirmed. Also it is valuable to 
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mention that the P-delta transformation on columns causes the base shear ratio versus 

story drift curves flatten where can be seen in Figure 4.28.  

 

Figure 4.28.  20 Story Structure Base Shear Ratio versus Roof Drift  
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Figure 4.29.  20 Story Structure Deformed Shape  

 

4.2.3. Three-dimensional 6 Story Structure with Elevation 

Irregularity and Semi-rigid Beam to Column Connections 

 

In this example, 6 story structure first analyzed by [68] with rigid connections is 

considered. The structure has elevation irregularity as shown in Figure 4.30, and 

height of the floors is 3.658 m and the length of the beams in each direction on the 

floor is 7.315 m. Total height of the structure is 21.948 m.  



 

 

82 

 

 

Figure 4.30.  6 Story Structure with Beam to Column Semi-rigid Connections 3D Representation  

 

This example was later on analyzed with semi-rigid connections and currently stands 

as the only complex 3D steel structure with semi-rigid connections with benchmark 

solutions. [68] used a plastic hinge approach for the analysis of this frame, where rigid 

connection behavior was assumed. Nguyen and Kim [57], Thai and Kim [59] and 

Chiorean [58] used frame element models with second-order force based approach, 

where the inclusion of semi-rigid connections was implemented through extra spring 
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elements and addition of nodes and degrees of freedom to the structural model. Further 

details on the formulation and modeling assumptions of these studies are presented in 

literature review chapter of this thesis.  

 

The original example stated that the material properties of the frame members would 

represent A36 steel, where elasticity modulus and shear modulus are set as 206850 

MPa and 79293 MPa in the literature, accordingly. Yield stress is 250 MPa for all the 

members and Poisson’s ratio is 0.3. Behavior of the steel material is modeled with 

bilinear with hardening slope of 1×10-6 of initial elastic modulus. In the proposed 

model in this thesis, each member is modeled with single proposed frame element, 

and elements have 5 monitoring sections with location and weights assigned from 

Gauss-Lobatto integration rule. Cross-sections of the beams are divided into 6 layers 

on flanges and 9 layers on web along width directions, and the thickness of the flanges 

and web are divided into 2 layers each; cross-sections of the columns are divided into 

12 layers on flanges and 9 layers on web along width direction, and the thickness of 

the flanges and web are divided into 2 layers. Geometric transformation of the beams 

is assumed as linear and P-delta transformation is considered for the columns, and 

rigid end zone regions are ignored. The connections of the beam to column elements 

is considered as bolted top and seat angle connections in the literature, where the 

power model by Kishi and Chen [7] is adopted for the definition of the semi-rigid 

connections. Strong and weak axis of the frames and the connections are considered 

in this example, and the properties of the connections for power model are documented 

in Table 4.6. As in the previous example, the torsional rigidity is adopted from the 

Galambos Formula.  
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Table 4. 6 Semi-Rigid Connection Properties for both Strong and Weak Axis 

Beam Sections Bending Axis Mu (kNm) Rki (kNm/rad) n 

W12x87 
Major 300 160503.2 1.57 

Minor 300 52267.75 1.57 

W12x53 
Major 300 92185.09 1.57 

Minor 300 20776.82 1.57 

W12x26 
Major 200 44247.8 0.86 

Minor 200 3752.54 0.86 

 

The loading on the structure consists of a lateral load obtained from wind loads and 

uniform floor loads. The wind load is applied in global Y direction as point load of 

53.376 kN at every beam to column connecting node and uniform floor load of 9.6 

kN/m2 is applied. These loads are distributed to the nodes with magnitude of their own 

tributary areas. 

 

The results of lateral load in terms of base shear ratio  and lateral displacement of node 

A in Y direction are plotted for the proposed frame element model analysis and 

compared with the study by [57]  in Figure 4-31. The study [57]  uses three-

dimensional semi-rigid steel frames, where the spread of plasticity is taken by uniaxial 

stress-strain relation from cross section of the elements. The second order P-delta 

effects are taken into account. Semi-rigid beam column connection is generated by a 

3D multi spring element which accounts for rotational response in both major and 

minor axis bending, and thus requires increase in the number of nodes and degrees of 

freedom to the structural model. 

 

Evident from the comparison in Figure 4.31, the proposed model response provides 

good match with the literature and can actually follow the peak load response of roof 

displacement even further than the result presented by  [57]. Also again, the P-delta 
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effect on columns causes the base shear ratio versus story drift curves flatten which is 

presented in Figure 4.31 and 4.32. 

 

Figure 4.31. The Comparison of Base Shear Ratio versus Story Drift with Proposed Model and 

Nguyen and Kim Study [57] 

 

Response of the proposed model is also compared with the results provided by 

Chiorean [58] and Thai and Kim [59]. Both of these studies also implement force-

based shape functions but need the introduction of extra nodes and degrees of freedom 

to the structural model to consider semi-rigid connection response as spring elements. 

Further details on these models are presented in literature review chapter. Comparison 

of the plots clearly indicate satisfactory match between the solutions, and the 

differences in the results are thought to be due to the modeling variations that were 

listed and discussed in the previous example with regards to the definition of rigid end 
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zones, torsional rigidity, and description of fillet regions of I-sections in especially 

Chiorean [58]. 

 

Figure 4.32.  The Comparison of Base Shear Ratio versus Story Drift for Chiorean [58] and Thai and 

Kim [59] and Proposed Model 

 

 

Figure 4.33.  6 Story Structure Deformed Shape  
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CHAPTER 5  

 

5. CONCLUSION 

 

5.1. Summary 

 

In this thesis, a force-based formulation frame finite element is derived from three-

fields Hu-Washizu-Barr functional. In the formulation presented in this thesis, 

consistent mass matrix is implemented in a consistent manner with the functional and 

obtained through force-based approach without any need for the derivation of 

displacement field along element length. Proposed approach allows the determination 

of vibration characteristics of structural members with varying geometry and material 

distribution. Furthermore, the proposed model is also able to present localized 

connection responses at any section on the element without additional requirement for 

the specification of different displacement shape functions for every situation. Hence, 

proposed model does not need additional discretization in the form of introduction of 

nodes and degrees of freedom to the element or structural model.  

 

The proposed model exploits fiber discretization of sections that monitor the spread 

of inelasticity along element length and section depth. Introducing semi-rigid 

connections either linear or nonlinear behavior along the member does not require any 

increase in number of degrees of freedom even in the case of nonlinear behavior. The 

element is generated with the choice of taking nonlinear geometric effects. The 

proposed element is developed with correct element behavior and flexibility on the 

connections in order to capture the biased analysis of steel structures.  
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Numerical examples are conducted to validate the results taken from the proposed 

finite element models with regards to other available structural and finite element 

analysis programs. The evolution of this study initiates from member level examples 

in 2D with a cantilever beam example, which is followed by planar framed structures. 

Through the use of member level study, vibration characteristics obtained through the 

proposed frame element is verified. The validity of the proposed force-based frame 

element formulation with localized connections is first evaluated for the rigid 

connection case with ANSYS through the use of 3D solid finite element models, and 

then with frame elements available in SAP2000 programs. After this basic validation 

study, the proposed frame element’s accuracy is compared with available results in 

the literature for steel framed structures. With regards to the nonlinear validation of 

the proposed element, both 2D and 3D examples generated in this thesis and that are 

available in the literature are considered. For 3D examples, semi-rigid connection 

behavior is taken to be present in the strong and weak axis bending directions using 

linear and nonlinear models for the connection.  

 

5.2. Conclusions 

 

Discussion of the results from the research work undertaken in this thesis provide the 

following conclusions:   

 

• Consistent mass matrix of the element is determined from force method. Thus, 

the proposed approach permits determination of vibration frequencies of 

members with differing geometry and material distribution in an accurate and 

robust manner and allows modeling of the localized connection response at 

any section on the element without additional application of different 

displacement shape functions. Furthermore, the element response does not 

need additional discretization because of the presence of discontinuous 

deformations that take place at localized connections. Also, the proposed 
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model considers the transverse shear deformations through the use of 

Timoshenko beam theory and implements an accurate shear correction factor 

for widely used steel sections in practice. 

 

• Member level validation studies on the estimation of vibration characteristics 

demonstrate that the proposed element can determine the first bending and 

axial modes in addition to the second bending mode for I-beams for rigid 

connection case accurately when compared with ANSYS finite element 

simulations undertaken through the use of 3D solid finite elements. 

Comparisons are undertaken for long beam to short beam cases, and proposed 

element provides highly accurate results for intermediate to long beams when 

compared with ANSYS solutions, while its accuracy drops down to give 2-3% 

error for the fundamental vibration modes for the short beam case.   

 

• Member level comparisons for the proposed element is also pursued through 

comparison with SAP2000 structural analysis program. Comparison of the 

results of proposed element for both rigid and semi-rigid connection cases 

clearly demonstrate the superiority of proposed approach in capturing 

vibration characteristics of both rigidly and flexibly connected steel members, 

where SAP2000 needs to use higher number of elements to acquire the same 

level of accuracy with respect to proposed element.   

 

• Validation studies for structural systems is pursued through a comparison of 

2D portal frame analysis with SAP2000 for both rigid and semi-rigid 

connection cases. With system level examples, the superiority of proposed 

approach demonstrates itself through the use of fewer number of nodes. 

Through the use of 4 proposed frame elements per span without any extra need 

for the presence of semi-rigid connections, the results of higher vibration 

modes match to the results obtained in SAP2000 with the use of 32 elements 

per span.   
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• Last validation study on vibration characteristics considered 3 bays 6 story 2D 

frame structure with semi-rigid connections. The analysis with proposed frame 

element through the use of single element per span provided perfect match 

with the benchmark results. Further studies on this example extended 

comparisons of this structure with SAP2000 outputs acquired for higher modes 

of vibrations and shapes.   

 

• The proposed frame element is also demonstrated to model the presence of 

flexible regions at column bases and the ends of braces in gusset regions. 

Validation studies are undertaken through the use of SAP2000 program, and 

the accuracy of proposed element in introducing axially flexible regions 

besides deformation prescribed in terms of moment-rotation is demonstrated 

with high accuracy. The proposed element can incorporate any type of 

connection behavior without further specification of nodes and degrees of 

freedom to the element or structural model.  

 

• Validation of the nonlinear behavior of proposed element is pursued first with 

respect to OpenSees structural analysis program through 3D portal frame 

example, which is analyzed for both rigid and nonlinear semi-rigid connection 

cases. Both the proposed element and the elements used in OpenSees base on 

force-based approach and provide identical results. OpenSees lacks force-

based mass matrix and the inclusion of connections in its force-based elements. 

Presence of localized connections in OpenSees require the introduction of 

extra nodes and degrees of freedom and the description of constraint 

conditions, which are not needed in the proposed frame element. The 

advantages of proposed element formulation clearly give a clear edge to it for 

the solution of large structural systems at both structural modeling and analysis 

levels.  

 

• Validation of the nonlinear behavior of proposed frame element with 

connections is also done with benchmark 3D examples. A 20-story structure 
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with rigid connections is analyzed with proposed element with nonlinear 

material and geometry. For the torsional behavior in 3D, warping effects are 

neglected in proposed element, and torsional response for I-sections is 

specified through the approach proposed by Galambos. The results obtained 

through proposed model showed good match with benchmark solutions in 

capturing spread of plasticity in the presence of P-delta effect on the columns.  

 

• As a second 3D structural system example, an irregular structure with 2 Bays 

and 6 stories is considered. This structure is studied in the literature and it has 

results presented in the presence of semi-rigid connection for both bending 

axis at the ends of beams connecting to the columns. Nonlinear connection 

response is modeled through the use of power model proposed by [7] in both 

the proposed element and the analysis undertaken in the example that considers 

extra springs through the inclusion of nodes and degrees of freedom to the 

structural model at the expense of increased matrix sizes and computation 

time. Comparison of the results for the nonlinear behavior of this complex 

structure demonstrates good match with the benchmark results, and clearly 

demonstrates the accuracy and robustness of the proposed element for 

performance assessment of steel framed structures with the presence of 

localized connections. 

 

5.3. Future Study 

Description of more complex deformation behaviors of steel beam and column 

members can be investigated, especially with respect to the capture of warping effects 

due to torsional behavior, lateral torsional global buckling of members, flange and 

web local buckling of widely used steel sections and eigenvalue buckling analysis.  

 

Development of column base connection models that can incorporate axial force and 

bending moment interaction at connection region can be pursued. Development of 
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macro models to describe the complex nonlinearities that arise from nonlinear 

material, geometry and contact nonlinearities that occur at connection regions in steel 

structures can be investigated. There are such complex macro models proposed in 

literature, but these are not efficiently used in conjunction with framed structural 

analysis. Such macro models can be implemented to work along with the proposed 

frame element model towards nonlinear dynamic analysis of steel framed structures.   
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