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ABSTRACT

MULTI-FEATURE FUSION FOR GPR-BASED LANDMINE DETECTION
AND CLASSIFICATION

Geng, Alper
Doctor of Philosophy, Electrical and Electronic Engineering
Supervisor: Prof. Dr. Gozde Bozdagi Akar

April 2019, 122 pages

Ground penetrating radar (GPR) is a powerful technology for detection and
identification of buried explosives especially with little or no metal content. However,
subsurface clutter and soil distortions increase false alarm rates of current GPR-based
landmine detection and identification methods. Most existing algorithms use shape-
based, image-based and physics-based techniques. Analysis of these techniques
indicates that each type of algorithms has a different perspective to solve landmine
detection and identification problem. Therefore, one type of method has stronger and

weaker points with respect to the other types of algorithms.

To reduce false alarm rates of the current GPR-based landmine detection and
identification methods, this study proposes a combined feature utilizing both physics-
based and image-based techniques. Combined features are classified with support
vector machine (SVM) classifier. The proposed algorithm is tested on a simulated data
set contained more than 400 innocuous object signatures and 300 landmine signatures,
over half of which are completely nonmetal. The results presented indicate that the
proposed method in this study has significant performance benefits for landmine

detection and identification in GPR data even in cluttered environment.



Keywords: Ground Penetrating Radar (GPR), Landmine Identification, Physics-based
Approach, Cumulative Energy Curve, Intrinsic Impedance
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0z

GPR’A DAYALI KARAMAYINI TESPITI VE SINIFLANDIRILMASI ICIN
COKLU-OZELLIK FUZYONU

Geng, Alper
Doktora, Elektrik ve Elektronik Miithendisligi
Tez Danigsmani: Prof. Dr. G6zde Bozdag1 Akar

Nisan 2019, 122 sayfa

Yere niifuz eden radar (GPR), yer altindaki patlayicilarin, 6zellikle az miktarda metal
iceren veya hi¢ icermeyen gomiilii cisimlerin tespiti ve teshisi i¢in giiglii bir
teknolojidir. Fakat yer alt1 kargasa ve toprak bozulmalart mevcut GPR tabanli mayin
tespit ve teshis yontemlerinin yanlis alarm oranlarini artirmaktadir. Literatiirdeki
algoritmalar temel olarak sekil-tabanli, goriintii-tabanli ve fizik-tabanli teknikler
kullanir. Bu teknikler analiz edildiginde, her bir algoritma tiiriiniin, kara mayin tespit
ve tammlama problemini ¢6zmek i¢in farkli bir bakis agisina sahip oldugu
goriilecektir. Bu nedenle, her bir algoritma tiirii, diger algoritma tiirlerine gore daha

giiclii ve daha zayif noktalara sahiptir.

Bu calisma, mevcut GPR tabanli mayin tespit ve tanimlama ydntemlerinin yanlis
alarm oranlarin1 azaltmak i¢in fizik-tabanli yontemler ile goriintii-tabanli yontemleri
bir arada kullanan birlesik bir 6zellik onermektedir. Onerilen bu birlesik dzellikler
destek vektor makinesi (SVM) siiflandiricisi ile siniflandirilmaktadir. Bu ¢alismada
Onerilen algoritma, yarisindan fazlasi hi¢ metal igermeyen 300’den fazla simiile
edilmis mayin modeli ve 400°den fazla simiile edilmis zararsiz cisim modeli
kullanilarak test edildi. Sonuglar, bu g¢alismada oOnerilen yontemin, GPR verisi
lizerinde mayin tespiti ve tanimlanmasi i¢in kargasa altindaki bir ortamda bile ¢ok

yiiksek performansa sahip oldugunu gostermektedir.
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CHAPTER 1

INTRODUCTION

Detection and removal of landmines is a major issue in both military and humanitarian
applications. It is estimated that more than 110 million buried landmines are placed in
about 70 countries [1]. Due to these landmines, there are more than 122000 recorded
casualties in the period between 1999 and 2017. However, estimates show that there
are another 7000 — 13000 annual casualties that were not recorded and most of their
victims are children [2]. Over the last 50 years, landmines cause more death and injury
than nuclear and chemical weapons combined. According to a research of the United
Nations, to clear the buried landmines up to this day would take 1100 years and 33

billion dollars by using today’s technology [3].

Because of the tragic effects of landmine explosion, finding the location of a buried
landmine is an important and challenging problem. Production and deployment of a
landmine is around 3 to 30 dollars. Therefore, employing landmines is an easy task
and frequently used by some third nations and terrorist groups. However, removal
costs are around 300 to 1000 dollars each [4]. The difficulty in removing landmines
poses a great challenge to researchers around various parts of the world. Identification
of buried landmines is very difficult due to different soil and weather conditions,
different burial depths, large variety of landmine types, etc. Traditional approaches
use EMI sensors (metal detectors), however modern mines (manufactured after 19505s)

contain as little metal as possible to make them difficult to detect.

Ground penetrating radar (GPR) can detect landmines with little and even no metal
content. GPR is a sensing technique that uses electromagnetic radiation, typically in
UHF/L/S band, and detects the reflected signals from subsurface structures. Hence,

non-metallic threats can be detected from the GPR measurement if the electromagnetic



properties of the buried object and the surrounding soil are sufficiently different.
However, GPR measurements are also sensitive to subsurface changes because of the
buried stones, roots, moisture variations etc. Hence, GPR based detection of buried
threats can be subject to high false alarm rates and should be complemented by a
proper discrimination algorithm. In the literature, many studies were performed to
successfully detect and discriminate buried threats using GPR data. This previous
research can be categorized into four broad classes: shape-based techniques, physics-
based techniques, image-based techniques and convolutional neural networks
(CNNs).

Shape-based techniques, which depend on detection of hyperbola-like shape in B-
Scan image of GPR data, are popular due to its simplicity. When GPR antenna moves
above an underground object, reflected signals from the buried target constitute a
hyperbola shape in the corresponding B-Scan image. In this technique, the buried
object is modeled as a point-scatterer and the surrounding soil is generally assumed
homogeneous. The shape and structure of the resulting hyperbola contain information
about the corresponding object and soil properties. Hough transform [5] and
alternative fitting techniques [6] are the most popular shape-based object detection
algorithms in GPR data. However, underground targets with moderate or large surface
area and heterogeneous soil with clutter deteriorate the structure of the resulting
hyperbola. Hence, the simplifying assumptions (point scatterer and homogeneous

medium) decrease performance of the technique for real experiments.

Physics-based techniques for GPR processing depend on underlying theoretical
foundations (Maxwell’s equations, Green’s functions, etc.). These techniques try to
solve the resulting propagation equations to estimate intrinsic properties of the buried
object. In the literature, specific studies were performed and published to estimate
buried object shape and size [7] and there are also demining applications which exploit
physics-based approach. These studies include advanced inversion techniques [8-9] to
remove ground/antenna effects and extraction of physics-based features [10] for

landmine detection. Since the GPR data belongs to a buried object within an unknown



environment, this approach tends to fail without accurate estimates of the subsurface
electromagnetic properties of soil. Iterative estimation methods [11] are also available
in the literature but they are computationally expensive and are not suitable for real-

time operations.

Image-based algorithms are another popular GPR-based landmine identification
method. Features are extracted from B-scan image of GPR data and then they are
classified as threats or nonthreats [12-16]. The noise and uncertainty in real operations
(due to heterogeneous soil, clutter, GPR transmit and receive noise, etc.) can be
modeled successfully by these methods. Well-known image-based feature extraction
techniques are hidden Markov Models (HMM) [17-19], Edge Histogram Descriptors
(EHD) [20] and Histogram of Oriented Gradients (HoG) [21-23]. Last step of feature-
based methods (image-based features or physics-based features) is classification. To
generate accurate class boundaries, large amount of training data should be available
that contains different target types under different surrounding conditions. If these
algorithms are not trained successfully, the resulting performance decreases

significantly.

Instead of computing the features beforehand and apply classification, these two-steps
can be handled by CNNs. In the literature, there are specific studies for landmine
detection using CNNs in GPR B-Scan data [24-26]. Although the results are quite
promising, CNNs are difficult to train and a large variety of GPR data for landmines
should be available to create a robust network. Without enough training GPR data (for
very different landmines, under very different conditions, etc.), CNNs tend to
converge local optimum and the performance will be low for other types of landmines
under different conditions. Since most of the available GPR data of landmines belongs

to army and generally confidential, it is difficult to gather enough data to train CNNSs.

Each category of algorithms explained above (shape-based, physics-based, image-
based and CNNSs) has pros and cons. In the literature, there are also specific studies
which combine different types of algorithms to increase the overall performance. In

[27], physics-based features and statistical features are used together to decrease false-



alarm rates of GPR-based landmine detection algorithms. However, context is
assumed to be homogeneous and the calculations are performed under this
assumption. In [28], soil dielectric properties are estimated to identify the context by
using physics-based approach and then image-based features are extracted based on
this identifying context.

In this study, we also propose a system that jointly uses physics-based and image-
based techniques for detection and classification. The main objective of the proposed
method is to discriminate landmines from non-landmine targets such as buried large
stones, plants roots, innocuous munitions, cans, plastic caps, etc. in GPR data. These
non-landmine targets which have comparable sizes with landmines will be called as
“innocuous object” for the rest of this study. Both landmines and innocuous objects
are detected by the pre-screener algorithm given in Section 3.2 and they are classified
as threat or non-threat in the proposed classification algorithm in Section 3.5. Unlike
previous studies, both soil and target dielectric properties are calculated by utilizing
physics-based equations in the proposed feature extraction algorithm. The proposed
feature descriptor has computationally less expensive for both extraction and
classification compared to descriptors found in the literature. In addition, the changes
in the environment are modelled automatically by a “Context-based Parameter

Update” step.

In the proposed system, initially a calibration measurement is taken in the
experimental area similar to [27]. From this measurement, three calibration parameters
are calculated: signal speed in the soil, dielectric properties and attenuation coefficient
of the soil. After the calibration step, potential mine locations are determined with an
LMS-based pre-screener algorithm. The calibration parameters are updated for each
alarm location by observing the difference of the ground bounce between the
calibration area and the alarm location. For classification of detected objects, three
features are extracted from the B-scan data. The first feature estimates intrinsic
impedance of the buried object. For this, object depth is calculated by using GPR
signal speed in the soil and then intrinsic impedance of the object is computed by



means of intrinsic impedance and attenuation coefficient of the soil which are
determined in the calibration step and updated for the corresponding alarm location.
The second feature identifies the time length of significant GPR signal belongs to the
buried object. To measure this, total energy value and cumulative energy curve of A-
Scan data, which has the highest amplitude in the corresponding B-Scan image, is
used. The third feature computes the gradient of the B-Scan image and the value of
this feature depends on the size, especially surface area of the buried object. Finally,
the underground target is classified by SVM based on the extracted features. The
proposed algorithm is tested on a simulated data set. In the simulations, smaller objects
(like small pebbles), soil heterogeneity or moisture variations underground which are
not detected by the pre-screener as a target, but which deteriorate the GPR data of a
landmine or innocuous object, are also modelled. These smaller objects, soil

heterogeneity or moisture variations will be called as “clutter” for the rest of this study.

The main contribution of this thesis is to propose two new physics-based features,
which are dielectric and energy feature, for landmine identification in GPR data. The
proposed algorithm combines these features with an image-based feature, which is
geometry feature, to increase discrimination power. This multi-feature fusion
approach allows to estimate both the shape and the intrinsic properties of the buried
objects. The experimental results show that the proposed features have very high
discrimination power which reduces false alarm rates of various GPR-based landmine

detection algorithms even in cluttered environment.






CHAPTER 2

BACKGROUND

2.1. Ground Penetrating Radar

Ground Penetrating Radar (GPR) is an instrument, which uses radar signals to image
subsurface structures. GPR has many applications including landmine detection,
archeology, soil inspection, boundary layer detection, mineral exploration, cavity
detection, pavement inspection, pipeline detection and inspection, layered vegetation,
etc. GPR uses radio waves with frequencies from 300 MHz up to 4 GHz depending
on the application [29-31]. For GPR signals, there is a trade-off between the
penetration depth and the resolution. Lower frequency signals can penetrate deeper in
the ground at the cost of low resolution. On the other hand, higher frequency signals
can measure subsurface structures in high resolution at the expense of low penetration
depth. Therefore, the operating frequency of GPR should be selected according to the
corresponding application. In this thesis, the targets of interest are anti-personal
landmines, which are buried shallowly underground. Moreover, high-resolution
measurement is needed to discriminate anti-personal landmines from innocuous

objects. Hence, in this study the center frequency of GPR is chosen as around 1.5 GHz.

There are two common GPR types: time-domain (impulse) radar and frequency-
domain (continuous wave (CW)) radar. A time-domain GPR transmits an impulse and
receives the reflected signal as a function of time. For this GPR, the return signal is
evaluated based on its arrival time and the changes in its amplitude. The target depth
can be calculated by time-of-flight principle [31, 32]. Most commercial GPR systems
are based on the impulse radar technique. In this study, we also propose a landmine

identification problem based on time-domain GPR signals.



Continuous wave (CW) GPR transmits an infinite duration signal (such as continuous
sine-wave) and receives the return signal simultaneously. For this GPR signal,
detection of target depth is not possible, since the signal does not change. To make the
detection possible, modulation techniques are applied in frequency-domain.
Frequency Modulated Continuous Wave (FMCW) GPR, which is also called as
“Swept Frequency Continuous Wave”, transmits a frequency sweep from a start
frequency to a stop frequency. Hence, FMCW uses the difference in frequency instead
of time. However, FMCW GPR system suffers from interference since it uses a large
frequency spectrum. To avoid occupying the large frequency spectrum, Stepped
Frequency Continuous Wave (SFCW) GPR is used [31, 32]. Transmitting frequency
of SFCW GPR is stepped in linear increments from a start frequency to a stop
frequency. For this GPR, the weaker return signal from a deeper target can be masked
by stronger signal, because the receiver is always active. This problem can be solved
by gating the transmitter and receiver.

A common problem for continuous wave GPR systems is the strong reflection from
the ground surface. Since the transmitted signal has infinite duration and the receiver
is always on, the strong return signal from the ground surface can overshadow the
reflections of the underground objects. To overcome this problem, Frequency
Modulated Interrupted Continuous Wave (FMICW) and Noise Modulated Continuous
Wave (NMCW) waveforms are proposed. Details of these waveforms can be found in
[33].

The basic working principle of GPR includes a transmitter and a receiver as shown in
Figure 2.1, that are moved above the surface to measure reflections from sub-surface

objects.



Figure 2.1. Basic Working Principle of GPR

GPR generally consists of a line array of transmitting antennas and receiving antennas
as shown in Figure 2.2. The distance between two adjacent antennas is a few cm. The
transmitting antenna array and the receiving antenna array can be straight or cross. For
the straight case, the transmitted pulse of an antenna element is usually received by
the corresponding receiving antenna element at the same order. For the cross case,
the transmitted pulse of an antenna element is usually received by two receiving
antenna elements across the transmitting antenna. For each case, the transmitted
energy is reflected from various buried objects and receiving antennas receive the

reflected waves back.
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Figure 2.2. Line Array of Antennas



GPR data are usually represented as one or two-dimensional dataset that are

denominated by A-, B- and C-Scans that is explained below.

A-Scan: At a fixed position (i, yj), a single radar trace A(xi, Yj, t) is called as A-Scan
given in Figure 2.3 [29-31]. The only variable is t and it is related by depth of the
target and the propagation velocity of electromagnetic wave into the soil. When GPR
transmits the incident wave, usually the highest reflection comes from air-ground
interface due to the large dielectric discontinuity. This return is called as ground

bounce that is shown in Figure 2.3.
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Figure 2.3. A-Scan Configuration and Representation

B-Scan: If the GPR antennas move along the x-axis and take measurements at specific
locations, multiple A-Scans form a two dimensional dataset B(x, yj, t) which is called
as B-Scan [29-31]. If the amplitude of the return signal is shown by a color-scale, a

2D image is obtained as given in Figure 2.4.
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Figure 2.4. (a) B-Scan Formed by Multiple A-Scans, (b) 2D Representation of B-Scan
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C-Scan: If the GPR antennas move over a regular grid in x-y plane, a three-
dimensional dataset C(x, Y, t) is obtained. In other words, multiple parallel B-Scans
form a three-dimensional GPR data as shown in Figure 2.5-a. In this data, a horizontal
slice at a certain depth (C(x, y, ti)) is called as C-Scan [29-31]. Responses of mines
are represented as blobs in C-Scan data as shown in Figure 2.5-b.

X

/_\

(a) (b)
Figure 2.5. (a) Three-Dimensional GPR data, (b) A Horizontal Slice at t=t; (C(X, y, t;))

Line array of antennas given in Figure 2.2 can record a B-Scan data with a single
measurement from all antennas. They are located along x-axis (cross-track direction)
and GPR system moves along y-axis (down-track direction). Therefore, a three-

dimensional GPR data is obtained as shown in Figure 2.6.
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Figure 2.6. C-Scan Data Acquisition by a Line Array of Antennas
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After collecting the GPR data, image processing techniques are applied to A, B or C-
Scans for buried object detection and identification.

2.2. Current GPR-based Landmine Detection & ldentification Methods

As described in the previous section, GPR uses radar pulses to image subsurface
structures. However, the received raw image has to be processed for target detection.

The main steps of GPR-based landmine detection process are written below:

e Ground Bounce Removal,
e Pre-screener,
e Feature Extraction,

e Classification.

2.2.1. Ground Bounce Removal

One of the most challenging features of GPR is the ground-bounce which is the initial
spike in energy caused by reflected signal generated by the air ground interface. The

energy of the ground-bounce is generally the highest energy peak in a GPR A-Scan as
shown in Figure 2.7.
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Figure 2.7. Ground Bounce and Object Reflection in an A-Scan Data

For the GPR-based landmine detection methods, false alarms are commonly generated

in locations where the ground bounce is not removed properly. Hence, almost all GPR-
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based algorithms use ground bounce removal techniques. Before and after the ground

bounce removal of an example B-scan is shown in Figure 2.8.

@) (b)

Figure 2.8. (a) Raw GPR Data, (b) Ground Bounce Removed GPR Data

In the literature, there are many methods for ground-bounce removal. “Simple average
operation” finds the location of the ground-bounce as the mid-point of the maximum
and minimum of an A-scan [34, 35]. “Model based approach” models clutter using
parametric modeling for ground-bounce removal [36-38]. “Ensemble average
method” averages the time-domain signatures acquired as the antenna is scanned over
the ground and subtracts that average from the data for ground-bounce removal [39,
40]. Additionally, “PCA and ICA based approach” is used for ground-bounce and
clutter reduction [41-43]. Specific filtering operations (mean, median, moving
median, wiener filtering) are also used for ground-bounce removal in GPR-based

applications [44, 45].
2.2.2. Pre-Screener

The idea behind pre-screener algorithm is to minimize the amount of data that will be
used in the feature extraction step. Therefore, complex discrimination algorithms are
applied to a small subset of data to achieve real-time processing. However, all target
locations should be identified by the pre-screener algorithm. Any missing target by
the pre-screener is undetected by the system. Hence, a pre-screener algorithm should
have very high probability of detection (almost 100%) at the expense of high false
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alarm rate. These false alarms are rejected in next steps (feature extraction and

classification).

In the literature, common pre-screener algorithms are Constant False Alarm Rate
(CFAR) [46], Robust Principal Component Analysis (RPCA) [47], Q-Scan [48], Blob-
filter [49] and Least Mean Square [50-52] algorithm.

In GPR B-Scan data, signals reflected from mines usually have high-energy contrast
with respect to the background. CFAR algorithm is applied to each depth bin and
measures the local contrast. Hence, high-energy locations can be identified as anomaly

regions.

RPCA tries to divide a given matrix M into two matrices L and S such that M=L+S,
where S is sparse and L is low-rank. In GPR B-Scan data, the anomaly regions in the
subsurface are relatively sparse and the background is approximately low-rank. For a
given GPR B-Scan image, RPCA detects the possible anomaly regions by finding the

sparse component of B-Scan matrix.

Q-Scan is an energy-based anomaly detection algorithm such as CFAR. Differently
from CFAR algorithm, Q-Scan estimates background mean and variance for each
scan. Afterwards, clutter is removed from the image in the background removal step.
Target signature is not removed due to its rapid gradient.

In GPR C-Scan data, the buried landmines constitute blob-like shapes as shown in
Figure 2.5-b. Blob filter is a 2D Gaussian filter which is applied to each depth layer
of GPR C-Scan data to detect these shapes.

To detect the possible alarm locations, LMS algorithm requires pre-processing steps
such as data aligning and median filtering. Then, GPR B-Scan data is separated into
statistically similar depth bins and LMS algorithm is applied to each depth bin to
generate decision statistics. Afterwards, the individual depth segments are combined
into a single confidence map. The confidence map is thresholded and the discrete
alarm locations are generated. Finally, the specific anomaly locations are identified by

using non-maximal suppression.
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2.2.3. Feature Extraction

In the previous step, the possible anomaly locations are detected by a pre-screener
algorithm. In this step, these anomaly regions are further processed to identify them
as threats or non-threats. To achieve this, complex discrimination algorithms are
applied to these locations and discriminative features are extracted. These features are
used for classification. Since these complex feature extraction algorithms are applied
to a small subset of data (to the result of the pre-screener algorithm), real-time

processing becomes possible.

In the literature, many different feature extraction techniques are used for detection
and classification of landmines in GPR data. Symmetry feature is mainly used for
GPR-based landmine detection algorithms [53]. Since landmines are generally
constructed such that they have high level of symmetry, classifying subsurface targets

as either symmetric or asymmetric is a strong method for landmine identification.

The hyperbolic shape of GPR reflectance of a landmine is another important feature
for landmine detection problems. Some studies [54, 55] use gradient magnitude as a

feature to estimate the location of these hyperboles.

In recent years hidden Markov Models are very popular for GPR-based landmine
detection algorithms. In the related studies [17, 56], features are the observation
vectors which encode important information about the landmine signatures in a
compact form. These observation vectors are then processed by the HMM to produce

probabilities that certain locations have landmine.

Time-frequency domain signature analysis of GPR data is used for landmine detection
in recent years [57-59]. Mostly, STFT (Short Time Fourier Transform) and WVD
(Wigner Ville Distribution) of A-scans are used for feature extraction. In this method,
the signal (A-scan) is first windowed (Hanning, Hamming, Kaiser, etc.) around the

time of interest and then FFT is used for each window.

The application of texture features for landmine detection in GPR data is another

important detection method. The 2-D texture-based approaches to the classification of
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images are well-established, and application of such approaches to the problem of
landmine detection is popular in recent years. The basic goal behind this technique is
the translation of an intensity image to a texture feature image via differencing in the

image domain followed by successive stages of vector classification [60].

Edge histogram descriptors (EHD) for feature extraction in GPR-based landmine
detection algorithms are widely used in recent studies [20]. For a generic image, the
EHD represents the frequency and the directionality of the brightness changes in the
image. For landmine detection, the EHD is used to capture the spatial distributions of
the edges within the GPR data. Since the reflection of a landmine has a characteristic
shape (hyperbola), the diagonal edge, flat edge and anti-diagonal edge can be detected
by EHD method.

The spectral characteristics of GPR data is used for landmine detection in some studies
[61]. The motivation behind this approach comes from that landmine targets and
innocuous objects often have different shapes, yielding different energy density

spectrum (EDS) which may be used for their discrimination.

The pattern recognition approach is also used for GPR-based landmine detection
algorithms [14]. In this approach, initially a binary image is obtained from GPR B-
Scan data and the objects in the binary image are detected by means of
linear/hyperbolic patterns formulated in a genetic optimization framework. In this
step, the hamming distance between the corresponding pattern and the binary image

content is used.

Instance matching techniques are used to extract discriminative features in GPR data.
Instance matching aims to find instances of a previously trained object within a scene.
It is different from template matching technique at several points. Most recent instance
matching algorithms are insensitive to common types of transformations in visual
images such as scale, rotation, occlusion and intensity. For a given image, instance
matching techniques initially detect the areas of interest (which is called as keypoints)

and then a descriptor is evaluated for these keypoints. Corner detection and blob

16



detection are the main keypoint identification methods. SIFT, SURF and BRIEF are

most famous keypoint descriptors.

Corner detector shifts a window within an image and recognizes the intensity changes.
Around a corner point, intensity changes in all directions. On a single edge or constant
area, intensity difference will be low at least on one direction. Harris and Stephens
propose a corner detector algorithm based on the gradients around each pixel and the
sum of squared differences [62]. While corner detectors try to find corners on an
image, blob detectors focus on finding areas where the intensity differs widely from
surrounding area. Blob detector algorithm applies 2-D Gaussian smoothing to a given
image and calculates the Hessian matrix for each pixel [63]. After one of these
detectors finds the corresponding keypoints in an image, SIFT, SURF or BRIEF

descriptors are evaluated around these selected pixels.

The Scale Invariant Feature Transform (SIFT) uses 16x16 patch of pixels for each
feature point. Around each keypoint, pixels are divided into 4x4 sub-patches.
Magnitude and angle of the gradient for each pixel are calculated. The magnitudes are
normalized with respect to their distance from the corresponding keypoint using a
Gaussian mask. Normalized magnitudes of the pixels are binned according to their
angle’s distance to eight discrete angle value that are calculated equally between 0°
and 360°. Therefore, an eight-dimensional vector is obtained for each sub-patch. Since
there are 16 sub-patches within a patch, 128-dimensional feature vector is constructed
by concatenating the single eight-dimensional vectors from sub-patches. For a given
feature point, this 128-dimensional vector represents the SIFT descriptor [64].

Speeded up Robust Features (SURF) is a faster alternative of SIFT with a comparable
performance. The implementation of SURF descriptor is similar to the implementation
of SIFT. SURF uses 20x20 patch of pixels for each keypoint. Within a patch, SURF
creates 16 — 5x5 sub-patches. Within each sub-patch, x and y-direction gradients are
calculated for each pixel by using two Haar wavelet filters. From these gradients, four
statistics are calculated such that sum of x-gradients, sum of y-gradients, sum of

absolute of x-gradients and sum of absolute of y-gradients. Therefore, four-
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dimensional feature vector is constructed for each sub-patch. There are 16 sub-patches
within a patch, hence 64-dimensional feature vector is extracted by concatenating the
single four-dimensional vectors from sub-patches. For a given feature point, this 64-

dimensional vector represents the SURF descriptor [63].

Binary Robust Independent Elementary Features (BRIEF) is another keypoint
descriptor method. Unlike SIFT and SURF, BRIEF does not calculate the gradients,
instead it calculates the comparisons between different locations within a patch around
the keypoint. These comparisons show relative intensity changes, thus the structure
within a patch. The locations used in BRIEF descriptor are chosen randomly, however
the same set of locations should be used for training and testing [65].

Object detection methods are also used for GPR-based landmine detection and
identification problem as well as instance matching techniques. Unlike instance
matching methods which can find an identical version of a known object, object
detection aims to detect instances of an object class within images. Pedestrian
detection [66], face detection [67] and car detection [68] are common applications of
object detection methods. The main difference between object detection and instance
matching is that in object detection problem there are both transformations challenges
(scale, rotation, occlusion, intensity, etc.) and uncertainty between interclass
variations. Histogram of Oriented Gradients (HoG) is an example object detection
method used for pedestrian detection by Dalal and Triggs [66]. This method is also

used for landmine detection and identification problem in several studies [21-23].

Feature extraction and classification of targets based on the extracted features are very
popular for image processing applications. Generating a robust and discriminative
feature increases the classification accuracy tremendously. In this study, we also
utilize this approach for landmine detection in GPR B-Scan images by proposing three

new discriminative features given in Section 3.4.
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2.2.4. Classification

After extracting the features, the next step is the classification of the buried objects
such as landmines and non-landmines. For this issue, several classification methods
are used in the literature. Sakaguchi and Pasolli [34, 69] use support vector machine
while Ratto [28] uses relevance vector machine. Nuaimy and Gamba [40, 70] use
neural network classification and Delbo [71] applies fuzzy clustering technique to
differ landmines from innocuous objects. Kempen [45] uses bayes decision rule while
Sakaguchi [69] applies partial least squares discriminant analysis (PLS-DA) and

random forest method for landmine classification.

Before starting to explain classification methods, learning algorithms will be
described briefly. Learning algorithms (or Machine Learning) can gain insight by
observing a sample dataset and achieve data-driven predictions for a new data. To
learn the discriminative characteristics of the sample dataset, learning algorithms
observe the extracted features (which are described in Section 2.2.3) and tries to figure

out a prediction rule as shown in Figure 2.9.
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Figure 2.9. Training Phase and Test Phase of Learning Algorithms

19



Learning algorithms can be categorized into two different approaches as Supervised
and Unsupervised learning. A supervised learning algorithm learns the prediction rule
based on a given training dataset and their labels. On the other hand, an unsupervised
learning algorithm learns the prediction rule from the input data without their labels.
Hence, unsupervised learning does not have a definite result. In this study, we will
focus on supervised learning algorithms that have different approaches for learning
the discriminative characteristics from a training dataset and making a prediction rule.
These approaches are called as Classification methods. In this section, the main

Classification algorithms in the literature are described briefly.

Support Vector Machine (SVM) and Relevance Vector Machine (RVM) are two
popular classification methods for hyperspectral images. For a given training data x;
and label y; fori € [1, 2, ..., n], these two models try to classify the given data based
on the input features x;, weight vector w and bias b. If the data is not linearly solvable,
each method uses Kernel functions K (x;, x;) to make the problem linear in a higher

dimensional space [72].

SVM tries to maximize the distance between decision boundary (which is called as
maximum-margin hyperplane) and two classes. SVM solves the following linear
model: y = wlx + b [73, 74]. If the given data and classes are not linearly separable,
SVM uses kernel functions to achieve non-linear classification. Details of this issue

are given in Section 3.5.

RVM applies the Bayesian principle to SVM idea. According to the following
likelihood function, conditional probabilities of targets ¢t should be maximized based
on x; and w [75-78].

P(tlw) = [Tiz1 ofy (i, w)}i[1 — o {y (x;, w31, 1)

1

where o(y) = —
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The weights w are based on two classes of hyperparameters which are Gaussian
distributed. To maximize the likelihood function in Eq. 1, these hyperparameters are
optimized iteratively.

Random forest is an ensemble classification algorithm. It does not classify the given
data by using its all features at once. Instead, it fits large number of simple classifiers
on various subsamples of the given dataset. These classifiers are decision-trees and
the entire system is known as forest [79]. Random forest is a complex algorithm and

it is difficult to implement in real-time.

During classification, Partial Least Squares Discriminant Analysis (PLS-DA) Method
achieves dimensionality reduction in the feature space [80, 81]. Let the input data X
has dimensions nxm (n: observations, m: features). PLS-DA tries to project X
onto a new space which has the necessary information about X with a lower
dimension. This can be achieved by a transformation matrix W:T = XW. Here, the

class labels can be represented by:

Y =UCT +G, (2)

where U is a linear function and G is the error of the model. The relation between data
X and the labels Y can be found by solving C with the following equation:

C = (TTT)'TY, ©)

K-Nearest Neighbor (KNN) classifier is generally based on Euclidean distance
between the training samples and a given test sample. Let the input data X has
dimensions nxm (n: observations, m: features). it" sample x; has m features:
(xi,pxi,z» ...,xi,m). Euclidean distance between it"* sample and j** sample can be

calculated by the following formula:

d(x, %) = (i1 = %,0% + -+ (ym — Xm)?, (4)
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For a given test sample, Euclidean distance between this sample and all training
samples are calculated. Majority label of K-nearest training samples indicates the class

label of the given test sample [82-84].

Fuzzy clustering, which is generalization of partition clustering methods, allows
classification into multiple clusters. Let we have k clusters and the variables
(pl-,l, Dizs e pl-,k) represent the probabilities such that p; ; is the probability of data x;
belongs to cluster j. Here, p; ; should be between 0 and 1; sum of the probabilities
(pi,1 + pix + .., +pi'k) should be 1. Fuzzy clustering algorithm tries to minimize
the following function [85, 86]:

2 .2
Z?:l Z?:l pi,apj,ad(xi,xj)
n 2
2 2]':1 Pja

C = Zg:l

, (5)

Where d(xl-,xj) represents the dissimilarity between data x; and x;. Euclidean

distance is generally used for dissimilarity function.

Bayes Decision Rule, which is also called as Naive Bayes Theorem, is a classification
method based on Bayes’ Theorem as its name implies. This technique assumes two
types of probabilities which is calculated from the training data: probability of each
class and conditional probability of each class given each input data x. After these
probabilities are calculated, the model is used to estimate the class label of new input

data using Bayes’ Theorem [87, 88].

Up to this point, the classification algorithms, which process the extracted features of
the input data (not the input data itself), have been presented. Neural Networks are
also considered as a robust classifier. Unlike previous ones, neural networks process
the input data itself (not the extracted features). The idea has arisen from the
fascination of human brain and understanding of mankind. Therefore, neural networks
consist of units (like neurons in human neural system) that convert an input data x into
an output y. These units are arranged in layers such that each unit in a specific layer

takes the input, performs a non-linear function and passes the output to the next layer.
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When the data passes from one unit to the next one, weightings are applied. During

the training phase, these weightings are tuned to learn the algorithm [89, 90].
2.3. Methods Utilized in this Thesis

In this section, we will describe the techniques, which are available in the literature
and we have utilized in the proposed algorithm, in detail. Summary of these techniques
were briefly given in Section 2.2. This section does not include our proposed method
which will be given in Section 3.

2.3.1. Maximum Detection Technique for Ground Bounce Removal

In a GPR B-Scan data, ground bounce usually dominates the rest of the image as
shown in Figure 2.8-a. By using this phenomenon, location of the ground bounce can
be detected by finding the maximum of each scan as proposed in [91]. However, this
idea is not always correct. If dielectric properties of soil are close to the dielectric
properties of air and there is a highly conductive target underground, amplitude of the
primary reflection coming from the target may be higher than the amplitude of the
ground bounce. So, in this study we have adopted the maximum detection technique
proposed in [91] with some modifications for ground bounce removal.

For a GPR system, height of the radar antenna from the ground is known before
starting landmine sweeping. However, a vehicle mounted GPR cannot maintain the
antenna at a fixed height. So, location of the ground bounce may change from scan to
scan due to up-down movement of GPR antenna. Based on these movements,
maximum and minimum height of GPR antenna can be estimated, therefore the ground
bounce is located within a predictable range. In this study, we find the maximum value
of the signal within this range to detect the position of the ground bounce. Thus, we
avoid to mis-detect a higher reflection, which is coming from a buried object deeper

in the ground, as ground bounce.

During the experiments, height of the GPR antenna is 16 cm above the ground. For

this configuration, the ground bounce is approximately located between time samples
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400 and 700 as shown in Figure 2.10. In the given A-Scan data in Figure 2.10, the
maximum value belongs to primary reflection is around time sample 1000. If the
proposed method in [91] is applied directly, the location of the ground bounce is mis-
detected. To avoid this issue, we select a predictable region for the position of ground
bounce. For this example, this region is between time samples 400 and 700. However,
this is the case when the GPR antenna is exactly 16 cm above the ground. To
compensate up-down movement of the antenna, we choose this region as between time
samples 200 and 900. Therefore, during the experiments, height of the GPR antenna
Is 16 cm and we detect the position of the ground bounce by finding the maximum
value of the signal between time samples 200 and 900.

0.15

0.1

0.05

Electric Field (V/m}
[=]

-0.05

-0.1

-0.15

0 500 1000 1500 2000
Time sample

Figure 2.10. Positions of Ground Bounce and Primary Reflection

After maximum detection, each A-Scan data is aligned and L time samples after the
ground bounce peak are removed. L should be chosen as the duration of ground
bounce in time. For our example in Figure 2.10, L is around 300-time samples.

Theoretically, ground bounce removal process is summarized below:
For every x,Do
t; = argmaxB(x,t) for 200 < t <900
B*(x,t) =B(x,t +t; + L)

End
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2.3.2. Least Mean Squares (LMS) Approach for Pre-screener

The working principle of this approach is based on an adaptive filter using the least
mean squares method. LMS algorithm adjusts the filter coefficients (weights) for each
new sample of the input data. For each selected window, LMS finds the differences

from the background by adaptively updating the filter coefficients [50-52].

Since the targets which are buried deeper have weak GPR response with respect to
shallowly buried targets, LMS algorithm tends to remove the response of deeply
buried targets. To avoid this issue, B-Scan image is normalized to enhance the deeper
region of data. To achieve this, each row of ground bounce removed B-Scan image is
normalized before LMS algorithm. An example B-Scan image before and after

normalization is shown in Figure 2.11.

(a) (b)

Figure 2.11. (a) B-Scan Image Before Normalization, (b) B-Scan Image After Normalization

After normalization, LMS algorithm is applied with a sliding window to B-Scan
image. This window can be rectangular (2D LMS) or one dimensional (1D LMS). The
working principle of 1D LMS and 2D LMS are similar and a brief review is presented
here. At time n, assume our point of interest is d,,. Consider a weight vector w,, and

an input vector u,. The LMS algorithm performs like below:
output at time n: y, = wl *u,
error attimen: e, =d, — Y,

updated weight vector: wy,1 = W, + U x U, * e,
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In this formula u is the scaling factor which determines the update ratio of the weight
vector.

1D LMS algorithm is applied to each column of B-Scan image separately. Consider a
point of interest at the x™" column of B-Scan image. For the corresponding point d,,, a
guard-band data selection mask is used and the data selected by this mask gives the
input u,. 1D data selection mask for an example scenario, such that the filter length
Is 12 and guard band length is 5, is shown in Figure 2.12. In the figure, d,, is denoted

by square and u,, is the input vector that consists of circles and has length 12.

rTr T T 7T T 1T 1T T 1T "1 T 1T T 1T T 'T.1

AN N N N O o000 0 0 -

Ll i i 1 1 i X £ 5 X1 K1 £ X1 K1 i 1 £ 5 1.1

-109-8-76-54-3-2-1012345¢67 8910
Time samples

Cross-track
position
o

® Data selection mask [ Point of interest

Figure 2.12. 1D LMS Data Selection Mask
After applying the given 1D mask to the B-Scan image, if we draw the error values e,,
for all time samples and for all cross-track positions, the pre-screener image shown in

Figure 2.13 is obtained. Here, u is chosen as 0.01 and the initial value of weight vector

. 11 1 1 1 1 1 1 1 1 1 1
ischosenas wy = [—=,—,—,—,—,—,—,—,—,—,—,— ].

12’12’12’ 12127127127 127127 12" 12" 12

Figure 2.13. 1D LMS Result — Pre-screener Image
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Afterwards, if the pre-screener image is thresholded, a binary image is obtained as
given in Figure 2.14. Here, absolute value of each pixel is thresholded at the value 0.

From the binary image, the possible anomaly regions can be detected.

Figure 2.14. 1D LMS Result — Binary Image

Although 1D LMS algorithm is applied to each column separately, 2D LMS algorithm
is applied in both cross-track (x) and depth (z) directions. To achieve this, a 2D guard-
band data selection mask is used and the data selected by this mask gives the input w,,.
2D data selection mask for an example scenario, such that 11x6 filter is used with
guard band length is 3 in cross-track direction, is shown in Figure 2.15. In the figure,

d,, is denoted by square and u,, is the input vector that consists of circles and has
length 66.
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Figure 2.15. 2D LMS Data Selection Mask

After applying the given 2D mask to the B-Scan image, if we draw the error values e,
for all time samples and for all cross-track positions, the pre-screener image shown in

Figure 2.16 is obtained. Here, u is chosen as 0.01 and the initial value of weight vector

. 1 1
is chosen as wy = |

1
66’66’ ""66]'

Figure 2.16. 2D LMS Result — Pre-screener Image

Afterwards, if the pre-screener image is thresholded, a binary image is obtained as
given in Figure 2.17. Here, absolute value of each pixel is thresholded at the value 0.
From the binary image, the possible anomaly regions can be detected.
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Figure 2.17. 2D LMS Result — Binary Image

From the binary image given in Figure 2.14 or 2.17, the possible anomaly regions can
be detected by using the binary mapping of the projection of each column as described

in Section 3.2.
2.3.3. Gradient-based Algorithm

In this study, gradient-based algorithm is utilized to find the center of an anomaly
region. In reference studies [17, 56], for a given B-Scan image observation vectors are
created for each cross-track position. These observation vectors show the degree of
edges in the diagonal and anti-diagonal directions. The transition region from diagonal
to anti-diagonal edges corresponds to the center of the underground target.

Gradient-based algorithm works as follows. Assume the given ground bounce

removed raw image, which is shown in Figure 2.18, is denoted by S(x, z).

Figure 2.18. Ground Bounce Removed Raw Image
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Initially, second derivative of the given raw image is calculated by Eq. 6 and Eq. 7.
This process removes stationary effects and enhances the edges as shown in Figure
2.19.

Sl(x, Z) _ [S(x+2,z)+25(x+1,z);25(x—1,z)—s(x—2,z)]’ (6)
SY(x+2,2)+25'(x+1,z)-2S (x—1,2)-S(x—2,2)] (7)

S"(x,z) = [

Figure 2.19. Second Derivative of the Given Raw Image
Afterwards, the derivative values are normalized along x direction by Eq. 8-10.
Normalization enhances the deeper region of the GPR image, hence all depth segments

have similar contrast in the normalized image as shown in Figure 2.20.

u(z) = mean, (S*(x, 2)), (8)
0(z) = standard_dev,(S"(x, z)), 9)
N(x,z) = —S”(x('rz()z_)” @ (10)

Figure 2.20. Normalized Second Derivative

30



The gradient-based algorithm proposes to create positive and negative parts of the
normalized second derivative by Eqg. 11 and Eq. 12. These positive and negative parts

correspond to bright and dark areas respectively as shown in Figure 2.21.

N*+(x,7) = {N(J(C),'Z), if N(;cl,sze) > 1’ (11)
N-=(x,2) = {—N%’c, z), if N(a;,li)e< —1, (12)

(b)

Figure 2.21. (a) Positive Image, (b) Negative Image
Then, for each point in the positive image and negative image given in Figure 2.21,
the strengths of diagonal (45° direction) and anti-diagonal (135° direction) edges are
calculated by Eq. 13-16.

PA(x,z) = min{N*(x,z—1),N*(x + 1,2), N*(x + 2,z + 1), N*(x + 3,z + 2)}, (13)
NA(x,z) =min{N~(x,z—1),N"(x + 1,z), N (x + 2,z+ 1), N (x + 3,z + 2)}, (14)
PD(x,z) =min{N*(x,z +2),N*(x + 1,z+ 1),N*(x + 2,z), N*(x + 3,z— 1)}, (15)
ND(x,z) =min{N~(x,z+ 1),N (x+ 1,z+ 1),N (x + 2,z), N (x + 3,z— 1)}, (16)
Afterwards, for each cross-track position x, we find the location z of the maximum
value in PA, NA, PD and ND matrices. Assume the total number of rows is “n” for

the raw image given in Figure 2.18. So, position of the maximum values can be found

by Eq. 17-20.

Myq(x) = argmax{PA(x,z):z = 1,2, ...,n}, (17)
My, (x) = argmax{NA(x,z):z = 1,2, ...,n}, (18)
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myq(x) = argmax{PD(x,z):z = 1,2, ...,n},

Mpq(x) = argmax{ND(x,z):z = 1,2, ...,n},

0(x) = (01(x),02(x), ..., 016(x)),

01(x) = PD(x,myq(x) — 2)
02(x) = PD(x, mpq(x))
03(x) = PD(x,mpq(x) + 2)
04(x) = PD(x,mpq(x) + 4)
05(x) = ND(x,mpq(x) — 2)
06(x) = ND(x, mpq(x))
07(x) = ND(x,mpq(x) + 2)
0g(x) = ND(x,muq(x) + 4)

09(x) = PA(x,mpq(x) — 2)
019(x) = PA(x, mpa(x))
011(x) = PA(x,mpq(x) + 2)
012(x) = PA(x,mp,(x) +4)
013(x) = NA(x, Mpqa(x) — 2)
014(x) = NA(x, Mpq(x))
015(x) = NA(x, mpqa(x) + 2)
016(x) = NA(x, Mpq(x) + 4)

(19)
(20)

Finally, for each cross-track position 16-dimensional observation vector is obtained
by Eq. 21.

(21)

In the observation vector, the first quadruple shows the strength of positive diagonal
edge, the second quadruple shows the strength of negative diagonal edge, the third
quadruple shows the strength of positive anti-diagonal edge and the last quadruple
shows the strength of negative anti-diagonal edge. Therefore, by observing the index
of the observation vector at a specific cross-track position, we can estimate the edge

direction in this region.

B-Scan image of an underground target has “only diagonal”, “both diagonal and anti-

diagonal” and “only anti-diagonal” edges consecutively as shown in Figure 2.22.
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Figure 2.22. Diagonal Edge / Both Diagonal and Anti-Diagonal Edges / Antidiagonal Edge Regions

If the observation vectors belong to the image given in Figure 2.22 are calculated from

left of the image to the right part, three different types of observation vectors are
obtained as given in Figure 2.23.

@ o O ©

(d) (€)

Figure 2.23. (a-b) Type-I Observation Vectors, (c) Type-Il Observation Vector, (d-e) Type-III
Observation Vectors

In this study, the gradient-based algorithm is used to find the center of the underground
target. As explained above, Type-Il observation vector belongs to the transition region

from diagonal to anti-diagonal edges. This region corresponds to the center of the
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buried object. To localize this center point, we utilize the gradient-based approach and
find the position of the Type-11 observation vectors. If, there are multiple observation
vectors belong to the transition region, the A-Scan data which has the highest

amplitude is chosen as the center part.
2.3.4. Histogram of Oriented Gradients (HoG) Feature Extraction

In this study, performance of the proposed algorithm, which is explained in Section 3,
Is compared with two well-known image-based feature extraction methods that are
Histogram of Oriented Gradients (HoG) and Edge Histogram Descriptors (EHD)
feature extraction methods. Therefore, in this and the next section HoG and EHD

methods are explained respectively.

To extract HoG feature descriptor from GPR B-Scan image, Torrione et. al. explains
the algorithm as follows [22]. Initially, the ground bounce removed raw GPR data is

resampled to 18 x 24 pixels as shown in Figure 2.24.

(a) (b)
Figure 2.24. (a) Original Raw Image, (b) Resampled Image

The resampled image is divided into 3x4 cells and each cell contains 6x6 pixels. HoG
features are extracted from two overlapping blocks such that each block consists of
3x3 cells as shown in Figure 2.25.
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Block-2

|
Block-1

Figure 2.25. HoG Cells and Blocks of Resampled Image

For each cell, histogram of oriented gradient values of the pixels are calculated.
Torrione et. al. suggests using nine unique histogram bins equally spaced in the range
[0, m]. To calculate the histogram, horizontal and vertical derivatives of each cell are
computed. Let, I is the corresponding 6x6 cell. Then, the derivatives are computed by
Eq. 22 and Eq. 23.

L = 1'% gy, (22)
L, =1xg,, (23)
where g, = [-101] and g, = [-101]",
Then, magnitude and angle of each pixel are computed in the corresponding cell by
Eq. 24 and Eq. 25.

G, J) = I ) + 1,0, ))* (24)

L) (25)
Le(i.))'

Gradient value of each pixel contributes two histogram bins such that angle value of

A(i,j) = arctan

this pixel is between these two histogram bins. The contribution is inversely

proportional with the distance between the angle value and the corresponding
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histogram bins. For example, if the gradient and the angle of a pixel is 9 and 30°
respectively, one-third of the gradient value contributes the histogram bin “45°” and
two-thirds of the gradient value contribute the histogram bin “22.5°”. If the angle of a

pixel is exactly equal to a histogram bin, the entire gradient value contributes this bin.

For each cell, gradient and angle values of 36 pixels are calculated and one histogram
is created with length 9. Let, H (c;, k) denotes the histogram of cell-ifork = 1,2, ..., 9.
For the first block (in Figure 2.25), histograms of nine cells (from cell-1 to cell-9) are
concatenated together and normalized to obtain 81-dimensional feature descriptor
(H,) by Eq. 26.

H, = [H(cy), H(cz), .., H(co)] )
z?zljnH(ci)n% (26)

For the second block, the same operation is performed to achieve 81-dimensional

feature descriptor (H,) by Eq. 27.

[H(ca), H(C5), -, H(C12)]

512, fiweonz (27)

Finally, these two vectors (H, and H,) are concatenated to obtain the final 162-

H2:

dimensional HoG feature descriptor. The visualization of HoG feature vectors of the
image given in Figure 2.24 is shown in Figure 2.26.

Figure 2.26. Visualization of HoG Feature Vectors

2.3.5. Edge Histogram Descriptor (EHD) Feature Extraction

In this section, Edge Histogram Descriptor (EHD) feature extraction method is

explained briefly. To extract EHD feature descriptor from GPR B-Scan image, Frigui
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et. al. explains the algorithm as follows [20]. Although HoG feature extraction
algorithm resizes the raw image into a lower dimension, EHD method performs on the
original raw image. B-Scan image is vertically subdivided into seven overlapping sub-

Images as shown in Figure 2.27. In this example, we use 50% overlapping.

Subimage-2 Subimage-4 Subimage-é
| | |

| I\ J\ |\ J
1 I I 1

Subimage-1 Subimage-3 Subimage-5 Subimage-7

Figure 2.27. EHD Subimages

For each sub-image, histogram values are computed in a similar way of HoG
algorithm. Different from HoG feature extraction method, five unigue histogram bins
equally spaced in the range [0, ] are used. These 5-bin histogram vectors are
concatenated together to obtain 35-dimensional EHD feature descriptor. The
visualization of EHD feature vectors of the image given in Figure 2.27 is shown in
Figure 2.28.

Figure 2.28. Visualization of EHD Feature Vectors
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2.3.6. Support Vector Machine (SVM) Classification

In this study, we have applied two-class Support Vector Machine (SVM) algorithm to
classify landmines and innocuous objects. In this section, the basic working principle
of SVM algorithm is described for linearly separable case and linearly non-separable

case.

If we have linearly separable two classes as shown in Figure 2.29, SVM tries to find
a hyperplane (decision boundary) which satisfies the equation wx + b = 0 [73, 74].
Any data point (x;) above this decision boundary belongs to the first class (y; = 1)
and any data point (x;) below this decision boundary belongs to the second class (y; =

—1). This output labelling provides the decision function given in Eq. 28.
f(x) = sign(wTx + b), (28)

According to the decision function given in Eq. 28, the classification result can be
checked by Eq. 29.

y(wTx +b) =0, (29)

data of one class

margin

support vectors
=

wix+b=1
wlx+ b =0 decision boundary

wix+b=-1

Figure 2.29. Linearly Separable Two Classes
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In Figure 2.29, there is a space between the decision boundary and the nearest data
points (which are called as support vectors) of the classes. So, we can regenerate the
classification rule as any data point (x;) above w”x + b = 1 belongs to the first class
(y; = 1) and any data point (x;) below w’x + b = —1 belongs to the second class
(y; = —1). According to this definition, there is a distance between the two
boundaries. Firstly, these boundaries are parallel since they have the same w and b
parameters. If we pick a point x; on line wix + b = —1, the closest point on line
wlx + b =1 to x, is the point x, = x; + Aw. So, the distance between x; and x,,
which is the shortest distance between two boundaries, is A||lw||. If we solve the

equations for A, Eq 30-35 are obtained.

WTXZ + b = 1, (30)

wl(x, + Aw) + b =1, (31)

wlix; + b+ AwTw =1, (32)

-1+ AawTw =1, (33)

wTw = 2, (34)

-2 __2 35

A= T e (39)

. . . - 2 2

According to Eq. 35, the distance between two boundaries is Aw = i = T SVM

algorithm tries to maximize this distance, thus the data points from different classes
2
vwTw
wTw. So, the quadratic problem to be solved by SVM can be expressed by Eq. 36.

lie as far away from each other as possible. To maximize , we should minimize

argmin,, ,w'w such that y;(w"x; + b) = 1Vi € {1,2,...,n}, (36)

Soft margin extension of SVM algorithm allows some data points of one class to
appear on the other side of decision boundary. If we cannot guarantee that all data
points are labelled correctly, we can use soft margin extension as given in Eq. 37. ¢;

Is a non-negative slack variable for each x;.

39



argmin,, , w'w + C Y; €; such that y;(w'x; + b) =1 —¢;, (37)

If the data points belong to different classes are not linearly separable, special kernel
functions (@(x)) can be used to map data vectors (x;) into a higher-dimensional space
in which new data vectors (@(x;)) are linearly separable. In this case, the quadratic
problem to be solved by SVM can be expressed by Eg. 38. An example kernel
mapping is shown in Figure 2.30. The linearly non-separable data (in Figure 2.30-a)
is mapped into a higher dimensional space in which the new data vectors are linearly
separable as given in Figure 2.30-b.

argmin,, , w'w + C Y; €; such that y;(w'@(x)) +b) =1—¢;, (38)

o 0 o0 1 kernel mapping data of another class
o % 90 @f_.\ o0 o° B(x) )
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Figure 2.30. (a) Linearly Non-separable Data, (b) Linearly Separable Data

2.4. Reflection and Propagation Theory of Electromagnetic Signals

As explained in the Introduction part, in this study our aim is to combine physics-
based approach with image-based techniques to increase the discrimination
performance of the final GPR-based landmine detection algorithm. Physics-based
techniques that will be utilized in this study are subject to widely accepted theoretical
foundations and formulations. In this section, the underlying electromagnetic
formulations, which show the relationship between the physics-based features and the

electromagnetic properties of the soil and the buried object, are explained.
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2.4.1. Reflection and Transmission of Electromagnetic Signal at the Interface

between Two Different Dielectrics

Any medium through which electromagnetic wave propagates have a property called
as intrinsic impedance (n). The relation between intrinsic impedance (n) and reflection

coefficient (I") which can be calculated by GPR measurement is explained below.

For a general medium with permittivity, permeability and conductivity given by
(e,u,0) = (€,€0, Urlto, @), the intrinsic impedance can be calculated by Eq. 39 at a
given frequency o [92-94]. Here, €, is the relative permittivity, p,. is the relative
permeability and o is the conductivity of the medium. ¢, and p, are permittivity and

permeability of free space.

_ /J'“)l‘ N R )
n= a+jwe_\/;(1 Ja)e) ! (39)

A lossy medium (o # 0) is said to be low-loss if i &« 1. A low-loss dielectric is a
good but imperfect insulator with a nonzero equivalent conductivity [90]. Practically,
a dielectric is accepted as low-loss if ¢ < ‘f—g Assuming that we are working in a low-

loss condition, Eq. 39 becomes [92]:

ng\/%@ +j52), (40)

where Re{n}=\/% and Im{n}=-— |E

2we €

Within the operating frequency of current GPR systems (800 MHz — 4 GHz) [97] and
the dielectric properties of common soil types (u. = 1, 4.5 <€, <10, 0.1 mS/m <
o < 15mS/m) [95, 96], the working medium can be assumed as low-loss. If the
dielectric properties of soil in the experimental area are beyond these ranges (due to
moisture or clay content), operating frequency of GPR should be adjusted

appropriately.

41



When an electromagnetic wave passes from one medium to another medium with
different intrinsic impedance, a fraction of its energy is reflected and the remainder is
transmitted through the interface. In terms of the intrinsic impedances, reflection (I")
and transmission () coefficients can be calculated as given in Eg. 41 [92]. Note that,

in Eq. 41 n, and n, are relative intrinsic impedance values of the mediums, since n, =
/? (intrinsic impedance of vacuum) is cancelled out from numerator and
0

denominator.

— Er _ 27

E 2

Ei 72t Ei  nmp+mq (41)

During GPR measurement, GPR antenna is positioned at a certain height from ground
surface as shown in Figure 2.31. The underground target is located at an unknown
depth.

TX RX

Eo I TEGB TEreturn

N Ttﬁ AIR

T,
47 = SOIL

Buried object

Figure 2.31. Reflection and Transmission at the Air-Soil Boundary

Please observe the reflection and transmission of GPR signal at the air-soil boundary
in Figure 2.31. In the figure, a reflection coefficient (I) and a transmission
coefficient (t,) are used to describe the amplitude of the reflected wave (E,) and the
transmitted wave (E;) relative to the amplitude of the incident wave (E;). In this
scenario, E; = E,, E, = E;g and E; is the transmitted signal into the soil. For the

propagation through air to soil as shown in Figure 2.31, n; = n,; = 1 [98, 99] and
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M2 = Nsoil- FOr the sake of simplicity, the relative intrinsic impedance of soil will be

denoted as “ng”, conductivity, relative permittivity and permeability values of soil will

2 13

be denoted as “o,”, “€q

2 2

and “ug” respectively. Moreover, conductivity, relative
permittivity and permeability values of air will be accepted as “0”, “1” and “1”
respectively for the rest of this study. Thus, reflection coefficient (I7) in Figure 2.10

is;

s—1 j
Fas = oy = Wasle*fe (42)

where  Re{lys} = |Ips| cos(81ys) and  Im{lGs} = |Ips| sin(415;)

So, n in terms of I, can be written as [98];

1-Re{lys)? —Im{Tgg)?
(1-Re{lys}?+Im{Iys}?

2Im{lys}
(1—Re{lgs )2 +Im{Igs}?’

and Im{n,} =

Re{ns} = (43)

Eventually, by measuring the amplitude (|I;5]) and phase (#1,;) of the reflection
coefficient (I,s) for a specific frequency o, the relative permittivity (e;) and
conductivity (o) values of the soil can be computed by using Eq. 39-43. Note that,
the relative permeability of soil is assumed to be equal to that of air [95].

2.4.2. Attenuation of Electromagnetic Signal Propagating Through a Medium

In this section, the propagation loss is introduced in a lossy medium. When an
electromagnetic signal propagates through a medium, the amplitude and phase of the
signal change with respect to the propagation constant (y) of the medium. Given E, is
the complex amplitude at the source of an electromagnetic signal, value of the

complex amplitude E, at a distance z is given in Eq. 44 [92].

E(z) = E, = Ege™", (44)

Since the propagation constant is a complex quantity, it can be writtenasy = a + j
where « is called the attenuation constant and £ is called the phase constant. Under

low-loss condition, a and 8 can be computed by Eq. 45 [92].
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a = Re(y) = %\/g (Np/m) and B =Im(y) = wyue (rad/m), (45)

Amplitude of the propagating signal changes depending on the attenuation constant
(a) of the medium. If we take the absolute value of both sides in Eq. 44, the phase

term can be cancelled out as shown in Eq. 46.
|E;| = |Eqle™**, (46)
This equation is valid for very narrow beams only. If the radiating electromagnetic
beams become wider as z increases, amplitude of E,, is:
|E;| = G(2)|Eole™*, (47)
Here, G(z) is the geometrical spreading factor and depends on the antenna type of

GPR [101]. For example, G(z) = i for dipole antenna which is used for simulations

given in the results section.
2.4.3. Velocity of Electromagnetic Signal Propagating Through a Medium

Propagation velocity of an electromagnetic signal into a medium with permittivity (¢)

and permeability (u) can be computed by Eq. 48 [92].

_1_ e
V=R e M) (48)

where c is the speed of light in free space.
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CHAPTER 3
PROPOSED ALGORITHM

The proposed algorithm is composed of two stages which are “Calibration
Measurement” and “Detection & Classification” steps. For the first stage, a calibration
measurement is taken to estimate intrinsic characteristics of the soil in the
experimental area. In “Detection & Classification” step, anomaly locations are
detected in the same area and they are classified as targets or non-targets by utilizing

the calibration parameters as shown in Figure 3.1.
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Figure 3.1. Flow Chart of the Proposed Method

A typical scenario for landmine sweeping is shown in Figure 3.2. Before starting
landmine sweeping in an experimental area, a calibration object is buried in the same

area to take the calibration measurement.
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Figure 3.2. Scenario for Landmine Sweeping

A typical GPR measurement and relevant parameters are shown in Figure 3.3, when
GPR antenna is above the target or calibration object. In real experiments, there is a
distance between TX and RX of GPR, therefore transmitted ray from TX should
propagate obliquely and be reflected from the ground (or underground object) to reach
RX of GPR. However, during this study, calculations are performed under normal
incidence case as shown in Figure 3.3. Since the distance between TX and RX is very
small according to GPR antenna height (h,) and target depth (h.), oblique angles are
very small. Therefore, normal incidence assumption is acceptable for this study. The
difference between the calculations under normal incidence case and under oblique
incidence case is shown in Appendix A.

Eo : elect. field intensity of incident wave
TX RX Ecn : elect. field intensity of ground bounce
kKN W TE TE (her) Eretun({ht) : elect. field intensity of primary
GE |Ereturn(hgst AIR reflection from target at depth h;;
! [ [ : electrical permittivity of vacuum
* €, oy O ! ' o : magnetic permeability of vacuum
! I;as ‘ Op : electrical conductivity of vacuum
‘\\ hd Ttg € : electrical permittivity of soil
k- 1}3 1N : magnetic permeability of soil
! o, : electrical conductivity of soil
1 : Ias : reflection coeff. from air to soil
hepe €v v Os ! i Tas :transmission coeff. from air to soil
! Is s : reflection coeff. from soil to target
. W . soiL st : transmission coeff. from soil to target
ER _—_ T T Tea : transmission coeff. from soil to air
Lo st ha : height of the GPR antenna
¥ target or calibration object hest : h¢ - depth of the calibration object
______________ | | h¢ - depth of the target
!‘ Den ‘! €t : €. - length of the calibration object
€¢- length of the target
Dt : D, - diameter of the calibration object

D¢ - diameter of the target

Figure 3.3. GPR Measurement of Calibration Object or Targets
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By means of calibration measurement, intrinsic properties of soil are estimated and
they are used in target classification step. The calibration object is a cylindrical shape
PEC (Perfect Electrical Conductor) with diameter D, and height [, as shown in Figure
3.3. During calibration measurement and landmine sweeping, height of the GPR
antenna above the surface of the ground is h,. Before starting landmine sweeping in
an area, this cylindrical PEC is buried at depth h. and GPR is passed over the buried

calibration object.

For the Target Detection & Classification Phase, initially the ground bounce is
removed from the original GPR data. Then, a pre-screener algorithm is used to detect
the possible anomaly locations. Hence, the amount of data that will be used in the
feature extraction step is minimized. For each anomaly region, the gradient-based
algorithm is used to select A-scan data which has the highest amplitude in the
corresponding B-Scan image. In Context-based Parameter Update step, the calibration
parameters are updated by considering the variation of the soil dielectric properties for
each anomaly region. To achieve this, the ground bounce values in the calibration area
and in the anomaly region are compared. Afterwards, for each anomaly region, three
different features are extracted by utilizing the intrinsic characteristics of the soil
which are calculated in the calibration measurement and updated in the context-based
parameter update step. Finally, targets are classified by SVM based on these extracted

features.
3.1. Calibration Measurement

In Section 2.4, the relation between the reflection coefficient and intrinsic parameters
of a medium is given. This step shows how to extract these parameters from GPR data.
As stated before, the calibration object is a cylindrical shape PEC (Perfect Electrical
Conductor) with diameter D, and height [, which is used to compute the dielectric
properties (relative permittivity and conductivity) of soil, attenuation constant of soil
and GPR signal velocity in the soil. In all computations, A-Scan data measured at the
cross-track position X = Xo (A(Xo, t)) is used given in Figure 3.4. Here, Xo corresponds
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to apex of target response hyperbola and it is computed using the gradient-based
algorithm given in [17]. Details of this computation process are given in Section 3.3.
An example calibration measurement and the corresponding A-Scan data (mid A-

Scan) are shown in Figure 3.4.

Xp

Py primary
’ I
0.15 /| v reflection
ground i || Y
bounce

time, t (ns)
(a) (b)
Figure 3.4. An Example Calibration Measurement (a) B-Scan Image, (b) A-Scan Data at x=xg

3.1.1. Dielectric Properties of Soil

In this step, the complex intrinsic impedance, conductivity and relative permittivity of
the soil in the calibration area are computed. E,, is the electric field at the TX according
to Figure 3.3. Using Eq. 44, value of the incident wave (E,) at the air — soil boundary

becomes:

E(ha) = Eoe_aairhae_jﬁairha’ (49)

Here, ag,;, = 0 and By = w./Ho€y according to Eq. 45, because pgir = U, €gir =

€0 and o4, = 0. So, the value of the signal at the air — soil boundary is:

E(hy) = Eqe™/@VHocohe, (50)

The value of the ground bounce (E;g), which is the reflected signal from the surface

of the ground, is:
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Egp = Ey|ls|e/@VHoco2hag alas (51)

Here, I, = |I,s|e’*"as is complex reflection coefficient of soil. Therefore, it can be

calculated by using Eq. 52.

i —i E
|| #lase I Hoco2ha — =22, (52)
Note that, the term e ~/®v#o€2ha s due to the antenna height (h,) and causes a time
delay. If Eq. 52 is given in terms of amplitude and phase separately, the following
equations are obtained:

_ |Egsl
|Fas| - |E0|’ (53)
4 (Egp, Eo)lw = 815 — 2(*)\/ Uo€ohg, (54)

Calculating the amplitude of the reflection coefficient is straightforward, it is simply
amplitude of the ratio of ground bounce to incident wave. However, calculating the
phase difference is more challenging, because phase difference depends on the
frequency and it has a different value for each different operating frequency.
Therefore, phase difference should be calculated for a specific frequency value. To
achieve this, ground bounce and incident wave are transformed into frequency domain
by applying Fast Fourier Transform (FFT). Afterwards, phase of the ground bounce
and phase of the incident wave can be computed for a specific frequency value and
phase difference can be obtained. In this study, the frequency value for which phase

difference is calculated is chosen as the center frequency of GPR.

Afterwards, the complex intrinsic impedance of soil (Re{n,} and Im{n,}) is calculated
according to Eq. 43. Finally, the relative permittivity (&) and conductivity (o) of the
soil in the calibration region are calculated by Eq. 40 under the assumption that the

permeability of soil is assumed to be equal to that of air [95].

Twelve different soil types are created which have relative permeability of 1,
conductivity of 10 mS/m and relative permittivity between 4.5 and 10 with the
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increment of 0.5 to verify the computation process of the complex intrinsic impedance
of soil. For each soil type, a reference GPR measurement is taken by gprMax
modelling software [102] and the ground bounce values are saved for each case. By
using these ground bounce values, complex reflection coefficients are computed by
Eq. 52-54 and complex intrinsic impedances are calculated by Eq. 42 and Eqg. 43. In
Figure 3.5, theoretical and simulated results of complex intrinsic impedance values of
given twelve different soil types are shown. Theoretical results are computed
according to Eq. 40. Simulated results are calculated by using the simulated ground
bounce values and Eq. 42, 43, 52, 53 and 54. Please observe that, simulated complex
intrinsic impedance values are very close to the theoretical results which verifies the

proposed method.
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Figure 3.5. Theoretical and Simulated Result of Complex Intrinsic Impedance Values of 12 Different
Soil Types, (a) Real Part, (b) Imaginary Part

3.1.2. Attenuation Constant of Soil

In this step, the attenuation constant of the soil in the calibration area is calculated.
The material of calibration object is PEC and intrinsic impedance of PEC is very small.
Hence, reflection coefficient of PEC material is -1 (I5; = —1 in Figure 3.3 for
calibration measurement). Therefore, PEC object reflects all energy back. Using

Figure 3.3, Eq. 41 and Eq. 47, amplitude of E,¢y,n_pec Can be given as:
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A(hc) = |Ereturn_PEC(hc)| = |EO||TasTsa|G(ha + hc)e—Zashc’ (55)

1
812 (hg+h()?

4ns
(ns+1)2

where  |TyToq| =

and G(hy + he) =

A(h,) is defined as amplitude of the return signal from a PEC surface at depth h. as
shown in Figure 3.3. In the simulations, dipole antenna is used; therefore geometrical
spreading factor (G (h, + h.)) varies inversely as the square of the distance [103].

Attenuation constant of soil g can be computed by inversely solving Eq. 55.

A PEC material is buried at 15 cm depth in a soil with u; =1, €, = 4.5, o, =
10 mS/m and the amplitude of the primary reflection is measured by using gprMax
modeling software to verify Eq. 55 experimentally. Then, «a, is calculated by using
this measurement as explained above. Afterwards, in gprMax modeling software the
same PEC material is buried at depths between 10 cm and 14.5 cm with the increment
of 0.5 cm in the same soil. Amplitude of the primary reflection is measured for each
case. Moreover, for each case the amplitude of the primary reflection is calculated
theoretically by utilizing Eg. 55. Finally, the simulated results are compared with the
calculated values as shown in Figure 3.6. The results are very similar for each case
which verifies the proposed method.

\\ — — =Theoretical
0.24 Pl e Simulated

0.2t o,

Amplitude of Return Signal(V/m}
&
&

10 10.5 11 11.5 12 125 13 135 14  14.5 15
Depth(cm)

Figure 3.6. Simulated and Theoretical Results for Attenuation
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3.1.3. GPR Signal Velocity in the Soil

In this step, GPR signal velocity in the soil of the calibration area is calculated. GPR
signal velocity in a medium can be calculated by utilizing Eq. 48. Since, the relative
permittivity value of the soil is already calculated in Section 3.1.1, Eq. 48 can be
applied to compute GPR signal velocity theoretically. On the other hand, GPR signal
velocity into the corresponding soil can be calculated experimentally by using the
calibration measurement. By referring Figure 3.3, the incident wave reflected from the
ground (ground bounce) travels 2h, while the reflected signal from the buried object
(primary reflection) travels 2h, + 2h. until they reach the RX of GPR antenna. GPR
signal velocity into the soil can be calculated by using the time difference between
these two received signals as given in Eq. 56. During landmine sweeping, this
information is used to estimate the buried depth of the target. For the sake of

consistency, in this section GPR signal velocity is calculated experimentally.

The time difference between the ground bounce and the primary reflection gives the
time of GPR signal travels 2h, way of soil (h, forth and h. back). Therefore, GPR

signal velocity into the soil (v) can be calculated by Eq. 56.

2h,

Vs

(56)

= . . )
| timeground bounce—tiMeprimary reflection |

To verify Eq. 56 experimentally, a PEC material is buried at 15 cm depth in 12
different soil types which have relative permeability of 1, conductivity of 10 mS/m
and relative permittivity between 4.5 and 10 with the increment of 0.5. GPR signal
velocity values are calculated by Eq. 56. Afterwards, the same values are calculated
by Eqg. 48 theoretically. Finally, the simulated results are compared with the calculated
values as shown in Figure 3.7. The results are very similar for each case which verifies

the proposed method.
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Figure 3.7. Simulated and Theoretical Results for GPR Signal Velocity

All in all, from the calibration measurement, three important parameters: dielectric
properties of soil (&g, g; and 7)), attenuation constant of soil (ag) and GPR signal
velocity in the soil (vs) are calculated by Eqg. 49-56. These parameters are used to

extract intrinsic features of the alarm locations for further experiments.
3.2. Ground Bounce Removal and Pre-screener

After the calibration measurement, next step is to detect and classify buried objects in
the same experimental area. Initially, ground bounce is removed from the original
GPR data as proposed in [91]. Maximum detection technique is used to find the
location of the ground bounce. Details of this technique is given in Section 2.3.1. After
maximum detection, alignment is necessary due to up-down movement of vehicle
mounted GPR antenna. Then, L time samples after the ground bounce peak are
removed from each A-Scan data. L is determined based on the ground bounce in time
[91]. An example scenario is shown in Figure 3.8. PMA, PMD and PMN, which are
explained in detail in the results section, are three landmines. Tin box has 8 cm
diameter and 8 cm height. Rock has 7 cm width, 14 cm length and 3 cm height. B-
Scan GPR data belongs to this example scenario is given in Figure 3.9-a. After the

ground bounce removal step, this B-Scan data is shown as in Figure 3.9-b.
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Free Space

Figure 3.8. An Example Simulation Scenario

(a) (b)

Figure 3.9. (a) Raw GPR Data, (b) Ground Bounce Removed GPR Data

Complex discrimination algorithms can be run in real-time by only applying these
algorithms to a small subset of available data. To minimize the amount of data which
will be used in the feature extraction step, an LMS-based pre-screener algorithm is
utilized. Other pre-screener algorithms than LMS can also be used in this step. We
have adopted LMS algorithm since, it is one of the most widely used adaptive pre-

screener techniques in the literature [50-52].

In this study, 1-D LMS algorithm is applied through each column of B-Scan image as
described in Section 2.3.2. Since the targets which are buried deeper have weak GPR
response with respect to shallowly buried targets, LMS algorithm tends to remove the
response of deeply buried targets. To avoid this issue, B-Scan image is normalized to
enhance the deeper region of data. To achieve this, each row of ground bounce
removed B-Scan image is normalized before LMS algorithm.

54



For implementation of 1D LMS algorithm, filter length is chosen as 12 and guard-
band length is chosen as 5. For each selected window, LMS finds the differences from
the background by adaptively updating the filter coefficients. Then, a threshold is
applied to the Pre-screener Result (PR) and a decision is made according to that
threshold as explained in [52]. Then, projections of thresholded image is obtained and
binary mapping is applied to the value of each projection. Finally, the centroids of
connected areas are chosen as the mid-points of anomaly regions. As an example,
LMS result of B-scan image given in Figure 3.9-b and the possible anomaly regions

are shown in Figure 3.10.
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Figure 3.10. LMS Result of B-Scan Image Given in Figure 3.9-b, Binary Mapping Result and
Possible Anomaly Regions

For each anomaly region, the gradient-based algorithm described in [17] is utilized to
select the A-Scan data that is measured when GPR antenna was above the center of
the target (when GPR antenna is at the position shown in Figure 3.3). Details of the
gradient-based algorithm is given in Section 2.3.3. For a given B-Scan image,
gradient-based algorithm finds the degree to which edges occur in the diagonal and
anti-diagonal directions. The algorithm formulates the states of the discrete model of
the target as the leading edge, center and trailing edge. The region where diagonal
edges occur corresponds to leading edge state and where anti-diagonal edges occur

corresponds to trailing edge state. Center state of the algorithm shows the transition
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region from diagonal to anti-diagonal edges [17]. The A-Scan data, which will be
further processed for the feature extraction step, belongs to this transition region. If
there are multiple A-Scan data into this region, the one which has the highest
amplitude is chosen as shown in Figure 3.11. This A-Scan data will be called as “mid
A-Scan” of a given B-Scan image for the rest of this study. Here, it is not always
possible to find the correct mid A-Scan data due to noise of the system. The impact of

this issue is discussed in the results section.

Figure 3.11. Result of the Gradient-based Method — X1, X2, X3, X4 and xs Denote the Positions of A-
Scan Data to Be Used for Feature Extraction Step

Before starting the feature extraction step, the calibration parameters are updated for

the corresponding anomaly region by Context-based Parameter Update step.
3.3. Context-based Parameter Update

In the calibration measurement, three important parameters: dielectric properties of
soil (e, o and 7)), attenuation constant of soil () and GPR signal velocity in the
soil (vg) are calculated by Eq. 49-56 for the calibration region. The relative
permeability of soil is almost always assumed to be equal to 1 and does not vary from
area to area [95]. However, conductivity and relative permittivity of soil may change
even in small areas especially depending on the soil moisture content [105, 106]. Since
the calibration parameters vary during landmine sweeping, large scale estimates are

not reliable and these parameters should be updated for each anomaly region.
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Initially, the dielectric properties of the “k‘*” anomaly region (e¥, ok and n¥) are
calculated by applying the same procedure described in Section 3.1.1. Initially,
amplitude (|I;X|) and phase (£;%) of the reflection coefficient are computed by Eq.
53 and Eq. 54. Then, the complex intrinsic impedance of soil (n¥) is calculated
according to Eq. 43. Finally, the relative permittivity (eX) and conductivity () of the

soil in the “k*"” anomaly region are calculated by Eq. 40.

Afterwards, attenuation constant and GPR signal velocity of the “k**”” anomaly region
(ak and vk¥) are found by updating the attenuation constant and GPR signal velocity
of the calibration area (a; and vg) as shown in Figure 3.12. To achieve this, the
difference between the dielectric properties of the “k**”” anomaly region (¥, o and

nk) and the dielectric properties of the calibration region (e, o, and n,) is utilized.
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Figure 3.12. Context-based Parameter Update Step
Attenuation constant of the “k‘*” anomaly region (a¥) is computed. For low-loss
dielectrics, attenuation constant is calculated by Eq. 45. Hence, the attenuation
constant of the calibration region (a;) can be updated by applying Eq. 57 to obtain the

attenuation constant of the anomaly region (aX).
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as = Us o /eé" (57)

Finally, GPR signal velocity in the soil of the “k®* anomaly region (v¥) is calculated.
GPR signal propagates with the speed of light (c) in free space. GPR signal velocity
in an environment can be calculated by Eq. 48. Hence, GPR signal velocity in the
calibration region (vg) can be updated by applying Eg. 58 to obtain GPR signal

velocity in the anomaly region (vX).

vk = g \/% (58)

All in all, in the calibration measurement, three important parameters: dielectric
properties of soil (e, a; and 7;), attenuation constant of soil (ag) and GPR signal
velocity in the soil (v,) are calculated by Eq. 49-56 and in this section these parameters
are updated for the corresponding anomaly region. Updated parameters are used to

extract intrinsic features of the corresponding target.
3.4. Feature Extraction

In this work, three different features are extracted for each anomaly region: Dielectric
feature, energy feature and geometry feature. Geometry feature is extracted from the
ground bounce removed B-Scan image of the corresponding anomaly region.
Dielectric feature and energy feature are extracted from the ground bounce removed
A-Scan data (mid A-Scan) which has the highest amplitude in the corresponding B-

Scan image.

Dielectric feature estimates the intrinsic impedance of the buried object by utilizing
physics-based approach and depends on the material type of the underground target.
Energy feature identifies significant GPR signal length. It depends on both material
type and size, especially length of the buried object. Geometry feature computes
gradient of the corresponding B-Scan data by utilizing image-based feature extraction

methods. This feature depends on size, especially surface area of the buried object.
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Therefore, these features are complementary to each other and the combination of

them is very promising.
3.4.1. Dielectric Feature

The environment for the corresponding anomaly region is modelled during calibration
and context-based parameter update steps, so the return signal for PEC object buried
in any depth can be modelled as well. In this section, intrinsic properties of the

unknown object are computed from its return signal (Eresyrn_targee 1IN Figure 3.3) by

utilizing theoretically computed PEC return signal.

The first step is to compute target depth (h;) by using Eg. 59. Note that, in the context-
based parameter update step, intrinsic impedance (n¥), attenuation constant (a¥) and

GPR signal velocity (vX) are calculated in the soil of the k" anomaly region.

_ v;{'timeground bounce‘timeprimary reflectionl 59
h’t - 2 y ( )

After target depth is calculated, amplitude of the return signal from a PEC surface at

the same depth of the target (|Eyerurn_pec(he)|) is computed by using Eq. 60.

_oq.k
A(ht) = |Ereturan(;(ht)| = |E0||T§ST§Q|G(hQ + ht)e ZaShti (60)
k ok _ |_4n§ _ 1
where  [t4,78| = |(n§+1)2 and G(hg +hy) = PRy

Amplitude of the return signal from the target (|Ereeurn carger (he)|) is measured by
GPR experimentally. This value ( |Eretum_target(ht)|) can be written theoretically as

shown in Eq. 61.

—_oqk
Atarget(ht) = Ereturntarget(ht)| = |E0||T55T.é€a||['sl§|6(ha + ht)e 2as htv (61)

ank
(n¥+1)2

1
812 (ha+ht)2

where |tk Tl | = | and  G(hy + hy) =

By comparing Eqg. 60 and Eqg. 61, amplitude of the reflection coefficient of target
(|F¥]) in the “k*" anomaly region can be computed by Eq. 62.
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k _Atarget(ht)
7] = Aty (62)

In Section 2.4.1, it is written that the working medium can be assumed as low-loss
according to the frequency band of GPR. Therefore, the intrinsic impedance of soil is
almost real (complex part is very small with respect to the real part as shown in Figure
3.5). Moreover, in this study, our main interest is to identify the landmines with little
or no metal content. These landmines are made of plastic, rubber, bakelite, glass or
wood. All these materials satisfy low-loss condition. Therefore, the following

equations are correct.
n§ = Re{ng}, (63)
Nt = Re{nt}, (64)
Theoretical formula of I¥ is given in Eq. 41. So, the following equation can be written:

if Re{nf} > Re{n{}

rk else
So, intrinsic impedance of the target is estimated by using Eq. 66;
Re(ry 1l if Refnt) > Re(nf)
nt = Re{nf} = { | , (66)
Re{nk}= 1+| else

Dielectric feature of an anomaly region is equal to intrinsic impedance of the target
(n¥) that is calculated from mid A-scan data by means of Eq. 59-66. Before applying
Eq. 66, we should know whether Re{nk} is greater than Re{nk}. This inequality can
be checked by observing the sign of the primary reflection. If Re{n¥} is greater than
Re{nk}, ¥ is greater than zero and sign of the primary reflection becomes positive.
If Re{n¥} is less than Re{nk}, I} is less than zero and sign of the primary reflection
becomes negative. It means that, primary reflection becomes flipped. This

phenomenon can be understood by examining the following figure.
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Figure 3.13. (a) Primary Reflection for Re{n¥} > Re{n*}, (b) Primary Reflection for Re{n¥} <
Ref{n{}

If the buried object does not satisfy low-loss condition, Eq. 66 still estimates the real
part of the intrinsic impedance as described in Appendix B. The flowchart of dielectric

feature extraction method is given in Figure 3.14.

Context-based Parameter Update
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Figure 3.14. Dielectric Feature Extraction Method
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3.4.2. Energy Feature

This feature is described as the minimum signal length that carries more than 90% of
the signal’s total energy. The rationale behind this feature is to figure out the size of
the region where the energy of the signal (ground bounce removed A-Scan data) is
concentrated. To measure this, initially ground bounce is removed from mid A-Scan
data of the corresponding B-Scan image. Then, cumulative energy curve of this data
is calculated as described in [107]. An example A-Scan data and its corresponding

cumulative energy curve is shown in Figure 3.15.
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Figure 3.15. (a) Ground Bounce Removed mid A-Scan Data, (b) Its Cumulative Energy Curve

The formulation to extract the Energy Feature is given below:
- Define n := number of scan steps in GB removed mid A — Scan data
- Define e(t) := ground bounce removed A Scan data fort =1, ...,n
- Define c(t) := cumulative energy curve of e(t) s.t.c(t) 2 Xk_,le(k)|?
- Find (a, b) pairs which satisfy
o a<b<n
o c¢(b) —c(a) =0.9¢c(n)
- Choose the pair (a, b) such that "b — a" is minimum

- Energy feature = minimum signal length = b — a
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3.4.3. Geometry Feature

First two features (Energy feature and Dielectric feature) consider the A-scan data
which has the highest amplitude in the corresponding B-Scan image and try to extract
discriminative information about the material type of the target. On the other hand,
geometry (shape) of the target is another important information to discriminate
different objects. Geometry feature estimates the shape, especially the surface area of

the buried object.

To extract the geometry feature, right half of the corresponding B-Scan image is
evaluated. Consider, I is the image of the right part from the apex point of the

corresponding B-scan data as shown in Figure 3.16.

X

(a) (b)

Figure 3.16. (a) B-Scan Data of PMA Landmine (xo denotes the position of mid A-Scan data), (b)
Right Half of It that is Denoted by |

Like Scale Invariant Feature Transform (SIFT) [64] or Histogram of Oriented
Gradients (HoG) [21-23] feature extraction methods, the gradient vector at each point

is calculated containing the horizontal and vertical derivatives as given in Eq. 67.

IL,=1xg, and I, =1xg,, (67)

where g, and g,, represent gradient filters [-1, 0, 1] and [—1, 0, 1]" respectively. The
magnitude and the orientation of the resulting gradient vector are given in Eq. 68 and
Eqg. 69.

63



G(i, ) = (L, D* + 1,1, ), (68)

1y (i,))
Ix (l,]) '

A(i,j) = arctan (69)

Differently from the SIFT or HoG features, we do not assume a pre-specified block
size. Instead, the gradient of the entire image I is calculated at one time by Eq. 70 and
Eq. 71.

normalized orientation A(i,j) = A(, j) * G(i, j), (70)
. _ LiX;AGH)
gradient = ST (71)

The gradient value, which is calculated by Eq. 71, is the geometry feature of the

corresponding alarm location.

If the surface area of a buried object is large, the corresponding target response
hyperbola of GPR measurement will be fairly flat and straight. Otherwise, it will be
sharp. Geometry feature estimates how much the target response hyperbola is flat or
sharp. If the surface area of a buried object is large (corresponding hyperbola is flat),

its geometry feature will be small. Otherwise, the geometry feature will be large.
3.5. Classification

In Section 3.4, Dielectric Feature, Energy Feature and Geometry Feature of each
anomaly region are calculated. For the classification, two class (Class 1: Landmine,
Class 2: Innocuous Object) support vector machine (SVM) algorithm [73, 74, 108] is
implemented as described in Section 2.3.6. By focusing on the training samples, SVM
finds an optimal separating hyperplane with the maximum margin between the classes.
The main advantage of SVM approach is the formulation of its learning problem. By
utilizing the quadratic optimization task, SVM reduces the number of operations in
the learning mode. Therefore, SVM algorithm is usually much quicker with respect to

other classification methods.
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SVM is a linear classifier and a kernel function should be used with SVM to achieve
non-linear classification. A kernel function K(x, y) transforms the original data space
into a new space with higher dimension. There are different kernel functions i.e. linear,
radial basis function, sigmoid, polynomial, etc. and for a specific dataset, choosing the
best kernel function with the optimum parameters is an important step.

In this study, we investigate the comparison of using three different kernel functions
(sigmoid, radial basis function (RBF) and polynomial which are listed in Table 3.1) at
the SVM algorithm. Each kernel function has particular parameters that must be

optimized to obtain the best performance result.

Table 3.1. Functions and Optimization Parameters of Sigmoid, RBF and Polynomial Kernels

Kernel Name Function Optimization Parameters
. . 1
Sigmoid K(x,y) = tanh(y(xTy) + ¢) Y=5 and c
o
) 1
RBF K(x,y) = exp(—Yyl|lx — y|I*) V=5
Polynomial Kxy) = (y(xTy) + 0)¢ Y =53¢ and d

The classification results and the performance of the proposed features are given in

Section 4.
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Performance of the proposed algorithm is presented in this section. For comparison,
Histogram of oriented Gradients (HoG) feature extraction method [21-23] and Edge
Histogram Descriptor (EHD) feature extraction method [20] are also implemented and

CHAPTER 4

RESULTS

the performance results are shown in the following sub-sections.

4.1. Dataset

In this study, simulation experiments are carried out to evaluate the proposed landmine
discrimination algorithm by using gprMax electromagnetic modeling software [102,
109]. For the simulations, PMA, PMD and PMN are modelled as landmines; buried
tin box, plastic box, wooden box and stone are modelled as innocuous objects. To
model clutter, a few small pebbles are located in the vicinity of a buried landmine or

innocuous object. A sample gprMax input file is given in Appendix C.
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Figure 4.1. (a) Time Domain of Ricker Waveform, (b) Power Spectrum of Ricker Waveform
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For the simulation, Hertzian dipole antenna and ricker waveform (which is also known
as “Mexican hat”) are used with the center frequency of 1.5 GHz. Time domain and
power spectrum of the ricker waveform is shown in Figure 4.1. According to the
power spectrum of the ricker waveform, -10 dB frequency bandwidth of the antenna
is from 0.8 to 2.3 GHz. The transceiver and receiver are located 16 cm above the air
— soil interface. The distance between transceiver and receiver is 3 cm as shown in

Figure 4.2.
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Figure 4.2. GPR Measurement Setup

For the simulations, 12 different soil types are created with permeability u,, relative
permittivity between 4.5 to 10 and conductivity of 10 mS/m [95, 96, 110-113]. These

soil types and relative dielectric properties are shown in Table 4.1.

Table 4.1. Different Soil Types and Their Dielectric Properties

Soil Type 123456 7]8[910]11]1
Relative

Permeability o el N Ml §
Ee'a“."e.. 45|50 (55(6.0|65(7.0|7.5/80|85|9.0(95]100
ermittivity

conductivity | 45 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10
(mS/m)
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In general, soil is composed of sand, silt and clay particles. A fine concentration of
them (around 40-50-10% respectively) is called as loam. These proportions can
change and result in different loam types: sandy loam, silt loam, silt clay loam and
loam. When the volumetric moisture content is 0.14 — 0.18 cm3/cm3 (that
corresponds to a little wet a little dry soil 1-2 days after a rain), relative permittivity
and electrical conductivity of sandy loam, loam, silt loam and silt clay loam are given
in Table 4.2 for 1.5 GHz frequency [96, 111].

Table 4.2. Dielectric Constants of Different Soil Types at 1.5 GHz Frequency

Soil Type | Sand | Silt (%) Clay Dielectric Electrical
(%) (%) Constant Conductivity
(e,) (ms/m)

Sandy ~ 50 ~ 35 ~15 ~7.9-10 ~01-15
loam

Loam ~40 ~50 ~10 ~7-9.2 ~3.8-15
Silt loam ~20 ~ 65 ~15 ~6-8.2 ~17-15
IS'" clyl 5 | _475 | ~a75 | -45_66 > 10
oam

To generate more realistic scenarios, a few random pebbles are created and located
around the buried objects. Initially, landmines and innocuous objects are buried into
these 12 different soil types at 3 different burial depths (10, 12 and 15 cm) without
any pebbles and simulation results are collected. Then, 5 pebbles are located in the
vicinity of the buried objects and simulations are repeated. Pebbles are modeled as
spheres such that the radius is chosen randomly between 1.5 to 2.5 cm and the location
is also chosen randomly around the buried object. Finally, 10 pebbles are located in
the vicinity of the buried objects and simulations are repeated again. All in all, there
are 12 different soil types, 3 different burial depths and 3 different pebble conditions
(no pebble, 5 pebbles and 10 pebbles), hence 12x3x3=108 different simulation results

are generated for each object.
4.1.1. Simulated Landmine Data

For the simulations, three different landmines (PMA, PMD and PMN) are used. PMA

is an anti-personnel blast mine manufactured in the former Yugoslavia [114]. It is a
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plastic box mine that is usually colored dark green. PMD is a rectangular wooden anti-
personnel blast mine [115]. It is usually either unpainted wood or olive-green color.
PMN is a bakelite-cased, pressure operated, anti-personnel blast mine manufactured
in the former Soviet Union [116]. The mine has a body that is usually raw (reddish-
brown) bakelite with a black rubber top. Pictures and dimensions of PMA, PMD and

PMN landmines are given in Figure 4.3 and Table 4.3 respectively.

(@) (b) ()

Figure 4.3. (a) PMA Landmine, (b) PMD Landmine, (c) PMN Landmine

Table 4.3. Simulated Landmine Dimensions

Casing Explosive
ug Material Dimensions Charge
= Width Length | Radius | Height | Wall-

- (mm) (mm) (mm) (mm) | thickness
(mm)
PMA | Plastic 70 140 - 30 3 200 g TNT
PMD | Wood 90 190 - 65 3 200 g TNT
PMN | Bakelite, - - 56 56 3 200 g TNT
rubber

By using gprMax modeling software, PMA is modelled as full of TNT inside a plastic
casing with 3 cm x 7 cm x 14 cm dimensions and 3 mm wall thickness. PMD is
modelled as full of TNT inside a wooden casing with 6.5 cm x 9 cm x 19 cm
dimensions and 3 mm wall thickness. PMN is modelled as full of TNT inside a
bakelite casing with 112 mm diameter, 56 mm height and 3 mm wall thickness.
Moreover, the rubber top with 3 mm thickness and a metallic cylindrical fuse with 4
mm diameter and 56 mm height at the middle of PMN are also modelled. Then, these

landmines are buried into 12 different soil types at 3 different burial depths for each 3
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different pebble conditions. For each case, GPR antenna is moved through cross-track
(x) direction above the target and an A-Scan measurement is taken at each cm (Ax =
1 cm). For each target, total of 51 A-Scan data are measured to generate a B-Scan
image. Finally, 12x3x3x3=324 different B-Scan images are generated which belong
to the simulated landmine data. As example, simulation results of landmine models

for a sample soil type are given in Table 4.4.

Table 4.4. Simulation Results of Landmine Models

PMA PMD PMN

Without any clutter

With random clutters

4.1.2. Simulated Innocuous Object Data

For the simulations, four different innocuous objects (tin box, plastic box, wooden box
and stone) are used. Pictures and dimensions of innocuous objects are given in Figure
4.4 and Table 4.5 respectively.
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(b) (©) (d)

Figure 4.4. (a) Tin Box, (b) Plastic Box, (c) Wooden Box, (d) Stone

Table 4.5. Simulated Innocuous Objects’ Dimensions

= Material Dimensions
=] Width Length Radius Height Wall-thickness
© (mm) (mm) (mm) (mm) (mm)
Tin Box Aluminum - - 40 80 3
Plastic Box Plastic 70 140 - 30 3
Wooden Box | Wood 90 190 - 65 3
Stone Sandstone 70 140 - 30 -

By using gprMax modeling software, the first innocuous object is modelled as an
empty cylindrical aluminum box with 4 cm radius, 8 cm length and 3 mm wall
thickness. The second object is modelled as an empty plastic box with 3 cm x 7 cm X
14 cm dimensions and 3 mm wall thickness. The third object is modelled as an empty
wooden box with 6.5 cm x 9 cm x 19 cm dimensions and 3 mm wall thickness. The
last object is modelled as a stone with 3 cm x 7 cm x 14 cm dimensions (same
dimensions with PMA landmine) and 1 cm surface roughness. Then, these innocuous
objects are buried into 12 different soil types at 3 different burial depths for each 3
different pebble conditions. For each case, GPR antenna is moved through cross-track
(x) direction above the target and an A-Scan measurement is taken at each cm (Ax =
1 cm). For each target, total of 51 A-Scan data are measured to generate a B-Scan
image. Finally 12x3x3x4=432 different B-Scan images are generated which belong to
the simulated innocuous objects. As example, simulation results of these models for a

sample soil type are given in Table 4.6.
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Table 4.6. Simulation Results of Innocuous Objects

Tin Box Plastic Box Wooden Box Stone

—

Without any clutter

With random clutters

4.2. Proposed Features / HoG Features / EHD Features Classification and

Comparison ROC Curves

For the simulated landmine and innocuous object data, HoG features, EHD features
and the proposed features in this study are extracted. HoG and EHD feature extraction
algorithms are applied as described in Section 2.3.4 and 2.3.5 respectively. For the
proposed feature extraction algorithm, the calibration object is chosen as a cylindrical
PEC with 4 cm length and 10 cm diameter. Dielectric feature, energy feature and
geometry feature are extracted and two-class support vector machine (SVM)
algorithm is used for classification. For HoG and EHD features, SVM algorithm is
also used for classification. Initially the best kernel match and optimum parameters
are calculated for HoG, EHD and the proposed features; then the performance metrics
of these features are computed by using the pre-determined kernel functions.

In this study, 324 landmine data and 432 innocuous object data are simulated as given
in Section 4.1. Initially, 150 landmine data are selected for parameter optimization
step and another 150 landmine data are selected for performance evaluation step.
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Similarly, 150 innocuous object data are selected for parameter optimization step and
another 150 innocuous object data are selected for performance evaluation step as
shown in Figure 4.5. Note that, the selected data for parameter optimization step and

performance evaluation step are different.

|

| 324 landmine 432 innocuous
| data object data
[
|

Parameter Optimization Step
- 150 landmine data
- 150 innocuous object data

Performance Evaluation Step
- 150 landmine data
- 150 innocuous object data

Figure 4.5. Data Allocation for Parameter Optimization and Performance Evaluation

The selected data for parameter optimization step is used to choose the best kernel
function with the optimum parameters to achieve the highest performance. In
parameter optimization step, the same dataset is used for HoG features, EHD features
and the proposed features to make a fair comparison. Afterwards, the selected data for
performance evaluation step is used to evaluate the performance of HoG features,
EHD features and the proposed features. In this step, SVM algorithm is used with the
selected kernel function and the optimum parameters. To implement SVM, “fitcsvm”
command of MATLAB is used. To evaluate the performance, 10-fold cross-validation
method is applied. For this, “crossval” and ‘“kfoldPredict” commands of MATLAB
are used. After this step, performance metrics (accuracy, receiver operating
characteristics (ROC) curve and area under curve (AUC)) are obtained and compared
for three different features (HoG, EHD and the proposed features). To draw ROC
curve, “perfcurve” command of MATLAB is used. The flowchart of this step is given
in Figure 4.6.
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Figure 4.6. Parameter Optimization and Performance Evaluation Steps

Parameter optimization and performance evaluation steps are applied for HoG

features, EHD features and the proposed features separately.
4.2.1. Kernel Selection and Parameter Optimization

In this section, firstly HoG features, EHD features and the proposed features in this
study are extracted for 300 data (150 landmine and 150 innocuous objects) that are
selected for parameter optimization step. Afterwards, performance of SVM with
different kernel functions is evaluated for these features by using 10-fold cross

validation. As explained in Section 3.5, sigmoid, RBF and polynomial kernel
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functions are used in this study. Parameters of these kernels are given in Table 3.1.
During parameter optimization step, o value is changed between 0 and 25 (o €
(0,25]), c value is changed between 0 and 10 (c € [0, 10]) and d value is changed

between 1 and 5 (d € [1, 5]). (Note that, c = 0 value is not chosen to prevent zero
division (y = ﬁ). Instead, o = 1073 is taken for the minimum value of o). Within

these ranges, sigmoid kernel function is optimized in two-dimensional parameter
space (o and c), RBF kernel function is optimized in one-dimensional parameter space
(o) and polynomial kernel function is optimized in three-dimensional parameter space
(o, c and d). For all different o, c and d values, accuracies of SVM are evaluated by
using these kernel functions. Accuracy is a reliable performance metric for SVM that
can be calculated as given in Eq. 72.

TP+TN

accuracy = —m—mm
y TP+FN+TN+FP’

(72)

where TP: True positive (a landmine is classified correctly — correct detection)
TN: True negative (an innocuous object is classified correctly — correct rejection)
FN: False negative (a landmine is classified as an innocuous object — miss)
FP: False positive (an innocuous object is classified as a landmine — false alarm)

According to Eq. 72, accuracy values of SVM for HoG features of the selected data
for parameter optimization step are calculated by using sigmoid kernel function.

Accuracy values for different parameters are shown in Figure 4.7.
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Figure 4.7. Accuracy Values of SVM for HoG Features by Using Sigmoid Kernel

According to Figure 4.7, accuracy of SVM for HoG features is maximum when the
coefficient of the sigmoid kernel is 0. However, in the figure it is difficult to identify
the optimum sigma value which makes the accuracy maximum. Therefore, while
coefficient is 0, sigma value is changed from 0 to 25 to detect the optimum sigma
value. As shown in Figure 4.8, when coefficient is 0 and the sigma value is 17,

accuracy of SVM with sigmoid kernel is 0.8354 for HoG features.

082 T T T T

T [XiaT T
Y:0.8354

Accuracy

Sigma

Figure 4.8. Accuracy Values of SVM for HoG Features by Using Sigmoid Kernel with Coefficient=0
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Accuracy values of SVM for HoG features of the selected data for parameter
optimization step are calculated by using RBF kernel function. Accuracy values for
different parameters are shown in Figure 4.9. According to the figure, accuracy of
SVM for HoG features is maximum when the parameter of RBF Kkernel is chosen as
sigma is 10. For this parameter, accuracy of SVM is 0.8887 for HoG features.

X: 10
Y:0.8887

Accuracy

Sigma

Figure 4.9. Accuracy Values of SVM for HoG Features by Using RBF Kernel

Accuracy values of SVM for HoG features of the selected data for parameter
optimization step are calculated by using polynomial kernel function. Accuracy values
for different parameters are shown in Figure 4.10 and 4.11. According to the figures,
accuracy of SVM for HoG features is maximum when the parameters of polynomial
kernel are chosen as sigma is 2, degree is 2 and coefficient is 2. For these parameters,
accuracy of SVM is 0.8998 for HoG features.
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Figure 4.10. Accuracy Values of SVM for HoG Features by Using Polynomial Kernel with Degree=2
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Figure 4.11. Accuracy Values of SVM for HoG Features by Using Polynomial Kernel with Sigma=2,
Coefficient=2

According to Eq. 72, accuracy values of SVM for HoG features of the selected data
for parameter optimization step are calculated by using sigmoid, RBF and polynomial
kernel functions. Results are given in Figures 4.7-11 and the optimum parameters are

shown in Table 4.7.
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Table 4.7. Accuracy of SVM for HoG Features by Using Different Kernels

Kernel Optimum Parameters Accuracy
Sigmoid c=17andc=0 0.8354
RBF oc=10 0.8887
Polynomial c=2,c=2andd =2 0.8998

Accuracy values of SVM for EHD features of the selected data for parameter

optimization step are calculated by using sigmoid kernel function. Accuracy values

for different parameters are shown in Figure 4.12.

Accuracy

Figure 4.12. Accuracy Values of SVM for EHD Features by Using Sigmoid Kernel

According to Figure 4.12, accuracy of SVM for EHD features is maximum when the
coefficient of the sigmoid kernel is 0. However, in the figure it is difficult to identify
the optimum sigma value which makes the accuracy maximum. Therefore, while
coefficient is 0, sigma value is changed from 0 to 25 to detect the optimum sigma
value. As shown in Figure 4.13, when coefficient is 0 and the sigma value is 14,

accuracy of SVM with sigmoid kernel is 0.7266 for EHD features.
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Figure 4.13. Accuracy Values of SVM for EHD Features by Using Sigmoid Kernel with
Coefficient=0

Accuracy values of SVM for EHD features of the selected data for parameter
optimization step are calculated by using RBF kernel function. Accuracy values for
different parameters are shown in Figure 4.14. According to the figure, accuracy of
SVM for EHD features is maximum when the parameter of RBF kernel is chosen as

sigma is 4. For this parameter, accuracy of SVM is 0.8663 for EHD features.
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Figure 4.14. Accuracy Values of SVM for EHD Features by Using RBF Kernel
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Accuracy values of SVM for EHD features of the selected data for parameter
optimization step are calculated by using polynomial kernel function. Accuracy values
for different parameters are shown in Figure 4.15 and 4.16. According to the figures,
accuracy of SVM for EHD features is maximum when the parameters of polynomial
kernel are chosen as sigma is 1, degree is 2 and coefficient is 9. For these parameters,
accuracy of SVM is 0.8689 for EHD features.

Accuracy

Figure 4.15. Accuracy Values of SVM for EHD Features by Using Polynomial Kernel with Degree=2

*x:2 T T
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Figure 4.16. Accuracy Values of SVM for EHD Features by Using Polynomial Kernel with Sigma=1,
Coefficient=9
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According to Eq. 72, accuracy values of SVM for EHD features of the selected data
for parameter optimization step are calculated by using sigmoid, RBF and polynomial
kernel functions. Results are given in Figures 4.12-16 and the optimum parameters are

shown in Table 4.8.

Table 4.8. Accuracy of SVM for EHD Features by Using Different Kernels

Kernel Optimum Parameters Accuracy
Sigmoid oc=14andc=0 0.7266
RBF c=4% 0.8663
Polynomial o=1c=9andd =2 0.8689

Accuracy values of SVM for the proposed features of the selected data for parameter
optimization step are calculated by using sigmoid kernel function. Accuracy values
for different parameters are shown in Figure 4.17.

Accuracy
o

Figure 4.17. Accuracy Values of SVM for the Proposed Features by Using Sigmoid Kernel

According to Figure 4.17, accuracy of SVM for the proposed features is maximum
when the coefficient of the sigmoid kernel is 0. However, in the figure it is difficult to
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identify the optimum sigma value which makes the accuracy maximum. Therefore,
while coefficient is 0, sigma value is changed from 0 to 25 to detect the optimum
sigma value. As shown in Figure 4.18, when coefficient is 0 and the sigma value is 4,

accuracy of SVM with sigmoid kernel is 0.7674 for the proposed features.

F e—
X:4
Y:0.7674

Accuracy

Sigma

Figure 4.18. Accuracy Values of SVM for the Proposed Features by Using Sigmoid Kernel with
Coefficient=0

Accuracy values of SVM for the proposed features of the selected data for parameter
optimization step are calculated by using RBF kernel function. Accuracy values for
different parameters are shown in Figure 4.19. According to the figure, accuracy of
SVM for the proposed features is maximum when the parameter of RBF kernel is
chosen as sigmais 0.7. For this parameter, accuracy of SVM is 0.9318 for the proposed

features.
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Figure 4.19. Accuracy Values of SVM for the Proposed Features by Using RBF Kernel

Accuracy values of SVM for the proposed features of the selected data for parameter
optimization step are calculated by using polynomial kernel function. Accuracy values
for different parameters are shown in Figure 4.20 and 4.21. According to the figures,
accuracy of SVM for the proposed features is maximum when the parameters of
polynomial kernel are chosen as sigma is 0.5, degree is 2 and coefficient is 8. For these

parameters, accuracy of SVM is 0.9378 for the proposed features.
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Figure 4.20. Accuracy Values of SVM for the Proposed Features by Using Polynomial Kernel with
Degree=2
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Figure 4.21. Accuracy Values of SVM for the Proposed Features by Using Polynomial Kernel with

According to Eq. 72, accuracy values of SVM for the proposed features of the selected
data for parameter optimization step are calculated by using sigmoid, RBF and

polynomial kernel functions. Results are given in Figures 4.17-21 and the optimum

Deén"ee

Sigma=0.5, Coefficient=8

parameters are shown in Table 4.9.

Table 4.9. Accuracy of SVM for the Proposed Features by Using Different Kernels

Kernel Optimum Parameters Accuracy
Sigmoid oc=4andc=0 0.7674
RBF c=20.7 0.9318
Polynomial 0=05c=8andd =2 0.9378

According to the accuracy values given in Tables 4.7-9, polynomial kernel function
gives the best accuracy for all feature types. The optimum parameters for the
polynomial kernel are 6=2, ¢c=2 and d=2 for HoG features; c=1, ¢c=9 and d=2 for EHD
features and 6=0.5, ¢=8 and d=2 for the proposed features in this study. In the next
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step, performance of different features will be evaluated by using polynomial kernel
function with optimum parameters. Although polynomial kernel gives the best
accuracy for all feature types, RBF kernel function gives comparable accuracy values.
Since RBF kernel has only one parameter and it is computationally less expensive,
RBF kernel may also be used to avoid computational cost.

4.2.2. Performance Evaluation

In this section, HoG, EHD and the proposed features of the selected data for
performance evaluation step are classified by SVM with the polynomial kernel
function and the optimum parameters. Afterwards, 10-fold cross validation method is
used to calculate the performance of HoG, EHD and the proposed features. For the
performance evaluation, accuracy of these features is calculated as given in Eq. 72.
Moreover, receiver operating characteristics (ROC) curves, area under curve (AUC)

values and the confusion matrices are given for comparison.

HoG features, EHD features and the proposed features of the selected data for
performance evaluation step are classified by SVM. For each case polynomial kernel
function is used with the optimum parameters computed in Section 4.2.1. 10-fold cross
validation method is applied to obtain the results. Confusion matrices and the accuracy
values are given in Table 4.10.

Table 4.10. Confusion Matrices and Accuracy values of SVM for HoG, EHD and the Proposed

features by using polynomial kernel and optimum parameters computed in Sec 4.2.1

HoG Features EHD Features Proposed Features

actual actual actual

) S| TP FP TP FP T TP FP
Confusion | & 138 16 | 8 121 18| 8 143 13

Matrix S S S

o| FN TN o| FN TN @| FN TN

& 12 134 | & 29 132 & 7 137
Accuracy 0.9067 0.8433 0.9333
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Finally, Figure 4.22 shows the results (comparison ROC curves and AUC values)
obtained from evaluating SVM on the proposed features, HoG features and EHD

features using the aforementioned cross-validation procedure.
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Figure 4.22. Classification Results of the Proposed Features / HoG Features / EHD Features

According to accuracy values, ROC curves and the areas under these curves (AUC
values), the proposed features in this study has higher discrimination performance than
HoG and EHD features.

4.2.3. Classification and Class Boundaries of Data with the Proposed Features

In Section 4.2.2, performance of the proposed features is given. In this section, classes
and class boundaries are shown visually and the accuracy values of dielectric, energy
and geometry features are computed separately. Therefore, success of each individual
feature and the effect on final result is clarified.

During this study, 324 landmine data and 432 innocuous object data are simulated as
given in Section 4.1. To visualize the classes and class boundaries, simulated data is

divided into two different sets randomly as shown in Figure 4.5. In this case, the first
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data set contains 200 landmine data and 200 innocuous object data while the second
data set contains 100 landmine data and 100 innocuous object data. The first data set
is classified by SVM with the polynomial kernel and the optimum parameters for the
proposed features. This data set is classified with 20 support vectors as given in Figure
4.23.
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Figure 4.23. Support Vectors of the Simulated Landmine and Innocuous Object Data

In this study, three discriminative features are extracted for landmine identification.
Contribution of each feature to the overall performance is evaluated here. As shown
in Table 4.10, accuracy of the proposed features for the data set of performance
evaluation step is 0.93. For the same data set, accuracy of the dielectric feature is 0.81,
accuracy of energy feature is 0.86 and accuracy of geometry feature is 0.76. Moreover,
dielectric and energy feature give around 0.91 accuracy together. Therefore, the
proposed algorithm has higher discrimination power than HoG and EHD algorithm

even if two features (dielectric and energy) are used.

As described above, the simulated data set is divided into two groups such that the

first group has 200 landmine data and 200 innocuous object data for training; the
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second group has 100 landmine data and 100 innocuous object data for testing. The
first data set is classified by SVM with the polynomial kernel and the optimum
parameters by using only two features (dielectric and energy). Classes, support vectors

and class boundaries are shown in Figure 4.24.
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Figure 4.24. Class Boundaries and Support Vectors of the Simulated Data

Afterwards, the second data set is used to test the model. Classification result of the
second group, which has 100 landmine data and 100 innocuous object data, is shown
in Figure 4.25. In the figure, some data points are numbered. Number 1 and 2 show
the landmine data classified as innocuous object (false negative). Number 6-15 show
the innocuous object data classified as landmine (false positive). Number 3, 4 and 5
show three landmine data which are classified correctly however very close to the
classification boundary. Number 16-21 show the innocuous object data which are on

the limits of the feature space.
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Figure 4.25. Classification Result of the Second Group according to the Model Trained by using the
First Group

The simulated data belong to these 21 extreme points are shown in Figure 4.26. Details
of the simulation scenarios (buried objects, soil types and burial depths) are given in
Table 4.11. These scenarios are used to generate B-Scan images which are shown in
Figure 4.26.
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Figure 4.26. B-Scan Data of the Numbered Points in Figure 4.25

Table 4.11. Simulation Scenarios with respect to B-Scan Images in Figure 4.26

Data Point | Buried Object | Soil Type | Burial Depth
1 PMD 2 10 cm
2 PMA 8 15 cm
3 PMA 1 12 cm
4 PMA 5 10 cm
5 PMD 11 15¢cm
6 Wooden box 8 15cm
7 Wooden box 11 15cm
8 Plastic box 10 15cm
9 Plastic box 10 12 cm
10 Plastic box 10 15cm
11 Wooden box 7 10 cm
12 Wooden box 11 15cm
13 Wooden box 11 10 cm
14 Wooden box 10 15cm
15 Wooden box 10 12 cm
16 Plastic box 1 12 cm
17 Stone 12 12 cm
18 Stone 6 12 cm
19 Plastic box 3 10 cm
20 Wooden box 5 10 cm
21 Tin box 10 10 cm

Up to this point, classification is performed for two different classes as landmine and
innocuous object. The proposed algorithm can also classify different landmines and
different innocuous objects unless their dielectric properties are very similar. The
training data given in Figure 4.24 is also trained for multi-class classification. As
shown in Figure 4.27, PMA, PMD and PMN landmines, stone and tin box have
distinct classes and class boundaries. Plastic box and wooden box have similar
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dielectric properties therefore their classes overlap. All in all, the proposed features
can classify the simulated data as PMA, PMD, PMN, stone, tin box and

plastic/wooden box as shown in Figure 4.27.
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Figure 4.27. Multi-class Classification of the Simulated Data

As explained in Section 2.2.4, the basic steps of machine learning algorithms are
training and testing. The algorithm learns a prediction rule based on the training data
and applies this rule to classify test data. The training set consists of different
categories of data and the prediction rule creates class boundaries based on these
categories. For a new test data, which is from a completely new category, the
performance of the prediction rule is ambiguous. For instance, our SVM classifier is
trained for two class classification as landmine and innocuous object. Simulation data
of PMA, PMD and PMN landmines are used to create landmine class boundaries. If a
different landmine is tested by using our algorithm and our training data given in
Figure 4.24, performance of the algorithm is uncertain. To observe the performance

of our algorithm for different types of landmines (without any training data), we create
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simulations of PMA-3, Gyata-64 and PPM-2 landmines. Pictures and dimensions of

these landmines are given in Figure 4.28 and Table 4.12 respectively.

(b)

Figure 4.28. (a) PMA-3, (b) Gyata-64, (c) PPM-2

Table 4.12. Dimensions of New Landmines

Landmine Casing Explosive
Material Dimensions Charge
Radius Height (mm) | Wall-thickness
(mm) (mm)
PMA-3 Rubber 55 40 3 359 TNT
Gyata-64 Bakelite, rubber 54 61 3 300 g TNT
PPM-2 Plastic 67 60 3 110 g TNT

By using gprMax modeling software, these landmines are modeled into a soil which
has relative permeability of 1, permittivity of 4.5 and conductivity of 10 mS/m at 10
cm depth. Then, dielectric feature and energy feature of these three different
landmines are calculated. These landmine data are classified correctly by our

algorithm as shown in Figure 4.29.

95



Dielectric Feature

+ Landmine
Innocuous Object

02 o PMA-3 H

©  Gyata-64

o PPM-2

| 1 1 1 1 1 1 1 1 T T
150 200 250 300 350 400 450 500 550 600 650
Energy Feature

Figure 4.29. Classification Result of New Landmine Data by Our Algorithm

4.3. Complexity of the Proposed Features

In this study, three discriminative features are extracted for an anomaly region and
detected targets are classified in a three-dimensional feature space. As explained
before, HOG and EHD feature descriptors are 162 and 35-dimensional vectors
respectively. To compare the complexity, feature extraction times and classification
times of HoG features, EHD features and the proposed features in this study are
determined. The extraction times of these features for 100 B-scan image that are
randomly selected from the simulated data-set are calculated by MATLAB in a
computer that has Intel Core i7-4790 CPU with 3.60 GHz base frequency and 4 Cores.
Average feature extraction times of these 100 B-scan images are given in Table 4.13.

Moreover, classification times of these features are calculated such that computation
time of SVM training phase and SVM test phase are evaluated separately. To achieve
this, simulated data is divided into two different sets randomly as shown in Figure 4.5.
In that case the first data set contains 200 landmine data and 200 innocuous object

data while the second data set contains 100 landmine data and 100 innocuous object
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data. The first data set is used to train SVM and the second data set is used for testing
the model. MATLAB “fitcsvm” command is used to train SVM model. For two-class
classification, fitcsvm uses Sequential Minimal Optimization (SMO) solver. SMO
minimizes the soft margin problem given in Eq. 38 by using several two-point
minimizations. Details of SMO algorithm is given in [117]. For testing the model,
“predict” command is used. To achieve more robust solution, this process is repeated
50 times. Training time and test time are written down for each case. Finally, average
of these 50 values is calculated to find the computation time of training phase and test
phase. All in all, feature extraction time and classification times are pretty lower for
the proposed features with respect to HoG and EHD features as shown in Table 4.13.

Table 4.13. Extraction and Classification Times of HoG features, EHD Features and the Proposed

Features
Classification time (ms)
Feature Extraction time (ms)
Training Phase Test Phase
HoG 52.76 489 32.01
EHD 49.66 486 18.38
Proposed 15.21 423 10.49

4.4. Robustness of the Proposed Features

In this study, two of our proposed features are extracted from the mid A-Scan data of
a given B-Scan image. If this A-Scan data is not chosen correctly, the resultant features
become slightly different. By considering GPR step size and equipment noise,
possible errors while choosing the mid A-Scan data and the resultant effects to the
proposed features are evaluated.

During simulations, GPR step size is considered as 1 cm. That means, GPR antenna
takes measurement at each cm. However, in real experiments it is not always possible.

GPR systems generally take one measurement every 5 cm. Therefore, measurement
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point may be 3 cm shifted from the position of mid A-Scan data at worst. In that case,
dielectric feature and energy feature of the proposed algorithm become slightly
different. To evaluate this issue, we have calculated the difference of the proposed
features if mid A-Scan data is chosen 3 cm shifted. In Figure 4.30, dielectric and
energy features of PMA, PMD, PMN landmines, stone and tin box are shown into
different soil types at different burial depths in a clutter-free environment. As shown
in the figure, these different objects are completely distinguishable without any clutter.
In Figure 4.31, dielectric and energy features of the same data set are calculated again
by using 3 cm shifted mid A-Scan data. These new results are given with red symbols.
As shown in the figure, these objects are still distinguishable even if the mid A-Scan

data is chosen 3 cm shifted.

PMD

Dielectric Feature

Energy Feature

Figure 4.30. Dielectric and Energy Features of Different Objects
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Figure 4.31. Dielectric and Energy Features by using 3 cm Shifted mid A-Scan Data

Moreover, the experiments given in Section 4.2.2 are repeated to calculate the
accuracy of the proposed features for shifted measurement results. However, in that
case for a given B-Scan image, mid A-Scan data, A-Scan data nearest to mid A-Scan
data (1 cm shifted) or A-Scan data second nearest to mid A-Scan data (2 cm shifted)
is used. To calculate dielectric feature and energy feature, one of these three A-Scan
data is chosen randomly. Finally, performance of the proposed features is computed
again. Accuracy value is around 0.9114 which is still higher than the performance of
HoG and EHD features.

In this study, calculations are performed for normal incidence of GPR signal from the
underground object. Pressure-operated landmines are buried flat on the ground to
activate the fuse when a person (or vehicle) passes above the mine. However, during
the years the position of the buried landmines may change due to underground
movements of earth. Effects of orientations of buried objects to the proposed features
are evaluated. In the gprMax modelling software, the cylindrical objects can be placed
inclined underground. However, the cornered objects and boxes can only be located
parallel to the ground. Therefore, to evaluate the orientation effect, PMN landmine

(which has cylindrical shape) is placed inclined from 2-degree to 10-degree orientation
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randomly. When orientation increases, dielectric feature and energy feature tend to
increase. In Figure 4.32, dielectric and energy features of inclined PMN are given with
red symbols. As shown in the figure, some inclined PMN features occur in PMA and

PMD classes however they are still distinguishable from innocuous objects.
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Figure 4.32. Different Orientations of PMN Landmine
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CHAPTER 5

CONCLUSION

This study proposes two-stage algorithm as the first stage is calibration measurement
and second stage is detection and classification of buried objects by utilizing three
discriminative features. Results show that the proposed features in this study increase
discrimination performance when compared to two well-known image-based features.
The main reason is that image-based feature extraction techniques analyze the overall
texture of B-Scan image in detail. This texture primarily depends on shape of the
buried object. Object material type partially effects secondary reflections; hence
texture of B-Scan image indirectly depends on the material type of the buried object.
However, soil inhomogeneity and random clutter deteriorate the texture and creates
secondary effects on the B-Scan data. Therefore, image-based features of a buried
object change due to clutter effect, so the discrimination performance of these
algorithms decreases. On the other hand, this paper extracts a simple feature (geometry
feature) about the size of the buried object. It is a rough estimation of gradient of the
underground target and the corruptive effect of clutter to the geometry feature is less
compared to the same effect to image-based features. To achieve more robust solution,
this paper combines the rough gradient estimation with the dielectric and energy
feature that depend on material type directly. Therefore, the proposed features in this
study do not consider only the texture of B-Scan image but also the material content
of the buried object. In first place, this is the main advantage of the proposed study

with respect to image-based techniques.

Moreover, computational complexity of the proposed algorithm is lower than many
image-based techniques as given in the results section. Since, the proposed algorithm
uses a three-dimensional feature vector which has pretty lower size than many feature
descriptors in the literature. Therefore, extraction of the proposed features and

classification of them are computationally cheaper.
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Additionally, the algorithm proposed in this study is highly robust against target
orientation and measurement errors (due to GPR step size and equipment noise) as

given in the results section.

Furthermore, the algorithm derived in this paper proposes to take a calibration
measurement in the experimental area before starting landmine sweeping. This
calibration step is not common for GPR-based landmine detection algorithms in the
literature. Although it seems an extra workload for landmine sweeping, it is very
advantageous and increases the performance efficiently. The context can be clearly
identified and the properties of the surrounding soil can be revealed by means of the
calibration step. The initial measurement can be updated during landmine sweeping
by using the recent ground bounce value. Hence, the context information can be
revealed for each measurement separately. Moreover, users complain about the low
performance of some commercial GPRs. The main reason is that manufacturers
produce GPR and train the algorithm by using the data set in the country of origin.
When they sell this GPR to another country, performance of the algorithm decreases
for very different soil types under very different environmental conditions. To prevent
this kind of performance loss, the calibration measurement is very beneficial to adapt

the algorithm for dissimilar areas with different environmental conditions.

In the future, iterative approaches to calculate the dielectric properties of underground
objects [11] can be applied to extract the dielectric feature derived in this study. By
doing so, the calibration measurement can be removed from the algorithm. In addition,
the proposed algorithm should be tested on real landmine and innocuous object data

set.
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APPENDICES

A. Comparison of Normal and Oblique Incidence for Calibration Measurement

In this study, calculations are performed under normal incidence case to achieve
physics-based parameters as shown in Figure 3.3. However, there is a distance
between transmitter and receiver of GPR, therefore an oblique ray transmitted from
TX can reach RX of GPR as shown in Figure 0.1. In the figure, the distance between
TX and RX is 2d; position of the reflection point on the PEC surface is denoted by (X,
y) and center of the PEC surface is assumed as origin (0, 0). In this section, we will
show the difference between the calculations for normal incidence case and for

oblique rays during calibration measurement.

X RX

= A

Air-Soil
Interface

Figure 0.1. Calibration Measurement Setup by Considering Oblique Rays

If we focus on the incident wave transmitted from TX and the return wave reflected

from PEC surface separately, 2-D drawings can be achieved as shown in Figure 0.2.
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Figure 0.2. (a) Incident Wave Transmitted from TX, (b) Return Wave Reflected from PEC Surface

According to the Brewster’s Law [92], angles @,, @,, @5 and @, should satisfy the
following equations.

sin @, = /€01, 5in @5, (73)
sin @3 = /€51, SN Dy, (74)

During simulations, Hertzian dipole antenna is used. Radiation pattern of a dipole

antenna is shown in Figure 0.3 [103].
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Figure 0.3. Radiation Pattern of Dipole Antenna
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The shape of the pattern resembles a bagel. The signal strength does not change with
respect to angle along x-axis. However, the signal strength is proportional with cos 8
where 6 is the angle between the projection of the signal onto x=0 plane and z axis as
shown in Figure 0.4 [103].

@3 £
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’ /
! /
/
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Figure 0.4. (a) Angle between the Projection of the Transmitted Signal onto x=0 Plane and z Axis, (b)
Angle between the Projection of the Return Signal onto x=0 Plane and z Axis

According to Figure 0.4, 8, and 8, can be computed as:
6, = tan~!(tan @, sin ¢,), (75)

0, = tan~!(tan @; sin @,), (76)
Transmission and reflection for normal incidence are given in Eq. 41. For oblique
rays, these coefficients can be computed according to Fresnel’s Equations as follows

[92]:

2 cos 04

Tas = €0S @1 ++/€5pi1 COS Dy’ (77)
_ 2,/€50i1 COS Dy (78)

Tsa = €0S @3 +./€5pi1 COS By’
During calibration measurement, a PEC object with smooth surface is used. Hence,
the incident wave is reflected from the PEC surface with the same angle as shown in

Figure 0.5.
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Figure 0.5. Total Reflection at the PEC Surface

Therefore, amplitude of the return signal from a PEC surface under oblique incidence

conditions can be written as in Eqg. 79 [104].

oblique _ oblique _oblique| €0S61C0S0; __q h.(cos®,+cosB,)
|Ereturn pec(he)| = 1Eol|zas sa | 82 RixRry & » (79)
oblique 2cos@
where 7o, "¢ = : ,
cosP1+,/€gpi; COS Dy
Toblique _ 2y/€spi1COSPy
sa cos P3+,/€5011COS Dy

Rrx = hgcos @y + h. cos @,,
Rgrx = hy cos @3 + h, cos @y,

As given in Section 3.1.2, amplitude of the return signal from a PEC surface under

normal incidence conditions can be written as in Eq. 80.

1 -
|ERrmatope (ho)| = |Eollhermeteggrmat| o e=2ashe, (g0

2
where giormal =

1

1+/€s0il
fnormal — 2y €soil
sa 1+ /€s0il’

During simulations, h, = 160 mm, d = 15 mm and PEC radius is 50 mm. We have

created 12 different soil types which have relative permeability of 1, conductivity of
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10 mS/m and relative permittivity between 4.5 and 10 with the increment of 0.5.
Calibration object is buried at depths between 50 mm and 150 mm. For different soil
types and different burial depths, percentage differences between Eg. 79 and Eq. 80
are given in Table 0.1.

Table 0.1. Percentage Differences between Eq. 79 and Eq. 80

Depth: [50mm |60mm | 70mm | 80mm | 90mm | 100mm | 110mm [120mm |[130mm | 140mm | 150mm
Soil-1 | 191 | 1,78 | 167 |[157 |148 | 1,39 1,32 1,25 1,18 1,12 1,07
Soil-2 | 194 | 182 |171 [160 | 151 | 143 1,35 1,28 121 1,15 1,10
Soil-3 | 197 | 185 |174 | 164 | 154 | 146 1,38 1,31 1,25 1,19 1,13
Soil-4 | 2,00 | 1,88 | 1,77 | 167 | 157 | 149 1,41 1,34 1,28 1,21 1,16
Soil-5 | 2,03 | 1,91 |180 [169 | 160 | 152 1,44 1,37 1,30 1,24 1,19
Soil-6 | 205 | 1,93 |182 [172 | 163 | 154 1,47 1,39 1,33 1,27 1,21
Soil-7 | 207 | 1,95 |184 [174 | 165 | 157 1,49 1,42 1,35 1,29 1,23
Soil-8 | 2,10 | 1,97 |187 |[177 | 167 | 159 151 1,44 1,37 1,31 1,26
Soil-9 | 2,11 | 1,99 |[189 [179 | 169 | 161 1,53 1,46 1,40 1,33 1,28
Soil-10{ 2,13 | 2,01 |190 [181 | 171 | 1,63 1,55 1,48 1,42 1,35 1,30
Soil-11| 2,15 | 2,03 1,92 [182 | 173 | 1,65 1,57 1,50 1,44 1,37 1,32
Soil-12| 2,17 | 2,05 | 194 | 184 | 175 | 167 1,59 1,52 1,45 1,39 1,33

As shown in Table 0.1, the difference between Eq. 79 and Eq. 80 is less than % 2

therefore, normal incidence assumption is acceptable during the calculations.

B. Calculation of Intrinsic Impedance for Low-loss Dielectrics and Good

Conductors

In Section 3.4.1, it is written that the working medium satisfies low-loss condition and
our main interest is to identify buried landmines with little or no metal content. These
landmines are made of plastic, rubber, bakelite, glass or wood. All these materials also

satisfy low-loss condition. So, the following equations are correct.

s = Re{ns}, (81)

Ne = Re{n.}, (82)

Under these conditions, intrinsic impedance of the target is estimated by using Eq. 83;
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1+|Fst|

Re{né} - if Re{n{} > Re{nk}
nf = Re{nf} = { kl , (83)
Re{nk}= else

1+|

If the buried object is highly conductive material (such as metallic innocuous object),

then n, becomes:
/ jour :
Ne = m = 0 since a; > wy;, (84)

In this case, the buried object behaves like a calibration object and |I;;| becomes

almost 1. So, Eq. 83 gives that n¥ = 0. Hence, our proposed approach also works for
highly conductive targets.

For the buried objects which do not satisfy low-loss or highly conductive conditions,
the result of Eq. 83 is calculated theoretically. For two different soil types (soil type-
1 us, = 1,6, =450, =0.015/m [ soil type-2: u;, = 1,65, = 6,0, = 0.01S5/
m), dielectric properties of the buried object is chosen as: u; = 1,¢; = 10 and o;
changes between 10~* and 108. Figure 0.6 shows the theoretical results of Re{n;}
computed by Eq. 39 and the simulated results computed by Eqg. 83.
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Figure 0.6. Theoretical and Simulated Results of Re{n,} into (a) Soil Type-1, (b) Soil Type-2

The buried object satisfies low-loss condition when o, < 1072 and highly conductive

condition when o, > 102. For these two regions, theoretical and simulated results are
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almost the same as shown in Figure 0.6. For the other region, theoretical and simulated
results are close enough. Therefore, Eq. 83 can be used to calculate Re{n,} for all

underground objects.
C. A Sample gprMax Input File

In this study, simulation experiments are performed by using gprMax electromagnetic
modeling software. gprMax, which simulates electromagnetic wave propagation, is an
open source software. It solves Maxwell’s equations in 3D by applying Yee’s
algorithm and uses the Finite Difference Time Domain (FDTD) method [102, 109]. A
sample gprMax input file, to simulate PMA landmine in a soil with u; = 1,¢, =

4.5,0, = 0.01 at 10 cm depth is shown in Figure 0.7.

#domain: 1.80@ ©.250 8.450
#dx_dy_dz: ©.801 0.001 8.801

size of the model: 1 mx 0.25 m x 0.45 m
resolution: 1 mm x 1 mm x 1 mm

total simulation time: 15 ns

yplastic: €=2.5,6=0.0L,u=10,=0
PTNT: €=2.86,0=0.00048, u=1,0,=9.75
soil: e=4.56=001Lpu=10,=1

H#time_window: 15e-9

I\I LN WANF.

#material: 2.5 8.91 1.8 @ plastic
#material: 2.86 0.00048 1.8 9.75 TNT
#material: 4.5 8.81 1.8 1.8 soil

LN A \I\\

ricker waveform with 1.5 GHz center freq.

#waveform: ricker 1 1.5e9 my ricker

#hertzian dipole: y ©.258 0.110 ©.368 my,ricker—-’?hemfa" d!pole antenna TX start pOSI.‘tIIOI‘I
#rx: 0.250 0.148 0.36 —hertzian dipole antenna RX start position
#src_steps: 0.910 @ @ : TX step size (1 cm along x axis)

. b . .
#rx_steps: 0.018 @ JRX step size (1 cm along x axis)
#box: @ @ © 1.00@ ©.250 8.200 soil : size of the soil: 1 mx0.25 mx 0.2 m
#box: ©.430 0.090 0.0879 9.570 0.160 9.100 plastice.y .- -
Shox: 0.433 8.093 =Asize of the plastic: 16 cmx 7 cm x 3 cm

.893 ©.073 8.567 @.157 ©.097 TNT o .
\ (inside the soil at 10 cm depth)

=Asize of TNT: 15.4 cm x 6.4 cm x 2.4 cm
(inside the plastic with 3 mm wall thickness)

Figure 0.7. A Sample gprMax Input File
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