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ABSTRACT 

 

MULTI-FEATURE FUSION FOR GPR-BASED LANDMINE DETECTION 

AND CLASSIFICATION  

 

Genç, Alper 

Doctor of Philosophy, Electrical and Electronic Engineering 

Supervisor: Prof. Dr. Gözde Bozdağı Akar 

 

April 2019, 122 pages 

 

Ground penetrating radar (GPR) is a powerful technology for detection and 

identification of buried explosives especially with little or no metal content. However, 

subsurface clutter and soil distortions increase false alarm rates of current GPR-based 

landmine detection and identification methods. Most existing algorithms use shape-

based, image-based and physics-based techniques. Analysis of these techniques 

indicates that each type of algorithms has a different perspective to solve landmine 

detection and identification problem. Therefore, one type of method has stronger and 

weaker points with respect to the other types of algorithms. 

To reduce false alarm rates of the current GPR-based landmine detection and 

identification methods, this study proposes a combined feature utilizing both physics-

based and image-based techniques. Combined features are classified with support 

vector machine (SVM) classifier. The proposed algorithm is tested on a simulated data 

set contained more than 400 innocuous object signatures and 300 landmine signatures, 

over half of which are completely nonmetal. The results presented indicate that the 

proposed method in this study has significant performance benefits for landmine 

detection and identification in GPR data even in cluttered environment. 
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ÖZ 

 

GPR’A DAYALI KARAMAYINI TESPİTİ VE SINIFLANDIRILMASI İÇİN 

ÇOKLU-ÖZELLİK FÜZYONU 

 

Genç, Alper 

Doktora, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. Gözde Bozdağı Akar 

 

Nisan 2019, 122 sayfa 

 

Yere nüfuz eden radar (GPR), yer altındaki patlayıcıların, özellikle az miktarda metal 

içeren veya hiç içermeyen gömülü cisimlerin tespiti ve teşhisi için güçlü bir 

teknolojidir. Fakat yer altı kargaşa ve toprak bozulmaları mevcut GPR tabanlı mayın 

tespit ve teşhis yöntemlerinin yanlış alarm oranlarını artırmaktadır. Literatürdeki 

algoritmalar temel olarak şekil-tabanlı, görüntü-tabanlı ve fizik-tabanlı teknikler 

kullanır. Bu teknikler analiz edildiğinde, her bir algoritma türünün, kara mayını tespit 

ve tanımlama problemini çözmek için farklı bir bakış açısına sahip olduğu 

görülecektir. Bu nedenle, her bir algoritma türü, diğer algoritma türlerine göre daha 

güçlü ve daha zayıf noktalara sahiptir.  

Bu çalışma, mevcut GPR tabanlı mayın tespit ve tanımlama yöntemlerinin yanlış 

alarm oranlarını azaltmak için fizik-tabanlı yöntemler ile görüntü-tabanlı yöntemleri 

bir arada kullanan birleşik bir özellik önermektedir. Önerilen bu birleşik özellikler 

destek vektör makinesi (SVM) sınıflandırıcısı ile sınıflandırılmaktadır. Bu çalışmada 

önerilen algoritma, yarısından fazlası hiç metal içermeyen 300’den fazla simüle 

edilmiş mayın modeli ve 400’den fazla simüle edilmiş zararsız cisim modeli 

kullanılarak test edildi. Sonuçlar, bu çalışmada önerilen yöntemin, GPR verisi 

üzerinde mayın tespiti ve tanımlanması için kargaşa altındaki bir ortamda bile çok 

yüksek performansa sahip olduğunu göstermektedir. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Detection and removal of landmines is a major issue in both military and humanitarian 

applications. It is estimated that more than 110 million buried landmines are placed in 

about 70 countries [1]. Due to these landmines, there are more than 122000 recorded 

casualties in the period between 1999 and 2017. However, estimates show that there 

are another 7000 – 13000 annual casualties that were not recorded and most of their 

victims are children [2]. Over the last 50 years, landmines cause more death and injury 

than nuclear and chemical weapons combined. According to a research of the United 

Nations, to clear the buried landmines up to this day would take 1100 years and 33 

billion dollars by using today’s technology [3]. 

Because of the tragic effects of landmine explosion, finding the location of a buried 

landmine is an important and challenging problem. Production and deployment of a 

landmine is around 3 to 30 dollars. Therefore, employing landmines is an easy task 

and frequently used by some third nations and terrorist groups. However, removal 

costs are around 300 to 1000 dollars each [4]. The difficulty in removing landmines 

poses a great challenge to researchers around various parts of the world. Identification 

of buried landmines is very difficult due to different soil and weather conditions, 

different burial depths, large variety of landmine types, etc. Traditional approaches 

use EMI sensors (metal detectors), however modern mines (manufactured after 1950s) 

contain as little metal as possible to make them difficult to detect. 

Ground penetrating radar (GPR) can detect landmines with little and even no metal 

content. GPR is a sensing technique that uses electromagnetic radiation, typically in 

UHF/L/S band, and detects the reflected signals from subsurface structures. Hence, 

non-metallic threats can be detected from the GPR measurement if the electromagnetic 
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properties of the buried object and the surrounding soil are sufficiently different. 

However, GPR measurements are also sensitive to subsurface changes because of the 

buried stones, roots, moisture variations etc. Hence, GPR based detection of buried 

threats can be subject to high false alarm rates and should be complemented by a 

proper discrimination algorithm. In the literature, many studies were performed to 

successfully detect and discriminate buried threats using GPR data. This previous 

research can be categorized into four broad classes: shape-based techniques, physics-

based techniques, image-based techniques and convolutional neural networks 

(CNNs). 

Shape-based techniques, which depend on detection of hyperbola-like shape in B-

Scan image of GPR data, are popular due to its simplicity. When GPR antenna moves 

above an underground object, reflected signals from the buried target constitute a 

hyperbola shape in the corresponding B-Scan image. In this technique, the buried 

object is modeled as a point-scatterer and the surrounding soil is generally assumed 

homogeneous. The shape and structure of the resulting hyperbola contain information 

about the corresponding object and soil properties. Hough transform [5] and 

alternative fitting techniques [6] are the most popular shape-based object detection 

algorithms in GPR data. However, underground targets with moderate or large surface 

area and heterogeneous soil with clutter deteriorate the structure of the resulting 

hyperbola. Hence, the simplifying assumptions (point scatterer and homogeneous 

medium) decrease performance of the technique for real experiments. 

Physics-based techniques for GPR processing depend on underlying theoretical 

foundations (Maxwell’s equations, Green’s functions, etc.). These techniques try to 

solve the resulting propagation equations to estimate intrinsic properties of the buried 

object. In the literature, specific studies were performed and published to estimate 

buried object shape and size [7] and there are also demining applications which exploit 

physics-based approach. These studies include advanced inversion techniques [8-9] to 

remove ground/antenna effects and extraction of physics-based features [10] for 

landmine detection. Since the GPR data belongs to a buried object within an unknown 
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environment, this approach tends to fail without accurate estimates of the subsurface 

electromagnetic properties of soil. Iterative estimation methods [11] are also available 

in the literature but they are computationally expensive and are not suitable for real-

time operations. 

Image-based algorithms are another popular GPR-based landmine identification 

method. Features are extracted from B-scan image of GPR data and then they are 

classified as threats or nonthreats [12-16]. The noise and uncertainty in real operations 

(due to heterogeneous soil, clutter, GPR transmit and receive noise, etc.) can be 

modeled successfully by these methods. Well-known image-based feature extraction 

techniques are hidden Markov Models (HMM) [17-19], Edge Histogram Descriptors 

(EHD) [20] and Histogram of Oriented Gradients (HoG) [21-23]. Last step of feature-

based methods (image-based features or physics-based features) is classification. To 

generate accurate class boundaries, large amount of training data should be available 

that contains different target types under different surrounding conditions. If these 

algorithms are not trained successfully, the resulting performance decreases 

significantly.     

Instead of computing the features beforehand and apply classification, these two-steps 

can be handled by CNNs. In the literature, there are specific studies for landmine 

detection using CNNs in GPR B-Scan data [24-26]. Although the results are quite 

promising, CNNs are difficult to train and a large variety of GPR data for landmines 

should be available to create a robust network. Without enough training GPR data (for 

very different landmines, under very different conditions, etc.), CNNs tend to 

converge local optimum and the performance will be low for other types of landmines 

under different conditions. Since most of the available GPR data of landmines belongs 

to army and generally confidential, it is difficult to gather enough data to train CNNs.     

Each category of algorithms explained above (shape-based, physics-based, image-

based and CNNs) has pros and cons. In the literature, there are also specific studies 

which combine different types of algorithms to increase the overall performance. In 

[27], physics-based features and statistical features are used together to decrease false-
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alarm rates of GPR-based landmine detection algorithms. However, context is 

assumed to be homogeneous and the calculations are performed under this 

assumption. In [28], soil dielectric properties are estimated to identify the context by 

using physics-based approach and then image-based features are extracted based on 

this identifying context.  

In this study, we also propose a system that jointly uses physics-based and image-

based techniques for detection and classification. The main objective of the proposed 

method is to discriminate landmines from non-landmine targets such as buried large 

stones, plants roots, innocuous munitions, cans, plastic caps, etc. in GPR data. These 

non-landmine targets which have comparable sizes with landmines will be called as 

“innocuous object” for the rest of this study. Both landmines and innocuous objects 

are detected by the pre-screener algorithm given in Section 3.2 and they are classified 

as threat or non-threat in the proposed classification algorithm in Section 3.5. Unlike 

previous studies, both soil and target dielectric properties are calculated by utilizing 

physics-based equations in the proposed feature extraction algorithm. The proposed 

feature descriptor has computationally less expensive for both extraction and 

classification compared to descriptors found in the literature. In addition, the changes 

in the environment are modelled automatically by a “Context-based Parameter 

Update” step.  

In the proposed system, initially a calibration measurement is taken in the 

experimental area similar to [27]. From this measurement, three calibration parameters 

are calculated: signal speed in the soil, dielectric properties and attenuation coefficient 

of the soil. After the calibration step, potential mine locations are determined with an 

LMS-based pre-screener algorithm. The calibration parameters are updated for each 

alarm location by observing the difference of the ground bounce between the 

calibration area and the alarm location. For classification of detected objects, three 

features are extracted from the B-scan data. The first feature estimates intrinsic 

impedance of the buried object. For this, object depth is calculated by using GPR 

signal speed in the soil and then intrinsic impedance of the object is computed by 
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means of intrinsic impedance and attenuation coefficient of the soil which are 

determined in the calibration step and updated for the corresponding alarm location. 

The second feature identifies the time length of significant GPR signal belongs to the 

buried object. To measure this, total energy value and cumulative energy curve of A-

Scan data, which has the highest amplitude in the corresponding B-Scan image, is 

used. The third feature computes the gradient of the B-Scan image and the value of 

this feature depends on the size, especially surface area of the buried object. Finally, 

the underground target is classified by SVM based on the extracted features. The 

proposed algorithm is tested on a simulated data set. In the simulations, smaller objects 

(like small pebbles), soil heterogeneity or moisture variations underground which are 

not detected by the pre-screener as a target, but which deteriorate the GPR data of a 

landmine or innocuous object, are also modelled. These smaller objects, soil 

heterogeneity or moisture variations will be called as “clutter” for the rest of this study. 

The main contribution of this thesis is to propose two new physics-based features, 

which are dielectric and energy feature, for landmine identification in GPR data. The 

proposed algorithm combines these features with an image-based feature, which is 

geometry feature, to increase discrimination power. This multi-feature fusion 

approach allows to estimate both the shape and the intrinsic properties of the buried 

objects. The experimental results show that the proposed features have very high 

discrimination power which reduces false alarm rates of various GPR-based landmine 

detection algorithms even in cluttered environment. 
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CHAPTER 2  

 

2. BACKGROUND 

 

2.1. Ground Penetrating Radar 

Ground Penetrating Radar (GPR) is an instrument, which uses radar signals to image 

subsurface structures. GPR has many applications including landmine detection, 

archeology, soil inspection, boundary layer detection, mineral exploration, cavity 

detection, pavement inspection, pipeline detection and inspection, layered vegetation, 

etc. GPR uses radio waves with frequencies from 300 MHz up to 4 GHz depending 

on the application [29-31]. For GPR signals, there is a trade-off between the 

penetration depth and the resolution. Lower frequency signals can penetrate deeper in 

the ground at the cost of low resolution. On the other hand, higher frequency signals 

can measure subsurface structures in high resolution at the expense of low penetration 

depth. Therefore, the operating frequency of GPR should be selected according to the 

corresponding application. In this thesis, the targets of interest are anti-personal 

landmines, which are buried shallowly underground. Moreover, high-resolution 

measurement is needed to discriminate anti-personal landmines from innocuous 

objects. Hence, in this study the center frequency of GPR is chosen as around 1.5 GHz.  

There are two common GPR types: time-domain (impulse) radar and frequency-

domain (continuous wave (CW)) radar. A time-domain GPR transmits an impulse and 

receives the reflected signal as a function of time. For this GPR, the return signal is 

evaluated based on its arrival time and the changes in its amplitude. The target depth 

can be calculated by time-of-flight principle [31, 32]. Most commercial GPR systems 

are based on the impulse radar technique. In this study, we also propose a landmine 

identification problem based on time-domain GPR signals. 



 

 

 

8 

 

Continuous wave (CW) GPR transmits an infinite duration signal (such as continuous 

sine-wave) and receives the return signal simultaneously. For this GPR signal, 

detection of target depth is not possible, since the signal does not change. To make the 

detection possible, modulation techniques are applied in frequency-domain. 

Frequency Modulated Continuous Wave (FMCW) GPR, which is also called as 

“Swept Frequency Continuous Wave”, transmits a frequency sweep from a start 

frequency to a stop frequency. Hence, FMCW uses the difference in frequency instead 

of time. However, FMCW GPR system suffers from interference since it uses a large 

frequency spectrum. To avoid occupying the large frequency spectrum, Stepped 

Frequency Continuous Wave (SFCW) GPR is used [31, 32]. Transmitting frequency 

of SFCW GPR is stepped in linear increments from a start frequency to a stop 

frequency. For this GPR, the weaker return signal from a deeper target can be masked 

by stronger signal, because the receiver is always active. This problem can be solved 

by gating the transmitter and receiver.  

A common problem for continuous wave GPR systems is the strong reflection from 

the ground surface. Since the transmitted signal has infinite duration and the receiver 

is always on, the strong return signal from the ground surface can overshadow the 

reflections of the underground objects. To overcome this problem, Frequency 

Modulated Interrupted Continuous Wave (FMICW) and Noise Modulated Continuous 

Wave (NMCW) waveforms are proposed. Details of these waveforms can be found in 

[33].    

The basic working principle of GPR includes a transmitter and a receiver as shown in 

Figure 2.1, that are moved above the surface to measure reflections from sub-surface 

objects. 
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Figure 2.1. Basic Working Principle of GPR 

GPR generally consists of a line array of transmitting antennas and receiving antennas 

as shown in Figure 2.2. The distance between two adjacent antennas is a few cm. The 

transmitting antenna array and the receiving antenna array can be straight or cross. For 

the straight case, the transmitted pulse of an antenna element is usually received by 

the corresponding receiving antenna element at the same order.  For the cross case, 

the transmitted pulse of an antenna element is usually received by two receiving 

antenna elements across the transmitting antenna. For each case, the transmitted 

energy is reflected from various buried objects and receiving antennas receive the 

reflected waves back. 

 

Figure 2.2. Line Array of Antennas 
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GPR data are usually represented as one or two-dimensional dataset that are 

denominated by A-, B- and C-Scans that is explained below.  

A-Scan: At a fixed position (xi, yj), a single radar trace A(xi, yj, t) is called as A-Scan 

given in Figure 2.3 [29-31]. The only variable is t and it is related by depth of the 

target and the propagation velocity of electromagnetic wave into the soil. When GPR 

transmits the incident wave, usually the highest reflection comes from air-ground 

interface due to the large dielectric discontinuity. This return is called as ground 

bounce that is shown in Figure 2.3. 

 

Figure 2.3. A-Scan Configuration and Representation 

B-Scan: If the GPR antennas move along the x-axis and take measurements at specific 

locations, multiple A-Scans form a two dimensional dataset B(x, yj, t) which is called 

as B-Scan [29-31]. If the amplitude of the return signal is shown by a color-scale, a 

2D image is obtained as given in Figure 2.4. 

 

Figure 2.4. (a) B-Scan Formed by Multiple A-Scans, (b) 2D Representation of B-Scan 

(a) (b) 
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C-Scan: If the GPR antennas move over a regular grid in x-y plane, a three-

dimensional dataset C(x, y, t) is obtained. In other words, multiple parallel B-Scans 

form a three-dimensional GPR data as shown in Figure 2.5-a. In this data, a horizontal 

slice at a certain depth (C(x, y, ti)) is called as C-Scan [29-31]. Responses of mines 

are represented as blobs in C-Scan data as shown in Figure 2.5-b. 

 

Figure 2.5. (a) Three-Dimensional GPR data, (b) A Horizontal Slice at t=ti (C(x, y, ti)) 

Line array of antennas given in Figure 2.2 can record a B-Scan data with a single 

measurement from all antennas. They are located along x-axis (cross-track direction) 

and GPR system moves along y-axis (down-track direction). Therefore, a three-

dimensional GPR data is obtained as shown in Figure 2.6. 

 

Figure 2.6. C-Scan Data Acquisition by a Line Array of Antennas 

(a) (b) 
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After collecting the GPR data, image processing techniques are applied to A, B or C-

Scans for buried object detection and identification.  

2.2. Current GPR-based Landmine Detection & Identification Methods 

As described in the previous section, GPR uses radar pulses to image subsurface 

structures. However, the received raw image has to be processed for target detection. 

The main steps of GPR-based landmine detection process are written below: 

• Ground Bounce Removal, 

• Pre-screener, 

• Feature Extraction, 

• Classification. 

2.2.1. Ground Bounce Removal 

One of the most challenging features of GPR is the ground-bounce which is the initial 

spike in energy caused by reflected signal generated by the air ground interface. The 

energy of the ground-bounce is generally the highest energy peak in a GPR A-Scan as 

shown in Figure 2.7. 

 

Figure 2.7. Ground Bounce and Object Reflection in an A-Scan Data 

For the GPR-based landmine detection methods, false alarms are commonly generated 

in locations where the ground bounce is not removed properly. Hence, almost all GPR-
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based algorithms use ground bounce removal techniques. Before and after the ground 

bounce removal of an example B-scan is shown in Figure 2.8. 

 

Figure 2.8. (a) Raw GPR Data, (b) Ground Bounce Removed GPR Data 

In the literature, there are many methods for ground-bounce removal. “Simple average 

operation” finds the location of the ground-bounce as the mid-point of the maximum 

and minimum of an A-scan [34, 35]. “Model based approach” models clutter using 

parametric modeling for ground-bounce removal [36-38].  “Ensemble average 

method” averages the time-domain signatures acquired as the antenna is scanned over 

the ground and subtracts that average from the data for ground-bounce removal [39, 

40]. Additionally, “PCA and ICA based approach” is used for ground-bounce and 

clutter reduction [41-43]. Specific filtering operations (mean, median, moving 

median, wiener filtering) are also used for ground-bounce removal in GPR-based 

applications [44, 45]. 

2.2.2. Pre-Screener 

The idea behind pre-screener algorithm is to minimize the amount of data that will be 

used in the feature extraction step. Therefore, complex discrimination algorithms are 

applied to a small subset of data to achieve real-time processing. However, all target 

locations should be identified by the pre-screener algorithm. Any missing target by 

the pre-screener is undetected by the system. Hence, a pre-screener algorithm should 

have very high probability of detection (almost 100%) at the expense of high false 

(a) (b) 
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alarm rate. These false alarms are rejected in next steps (feature extraction and 

classification). 

In the literature, common pre-screener algorithms are Constant False Alarm Rate 

(CFAR) [46], Robust Principal Component Analysis (RPCA) [47], Q-Scan [48], Blob-

filter [49] and Least Mean Square [50-52] algorithm.  

In GPR B-Scan data, signals reflected from mines usually have high-energy contrast 

with respect to the background. CFAR algorithm is applied to each depth bin and 

measures the local contrast. Hence, high-energy locations can be identified as anomaly 

regions.  

RPCA tries to divide a given matrix M into two matrices L and S such that M=L+S, 

where S is sparse and L is low-rank. In GPR B-Scan data, the anomaly regions in the 

subsurface are relatively sparse and the background is approximately low-rank. For a 

given GPR B-Scan image, RPCA detects the possible anomaly regions by finding the 

sparse component of B-Scan matrix.  

Q-Scan is an energy-based anomaly detection algorithm such as CFAR. Differently 

from CFAR algorithm, Q-Scan estimates background mean and variance for each 

scan. Afterwards, clutter is removed from the image in the background removal step. 

Target signature is not removed due to its rapid gradient.  

In GPR C-Scan data, the buried landmines constitute blob-like shapes as shown in 

Figure 2.5-b. Blob filter is a 2D Gaussian filter which is applied to each depth layer 

of GPR C-Scan data to detect these shapes. 

To detect the possible alarm locations, LMS algorithm requires pre-processing steps 

such as data aligning and median filtering. Then, GPR B-Scan data is separated into 

statistically similar depth bins and LMS algorithm is applied to each depth bin to 

generate decision statistics. Afterwards, the individual depth segments are combined 

into a single confidence map. The confidence map is thresholded and the discrete 

alarm locations are generated. Finally, the specific anomaly locations are identified by 

using non-maximal suppression. 
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2.2.3. Feature Extraction 

In the previous step, the possible anomaly locations are detected by a pre-screener 

algorithm. In this step, these anomaly regions are further processed to identify them 

as threats or non-threats. To achieve this, complex discrimination algorithms are 

applied to these locations and discriminative features are extracted. These features are 

used for classification. Since these complex feature extraction algorithms are applied 

to a small subset of data (to the result of the pre-screener algorithm), real-time 

processing becomes possible. 

In the literature, many different feature extraction techniques are used for detection 

and classification of landmines in GPR data. Symmetry feature is mainly used for 

GPR-based landmine detection algorithms [53]. Since landmines are generally 

constructed such that they have high level of symmetry, classifying subsurface targets 

as either symmetric or asymmetric is a strong method for landmine identification.  

The hyperbolic shape of GPR reflectance of a landmine is another important feature 

for landmine detection problems. Some studies [54, 55] use gradient magnitude as a 

feature to estimate the location of these hyperboles.  

In recent years hidden Markov Models are very popular for GPR-based landmine 

detection algorithms. In the related studies [17, 56], features are the observation 

vectors which encode important information about the landmine signatures in a 

compact form. These observation vectors are then processed by the HMM to produce 

probabilities that certain locations have landmine.  

Time-frequency domain signature analysis of GPR data is used for landmine detection 

in recent years [57-59]. Mostly, STFT (Short Time Fourier Transform) and WVD 

(Wigner Ville Distribution) of A-scans are used for feature extraction. In this method, 

the signal (A-scan) is first windowed (Hanning, Hamming, Kaiser, etc.) around the 

time of interest and then FFT is used for each window.  

The application of texture features for landmine detection in GPR data is another 

important detection method. The 2-D texture-based approaches to the classification of 



 

 

 

16 

 

images are well-established, and application of such approaches to the problem of 

landmine detection is popular in recent years. The basic goal behind this technique is 

the translation of an intensity image to a texture feature image via differencing in the 

image domain followed by successive stages of vector classification [60].  

Edge histogram descriptors (EHD) for feature extraction in GPR-based landmine 

detection algorithms are widely used in recent studies [20]. For a generic image, the 

EHD represents the frequency and the directionality of the brightness changes in the 

image. For landmine detection, the EHD is used to capture the spatial distributions of 

the edges within the GPR data. Since the reflection of a landmine has a characteristic 

shape (hyperbola), the diagonal edge, flat edge and anti-diagonal edge can be detected 

by EHD method.  

The spectral characteristics of GPR data is used for landmine detection in some studies 

[61]. The motivation behind this approach comes from that landmine targets and 

innocuous objects often have different shapes, yielding different energy density 

spectrum (EDS) which may be used for their discrimination.  

The pattern recognition approach is also used for GPR-based landmine detection 

algorithms [14]. In this approach, initially a binary image is obtained from GPR B-

Scan data and the objects in the binary image are detected by means of 

linear/hyperbolic patterns formulated in a genetic optimization framework. In this 

step, the hamming distance between the corresponding pattern and the binary image 

content is used.  

Instance matching techniques are used to extract discriminative features in GPR data. 

Instance matching aims to find instances of a previously trained object within a scene. 

It is different from template matching technique at several points. Most recent instance 

matching algorithms are insensitive to common types of transformations in visual 

images such as scale, rotation, occlusion and intensity. For a given image, instance 

matching techniques initially detect the areas of interest (which is called as keypoints) 

and then a descriptor is evaluated for these keypoints. Corner detection and blob 
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detection are the main keypoint identification methods. SIFT, SURF and BRIEF are 

most famous keypoint descriptors. 

Corner detector shifts a window within an image and recognizes the intensity changes. 

Around a corner point, intensity changes in all directions. On a single edge or constant 

area, intensity difference will be low at least on one direction. Harris and Stephens 

propose a corner detector algorithm based on the gradients around each pixel and the 

sum of squared differences [62]. While corner detectors try to find corners on an 

image, blob detectors focus on finding areas where the intensity differs widely from 

surrounding area. Blob detector algorithm applies 2-D Gaussian smoothing to a given 

image and calculates the Hessian matrix for each pixel [63]. After one of these 

detectors finds the corresponding keypoints in an image, SIFT, SURF or BRIEF 

descriptors are evaluated around these selected pixels.  

The Scale Invariant Feature Transform (SIFT) uses 16x16 patch of pixels for each 

feature point. Around each keypoint, pixels are divided into 4x4 sub-patches. 

Magnitude and angle of the gradient for each pixel are calculated. The magnitudes are 

normalized with respect to their distance from the corresponding keypoint using a 

Gaussian mask. Normalized magnitudes of the pixels are binned according to their 

angle’s distance to eight discrete angle value that are calculated equally between 0° 

and 360°. Therefore, an eight-dimensional vector is obtained for each sub-patch. Since 

there are 16 sub-patches within a patch, 128-dimensional feature vector is constructed 

by concatenating the single eight-dimensional vectors from sub-patches. For a given 

feature point, this 128-dimensional vector represents the SIFT descriptor [64]. 

Speeded up Robust Features (SURF) is a faster alternative of SIFT with a comparable 

performance. The implementation of SURF descriptor is similar to the implementation 

of SIFT. SURF uses 20x20 patch of pixels for each keypoint. Within a patch, SURF 

creates 16 – 5x5 sub-patches. Within each sub-patch, x and y-direction gradients are 

calculated for each pixel by using two Haar wavelet filters. From these gradients, four 

statistics are calculated such that sum of x-gradients, sum of y-gradients, sum of 

absolute of x-gradients and sum of absolute of y-gradients. Therefore, four-
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dimensional feature vector is constructed for each sub-patch. There are 16 sub-patches 

within a patch, hence 64-dimensional feature vector is extracted by concatenating the 

single four-dimensional vectors from sub-patches. For a given feature point, this 64-

dimensional vector represents the SURF descriptor [63].  

Binary Robust Independent Elementary Features (BRIEF) is another keypoint 

descriptor method. Unlike SIFT and SURF, BRIEF does not calculate the gradients, 

instead it calculates the comparisons between different locations within a patch around 

the keypoint. These comparisons show relative intensity changes, thus the structure 

within a patch. The locations used in BRIEF descriptor are chosen randomly, however 

the same set of locations should be used for training and testing [65].   

Object detection methods are also used for GPR-based landmine detection and 

identification problem as well as instance matching techniques. Unlike instance 

matching methods which can find an identical version of a known object, object 

detection aims to detect instances of an object class within images. Pedestrian 

detection [66], face detection [67] and car detection [68] are common applications of 

object detection methods. The main difference between object detection and instance 

matching is that in object detection problem there are both transformations challenges 

(scale, rotation, occlusion, intensity, etc.) and uncertainty between interclass 

variations. Histogram of Oriented Gradients (HoG) is an example object detection 

method used for pedestrian detection by Dalal and Triggs [66]. This method is also 

used for landmine detection and identification problem in several studies [21-23].  

Feature extraction and classification of targets based on the extracted features are very 

popular for image processing applications. Generating a robust and discriminative 

feature increases the classification accuracy tremendously. In this study, we also 

utilize this approach for landmine detection in GPR B-Scan images by proposing three 

new discriminative features given in Section 3.4. 
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2.2.4. Classification 

After extracting the features, the next step is the classification of the buried objects 

such as landmines and non-landmines. For this issue, several classification methods 

are used in the literature.  Sakaguchi and Pasolli [34, 69] use support vector machine 

while Ratto [28] uses relevance vector machine. Nuaimy and Gamba [40, 70] use 

neural network classification and Delbo [71] applies fuzzy clustering technique to 

differ landmines from innocuous objects. Kempen [45] uses bayes decision rule while 

Sakaguchi [69] applies partial least squares discriminant analysis (PLS-DA) and 

random forest method for landmine classification.  

Before starting to explain classification methods, learning algorithms will be 

described briefly. Learning algorithms (or Machine Learning) can gain insight by 

observing a sample dataset and achieve data-driven predictions for a new data. To 

learn the discriminative characteristics of the sample dataset, learning algorithms 

observe the extracted features (which are described in Section 2.2.3) and tries to figure 

out a prediction rule as shown in Figure 2.9. 

 

Figure 2.9. Training Phase and Test Phase of Learning Algorithms 
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Learning algorithms can be categorized into two different approaches as Supervised 

and Unsupervised learning. A supervised learning algorithm learns the prediction rule 

based on a given training dataset and their labels. On the other hand, an unsupervised 

learning algorithm learns the prediction rule from the input data without their labels. 

Hence, unsupervised learning does not have a definite result. In this study, we will 

focus on supervised learning algorithms that have different approaches for learning 

the discriminative characteristics from a training dataset and making a prediction rule. 

These approaches are called as Classification methods. In this section, the main 

Classification algorithms in the literature are described briefly. 

Support Vector Machine (SVM) and Relevance Vector Machine (RVM) are two 

popular classification methods for hyperspectral images. For a given training data 𝑥𝑖 

and label 𝑦𝑖 for 𝑖 ∈ [1, 2, … , 𝑛], these two models try to classify the given data based 

on the input features 𝑥𝑖, weight vector 𝑤 and bias 𝑏. If the data is not linearly solvable, 

each method uses Kernel functions 𝐾(𝑥𝑖 , 𝑥𝑗) to make the problem linear in a higher 

dimensional space [72].  

SVM tries to maximize the distance between decision boundary (which is called as 

maximum-margin hyperplane) and two classes. SVM solves the following linear 

model: 𝑦 = 𝑤𝑇𝑥 + 𝑏 [73, 74]. If the given data and classes are not linearly separable, 

SVM uses kernel functions to achieve non-linear classification. Details of this issue 

are given in Section 3.5. 

RVM applies the Bayesian principle to SVM idea. According to the following 

likelihood function, conditional probabilities of targets 𝑡 should be maximized based 

on 𝑥𝑖 and 𝑤 [75-78].  

 𝑃(𝑡|𝑤) = ∏ 𝜎{𝑦(𝑥𝑖, 𝑤)}𝑡𝑖[1 − 𝜎{𝑦(𝑥𝑖 , 𝑤)}]1−𝑡𝑖𝑛
𝑖=1 , (1) 

 
where 𝜎(𝑦) =

1

1+𝑒−𝑦 
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The weights 𝑤 are based on two classes of hyperparameters which are Gaussian 

distributed. To maximize the likelihood function in Eq. 1, these hyperparameters are 

optimized iteratively. 

Random forest is an ensemble classification algorithm. It does not classify the given 

data by using its all features at once. Instead, it fits large number of simple classifiers 

on various subsamples of the given dataset. These classifiers are decision-trees and 

the entire system is known as forest [79]. Random forest is a complex algorithm and 

it is difficult to implement in real-time.  

During classification, Partial Least Squares Discriminant Analysis (PLS-DA) Method 

achieves dimensionality reduction in the feature space [80, 81]. Let the input data X 

has dimensions 𝑛𝑥𝑚 (𝑛: 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠, 𝑚: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). PLS-DA tries to project X 

onto a new space which has the necessary information about X with a lower 

dimension. This can be achieved by a transformation matrix 𝑊: 𝑇 = 𝑋𝑊. Here, the 

class labels can be represented by: 

 𝑌 = 𝑈𝐶𝑇 + 𝐺, (2) 

where U is a linear function and G is the error of the model. The relation between data 

X and the labels Y can be found by solving C with the following equation: 

 𝐶 = (𝑇𝑇𝑇)−1𝑇𝑌, (3) 

K-Nearest Neighbor (KNN) classifier is generally based on Euclidean distance 

between the training samples and a given test sample. Let the input data X has 

dimensions 𝑛𝑥𝑚 (𝑛: 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠, 𝑚: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠). 𝑖𝑡ℎ sample 𝑥𝑖 has 𝑚 features: 

(𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑚). Euclidean distance between 𝑖𝑡ℎ sample and 𝑗𝑡ℎ sample can be 

calculated by the following formula: 

 𝑑(𝑥𝑖 , 𝑥𝑗) = √(𝑥𝑖,1 − 𝑥𝑗,1)2 + ⋯ + (𝑥𝑖,𝑚 − 𝑥𝑗,𝑚)2, (4) 
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For a given test sample, Euclidean distance between this sample and all training 

samples are calculated. Majority label of K-nearest training samples indicates the class 

label of the given test sample [82-84]. 

Fuzzy clustering, which is generalization of partition clustering methods, allows 

classification into multiple clusters. Let we have 𝑘 clusters and the variables 

(𝑝𝑖,1, 𝑝𝑖,2, … , 𝑝𝑖,𝑘) represent the probabilities such that 𝑝𝑖,𝑗 is the probability of data 𝑥𝑖 

belongs to cluster 𝑗. Here, 𝑝𝑖,𝑗 should be between 0 and 1; sum of the probabilities 

(𝑝𝑖,1 + 𝑝𝑖,2 +  … , +𝑝𝑖,𝑘) should be 1.  Fuzzy clustering algorithm tries to minimize 

the following function [85, 86]: 

 𝐶 = ∑
∑ ∑ 𝑝𝑖,𝑎

2 𝑝𝑗,𝑎
2 𝑑(𝑥𝑖,𝑥𝑗)𝑛

𝑗=1
𝑛
𝑖=1

2 ∑ 𝑝𝑗,𝑎
2𝑛

𝑗=1

𝑘
𝑎=1 , (5) 

Where 𝑑(𝑥𝑖, 𝑥𝑗) represents the dissimilarity between data 𝑥𝑖 and 𝑥𝑗. Euclidean 

distance is generally used for dissimilarity function. 

Bayes Decision Rule, which is also called as Naive Bayes Theorem, is a classification 

method based on Bayes’ Theorem as its name implies. This technique assumes two 

types of probabilities which is calculated from the training data: probability of each 

class and conditional probability of each class given each input data 𝑥. After these 

probabilities are calculated, the model is used to estimate the class label of new input 

data using Bayes’ Theorem [87, 88].  

Up to this point, the classification algorithms, which process the extracted features of 

the input data (not the input data itself), have been presented. Neural Networks are 

also considered as a robust classifier. Unlike previous ones, neural networks process 

the input data itself (not the extracted features). The idea has arisen from the 

fascination of human brain and understanding of mankind. Therefore, neural networks 

consist of units (like neurons in human neural system) that convert an input data 𝑥 into 

an output 𝑦. These units are arranged in layers such that each unit in a specific layer 

takes the input, performs a non-linear function and passes the output to the next layer. 
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When the data passes from one unit to the next one, weightings are applied. During 

the training phase, these weightings are tuned to learn the algorithm [89, 90]. 

2.3. Methods Utilized in this Thesis 

In this section, we will describe the techniques, which are available in the literature 

and we have utilized in the proposed algorithm, in detail. Summary of these techniques 

were briefly given in Section 2.2. This section does not include our proposed method 

which will be given in Section 3. 

2.3.1. Maximum Detection Technique for Ground Bounce Removal 

In a GPR B-Scan data, ground bounce usually dominates the rest of the image as 

shown in Figure 2.8-a. By using this phenomenon, location of the ground bounce can 

be detected by finding the maximum of each scan as proposed in [91]. However, this 

idea is not always correct. If dielectric properties of soil are close to the dielectric 

properties of air and there is a highly conductive target underground, amplitude of the 

primary reflection coming from the target may be higher than the amplitude of the 

ground bounce. So, in this study we have adopted the maximum detection technique 

proposed in [91] with some modifications for ground bounce removal. 

For a GPR system, height of the radar antenna from the ground is known before 

starting landmine sweeping. However, a vehicle mounted GPR cannot maintain the 

antenna at a fixed height. So, location of the ground bounce may change from scan to 

scan due to up-down movement of GPR antenna. Based on these movements, 

maximum and minimum height of GPR antenna can be estimated, therefore the ground 

bounce is located within a predictable range. In this study, we find the maximum value 

of the signal within this range to detect the position of the ground bounce. Thus, we 

avoid to mis-detect a higher reflection, which is coming from a buried object deeper 

in the ground, as ground bounce.   

During the experiments, height of the GPR antenna is 16 cm above the ground. For 

this configuration, the ground bounce is approximately located between time samples 
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400 and 700 as shown in Figure 2.10. In the given A-Scan data in Figure 2.10, the 

maximum value belongs to primary reflection is around time sample 1000. If the 

proposed method in [91] is applied directly, the location of the ground bounce is mis-

detected. To avoid this issue, we select a predictable region for the position of ground 

bounce. For this example, this region is between time samples 400 and 700. However, 

this is the case when the GPR antenna is exactly 16 cm above the ground. To 

compensate up-down movement of the antenna, we choose this region as between time 

samples 200 and 900. Therefore, during the experiments, height of the GPR antenna 

is 16 cm and we detect the position of the ground bounce by finding the maximum 

value of the signal between time samples 200 and 900.    

 

Figure 2.10. Positions of Ground Bounce and Primary Reflection 

After maximum detection, each A-Scan data is aligned and L time samples after the 

ground bounce peak are removed. L should be chosen as the duration of ground 

bounce in time. For our example in Figure 2.10, L is around 300-time samples. 

Theoretically, ground bounce removal process is summarized below: 

𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥, 𝐷𝑜  

𝑡𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐵(𝑥, 𝑡) 𝑓𝑜𝑟 200 < 𝑡 < 900  

𝐵∗(𝑥, 𝑡) = 𝐵(𝑥, 𝑡 + 𝑡𝑖 + 𝐿)  

𝐸𝑛𝑑  
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2.3.2. Least Mean Squares (LMS) Approach for Pre-screener 

The working principle of this approach is based on an adaptive filter using the least 

mean squares method. LMS algorithm adjusts the filter coefficients (weights) for each 

new sample of the input data. For each selected window, LMS finds the differences 

from the background by adaptively updating the filter coefficients [50-52].  

Since the targets which are buried deeper have weak GPR response with respect to 

shallowly buried targets, LMS algorithm tends to remove the response of deeply 

buried targets. To avoid this issue, B-Scan image is normalized to enhance the deeper 

region of data. To achieve this, each row of ground bounce removed B-Scan image is 

normalized before LMS algorithm. An example B-Scan image before and after 

normalization is shown in Figure 2.11. 

 

Figure 2.11. (a) B-Scan Image Before Normalization, (b) B-Scan Image After Normalization 

After normalization, LMS algorithm is applied with a sliding window to B-Scan 

image. This window can be rectangular (2D LMS) or one dimensional (1D LMS). The 

working principle of 1D LMS and 2D LMS are similar and a brief review is presented 

here. At time 𝑛, assume our point of interest is 𝑑𝑛. Consider a weight vector 𝑤𝑛 and 

an input vector 𝑢𝑛. The LMS algorithm performs like below: 

𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑛: 𝑦𝑛 = 𝑤𝑛
𝑇 ∗ 𝑢𝑛 

𝑒𝑟𝑟𝑜𝑟 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑛: 𝑒𝑛 = 𝑑𝑛 − 𝑦𝑛 

𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑣𝑒𝑐𝑡𝑜𝑟: 𝑤𝑛+1 = 𝑤𝑛 + 𝜇 ∗ 𝑢𝑛 ∗ 𝑒𝑛 

(a) (b) 
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In this formula 𝜇 is the scaling factor which determines the update ratio of the weight 

vector.  

1D LMS algorithm is applied to each column of B-Scan image separately. Consider a 

point of interest at the xth column of B-Scan image. For the corresponding point 𝑑𝑛, a 

guard-band data selection mask is used and the data selected by this mask gives the 

input 𝑢𝑛. 1D data selection mask for an example scenario, such that the filter length 

is 12 and guard band length is 5, is shown in Figure 2.12. In the figure, 𝑑𝑛 is denoted 

by square and 𝑢𝑛 is the input vector that consists of circles and has length 12. 

 

Figure 2.12. 1D LMS Data Selection Mask 

After applying the given 1D mask to the B-Scan image, if we draw the error values 𝑒𝑛 

for all time samples and for all cross-track positions, the pre-screener image shown in 

Figure 2.13 is obtained. Here, 𝜇 is chosen as 0.01 and the initial value of weight vector 

is chosen as 𝑤0 = [
1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
].  

 

Figure 2.13. 1D LMS Result – Pre-screener Image 
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Afterwards, if the pre-screener image is thresholded, a binary image is obtained as 

given in Figure 2.14. Here, absolute value of each pixel is thresholded at the value 0. 

From the binary image, the possible anomaly regions can be detected.  

 

Figure 2.14. 1D LMS Result – Binary Image 

Although 1D LMS algorithm is applied to each column separately, 2D LMS algorithm 

is applied in both cross-track (x) and depth (z) directions. To achieve this, a 2D guard-

band data selection mask is used and the data selected by this mask gives the input 𝑢𝑛. 

2D data selection mask for an example scenario, such that 11x6 filter is used with 

guard band length is 3 in cross-track direction, is shown in Figure 2.15. In the figure, 

𝑑𝑛 is denoted by square and 𝑢𝑛 is the input vector that consists of circles and has 

length 66. 
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Figure 2.15. 2D LMS Data Selection Mask 

After applying the given 2D mask to the B-Scan image, if we draw the error values 𝑒𝑛 

for all time samples and for all cross-track positions, the pre-screener image shown in 

Figure 2.16 is obtained. Here, 𝜇 is chosen as 0.01 and the initial value of weight vector 

is chosen as 𝑤0 = [
1

66
,

1

66
, … ,

1

66
]. 

 

Figure 2.16. 2D LMS Result – Pre-screener Image 

Afterwards, if the pre-screener image is thresholded, a binary image is obtained as 

given in Figure 2.17. Here, absolute value of each pixel is thresholded at the value 0. 

From the binary image, the possible anomaly regions can be detected. 



 

 

 

29 

 

 

Figure 2.17. 2D LMS Result – Binary Image 

From the binary image given in Figure 2.14 or 2.17, the possible anomaly regions can 

be detected by using the binary mapping of the projection of each column as described 

in Section 3.2. 

2.3.3. Gradient-based Algorithm 

In this study, gradient-based algorithm is utilized to find the center of an anomaly 

region. In reference studies [17, 56], for a given B-Scan image observation vectors are 

created for each cross-track position. These observation vectors show the degree of 

edges in the diagonal and anti-diagonal directions. The transition region from diagonal 

to anti-diagonal edges corresponds to the center of the underground target. 

Gradient-based algorithm works as follows. Assume the given ground bounce 

removed raw image, which is shown in Figure 2.18, is denoted by 𝑆(𝑥, 𝑧). 

 

Figure 2.18. Ground Bounce Removed Raw Image 
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Initially, second derivative of the given raw image is calculated by Eq. 6 and Eq. 7. 

This process removes stationary effects and enhances the edges as shown in Figure 

2.19. 

 𝑆𝚤(𝑥, 𝑧) =
[𝑆(𝑥+2,𝑧)+2𝑆(𝑥+1,𝑧)−2𝑆(𝑥−1,𝑧)−𝑆(𝑥−2,𝑧)]

3
, (6) 

 𝑆𝚤𝚤(𝑥, 𝑧) =
[𝑆𝚤(𝑥+2,𝑧)+2𝑆𝚤(𝑥+1,𝑧)−2𝑆𝚤(𝑥−1,𝑧)−𝑆𝚤(𝑥−2,𝑧)]

3
, (7) 

 

Figure 2.19. Second Derivative of the Given Raw Image 

Afterwards, the derivative values are normalized along x direction by Eq. 8-10. 

Normalization enhances the deeper region of the GPR image, hence all depth segments 

have similar contrast in the normalized image as shown in Figure 2.20. 

 𝜇(𝑧) = 𝑚𝑒𝑎𝑛𝑥(𝑆𝚤𝚤(𝑥, 𝑧)), (8) 

 𝜎(𝑧) = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑥(𝑆𝚤𝚤(𝑥, 𝑧)), (9) 

 𝑁(𝑥, 𝑧) =
𝑆𝚤𝚤(𝑥,𝑧)−𝜇(𝑧)

𝜎(𝑧)
, (10) 

 

Figure 2.20. Normalized Second Derivative 
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The gradient-based algorithm proposes to create positive and negative parts of the 

normalized second derivative by Eq. 11 and Eq. 12. These positive and negative parts 

correspond to bright and dark areas respectively as shown in Figure 2.21. 

 𝑁+(𝑥, 𝑧) = { 
𝑁(𝑥, 𝑧),

0,
          

𝑖𝑓 𝑁(𝑥, 𝑧) > 1
𝑒𝑙𝑠𝑒

, (11) 

 
𝑁−(𝑥, 𝑧) = { 

−𝑁(𝑥, 𝑧),
0,

          
𝑖𝑓 𝑁(𝑥, 𝑧) < −1

𝑒𝑙𝑠𝑒
, 

(12) 

    

Figure 2.21. (a) Positive Image, (b) Negative Image 

Then, for each point in the positive image and negative image given in Figure 2.21, 

the strengths of diagonal (45° direction) and anti-diagonal (135° direction) edges are 

calculated by Eq. 13-16. 

 𝑃𝐴(𝑥, 𝑧) = min {𝑁+(𝑥, 𝑧 − 1), 𝑁+(𝑥 + 1, 𝑧), 𝑁+(𝑥 + 2, 𝑧 + 1), 𝑁+(𝑥 + 3, 𝑧 + 2)}, (13) 

𝑁𝐴(𝑥, 𝑧) = min {𝑁−(𝑥, 𝑧 − 1), 𝑁−(𝑥 + 1, 𝑧), 𝑁−(𝑥 + 2, 𝑧 + 1), 𝑁−(𝑥 + 3, 𝑧 + 2)}, (14) 

𝑃𝐷(𝑥, 𝑧) = min {𝑁+(𝑥, 𝑧 + 2), 𝑁+(𝑥 + 1, 𝑧 + 1), 𝑁+(𝑥 + 2, 𝑧), 𝑁+(𝑥 + 3, 𝑧 − 1)}, (15) 

𝑁𝐷(𝑥, 𝑧) = min {𝑁−(𝑥, 𝑧 + 1), 𝑁−(𝑥 + 1, 𝑧 + 1), 𝑁−(𝑥 + 2, 𝑧), 𝑁−(𝑥 + 3, 𝑧 − 1)}, (16) 

Afterwards, for each cross-track position x, we find the location z of the maximum 

value in PA, NA, PD and ND matrices. Assume the total number of rows is “n” for 

the raw image given in Figure 2.18. So, position of the maximum values can be found 

by Eq. 17-20. 

  𝑚𝑝𝑎(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑃𝐴(𝑥, 𝑧): 𝑧 = 1,2, … , 𝑛}, (17) 

  𝑚𝑛𝑎(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑁𝐴(𝑥, 𝑧): 𝑧 = 1,2, … , 𝑛}, (18) 

(a) (b) 
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 𝑚𝑝𝑑(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑃𝐷(𝑥, 𝑧): 𝑧 = 1,2, … , 𝑛}, (19) 

 𝑚𝑛𝑑(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑁𝐷(𝑥, 𝑧): 𝑧 = 1,2, … , 𝑛}, (20) 

Finally, for each cross-track position 16-dimensional observation vector is obtained 

by Eq. 21. 

 𝑂(𝑥) = (𝑜1(𝑥), 𝑜2(𝑥), … , 𝑜16(𝑥)), (21) 

𝑜1(𝑥) = 𝑃𝐷(𝑥, 𝑚𝑝𝑑(𝑥) − 2)               𝑜9(𝑥) = 𝑃𝐴(𝑥, 𝑚𝑝𝑎(𝑥) − 2)               

𝑜2(𝑥) = 𝑃𝐷(𝑥, 𝑚𝑝𝑑(𝑥))               𝑜10(𝑥) = 𝑃𝐴(𝑥, 𝑚𝑝𝑎(𝑥))               

𝑜3(𝑥) = 𝑃𝐷(𝑥, 𝑚𝑝𝑑(𝑥) + 2)               𝑜11(𝑥) = 𝑃𝐴(𝑥, 𝑚𝑝𝑎(𝑥) + 2)               

𝑜4(𝑥) = 𝑃𝐷(𝑥, 𝑚𝑝𝑑(𝑥) + 4)               𝑜12(𝑥) = 𝑃𝐴(𝑥, 𝑚𝑝𝑎(𝑥) + 4)               

𝑜5(𝑥) = 𝑁𝐷(𝑥, 𝑚𝑛𝑑(𝑥) − 2)               𝑜13(𝑥) = 𝑁𝐴(𝑥, 𝑚𝑛𝑎(𝑥) − 2)               

𝑜6(𝑥) = 𝑁𝐷(𝑥, 𝑚𝑛𝑑(𝑥))               𝑜14(𝑥) = 𝑁𝐴(𝑥, 𝑚𝑛𝑎(𝑥))               

𝑜7(𝑥) = 𝑁𝐷(𝑥, 𝑚𝑛𝑑(𝑥) + 2)               𝑜15(𝑥) = 𝑁𝐴(𝑥, 𝑚𝑛𝑎(𝑥) + 2)               

𝑜8(𝑥) = 𝑁𝐷(𝑥, 𝑚𝑛𝑑(𝑥) + 4)               𝑜16(𝑥) = 𝑁𝐴(𝑥, 𝑚𝑛𝑎(𝑥) + 4)               

In the observation vector, the first quadruple shows the strength of positive diagonal 

edge, the second quadruple shows the strength of negative diagonal edge, the third 

quadruple shows the strength of positive anti-diagonal edge and the last quadruple 

shows the strength of negative anti-diagonal edge. Therefore, by observing the index 

of the observation vector at a specific cross-track position, we can estimate the edge 

direction in this region.  

B-Scan image of an underground target has “only diagonal”, “both diagonal and anti-

diagonal” and “only anti-diagonal” edges consecutively as shown in Figure 2.22. 
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Figure 2.22. Diagonal Edge / Both Diagonal and Anti-Diagonal Edges / Antidiagonal Edge Regions 

If the observation vectors belong to the image given in Figure 2.22 are calculated from 

left of the image to the right part, three different types of observation vectors are 

obtained as given in Figure 2.23. 

      

Figure 2.23. (a-b) Type-I Observation Vectors, (c) Type-II Observation Vector, (d-e) Type-III 

Observation Vectors 

In this study, the gradient-based algorithm is used to find the center of the underground 

target. As explained above, Type-II observation vector belongs to the transition region 

from diagonal to anti-diagonal edges. This region corresponds to the center of the 

(a) (b) (c) 

(d) (e) 
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buried object. To localize this center point, we utilize the gradient-based approach and 

find the position of the Type-II observation vectors. If, there are multiple observation 

vectors belong to the transition region, the A-Scan data which has the highest 

amplitude is chosen as the center part. 

2.3.4. Histogram of Oriented Gradients (HoG) Feature Extraction 

In this study, performance of the proposed algorithm, which is explained in Section 3, 

is compared with two well-known image-based feature extraction methods that are 

Histogram of Oriented Gradients (HoG) and Edge Histogram Descriptors (EHD) 

feature extraction methods. Therefore, in this and the next section HoG and EHD 

methods are explained respectively. 

To extract HoG feature descriptor from GPR B-Scan image, Torrione et. al. explains 

the algorithm as follows [22]. Initially, the ground bounce removed raw GPR data is 

resampled to 18 x 24 pixels as shown in Figure 2.24. 

   

Figure 2.24. (a) Original Raw Image, (b) Resampled Image 

The resampled image is divided into 3x4 cells and each cell contains 6x6 pixels. HoG 

features are extracted from two overlapping blocks such that each block consists of 

3x3 cells as shown in Figure 2.25.  

(a) (b) 
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Figure 2.25. HoG Cells and Blocks of Resampled Image 

For each cell, histogram of oriented gradient values of the pixels are calculated. 

Torrione et. al. suggests using nine unique histogram bins equally spaced in the range 

[0, π]. To calculate the histogram, horizontal and vertical derivatives of each cell are 

computed. Let, 𝐼 is the corresponding 6x6 cell. Then, the derivatives are computed by 

Eq. 22 and Eq. 23. 

 𝐼𝑥 = 𝐼 ∗ 𝑔𝑥, (22) 

 𝐼𝑦 = 𝐼 ∗ 𝑔𝑦, (23) 

 where 𝑔𝑥 = [−1 0 1] 𝑎𝑛𝑑 𝑔𝑦 =  [−1 0 1]𝑇,  

Then, magnitude and angle of each pixel are computed in the corresponding cell by 

Eq. 24 and Eq. 25. 

  𝐺(𝑖, 𝑗) = √𝐼𝑥(𝑖, 𝑗)2 + 𝐼𝑦(𝑖, 𝑗)2, (24) 

 𝐴(𝑖, 𝑗) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐼𝑦(𝑖,𝑗)

𝐼𝑥(𝑖,𝑗)
, (25) 

Gradient value of each pixel contributes two histogram bins such that angle value of 

this pixel is between these two histogram bins. The contribution is inversely 

proportional with the distance between the angle value and the corresponding 
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histogram bins. For example, if the gradient and the angle of a pixel is 9 and 30° 

respectively, one-third of the gradient value contributes the histogram bin “45°” and 

two-thirds of the gradient value contribute the histogram bin “22.5°”. If the angle of a 

pixel is exactly equal to a histogram bin, the entire gradient value contributes this bin. 

For each cell, gradient and angle values of 36 pixels are calculated and one histogram 

is created with length 9. Let, 𝐻(𝑐𝑖, 𝑘) denotes the histogram of cell-i for 𝑘 = 1, 2, … , 9. 

For the first block (in Figure 2.25), histograms of nine cells (from cell-1 to cell-9) are 

concatenated together and normalized to obtain 81-dimensional feature descriptor 

(𝐻1) by Eq. 26.  

 𝐻1 =
[𝐻(𝑐1),   𝐻(𝑐2),   … ,   𝐻(𝑐9)]

∑ √‖𝐻(𝑐𝑖)‖2
29

𝑖=1

, (26) 

For the second block, the same operation is performed to achieve 81-dimensional 

feature descriptor (𝐻2) by Eq. 27.  

 𝐻2 =
[𝐻(𝑐4),   𝐻(𝑐5),   … ,   𝐻(𝑐12)]

∑ √‖𝐻(𝑐𝑖)‖2
212

𝑖=4

, (27) 

Finally, these two vectors (𝐻1 and 𝐻2) are concatenated to obtain the final 162-

dimensional HoG feature descriptor. The visualization of HoG feature vectors of the 

image given in Figure 2.24 is shown in Figure 2.26. 

 

Figure 2.26. Visualization of HoG Feature Vectors 

2.3.5. Edge Histogram Descriptor (EHD) Feature Extraction 

In this section, Edge Histogram Descriptor (EHD) feature extraction method is 

explained briefly. To extract EHD feature descriptor from GPR B-Scan image, Frigui 
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et. al. explains the algorithm as follows [20]. Although HoG feature extraction 

algorithm resizes the raw image into a lower dimension, EHD method performs on the 

original raw image. B-Scan image is vertically subdivided into seven overlapping sub-

images as shown in Figure 2.27. In this example, we use 50% overlapping. 

 

Figure 2.27. EHD Subimages 

For each sub-image, histogram values are computed in a similar way of HoG 

algorithm. Different from HoG feature extraction method, five unique histogram bins 

equally spaced in the range [0, π] are used. These 5-bin histogram vectors are 

concatenated together to obtain 35-dimensional EHD feature descriptor. The 

visualization of EHD feature vectors of the image given in Figure 2.27 is shown in 

Figure 2.28. 

 

Figure 2.28. Visualization of EHD Feature Vectors 
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2.3.6. Support Vector Machine (SVM) Classification 

In this study, we have applied two-class Support Vector Machine (SVM) algorithm to 

classify landmines and innocuous objects. In this section, the basic working principle 

of SVM algorithm is described for linearly separable case and linearly non-separable 

case. 

If we have linearly separable two classes as shown in Figure 2.29, SVM tries to find 

a hyperplane (decision boundary) which satisfies the equation 𝑤𝑇𝑥 + 𝑏 = 0 [73, 74]. 

Any data point (𝑥𝑖) above this decision boundary belongs to the first class (𝑦𝑖 = 1) 

and any data point (𝑥𝑖) below this decision boundary belongs to the second class (𝑦𝑖 =

−1). This output labelling provides the decision function given in Eq. 28. 

 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥 + 𝑏), (28) 

According to the decision function given in Eq. 28, the classification result can be 

checked by Eq. 29. 

 𝑦(𝑤𝑇𝑥 + 𝑏) ≥ 0, (29) 

 

Figure 2.29. Linearly Separable Two Classes 
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In Figure 2.29, there is a space between the decision boundary and the nearest data 

points (which are called as support vectors) of the classes. So, we can regenerate the 

classification rule as any data point (𝑥𝑖) above 𝑤𝑇𝑥 + 𝑏 = 1 belongs to the first class 

(𝑦𝑖 = 1) and any data point (𝑥𝑖) below 𝑤𝑇𝑥 + 𝑏 = −1 belongs to the second class 

(𝑦𝑖 = −1). According to this definition, there is a distance between the two 

boundaries. Firstly, these boundaries are parallel since they have the same 𝑤 and 𝑏 

parameters. If we pick a point 𝑥1 on line 𝑤𝑇𝑥 + 𝑏 = −1, the closest point on line 

𝑤𝑇𝑥 + 𝑏 = 1 to 𝑥1 is the point 𝑥2 = 𝑥1 + 𝜆𝑤. So, the distance between 𝑥1 and 𝑥2, 

which is the shortest distance between two boundaries, is 𝜆‖𝑤‖. If we solve the 

equations for 𝜆, Eq 30-35 are obtained. 

 𝑤𝑇𝑥2 + 𝑏 = 1, (30) 

 𝑤𝑇(𝑥1 + 𝜆𝑤) + 𝑏 = 1, (31) 

 𝑤𝑇𝑥1 + 𝑏 + 𝜆𝑤𝑇𝑤 = 1, (32) 

 −1 + 𝜆𝑤𝑇𝑤 = 1, (33) 

 𝜆𝑤𝑇𝑤 = 2, (34) 

 𝜆 =
2

𝑤𝑇𝑤
=

2

‖𝑤‖2, (35) 

According to Eq. 35, the distance between two boundaries is 𝜆𝑤 =
2

‖𝑤‖
=

2

√𝑤𝑇𝑤
. SVM 

algorithm tries to maximize this distance, thus the data points from different classes 

lie as far away from each other as possible. To maximize 
2

√𝑤𝑇𝑤
, we should minimize 

𝑤𝑇𝑤. So, the quadratic problem to be solved by SVM can be expressed by Eq. 36. 

 𝑎𝑟𝑔𝑚𝑖𝑛𝑤,𝑏𝑤𝑇𝑤 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 ∀𝑖 ∈ {1, 2, … , 𝑛}, (36) 

Soft margin extension of SVM algorithm allows some data points of one class to 

appear on the other side of decision boundary. If we cannot guarantee that all data 

points are labelled correctly, we can use soft margin extension as given in Eq. 37. 𝜖𝑖 

is a non-negative slack variable for each 𝑥𝑖.  
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 𝑎𝑟𝑔𝑚𝑖𝑛𝑤,𝑏,𝜖𝑤𝑇𝑤 + 𝐶 ∑ 𝜖𝑖𝑖  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜖𝑖, (37) 

If the data points belong to different classes are not linearly separable, special kernel 

functions (∅(𝑥)) can be used to map data vectors (𝑥𝑖) into a higher-dimensional space 

in which new data vectors (∅(𝑥𝑖)) are linearly separable. In this case, the quadratic 

problem to be solved by SVM can be expressed by Eq. 38. An example kernel 

mapping is shown in Figure 2.30. The linearly non-separable data (in Figure 2.30-a) 

is mapped into a higher dimensional space in which the new data vectors are linearly 

separable as given in Figure 2.30-b. 

  𝑎𝑟𝑔𝑚𝑖𝑛𝑤,𝑏,𝜖𝑤𝑇𝑤 + 𝐶 ∑ 𝜖𝑖𝑖  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦𝑖(𝑤𝑇∅(𝑥𝑖) + 𝑏) ≥ 1 − 𝜖𝑖, (38) 

 

Figure 2.30. (a) Linearly Non-separable Data, (b) Linearly Separable Data  

 

2.4. Reflection and Propagation Theory of Electromagnetic Signals 

As explained in the Introduction part, in this study our aim is to combine physics-

based approach with image-based techniques to increase the discrimination 

performance of the final GPR-based landmine detection algorithm. Physics-based 

techniques that will be utilized in this study are subject to widely accepted theoretical 

foundations and formulations. In this section, the underlying electromagnetic 

formulations, which show the relationship between the physics-based features and the 

electromagnetic properties of the soil and the buried object, are explained. 

(a) (b) 
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2.4.1. Reflection and Transmission of Electromagnetic Signal at the Interface 

between Two Different Dielectrics 

Any medium through which electromagnetic wave propagates have a property called 

as intrinsic impedance (𝜂). The relation between intrinsic impedance (𝜂) and reflection 

coefficient (𝛤) which can be calculated by GPR measurement is explained below. 

For a general medium with permittivity, permeability and conductivity given by 

(𝜖, 𝜇, 𝜎) = (𝜖𝑟𝜖0, 𝜇𝑟𝜇0, 𝜎), the intrinsic impedance can be calculated by Eq. 39 at a 

given frequency ω [92-94]. Here, 𝜖𝑟 is the relative permittivity, 𝜇𝑟 is the relative 

permeability and 𝜎 is the conductivity of the medium. 𝜖0 and 𝜇0 are permittivity and 

permeability of free space. 

 𝜂 = √
𝑗ω𝜇

𝜎+𝑗ω𝜖
= √

𝜇

𝜖
(1 − 𝑗

𝜎

ω𝜖
)−1/2, (39) 

A lossy medium (𝜎 ≠ 0) is said to be low-loss if 
𝜎

ω𝜖
≪ 1. A low-loss dielectric is a 

good but imperfect insulator with a nonzero equivalent conductivity [90]. Practically, 

a dielectric is accepted as low-loss if 𝜎 <
ω𝜖

10
. Assuming that we are working in a low-

loss condition, Eq. 39 becomes [92]:   

 𝜂 ≅ √
𝜇

𝜖
(1 + 𝑗

𝜎

2ω𝜖
), (40) 

 where     𝑅𝑒{𝜂} = √
𝜇

𝜖
    and    𝐼𝑚{𝜂} =

𝜎

2ω𝜖
√

𝜇

𝜖
  

Within the operating frequency of current GPR systems (800 MHz – 4 GHz) [97] and 

the dielectric properties of common soil types (μ
r

≅ 1, 4.5 < 𝜖𝑟 < 10 , 0.1 𝑚𝑆/𝑚 <

𝜎 < 15 𝑚𝑆/𝑚) [95, 96], the working medium can be assumed as low-loss. If the 

dielectric properties of soil in the experimental area are beyond these ranges (due to 

moisture or clay content), operating frequency of GPR should be adjusted 

appropriately.  
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When an electromagnetic wave passes from one medium to another medium with 

different intrinsic impedance, a fraction of its energy is reflected and the remainder is 

transmitted through the interface. In terms of the intrinsic impedances, reflection (𝛤) 

and transmission (𝜏) coefficients can be calculated as given in Eq. 41 [92]. Note that, 

in Eq. 41 𝜂1 and 𝜂2 are relative intrinsic impedance values of the mediums, since 𝜂0 =

√
𝜇0

𝜖0
 (intrinsic impedance of vacuum) is cancelled out from numerator and 

denominator. 

 𝛤 =
𝐸𝑟

𝐸𝑖
=

𝜂2−𝜂1

𝜂2+𝜂1
     and      𝜏 =

𝐸𝑡

𝐸𝑖
=

2𝜂2

𝜂2+𝜂1
, (41) 

During GPR measurement, GPR antenna is positioned at a certain height from ground 

surface as shown in Figure 2.31. The underground target is located at an unknown 

depth. 

 

Figure 2.31. Reflection and Transmission at the Air-Soil Boundary 

Please observe the reflection and transmission of GPR signal at the air-soil boundary 

in Figure 2.31. In the figure, a reflection coefficient (𝛤𝑎𝑠) and a transmission 

coefficient (𝜏𝑎𝑠) are used to describe the amplitude of the reflected wave (𝐸𝑟) and the 

transmitted wave (𝐸𝑡) relative to the amplitude of the incident wave (𝐸𝑖). In this 

scenario, 𝐸𝑖 = 𝐸0, 𝐸𝑟 = 𝐸𝐺𝐵 and 𝐸𝑡 is the transmitted signal into the soil. For the 

propagation through air to soil as shown in Figure 2.31, 𝜂1 = 𝜂air ≅ 1 [98, 99] and 
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𝜂2 = 𝜂soil. For the sake of simplicity, the relative intrinsic impedance of soil will be 

denoted as “𝜂s”, conductivity, relative permittivity and permeability values of soil will 

be denoted as “𝜎𝑠”, “𝜖𝑠” and “𝜇𝑠” respectively. Moreover, conductivity, relative 

permittivity and permeability values of air will be accepted as “0”, “1” and “1” 

respectively for the rest of this study. Thus, reflection coefficient (𝛤𝑎𝑠) in Figure 2.10 

is;  

 𝛤𝑎𝑠 =
𝜂s−1

𝜂s+1
= |𝛤𝑎𝑠|𝑒𝑗∡𝛤𝑎𝑠, (42) 

 where    𝑅𝑒{𝛤𝑎𝑠} = |𝛤𝑎𝑠| cos(∡𝛤𝑎𝑠)    and    𝐼𝑚{𝛤𝑎𝑠} = |𝛤𝑎𝑠| sin(∡𝛤𝑎𝑠)  

So, 𝜂s in terms of 𝛤𝑎𝑠 can be written as [98]; 

 𝑅𝑒{𝜂𝑠} =
1−𝑅𝑒{𝛤𝑎𝑠}2−𝐼𝑚{𝛤𝑎𝑠}2

(1−𝑅𝑒{𝛤𝑎𝑠})2+𝐼𝑚{𝛤𝑎𝑠}2    and    𝐼𝑚{𝜂𝑠} =
2𝐼𝑚{𝛤𝑎𝑠}

(1−𝑅𝑒{𝛤𝑎𝑠})2+𝐼𝑚{𝛤𝑎𝑠}2, (43) 

Eventually, by measuring the amplitude (|𝛤𝑎𝑠|) and phase (∡𝛤𝑎𝑠) of the reflection 

coefficient (𝛤𝑎𝑠) for a specific frequency ω, the relative permittivity (𝜖𝑠) and 

conductivity (𝜎𝑠) values of the soil can be computed by using Eq. 39-43. Note that, 

the relative permeability of soil is assumed to be equal to that of air [95]. 

2.4.2. Attenuation of Electromagnetic Signal Propagating Through a Medium 

In this section, the propagation loss is introduced in a lossy medium. When an 

electromagnetic signal propagates through a medium, the amplitude and phase of the 

signal change with respect to the propagation constant (𝛾) of the medium. Given 𝐸0 is 

the complex amplitude at the source of an electromagnetic signal, value of the 

complex amplitude 𝐸𝑧 at a distance z is given in Eq. 44 [92]. 

 𝐸(𝑧) = 𝐸𝑧 = 𝐸0𝑒−𝛾𝑧, (44) 

Since the propagation constant is a complex quantity, it can be written as 𝛾 = 𝛼 + 𝑗𝛽 

where 𝛼 is called the attenuation constant and 𝛽 is called the phase constant. Under 

low-loss condition, 𝛼 and 𝛽 can be computed by Eq. 45 [92]. 
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 𝛼 = 𝑅𝑒(𝛾) ≅
𝜎

2
√

𝜇

𝜖
   (𝑁𝑝/𝑚)    and    𝛽 = 𝐼𝑚(𝛾) ≅ ω√𝜇𝜖   (𝑟𝑎𝑑/𝑚), (45) 

Amplitude of the propagating signal changes depending on the attenuation constant 

(𝛼) of the medium. If we take the absolute value of both sides in Eq. 44, the phase 

term can be cancelled out as shown in Eq. 46. 

 |𝐸𝑧| = |𝐸0|𝑒−𝛼𝑧, (46) 

This equation is valid for very narrow beams only. If the radiating electromagnetic 

beams become wider as z increases, amplitude of 𝐸𝑧 is: 

 |𝐸𝑧| = 𝐺(𝑧)|𝐸0|𝑒−𝛼𝑧, (47) 

Here, 𝐺(𝑧) is the geometrical spreading factor and depends on the antenna type of 

GPR [101]. For example, 𝐺(𝑧) =
1

𝑧
 for dipole antenna which is used for simulations 

given in the results section. 

2.4.3. Velocity of Electromagnetic Signal Propagating Through a Medium 

Propagation velocity of an electromagnetic signal into a medium with permittivity (𝜖) 

and permeability (𝜇) can be computed by Eq. 48 [92].  

 𝑣 =
1

√𝜇𝜖
=

𝑐

√𝜇𝑟𝜖𝑟
     (𝑚/𝑠), (48) 

where c is the speed of light in free space. 
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CHAPTER 3  

 

3. PROPOSED ALGORITHM 

 

The proposed algorithm is composed of two stages which are “Calibration 

Measurement” and “Detection & Classification” steps. For the first stage, a calibration 

measurement is taken to estimate intrinsic characteristics of the soil in the 

experimental area. In “Detection & Classification” step, anomaly locations are 

detected in the same area and they are classified as targets or non-targets by utilizing 

the calibration parameters as shown in Figure 3.1. 

 

Figure 3.1. Flow Chart of the Proposed Method 

A typical scenario for landmine sweeping is shown in Figure 3.2. Before starting 

landmine sweeping in an experimental area, a calibration object is buried in the same 

area to take the calibration measurement. 
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Figure 3.2. Scenario for Landmine Sweeping 

A typical GPR measurement and relevant parameters are shown in Figure 3.3, when 

GPR antenna is above the target or calibration object. In real experiments, there is a 

distance between TX and RX of GPR, therefore transmitted ray from TX should 

propagate obliquely and be reflected from the ground (or underground object) to reach 

RX of GPR. However, during this study, calculations are performed under normal 

incidence case as shown in Figure 3.3. Since the distance between TX and RX is very 

small according to GPR antenna height (ℎ𝑎) and target depth (ℎ𝑐), oblique angles are 

very small. Therefore, normal incidence assumption is acceptable for this study. The 

difference between the calculations under normal incidence case and under oblique 

incidence case is shown in Appendix A.  

 

Figure 3.3. GPR Measurement of Calibration Object or Targets 
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By means of calibration measurement, intrinsic properties of soil are estimated and 

they are used in target classification step. The calibration object is a cylindrical shape 

PEC (Perfect Electrical Conductor) with diameter 𝐷𝑐 and height 𝑙𝑐 as shown in Figure 

3.3. During calibration measurement and landmine sweeping, height of the GPR 

antenna above the surface of the ground is ℎ𝑎. Before starting landmine sweeping in 

an area, this cylindrical PEC is buried at depth ℎ𝑐 and GPR is passed over the buried 

calibration object.  

For the Target Detection & Classification Phase, initially the ground bounce is 

removed from the original GPR data. Then, a pre-screener algorithm is used to detect 

the possible anomaly locations. Hence, the amount of data that will be used in the 

feature extraction step is minimized. For each anomaly region, the gradient-based 

algorithm is used to select A-scan data which has the highest amplitude in the 

corresponding B-Scan image. In Context-based Parameter Update step, the calibration 

parameters are updated by considering the variation of the soil dielectric properties for 

each anomaly region. To achieve this, the ground bounce values in the calibration area 

and in the anomaly region are compared. Afterwards, for each anomaly region, three 

different features are extracted by utilizing the intrinsic characteristics of the soil 

which are calculated in the calibration measurement and updated in the context-based 

parameter update step. Finally, targets are classified by SVM based on these extracted 

features. 

3.1. Calibration Measurement 

In Section 2.4, the relation between the reflection coefficient and intrinsic parameters 

of a medium is given. This step shows how to extract these parameters from GPR data. 

As stated before, the calibration object is a cylindrical shape PEC (Perfect Electrical 

Conductor) with diameter 𝐷𝑐 and height 𝑙𝑐 which is used to compute the dielectric 

properties (relative permittivity and conductivity) of soil, attenuation constant of soil 

and GPR signal velocity in the soil. In all computations, A-Scan data measured at the 

cross-track position x = x0 (A(x0, t)) is used given in Figure 3.4. Here, x0 corresponds 
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to apex of target response hyperbola and it is computed using the gradient-based 

algorithm given in [17]. Details of this computation process are given in Section 3.3. 

An example calibration measurement and the corresponding A-Scan data (mid A-

Scan) are shown in Figure 3.4. 

 

Figure 3.4. An Example Calibration Measurement (a) B-Scan Image, (b) A-Scan Data at x=x0 

3.1.1. Dielectric Properties of Soil 

In this step, the complex intrinsic impedance, conductivity and relative permittivity of 

the soil in the calibration area are computed. 𝐸0 is the electric field at the TX according 

to Figure 3.3. Using Eq. 44, value of the incident wave (𝐸0) at the air – soil boundary 

becomes:  

 𝐸(ℎ𝑎) = 𝐸0𝑒−𝛼𝑎𝑖𝑟ℎ𝑎𝑒−𝑗𝛽𝑎𝑖𝑟ℎ𝑎, (49) 

Here, 𝛼𝑎𝑖𝑟 ≅ 0 and 𝛽𝑎𝑖𝑟 ≅ ω√𝜇0𝜖0 according to Eq. 45, because 𝜇𝑎𝑖𝑟 ≅ 𝜇0, 𝜖𝑎𝑖𝑟 ≅

𝜖0 𝑎𝑛𝑑 𝜎𝑎𝑖𝑟 ≅ 0. So, the value of the signal at the air – soil boundary is:  

 𝐸(ℎ𝑎) = 𝐸0𝑒−𝑗ω√𝜇0𝜖0ℎ𝑎, (50) 

The value of the ground bounce (𝐸𝐺𝐵), which is the reflected signal from the surface 

of the ground, is:  

(a) (b) 
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 𝐸𝐺𝐵 = 𝐸0|𝛤𝑎𝑠|𝑒−𝑗ω√𝜇0𝜖02ℎ𝑎𝑒𝑗∡𝛤𝑎𝑠, (51) 

Here, 𝛤𝑎𝑠 = |𝛤𝑎𝑠|𝑒𝑗∡𝛤𝑎𝑠 is complex reflection coefficient of soil. Therefore, it can be 

calculated by using Eq. 52. 

 |𝛤𝑎𝑠|𝑒𝑗∡𝛤𝑎𝑠𝑒−𝑗ω√𝜇0𝜖02ℎ𝑎 =
𝐸𝐺𝐵

𝐸0
, (52) 

Note that, the term 𝑒−𝑗ω√𝜇0𝜖02ℎ𝑎 is due to the antenna height (ℎ𝑎) and causes a time 

delay. If Eq. 52 is given in terms of amplitude and phase separately, the following 

equations are obtained:  

 |𝛤𝑎𝑠| =
|𝐸𝐺𝐵|

|𝐸0|
, (53) 

 ∡ (𝐸𝐺𝐵, 𝐸0)|𝑤 = ∡𝛤𝑎𝑠 − 2ω√𝜇0𝜖0ℎ𝑎, (54) 

Calculating the amplitude of the reflection coefficient is straightforward, it is simply 

amplitude of the ratio of ground bounce to incident wave. However, calculating the 

phase difference is more challenging, because phase difference depends on the 

frequency and it has a different value for each different operating frequency. 

Therefore, phase difference should be calculated for a specific frequency value. To 

achieve this, ground bounce and incident wave are transformed into frequency domain 

by applying Fast Fourier Transform (FFT). Afterwards, phase of the ground bounce 

and phase of the incident wave can be computed for a specific frequency value and 

phase difference can be obtained. In this study, the frequency value for which phase 

difference is calculated is chosen as the center frequency of GPR. 

Afterwards, the complex intrinsic impedance of soil (𝑅𝑒{𝜂𝑠} and 𝐼𝑚{𝜂𝑠}) is calculated 

according to Eq. 43. Finally, the relative permittivity (𝜖𝑠) and conductivity (𝜎𝑠) of the 

soil in the calibration region are calculated by Eq. 40 under the assumption that the 

permeability of soil is assumed to be equal to that of air [95]. 

Twelve different soil types are created which have relative permeability of 1, 

conductivity of 10 mS/m and relative permittivity between 4.5 and 10 with the 
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increment of 0.5 to verify the computation process of the complex intrinsic impedance 

of soil. For each soil type, a reference GPR measurement is taken by gprMax 

modelling software [102] and the ground bounce values are saved for each case. By 

using these ground bounce values, complex reflection coefficients are computed by 

Eq. 52-54 and complex intrinsic impedances are calculated by Eq. 42 and Eq. 43. In 

Figure 3.5, theoretical and simulated results of complex intrinsic impedance values of 

given twelve different soil types are shown. Theoretical results are computed 

according to Eq. 40. Simulated results are calculated by using the simulated ground 

bounce values and Eq. 42, 43, 52, 53 and 54. Please observe that, simulated complex 

intrinsic impedance values are very close to the theoretical results which verifies the 

proposed method. 

 

Figure 3.5. Theoretical and Simulated Result of Complex Intrinsic Impedance Values of 12 Different 

Soil Types, (a) Real Part, (b) Imaginary Part 

3.1.2. Attenuation Constant of Soil 

In this step, the attenuation constant of the soil in the calibration area is calculated. 

The material of calibration object is PEC and intrinsic impedance of PEC is very small. 

Hence, reflection coefficient of PEC material is -1 (𝛤𝑠𝑡 = −1 in Figure 3.3 for 

calibration measurement). Therefore, PEC object reflects all energy back. Using 

Figure 3.3, Eq. 41 and Eq. 47, amplitude of 𝐸𝑟𝑒𝑡𝑢𝑟𝑛_𝑃𝐸𝐶 can be given as: 

(a) (b) 
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 𝐴(ℎ𝑐) ≜ |𝐸𝑟𝑒𝑡𝑢𝑟𝑛_𝑃𝐸𝐶(ℎ𝑐)| =̃ |𝐸0||𝜏𝑎𝑠𝜏𝑠𝑎|𝐺(ℎ𝑎 + ℎ𝑐)𝑒−2𝛼𝑠ℎ𝑐, (55) 

 where     |𝜏𝑎𝑠𝜏𝑠𝑎| = |
4𝜂s

(𝜂s+1)2|    and    𝐺(ℎ𝑎 + ℎ𝑐) =
1

8𝜋2(ℎ𝑎+ℎ𝑐)2  

𝐴(ℎ𝑐) is defined as amplitude of the return signal from a PEC surface at depth ℎ𝑐 as 

shown in Figure 3.3. In the simulations, dipole antenna is used; therefore geometrical 

spreading factor (𝐺(ℎ𝑎 + ℎ𝑐)) varies inversely as the square of the distance [103]. 

Attenuation constant of soil 𝛼𝑠 can be computed by inversely solving Eq. 55. 

A PEC material is buried at 15 cm depth in a soil with 𝜇𝑠 = 1, 𝜖𝑠 = 4.5, 𝜎𝑠 =

10 𝑚𝑆/𝑚 and the amplitude of the primary reflection is measured by using gprMax 

modeling software to verify Eq. 55 experimentally. Then, 𝛼𝑠 is calculated by using 

this measurement as explained above. Afterwards, in gprMax modeling software the 

same PEC material is buried at depths between 10 cm and 14.5 cm with the increment 

of 0.5 cm in the same soil. Amplitude of the primary reflection is measured for each 

case. Moreover, for each case the amplitude of the primary reflection is calculated 

theoretically by utilizing Eq. 55. Finally, the simulated results are compared with the 

calculated values as shown in Figure 3.6. The results are very similar for each case 

which verifies the proposed method. 

 

Figure 3.6. Simulated and Theoretical Results for Attenuation 
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3.1.3. GPR Signal Velocity in the Soil 

In this step, GPR signal velocity in the soil of the calibration area is calculated. GPR 

signal velocity in a medium can be calculated by utilizing Eq. 48. Since, the relative 

permittivity value of the soil is already calculated in Section 3.1.1, Eq. 48 can be 

applied to compute GPR signal velocity theoretically. On the other hand, GPR signal 

velocity into the corresponding soil can be calculated experimentally by using the 

calibration measurement. By referring Figure 3.3, the incident wave reflected from the 

ground (ground bounce) travels 2ℎ𝑎 while the reflected signal from the buried object 

(primary reflection) travels 2ℎ𝑎 + 2ℎ𝑐 until they reach the RX of GPR antenna. GPR 

signal velocity into the soil can be calculated by using the time difference between 

these two received signals as given in Eq. 56. During landmine sweeping, this 

information is used to estimate the buried depth of the target. For the sake of 

consistency, in this section GPR signal velocity is calculated experimentally. 

The time difference between the ground bounce and the primary reflection gives the 

time of GPR signal travels 2ℎ𝑐 way of soil (ℎ𝑐 forth and ℎ𝑐 back). Therefore, GPR 

signal velocity into the soil (𝑣𝑠) can be calculated by Eq. 56. 

 𝑣𝑠 =
2ℎ𝑐

|𝑡𝑖𝑚𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑜𝑢𝑛𝑐𝑒−𝑡𝑖𝑚𝑒𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛|
, (56) 

To verify Eq. 56 experimentally, a PEC material is buried at 15 cm depth in 12 

different soil types which have relative permeability of 1, conductivity of 10 mS/m 

and relative permittivity between 4.5 and 10 with the increment of 0.5. GPR signal 

velocity values are calculated by Eq. 56. Afterwards, the same values are calculated 

by Eq. 48 theoretically. Finally, the simulated results are compared with the calculated 

values as shown in Figure 3.7. The results are very similar for each case which verifies 

the proposed method. 
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Figure 3.7. Simulated and Theoretical Results for GPR Signal Velocity 

All in all, from the calibration measurement, three important parameters: dielectric 

properties of soil (𝜖𝑠, 𝜎𝑠 and 𝜂𝑠), attenuation constant of soil (𝛼𝑠) and GPR signal 

velocity in the soil (𝑣𝑠) are calculated by Eq. 49-56. These parameters are used to 

extract intrinsic features of the alarm locations for further experiments. 

3.2. Ground Bounce Removal and Pre-screener 

After the calibration measurement, next step is to detect and classify buried objects in 

the same experimental area. Initially, ground bounce is removed from the original 

GPR data as proposed in [91]. Maximum detection technique is used to find the 

location of the ground bounce. Details of this technique is given in Section 2.3.1. After 

maximum detection, alignment is necessary due to up-down movement of vehicle 

mounted GPR antenna. Then, L time samples after the ground bounce peak are 

removed from each A-Scan data. L is determined based on the ground bounce in time 

[91]. An example scenario is shown in Figure 3.8. PMA, PMD and PMN, which are 

explained in detail in the results section, are three landmines. Tin box has 8 cm 

diameter and 8 cm height. Rock has 7 cm width, 14 cm length and 3 cm height. B-

Scan GPR data belongs to this example scenario is given in Figure 3.9-a. After the 

ground bounce removal step, this B-Scan data is shown as in Figure 3.9-b. 
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Figure 3.8. An Example Simulation Scenario 

 

Figure 3.9. (a) Raw GPR Data, (b) Ground Bounce Removed GPR Data 

Complex discrimination algorithms can be run in real-time by only applying these 

algorithms to a small subset of available data. To minimize the amount of data which 

will be used in the feature extraction step, an LMS-based pre-screener algorithm is 

utilized. Other pre-screener algorithms than LMS can also be used in this step. We 

have adopted LMS algorithm since, it is one of the most widely used adaptive pre-

screener techniques in the literature [50-52].  

In this study, 1-D LMS algorithm is applied through each column of B-Scan image as 

described in Section 2.3.2. Since the targets which are buried deeper have weak GPR 

response with respect to shallowly buried targets, LMS algorithm tends to remove the 

response of deeply buried targets. To avoid this issue, B-Scan image is normalized to 

enhance the deeper region of data. To achieve this, each row of ground bounce 

removed B-Scan image is normalized before LMS algorithm. 

(a) (b) 
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For implementation of 1D LMS algorithm, filter length is chosen as 12 and guard-

band length is chosen as 5. For each selected window, LMS finds the differences from 

the background by adaptively updating the filter coefficients.  Then, a threshold is 

applied to the Pre-screener Result (PR) and a decision is made according to that 

threshold as explained in [52]. Then, projections of thresholded image is obtained and 

binary mapping is applied to the value of each projection. Finally, the centroids of 

connected areas are chosen as the mid-points of anomaly regions. As an example, 

LMS result of B-scan image given in Figure 3.9-b and the possible anomaly regions 

are shown in Figure 3.10. 

 

Figure 3.10. LMS Result of B-Scan Image Given in Figure 3.9-b, Binary Mapping Result and 

Possible Anomaly Regions 

For each anomaly region, the gradient-based algorithm described in [17] is utilized to 

select the A-Scan data that is measured when GPR antenna was above the center of 

the target (when GPR antenna is at the position shown in Figure 3.3). Details of the 

gradient-based algorithm is given in Section 2.3.3. For a given B-Scan image, 

gradient-based algorithm finds the degree to which edges occur in the diagonal and 

anti-diagonal directions. The algorithm formulates the states of the discrete model of 

the target as the leading edge, center and trailing edge. The region where diagonal 

edges occur corresponds to leading edge state and where anti-diagonal edges occur 

corresponds to trailing edge state. Center state of the algorithm shows the transition 
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region from diagonal to anti-diagonal edges [17]. The A-Scan data, which will be 

further processed for the feature extraction step, belongs to this transition region. If 

there are multiple A-Scan data into this region, the one which has the highest 

amplitude is chosen as shown in Figure 3.11. This A-Scan data will be called as “mid 

A-Scan” of a given B-Scan image for the rest of this study. Here, it is not always 

possible to find the correct mid A-Scan data due to noise of the system. The impact of 

this issue is discussed in the results section. 

 

Figure 3.11. Result of the Gradient-based Method – x1, x2, x3, x4 and x5 Denote the Positions of A-

Scan Data to Be Used for Feature Extraction Step  

Before starting the feature extraction step, the calibration parameters are updated for 

the corresponding anomaly region by Context-based Parameter Update step. 

3.3. Context-based Parameter Update 

In the calibration measurement, three important parameters: dielectric properties of 

soil (𝜖𝑠, 𝜎𝑠 and 𝜂𝑠), attenuation constant of soil (𝛼𝑠) and GPR signal velocity in the 

soil (𝑣𝑠) are calculated by Eq. 49-56 for the calibration region. The relative 

permeability of soil is almost always assumed to be equal to 1 and does not vary from 

area to area [95]. However, conductivity and relative permittivity of soil may change 

even in small areas especially depending on the soil moisture content [105, 106]. Since 

the calibration parameters vary during landmine sweeping, large scale estimates are 

not reliable and these parameters should be updated for each anomaly region. 



 

 

 

57 

 

Initially, the dielectric properties of the “𝑘𝑡ℎ” anomaly region (𝜖𝑠
𝑘, 𝜎𝑠

𝑘 and 𝜂𝑠
𝑘) are 

calculated by applying the same procedure described in Section 3.1.1. Initially, 

amplitude (|𝛤𝑎𝑠
𝑘 |) and phase (∡𝛤𝑎𝑠

𝑘 ) of the reflection coefficient are computed by Eq. 

53 and Eq. 54. Then, the complex intrinsic impedance of soil (𝜂𝑠
𝑘) is calculated 

according to Eq. 43. Finally, the relative permittivity (𝜖𝑠
𝑘) and conductivity (𝜎𝑠

𝑘) of the 

soil in the “𝑘𝑡ℎ” anomaly region are calculated by Eq. 40.  

Afterwards, attenuation constant and GPR signal velocity of the “𝑘𝑡ℎ” anomaly region 

(𝛼𝑠
𝑘 and 𝑣𝑠

𝑘) are found by updating the attenuation constant and GPR signal velocity 

of the calibration area (𝛼𝑠 and 𝑣𝑠) as shown in Figure 3.12. To achieve this, the 

difference between the dielectric properties of the “𝑘𝑡ℎ” anomaly region (𝜖𝑠
𝑘, 𝜎𝑠

𝑘 and 

𝜂𝑠
𝑘) and the dielectric properties of the calibration region (𝜖𝑠, 𝜎𝑠 and 𝜂𝑠) is utilized. 

 

Figure 3.12. Context-based Parameter Update Step 

Attenuation constant of the “𝑘𝑡ℎ” anomaly region (𝛼𝑠
𝑘) is computed. For low-loss 

dielectrics, attenuation constant is calculated by Eq. 45. Hence, the attenuation 

constant of the calibration region (𝛼𝑠) can be updated by applying Eq. 57 to obtain the 

attenuation constant of the anomaly region (𝛼𝑠
𝑘). 



 

 

 

58 

 

 𝛼𝑠
𝑘 = 𝛼𝑠

𝜎𝑠
𝑘

𝜎𝑠
√

𝜖𝑠

𝜖𝑠
𝑘, (57) 

Finally, GPR signal velocity in the soil of the “𝑘𝑡ℎ” anomaly region (𝑣𝑠
𝑘) is calculated. 

GPR signal propagates with the speed of light (c) in free space. GPR signal velocity 

in an environment can be calculated by Eq. 48. Hence, GPR signal velocity in the 

calibration region (𝑣𝑠) can be updated by applying Eq. 58 to obtain GPR signal 

velocity in the anomaly region (𝑣𝑠
𝑘). 

 𝑣𝑠
𝑘 = 𝑣𝑠√

𝜖𝑠

𝜖𝑠
𝑘, (58) 

All in all, in the calibration measurement, three important parameters: dielectric 

properties of soil (𝜖𝑠, 𝜎𝑠 and 𝜂𝑠), attenuation constant of soil (𝛼𝑠) and GPR signal 

velocity in the soil (𝑣𝑠) are calculated by Eq. 49-56 and in this section these parameters 

are updated for the corresponding anomaly region. Updated parameters are used to 

extract intrinsic features of the corresponding target. 

3.4. Feature Extraction 

In this work, three different features are extracted for each anomaly region: Dielectric 

feature, energy feature and geometry feature. Geometry feature is extracted from the 

ground bounce removed B-Scan image of the corresponding anomaly region. 

Dielectric feature and energy feature are extracted from the ground bounce removed 

A-Scan data (mid A-Scan) which has the highest amplitude in the corresponding B-

Scan image.  

Dielectric feature estimates the intrinsic impedance of the buried object by utilizing 

physics-based approach and depends on the material type of the underground target. 

Energy feature identifies significant GPR signal length. It depends on both material 

type and size, especially length of the buried object. Geometry feature computes 

gradient of the corresponding B-Scan data by utilizing image-based feature extraction 

methods. This feature depends on size, especially surface area of the buried object. 
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Therefore, these features are complementary to each other and the combination of 

them is very promising. 

3.4.1. Dielectric Feature 

The environment for the corresponding anomaly region is modelled during calibration 

and context-based parameter update steps, so the return signal for PEC object buried 

in any depth can be modelled as well. In this section, intrinsic properties of the 

unknown object are computed from its return signal (𝐸𝑟𝑒𝑡𝑢𝑟𝑛_𝑡𝑎𝑟𝑔𝑒𝑡 in Figure 3.3) by 

utilizing theoretically computed PEC return signal. 

The first step is to compute target depth (ℎ𝑡) by using Eq. 59. Note that, in the context-

based parameter update step, intrinsic impedance (𝜂𝑠
𝑘), attenuation constant (𝛼𝑠

𝑘) and 

GPR signal velocity (𝑣𝑠
𝑘) are calculated in the soil of the 𝑘𝑡ℎ anomaly region.  

 ℎ𝑡 =
𝑣𝑠

𝑘|𝑡𝑖𝑚𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑜𝑢𝑛𝑐𝑒−𝑡𝑖𝑚𝑒𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛|

2
, (59) 

After target depth is calculated, amplitude of the return signal from a PEC surface at 

the same depth of the target (|𝐸𝑟𝑒𝑡𝑢𝑟𝑛_𝑃𝐸𝐶(ℎ𝑡)|) is computed by using Eq. 60.  

 𝐴(ℎ𝑡) ≜ |𝐸𝑟𝑒𝑡𝑢𝑟𝑛𝑃𝐸𝐶
(ℎ𝑡)| = |𝐸0||𝜏𝑎𝑠

𝑘 𝜏𝑠𝑎
𝑘 |𝐺(ℎ𝑎 + ℎ𝑡)𝑒−2𝛼𝑠

𝑘ℎ𝑡, (60) 

 where     |𝜏𝑎𝑠
𝑘 𝜏𝑠𝑎

𝑘 | = |
4𝜂𝑠

𝑘

(𝜂𝑠
𝑘+1)2|    and    𝐺(ℎ𝑎 + ℎ𝑡) =

1

8𝜋2(ℎ𝑎+ℎ𝑡)2  

Amplitude of the return signal from the target (|𝐸𝑟𝑒𝑡𝑢𝑟𝑛_𝑡𝑎𝑟𝑔𝑒𝑡(ℎ𝑡)|) is measured by 

GPR experimentally. This value (|𝐸𝑟𝑒𝑡𝑢𝑟𝑛_𝑡𝑎𝑟𝑔𝑒𝑡(ℎ𝑡)|) can be written theoretically as 

shown in Eq. 61. 

 𝐴𝑡𝑎𝑟𝑔𝑒𝑡(ℎ𝑡) ≜ |𝐸𝑟𝑒𝑡𝑢𝑟𝑛𝑡𝑎𝑟𝑔𝑒𝑡
(ℎ𝑡)| = |𝐸0||𝜏𝑎𝑠

𝑘 𝜏𝑠𝑎
𝑘 ||𝛤𝑠𝑡

𝑘|𝐺(ℎ𝑎 + ℎ𝑡)𝑒−2𝛼𝑠
𝑘ℎ𝑡, (61) 

 where     |𝜏𝑎𝑠
𝑘 𝜏𝑠𝑎

𝑘 | = |
4𝜂𝑠

𝑘

(𝜂𝑠
𝑘+1)2|    and    𝐺(ℎ𝑎 + ℎ𝑡) =

1

8𝜋2(ℎ𝑎+ℎ𝑡)2  

By comparing Eq. 60 and Eq. 61, amplitude of the reflection coefficient of target 

(|𝛤𝑠𝑡
𝑘|) in the “𝑘𝑡ℎ” anomaly region can be computed by Eq. 62. 
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 |𝛤𝑠𝑡
𝑘| =

𝐴𝑡𝑎𝑟𝑔𝑒𝑡(ℎ𝑡)

𝐴(ℎ𝑡)
, (62) 

In Section 2.4.1, it is written that the working medium can be assumed as low-loss 

according to the frequency band of GPR. Therefore, the intrinsic impedance of soil is 

almost real (complex part is very small with respect to the real part as shown in Figure 

3.5). Moreover, in this study, our main interest is to identify the landmines with little 

or no metal content. These landmines are made of plastic, rubber, bakelite, glass or 

wood. All these materials satisfy low-loss condition. Therefore, the following 

equations are correct. 

 𝜂𝑠
𝑘 ≅ 𝑅𝑒{𝜂𝑠

𝑘}, (63) 

 𝜂𝑡
𝑘 ≅ 𝑅𝑒{𝜂𝑡

𝑘}, (64) 

Theoretical formula of 𝛤𝑠𝑡
𝑘 is given in Eq. 41. So, the following equation can be written: 

 |𝛤𝑠𝑡
𝑘| = {

𝛤𝑠𝑡
𝑘 𝑖𝑓 𝑅𝑒{𝜂𝑡

𝑘} > 𝑅𝑒{𝜂𝑠
𝑘} 

−𝛤𝑠𝑡
𝑘 𝑒𝑙𝑠𝑒

, (65) 

So, intrinsic impedance of the target is estimated by using Eq. 66; 

 𝜂𝑡
𝑘 ≅ 𝑅𝑒{𝜂𝑡

𝑘} ≅ {
𝑅𝑒{𝜂𝑠

𝑘}
1+|𝛤𝑠𝑡

𝑘 |

1−|𝛤𝑠𝑡
𝑘 |

𝑖𝑓 𝑅𝑒{𝜂𝑡
𝑘} > 𝑅𝑒{𝜂𝑠

𝑘}

𝑅𝑒{𝜂𝑠
𝑘}

1−|𝛤𝑠𝑡
𝑘 |

1+|𝛤𝑠𝑡
𝑘 |

𝑒𝑙𝑠𝑒
, (66) 

Dielectric feature of an anomaly region is equal to intrinsic impedance of the target 

(𝜂𝑡
𝑘) that is calculated from mid A-scan data by means of Eq. 59-66. Before applying 

Eq. 66, we should know whether 𝑅𝑒{𝜂𝑡
𝑘} is greater than 𝑅𝑒{𝜂𝑠

𝑘}. This inequality can 

be checked by observing the sign of the primary reflection. If 𝑅𝑒{𝜂𝑡
𝑘} is greater than 

𝑅𝑒{𝜂𝑠
𝑘}, 𝛤𝑠𝑡

𝑘 is greater than zero and sign of the primary reflection becomes positive. 

If 𝑅𝑒{𝜂𝑡
𝑘} is less than 𝑅𝑒{𝜂𝑠

𝑘}, 𝛤𝑠𝑡
𝑘 is less than zero and sign of the primary reflection 

becomes negative. It means that, primary reflection becomes flipped. This 

phenomenon can be understood by examining the following figure. 
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Figure 3.13. (a) Primary Reflection for 𝑅𝑒{𝜂𝑡
𝑘} > 𝑅𝑒{𝜂𝑠

𝑘}, (b) Primary Reflection for 𝑅𝑒{𝜂𝑡
𝑘} <

𝑅𝑒{𝜂𝑠
𝑘} 

If the buried object does not satisfy low-loss condition, Eq. 66 still estimates the real 

part of the intrinsic impedance as described in Appendix B. The flowchart of dielectric 

feature extraction method is given in Figure 3.14. 

 

Figure 3.14. Dielectric Feature Extraction Method 

 

(a) (b) 
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3.4.2. Energy Feature 

This feature is described as the minimum signal length that carries more than 90% of 

the signal’s total energy. The rationale behind this feature is to figure out the size of 

the region where the energy of the signal (ground bounce removed A-Scan data) is 

concentrated. To measure this, initially ground bounce is removed from mid A-Scan 

data of the corresponding B-Scan image. Then, cumulative energy curve of this data 

is calculated as described in [107]. An example A-Scan data and its corresponding 

cumulative energy curve is shown in Figure 3.15. 

 

Figure 3.15. (a) Ground Bounce Removed mid A-Scan Data, (b) Its Cumulative Energy Curve 

The formulation to extract the Energy Feature is given below: 

- Define 𝑛 ≔ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑎𝑛 𝑠𝑡𝑒𝑝𝑠 𝑖𝑛 𝐺𝐵 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑚𝑖𝑑 𝐴 − 𝑆𝑐𝑎𝑛 𝑑𝑎𝑡𝑎 

- Define 𝑒(𝑡) ≔ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑜𝑢𝑛𝑐𝑒 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝐴 𝑆𝑐𝑎𝑛 𝑑𝑎𝑡𝑎 𝑓𝑜𝑟 𝑡 = 1, … , 𝑛  

- Define 𝑐(𝑡) ≔ 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑢𝑟𝑣𝑒 𝑜𝑓 𝑒(𝑡) 𝑠. 𝑡. 𝑐(𝑡) ≜ ∑ |𝑒(𝑘)|2𝑡
𝑘=1  

- Find (𝑎, 𝑏) pairs which satisfy  

o 𝑎 < 𝑏 ≤ 𝑛 

o 𝑐(𝑏) − 𝑐(𝑎) ≥ 0.9𝑐(𝑛) 

- Choose the pair (𝑎, 𝑏) such that "𝑏 − 𝑎" 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

- Energy feature = minimum signal length = 𝑏 − 𝑎 

(a) (b) 
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3.4.3. Geometry Feature 

First two features (Energy feature and Dielectric feature) consider the A-scan data 

which has the highest amplitude in the corresponding B-Scan image and try to extract 

discriminative information about the material type of the target. On the other hand, 

geometry (shape) of the target is another important information to discriminate 

different objects. Geometry feature estimates the shape, especially the surface area of 

the buried object.  

To extract the geometry feature, right half of the corresponding B-Scan image is 

evaluated. Consider, 𝐼 is the image of the right part from the apex point of the 

corresponding B-scan data as shown in Figure 3.16. 

 

Figure 3.16. (a) B-Scan Data of PMA Landmine (x0 denotes the position of mid A-Scan data), (b) 

Right Half of It that is Denoted by I 

Like Scale Invariant Feature Transform (SIFT) [64] or Histogram of Oriented 

Gradients (HoG) [21-23] feature extraction methods, the gradient vector at each point 

is calculated containing the horizontal and vertical derivatives as given in Eq. 67. 

 𝐼𝑥 = 𝐼 ∗ 𝑔𝑥    and    𝐼𝑦 = 𝐼 ∗ 𝑔𝑦, (67) 

where 𝑔𝑥 and 𝑔𝑦 represent gradient filters [−1, 0, 1] and [−1, 0, 1]𝑇 respectively. The 

magnitude and the orientation of the resulting gradient vector are given in Eq. 68 and 

Eq. 69. 

(a) (b) 
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 G(𝑖, 𝑗) = √(𝐼𝑥(𝑖, 𝑗)2 + 𝐼𝑦(𝑖, 𝑗)2), (68) 

 A(𝑖, 𝑗) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐼𝑦(𝑖,𝑗)

𝐼𝑥(𝑖,𝑗)
, (69) 

Differently from the SIFT or HoG features, we do not assume a pre-specified block 

size. Instead, the gradient of the entire image 𝐼 is calculated at one time by Eq. 70 and 

Eq. 71. 

 normalized orientation A̅(𝑖, 𝑗) = A(𝑖, 𝑗) ∗  G(𝑖, 𝑗), (70) 

 gradient =
∑ ∑ A̅(𝑖,𝑗)𝑗𝑖

∑ ∑ G(𝑖,𝑗)𝑗𝑖
, (71) 

The gradient value, which is calculated by Eq. 71, is the geometry feature of the 

corresponding alarm location.  

If the surface area of a buried object is large, the corresponding target response 

hyperbola of GPR measurement will be fairly flat and straight. Otherwise, it will be 

sharp. Geometry feature estimates how much the target response hyperbola is flat or 

sharp. If the surface area of a buried object is large (corresponding hyperbola is flat), 

its geometry feature will be small. Otherwise, the geometry feature will be large. 

3.5. Classification 

In Section 3.4, Dielectric Feature, Energy Feature and Geometry Feature of each 

anomaly region are calculated. For the classification, two class (Class 1: Landmine, 

Class 2: Innocuous Object) support vector machine (SVM) algorithm [73, 74, 108] is 

implemented as described in Section 2.3.6. By focusing on the training samples, SVM 

finds an optimal separating hyperplane with the maximum margin between the classes. 

The main advantage of SVM approach is the formulation of its learning problem. By 

utilizing the quadratic optimization task, SVM reduces the number of operations in 

the learning mode. Therefore, SVM algorithm is usually much quicker with respect to 

other classification methods. 
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SVM is a linear classifier and a kernel function should be used with SVM to achieve 

non-linear classification. A kernel function K(x, y) transforms the original data space 

into a new space with higher dimension. There are different kernel functions i.e. linear, 

radial basis function, sigmoid, polynomial, etc. and for a specific dataset, choosing the 

best kernel function with the optimum parameters is an important step.  

In this study, we investigate the comparison of using three different kernel functions 

(sigmoid, radial basis function (RBF) and polynomial which are listed in Table 3.1) at 

the SVM algorithm. Each kernel function has particular parameters that must be 

optimized to obtain the best performance result. 

Table 3.1. Functions and Optimization Parameters of Sigmoid, RBF and Polynomial Kernels 

Kernel Name Function Optimization Parameters 

Sigmoid K(x, y) = tanh(γ(𝑥𝑇y) + c) γ =
1

2σ2
 and c 

RBF K(x, y) = exp(−γ‖𝑥 − 𝑦‖2) γ =
1

2σ2
 

Polynomial K(x, y) = (γ(𝑥𝑇y) + c)𝑑 γ =
1

2σ2
, c and d 

The classification results and the performance of the proposed features are given in 

Section 4. 
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CHAPTER 4  

 

4. RESULTS 

 

Performance of the proposed algorithm is presented in this section. For comparison, 

Histogram of oriented Gradients (HoG) feature extraction method [21-23] and Edge 

Histogram Descriptor (EHD) feature extraction method [20] are also implemented and 

the performance results are shown in the following sub-sections. 

4.1. Dataset 

In this study, simulation experiments are carried out to evaluate the proposed landmine 

discrimination algorithm by using gprMax electromagnetic modeling software [102, 

109]. For the simulations, PMA, PMD and PMN are modelled as landmines; buried 

tin box, plastic box, wooden box and stone are modelled as innocuous objects. To 

model clutter, a few small pebbles are located in the vicinity of a buried landmine or 

innocuous object. A sample gprMax input file is given in Appendix C.  

 

Figure 4.1. (a) Time Domain of Ricker Waveform, (b) Power Spectrum of Ricker Waveform 

(a) (b) 
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For the simulation, Hertzian dipole antenna and ricker waveform (which is also known 

as “Mexican hat”) are used with the center frequency of 1.5 GHz. Time domain and 

power spectrum of the ricker waveform is shown in Figure 4.1. According to the 

power spectrum of the ricker waveform, -10 dB frequency bandwidth of the antenna 

is from 0.8 to 2.3 GHz. The transceiver and receiver are located 16 cm above the air 

– soil interface. The distance between transceiver and receiver is 3 cm as shown in 

Figure 4.2. 

 

Figure 4.2. GPR Measurement Setup 

For the simulations, 12 different soil types are created with permeability 𝜇0, relative 

permittivity between 4.5 to 10 and conductivity of 10 mS/m [95, 96, 110-113]. These 

soil types and relative dielectric properties are shown in Table 4.1.  

Table 4.1. Different Soil Types and Their Dielectric Properties 

Soil Type 1 2 3 4 5 6 7 8 9 10 11 12 

Relative 

Permeability 
1 1 1 1 1 1 1 1 1 1 1 1 

Relative 

Permittivity 
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

Conductivity 

(mS/m) 
10 10 10 10 10 10 10 10 10 10 10 10 
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In general, soil is composed of sand, silt and clay particles. A fine concentration of 

them (around 40-50-10% respectively) is called as loam. These proportions can 

change and result in different loam types: sandy loam, silt loam, silt clay loam and 

loam. When the volumetric moisture content is 0.14 − 0.18 𝑐𝑚3/𝑐𝑚3 (that 

corresponds to a little wet a little dry soil 1-2 days after a rain), relative permittivity 

and electrical conductivity of sandy loam, loam, silt loam and silt clay loam are given 

in Table 4.2 for 1.5 GHz frequency [96, 111]. 

Table 4.2. Dielectric Constants of Different Soil Types at 1.5 GHz Frequency 

Soil Type Sand 

(%) 

Silt (%) Clay 

(%) 

Dielectric 

Constant 

(𝝐𝒓) 

Electrical 

Conductivity 

(ms/m) 

Sandy 

loam 
~ 50 ~ 35 ~ 15 ~ 7.9 – 10 ~ 0.1 – 1.5 

Loam ~ 40 ~ 50 ~ 10 ~ 7 – 9.2 ~ 3.8 – 15 

Silt loam ~ 20 ~ 65 ~ 15 ~ 6 – 8.2 ~ 1.7 – 15 

Silt clay 

loam 
~ 5 ~ 47.5 ~ 47.5 ~4.5 – 6.6 > 10 

To generate more realistic scenarios, a few random pebbles are created and located 

around the buried objects. Initially, landmines and innocuous objects are buried into 

these 12 different soil types at 3 different burial depths (10, 12 and 15 cm) without 

any pebbles and simulation results are collected. Then, 5 pebbles are located in the 

vicinity of the buried objects and simulations are repeated. Pebbles are modeled as 

spheres such that the radius is chosen randomly between 1.5 to 2.5 cm and the location 

is also chosen randomly around the buried object. Finally, 10 pebbles are located in 

the vicinity of the buried objects and simulations are repeated again. All in all, there 

are 12 different soil types, 3 different burial depths and 3 different pebble conditions 

(no pebble, 5 pebbles and 10 pebbles), hence 12x3x3=108 different simulation results 

are generated for each object. 

4.1.1. Simulated Landmine Data 

For the simulations, three different landmines (PMA, PMD and PMN) are used. PMA 

is an anti-personnel blast mine manufactured in the former Yugoslavia [114]. It is a 
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plastic box mine that is usually colored dark green. PMD is a rectangular wooden anti-

personnel blast mine [115]. It is usually either unpainted wood or olive-green color. 

PMN is a bakelite-cased, pressure operated, anti-personnel blast mine manufactured 

in the former Soviet Union [116]. The mine has a body that is usually raw (reddish-

brown) bakelite with a black rubber top. Pictures and dimensions of PMA, PMD and 

PMN landmines are given in Figure 4.3 and Table 4.3 respectively. 

 

Figure 4.3. (a) PMA Landmine, (b) PMD Landmine, (c) PMN Landmine 

Table 4.3. Simulated Landmine Dimensions 

L
an

d
m

in
e 

Casing Explosive 

Charge 
Material Dimensions 

Width 

(mm) 

Length 

(mm) 

Radius 

(mm) 

Height 

(mm) 

Wall-

thickness 

(mm) 

PMA Plastic 70 140 - 30 3 200 g TNT 

PMD Wood 90 190 - 65 3 200 g TNT 

PMN Bakelite, 

rubber 

- - 56 56 3 200 g TNT 

By using gprMax modeling software, PMA is modelled as full of TNT inside a plastic 

casing with 3 cm x 7 cm x 14 cm dimensions and 3 mm wall thickness. PMD is 

modelled as full of TNT inside a wooden casing with 6.5 cm x 9 cm x 19 cm 

dimensions and 3 mm wall thickness. PMN is modelled as full of TNT inside a 

bakelite casing with 112 mm diameter, 56 mm height and 3 mm wall thickness. 

Moreover, the rubber top with 3 mm thickness and a metallic cylindrical fuse with 4 

mm diameter and 56 mm height at the middle of PMN are also modelled. Then, these 

landmines are buried into 12 different soil types at 3 different burial depths for each 3 

(a) (b) (c) 
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different pebble conditions. For each case, GPR antenna is moved through cross-track 

(x) direction above the target and an A-Scan measurement is taken at each cm (∆𝑥 =

1 𝑐𝑚). For each target, total of 51 A-Scan data are measured to generate a B-Scan 

image. Finally, 12x3x3x3=324 different B-Scan images are generated which belong 

to the simulated landmine data. As example, simulation results of landmine models 

for a sample soil type are given in Table 4.4. 

Table 4.4. Simulation Results of Landmine Models 

 PMA PMD PMN 
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4.1.2. Simulated Innocuous Object Data 

For the simulations, four different innocuous objects (tin box, plastic box, wooden box 

and stone) are used. Pictures and dimensions of innocuous objects are given in Figure 

4.4 and Table 4.5 respectively. 
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Figure 4.4. (a) Tin Box, (b) Plastic Box, (c) Wooden Box, (d) Stone 

Table 4.5. Simulated Innocuous Objects’ Dimensions 

C
lu

tt
er

 Material Dimensions 

Width 

(mm) 

Length 

(mm) 

Radius 

(mm) 

Height 

(mm) 

Wall-thickness 

(mm) 

Tin Box Aluminum - - 40 80 3 

Plastic Box Plastic 70 140 - 30 3 

Wooden Box Wood 90 190 - 65 3 

Stone Sandstone 70 140 - 30 - 

By using gprMax modeling software, the first innocuous object is modelled as an 

empty cylindrical aluminum box with 4 cm radius, 8 cm length and 3 mm wall 

thickness. The second object is modelled as an empty plastic box with 3 cm x 7 cm x 

14 cm dimensions and 3 mm wall thickness. The third object is modelled as an empty 

wooden box with 6.5 cm x 9 cm x 19 cm dimensions and 3 mm wall thickness. The 

last object is modelled as a stone with 3 cm x 7 cm x 14 cm dimensions (same 

dimensions with PMA landmine) and 1 cm surface roughness. Then, these innocuous 

objects are buried into 12 different soil types at 3 different burial depths for each 3 

different pebble conditions. For each case, GPR antenna is moved through cross-track 

(x) direction above the target and an A-Scan measurement is taken at each cm (∆𝑥 =

1 𝑐𝑚). For each target, total of 51 A-Scan data are measured to generate a B-Scan 

image. Finally 12x3x3x4=432 different B-Scan images are generated which belong to 

the simulated innocuous objects. As example, simulation results of these models for a 

sample soil type are given in Table 4.6. 

 

(a) (b) (c) (d) 
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Table 4.6. Simulation Results of Innocuous Objects 

 Tin Box Plastic Box Wooden Box Stone 
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4.2. Proposed Features / HoG Features / EHD Features Classification and 

Comparison ROC Curves 

For the simulated landmine and innocuous object data, HoG features, EHD features 

and the proposed features in this study are extracted. HoG and EHD feature extraction 

algorithms are applied as described in Section 2.3.4 and 2.3.5 respectively. For the 

proposed feature extraction algorithm, the calibration object is chosen as a cylindrical 

PEC with 4 cm length and 10 cm diameter. Dielectric feature, energy feature and 

geometry feature are extracted and two-class support vector machine (SVM) 

algorithm is used for classification. For HoG and EHD features, SVM algorithm is 

also used for classification. Initially the best kernel match and optimum parameters 

are calculated for HoG, EHD and the proposed features; then the performance metrics 

of these features are computed by using the pre-determined kernel functions. 

In this study, 324 landmine data and 432 innocuous object data are simulated as given 

in Section 4.1. Initially, 150 landmine data are selected for parameter optimization 

step and another 150 landmine data are selected for performance evaluation step. 
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Similarly, 150 innocuous object data are selected for parameter optimization step and 

another 150 innocuous object data are selected for performance evaluation step as 

shown in Figure 4.5. Note that, the selected data for parameter optimization step and 

performance evaluation step are different. 

 

Figure 4.5. Data Allocation for Parameter Optimization and Performance Evaluation 

The selected data for parameter optimization step is used to choose the best kernel 

function with the optimum parameters to achieve the highest performance. In 

parameter optimization step, the same dataset is used for HoG features, EHD features 

and the proposed features to make a fair comparison. Afterwards, the selected data for 

performance evaluation step is used to evaluate the performance of HoG features, 

EHD features and the proposed features. In this step, SVM algorithm is used with the 

selected kernel function and the optimum parameters. To implement SVM, “fitcsvm” 

command of MATLAB is used. To evaluate the performance, 10-fold cross-validation 

method is applied. For this, “crossval” and “kfoldPredict” commands of MATLAB 

are used. After this step, performance metrics (accuracy, receiver operating 

characteristics (ROC) curve and area under curve (AUC)) are obtained and compared 

for three different features (HoG, EHD and the proposed features). To draw ROC 

curve, “perfcurve” command of MATLAB is used. The flowchart of this step is given 

in Figure 4.6. 
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Figure 4.6. Parameter Optimization and Performance Evaluation Steps 

Parameter optimization and performance evaluation steps are applied for HoG 

features, EHD features and the proposed features separately. 

4.2.1. Kernel Selection and Parameter Optimization 

In this section, firstly HoG features, EHD features and the proposed features in this 

study are extracted for 300 data (150 landmine and 150 innocuous objects) that are 

selected for parameter optimization step. Afterwards, performance of SVM with 

different kernel functions is evaluated for these features by using 10-fold cross 

validation. As explained in Section 3.5, sigmoid, RBF and polynomial kernel 



 

 

 

76 

 

functions are used in this study. Parameters of these kernels are given in Table 3.1. 

During parameter optimization step, σ value is changed between 0 and 25 (σ ∈

(0, 25]), c value is changed between 0 and 10 (c ∈ [0, 10]) and d value is changed 

between 1 and 5 (d ∈ [1, 5]). (Note that, σ = 0 value is not chosen to prevent zero 

division (γ =
1

2σ2). Instead, σ = 10−3 is taken for the minimum value of σ). Within 

these ranges, sigmoid kernel function is optimized in two-dimensional parameter 

space (σ and c), RBF kernel function is optimized in one-dimensional parameter space 

(σ) and polynomial kernel function is optimized in three-dimensional parameter space 

(σ, c and d). For all different σ, c and d values, accuracies of SVM are evaluated by 

using these kernel functions.  Accuracy is a reliable performance metric for SVM that 

can be calculated as given in Eq. 72. 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
, (72) 

where  TP: True positive (a landmine is classified correctly – correct detection) 

TN: True negative (an innocuous object is classified correctly – correct rejection) 

FN: False negative (a landmine is classified as an innocuous object – miss) 

FP: False positive (an innocuous object is classified as a landmine – false alarm) 

According to Eq. 72, accuracy values of SVM for HoG features of the selected data 

for parameter optimization step are calculated by using sigmoid kernel function. 

Accuracy values for different parameters are shown in Figure 4.7.  
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Figure 4.7. Accuracy Values of SVM for HoG Features by Using Sigmoid Kernel 

According to Figure 4.7, accuracy of SVM for HoG features is maximum when the 

coefficient of the sigmoid kernel is 0. However, in the figure it is difficult to identify 

the optimum sigma value which makes the accuracy maximum. Therefore, while 

coefficient is 0, sigma value is changed from 0 to 25 to detect the optimum sigma 

value. As shown in Figure 4.8, when coefficient is 0 and the sigma value is 17, 

accuracy of SVM with sigmoid kernel is 0.8354 for HoG features. 

 

Figure 4.8. Accuracy Values of SVM for HoG Features by Using Sigmoid Kernel with Coefficient=0 
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Accuracy values of SVM for HoG features of the selected data for parameter 

optimization step are calculated by using RBF kernel function. Accuracy values for 

different parameters are shown in Figure 4.9. According to the figure, accuracy of 

SVM for HoG features is maximum when the parameter of RBF kernel is chosen as 

sigma is 10. For this parameter, accuracy of SVM is 0.8887 for HoG features. 

 

Figure 4.9. Accuracy Values of SVM for HoG Features by Using RBF Kernel 

Accuracy values of SVM for HoG features of the selected data for parameter 

optimization step are calculated by using polynomial kernel function. Accuracy values 

for different parameters are shown in Figure 4.10 and 4.11. According to the figures, 

accuracy of SVM for HoG features is maximum when the parameters of polynomial 

kernel are chosen as sigma is 2, degree is 2 and coefficient is 2. For these parameters, 

accuracy of SVM is 0.8998 for HoG features. 
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Figure 4.10. Accuracy Values of SVM for HoG Features by Using Polynomial Kernel with Degree=2 

 

Figure 4.11. Accuracy Values of SVM for HoG Features by Using Polynomial Kernel with Sigma=2, 

Coefficient=2 

According to Eq. 72, accuracy values of SVM for HoG features of the selected data 

for parameter optimization step are calculated by using sigmoid, RBF and polynomial 

kernel functions. Results are given in Figures 4.7-11 and the optimum parameters are 

shown in Table 4.7. 
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Table 4.7. Accuracy of SVM for HoG Features by Using Different Kernels 

Kernel Optimum Parameters Accuracy 

Sigmoid σ = 17 and c = 0 0.8354 

RBF σ = 10 0.8887 

Polynomial σ = 2, c = 2 and d = 2 0.8998 

 

Accuracy values of SVM for EHD features of the selected data for parameter 

optimization step are calculated by using sigmoid kernel function. Accuracy values 

for different parameters are shown in Figure 4.12.  

 

Figure 4.12. Accuracy Values of SVM for EHD Features by Using Sigmoid Kernel 

According to Figure 4.12, accuracy of SVM for EHD features is maximum when the 

coefficient of the sigmoid kernel is 0. However, in the figure it is difficult to identify 

the optimum sigma value which makes the accuracy maximum. Therefore, while 

coefficient is 0, sigma value is changed from 0 to 25 to detect the optimum sigma 

value. As shown in Figure 4.13, when coefficient is 0 and the sigma value is 14, 

accuracy of SVM with sigmoid kernel is 0.7266 for EHD features. 
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Figure 4.13. Accuracy Values of SVM for EHD Features by Using Sigmoid Kernel with 

Coefficient=0 

Accuracy values of SVM for EHD features of the selected data for parameter 

optimization step are calculated by using RBF kernel function. Accuracy values for 

different parameters are shown in Figure 4.14. According to the figure, accuracy of 

SVM for EHD features is maximum when the parameter of RBF kernel is chosen as 

sigma is 4. For this parameter, accuracy of SVM is 0.8663 for EHD features. 

 

Figure 4.14. Accuracy Values of SVM for EHD Features by Using RBF Kernel 
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Accuracy values of SVM for EHD features of the selected data for parameter 

optimization step are calculated by using polynomial kernel function. Accuracy values 

for different parameters are shown in Figure 4.15 and 4.16. According to the figures, 

accuracy of SVM for EHD features is maximum when the parameters of polynomial 

kernel are chosen as sigma is 1, degree is 2 and coefficient is 9. For these parameters, 

accuracy of SVM is 0.8689 for EHD features. 

 

Figure 4.15. Accuracy Values of SVM for EHD Features by Using Polynomial Kernel with Degree=2 

 

Figure 4.16. Accuracy Values of SVM for EHD Features by Using Polynomial Kernel with Sigma=1, 

Coefficient=9 
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According to Eq. 72, accuracy values of SVM for EHD features of the selected data 

for parameter optimization step are calculated by using sigmoid, RBF and polynomial 

kernel functions. Results are given in Figures 4.12-16 and the optimum parameters are 

shown in Table 4.8. 

Table 4.8. Accuracy of SVM for EHD Features by Using Different Kernels 

Kernel Optimum Parameters Accuracy 

Sigmoid σ = 14 and c = 0 0.7266 

RBF σ = 4 0.8663 

Polynomial σ = 1, c = 9 and d = 2 0.8689 

 

Accuracy values of SVM for the proposed features of the selected data for parameter 

optimization step are calculated by using sigmoid kernel function. Accuracy values 

for different parameters are shown in Figure 4.17.  

 

Figure 4.17. Accuracy Values of SVM for the Proposed Features by Using Sigmoid Kernel 

According to Figure 4.17, accuracy of SVM for the proposed features is maximum 

when the coefficient of the sigmoid kernel is 0. However, in the figure it is difficult to 
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identify the optimum sigma value which makes the accuracy maximum. Therefore, 

while coefficient is 0, sigma value is changed from 0 to 25 to detect the optimum 

sigma value. As shown in Figure 4.18, when coefficient is 0 and the sigma value is 4, 

accuracy of SVM with sigmoid kernel is 0.7674 for the proposed features. 

 

Figure 4.18. Accuracy Values of SVM for the Proposed Features by Using Sigmoid Kernel with 

Coefficient=0 

Accuracy values of SVM for the proposed features of the selected data for parameter 

optimization step are calculated by using RBF kernel function. Accuracy values for 

different parameters are shown in Figure 4.19. According to the figure, accuracy of 

SVM for the proposed features is maximum when the parameter of RBF kernel is 

chosen as sigma is 0.7. For this parameter, accuracy of SVM is 0.9318 for the proposed 

features. 
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Figure 4.19. Accuracy Values of SVM for the Proposed Features by Using RBF Kernel 

Accuracy values of SVM for the proposed features of the selected data for parameter 

optimization step are calculated by using polynomial kernel function. Accuracy values 

for different parameters are shown in Figure 4.20 and 4.21. According to the figures, 

accuracy of SVM for the proposed features is maximum when the parameters of 

polynomial kernel are chosen as sigma is 0.5, degree is 2 and coefficient is 8. For these 

parameters, accuracy of SVM is 0.9378 for the proposed features. 

 

Figure 4.20. Accuracy Values of SVM for the Proposed Features by Using Polynomial Kernel with 

Degree=2 
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Figure 4.21. Accuracy Values of SVM for the Proposed Features by Using Polynomial Kernel with 

Sigma=0.5, Coefficient=8 

According to Eq. 72, accuracy values of SVM for the proposed features of the selected 

data for parameter optimization step are calculated by using sigmoid, RBF and 

polynomial kernel functions. Results are given in Figures 4.17-21 and the optimum 

parameters are shown in Table 4.9. 

Table 4.9. Accuracy of SVM for the Proposed Features by Using Different Kernels 

Kernel Optimum Parameters Accuracy 

Sigmoid σ = 4 and c = 0 0.7674 

RBF σ = 0.7 0.9318 

Polynomial σ = 0.5, c = 8 and d = 2 0.9378 

 

According to the accuracy values given in Tables 4.7-9, polynomial kernel function 

gives the best accuracy for all feature types. The optimum parameters for the 

polynomial kernel are σ=2, c=2 and d=2 for HoG features; σ=1, c=9 and d=2 for EHD 

features and σ=0.5, c=8 and d=2 for the proposed features in this study. In the next 
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step, performance of different features will be evaluated by using polynomial kernel 

function with optimum parameters. Although polynomial kernel gives the best 

accuracy for all feature types, RBF kernel function gives comparable accuracy values. 

Since RBF kernel has only one parameter and it is computationally less expensive, 

RBF kernel may also be used to avoid computational cost.  

4.2.2. Performance Evaluation 

In this section, HoG, EHD and the proposed features of the selected data for 

performance evaluation step are classified by SVM with the polynomial kernel 

function and the optimum parameters. Afterwards, 10-fold cross validation method is 

used to calculate the performance of HoG, EHD and the proposed features. For the 

performance evaluation, accuracy of these features is calculated as given in Eq. 72. 

Moreover, receiver operating characteristics (ROC) curves, area under curve (AUC) 

values and the confusion matrices are given for comparison. 

HoG features, EHD features and the proposed features of the selected data for 

performance evaluation step are classified by SVM. For each case polynomial kernel 

function is used with the optimum parameters computed in Section 4.2.1. 10-fold cross 

validation method is applied to obtain the results. Confusion matrices and the accuracy 

values are given in Table 4.10. 

Table 4.10. Confusion Matrices and Accuracy values of SVM for HoG, EHD and the Proposed 

features by using polynomial kernel and optimum parameters computed in Sec 4.2.1 

 

 HoG Features EHD Features Proposed Features 
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FN 

 12 
TN 

134 
FN 

29 
TN 

132 
FN 

7 
TN 

137 
      

Accuracy 0.9067 0.8433 0.9333 
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Finally, Figure 4.22 shows the results (comparison ROC curves and AUC values) 

obtained from evaluating SVM on the proposed features, HoG features and EHD 

features using the aforementioned cross-validation procedure. 

 

Figure 4.22. Classification Results of the Proposed Features / HoG Features / EHD Features 

According to accuracy values, ROC curves and the areas under these curves (AUC 

values), the proposed features in this study has higher discrimination performance than 

HoG and EHD features. 

4.2.3. Classification and Class Boundaries of Data with the Proposed Features 

In Section 4.2.2, performance of the proposed features is given. In this section, classes 

and class boundaries are shown visually and the accuracy values of dielectric, energy 

and geometry features are computed separately. Therefore, success of each individual 

feature and the effect on final result is clarified. 

During this study, 324 landmine data and 432 innocuous object data are simulated as 

given in Section 4.1. To visualize the classes and class boundaries, simulated data is 

divided into two different sets randomly as shown in Figure 4.5. In this case, the first 
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data set contains 200 landmine data and 200 innocuous object data while the second 

data set contains 100 landmine data and 100 innocuous object data. The first data set 

is classified by SVM with the polynomial kernel and the optimum parameters for the 

proposed features. This data set is classified with 20 support vectors as given in Figure 

4.23. 

 

Figure 4.23. Support Vectors of the Simulated Landmine and Innocuous Object Data 

In this study, three discriminative features are extracted for landmine identification. 

Contribution of each feature to the overall performance is evaluated here. As shown 

in Table 4.10, accuracy of the proposed features for the data set of performance 

evaluation step is 0.93. For the same data set, accuracy of the dielectric feature is 0.81, 

accuracy of energy feature is 0.86 and accuracy of geometry feature is 0.76. Moreover, 

dielectric and energy feature give around 0.91 accuracy together. Therefore, the 

proposed algorithm has higher discrimination power than HoG and EHD algorithm 

even if two features (dielectric and energy) are used.  

As described above, the simulated data set is divided into two groups such that the 

first group has 200 landmine data and 200 innocuous object data for training; the 
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second group has 100 landmine data and 100 innocuous object data for testing. The 

first data set is classified by SVM with the polynomial kernel and the optimum 

parameters by using only two features (dielectric and energy). Classes, support vectors 

and class boundaries are shown in Figure 4.24. 

 

Figure 4.24. Class Boundaries and Support Vectors of the Simulated Data 

Afterwards, the second data set is used to test the model. Classification result of the 

second group, which has 100 landmine data and 100 innocuous object data, is shown 

in Figure 4.25. In the figure, some data points are numbered. Number 1 and 2 show 

the landmine data classified as innocuous object (false negative). Number 6-15 show 

the innocuous object data classified as landmine (false positive). Number 3, 4 and 5 

show three landmine data which are classified correctly however very close to the 

classification boundary. Number 16-21 show the innocuous object data which are on 

the limits of the feature space.  
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Figure 4.25. Classification Result of the Second Group according to the Model Trained by using the 

First Group 

The simulated data belong to these 21 extreme points are shown in Figure 4.26. Details 

of the simulation scenarios (buried objects, soil types and burial depths) are given in 

Table 4.11. These scenarios are used to generate B-Scan images which are shown in 

Figure 4.26. 

     
(1) (2) (3) 



 

 

 

92 

 

     

     

     

     

     

(4) (5) (6) 

(7) (8) (9) 
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Figure 4.26. B-Scan Data of the Numbered Points in Figure 4.25 

Table 4.11. Simulation Scenarios with respect to B-Scan Images in Figure 4.26 

Data Point Buried Object Soil Type Burial Depth 

1 PMD 2 10 cm 

2 PMA 8 15 cm 

3 PMA 1 12 cm 

4 PMA 5 10 cm 

5 PMD 11 15 cm 

6 Wooden box 8 15 cm 

7 Wooden box 11 15 cm 

8 Plastic box 10 15 cm 

9 Plastic box 10 12 cm 

10 Plastic box 10 15 cm 

11 Wooden box 7 10 cm 

12 Wooden box 11 15 cm 

13 Wooden box 11 10 cm 

14 Wooden box 10 15 cm 

15 Wooden box 10  12 cm 

16 Plastic box 1 12 cm 

17 Stone 12 12 cm 

18 Stone 6 12 cm 

19 Plastic box 3 10 cm 

20 Wooden box 5 10 cm 

21 Tin box 10 10 cm 

Up to this point, classification is performed for two different classes as landmine and 

innocuous object. The proposed algorithm can also classify different landmines and 

different innocuous objects unless their dielectric properties are very similar. The 

training data given in Figure 4.24 is also trained for multi-class classification. As 

shown in Figure 4.27, PMA, PMD and PMN landmines, stone and tin box have 

distinct classes and class boundaries. Plastic box and wooden box have similar 

(19) (20) (21) 
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dielectric properties therefore their classes overlap. All in all, the proposed features 

can classify the simulated data as PMA, PMD, PMN, stone, tin box and 

plastic/wooden box as shown in Figure 4.27. 

 

Figure 4.27. Multi-class Classification of the Simulated Data 

As explained in Section 2.2.4, the basic steps of machine learning algorithms are 

training and testing. The algorithm learns a prediction rule based on the training data 

and applies this rule to classify test data. The training set consists of different 

categories of data and the prediction rule creates class boundaries based on these 

categories. For a new test data, which is from a completely new category, the 

performance of the prediction rule is ambiguous. For instance, our SVM classifier is 

trained for two class classification as landmine and innocuous object. Simulation data 

of PMA, PMD and PMN landmines are used to create landmine class boundaries. If a 

different landmine is tested by using our algorithm and our training data given in 

Figure 4.24, performance of the algorithm is uncertain. To observe the performance 

of our algorithm for different types of landmines (without any training data), we create 
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simulations of PMA-3, Gyata-64 and PPM-2 landmines. Pictures and dimensions of 

these landmines are given in Figure 4.28 and Table 4.12 respectively.  

     

 

Figure 4.28. (a) PMA-3, (b) Gyata-64, (c) PPM-2 

Table 4.12. Dimensions of New Landmines 

Landmine Casing Explosive 

Charge 
Material Dimensions 

Radius 

(mm) 

Height (mm) Wall-thickness 

(mm) 

 

PMA-3 Rubber 55 40 3 35 g TNT 

Gyata-64 Bakelite, rubber 54 61 3 300 g TNT 

PPM-2 Plastic 67 60 3 110 g TNT 

By using gprMax modeling software, these landmines are modeled into a soil which 

has relative permeability of 1, permittivity of 4.5 and conductivity of 10 mS/m at 10 

cm depth. Then, dielectric feature and energy feature of these three different 

landmines are calculated. These landmine data are classified correctly by our 

algorithm as shown in Figure 4.29. 

(a) (b) (c) 
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Figure 4.29. Classification Result of New Landmine Data by Our Algorithm  

4.3. Complexity of the Proposed Features 

In this study, three discriminative features are extracted for an anomaly region and 

detected targets are classified in a three-dimensional feature space. As explained 

before, HoG and EHD feature descriptors are 162 and 35-dimensional vectors 

respectively. To compare the complexity, feature extraction times and classification 

times of HoG features, EHD features and the proposed features in this study are 

determined. The extraction times of these features for 100 B-scan image that are 

randomly selected from the simulated data-set are calculated by MATLAB in a 

computer that has Intel Core i7-4790 CPU with 3.60 GHz base frequency and 4 Cores. 

Average feature extraction times of these 100 B-scan images are given in Table 4.13. 

Moreover, classification times of these features are calculated such that computation 

time of SVM training phase and SVM test phase are evaluated separately. To achieve 

this, simulated data is divided into two different sets randomly as shown in Figure 4.5. 

In that case the first data set contains 200 landmine data and 200 innocuous object 

data while the second data set contains 100 landmine data and 100 innocuous object 
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data. The first data set is used to train SVM and the second data set is used for testing 

the model. MATLAB “fitcsvm” command is used to train SVM model. For two-class 

classification, fitcsvm uses Sequential Minimal Optimization (SMO) solver. SMO 

minimizes the soft margin problem given in Eq. 38 by using several two-point 

minimizations. Details of SMO algorithm is given in [117]. For testing the model, 

“predict” command is used. To achieve more robust solution, this process is repeated 

50 times. Training time and test time are written down for each case. Finally, average 

of these 50 values is calculated to find the computation time of training phase and test 

phase. All in all, feature extraction time and classification times are pretty lower for 

the proposed features with respect to HoG and EHD features as shown in Table 4.13. 

Table 4.13. Extraction and Classification Times of HoG features, EHD Features and the Proposed 

Features 

Feature Extraction time (ms) 
Classification time (ms) 

Training Phase Test Phase 

HoG 52.76 489 32.01 

EHD 49.66 486 18.38 

Proposed 15.21 423 10.49 

 

4.4. Robustness of the Proposed Features 

In this study, two of our proposed features are extracted from the mid A-Scan data of 

a given B-Scan image. If this A-Scan data is not chosen correctly, the resultant features 

become slightly different. By considering GPR step size and equipment noise, 

possible errors while choosing the mid A-Scan data and the resultant effects to the 

proposed features are evaluated.  

During simulations, GPR step size is considered as 1 cm. That means, GPR antenna 

takes measurement at each cm. However, in real experiments it is not always possible. 

GPR systems generally take one measurement every 5 cm. Therefore, measurement 
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point may be 3 cm shifted from the position of mid A-Scan data at worst. In that case, 

dielectric feature and energy feature of the proposed algorithm become slightly 

different. To evaluate this issue, we have calculated the difference of the proposed 

features if mid A-Scan data is chosen 3 cm shifted. In Figure 4.30, dielectric and 

energy features of PMA, PMD, PMN landmines, stone and tin box are shown into 

different soil types at different burial depths in a clutter-free environment. As shown 

in the figure, these different objects are completely distinguishable without any clutter. 

In Figure 4.31, dielectric and energy features of the same data set are calculated again 

by using 3 cm shifted mid A-Scan data. These new results are given with red symbols. 

As shown in the figure, these objects are still distinguishable even if the mid A-Scan 

data is chosen 3 cm shifted. 

 

Figure 4.30. Dielectric and Energy Features of Different Objects 
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Figure 4.31. Dielectric and Energy Features by using 3 cm Shifted mid A-Scan Data 

 Moreover, the experiments given in Section 4.2.2 are repeated to calculate the 

accuracy of the proposed features for shifted measurement results. However, in that 

case for a given B-Scan image, mid A-Scan data, A-Scan data nearest to mid A-Scan 

data (1 cm shifted) or A-Scan data second nearest to mid A-Scan data (2 cm shifted) 

is used. To calculate dielectric feature and energy feature, one of these three A-Scan 

data is chosen randomly. Finally, performance of the proposed features is computed 

again. Accuracy value is around 0.9114 which is still higher than the performance of 

HoG and EHD features.  

In this study, calculations are performed for normal incidence of GPR signal from the 

underground object. Pressure-operated landmines are buried flat on the ground to 

activate the fuse when a person (or vehicle) passes above the mine. However, during 

the years the position of the buried landmines may change due to underground 

movements of earth. Effects of orientations of buried objects to the proposed features 

are evaluated. In the gprMax modelling software, the cylindrical objects can be placed 

inclined underground. However, the cornered objects and boxes can only be located 

parallel to the ground. Therefore, to evaluate the orientation effect, PMN landmine 

(which has cylindrical shape) is placed inclined from 2-degree to 10-degree orientation 
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randomly. When orientation increases, dielectric feature and energy feature tend to 

increase. In Figure 4.32, dielectric and energy features of inclined PMN are given with 

red symbols. As shown in the figure, some inclined PMN features occur in PMA and 

PMD classes however they are still distinguishable from innocuous objects.  

 

Figure 4.32. Different Orientations of PMN Landmine 
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CHAPTER 5  

 

5. CONCLUSION 

This study proposes two-stage algorithm as the first stage is calibration measurement 

and second stage is detection and classification of buried objects by utilizing three 

discriminative features. Results show that the proposed features in this study increase 

discrimination performance when compared to two well-known image-based features. 

The main reason is that image-based feature extraction techniques analyze the overall 

texture of B-Scan image in detail. This texture primarily depends on shape of the 

buried object. Object material type partially effects secondary reflections; hence 

texture of B-Scan image indirectly depends on the material type of the buried object. 

However, soil inhomogeneity and random clutter deteriorate the texture and creates 

secondary effects on the B-Scan data. Therefore, image-based features of a buried 

object change due to clutter effect, so the discrimination performance of these 

algorithms decreases. On the other hand, this paper extracts a simple feature (geometry 

feature) about the size of the buried object. It is a rough estimation of gradient of the 

underground target and the corruptive effect of clutter to the geometry feature is less 

compared to the same effect to image-based features. To achieve more robust solution, 

this paper combines the rough gradient estimation with the dielectric and energy 

feature that depend on material type directly.  Therefore, the proposed features in this 

study do not consider only the texture of B-Scan image but also the material content 

of the buried object. In first place, this is the main advantage of the proposed study 

with respect to image-based techniques.  

Moreover, computational complexity of the proposed algorithm is lower than many 

image-based techniques as given in the results section. Since, the proposed algorithm 

uses a three-dimensional feature vector which has pretty lower size than many feature 

descriptors in the literature. Therefore, extraction of the proposed features and 

classification of them are computationally cheaper. 
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Additionally, the algorithm proposed in this study is highly robust against target 

orientation and measurement errors (due to GPR step size and equipment noise) as 

given in the results section.  

Furthermore, the algorithm derived in this paper proposes to take a calibration 

measurement in the experimental area before starting landmine sweeping. This 

calibration step is not common for GPR-based landmine detection algorithms in the 

literature. Although it seems an extra workload for landmine sweeping, it is very 

advantageous and increases the performance efficiently. The context can be clearly 

identified and the properties of the surrounding soil can be revealed by means of the 

calibration step. The initial measurement can be updated during landmine sweeping 

by using the recent ground bounce value. Hence, the context information can be 

revealed for each measurement separately. Moreover, users complain about the low 

performance of some commercial GPRs. The main reason is that manufacturers 

produce GPR and train the algorithm by using the data set in the country of origin. 

When they sell this GPR to another country, performance of the algorithm decreases 

for very different soil types under very different environmental conditions. To prevent 

this kind of performance loss, the calibration measurement is very beneficial to adapt 

the algorithm for dissimilar areas with different environmental conditions. 

In the future, iterative approaches to calculate the dielectric properties of underground 

objects [11] can be applied to extract the dielectric feature derived in this study. By 

doing so, the calibration measurement can be removed from the algorithm. In addition, 

the proposed algorithm should be tested on real landmine and innocuous object data 

set. 
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APPENDICES 

 

A. Comparison of Normal and Oblique Incidence for Calibration Measurement 

In this study, calculations are performed under normal incidence case to achieve 

physics-based parameters as shown in Figure 3.3. However, there is a distance 

between transmitter and receiver of GPR, therefore an oblique ray transmitted from 

TX can reach RX of GPR as shown in Figure 0.1. In the figure, the distance between 

TX and RX is 2d; position of the reflection point on the PEC surface is denoted by (x, 

y) and center of the PEC surface is assumed as origin (0, 0). In this section, we will 

show the difference between the calculations for normal incidence case and for 

oblique rays during calibration measurement. 

 

Figure 0.1. Calibration Measurement Setup by Considering Oblique Rays 

If we focus on the incident wave transmitted from TX and the return wave reflected 

from PEC surface separately, 2-D drawings can be achieved as shown in Figure 0.2. 



 

 

 

114 

 

 

Figure 0.2. (a) Incident Wave Transmitted from TX, (b) Return Wave Reflected from PEC Surface 

According to the Brewster’s Law [92], angles ∅1, ∅2, ∅3 𝑎𝑛𝑑 ∅4 should satisfy the 

following equations. 

 sin ∅1 = √𝜖𝑠𝑜𝑖𝑙 sin ∅2, (73) 

 sin ∅3 = √𝜖𝑠𝑜𝑖𝑙 sin ∅4, (74) 

During simulations, Hertzian dipole antenna is used. Radiation pattern of a dipole 

antenna is shown in Figure 0.3 [103].  

 

Figure 0.3. Radiation Pattern of Dipole Antenna 

(a) (b) 
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The shape of the pattern resembles a bagel. The signal strength does not change with 

respect to angle along x-axis. However, the signal strength is proportional with cos 𝜃 

where 𝜃 is the angle between the projection of the signal onto x=0 plane and z axis as 

shown in Figure 0.4 [103]. 

 

Figure 0.4. (a) Angle between the Projection of the Transmitted Signal onto x=0 Plane and z Axis, (b) 

Angle between the Projection of the Return Signal onto x=0 Plane and z Axis 

According to Figure 0.4, 𝜃1 and 𝜃2 can be computed as: 

 𝜃1 = tan−1(tan ∅1 sin 𝜑1), (75) 

 𝜃2 = tan−1(tan ∅3 sin 𝜑2), (76) 

Transmission and reflection for normal incidence are given in Eq. 41. For oblique 

rays, these coefficients can be computed according to Fresnel’s Equations as follows 

[92]: 

 𝜏𝑎𝑠 =
2 cos ∅1

cos ∅1+√𝜖𝑠𝑜𝑖𝑙 cos ∅2
, (77) 

 𝜏𝑠𝑎 =
2√𝜖𝑠𝑜𝑖𝑙 cos ∅4

cos ∅3+√𝜖𝑠𝑜𝑖𝑙 cos ∅4
, (78) 

During calibration measurement, a PEC object with smooth surface is used. Hence, 

the incident wave is reflected from the PEC surface with the same angle as shown in 

Figure 0.5. 

(a) (b) 
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Figure 0.5. Total Reflection at the PEC Surface 

Therefore, amplitude of the return signal from a PEC surface under oblique incidence 

conditions can be written as in Eq. 79 [104]. 

|𝐸𝑟𝑒𝑡𝑢𝑟𝑛_𝑃𝐸𝐶
𝑜𝑏𝑙𝑖𝑞𝑢𝑒 (ℎ𝑐)| = |𝐸0||𝜏𝑎𝑠

𝑜𝑏𝑙𝑖𝑞𝑢𝑒𝜏𝑠𝑎
𝑜𝑏𝑙𝑖𝑞𝑢𝑒|

cos 𝜃1 cos 𝜃2

8𝜋2𝑅𝑇𝑋𝑅𝑅𝑋
𝑒−𝛼𝑠ℎ𝑐(cos ∅2+cos ∅4), (79) 

 where 𝜏𝑎𝑠
𝑜𝑏𝑙𝑖𝑞𝑢𝑒 =

2 cos ∅1

cos ∅1+√𝜖𝑠𝑜𝑖𝑙 cos ∅2
,  

 𝜏𝑠𝑎
𝑜𝑏𝑙𝑖𝑞𝑢𝑒 =

2√𝜖𝑠𝑜𝑖𝑙 cos ∅4

cos ∅3+√𝜖𝑠𝑜𝑖𝑙 cos ∅4
,  

 𝑅𝑇𝑋 = ℎ𝑎 cos ∅1 + ℎ𝑐 cos ∅2,  

 𝑅𝑅𝑋 = ℎ𝑎 cos ∅3 + ℎ𝑐 cos ∅4,  

As given in Section 3.1.2, amplitude of the return signal from a PEC surface under 

normal incidence conditions can be written as in Eq. 80. 

 |𝐸𝑟𝑒𝑡𝑢𝑟𝑛_𝑃𝐸𝐶
𝑛𝑜𝑟𝑚𝑎𝑙 (ℎ𝑐)| = |𝐸0||𝜏𝑎𝑠

𝑛𝑜𝑟𝑚𝑎𝑙𝜏𝑠𝑎
𝑛𝑜𝑟𝑚𝑎𝑙|

1

8𝜋2(ℎ𝑎+ℎ𝑐)2 𝑒−2𝛼𝑠ℎ𝑐, (80) 

 where 𝜏𝑎𝑠
𝑛𝑜𝑟𝑚𝑎𝑙 =

2

1+√𝜖𝑠𝑜𝑖𝑙
,  

 𝜏𝑠𝑎
𝑛𝑜𝑟𝑚𝑎𝑙 =

2√𝜖𝑠𝑜𝑖𝑙

1+√𝜖𝑠𝑜𝑖𝑙
,  

During simulations, ℎ𝑎 = 160 𝑚𝑚, 𝑑 = 15 𝑚𝑚 and PEC radius is 50 mm. We have 

created 12 different soil types which have relative permeability of 1, conductivity of 
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10 mS/m and relative permittivity between 4.5 and 10 with the increment of 0.5. 

Calibration object is buried at depths between 50 mm and 150 mm. For different soil 

types and different burial depths, percentage differences between Eq. 79 and Eq. 80 

are given in Table 0.1. 

Table 0.1. Percentage Differences between Eq. 79 and Eq. 80 

Depth: 50mm 60mm 70mm 80mm 90mm 100mm 110mm 120mm 130mm 140mm 150mm 

Soil-1 1,91 1,78 1,67 1,57 1,48 1,39 1,32 1,25 1,18 1,12 1,07 

Soil-2 1,94 1,82 1,71 1,60 1,51 1,43 1,35 1,28 1,21 1,15 1,10 

Soil-3 1,97 1,85 1,74 1,64 1,54 1,46 1,38 1,31 1,25 1,19 1,13 

Soil-4 2,00 1,88 1,77 1,67 1,57 1,49 1,41 1,34 1,28 1,21 1,16 

Soil-5 2,03 1,91 1,80 1,69 1,60 1,52 1,44 1,37 1,30 1,24 1,19 

Soil-6 2,05 1,93 1,82 1,72 1,63 1,54 1,47 1,39 1,33 1,27 1,21 

Soil-7 2,07 1,95 1,84 1,74 1,65 1,57 1,49 1,42 1,35 1,29 1,23 

Soil-8 2,10 1,97 1,87 1,77 1,67 1,59 1,51 1,44 1,37 1,31 1,26 

Soil-9 2,11 1,99 1,89 1,79 1,69 1,61 1,53 1,46 1,40 1,33 1,28 

Soil-10 2,13 2,01 1,90 1,81 1,71 1,63 1,55 1,48 1,42 1,35 1,30 

Soil-11 2,15 2,03 1,92 1,82 1,73 1,65 1,57 1,50 1,44 1,37 1,32 

Soil-12 2,17 2,05 1,94 1,84 1,75 1,67 1,59 1,52 1,45 1,39 1,33 

As shown in Table 0.1, the difference between Eq. 79 and Eq. 80 is less than % 2 

therefore, normal incidence assumption is acceptable during the calculations. 

B. Calculation of Intrinsic Impedance for Low-loss Dielectrics and Good 

Conductors 

In Section 3.4.1, it is written that the working medium satisfies low-loss condition and 

our main interest is to identify buried landmines with little or no metal content. These 

landmines are made of plastic, rubber, bakelite, glass or wood. All these materials also 

satisfy low-loss condition. So, the following equations are correct. 

 𝜂𝑠 ≅ 𝑅𝑒{𝜂𝑠}, (81) 

 𝜂𝑡 ≅ 𝑅𝑒{𝜂𝑡}, (82) 

Under these conditions, intrinsic impedance of the target is estimated by using Eq. 83; 
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 𝜂𝑡
𝑘 ≅ 𝑅𝑒{𝜂𝑡

𝑘} ≅ {
𝑅𝑒{𝜂𝑠

𝑘}
1+|𝛤𝑠𝑡

𝑘 |

1−|𝛤𝑠𝑡
𝑘 |

𝑖𝑓 𝑅𝑒{𝜂𝑡
𝑘} > 𝑅𝑒{𝜂𝑠

𝑘}

𝑅𝑒{𝜂𝑠
𝑘}

1−|𝛤𝑠𝑡
𝑘 |

1+|𝛤𝑠𝑡
𝑘 |

𝑒𝑙𝑠𝑒
, (83) 

If the buried object is highly conductive material (such as metallic innocuous object), 

then 𝜂𝑡 becomes: 

 𝜂𝑡 = √
𝑗ω𝜇𝑡

𝜎𝑡+𝑗ω𝜖𝑡
≅ 0 since 𝜎𝑡 ≫ ω𝜇𝑡, (84) 

In this case, the buried object behaves like a calibration object and |𝛤𝑠𝑡| becomes 

almost 1. So, Eq. 83 gives that 𝜂𝑡
𝑘 ≅ 0. Hence, our proposed approach also works for 

highly conductive targets.  

For the buried objects which do not satisfy low-loss or highly conductive conditions, 

the result of Eq. 83 is calculated theoretically. For two different soil types (soil type-

1: 𝜇𝑠1
= 1, 𝜖𝑠1

= 4.5, 𝜎𝑠1
= 0.01 𝑆/𝑚 / soil type-2: 𝜇𝑠1

= 1, 𝜖𝑠1
= 6, 𝜎𝑠1

= 0.01 𝑆/

𝑚), dielectric properties of the buried object is chosen as: 𝜇𝑡 = 1, 𝜖𝑡 = 10 and 𝜎𝑡 

changes between 10−4 and 108. Figure 0.6 shows the theoretical results of 𝑅𝑒{𝜂𝑡} 

computed by Eq. 39 and the simulated results computed by Eq. 83. 

 

Figure 0.6. Theoretical and Simulated Results of 𝑅𝑒{𝜂𝑡} into (a) Soil Type-1, (b) Soil Type-2 

The buried object satisfies low-loss condition when 𝜎𝑡 < 10−2 and highly conductive 

condition when 𝜎𝑡 > 102. For these two regions, theoretical and simulated results are 

(a) (b) 
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almost the same as shown in Figure 0.6. For the other region, theoretical and simulated 

results are close enough. Therefore, Eq. 83 can be used to calculate 𝑅𝑒{𝜂𝑡} for all 

underground objects. 

C. A Sample gprMax Input File 

In this study, simulation experiments are performed by using gprMax electromagnetic 

modeling software. gprMax, which simulates electromagnetic wave propagation, is an 

open source software. It solves Maxwell’s equations in 3D by applying Yee’s 

algorithm and uses the Finite Difference Time Domain (FDTD) method [102, 109]. A 

sample gprMax input file, to simulate PMA landmine in a soil with 𝜇𝑠 = 1, 𝜖𝑠 =

4.5, 𝜎𝑠 = 0.01 at 10 cm depth is shown in Figure 0.7. 

 

Figure 0.7. A Sample gprMax Input File 





 

 

 

121 

 

CURRICULUM VITAE 

 

PERSONAL INFORMATION 

Surname, Name  : Genç, Alper 

Nationality   : Turkish (TC)  

Date and Place of Birth : 1 February 1987, Ankara  

Phone    : +90 530 110 77 08 

E-mail    : alper.genc@metu.edu.tr 

 

EDUCATION  

Degree Institution Year of Graduation 

MS  Eindhoven University of Technology, 

Embedded Systems, the Netherlands 

2011 

BS I.D. Bilkent University Electrical and 

Electronics  Engineering, Ankara 

2009 

High School Ankara Science High School, Ankara 2005 

 

WORK EXPERIENCE  

Year Place Enrollment 

2015-2019  ASELSAN INC. Systems Engineer 

2011-2015 

2010-2011 

ASELSAN INC. 

ASML (the Netherlands) 

Hardware Design Engineer 

Candidate Engineer 

 

FOREIGN LANGUAGES  

Advanced English, Mid German  

PUBLICATIONS  

1. A. Genc and G. B. Akar, “Combination of Physics-based and Image-based Features 

for Landmine Identification in Ground Penetrating Radar Data,” Journal of Applied 

Remote Sensing, vol. 13, no. 3, (2019). 

2. A. Genc and G. B. Akar, “A GPR-based landmine identification method using 

energy and dielectric features,” Proceedings of the SPIE Conference on Detection and 

Sensing of Mines, Explosive Objects and Obscured Targets XXIII, vol.10628, (2018). 



 

 

 

122 

 

3. A. Genc, M. K. Akkaya and A. E. Yılmaz, “Ground Penetrating Radar Signal 

Enhancement by Surface Covering Method,” Proceedings IGARSS (2018). 

4. M. K. Akkaya, A. Genc and A. E. Yılmaz, “A Random Modeling Approach for the 

Description of Underground Layers,” Proceedings IGARSS (2018). 

 

HOBBIES 

Swimming, Skiing, Movies 


