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ABSTRACT

INTEGRATIVE NETWORK MODELLING OF THE DASATINIB
TREATMENT IN GLIOBLASTOMA STEM CELLS

Senger, Gokee
MSc., Department of Bioinformatics
Supervisor: Assoc. Prof. Dr. Nurcan Tungbag

March 2019, 60 pages

Glioblastoma (GBM), the most aggressive type of the glial tumours, is thought to be
widely promoted by stem-like cells. Although certain cancer types have been radically
treated with Receptor Tyrosine Kinases (RTKSs) inhibitors, prior studies demonstrate that
treatment Glioblastoma Stem Cells (GSCs) with RTK inhibitors led to dynamic
interconversion from proliferative to slow-cycling, persistent state. In this work, we use
the publicly available RNA-Seq and ChIP-Seq data in naive patient-derived GBM cell
line (GSCS8), 12-day and chronic dasatinib treated GSC8 published by Liau et al (Liau et
al., 2017) and apply an integrative approach to develop a further explanation for reversible
transition of GSCs and to model the effect of the dasatinib treatment in a network context.
We first used the Garnet module in Omics Integrator software which identifies
transcription factor binding sites from epigenomic data, relates known and predicted
transcription factor binding sites to gene expression and finds the significantly active
transcription factors. Then, we used the Forest module of the Omics Integrator software
to reconstruct an optimal network for each condition by integrating significantly active
transcription factors and a confidence weighted protein interactome. As a result, we
obtained three condition specific networks and clustered them based on the topology of
these networks. Each module was analysed in terms of pathway enrichments. Then, we
compared these networks based on the node, edge and pathway similarities. We reveal
that GSCs tend to activate RTK-targeted genes and upregulate neurodevelopmental
programs by reorganizing chromatin modifications.

Keywords: Integrative Network Modelling, Multi-omics data, Histone modifications,
Receptor Tyrosine Kinases, Glioblastoma Stem Cells
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GLIOBLASTOMA KOK HUCRELERINDE DASATINIB TEDAVISININ
BUTUNLEYIiCi AG MODELLEMESI

Senger, Gokce
Yuksek Lisans, Biyoenformatik Bolimu
Tez Yoneticisi: Dog. Dr. Nurcan Tungbag

Mart 2019, 60 sayfa

Glioblastoma, tiim beyin tiimorleri icinde en sik rastlanan kotii huylu bir beyin timoriidiir.
Kanser genom c¢aligmalar1 reseptor tirosin kinazlari (RTK) glioblastoma vakalarinda en
cok degisen genler oldugunu gostermistir. Fakat bilinen ve bu genleri hedef alan tedavi
yontemleri glioblastoma i¢in yeterli olmamistir. Son ¢aligmalar gosteriyor ki,
glioblastomanin ¢ok kdkenli hiicre fenotipi ve kalitimsal yapisi tedaviler karsisinda direng
gOstermesine neden oluyor. Liau ve c¢alisma arkadaslarinin yaptigi bir ¢alisma,
glioblastoma kok hiicrelerinin, reseptor tirosin kinazlar1 hedef alan bir ilag, dasatinib,
etkisiyle epigenetik mekanizmalar yardimiyla kendilerini uyku durumuna soktuklarmi ve
ilaca dayanakli hale geldiklerini gostermektedir. Bu tez ¢aligmasinda, glioblastoma kok
hiicrelerinin tersinir epigenetik mekanizmalarinin agiklanmasi1 ve dasatinib etkisiyle
meydana gelen hiicresel iletim trafiginin modellenmesi hedeflenmistir. ilk olarak
epigenomik veriden transkripsiyon faktorlerinin baglanma bolgelerini tanimlamak igin
Omics Integrator programmin Garnet modiiliinii kullandik. Buradan gelen sonuglar1 gen
ifadesi verisi ile birlestirerek 6nemli derecede aktif olan transkripsiyon faktorlerini
belirledik. Daha sonra, belirlenen faktorlerin protein iletisim aglarindaki yerlerini
belirlemek i¢cin Omics Integrator programinin Forest modiiliinii kullandik. Sonug olarak
ii¢ farkli durum i¢in ag modelleri elde edip bunlar1 topolojik Ozelliklerine gore
karsilastirilmast yapildi. Ayrica her model i¢in sinyal yolak analizi yapildi. Daha sonra
modeller, topolojik ve sinyal yolak benzerliklerine gore karsilastirildi. Bu calisma ile
glioblastoma kok hiicrelerinin RTK ile aktivasyonu saglanan genleri ve sinirsel gelisim
programlarini, kromatin modifikasyonlarin1 diizenleyerek aktiflestirme egilimlerini
gostermis olduk.

Anahtar Sozcikler: Ag Modelleme, Omik Veri, Histone modifikasyonu, Tirozin Kinaz
Reseptorleri, Glioblastoma kok hicreleri
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CHAPTER 1

1.INTRODUCTION

Glioblastoma Multiforme (GBM), the most frequent type of human brain cancers,
is thought to be the most aggressive and malignant primary brain tumour
propagated by stem-like cancer cells. Although new therapeutic strategies have
been tried to either slow down or stop the progression of cancer and they have
worked against certain cancer types, these treatments have failed to lower
mortality rate of GBM. The intra- and inter-tumoral genetic and phenotypic
heterogeneity of GBM is the main reason why these tumours resistance to current
therapies which are mostly designed to target bulk tumours (Ikushima et al.,
2009).

Transcriptomic profiling is a widely used technique to deeply understand the
molecular background under the extensively diverse GBM phenotypes and to
biologically characterize of Glioblastoma stem cells (GSCs). Transcriptomic
profiling is basically defined as annotation and quantification of all RNA
molecules in a single cell or population of cells which is so called transcriptome.
Recent advances in high-throughput RNA sequencing and the decrease in
sequencing cost make large scale data collection possible, opening the door to
categorize anomalous events in the progression and maintenance of GBM and to
develop a consciousness about vulnerability and aggressiveness of GBM (Zhao et
al., 2017). These genome wide studies have led to detailed characterization of the
molecular pathogenesis of GBM, continuity of clinical treatment plans and
identification of new drug targets. While receptor tyrosine Kkinase
(RTK)/Ras/PI3K, p53 and Rb signalling pathways are the most commonly
affected pathways in GBM according to The Cancer Genome Atlas (TCGA)
research, EGFR, HER2, PDGFRA and MET are the most altered genes among
receptor tyrosine kinases (RTKs) (Tanaka, Louis, Curry, Batchelor, & Dietric,
2013). Although RTK family inhibitors has been successful in the treatment of
certain cancer types (Tanaka et al., 2013), they have failed to develop a recovery
in GBM because of the genetic and phenotypic heterogeneity in GBM and
distinctive characteristics of GSCs (Eder & Kalman, 2014; justin d. lathia, 2015).



Previous studies on GBM showed that GSCs have a critical role in tumour
progression, maintenance of the malignant behaviour of GBM and resistance to
current therapies (Bao et al., 2006; Singh et., 2004). Properties of GSCs have been
well studied and it was indicated that they are capable of forming renewable
neurospheres in vitro (Kalkan, 2015) and express neurodevelopmental
transcription factors (TFs) (Alberta et al., 2011; Rheinbay et al., 2013; Wortman
et al., 2014) which is thought to be significantly associated with GSC maintenance
and  tumorigenic  capacity of GBM  (Laks et al, 2011).
Furthermore, GSCs can express multipotent neural stem cells (NSCs)-like cells
which can further differentiate into neurons, astrocytes, and oligodendrocytes
within the tumour mass (Huang, Cheng, Guryanova, Wu, & Bao, 2010).
According to single-cell RNA sequencing studies, cell-cycle related genes
indicate relatively low expression in GSCs (Patel et al., 2014) suggesting these
cells may adopt slow-cycling states (Sosa, Bragado, & Aguirre-Ghiso, 2014).

The transcriptome is regulated by multiple mechanisms including the dynamic
chromatin reorganization such as DNA methylation and histone modifications,
defined as epigenome (O’Geen et al., 2011). Changes in the nucleosomes alter the
DNA packaging and affect the gene expression by turning on/off a certain fraction
of upstream regions of genes, referred as transcriptional start site. For example,
histone methylation is typically associated with open or compacted chromatin
regions while histone acetylation is associated with open and accessible chromatin
regions. The chromatin immunoprecipitation (ChIP-Seq) method is used to
determine direct physical interactions between DNA and protein across different
modification markers and to improve a perspective on how proteins bind to DNA
to regulate gene expression. The interaction between TFs and DNA can also be
studied using ChlP-Seq. Therefore, epigenomic profiling is also crucial to reveal
tumour maintenance mechanisms of GBM (Dirks, Stunnenberg, & Marks, 2016).

It is still not completely known how GSCs’ stemness is maintained despite the
well-studied transcriptomic and epigenomic profiling of GBM. However, we can
gain new insights from the perspective of system biology and we can extensively
analyse how the transcriptomic entities and regulators communicate each other in
GBM.

In this thesis we used advanced system biology approaches, namely multi-omic
data integration followed by network modelling to elucidate maintenance of
stemness and drug resistance of GSCs. We used the transcriptomic and
epigenomic data of GBM cells in multiple conditions. In this work, the publicly
available RNA-Seq and ChIP-Seq data from patient-derived GBM cell line treated
with dasatinib has been used to model the effect of the dasatinib treatment in a
network context. The important point in the method is to reconstruct transcription
factor network for different time points of the treatment. For this aim, we first
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used the Garnet module in Omics Integrator software which identifies
transcription factor binding sites from epigenomic data, relates known and
predicted transcription factor binding sites to gene expression and finds the
significantly active transcription factors. Then, we used the Forest module of the
Omics Integrator software to reconstruct an optimal network for each condition
by integrating significantly active transcription factors and a confidence weighted
protein interactome.

In Chapter 2, we first explained the current studies in transcriptomic profiling in
detail. Then we reviewed recent approaches in the analysis of epigenomic data.
We also recovered recent tools for identification of transcription factor binding
and reconstructing networks through the integration of multi-omics data.

In Chapter 3, we described the methodology starting from analysing gene
expression profiles of GSCs with different drug exposure time, comparing these
expression profiles, identification of condition specific transcription factors using
histone modification data to reconstructing final optimal networks.

In Chapter 4, we emphasized that how our results would contribute to
understanding dynamic chromatin reorganization mechanisms of GSCs which
control rapid conversion from proliferative to slow-cycling, drug-persistent state.
we also indicated that the network-based integrative approach that we proposed
in the study highlighted new signalling pathways which could be clinically
important and potential targets in new treatments.






CHAPTER 2

2.LITERATURE REVIEW

2.1. Understanding of The Underlying Biology of GBM

2.1.1. ldentification of GBM subtypes based on transcriptomic profiling

Prior studies have demonstrated that defining subtypes for GBM using genomic
and transcriptomic analyses is hard because of the phenotypic and genotypic
heterogeneity of GBM. In 2006, Phillips and his colleagues identified three
subtypes which are mesenchymal (MES), proliferative (PROLIF) and preneural
(PN) by using DNA microarray data (Phillips et al., 2006). Then Verhaak and
his co-workers added a critical fourth class and named it as Classical (Verhaak
et al., 2010). The fourth class share similar characteristics with both PN and
MESS groups, so they defined the fourth class as an intermediate group. Further
studies have shown that GBM cells classified into the classical group have
increased level of cell cycle and proliferation genes (Huse, Holland, &
DeAngelis, 2013).

Although transcriptomic and genomic approaches have been the most commonly
used approaches, various methods have also been developed to identify different
subtypes of GBM. Toedt et al. used an integrative approach by using array-based
comparative genomic hybridization and expression profiling analyses. They
found three GBM subtypes similar to those of Phillips et al. (Toedt et al., 2011).
The extensive studies in the identification of GBM subtypes has introduced new
requirements to deeply characterize and understand each subtype. Morokoff et
al. conducted a detailed study to define signalling pathways and gene expression
patterns associated with each subtype. Table 2.1 indicates which pathways are
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significantly associated with which GBM subtype and also highlights
differentially expressed genes across different subtypes (Morokoff, Ng, Gogos,
& Kaye, 2015). It appears that Notch signalling pathway is critical for the
proneoral subtype (Saito et al., 2014). However, the MES phenotype is more
dependent on TGFp signalling and tend to be more invasive (Mahabir et al.,

2014).

Table 2.1: Changes in genes and pathways associated with GBM subtypes.

Glioblastoma Glioblastoma | Genes or Genes or chromosomes
subtypes by subtypes by chromosomes deleted, mutated,
Phillips et al. Verhaak et al. | amplified, downregulated
overexpressed
Proneural Proneural PDGFRA amplification | IDH1 mutations
MYC amplification TP53 mutations
OLIG2 ATRX
PI3K/Mtor 1p/19q loss, CIC, TERT,
Hedgehog, Wnt, Notch | FUBP1 (oligo)
CDK4 amplification COX2
SOX2 amplification, IGFBP2
DCX, DLL3, ASCL1, | Annexinl
TCF4 TAZ
CXCR4 PIK3CA/PIK3R1
ALT-positive 4EBP1
Proliferative Classical Chr7, 19, 20 amp EGFRVIII (activating)
EGFR amp EGFRvIII Chr10 loss
NES CDKN2A-deletion
Sonic HH FAT1 inactivation
MGMT methylation
Neural NEFL, GABRAL, ND
SYT1, SLC12A5
Mesenchymal Mesenchymal EGFR, PI3K/Akt NF1 (17911.2 deletion)

CHI3L1, YKL40,
vimentin

MET, CD44, MERTK
TGEB/BMP, TNF
family

NF-kappaB

CXCR4

CD31, VEGFR-2
Snail

TSC2 tuberin

2.1.2. Glioblastoma Stem Cells are defined as new targets for therapy




GBM is the most prevalent and aggressive type of primary intrinsic human brain
tumor and contains tumorigenic cancer stem cells (CSCs). Studies on genetic
profiling of these cells have revealed that they can mimic neural stem cells (Galli
etal., 2004) and thus CSCs in GBM are named as stem-like cells or glioblastoma
stem cells (GSCs). GSCs contribute tissue development processes and help cells
to regenerate and grow (Lathia, Mack, Mulkearns-Hubert, Valentim, & Rich,
2015). Furthermore, GSCs show self-renewal and they are ability to differentiate
into various cell types like neural stem cells. In addition, tumor propagation in
GBM is widely promoted by GSCs. Because of the properties of these stem cells,
recent therapies have been developed to target GSCs rather than bulk tumor
tissues.

In recent decades, cancer therapies have initially particularly focused on the
characterization of signaling pathways underlying GBM biology to develop new
treatments which target GSCs. It was found that RTK signaling plays a critical
role and EGFR, VEGFR and PDGFR are the most studied RTK receptors which
have central role in GBM. Furthermore, it was also found that EGFRvIII-
positive GSCs, an active mutation of EGFR, positively regulate cell proliferation
related pathways while they negatively regulate apoptotic signaling pathways.
Nevertheless, paradoxically it has been revealed that EGFRvIII is associated
with better prognosis. In addition, normal GBM cells have lower expression of
EGFRVIII or they lost it and EGFRvIII-negative cells are resistance to RTK-
inhibitors (Montano et al., 2011; Schulte et al., 2012). It is possible to conclude
that while EGFRvIII-positive GSCs are differentiating into proliferating normal
tumor cells, they lose EGFRvVIII expression and develop a cellular adaptive
resistance which may explain why EGFR-inhibitors have failed to improve
overall survival in GBM (Inda et al., 2010). MET and PI3K/Akt signaling
pathways are also thought to have important role in maintenance of stem-like
phenotypes in GSCs (Jun et al., 2012; Molina, Hayashi, Stephens, & Georgescu,
2010). In addition, there are other studies which emphasized the role of the
Hedgehog, Notch and the canonical Wnt signaling pathways in GBM
development and progression (Fan et al., 2009; Sandberg et al., 2013).

2.2. Current Studies on Transcriptomic and Epigenomic Profiling of
GBM

The process of gene expression within a cell is regulated by transcription
regulation mechanisms in which transcription factors (TFs) bind specific DNA
regions, which are called motifs, encourage other proteins assemble and help
start transcription of specific gene. Thus, TFs perform key functions in the
regulation of gene expression. Furthermore, TFs can also affect regulation of
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another TF by making direct or indirect interactions (Neph et al., 2012). These
cross-regulations are involved in the various regulatory subnetworks and
dysregulation of these interactions are strongly related with various types of
cancer (Stergachis et al.,, 2014). Much progress has been done in the
understanding of the role of TF-TF interaction in cellular identity and
function. However, more efforts should be made for the comprehensive
understanding of the topology of human TF-TF networks.

Li and colleagues (Y. Li et al.,, 2015) analysed genome-wide expression
profiles of TFs from two different gene expression datasets, TCGA and
REMBRANDT and constructed grade-specific TF regulatory networks for
glioma grade I, 111 and 1V. Then they compared the resulting networks based
on their topology and dynamics to improve an understanding for how GBM
transcription regulatory networks change during different progression states
of GBM.

They demonstrated that although key regulatory interactions are shared by all
types of grades, human transcription regulatory interactions of glioma are
generally specific to glioma grade types, with ratios between 45% and 60%.
In addition, they compared the sub interactions within each network to
understand whether some topological structures might be responsible for the
conserved architecture across different glioma grades. They identified the
feedforward loop (FFL) which are the most common structures in the grade-
specific networks. They drew attention to RARG-NR1|2-CDX2 FFL which is
observed in each grade-specific network and associated with prognosis.

Integration of multi-omics data may provide new insights to understand
intratumoral heterogeneity in GBM. Lemée et al put forward a new approach in
which they used transcriptome and proteome profiling together to identify
pathogenic mechanisms underlying the biology of GBM (Lemée et al., 2018).
They used both RNA microarray chips and proteome data from five GBM
biopsies vs their related peritumoral brain zone. Then they compared the
transcriptome data with their corresponding proteome data in terms of shared
characteristics, altered biological processes, functional pathways and network
topology (Haider & Pal, n.d.). They found that there is a poor relation between
the transcriptome and its corresponding proteome data in GBM. However, they
revealed that neurofilament light polypeptide and synapsin 1 protein abundances
are strongly correlated with the mRNA abundances of the related genes.
Furthermore, both transcriptomic and proteomic data support that biological
processes related to cell-cell communication, synaptic transmission and nervous
systems are the most commonly altered ones across the five GBM samples.



2.3. ARACNe: An Algorithm for the Reconstruction of Accurate Cellular
Networks

Cellular phenotypes and cell physiology are largely dependent on the activity of
cellular functions which are controlled by dynamic activity of complex networks
of coregulated genes. Thus, clustering cells based on their phenotypic
characteristics requires elaborative work in which genes are classified in the
context of the networks in which they do functions. Proteins are synthesized
from the gene products, mRNA, and regulate expression of genes by directly or
indirectly binding to regulatory regions of DNA. However, there are post
transcriptional mechanisms that control conversion of the gene products to
proteins, functional units of cells. Because of the post regulation mechanisms,
the abundance level of proteins cannot be directly proportional to level of mMRNA
within the cell. Consequently, the indirect relation has spawn requirements for
additional algorithms for the reconstruction of gene co-expression networks by
using the data coming from high throughput analysis, microarray and RNA-Seq
studies.

Genome-wide clustering approach (Eisen, Spellman, Brown, & Botstein, 1998)
groups together genes which are responsible for similar transcriptional responses
to different cellular conditions, and provides a crucial first step to reconstruct
interaction networks. Nevertheless, it cannot eliminate interactions arising from
indirect relations of cellular cascades and provides biased networks that include
many non-interacting genes (A.A. et al., 2006). Thus, gene expression profiles
and correlations between genes cannot be used to reconstruct interaction
networks without additional statistical assumptions.

New graph-based approaches have been developed to model cellular networks
from large-scale gene expression profiles (Friedman, 2004). The aim of these
approaches is to represent gene regulatory circuits by using topology of graphs
in which genes are represented as vertices and the direct interactions between
them are represented as edges.

Differently from genome-wide clustering methods, the new strategy uses
statistical inferences methods to control whether a physical interaction is
strongly related with the data or not and therefore provides more realistic
network models (ldeker et al., 2001). Among the computational approaches,
ARACNE, Algorithm for the Reconstruction of Accurate Cellular Networks, is
the most widely applied algorithm by the scientific community to model accurate
and systematic gene regulatory networks (A.A. et al., 2006; Floratos, Smith, Ji,
Watkinson, & Califano, 2010). More generally, ARACNe assigns an irreducible
statistical dependency to an edge between genes that interact directly, and this



interaction is mediated by a transcription factor binding promoter region of a
target gene.

Basically, ARACNe takes Gene Expression Profile (GEP) data and a list of
transcription factors and then reconstruct context-specific transcriptional
networks (Lefebvre et al., 2010). There are three key steps to run ARACNe
which are Mutual Information (MI) threshold estimation, Bootstrapping/MI
network reconstruction and Building consensus network (Lachmann, Giorgi,
Lopez, & Califano, 2016). First, ARACNe estimates Ml threshold by using GEP
data. Then ARACNEe defines genes included in GEP data within a fixed window
which is regulated by a certain TF for each TF in the predefined list. In the
network reconstruction step, it computes MI, which is the measurement of
statistical dependence between two genes, for every TF/Target gene pair and
removes non-statistically significant pairs by using the Ml threshold. In addition,
ARACNe removes indirect interactions by using Data Processing Inequality
tolerance filter (DPI) (A.A. et al., 2006) and reconstructs final networks. At the
final step, ARACNe does optimization for the resulting network based on a
Poisson distribution in which it calculates the number of times a certain edge is
found across all bootstrap runs and keeps the ones with p value lower than 0.05.

2.4. Integration of Multi-Omics Data

Recent developments in the high-throughput methods have resulted in
accumulation of large amount of omics data in the biology era such as genomics,
transcriptomics, epigenomics, proteomics and metabolomics (Suravajhala,
Kogelman, & Kadarmideen, 2016). Previously, these omics measurements have
been used in single-level analysis in which each data type is analysed separately.
However, while the level of knowledge regarding molecular complexity of
biological systems has been increasing, more comprehensive analysis of the
omics data has become a necessity. The increase in the volume of omics data
and the necessity for multi-layer analysis to enhance comprehension of this
complexity have led new approaches where data from different omics studies are
combined (Kadarmideen, von Rohr, & Janss, 2006).

As a concept, multi-omics data integration covers the system biology approaches
which include obtaining biological data from different layer of living systems,
using these data together and applying computational model to reconstruct whole
system organization (Cisek, Krochmal, Klein, & Mischak, 2016). Currently,
integration of various types of omics data is widely used for different aims such
as defining cell-specific phenotypes, characterization of cellular pathways,
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developing patient-specific treatments and understanding gene regulatory
circuits.

Although multi-omics data integration approaches have more potential to shed
light on complex mechanisms underlying living systems’ biology than single-
layer methods, making meaningful correlations and identifying true interactions
among thousands of measurements obtained from various omics methods remain
a challenge (Misra, Langefeld, Olivier, & Cox, 2018). Thus, data integration
usually needs statistical implementations and machine-learning tools (Min, Lee,
& Yoon, 2016). Most of the omics integrative frameworks use multivariate
analysis tools to reduce data dimensionality and to implement genomic,
proteomic and metabolomic datasets together (de Tayrac, Le, Aubry, Mosser, &
Husson, 2009; Parkhomenko, Tritchler, & Beyene, 2009).

There are many integrated omics methods which address different challenges.
Pavel and her co-workers used a fuzzy logic modelling presented by Xu et al.
(Xu, 2008) to identify patient-specific gene expression and cancer drivers. In this
study, they used direct integrative clustering of samples, clustering of pre-
formed clusters and as a third category, regulatory integrative clustering (Pavel,
Sonkin, & Reddy, 2016). Another study focused on integrating transcriptomic
and proteomic data by using proteomics-first approach to identify cancer related
sub-networks (Nibbe, Koyutlrk, & Chance, 2010). In this work, Nibbe et al.
identified significant proteomic targets by analysing fold changes between
tumour and control tissues. Then, they used these targets to construct protein-
protein interaction sub-networks which is associated with disease phenotypes.
Although the network generation method used in this study has revealed
interactions among molecules with known functions, the ideal network
construction approaches involve investigation of key molecules with novel
functions. There are tools which specifically aim to reduce false positives and
negatives in the data and identify novel interactions within the final network. For
instance, SteinerNet (Tuncbag, McCallum, Huang, & Fraenkel, 2012) which
integrates transcriptomic, proteomic and interactome data and Omics Integrator
(Tuncbag, Gosline, et al., 2016) which integrates transcriptomic, epigenomic
and interactome data. The two tools were generated to search for the solution to
the prize collecting Steiner tree problem.
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CHAPTER 3

3.MATERIALS AND METHODS

In this chapter, we explain the methodology of this study which covers
transcriptomic and epigenomic profiling of RTK-dependent GSC lines and
network modelling by integrating multi-omics data

3.1. Overview of the Pipeline

GSCs show rapid dynamic interconversion from their naive, proliferative states
to slow-cycling, persister states by reorganizing chromatin modifications under
the treatment of dasatinib. In this study, we developed an integrative
understanding for the characteristics of GSCs by using transcriptomic,
epigenomic and interactome data, which is summarized in Figure 3.1. The
transcriptomic and epigenomic data are previously published by Bernstein (Liau
et al., 2017) and his co-workers and accessible for academic usage. First, we
calculated the gene expression changes between different drug-treated time
series profiles: GSC8 naive, GSC8 12d and GSC8 persister using RSEM-EBSeq
pipeline. Then we performed differential peak calling analysis between each
pairwise comparison condition from histone modifications ChlP-Seq data for the
markers, H3K4me3, H3K27me3 and H3K27ac with MACS2 pipeline. After
that, we integrated gene expression changes and differential peak calling results
to find significantly active transcription factors by using the Garnet module of
Omics Integrator which have potential to explain condition-specific regulatory
changes. Finally, we used the Forest module of the Omics Integrator software to
reconstruct an optimal network for each pairwise comparison condition by
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integrating significantly active transcription factors and a confidence weighted
protein interactome.
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Figure 3.1: Overall representation of the methodology.

3.2. Datasets

3.2.1. Data from ENA

The European Nucleotide Archive is a nucleotide sequencing based repository
which covers corresponding information about sequencing experiments; input
data, experimental design, raw sequences and quality score and functional
annotation. We downloaded raw sequences from ENA for the experiment
performed RNA-Seq in different GSC lines with various drug treatments (GEO
accession: GSE74557). RNA-Seq data for two GSC lines; GSC4 and GSC8 and
four different drug treatments; Dasatinib, PD0325901, GSKJ4 and KDM5-C70
are available for this study. We chose to start downstream analysis with GSC8
as cell line and dasatinib as drug treatment because different time points for this
treatment and corresponding replicates are available only for this condition.
Paired-end reads for three biological replicates per drug treatment time point
were downloaded from ENA
(http://www.ebi.ac.uk/ena/data/view/SRR4417704-SRR4417712) in the form of
FASTQ file, shown in Figure 3.2. FASTQ is a text-based format designed for
storing biological sequences and their quality information. For a usual FASTQ
file, there are four lines for each sequence. The first line begins with “@”
character and contains sequence identifier. The second line is for the sequence
itself and contains raw sequence letters. The line 3 begins with a “+” character.
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For some FASTQ files, the third line contains the sequence identifier same as in
the first line. The last line is for the quality scores for raw letters in the line 2 and
should be the same length with the raw sequence.

After downloading the data, we had FASTQ files which store reads of RNA-Seq
experiment for GSCs in their native status (naive) and different drug treatment
time points which are twelve-day dasatinib treatment (12d) and more than eight
weeks dasatinib treatment (persister). Each time point has three biological
replicates. To perform epigenetic profiling and reveal transcription factors that
are most probably regulator of transcriptomic profiles of corresponding
condition, we also downloaded ChIP-Seq sequence single-end read files from
ENA in FASTQ format for the following antibodies: H3K4me3, H3K27me3 and
H3K27ac per condition. The depth of the ChlP-Seq reads are usually different
from each other. To make the samples comparable, input files that contains
sequenced fragments do not originate from histone markers of interest are also
prepared (Flensburg, Kinkel, Keniry, Blewitt, & Oshlack, 2014) (Liang & Keles,
2012). Thus, the input read files for each antibody were also downloaded from
ENA. The detailed information about the ChIP-Seq read files is presented in
Figure 3.2.

o @
GSC naive Gsc™ GSCP
Replicate 1 Replicate 1 Replicate 1
RNA_Seq Data Replicate 2 Replicate 2 Replicate 2
Replicate 3 Replicate 3 Replicate 3
H3K4me3 H3K4me3 H3K4me3
ChIP-Seq Data H3K27me3 H3K27me3 H3K27me3
H3K27ac H3K27ac H3K27ac

Figure 3.2: RNA-Seq and ChIP-Seq data for cell line GSC8. Conditions are
represented as GSC naive for naive, GSC'% for 12d and GSCP® for persister.
There are three replicates per condition for the transcriptomic analysis. ChlP-
Seq datasets come from the experiments that were conducted with the following
antibodies: H3K4me3, H3K27me3 and H3K27ac.

3.2.2. Data from UCSC

The human genome was downloaded from UCSC with the version of
GRCh37/hg19 (assembly Feb. 2009). UCSC stores assemblies and their
corresponding annotations for a wide range of organism from vertebrate to
model organisms. UCSC also provides various tools to view, analyse and
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download data. Sequence information for each chromosome was downloaded
separately in FASTA format and stored under one main directory. We first
aligned RNA-Seq reads to the human transcriptome. To obtain human
transcriptomic data from human genome, the two annotation files, GTF and
knownlsoforms, are also needed.

The UCSC Genes transcript annotations file in GTF format for UCSC hg19
version of human genome has downloaded using the UCSC's Table Browser
Table in GTF format. Isoform-gene relationship information for UCSC hg19
version of human genome was obtained from UCSC Genome Browser as
knownlsoforms.txt.

3.3.  RNA-Seq Analysis

3.3.1. Alignment RNA-Seq reads to reference transcriptome

To measure transcript abundances in each condition, paired-end RNA-Seq reads
were aligned to UCSC human transcriptome (hgl19) by using Bowtie (version
0.12.7) (Langmead, Trapnell, Pop, & Salzberg, 2009) first and then
quantification was done by using RSEM (version 1.3.1). RSEM (B. Li & Dewey,
2014) is a software tool for both alignment and quantification of single-end or
paired-end RNA-Seq reads. This program, in its default mode, uses bowtie to
align reads against a reference transcriptome and provides an alternative way to
users to choose a different alignment program. Before alignment, users should
prepare a reference transcriptome and genome indices by using “rsem-prepare-
reference”. There are “- -bowtie” and “- - star” options to generate both;
however, genome indices must be generated again using ‘“rsem-prepare-
reference” for those who uses alternative aligner and provides an alignment file.

In this study, the UCSC human genome, GTF file downloaded from UCSC Table
Browser and knownlsoforms file obtained from UCSC Genome Browser were
used to generate transcriptome reference using “rsem-prepare-reference” code.
Bowtie indices were also created by supplying “- -bowtie” and - - bowtie-path”
parameters to the code. Then alignment was done by using Bowtie with the
following parameters: --chunkmbs 512 -q --phred33-quals -n 0 -1 25 -1 1 -X 2000
-p 10 -a -m 15 -S. To be sure that the resulted alignment file satisfies the
requirements mentioned in rsem-calculate-expression protocol, the resulted
alignment files were converted to bam files by using convert-sam-for-rsem
script. In the step of estimating gene expression, transcript-level abundances
were quantified as transcript per million (TPM) and Fragments per Kilobase
million (FPKM) by using rsem-calculate-expression script with the following
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parameters: --paired-end --alignments --fragment-length-max 1000 --bam --
estimate-rspd.

3.3.2. Different Gene Expression Analysis

After the alignment and quantification processes, differential expression analysis
was conducted with EBSeq (Leng et al., 2015). EBSeq is a R package based on
Bayesian inference methods and designed for differential expression analysis
from RNA-Seq data. RSEM installation comes with EBSeq package in its folder
named “EBSeq” needed to be compiled. The resulting gene-counts from RSEM
run were used for differential gene expression analysis. Firstly, rsem-generate-
data-matrix command was used to extract input matrix from expression results.
As aresult, we had three input matrices for the following pairwise comparisons:
naive vs 12d, 12d vs persister and naive vs persister, in which columns represent
biological replicates, rows stores genes and then matrix was filled with raw gene
counts. Then variable genes across pairwise conditions were detected with rsem-
run-ebseq command. The analysis gave an output file which provides four
statistics; PPEE (posterior probability of equally expressed), PPDE (posterior
probability of differentially expressed), PostFC, RealFC, but does not calculate
log2FC. Thus, we calculated log2FC for each gene by taking log2 of RealFC
column. For visualization and further analysis, we continued with all genes with
posterior probability greater than 0.95 and log2FC higher than 2. The schematic
representation of the differential gene expression analysis was shown in Figure
3.3.

GSC naive GsC GSCPe
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Figure 3.3: The overall representation of differential gene expression analysis.
The figure indicates the result of differential gene expression analysis. At the
end, there is one list for each condition (C1, C2 and C3 represent pairwise
comparison conditions; naive vs 12d, 12d vs persister, naive vs persister,
respectively). Each list stores significantly differentially expressed genes
between conditions.
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3.3.3. Gene Set Enrichment Analysis

To understand functional profiling of the resulting transcriptomic data and
identify biological processes and/or pathways in which significantly enriched or
depleted gene sets are involved, we conducted gene set enrichment analysis by
using an R package WebGestaltR (version 0.3.0) (Wang, Duncan, Shi, & Zhang,
2013; Wang, Vasaikar, Shi, Greer, & Zhang, 2017; Zhang, Kirov, & Snoddy,
2005). We inputted rnk file containing two columns separated by tab: the gene
list and the corresponding scores. We removed all genes which have tpm value
lower than 0.1 across all samples from differentially expressed genes obtained
from EBSeq and the resulting gene list generated the first column of the rnk file.
Then these genes were listed based on their PPDE value in descending order and
log2FC values were assigned to corresponding genes and defined as their scores
in the second column of the rnk file. After prepared rnk files for all pairwise
comparisons: naive vs 12d, 12d vs persister and naive vs persister,, we run GSEA
by specifying the following parameters: enrichMethod = "GSEA", organism =
"hsapiens"”, enrichDatabase = “KEGG pathway & gene ontology Biological
processes”interestGeneType = "genesymbol”, collapseMethod = "mean",
minNum = 20, maxNum = 300, sigMethod = "fdr", fdrThr = 1. Afterthought, the
resulting enrichment files were subjected to FDR threshold: 0.1 and 0.25, to
mark out significant pathways and biological process. Lastly, we removed
generic pathways/biological processes which are most frequently enriched in
many conditions.

3.4. ChIP-Seq Analysis

3.4.1. Alignment ChIP-Seq reads to reference genome

We used FastQC tool to do quality control checks on raw single-end ChIP-Seq
reads. The quality check reports were good for all read files and there was no
requirement to trim any sequences. Thus, we kept on with all read files for
alignment with BWA (version 0.7.17) (H. Li & Durbin, 2010) and downstream
analysis.

To be able to conduct proper alignment, BWA requires the FM-index for
reference genome so we constructed bwa indices for the UCSC human reference
genome (hg19) by using the bwa index command with its default parameters at
first place. Then single-end ChlP-Seq reads were aligned to hg19 using bwa aln
and bwa samse commands consecutively again with their default parameters.
BWA outputs alignment files in the SAM format and BAM formatted files are
needed for further analysis, hence the reason why resulting SAM files were
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converted BAM files using Samtools (version 1.8). To reduce the effect of PCR
amplification bias during the sample preparation, we used Picard MarkDuplicate
tools (version 1.118) to remove PCR duplicates. After sorted the resulting
alignment files using Samtools (version 1.8), we used these files as input to
MarkDuplicates. The final alignment files without duplicates were subjected to
differential peak calling.

3.4.2. Differential Peak Calling

After alignment single-end ChIP-Seq reads to reference genome, the next step
was to measure how many reads differentially mapped to enriched regions,
compared with any two conditions in our case which is called differential peak
calling. Although this kind of analysis is generally used to determine differential
expression genes in the gene expression analysis, to be able to define
transcription factors and construct networks specific to each pairwise conditions:
naive vs 12d, 12d vs persister and naive vs persister, we identified differential
peak regions of two conditions using MACS?2 (version 2.1.2).

A wide range of tools have been evolved for detection of differential enriched
regions between conditions. Therefore, it is crucial to determine which tool
should be used to analyse the data on hand. The kind of peaks (sharp peak or
broad enrichment), presence of biological replicates and presence of predefined
regions are main characteristics” of ChIP-Seq reads which should be considered
before selecting a tool for further analysis (Steinhauser, Kurzawa, Eils, &
Herrmann, 2016). In this study, we used ChlIP-Seq data specific for histone
modifications and these regions are most probably broad enriched regions. In
addition to that, there is no biological replicates thus we decided to use MACS
tool for differential peak calling. The resulting alignment files were used to call
peak using MACS2 predictd and callpeak modules, respectively. Firstly, we run
predictd with its default parameters to get a uniform extension size which is the
average of two fragment size, conditionl and condition2, given in the output of
predictd module. Since differential peak calling performed for three histone
modifications per pairwise comparison condition, the extension size was
calculated as the average of fragment size of conditionl and condition2 for the
same histone marker.

Secondly, we carried out peak calling with callpeak module by giving aligned
file and its control file as input with additional parameters: --nomodel, --extsize
for extension size. The important point in here was to keep using the same
extension size for both compared conditions. After successfully running
callpeak module, we had two output files for each condition;
cond_treat_pileup.bdg and cond_control_lambda.bdg containing enriched
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regions for each chromosome for treatment and control file, respectively.
Besides, differential peak calling was conducted using MACS2 bdgdiff module
with the following parameters: --t1 for conditionl treat_pileup.bdg file, --c1 for
conditionl control_lambda.bdg file, --t2 for condition2 treat_pileup.bdg file, --
c2 for condition2 control_lambda.bdg file, --d1 and —d2 for actual effective
depths for condition 1 and 2 learned by extracting the “tags after filtering in
control” line from output file of callpeak run.

At the end, bdgdiff module resulted with three differential peak files. One of
those files stores regions that are highly enriched in condition 1 compared to
conditions 2. Another one stores the regions having more enrichment in
condition 2 over condition 1. The final file stores regions showing similar
enrichment in both conditions. As a result, there are 9 bed files for H3K4me3,
H3K27me3 and H3K27ac per pairwise comparison condition. Figure 3.4
summarizes differential peak calling analysis.

GSC naive G
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Figure 3.4: The overall representation of differential peak calling analysis. The
figure indicates the result of peak calling analysis. At the end, there are three
lists for each condition per markers (C1, C2 and C3 represent pairwise
comparison conditions; naive vs 12d, 12d vs persister, naive vs persister,
respectively. M1, M2 and M3 shows histone markers; H3K27ac, H3K27me3
and H3K4me3 respectively.). Each list stores significantly differentially
changed peak regions specific to each marker between conditions.

3.5. Network Modelling with Omics Integrator

In this study, we mainly focused on mapping transcriptomic and epigenomic
data into interaction networks and reconstructing conditions specific networks
to develop an understanding for reversible transition mechanisms of GSCs under
the dasatinib treatment. After properly analysed gene expression and chromatin
accessibility data, we firstly identified transcription factor (TF) set using Garnet
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module of Omics Integrator and then reconstructed networks by integrating them
with human proteomic data using Forest module of Omics Integrator (Tunchag,
Gosline, et al., 2016).

3.5.1. ldentification of transcription factors using Garnet

Garnet outputs a set of transcription factors that potentially responsible for gene
expression changes by associating chromatin accessibility data and nearby
expressed genes. To do this, Garnet first uses chromatin accessibility data which
gives open chromatin regions, histone modification ChlP-Seq data in this case,
and scans regions proximal to transcribed genes obtained from transcriptomic
data within a defined window to detect transcription factor binding motifs.
Although transcription factors have preferences to bind specific motifs, these
proteins can tolerate a few possible base changes at certain positions in motifs.
Therefore, Garnet defines transcription factor affinity (TFA) scores for each
motif across all regions (Equation 1). Then, Garnet uses linear regression model
to relate TFA scores and gene expression changes and gives a set of significant
transcription factors.

TFA; = Wi m 1)

In the equation, TFAj is the estimated probability of binding for motif j which is
calculated by taking scores of all possible binding windows i in the region. m;
represents the likelihood of a transcription factor to bind a region at the i™
window. w;j and B; are the tuning parameters which control the probability that
the motif is not false positive, and the motif is false positive, respectively.

Garnet needs four type of data as input; bed-formatted file containing open
chromatin regions, fasta-formatted file stores sequence information of regions in
BED file, gene expression data file as tab-delimited file and configuration file.
We already prepared epigenomic data in a bed-formatted file by merging
differential peak calling results for each histone marker per pairwise comparison
conditions. We downloaded FASTA files by using Galaxy webserver
“Extracting Genomic DNA” tool for each bed file. Then gene expression files
were prepared by choosing statistically significant genes having FDR lower than
0.01 for three pairwise comparison conditions. The expression file contains two
columns, first one is the name of the gene and the second one is the log-fold-
change of that gene.

For each Garnet run, we created configuration files which specifies full paths to
the bedfile, fastafile and expressionfile and run-related parameters: 2000 for
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windowsize, 0.05 for pvalTresh. It should be noted that we also provided the full
paths to the annotation files; genefile and xreffile, for the human genome version
hgl19. As the last file, the motif data in the TAMO format was specified in the
configuration file. Garnet was performed for each histone marker separately and
the resulting TFs lists in the output file with the extension of
“regression_results.tsv” specific to each pairwise comparison condition were
concatenated. The file contains four columns. These are motif column for TFs
binding same motifs, slope, p-value and g-value for the regarding TF,
respectively. These transcription factors are symbolized with transfac id and
needed to be converted into official gene symbols. HGNC (HUGO Gene
Nomenclature Committee) multi-symbol checker tool was used to retrieve
official gene symbols for transfac ids of each TF. After that prize for each TF
was calculated as negative of log2 p-value. As a result, there were three different
set of significant TFs and their prizes associated with each pairwise comparison
condition: naive vs 12d, 12d vs persister and naive vs persister.

3.5.2. Network integration with Forest

The TFs from each pairwise comparison condition list are the molecules
considered as crucially related with the mechanisms which control rapid
dynamic interconversion of GSCs from sensitive, proliferative to slow-cycling,
persister state. We used these TFs as terminal node set and their negative log2
p-values as prizes and mapped them to human interactome by using Forest
module of Omics Integrator.

Forest use node prizes to determine how strongly that node should be included
in the final network by assigning negative weights to nodes based on a
generalized prize function indicated below (Equation 2).

p'(w) = B.pw)— u.degree(v) (2)

While p(v) denotes for terminal node prize where v is a vertex (node), degree(v)
is the number of connections that a node v has in the interactome. The
parameters, B and p, are the scaling factors to control the effect of terminal and
hub nodes in the final network, respectively. To avoid negative evidences which
caused from having high degree of a node just because of involving in many
interactions or studying more, Forest uses these two parameters. While
increasing p makes harder to be included a hub node in the final network,
increasing B means that more terminal nodes to be included in the final network.
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Forest uses another scoring function to calculate the probability p(e) reflecting
the confidence of an edge between two proteins and allows users to avoid false
positive edges. The scoring function (Equation 3) is:

cle)=1- ple) 3)

where c(e) is the cost assigned to edge based on this function by using a set of
edge weights, denoted p(e).

In this study, we inputted three terminal sets with prize values for each pairwise
comparison conditions as text file and human interactome (iReflndex v13) which
contains interacting molecules and associated edge weight in a text file format.
Forest takes the network data G(V, E, c(e), p’(v)) where V is the node set, E is
the edge set and c(e) and p’(v) functions assign a cost to each edge and a prize
to each node, respectively. The aim of the Forest is to find final optimal network
F(Vr, EF) which minimizes the objective function (Equation 4):

f'(F) = Ypevrp' (W) + Xecprcle) + w. k (4)

where the o is the parameter which controls edge cost between a dummy node
and a node in the node set, N. k is the number of trees in the forest. The optimal
way to construct a network is to give different values to parameters and then
choose the optimal combination of the parameters that give a final network
where there are maximum number of nodes from prize file.

In this study, we used different values for the parameters; 0.5 and 1 for o, 0 and
0.01 for u, 1,2, 3, 4, and 5 for B and 10 for D. The combination of each value of
parameters were supplied to Forest in a configuration file. In addition to prize
files and human interactome, we also inputted dummy node lists containing cell
surface receptors by specifying --dummyNode option. After run Forest, we had
20 networks for each pairwise comparison condition which were outputs of
different configuration files containing different values for the parameters. Then
we merged those 20 networks using python NetworkX package and obtained one
final optimal network for each condition in sif-formatted file.

3.5.3. Visualization of networks with Cytoscape

The optimal final networks were visualized in Cytoscape (version 3.6.0). Each
node type was specified with a different shape; triangle represents transcription
factors coming from the prize file, steiner nodes are symbolized with hexagon
shape and cell surface receptors are shown with V shape. Furthermore, the
networks were clustered by using Cytoscape clusterMaker Community cluster
(GLay). The gene expression changes, as log2FC values, were also added to
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nodes as color scale where bluish color indicates downregulated genes and
reddish color represents upregulated genes. Finally, we add histone marker
information for each TFs in the final networks in the form of pie-chart. Red,
purple and light blue colours represent for H3K27ac, H3K27me3 and H3K4me
markers, respectively.

3.5.4. Overrepresentation Enrichment Analysis

Overrepresentation Enrichment Analysis (ORA) was performed for each cluster
having more than 5 nodes per condition specific networks using WebGestaltR
(version 0.3.0). Differently from GSEA, there is no need for scores in the input
file so that we supplied node lists as well as reference gene file to carry out ORA.
We prepared one column txt files for all clusters in each pairwise comparison
specific network; there were 10 clusters out of 13 for naive vs 12d network, 5
clusters out of 12 for naive vs persister network and 10 out of 13 for 12d vs
persister network. We run ORA by specifying the following parameters:
enrichMethod = "ORA", organism = "hsapiens", enrichDatabase = “KEGG
pathway & pathway Reactome & gene ontology Biological processes & gene
ontology Molecular Function”, referenceSet = "genome_protein_coding",
minNum = 10, maxNum = 300, sigMethod = "fdr", fdrThr = 1. Afterthought, the
resulting enrichment files were subjected to FDR threshold: 0.05 to mark out
significant pathways and biological process. Lastly, we removed generic
pathways/biological processes which are most frequently enriched in many
conditions.
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CHAPTER 4

4.RESULTS

4.1.Transcriptomic Profiling Reveals That Notch Pathway and Histone
Modification Related Genes are Highly Enriched in Persister Cells

Glioblastoma stem cells show the characteristics of neural stem cells and express
stemness marker genes (Justin d. lathia, 2015). These markers are mostly
enriched in cell cycle-related, neuron cell differentiation-related biological
functions and some of them are transcription factors that directly bind to DNA.
SOX2 (Hemmati et al., 2003), OLIG2 (Ligon et al., 2007) are two of these
markers. In this study, we analyzed three conditions of dasatinib treated GSCs
which can be expressed as naive, GSCs in their proliferative state, 12d, 12 days
treated GSCs and persister, more than 8 weeks treated GSCs. The analysis of
gene expression profiles revealed that SOX-related genes (Figure 4.1) and
OLIG2 are highly enriched in dasatinib treated cell lines, especially in persister
and 12d, respectively. The results also show that dasatinib treatment trigger the
expression of SMAD3 and SMAD7 genes. SMAD genes play a role in the
transmission of signal from cell surface to nucleus and in the activation of
transcription through TGF-beta signalling pathway (Macias, Martin-Malpartida,
& Massagué, 2015). TGF-beta activated SMADs perform various functions
which are negative regulation of cell growth, formation of fibrosis and
modulating immune-related pathways (Weinstein, Yang, & Deng, 2000). While
SMAD3 shows higher-level expression pattern in 12d and persister status than
naive status, SMAD?7 is highly expressed in 12d status and these two genes are
related to inhibiting growth factors and growth-related signals within the cell.

FOX family genes are another group regulated differentially across conditions.
FOXO03, FOXG1, FOXK1 and FOXN3 are the genes having opposite trend when
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expression profiles of them in dasatinib treated cells; 12d and persister, and in
naive cells were compared. Furthermore, expression of FOXA3 gene is relatively
lower in persister cells than naive and 12d cells (Figure 4.2). FOX genes are
involved in transcriptional regulation, cell growth and differentiation by coding
DNA-binding FOX proteins and known as their upregulation in tumor cells
(Katoh, Igarashi, Fukuda, Nakagama, & Katoh, 2013). It should be highlighted
that although FOXO3 and FOXG1 function in negative regulation of neuron
migration and differentiation, respectively and show similar expression pattern
in 12d and persister cells, FOXA3 plays a role in the regulation of neuron
differentiation, chromatin remodelling and Notch signalling pathways and
shows different expression pattern in persister cells. Besides indirectly
regulation of Notch signalling pathways by FOXAL, genes directly implicated in
these pathways, NES, HES5, HEY1, are activated in persister cells (Figure 4.2).
Cell replication and differentiation, prolongation of stemness markers are the
functions controlled by Notch signalling pathways (Borggrefe & Oswald, 2009).
Further, some studies emphasized that Notch signalling is activated particularly
in cancer stem cells (Venkatesh et al., 2018).

Genes associated with chromatin remodelling, especially the ones involving
histone demethylases, showed an overexpression in 12d and persister cells.
Persister GSCs, which are insensitive to dasatinib, have upregulated KDM5B
and KDM6B (Figure 4.2) genes from KDM family. Previous studies have
demonstrated significant regulation of these genes in cells that are insensitive to
drug and slow-cycling (Roesch et al., 2013; Sharma et al., 2010).

The differential expression profiles were also studied to check whether the
differences in the expression patterns of genes are valuable to make a biological
inference. We performed the analysis on the pairwise comparison conditions;
naive sensitive cells versus 12d cells, naive sensitive cells versus slow cycling
persister cells and 12d cells versus slow cycling persister cells (Figure 4.3).

26



Status l 2
naive 1
12d -
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KDM5B KDM6B

CCNA2 LDHA BIRCS

NES SOX9
HEY1 FABP7

Figure 4.1: Gene expression profiles of naive, 12d and persister cells. Heatmap
indicates gene expression profiles of the most significant 1483 genes (FDR <
0.01, log2FC > 2) across GSC8 naive, GSC8 12d and GSC8 persister. Genes
having TPM values lower than 0.1 across all conditions were removed. Data
were generated from log2(tpm + 1) transformed TPM scores of three biological
replicates. Red-blue colour scale represent z-scores from positive to negative
values. Cell status are indicated by red, black and green colour.
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Figure 4.2: The expression profiles of some selected genes in naive, 12d and
persister cells. Heatmap indicates gene expression profiles of highlighted genes
in the Figure 4.1 (FDR < 0.01, log2FC > 2) across GSC8 naive, GSC8 12d and
GSC8 persister. Data were generated from log2(tpm+1) transformed TPM
scores of three biological replicates. Red-blue colour scale represent z-scores
from positive to negative values. Cell status are indicated by red, black and green

colour.
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Figure 4.3: Differentially expressed genes across pairwise comparison
conditions. Heatmap shows 1256 significantly differentially expressed genes
between each comparison conditions; naive vs 12d, 12d vs persister, naive vs
persister (represented by orange, dark blue and pink colours, respectively).
Genes were selected based on having FDR lower than 0.01 and log2FC higher
than 2. Genes having TPM values lower than 0.1 across all conditions were
removed. Red-blue colour scale represents log2FC values.

4.2. Gene Set Enrichment Analysis Shows That Cell-Cycle Related
Biological Functions are Negatively Regulated in Drug-Treated Cells

We then performed functional enrichment analysis on significantly differentially
expressed genes for each pairwise comparison condition; naive vs 12d, 12d vs
persister and naive vs persister, to identify classes of genes and pathways where
these gene sets are involved. In this consideration, we are able to better
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understand the biology underlying resistance of GSCs. Following our analysis,
we found that mitotic cell-cycle related functions such as mitotic G1 DNA
damage checkpointl, mitotic G1/S transition checkpointl, regulation of G2/M
transition of mitotic cell cycle are negatively regulated in the pairwise
comparison condition, 12d vs persister (Figure 4.5). Furthermore, cellular
functions associated with the positive regulation of mitotic cell cycle transitions
are negatively enriched for the same condition. However, histone modifications,
chromatin remodelling, and DNA replication-independent nucleosome
organization related functions are positively enriched in the pairwise comparison
conditions; naive vs 12d and naive vs persister.

Pairwise Comparison
| ] 2 Naive vs 12d
[ 12d vs Persister

Serotonergic synapse Naive vs Persister

ABC transporters 1
Complement and coagulation cascades | ]
Neuroactive ligand-receptor interaction

Ribosome 0
B cell rece tors naling pahway

cycle) ]
Base exclsmn repa|r -1
Ribosome biogenesis in eukaryotes

Basal transcription factors

Spliceosome

Gg(msy Rphatldyhmsml (GPl)y-anchor biosynthesis
Amlnoacyl -t

Protein export

RNA polymerase

Oxidative phosphorylation

Cell cycle

Mismatch ir

DNA replication
Proteasome .
Nucleotide excision repair

Figure 4.4: KEGG pathways enriched in each pairwise comparison condition. In
the heatmap, columns show these comparison conditions; naive vs 12d, 12d vs
persister and naive vs persister (represented by orange, dark blue and pink
colours, respectively), and rows represent union list of enriched KEGG pathways
finding by GSEA. While blue colour is to define downregulated pathways
(negative enrichment score), red is to define upregulated ones (positive
enrichment score). White colour means that there is no enrichment for related
pathways.

4.3. Comparative Comparison of Significantly Active Transcription
Factors Across Pairwise Comparison Conditions

After comprehensively analyze gene expression data, we identified significantly
active TFs for each pairwise comparison condition; naive vs 12d, 12d vs persister
and naive vs persister by using the Garnet module of Omics Integrator in which
we integrated expression level data and chromatin accessibility data obtained
from differential peak calling analysis. Then, we compared pairwise comparison
conditions in terms of similarity and difference for having TFs.
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Figure 4.5: Biological functions enriched in each pairwise comparison condition.
In the heatmap, columns show these comparison conditions; naive vs 12d, 12d
vs persister and naive vs persister (represented by orange, dark blue and pink
colours, respectively), and rows represent union list of enriched biological
functions finding by GSEA. While blue colour is to define downregulated
functions (negative enrichment score), red is to define upregulated ones (positive
enrichment score). White colour means that there is no enrichment for related

We found that different TFs are significantly active in different conditions
(Figure 4.6) while fewer of them are shared by all three pairwise comparison
conditions (Figure 4.7). Interestingly, cell growth and cell differentiation related
TFs, EGFR family, WT1, ELF family, are found in the naive vs 12d and 12d vs
persister comparison conditions. Montano and colleagues demonstrated that
there is a negative regulation on apoptotic cell functions in the EGFRvIII-
negative GBM cells promoted by EGFRvIII-positive GSCs (Montano et al.,
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2011). EGFRuvIII positive GBM cells are variants and generally associated with
high level expression of cell proliferation genes. They also revealed that
EGFRvllI-negative cells are resistant to certain treatments. Our findings with
the result of Montono’s work emphasized that cell growth related genes may be
in a strong relation with genes which are responsible for GBM resistance. In
addition, SOX TFs, SOX21, SOX10, SOX9, SOX7, SOX6, SOX30 and SOX14
are only found in the naive vs 12d comparison condition. These TFs play roles
in the regulation of cell differentiation, cell migration and negative regulation of
apoptotic process and canonical Wnt signalling pathway which is another well
studied crucial pathway in GSCs (Sandberg et al., 2013).

T [ L
ﬁ;ﬂfﬂA T B o C 15 Pairwise Comparison
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i 5 ez 12d vs Persister
e Zagpet 201 Naive vs Persister
PAP

i
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Figure 4.6: Significantly active TFs in each pairwise comparison condition. In
this heatmap, each panel A, B and C, shows significantly active TFs detected by
the Garnet module for each pairwise comparison condition; naive vs 12d, 12d vs
persister and naive vs persister (represented by orange, dark blue and pink
colours, respectively). Colour bar represent weight of each TF which is related
with the importance of associated TF.
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Figure 4.7: Significantly active TFs found in at least two pairwise comparison
conditions. The heatmap significantly active TFs detected by the Garnet module
for each pairwise comparison condition; naive vs 12d, 12d vs persister and naive
vs persister (represented by orange, dark blue and pink colours, respectively).
Colour bar represent weight of each TF which is related with the importance of
associated TF.
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4.4. Network Modelling Indicates That GSCs Prefer an Alternative Cell
Surface Receptors to Activate RTK-dependent Pathways

We next integrated omic datasets (epigenomic and transcriptomic data) to
reconstruct the signaling and regulatory networks for each condition and further
compared these networks to elucidate the commonalities and differences in each
condition. We need to note that the network reconstruction is important in two
terms: i. we are able to analyze multiple omic data together ii. we are able to
show the interactions between omic entities beyond the list of genes or proteins.
In this way, it is possible to analyze the conditions at pathway level. For this
purpose, we used Omics Integrator software. The Garnet module is used to
integrate ChIP-Seq data with RNA-Seq data to obtain significantly active
transcription factors and the Forest module is used to reconstruct signaling
networks starting from cell surface receptors and terminating at the significant
transcription factors found by Garnet. As a result, “naive vs 12d” network has
188 node and 394 edges, “12d vs persister” network has 188 node and 407 edges,
and “naive vs persister” network has 111 node and 281 edges.

Rheinbay et al. highlighted that Wnt signalling is crucial in GSCs and highly
associated with tumour propagation (Rheinbay et al., 2013). Dasatinib inhibits
receptor tyrosine kinases and its specific targets are BCR/ABL and Src family
receptor tyrosine kinases (Das et al., 2006; Talpaz et al., 2006). Among the Src
family, SRC, LCK, YES FYN, PDGFRp, C-KIT and tPHAZ2 are the main targets
while SRC involves in the positive regulation of canonical Wnt pathway. In this
study, network modelling of pairwise comparison conditions reveals that GSCs
maintain their tumorigenicity and show resistance to dasatinib treatment by
activating Wnt signalling pathway via a different cell surface receptor.

Among the cell surface receptors, SELL, LIFR, IL6ST and BAMBI are the
receptors enriched in the resulting network for the pairwise comparison
condition naive vs 12d (Figure 4.4A). The activation of BAMBI receptor
activates proteins performing function in the positive regulation of canonical
Whnt signalling. In addition to role of BAMBI in the activation Wnt signalling
pathway, IL6ST receptor enriched in the naive vs 12d network plays a role in the
Notch signalling which is known with its relatively high activity in stem cells.
IL6ST is also related with cell proliferation and target for growth factor.

TGF-p signalling pathway has been studied well and these studies shed light on
the importance of TGF-B signalling pathway in the activation of stemness
markers in GSCs (Ikushima et al., 2009). Although BAMBI receptor positively
regulates tumour related pathways, Wnt signalling, this receptor negatively
affects the regulation of TGF-p signalling pathway. Besides, it cannot be ignored
that there is a general trend for binding glycoproteins and being in a relation with
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energy-related pathways for the receptors enriched in the naive vs 12d condition
specific network.

Ras/Raf/MAPK signalling is another glioma related pathway which includes
regulation of cell proliferation, differentiation and survival (Halfon et al., 2000;
Tuncbag, Milani, et al., 2016). The network of naive vs persister condition
represents the interactions of significantly changing transcription factors
between sensitive and insensitive cells (Figure 4.10) and it contains of a
transmembrane receptor, GFRA2. The receptor GFRA2 is involved in the
tyrosine kinase signalling pathway which is inhibited by dasatinib binding to
other receptor tyrosine kinase receptors. Additionally, it activates Raf/MAPK
cascade as well as nervous system development. Furthermore, dasatinib targeted
RTKSs particularly act in the positive regulation of MAP kinases and MAPK
cascade. Besides, GFRA2 activates glial cell line-derived neurotrophic factor
(GDNF) and positively regulate the survival and differentiation of neurons.
Other two receptors, IL10RA and IFNAR?2, in the naive vs persister network are
known as receptors that regulates JAK/STAT signalling pathway. Another
receptor, ITGAX, is shared the characteristics of binding integrins with the
RTKSs.

There is a general trend among receptors in the 12d vs persister condition
specific network (Figure 4.9) for binding growth factor and regulating the
growth-related pathways. The receptor, GHR, plays a role in the indirect
activation of MAPK signalling by activating JAK/STAT pathway upon protein
kinase binding. Another receptor, NGFR, can be important for the stemness
maintenance and drug resistance of GSCs in their insensitive status in terms of
being involved in binding to nerve growth factor, cell survival and
differentiation.

The other proteins in the resulting optimal networks, transcription factors and
proteins called as Steiner node, are also crucial to understand how GSCs become
persistent under the dasatinib treatment. For the naive vs 12d network (Figure
4.8), neural stem cell related markers; histone demethylases, SMAD proteins and
SOX transcription factors, are highly connected to other proteins in the network.

For naive vs persister network (Figure 4.10) SMAD family transcription factors
are grouped in a cluster and make interactions with the member of another
cluster which is regulated by the cell surface receptor, ITGAX in the network.
The second cluster in the interaction of two clusters, involves MAPK10 protein
and MAF transcription factor.
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Figure 4.8: Condition specific network for the pairwise comparison condition
naive vs 12d. The network was constructing by merging all augmented network
results from Forest with p 0.01. There are 188 nodes and 394 edges. Triangles
with a pie chart represent for TF, hexagons are for Steiner nodes and V shape
shows cell surface receptors. Each pie chart on TFs represents the histone mark
that the TF is obtained from. The colours of the pie chart represent different
histone markers; red for H3K27ac, purple for H3K27me3 and light blue for
H3K4me3.
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Figure 4.9: Condition specific network of the pairwise comparison condition 12d
vs persister. The network was constructed by merging all augmented network
results from Forest with p 0.01. There are 188 nodes and 407 edges. Triangles
with a pie chart represent TF, hexagons are Steiner nodes and V shape shows
cell surface receptors. Each pie chart on TFs represents the histone mark that the
TF is obtained from. The colours of the pie chart represent different histone
markers; red for H3K27ac, purple for H3K27me3 and light blue for H3K4me3.

36



Figure 4.10: Condition specific network of the pairwise comparison condition
naive vs persister. The network was constructing by merging all augmented
network results from Forest with p 0.01. There are 111 nodes and 281 edges.
Triangles with a pie chart represent TFs, hexagons are Steiner nodes and V shape
shows cell surface receptors. Each pie chart on TFs represents the histone mark
that the TF is obtained from. The colours of the pie chart represent different
histone markers; red for H3K27ac, purple for H3K27me3 and light blue for
H3K4me3.

4.5. Comparison of The Results of Overrepresentation Enrichment
Analysis of Clusters in Each Condition Specific Network

One of the most important characteristics of Glioblastoma is its phenotypic
heterogeneity that explains why developing a treatment for GBM is hard. From
the aspects of system biology, pathway-based analysis can be meaningful to
understand similarities and differences among condition specific networks. We
first performed cluster analysis on the three condition specific networks; naive
vs 12d, 12d vs persister and naive vs persister. Then we identified functions and
pathways in each cluster which are overrepresented in a set of TFs. To conclude
with the analysis, we compared commonalities and differences of enriched
pathways (KEGG & Reactome pathways), biological processes and molecular
functions across clusters in each condition specific network.

Biological process analysis reveals that cell cycle related functions are
negatively regulated in the 12 vs persister condition network, while cell
functions related to stem cell differentiation and proliferation are enriched in
naive vs 12d and naive vs persister condition networks (Figure 4.14). Histone
modification related biological process are active both in the naive vs 12d and
in the 12d vs persister networks while there is no any enrichment for this
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category in the networks specific to naive vs persister. Therefore, chromatin
remodelling should be crucial for the GSCs subjected to 12 days dasatinib
treatment. However, sensitive and insensitive glioblastoma stem cells have
tendency to regulate biological process associated with stemness.
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Figure 4.11: Pathway analysis across clusters in the naive vs 12d network. The
representation shows enriched KEGG and Reactome pathways in each cluster.
The overrepresentation enrichment analysis was conducted by WebGestaltR.
FDR value shows the significance of the related category while size of the points
is associated with the number of genes involved in each category.
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Figure 4.12: Pathway analysis across clusters in the 12d vs persister network.
The representation shows enriched KEGG and Reactome pathways in each

cluster.

The overrepresentation enrichment analysis was conducted by

WebGestaltR. FDR value shows the significance of the related category while
size of the points is associated with the number of genes involved in each

category.
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Cell cycle- and Notch signalling-related pathways shows a distinctive
enrichment trend when the 12d vs persister specific network is compared to other
two networks; naive vs 12d and naive vs persister (Figure 4.16). Moreover, TGF-
B activated SMAD proteins related pathways are differentially active in the 12d
vs persister condition network which are negatively regulate cell cycle, cell
growth functions within the cell.
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Figure 4.13: Pathway analysis across clusters in the naive vs persister network.
The representation shows enriched KEGG and Reactome pathways in each
cluster. The overrepresentation enrichment analysis was conducted by
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size of the points is associated with the number of genes involved in each
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Biological Process Analysis Across Pairwise Comparison Conditions
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Figure 4.14: Biological process analysis across pairwise comparison condition
networks. The representation shows enriched biological processes in each
network; naive vs 12d, 12d vs persister and naive vs persister. The
overrepresentation enrichment analysis was conducted by WebGestaltR. FDR
value shows the significance of related category while size of the points is
associated with the number of genes involved in each category.
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Molecular Function Analysis Across Pairwise Comparison Conditions
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Figure 4.15: Molecular function analysis across pairwise comparison condition
networks. The representation shows enriched molecular functions in each
network; naive vs 12d, 12d vs persister and naive vs persister. The
overrepresentation enrichment analysis was conducted by WebGestaltR. FDR
value shows the significance of related category while size of the points is
associated with the number of genes involved in each category.
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Pathway Analysis Across Pairwise Comparison Conditicns
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Figure 4.16: Pathway analysis across pairwise comparison conditions. The
representation shows enriched KEGG and Reactome pathways in each network;
naive vs 12d, 12d vs persister and naive vs persister. The overrepresentation
enrichment analysis was conducted by WebGestaltR. FDR value shows the
significance of related category while size of the points is associated with the
number of genes involved in each category.
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CHAPTER 5

5.DISCUSSION AND CONCLUSION

In this study, by using gene expression changes and chromatin accessibility data
we model reversible transition of GSCs from proliferative to slow-cycling,
persister states under the effect of dasatinib treatment in such a way that this
extensive network modelling led us to map transcriptomic and epigenetic
changes to human interactome. By taking the existence of specific three
conditions into account, specifically naive, 12d-dasatinib treated and persister
states, the networks for each pairwise comparison condition were constructed.

After conducting the transcriptomic analysis, we found that Notch signalling
related genes show augmented level of expression in the GSCs which are in
persister state (Figure 4.1). The relation between Notch-related genes and cell
differentiation and resistance in cancer was also emphasized by Borggrefe and
his colleagues (Borggrefe & Oswald, 2009). In addition, we also figured out that
two histone demethylases genes, kdm5b and kdméb, which demethylases H3K4
and H3K27 respectively, are highly expressed in persister GSCs (Figure 4.1).
These findings are particularly important in terms of biological mechanisms
underlying GSCs resistance; specially, the main reason is that epigenetic
mechanisms are better candidate to explain the reversible mechanisms in GSCs
than genetic mechanisms. The significantly differential expression pattern of
these histone modification genes reveals that different chromatin structural states
may be responsible for the regulation of gene expression which causes to
generate the phenotypic resistance. Furthermore, in support of the fact that the
resistance of GSCs shows the dependence on chromatin reorganization,
Bernstein et al. reached a similar conclusion by stressing it in their work (Liau
et al., 2017). Another significant result is that GSCs in their naive state are closer
to those in persister state than 12d-dasatinib treated GSCs when the expression
pattern of significantly altered genes of the states are compared correspondingly
(Figure 4.2). These results enable us to make some relations, especially such as
the connection between intra-tumoral heterogeneity of GBM and therapeutic
resistance (Inda et al., 2010). Pre-existence of sub-clones resistant to dasatinib
treatment may be responsible for the closeness between the gene expression
patterns of naive and persister GSCs; this can be explained by the fact that before
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treatment, naive state not only includes the sub-clones which are resistance
against dasatinib but also those are sensitive to it. Under the treatment, it can be
observed that the sensitive cells are killed by the drug while resistant cells keep
their formation in persister state without losing their stability.

In this study, we used Garnet module of the Omics Integrator which correlates
transcriptomic changes with the transcription factor binding affinity. It searches
TF binding motifs on the accessible regions of DNA obtained from histone
marker specific epigenomic data and identifies significantly active TFs. In spite
of using the single omic data type, the Garnet module integrates two types of
omics data (A.A. et al., 2006). Our results are compatible with the intra-tumoral
heterogeneity of GBM, we found that different transcription factors which are
main regulators of gene expression, are responsible for the changes between
pairwise comparison conditions (Figure 4.6). In the network construction, we
revealed not only the existence of direct interactions between these significantly
active TFs, but also the distribution of histone modifications across TF binding
motifs. In this way, we are able to interpret the network topology in a way that
how the pathways, which are enriched in each network, and which are affected
as a result of the epigenetic regulation or specifically, under the effect of histone
modifications.

We also found that MAPK signalling pathway is enriched in a large cluster in
the network that represents the alterations between naive and persister GSCs,
and the TFs are enriched in the ones obtained from H3K27me3 markers, leading
to a heterochromatin-like chromatin structure, tightly packed DNA regions
(Figure 4.13). Controversially, the binding motifs of TFs in other networks are
located at the open chromatin regions where H3K27ac and H3K4me3 markers
are enriched (Figure 4.8 and 4.9). Although previous studies emphasized that
aberrant activation of MAPK signalling pathway is closely related with cell
invasion and proliferation in GBM (Wilson & Filipp, 2018), by taking
advantage of integrating histone modification data into TFs network, we can
conclude that MAPK signalling may be the key pathway that plays a significant
role in the reversible transition of GSCs from proliferative to slow-cycling state.

In summary, much more effort on epigenetic heterogeneity may serve well to
understand better why the GBM is more resistant to current therapies in
comparison with the other cancer types. In addition to these significant results,
it can be stated that regulation of histone modifications is more active in the
enhancer regions. It can be concluded that considerable amount of work is
needed to identify the roles of enhancer and silencer regions on the regulation
gene expression. This may allow us to possess a comprehensive understanding
on GBM resistance mechanisms and also more precise and accurate personalized
treatment.
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APPENDICES

APPENDIX A

STATISTICS OF FOREST NETWORKS

Table A. The table shows the number of terminals, number of terminal nodes in the final
forest network and total number of node and edge in the final forest network (# of
terminals, # of terminal in the optimal forest network, # of node/edge in the optimal
forest network, respectively) at the end of each Forest run with different parameters.
Columns represent for each condition specific network.

naive vs 12d 12d vs persister naive vs persister

w beta {mu | 050 | 1 0.00 050 |1 0.00 050 | 1 0.00

# of terminals 145 134 83

# of terminals in
optimal forest
network 145 134 83

# node/edge in
optimal forest
network 228 1 227 202 /201 139/ 137

w beta |mu | 050 |1 0.01 {050 |1 0.01 050 |1 0.01

# of terminals 145 134 83

# of terminals in
optimal forest
network 145 131 83
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# node/edge in

optimal forest

network 186 /183 168 /165 108 /105

w beta [mu | 050 |2 0.00 [0.50 |2 0.00 | 0.50 |2 0.00
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 134 83

# node/edge in

optimal forest

network 227 1226 206 /205 139/ 137

w beta |mu | 050 |2 0.01 [0.50 |2 0.01 {050 |2 0.01
# of terminals 145 134 83

# of terminals in

optimal forest

network 0 134 83

# node/edge in

optimal forest

network 0/0 169 /166 108 /105

w beta |mu | 050 |3 0.00 {0.50 |3 0.00 | 0.50 |3 0.00
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 134 83

# node/edge in

optimal forest

network 228 | 227 203 /202 139 /137

w beta |mu | 050 |3 0.01 {050 |3 0.01 050 |3 0.01
# of terminals 145 134 83
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# of terminals in
optimal forest

network 0 134 83

# node/edge in

optimal forest

network 0/0 169 /166 108 / 105

w beta [mu | 050 |4 0.00 [ 0.50 |4 0.00 | 0.50 |4 0.00
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 134 83

# node/edge in

optimal forest

network 226 / 225 202 /201 139 /137

w beta [mu | 050 |4 0.01 {050 |4 0.01 050 |4 0.01
# of terminals 145 134 83

# of terminals in

optimal forest

network 0 134 83

# node/edge in

optimal forest

network 0/0 169 /166 108 /105

w beta [mu | 050 |5 0.00 {050 |5 0.00 | 0.50 |5 0.00
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 134 83

# node/edge in

optimal forest

network 226 / 225 202 /201 140/ 138

w beta [mu | 050 |5 0.01 {050 |5 0.01 050 |5 0.01
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# of terminals 145 134 83

# of terminals in

optimal forest

network 0 134 83

# node/edge in

optimal forest

network 0/0 169 /166 108 /105
w beta |mu |1.00 |1 0.00 {050 |1 0.00 {050 |1 0.00
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 134 83

# node/edge in

optimal forest

network 227 | 226 200 /199 137 /136
w beta |mu |1.00 |1 0.01 |1.00 |1 0.011.00 |1 0.01
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 132 83

# node/edge in

optimal forest

network 186 /185 167 /166 108 / 106
w beta | mu |1.00 |2 0.00 | 1.00 |2 0.00|1.00 |2 0.00
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 134 83

# node/edge in

optimal forest

network 227 | 226 202 /201 137 /136
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w beta [mu |1.00 |2 0.01 [1.00 |2 0.01 100 |2 0.01

# of terminals 145 134 83

# of terminals in
optimal forest
network 145 0 83

# node/edge in
optimal forest
network 186 /185 0/0 108 / 105

w beta {mu |1.00 |3 0.00 | 1.00 |3 0.00 | 1.00 |3 0.00

# of terminals 145 134 83

# of terminals in
optimal forest
network 145 0 83

# node/edge in
optimal forest
network 186 /185 0/0 108/ 106

w beta | mu |1.00 |3 0.01 | 1.00 |3 0.01 100 |3 0.01

# of terminals 145 134 83

# of terminals in
optimal forest
network 145 0 83

# node/edge in
optimal forest
network 186 /185 0/0 108/ 106

w beta | mu | 1.00 |4 0.00 | 1.00 |4 0.00 | 1.00 |4 0.00

# of terminals 145 134 83

# of terminals in
optimal forest
network 145 134 83

59




# node/edge in

optimal forest

network 217 /216 201 /200 138/ 137

w beta {mu [1.00 |4 0.01 [1.00 |4 0.011.00 |4 0.01
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 0 83

# node/edge in

optimal forest

network 186/ 185 0/0 108/ 106

w beta [mu [1.00 |5 0.00 | 1.00 |5 0.00|1.00 |5 0.00
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 134 83

# node/edge in

optimal forest

network 216/ 215 202 /201 134 /133

w beta [mu |[1.00 |5 0.01 [1.00 |5 0.011.00 |5 0.01
# of terminals 145 134 83

# of terminals in

optimal forest

network 145 0 83

# node/edge in

optimal forest

network 186/ 185 0/0 108/ 106

60




