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ABSTRACT 

 

INTEGRATIVE NETWORK MODELLING OF THE DASATINIB 

TREATMENT IN GLIOBLASTOMA STEM CELLS 

 

 

Senger, Gökçe 

MSc., Department of Bioinformatics 

Supervisor: Assoc. Prof. Dr. Nurcan Tunçbağ 

 

March 2019, 60 pages 

 

Glioblastoma (GBM), the most aggressive type of the glial tumours, is thought to be 

widely promoted by stem-like cells. Although certain cancer types have been radically 

treated with Receptor Tyrosine Kinases (RTKs) inhibitors, prior studies demonstrate that 

treatment Glioblastoma Stem Cells (GSCs) with RTK inhibitors led to dynamic 

interconversion from proliferative to slow-cycling, persistent state. In this work, we use 

the publicly available RNA-Seq and ChIP-Seq data in naive patient-derived GBM cell 

line (GSC8), 12-day and chronic dasatinib treated GSC8 published by Liau et al (Liau et 

al., 2017) and apply an integrative approach to develop a further explanation for reversible 

transition of GSCs and to model the effect of the dasatinib treatment in a network context. 

We first used the Garnet module in Omics Integrator software which identifies 

transcription factor binding sites from epigenomic data, relates known and predicted 

transcription factor binding sites to gene expression and finds the significantly active 

transcription factors. Then, we used the Forest module of the Omics Integrator software 

to reconstruct an optimal network for each condition by integrating significantly active 

transcription factors and a confidence weighted protein interactome. As a result, we 

obtained three condition specific networks and clustered them based on the topology of 

these networks. Each module was analysed in terms of pathway enrichments. Then, we 

compared these networks based on the node, edge and pathway similarities. We reveal 

that GSCs tend to activate RTK-targeted genes and upregulate neurodevelopmental 

programs by reorganizing chromatin modifications. 

 

Keywords: Integrative Network Modelling, Multi-omics data, Histone modifications, 

Receptor Tyrosine Kinases, Glioblastoma Stem Cells 



v 

 

ÖZ 

 

GLİOBLASTOMA KÖK HÜCRELERİNDE DASATİNİB TEDAVİSİNİN 

BÜTÜNLEYİCİ AĞ MODELLEMESİ 

 

Senger, Gökçe 

Yüksek Lisans, Biyoenformatik Bölümü 

Tez Yöneticisi: Doç. Dr. Nurcan Tunçbağ 

 

Mart 2019, 60 sayfa 

 

Glioblastoma, tüm beyin tümörleri içinde en sık rastlanan kötü huylu bir beyin tümörüdür. 

Kanser genom çalışmaları reseptör tirosin kinazların (RTK) glioblastoma vakalarında en 

çok değişen genler olduğunu göstermiştir. Fakat bilinen ve bu genleri hedef alan tedavi 

yöntemleri glioblastoma için yeterli olmamıştır. Son çalışmalar gösteriyor ki, 

glioblastomanın çok kökenli hücre fenotipi ve kalıtımsal yapısı tedaviler karşısında direnç 

göstermesine neden oluyor. Liau ve çalışma arkadaşlarının yaptığı bir çalışma, 

glioblastoma kök hücrelerinin, reseptör tirosin kinazları hedef alan bir ilaç, dasatinib, 

etkisiyle epigenetik mekanizmalar yardımıyla kendilerini uyku durumuna soktuklarını ve 

ilaca dayanaklı hale geldiklerini göstermektedir. Bu tez çalışmasında, glioblastoma kök 

hücrelerinin tersinir epigenetik mekanizmalarının açıklanması ve dasatinib etkisiyle 

meydana gelen hücresel iletim trafiğinin modellenmesi hedeflenmiştir. İlk olarak 

epigenomik veriden transkripsiyon faktörlerinin bağlanma bölgelerini tanımlamak için 

Omics Integrator programının Garnet modülünü kullandık. Buradan gelen sonuçları gen 

ifadesi verisi ile birleştirerek önemli derecede aktif olan transkripsiyon faktörlerini 

belirledik. Daha sonra, belirlenen faktörlerin protein iletişim ağlarındaki yerlerini 

belirlemek için Omics Integrator programının Forest modülünü kullandık. Sonuç olarak 

üç farklı durum için ağ modelleri elde edip bunları topolojik özelliklerine göre 

karşılaştırılması yapıldı. Ayrıca her model için sinyal yolak analizi yapıldı. Daha sonra 

modeller, topolojik ve sinyal yolak benzerliklerine göre karşılaştırıldı. Bu çalışma ile 

glioblastoma kök hücrelerinin RTK ile aktivasyonu sağlanan genleri ve sinirsel gelişim 

programlarını, kromatin modifikasyonlarını düzenleyerek aktifleştirme eğilimlerini 

göstermiş olduk. 

Anahtar Sözcükler: Ağ Modelleme, Omik Veri, Histone modifikasyonu, Tirozin Kinaz 

Reseptörleri, Glioblastoma kök hücreleri   
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CHAPTER 1 

CHAPTER 

1.INTRODUCTION 

Glioblastoma Multiforme (GBM), the most frequent type of human brain cancers, 

is thought to be the most aggressive and malignant primary brain tumour 

propagated by stem-like cancer cells. Although new therapeutic strategies have 

been tried to either slow down or stop the progression of cancer and they have 

worked against certain cancer types, these treatments have failed to lower 

mortality rate of GBM. The intra- and inter-tumoral genetic and phenotypic 

heterogeneity of GBM is the main reason why these tumours resistance to current 

therapies which are mostly designed to target bulk tumours (Ikushima et al., 

2009). 

Transcriptomic profiling is a widely used technique to deeply understand the 

molecular background under the extensively diverse GBM phenotypes and to 

biologically characterize of Glioblastoma stem cells (GSCs). Transcriptomic 

profiling is basically defined as annotation and quantification of all RNA 

molecules in a single cell or population of cells which is so called transcriptome. 

Recent advances in high-throughput RNA sequencing and the decrease in 

sequencing cost make large scale data collection possible, opening the door to 

categorize anomalous events in the progression and maintenance of GBM and to 

develop a consciousness about vulnerability and aggressiveness of GBM (Zhao et 

al., 2017). These genome wide studies have led to detailed characterization of the 

molecular pathogenesis of GBM, continuity of clinical treatment plans and 

identification of new drug targets. While receptor tyrosine kinase 

(RTK)/Ras/PI3K, p53 and Rb signalling pathways are the most commonly 

affected pathways in GBM according to The Cancer Genome Atlas (TCGA) 

research, EGFR, HER2, PDGFRA and MET are the most altered genes among 

receptor tyrosine kinases (RTKs) (Tanaka, Louis, Curry, Batchelor, & Dietric, 

2013). Although RTK family inhibitors has been successful in the treatment of 

certain cancer types (Tanaka et al., 2013), they have failed to develop a recovery 

in GBM because of the genetic and phenotypic heterogeneity in GBM and 

distinctive characteristics of GSCs (Eder & Kalman, 2014; justin d. lathia, 2015). 
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Previous studies on GBM showed that GSCs have a critical role in tumour 

progression, maintenance of the malignant behaviour of GBM and resistance to 

current therapies (Bao et al., 2006; Singh et., 2004). Properties of GSCs have been 

well studied and it was indicated that they are capable of forming renewable 

neurospheres in vitro (Kalkan, 2015) and express neurodevelopmental 

transcription factors (TFs) (Alberta et al., 2011; Rheinbay et al., 2013; Wortman 

et al., 2014) which is thought to be significantly associated with GSC maintenance 

and tumorigenic capacity of GBM (Laks et al., 2011).                                                                                                                                                                                                                        

Furthermore, GSCs can express multipotent neural stem cells (NSCs)-like cells 

which can further differentiate into neurons, astrocytes, and oligodendrocytes 

within the tumour mass (Huang, Cheng, Guryanova, Wu, & Bao, 2010). 

According to single-cell RNA sequencing studies, cell-cycle related genes 

indicate relatively low expression in GSCs (Patel et al., 2014) suggesting these 

cells may adopt slow-cycling states (Sosa, Bragado, & Aguirre-Ghiso, 2014).  

The transcriptome is regulated by multiple mechanisms including the dynamic 

chromatin reorganization such as DNA methylation and histone modifications, 

defined as epigenome (O’Geen et al., 2011). Changes in the nucleosomes alter the 

DNA packaging and affect the gene expression by turning on/off a certain fraction 

of upstream regions of genes, referred as transcriptional start site. For example, 

histone methylation is typically associated with open or compacted chromatin 

regions while histone acetylation is associated with open and accessible chromatin 

regions. The chromatin immunoprecipitation (ChIP-Seq) method is used to 

determine direct physical interactions between DNA and protein across different 

modification markers and to improve a perspective on how proteins bind to DNA 

to regulate gene expression. The interaction between TFs and DNA can also be 

studied using ChIP-Seq. Therefore, epigenomic profiling is also crucial to reveal 

tumour maintenance mechanisms of GBM (Dirks, Stunnenberg, & Marks, 2016).  

It is still not completely known how GSCs’ stemness is maintained despite the 

well-studied transcriptomic and epigenomic profiling of GBM. However, we can 

gain new insights from the perspective of system biology and we can extensively 

analyse how the transcriptomic entities and regulators communicate each other in 

GBM.  

In this thesis we used advanced system biology approaches, namely multi-omic 

data integration followed by network modelling to elucidate maintenance of 

stemness and drug resistance of GSCs. We used the transcriptomic and 

epigenomic data of GBM cells in multiple conditions. In this work, the publicly 

available RNA-Seq and ChIP-Seq data from patient-derived GBM cell line treated 

with dasatinib has been used to model the effect of the dasatinib treatment in a 

network context. The important point in the method is to reconstruct transcription 

factor network for different time points of the treatment. For this aim, we first 
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used the Garnet module in Omics Integrator software which identifies 

transcription factor binding sites from epigenomic data, relates known and 

predicted transcription factor binding sites to gene expression and finds the 

significantly active transcription factors. Then, we used the Forest module of the 

Omics Integrator software to reconstruct an optimal network for each condition 

by integrating significantly active transcription factors and a confidence weighted 

protein interactome. 

In Chapter 2, we first explained the current studies in transcriptomic profiling in 

detail. Then we reviewed recent approaches in the analysis of epigenomic data. 

We also recovered recent tools for identification of transcription factor binding 

and reconstructing networks through the integration of multi-omics data.  

In Chapter 3, we described the methodology starting from analysing gene 

expression profiles of GSCs with different drug exposure time, comparing these 

expression profiles, identification of condition specific transcription factors using 

histone modification data to reconstructing final optimal networks.  

In Chapter 4, we emphasized that how our results would contribute to 

understanding dynamic chromatin reorganization mechanisms of GSCs which 

control rapid conversion from proliferative to slow-cycling, drug-persistent state. 

we also indicated that the network-based integrative approach that we proposed 

in the study highlighted new signalling pathways which could be clinically 

important and potential targets in new treatments.  
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CHAPTER 2 

 

2.LITERATURE REVIEW 

 

 

2.1. Understanding of The Underlying Biology of GBM 

2.1.1. Identification of GBM subtypes based on transcriptomic profiling 
 

Prior studies have demonstrated that defining subtypes for GBM using genomic 

and transcriptomic analyses is hard because of the phenotypic and genotypic 

heterogeneity of GBM. In 2006, Phillips and his colleagues identified three 

subtypes which are mesenchymal (MES), proliferative (PROLIF) and preneural 

(PN) by using DNA microarray data (Phillips et al., 2006). Then Verhaak and 

his co-workers added a critical fourth class and named it as Classical (Verhaak 

et al., 2010). The fourth class share similar characteristics with both PN and 

MESS groups, so they defined the fourth class as an intermediate group. Further 

studies have shown that GBM cells classified into the classical group have 

increased level of cell cycle and proliferation genes (Huse, Holland, & 

DeAngelis, 2013).  

 

Although transcriptomic and genomic approaches have been the most commonly 

used approaches, various methods have also been developed to identify different 

subtypes of GBM. Toedt et al. used an integrative approach by using array-based 

comparative genomic hybridization and expression profiling analyses. They 

found three GBM subtypes similar to those of Phillips et al. (Toedt et al., 2011). 

The extensive studies in the identification of GBM subtypes has introduced new 

requirements to deeply characterize and understand each subtype. Morokoff et 

al. conducted a detailed study to define signalling pathways and gene expression 

patterns associated with each subtype. Table 2.1 indicates which pathways are 
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significantly associated with which GBM subtype and also highlights 

differentially expressed genes across different subtypes (Morokoff, Ng, Gogos, 

& Kaye, 2015). It appears that Notch signalling pathway is critical for the 

proneoral subtype (Saito et al., 2014). However, the MES phenotype is more 

dependent on TGFβ signalling and tend to be more invasive (Mahabir et al., 

2014).  

 

Table 2.1: Changes in genes and pathways associated with GBM subtypes. 

 
Glioblastoma 

subtypes by 

Phillips et al. 

Glioblastoma 

subtypes by 

Verhaak et al. 

Genes or 

chromosomes 

amplified, 

overexpressed 

Genes or chromosomes 

deleted, mutated, 

downregulated 

Proneural Proneural PDGFRA amplification 

MYC amplification 
OLIG2 

PI3K/Mtor 

Hedgehog, Wnt, Notch 
CDK4 amplification 

SOX2 amplification, 

DCX, DLL3, ASCL1, 

TCF4 
CXCR4 

ALT-positive 

IDH1 mutations 

TP53 mutations 
ATRX  

1p/19q loss, CIC, TERT, 

FUBP1 (oligo) 
COX2 

IGFBP2 

Annexin1 

TAZ 
PIK3CA/PIK3R1 

4EBP1 

Proliferative Classical Chr7, 19, 20 amp 

EGFR amp EGFRvIII 
NES 

Sonic HH 

EGFRvIII (activating) 

Chr10 loss 
CDKN2A-deletion 

FAT1 inactivation 

MGMT methylation 

 Neural NEFL, GABRA1, 

SYT1, SLC12A5 

ND 

Mesenchymal Mesenchymal EGFR, PI3K/Akt 

CHI3L1, YKL40, 
vimentin 

MET, CD44, MERTK 

TGFβ/BMP, TNF 
family 

NF-kappaB 

CXCR4 

CD31, VEGFR-2 
Snail 

NF1 (17q11.2 deletion) 

TSC2 tuberin 

 

2.1.2. Glioblastoma Stem Cells are defined as new targets for therapy 
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GBM is the most prevalent and aggressive type of primary intrinsic human brain 

tumor and contains tumorigenic cancer stem cells (CSCs). Studies on genetic 

profiling of these cells have revealed that they can mimic neural stem cells (Galli 

et al., 2004) and thus CSCs in GBM are named as stem-like cells or glioblastoma 

stem cells (GSCs). GSCs contribute tissue development processes and help cells 

to regenerate and grow (Lathia, Mack, Mulkearns-Hubert, Valentim, & Rich, 

2015). Furthermore, GSCs show self-renewal and they are ability to differentiate 

into various cell types like neural stem cells. In addition, tumor propagation in 

GBM is widely promoted by GSCs. Because of the properties of these stem cells, 

recent therapies have been developed to target GSCs rather than bulk tumor 

tissues.   

 

In recent decades, cancer therapies have initially particularly focused on the 

characterization of signaling pathways underlying GBM biology to develop new 

treatments which target GSCs. It was found that RTK signaling plays a critical 

role and EGFR, VEGFR and PDGFR are the most studied RTK receptors which 

have central role in GBM. Furthermore, it was also found that EGFRvIII-

positive GSCs, an active mutation of EGFR, positively regulate cell proliferation 

related pathways while they negatively regulate apoptotic signaling pathways. 

Nevertheless, paradoxically it has been revealed that EGFRvIII is associated 

with better prognosis. In addition, normal GBM cells have lower expression of 

EGFRvIII or they lost it and EGFRvIII-negative cells are resistance to RTK-

inhibitors (Montano et al., 2011; Schulte et al., 2012). It is possible to conclude 

that while EGFRvIII-positive GSCs are differentiating into proliferating normal 

tumor cells, they lose EGFRvIII expression and develop a cellular adaptive 

resistance which may explain why EGFR-inhibitors have failed to improve 

overall survival in GBM (Inda et al., 2010). MET and PI3K/Akt signaling 

pathways are also thought to have important role in maintenance of stem-like 

phenotypes in GSCs (Jun et al., 2012; Molina, Hayashi, Stephens, & Georgescu, 

2010). In addition, there are other studies which emphasized the role of the 

Hedgehog, Notch and the canonical Wnt signaling pathways in GBM 

development and progression  (Fan et al., 2009; Sandberg et al., 2013).  

 

2.2. Current Studies on Transcriptomic and Epigenomic Profiling of 

GBM 

The process of gene expression within a cell is regulated by transcription 

regulation mechanisms in which transcription factors (TFs) bind specific DNA 

regions, which are called motifs, encourage other proteins assemble and help 

start transcription of specific gene. Thus, TFs perform key functions in the 

regulation of gene expression. Furthermore, TFs can also affect regulation of 
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another TF by making direct or indirect interactions (Neph et al., 2012). These 

cross-regulations are involved in the various regulatory subnetworks and 

dysregulation of these interactions are strongly related with various types of 

cancer (Stergachis et al., 2014). Much progress has been done in the 

understanding of the role of TF-TF interaction in cellular identity and 

function. However, more efforts should be made for the comprehensive 

understanding of the topology of human TF-TF networks. 

Li and colleagues (Y. Li et al., 2015) analysed genome-wide expression 

profiles of TFs from two different gene expression datasets, TCGA and 

REMBRANDT and constructed grade-specific TF regulatory networks for 

glioma grade I, III and IV. Then they compared the resulting networks based 

on their topology and dynamics to improve an understanding for how GBM 

transcription regulatory networks change during different progression states 

of GBM. 

They demonstrated that although key regulatory interactions are shared by all 

types of grades, human transcription regulatory interactions of glioma are 

generally specific to glioma grade types, with ratios between 45% and 60%. 

In addition, they compared the sub interactions within each network to 

understand whether some topological structures might be responsible for the 

conserved architecture across different glioma grades. They identified the 

feedforward loop (FFL) which are the most common structures in the grade-

specific networks. They drew attention to RARG-NR1|2-CDX2 FFL which is 

observed in each grade-specific network and associated with prognosis. 

Integration of multi-omics data may provide new insights to understand 

intratumoral heterogeneity in GBM. Lemée et al put forward a new approach in 

which they used transcriptome and proteome profiling together to identify 

pathogenic mechanisms underlying the biology of GBM (Lemée et al., 2018). 

They used both RNA microarray chips and proteome data from five GBM 

biopsies vs their related peritumoral brain zone. Then they compared the 

transcriptome data with their corresponding proteome data in terms of shared 

characteristics, altered biological processes, functional pathways and network 

topology (Haider & Pal, n.d.). They found that there is a poor relation between 

the transcriptome and its corresponding proteome data in GBM. However, they 

revealed that neurofilament light polypeptide and synapsin 1 protein abundances 

are strongly correlated with the mRNA abundances of the related genes. 

Furthermore, both transcriptomic and proteomic data support that biological 

processes related to cell-cell communication, synaptic transmission and nervous 

systems are the most commonly altered ones across the five GBM samples. 
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2.3. ARACNe: An Algorithm for the Reconstruction of Accurate Cellular 

Networks 

Cellular phenotypes and cell physiology are largely dependent on the activity of 

cellular functions which are controlled by dynamic activity of complex networks 

of coregulated genes. Thus, clustering cells based on their phenotypic 

characteristics requires elaborative work in which genes are classified in the 

context of the networks in which they do functions. Proteins are synthesized 

from the gene products, mRNA, and regulate expression of genes by directly or 

indirectly binding to regulatory regions of DNA. However, there are post 

transcriptional mechanisms that control conversion of the gene products to 

proteins, functional units of cells. Because of the post regulation mechanisms, 

the abundance level of proteins cannot be directly proportional to level of mRNA 

within the cell. Consequently, the indirect relation has spawn requirements for 

additional algorithms for the reconstruction of gene co-expression networks by 

using the data coming from high throughput analysis, microarray and RNA-Seq 

studies.  

Genome-wide clustering approach (Eisen, Spellman, Brown, & Botstein, 1998) 

groups together genes which are responsible for similar transcriptional responses 

to different cellular conditions, and provides a crucial first step to reconstruct 

interaction networks. Nevertheless, it cannot eliminate interactions arising from 

indirect relations of cellular cascades and provides biased networks that include 

many non-interacting genes (A.A. et al., 2006).  Thus, gene expression profiles 

and correlations between genes cannot be used to reconstruct interaction 

networks without additional statistical assumptions.  

New graph-based approaches have been developed to model cellular networks 

from large-scale gene expression profiles (Friedman, 2004). The aim of these 

approaches is to represent gene regulatory circuits by using topology of graphs 

in which genes are represented as vertices and the direct interactions between 

them are represented as edges.  

Differently from genome-wide clustering methods, the new strategy uses 

statistical inferences methods to control whether a physical interaction is 

strongly related with the data or not and therefore provides more realistic 

network models (Ideker et al., 2001). Among the computational approaches, 

ARACNe, Algorithm for the Reconstruction of Accurate Cellular Networks, is 

the most widely applied algorithm by the scientific community to model accurate 

and systematic gene regulatory networks (A.A. et al., 2006; Floratos, Smith, Ji, 

Watkinson, & Califano, 2010). More generally, ARACNe assigns an irreducible 

statistical dependency to an edge between genes that interact directly, and this 
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interaction is mediated by a transcription factor binding promoter region of a 

target gene. 

Basically, ARACNe takes Gene Expression Profile (GEP) data and a list of 

transcription factors and then reconstruct context-specific transcriptional 

networks (Lefebvre et al., 2010). There are three key steps to run ARACNe 

which are Mutual Information (MI) threshold estimation, Bootstrapping/MI 

network reconstruction and Building consensus network (Lachmann, Giorgi, 

Lopez, & Califano, 2016). First, ARACNe estimates MI threshold by using GEP 

data. Then ARACNe defines genes included in GEP data within a fixed window 

which is regulated by a certain TF for each TF in the predefined list. In the 

network reconstruction step, it computes MI, which is the measurement of 

statistical dependence between two genes, for every TF/Target gene pair and 

removes non-statistically significant pairs by using the MI threshold. In addition, 

ARACNe removes indirect interactions by using Data Processing Inequality 

tolerance filter (DPI) (A.A. et al., 2006) and reconstructs final networks. At the 

final step, ARACNe does optimization for the resulting network based on a 

Poisson distribution in which it calculates the number of times a certain edge is 

found across all bootstrap runs and keeps the ones with p value lower than 0.05. 

 

2.4. Integration of Multi-Omics Data 

Recent developments in the high-throughput methods have resulted in 

accumulation of large amount of omics data in the biology era such as genomics, 

transcriptomics, epigenomics, proteomics and metabolomics (Suravajhala, 

Kogelman, & Kadarmideen, 2016). Previously, these omics measurements have 

been used in single-level analysis in which each data type is analysed separately. 

However, while the level of knowledge regarding molecular complexity of 

biological systems has been increasing, more comprehensive analysis of the 

omics data has become a necessity. The increase in the volume of omics data 

and the necessity for multi-layer analysis to enhance comprehension of this 

complexity have led new approaches where data from different omics studies are 

combined (Kadarmideen, von Rohr, & Janss, 2006).  

As a concept, multi-omics data integration covers the system biology approaches 

which include obtaining biological data from different layer of living systems, 

using these data together and applying computational model to reconstruct whole 

system organization (Cisek, Krochmal, Klein, & Mischak, 2016). Currently, 

integration of various types of omics data is widely used for different aims such 

as defining cell-specific phenotypes, characterization of cellular pathways, 
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developing patient-specific treatments and understanding gene regulatory 

circuits.  

Although multi-omics data integration approaches have more potential to shed 

light on complex mechanisms underlying living systems’ biology than single-

layer methods, making meaningful correlations and identifying true interactions 

among thousands of measurements obtained from various omics methods remain 

a challenge (Misra, Langefeld, Olivier, & Cox, 2018). Thus, data integration 

usually needs statistical implementations and machine-learning tools (Min, Lee, 

& Yoon, 2016). Most of the omics integrative frameworks use multivariate 

analysis tools to reduce data dimensionality and to implement genomic, 

proteomic and metabolomic datasets together (de Tayrac, Le, Aubry, Mosser, & 

Husson, 2009; Parkhomenko, Tritchler, & Beyene, 2009).  

There are many integrated omics methods which address different challenges. 

Pavel and her co-workers used a fuzzy logic modelling presented by Xu et al. 

(Xu, 2008) to identify patient-specific gene expression and cancer drivers. In this 

study, they used direct integrative clustering of samples, clustering of pre-

formed clusters and as a third category, regulatory integrative clustering (Pavel, 

Sonkin, & Reddy, 2016). Another study focused on integrating transcriptomic 

and proteomic data by using proteomics-first approach to identify cancer related 

sub-networks (Nibbe, Koyutürk, & Chance, 2010). In this work, Nibbe et al. 

identified significant proteomic targets by analysing fold changes between 

tumour and control tissues. Then, they used these targets to construct protein- 

protein interaction sub-networks which is associated with disease phenotypes. 

Although the network generation method used in this study has revealed 

interactions among molecules with known functions, the ideal network 

construction approaches involve investigation of key molecules with novel 

functions. There are tools which specifically aim to reduce false positives and 

negatives in the data and identify novel interactions within the final network. For 

instance, SteinerNet (Tuncbag, McCallum, Huang, & Fraenkel, 2012) which 

integrates transcriptomic, proteomic and interactome data and Omics Integrator 

(Tuncbag, Gosline, et al., 2016) which integrates transcriptomic, epigenomic 

and interactome data. The two tools were generated to search for the solution to 

the prize collecting Steiner tree problem. 
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CHAPTER 3 

 

3.MATERIALS AND METHODS 

 

 

In this chapter, we explain the methodology of this study which covers 

transcriptomic and epigenomic profiling of RTK-dependent GSC lines and 

network modelling by integrating multi-omics data 

3.1.   Overview of the Pipeline 

GSCs show rapid dynamic interconversion from their naïve, proliferative states 

to slow-cycling, persister states by reorganizing chromatin modifications under 

the treatment of dasatinib. In this study, we developed an integrative 

understanding for the characteristics of GSCs by using transcriptomic, 

epigenomic and interactome data, which is summarized in Figure 3.1. The 

transcriptomic and epigenomic data are previously published by Bernstein (Liau 

et al., 2017) and his co-workers and accessible for academic usage. First, we 

calculated the gene expression changes between different drug-treated time 

series profiles: GSC8 naïve, GSC8 12d and GSC8 persister using RSEM-EBSeq 

pipeline. Then we performed differential peak calling analysis between each 

pairwise comparison condition from histone modifications ChIP-Seq data for the 

markers, H3K4me3, H3K27me3 and H3K27ac with MACS2 pipeline. After 

that, we integrated gene expression changes and differential peak calling results 

to find significantly active transcription factors by using the Garnet module of 

Omics Integrator which have potential to explain condition-specific regulatory 

changes. Finally, we used the Forest module of the Omics Integrator software to 

reconstruct an optimal network for each pairwise comparison condition by 
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integrating significantly active transcription factors and a confidence weighted 

protein interactome. 

 

 

 

Figure 3.1: Overall representation of the methodology.  

3.2.    Datasets 

3.2.1. Data from ENA 

 

The European Nucleotide Archive is a nucleotide sequencing based repository 

which covers corresponding information about sequencing experiments; input 

data, experimental design, raw sequences and quality score and functional 

annotation. We downloaded raw sequences from ENA for the experiment 

performed RNA-Seq in different GSC lines with various drug treatments (GEO 

accession: GSE74557). RNA-Seq data for two GSC lines; GSC4 and GSC8 and 

four different drug treatments; Dasatinib, PD0325901, GSKJ4 and KDM5-C70 

are available for this study. We chose to start downstream analysis with GSC8 

as cell line and dasatinib as drug treatment because different time points for this 

treatment and corresponding replicates are available only for this condition. 

Paired-end reads for three biological replicates per drug treatment time point 

were downloaded from ENA 

(http://www.ebi.ac.uk/ena/data/view/SRR4417704-SRR4417712) in the form of 

FASTQ file, shown in Figure 3.2. FASTQ is a text-based format designed for 

storing biological sequences and their quality information. For a usual FASTQ 

file, there are four lines for each sequence. The first line begins with “@” 

character and contains sequence identifier. The second line is for the sequence 

itself and contains raw sequence letters. The line 3 begins with a “+” character. 

http://www.ebi.ac.uk/ena/data/view/SRR4417704-SRR4417712
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For some FASTQ files, the third line contains the sequence identifier same as in 

the first line. The last line is for the quality scores for raw letters in the line 2 and 

should be the same length with the raw sequence.  

After downloading the data, we had FASTQ files which store reads of RNA-Seq 

experiment for GSCs in their native status (naïve) and different drug treatment 

time points which are twelve-day dasatinib treatment (12d) and more than eight 

weeks dasatinib treatment (persister). Each time point has three biological 

replicates. To perform epigenetic profiling and reveal transcription factors that 

are most probably regulator of transcriptomic profiles of corresponding 

condition, we also downloaded ChIP-Seq sequence single-end read files from 

ENA in FASTQ format for the following antibodies: H3K4me3, H3K27me3 and 

H3K27ac per condition. The depth of the ChIP-Seq reads are usually different 

from each other. To make the samples comparable, input files that contains 

sequenced fragments do not originate from histone markers of interest are also 

prepared (Flensburg, Kinkel, Keniry, Blewitt, & Oshlack, 2014) (Liang & Keleş, 

2012). Thus, the input read files for each antibody were also downloaded from 

ENA. The detailed information about the ChIP-Seq read files is presented in 

Figure 3.2. 

 

Figure 3.2: RNA-Seq and ChIP-Seq data for cell line GSC8. Conditions are 

represented as GSC naïve for naïve, GSC12d for 12d and GSCPer for persister. 

There are three replicates per condition for the transcriptomic analysis. ChIP-

Seq datasets come from the experiments that were conducted with the following 

antibodies: H3K4me3, H3K27me3 and H3K27ac. 

3.2.2. Data from UCSC 

 

The human genome was downloaded from UCSC with the version of 

GRCh37/hg19 (assembly Feb. 2009). UCSC stores assemblies and their 

corresponding annotations for a wide range of organism from vertebrate to 

model organisms. UCSC also provides various tools to view, analyse and 
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download data. Sequence information for each chromosome was downloaded 

separately in FASTA format and stored under one main directory. We first 

aligned RNA-Seq reads to the human transcriptome. To obtain human 

transcriptomic data from human genome, the two annotation files, GTF and 

knownIsoforms, are also needed.  

The UCSC Genes transcript annotations file in GTF format for UCSC hg19 

version of human genome has downloaded using the UCSC's Table Browser 

Table in GTF format. Isoform-gene relationship information for UCSC hg19 

version of human genome was obtained from UCSC Genome Browser as 

knownIsoforms.txt. 

3.3.    RNA-Seq Analysis 

3.3.1. Alignment RNA-Seq reads to reference transcriptome 

 

To measure transcript abundances in each condition, paired-end RNA-Seq reads 

were aligned to UCSC human transcriptome (hg19) by using Bowtie (version 

0.12.7) (Langmead, Trapnell, Pop, & Salzberg, 2009) first and then 

quantification was done by using RSEM (version 1.3.1). RSEM (B. Li & Dewey, 

2014) is a software tool for both alignment and quantification of single-end or 

paired-end RNA-Seq reads. This program, in its default mode, uses bowtie to 

align reads against a reference transcriptome and provides an alternative way to 

users to choose a different alignment program. Before alignment, users should 

prepare a reference transcriptome and genome indices by using “rsem-prepare-

reference”. There are “- -bowtie” and “- - star” options to generate both; 

however, genome indices must be generated again using “rsem-prepare-

reference” for those who uses alternative aligner and provides an alignment file. 

In this study, the UCSC human genome, GTF file downloaded from UCSC Table 

Browser and knownIsoforms file obtained from UCSC Genome Browser were 

used to generate transcriptome reference using “rsem-prepare-reference” code. 

Bowtie indices were also created by supplying “- -bowtie” and “- - bowtie-path” 

parameters to the code. Then alignment was done by using Bowtie with the 

following parameters: --chunkmbs 512 -q --phred33-quals -n 0 -l 25 -I 1 -X 2000 

-p 10 -a -m 15 -S. To be sure that the resulted alignment file satisfies the 

requirements mentioned in rsem-calculate-expression protocol, the resulted 

alignment files were converted to bam files by using convert-sam-for-rsem 

script. In the step of estimating gene expression, transcript-level abundances 

were quantified as transcript per million (TPM) and Fragments per Kilobase 

million (FPKM) by using rsem-calculate-expression script with the following 
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parameters: --paired-end --alignments --fragment-length-max 1000 --bam --

estimate-rspd. 

3.3.2. Different Gene Expression Analysis 

 

After the alignment and quantification processes, differential expression analysis 

was conducted with EBSeq (Leng et al., 2015). EBSeq is a R package based on 

Bayesian inference methods and designed for differential expression analysis 

from RNA-Seq data. RSEM installation comes with EBSeq package in its folder 

named “EBSeq” needed to be compiled. The resulting gene-counts from RSEM 

run were used for differential gene expression analysis. Firstly, rsem-generate-

data-matrix command was used to extract input matrix from expression results. 

As a result, we had three input matrices for the following pairwise comparisons: 

naïve vs 12d, 12d vs persister and naïve vs persister, in which columns represent 

biological replicates, rows stores genes and then matrix was filled with raw gene 

counts. Then variable genes across pairwise conditions were detected with rsem-

run-ebseq command. The analysis gave an output file which provides four 

statistics; PPEE (posterior probability of equally expressed), PPDE (posterior 

probability of differentially expressed), PostFC, RealFC, but does not calculate 

log2FC. Thus, we calculated log2FC for each gene by taking log2 of RealFC 

column. For visualization and further analysis, we continued with all genes with 

posterior probability greater than 0.95 and log2FC higher than 2. The schematic 

representation of the differential gene expression analysis was shown in Figure 

3.3. 

 

Figure 3.3: The overall representation of differential gene expression analysis. 

The figure indicates the result of differential gene expression analysis. At the 

end, there is one list for each condition (C1, C2 and C3 represent pairwise 

comparison conditions; naïve vs 12d, 12d vs persister, naïve vs persister, 

respectively). Each list stores significantly differentially expressed genes 

between conditions. 
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3.3.3. Gene Set Enrichment Analysis 

 

To understand functional profiling of the resulting transcriptomic data and 

identify biological processes and/or pathways in which significantly enriched or 

depleted gene sets are involved, we conducted gene set enrichment analysis by 

using an R package WebGestaltR (version 0.3.0) (Wang, Duncan, Shi, & Zhang, 

2013; Wang, Vasaikar, Shi, Greer, & Zhang, 2017; Zhang, Kirov, & Snoddy, 

2005). We inputted rnk file containing two columns separated by tab: the gene 

list and the corresponding scores. We removed all genes which have tpm value 

lower than 0.1 across all samples from differentially expressed genes obtained 

from EBSeq and the resulting gene list generated the first column of the rnk file. 

Then these genes were listed based on their PPDE value in descending order and 

log2FC values were assigned to corresponding genes and defined as their scores 

in the second column of the rnk file. After prepared rnk files for all pairwise 

comparisons: naïve vs 12d, 12d vs persister and naïve vs persister,, we run GSEA 

by specifying the following parameters: enrichMethod = "GSEA", organism = 

"hsapiens", enrichDatabase = “KEGG pathway & gene ontology Biological 

processes”,interestGeneType = "genesymbol", collapseMethod = "mean", 

minNum = 20, maxNum = 300, sigMethod = "fdr", fdrThr = 1. Afterthought, the 

resulting enrichment files were subjected to FDR threshold: 0.1 and 0.25, to 

mark out significant pathways and biological process. Lastly, we removed 

generic pathways/biological processes which are most frequently enriched in 

many conditions. 

3.4. ChIP-Seq Analysis 

3.4.1. Alignment ChIP-Seq reads to reference genome 

 

We used FastQC tool to do quality control checks on raw single-end ChIP-Seq 

reads. The quality check reports were good for all read files and there was no 

requirement to trim any sequences. Thus, we kept on with all read files for 

alignment with BWA (version 0.7.17) (H. Li & Durbin, 2010) and downstream 

analysis.  

To be able to conduct proper alignment, BWA requires the FM-index for 

reference genome so we constructed bwa indices for the UCSC human reference 

genome (hg19) by using the bwa index command with its default parameters at 

first place. Then single-end ChIP-Seq reads were aligned to hg19 using bwa aln 

and bwa samse commands consecutively again with their default parameters. 

BWA outputs alignment files in the SAM format and BAM formatted files are 

needed for further analysis, hence the reason why resulting SAM files were 
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converted BAM files using Samtools (version 1.8). To reduce the effect of PCR 

amplification bias during the sample preparation, we used Picard MarkDuplicate 

tools (version 1.118) to remove PCR duplicates. After sorted the resulting 

alignment files using Samtools (version 1.8), we used these files as input to 

MarkDuplicates. The final alignment files without duplicates were subjected to 

differential peak calling. 

3.4.2. Differential Peak Calling 

 

After alignment single-end ChIP-Seq reads to reference genome, the next step 

was to measure how many reads differentially mapped to enriched regions, 

compared with any two conditions in our case which is called differential peak 

calling. Although this kind of analysis is generally used to determine differential 

expression genes in the gene expression analysis, to be able to define 

transcription factors and construct networks specific to each pairwise conditions: 

naïve vs 12d, 12d vs persister and naïve vs persister, we identified differential 

peak regions of two conditions using MACS2 (version 2.1.2).  

A wide range of tools have been evolved for detection of differential enriched 

regions between conditions. Therefore, it is crucial to determine which tool 

should be used to analyse the data on hand. The kind of peaks (sharp peak or 

broad enrichment), presence of biological replicates and presence of predefined 

regions are main characteristics’ of ChIP-Seq reads which should be considered 

before selecting a tool for further analysis (Steinhauser, Kurzawa, Eils, & 

Herrmann, 2016). In this study, we used ChIP-Seq data specific for histone 

modifications and these regions are most probably broad enriched regions. In 

addition to that, there is no biological replicates thus we decided to use MACS 

tool for differential peak calling. The resulting alignment files were used to call 

peak using MACS2 predictd and callpeak modules, respectively. Firstly, we run 

predictd with its default parameters to get a uniform extension size which is the 

average of two fragment size, condition1 and condition2, given in the output of 

predictd module. Since differential peak calling performed for three histone 

modifications per pairwise comparison condition, the extension size was 

calculated as the average of fragment size of condition1 and condition2 for the 

same histone marker.  

Secondly, we carried out peak calling with callpeak module by giving aligned 

file and its control file as input with additional parameters: --nomodel, --extsize 

for extension size. The important point in here was to keep using the same 

extension size for both compared conditions. After successfully running 

callpeak module, we had two output files for each condition; 

cond_treat_pileup.bdg and cond_control_lambda.bdg containing enriched 
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regions for each chromosome for treatment and control file, respectively. 

Besides, differential peak calling was conducted using MACS2 bdgdiff module 

with the following parameters: --t1 for condition1 treat_pileup.bdg file, --c1 for 

condition1 control_lambda.bdg file, --t2 for condition2 treat_pileup.bdg file, --

c2 for condition2 control_lambda.bdg file, --d1 and –d2 for actual effective 

depths for condition 1 and 2 learned by extracting the “tags after filtering in 

control” line from output file of callpeak run. 

At the end, bdgdiff module resulted with three differential peak files. One of 

those files stores regions that are highly enriched in condition 1 compared to 

conditions 2. Another one stores the regions having more enrichment in 

condition 2 over condition 1. The final file stores regions showing similar 

enrichment in both conditions. As a result, there are 9 bed files for H3K4me3, 

H3K27me3 and H3K27ac per pairwise comparison condition. Figure 3.4 

summarizes differential peak calling analysis. 

 

Figure 3.4: The overall representation of differential peak calling analysis. The 

figure indicates the result of peak calling analysis. At the end, there are three 

lists for each condition per markers (C1, C2 and C3 represent pairwise 

comparison conditions; naïve vs 12d, 12d vs persister, naïve vs persister, 

respectively. M1, M2 and M3 shows histone markers; H3K27ac, H3K27me3 

and H3K4me3 respectively.). Each list stores significantly differentially 

changed peak regions specific to each marker between conditions. 

3.5. Network Modelling with Omics Integrator 

In this study, we mainly focused on mapping transcriptomic and epigenomic 

data into interaction networks and reconstructing conditions specific networks 

to develop an understanding for reversible transition mechanisms of GSCs under 

the dasatinib treatment. After properly analysed gene expression and chromatin 

accessibility data, we firstly identified transcription factor (TF) set using Garnet 
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module of Omics Integrator and then reconstructed networks by integrating them 

with human proteomic data using Forest module of Omics Integrator (Tuncbag, 

Gosline, et al., 2016). 

3.5.1. Identification of transcription factors using Garnet 

 

Garnet outputs a set of transcription factors that potentially responsible for gene 

expression changes by associating chromatin accessibility data and nearby 

expressed genes. To do this, Garnet first uses chromatin accessibility data which 

gives open chromatin regions, histone modification ChIP-Seq data in this case, 

and scans regions proximal to transcribed genes obtained from transcriptomic 

data within a defined window to detect transcription factor binding motifs. 

Although transcription factors have preferences to bind specific motifs, these 

proteins can tolerate a few possible base changes at certain positions in motifs. 

Therefore, Garnet defines transcription factor affinity (TFA) scores for each 

motif across all regions (Equation 1). Then, Garnet uses linear regression model 

to relate TFA scores and gene expression changes and gives a set of significant 

transcription factors. 

                                       TFAj = 
∑ 𝑒

𝑤𝑗 .  𝑚𝑖𝑖

𝛽𝑗+ ∑ 𝑒
𝑤𝑗 .  𝑚𝑖𝑖

                                 (1) 

In the equation, TFAj is the estimated probability of binding for motif j which is 

calculated by taking scores of all possible binding windows i in the region. mi 

represents the likelihood of a transcription factor to bind a region at the ith 

window. wj and βj are the tuning parameters which control the probability that 

the motif is not false positive, and the motif is false positive, respectively. 

Garnet needs four type of data as input; bed-formatted file containing open 

chromatin regions, fasta-formatted file stores sequence information of regions in 

BED file, gene expression data file as tab-delimited file and configuration file. 

We already prepared epigenomic data in a bed-formatted file by merging 

differential peak calling results for each histone marker per pairwise comparison 

conditions. We downloaded FASTA files by using Galaxy webserver 

“Extracting Genomic DNA” tool for each bed file. Then gene expression files 

were prepared by choosing statistically significant genes having FDR lower than 

0.01 for three pairwise comparison conditions. The expression file contains two 

columns, first one is the name of the gene and the second one is the log-fold-

change of that gene.  

For each Garnet run, we created configuration files which specifies full paths to 

the bedfile, fastafile and expressionfile and run-related parameters: 2000 for 
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windowsize, 0.05 for pvalTresh. It should be noted that we also provided the full 

paths to the annotation files; genefile and xreffile, for the human genome version 

hg19. As the last file, the motif data in the TAMO format was specified in the 

configuration file. Garnet was performed for each histone marker separately and 

the resulting TFs lists in the output file with the extension of 

“regression_results.tsv” specific to each pairwise comparison condition were 

concatenated. The file contains four columns. These are motif column for TFs 

binding same motifs, slope, p-value and q-value for the regarding TF, 

respectively. These transcription factors are symbolized with transfac id and 

needed to be converted into official gene symbols. HGNC (HUGO Gene 

Nomenclature Committee) multi-symbol checker tool was used to retrieve 

official gene symbols for transfac ids of each TF. After that prize for each TF 

was calculated as negative of log2 p-value. As a result, there were three different 

set of significant TFs and their prizes associated with each pairwise comparison 

condition: naïve vs 12d, 12d vs persister and naïve vs persister. 

3.5.2. Network integration with Forest 

 

The TFs from each pairwise comparison condition list are the molecules 

considered as crucially related with the mechanisms which control rapid 

dynamic interconversion of GSCs from sensitive, proliferative to slow-cycling, 

persister state. We used these TFs as terminal node set and their negative log2 

p-values as prizes and mapped them to human interactome by using Forest 

module of Omics Integrator. 

Forest use node prizes to determine how strongly that node should be included 

in the final network by assigning negative weights to nodes based on a 

generalized prize function indicated below (Equation 2). 

                                      𝑝′(𝑣) =  𝛽 .  𝑝(𝑣) −  𝜇 . 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)                           (2) 

While p(v) denotes for terminal node prize where v is a vertex (node), degree(v) 

is the number of connections that a node v has in the interactome. The 

parameters, β and μ, are the scaling factors to control the effect of terminal and 

hub nodes in the final network, respectively. To avoid negative evidences which 

caused from having high degree of a node just because of involving in many 

interactions or studying more, Forest uses these two parameters. While 

increasing μ makes harder to be included a hub node in the final network, 

increasing β means that more terminal nodes to be included in the final network.  
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Forest uses another scoring function to calculate the probability p(e) reflecting 

the confidence of an edge between two proteins and allows users to avoid false 

positive edges. The scoring function (Equation 3) is: 

                                             𝑐(𝑒) =   1 −   𝑝(𝑒)                                               (3) 

where c(e) is the cost assigned to edge based on this function by using a set of 

edge weights, denoted p(e). 

In this study, we inputted three terminal sets with prize values for each pairwise 

comparison conditions as text file and human interactome (iRefIndex v13) which 

contains interacting molecules and associated edge weight in a text file format. 

Forest takes the network data G(V, E, c(e), p’(v)) where V is the node set, E is 

the edge set and c(e) and p’(v) functions assign a cost to each edge and a prize 

to each node, respectively. The aim of the Forest is to find final optimal network 

F(VF, EF) which minimizes the objective function (Equation 4): 

                                 𝑓′(𝐹) =  ∑ 𝑝′(𝑣)  + ∑ 𝑐(𝑒)  +   𝜔 .𝑒 ∈ 𝐸𝐹 𝑣 ∉ 𝑉𝐹    k                     (4) 

where the ω is the parameter which controls edge cost between a dummy node 

and a node in the node set, N. k is the number of trees in the forest. The optimal 

way to construct a network is to give different values to parameters and then 

choose the optimal combination of the parameters that give a final network 

where there are maximum number of nodes from prize file.  

In this study, we used different values for the parameters; 0.5 and 1 for ω, 0 and 

0.01 for μ, 1, 2, 3, 4, and 5 for β and 10 for D. The combination of each value of 

parameters were supplied to Forest in a configuration file. In addition to prize 

files and human interactome, we also inputted dummy node lists containing cell 

surface receptors by specifying --dummyNode option. After run Forest, we had 

20 networks for each pairwise comparison condition which were outputs of 

different configuration files containing different values for the parameters. Then 

we merged those 20 networks using python NetworkX package and obtained one 

final optimal network for each condition in sif-formatted file.  

3.5.3. Visualization of networks with Cytoscape 

 

The optimal final networks were visualized in Cytoscape (version 3.6.0). Each 

node type was specified with a different shape; triangle represents transcription 

factors coming from the prize file, steiner nodes are symbolized with hexagon 

shape and cell surface receptors are shown with V shape. Furthermore, the 

networks were clustered by using Cytoscape clusterMaker Community cluster 

(GLay). The gene expression changes, as log2FC values, were also added to 
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nodes as color scale where bluish color indicates downregulated genes and 

reddish color represents upregulated genes. Finally, we add histone marker 

information for each TFs in the final networks in the form of pie-chart. Red, 

purple and light blue colours represent for H3K27ac, H3K27me3 and H3K4me 

markers, respectively. 

3.5.4. Overrepresentation Enrichment Analysis 

 

Overrepresentation Enrichment Analysis (ORA) was performed for each cluster 

having more than 5 nodes per condition specific networks using WebGestaltR 

(version 0.3.0). Differently from GSEA, there is no need for scores in the input 

file so that we supplied node lists as well as reference gene file to carry out ORA. 

We prepared one column txt files for all clusters in each pairwise comparison 

specific network; there were 10 clusters out of 13 for naïve vs 12d network, 5 

clusters out of 12 for naïve vs persister network and 10 out of 13 for 12d vs 

persister network. We run ORA by specifying the following parameters: 

enrichMethod = "ORA", organism = "hsapiens", enrichDatabase = “KEGG 

pathway & pathway Reactome & gene ontology Biological processes & gene 

ontology Molecular Function”, referenceSet = "genome_protein_coding", 

minNum = 10, maxNum = 300, sigMethod = "fdr", fdrThr = 1. Afterthought, the 

resulting enrichment files were subjected to FDR threshold: 0.05 to mark out 

significant pathways and biological process. Lastly, we removed generic 

pathways/biological processes which are most frequently enriched in many 

conditions. 
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CHAPTER 4 

 

4.RESULTS 

 

 

4.1.Transcriptomic Profiling Reveals That Notch Pathway and Histone 

Modification Related Genes are Highly Enriched in Persister Cells 

Glioblastoma stem cells show the characteristics of neural stem cells and express 

stemness marker genes (Justin d. lathia, 2015). These markers are mostly 

enriched in cell cycle-related, neuron cell differentiation-related biological 

functions and some of them are transcription factors that directly bind to DNA. 

SOX2 (Hemmati et al., 2003), OLIG2 (Ligon et al., 2007) are two of these 

markers. In this study, we analyzed three conditions of dasatinib treated GSCs 

which can be expressed as naive, GSCs in their proliferative state, 12d, 12 days 

treated GSCs and persister, more than 8 weeks treated GSCs. The analysis of 

gene expression profiles revealed that SOX-related genes (Figure 4.1) and 

OLIG2 are highly enriched in dasatinib treated cell lines, especially in persister 

and 12d, respectively. The results also show that dasatinib treatment trigger the 

expression of SMAD3 and SMAD7 genes. SMAD genes play a role in the 

transmission of signal from cell surface to nucleus and in the activation of 

transcription through TGF-beta signalling pathway (Macias, Martin-Malpartida, 

& Massagué, 2015). TGF-beta activated SMADs perform various functions 

which are negative regulation of cell growth, formation of fibrosis and 

modulating immune-related pathways (Weinstein, Yang, & Deng, 2000). While 

SMAD3 shows higher-level expression pattern in 12d and persister status than 

naïve status, SMAD7 is highly expressed in 12d status and these two genes are 

related to inhibiting growth factors and growth-related signals within the cell.  

FOX family genes are another group regulated differentially across conditions. 

FOXO3, FOXG1, FOXK1 and FOXN3 are the genes having opposite trend when 
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expression profiles of them in dasatinib treated cells; 12d and persister, and in 

naïve cells were compared. Furthermore, expression of FOXA3 gene is relatively 

lower in persister cells than naïve and 12d cells (Figure 4.2). FOX genes are 

involved in transcriptional regulation, cell growth and differentiation by coding 

DNA-binding FOX proteins and known as their upregulation in tumor cells 

(Katoh, Igarashi, Fukuda, Nakagama, & Katoh, 2013). It should be highlighted 

that although FOXO3 and FOXG1 function in negative regulation of neuron 

migration and differentiation, respectively and show similar expression pattern 

in 12d and persister cells, FOXA3 plays a role in the regulation of neuron 

differentiation, chromatin remodelling and Notch signalling pathways and 

shows different expression pattern in persister cells. Besides indirectly 

regulation of Notch signalling pathways by FOXA1, genes directly implicated in 

these pathways, NES, HES5, HEY1, are activated in persister cells (Figure 4.2). 

Cell replication and differentiation, prolongation of stemness markers are the 

functions controlled by Notch signalling pathways (Borggrefe & Oswald, 2009). 

Further, some studies emphasized that Notch signalling is activated particularly 

in cancer stem cells (Venkatesh et al., 2018). 

Genes associated with chromatin remodelling, especially the ones involving 

histone demethylases, showed an overexpression in 12d and persister cells. 

Persister GSCs, which are insensitive to dasatinib, have upregulated KDM5B 

and KDM6B (Figure 4.2) genes from KDM family. Previous studies have 

demonstrated significant regulation of these genes in cells that are insensitive to 

drug and slow-cycling (Roesch et al., 2013; Sharma et al., 2010). 

The differential expression profiles were also studied to check whether the 

differences in the expression patterns of genes are valuable to make a biological 

inference. We performed the analysis on the pairwise comparison conditions; 

naïve sensitive cells versus 12d cells, naïve sensitive cells versus slow cycling 

persister cells and 12d cells versus slow cycling persister cells (Figure 4.3). 
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Figure 4.1: Gene expression profiles of naïve, 12d and persister cells. Heatmap 

indicates gene expression profiles of the most significant 1483 genes (FDR < 

0.01, log2FC > 2) across GSC8 naïve, GSC8 12d and GSC8 persister. Genes 

having TPM values lower than 0.1 across all conditions were removed. Data 

were generated from log2(tpm + 1) transformed TPM scores of three biological 

replicates. Red-blue colour scale represent z-scores from positive to negative 

values. Cell status are indicated by red, black and green colour. 
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Figure 4.2: The expression profiles of some selected genes in naïve, 12d and 

persister cells. Heatmap indicates gene expression profiles of highlighted genes 

in the Figure 4.1 (FDR < 0.01, log2FC > 2) across GSC8 naïve, GSC8 12d and 

GSC8 persister. Data were generated from log2(tpm+1) transformed TPM 

scores of three biological replicates. Red-blue colour scale represent z-scores 

from positive to negative values. Cell status are indicated by red, black and green 

colour. 
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Figure 4.3: Differentially expressed genes across pairwise comparison 

conditions. Heatmap shows 1256 significantly differentially expressed genes 

between each comparison conditions; naïve vs 12d, 12d vs persister, naïve vs 

persister (represented by orange, dark blue and pink colours, respectively). 

Genes were selected based on having FDR lower than 0.01 and log2FC higher 

than 2. Genes having TPM values lower than 0.1 across all conditions were 

removed. Red-blue colour scale represents log2FC values. 

4.2.   Gene Set Enrichment Analysis Shows That Cell-Cycle Related 

Biological Functions are Negatively Regulated in Drug-Treated Cells 

We then performed functional enrichment analysis on significantly differentially 

expressed genes for each pairwise comparison condition; naive vs 12d, 12d vs 

persister and naive vs persister, to identify classes of genes and pathways where 

these gene sets are involved. In this consideration, we are able to better 
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understand the biology underlying resistance of GSCs. Following our analysis, 

we found that mitotic cell-cycle related functions such as mitotic G1 DNA 

damage checkpoint1, mitotic G1/S transition checkpoint1, regulation of G2/M 

transition of mitotic cell cycle are negatively regulated in the pairwise 

comparison condition, 12d vs persister (Figure 4.5). Furthermore, cellular 

functions associated with the positive regulation of mitotic cell cycle transitions 

are negatively enriched for the same condition. However, histone modifications, 

chromatin remodelling, and DNA replication-independent nucleosome 

organization related functions are positively enriched in the pairwise comparison 

conditions; naive vs 12d and naive vs persister. 

 

Figure 4.4: KEGG pathways enriched in each pairwise comparison condition. In 

the heatmap, columns show these comparison conditions; naive vs 12d, 12d vs 

persister and naive vs persister (represented by orange, dark blue and pink 

colours, respectively), and rows represent union list of enriched KEGG pathways 

finding by GSEA. While blue colour is to define downregulated pathways 

(negative enrichment score), red is to define upregulated ones (positive 

enrichment score). White colour means that there is no enrichment for related 

pathways. 

4.3.   Comparative Comparison of Significantly Active Transcription 

Factors Across Pairwise Comparison Conditions  

After comprehensively analyze gene expression data, we identified significantly 

active TFs for each pairwise comparison condition; naive vs 12d, 12d vs persister 

and naive vs persister by using the Garnet module of Omics Integrator in which 

we integrated expression level data and chromatin accessibility data obtained 

from differential peak calling analysis. Then, we compared pairwise comparison 

conditions in terms of similarity and difference for having TFs.  
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Figure 4.5: Biological functions enriched in each pairwise comparison condition. 

In the heatmap, columns show these comparison conditions; naive vs 12d, 12d 

vs persister and naive vs persister (represented by orange, dark blue and pink 

colours, respectively), and rows represent union list of enriched biological 

functions finding by GSEA. While blue colour is to define downregulated 

functions (negative enrichment score), red is to define upregulated ones (positive 

enrichment score). White colour means that there is no enrichment for related 

functions. 

We found that different TFs are significantly active in different conditions 

(Figure 4.6) while fewer of them are shared by all three pairwise comparison 

conditions (Figure 4.7).  Interestingly, cell growth and cell differentiation related 

TFs, EGFR family, WT1, ELF family, are found in the naive vs 12d and 12d vs 

persister comparison conditions. Montano and colleagues demonstrated that 

there is a negative regulation on apoptotic cell functions in the EGFRvIII-

negative GBM cells promoted by EGFRvIII-positive GSCs (Montano et al., 
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2011). EGFRvIII positive GBM cells are variants and generally associated with 

high level expression of cell proliferation genes. They also revealed that 

EGFRvIII-negative cells are resistant to certain treatments. Our findings with 

the result of Montono’s work emphasized that cell growth related genes may be 

in a strong relation with genes which are responsible for GBM resistance. In 

addition, SOX TFs, SOX21, SOX10, SOX9, SOX7, SOX6, SOX30 and SOX14 

are only found in the naive vs 12d comparison condition. These TFs play roles 

in the regulation of cell differentiation, cell migration and negative regulation of 

apoptotic process and canonical Wnt signalling pathway which is another well 

studied crucial pathway in GSCs (Sandberg et al., 2013). 

 

Figure 4.6: Significantly active TFs in each pairwise comparison condition. In 

this heatmap, each panel A, B and C, shows significantly active TFs detected by 

the Garnet module for each pairwise comparison condition; naïve vs 12d, 12d vs 

persister and naïve vs persister (represented by orange, dark blue and pink 

colours, respectively). Colour bar represent weight of each TF which is related 

with the importance of associated TF. 
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Figure 4.7: Significantly active TFs found in at least two pairwise comparison 

conditions. The heatmap significantly active TFs detected by the Garnet module 

for each pairwise comparison condition; naïve vs 12d, 12d vs persister and naïve 

vs persister (represented by orange, dark blue and pink colours, respectively). 

Colour bar represent weight of each TF which is related with the importance of 

associated TF. 
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4.4.  Network Modelling Indicates That GSCs Prefer an Alternative Cell 

Surface Receptors to Activate RTK-dependent Pathways 

We next integrated omic datasets (epigenomic and transcriptomic data) to 

reconstruct the signaling and regulatory networks for each condition and further 

compared these networks to elucidate the commonalities and differences in each 

condition. We need to note that the network reconstruction is important in two 

terms: i. we are able to analyze multiple omic data together ii. we are able to 

show the interactions between omic entities beyond the list of genes or proteins. 

In this way, it is possible to analyze the conditions at pathway level. For this 

purpose, we used Omics Integrator software. The Garnet module is used to 

integrate ChIP-Seq data with RNA-Seq data to obtain significantly active 

transcription factors and the Forest module is used to reconstruct signaling 

networks starting from cell surface receptors and terminating at the significant 

transcription factors found by Garnet. As a result, “naive vs 12d” network has 

188 node and 394 edges, “12d vs persister” network has 188 node and 407 edges, 

and “naive vs persister” network has 111 node and 281 edges. 

Rheinbay et al. highlighted that Wnt signalling is crucial in GSCs and highly 

associated with tumour propagation (Rheinbay et al., 2013). Dasatinib inhibits 

receptor tyrosine kinases and its specific targets are BCR/ABL and Src family 

receptor tyrosine kinases (Das et al., 2006; Talpaz et al., 2006). Among the Src 

family, SRC, LCK, YES FYN, PDGFRβ, C-KIT and tPHA2 are the main targets 

while SRC involves in the positive regulation of canonical Wnt pathway. In this 

study, network modelling of pairwise comparison conditions reveals that GSCs 

maintain their tumorigenicity and show resistance to dasatinib treatment by 

activating Wnt signalling pathway via a different cell surface receptor. 

Among the cell surface receptors, SELL, LIFR, IL6ST and BAMBI are the 

receptors enriched in the resulting network for the pairwise comparison 

condition naïve vs 12d (Figure 4.4A). The activation of BAMBI receptor 

activates proteins performing function in the positive regulation of canonical 

Wnt signalling. In addition to role of BAMBI in the activation Wnt signalling 

pathway, IL6ST receptor enriched in the naïve vs 12d network plays a role in the 

Notch signalling which is known with its relatively high activity in stem cells. 

IL6ST is also related with cell proliferation and target for growth factor.  

TGF-β signalling pathway has been studied well and these studies shed light on 

the importance of TGF-β signalling pathway in the activation of stemness 

markers in GSCs (Ikushima et al., 2009). Although BAMBI receptor positively 

regulates tumour related pathways, Wnt signalling, this receptor negatively 

affects the regulation of TGF-β signalling pathway. Besides, it cannot be ignored 

that there is a general trend for binding glycoproteins and being in a relation with 
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energy-related pathways for the receptors enriched in the naïve vs 12d condition 

specific network. 

Ras/Raf/MAPK signalling is another glioma related pathway which includes 

regulation of cell proliferation, differentiation and survival (Halfon et al., 2000; 

Tuncbag, Milani, et al., 2016). The network of naive vs persister condition 

represents the interactions of significantly changing transcription factors 

between sensitive and insensitive cells (Figure 4.10) and it contains of a 

transmembrane receptor, GFRA2. The receptor GFRA2 is involved in the 

tyrosine kinase signalling pathway which is inhibited by dasatinib binding to 

other receptor tyrosine kinase receptors. Additionally, it activates Raf/MAPK 

cascade as well as nervous system development. Furthermore, dasatinib targeted 

RTKs particularly act in the positive regulation of MAP kinases and MAPK 

cascade. Besides, GFRA2 activates glial cell line-derived neurotrophic factor 

(GDNF) and positively regulate the survival and differentiation of neurons. 

Other two receptors, IL10RA and IFNAR2, in the naive vs persister network are 

known as receptors that regulates JAK/STAT signalling pathway. Another 

receptor, ITGAX, is shared the characteristics of binding integrins with the 

RTKs. 

There is a general trend among receptors in the 12d vs persister condition 

specific network (Figure 4.9) for binding growth factor and regulating the 

growth-related pathways. The receptor, GHR, plays a role in the indirect 

activation of MAPK signalling by activating JAK/STAT pathway upon protein 

kinase binding. Another receptor, NGFR, can be important for the stemness 

maintenance and drug resistance of GSCs in their insensitive status in terms of 

being involved in binding to nerve growth factor, cell survival and 

differentiation. 

The other proteins in the resulting optimal networks, transcription factors and 

proteins called as Steiner node, are also crucial to understand how GSCs become 

persistent under the dasatinib treatment. For the naïve vs 12d network (Figure 

4.8), neural stem cell related markers; histone demethylases, SMAD proteins and 

SOX transcription factors, are highly connected to other proteins in the network.  

For naive vs persister network (Figure 4.10) SMAD family transcription factors 

are grouped in a cluster and make interactions with the member of another 

cluster which is regulated by the cell surface receptor, ITGAX in the network. 

The second cluster in the interaction of two clusters, involves MAPK10 protein 

and MAF transcription factor. 
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Figure 4.8: Condition specific network for the pairwise comparison condition 

naïve vs 12d. The network was constructing by merging all augmented network 

results from Forest with μ 0.01. There are 188 nodes and 394 edges. Triangles 

with a pie chart represent for TF, hexagons are for Steiner nodes and V shape 

shows cell surface receptors. Each pie chart on TFs represents the histone mark 

that the TF is obtained from. The colours of the pie chart represent different 

histone markers; red for H3K27ac, purple for H3K27me3 and light blue for 

H3K4me3. 

 

Figure 4.9: Condition specific network of the pairwise comparison condition 12d 

vs persister. The network was constructed by merging all augmented network 

results from Forest with μ 0.01. There are 188 nodes and 407 edges. Triangles 

with a pie chart represent TF, hexagons are Steiner nodes and V shape shows 

cell surface receptors. Each pie chart on TFs represents the histone mark that the 

TF is obtained from. The colours of the pie chart represent different histone 

markers; red for H3K27ac, purple for H3K27me3 and light blue for H3K4me3. 
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Figure 4.10: Condition specific network of the pairwise comparison condition 

naïve vs persister. The network was constructing by merging all augmented 

network results from Forest with μ 0.01. There are 111 nodes and 281 edges. 

Triangles with a pie chart represent TFs, hexagons are Steiner nodes and V shape 

shows cell surface receptors. Each pie chart on TFs represents the histone mark 

that the TF is obtained from. The colours of the pie chart represent different 

histone markers; red for H3K27ac, purple for H3K27me3 and light blue for 

H3K4me3. 

4.5.   Comparison of The Results of Overrepresentation Enrichment 

Analysis of Clusters in Each Condition Specific Network  

One of the most important characteristics of Glioblastoma is its phenotypic 

heterogeneity that explains why developing a treatment for GBM is hard. From 

the aspects of system biology, pathway-based analysis can be meaningful to 

understand similarities and differences among condition specific networks. We 

first performed cluster analysis on the three condition specific networks; naïve 

vs 12d, 12d vs persister and naïve vs persister. Then we identified functions and 

pathways in each cluster which are overrepresented in a set of TFs. To conclude 

with the analysis, we compared commonalities and differences of enriched 

pathways (KEGG & Reactome pathways), biological processes and molecular 

functions across clusters in each condition specific network.  

Biological process analysis reveals that cell cycle related functions are 

negatively regulated in the 12 vs persister condition network, while cell 

functions related to stem cell differentiation and proliferation are enriched in 

naïve vs 12d and naïve vs persister condition networks (Figure 4.14). Histone 

modification related biological process are active both in the naïve vs 12d and 

in the 12d vs persister networks while there is no any enrichment for this 
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category in the networks specific to naïve vs persister. Therefore, chromatin 

remodelling should be crucial for the GSCs subjected to 12 days dasatinib 

treatment. However, sensitive and insensitive glioblastoma stem cells have 

tendency to regulate biological process associated with stemness.  

 

Figure 4.11: Pathway analysis across clusters in the naïve vs 12d network. The 

representation shows enriched KEGG and Reactome pathways in each cluster. 

The overrepresentation enrichment analysis was conducted by WebGestaltR. 

FDR value shows the significance of the related category while size of the points 

is associated with the number of genes involved in each category. 
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Figure 4.12: Pathway analysis across clusters in the 12d vs persister network. 

The representation shows enriched KEGG and Reactome pathways in each 

cluster. The overrepresentation enrichment analysis was conducted by 

WebGestaltR. FDR value shows the significance of the related category while 

size of the points is associated with the number of genes involved in each 

category. 
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Cell cycle- and Notch signalling-related pathways shows a distinctive 

enrichment trend when the 12d vs persister specific network is compared to other 

two networks; naïve vs 12d and naïve vs persister (Figure 4.16). Moreover, TGF-

β activated SMAD proteins related pathways are differentially active in the 12d 

vs persister condition network which are negatively regulate cell cycle, cell 

growth functions within the cell.  

 

Figure 4.13: Pathway analysis across clusters in the naïve vs persister network. 

The representation shows enriched KEGG and Reactome pathways in each 

cluster. The overrepresentation enrichment analysis was conducted by 

WebGestaltR. FDR value shows the significance of the related category while 

size of the points is associated with the number of genes involved in each 

category. 
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Figure 4.14: Biological process analysis across pairwise comparison condition 

networks. The representation shows enriched biological processes in each 

network; naïve vs 12d, 12d vs persister and naïve vs persister. The 

overrepresentation enrichment analysis was conducted by WebGestaltR. FDR 

value shows the significance of related category while size of the points is 

associated with the number of genes involved in each category. 
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Figure 4.15: Molecular function analysis across pairwise comparison condition 

networks. The representation shows enriched molecular functions in each 

network; naïve vs 12d, 12d vs persister and naïve vs persister. The 

overrepresentation enrichment analysis was conducted by WebGestaltR. FDR 

value shows the significance of related category while size of the points is 

associated with the number of genes involved in each category. 
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Figure 4.16: Pathway analysis across pairwise comparison conditions. The 

representation shows enriched KEGG and Reactome pathways in each network; 

naïve vs 12d, 12d vs persister and naïve vs persister. The overrepresentation 

enrichment analysis was conducted by WebGestaltR. FDR value shows the 

significance of related category while size of the points is associated with the 

number of genes involved in each category. 
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CHAPTER 5 

 

5. DISCUSSION AND CONCLUSION 

In this study, by using gene expression changes and chromatin accessibility data 

we model reversible transition of GSCs from proliferative to slow-cycling, 

persister states under the effect of dasatinib treatment in such a way that this 

extensive network modelling led us to map transcriptomic and epigenetic 

changes to human interactome. By taking the existence of specific three 

conditions into account, specifically naïve, 12d-dasatinib treated and persister 

states, the networks for each pairwise comparison condition were constructed. 

After conducting the transcriptomic analysis, we found that Notch signalling 

related genes show augmented level of expression in the GSCs which are in 

persister state (Figure 4.1). The relation between Notch-related genes and cell 

differentiation and resistance in cancer was also emphasized by Borggrefe and 

his colleagues (Borggrefe & Oswald, 2009). In addition, we also figured out that 

two histone demethylases genes, kdm5b and kdm6b, which demethylases H3K4 

and H3K27 respectively, are highly expressed in persister GSCs (Figure 4.1). 

These findings are particularly important in terms of biological mechanisms 

underlying GSCs resistance; specially, the main reason is that epigenetic 

mechanisms are better candidate to explain the reversible mechanisms in GSCs 

than genetic mechanisms. The significantly differential expression pattern of 

these histone modification genes reveals that different chromatin structural states 

may be responsible for the regulation of gene expression which causes to 

generate the phenotypic resistance. Furthermore, in support of the fact that the 

resistance of GSCs shows the dependence on chromatin reorganization, 

Bernstein et al. reached a similar conclusion by stressing it in their work (Liau 

et al., 2017). Another significant result is that GSCs in their naïve state are closer 

to those in persister state than 12d-dasatinib treated GSCs when the expression 

pattern of significantly altered genes of the states are compared correspondingly 

(Figure 4.2). These results enable us to make some relations, especially such as 

the connection between intra-tumoral heterogeneity of GBM and therapeutic 

resistance (Inda et al., 2010). Pre-existence of sub-clones resistant to dasatinib 

treatment may be responsible for the closeness between the gene expression 

patterns of naïve and persister GSCs; this can be explained by the fact that before 
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treatment, naïve state not only includes the sub-clones which are resistance 

against dasatinib but also those are sensitive to it. Under the treatment, it can be 

observed that the sensitive cells are killed by the drug while resistant cells keep 

their formation in persister state without losing their stability. 

In this study, we used Garnet module of the Omics Integrator which correlates 

transcriptomic changes with the transcription factor binding affinity. It searches 

TF binding motifs on the accessible regions of DNA obtained from histone 

marker specific epigenomic data and identifies significantly active TFs. In spite 

of using the single omic data type, the Garnet module integrates two types of 

omics data (A.A. et al., 2006). Our results are compatible with the intra-tumoral 

heterogeneity of GBM, we found that different transcription factors which are 

main regulators of gene expression, are responsible for the changes between 

pairwise comparison conditions (Figure 4.6).  In the network construction, we 

revealed not only the existence of direct interactions between these significantly 

active TFs, but also the distribution of histone modifications across TF binding 

motifs. In this way, we are able to interpret the network topology in a way that 

how the pathways, which are enriched in each network, and which are affected 

as a result of the epigenetic regulation or specifically, under the effect of histone 

modifications. 

We also found that MAPK signalling pathway is enriched in a large cluster in 

the network that represents the alterations between naive and persister GSCs, 

and the TFs are enriched in the ones obtained from H3K27me3 markers, leading 

to a heterochromatin-like chromatin structure, tightly packed DNA regions 

(Figure 4.13). Controversially, the binding motifs of TFs in other networks are 

located at the open chromatin regions where H3K27ac and H3K4me3 markers 

are enriched (Figure 4.8 and 4.9).  Although previous studies emphasized that 

aberrant activation of MAPK signalling pathway is closely related with cell 

invasion and proliferation in GBM  (Wilson & Filipp, 2018), by taking 

advantage of integrating histone modification data into TFs network, we can 

conclude that MAPK signalling may be the key pathway that plays a significant 

role in the reversible transition of GSCs from proliferative to slow-cycling state. 

In summary, much more effort on epigenetic heterogeneity may serve well to 

understand better why the GBM is more resistant to current therapies in 

comparison with the other cancer types. In addition to these significant results, 

it can be stated that regulation of histone modifications is more active in the 

enhancer regions. It can be concluded that considerable amount of work is 

needed to identify the roles of enhancer and silencer regions on the regulation 

gene expression. This may allow us to possess a comprehensive understanding 

on GBM resistance mechanisms and also more precise and accurate personalized 

treatment. 
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APPENDICES 

 

APPENDIX A 

 

STATISTICS OF FOREST NETWORKS 

 

Table A. The table shows the number of terminals, number of terminal nodes in the final 

forest network and total number of node and edge in the final forest network (# of 

terminals, # of terminal in the optimal forest network, # of node/edge in the optimal 

forest network, respectively) at the end of each Forest run with different parameters. 

Columns represent for each condition specific network. 

 

 naïve vs 12d 12d vs persister naïve vs persister 

w beta mu 0.50  1  0.00 0.50  1  0.00 0.50  1 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 134 83 

# node/edge in 

optimal forest 

network 228 / 227 202 / 201 139 / 137 

w beta mu 0.50 1 0.01 0.50 1 0.01 0.50 1 0.01 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 131 83 



56 

 

# node/edge in 

optimal forest 

network 186 /183 168 /165 108 / 105 

w beta mu 0.50 2 0.00 0.50 2  0.00 0.50 2 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 134 83 

# node/edge in 

optimal forest 

network 227 /226 206 /205 139 / 137 

w beta mu 0.50 2 0.01 0.50 2  0.01 0.50 2 0.01 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 0 134 83 

# node/edge in 

optimal forest 

network 0 / 0 169 /166 108 / 105 

w beta mu 0.50 3 0.00 0.50 3  0.00 0.50 3 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 134 83 

# node/edge in 

optimal forest 

network 228 / 227 203 / 202 139 / 137 

w beta mu 0.50 3 0.01 0.50 3  0.01 0.50 3 0.01 

# of terminals 145 134 83 
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# of terminals in 

optimal forest 

network 0 134 83 

# node/edge in 

optimal forest 

network 0 / 0 169 /166 108 / 105 

w beta mu 0.50 4 0.00 0.50 4  0.00 0.50 4 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 134 83 

# node/edge in 

optimal forest 

network 226 / 225 202 /201 139 / 137 

w beta mu 0.50 4 0.01 0.50 4  0.01 0.50 4 0.01 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 0 134 83 

# node/edge in 

optimal forest 

network 0 / 0 169 /166 108 / 105 

w beta mu 0.50 5 0.00 0.50 5  0.00 0.50 5 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 134 83 

# node/edge in 

optimal forest 

network 226 / 225 202 /201 140 / 138 

w beta mu 0.50 5 0.01 0.50 5  0.01 0.50 5 0.01 
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# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 0 134 83 

# node/edge in 

optimal forest 

network 0 / 0 169 /166 108 / 105 

w beta mu 1.00 1 0.00 0.50 1  0.00 0.50 1 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 134 83 

# node/edge in 

optimal forest 

network 227 / 226 200 /199 137 / 136 

w beta mu 1.00 1 0.01 1.00 1  0.01 1.00 1 0.01 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 132 83 

# node/edge in 

optimal forest 

network 186 / 185 167 /166 108 / 106 

w beta mu 1.00 2 0.00 1.00 2  0.00 1.00 2 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 134 83 

# node/edge in 

optimal forest 

network 227 / 226 202 /201 137 / 136 
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w beta mu 1.00 2 0.01 1.00 2  0.01 1.00 2 0.01 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 0 83 

# node/edge in 

optimal forest 

network 186 /185 0 / 0 108 / 105 

w beta mu 1.00 3 0.00 1.00 3  0.00 1.00 3 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 0 83 

# node/edge in 

optimal forest 

network 186 /185 0 / 0 108 / 106 

w beta mu 1.00 3 0.01 1.00 3  0.01 1.00 3 0.01 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 0 83 

# node/edge in 

optimal forest 

network 186 /185 0 / 0 108 / 106 

w beta mu 1.00 4 0.00 1.00 4  0.00 1.00 4 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 134 83 
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# node/edge in 

optimal forest 

network 217 / 216 201 /200 138 / 137 

w beta mu 1.00 4 0.01 1.00 4  0.01 1.00 4 0.01 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 0 83 

# node/edge in 

optimal forest 

network 186 / 185 0 / 0 108 / 106 

w beta mu 1.00 5 0.00 1.00 5  0.00 1.00 5 0.00 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 134 83 

# node/edge in 

optimal forest 

network 216 / 215 202 /201 134 / 133 

w beta mu 1.00 5 0.01 1.00 5  0.01 1.00 5 0.01 

# of terminals 145 134 83 

# of terminals in 

optimal forest 

network 145 0 83 

# node/edge in 

optimal forest 

network 186 / 185 0 / 0  108 / 106 

 


