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ABSTRACT 

 

POTHOLE DETECTION IN ASPHALT IMAGES USING 

CONVOLUTIONAL NEURAL NETWORKS 

 

Ateş, Himmet 

Master of Science, Electrical and Electronic Engineering 

Supervisor: Prof. Dr. İlkay Ulusoy 

 

March 2019, 89 pages 

 

When asphalt defects are detected and not corrected, they can cause accidents and 

loss of property and lives. Potholes formed in such asphalt surfaces are one of the 

biggest causes of accidents. In order to minimize the loss of life and property, the 

potholes formed on the asphalt should be detected and corrected by the authorities 

as early as possible. The potholes formed on asphalt surfaces can be detected either 

manually or automatically. Automated methods can be more time and cost 

effective.  

Vibration-based data processing, 3D reconstruction and processing, and image 

processing in 2D images are the basic methods used in automatic detection systems.  

In this thesis, the aim is to develop a system which is easy to apply and has low 

error rate by using ”Convolutional Neural Networks" methods that will be applied  

on 2D images. In classical machine learning methods, fixed (unchanging) features 

are extracted and classification methods (either static or dynamic) are applied 

through these features. The success of these methods depends on the accuracy, 

structure and quality of the extracted features as well as the applied algorithms 

A Convolutional Neural Network is constructed and compared with classical 

machine learning methods, which are already applied for pothole detection problem 
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in the literature, in terms of success rate and failure rate using the asphalt image 

sets. The different parameters of the convolutional neural network method are 

tested on the existing image sets and the effect of these parameters is also analyzed 

 

 

Keywords: Convolutional Neural Networks, Classification, Image Processing, 

Pothole, Anomaly  
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ÖZ 

 

ANOMALİ İÇEREN ASFALT RESİMLERİNDE DERİN ÖĞRENME 

YÖNTEMLERİ KULLANILARAK ÇUKUR TESPİT ETME 

 

Ateş, Himmet 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. İlkay Ulusoy 

 

Mart 2019, 89 sayfa 

 

Asfalt bozuklukları tespit edilip düzeltilmediği durumlarda  kazalara, dolayısıyla mal 

ve can kayıplarına sebep olabilmektedir. Bu tür bozuklukların başında gelen asfalt 

çukuru, kazaların oluşmasındaki en büyük nedenlerden biridir. Can ve mal 

kayıplarının en aza indirilmesi için asfaltlarda oluşan çukurların otoriteler tarafından 

erken tespit edilip düzeltilmesi gerekmektedir. Asfaltlarda oluşan çukurlar göz ile 

veya otomatik olarak tespit edilebilmektedir. Göz ile tespit yöntemleri oldukça zaman 

alıcı ve maliyetli yöntemlerdir.  

 

Otomatik tespit sistemlerinde, titreşim bazlı veri işleme, üç boyutlu  geri çatım ve 

işleme ile iki boyutlu resimlerde görüntü işleme yöntemleri olarak temelde üç 

yaklaşım kullanılmaktadır. Titreşim bazlı metotlar uygulaması kolay ancak hata oranı 

yüksek sistemlerdir. Üç boyutlu yöntemler ise, başarı oranı yüksek ancak uygulaması 

zor sistemlerdir. İki boyutlu görüntü işleme yöntemleri bu ikisi arasında yer 

almaktadır. 
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Bu tezde amaç, iki boyutlu resimler üzerinde “Derin Öğrenme” yöntemleri 

kullanılarak uygulaması kolay ve hata oranı düşük bir çukur bulma yöntemi 

geliştirmektir.  Klasik makina öğrenme yöntemlerinde sabit (değişmeyen) öznitelikler 

çıkartılarak bunlar üzerinden statik veya dinamik yapıda sınıflandırma 

uygulanmaktadır.  Bu yöntemlerin başarısı algoritmalara da bağlı olmakla birlikte 

çıkartılan özniteliklerin doğruluğuna, yapısına ve niteliğine dayanmaktadır. Derin 

öğrenme yöntemlerinde, gerçekte dinamik olarak değişen öznitelikler arasından 

mevcut problem için en doğru öznitelik seti öğrenme yoluyla elde edilmektedir. 

 

Derin öğrenme yöntemi ve mevcut alanyazında bulunan klasik yöntemler anomali 

içeren asfalt görüntü seti üzerinde denenmiş ve başarı oranı, hatalı tespit oranı gibi 

başarı kriterleri yönünden kıyaslanmıştır. Araştırmanın sonucunda derin öğrenmenin 

diğer yöntemlere göre daha başarılı olduğu gözlenmiştir. 

Anahtar Kelimeler: Derin Öğrenme, Sınıflandırma, Görüntü İşleme, Çukur, Anomali 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. PRESENTATION 

 

Road bumps, potholes and cracks are some of the major important structural defects 

which occur on the asphalt roads due to various causes such as heavy trucks passing 

on them, overcast and construction errors. These defects, especially potholes, unless 

taken care of on time may cause serious damages some of which are flat tire and wheel 

damage, damage on the lower part of a vehicle, sudden brake and slipping, collisions, 

accidents and unfortunately death. 

 

In 2016 [26] according to Turkish Statistical Institute (henceforth TUIK), the number 

of traffic accidents reached up to 1,182,491. 997, 363 of these accidents caused 

physical damage; 303.812 people got injured and 7300 people were killed in these 

accidents [26]. As reported by TUIK, nearly 1 % of the accidents occurred due to 

distorted road conditions and around 90% took place as a result of driver faults. 

However, it should also be noted that some of the driver faults may also result from 

poor road conditions which haven’t been diagnosed. 

 

As can be inferred from the statistics given above, detection and maintenance of the 

potholes on time is very crucial to prevent damages before they occur. These defects 

can be detected automatically and manually by Local Governments and General 

Directorate of Highways. Currently almost all detection processes are done manually 

which is time consuming and very expensive. Hence, developing automatic pothole 
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detection systems helps authorities to fix the defects on time, save people’s lives and 

contribute to national economy by preventing the accidents. 

 

A system that quickly detects and repairs potholes on the pathways will consist of a 

few sub-systems. These sub-systems are data collection system, data analysis and 

decision system, and maintenance planning system. Data collection system is the 

sensor system e.g. camera, ultrasonic sensor, laser scanner, GPS etc. which is mounted 

on vehicles to provide necessary information for data analysis and decision system.  

Data analysis and decision system is responsible for processing the sensor data and 

decide whether there is a defect on the road or not, and if any defect exists, the system 

stores it with the location information obtained from the GPS data. Final part is 

responsible for making a maintenance program using the stored data.  There are plenty 

of sensors and GPS devices manufactured and used in the market. Also, lots of 

business planning software and algorithms are in use. Hence, the system that needs to 

be developed to work on this issue is the data analysis and decision system responsible 

for pothole detection. 

 

There are many studies conducted across the world to develop systems that 

automatically detects road defects especially potholes. These studies can be 

categorized mainly into three parts: vibration based, 3D reconstruction based, and 

vision-based. None of the existing methods have yet turned into products. Engineers 

and scientists are still working on these methods to have satisfactory results that will 

turn into working products. 

 

1.2. OBJECTIVE AND SCOPE 

 

Detection of potholes from the sensor data is the main problem for automatic detection 

and maintenance system. As stated above there are three main approaches to this 
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problem, methods that use vibration sensor data like 3D accelerometer, methods that 

use 2D vision sensor data like camera and methods that use 3D sensor data like laser 

scanner or built 3D data from 2D sensor like stereo vision. 

  

The sensors may vary in terms of price and usability i.e. some sensors are cheap 

whereas some are very expensive and some sensors are easy to mount and obtain data 

while some need robust mounting and calibration all the time. As well as the sensors 

some methods are very hard to implement in real life conditions and some methods 

are error prone like producing lots of false alarms. In contrast, some provide very 

accurate results.  

 

In this study the main aim is to develop and propose a method that is applicable in real 

world, which needs data from a sensor that is not too expensive and is easy to use and 

finally which needs reasonable computing power which provides satisfying accuracy. 

In general, vibration-based methods are cheap and easy to apply, but they are error 

prone. 3D based methods provide good accuracy, but   they require high computing 

power and expensive sensors. Also, they are hard to implement in real life. 2D vision-

based systems are not so expensive e.g. there are many cheap cameras in the market 

which are easy to apply. They need reasonable computing power comparing to 3D 

methods however the accuracy of them should be improved for more practical use.  

 

Anomaly detection on the road surface is a relatively solved problem. Lokeshower 

et.al [35] separates video frames into two categories namely frames with or without 

distress with more than 96% accuracy. The main object of the proposed method in this 

thesis study is to detect potholes among distress frames truly. While studies up to now 

have used basic features obtained from the frame to detect potholes, the method in this 

study obtains and uses high levels of complex features to classify the frames that 
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contains potholes or not. The complex features and the neural network that is used for 

classification improves the accuracy among other methods. 

 

This study consists of 5 chapters. First chapter sets the definition of problem, the scope 

and objectives of the study. Second chapter summarizes the literature review and 

studies up to now. Performance and detailed explanation of present 2D methods are 

depicted in 3rd chapter. 4th chapter introduces the convolutional neural networks 

(CNN) explaining its application to pothole detection problem and comparing its 

performance against other 2D methods. Last chapter summarizes and discusses what 

can be done to improve this problem. 
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CHAPTER 2  

 

2. LITERATURE SURVEY 

 

2.1. VIBRATION BASED METHODS 

 

Vibration based methods, which are used to detect potholes, generally use the output 

of 3 axis accelerometers to detect potholes and use GPS to locate the pothole. As 

wheels of a car pass over a pothole, the output of the accelerometer gives a different 

output from normal operation (a fluctuation) and the existence of a pothole is detected. 

However flat tires, sudden brakes, rail road crossings etc. also produce different 

outputs from the regular road conditions. These sensors are quite cheap and algorithms 

require comparatively low calculation costs however as potholes and other factors do 

not have characteristic properties the methods are prone to errors especially they 

produce false alarms. Moreover, drivers escape from passing over potholes and 

sensors are not able to produce the necessary outputs. 

 

Based on three axis accelerometer sensor output, Eriksson et.al [13] uses cluster-based 

filters.  Data collected from smooth road, crosswalks, railroad crossing, potholes, 

manholes, hard stop. The detector is trained according to these data set and 5 filtering 

stages are conducted on the collected data: Speed, High Pass, Z-peak, xz-Ratio, Speed 

vs. Z ratio. The PSD (power spectral density) of the road is first calculated in [8]. After 

calculating the PSD using Fourier transform, International Roughness Index (IRI) and 

Riding Quality Index (RQI) are calculated. Based on velocity and RQI, the road is 

classified as good quality and bad quality.  Jang et.al [23] first corrects mean-shifting, 

caused by normal vehicle movements, such as making turns, changing lanes, and 

going up or down hills  by taking out the exponential moving averages from the 
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accelerometer signals. Then, the root mean square (RMS) values of the accelerometer 

signals are calculated in a fixed time window length, which is equivalent to 0.8 

seconds. After collecting the data, supervised machine learning technique is used to 

classify the collected data fragments into three different categories: back-end server 

impulse, rough, and smooth classes, respectively. Phone accelerometers are used as 

sensors in [38]. The proposed study investigates Z axis mainly in such a way that 

values on the z axis that are greater than a certain threshold indicates the existing of a 

pothole. Next, fast changes in vertical acceleration data are explored and this way, 

potholes are detected. Sound-level meters (phonometer of smart phones) are used in 

[2] with a 3-axis accelerometer, to evaluate the differences in sound level (dB) over 

time (s). The ultrasonic sensor HC-SR04 mounted on a vehicle is used in [36] to detect 

potholes. It measures the threshold distance between smooth ground surface and the 

car and if new measurement is higher than this threshold, it is considered as a pothole. 

The ultrasonic sensors are not robust while moving it does not give coherent outputs. 

Moreover, they produce irrelevant outputs due to current, voltage changes and 

vibrations due to vehicle movements. 

 

2.2. 3D LASER AND RECONSTRUCTION METHODS 

 

3D laser and reconstruction methods usually use either a 3D laser or stereo cameras 

to obtain 3D surface of the region of interest. After using depth and other features, 

they try to detect whether or not a pothole exists. 3D laser gives 2D points as output 

and the elevation of these points are used for pothole detection. The 3D laser sensors 

are quite expensive, and the calibration of the sensor and adjustment of the vehicle 

speed is vital. By using the elevation of the point Chang et.al [7] segments laser points 

according to randomly chosen N points near high frequency changes. Then, other 

points are clustered according to nearest N cluster points. After all, pixels have been 
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assigned; a new mean location is computed, and the steps are repeated until no 

significant change occurs.  

 

3D reconstruction methods either use stereo vision cameras [19] [51] [58] or 

successive video frames [25] to obtain the 3D surface map of the road. Stereo vision 

methods generally use optical centers of the cameras (C1, C2), 3D point P, and the 

image points (P1, P2) of P on both camera images. If P1 and P2 are known, the 3D 

coordinates of P can be calculated from the geometrical relation. Giving a point in one 

image and finding the corresponding point is called correspondence or matching 

problem. Computing the 3-D coordinates of the corresponding point in space with a 

given correspondence is called 3-D reconstruction. The alignment and the calibration 

of the cameras are so important that more than a half pixel misalignment between the 

two stereo imagers would start to degrade the system performance. Jog et.al [25] 

detects pothole candidates using 2D methods. When a frame is accounted as a pothole, 

the system starts to obtain 3D map of the road using successive frames. The main 

problem of this method is the speed of the car. To obtain accurate 3D map, the velocity 

of the car should not change over time. Besides 3D laser and stereo cameras, Microsoft 

Kinect sensor is used in [39]. The kinect sensor has two cameras on it. The IR sensor 

helps understand the depth of the image. The local minimum of each column in the 

image is evaluated and subtracted from the column itself and eventually, pothole is 

obtained from the rest of the data.  

 

3D reconstruction methods are not applied on moving vehicles; rather they are used 

on stable vehicles. Calibration and alignment of the cameras are quite important. 3D 

methods give robust and accurate results however they require either high cost sensors 

or high operation costs (calibration, alignment etc.). 
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2.3. VISION BASED  METHODS 

 

A camera is used as a sensor in vision-based methods. Images obtained from the 

camera are examined and features are obtained using image processing techniques. 

After features are obtained, classification methods are applied on these features to 

decide whether a pothole exists or not. The features that are classified can be surface 

related (like texture, standard deviation of pixels etc.) or edge and orientation based 

(e.g. Hog, Sift, Haar etc.)  Morphologic operations, Bayesian Classifiers, Support 

Vector Machines (SVM) are examples of classification methods.  

 

Images are first converted to grayscale. Either edge detector algorithms (canny etc.) 

or threshold algorithms (adaptive, histogram-based Otsu etc.) are applied to obtain 

binary images in [46] [27] [34] [49] and [6]. After binary images are gathered, 

contours are obtained using connected components. The features of the contours like 

texture, standard deviation, area and intensity are examined according to the rest of 

the image and potholes are detected according to some rules. Defects are segmented 

using Partially Differential Equations (PDE) in [32] and nonlinear SVM is used for 

classification. Hog features and Bayesian Classifiers are used in [4] to detect potholes. 

Assuming high frequency occurs at big changes on road surface, Jang et.al [24] uses 

a spatio temporal saliency method to detect potholes. Details and performance of the 

main vision-based methods are explained in chapter 3. 

 

Cameras are slightly more expensive than accelerometers and they need neither 

calibration nor adjustment. Vision based methods are good at detecting saliencies on 

the road surface; however, as potholes do not have distinctive characteristics when 

compared to most of manholes, dirt and patching, they are not good at classifying 

potholes among latter ones. Lacking the depth information in 2D frames, performance 

of the vision-based methods needs to be improved. 
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The major differences among main methods are summarized in Table 2.1.  The major 

features (Accuracy, computational cost etc.) of these methods separated into as low, 

medium and high based on the information provided by the given references. As 

mentioned in the first chapter, the main goal of this study is to propose a low-cost 

sensor and low-cost operation system so that data can be collected by many vehicles 

and obtained data (i.e. in a center) is classified at a satisfying accuracy.  As can be 

seen from the table that, 2D vision-based systems are at an affordable cost (both 

computational and operational), but the accuracy should be improved to be used by 

authorities conveniently. Considering this information, a new method is proposed to 

improve the performance of the existing vision based methods. 

 

Table 2-1. Comparison of Pothole Detection Methods 

Method Sensor 

Cost 

Computatio

nal Cost 

Operational Cost 

(calibration, 

adjustment etc.) 

Accura

cy 

Vibration 

Based 

low low low low 

3D Based high high high high 

2D Based medium medium low medium 

 

 

 

 





 

 

 

11 

 

CHAPTER 3  

 

3. VISION BASED METHODS 

 

3.1. INTRODUCTION 

 

In this chapter the image-based pothole finding methods mentioned in chapter 2 will 

be elaborated in more detail. As mentioned above, determining whether there is an 

abnormality on the road surface is a partially solved problem; therefore, the main goal 

is to detect accurately if there is a pothole in the frames that include an anomaly.  The 

vision based methods can basically be grouped into 2 categories. The first group 

locates the anomaly in the image and later on, analyzes some properties of that region 

and decide on it according to the rules developed by the authors of the methods. This 

group will be called morphological examination methods.  The second group obtains 

a feature vector from the image such as histogram of gradients (HOG) and uses a 

proper classifier to detect whether that image contains a pothole or not. The second 

group will be called feature-based classification methods.  The performances of the 

proposed algorithms are analyzed under chapter 5.  

 

3.2. MORPHOLOGICAL  EXAMINATION METHODS 

 

3.2.1. A Method for Automated Assessment of Potholes 

 

In [34] an automated method is developed to detect potholes, cracks and patches using 

three sets of visual properties of those defects. These visual properties are: 
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Image texture:  The image texture inside a pothole, crack and patch is more contrast 

and varied than the distress free road surface area. However, contrast variation inside 

a pothole region is much more than a patch region in the same image. 

Shape factor: The potholes and patches have shapes more likely to be circular than 

cracks. The cracks have more elongated shapes. Circularity is measured in terms of 

area and perimeter of the shapes 

Dimension: Potholes and patches have bigger dimension (width) when compared to 

cracks. 

 

The algorithm first enhances the image, then the image is segmented according to 

anomaly regions. After that, the three sets of visual properties of segmented regions 

are extracted and finally a decision algorithm is applied for classification. The 

algorithm is used to classify potholes, patches and cracks; however, our data set 

consists of potholes, manholes, dirt and patches. Therefore, the decision part is 

changed so that it can help figure out whether the region of interest is a pothole or not. 

The algorithm steps and how they are implemented is listed below: 

• Frame is inputted; 

• Its blue channel is selected and converted into 8-bit depth format; 

•  To remove outside noise, median filtering is applied. For this, 1024*768 

frames filter of size 45 is applied; 

• A weighted mean based on adaptive thresholding is applied to convert the 

enhanced image into binary image with black pixels representing objects of 

interest; 

• To fill the gaps in the binary image, the frame is eroded with size 20 twice to 

add black pixels; 

• To remove isolated black pixels or their small cluster, the morphologic dilation 

of size 4 is applied 5-6 times  

• Morphological erosion of size 20 is applied twice again to add black pixels to 

the binary image; 
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• Connected component labeling and chain coding techniques   is applied to 

count the number of objects or regions of interest and estimate the area (A) 

and perimeter (P)of each of the object; 

• STD (standard deviation), CIRC (circularity) and W (average width) of each 

of the remaining objects are determined. CIRC and W are calculated according 

to (3.1) and (3.2) respectively 

• Each region of interest is classified as pothole or not according to the decision 

rationale/criteria  

Type (object) = 

(a) Potholes, if A>177 & STD >= 10 & CIRC >= 0.10 & W >= 60mm;  

 (d) Non-pothole, if otherwise;  

• Store the result into a file 

• Repeat the steps for all other frames.[34] 

 

𝐶𝐼𝑅𝐶 = 4𝜋 ×
𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 (3.1) 

 

𝑊 = 4 ×
𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 

 
(3.2) 

Dirt, manhole and patching all may have shapes similar to potholes in terms of CIRC 

and W. On the other hand, STD parameter is able to differentiate potholes from other 

types of anomalies. However, there are potholes whose STD is small (<10) like in 

Figure 3.1 and while there are dirt and manholes whose STD is bigger than 10 shown 

in Figure 3.2. 
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Figure 3.1. A pothole with STD < 10 

 

 

Figure 3.2. A dirt with STD > 10 

 

 

3.2.2. Potholes Detection in Asphalt Pavements 

 

Another morphological examination method is presented in [27]. Like the method 

above, it uses visual properties of pothole areas to detect pothole within a frame. Three 

assumptions are used to detect potholes; 

(a) A pothole area is darker than the surrounding road surface  

(b) The shape of a pothole is approximately elliptical, due to a perspective view. 
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(c) The surface texture in a pothole is much rougher and grainy than the surrounding 

surface texture [27]. 

Based on these assumptions, the algorithm has three components namely image 

segmentation, shape extraction and texture extraction and comparison. In the image 

segmentation part, first the image is converted into a grayscale image. After that, a 

5*5 median filter is applied to remove noise from the image. Histogram based 

thresholding algorithm is used to segment the image as defect and non-defect regions. 

To determine the threshold value T, a line is drawn from the maximum intensity value 

(Pmax) to the origin (P0). The point which has the maximum distance to this line is 

the threshold value (Figure 3.3) [27]. The points below the threshold value are the 

defects region, the rest is the surface region. 

 

 

Figure 3.3. Histogram based thresholding [27] 

 

After the image is segmented, black regions ( R )  are examined whether they are 

pothole shades or not. If eccentricity of the shape is bigger than 0.99 and the position 

of the centroid is inside the region of interest R, and  the major axis over the size of R 

is bigger than a threshold. The region is assumed to be a pothole candidate area. After 

detecting the pothole candidates, three Leung-Malik (LM) filters and 1 Schmid (S) 
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filter  is applied both to inside and outside of the pothole region. Two-feature vectors 

containing standard deviations are obtained calculated using these filters. Fo and Fi  are 

the feature vectors obtained for outside and inside of the region of interest 

respectively. If Fi  > Fo ,the region is assumed to be pothole. 

The proposed algorithm explained above is not implemented and tested because 

manholes, dirts and patches all may have similar potholes. Thus, the algorithm does 

not differentiate among these anomalies. STD is the only device to use to distinguish 

among them. This is already is implemented and tested in the above method. 

 

3.3. FEATURE BASED CLASSIFICATION METHODS 

 

3.3.1. HOG Features Descriptors and Bayesian Classifiers 

 

Pothole detection in the asphalt roads is a kind of object detection technique. The main 

idea behind object detection is to find such a feature set that the object can be 

differentiated from the background image and/or other objects using these feature set. 

Potholes usually have elliptical shapes and contain coarser texture comparing to 

asphalt surface. Considering these observations [4] using HOG features are thought to 

be a good method to distinguish potholes from its environment. HOG feature 

descriptors [10] are used in many fields in computer vision to detect and recognize 

objects. 

 

A feature descriptor [18] represents an image patch that simplifies the image by 

removing useful information and releasing redundant information.  In the HOG feature 

descriptor, the distribution properties of the gradients directions are used. Image 

gradients (x and y variants) are useful in sense that the magnitudes of the gradients are 

quite high at the corners and edges. Corners and edges usually contain the most 
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knowledge about the shape of the object. In obtaining HOG feature descriptors first 

horizontal and vertical gradients are calculated using the masks in (3.3). 

 

𝐹𝑥 = [−1 0 1]        and      𝐹𝑦 = [
   1
   0
−1

 ]                                                             (3.3) 

  

Obtaining the vertical and horizontal gradients magnitude and phase (orientation) of 

gradients are calculated using equations (3.4) and (3.5)  

 

|𝐺|𝐹 = √𝐹𝑥
2 + 𝐹𝑦

2                      (3.4) 

 

∅ = tan−1(
𝐹𝑦

𝐹𝑥
⁄ )                                                 (3.5) 

 

First, images are resized to 200x200 pixels (if their size is different) afterwards the 

image is segmented to 8x8 cells which are non-overlapping into each other. Each cell 

is divided again into 4x4 pixel blocks and orientation of each block is calculated 

quantizing into 8 bins and finally a HOG feature descriptor vector is obtained.  Figure 

3.4 shows a pothole image and its HOG representation. 
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Figure 3.4. HOG feature representation of a pothole image 

 

The next step after obtaining the feature vector is to feed this vector into a proper 

classifier. In [4] a Naïve Bayes Classifier is used for discriminating pothole images 

from non-pothole containing images. The Naive Bayesian Classifier is based on 

Bayes' theory with assumptions of independent variables between predictors. The 

Naive Bayesian model can be easily generated without complex parameter estimates, 

especially useful for very large data sets. The feature vector obtained from the images 

has a very large scale and assuming the independence of these features Naïve Bayes 

Classifier is considered to be a suitable classifier. Bayes’ theorem is a way to calculate 

the posterior probability which is shown in equation (3.6) where 𝐶𝑖 is the class label 

(1,2 …n) which is pothole and non pothole for this case ,  𝑉𝑓 is the feature vector, 

P(𝐶𝑖) is prior probability of class and P(𝑉𝑓) is prior probability of predictor. 𝑉𝑓 is 

assigned  into a class 𝐶𝑖 if the posterior probability 𝑃 (
𝐶𝑖

𝑉𝑓
⁄ ) takes the highest value 

for that class among other classes. 

 

𝑃 (
𝐶𝑖

𝑉𝑓
⁄ ) =

𝑃(
𝑉𝑓

𝐶𝑖
⁄ )𝑃(𝐶𝑖)

𝑃(𝑉𝑓)
                                                           (3.6) 
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This method is tested using Matlab Image Processing Tools (IPT) which has already 

had a built in classifier for Naive Bayes Classifier. 60 images chosen randomly among 

1000 images   (24 pothole, 36 non pothole) and the rest 940 is used for training. The 

detailed results will be discussed in chapter 5.  

 

3.3.2. Potholes Detection in Asphalt Pavements 

 

As the pothole detection problem is clearly a two class problem instead of Bayes 

Classifier, a Support Vector Machine (SVM) classifier is also tested using Matlab built 

in IPT SVM classifier using the same HOG feature descriptive vector. “Support 

Vector Machine” (SVM) is a supervised machine learning algorithm which is 

generally used for two class separation problems which are not linearly differentiable. 

An SVM classifies data by finding the best hyper plane that separates all data points 

of one class from those of the other class [54].   Vi is the training vector and Cj    is 

their categories. For some dimension d, the Vi ∊ Rd, and the Cj= ±1. The equation of 

a hyper plane is expressed in (3.7) where β ∊ Rd and b is a real number. 

 

"f(v)=v'β+b =0"                                         (3.7) 

 

The decision boundary is computed by finding   β and b that will minimize ||  β || such 

that all data points satisfy the condition expressed in (3.8)  

C_j f(V_j )≥1                                                          (3.8) 
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Vj that satisfies Cjf(Vj) =1 conditions are the support vectors which are on the 

boundary. SVM has a feature to ignore outliers and find the hyper-plane that has the 

maximum margin. Figure 3.5 illustrates these definitions and SVM representation. 

 

 

Figure 3.5. SVM definitions and representation 

 

The same test and train image sets used in Bayesian Classifier are used and results are 

compared in chapter 5. 

 

3.3.3. Haar-like Features and Linear Cascade Classifiers 

 

Haar-like features like HOG features are another feature set used for object detection 

and classification. They are introduced in [55]   for rapid object detection and a 

developed version is used in [56] for face detection. Haar-like features which are like 

convolutional kernels are applied to every 24x24 segment of an image in various size 
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and at each step pixels under the black regions are summed and subtracted from the 

sum of the pixels under the white regions. Hence at every step one feature is obtained 

resulting near 160.000 features for a 24x24 window. Haar-like features are shown in 

Figure 3.6 and their rotated versions are also used in obtaining the feature vector. 

 

 

Figure 3.6. Haar-like features 

 

Even for a 24 by 24 segment too many features are obtained, and it costs a lot of 

computation. Most of the features obtained during this process is unnecessary. 

Considering Figure 3.7[56] it is seen that most significant features are obtained in eye-

bridge of nose-eye area and eyes-nose and cheeks area. Eye area is darker than nose-

cheek area and eyes are darker than the bridge of the nose. 
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Figure 3.7. Haar-like features and a face [56] 

 

To get rid of the irrelevant features and choose the best ones Adaboost is used. 

Adaboost [14] is a super-efficient feature selector using weak classifiers. Each feature 

on the training images are applied and for each feature best threshold is found which 

classifies the faces to positive and negative. Features with minimum error rates are 

chosen and the final classifier is obtained as a weighted sum of these weak classifiers. 

This process reduces 160.000 features to nearly 6.000 features. Again, for all 24x24 

region of an image it needs too much computation because most regions are not face 

regions and thus are not candidates. To solve this problem, linear cascade classifiers 

are used.  A small set of features in an image’s sub window is applied to a linear 

classifier. If it fails, it is a non-face region. If it passes, a bigger feature set is applied 

to a second linear classifier. If it fails, it is a non-face region. If it passes a bigger 

feature set is selected and applied to a third classifier. This goes on until the chosen 

number of classifiers is reached. If the last feature set passes the last classifier, it is 

labeled as face region. The representation of cascade classifiers is shown in figure 3.8 
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Figure 3.8. Representation of cascade classifiers 

 

The method is developed basically for face detection but can be applied to any object 

for detection. Matlab has a built-in method for this purpose in its IPT. First, Matlab’s 

Training Image Labeler is used to label pothole areas. Approximately, 256 pothole 

areas are selcted and labeled as potholes. As the second step,  negative images (non 

pothole images ) are introduced. Later the number of linear  cascade classifiers and 

their false alarm rate are defined. A detector (feature selector) is trained acording to 

the training set and when a new image is introduced its feature vector is obtained using 

this detector and it is fed to the cascade classifiers. Haar-like features are very good at 

detecting objects that have well defined patterns such as eye-nose-eye but produces 

lots of false alarms if the object doesn’t have such a pattern. The detailed results will 

be discussed in chapter 5. 

 

3.3.4. Image Classification with Artificial Neural Networks 

 

In the above feature-based methods, it is necessary to obtain a set of feature vector 

before training the system. However, in this method, the image itself is given to an 

artificial neural network (ANN) as a feature vector. Assuming that the anomaly 

detection is a solved problem, anomaly region is first found in the image and then 

extracted from the image and this anomaly region image is given as input to the 

system. Figure 3.9 and 3.10 shows the original and extracted images. 
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Figure 3.9 Original image 

 

 

Figure 3.10 Cropped image 

Figure 3.11 shows the constructed artificial neural network structure. 
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Figure 3.11 ANN structure 

 The cropped image is resized to 50 pixels by 50 pixels and then turned into a 2500x1 

vector form and fed to the network. Detailed information about the neural networks is 

explained in the next chapter. Success result of this method will be discussed in 

chapter 5 
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CHAPTER 4  

 

4. POTHOLE DETECTION USING CONVOLUTIONAL NEURAL NETWORKS 

 

4.1. INTRODUCTION 

 

The traditional pattern of recognition (or classification) methods is to first obtain a set 

of simple and fixed (not trainable and do not change over time) feature set and use 

trainable classifier to achieve the desired classification or clustering over those 

features. As stated earlier the distress asphalt surface is smooth and less varied when 

compared to the anomalies existed in the asphalt. However, anomalies on the road 

surface do not have a fixed pattern and a fixed decomposer feature set. Dirt, patching 

and a pothole may all have similar variance (in intensity), shape and gradients and so 

does the feature set.  

 

To overcome this problem either we should obtain and use the depth information of 

the anomaly space whose pros and cons are mentioned in chapter 2 or we should 

develop a method to obtain a more sophisticated and adaptive (trainable) feature set 

to classify these anomalies. This chapter will explain the proposed method to solve 

pothole detection problem which is The Convolutional Neural Networks (CNN) or 

namely deep learning. In this chapter, first the perceptron after the neural networks 

will be introduced. After these concepts are introduced convolutional neural networks 

and the proposed version of CNN will be explained in detail.  
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4.2. NEURAL NETWORKS 

 

4.2.1. The Perceptron 

 

Human brain consists of billions of neurons. They are electrically excitable cells that 

receive, process, and transmit information through electrical and chemical signals 

[44]. These signals between neurons occur via specialized connections 

called synapses. Neurons has three main parts:  body, dendrites and axon. Neurons are 

interconnected to each other through these synapses which are the junction of axon 

and dendrites.   A typical neuron is shown in figure 4.1[45] 

 

 

Figure 4.1. A neuron [45] 

 

Dendrites are the input parts of the neuron.  If the electrical signals reach a certain 

threshold level, the neuron fires provide a chained input and the other neurons are 

connected to this neuron through the synapses. 

The perceptron shown in figure 4.2 is a mathematically modeled (computational 

model) neuron to simulate the learning mechanism of the human brain.  

 

http://www.wiki-zero.com/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3cvaW5kZXgucGhwP3RpdGxlPUNoZW1pY2FsX3NpZ25hbHMmYWN0aW9uPWVkaXQmcmVkbGluaz0x
http://www.wiki-zero.com/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU3luYXBzZQ
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Figure 4.2. The perceptron 

 

In the computational model of a neuron, the signals that travel along the axons (e.g. x0) 

interact multiplicatively (e.g. w0x0) with the dendrites of the other neuron based on 

the synaptic strength at that synapse (e.g. w0). The idea is that the synaptic strengths 

(the weights w) are learnable and they control the strength of influence or inhibitory 

(negative weight) of one neuron on another [40]. 

Firing of a biological neuron is modeled through activation function of the perceptron 

where impulses from other axons summed (4.1) and the sum is evaluated according to 

the chosen activation function f which is shown in figure 4.3 

 

 

Figure 4.3. The perceptron and activation function 

 

 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝛴𝑤𝑖 ∗ 𝑥𝑖 + 𝑏) (4.1) 
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The activation function can be sigmoid, tanh, ReLU etc. In its basic form the output 

can be determined by (4.2) 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0 𝑖𝑓 𝛴𝑤𝑖 ∗ 𝑥𝑖 + 𝑏 < 0 
1 𝑖𝑓 𝛴𝑤𝑖 ∗ 𝑥𝑖 + 𝑏 > 0

 (4.2) 

 

Sigmoid, tanh, ReLU and Leaky RLU is shown through (4.3) to (4.6) respectively 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝜎(𝑥) =
1

1 + 𝑒−𝑥 
 𝑤ℎ𝑒𝑟𝑒 𝑥

= 𝛴𝑤𝑖 ∗ 𝑥𝑖 + 𝑏 

(4.3) 

 

tanh(𝑥) = 2𝜎(2𝑥) − 1 (4.4) 

 

𝑅𝑒𝐿𝑈(𝑥) = 𝑓(𝑥) = max (0, 𝑥) (4.5) 

 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 = 𝑓(𝑥)
= max(𝛼𝑥, 𝑥) ;  𝑢𝑠𝑢𝑎𝑙𝑙𝑦 𝛼 𝑖𝑠 0.1,0.001  

(4.5) 

 

In summary, a perceptron takes many inputs and produce a binary output depending 

on inputs, weights and activation function. 

 

4.2.2. The Neural Networks 

 

With one perceptron, one can made very limited decisions. In many problems, the 

solution is complex and input output relation is not linear. To be able to solve more 

complex problems, collection of perceptron connection models, namely, neural 

networks are built. A typical Multi Layer Perceptron (MLP) network consists of input 

layer, output layer and a number of hidden layers which is shown in figure 4.4 
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Figure 4.4. Multi layer perceptron network 

 

For the network in figure 4.4, the first column of perceptron-input layer- makes three 

very simple decisions, by weighing the input evidence [43]. The second layer -hidden 

layer- is making a decision by weighing up the results from the input layer of decision-

making. In this way a perceptron in the second layer can make a decision at a more 

complex and more abstract level than perceptrons in the first layer [43]. Also, even 

more complex decisions can be made by the perceptron in the third layer. In this way, 

a many-layer network of perceptrons can engage in sophisticated decision making 

[43]. Input layer shall be equal to the number of inputs i.e if we have a 20*20 pixel 

image, the input layer shall have 400 neurons. The above neural network is also an 

example of feed forward neural network. 

Generally a network is trained with some known input-output pairs i.e. weights are 

updated (adapted) in order to minimize the error at the output. Training has two main 

parts. In the feed forward part input is fed to the network and the output obtained 

according to the activation functions of the neurons. In the second part (back 

propagation part) obtained, output is compared to the target or desired output and the 

error according to a cost function is calculated. Having obtained the error, the gradient 
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of it which is a multivariable generalization of the derivative is calculated and this 

gradient is back propagated through input layer. In [16] a gradient is defined as the 

gradient points in the direction of the greatest rate of increase of the function, and 

its magnitude is the slope of the graph in that direction.  Backpropagation is used to 

calculate the gradient of the error [5] to update the weights in the network to minimize 

the error at the output i.e.  after updating the weights, the actual output will be closer 

to the target output. An example network is seen in figure 4.5 and whole process is 

defined through (4.6) to (4.10) 

 

 

Figure 4.5. Back propagation example network 

 

Forward Pass: 

𝑛𝑒𝑡ℎ₁ = 𝑤₁ ∗ 𝑥₁ + 𝑤₂ ∗ 𝑥₂ + 𝑏₁ (4.6) 

 

neth₂ is calculated similarly. 

𝑜𝑢𝑡ℎ₁ =
1

1 + 𝑒−𝑛𝑒𝑡ℎ1 
 (4.7) 

 

outh₂ is calculated similarly 

http://www.wiki-zero.com/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTWFnbml0dWRlXyhtYXRoZW1hdGljcyk
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𝑛𝑒𝑡𝑜₁ = 𝑤₅ ∗ 𝑜𝑢𝑡ℎ₁ + 𝑤₆ ∗ 𝑜𝑢𝑡ℎ₂ + 𝑏₂ (4.8) 

 

neto₂ is calculated similarly. 

𝑜𝑢𝑡𝑜₁ =
1

1 + 𝑒−𝑛𝑒𝑡𝑜1 
 (4.9) 

 

Obtaining outo₁ and outo₂ error functions Eo₁, Eo₂ and total error Eₜₒₜₐₗ can be 

calculated. The error function depends on the designer choice. Most commonly used 

one is the mean squared error function. Assuming mean squared error function Eo₁, 

Eo₂ and Eₜₒₜₐₗ can be calculated as: 

 

𝐸𝑜₁ =
1

2
∗ (𝑡𝑎𝑟𝑔𝑒𝑡𝑜₁ − 𝑜𝑢𝑡𝑜₁)² (4.10) 

 

Eₜₒₜₐₗ = Eo₁ + Eo₂   (4.11) 

 

Now is the backward phase. By calculating the gradient from error function to weights 

w₅ and w₆ we can compute how much a change in these weights affects the total error. 

By chain rule: 

σEₜₒₜₐₗ

σw₅
=

σEₜₒₜₐₗ

σouto₁
∗  

σouto₁

σneto₁
∗  

σneto₁

σw₅
   (4.12) 

 

 

σEₜₒₜₐₗ

σouto₁
= −(𝑡𝑎𝑟𝑔𝑒𝑡𝑜₁ − 𝑜𝑢𝑡𝑜₁) (4.13) 

 

σouto₁

σneto₁
= 𝑜𝑢𝑡𝑜₁(1 − 𝑜𝑢𝑡𝑜₁) (4.14) 

 

σneto₁

σw₅
= 𝑜𝑢𝑡ℎ₁ (4.15) 

 

Obtaining gradient of Eₜₒₜₐₗ according to the w₅ we can update w₅ as follows 
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w₅⁺ = 𝑤₅ − ƞ ∗
σEₜₒₜₐₗ

σw₅
  (4.16) 

Where ƞ is the learning rate, it is typically small i.e. 0.001.   w₆ , w₇ and w₈ can be 

calculated in a similar way. Gradient of Eₜₒₜₐₗ  with respect to  w₁ can be  calculated 

through (4.17) and w₁ is updated as like in (4.16) 

 

σEₜₒₜₐₗ

σw₁
=

σEₜₒₜₐₗ

σouth₁
∗  

σouth₁

σneth₁
∗  

σneth₁

σw₁
 (4.17) 

 

4.2.3. Factors Affecting the Success of Neural Networks 

 

The performance and the training efficiency of neural networks depend on activation 

function, learning rates and weight updates, back propagation and the cost (error) 

function 

 

4.2.3.1. Activation Functions 

 

In [40] it is stated that classical sigmoid function has three main disadvantages. Firstly, 

saturated neurons kill the gradient during backpropagation and weight update process. 

Secondly sigmoid outputs are not zero centered i.e. if always a positive input is fed to 

the network gradients are either always positive or negative. Finally, exponential 

functions are relatively computationally expensive. 

Unlike sigmoid function tanh is zero centered but still it kills the gradients when 

saturated. On the other hand, ReLU does not saturate in (+) region. Converges much 

faster than sigmoid/tanh e.g. 6 times comparing to sigmoid [28]. However, it is still 

not zero centered and it kills the gradient when the input is negative. Leaky ReLU 
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solves the negative input and do not die in negative regions. Mostly ReLU and Leaky 

ReLU is used as an activation function. 

 

4.2.3.2. Cost Function 

 

In neural networks, cost function is a measure that shows how well the network is 

trained with respect to its input training data and target output. Gradient is calculated 

according to the cost function and with respect to the calculated gradients the weights 

are updated. To be able to compute gradients cost functions should be written as 

average and must depend on only the outputs of the network.  There are many cost 

functions used by people such as Sum of Squared Error or mean squared error SSE, 

Cross Entropy CE and Exponential Cost EXP.  SSE and CE are discussed in [37] and 

both of them are explained and compared in terms of their impact on the reconstruction 

performance of hidden layers in deep neural networks [1]. CE yields minimum errors 

on the other hand SSE provides best layer-wise reconstruction performance [1]. 

 

4.2.3.3. Learning Rates and Weight Updates 

 

In neural networks the main purpose while training the network is to reduce the loss 

function or the cost function. The gradient is calculated and back propagated at each 

new input (or sample batch) and weights are updated similar to (4.16) with respect to 

the calculated gradient. Choosing the right learning rate in (4.16) is very important. 

With high learning rate improvements in the loss function will be exponential at first 

but loss may explode or get stuck around worst values of loss [41]. On the other hand, 

if it is too small, loss may not go down with the training data available.  There are also 

many weight update procedures introduced in the literature. The basic form is steepest 

gradient descent SGD as introduced in (4.16). Choosing the right learning rate is 
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important, it is guaranteed to make non-negative progress in loss [41] with low 

learning rate but it converges to slowly. In physical terms gradient directly affects the 

position of convergence. Another update method is the Momentum update which is 

shown in (4.18) and (4.19). V in the equations represent velocity, in physics mu 

represents the friction. Here, gradient affects the velocity of convergence which in turn 

has an effect on position [41]. V is initially 0 and mu is chosen between 0.5-0.9. 

Overall momentum update is faster than SGD. 

 

v = 𝑚𝑢 ∗ 𝑣 − ƞ ∗ gradient  (4.18) 

 

w = 𝑤 + 𝑣  (4.19) 

 

Another weight update procedure is the modified version of the momentum update 

namely Nesterov Momentum Update. It basically approximates the future position of 

convergence based on the gradient as a “lookahead” and update the parameters 

according to (4.20) through (4.22). Nesterov update shows slightly better performance 

than the momentum update. 

 

w_ahead = 𝑤 + 𝑚𝑢 ∗ 𝑣  (4.20) 

 

v = 𝑚𝑢 ∗ 𝑣 − ƞ ∗ gradient of w_ahead  (4.21) 

 

w = 𝑤 + 𝑣  (4.22) 

 

There are also pre-parameter adaptive learning rate methods proposed by [12] called 

Adagrad shown in (4.23) and (4.24). 

𝑐𝑎𝑐ℎ𝑒 = 𝑐𝑎𝑐ℎ𝑒 + 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡²  (4.23) 

 

w = 𝑤 − ƞ ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡/(√𝑐𝑎𝑐ℎ𝑒 +  𝑒𝑝𝑠  (4.24) 

  

Eps is a smoothing term usually set between 1e-4 to 1e-8.  Its convergence rate is well 

but it may stop learning too early in deep neural networks [41].  RMSprop and Adam 
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are other adaptive learning rates which are slightly modified versions of Adagrad but 

performs better. RMSprop is shown in (4.25) and (4.26). Decay rate is typically chosen 

as 0.9 or 0.99. 

 

𝑐𝑎𝑐ℎ𝑒 = 𝑑𝑒𝑐𝑎𝑦𝑟𝑎𝑡𝑒 ∗ 𝑐𝑎𝑐ℎ𝑒 + (1 − 𝑑𝑒𝑐𝑎𝑦𝑟𝑎𝑡𝑒) ∗
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡²  

(4.23) 

 

w = 𝑤 − ƞ ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡/(√𝑐𝑎𝑐ℎ𝑒 +  𝑒𝑝𝑠  (4.24) 

 

4.2.3.4. Weight Initialization and Regularization 

 

Initialization process of weights in neural networks is one of the most important tasks 

to be achieved successfully. Assume we start with all zero initialization, if all the 

neurons in the network produce the same output, the gradient will remain the same for 

all the weights [42] and network will not converge. As an initial guess some of the 

weights will be negative and some will be positive. Starting with small numbers 

around zero mean with Gaussian distribution is one of the most used methods for 

weight initialization.  

 

Another problem that can be faced while training neural networks is the over fitting. 

The weights are updated with the training set in a way that the actual output is very 

close to the target output, but the network fails to fit additional data or predict future 

observations reliably [47]. To overcome this problem a technique called “dropout” for 

effective regularization of the network is introduced in [51]. While training, dropout 

is implemented by only keeping a neuron active with some probability p (p=0.5 

generally) or setting it to zero otherwise. 
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4.3. CONVOLUTIONAL NEURAL NETWORKS 

 

As introduced earlier in the classical neural networks, the feature or the input to the 

network is constant. Only the weights between neurons are updated at each training 

sample batch.  This may work well for some problems; however, sometimes the 

problem is not so easy to solve. We need more complex features for solving the 

problem i.e. truly classifying the objects. Also, decision of the feature is not an easy 

task to carry out. We may not be able to extract the right feature for proper 

classification. Moreover, as Hubel & Wiesel showed in their successive studies 

[21][22], cats’ visual cortex system neurons are specialized in object feature 

extraction.  Featural hierarchy between the neurons is visualized in figure 4.6 [20]. 

 

 

Figure 4.6. Featural hierarchy in cats’ visual cortex neurons [20] 

 

Inspired from the cats’ visual cortex hierarchy LeNet is introduced in [29].  

Convolutional Neural Networks (CNN) are a specialized version of ordinary neural 

networks.  They are trained in a similar way and the weights are updated using back-

propagation. What differs in Convolutional Neural Networks is the architecture of it. 

Visual patterns in pixel images are directly recognized by the CNN with robustness to 

distortions and geometric transformations [30].  A simple example of Convolutional 

Neural Networks is seen in figure 4.7 [29]. That is, “LeNet-5” is introduced in [29]. It 
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is designed to detect handwritten letters. As can be seen from the figure, Convolutional 

Neural Networks consists of Convolution layers, Subsampling (pooling) layers, filters 

applied in convolution layers and finally a fully connected neural network at the end 

to classify the objects (obtained complex features).  These layers will be explained in 

detail in the following section. 

 

 

Figure 4.7. LeNet-5 [29] 

 

Convolution and pooling layer make the feature extraction part of the network whereas 

the fully connected layer makes the classification. The CNN is also called deep 

learning due to more than one non-linear feature extraction. The CNN structure can 

be summarized as in the chart below. 

 

 

 

While we obtain simple features from images like edges in classical classifiers, in 

Convolutional Neural Networks, we obtain complex layered features first layer 

includes edges second layer motif and final layer the object itself. To sum up, classical 

pattern recognition methods use fixed i.e. engineered features and simple trainable 

classifiers whereas CNN consists of trainable feature extractor and trainable 

classifiers. 

Image 
Low level 

feature 

Mid level 

feature 

High level 

feature 

Trainable 

classifier 



 

 

 

40 

 

4.3.1. The Convolutional Layer 

 

Convolutional (henceforth Conv) layer is the core part of CNN structure and does the 

most computational part.  Conv layer consists of small filters (in width and height) 

which are trainable and extend through the full depth of input images volume. In the 

forward phase Each filter slides across the width and height of the image, dot product 

is computed between the filter and the input part of the image (convolve the filter with 

the image) and two-dimensional activation map produced at the end. As stated earlier, 

these filters are trainable i.e. they are updated through back-propagation until they see 

some visual features like edge or motif or the object itself which depend on the layer 

that the filter belongs to. By sliding one filter over the entire image first hidden layer 

is obtained [11]. Applying the filter i.e. sliding it through the entire image, computing 

the dot product and obtaining the hidden layer are shown in successive figures 4.8 and 

4.9.   

As seen from the figures, while sliding the filter across the image, the width and height 

of the image get smaller at the output because we can slide the filter up and down less 

than the size of the width. For example, in figure 4.8 and 4.9 the input is 7x7 image, 

the filter size is 3x3 and we can slide the filter just 5 times in each direction unless a 

stride is applied during sliding. If we applied the filter with stride 2, we could slide the 

filter only 3 times in each direction. The spatial output of the general formula is shown 

in (4.25). N is the image size; F is the filter size  

𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 =
(𝑁−𝐹)

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1  (4.25) 
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Figure 4.8. Sliding the filters and computing the dot product 

 

Input image First hidden 
layer 



 

 

 

42 

 

 

Figure 4.9. Sliding the filters and computing the dot product 

 

If we have “n” filters at that layer, at the end we  obtain “n” hidden layer and the input 

volume  transforms to the number of filters e.g. if we have 28*28*3 image as input 

and have 3*3*3 10 filters at the first conv layer after the forward phase, we  have a 

26*26*10 volume at the output and this will be input to the next layer. The obtained 

output at the end of the layer is illustrated in figure 4.10. This is sometimes called the 

feature map. 

 

Input image First hidden 
layer 
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Figure 4.10. Conv layer output-feature map 

 

3-D input volume is transformed to the 3-D output volume of neuron activations. 

Neurons are arranged in three dimensions. While sliding the filter at the end of each 

dot product computation, ReLU activation is applied to the output of the dot product. 

Because of that, sometimes conv layer is named Conv-ReLU layer.  

 

It is seen that while applying the filters to the image the width and height of the input 

decays. As the number of the conv layer increases the size gets smaller and smaller. 

Input image 
28*28  

Output 
hidden layers 
10*26*26  
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To prevent this outside of the image is zero padded so that the out size does not change 

after applying the filters. Zero padding example is shown in figure 4.11. 

 

 

Figure 4.11. Zero padding example 

 

Assuming the filter size F by F to preserve the input size spatially, the input image is 

zero-padded in each direction  according to  

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑧𝑒𝑟𝑜 − 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = (𝐹 − 1)/2  (4.26) 

  

During the back-propagation phase, the filter values are updated.  This provides the 

learnable feature extraction part of Convolutional Neural Networks. The number of 

parameters to be updated is equal to the number of filters multiplies the total volume 

of the filter e.g. if we have 10 7*7*3 filters to be applied to the input image 

10*7*7*3=1470 parameters are updated during back-propagation phase 

 

4.3.2. Pooling Layer 

 

In addition to the convolutional layers, CNN also contains pooling layers. Pooling 

layer is generally applied after the convolutional layer and down sample the output. 

This process simplifies the information contained at the output of convolutional layer. 

It reduces the size of representation number of parameters and computation in the 



 

 

 

45 

 

network [9].  Pooling layer processes each hidden layer independently and resizes 

them spatially using Max operation.  In the most common usage, 2x2 max filter is 

applied in pooling layer and at each step max value is taken from 4 neighbor pixels. 

The max pooling process is shown in figure 4.12. During pooling processes, we lose 

some of the information stored but gain a lot of computing time instead. After pooling, 

we still have many meaningful parts of the features. 

 

 

Figure 4.12. Max pooling with 2x2 filters 

 

Instead of max pooling, other pooling techniques can be applied like average pooling; 

however, generally max pooling shows better performance [9].    

 

Convolutional layer together with the pooling layer is one of the building blocks of 

the Convolutional Neural Networks.  Bringing a number of conv layers together with 

some pooling layer between them, we constitute the “deep network”. At each conv 

layer applied to the output of previous conv layer, complexity and volume of the 

features obtained increases.  

Max pooling example 
with 2*2 filters 
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4.3.3. Fully Connected Layer 

 

The output of the last convolutional layer (or pooling layer) is introduced to a fully 

connected neural network (henceforth FC layer) . The input layer neurons of FC layer 

are all fully connected to last output obtained in convolutional part. The activations 

can be computed using matrix multiplications and weights are updated as like in the 

back-propagation stage of neural networks. FC layer serves as a classifier part of the 

CNN 

 

4.3.4. Cost Function 

 

There are many cost functions that are used at the end of neural networks to calculate 

the gradient that is used to be in backpropagation phase. Some of them already 

mentioned in section 4.2.3.2. Softmax is commonly used as a loss function in 

Convolutional neural networks. Soft max is a generalization of the logistic function 

that squashes a K-dimensional vector of arbitrat real values to a K-dimensional vector 

of real values in the range (0,1) that add up to 1[52]. The main motivation of using 

softmax is that it can an approximate taking maximum operation. Softmax emphasis 

the highest probability element of the prediction vector and suppress the lower 

elements using the exponential characteristic of the function. Moreover, the 

continuously differentiable property of the softmax helps users to produce a robust 

classifier model using related softwares. It is mostly used for multi class classification 

at the output of final neural network layer (fully connected layer) and it is very 

efficient in terms of calculation of each class probabilities comparing to other methods 

[33]. 
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4.4. THE APPLIED CONVOLUTIONAL NEURAL NETWORK 

STRUCTURES 

 

Convolutional Neural Networks, as discussed earlier, resemble the cat featural 

hierarchy. With the convolutional layers, we obtain and accomplish adaptive and 

complex feature extraction. With the traditional methods discussed in chapter 3, 

feature sets have to be static and because dirt, patching and a pothole may show similar 

low-level features it was impossible to obtain a successful classification with very low 

error. Either depth information must be included to the feature set or more complex 

features should be used for better classification. 

 

There are many CNN structures introduced to literature like [57], [50], [15] and [48]. 

GoogleNET, LeNET, AlexNET, ZFNET, VGGNET, ResNET, YOLO, R-CNN are 

examples of most famous structures used in many areas such as digit recognition, 

object detection and activity detection. There are many convolutional neural networks 

introduced to detect different type of objects.  In [59], recent CNN methods’ 

classification success rate for different type of objects and datasets are compared. 

These networks compared in [59] are too deep and are designed to obtain very 

complex feature sets. On the other hand,  although pothole, dirt, patch and manhole 

may have similar edges, gradients or textures and there need to be adaptive feature 

sets to dissociate them, these anomalies do not possess too complex features. In [3], 

different CNN’s that are constructed for age and gender classification are compared 

in terms of their success rate. Inspired by these works, it is assumed that near-age 

people also possess similar features and hence methods that are successful in age 

classification can also be applied to pothole classification. It is seen in [3] that method 

introduced in [31] is very successful at gender and age classification and is composed 

of simple convolutional blocks to apply.  A 3 Convolutional layer CNN structure 

(henceforth 3 conv CNN), followed by 3 fully connected layer, very similar to [31] is 
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constructed, tested and compared with vision-based methods.  Seeing that this method 

is very successful against vision-based methods, depth of the network needed for 

pothole classification is also investigated. On account of this   4 & 1 convolutional 

layers (henceforth 4 conv CNN & 1 conv CNN), followed by 3 fully connected layers 

are also constructed and tested. 227*227*3 images are introduced as inputs for training 

3 conv and 1 conv layer networks. 242*242*3 images used for 4 conv layer network 

 

4.4.1. 3 Convolutional Layer Network 

 

This structure is very similar to [31]. In the first conv layer, 96 units of 7*7*3 filters 

are used with stride 4 and no padding.  A rectifier linear unit and a 3*3 pooling layer 

follow each conv layer. Pooling layer gets the max of each 3*3 segment and with a 

stride of 2. Thus, the output is down sampled to half of its size. 56*56*96 hidden layer 

is obtained at the output of the first conv layer. The second conv layer consists of 256 

units. 5*5*96 filters with a stride 1 and 2 zero padding and final conv layer consists 

of 384 units 3*3*256 filters with stride 1 and 1 zero padding.  The final output is 

7*7*384 hidden layer. 

 

 Following the 3 convolutional layers 3 fully connected layer 512*512*2 is used. To 

connect the 7*7*384 feature set to the first FC layer which contains 512 perceptrons, 

a conv layer containing of 512 units of 7*7*384 filters with stride 1 and zero padding 

are used.  The structure of the network is shown in figure 4.13. 
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Figure 4.13. Structure of the 3 Conv CNN 

 

For the activation function again ReLU is used in FC layers. For the weight update, 

method momentum update  is used. First, a bigger learning rate is used; however, it 

exploded and get stuck around local minimas than a smaller a value is chosen.  3e-4 

is used as learning rate and mu is taken as 0.9 for the momentum. At the output of 

final FC layer softmax is used as loss function.  

 

4.4.2. 4 Convolutional Layer Network 

 

In the first layer of the 4 Conv layer, 48 units of 9*9*3 filter is used with stride 1 and 

no padding. A rectifier linear unit and a 3*3 pooling layer follow each conv layer. 

Pooling layer again down sample the input to half of its size. The second conv layer 

consists of 96 units 7*7*48 filters with stride 2 and zero padding. Third layer consists 
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of 256 units 5*5*96 filters with a stride of 1 and 2 zero padding and final conv layer 

consists of 384 units of 3*3*256 filters with stride 1 and 1 zero padding.  The structure 

of the network is shown in figure 4.14. 

 

 

Figure 4.14. Structure of the  4 Conv CNN 

 

4.4.3. 1 Convolutional Layer Network 

 

In the first conv layer, 96 units of 7*7*3 filters are used with stride 4 and no padding. 

Following the convolutional layer 3 fully connected layer 512*512*2 is used. To 

connect the 56*56*96 feature set to the first FC layer which contains 512 perceptrons, 

a conv layer containing of 512 units of 56*56*96 filters with stride 1 and zero padding 

are used.  The structure of the network is shown in figure 4.15 

242*2
42*3 

Conv 
ReLU 
Pool 

117*1
17*48 

Conv 
ReLU 
Pool 

28*28
*96 

Conv 
ReLU 
Pool 

v 
14*14
*256 

Conv 
ReLU 

FC-1 512 
Neurons FC-2 512 

Neurons 

FC-3 2 
Neurons 

Conv 
ReLU 
Pool 

v 
7*7*3

84 



 

 

 

51 

 

 

Figure 4.15 Structure of the  1 Conv CNN 

 

For the implementation of the applied 3 Conv, 4 Conv and 1 Conv layer CNNs matlab 

(2015) and a toolbox called MatConvNet for implementing Convolutional Neural 

Networks for computer vision applications are used. The result of the CNN and other 

methods which have been mentioned in chapter 3 will be discussed at chapter 5. 
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CHAPTER 5  

 

5. TESTS AND RESULTS 

 

5.1. INTRODUCTION 

 

The main goal of this study is to develop a method to detect potholes as soon as they 

are formed and inform the authorities to fix them in time before any damage happens 

to drivers or cars. The success rate must be satisfactory enough so that this system can 

be used in a healthy way i.e. if the system gives lots of false alarms, it will not be 

useful after a while. As stated earlier, anomaly detection on the road surfaces can be 

detected with more than %96 accuracy in [35]. Also, saliency methods can also be 

used to detect anomalies on the road surfaces. In Table 5.1 we can see the results of 

some saliency methods which are used in [17] and applied on randomly chosen 10 

images. 

Table 5-1. Different anomaly detection method output images 

Original 

Frame 

Spectral 

Residual 

Image 

Signature 

Frequency 

Tuned 

Gradient 

Based 
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As can be seen from the saliency methods like Spectral Residual or Image Signature, 

anomalies can be detected with a very high precision. The main problem is to decide 

whether the detected anomaly is a pothole or not. The main anomalies that can be 

found on road surfaces are potholes, dirt, patching and manholes. Some example 

images for these anomalies are shown in Figure 5.1, 5.2, 5.3 and 5.4. My study begins 
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just after the anomalies detected in asphalt images. Anomaly detection method can be 

regarded as front step of this study. 

 

 

Figure 5.1. Pothole examples 

 

 

Figure 5.2. Dirt examples 

 

 

Figure 5.3. Manhole examples 

 

 



 

 

 

56 

 

 

Figure 5.4. Patch examples 

 

Examining the figures one can see that a pothole do not have a specific pattern and 

non pothole images can easily be classified as pothole images with basic feature 

extracting and classification methods. As stated earlier the method shall have a 

satisfactory and reliable success metrics. Assuming corrrectly detected potholes 

condition as  True Positives (henceforth TP), correctly detected non potholes condition 

as True Negatives(henceforth TN), missing the detection of potholes as False 

Negatives (henceforth FN) and false detection condtion of potholes as False Positives 

(henceforth FP), the aim is to achieve better than 90% success rate which is formulated 

as 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑅𝑎𝑡𝑒 =
(𝑇𝑃+𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100  (5.1) 

  

Moreover, achieving a False Positive percentage defined in (5.2) less than 4% to avoid  

false alarms as much as possible is the second main goal of the study. 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =
(𝐹𝑃)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100  (5.2) 

 

5.2. DATA PREPARATION 

 

Data is collected for training and testing purposes both from the Internet and Ankara 

roads. The images from Ankara roads are taken with Samsung S3 mini cell phone. 546 

non-pothole images (190 Dirt, 177 manhole, 165 patching) were all taken from the 
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camera and 474 pothole images (179 taken with camera 295 downloaded from the 

Internet) were used in the tests. 

For the comparison of visual based methods with Convolutional Neural Networks 10 

sets are prepared for training and testing. For each set, 60 images are chosen randomly 

for the test and the rest is used for training when required. None of the sets contains 

an image in common. 60 images consist of 36 non-pothole (12 from each) and 24 

pothole (12 from each) images. For comparison of the 3 Conv and 4 Conv CNN and 

also comparison of different filters used in 3 Conv networks, 5 different sets are 

prepared.  

 

For the initial tests used in chapter 5.3.2, 10 different sets are prepared. Again, for 

each set, 60 images are chosen randomly as test data and 240 images are used for 

training. Test images consist of 24 pothole and 36 non-pothole images. For the ANN 

method all the images are labeled and given to the network. Matlab automatically 

chooses validation, training and test sets. 

 

For the vision-based methods 510 non-pothole 450 pothole images are used for 

training. For the 3 Conv and 4 Conv CNN networks, images taken with the cell phone 

are rotated 30 degrees (each image is multiplied 12 times) and images obtained from 

the Internet are rotated 90 degrees (each image is multiplied 4 times). Test images are 

never used in training sets. Moreover, neither in the validation nor in the training are 

the rotated images used.  2820 pothole and 5280 non-pothole images are used for 

training CNN networks. 316 pothole and 600 non-pothole images are used for 

validation in the training of CNN networks. Total of 9016 images used in training. 
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5.3. TESTS 

 

5.3.1. Introduction 

 

In the first part of the tests, existing methods in the literature are applied and tested on 

the collected images and the success rate is investigated through Red, Green and Blue 

channels. In the second part of the tests, existing methods are compared with 3 

Convolutional layer CNN method and in the latter part of the tests, improving the 

performance of the CNN methods are investigated. 

 

5.3.2. Vision Based Methods in the Literature and Tests in R,G,B Channels 

 

First vision-based methods introduced in chapter 3: Method for Automated 

Assessment of Potholes (will be called Test Morph), HOG Features Descriptors and 

Bayesian Classifiers (henceforth Hog + Bayesian), HOG Features Descriptors and 

SVM Classifiers (henceforth HOG + SVM) are implemented. Tests are done explicitly 

on red, blue and green channels along with the full RGB images. The main aim is to 

investigate whether a specific channel provides more information about potholes. Test 

and training images are chosen randomly, and this process is repeated 10 times.  The 

results are shown in Table 5.2.  All the values are given in percentage i.e.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 =
(𝑇𝑃)

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
∗ 100  (5.3) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 =
(𝐹𝑃)

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
∗ 100  (5.4) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 =
(𝑇𝑁)

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
∗ 100  (5.5) 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 =
(𝐹𝑁)

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
∗ 100  (5.6) 

  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑇𝐷 =
(𝑆𝑇𝐷)

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 
∗ 100  (5.7) 

  
 

 

Table 5-2. Results of vision based methods tests 

 
Test Hog+ Bayesian Test Hog+SVM Test Morph 

True Positives 

  

  

 
R G B R G B R G B 

Avg 40.83 40.83 40 41.6 41.6 41.25 41.6 45 49.58 

STD 
8.96 8.96 9.46 10.58 10.76 9.71 11.62 14.80 15.02 

RGB 

 

38.33 44.17 42.50 

10.72 10.61 14.27 

True Negatives 

  

  

 

Avg 
75.56 75.83 75.56 78.89 81.39 78.06 79.44 78.33 82.22 

STD 
4.68 5.56 5.20 5.59 3.94 5.15 5.59 5.83 5.43 

RGB 

 

74.44 78.33 81.11 

4.86 5.68 6.11 

False Positives 

  

  

 

Avg 
24.44 24.17 24.44 21.11 18.61 21.94 20.56 21.67 17.78 

STD 
4.68 5.56 5.20 5.59 3.94 5.15 5.59 5.83 5.43 

RGB 

 

25.56 21.67 18.89 

4.86 5.68 6.11 

False Negatives 

  

  

 

Avg 
59.17 59.17 60.00 58.33 58.33 58.75 58.33 55.00 50.42 

STD 
8.96 8.96 9.46 10.58 10.76 9.71 11.62 14.80 15.02 

RGB 

 

61.67 55.83 57.50 

10.72 10.61 13.18 
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It can be seen from the table that using a specific channel does not improve the success 

rate of the performance significantly and the results are far from reaching the 

performance metrics defined in (5.1) and (5.2).  

 

5.3.3. Success of ANN Network 

  

The artificial neural network that is constructed in section 3.3.4. is trained, validated 

and tested with all the images. The best success rate that is obtained with this structure 

is approximately 79 percent which is shown in figure 5. 5.  Evaluating this method 

along with other vision-based method, it is seen that obtaining a satisfying successful 

result with static features is not feasible. 

 

 

Figure 5.5 Success rate graph of ANN 
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5.3.4. Vision Based Methods in Literature and  3-Conv  CNN 

 

In test 3, Convolutional layer CNN is implemented, tested and compared with the 

above vision-based methods. The method is mainly used in face detection, namely, in 

Haar-like Features and Linear Cascade Classifiers (henceforth Haar + Linear or Linear 

Cascade) is also implemented and tested. 10 sets of data defined in section 5.2 are 

used for tests. Success rate of each method is shown in Table 5.3 and False Alarm 

Rate is shown in Table 5.4 

Table 5-3. Success rate of vision based methods and 3 Conv CNN 

 
Test  Hog+Bayesian 

Test 

Hog+SVM 

Test Linear 

Cascade Test Morph 

Test 

 3-Conv 

CNN 

Success Rate 
73.17 71.50 54.33 69.00 86.33 

 

 

Table 5-4. False alarm rate of vision based methods and 3 Conv CNN 

 
Test  Hog+Bayesian 

Test 

Hog+SVM 

Test Linear 

Cascade Test Morph 

Test 

 3-Conv CNN 

False Alarm Rate 
11.83 15.17 33.67 17.67 3.67 

 

 

Average and standart deviation of methods and their percentages are shown in Table 

5.5  

 

 

 



 

 

 

62 

 

 

 

Table 5-5. Test result of 3 Conv CNN and vision based methods 

    Test  Hog+Bayesian Test Hog+SVM 
Test Linear 
 Cascade Test Morph 

Test 

 3-Conv CNN 

%Average 

True Positives 62.50 66.67 70.00 66.67 75.00 

True Negatives 80.28 74.72 43.89 70.56 93.89 

False Positives 19.72 25.28 56.11 29.44 6.11 

False Negatives 37.50 33.33 30.00 33.33 25.00 

  

    Test  Hog+Bayesian Test Hog+SVM 
Test Linear  
Cascade Test Morph 

Test 

 3-Conv CNN 

Average 

True Positives 15.00 16.00 16.80 16.00 18.00 

True Negatives 28.90 26.90 15.80 25.40 33.80 

False Positives 7.10 9.10 20.20 10.60 2.20 

False Negatives 9.00 8.00 7.20 8.00 6.00 

  

    Test  Hog+Bayesian Test Hog+SVM 
Test Linear  
Cascade Test Morph 

Test 

 3-Conv CNN 

St. Dev 

True Positives 2.16 2.40 4.13 2.11 3.13 

True Negatives 1.97 2.47 6.76 3.24 1.40 

False Positives 1.97 2.47 6.76 3.24 1.40 

False Negatives 2.16 2.40 4.13 2.11 3.13 

  

    Test  Hog+Bayesian Test Hog+SVM 
Test Linear  
Cascade Test Morph 

Test 

 3-Conv CNN 

%St.Dev 

True Positives 9.00 10.02 17.21 8.78 13.03 

True Negatives 5.47 6.86 18.79 9.00 3.88 

False Positives 5.47 6.86 18.79 9.00 3.88 

False Negatives 9.00 10.02 17.21 8.78 13.03 

 

And finally, success rate of each method in each test is shown in Figure 5.6 
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Figure 5.6. Success rate of each method 

 

As can be seen from the tables Convolutional Neural Network increases the success 

rate of pothole detection significantly. In the average of the 10 tests, the success rate 

of CNN is at least 13 percent higher than other methods. Moreover, it is also seen in 

Table 5.4 that false alarm rate of 3-Conv CNN is much smaller than the other methods. 

It is a critical parameter in terms of having a stable and usable system. On the other 

hand, training time of Convolutional Neural Networks lasts much longer than the 

classical methods. Figure 5.7 shows an error rate versus number of epochs obtained in 

training of 3-Conv CNN. 1 epoch means 1 forward pass + 1 backward pass and each 

epoch lasts around 8 times as much as classical methods.  It lasts around 160 epochs 

to have the CNN network to be trained. 
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Figure 5.7. Error rate vs number of epochs in training 3 Conv CNN 

 

5.3.5. Comparison of 3 Conv and 4 Conv CNNs 

 

As seen in the previous tests, CNN improves the success rate significantly however it 

is still not at the desired level. To improve the success rate of the 3 Conv CNN the 

depth is increased and a 4 Conv CNN is constructed as described in chapter 4. The 

main goal is to see whether increasing the depth of the network increases the 

performance. 5 Test is done over 5 new sets of data. The average success rate is shown 

in Table 5.6 and false alarm rate is shown in Table 5.7 

 

 



 

 

 

65 

 

 

Table 5-6. Success rate of 3 Conv and 4 Conv CNN 

 

Test  

 4-Conv CNN 

Test 

 3-Conv CNN 

Success Rate 
87.00 85.33 

 

 

Table 5-7. False alarm rate of 3 Conv and 4 Conv CNN 

 

Test  

 4-Conv CNN 

Test 

 3-Conv CNN 

False Alarm Rate 
4.00 5.33 

 

 

Averages and standart deviation of methods and their percentages are shown in Table 

5.8 
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Table 5-8. Test results of 3 Conv and 4 Conv CNN 

    Test 4 Conv CNN Test 3 Conv CNN 

%Average 

True Positives 77.50 76.67 

True Negatives 93.33 91.11 

False Positives 6.67 8.89 

False Negatives 22.50 23.33 

  

    Test 4 Conv CNN Test 3 Conv CNN 

Average 

True Positives 18.6 18.4 

True Negatives 33.6 32.8 

False Positives 2.4 3.2 

False Negatives 5.4 5.6 

  

    Test 4 Conv CNN Test 3 Conv CNN 

St. Dev 

True Positives 1.14 1.52 

True Negatives 1.14 1.30 

False Positives 1.14 1.30 

False Negatives 1.14 1.52 

  

    Test 4 Conv CNN Test 3 Conv CNN 

%St.Dev 

True Positives 4.75 6.32 

True Negatives 3.17 3.62 

False Positives 3.17 3.62 

False Negatives 4.75 6.32 
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It is seen from table 5.6 that increasing the depth of the networks slightly improves 

the success performance. Also, the average false alarm rate which is 5.33 % in 3 Conv 

CNN also improves up to 4% in 4-Conv CNN.  However, training time of 4-Conv 

CNN is around 2.5 times longer than the 3-Conv CNN. 

 

5.3.6. Tests with Different Size Filters in 3 Conv CNN 

 

3 Conv CNN has 96 units 7*7 *3 filters in the first Convolutional layer, 256 units 

5*5*96 filters in the second Convolutional layer and finally 384 units 3*3*256 filters 

in the third layer. It seen from the previous test that increasing the depth of the CNN 

slightly increases the success rate and in this test effect of increasing the filter sizes 

are investigated.  Instead of 7*7,5*5 and 3*3 filters 9*9,7*7 and 5*5 filters are used 

and the result is examined. 5 Test is done over first 5 sets of 10 sets of data. The 

average success rate is shown in Table 5.9 and false alarm rate is shown in Table 5.10 

Table 5-9 Success rate of 3 Conv CNN with different filters 

 

Test  

 3-Conv CNN 

Test 

 3-Conv CNN with 

higher filters 

Success Rate 86.00 84.33 

 

Table 5-10. False alarm rate of 3Conv CNN with different filters 

 

Test  

 3-Conv CNN 

Test 

 3-Conv CNN with 

higher filters 

False Alarm Rate 3.00 4.00 
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Average and standart deviation of methods and their percentages are shown in Table 

5.11 

 

Table 5-11. Test results of 3 Conv CNN with different filter size 

    

Test 3-Conv CNN 
 with higher filters 

Test 3 Conv CNN 

%Average 

True Positives 70.83 72.50 

True Negatives 93.33 95.00 

False Positives 6.67 5.00 

False Negatives 29.17 27.50 

  

    
Test 3-Conv CNN 
 with higher filters Test 3 Conv CNN 

Average 

True Positives 17 17.4 

True Negatives 33.6 34.2 

False Positives 2.4 1.8 

False Negatives 7 6.6 

  

    
Test 3-Conv CNN 
 with higher filters Test 3 Conv CNN 

St. Dev 

True Positives 3.54 4.28 

True Negatives 1.14 1.30 

False Positives 1.14 1.30 

False Negatives 3.54 4.28 
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Test 3-Conv CNN 
 with higher filters 

Test 3-Conv CNN 
 with higher filters 

%St.Dev 

True Positives 14.73 17.82 

True Negatives 3.17 3.62 

False Positives 3.17 3.62 

False Negatives 14.73 17.82 

 

As can be seen from the table, success rate does not change much with the filter size. 

Actually with bigger filters false alarm rate increases from 4%  to 3% and average 

success rate drops from 86% to 84.33%. 

 

5.3.7. Comparison of 3 Conv and 1 Conv CNNs 

 

Analyzing the results obtained in 5.3.5 it is seen that increasing the depth of the 

network do not have a major effect on success rate. To address the minimum necessary 

depth of the network required to distinguish potholes from other anomalies, a one 

convolutional layer CNN (1 Conv CNN) is constructed as described in chapter 4. The 

main goal is to see whether 1 convolutional layer provides satisfying performance 

comparing to 3 Conv CNN. 5 Test is done over 5 new sets of data. The average success 

rate is shown in Table 5.12 and false alarm rate is shown in Table 5.13 

 

 

Table 5-12. Success rate of 3 Conv and 1 Conv CNN 

 

Test  

 1-Conv CNN 

Test 

 3-Conv CNN 

Success Rate 
84.33 86.00 
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Table 5-13. False alarm rate of 3 Conv and 1 Conv CNN 

 

Test  

 1-Conv CNN 

Test 

 3-Conv CNN 

False Alarm Rate 
5.33 4.00 

 

 

Average values of the  methods are shown in Table 5.14 

 

Table 5-14. Test results of 3 Conv and 1 Conv CNN 

    Test 1 Conv CNN Test 3 Conv CNN 

Average 

True Positives 17.6 18 

True Negatives 33 33.6 

False Positives 3 2.4 

False Negatives 6.4 6 

 

It is seen from tables 5.12 through 5.14 that 1 convolutional layer network produces 

nearly as much successful results as 3 Conv CNN.  It can be concluded from the above 

results that adaptive feature set is adequate for differentiating the asphalt anomalies. 

Major differentiable features lie in the low-level feature sets. Pothole, manhole, dirt 

and patches do not have differentiable high-level features 
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5.3.8.  Test with Internet and Camera Images  

 

As stated in data preparation section, pothole image sets used in tests consist of 12 

pothole images downloaded from internet and 12 pothole images taken with cellular 

phone camera.  The 10 test conducted in 5.3.4 with 3 Conv CNN is repeated with 

internet only and camera only pothole images. The average true positives (out of 12) 

for each set is shown in Table 5.15.  

 

Table 5-15 Comparison of internet and camera pothole image success 

 

Test  

 Internet Images 

Test 

 Camera Images 

Avg. True Positives  

(out of 12) 
10.7 7.3 

 

As seen from the above table, the system produces much more successful results with 

the internet images.  Comparing the images shown in Figure 5.8 and 5.9   it can be 

concluded that the major difference that can cause this result is the anomaly region 

size to whole image ratio. 
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Figure 5.8 Camera pothole image 

 

Figure 5.9 Internet pothole image 

 

5.3.9. Tests with Cropped Images 

 

The tests conducted in 5.3.8 shows that as the anomaly region size ratio according to 

whole image increases so does the success rate. As the aspect ratio of the anomaly 

region increases the network do not have to learn every part of the image. As stated 
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earlier the anomaly detection is a solved method by either using the method in [35] or 

the saliency methods which are used in [5xx]. Assuming that anomaly region is 

already detected, we can crop this anomaly region and feed the network with this 

cropped image. Hence the anomaly part of the images (with a large bounding box) are 

cropped and 5 tests is done over 5 new sets of data. The average success rate of non-

cropped and cropped image sets is shown in Table 5.16 and false alarm rate is shown 

in Table 5.17 

 

Table 5-16. Success rate of cropped and non-cropped image set 

 

Test  

 Cropped Images 

Test 

 Non-cropped Images 

Success Rate 
92.33 86.00 

 

 

Table 5-17. False alarm rate of cropped and non-cropped image set 

 

Test  

 Cropped Images 

Test 

 Non-cropped Images 

False Alarm Rate 
2.00 3.66 

 

Analyzing the results listed in above tables, it is seen that in line with the test results 

in 5.3.2, the success rate of the cropped-image sets is quite high comparing to the non-

cropped image sets. False alarm also drops significantly with the cropped images. 

 

5.3.10. Tests with Different Drop-out Rates 

 

As mentioned before, to overcome over fitting problem a technique called “dropout” 

is implemented in [53].  When dropout is implemented a neuron is updated at each 
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step with a probability of p, otherwise it is ignored. In 3 Conv CNN and 4 Conv CNN 

p is taken as 0.5 that is only half of the neurons are updated at each step.  

In terms of robustness and success rates, the effect of dropout rate is explored and 

tested. Dropout rate of various rates are planned to be tested and compared. Hence the 

tests are done with dropout rate of 0.1, 0.25, 0.5 and 0.75. 3 Conv CNN is used, and 

the tests are done on the first 5 set of the 10-test set. The results are summarized in 

table 5.18 and 5.19. The number of epochs against error rate with different drop-out 

rates are shown in Figure 5.10 through 5.13 

 

 

Figure 5.10. Number of epochs vs error rate with 0.10 dropout 
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Figure 5.11 Number of epochs vs error rate with 0.25 dropout 

 

Figure 5.12 Number of epochs vs error rate with 0.50 dropout 
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Figure 5.13 Number of epochs vs error rate with 0.75 dropout 

 

Table 5-18. Success rate of 3 Conv CNN with different dropouts 

 
Dropout with 0.1 Dropout with 0.25 Dropout with 0.5 Dropout with 0.75 

Success Rate 
87.00 86.67 86.00 86.33 

 

Table 5-19. False alarm rate of 3 Conv CNN with different dropouts 

 
Dropout with 0.1 Dropout with 0.25 Dropout with 0.5 Dropout with 0.75 

False Alarm Rate 
3.00 4.00 3.66 3.66 

 

Exploring the figures 5.10 through 5.13, it is seen that with increasing dropout rate 

validation success is increased and it prevented overfitting. On the other hand, 

analyzing table 5.18 and 5.19 it is seen that changing the dropout rate does not have a 

huge effect on the system performance.  Considering the test results obtained in 

section 5.3.7 and 5.3.8 together with the dropout test results, it can be concluded that 
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the network does not need to have 3 Convolutional layer and higher layers. 1 

convolutional layer may be enough to differentiate pothole among other anomalies. 

Hence, a new dropout test is conducted with 1 Conv CNN but reducing the fully 

connected layer from 512 neurons to 256 neurons. The tests are repeated with dropout 

rate of 0.1, 0.5 and 0.75 over 5 datasets and the results are shown in table 5.20 and 

5.21 

Table 5-20. Success rate of 1 Conv CNN with different dropouts 

 
Dropout with 0.1 Dropout with 0.5 Dropout with 0.75 

Success Rate 
85.00 87.66 87.66 

 

Table 5-21. False alarm rate of 1 Conv CNN with different dropouts 

 
Dropout with 0.1 Dropout with 0.5 Dropout with 0.75 

False Alarm Rate 
6.66 3.66 3.66 

 

The test conducted with 1 Conv CNN shows that increasing the dropout rate improves 

the system performance up to a point and after that point system performance become 

stable. Increasing the dropout rate higher than 0.75 ratio may cause performance 

degradation.   
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CHAPTER 6  

 

6. CONCLUSION 

 

6.1. SUMMARY 

 

In this study a 3 layer convolutional neural network is applied to classify images that 

contain potholes. As stated earlier, anomaly detection in asphalt road images is a 

nearly solved problem. The main problem is to determine whether this anomaly is a 

pothole or not. Many images that contain pothole, dirt, patching or manhole is 

collected through the roads of Ankara. Examining these images, it can be seen that it 

is not easy to differentiate these images through classical feature extraction and 

classification methods without the depth knowledge.  The main reason is that images 

that contain potholes do not have a clear specific pattern over images that contain non 

pothole anomalies i.e. they all show similar low-level features. 

 

Convolutional neural networks on the other hand provides us to obtain dynamic 

features extraction. It resembles the object detection structure in humans. It has a 

layered structure (Conv layers) to obtain adaptive and complex features. Having 

obtained these complex features the success rate of pothole classification increases 

significantly comparing to basic feature extraction and classification methods. 

 

Seeing that convolutional neural networks have strong advantage comparing to 

classical methods, the possibility of improving the performance and the robustness of 

these structures are also explored. The necessary network depth that is needed to 

distinguish potholes among other anomalies is explored, tested and compared. For this 
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purpose, a 4 layer Conv CNN and a 1 Conv CNN is presented. Internet pothole and 

camera pothole performance is compared and with the obtained findings the system is 

tested with cropped images. Performance of different filter size is also tested on the 

same images and compared with each other. And finally, different dropout rates used 

in neuron updates to prevent overfitting problem is tested and compared both in 3 

Conv CNN and 1 Conv CNN to see the robustness and performance of the system. 

 

6.2. CONCLUSIONS AND FUTURE WORK 

 

Conclusions that can be extracted from this study and the conducted various tests are 

summarized as follows; 

• Obtaining dynamic, adaptive and complex features with respect to classical 

methods, Convolutional neural networks increases the success rate 

significantly. As can be seen from the test results, CNN structures are at least 

14 percent more successful than other classical methods. 

• False alarm rate in convolutional neural networks is much lower than the 

classical methods. It is one of the important factors for the usability of the 

systems. If a system produces too much false alarm people are starting not to 

use those systems anymore. One of the main goals for this study is to obtain a 

system that has a false alarm rate lower than 5 percent and it is achieved in this 

study. 

• To differentiate pothole among other asphalt anomalies 1 Convolutional layer 

is adequate. Increasing the network depth do not much affect the system 

performance but improves the false alarm rate a little bit. However, training 

time also increases significantly. 
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• Training and testing the system with the cropped images increases the system 

performance significantly The main target is to have a success rate more than 

90 percent. In this study it is achieved with the cropped image set. 

• Increasing the filter size in 3 layer convolutional networks drops the success 

rate a little bit. It seems from the test that 7*7, 5*5 and 3*3 filters are very 

suitable for the 3 Conv CNN structure. 

• Using dropout in neuron updates prevents the system from overfitting.  Tests 

on different dropout rates over 3 Conv CNN shows that dropout rate does not 

affect the system performance due to over depth of the network. However, test 

with 1 Conv CNN shows that increasing the dropout rate increases the system 

performance up to a certain dropout rate. It seems that dropout rate of p=0.5 is 

suitable for training the system. 

 

Although the above findings were obtained in this study, all the necessary studies 

could not be completed. The success of the system shall be increased to 95% or more 

success rates to be much more useful while keeping the false alarm rate the same or 

lower. To achieve these goals below studies can be conducted; 

• 546 non-pothole images (190 Dirt, 177 manhole, 165 patching) all taken with 

Samsung s3 mini and 474 pothole images (179 taken with camera 295 

downloaded from the Internet) are used in this study. The images are 

multiplied by rotating in their y axis and used in trainings. Number of pothole 

and non-pothole examples shall be increased to improve the success rate of 

the system. 

• The effect of anomaly size ratio to whole image size can be explored and 

investigated. In this study, only the positive affect over success rate of 

cropping the anomaly region instead of entire image is shown. The anomaly 

regions are cropped with a broader boundary. Better boundaries hence better 
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cropped images can be obtained and the system performance can be 

measured with these cropped images. 

• Different filters and number of filters can be constructed with 1 Conv CNN 

and the performance of each structure can be explored. 

• Different type of convolutional neural network layers and structures can be 

conducted and tested to achieve the highest success rate. Training the 

convolutional neural networks requires a lot of time. With ten sets of test 

data, it is very time consuming and could not be completed in this study. 
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